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Abstrak

Dalam kunjungan wisata atau budaya, panduan terhadap objek menarik san-
gat berguna untuk menambah pengetahuan dan pengalaman pengunjung di
lokasi tersebut. Dewasa ini, dengan bantuan teknologi modern, aplikasi berg-
erak mampu menjadi pemandu wisata mandiri otomatis dengan sistem sadar
konteks. Kebanyakan, unsur konteks yang digunakan dalam aplikasi-aplikasi
ini adalah posisi dua dimensi (2D). Meskipun begitu, ada beberapa kemungk-
inan lain agar tiap unsur konteks dari perangkat pintar ini dapat diteliti lebih
lanjut.

Berkat sensor dari ponsel pintar, konteks-konteks tersebut, yang terdiri dari
konteks dalam 3 dimensi (3D) dari posisi dan orientasi (dalam sumbu X, Y,
dan Z), dapat ditangkap oleh ponsel pintar. Dimensi-dimensi ini akan diteliti
untuk mendapatkan kemungkinan keberhasilan digunakannya ponsel pintar
yang digenggam sebagai pointer terhadap objek menarik. Hal ini dilakukan
karena posisi 2D tidak bisa menangani konteks ketinggian. Sehingga, pen-
galaman pengguna dapat ditingkatkan karena mereka tidak terhalang secara
visual dan audio. Tetapi, sensor-sensor ini memiliki galat pengukuran yang
tinggi. Sehingga, suatu penggabungan sensor diterapkan untuk menangani
galat tersebut.

Penelitian ini menerapkan metode untuk memperkirakan orientasi sudut
dan posisi dengan berbagai filter, yakni Complementary Filter dan Kalman
Filter. Complementary Filter melibatkan gyroscope, magnetometer, dan ac-
celerometer dari sensor inersial ponsel pintar. Sedangkan, Kalman Filter meli-
batkan accelerometer dan hasil Wi-Fi fingerprinting yang didapatkan dari
pengamatan lingkungan. Evaluasi perkiraan-perkiraan hasil penggabungan
observasi sensor oleh filter-filter tersebut menggunakan ilustrasi grafis dan
evaluasi statistika untuk mengukur kualitas reduksi galat dari tiap filter.

Hasil dari performa filter menunjukkan bahwa kualitas perkiraan orientasi
oleh Complementary Filter cukup baik untuk menghasilkan sudut yang sesuai.
Namun, perkiraan posisi oleh Kalman Filter menunjukkan hasil yang kurang
baik akibat integrasi ganda terhadap derau dan pengaruh besar Wi-Fi finger-
printing. Hasil Wi-Fi fingerprinting menunjukkan perkiraan posisi yang tidak
akurat. Hal ini menunjukkan bahwa perkiraan posisi tidak dapat digunakan
dalam penelitian ini. Sedangkan, dalam percobaan menunjuk objek di labo-
ratorium, perkiraan orientasi sudut memberikan hasl yang cukup baik dengan
ponsel pintar.

Secara ringkas, perkiraan posisi dan orientasi 3D dengan Complementary
Filter dan Kalman Filter dalam ponsel untuk pointer tidak dapat digunakan

v



vi

menurut penelitian ini. Meskipun begitu, masih perlu diteliti mengenai pener-
apan filter lainnya untuk perkiraan posisi dan observasi lain untuk membantu
perkiraan yang baik. Walaupun penggunaan filter dan observasi lain dapat
mengorbankan sumber daya dari ponsel pintar.

Kata kunci: Context-aware systems, Indoor positioning, Wi-Fi fingerprinting,
sensor fusion



Summary

During cultural or tourism visits, a guide of the interesting objects is useful to
enhance the knowledge and the experience of the visitors. Nowadays, because
of the modern technologies, mobile applications are capable to be a personal
autonomous guide in the case of context-aware system. Mostly, the context
element used in these applications is the position in two dimension (2D). How-
ever, there are more possibilities using the context elements from smartphone
that can be explored.

Thanks to smartphone sensors, the contexts which can be captured by
smartphone are composed in 3 dimensions (3D) of both position and orienta-
tion (in X, Y, and Z axes). Those dimensions are used to explore the feasibility
of smartphone which can held by hand as pointer to interesting objects, which
can’t be handled by 2D position only. Thus, the user experience can be en-
hanced, as they don’t get vision-blocked or audio-blocked. However, those
sensors have erroneous measurements. Hence, a sensor fusion is applied to
overcome this drawback.

The sensor fusion can be implemented not only using the internal smart-
phone sensors, but also the external environment. In this case of indoor en-
vironment, the Wi-Fi fingerprinting approach, which widely used as indoor
positioning algorithm, can be considered as external observation. Even though
so, the quality of the fusion should be studied to assure that it is feasible to
use smartphone a pointing device in indoor environment.

This study proposed a method to estimate orientation and position us-
ing different filters, namely Complementary Filter and Kalman Filter respec-
tively. The complementary filter involves the gyroscope, magnetometer, and
accelerometer from the smartphone inertial navigation sensors, while the Kalman
Filter involves accelerometer and the Wi-Fi fingerprinting result which come
from environmental measurement. To evaluate these estimations, the graph-
ical representation and statistical evaluation are used to measure the filters’
quality in reducing the errors.

