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ABSTRACT

In finance and banking, the ability to accurately predict the future cash require-

ment is fundamental to many decision activities. In this research, we study time series

forecasting of cash inflow and outflow requirements as the output series of Indonesian

Central Bank (BI) at the representative offices in Aceh Province, Indonesia. We use

a Consumer Price Index (CPI) as the leading indicator of the input series to predict

the output series. A CPI measures change in the price level of a market basket of

consumer goods and services purchased by households. CPI has been used in time

series modeling as a good predictor for response. In this study, we propose a hybrid

approach to forecast the cash inflow and outflow by combining linear and non linear

models. This methodology combines both Transfer Function and Radial Basis Func-

tion (RBF) Neural Network models. The idea behind this model is the time series are

rarely pure linear or nonlinear parts in practical situations. The RBF neural network

is used to develop a prediction model of the residual from Transfer Function model.

The RBF Neural Networks model is trained by Gaussian activation function in hidden

layer. The main concept of the proposed hybrid model approach is to let the Transfer

Function forms the linear component and let the neural network forms the nonlinear

component and then combine the results from both linear and nonlinear models. This

combination model provides a better forecast accuracy than the individual linear or

non linear model. This combination model is expected to provide a better forecast

accuracy thanxxx

Keywords: Inflow, Outflow, Consumer Price Index, Transfer Function, Artificial Neu-

Keywordsxxxral Network, Radial Basis Function, Gaussian Function, Stationary, Key-

wordsxxxxxx.ARIMA, Time Series Forecasting, Hybrid Model.
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CHAPTER 1

INTRODUCTION

1.1 Background

Forecasting is an important part of decision making at all levels. In finance and

banking, the ability to accurately predict the future cash requirement is fundamental

to many decision activities. In this research, we study the time series forecasting

of cash inflow and outflow as the output series of Indonesian Central Bank (BI) at

representative offices in Aceh Province, Indonesia. Cash inflow is the transfer of money

(in IDR) from other parties to Indonesian Central Bank (BI) in a given period of

time through the deposit of commercial banks and the public transaction activities.

Conversely, cash outflow is the money (in IDR) coming out from Indonesian Central

Bank (BI) to other parties through the withdrawal process by commercial banks and

public transaction activities. For the input series, we use a Consumer Price Index (CPI)

as the leading indicator to predict the response series. A CPI measures change in the

price level of a market basket of consumer goods and services purchased by households.

CPI has been used in time series modeling as a good predictor for response variables.

Badan Pusat Statistics (BPS) of Indonesia calculated CPI based on monthly con-

sumer price surveys on several cities in Indonesia (BPS, 2013). One of the factors that

affect the change of price is the amount of money circulation. The quantity theory of

economy states that increasing the amount of money in the economy will eventually

lead to an equal percentage rise in the prices of products and services, if it is not fol-

lowed by the growth of the real sector, which is called the inflation (Mankiw, 2000).

Bank Indonesia (BI) as the central bank, has the task to regulate the amount of money

circulation of the cash deposits by commercial banks to the Bank Indonesia (inflow)

and withdrawals by banks from Bank Indonesia (outflow) in order to control inflation

(Bank Indonesia, 2014). CPI is necessary for Bank Indonesia in making the monetary

policy system, while for the government, especially local government, CPI is used as

the basis for determining the amount of local government budget, budget planning,
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and other fiscal policies (Bank Indonesia, 2014). Fisher, Liu and Zhou (2002) stated

that one of the important things for making monetary decisions is the forecasting of

inflation. So far, BPS of Indonesia uses CPI as an indicator to measure the level of

inflation in Indonesia. Therefore, the forecasting of inflation can be approached by

modeling the forecasting of CPI.

The appropriate time series forecasting methodology plays an important role to

meet the accurate future values. Time series modeling approach is the major tech-

niques widely used in practice. Time series methods, on the other hand, use past or

lagged values of the same criterion variable and model the relationship between these

past observations and the future value. Autoregressive Integrated Moving Average

(ARIMA) is one of the most important and popular linear models in time series fore-

casting a few decades ago. This model was popularized by Box and Jenkins (1976).

Due to its statistical properties, ARIMA is also called the Box-Jenkins model particu-

larly in the model building process. Although ARIMA models are the effective method

to study time series with one time series in systems and widely used in time series

forecasting, their major limitation is unable to express well the relationships in multi-

variate time series among variables in system (Zhang, 2003). So it is necessary to model

a time series with multivariable models (Fan, Shan, Cao, and Li, 2009). Many different

mathematical presentations of Transfer Function models can be found in the literature

(Pektas and Cigizoglu, 2013). Transfer Function models have found extensive practical

application. In Box and Jenkins methodology, ARIMA and Transfer Function model

building follow the standard procedures.

Nowadays, Artificial Neural Network (ANN) is a promising tool in time series fore-

casting. The interest in neural networks is evident from the growth in the number

of papers published in journals of diverse scientific disciplines (Zhang, 2004). The

capability of neural networks have been widely used for a variety of assignments in

different fields. In financial and business for example, Forecasting Foreign Exchange

Rates, Equity Markets, Market Response, Stock Returns, and Market Indexes, have

been studied and confirmed by Yao and Tan, (2002); Malliaris and Salchenberger,

(2002); Parsons and Dixit, (2004); Thawornwong and Enke, (2004); Walczak, (2004)

respectively. Likewise in robotics to control Spacecraft Formation by Wang, Min, Sun,
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and Zhang, (2010) and many other real world applications like Analysis of Groundwa-

ter by Ding, Liu, and Zhao, (2010), Wind Energy Forecasting by Campbell, Ahmed,

Fathulla, and Jaffar, (2010), RBF by Mohammadi, Ghomi, Zeinali (2014), Traffic vol-

ume forecasting by Zhu, Cao, and Zhu (2014). Furthermore, Du, Leung, and Kwong

(2014) shown that the distribution of the ANN in multi objective evolutionary algo-

rithm produced the best forecast results.

In this study, we propose a hybrid approach to forecast the cash inflow and out-

flow using both Transfer Function and Radial Basis Function (RBF) Neural Network

models. Numerous efforts have been introduced for developing and improving time

series forecasting methods. In practical situations, time series are rarely pure linear

or nonlinear components. However, the linear nature of the transfer function model is

inappropriate to capture nonlinear structure of time series data, where the residuals of

linear model contain information about the nonlinearity. Since it is difficult to com-

prehensively know the data characteristics whether a time series is generated from a

linear or nonlinear process in a real world, hybrid methodology is proposed in practice

(Zhang, 2003).

Makridakis and Hibon (2000) concluded in their paper of M3-competitions: re-

sults, conclusions and implications point 3 that combination is more accurate than

the individual methods being combined for practically all forecasting horizons. Six

years later, De Gooijer and Hyndman (2006) concluded in their paper of 25th years of

time series forecasting that combination method for linear and nonlinear models is an

important practical issue that will no doubt receive further research attention in the

future. Therefore, combining different models become so popular in practice due to

the ability of capturing different patterns in the data and nice forecasting performance.

Combining model in time series forecasting can significantly improve the forecasting

performance over each individual model used separately (Zhang, 2003; Zhang, 2004;

Robles et al., 2008; Shukur and Lee, 2015; Khandelwal, Adhikari, and Verma 2015)

The basic idea of the proposed hybrid model approach is to let the transfer function

forms the linear component and let the neural network forms the non linear component

and then combine the results from both linear and non linear models. By combining

Transfer Function with Radial Basis Function (RBF) Neural Network models, we can

3



accurately model the complex autocorrelation structures in the data. Based on Zhang’s

hybrid model (Zhang, 2003 and 2004), the methodology of the hybrid system consists

of two steps. In the first step, an Transfer Function is used to analyze the linear part

of the problem. In the second step, an RBF Neural Network model is developed to

model the residuals from the Transfer Function. Since the Transfer Function model

cannot capture the non linear structure of the data, the residuals of linear model will

contain information about the non linearity. The results from RBF Neural Network

can be used as predictions of the error terms for the Transfer Function model.

This research paper contains five chapters, which are organized as follows: Chap-

ter 2 provides a related literature review on the basic concepts of time series analysis

like stationarity, differencing, the theory of Transfer Function, Neural Network, Hybrid

model, Forecasting, etc. are also stated in this chapter. In chapter 3 we present the

location of research area, data, variables, and research methods. Section 4 displays and

discusses the empirical results and the conclusions are provided in the last section.

1.2 Problem Statement

Based on the background described above, we want to figure out the following

problem formulations:

1. How to obtain the appropriate Transfer Function-noise model to forecast the cash

inflow and outflow of Indonesian Central Bank (BI) at representative offices in

Aceh Province by using input variable Consumer Price Index (CPI).

2. How to obtain the appropriate RBF Neural Network for forecasting residual of

Transfer Function

3. How to formulate the Hybrid forecast (combination of linear and non linear parts)

and how to analyze the forecasts accuracy among the individual Transfer Func-

tion, Neural Network, and Hybrid models.

4



1.3 Purpose of Study

The objective of this research is to forecast cash inflow and outflow of Indonesian

Central Bank using the hybrid Transfer Function and Radial Basis Function Neural

Network time series model. This approach is valuable because time series are rarely

pure linear or nonlinear components in practical situations.

1.4 Limitation of Study

Although this research was carefully prepared, we still aware of its limitations and

shortcomings:

1. Numerous methods for selecting forecast combination have been proposed. For

instance, the simple linear combination, non linear combination, and the mixture

of linear and non linear combination. In this research we only restrict to the

combination of linear (Transfer Function) and non linear (Radial Basis Function

Neural Network) methods.

2. In Transfer Function model, the input series play an important role to predict

the output series. There are a plenty of input variables can be used and tested in

Transfer Function modeling. However, due to time and resources constrains, we

restrict to only use Consumer Price Index (CPI) as an independent input series.

5



This page is intentionally left blank

6



CHAPTER 2

LITERATURE REVIEW

xxxThe primary objective of time series analysis is to develop mathematical models

that provide plausible descriptions for sample data. In this research, a time series

y1, . . . , yT are assumed to be generated by a collection of random variables with prob-

ability structure (stochastic processes) {yt}t∈T, where T is an index set containing the

subset 1, . . . , T , the subscripts t are usually thought of as representing time or time

periods (Lütkepohl and Krätzig, 2004).

The mathematical model which is used in this research is the Hybrid system of

Transfer Function and Radial Basis Function Neural Network models. For the pur-

pose of forecasting, the basic concepts of Autoregressive Integrated Moving Average

(ARIMA) model is required due to its statistical properties as well as the well known

Box and Jenkins methodology in the model building process. The other necessary con-

cepts considered in this research are White Noise, Autocorrelation Function (ACF),

Partial Autocorrelation Function (PACF), and Cross Correlation Function (CCF).

2.1 Autoregressive Integrated Moving Average (ARIMA)

Box and Jenkins (1976) and Wei (2006) define the autoregressive or self-regressive

process of order p (AR(p)) as

ẏt = ϕ1ẏt−1 + ϕ2ẏt−2 + · · ·+ ϕpẏt−p + εt (2.1)

or by using the lag operator

ϕp(L)ẏ = εt, (2.2)

where ϕp(L) = (1 − ϕ1L − ϕ2L
2 − · · · − ϕpLp), and ẏt = yt − µ. The analogy to the

moving average process of order q, denoted as MA(q) can be written

ẏt = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (2.3)

7



or by using the lag operator

ẏt = θ(L)εt, (2.4)

where θ(L) = 1− θ1L− θ2L2 − · · · − θqLq.

A mixed ARMA process yt with AR order p and MA order q (ARMA(p, q)) has

the representation

ẏt = ϕ1ẏt−1 + ϕ2ẏt−2 + · · ·+ ϕpẏt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (2.5)

or by using the lag operator can be written

ϕp(L)ẏ = θq(L)εt, (2.6)

A stochastic process yt is called an ARIMA(p,d,q) process (yt ∼ ARIMA(p,d,q)) if

it is I(d) and the d times difference process has an ARMA(p,q) representation, that

is ∆dyt ∼ ARMA(p,q) (Lütkepohl and Krätzig, 2004). For practical purposes, d is

usually equal to 1 or at most 2. It is important that the number of difference in

ARIMA is written differently even though referring to the same model. Time series yt

is said to follow an integrated autoregressive moving average model if the dth differ-

ence Wt = ∆dyt is a stationary ARMA process (Cryer and Chan, 2008). For example,

ARIMA(1,1,0 ) of the original series can be written as ARMA(1,0,0 ) of the differenced

series.

2.2 Stationarity and Differencing

2.2.1 Stationarity

The basis for any time series analysis is stationary time series. A stochastic process

yt is called stationary if it has time-invariant first and second moments (Lütkepohl and

Krätzig, 2004). In other words, yt is stationary if

xxxE [yt] = µy for all t ∈ T and

xxxE[(yt − µy)(yt−h − µy)] = γh for all t ∈ T and all integers h such that t-h ∈ T .

We can roughly say, stationary time series describes no long-term trend, has constant

8



mean and variance. More specifically, there are two definitions of stationary stochastic

processes that are sometimes used in the literature: strictly stationary and weakly

stationary.

