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Chapter 1

Introduction

The industrial facilities are subject to material maintenance operations in order to keep
them in good working condition, with a number of constraints relating to the safety,
availability and costs. Maintenance, contributing through its effects on the operational
reliability of materials, plays an important role in risk control and is a determinant element
performance of an installation. Therefore, to evaluate quantitatively the impact of the
maintenance and, if necessary, optimize it, constitutes an essential industrial issue.

Therefore, it is necessary to model the process of the failures and the maintenance of
the complex systems using random point process. The first basic model is supposed that
the maintenance is minimal, i.e the system after maintenance is in the same state as
before. We call this maintenance As Bad As Old (ABAO) and the corresponding random
processes are non-homogeneous Poisson processes (NHPP). The second basic model is to
assume that maintenance is perfect, i.e the system after maintenance becomes new. We
call this maintenance As Good As New (AGAN) and the corresponding random processes
are the renewal processes. In reality, the effect of maintenance is between these two
extreme cases. This is what we call as imperfect maintenance models.

Électricité de France (EDF) and Laboratoire Jean-Kuntzmann (LJK) work together
for several years as part of the strategic project of EDF on extending the life time of the
central of the electricity production. This collaboration has developed many imperfect
maintenance models, and the methodology of estimation of maintenance efficiency and
forecasting of operational reliability [7, 9, 6]. Nowadays, before applying the models
proposed, it is important to have the methods to choose the most suitable models for
each dataset. Then, we have to do a statistical test, called goodness-of-fit test.

Lindqvist and Rannestad [13] proposed a method for constructing an exact goodness-
of-fit test for NHPP (i.e for minimum maintenance). In this project, we are interested in
adapting this method to the case of specific imperfect maintenance models. The method
is based on the existence of a sufficient statistic S for the model we want to test. The
interest of a sufficient statistic lies in the fact that, conditionally on this statistic, the

5



Chapter 1. Introduction

distribution of observations is independent of the unknown parameters of the model. The
idea is therefore to be able to simulate dataset conditionally given the observed value of
the sufficient statistic sobs on the data we want to test. Then, it is possible to construct
a conditional test at S = sobs by using the test statistic Z. If we assume that the large
value of Z corresponds to a violation of the null hypothesis, the exact p-value of the test
can be estimated by the proportion of simulated datasets for which the value of the test
statistic is greater than the value of the observed test statistic on the tested data zobs.

Krit [12] has developed various goodness-of-fit tests for specific imperfect maintenance
models using the method proposed by Lindqvist and Rannestad. The aim of the project
will, at first, to study these tests and the mathematical framework in which they have been
developed. It will then program several goodness-of-fit tests. Before doing the test, we will
make a program for the simulation of several imperfect maintenance models first. Then,
we will make a program of parameter estimation of imperfect maintenance models by using
maximum likelihood estimation (MLE) method. All the programs will be developed under
R. Since the tests use Monte Carlo methods and Gibbs sampler algorithms to calculate
the p-value for the exact test, it will consume much time. Therefore, we need a high speed
computation programming. Then, we will apply the R programming interfaced with C++
by using the Rcpp package. In the next chapter we will also show the comparison between
usual R and Rcpp computations. Finally, it will carry different experiments on simulated
datasets in order to study the behavior of the tests and especially their power. According
to the results, we could develop new mathematical technique in order to improve these
tests.
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Chapter 2

Point Process in R+

This chapter presents the definitions and general properties of point process in R+. It
also presents in advance the reliability, the failure rate, the mean time to failure (MTTF),
and the distribution in the case of lifetime modeling.

2.1 Reliability, failure rate, MTTF, and distribution

2.1.1 Reliability

Let X be a random variable corresponding to the lifetime, the cumulative distribution
function (cdf) is defined by:

F (x) = P(X ≤ x). (2.1)

The probability density function (pdf) is defined by:

f(x) = F ′(x). (2.2)

The reliability is then the function of time R (R for reliability) defined by:

∀x ≥ 0, R(x) = P(X > x) (2.3)

We have obviously the fact that R(x) = 1− F (x) and R′(x) = −f(x).

2.1.2 Failure rate

Recall X be a random variable corresponding to the lifetime, the failure rate or the
hazard rate is the function of time h defined by:

∀x ≥ 0, h(x) = lim
∆x→0

1

∆x
P(x < X ≤ x+ ∆x|X > x) (2.4)

In the expression of (2.4), the desired probability is the probability of the system fails
between x and x + ∆x conditionally given that it is in good condition between 0 and x.
We note that the reliability is a probability, but the failure rate is not. It is because h(x)
could be greater than 1.
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Chapter 2. Point Process in R+

We obviously know that:

f(x) = F ′(x) = lim
∆x→0

F (x+ ∆x)− F (x)

∆x

= lim
∆x→0

1

∆x

[
P(X ≤ x+ ∆x)− P(X ≤ x)

]

= lim
∆x→0

1

∆x

[
P(x < X ≤ x+ ∆x)

]

Then, we have for ∆x is ”very small”:

f(x)∆x ≈ P(x < X ≤ x+ ∆x)

and:
h(x)∆x ≈ P(x < X ≤ x+ ∆x|X > x)

The quantity of f(x)∆x can be considered as the probability of the failure just after the
time x as well as h(x)∆x can be considered as the probability of the failure just after the
time x conditionally given that the system does not fail before time x.

It is also easy to know the relationship between failure rate and the reliability:

h(x) = lim
∆x→0

1

∆x
P(x < X ≤ x+ ∆x|X > x)

= lim
∆x→0

1

∆x

P(x < X ≤ x+ ∆x ∩X > x)

P(X > x)

= lim
∆x→0

1

∆x

P(x < X ≤ x+ ∆x)

P(X > x)

=
1

R(x)
lim

∆x→0

1

∆x

[
F (x+ ∆x)− F (x)

]

=
f(x)

R(x)
=

f(x)

1− F (x)
= −R

′(x)

R(x)
= − d

dx
lnR(x)

(2.5)

By integrating each side and taking the initial condition R(0) = 1, since we suppose that
the system doesn’t fail at the initial time, we obtain:

R(x) = exp

(
−
∫ x

0

h(u)du

)
. (2.6)

2.1.3 Mean time to failure (MTTF)

The mean time to failure (MTTF) of a non repairable system is the duration of the lifetime
in average:

MTTF = E[X] =

∫ +∞

0

x f(x) dx (2.7)
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Chapter 2. Point Process in R+

By partial integration, then we obtain:

MTTF =
[
− xR(x)

]+∞
0

+

∫ +∞

0

R(x) dx

We suppose that R(x) tends to zero faster than 1
x
, we obtain more usual formula for the

MTTF:

MTTF =

∫ +∞

0

R(x) dx (2.8)

2.1.4 Probability distribution

In this subsection, we will present the exponential distribution and weibull distribution
which are widely used for lifetime modeling.

A random variable X is exponential distributed with parameter λ > 0, denoted by
exp(λ), if and only if the cumulative distribution function is:

F (x) = 1− exp(−λx) (2.9)

The reliability is:
R(x) = exp(−λx) (2.10)

The probability density function is:

f(x) = F ′(x) = λ exp(λx) (2.11)

The MTTF is:

MTTF = E[X] =

∫ +∞

0

R(x) dx =

∫ +∞

0

exp(−λx) dx =
1

λ
(2.12)

The failure rate is:

h(x) =
f(x)

R(x)
= λ (2.13)

We also say that the exponential distribution has a ”memoryless” property. It means
that if the system never fails until time t, it would be as good as it were new at time t.
Mathematically, we can express:

∀x ≥ 0, P(X > t+ x|X > t) = P (X > x) (2.14)

A random variable X is Weibull distributed with scale parameter η > 0 and shape
parameter β > 0, denoted by W(η, β), if and only if the cumulative distribution function
is:

F (x) = 1− exp

(
−
(
x

η

)β)
(2.15)
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Chapter 2. Point Process in R+

The reliability is:

R(x) = exp

(
−
(
x

η

)β)
(2.16)

The probability density function is:

f(x) = F ′(x) =
β

η

(
x

η

)β−1

exp

(
−
(
x

η

)β)
(2.17)

The MTTF is:

MTTF = ηΓ

(
1

β
+ 1

)
(2.18)

where Γ is the gamma function defined by:

Γ(a) =

∫ +∞

0

xa−1 exp(−x) dx (2.19)

The failure rate is:

h(x) =
f(x)

R(x)
=
β

η

(
x

η

)β−1

(2.20)

2.2 Counting process

The point process allow to model the occurrence of events in time. In general, the times
between occurrences are neither independent nor identically distributed. The maintenance
durations are assumed to be negligible, or not taken into account, then the failures and
CM times are the same.