The results of the filters’ performance showed that orientation estimation
was adequate to give acceptable angle. But, unfortunately, position estimation
had resulted in poor performance because of the double integration toward
noise and the heavy influence from Wi-Fi fingerprinting. The Wi-Fi finger-
printing resulted inaccurate positioning. This concluded that the position
estimation cannot be used at all in this study. In laboratory object pointing
field experiment, the orientation estimation gave passable estimation to locate
an object by a fixed smartphone position.

vii
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To sum up, the 3D position and orientation estimation using Complemen-
tary Filter and Kalman Filter might not be feasible according to this study.
However, regarding to 3D position estimation, possibly there are other meth-
ods than Kalman Filter which might be used as state estimator. And also,
there are various external measurements which might help to achieve better
estimation. Although, the drawbacks between the more sophisticated methods
and the computation power and capability of smartphone should be considered
for a good user experience.

Keywords: Context-aware systems, Indoor localization, Wi-Fi fingerprinting,
sensor fusion



Résumé

Pendant une visite culturelle ou touristique, un guide des objets intéressants
est utile pour améliorer la connaissance et l’expérience des visiteurs. Actuelle-
ment, des applications mobiles sont capables de devenir des guides personnels
automatiques grâce à leurs systèmes sensibles au contexte. Souvent, l’élément
du contexte qui est utilisé dans ces applications est la position en deux di-
mensions (2 D). Toutefois, on peut envisager d’utiliser d’autres éléments de
contexte.

Grâce aux capteurs d’un smartphone, on peut évaluer la position et l’orientation
(sur les axes X, Y et Z). Ces données peuvent être utilisées pour transformer
un smartphone en pointeur sur des objets intéressants dans l’espace tridimen-
sionnel. L’expérience des utilisateurs devrait alors être améliorée. Cependant,
les mesures fournies par les capteurs ne sont pas précises. C’est pourquoi nous
proposons une fusion des capteurs pour diminuer cet inconvénient.

La fusion des capteurs peut être réalisée non seulement sur la base des
capteurs internes du smartphone, mais aussi avec l’environnement l’extérieur.
Dans le cas de géolocalisation à l’intérieur des bâtiments, l’approche « Wi-Fi
Fingerprinting » est une des méthodes utilisées. C’est une méthode qui utilise
des informations externes au smartphone. Même si les données provenant de
l’intérieur et de l’extérieur du smartphone sont complètes, la qualité de leur
fusion doit être étudiée pour assurer la faisabilité d’un usage du smartphone
comme un outil de pointage à l’intérieur du bâtiment.

Cette étude propose une méthode pour estimer l’orientation et la position à
l’aide de différents filtrages des données. Ces filtrages sont appelés respective-
ment « filtrage complémentaire » et « filtrage de Kalman ». Le filtrage com-
plémentaire fait usage du gyroscope, du magnétomètre, et de l’accéléromètre
qui appartiennent au système de navigation inertielle du smartphone. D’autre
part, le filtrage de Kalman utilise l’accéléromètre et les données du “Wi-Fi
Fingerprinting”. Pour évaluer toutes ces estimations, l’affichage graphique et
l’évaluation statistique sont présentées. Elles permettent de mesurer la qualité
de filtrage dans le but de diminuer les erreurs.

Les résultats des analyses des performances des filtrages montrent que
l’estimation d’orientation est relativement suffisante pour donner les angles
acceptables. Mais, malheureusement, l’estimation de position a donné de mau-
vais résultats du fait de l’imprécision des capteurs et d’importants effets du «
Wi-Fi Fingerprinting ». Les informations du « Wi-Fi Fingerprinting » don-
nent une position très imprécise en entrée du filtrage de Kalman, de même
les données de l’accéléromètre sont très instables. Ces résultats montrent que
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l’estimation de la position dans cette étude n’est pas suffisante pour des us-
ages en situation réelle. Par contre, dans le test de pointage vers un objet
en laboratoire, l’estimation d’orientation a donné une estimation relativement
acceptable pour viser un objet lorsque la position du smartphone est fixée.
En conclusion, l’estimation de la position et de l’orientation avec le filtrage
complémentaire et le filtrage de Kalman ne se sont pas révélées pertinentes
dans le cadre de cette étude. Toutefois, d’autres méthodes d’estimateur d’état
pourraient être utilisées. De plus, d’autres mesures externes pourraient aider à
réaliser une meilleure estimation de la position. Ces méthodes devraient toute-
fois consommer d’avantage d’énergie et ainsi risquer de réduire l’expérience de
l’utilisateur.

Mot-clés: Systèmes sensible au contexte, géolocalisation intérieure, Wi-Fi Fin-
gerprinting, Fusion des Capteurs
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Chapter 1

Introduction

1.1 Motivational Background

During cultural or tourism visits, a guide of the interesting objects is necessary
to enhance the knowledge and the experience of the visitors. In these times,
the mobile application using smartphones and tablets are possible to serve as
an autonomous guide personally, in the case of context-aware system. The
elements of the contexts of the users which mainly used in the visits are the
positions, which will change in timely manner.

The guidance approach using the smartphone is composed in 3 dimensions,
which are positions in X, Y, and Z, and the orientation in X, Y, and Z. Those
dimensions are used in order to explore the possibility of smartphone of being
pointer to interesting object, not for the position estimator only. Thus, the
user experience should be possible to be increased, as they don’t get vision-
blocked (by always looking at the screen) or audio-blocked (by using an audio
guidance headphones).