A process Yt is said to be strictly stationary if the joint distribution of yt1 , yt2 , . . . , ytn

is the same as the joint distribution of yt1−k, yt2−k, . . . , ytn−k for all choices of time

points t1, t2, . . . tn and all choices of time lag k (Hamilton, 1994). A less restrictive

requirement of stochastic process yt is considered by Kirchgässner and Wolters (2007)

since the concept of strict stationary is difficult to apply in practice. This process is

called weakly stationary or covariance stationary. A stochastic process yt having finite

mean and variance is covariance stationary if for all t and t-s,

xxxE[yt] = E[yt−s] = µy

xxxE[(yt − µy)2] = E[(yt−s − µy)2] = var(yt) = var(yt−s) = σ2
y

xxxE[(yt − µy)(yt−s − µy)] = E[(yt−j − µy)(yt−j−s − µy)]

xxxxxxxxxxxxxxxxxxxx. = Cov(yt, yt−s)

xxxxxxxxxxxxxxxxxxxx. = Cov(yt−j, yt−j−s) = γs,

where µy, σ
2
y , and all γs are constants (Box and Jenkins, 1976; Hamilton, 1994; and

Enders, 2009).

For example, Hamilton (1994) shown that since the mean and autocovariances are

not function of time, MA(1 ) process is weakly stationary regardless of the values of θ.

In the case when |ϕ| < 1, AR(1 ) is also weakly stationary. In this research, we will use

the term stationary as a weakly stationary where it is mean and covariance stationary.

2.2.2 Differencing

In practice, many time series are non-stationary and so we cannot apply stationary

AR, MA or ARMA processes directly. One possible way of handling non-stationary

series is to apply differencing so as to make them stationary (Chatfield, 2000). Dif-

ferencing method governs the series to be lagged 1 step and subtracted from original

series. For instance, (yt − yt−1) = (1 − L)yt may themselves be differenced to give

second differences, and so on. The dth differences may be written as (1− L)dyt.

The difference operator, del, is symbolized by the ∆. The first difference of yt is

given by the following expression: ∆yt = (1−L)yt = yt−yt−1. The second difference is

9



expressed by ∆2yt = ∆(∆yt) = (1−L)(1−L)yt = (1− 2L+L2)yt = (yt− 2yt−1 + yt−2)

(Yafee and McGee, 1999).

2.3 White Noise

A stationary process, where all autocorrelations are zero is called white noise or

a white noise process. Hamilton (1994) and Wei (2006) said a process εt is a white

noise process if it is a sequence of uncorrelated random variable from fixed distribution

follows: E(εt) = 0, E(ε2t ) = σ2, and for which the ε′s are uncorrelated across time,

E(εtετ ) = 0 for all t 6= τ . Since εt and ετ are independent (uncorrelated) for all t 6= τ ,

then εt ∼ N(0, σ2) which is also called Gaussian white noise process. The white noise

process εt may be regarded as a series of shocks which drive the system (Box and

Jenkins, 1976)

2.4 Correlations

2.4.1 Autocorrelations

Autocovariances and autocorrelations are addiction measurements between vari-

ables in a time series. Suppose that y1, . . . , yT are square integrable random variables,

then Falk (2006) and Montgomery, Jennings, and Kulahci (2008) defined the autoco-

variance is the covariance between yt and its value at another time period yt−k

γk = Cov(yt, yt−k) = E[(yt − µy)(yt−k − µy)], k = 0, 1, 2, . . . , (2.7)

with the property that the covariance of observations with lag k does not depend on

t. The collection of the values of γk , k = 0, 1, 2, . . . is called the autocovariance

function. The autocovariance at lag k = 0 is just the variance of the time series; that

is, γ0 = σ2
y. The autocorrelation between yt and its another time period yt−k can be

defined as

ρk = Corr(yt, yt−k) (2.8)
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Thus, the autocorrelation coefficient at lag k is

ρk =
E[(yt − µy)(yt−k − µy)]√
E[(yt − µy)2]E[(yt−k − µy)2]

=
Cov(yt, yt−k)

V ar(yt)
=
γk
γ0
. (2.9)

The collection of the values of ρk, k = 0, 1, 2, . . . is called the autocorrelation func-

tion (ACF). In practice, the autocorrelation function from a time series of finite length

y1, y2, . . . , yT is estimated by the sample autocorrelation function (or sample ACF) rk.

By using y = 1
T

∑T
t=1 = µy as the sample mean, Lütkepohl and Krätzig (2004) compute

the sample autocorrelations as follows

ρ̃k =
γ̃k
γ̃0
, (2.10)

where

γ̃k =
1

T

T∑
t=k+1

(yt − y)(yt−k − y) (2.11)

If the sample autocorrelations are mutually independent and identically distributed

(i.i.d.) so that yt and yt−k are stochastically independent for k 6= 0, then the nor-

malized estimated autocorrelations are asymptotically standard normally distributed,
√
T ρ̃k

d−→ N(0, 1), and thus ρ̃k ≈ N(0, 1/T ). Hence, [−1, 96/
√

1/T ; 1, 96/
√

1/T ] is

an approximate 95% confidence interval around zero, where the variance of the sample

autocorrelation coefficient is V ar(ρ̃k) ∼= 1/T and the standard error is SE(ρ̃k) ∼= 1/
√
T .

For detail properties of autocovariance and autocorrelation see (Wei, 2006).

2.4.2 Partial Autocorrelations

Lütkepohl and Krätzig (2004) define the partial correlation between yt and yt−k is

the conditional autocorrelation given yt−1, yt−2, . . . , yt−k+1 as follows

φkk = Corr[yt, yt−k|yt−1, yt−2, . . . , yt−k+1] (2.12)

that is, the autocorrelation conditional on the in-between values of the time series. For

an AR(p) model the partial autocorrelation function between yt and yt−k for k > p
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should be equal to zero. A more formal definition can be found below (Box and Jenkins,

1976; Wei, 2006; Kirchgässner and Wolters, 2007; and Montgomery et al., 2008). The

Yule-Walker equations for the ACF of an AR(p) process for any fixed value of k is

ρ(j) =
k∑
i=1

φikρ(j − i), j = 1, 2, · · · , k (2.13)

or

ρ(1) = φ1k + φ2kρ(1) + · · ·+ φkkρ(k − 1)

ρ(2) = φ1kρ(1) + φ2k + · · ·+ φkkρ(k − 2)

...

ρ(k) = φ1kρ(k − 1) + φ2kρ(k − 2) + · · ·+ φkk.

We can write the corresponding linear equation systems above for k = 1, 2, . . ., in the

matrix notation as



1 ρ(1) ρ(2) · · · ρ(k − 1)

ρ(1) 1 ρ(1) · · · ρ(k − 2)

ρ(2) ρ(1) 1 · · · ρ(k − 3)
...

...
...

. . .
...

ρ(k − 1) ρ(k − 2) ρ(k − 3) · · · 1





φ1k

φ2k

φ3k

...

φkk


=



ρ(1)

ρ(2)

ρ(3)
...

ρ(k)


(2.14)

or

Pkφk = ρ(k) (2.15)

where

Pk =



1 ρ(1) ρ(2) · · · ρ(k − 1)

ρ(1) 1 ρ(1) · · · ρ(k − 2)

ρ(2) ρ(1) 1 · · · ρ(k − 3)
...

...
...

. . .
...

ρ(k − 1) ρ(k − 2) ρ(k − 3) · · · 1


, (2.16)
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φk =



φ1k

φ2k

φ3k

...

φkk


and ρ(k) =



ρ(1)

ρ(2)

ρ(3)
...

ρ(k)


, (2.17)

with Cramer’s rule we have

φkk =

∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) ρ(2) · · · ρ(k − 2) ρ(1)

ρ(1) 1 ρ(1) · · · ρ(k − 3) ρ(2)
...

...
...

. . .
...

...

ρ(k − 1) ρ(k − 2) ρ(k − 3) · · · ρ(1) ρ(k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) ρ(2) · · · ρ(k − 2) ρ(k − 1)

ρ(1) 1 ρ(1) · · · ρ(k − 3) ρ(k − 2)
...

...
...

. . .
...

...

ρ(k − 1) ρ(k − 2) ρ(k − 3) · · · ρ(1) 1

∣∣∣∣∣∣∣∣∣∣∣∣

(2.18)

For any given k, k = 1, 2, . . . , the last coefficient φkk is called the partial autocor-

relation of the process at lag k. The PACF cuts off after lag p for an AR(p) since φkk

= 0 for k > p. Sample partial autocorrelation function, φ̂kk or some authors called the

sample estimate of φ̂kk is estimated as

φ̂kk =
ρ̂(k)−

∑k−1
j=1 φ̂k−1,j ρ̂k−j

1−
∑k−1

j=1 φ̂k−1,j ρ̂j
(2.19)

and

φ̂k,j = φ̂k−1,j − φ̂kkφ̂k−1,k−j for j = 1, 2, · · · , k− 1 (2.20)
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Furthermore, in a sample of T observations from an AR(p) process, φ̂kk, for k > p is

approximately normally distributed with

E[φ̂kk] ≈ 0 and V ar(φ̂kk) ≈ 1
T

Hence the 95% critical limits to test whether any φ̂kk is statistically significant different

from zero are given by ±1, 96/
√
T . For further detail and example could be seen in

Wei (2006).

2.4.3 Cross-Correlation Function

For the bivariate time series, xt, yt, the cross-correlation function measures the

strength and the direction of correlation between two random variables. In Transfer

Function model, the shape of the cross-correlation between those input and output

series reveals the pattern of (r, s, and b) parameters of the transfer function (Box and

Jenkins, 1976). The two stationary stochastic processes xt and yt, for t = 0,±1,±2, . . . ,

have the following cross-covariance function

Cov(xt, yt) = γxy(k) = E [(xt − µx)(yt+k − µy)] (2.21)

for k = 0,±1,±2, . . . , where µx = E[xt] and µy = E[yt]. Hence Wei (2006) defined the

cross-correlation function (CCF) of the bivariate process as

ρxy(k) =
γxy(k)

σxσy
(2.22)

for k = 0,±1,±2, . . . , where σx and σy are the standard deviations of xt and yt. For a

given sample of T observations of the bivariate process, the cross correlation function,

ρxy(k), is estimated by sample cross correlation

ρ̂xy(k) =
γ̂xy(k)

SxSy
, (2.23)

where

γ̂xy(k) =


1
n

∑n−k
t=1 (xt − x)(yt+k − y), k ≥ 0

1
n

∑n
t=1−k(xt − x)(yt+k − y), k < 0 ,

(2.24)
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where n = T − d pairs of values (x1, y1), (x2, y2), . . . , (xn, yn), Sx =
√
γ̂xx(0) and

Sy =
√
γ̂yy(0) available after differencing, and x and y are the sample mean of xt and

yt respectively.

2.5 Transfer Function Model

The relationship between the input series, Xt, and the output series, Yt, is a func-

tional process. The response may be delayed from one level to another and distributed

over a period of time. Such relationships are called dynamic transfer functions. A

dynamic system may exist where an input series seems related to an output series.

Box and Jenkins (1976) illustrated a dynamic system of input and output series with

impulse response function as shown in Figure 2.1. Both the input and output series

are time series and the output series is a function of the input series that is driving it.

Generally the transfer function models are formulated as Yt = v(L)Xt + nt. This

model, which will be focused on this research, have two components. They are the

Transfer Function component and the noise model component. The Transfer Function

component consists of a response regressed on lagged autoregressive output variables

and lagged input variables. ARIMA(p,d,q) is usually the underlying noise model for

the Transfer Function. Then the residual of Transfer Function-noise model is modeled

by using Radial Basis Function Neural Network model.

Figure 2.1: Input to, and Output from, a Dynamic System by Box and Jenkins

2.5.1 The Assumptions of the Single Input Model

The Transfer Function model, consisting of a response series, Yt, a single explana-

tory input series, Xt, and an impulse response function v(L), is established on the

basic assumptions. The input series and the output series are stochastic, both series

15



are assumed stationary (Box and Jenkins, 1976; Wei, 2006). Therefore centered and

differenced (if necessary) is required to attain a stationarity condition.

For the input modeling, an error term which may be autocorrelated, is usually

assumed to be white noise (Bisgaard and Kulahci, 2011). The represent of the unob-

servable noise process Nt, is assumed to be independent of the dynamic relationship

between the output Yt and the input Xt (Montgomery et al., 2008). Moreover, Yafee

and McGee (1999) presumed that this relationship is unidirectional with the direction

of flow from the input to the output series. Therefore Xt in a Transfer Function must

be input and the Transfer Function is assumed to be stable.

2.5.2 Prewhitening

Prewhitening is to make the input look like white noise. When the original input

follows some other stochastic process, simplification is possible by prewhitening (Box-

Jenkins, 1976). In other words, we remove the autocorrelation in the input series that

caused the spurious cross correlation effect (Bisgaard and Kulahci, 2011). The first

step in prewhitening involves identifying and fitting a time series model to the input

xt. The steps of prewhitening are outlined by Bisgaard and Kulahci in Figure 2.2.

Figure 2.2: Prewhitening Step-by-Step

Suppose that xt follows an ARIMA model, the filter of Transfer Function model when

we applied to xt generates a white noise time series, hence the name is prewhitening
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(Montgomery et al., 2008). For example, suppose that the sample of ACF and PACF

indicate that the original input series Xt is non-stationary, but its differences xt =

(1 − L)Xt are stationary. Then suppose the appropriate model might be a second

order autoregressive AR(2) model

(1− ϕ1L+ ϕ2L
2)xt = ϕ(L)xt = αt (2.25)

where xt = (1 − L)Xt and the αt are the white noise process. After prewhitening the

input, the next step is to prewhiten the output Yt. The prewhitening filter for xt will

be used to filter the differences output series yt = (1−L)Yt. This involves filtering the

output data through the same model with the same coefficient estimates that we fitted

to the input data. The prewhitened output is

(1− ϕ1L+ ϕ2L
2)yt = ϕ(L)yt = βt (2.26)

The process of transforming Xt to αt and from Yt to βt via the filter 1−ϕ1L+ϕ2L
2 =

ϕ(L) is known as whitening or prewhitening (Cryer and Chan, 2008).