Let the function of a system start from time T0 = 0. The failures occur at time {Ti}i≥1.
After a failure occurs, the system is either repaired or not, then is put again into the
operation. The duration of maintenance is considered negligible.

Let Nt be the random variable that denotes the number of failures in the interval [0, t].
{Nt}t≥0 is called a counting process [1] that satisfies:

• N0 = 0 a.s.

• {Nt}t≥0 is an integer.

• the trajectories of {Nt}t≤0 are increasing, constant piecewise functions, and right
continuous with left hand limits.

We consider that the process {Nt}t≤0 is simple, i.e we cannot have more than one failure
at once:

∀t ≥ 0,∆t ≥ 0,P(Nt+∆t −Nt ≤ 2) = o(∆t) (2.21)

A failure process is defined by one of the following random processes [1, 5]:
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Chapter 2. Point Process in R+

• {Ti}i≥1, the sequence of the failure times of the system, with T0 = 0. Tn denotes
the vector of the first n failure times Tn = (T1, ..., Tn).

• {Xi}i≥1, the sequence of the successive inter-failure times where ∀i ≥ 1, Xi =
Ti − Ti−1 is the duration between the (i− 1)th and the ith failures.

• {Nt}t≥0, the counting process of the failures, where ∀t ∈ R+,

Nt =
+∞∑

i=1

1{Ti≤t}

is the cumulative number of failures occurred on [0, t]. We will denote Nt− as left
hand limit of Nt, i.e the number of failures occurred on [0, t). It is supposed that
∀ t ∈ R+, P(Nt ≤ +∞) = 1 which means the number of failures occurred at each
time t is always finite.
Repairable systems: preliminary results 111

Figure 7.1: Observations of a counting process and corresponding notations

Nt− denotes the left hand limit of Nt, it means the number of failures occurred in [0, t[. We
assume that ∀t ∈ R+, P (Nt < +∞) = 1 which means that the number of CM occurred,
at each instant, is always finite.

In order to be able to predict the future of the process, we need its history. That is
why we need to introduce, formally, the notion of filtration [27]. We consider first that
all the random variables Nt, t > 0, are defined in the same probability space (Ω,A,P).
A filtration H = {Ht}t≥0 is an increasing sequence of sub-σ−algebras of A:

s < t⇒ Hs ⊂ Ht. (7.3)

The process {Nt}t≥0 is H−adapted if and only if for all t ≥ 0, Nt is H−measurable.
This means that the filtration Ht includes all the information of the history at time t that
is likely to influence the random variable Nt. Let Ht− = ∩s<tHs.

Since the process {Nt}t≥0 is a piecewise constant function that changes its values only
at the times {Ti}i≥1, its history at time t is entirely known by the number and the times
of CM occurred between 0 and t. Thus Ht is the σ−algebra generated by the history of
the process at time t:

Ht = σ(Nt, T1, . . . , TNt). (7.4)

In this case the future of the process depends only on its history Ht. It is called
self-exciting process [116].

Definition 7.2 The failure intensity function of the counting process {Nt}t≥0 [5] is:

∀t ≥ 0, λt = lim
∆t→0

1

∆t
P (N(t+∆t)− −Nt− = 1|Ht−)

= lim
∆t→0

1

∆t
P (t ≤ TNt−+1 < t+ ∆t|Ht−)

(7.5)

The failure intensity function expresses the propension of the system to have a failure at
[t, t + ∆t[, given Ht− which represents all the available information just before t. A self
exciting process is completely characterized by its failure intensity [27].

In a parametric approach, we assume that the failure intensity is specified using a
vector parameters θ. The failure intensity is either denoted λt or λt(θ). The integral of

Figure 2.1: Observations of a counting process and corresponding notations

2.3 The failure intensity

In order to be able to predict the future of the process, we need its history. We will
introduce the notion of filtration [5]. We consider first that all the random variable Nt,
t > 0, are defined in the same probability space (Ω,A,P). A filtration H = {Ht}t≤0 is an
increasing sequence of sub-σ-algebras of A:

s < t⇒ Hs ⊂ Ht. (2.22)

The process {Nt}t≥0 is H-adapted if and only if for all t ≤ 0, Nt is H-measurable. It
means that the filtration Ht includes of all the information of the history at time t that is
likely to influence the random variable Nt. Let Ht− = ∩s<tHs. Since the process {Nt}t≥0

is a piecewise constant function that changes its value only at the time {Ti}i≥1, its history
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Chapter 2. Point Process in R+

at time t is entirely known by the number and the times of failure occurred between 0
and t. Thus Ht is the σ-algebra generated by the history of the process at time t:

Ht = σ(Nt, T1, ..., TNt). (2.23)

In this case, the future of the process depends only on its history Ht. It is called self-
exciting process [17].

The failure intensity function of the counting process {Nt}t≥0 is:

∀t ≥ 0, λt = lim
∆t→0

1

∆t
P(N(t+∆t)− −Nt− = 1|Ht−)

= lim
∆t→0

1

∆t
P(t ≤ TNt−+1 < t+ ∆t|Ht−)

(2.24)

When ∆t is ”very small”, we have:

λt∆t ≈ P(N(t+∆t)− −Nt− = 1|Ht−) (2.25)

The failure intensity function expresses the tendency of the system to have a failure at
[t, t + ∆t), given Ht which represents all the available information just before t. A self-
exciting process is completely characterized by its failure intensity [5].

2.4 The properties of the point process

2.4.1 Reliability

The reliability of the system at time t defines the probability of the system works
without failure on any duration start from t, conditionally its history before t. For a
self-exciting point process, the reliability function is in the following:

∀τ ∈ R+, Rt(τ ;Nt, T1, .., TNt) = P(Nt+τ −Nt = 0|Nt, T1, .., TNt)

= P(TNt+τ − t > τ |Nt, T1, .., TNt)
(2.26)

The reliability at time t is also defined by:

Rt(τ) = exp

(
−
∫ t+τ

t

λs ds

)
(2.27)

We have also the reliability at the nth failure in the following:

RTn(τ) = exp

(
−
∫ Tn+τ

Tn

λs(n, t1, ..., tn) ds

)
(2.28)
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Chapter 2. Point Process in R+

2.4.2 Mean time to failure (MTTF)

The mean time to failure (MTTF) at time t is the conditional expectation of the
duration to the next failure start from time t:

MTTFt = E[TNt+1 − t|Nt, T1, ..., TNt ] (2.29)

We have also the MTTF at time t in the following:

MTTFt =

∫ +∞

0

Rt(τ) dτ (2.30)

2.5 Likelihood function

In a parametric approach, we assume that the failure intensity is specified using a vector
parameters θ. The failure intensity is either denoted λt or λt(θ). The integral of the failure
intensity is called the cumulative intensity function, denoted Λt:

Λt =

∫ t

0

λs ds. (2.31)

The estimation of θ can be done by using maximum likelihood estimation (MLE)
method. Let t > 0 be a deterministic time (time censoring). The likelihood function
corresponding to the observation of the failure process on [0, t] is:

Lt(θ) =

[
Nt∏

i=1

λTi(θ)

]
exp(−Λt(θ)). (2.32)

The log-likelihood function is the logarithm of the likelihood:

Lt(θ) =
Nt∑

i=1

ln(λTi(θ))−
∫ t

0

λs(θ) ds. (2.33)

The maximum likelihood estimator θ̂t is defined as the value of I0 that maximizes the
likelihood or equivalently the log-likelihood:

θ̂t = argmax
θ∈I0

Lt(θ). (2.34)

2.6 Classification of the point processes in R+

Since the essential characteristic of the point process is its intensity, we can propose a
classification of the point process in R+ in the function of the failure intensity. We will
only present 3 usual classes.

13



Chapter 2. Point Process in R+

2.6.1 Poisson Process

The failure process is a Poisson process if and only if the intensity is a deterministic
function of time:

λt = λ(t) (2.35)

The function in (2.35) expresses that after the maintenance, the system is in the same
state as before. The maintenance only put the system into the operation without leaving
it more reliable than before. We call this maintenance as minimal or the system is called
As Bad As Old (ABAO). The λ function characterizes the wear of the system. When
λ is increasing, the system is getting older and degrading. It is usually the case of the
material system. When λ is decreasing, the system becomes better and younger. It is
usually the case of the software, for which the correction the bugs increase its reliability.