Unfortunately, determining the position and the orientation of the smart-
phone as the pointing guide, which is held by users, is probably not so accurate,
especially in the indoor environment of a building without the aid of GPS [1].
The inertial navigation system [2] sensors included in a smartphone have many
disadvantages. For example, accelerometer [3] to measure the displacement of
the smartphone, but it tends to be highly noisy. Yet, the gyroscope [4], in
measuring orientation, has some drawbacks in estimating the orientation since
it has integration error called drifts. While the magnetometer [5] is easily
disturbed by the magnetic field that produced by metal materials around the
smartphone. Thus, an accurate estimation approach for the position and the
orientation of the smartphone is important.

In the other hand, the approach in doing a combination or sensor fusion
towards the smartphone sensors yields in a fine result [6–8] using some fil-
ters, namely Complementary Filter [7] and Kalman Filter [9]. However, these
internal sensors are not very adequate to deal with precision of the trajec-
tory. Hence, the external environment, such as WiFi, is used to improve the
localization quality of the smartphone location and orientation [10,11].

Some research results have considered the orientation estimation using 3D

1



2

Accelerometer and 3D magnetometer sensor fusion using Kalman Filter [9],
combination of accelerometer, magnetometer, and gyroscope sensors in smart-
phone [7], and combination of heading (orientation in Z axis) plus the position
tracking to do Indoor Positioning [8,12,13]. While the 3D position and orien-
tation estimation by Kalman Filter have been provided by [8], it uses camera
sensor, which in the purposed study it is not considered in this study because
it blocks the vision. The more sophisticated heading and position estima-
tion using Particle Filter and Dead Reckoning using Android Phone sensors
and WiFi Fingerprinting has been conducted by [14], which positioning er-
ror reached up to 6 meters. Then, a newer approach of combining the WiFi
Weighted Path Loss, Pedestrian Dead Reckoning using Smartphone sensors,
and Landmarks [11] also give a good positioning error result about 1 meter.
Without WiFi aid, the native sensors of smartphone [8] provided small error
about 0.3% in heading measurement and 0.8 meters in position estimation.
However, there isn’t much specific measurement and evaluation toward 3D po-
sition and 3D orientation estimation to aid the object-pointing which mostly
will be considered in this study.

Then, the purpose of this study is to explore the possibility to gain the 3D
position and orientation estimation by the smartphone and WiFi fingerprint-
ing. Thus, the smartphone can be a decent yet affordable tool to be a guide
in a visit, yet its possibility to be an aid for the visually impaired also.

1.2 Aim

The aim of this project is to study the possibility of data fusion of smartphone
sensors and Wi-Fi fingerprinting to make a smartphone as a precise pointing
object.



Chapter 2

Materials and Methods

In this section, the materials and method related to this study will be ex-
plained. The related material studied are smartphone 3D orientation and
position; Inertial Navigation System (INS) sensor aspects related to smart-
phone, which are accelerometer, gyroscope, and magnetometer; and Wi-Fi
Radio Signal Strength Indication (RSSI). The methods that will be explained
are the Kalman Filter; Complementary Filter; and Wi-Fi fingerprinting, where
the deterministic positioning algorithm, the weighted k-Nearest Neighbor, was
applied.

2.1 Three dimensional position and orientation

The three dimensional position and orientation in this study is represented in
3-axis coordinates X, Y, Z and their representation in the smartphone local
frame. This representation of the position and orientation is important be-
cause the sensors only know their position and orientation locally. In further
application, this local reference can be transformed into global reference. This
representation is depicted in Figure 2.1.

The orientation angles in 3D are called roll, pitch, and yaw (or azimuth,
in several references, for example [15]) in X, Y, Z axes respectively. Even
though they are measured locally by the smartphone, if the help of digital
compass (will be explained later) is being used, the direction towards north
global reference can be approximated.

Figure 2.1: Smartphone local coordinate system axis
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2.2 Smartphone Inertial Navigation System sen-
sors

The smartphone INS sensors which will be studied in this project are the
accelerometer, gyroscope, and the magnetometer. The accelerometer measures
the acceleration of the smartphone movement, the gyroscope measures the
rotation of the orientation of the smartphone, and the magnetometer measures
the magnetic field around the smartphone. The API derived sensors, gravity
and linear acceleration, will be explained also in the Accelerometer subsection.

2.2.1 Accelerometer

The accelerometer measures the proper acceleration of the device. Thus, it is
a little bit different to the acceleration in space. This acceleration is related to
the weight experienced by a test mass which placed in the frame of reference
of the accelerometer device. In general, the acceleration is measured by the
pressure of a mass on something when a force occurs [1].

A resting device’s accelerometer relative to the earth’s surface will expe-
rience acceleration of approximately 1G upwards. Because any point on the
Earth’s surface is accelerating upwards relative to the local inertial frame (the
frame of a freely falling object near the surface).

Thus, in this case, acceleration of the accelerometer can be composed from
two different accelerations. The first part is the gravity acceleration and the
second part is the linear acceleration. The gravity acceleration is the accelera-
tion that happened because of the gravity, while the linear acceleration is the
acceleration in the device that happens excluding gravity. The simple represen-
tation of these two components as represented in (2.1). These two components
can be derived from the Android API if available in the device [16].

linear acceleration = accelerationaccelerometer − gravity (2.1)

2.2.2 Gyroscope

A gyroscope is used to measure orientation of a device by the principle of
conservation of angular momentum. In case of smartphone, MEMS (Micro
Electro-Mechanical System) type of gyroscope is applied. This type of gy-
roscope has vibrating elements to sense the Coriolis effect. In this type of
gyroscope, single mass tends to vibrate along a drive axis. When the gy-
roscope is rotated, a secondary vibration happened along the perpendicular
sense axis due to the Coriolis force. Thus, by measuring the secondary rota-
tion, the angular velocity can be calculated. Unlike the accelerometer and the
magnetometer, the Gyroscope measures angular velocity locally [1].