2.5.3 Identification of Transfer Function

The dynamic relationship between the output Yt and the inputXt using the Transfer

Function-Noise model for linear system is

Yt = v(L)Xt +Nt, (2.27)

where v(L) =
∑∞

j=0 vjL
j is Transfer Function filter and Nt is the noise series that

is assumed to be independent of Xt and generated usually by an ARIMA process.

However in our case Nt will be generated by non linear neural network process. If

the series exhibits non-stationarity, an appropriate differencing is required to obtain

stationary xt, yt, and nt. Hence, the Transfer Function-Noise model becomes

yt = v(L)xt + nt (2.28)
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and

v(L) ≈ ω(L)

δ(L)
Lb (2.29)

This imply that (2.27) can be written as

yt = v(L)xt + nt

≈ ω(L)Lb

δ(L)
xt + nt

≈ ω(L)

δ(L)
xt−b + nt,

(2.30)

where ω(L) = ω0−ω1L−· · ·−ωsLs and δ(L) = 1− δ1L−· · ·− δrLr. The denominator

δ(L) in (2.30) determines the structure of the infinitely order, therefore the stability of

v(L) depends on the coefficients in δ(L). As an infinite series, v(L) converges as |L| ≤ 1

(Yafee and McGee, 1999; Mongomery et al., 2008). v(L) is said to be stable under this

condition, if all the roots of mr − δ1mr1 − · · · − δr are less than 1 in absolute value.

When the transfer function is absolutely summable, it converges and is considered to

be stable, then
∞∑
L=0

|v(L)| <∞ (2.31)

In the identification procedure, Wei (2006) derived the following simple steps to obtain

the transfer function v(L):

1. Prewhiten the input series, ϕx(L)xt = θx(L)αt

i.e., αt =
ϕx(L)

θx(L)
xt (2.32)

where αt is a white noise series with mean zero and variance σ2
α

2. Calculate the filtered output series. That is, transform the output series yt using

the above prewhitening model to generate the series

βt =
ϕx(L)

θx(L)
yt (2.33)

3. Calculate the sample CCF, ρ̂α,β(k), between α and β.The significant of the CCF

can be tested by comparing it with its standard error (n− k)−1/2
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4. Identify b, r, s, ω(L), δ(L) by matching the pattern of CCF. Once b, r, s are chosen,

preliminary estimates ω̂j and δ̂j can be found from their relationships with vk.

Thus we have a preliminary estimates of the transfer function v(L) as

v̂(L) =
ω̂(L)

δ̂(L)
Lb. (2.34)

The noise series of the transfer function can be estimated by

n̂t = yt − v̂(L)xt

= yt −
ω̂(L)

δ̂(L)
Lbxt.

(2.35)

By examining the ACF and the PACF of n̂t, we have

ϕ(L)nt = θ(L)at (2.36)

By combining (2.34 ) and (2.36), the general form of transfer function-noise model is

yt =
ω(L)

δ(L)
xt−b +

θ(L)

ϕ(L)
at. (2.37)

2.5.4 The Structure of the Transfer Function

The impulse response weights vj consist of a ratio of a set of s regression weights to

a set of r decay rate weights, plus a lag level, b, associated with the input series, and

may be expressed with parameters designated with r, s, and b subscripts, respectively.

Box and Jenkins (1976) and Wei (2006) found the orders of r, s, and b and their

relationships to the impulse response weight vj by equating the equations of Lb in both

sides of the equation

δ(L)v(L) = ω(L)Lb (2.38)

and we obtain the identity

[1− δ1L− · · · − δrLr][v0 + v1L+ v2L
2 + · · · ] = [ω0 − ω1L− · · · − ωsLs]Lb (2.39)
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Thus we have

xxxvj = 0 j < b,

xxxvj = δ1vj−1 + δ2vj−2 + · · ·+ δrvj−r + ω0 j = b,

xxxvj = δ1vj−1 + δ2vj−2 + · · ·+ δrvj−r − ωj−b j = b+ 1, b+ 2, · · · , b+ s,

xxxvj = δ1vj−1 + δ2vj−2 + · · ·+ δrvj−r j > b+ s.

The weights vb+s, vb+s−1, . . . , vb+s−r+1 supply r impulse response starting values for the

difference equation

δ(L)vj = 0, j > b+ s (2.40)

In general, the impulse response vj consist of

1. b zero values v0, v1, . . . , vb−1

2. s− r + 1 weights vb, vb+1, . . . , vb+s−r that follows no fixed pattern

3. r starting impulse response weights vb+s−r+1, vb+s−r+2, . . ., and vb+s

4. vj for j > b+ s follows the pattern given in (2.39)

Yafee and McGee (1999) define the order b, r, s as follows: The delay time b, some-

times referred to as dead time, determines the pause before the input begins to have an

effect on the response variable (L)bXt = Xt−b. The order of the regression s designates

the number of lags for unpatterned spikes in the transfer function. The number of

unpatterned spikes is s + 1. The order of decay r represents the patterned changes

in the slope of the function. The order of this parameter signifies the number of lags

of autocorrelation in the transfer function. The denominator of the transfer function

ratio consists of decay weights, δr from time = 1 to r. If there is more than one decay

rate, the rate of contemplation may fluctuate.

2.5.5 Estimation of Transfer Function Model

Estimating a Transfer Function model involves judgment on the part of the re-

searcher. Experienced econometricians would agree that the the procedure is a blend

of skill, art, and perseverance that is developed through practice (Enders, 2009). If

the Transfer Function follows the linear ARIMA noise model, by assuming the residual
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at is N(0, σ2
a), it can be estimated by conditional least squares, unconditional least

squares, or maximum likelihood.

In this research, the parameter for single input Transfer Function-noise model is

estimated by using conditional least square. For the linear model part, the δi and ωi

can be recursively estimated by using δ̂(L)v̂(L) = ω̂(L) from (2.41) (Montgomery et

al., 2008).

vj − δ1vj−1 − δ2vj−2 − · · · − δrvj−r =

−ωj−b, j = b+ 1, · · · , b+ s

0, j > b+ s,

(2.41)

with vb = ω0 and vj = 0 for j < b. Hence we have

v̂1 = ω̂0

ω̂2 − δ̂2v̂1 = 0

...

(2.42)

2.5.6 Diagnostic Checking of Transfer Function Model

To test the adequacy of a model, the estimated parameters should be significant.

If the parameters are not significant, we drop them out from the model. In diagnostic

checking step, Montgomery et al. (2008) checked the validity of two assumptions in

the fitted model. These assumptions are: the noise at is white noise by examining

the residual ât through ACF and PACF pattern and the independence between ât and

xt by observing the sample cross-correlation function between the residual αt from

the prewhitened input and xt. To see whether these assumptions hold, Wei (2006)

examined the residual ât from the noise model as well as the residual αt:

1. Cross correlation check. For an adequate model, the sample CCF, ρ̂α,â(k), be-

tween â and α should show no patterns and lie within their two standard errors

2(n− k)−1/2. The Portmanteau test Q0 which approximately follows a χ2 distri-

bution with (K+1)−M degree of freedom can be used to check this assumptions.

Q0 = m(m+ 2)
K∑
j=0

(m− j)−1ρ̂2α,â(j), (2.43)
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where m = n− t0 + 1, t0 = max {p+ r + 1, b+ p+ s+ 1}, M is the number of

parameters δi and ωj, j = 0, 1, 2, . . . , K, and n is the number of residuals at.

2. Autocorrelation check. For an adequate model, both the sample ACF and PACF

should not show any patterns. The Portmanteau test Q1 which approximately

follows a χ2 distribution with K − p− q degree of freedom can be used to check

this assumptions.

Q1 = m(m+ 2)
K∑
j=1

(m− j)−1ρ̂2â(j) (2.44)

2.5.7 The General Modeling Strategies for Transfer Function Model

The procedure for modelling strategies of the transfer function model according

to (Wei, 2006; Bisgaard and Kulahci, 2011; and Yafee and McGee, 1999) are as the

following steps:

1. Plot the data. By graphing or plotting the input and output series, we will gain a

preliminary overview of the general behavior of these variables. This step is also

called preprocessing step. In this step, transformation of both input and output

series into stationary is required. After the preprocessing, an ARMA model is

applied for the input series which may still contain the cross-correlation between

the input and output series. Analogously, the similar filter is then applied to

output series.

2. Prewhitening. The prewhitening filter is established from the ARMA model.

This filter turns the input series into white noise. Prewhitening is needed if there

is autocorrelation within the input series. Model building can be possibly done

without prewhitening if there is no autocorrelation within the input series.

3. Identification of the impulse response function and Transfer Function. After the

input and output series are prewhitened, the impulse response function and the

Transfer Function are identified by examining the cross-correlation function. ln

practice, examination of the cross-correlation will suggest several plausible Trans-

fer Functions. The shape of the cross-correlation between those two prewhitened
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series reveals the pattern of (r, s, and b) parameters of the Transfer Function

(Box and Jenkins, 1976).

4. Fitting a model for the noise. Generally, the noise of Transfer Function model is

expected to be autocorrelated. The noise is modeled by using ARIMA (p,d,q)

5. Estimation of the Transfer Function. To estimate the full model equation, we

combine the results of steps 3 and 4. This combination provide us with the

model specifications and the initial estimates of the parameters in the Transfer

Function-Noise model. The Transfer Function-noise model can be estimated by

conditional least squares.

6. Diagnostics checks. Incorrectly specified the Transfer Function is indicated by

still much information left in the residuals explained by the input series. There-

fore, we should first check the cross-correlation between the residuals and the

prewhitened input series, then we check whether there is any autocorrelation left

in the residuals, that is, to see whether the noise is modeled properly. ACF,

PACF and Box - Ljung Q test can be used to diagnose the residuals. Any viola-

tions observed in the diagnostic checks will suggest the reevaluation of the noise

model and/or Transfer Function model.

2.6 Neural Network

Artificial Neural Networks (ANN) is a mathematical model which is used to solve

a complex systems of non-linear elements and to compute models for information pro-

cessing and pattern identification. The major advantage of neural networks is that

they are data driven and do not require restrictive assumptions about the form of the

underlying model (Zhang, 2004). The neural network involves one or more hidden lay-

ers, in which the input variables are squashed or transformed by a special function, i.e.

Gaussian function. In this research we will use Radial Basis Function Neural Network

to model the residual from the Transfer Function-noise model
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2.6.1 Neural Network Architecture

The structures of neural network are mainly based on the number of neurons in each

layer and the type of activation functions. The number of input and output neurons

can be easily determined by the number of input and output variables.

2.6.1.1 Neurons

A bounded function y = f(x1, x2, . . . , xR;w1, w2, . . . , wR) where the xi are the vari-

ables and the wj are the parameters (or weights) is called as a neuron (Dreyfus, 2005).

The variables of the neuron are often called inputs of the neuron and its value is its

output. A neuron has a few entries provided by the outputs of other neurons. A group

of connected neurons makes a layer. The entries are summed up and the state of the

neuron is determined by the value of the resulting signal with respect to a certain

threshold: if the signal is larger than the threshold the neuron is active; otherwise it is

silent (Peretto, 1992).

Each neuron sends impulses to many other neurons (divergence), and receives im-

pulses from many neurons (convergence). This simple idea appears to be the founda-

tion for all activity in the central nervous system, and forms the basis for most neural

network models (Freeman and Skapura, 1991). Let x1, x2, . . . , xR are the individual

element inputs and wi,1, wi,2, . . . , wi,R are weights, where i = 1, 2, . . . , then the indi-

vidual element inputs are multiplied by weights and the weighted values are fed to the

summing junction. Their sum is simply W ∗ x, the dot product of the (single row)

matrix W and the vector x (Demuth and Beale, 2002).

The neuron has a bias b, and the sum of the weighted inputs and the bias forms

the net input n, proceeds into an activation function f, and produces the scalar neuron

output (Hagan, Demuth, Beale, and Jesus, 1996). The inputs to a neuron include its

bias and the sum of its weighted inputs (using the inner product). The output of a

neuron depends on the neurons inputs and on its activation function. This expression

can be written as

a = f(W ∗ x+ b) (2.45)

By considering the biological neuron, the weight w corresponds to synapse strength,
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the summation represents the cell body and the activation function, a basic multiple-

input artificial neuron model is shown by Hanrahan (2011) in Figure 2.3.

Figure 2.3: A Basic Multiple Input Artificial Neuron Model

2.6.1.2 Perceptron

The perceptron is a mathematical model of a biological neuron. A neural network

which is made of R input units and one output unit is called a perceptron (Peretto,

1992). Multiplying each input value by a value called the weight is also modeled in the

perceptron. The perceptron learning model can be represented as a processing node

that receives a number of inputs, forms their weighted sum, and gives an output that

is a function of this sum (Dunne, 2007). Perceptrons are useful as classifiers. They can

classify linearly separable input vectors very well.

2.6.1.3 Layer

Artificial Neural Network (ANN) may consist of input, hidden and output layers.

The net input renders to the activation function by calculating the output signal of

the ANNs, which is called the layered network (Ali, 2014). The layer includes the

weight matrix, the summers, the bias vector, the activation function boxes and the

output vector. Some authors said that the inputs vector is another layer. A layer

whose output is the network output is called an output layer, but the other layers

are called hidden layers. Determining the number of hidden nodes within the hidden

layer is best done by trial and error (Kitchens, Johnson and Gupta, 2002). A good

starting point is the average of the number of input and output nodes, then greater

and fewer numbers of hidden nodes are tested until an optimal architecture is obtained.
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2.6.2 Radial Basis Function (RBF) Neural Network

Radial functions are simply a class of functions. In principles they could be em-

ployed in any sort of model linear or nonlinear and any sort of network single layer or

multilayer. The Radial Basis Function Neural Network has local generalization abilities

and fast convergence speed (Zhu et al., 2014). Radial basis function neural network

consists of input, hidden layer and output. The input contains units of signal source

and the output which reacts to input model. The number of units on the hidden layer

is determined by K -mean cluster. The movement from input to hidden layer is non-

linear and that from hidden layer to output is linear. Activation function of the units

in hidden layer is Gaussian function.