When λ is constant, the Poisson process is called homogeneous (HPP for Homogeneous
Poisson Process). Otherwise, we call it as non homogeneous (NHPP for Non Homogeneous
Poisson Process).

114 Repairable systems: preliminary results

Figure (7.2) gives illustrations of the shapes of the power-law failure intensity function,
the stars on the abscissa representing the CM times. The left figure shows the power law
intensity for the parameters (α = 1, β = 3.6) and the right is plotted for (α = 1, β = 0.3).

• Log-linear process:

λt(a, b) = exp(a+ bt), a, b ∈ R, t > 0. (7.14)

Illustrations of different shapes of its intensity are given in figure 7.3 (left figure
(a = 1, b = 1.53), right figure (a = 1, b = −3)). Parameter a is a scale parameter
and the parameter b is a shape parameter. The sign of b characterizes the wear of
the system:

– b > 0: wear or aging;

– b < 0: improvement or rejuvenating;

– b = 0: stability (HPP(exp(a))).

Figure 7.3: Log-linear failure intensity

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

140

0 0.5 1 1.5
0

1

2

3

4

5

6

7

7.2.3 AGAN model

The perfect maintenance model considers that each maintenance is perfect and leaves the
system as it were new (see figure 7.4). The random process is then a renewal process (RP).
The times between two maintenance actions are independent and identically distributed.
This implies that the failure intensity can be written as [78]:

λt = λ(t− TNt− ). (7.15)

Figures 7.4 represents a trajectory of the failure intensity of a system with AGAN main-
tenance in the case of power-law intensity function with the parameters α = 1, β = 3.6.
The CM times are the times when the intensity function jumps. After maintenance, the
intensity function starts from zero in parallel to the initial intensity function.

Figure 2.2: NHPP with increasing intensity and decreasing intensity

2.6.2 Renewal process

The failure process is a renewal process if and only if the inter-failure times Xi are
independent and identically distributed. The intensity is in the following:

λt = h(t− TNt− ) (2.36)

After each failure time Ti, the intensity of the process restarts as the origin. As conse-
quence, it makes the system become like new after each maintenance. The system is also
called As Good As New (AGAN), which means the maintenance is perfect.

In the case of the intensity is:

λt = h(Nt− , t− TNt− ), (2.37)

the Xi are independent but not identically distributed. The corresponding process is
sometimes called quasi-renewal process.
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Figure 7.4: Power Law failure intensity and AGAN effect

7.3 Repairable systems with CM and PM

7.3.1 Notations

For a system preventively maintained at predetermined deterministic times {τi}i≥1, the
number of PM at t is denoted by mt. CM are done at unpredictable random times {Ti}i≥1.
The associated counting process is denoted by {Nt}t≥0. The duration of maintenance (PM
and CM) actions is not taken into account. The counting process of both CM and PM is
is denoted by {Kt}t≥0. Finally, {Ci}i≥1 and {Wi}i≥1 denote respectively the maintenance
times (PM and CM) and the times between maintenance. {Xi}i≥1 denotes the times
between two successive CM (Xi = Ti − Ti−1) and the {χi}i≥1 denotes the times between
two successive PM (χi = τi − τi−1). Figure 7.5 illustrates all the previous notations.

Before the first failure, the failure intensity is assumed to be a not always null function,
non decreasing, deterministic, from R+ to R+, called initial intensity and denoted by
λ(t). The initial intensity represents the intrinsic wear out which means the wear out in
the absence of maintenance actions. When the initial intensity is known, an imperfect
maintenance model is only characterized by the effect of maintenance actions on the
failure intensity. Deterministic PM is a particular case of planned PM, for which Doyen
and Gaudoin [35] have proposed a general framework for simultaneous modeling and
assessment of aging and maintenance efficiency.

In this context, the PM-CM process is completely defined by its failure intensity λt
which has the same expression as in (7.5):

∀t ≥ 0, λt = lim
∆t→0

1

∆t
P (N(t+∆t)− −Nt− = 1|Ht−)

7.3.2 Imperfect maintenance: virtual age models

In practice, the effect of maintenance is neither minimal (ABAO) nor maximal (AGAN),
it is between these to extreme situations. Indeed, it is more reasonable to think that the
maintenance has an effect more than minimal, which means that the system after repair
is better than old. It is also less likely that the maintenance leaves the system as good as

Figure 2.3: Intensity of renewal process

2.6.3 Imperfect maintenance model

In reality, for the materials, we are often situated between both two extreme cases
ABAO and AGAN. The maintenance effect is more than minimal, but it does not leave
the system as if it were new. It is hence interested to propose the intermediate model
between the both cases ABAO and AGAN.

It is the case of arithmetic reduction of age (ARA) model, for which the failure intensity
is:

λt = h(t− ρTNt− ) (2.38)

ρ is a parameter characterizing the efficiency of the maintenance:

– ρ = 0 : the case of ABAO, the maintenance is minimal.

– ρ = 1 : the case of AGAN, the maintenance is perfect.

– 0 < ρ < 1 : the maintenance is imperfect, but not minimal.
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Figure 7.10: Failure intensity in the case of ARA1 PM-ABAO CM
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In the next chapter, we will use this model with a log-linear intensity function:

λt(a, b, ρ) = exp(a+ b(t− ρτmt− )). (7.24)

The model will be denoted ARA1−LLP. Figure 7.11 illustrates a trajectory of
ARA1−LLP with the parameter values: a = −0.1, b = 1.2 (at left ρ = 0.8 and
at right ρ = 1.2). The fact that PM is better than new for ρ > 1 can be seen on the
right figure.
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Figure 7.11: Intensity failure of the model ARA1−LLP

• ARA∞ PM-ABAO CM: when the effects of the preventive maintenance are consid-
ered to have the Arithmetic Reduction of Age effect with infinite memory (ARA∞)[33],
the effective ages are Ai = (1−ρ)(Ai−1+(τi−τi−1)). Recursively the failure intensity
of ARA∞ is [33]:

λt = λ


t− ρ

mt−−1∑

j=0

(1− ρ)jτmt−−j


 . (7.25)

Figure 7.12 shows the failure intensity of ARA∞ PM-ABAO CM (left ρ = 0.7 and
right ρ = −0.5).

Figure 2.4: Intensity of the imperfect maintenance model
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Chapter 3

Repairable Systems

In this chapter, we are interested in system that are repairable and subject to mainte-
nance. There are two kinds of maintenance:

• Corrective maintenance (CM), also called repair, is carried out after a failure and
intends to put the system a state in which it can perform its function again.

• Preventive maintenance (PM) is carried out when the system is operating and in-
tends to slow down the wear process and reduce the frequency of occurrence of
system failures.

Mathematically, the failure times of a repairable system are random variables and so
are the CM. The PM are, in our case, fixed before the system is put into service and
they are consequently carried out at deterministic times. These maintenances can have
different effects on the system reliability. The basic assumption on maintenance can have
different effects in the system reliability. The basic assumption on maintenance efficiency
are known as minimal repair or As Bad As Old (ABAO) and perfect repair or As Good As
New (AGAN). In the ABAO case, each maintenance leaves the system in the state it was
before maintenance. In the AGAN case, each maintenance is perfect and leaves the system
as if it were new. It is well known that the reality is between these two extreme cases:
standard maintenance reduce failure intensity but does not leave the system AGAN. This
is known as imperfect maintenance. The mathematical modeling of the occurence and
efficiency of maintenance is done using random point processes. In this framework, the
model is completely characterized by its failure intensity. The likelihood function can be
written as a function of its intensity.

The most known and widely used models for repairable systems are Nonhomogeneous
Poisson Processes (NHPP). They assume that the effect of the CM is ABAO. The two
classical intensities are the power-law and the log-linear intensity functions. The objective
of our study is to be able to measure the fitness of a given dataset to a give maintenance
model.
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3.1 Imperfect Maintenance Models

3.1.1 Introduction and Notations

In the context of the imperfect maintenance models, we use several notations as follows.

• PM occur at predetermined deterministic times {τi}i≥1.

• CM occur at random times {Ti}i≥1.

• The number of PM at time t is denoted by mt.

• The associated failure process is denoted by {Nt}t≥0.

• {Ci}i≥1 denotes the maintenance times (PM and CM).

• {Wi}i≥1 denotes the times between maintenance.

• {Xi}i≥1 denotes the times between two successive CM (Xi = Ti − Ti−1).