2.2.3 Magnetometer

Magnetometer measures the strength of magnetic field in the surrounding envi-
ronment. The magnetometer applied in this case are the vector magnetometer
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instead of the scalar magnetometer. It has the capability to measure the com-
ponent of magnetic field in certain direction regarding to the local reference
of the device [1]. This is important to this study because the magnetometer
should be enabled as digital compass.

2.2.4 Sensor errors

The sensors provided in the smartphone are not all perfect. Because of internal
and external disturbances, they tend to have errors in the measurement process
[1].

The accelerometer, due to its nature to be noisy, has a terrible error to
measure the position directly. This error is derived from the double integration
from the acceleration. It is possible to estimate the bias by subtracting the
long term average of the accelerometer’s output from the current measurement.

Then, the gyrocope produces the drift error after the device is rotated, aside
of the integration error from the angular velocity to the angular orientation.
This error’s magnitude is related to the rate and duration of the rotation. This
error can be horrible in addition to the initial integration error.

The magnetometer’s error is related to the disturbance from metallic ma-
terial around the sensor. Beside that, if the sensor is rotated while acquiring
the measurement, additional error is generated.

2.3 Sensor Fusion

Sensor fusion is a method to combine data which came from different sensors
to yield "better" information in spite of individual sensor data. This "better"
can be related into several meanings, which are more accurate, more precise,
more complete, or more dependable [1, 17]. This sensor fusion can be worked
with several filtering methods, such as Complementary Filter or Kalman Filter,
which will be discussed later. This fusion involves two or more different sensors
toward the filter. So, that the measurements will acquire better performance.

2.4 Radio Signal Strength Indication for Wi-Fi
Fingerprinting

Radio Signal Strength Indication (RSSI) measurement in several location can
be different each other. Thus, it can be used as fingerprint. A single vector of
RSSI values are obtained by a measurement process in a location which will
capture the signal strength by nearby Wi-Fi access points. The RSSI in noise
free environment can be modeled using (2.2) [10].

RSSI = P −R− 10αlog10d (2.2)

The variables of (2.2) is described as follows. The RSSI is the value of
RSSI in dBm (decibel-miliwatt). P is the power of transmission, α is the



6

Table 2.1: representation of collected RSSI si,j of access point j of several
positions pi

Captured RSSI at several positions
p1 s1,1 s1,2 s1,3 s1,4 ... s1,n
p2 s2,1 s2,2 s2,3 s2,4 ... s2,n
p3 s3,1 s3,2 s3,3 s3,4 ... s3,n
p4 s4,1 s4,2 s4,3 s4,4 ... s4,n
p5 s5,1 s5,2 s5,3 s5,4 ... s5,n
... ...
pm sm,1 sm,2 sm,3 sm,4 ... sm,n

path loss exponent which linearly falls, R is a constant which influenced by
the condition of the environment, and d is the distance of the measuring point
to the access point. The device used to capture the measurement has to have
the capability to capture the Wi-Fi signal, in this case, it can be smartphone,
personal computer (PC), or notebooks.

Sometimes, single sample of RSSI measurement is not sufficient to char-
acterize a fingerprint. It is because the environment or the device capturing
quality can heavily affect the measurement. Thus, it is necessary to average
several measurement samples to get a fingerprint. The captured RSSI mea-
surements from several access points is the collection which characterize the
single fingerprint of location.

The fingerprinting is based on two stages. They are the offline phase, the
collection phase, and the online phase, the position calculation phase.

2.4.1 Fingerprinting Offline Phase

In this phase, a training set of offline fingerprints will be gathered using the
capturing device. The RSSI si, j of access point j are collected within the
position pi of the capturing device. Considering the successfully captured
RSSI of n distinct access points in several m positions, the representation of
the measurement is depicted in Table 2.1.

2.4.2 Fingerprinting Online Phase

In this phase, a fingerprint of a location will be captured from the device. The
RSSI s∗j of several access points j within the position p∗ will be compared to
existing RSSI collection database which collected during the offline phase. This
comparison method results estimation of position of the device according to
the RSSI collection. That comparison method can be also called positioning.
An illustration of online and offline phase is depicted in Figure 2.2.
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Figure 2.2: fingerprinting phases offline and online phase

2.5 Weighted k-Nearest Neighbor

This positioning is classified as deterministic algorithm to compute the possible
position from captured RSSI from a location [18]. This algorithm is based on
distance between the captured RSSI at the capturing location and the provided
RSSI in offline database from the same access point. However, if there is a
RSSI from an access point of captured location which does not exist in the
database or vice versa, that RSSI will be omitted from the calculation. The
signal distance Lq between a single position s in the offline database and at
the captured location s∗, where n access points are identified, is described in
(2.3).

Lq =

(
n∑
j=1

|s∗j − sj|
q

) 1
q

(2.3)

The equation above, which based on Minkowski distance, has parameter
q(q ≥ 1) to determine the order of distance. The most frequently used q values
are 1 and 2, which called Manhattan (City-block) and Euclidean distance.

The nearest neighbor algorithm acquires the nearest point to the captured
location by the distance defined in (2.3) (the most minimum distance). Mean-
while, the k-nearest neighbor algorithm takes k nearest neighbors from the
distance, which then the position is calculated by averaging the k positions.