2.6.2.1 K -Mean Cluster

RBF centers may be obtained with a clustering procedure such as the K -means

algorithm. The real positive numbers (spread) parameters can be computed from the

sample covariance of of each cluster. The K -means clustering algorithm starts by

picking the number K of centers and randomly assigning the data points to K subsets.

It then uses a simple re-estimation procedure to end up with a partition of the data

points into K disjoint subsets or clusters. These clusters can be used as nodes in Radial

Basis Function neural network. The following are K -means algorithm (Johnson and

Winchern, 2007)

1. Initialize the clusters center

2. Finding the nearest mean to each data point, reassigning the data points to the

associated clusters and then recomputing the new cluster means

3. Repeat step 2 until the old value of old cluster center equal to the value of new

cluster center.

2.6.2.2 Radial Functions

Radial functions are a special class of function. Their characteristic feature is that

their response decreases or increases monotonically with distance from a central point.

In this study, the radial basis function applied was the Gaussian function (2.46) and
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the neural network output was then evaluated as the weighted linear summation of the

radial basis functions (2.47) (Kagoda et al., 2010)

Ωj,t(µj, σj) = e
−

‖xi,t−µj‖2
2σ2
j


, xxt = 1, 2, 3, . . . , T. (2.46)

where xi,t is the m dimensional input vector at time-step t, µj is the mean (center)

of the j th node and, σj is the standard deviation (spread) of the j th node, T is the

length of each input series.

at = ωb +
n∑
j=1

ωj.Ωj,t(µj, σj), xxt = 1, 2, 3, . . . , T. (2.47)

where n is the number of hidden nodes, yt is the ith neural network output, ωj is the

weight vector of the connection between the j th node and the output node, ωb is the

bias term.

There are two operating modes named training and testing in the RBF neural

network. Training the RBF network involves determining the number of RBF units,

the width of RBF units and the output weight values. The criterion is to minimize

the sum of squared errors (SSE). The architecture of Radial Basis Function Neural

Networks is shown in Figure 2.4.

Figure 2.4: Radial Basis Function Neural Networks Architecture
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The algorithm for Radial Basis Function Neural Network can be derived as follow:

1. Determine the number of clusters by using K -means cluster

2. Compute the values of µj and σj for each input variables within each cluster

3. Compute the values of Ωj,t(µj, σj) in hidden layer unit, e.g. Ω1,1(µ1, σ1) is the

value for the first input in the first node

4. Estimate the weights as the following way:

Consider the network output

a(xi) ≈ ω1Ω1,t(µ1, σ1) + · · ·+ ωnΩn,t(µn, σn),

we want to find di = a(xi) for each observation, so that

di ≈ ω1Ω1,t(µ1, σ1) + · · ·+ ωnΩn,t(µn, σn),

in the matrix form, it can be written as


d1

d2
...

dt

 =


Ω1,1(µ1, σ1), . . . , Ωn,1(µn, σn)

Ω1,2(µ2, σ2), . . . , Ωn,2(µn, σn)
... · · · , ...

Ω1,t(µ1, σ1), . . . , Ωn,t(µn, σn)




ω1

ω2

...

ωn


or

d = Φω,

where

d =


d1

d2
...

dt

, Φ =


Ω1,1(µ1, σ1), . . . , Ωn,1(µn, σn)

Ω1,2(µ2, σ2), . . . , Ωn,2(µn, σn)
... · · · , ...

Ω1,t(µ1, σ1), . . . , Ωn,t(µn, σn)

 , ω =


ω1

ω2

...

ωn

 .
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Finally, the weights can be computed by using the following formula

d = Φω

Φ
′
d = Φ

′
Φω

(Φ
′
Φ)−1Φ

′
d = (Φ

′
Φ)−1(Φ

′
Φ)ω

(Φ
′
Φ)−1Φ

′
d = Iω

(Φ
′
Φ)−1Φ

′
[d1, d2, . . . , dt]

T = [ω1, ω2, . . . , ωn]T

For example, we will compute RBF neural network by using the residual data from

Transfer Function-noise of outflow Lhokseumawe. Suppose our RBF neural network

architecture has two inputs at−1 and at−2, one output at, and 2 hidden nodes. These

two hidden nodes are computed by using K -means cluster, the means and standard

deviations for every inputs at−1 and at−2 within each node (cluster). Thus by mini-

mizing sum square error, we obtain the weights ω1 = −30.98, ω2 = 82.75, and the bias

ωb = −35.16. Suppose we only compute the forecast for in-sample in this example,

then we formulate the RBF neural network model as follow

at = ω1Ω1,t(µ1, σ1) + ω2Ω2,t(µ2, σ2) + ωb,

= −30.98Ω1,t(µ1, σ1) + 82.75Ω2,t(µ2, σ2)− 35.16,

= −30.98 exp

[
−1

2

{(
at−1 − µ11

σ11

)2

+

(
at−2 − µ12

σ12

)2
}]

+

= + 82.75 exp

[
−1

2

{(
at−1 − µ21

σ21

)2

+

(
at−2 − µ22

σ22

)2
}]
− 35.16,

(2.48)

for each nodes, we compute the values of µ11 = 227.36, µ12 = −115.26, σ11 = 84

and σ12 = 71 from the input series at−1, and the values of µ21 = 17.48, µ22 = 95.29,

σ21 = 63, and σ22 = 89 from the input series at−2, then (2.47) can be written as

at = −30.98 exp

[
−1

2

{(
at−1 − 227.36

84

)2

+

(
at−2 + 115.26

71

)2
}]

+

= + 82.75 exp

[
−1

2

{(
at−1 − 17.48

63

)2

+

(
at−2 − 95.29

89

)2
}]
− 35.16,

(2.49)
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the one step ahead forecast can be written as

at(1) = −30.98 exp

[
−1

2

{(
at − 227.36

84

)2

+

(
at−1 + 115.26

71

)2
}]

+

= + 82.75 exp

[
−1

2

{(
at − 17.48

63

)2

+

(
at−1 − 95.29

89

)2
}]
− 35.16

(2.50)

and if the last two observations we seen from the actual series are at = 4.87 and

at−1 = 14.51, the one step ahead forecast output from (2.49) is

at(1) = −30.98 exp

[
−1

2

{(
4.87− 227.36

84

)2

+

(
14.51 + 115.26

71

)2
}]

+

= + 82.75 exp

[
−1

2

{(
4.87− 17.48

63

)2

+

(
14.51− 95.29

89

)2
}]
− 35.16

= 18.23

(2.51)

2.7 Hybrid Transfer Function - Neural Network Model

Transfer Function and Radial Basis Function Neural Network models have the ad-

vantages in their own linear or non linear patterns. However, not all time series types

are universally suitable for each of them separately. The reason is, the phenomena of

both linear and non linear correlation structures are often occurred among the observa-

tions in real world time series. Hence, it is not appropriate to apply Transfer Function

and Neural Network models separately to any type of time series data. Therefore a

number of efforts are developed to improve time series forecasting methods.

One approach to overcome the limitation of a pure linear or non linear time series

modeling is the Hybrid model. Combining Transfer Function and Neural Network

models in one Hybrid model will be more useful for improving forecasting accuracy.

In this study, the Hybrid methodology follows the similar concept of linear ARIMA

and non linear ANN models approach for time series forecasting developed by (Zhang,

2003 and Zhang, 2004). According to Zhang’s hybrid model, time series data is based

on the assumption that a sum of two components, linear and non linear. These two
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components can be expressed in the following

yt = Lt +Nt, (2.52)

where, yt is the observation at time t and Lt, Nt denote linear and non linear compo-

nents, respectively. Firstly, Transfer Function is fitted to the linear component and the

corresponding forecast L̂t at time t is obtained. Then the residual at time t is given

by et = yt − L̂t.

Adopting for Zhang’s hybrid model, the residuals et after fitting Transfer Function

contains only non linear component and can be modeled through Radial Basis Function

Neural Network. Using p input nodes, the ANN model for residuals is

et = f(et−1, et−2, . . . , et−p) + εt, (2.53)

where f is a non linear function determined by the neural network and εt is the white

noise. If N̂t is the forecast of neural network, the hybrid forecast at time t will be

ŷt = L̂t + N̂t. (2.54)

Through the previous empirical analysis, the forecast combinations were able to im-

prove the overall modeling and forecasting performance. Such a model is illustrated in

Figure 2.4.

2.8 Forecasting

Forecasting using Transfer Function models similar to forecasting using ARIMA

models, with the exception of the additional input variable in the model. The Hybrid

model is obtained through two steps: First, we build Transfer Function-noise model

to estimate the linear component. Second, we apply Radial Basis Function Neural

Network to the residuals of linear part to estimate the non linear component. Finally,

we combine these two parts together to make a forecast.
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Figure 2.5: Hybrid Model

To show how to make forecasts of linear part for Transfer Function model, we refer

to Box and Jenkins (1976), Wei (2006), and Montgomery et al., (2008). Suppose, we

use the notation for Transfer Function-noise model as in (2.36)

yt =
ω(L)

δ(L)
Lbxt +

θ(L)

ϕ(L)
at (2.55)

and

ϕx(L)xt = θx(L)αt. (2.56)

Let αt is independent zero mean white noise series, with variance σ2
α, we have

u(L) =
ϕx(L)Lbθx(L)

δ(L)ϕx(L)
= u0 + u1L+ u2L

2 + · · · (2.57)

and

ϕ(L) =
θ(L)

φ(L)
= 1 + ϕ1L+ ϕ2L

2 + · · · (2.58)

we can write (2.54) as

Yt = u(L)αt + ϕ(L)at =
∞∑
j=0

ujαt−j +
∞∑
j=0

ϕjat−j, (2.59)

where ϕ0 = 1. Thus, Yt+l =
∑∞

j=0 ujαt+l−j +
∑∞

j=0 ϕjat+l−j. Let Ŷt(l) of Yt+l made at

32



origin t be the l -step ahead optimal forecast, which is written in the form

Ŷt(l) =
∞∑
j=0

u∗l+jαt−j +
∞∑
j=0

ϕ∗l+jat−j (2.60)

Then the forecast error is

Yt+l − Ŷt(l) =
l−1∑
j=0

[ujαt+l−j + ϕjat+l−j]

−
∞∑
j=0

[u∗l+j − ul+j]αt−j −
∞∑
j=0

(ϕ∗l+j − ϕl+j)at−j

(2.61)

The mean square forecast error E[Yt+l − Ŷt(l)]2 is given by

E[Yt+l − Ŷt(l)]2 =
l−1∑
j=0

(σ2
αu

2
j + σ2

αϕ
2
j)

+
∞∑
j=0

σ2
α(u∗l+j − ul+j)2 +

∞∑
j=0

σ2
α(ϕ∗l+j − ϕl+j)2

(2.62)

which is minimized if u∗l+j − ul+j and ϕ∗l+j − ϕl+j. Therefore the mean square error

forecast Ŷt(l) of Yt+l at origin t is given by the conditional expectation of Yt+l at time

t. Since E[Yt+l − Ŷt(l)] = 0 then the forecast is unbiased. The variance of the lead-l

forecast is given by

V (l) = E[Yt+l − Ŷt(l)]2 = σ2
α

l−1∑
j=0

u2j + σ2
α

l−1∑
j=0

ϕ2
j (2.63)

To make the forecast of non linear part, the residuals from the Transfer Function-

noise model is modeled by Radial Basis Function Neural Network. Suppose this pre-

diction is obtained as follow

N̂t = f(et−1, et−2, . . . , et−p) + εt (2.64)

Then the final predictions based on Zhang’s hybrid model are obtained by summing the

Transfer Function predictions in (2.59) and Radial Basis Function Neural predictions

in (2.63) which is stated as Hybrid Prediction (HP) in (2.64). This model is suitable
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for both one step ahead and multi step ahead predictions

HP =
∞∑
j=0

u∗l+jαt−j +
∞∑
j=0

ϕ∗l+jat−j + f(et1 , et2 , . . . , etn) + εt (2.65)

2.9 Performance Evaluation

There are a number of error statistics are used in evaluating forecasting perfor-

mance. Here in this research, we only use Root Mean Squared Error (RMSE) and

Mean Absolute Deviation (MAD). These methods provide enough information to eval-

uate the forecasting performance.

1. Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

T

T∑
t=1

e(t)2 =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2 (2.66)

where the error is calculated as the difference between the target output yt and

the network output ŷt.

2. Mean Absolute Deviation (MAD)

MAD =
1

T

T∑
t=1

|yt − ŷt| (2.67)

2.10 Testing Nonlinearity

Linear models have been the focus of theoretical and applied econometrics. Under

the stimulus of the economic theory, the relationships between variables of nonlinear

models are frequently suggested. Consequently, the interest in testing whether or not a

single economic series or group of series may be generated by a nonlinear model against

the alternative that they were linearly related instead.

The tests for nonlinearity are influenced by specific hypothesis under which they

have been conceived (Bisaglia and Gerolimetto, 2014). A wide variety of nonlinearity

tests have been developed to ascertain the incidence of nonlinearity in economic data.
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But here in this study we only use White and Terasvirta tests to detect whether or not

a time series data is generated by nonlinear process.

Theorem: Let the Reduced Model is defined as

Yt = f
(
Xt, ŵ

(R)
n + εRt

)
, (2.68)

where IR is the number of parameters to be estimated. And, let the Full Model that

is more complex than the Reduced Model is defined as

Yt = f
(
Xt, ŵ

(F )
n + εFt

)
, (2.69)

where IF is the number of parameters in the Full Model, IF > IR . Then, under the

hypothesis testing for an additional parameters in the Full Model equal to zero, the F

statistic can be constructed, i.e.