• {χi}i≥1 denotes the times between two successive PM (χi = τi − τi−1).

Before the first failure, the failure intensity is assumed to be a non null function, non
decreasing, deterministic, from R+ to R+, and is called the initial intensity and denoted
by λ(t). The initial intensity represents the intrinsic wear out which means the wear out
in the absence of maintenance actions. When the initial intensity is known, an imperfect
maintenance model is only characterized by the effect of maintenance actions on the failure
intensity. Deterministic PM is a particular case of planned PM, for which Doyen and
Gaudoin have proposed a general framework for simultaneous modeling and assessment
of aging and maintenance efficiency.

In practice, the effect of maintenance is neither minimal (ABAO) nor maximal (AGAN),
it is between these to extreme situations. Indeed, it is more reasonable to think that the
maintenance has an effect more than minimal, which means that the system after repair
is better than old. It is also less likely that the maintenance leaves the system as good as
new. The system in this case after repair is worse than new. This situation is known as
better than minimal repair or as imperfect maintenance.
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Figure 7.5: Observations of a counting process and the corresponding notations

Figure 3.1: Observation of a counting process and the corresponding notations
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3.1.2 Generalized Virtual Age Models

Many imperfect maintenance models have been proposed. Virtual age models are
among these imperfect maintenance models. They assume that after the ith maintenance
the system behaves like a new one that has survived without failure until Ai:

P(Wi+1 > w|W1, ...,Wi, Ai) = P(Y > Ai + w|Y > Ai, Ai) (3.1)

where Y is a random variable independent of Ai and with the same distribution as the
time to failure of the new unmaintained system. The corresponding failure intensity is:

λt = λ(AKt− + t+ CKt− ) (3.2)

AKt is called the effective age at time t and AKt + t + CKt is the virtual age at time t.
The effective age is the virtual age of the system just after the last maintenance action.
The idea that repair actions reduce the age of the system is the basis of Kijima’s virtual
age models [11]. Several models can be derived. Some of them will be presented in the
following and illustrated by a trajectory of the corresponding intensity function.

• AGAN PM-AGAN CM: each maintenance is supposed to be AGAN, i.e each main-
tenance renews the system. Then, the effective age is Ai = 0, ∀i ≥ 1. The failure
intensity is:

λt = λ(t− CKt− ) (3.3)

One can notice that the failure process is not a renewal process because the failure
intensity is not a function of t− TNt− [17].
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new. The system in this case after repair is worse than new. This situation is known as
Better than minimal repair or as imperfect maintenance. Many imperfect maintenance
models have been proposed [102]. Virtual age [63] models are among these imperfect
maintenance models. They assume that after the ith maintenance the system behaves
like a new one that has survived without failure until Ai [35]:

P (Wi+1 > w|W1, . . . ,Wi, Ai) = P (Y > Ai + w|Y > Ai, Ai) (7.16)

where Y is a random variable independent of Ai and with the same distribution as the
time to failure of the new unmaintained system. The corresponding failure intensity is
[35]:

λt = λ(AKt− + t− CKt− ). (7.17)

AKt is called the effective age at time t and AKt + t − CKt is the virtual age at time t.
The effective age is the virtual age of the system just after the last maintenance action.
The idea that repair actions reduce the age of the system is the basis of Kijima’s virtual
age models [63]. Several models can be derived. Some of them will be presented in the
following and illustrated by a trajectory of the corresponding intensity function (chosen
to be power-law with parameters α = 1, β = 3.6), the stars on the abscissa representing
the CM times and the circles the PM times .

• AGAN PM-AGAN CM: each maintenance is supposed to be AGAN. Effective ages
are then equal to zero Ai = 0, ∀i ≥ 1. The failure intensity is:

λt = λ(t− CKt− ). (7.18)
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Figure 7.6: Failure intensity in the case of AGAN PM-AGAN CM

• ABAO PM-ABAO CM: each maintenance is supposed to be minimal. Then effective
ages are equal to the last maintenance times Ai = Ci, ∀i ≥ 1. The failure intensity
is only a function of time, and the failure process is a NHPP:

λt = λ(t) (7.19)

Figure 3.2: The intensity of AGAN PM - AGAN CM
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• ABAO PM - ABAO CM: each maintenance is supposed to be minimal. Each main-
tenance restores the system to the state it was in just before the maintenance action.
The effective age is then equal to the last maintenance time Ai = Ci, ∀i ≥ 1. The
failure intensity is only a function of time, and the failure process is a NHPP [16].

λt = λ(t) (3.4)118 Repairable systems: preliminary results
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Figure 7.7: Failure intensity in the case of ABAO PM-ABAO CM

• ABAO PM-AGAN CM: Each preventive maintenance is minimal, while each correc-
tive maintenance renews the system. The effective age is equal to the times elapsed
between the last maintenance and the last perfect maintenance: Ai = Ci − TNCi .
The failure process is a renewal process with failure intensity:

λt = λ(t− TNt− ). (7.20)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

Figure 7.8: Failure intensity in the case of ABAO PM-AGAN CM

• AGAN PM-ABAO CM: the preventive maintenances are perfect and the corrective
maintenances are ABAO, then the effective ages are Ai = Ci − τmCi and the failure
intensity is:

λt = λ(t− τmt− ). (7.21)

Figure 3.3: The intensity of ABAO PM-ABAO CM

• ABAO PM-AGAN CM: each preventive maintenance is minimal, while each cor-
rective maintenance renews the system. The effective age is then equal to the
time elapsed between the last maintenance and the last perfect maintenance, Ai =
Ci − TNCi . The failure process is then a renewal process with failure intensity:

λt = λ(t− TNt− ) (3.5)

The assumption of ABAO PM is unrealistic. Planned PM are carefully prepared in
advance, and are expected to have a strong positive effect.Moreover, CM are done
after an unplanned failure, and the aim of this type of maintenance is to quickly
restore the system into a state in which it can perform its function again. So, the
AGAN CM is unlikely. In fact, CM are often assumed to be minimal, as in [18].

• AGAN PM-ABAO CM: the preventive maintenances are perfect and the corrective
maintenances are ABAO. Then, the effective ages are Ai = Ci−τmt− and the failure
intensity is:

λt = λ(t− τmt− ) (3.6)
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Figure 7.7: Failure intensity in the case of ABAO PM-ABAO CM

• ABAO PM-AGAN CM: Each preventive maintenance is minimal, while each correc-
tive maintenance renews the system. The effective age is equal to the times elapsed
between the last maintenance and the last perfect maintenance: Ai = Ci − TNCi .
The failure process is a renewal process with failure intensity:

λt = λ(t− TNt− ). (7.20)
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Figure 7.8: Failure intensity in the case of ABAO PM-AGAN CM

• AGAN PM-ABAO CM: the preventive maintenances are perfect and the corrective
maintenances are ABAO, then the effective ages are Ai = Ci − τmCi and the failure
intensity is:

λt = λ(t− τmt− ). (7.21)

Figure 3.4: The intensity of ABAO PM-AGAN CM
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Figure 7.9: Failure intensity in the case of AGAN PM-ABAO CM

• Virtual age PM effect-ABAO CM: the effective age is equal to the effective age at
the time of the last PM plus the time elapsed since the last PM. In this case, the
effective ages are Ai = AKτmCi

+ Ci − τmCi . Then the failure intensity is:

λt = λ(AKτm
t−

+ t− τmt− ). (7.22)

• ARA1 PM-ABAO CM: when preventive maintenance are considered to have the
Arithmetic Reduction of Age effect with memory one (ARA1) [33], the effective
ages are Ai = Ai−1 + (1− ρ)(τi − τi−1) = (1− ρ)τi. The failure intensity is:

λt = λ(t− ρτmt− ). (7.23)

We have the following special cases when the initial failure intensity is increasing
(the system wears out with time and usage):

– ρ = 0: minimal PM (ABAO),

– ρ = 1: perfect PM (AGAN),

– 0 < ρ < 1: imperfect PM,

– ρ < 0: harmful PM,

– According to the choice of the initial intensity, it may be possible to have
ρ > 1 corresponding to a “better than new” PM. This is possible for a log-
linear intensity (because exp(a + bt) > 0,∀t < 0) but not for the power law
intensity (because αβtβ−1 is not defined for t < 0).

Figure 7.10 illustrates trajectories of the power law failure intensity in the case of
ARA1 PM-ABAO CM. We can notice that at each PM times, the intensity function
is reduced in the case (ρ = 0.35) and increased in the case (ρ = −0.35). This
figure illustrates the fact that the maintenance efficiency depends on the sign of the
parameter ρ.