Similar to k-nearest neighbor, the Weighted k-Nearest Neighbor uses the
averaging method to determine a position. But, in addition the scheme of
weighting is introduced. This weighting scheme is based on the inverse distance
of each nearest neighbor, as expressed in (2.4), where i ∈ 1, 2, ..., k. The
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position p∗ where the RSSI vector are captured is defined in (2.5).

wi =
1

di
(2.4)

p∗ =

∑k
i=1wipi∑k
i=1wi

(2.5)

2.6 Kalman Filter

Kalman Filters is a type of widely used Bayesian filter because of its compu-
tational efficiency [11]. The Kalman Filter by R.E. Kalman [19], which this
research will be benefit from, estimates a state x ∈ <n of a discrete-time con-
trolled process which conserved by linear stochastic difference equation (2.6)
and measurement z ∈ <m (2.7). The state has n dimensions of the process to
be estimated and the measurements has m dimensions of measurements to be
observed.

xk = Axk−1 +Buk−1 + wk−1 (2.6)

zk = Hxk + vk (2.7)

State estimation at time step k (2.6) is described as follows. It involves the
matrix A related to the previous time step state xk−1. The dimension of state
transition model matrix A is n × n identity matrix. It also involves control
input u ∈ <p (if available in the process) of previous time step and input model
matrix B which dimension in n× l regarding the case of the input (dimension
l× 1) to the process. Then, random variable w is considered as process noise.

In the other hand, the measurement at time step k (2.7) is described using
different variable and matrices. The measurement matrice H maps the state
xk into dimension of measurement. Matrice H has n × m dimension. The
variable vk is the measurement noise.

The random variable wk and vk assumed to have no correlation each other,
white noise, and normal probability distributions, expressed in (2.8) and (2.9).

p(w) ∼ N(0, Q) (2.8)

p(v) ∼ N(0, R) (2.9)

Practically, the process noise covariance Q and measurement noise covari-
ance R matrices of n× n and m×m respectively can be considered constant.
However, they have the probability to change over time step or measurement.

The Kalman Filter’s procedure divided into two stages: time update and
measurement update. The time update stage is responsible for the predicting
the current state and error covariance to acquire the a priori estimation for
the next time step. The measurement update stage is responsible to give
feedback to the estimation, for example to take in the new measurement to
the a priori estiation to acquire the improved a posteriori estimate. Those
two stages, time update and measurement update, are connected each other
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Figure 2.3: The relation of the two stages of Kalman Filter

and called predictor-corrector algorithm. The graphical representation of this
relationship is depicted in Figure 2.3.

x̂−k = Ax̂−k−1 +Buk +Q (2.10)

P−k = AP−k−1A
T +R (2.11)

The time update stage is represented by (2.10) and (2.11). The matrices
A and B are from the previous (2.6), while the matrix from (2.8). The time
update for the state estimation (2.10) predicts the state x at the time step k
by the estimation (using )̂ and before the measurement update (using minus
sign "−" superscript). Using the same before measurement update term, the
time update for the error covariance (2.11) predicts P before the measurement
update (using minus sign "−" superscript).

Kk = P−k H
T (HP−k H

T +R)−1 (2.12)

x̂k = x̂−k +Kk(zk −Hx̂−k ) (2.13)

Pk = (I −KkH)P−k (2.14)

The measurement update stage is represented by (2.12), (2.13), and (2.14).
The matrix H in those three equations came from (2.7). The first step in
measurement update is to calculate the Kalman Gain Kk (2.12). The matrix
R is derived from (2.9). The next step is to acquire "corrected" estimation
state x̂k by the residual obtained from the subtraction of measurement zk and
the predicted observation Hx̂−k times the gain Kk (2.13). Then, a posteriori
error covariance estimation is obtained from (2.14), considering I is identity
matrix of dimension of n× n.

2.7 Complementary Filter

The complementary filter is an alternative from the Kalman Filter to combine
two different measurements. The application of this filter is toward the angle
estimation [7, 20]. This filter mainly consists of the low pass filter and high
pass filter. Then, there are two important components also namely sample
period and time constant.

The low pass filter and high pass filter in the complementary filter has
opposite goals. The low pass filter has goal to pass out the long term change
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to the result, avoiding short term but high fluctuation. This characteristic
fits a noisy measurements, such as accelerometer. While the high pass filter
has to avoid the slight but consistent change in the measurement. Thus, this
characteristic has possibility to cancel out drift. This nature suits the drifting
measurement, for example gyroscope.

Considering there are two measurements accelerometer acc and gyroscope
gyro. The fusion using complementary filter can be written as (2.15), where
the desired measurement θk is angular position at time step k.

θ̂k = α(θ̂k−1 + ωkgyroδt) + (1− α)(θkacc) (2.15)

The sample period δt and time constant τ affects the filter coefficient α in
(2.15), which relationship is described in (2.16). The filter coefficient drives
the influence of high pass filter and low pass filter to each measurement. The
sample period is the time interval between each execution of the filter action.
Then, the time constant is the relative duration of signal it will act on.

α =
τ

τ + δt
(2.16)



Chapter 3

Analysis and Design

In this chapter, the implementation of the proposed study will be discussed.
The purpose of this chapter is to give explanation about the environment, the
workflow, and the parameter setup.

3.1 Environment

This study utilized several tools and executed in several conditions. Three
smartphones will be utilized to analyze their sensors’ performance in this study.
Those three smartphone are Wiko Highway, HTC One S, and Samsung Galaxy
S4, which are presented in Figure 3.1. The map of the whole floor is depicted in
Figure 3.2, where the location of the experiment is orange-colored. The room
has size of 7 m x 6 m. This environment is also equipped by a nearest Wi-Fi
access points is also included in the map which is indiced by blue rectangle.