SSE(R) − SSE(F )/(IF − IR)

SSE(F )/(n− IF )
∼ F(v1=[IF−IR],v2=[n−IF ]). (2.70)

F test in (2.66) can be written as

F =
SSE(R) − SSE(F )/(df(R) − df(F ))

SSE(F )/df(F )

, (2.71)

or

F =
R2
incremental/(df(R) − df(R))

(1−R2
(F ))/df(F )

, (2.72)

where R2
incremental = R2

(F )−R2
(R), df(R) = n−IR is degree of freedom at Reduced Model,

and df(F ) = n− IF is degree of freedom at Full Model.

Generally, Suhartono (2008) define the hypothesis tests which is used in nonliearity

test as follow:

H0 : f(x)zis linear function ofzx

H1 : f(x)zis nonlinear function ofzx
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By using F test in (2.71), if the p-value less than α=5%, then the appropriate model

to describe the relationship between x and f(x) is nonlinear model.

2.11 Calendar Variation Model

One of the effectiveness model for estimating trading day and moving holiday ef-

fects in economic time series is calender variation model. Monthly time series data

are frequently subject to calendar variation. In most Islamic countries for example,

monthly time series data subject to Ramadhan and Idul Fitri Day effects. A number

of calendar variation effect on time series data have been studied by many researchers.

Liu (1980) for instance, he studied the effect of holiday variation on the identification

and estimation of ARIMA models. Cleveland and Devlin (1980) proposed two sets of

diagnostic methods for detecting calendar effects in monthly time series, i.e. by using

spectrum analysis and time domain graphical displays. Suhartono, Lee, and Hamzah

(2010) developed a calendar variation model based on time series regression method

for forecasting time series data with Ramadhan effect. The results show that modeling

some real data with calendar variation effect provided better forecast.

Data with calendar variation can also be modeled by using regression (Suhartono,

Lee, and Hamzah 2010). Linear regression model for data with calendar variation can

be expressed as:

yt = β0 + β1V1,t + β2V2,t + · · ·+ βpVp,t + wt (2.73)

where Vp,t is dummy variable for p-th calendar variation effect, and wt is the error

component, usually assumed independently and identically distributed as normal with

mean 0 and variance σ2
w. This method can be applied to the identification of interven-

tion and transfer function models which may also be subject to calendar variation.

The procedure of finding the Hybrid model of Transfer Function subjected to calen-

der variation with outlier detection and RBF neural network is similar to the procedure

of finding Hybrid Transfer Function-noise and RBF neural network. The firs step is

to compute the forecast of linear part, then the residuals from the linear part are

computed by RBF neural network to obtain the forecasts.
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CHAPTER 3

METHODOLOGY

xxxIn this chapter, we discuss data gathering method and data variables. Indone-

sian central bank (BI) of Aceh’s representative offices are located in Banda Aceh and

Lhokseumawe. The map of these locations are shown in Figure 3.1.

Figure 3.1: Representative Offices of Indonesian Central Bank (BI) in Aceh Province

3.1 Data and Variables

The data set that we use in this analysis is based on monthly data of cash inflow

and outflow of Indonesian central bank (BI) at representative offices in Banda Aceh

and Lhokseumawe, province of Aceh, Indonesia. We analyzed this monthly data for the

periods of time from January 2003 to December 2014. The structure of data consist of

inflow, outflow and Consumer Price Index (CPI) with 144 observations and the starting

date is at 01.01.2003. Figures 3.2, 3.3, 3.4 show data Inflow, outflow, and Consumer

Price Index (CPI) respectively.

For evaluating the performance of our analysis, we divided these data into in-sample

data as a training data and out-sample data as a testing data. The training data (92%
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of total observation) is started from January 2003 to December 2013 (equal to 132 ob-

servations). While the testing data (8% of total observation) is started from January

2014 to December 2014 (equal to 12 observations).

Figure 3.2: Inflow (in Billion IDR) - Lhokseumawe and Banda Aceh

Figure 3.3: Outflow (in Billion IDR) - Lhokseumawe and Banda Aceh

We use two variables in this analysis: the output variable and the input variable. In

this study, we analyze the empirical data for Lhokseumawe and Banda Aceh separately.

Table 3.1 shows a brief description of the variables that we use in this study.
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Figure 3.4: Consumer Price Index (CPI) - Lhokseumawe and Banda Aceh

3.2 Steps for Data Analysis

The following are steps for building Hybrid Transfer Function-noise and Neural

Network models for Lhokseumawe and Banda Aceh time series data:

1. Model Identification

(a) Plot the inflow and outflow data for Lhokseumawe and Banda Aceh repre-

sentative offices of Indonesian Central Bank (BI) . This time series plots will

give us a preliminary overview of the general behavior of these variables.

(b) Transform both input and output series (for inflow, outflow, and Consumer

Price Index) into stationary by applying differencing

(c) Prewhiten the input and output series from the exising ARIMA model to

obtain the white noise series.

(d) Examine cross correlation function and autocorrelation for each the prewhitened

input and output series

(e) Identify the orde b, s, r of Transfer Function model

(f) Preliminary estimate Transfer Function model based on determined order.

2. Parameter Estimation

Estimate the parameter of single input Transfer Function by using conditional

least square.
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Table 3.1: Summary of Name, Notation, and Definition of Variables
spacyspacyspacyspacyspacyspacyspacyspacyspacyspacyspacy

Variable Notation Description

Outflow of
Lhokseumawe

xxxxY1,t

The money (in IDR) coming out from Indonesian
Central Bank (BI) of Lhokseumawe representative
office to other parties through the withdrawal pro-
cess by commercial banks and public transaction
activities

Inflow of
Lhokseumawe

xxxxY2,t

The transfer of money (in IDR) from other par-
ties to Indonesian Central Bank (BI) of Lhokseu-
mawe representative office in a given period of time
through the deposit of commercial banks and the
public transaction activities

Outflow of
Banda Aceh

xxxxY3,t

The money (in IDR) coming out from Indonesian
Central Bank (BI) of Banda Aceh representative
office to other parties through the withdrawal pro-
cess by commercial banks and public transaction
activities

Inflow of
Banda Aceh

xxxxY4,t

The transfer of money (in IDR) from other par-
ties to Indonesian Central Bank (BI) of Banda
Aceh representative office in a given period of time
through the deposit of commercial banks and the
public transaction activities

Consumer
Price Index
Lhokseumawe

xxxxX1,t

A Consumer Price Index of Lhokseumawe mea-
sures change in the price level of a market bas-
ket of consumer goods and services purchased by
households

Consumer
Price Index
Banda Aceh

xxxxX2,t

A Consumer Price Index of Banda Aceh measures
change in the price level of a market basket of con-
sumer goods and services purchased by households

3. Diagnostic Checking

(a) Check whether the residual are white noise, independent of the input series

and hence the independent of the prewhitened input series, and normally

distributed with zero mean and variance σ2. If this assumptions hold, then

the model is adequate. The residuals can be diagnosed by their ACF and

PACF along with use of the Box - Ljung Q test. However, if the residuals

are not independent, it can be modeled by the ARIMA (p,d,q).
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(b) After obtaining the predictions from Transfer Function-noise model, the

residual series is used to model the Radial Basis Function Neural Network.

4. Forecasting

(a) Compute the residual from Transfer Function-noise model et = yt − L̂t

(b) Forecast the pure linear part of Transfer Function model

(c) Forecast the non linear part of Neural Network model

(d) Compute the Hybrid forecast by combining the both linear and non linear

forecasts.
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CHAPTER 4

RESULTS AND ANALYSIS

xxxSix data sets are used in this research. These six sets of time series data are shown in

Figure 3.2, Figure 3.3, and Figure 3.4. We see that the series Inflow, Outflow, and con-

sumer price index (CPI) in Banda Aceh and Lhokseumawe are clearly non-stationary

series, they are trending up over the given time period. Therefore, differencing is re-

quired to obtain stationarity. In this study we use a single input and single output

models.

The general steps of Transfer Function-noise model building process is applied to

obtained the appropriate linear model. After obtaining the predictions of Transfer

Function-noise model, its residual series is used to form non linear model by using the

Radial Basis Function (RBF) Neural Network. We estimated several different RBF

Neural network models with different nodes in training data (in-sample) in order to

obtain the optimum networks. It is aimed to better capture the underlying behavior

of the time series movement of Inflow and Outflow for both Lhokseumawe and Banda

Aceh representative offices.

We use single layer network with 2 input and 1 output for model building process of

the entire series in this research. 5 node is the most optimum network in comparison to

the other tested nodes of the residuals of Lhokseumawe Outflow and 10 node is for the

residual of Lhokseumawe Inflow series. While the optimum network of residual series

of Outflow Banda Aceh is 8 node. The network of residual Inflow Banda Aceh residual

is optimized in 25 nodes. Nodes are computed by using K -means cluster. Means

and standard deviations are computed for each input variables within each nodes. In

hidden layer, bias term is employed and the Gaussian function is used as the activation

function for each nodes.

To assess the forecasting performance of different models, each data set of both

Transfer Function-noise model and Hybrid model is divided into two samples of in-

sample and out-sample. We use in-sample data for model selection and estimation.

The rest of out-sample data is not used in the model building process and hence it
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represents a set of true “unseen future” observations for testing the proposed model

effectiveness as well as for model comparisons.

Prior to apply the Neural Network and Hybrid model, we first test the residual of

Transfer Function-noise model by using the White and Terasvirta tests. Table 4.1 show

that all data have the nonlinear relationship between residual and its first and second

lags, except for residual of Inflow Banda Aceh, where both p-values of White test and

Terasvirta test are larger than α=5%. In this study, we use several software packages

Table 4.1: Nonliearity Test
spacy

Residual P-value of White Test P-value of Terasvirta Test

Outflow Lhokseumawe 0.081 0.036

Inflow Lhokseumawe 0.002 0.002

Outflow Banda Aceh 9.004e-14 2.442e-15

Inflow Banda Aceh 0.305 0.385

to run the data. All Transfer Function-noise modeling is implemented via SAS system

while neural network models are built using Matlab. Non linearity test is performed

by R. All figures are plotted by Minitab. The Root Mean Squared Error (MSE) and

Mean Absolute Deviation (MAD) are selected to be the forecasting accuracy measures.

4.1 Lhokseumawe Representative Office

4.1.1 Outflow of Lhokseumawe

In the prewhitening step, we first fit an ARIMA model to the Consumer Price Index

(CPI) of Lhokseumawe. Since the CPI of Lhokseumawe is not stationary, we require

first difference in order to obtain stationarity. Figure 4.1(a) shows that the process is

changing around a constant mean and has a constant variance, and hence we assume

that it is stationary. Sample ACF and PACF plots in Figure 4.1(b) and Figure 4.1(c)

suggest that the certain pattern of ARIMA(p,d,q) can be formulated. However, since

the residual of CPI series is already white noise, then the subset ARIMA(0,1,0) model

can be used as the prewhitening filter for the input series. Now with the same filter in

the output series, we get the prewhitening for the output series. We then compute the
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sample cross correlation of the prewhitened input αt and the prewhitened output βt.

The crosscorrelation function (CCF) between αt and βt is given in Appendix A.3. The

(a) 1st Differencing

(b) ACF (c) PACF

Figure 4.1: Time Series plots of Differenced CPI, ACF, and PACF of Lhokseumawe

CCF output indicate that there is a delay of 0 lag in the system, then we specify b =

0. The specifications of the orders s and r are based on the number of spikes in CCF

after 0 lag. There are several spikes appear after lag 0, but only lag 1 are significant,

then we specify the order of s is subset 1 and we set the denominator as zero, that is,

r=0. Now we fit the noise which incorporate into the overall model. From the output

in Appendix A.4 and Appendix A.5, the subset ARIMA([1,2,12],0,[3,23]) is the most

parsimony model for noise term. The appropriate coefficients estimation are ω0 = 5.55,

ω1 = −4.47, θ3 = 0.55, θ23 = −0.23, ϕ1 = −0.70, ϕ2 = −0.60 and ϕ12 = 0.47. All these

coefficients are less than α = 10%, then these coefficients are all significant (Appendix

A.2). Thus the Transfer Function-noise model for outflow series of Lhokseumawe is

given as follow:
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yt = (ω0 − ω1L
1)xt +

1− θ3L3 − θ23L23

1− ϕ1L− ϕ2L2 − ϕ12L12
at

= (5.55− 4.47L)xt +
1− 0.55L3 + 0.23L23

1 + 0.70L+ 0.60L2 − 0.47L12
at

(4.1)

Next step is to forecast the Transfer Function-noise model in (4.1). The residual at

is analyzed by using Radial Basis Function Neural Network. The nonlinearity test in

Table 4.1 indicate a non linear relationship between the residual of Outflow Lhokseu-

mawe series and its first and second lags. The optimal estimated weights of this model

are ω1 = −30.98, ω2 = 82.75, ω3 = −339.45, ω4 = 38.23, ω5 = −12.43, and the bias

weight ωb = 51.16. Thus, RBF neural network model for a(t) is as follow

at =
5∑
j=1

ωjΩj,t(µj, σj) + ωb

= −30.98Ω1,t(µ1, σ1) + 82.75Ω2,t(µ2, σ2) + · · ·+

= .− 12.43Ω5,t(µ5, σ5) + 51.16,

(4.2)

where

Ω1,t(µ1, σ1) = exp

[
−1

2

{(
at−1−µ11

σ11

)2
+
(
at−2−µ12

σ12

)2}]
,

Ω2,t(µ2, σ2) = exp

[
−1

2

{(
at−1−µ21

σ21

)2
+
(
at−2−µ22

σ22

)2}]
,

...
...
...
...