Figure 3.5: The intensity of AGAN PM-ABAO CM
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• Virtual age PM effect-ABAO CM: the effective age is equal to the effective age
at the time elapsed since the last PM. In this case, the effective age are Ai =
AKτmCi

+ Ci − τmCi . Then, the failure intensity is:

λt = λ(AKτm
t−

+ t− τmt− ) (3.7)

• ARA1 PM-ABAO CM: when preventive maintenance are considered to have the
arithmetic redution of age effect with memory one (ARA1) [7], the effective ages are
Ai = Ai−1 + (1−B)(τi − τi−1) = (1− ρ)τi. The failure intensity is:

λt = λ(t− ρτmt− ) (3.8)

We have the following special cases when the initial failure intensity is increasing:

– ρ = 0 : minimal PM (ABAO)

– ρ = 1 : perfect PM (AGAN)

– 0 < ρ < 1 : imperfect PM

– ρ < 0: harmful PM

– According to the choice of initial intensity, it may be possible to have ρ > 1
corresponding to a ”better than new” PM. This is possible for a log-linear
intensity (because exp(a+ bt) > 0,∀t < 0) but not for the power law intensity
(because αβtβ−1 is not defined for t < 0).

The ARA1 PM-ABAO CM with the log-linear intensity is also called ARA1-LLP.
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Figure 7.10: Failure intensity in the case of ARA1 PM-ABAO CM
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In the next chapter, we will use this model with a log-linear intensity function:

λt(a, b, ρ) = exp(a+ b(t− ρτmt− )). (7.24)

The model will be denoted ARA1−LLP. Figure 7.11 illustrates a trajectory of
ARA1−LLP with the parameter values: a = −0.1, b = 1.2 (at left ρ = 0.8 and
at right ρ = 1.2). The fact that PM is better than new for ρ > 1 can be seen on the
right figure.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

Figure 7.11: Intensity failure of the model ARA1−LLP

• ARA∞ PM-ABAO CM: when the effects of the preventive maintenance are consid-
ered to have the Arithmetic Reduction of Age effect with infinite memory (ARA∞)[33],
the effective ages are Ai = (1−ρ)(Ai−1+(τi−τi−1)). Recursively the failure intensity
of ARA∞ is [33]:

λt = λ


t− ρ

mt−−1∑

j=0

(1− ρ)jτmt−−j


 . (7.25)

Figure 7.12 shows the failure intensity of ARA∞ PM-ABAO CM (left ρ = 0.7 and
right ρ = −0.5).

Figure 3.6: The intensity of ARA1 PM-ABAO CM

• ARA1 PM-ARA1 CM: Arithmetic reduction of age with 1 memory. It is assumed
that the maintenance effect is to reduce the virtual age of an amount proportional
to the supplement of age accumulated since the last maintenance with two different
age reduction factors: ρp for PM, and ρc for CM. Both parameters belong to (−∞, 1]
because a virtual age cannot be negative. The effective age is:

Ak =

{
(Ak−1 +Wk)− ρpWk if Uk = 1
(Ak−1 +Wk)− ρcWk if Uk = 0

(3.9)
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Then, the failure intensity is [9]:

λt = λ

(
t−

Kt−∑

i=1

ρUip ρ
1−Ui
c Wi

)
(3.10)

• ARA∞ PM-ARA∞ CM: Arithmetic reduction of age with infinite memory. It is
assumed that the maintenance effect is to reduce the virtual age of an amount
proportional to its value just before maintenance with two different age reduction
factors: ρp for PM, and ρc for CM. Both parameters belong to (−∞, 1] and the
effective age is:

Ak =

{
(1− ρp)(Ak−1 +Wk) if Uk = 1
(1− ρc)(Ak−1 +Wk) if Uk = 0

(3.11)

Then, the failure intensity is:

λt = λ

(
t− CKt− +

Kt−∑

i=1

(1− ρp)mt−−mCi−1 (1− ρc)Nt−−NCi−1Wi

)
(3.12)

• Brown-Proschan PM - ABAO CM [3]: this model is defined by external random
variables B = {Bk}i≥1, independent and bernoulli distributed with parameter p. Bi

represents the efficiency of the kth repair:

Bk =

{
1 if the kth PM is AGAN
0 if the kth PM is ABAO

(3.13)

The effective ages are:

Ak =
k∑

j=1

[
k∏

i=j

(1−Bi)χj

]
(3.14)

The failure intensity is:
λt = λ(t− τmt− + Amt− ) (3.15)
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Chapter 4

Simulation and Parameter
Estimation of Imperfect
Maintenance Models

This chapter presents the simulation and the parameter estimation of several imperfect
maintenance models. We will also study the marginal distributions of the estimated
parameters of the models.

4.1 Model Simulations

A simple way to study the behavior of the failure process is by using the Monte Carlo
method and calculate the average of the desired behavior from the simulated dataset.
In general, we can easily simulate a random variable which follows a specific distribu-
tion by using the inverse of the cumulative distribution function, we usually call it as
inverse transform sampling. It is a basic method for pseudo-random number sampling,
i.e. for generating sample numbers at random from any probability distribution given its
cumulative distribution function (cdf).

In order to simulate the desired model, firstly we need to set:

• PM times and censorship time

• The type of the model

• The initial intensity of the model, denoted by λ(.)

• The cumulative initial intensity of the model, denoted by Λ(.)

• The inverse of cumulative initial intensity of the model, denoted by Λ−1(.)

• The function of the effective age model, denoted by Ak
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Chapter 4. Simulation and Parameter Estimation of Imperfect Maintenance Models

In this section, we use two types of intensity function: Weibull intensity and log-linear
intensity. The Weibull intensity function at time t is given as follows.

λ(t) = αβtβ−1 (4.1)

The cumulative initial intensity is:

Λ(t) = αtβ (4.2)

The inverse of cumulative initial intensity is:

Λ−1(t) =
( t
α

) 1
β

(4.3)

The log-linear intensity function at time t is given as follows.

λ(t) = α exp(βt) (4.4)

The cumulative initial intensity is:

Λ(t) =
exp(α)

β
(exp(βt)− 1) (4.5)

The inverse of cumulative initial intensity is:

Λ−1(t) =
1

β
ln(1 + βt exp(−a)) (4.6)

We have 2 models which will be simulated. Recall the effective age functions of each
model are as follows.

• ARA1 PM - ABAO CM [7]

Ak = Ak−1 + (1− ρ)(τk − τk−1) = (1− ρ)τk (4.7)

• ARA∞ PM - ARA∞ CM

Ak =

{
(1− ρp)(Ak−1 +Wk) if Uk = 1
(1− ρc)(Ak−1 +Wk) if Uk = 0

(4.8)

The simulation algorithm is given as follows.
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Algorithm 1: Model simulation

Start with k = 0, Ck = 0, Ak = 0
while Ck ≤ tobs (censorship time) do

Generate an independent random variable, Xk+1, uniformly distributed on [0, 1]
Calculate Zk+1 ← Λ−1(Λ(Ak)− ln(Xk+1))
if Ck + Zk+1 < τmCk+1 then

Uk+1 ← 0, Ck+1 ← Ck + Zk+1

else
Uk+1 ← 1, Ck+1 ← τmCk+1

end if
Calculate the effective ages Ak+1

k ← k + 1
end for

Output: All the couples (Ck, Uk) for which Ck are less than or equal the
censorship time

4.2 Parameter Estimation

In this section, we will present the algorithm in order to estimate the parameters of the
imperfect maintenance models by using maximum likelihood estimation (MLE) method.
This method only applies to ARA1 and ARA∞ models. In order to apply MLE method,
we will first derive the log-likelihood function and its derivative function. Then, we will
present an algorithm in order to apply the MLE method.