All part of this study is implemented in Java environment. The program-
ming is conducted in Android Studio. All the smartphones have different ver-
sion of Android. To share the data estimated by the smartphone, a TCP/IP
connection to the PC is made.

The location of experiment is heavily barricaded by laboratory furniture,
yet many electronic devices inside. Thus, it can drive to a highly noisy mag-

(a) (b) (c)

Figure 3.1: The smartphones used in experiments: (a) Wiko Highway, (b)
HTC One S, (c) Samsung Galaxy S4

11
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Figure 3.2: Cropped map of experiment location

Figure 3.3: Proposed method flowchart

netometer data and weak Wi-Fi signal strength. However, this condition is
feasible in the real world application, since the decoration of the room is still
unknown and there are numerous possible indoor arrangement.

3.2 Workflow

The workflow of this study is represented in Figure 3.3. All the inputs are cap-
tured individually by sensors of single smartphone. The expected output is the
estimation of orientation θ̂x,y,z and the estimation of position p̂x,y,z, which were
already corrected and experiencing the sensor fusion by the Complementary
and the Kalman Filter, respectively. Those steps and data will be explained
below.

3.2.1 Input

The input data used in this study is represented by the five data received by
smartphone. They are the angular velocity ωx,y,z in rad/sfrom the gyroscope,
the magnetic field strength magx,y,z in µT from the magnetometer, the gravity
force gx,y,z and the linear acceleration ax,y,z from the accelerometer, both in
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m/s2 and finally the vector of RSSI reading of available access points sss in dB.

3.2.2 Prefiltering

The prefiltering will be applied for the noisy sensors, which are accelerometer
and magnetometer. This prefiltering is used to smoothen the observation data,
which then considered as input for the next method for each measurement. The
prefilter consisted of the averaging filter then the median filter. Both filtering
method employed a frame of N moving windows towards previously recorded
set of data {oi−N , oi−(N−1)..., oi−1, oi} to gather filtered observation o′i, where i
should be not less than N . The averaging filter for averaged observation data
described in (3.1). After that, the median filter gets the desired observation o′i
from sorted {oi−N , oi−(N−1)..., oi−1, oi}, then getting its middle point (i) value.

a = i−N ; b = i; o′i =

∑b
j=a oj

N
(3.1)

The sequence of {oi−N , oi−(N−1)..., oi−1, oi} is more preferred than {oi−N
2
, ...,

oi, ..., oi+N
2
} because the after i-th datum, it has to wait for more N

2
data to

arrive at the moving window. This might affect the filtering performance to
provide the not up-to-date data. Thus, the estimation can be long enough
to have a real-time data. However, this scheme has some drawbacks to be
discussed in the parameter setup section.

3.2.3 Getting Rotation from getRotationMatrix Android
API

The rotation angle by the geomagnetic field (from the magnetometer) and grav-
ity (from the gravity sensor, derived from the accelerometer) can be derived
from the Android API [15] by the getRotationMatrix(...) public method. The
method result two matrices: the Rotation matrix and the Inclination matrix.
However, the Rotation Matrix only that used for the input of Complementary
Filter.

3.2.4 Complementary Filter

As discussed in previous chapter, the complementary filter takes input from
the gyroscope measurement and prefiltered digital compass measurement from
the rotation matrix API. By considering the three orientation, representing
roll, pitch and azimuth (x,y, and z axis), the equation (2.15) is modified as
described in (3.2).θ̂x,kθ̂y,k

θ̂z,k

 = α

θ̂x,k−1 + (ωx,k ∗ δt)
θ̂y,k−1 + (ωy,k ∗ δt)
θ̂z,k−1 + (ωz,k ∗ δt)

+ (1− α)

θx,kθy,k
θz,k

 (3.2)
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Table 3.1: reference points of this study

Position x y z
pA 0.5 0.5 1.25
pB 3 0.5 1.25
pC 5.5 0.5 1.25
pD 0.5 2 1.25
pE 3 2 1.25
pF 5.5 2 1.25
pG 0.5 3.5 1.25
pH 3 3.5 1.25
pI 5.5 3.5 1.25
pJ 0.5 5 1.25
pK 3 5 1.25
pL 5.5 5 1.25

The
[
θ̂x,k θ̂y,k θ̂z,k

]T
are the estimated orientation in three axis for the out-

puts. While for the inputs are
[
ωx,k ωy,k ωz,k

]T are the angular velocities in
3-axis from gyroscope and

[
θx,k θy,k θz,k

]T are the orientations from digital
compass.

The parameter setup for α will be discussed later. It related to the time
sample of the estimation, which also need to be discussed before. The time
constant parameter of alpha regarding (2.16) will be determined also through
the discussion.

3.2.5 Wi-Fi Fingerprinting

The fingerprinting locations of offline phase of the experiment room are spread
into 14 reference points. These points vary in the position axis of x and y, but
not in z axis, within natural human reach in the room (it is not possible to
take z position of 4 m by hand, for example). Those three smartphones are
used to capture the RSSI signal of these 12 points. Those points are detailed
in Table 3.1.

The RSSI capturing process in the offline phase is triggered each 0.75 s
and takes place 30 times. Thus, the smartphone must be held for around 22.5
seconds to get full measurements. Then, these 30 measurements are averaged
within 5 measurements before inserted into the offline database for position-
ing. This is performed to avoid strict difference from each signal, which then
resulted in more flexible weighing process.