...
...
...
...

Ω5,t(µ5, σ5) = exp

[
−1

2

{(
at−1−µ51

σ51

)2
+
(
at−2−µ52

σ52

)2}]
,

xx

and µ, σ for each node (cluster) are availiable in Appendix C.1.

The last step is to perform the forecast combination. Two forecast horizons of

in-sample and out-sample monthly periods are used. The results the hybrid model

show that by combining forecast together the overall forecasting errors can be reduced

in training data but can’t in testing data. Table 4.2 shows that the percentage im-

provements of Root Mean Square Error (RMSE) of the hybrid model over the Transfer

Function-noise model for in-sample data. RMSE decrease to 3.1% in in-sample and

MAD goes down by 0.6% in in-sample as well. However, as time extend to 12 months

ahead, the forecast errors are getting worse. For out-sample, 5% and 4.5% increase in
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RMSE and MAD respectively

Table 4.2: Measurement of Performance Test for Outflow Series of Lhokseumawe
spacyspacyspacyspacyspacyspacyspacyspacyspacyspacyspacy

Model
In-Sample Out-Sample

xxRMSExx xxMADxx xxRMSExx xxMADxx

TF-ARIMA NOISE 106.19 73.42 106.76 79.14

HYBRID 102.91 72.97 112.53 82.70

Figures 4.2 and Figures 4.3 show the comparison between actual observations and

the forecasts from the in-sample and out-sample horizons of Transfer Function-noise

model and Hybrid model of Lhokseumawe Outflow series respectively.

(a) In-sample (b) Out-sample

Figure 4.2: Actual vs Transfer Function-Noise prediction of Outflow Lhokseumawe

(a) In-sample (b) Out-sample

Figure 4.3: Actual vs Hybrid prediction of Outflow Lhokseumawe
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4.1.2 Inflow of Lhokseumawe

In a similar fashion to the Outflow series, we first fit an ARIMA model to the

Consumer Price Index (CPI) of Lhokseumawe. The first differencing of this series is

shown in Figure 4.1(a). The ACF and PACF plots in Figure 4.1(b) and Figure 4.1(c)

indicate that the subset ARIMA([1,2,8],1,0) is appropriate to model Consumer Price

Index (CPI) series. This model is used as a filter to prewhiten the input and the output

series.

The CCF output (Appendix A.9) indicate that there is a delay of 1 lag in the

system, then we specify b = 1. The specifications of the orders s and r are based

on the number of spikes in CCF after 1 lag. There are several spikes appear after

lag 1. In identification step, we found that there are two possible candidate Transfer

Function-noise model for Inflow series.

The first model, we identify the orders of b=1, the subset s=[1,5,6,10,11] and r=0.

The noise model is identified to be ARIMA(0,0,0). The appropriate coefficients esti-

mation are ω0 = 1.91, ω1 = 2.44, ω5 = 1.69, ω6 = −2.03, ω10 = 1.81, ω11 = −1.83. All

these parameters are significant. Thus the Transfer Function-noise model is given as

follow

yt = (ω0 − ω1L− ω5L
5 − ω6L

6 − ω10L
10 − ω11L

11)L1xt + at

= (1.91− 2.44L− 1.69L5 + 2.03L6 − 1.81L10 + 1.83L11)xt−1 + at.
(4.3)

The second model, the orders of b, s, and r are identified to be equal to zero. While

the noise model is fit to follow the subset ARIMA(12,0,[1,22,23,24]). The appropriate

coefficients estimation are ω0 = 0.78, θ1 = 0.73, θ22 = 0.29, θ23 = −0.64, θ24 = 0.31,

ϕ12 = 0.48. Thus the Transfer Function-noise model is given as follow

yt = ω0xt +
1− θ1L− θ22L22 − θ23L23 − θ24L24

1− ϕ12L12
at

= 0.78xt +
1− 0.73L− 0.29L22 + 0.64L23 − 0.31L24

1− 0.48L12
at

(4.4)

All parameters of model in (4.4) are significant. Although both model 1 and model

2 have significant parameters, in term of model selection, model 1 has smaller AIC

= 133.24 and BIC = 1347.92 than AIC = 1351.68 and BIC = 1368.93 in model 2.
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Base on this reason, we choose model 1 to proceed to Neural Network forecasting. The

parameters estimation of model 1 is given in Appendix A.8. Since all coefficients are

less than α = 10%, these parameters are significant.

Next step is to forecast the Transfer Function-noise of model 1 (4.3). The residual

at is analyzed by using Radial Basis Function Neural Network. Table 4.1 indicate a non

linear relationship between the residual of Inflow Lhokseumawe series and its first and

second lags. The optimal estimated weights of Inflow series model are ω1 = −32.56,

ω2 = 91.42, ω3 = 102.12, ω4 = −377.96, ω5 = 139.86, ω6 = −133.99, ω7 = 50.37,

ω8 = 5.43, ω9 = 7.35, ω10 = −3.32, and the bias weigh ωb = 24.29. Thus, RBF neural

network model for a(t) is as follow

a(t) =
10∑
j=1

ωjΩj,t(µj, σj) + ωb

= −32.56Ω1,t(µ1, σ1) + 91.42Ω2,t(µ2, σ2) + · · ·+

= .− 3.32Ω10,t(µ10, σ10) + 24.29,

(4.5)

where

Ω1,t(µ1, σ1) = exp

[
−1

2

{(
at−1−µ11

σ11

)2
+
(
at−2−µ12

σ12

)2}]
,

Ω2,t(µ2, σ2) = exp

[
−1

2

{(
at−1−µ21

σ21

)2
+
(
at−2−µ22

σ22

)2}]
,

...
...
...
...

...
...
...
...

Ω10,t(µ10, σ10) = exp

[
−1

2

{(
at−1−µ101

σ101

)2
+
(
at−2−µ102

σ102

)2}]
,

xx

and µ, σ for each node (cluster) are availiable in Appendix C.2.

In the hybrid stage, the forecast of Transfer Function-noise model is combined with

the Radial Basis Function model. Table 4.3 shows that the Root Mean Square Er-

ror (RMSE) and the Mean Absolute Deviation (MAD) of the hybrid model decrease

18.28% and 16.62% respectively over the Transfer Function-noise model for in-sample

data. However if the time horizon extend to 12 months ahead, the MSE increase

slightly 2% and MAD goes up sharply 24,51%.
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Table 4.3: Measurement of Performance Test for Inflow Series of Lhokseumawe
spacyspacyspacyspacyspacyspacyspacyspacyspacyspacyspacy

Model
In-Sample Out-Sample

xxRMSExx xxMADxx xxRMSExx xxMADxx

TF-ARIMA NOISE 61.81 39.17 165.47 73.47

HYBRID 50.51 32.66 168.94 91.48

Figures 4.4 and Figures 4.5 show the comparison between actual observations and

the forecasts from the in-sample and out-sample horizons of Transfer Function-noise

model 1 and Hybrid model 1 of Lhokseumawe Inflow series respectively.

(a) In-sample (b) Out-sample

Figure 4.4: Actual vs Transfer Function-Noise prediction of Inflow Lhokseumawe-
Model 1

(a) In-sample (b) Out-sample

Figure 4.5: Actual vs Hybrid prediction of Inflow Lhokseumawe-Model 1
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4.2 Banda Aceh Representative Office

4.2.1 Outflow of Banda Aceh

We first prewhiten the Consumer Price Index (CPI) series of Banda Aceh. The

original series of Banda Aceh CPI series is not stationary, but its difference is assumed

to be stationary (Figure 4.6.a). By examining the sample ACF and PACF in Figure

4.6(b) and Figure 4.6(c), the time series plot suggest that the subset ARIMA([6],1,0)

is appropriate to prewhiten input series as well as the output series of Banda Aceh.

(a) 1st Differencing

(b) ACF (c) PACF

Figure 4.6: Time Series plots of Differenced CPI, ACF, and PACF of Banda Aceh

The sample CCF output (Appendix B.3) suggest the order of b=1, r=0, and s=0.

The noise model from overall model (Appendix B.4 and Appendix B.5) is identified

to follow the ARIMA(0,0,0). The significant estimated coefficients (all coefficients are

less than α = 10%) of this model is ω0 = −4.89 (Appendix B.2). Thus the model is

given as follow

yt = ω0L
1xt + at

= −4.89Xt−1 + at

(4.6)
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Next step is to forecast the Transfer Function-noise model in (4.6). The residual at

is modeled by using Radial Basis Function Neural Network. This analysis is conducted

due to non linear relationship between residual of Outflow Banda Aceh and its first

and second lags as indicated in Table 4.1. The optimal estimated weights of Inflow

series model are ω1 = 70.59, ω2 = 0.0001, ω3 = 108.39, ω4 = −128.19, ω5 = −4.50,

ω6 = 162.31, ω7 = 63.41, ω8 = 4.93, and the bias weight ωb = −4.29. Thus, RBF

neural network model for a(t) is as follow

a(t) =
10∑
j=1

ωjΩj,t(µj, σj) + ωb

= 70.59Ω1,t(µ1, σ1) + 0.0001Ω2,t(µ2, σ2) + · · ·+

= .+ 4.93Ω8,t(µ8, σ8)− 4.29,

(4.7)

where

Ω1,t(µ1, σ1) = exp

[
−1

2

{(
at−1−µ11

σ11

)2
+
(
at−2−µ12

σ12

)2}]
,

Ω2,t(µ2, σ2) = exp

[
−1

2

{(
at−1−µ21

σ21

)2
+
(
at−2−µ22

σ22

)2}]
,

...
...
...
...

...
...
...
...

Ω8,t(µ8, σ8) = exp

[
−1

2

{(
at−1−µ81

σ81

)2
+
(
at−2−µ82

σ82

)2}]
,

xx

and µ, σ for each node (cluster) are available in Appendix C.3.

In building the hybrid model, we combine the forecast of Transfer Function-noise

model and Radial Basis Function Neural Network model. Table 4.4 shows that the

percentage improvements of Root Mean Square Error (RMSE) and Mean Absolute

Deviation (MAD) of Hybrid model for in-sample data. The slight reduction of RMSE

and MAD are 5.97% and 4.39% respectively. However, the hybrid model can’t reduce

the error as time horizon extend to 12 months ahead. The RMSE and MAD go up

slightly 0.88% and 0.93% respectively. Figures 4.7 and Figures 4.8 show the compari-

son between actual observations and the forecasts from the in-sample and out-sample

horizons of Transfer Function-noise model and Hybrid model of Banda Aceh Outflow

series respectively.
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Table 4.4: Measurement of Performance Test for Outflow Series of Banda Aceh
spacyspacyspacyspacyspacyspacyspacyspacyspacyspacyspacy

Model
In-Sample Out-Sample

xxRMSExx xxMADxx xxRMSExx xxMADxx

TF-ARIMA NOISE 170.30 120.38 510.24 460.80

HYBRID 160.14 115.09 514.71 465.07

(a) In-sample (b) Out-sample

Figure 4.7: Actual vs Transfer Function-Noise prediction of Outflow Banda Aceh

(a) In-sample (b) Out-sample

Figure 4.8: Actual vs Hybrid prediction of Outflow Banda Aceh

4.2.2 Inflow of Banda Aceh

Similar manner to Banda Aceh Outflow series, an ARIMA model is fitted to the

Consumer Price Index (CPI) of Lhokseumawe and its first difference is stationary series

(Figure 4.6.a). Sample ACF and PACF plots in Figure 4.6(b) and Figure 4.6(c) suggest

that the subset ARIMA([6],1,0) model should be used to fit the Consumer Price Index

(CPI) of Lhokseumawe data. Then this model is used as a filter to prewhiten the input
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and output series. The CCF between αt and βt is given in Appendix B.6.

The CCF output indicate that there is a delay of 1 lag in the system (Appendix

B.9), then we specify b = 1. There are several spikes appear after lag 1, we specify

the order of s are subset 2 and we set the denominator as zero, that is, r=0. From

the output in Appendix B.10 and Appendix B.11, the subset ARIMA(0,0,[1,12,13])

is the most parsimony model for noise term. The appropriate significant coefficients

estimation are ω0 = 1.13, ω2 = 1.03, θ1 = 0.51, θ12 = −0.46, and θ13 = 0.49 (Appendix

B.8). These coefficients are significant since they are less than α = 10%. Thus the

Transfer Function-noise model for Inflow series of Banda Aceh is given as follow:

yt = (ω0 − ω2L
2)L1xt + (1− θ1L− θ12L12 − θ13L13)at

= (1.13− 1.03L2)xt−1 + (1− 0.51L+ 0.46L12 − 0.49L13)at

(4.8)

Next step is to forecast the Transfer Function-noise model in (4.8). The relationship

of residual of Inflow Banda Aceh with its first and second lags is not nonlinear (Table

4.1). The residual at is modeled by using Radial Basis Function Neural Network. The

optimal estimated weights of Inflow Banda Aceh series model are ω1 = 11.64, ω2 =

−35.39, ω3 = −18.24, ω4 = 1.73, ω5 = −13.51, ω6 = −2.65, ω7 = −12.99, ω8 = 10.89,

ω9 = −0.06, ω10 = −3.64, ω11 = 22.32, ω12 = 7.45, ω13 = −2.52, ω14 = −0.42,

ω15 = 12.58, ω16 = 6.60, ω17 = −3.55, ω18 = 26.26, ω19 = −16.48, ω20 = −2.22,

ω21 = 49.49, ω22 = −0.31, ω23 = −29.55, ω24 = −10.12, ω25 = −0.01, and the bias

weight ωb = −7, 89. Thus, RBF neural network model for a(t) is as follow

a(t) =
10∑
j=1

ωjΩj,t(µj, σj) + ωb

= 11.64Ω1,t(µ1, σ1)− 35.39Ω2,t(µ2, σ2) + · · ·+

= .− 0.01Ω25,t(µ25, σ25)− 7, 89

(4.9)

where

Ω1,t(µ1, σ1) = exp

[
−1

2

{(
at−1−µ11

σ11

)2
+
(
at−2−µ12

σ12

)2}]
,

Ω2,t(µ2, σ2) = exp

[
−1

2

{(
at−1−µ21

σ21

)2
+
(
at−2−µ22

σ22

)2}]
,

...
...
...
...