4.2.1 Log-likelihood function

The log-likelihood function of imperfect maintenance models is given as follows [8].

lnLt(θ) = Nt lnα+
Kt∑

i=1

(1−Ui) lnψ(Ai−1 +Wi; β)−α
Kt−+1∑

j=1

∫ Cj

Cj−1

ψ(Aj−1 + s−Cj−1; β) ds

(4.9)
where λ(t) = αψ(t; β). Then, by differentiating (4.9) with respect to α, we obtain that
MLE estimator of α can be explicitly computed as a function of the other MLE estimators.
Let us denote:

α̂t(β, ρ) =
Nt∑Kt−+1

j=1 [Ψ(Aj−1 +Wj; β)−Ψ(Aj−1; β)]
(4.10)

where Ψ(t; β) =
∫ t

0
ψ(s; β) ds.
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Then, the maximization can be done only with respect to β and ρ:

lnLt(α̂t(β, ρ), β, ρ) =Nt lnNt −Nt −Nt ln

Kt−+1∑

j=1

[Ψ(Aj−1 +Wj; β)−Ψ(Aj−1; β)

+
Kt∑

i=1

(1− Ui) lnψ(Ai−1 + Ci − Ci−1; β)

(4.11)

More precisely, the ML estimators α̂, β̂, ρ̂ are obtained by:

(β̂, ρ̂) = argmax
β,ρ

lnLt(α̂t(β, ρ), β, ρ) (4.12)

α̂ = α̂t(β̂, ρ̂) (4.13)

The algorithm of log-likelihood function is given as follows.

Algorithm 2: Log-likelihood function

Input: Maintenance time Ck, maintenance type Uk, k = 1, ..., n
n = number of maintenance times
N = number of failures
Start with A1 = 0, W1 = C1, S1 = 0, S2 = 0
for i ∈ {1, ..., n} do

Compute S1 ← S1 + Ψ(Ai−1 +Wi)−Ψ(Ai−1)
Compute S2 ← S2 + (1− Ui) ln(ψ(Ai−1 +Wi))
Compute Ai
Compute Wi+1 ← Ci+1 − Ci
end for

Compute L← N ln(N)−N −N ln(S1) + S2

Output: The log-likelihood function L

4.2.2 Derivative of log-likelihood function

Recall the log-likelihood function:

lnLt(α̂t(β, ρ), β, ρ) = Nt lnNt −Nt −Nt lnS1 + S2 (4.14)

where:

S1 =

Kt−+1∑

j=1

[Ψ(Aj−1 +Wj; β)−Ψ(Aj−1; β)

S2 =
Kt∑

i=1

(1− Ui) lnψ(Ai−1 + Ci − Ci−1; β)
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Then, the partial derivatives of log-likelihood function with respect to β and ρ are,
respectively:

∂Lt
∂β

= −Nt

S1

∂S1

∂β
+
∂S2

∂β
(4.15)

∂Lt
∂ρ

= −Nt

S1

∂S1

∂ρ
+
∂S2

∂ρ
(4.16)

where:
∂S1

∂β
=

n∑

i=1

[
∂Ψ(Ai−1 +Wi)

∂β
− ∂Ψ(Ai−1)

∂β

]

∂S1

∂ρ
=

n∑

i=1

∂Aj−1

∂ρ

[
∂Ψ(Ai−1 +Wi)

∂Aj−1

− ∂Ψ(Ai−1)

∂Aj−1

]

∂S2

∂β
=

n∑

i=1

[
1− Ui

ψ(Ai−1 +Wi)

∂ψ(Ai−1 +Wi)

∂β

]

∂S2

∂ρ
=

n∑

i=1

[
1− Ui

ψ(Ai−1 +Wi)

∂ψ(Ai−1 +Wi)

∂Ai−1

∂Ai−1

∂ρ

]

The algorithm of derivative of log-likelihood function is given as follows.
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Algorithm 3: Derivative of log-likelihood function

Input: Maintenance time Ck, maintenance type Uk, k = 1, ..., n
n = number of maintenance times
N = number of failures

Start with A1 = 0, ∂A1

∂ρ
, W1 = C1, S1 = 0, S2 = 0, ∂S1

∂ρ
= 0, ∂S1

∂ρ
= 0, ∂S2

∂ρ
= 0,

∂S2

∂ρ
= 0

for i ∈ {1, ..., n} do
Compute S1 ← S1 + Ψ(Ai−1 +Wi)−Ψ(Ai−1)
Compute S2 ← S2 + (1− Ui) ln(ψ(Ai−1 +Wi))

Compute ∂S1

∂β
← ∂S1

∂β
+ Ψ(Ai−1 +Wi)−Ψ(Ai−1)

Compute ∂S1

∂ρ
← ∂S1

∂ρ
+ ∂Ai−1

∂ρ
(ψ(Ai−1 +Wi)− ψ(Ai−1))

Compute ∂S2

∂β
← ∂S2

∂β
+ (1− Ui)∂ψ(Ai−1+Wi)

∂β
/ψ(Ai−1 +Wi)

Compute ∂S2

∂ρ
← ∂S2

∂ρ
+ (1− Ui)∂Ai−1

∂ρ
∂ψ(Ai−1+Wi)

∂ρ
/ψ(Ai−1 +Wi)

Compute Ai
Compute ∂Ai

∂ρ

Compute Wi+1 ← Ci+1 − Ci
end for

Compute ∂L
∂β
← −N ∂S1

∂β
S1 + ∂S2

∂β

Compute ∂L
∂ρ
← −N ∂S1

∂ρ
S1 + ∂S2

∂ρ

Output: The derivatives of log-likelihood function ∂L
∂β

and ∂L
∂ρ
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Furthermore, by adapting the algorithm 1 and 2, we construct a parameter estimation
algorithm. This algorithm will estimate the parameters α, β, and ρ by optimizing the
log-likelihood function, given the partial derivatives of log-likelihood function. We use the
BFGS method [10] for the optimization. The parameter estimation algorithm is given as
follows.

Algorithm 4: Parameter estimation

Input: Maintenance time Ck, maintenance type Uk, k = 1, ..., n
n = number of maintenance times
N = number of failures

initial value of β = β̂0 and ρ = ρ̂0

Start with A1 = 0, W1 = C1, S1 = 0

Estimate β̂ and ρ̂ by using BFGS method with initial values β̂0 and ρ̂0

for i ∈ {1, ..., n} do

(given the β̂ and ρ̂)
Compute S ← S + Ψ(Ai−1 +Wi)−Ψ(Ai−1)
Compute Ai
Compute Wi+1 ← Ci+1 − Ci
end for

Compute α̂← N/S

Output: The estimated parameters α̂, β̂, and ρ̂

4.2.3 Application to real dataset

In this subsection, we will apply our algorithms to a real dataset. It is taken from the
electricity production plants EDF. The dataset gives the PM and CM times of stubs of
the inlet header of the heat exchanger that warms up the feeding water of the boiler of a
fossil-fired thermal plant [15]. It is presented on the table below.

Table 4.1: Real dataset

25 50 93 109 114 141 163 164 195 225 264
PM CM CM CM PM CM CM CM CM PM cens

We assume that the data follows the ARA∞ PM-ARA∞ CM model with Weibull in-
tensity. We present the estimation result on the table below.
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Table 4.2: Estimation results of ARA∞ PM-ARA∞ CM model

Parameter Estimated value
Scale parameter α 1.159e-05
Shape parameter β 3.046
CM efficiency parameter ρc 0.564
PM efficiency parameter ρp 1
Maximum value of the log-likelihood function -29.477

According to the result on the table 4.2, compared to the result in [15], the estimation
gives the same result. It means that the estimation program is working well. Hence, we
can use the program in order to do the monte carlo simulation.

4.3 Monte Carlo simulation

In this section, we will present the simulation of the imperfect maintenance model. We
choose the ARA1-LLP model (ARA1 PM-ABAO CM with log-linear intensity). Then, we
will study the distribution of the number of failures. We will also estimate the parameters
of the models and study the marginal distributions of the estimated parameters.

We set firstly α = 1, β = 2, ρ = 0.9, with log-linear intensity. We simulate the model
500 times, then we compute the number of failures of each dataset and we present the
distribution of the number of failures in a histogram as well as the mean and the variance.
Then, we will compare this model with different values of parameters.

Figure 4.1: Distribution of number of failures with different scale parameter α
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Figure 4.2: Distribution of number of failures with different scale parameter β

Figure 4.3: Distribution of number of failures with different scale parameter ρ
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From figures 4.1 and 4.2, we could see that the large value of parameters α and β
increases the number of failures. On the other side, the large value of parameters ρ
decreases the number of failures. From all the simulated datasets, we obtain the mean
value is statistically the same with the variance.

By using the same parameters as above, we will estimate the parameters from each
dataset and present the distribution in histograms as follows.

Figure 4.4: Distribution of number of failures with different scale parameter ρ

4.4 Comparison between R and Rcpp

Since our program needs a high speed computation, we use the Rcpp package in order
to apply R programming interfaced with C++. In figure 4.5, we compare the simulation
program between R and Rcpp. We can see that elapsed time of Rcpp programming is
much faster than R. From 3 benchmarks, we obtain the Rcpp elapsed time is respectively,
18, 20, 21 times faster than the R programming.