3.2.6 Kalman Filter

The equation of system model of the Kalman Filter (3.3) is a linear state space
and its transition matrix presented in (3.4), where the states are the position,
velocity, and acceleration in 3 axis of local phone reference, respectively. There
is no input for the Kalman Filter. The observation (3.5) will be decided into
two different values by different experiments. The first value is provided by
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accelerometer only, thus the observation variables will be 3 (3.6). Then, the
second value is 6 (3.7), where Wi-Fi can provide positioning variables.

x̂k = Ax̂k−1 +Q (3.3)

where

A =



1 0 0 δt 0 0 δt2

2
0 0

0 1 0 0 δt 0 0 δt2

2
0

0 0 1 0 0 δt 0 0 δt2

2

0 0 0 1 0 0 δt 0 0
0 0 0 0 1 0 0 δt 0
0 0 0 0 0 1 0 0 δt
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, x̂k =



x
y
z
ẋ
ẏ
ż
ẍ
ÿ
z̈


(3.4)

zk = Hx̂k +R (3.5)

where

H =

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 , zk =
ẍÿ
z̈

 (3.6)

or

H =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 , zk =

x
y
z
ẍ
ÿ
z̈

 (3.7)

The parameters in the equation, which are covariance of matrices Q and
R, will be discussed later. These parameters are necessary to define the noise
error that should be considered in the practice.

3.3 Parameter Setup

In this section, the necessary parameters in this study will be discussed. They
are the parameters regarding the prefiltering (averaging and median window
length), the time sample of estimation for both Complementary Filter and
Kalman Filter, the time constant for Complementary Filter, the neccessity for
calibration of the sensor, the noise error covariance of Kalman Filter and the
k Weighted k-NN.

3.3.1 Prefilter

This prefiltering, which consisted of averaging filter and median filter, has a
moving window element to reduce the noisy measurements. The important
parameter of this filter is the window length N , which used for both averaging
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filter and median filter. The bigger the N , the prefiltering can give smoother
measurements to be input of state estimation. However, this big N value has
drawback to have a very old data affecting the current measurement.

Thus, considering the fastest time delay of the sensor that can be captured,
which is 10 ms, and the time sampling δt (which will be discussed later), the
window length N is defined to 10. This leaves up the latest considered data
is at 100 ms before, in the best assumption if the sensor always change its
measurement in that time frame.

3.3.2 Time Sampling

The time sampling for the estimation (Kalman Filter, Complementary Filter)
is very important. The definition of the time sampling must be slower than
the observer, which are the sensors. The sensors has capability to provide 10
ms short of update (if there’s any change in the measurement, for example:
the smartphone moves, the smartphone rotates). Thus, the time sample for
the estimation must be slower than the observation change time. Finally, the
defined time sample is 20 ms for this study.

Regarding the prefiltering case, the window length N affects the perfor-
mance by taking this defined time sampling value into account. The estima-
tion is only going to be affected by the five (5) previous sensor changes in 100
ms.

Although the time sampling is fast enough to handle the sensor change, it
cannot match with the slowWi-Fi RSSI capture. In the offline phase, the Wi-Fi
RSSI indicates its strength change after 3 seconds interval at a location. Thus,
this time difference between sensor change and the Wi-Fi strength change can
be problematic. However, the time sample cannot be set to achieve the slow
Wi-Fi RSSI capture time, since it can heavily influence the state estimation
based on the sensor. Hence, the time sample is left to be 20 ms.

3.3.3 Complementary Filter

In the Complementary Filter, the parameter which heavily affects which the
passing of High Pass Filter and Low Pass Filter is α, which is produced by the
time constant and time sample as described in (2.16). As the time sample has
been defined, the only task left is to define the time constant. After several
experiments, using the relativity of the smoothness, the value of 750 ms is
used.

3.3.4 Calibration

Calibration is a process to correcting the observations to base level. In this
study, the calibrated sensor is the linear acceleration. Initially this is used to
avoid the high double integration error caused by the wrong estimation in the
beginning. The calibration process starts from the data collecting until N data
has been collected. The next process is average those N data. The result of
this average will then used as subtraction for the next measurement.
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3.3.5 Kalman Filter

As mentioned before, the error noise estimation matrix’ covariance Q and
measurement matrix’ covariance R are important to minimize the noise which
happened both in the estimation and the measurements observation. Even
though so, to find good approximation of these parameters is very exhaustive,
because it could be ranged from the smallest value near 0 until the biggest
possible.

To solve this approximation problem, we have conducted a parameter re-
search between 10−6 until 105, by the step of multiplication by 10. And finally,
we have decided the value of Q of 1 and R of 10. These values are based on
the noises removal quality by Kalman Filter.

3.3.6 Weighted K-Nearest Neighbor

The weighted K-Nearest Neighbor has two considered parameters, which are
neares neighbor k and the type of distance. The number of nearest neighbor
k, as studied by [18], is defined to be 3. And the distance uses the Euclidean
distance (Minkowski distance where q = 2).
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Chapter 4

Result and Discussion

In this chapter, the results from the proposed study will be presented.The sam-
ple of captured Wi-Fi RSSI by smartphone by tabular representation, before
the evaluation scenario results in the previous chapter. Then, the previously
described filter results scenario will be presented. Thus, the final scenario
results are going to be shown in the last part.