...
...
...
...
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Ω25,t(µ25, σ25) = exp

[
−1

2

{(
at−1−µ251

σ251

)2
+
(
at−2−µ252

σ252

)2}]
,

xx

and µ, σ for each node (cluster) are availiable in Appendix C.4.

Table 4.5 shows that the Root Mean Square Error (RMSE) and the Mean Absolute

Deviation of in-sample hybrid model can be slightly reduced by 4.19% and 3.71%

respectively. However, RMSE and MAD slightly rise by 1.34% and 0.79% respectively.

It is no surprise since the relationship of Inflow Banda Aceh residual and its first and

second lags doesn’t indicate the nonlinear relationship. Figures 4.9 and Figures 4.10

Table 4.5: Measurement of Performance Test for Outflow Series of Banda Aceh
spacyspacyspacyspacyspacyspacyspacyspacyspacyspacyspacy

Model
In-Sample Out-Sample

xxRMSExx xxMADxx xxRMSExx xxMADxx

TF-ARIMA NOISE 66.75 47.13 142.13 104.15

HYBRID 65.95 45.38 144.04 104.97

show the comparison between actual observations and the forecasts from the in-sample

and out-sample horizons of Transfer Function-noise model and Hybrid model of Banda

Aceh Inflow series respectively.

(a) In-sample (b) Out-sample

Figure 4.9: Actual vs Transfer Function-Noise prediction of Outflow Banda Aceh
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(a) In-sample (b) Out-sample

Figure 4.10: Actual vs Hybrid prediction of Inflow Banda Aceh

4.2.3 Calendar Variation

The main objective of outflow and inflow modeling is ultimately to predict the

direction and level of change in a given series. However, this financial series are quanti-

tative measures of given behavior of underlying factors (holiday, consumers, businesses,

traders, etc.). Given that the behavior of economic factors, the four hybrid model we

have developed do not show the superior models in out-sample. This poor forecasts

may probably affected by local and national condition in Aceh and Indonesia in a cer-

tain months, particularly during June to August of 2014. For instance, the Idul Fitri

day fell in July in the year of 2014. In this period, the money coming out/in from/to

Bank Indonesia is irregularly different from the normal daily activities.

Figure 4.11: Out-Sample Forecasts of Outflow Lhokseumawe
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Such behavior is clearly tied to the calendar. Therefore, in order to produce bet-

ter forecast in out-sample, the Transfer Function-noise model should be subjected to

calender variation and outlier detection. For example, we built Transfer Function with

subject to calender variation and outlier detection for outflow series of Lhokseumawe.

The result shows the model which subject to Calender Variation and Outlier Detection

provide better accuracy in comparison with the individual Transfer Function-noise and

Hybrid models.

Table 4.6: Performance Test of Out-Sample of Lhokseumawe Outflow Series
spacyspacyspacyspacyspacyspacyspacyspacyspacyspacyspacy

Model xxRMSExx xxMADxx

TF-ARIMA NOISE 106.76 79.14

HYBRID TF-NOISE RBFNN 112.53 82.70

HYBRID CV+OD RBFNN 100.15 66.76

Figure 4.11 shows that the forecast of Hybrid Calender Variation with Outlier

Detection and RBFNN (Hybrid CV+OD - RBFNN) model follows the pattern of actual

out-sample series slightly. The RMSE and MAD of these out-sample forecast can be

seen in Table 4.5. From this table, we see that the Hybrid CV+OD - RBFNN has the

smallest RMSE and MAD in comparison to the Transfer Function noise and Hybrid

Transfer Function noise-RBFNN models. It is because some of the outlier points are

overcame in calender variation and outlier detection. Based on the better forecast

result of the Hybrid Calender Variation with Outlier Detection - RBFNN, we believe

that the other four series of Inflow Lhokseumawe, Outflow Banda Aceh, and Inflow

Banda Aceh will produce the better forecast accuracy performance.
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CHAPTER 5

CONCLUSIONS

xxxThe research for improving the effectiveness of forecasting models is continuously

conducted. In this study, we have obtained the appropriate Transfer Function-noise

models, Radial Basis Function Neural Network models, and Hybrid models for the

series of outflow and inflow of Lhokseumawe and Banda Aceh representative offices by

using input variable, i.e. Consumer Price Index (CPI).

This study demonstrates that by combining both linear and nonlinear models, fore-

casting performance can be improved over each individual model, particularly in train-

ing data (in-sample). Although both Transfer Function-noise and Neural Network mod-

els have the flexibility in modeling a various problems, none of them is the commonly

best model that can be used blindly in every forecasting situation. The appropriate

model classes should be tested before implementing the statistical analysis. All Hybrid

models that are constructed in this study do not outperform well in out-sample data.

Many factors can affected these findings, among other are, there are one high peak

data point in out-sample period (July 2014). This solely value ruins the constructed

model, since it is considered as the outlier.

Based on the given results in chapter 4, we investigate that the poor performance in

out-sample data of three Hybrid models are probably affected by at least four reasons:

The first, the length of time horizon for out-sample data. In M-3 Competition, the

performance of forecasting methods depend on the length of forecast horizons. The

combination model should be more useful the longer the forecast horizon (Amstrong,

2001). The second, it is because the accuracy measurement. RMSE and MAD prob-

ably do not appropriate for the type of the given time series data. Makridakis and

Hibon (2003) explained in M3-Competition that the performance of the various meth-

ods although they can better fit a statistical model to depends upon the length of the

forecasting the available historical data. The third, the Radial Basis Function perform

poorly in noisy data (Bullinaria, 2004). ) Since the series that we modeled in Neural

Network is the residual of Transfer Function-noise data, this series is probably contam-

59



inated by huge noisy data. The fourth, The poor performance of out sample data from

three series above is probably affected by peak points during July and August 2014.

This conditions maybe affected by Idul Fitri day and can be overcame by applying cal-

endar variation prior to doing neural network. We have shown that, the Hybrid model

by subjecting to calender variation and outlier detection, performs better in out-sample

in comparison the individual Transfer Function-noise model and Hybrid model.

Future research may be considered to choose the most appropriate or effective

neural network model and the accuracy measurements for noisy data. In addition,

Variation Calendar with outlier detection should be applied in the linear model part

before analyzing the residual of non linear term by using neural network.
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Appendix A

LHOKSEUMAWE REPRESENTATIVE OFFICE

A.1. TF-Noise Code of Outflow-Lhokseumawe Series with SAS

data Outflow_Lhok; 
   input x y; 
   y1=y/1000000000; 
datalines; 
293 131895758550 
297 112359898601 
. . 
. . 
635 549531837300 
; 
proc arima data= Outflow_Lhok; 
 
   /*--- Look at the input process -----------------*/  
   identify var=x(1);  
   run;  
  
   /*--- Fit a model for the input -----------------*/ 
   estimate p=0 q=0 method=cls; 
   run;  
 
   /*--- Crosscorrelation of prewhitened series ----*/  
   identify var=y1(1) crosscorr=(x(1)); 
   run;  
  

/*- Fit a simple transfer function-look at   
residuals-*  
estimate input=( 0$ (1,13) / (0) x) plot  
method=cls; 

   run; 
  
   /*--- Final Model - look at residuals ---*/ 

estimate p=(1,2)(12) q=(3,23) input=( 0$ (1) / (0) 
x)     noconstant  plot method=cls; 

   run;  
  
   /*--- Forecasting step ---*/ 
   forecast lead=18 out=out2 printall; 
   run; 
 
   /** Normality Test **/ 
   proc univariate data=out2 normal; 
   var residual; 
   run; 
  
  /** export to file **/ 
   proc export data=out2  
   outfile="D:\FORECAST OUTFLOW LHOK.xls" 
   dbms= excel  
   replace; 
   run; 
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A.2. Parameter Estimation of Outflow Lhokseumawe

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A.3. CCF of Outflow Lhokseumawe
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A.4. ACF of Outflow Lhokseumawe
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A.5. PACF of Outflow Lhokseumawe
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A.6. NN Code for Outflow-Lhok. Series with MATLAB

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

function RBFTS 
% Radial Basis Function Time Series Model 
clc; 
data=dlmread('Data_Outflow_Lhok.txt'); 
[n,p]=size(data); 
kluster=dlmread('5_Cluster_Outflow_Lhok.txt'); 
 
mean=kluster(:,1:5); 
SD=kluster(:,6:10); 
 
data1 = data(1:128,:); %data training 
[n1,p1] = size(data1); 
data2 = data(129:n,:);%data testing 
[n2,p2] = size(data2); 
 
p1 = transpose(data1(:,2:3)); 
p2 = transpose(data2(:,2:3)); 
t1 = (data1(:,1)); 
t2 = (data2(:,1)); 
 
 %---ProsesTraining--- 
H=rbfDesign(p1,mean,SD,'b'); 
lambda=globalRidge(H,t1,0.05); 
w=inv(transpose(H)*H+lambda*eye(6))*transpose(H)*t1 
yhat1=H*w; 
 
 for i = 1:n1 
    se(i) = (t1(i)-yhat1(i))^2; 
    ys(i) = t1(i)^2; 
    pe(i)=abs(t1(i)-yhat1(i)); 
end 
 
sse = sum(se); 
sst = (sum(ys)-(n1*((sum(t1))/n1)^2)); 
Rsquared1 = 1-(sse/sst); 
RMSE1=sqrt((1/n1)*(sum(se))) 
MAD = (1/n1)*(sum(pe)) 
 
%---ProsesTesting--- 
Ht=rbfDesign(p2,mean,SD,'b'); 
yhat2=Ht*w; 
 
for i = 1:n2 
    se(i) = (t2(i)-yhat2(i))^2; 
    ys(i) = t2(i)^2; 
end 
 
sse = sum(se); 
sst = (sum(ys)-(n2*((sum(t2))/n1)^2)); 
Rsquared2 = 1-(sse/sst); 
Rsquared1 = 1-(sse/sst); 
yhat1 
yhat2 
end 

64



xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A.7. TF-Noise Code For Inflow-Lhokseumawe Series with SAS

data Inflow_Lhok; 
   input x y; 
   y2=y/1000000000; 
datalines; 
293 117183476500 
297 77737708268 
. . 
. . 
635 48822350850 
; 
proc arima data=Inflow_Lhok; 
 
   /*--- Look at the input process -----------------*/  
   identify var=x(1); 
   run; 
 
   /*--- Fit a model for the input -----------------*/ 
   estimate p=(1,2,8) q=(0) method=cls; 
   run; 
 
   /*--- Crosscorrelation of prewhitened series ----*/  
   identify var=y2(1) crosscorr=(x(1)); 
   run; 
 

/*- Fit a simple transfer function-look at   
residuals-*  

   estimate input=( 1$ (0) / (1) x) plot method=cls; 
   run; **/ 
   
   /*--- Final Model - look at residuals ---*/ 

estimate p=(0) q=(0) input=( 1$ (1,5,6,10,11)/(0)x)    
noconstant plot method=cls; 

   run; 
 
   /*--- Forecasting step ---*/ 

forecast lead=13 out=out1 printall; 
run; 

 
   /** Normality Test **/ 
 proc univariate data=out1 normal; 
 var residual; 
 run; 
 
   /** export to file **/ 
    proc export data=out1 
    outfile="D:\FORECAST INFLOW LHOK.csv" 
    dbms=excel  
    replace; 
    run; 
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A.8. Parameter Estimation of Inflow Lhokseumawe
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A.9. CCF of Inflow Lhokseumawe
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A.10. ACF of Inflow Lhokseumawe
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A.11. PACF of Inflow Lhokseumawe

67



xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

A.12. NN Code for Inflow-Lhok. Series with MATLAB

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

function RBFTS 
% Radial Basis Function Time Series Model 
clc; 
data=dlmread('Data_Inflow_Lhok.txt'); 
[n,p]=size(data); 
kluster=dlmread('10_Cluster_Inflow_Lhok.txt'); 
 
mean=kluster(:,1:10); 
SD=kluster(:,11:20); 
 
data1 = data(1:117,:); %data training 
[n1,p1] = size(data1); 
data2 = data(118:n,:);%data testing 
[n2,p2] = size(data2); 
 
p1 = transpose(data1(:,2:3)); 
p2 = transpose(data2(:,2:3)); 
t1 = (data1(:,1)); 
t2 = (data2(:,1)); 
 
 %---ProsesTraining--- 
H=rbfDesign(p1,mean,SD,'b'); 
lambda=globalRidge(H,t1,0.05); 
w=inv(transpose(H)*H+lambda*eye(11))*transpose(H)*t1 
yhat1=H*w; 
 
 for i = 1:n1 
    se(i) = (t1(i)-yhat1(i))^2; 
    ys(i) = t1(i)^2; 
    pe(i)=abs(t1(i)-yhat1(i)); 
end 
 
sse = sum(se); 
sst = (sum(ys)-(n1*((sum(t1))/n1)^2)); 
Rsquared1 = 1-(sse/sst); 
RMSE1=sqrt((1/n1)*(sum(se))) 
MAD = (1/n1)*(sum(pe)) 
 