Figure 4.5: Comparison between R and Rcpp in simulation programming
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Chapter 5

Exact conditional goodness-of-fit
(GoF) test for ARA1-LLP model

In this chapter, we will present a generalization of Lindqvist-Rannestad goodness-of-fit
(GoF) tests for a particular imperfect maintenance model with both CM and PM. The
CM are assumed to be minimal (ABAO) with log-linear initial intensity. We also assume
that PM are carried out at deterministic times with ARA1 type effect.

5.1 Principle of the test

The construction of an exact conditional GoF test for ARA1-LLP model is possible.
In this model, PM has ARA1 type effect and the failure intensity is considered to be
log-linear. The failure intensity of ARA1-LLP:

λt(a, b, ρ) = exp(a+ b(t− ρτmt− )). (5.1)

The CM effects are assumed to be ABAO. This assumption is meaningful because CM
aims to quickly restore the system in working order. It is also common [14] and absolutely
necessary in order to be able to apply Lindqvist-Rannestad [13] GoF test method since a
NHPP is needed.

The GoF test in this case has the following hypotheses:

H0 : λt(θ) ∈ I versusH1 : λt(θ) /∈ I

where I is the family of failure intensities defined in (5.1) for all (a, b, ρ) ∈ R3.

The considered models also needs to have a sufficient statistic. The ARA1-LLP model
has this property. In order to apply the same approach as Lindqvist and Rannestad to
ARA1-LLP model, we need:

• existence of a sufficient statistic,
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• conditional simulation of D|S = sobs,

• computation of a GoF test statistic Z.

By the definition (5.1), the cumulative intensity function of ARA1-LLP is:

Λt(a, b, ρ) =
exp(a)

b

mt∑

m=1

exp(−bρτm−1)
[
exp(bτm)− exp(bτm−1)

]

+
exp(a)

b
exp(−bτmt)

[
exp(bt)− exp(bτmt)

]
if b 6= 0

Λt(a, 0, ρ) = exp(a)t

(5.2)

We consider that the failure times are observed on the time interval [0, T ]. For simpli-
fication, we denote τmT+1 = T and we will use this notation in all the following.

The log-likelihood function of ARA1-LLP model is:

LT (a, b, ρ) = aNT + b
∑

Ti≤T
Ti − bρ

mT+1∑

m=2

τm−1(Nτm −Nτm−1)− ΛT (a, b, ρ) (5.3)

Since ΛT is a deterministic function, we apply the factorization theorem and deduce the
three components of the sufficient statistics S = (S1, S2, S3). The sufficient statistic of
the ARA1-LLP model exists and is:

S =

(
NT ,

∑

Ti≤T
Ti,

mT+1∑

m=2

τm−1(Nτm −Nτm−1)

)
(5.4)

5.2 Extension of the sufficient statistic

The conditional sampling given the sufficient statistic S is too difficult especially given
the third component. That is why we use a larger sufficient statistic in order to make the
conditional sampling possible. The new sufficient statistic has the following expression:

S̃ =

(
Nτ1 , ..., NτmT

, NT ,
∑

Ti≤T
Ti

)
(5.5)

It is obvious that there is no loss of information when conditioning by the statistic S̃
defined in (5.5) instead of S defined in (5.4). Apparently there is no need to know
explicitly (Nτ1 , ..., NτmT

, NT ) in order to know S3 =
∑mT+1

m=2 τm−1(Nτm − Nτm−1), but it
will be true if the PM times are not periodic.
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5.3 Conditional sampling given the sufficient statistic

5.3.1 First step

The conditional sampling is done using the statistic S̃. We will use a classical trick for
computational distributions given the sufficient statistic which consists in choosing the
parameters values that give rise to particular simple models. This can be done since the
conditional distribution, given the sufficient statistic, is the same whatever the parameter
values are. For simplification, we will use parameter values (a = b = 0) for which the
model ARA1-LLP is an HPP(1).

The objective is to be able to simulate HPP(1) conditionally to the sufficient statistic.
Since the statistic in (5.5) includes the number of observed failures at each PM time, our
first objective is to condition by NT = (Nτ1 , ..., NτmT

, NT ). Conditionally on NT, the

event times of HPP(1) are distributed like (mT + 1) independent samples, the ith sample
having the distribution of independent order statistics of (Nτi−Nτi−1

) variables uniformly
distributed on [τi−1, τi], for i ∈ {1, ...,mT + 1} where τ0 = 0, τmT+1 = T .

The simulation of Tn conditionally to NT is reduced to simulate independent or-
der statistics of uniforms (U1, ..., Un). Our next objective is to simulate these uniforms
(U1, ..., Un) conditionally to the remaining components of the sufficient statistic S̃ which
is
∑n

i=1 Ui =
∑n

i=1 Ti = s2. This simulation problem is then transformed into a problem
of conditional sampling of uniforms variables. The purpose of the next subsection is to
show how this conditional sampling can be carried out.

5.3.2 Second step

We consider the desired sample U1, ..., Un composed of (mT + 1) independent samples
of iid random variables. Each sample i is, respectively, of size (ni − ni−1) and follows
U [τi, τi−1], i ∈ {1, ...,mT + 1}, where n0 = 0. There is no simple direct way of sampling
from the conditional distribution of the uniforms U1, ..., Un given

∑n
i=1 Ui = s2. We will use

Gibbs sampler algorithm to simulate the desired samples. There is no simple expression
for the pdf of

∑n
i=1 Ui. Since the conditional distribution of U1, ..., Un given

∑n
i=1 Ui = s2

is singular, in order to have a proper conditional pdf we have to leave out one variable,
for example Uj. We consider then the conditional distribution of U1, ..., Uj−1, Uj, ..., Un
given

∑n
i=1 Ui = s2 and deduce Uj = s2 −

∑
k 6=j Uk.

We use a modified Gibbs algorithm where in each iteration two of the vector components
(Ui, Uj), i 6= j, are updated. The algorithm consists of simulating at iteration m the
conditional pdf of Um

i |Um−1
k = um−1

k , k 6= i, k 6= j,
∑n

k=1 U
m−1
k = s2. This last simulation

is equivalent to the simulation of Um
i |Um−1

i + Um−1
j = s2 −

∑
k 6=i,j u

m−1
k . Then, we will

compute the conditional cdf of Ui|Ui + Uj.
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Let 0 ≤ c1
i < c2

i , 0 ≤ c1
j < c2

j , Ui and Uj two independent random variables from
respectively U [c1

i , c
2
i ] and U [c1

j , c
2
j ]. The conditional distribution of Ui given Ui +Uj = s is

uniform on I where:

• I = [c1
i , s− c1

j ] if c1
i + c1

j ≤ s ≤ min(c2
i + c1

j , c
1
i + c2

j)

• I = [c1
i , c

2
i ] if c2

i + c1
j ≤ s ≤ c1

i + c2
j

• I = [s− c1
j , s− c2

j ] if c1
i + c2

j ≤ s ≤ c2
i + c1

j

• I = [s− c2
j , c

2
i ] if max(c2

i + c1
j , c

1
i + c2

j) ≤ s ≤ c2
i + c2

j .

Finally, the Gibbs sampler algorithm is given in the next chapter for the ARA1-LLP
model. It makes conditional sampling of Tn|Nτ1 = n1, ..., NτmT

= nmT , NT = n,
∑n

i=1 Ti =
s2.

Let n = nmT+1 and n0 = 0.

Algorithm 5: Initialization of Gibbs sampler algorithm

for all j ∈ {1, ...,mT + 1} do
for all i ∈ {nj−1, ..., nj} do

draw u0
i ∼ U [τj−1, τj]

d1
i ← u0

i − τj−1

d2
i ← τj − u0

i

end for
end for

if
∑n

i=1 u
0
i > s2 then

for all i ∈ 1, ..., n do

t0i ← u0
i − d1

i

∑n
i=1 u

0
i−s2∑n

i=1 d
1
i

end for

else
for all i ∈ {1, ..., n} do

t0i ← u0
i + d2

i
s2−

∑n
i=1 u

0
i∑n

i=1 d
2
i

end for
end if

sort t01, ..., t
0
n

return t01, ..., t
0
n

For the initialization of the algorithm, Lindqvist and Rannestad used the same value
s2/n of all the components: (t01, ..., t

0
n) = (s2/n, ..., s2/n). We will propose an algo-

rithm in the next chapter for a random initialization which guarantees
∑n

i=1 t
0
i = s2

and Nτ1 = n1, ..., NτmT
= nmT , NT = n. This initialization is independent of the first
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configuration of the tested data, which makes the convergence of the Gibbs algorithm
faster. Furthermore, our procedure guarantees the independence of the successive simu-
lated values of Tn|

∑n
i=1 Ti = s2.

Algorithm 6: Gibbs sampler algorithm for conditional sampling of Tn|Nτ1 =
n1, ..., NtaumT

, NT = n,
∑n

i=1 Ti = s2

Start with initializing t0i , i = 1, ..., n (algorithm 1)
for all k ∈ {1, ..., nb} do

tki ← tk−1
i , i = 1, ...n

draw integers 1 ≤ i < j ≤ n randomly
let ni and nj of {n1, ..., nmt , n}2 be such that ni−1 < i ≤ ni and nj−1 < j ≤ nj
let s← tk−1

i + tk−1
j , c1

i ← τni−1
, c2

i ← τni , c
1
j ← τnj−1

, c2
j ← τnj

if c1
i + c1

j ≤ s ≤ min(c2
i + c1

j , c
1
i + c2

j) then
draw tki ∼ U [c1

i , s− c1
j ]

else
if c2

i + c1
j ≤ s ≤ c1

i + c2
j then

draw tki ∼ U [c1
i , c

2
i ]

else
if if c1

i + c2
j ≤ s ≤ c2

i + c1
j then

draw tki ∼ U [s− c1
j , s− c2

j ]

else
if if max(c2

i + c1
j , c

1
i + c2

j) ≤ s ≤ c2
i + c2

j then
draw tki ∼ U [s− c2

j , c
2
i ]

end if
end if

end if
end if

tkj ← s− tki
end for

return tnb1 , ..., t
nb
n

It has been shown in [4] that the distribution of the sample (tk1, ..., t
k
n) converges to the

target distribution, whatever the initial vector is. The successive simulated samples are
from a Markov chain, and the target distribution is the stationary distribution of this
Markov chain. ’Burn in’ samples are needed before the samples can be taken to be from
the correct distribution.

5.4 Transformation to uniforms

When the conditional sampling is done, a GoF test is chosen to detect the departure
from the tested model. Since the parameter (a, b, ρ) of the ARA1-LLP model are unknown,
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we use the estimated parameter (â, b̂, ρ̂) from MLE method. Let Λ̂• be an estimate of the
cumulative intensity function Λ• based on the observation (T1, .., Tn, NT ), defined as:

Λ̂t = Λt(â, b̂, ρ̂). (5.6)

We consider the estimated transformed times defined as follows: V̂i =
Λ̂Ti
Λ̂T

. The distri-

bution of the last sample V̂1, ..., V̂n is very close to order statistics of uniforms. We can
use the classical GoF tests for the uniform distribution to suggest GoF tests for the tested
model based on the V̂i. This was already the approach of Lindqvist-Rannestad [13] and
before him of Baker [2]. For ARA1−LLP model, we check the uniformity of the variables
V̂i, i = 1, ...n:

V̂i =

∑mTi
m=1 exp(−b̂ρ̂τm−1)

[
exp(b̂τm)− exp(b̂τm−1)

]
+ exp(−b̂ρ̂τmTi )

[
exp(b̂Ti)− exp(b̂τmTi )

]

∑mT+1
m=1 exp(−b̂ρ̂τm−1)

[
exp(b̂τm)− exp(b̂τm−1)

]

(5.7)
where (b̂, ρ̂) are the maximum likelihood estimators of parameters (b, ρ).

5.5 Test statistics

In all the following simulations, we apply to the transformed samples
(
V̂j
)
j=1,...n

the

classical test statistics for the uniform distribution as it was done in [13].

• Laplace statistic:

L =

√
12

n

n∑

j=1

(
V̂j −

1

2

)
(5.8)

• Modified Cramer-Von Mises statistic:

CM =
n∑

j=1

[
V̂j −

(2j − 1)

2n

]2

+
1

12n
(5.9)

• Modified Anderson-Darling statistic:

AD = − 1

n

[
n∑

j=1

(2j − 1) ln(V̂j) + ln(1− V̂n+1−j)

]
− n (5.10)

• Modified Kolmogorov-Smirnov statistic:

KS = max
[

max
1≤j≤n

( j
n
− V̂j

)
, max

1≤j≤n

(
V̂j −

j − 1

n

)]
(5.11)
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In order to sum up the whole approach, if we have failure time T1, ..., Tn and we wish
to test if these times are from ARA1-LLP model, we apply the following algorithm. Let
K be a large number to guarantee the computation of the p-value estimated by:

p̂obs =
1

K

K∑

k=1

1{Z?k≥zobs} (5.12)

Algorithm 7: Computation of the exact p-value

Compute the observed sufficient statistic S̃ = ˜sobs.

Compute the MLEs (â, b̂, ρ̂).
Compute the test statistic zobs from the observation.
for all k ∈ {1, ..., K} do

apply algorithm 6 to simulate T1, ..., Tn|(S̃ = ˜sobs)
compute the transformation to the uniforms given in (5.7)
compute the test statistic Zk given section 5.5
end for

Compute the p-value
∑K

k=1 1{Z?k≥zobs}/K

5.6 Simulation study

In this section, we will study the power of test for ARA1-LLP model. We will also
simulate Brown-Proschan models as alternative models in order to study the power of
test. We set 4 PM times (τ1 = 1.833, τ2 = 2.404, τ3 = 2.985, τ4 = 3.538). The power
of test is assessed by the percentage of rejection H0 over the total number of simulated
samples. We set the number of the simulated samples from each tested alternative to 500.
We apply the approach presented in algorithm 7: we simulate K = 100 samples of V̂i,
i = 1, ..., n. The ’burn in’ period is set to 200.

The GoF tests used here are Laplace L, Cramer-Von Mises CM , Anderson-Darling
AD, and Kolmogorov-Smirnov KS tests. We first simulate samples from the ARA1-LLP
model, in order to check that the percentage of rejection is close to the significance level.
We set the significance level at 5%. All the simulation of the models are done using inverse
transform sampling in algorithm 1.

The result of the simulation is presented on the table 5.1. The first column presents the
type of the model and the second column presents the parameter values of the simulated
models.
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Table 5.1: Power of tests

Model Parameters L CM AD KS
(1,2,0.9) 0.068 0.058 0 0.054

(1,2.5,0.9) 0.092 0.102 0 0.036
ARA1-LLP (1,3,0.9) 0.236 0.186 0 0.058

(1,2.3,0.5) 0 0 0.012 0.054
(1,2.3,0.7) 0.042 0.03 0 0.054
(1,2.3,0.9) 0.114 0.078 0 0.068

(1,0.9,0) 0.056 0.038 0.98 0
(1,0.9,1) 0.04 0.052 0.018 0.056

Brown-Proschan (1,0.9,0.5) 0.06 0.036 0.246 0.034
(log-linear intensity) (1,0.9,0.7) 0.056 0.044 0.086 0.05

(1,0.9,0.3) 0.064 0.052 0.458 0.032
(3,0.5,0.5) 0.05 0.048 0.158 0.058

From the result of the table above, for ARA1-LLP models, only KS test statistic gives
the 5% significance level. The L, CM, and AD test statistics are very biased. For the
Brown-Proschan models, only AD test statistic has good performance, while the other
test statistics have bad performance. The result we get may be due to the bugs of the
program. Since the program is quiet complicated, there might be some computation error
which is still unknown up to now.
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Chapter 6

Conclusion

There are many imperfect maintenance models which have been proposed. Therefore,
the goodness-of-fit test is very important in order to choose which model is more suitable
to the dataset. Hence, the study of the power of test becomes essential.

The simulation and estimation play an important role in order to do the test. We have
shown that the simulation of imperfect maintenance models can be done by using inverse
transform sampling method. Then, the parameter estimation is done by using the MLE
method as well as the BFGS method for optimizing the log-likelihood function.

In order to simulate, estimate, and compute the desired model or dataset, we need a
high computation programming. We also have shown that the Rcpp is much faster than
R. Rcpp could be 21 times faster. Hence, we can save much time.

From the result of the power of test, we see that there are still some errors in which
the test performance becomes bad. It is also known that the computation of the test is
quiet complicated. Hence, debugging the program is very necessary.
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