%---ProsesTesting--- 
Ht=rbfDesign(p2,mean,SD,'b'); 
yhat2=Ht*w; 
 
for i = 1:n2 
    se(i) = (t2(i)-yhat2(i))^2; 
    ys(i) = t2(i)^2; 
end 
 
sse = sum(se); 
sst = (sum(ys)-(n2*((sum(t2))/n1)^2)); 
Rsquared2 = 1-(sse/sst); 
Rsquared1 = 1-(sse/sst); 
yhat1 
yhat2 
end 
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Appendix B

BANDA ACEH REPRESENTATIVE OFFICE

B.1. TF-Noise Code For Outflow-Banda Aceh Series with SAS

data Outflow_Banda; 
   input x y; 
   y3=y/1000000000; 
datalines; 
296 194516945190 
296 145005816220 
. . 
. . 
749 954696414190 
; 
proc arima data=Outflow_Banda; 
 
   /*--- Look at the input process -----------------*/  
   identify var=x(1); 
   run; 
 
   /*--- Fit a model for the input -----------------*/ 
   estimate p=(6) q=(0) method=cls; 
   run; 
 
   /*--- Crosscorrelation of prewhitened series ----*/  
   identify var=y3(1) crosscorr=(x(1)); 
   run; 
 

/*- Fit a simple transfer function-look at   
residuals-*  

   estimate input=( 1$ (23) / (0) x) plot method=cls; 
   run;  **/ 
   
   /*--- Final Model - look at residuals ---*/ 

estimate p=(0) q=(0) input=( 1$ (0) / (0) x) 
noconstant plot method=cls; 
run; 

 
   /*--- Forecasting step ---*/ 

forecast lead=13 out=out1 printall; 
run; 

 
   /** Normality Test **/ 

proc univariate data=out1 normal; 
var residual; 
run; 

 
   /** export to file **/ 

proc export data=out1 
     outfile="D:\FORECAST OUTFLOW Banda Aceh.xls" 
     dbms=excel  
     replace; 

run; 
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B.2. Parameter Estimation of Outflow Banda Aceh
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B.3. CCF of Outflow Banda Aceh
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B.4. ACF of Outflow Banda Aceh
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B.5. PACF of Outflow Banda Aceh
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B.6. NN Code for Outflow-Banda Aceh Series with MATLAB

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

function RBFTS 
% Radial Basis Function Time Series Model 
clc; 
data=dlmread('Data_Outflow_Banda.txt'); 
[n,p]=size(data); 
kluster=dlmread('8_Cluster_Outflow_Banda.txt'); 
 
mean=kluster(:,1:8); 
SD=kluster(:,9:16); 
 
data1 = data(1:128,:); %data training 
[n1,p1] = size(data1); 
data2 = data(129:n,:);%data testing 
[n2,p2] = size(data2); 
 
p1 = transpose(data1(:,2:3)); 
p2 = transpose(data2(:,2:3)); 
t1 = (data1(:,1)); 
t2 = (data2(:,1)); 
 
 %---ProsesTraining--- 
H=rbfDesign(p1,mean,SD,'b'); 
lambda=globalRidge(H,t1,0.05); 
w=inv(transpose(H)*H+lambda*eye(9))*transpose(H)*t1 
yhat1=H*w; 
 
 for i = 1:n1 
    se(i) = (t1(i)-yhat1(i))^2; 
    ys(i) = t1(i)^2; 
    pe(i)=abs(t1(i)-yhat1(i)); 
end 
 
sse = sum(se); 
sst = (sum(ys)-(n1*((sum(t1))/n1)^2)); 
Rsquared1 = 1-(sse/sst); 
RMSE1=sqrt((1/n1)*(sum(se))) 
MAD = (1/n1)*(sum(pe)) 
 
%---ProsesTesting--- 
Ht=rbfDesign(p2,mean,SD,'b'); 
yhat2=Ht*w; 
 
for i = 1:n2 
    se(i) = (t2(i)-yhat2(i))^2; 
    ys(i) = t2(i)^2; 
end 
 
sse = sum(se); 
sst = (sum(ys)-(n2*((sum(t2))/n1)^2)); 
Rsquared2 = 1-(sse/sst); 
Rsquared1 = 1-(sse/sst); 
yhat1 
yhat2 
end 
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B.7. TF-Noise Code For Inflow-Banda Aceh Series with SAS

 
data Inflow_Banda; 
   input x y; 
   y4=y/1000000000; 
datalines; 
296 192016301650 
296 122757197327 
. . 
. . 
749 156646070000 
; 
proc arima data= Inflow_Banda; 
 
   /*--- Look at the input process -----------------*/  
   identify var=x(1); 
   run; 
 
   /*--- Fit a model for the input -----------------*/ 
   estimate p=(6) q=(0) method=cls; 
   run; 
 
   /*--- Crosscorrelation of prewhitened series ----*/  
   identify var=y4(1) crosscorr=(x(1)); 
   run; 
 

/*- Fit a simple transfer function-look at   
residuals-*  
estimate input=( 1$ (2,24) / (0) x) plot  
method=cls; 

   run;   **/ 
   
   /*--- Final Model - look at residuals ---*/ 

estimate p=(0) q=(1,12,13) input=(1$ (2) / (0) x) 
noconstant plot method=cls; 
run; 

 
   /*--- Forecasting step ---*/ 

forecast lead=13 out=out1 printall; 
run; 

 
   /** Normality Test **/ 

proc univariate data=out1 normal; 
var residual; 
run; 

 
   /** export to file **/ 

proc export data=out1 
     outfile="D:\FORECAST INFLOW Banda Aceh.xls" 
     dbms=excel  
     replace; 
run; 
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B.8. Parameter Estimation of Inflow Banda Aceh
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B.9. CCF of Inflow Banda Aceh
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B.10. ACF of Inflow Banda Aceh

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

B.11. PACF of Inflow Banda Aceh
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B.12. NN Code for Inflow-Banda Aceh Series with MATLAB

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

function RBFTS 
% Radial Basis Function Time Series Model 
clc; 
data=dlmread('Data_Inflow_Banda.txt'); 
[n,p]=size(data); 
kluster=dlmread('25_Cluster_Inflow_Banda.txt'); 
 
mean=kluster(:,1:25); 
SD=kluster(:,26:50); 
 
data1 = data(1:126,:); %data training 
[n1,p1] = size(data1); 
data2 = data(127:n,:);%data testing 
[n2,p2] = size(data2); 
 
p1 = transpose(data1(:,2:3)); 
p2 = transpose(data2(:,2:3)); 
t1 = (data1(:,1)); 
t2 = (data2(:,1)); 
 
 %---ProsesTraining--- 
H=rbfDesign(p1,mean,SD,'b'); 
lambda=globalRidge(H,t1,0.05); 
w=inv(transpose(H)*H+lambda*eye(26))*transpose(H)*t1 
yhat1=H*w; 
 
 for i = 1:n1 
    se(i) = (t1(i)-yhat1(i))^2; 
    ys(i) = t1(i)^2; 
    pe(i)=abs(t1(i)-yhat1(i)); 
end 
 
sse = sum(se); 
sst = (sum(ys)-(n1*((sum(t1))/n1)^2)); 
Rsquared1 = 1-(sse/sst); 
RMSE1=sqrt((1/n1)*(sum(se))) 
MAD = (1/n1)*(sum(pe)) 
 
%---ProsesTesting--- 
Ht=rbfDesign(p2,mean,SD,'b'); 
yhat2=Ht*w; 
 
for i = 1:n2 
    se(i) = (t2(i)-yhat2(i))^2; 
    ys(i) = t2(i)^2; 
end 
 
sse = sum(se); 
sst = (sum(ys)-(n2*((sum(t2))/n1)^2)); 
Rsquared2 = 1-(sse/sst); 
Rsquared1 = 1-(sse/sst); 
yhat1 
yhat2 
end 
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Appendix C

MEAN AND STANDARD DEVIATION

C.1. Mean and Std Dev. of Outflow-Lhokseumawe Series

C.2. Mean and Std Dev. of Inflow-Lhokseumawe Series

C.2. Mean and Std Dev. of Inflow-Lhokseumawe Series
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C.3. Mean and Std Dev. of Outflow-Banda Aceh Series

C.4. Mean and Std Dev. of Inflow-Banda Aceh Series

78



References

Armstrong, J. S. (2001). ‘Combining forecasts’, Principles of Forecasting: A Hand-

book for Researchers and Practioners. Armstrong, J. S. (ed.), Norwell, MA:

Kluwer Academic Publishers.

Ali, F. A. (2014). Feed Forward Neural Network For Sine Function With Symmetric

Table Addition Method Using Labview And Matlab Code. Intl. Journal on

Computational Sciences & Applications (IJCSA) Vol.4, No.2

Box, G. E. P. and Jenkins, G. M. (1976). Time Series Analysis-Forecasting and

Control. Holden Day, Inc., Oakland, California.

Bisgaard, S. and Kulahci, M. (2011). Time Series Analysis and Forecasting by

Example. John Wiley Sons, Inc., New Jersey.

Badan Pusat Statistik (2013). Diagram Timbang Indeks Harga Konsumen Hasil

Survei Biaya Hidup Tahun 2012. Badan Pusat Satistik, Jakarta.

Bank Indonesia (2014). Buku Petunjuk Tim Pengendali Inflasi Daerah, Bank In-

donesia, Jakarta.

Cleveland, W.S. Devlin, S.J. (1980). Calendar Effects in Monthly Time Series: De-

tection by Spectrum Analysis and Graphical Methods. Journal of the Amer-

ican Statistical Association, 75(371), 487-496.

Chatfield, C. (2000). Time Series Forecasting. Chapman Hall/CRC, London, UK

Campbell, P. R. J., Ahmed, F., Fathulla, H., and Jaffar, A. D. (2010). A Neural

Network Based Approach to Wind Energy Yield Forecasting. Advances in

Neural Network Research and Application, LNEE 67, ISBN 978-3-642-12989-

6, pp.917924, Springer-Verlag Berlin Heidelberg.

Cryer, J. D., Chan, K. S. (2008). Time Series Analysis With Applications in R.

Springer Science+Business Media, LLC, New York.

79

TOSHIBA
Text Box
REFERENCES



Dennis, J. E. and More, J. J. (1977). Quasi-Newton Method, Motivation and The-

ory. Society for Industrial and Applied Maths.. SIAM Review 19 (1977), pp.

46-89.

Dai, Y. H. (2002). Convergence Properties of the BFGS Algorithm. Society for

Industrial and Applied Maths. Vol.13, No.3, pp.693-701, SIAM J. OPTIM.

Demuth, H. and Beale, M. (2002). Neural Network Toolbox: For Use with MATLAB.

The MathWorks, Inc

Dreyfus, G. (2005). Neural Networks Methodology and Applications. Springer-Verlag

Berlin Heidelberg.

De Gooijer, J. G. and Hyndman, R. J. (2006). 25 years of time series forecasting.

International Journal of Forecasting 22, 443 473, Elsevier B.V.

Dunne, R. A. (2007). A Statistical to Neural Networks for Pattern Recognition.

John Wiley Sons, Inc., New Jersey.

Ding, H., Liu, D., and Zhao, F. (2010). Variation Trend Analysis of Groundwater

Depth in Area of Well Irrigation in Sanjiang Plain Based on Wavelet Neural

Network. Advances in Neural Network Research and Application, LNEE 67,

ISBN 978-3-642-12989-6, pp. 829836, Springer-Verlag Berlin Heidelberg.

Du, W., Leung, S. Y. S., Kwong, C. K. (2014). Time series forecasting by neural net-

works: A knee point-based multiobjective evolutionary algorithm approach.

Expert Systems with Applications 41,80498061, Elsevier Science B.V.

De Mulder, W., Bethard, S., Moens, M. F., (2015). A survey on the application of

recurrent neural networksto statistical language modeling. Computer Speech

and Language 30, 6198, Elsevier Science B.V.

Enders, W. (2009). Applied Econometric Time Series. John wiley sons Inc., Iowa.

Freeman, J. A., Skapura, D. M. (1991). Computation and Neural Systems Series.

Addison-Wesley Publishing Company, Inc., USA

80



Fine, T. L. (1999). Feedforward Neural Network Methodology. Springer-Verlag, New

York Inc., USA

Fisher, J.D.M, Liu, C.T., dan Zhou, R. (2002), ”‘When can we forecast inflation?”’,

Economic Perpective, page. 230-42.

Falk, M. (2006). A First Course on Time Series Analysis, Chair of Statistics. Uni-

versity of Wrzburg.

Fan, J., Shan, R., Cao, X. and Li, P. (2009). The Analysis to Tertiary-industry

with ARIMAX Model. Journal of Mathematics Research, Vol. 1, No. 2.

Greene, W. H. (2008). Econometric Analysis, Pearson Education. Inc., New Jersey

Hu, M.Y., Shanker, M., and Ming, S. H. (2004). Predicting Consumer Situational

Choice with Neural Networks. Neural Networks in Business: Techniques and

Applications, ISBN 1-59140-176-3, p.172-194, Idea Group Inc

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press, New

Jersey, UK.

Hagan, M.T., Demuth, H.B., Beale, M.H., and De Jesus, O. (1996). Neural Network

Design. PWS Publishing Company: Boston.

Hanrahan, G. (2011). Artificial Neural Networks in Biological and Environmental

Analysis. CRC Press- Taylor and Francis Group, LLC, New York

Kitchens, F. L., Johnson, J. D, and Gupta, J. N. D. (2004). Predicting Automo-

bile Insurance Losses Using Artificial Neural Networks. Neural Networks in

Business: Techniques and Applications, ISBN 1-930708-31-9, pp.167-187, Idea

Group Publishing, USA.
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