4.1 Wi-Fi Fingerprinting

In this section, the result of Wi-Fi fingerprinting will be presented. The first
part will explain about the result of the offline phase, which is the RSSI col-
lecting into database. The second part will describe about the result of the
Wi-Fi positioning using weighted k-Nearest Neighbor.

4.1.1 Offline Phase

The offline phase of Wi-Fi fingerprinting is performed by the three smartphones
in the locations as specified in Table 3.1. The captured RSSI values below -90
are ignored. This is because the weak signal might disturb the positioning
algorithm. The zero value (0) in the table indicated means the signal from
that single access point is ignored (below -90) or not found.

The captured RSSI signal sample of 7 access points of each position from
the three smartphones are presented as follows. By Wiko Highway S, the
captured RSSI, which were originally from 48 access points, are presented in
Table A.1. Samsung Galaxy S4 successfully captured RSSI from 50 access
points, which samples are presented in Table A.2. And finally, HTC One S
captured RSSI from 29 access points, which samples are presented in Table
A.3.

Then, the sample of result of Wi-Fi Fingerprinting Offline phase, which is
averaged RSSI measurements of each location, are presented as follows. The
offline phase result of Wiko Highway, Samsung Galaxy S4, and HTC One S
are presented in Table 4.1, Table 4.2, and Table 4.3 respectively.

Then, the characteristics of this offline phase of each smartphone is de-
scribed as follows. From the results presented by the tables, it can be found
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Table 4.1: Offline Phase Averaged RSSI by Wiko Highway (sample)

Position (x,y,z) Access Points
AP1 AP2 AP3 AP4 AP5 AP6 AP7

pA(0.5,0.5,1.25) -88 -89 -65 -62 -69 -70 -62
pB(3,0.5,1.25) 0 -89 -67 -67 -68 -67 -65
pC(5.5,0.5,1.25) 0 -89 -70 -64 -70 -70 -64
pD(0.5,2,1.25) 0 -89 -68 -67 -67 -67 -67
pE(3,2,1.25) 0 0 -71 -65 -77 -71 -64
pF (3,2,1.25) 0 0 -69 -65 -70 -74 -64
pG(0.5,3.5,1.25) 0 0 -68 -71 -62 -62 -71
pH(3,3.5,1.25) 0 -89 -74 -68 -65 -75 -68
pI(3,3.5,1.25) 0 -89 -64 -69 -64 -73 -70
pJ(0.5,5,1.25) 0 0 -73 -63 -62 -62 -64
pK(3,5,1.25) 0 0 -67 -73 -67 -70 -72
pL(3,5,1.25) -86 0 -62 -66 -62 -67 -66

Table 4.2: Offline Phase Averaged RSSI by Samsung Galaxy S4 (sample)

Position (x,y,z) Access Points
AP1 AP2 AP3 AP4 AP5 AP6 AP7

pA(0.5,0.5,1.25) -77.8 -69.2 -75 -73 -78 -78.2 -67.6
pB(3,0.5,1.25) -71 -66.2 -71.6 -71 -71 -72 -67.4
pC(5.5,0.5,1.25) -70.2 -61.2 -70.6 -71.2 -73 -70.6 -59.6
pD(0.5,2,1.25) -68 -66 -66.6 -67.4 -68 -78.2 -65.4
pE(3,2,1.25) -72.6 -64.8 -71.6 -72.6 -72.6 -73 -64.4
pF (5.5,2,1.25) -72.8 -64 -72.4 -72.2 -73 -72.8 -64.8
pG(0.5,3.5,1.25) -74.4 -72.4 -72.8 -72.8 -74.8 -77.8 -72.2
pH(3,3.5,1.25) -68.2 -66.6 -67.2 -68.4 -68.6 -67.2 -67.4
pI(5.5,3.5,1.25) -63.6 -74.4 -63.4 -63.8 -63.6 -64 -70.8
pJ(0.5,5,1.25) -63.4 -70 -63 -63.4 -65.2 -65.8 -70.4
pK(3,5,1.25) -71.4 -72.4 -70.8 -70.2 -70.2 -69.8 -67.2
pL(5.5,5.1,25) -67.2 -73.6 -66.2 -66.2 -66 -67 -73

that the RSSI capture by the Wiko Highway S has higher tendency to be ig-
nored or not found. This can be inferred by the more zero values than the
others. Also, the Wiko Highway has no averaged results of decimal points.
This can mean two possibilities. The first, the Wi-Fi signal sensor of Wiko
Highway is less insensitive than the others. Or the second, the Wi-Fi signal
sensor of Wiko Highway has slower Wi-Fi refreshing frequency than the others.

4.1.2 Online Phase

The online phase of the Wi-Fi fingerprinting was performed by two smart-
phones: Wiko Highway and HTC One S. Samsung Galaxy S4 cannot be used
because it was not available at the moment. The two smartphone performed
the online phase at the exact same position. But, they produced different
results. The online phase was performed around 20 seconds. The graphical
representation of their performances were depicted in Figure 4.1.

By the result of Online Phase, it could be inferred that the Wi-Fi finger-
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Table 4.3: Offline Phase Averaged RSSI by HTC One S (sample)

Position (x,y,z) Access Points
AP1 AP2 AP3 AP4 AP5 AP6 AP7

pA(0.5,0.5,1.25) -77.8 -69.2 -75 -73 -78 -78.2 -67.6
pB(3,0.5,1.25) -71 -66.2 -71.6 -71 -71 -72 -67.4
pC(5.5,0.5,1.25) -70.2 -61.2 -70.6 -71.2 -73 -70.6 -59.6
pD(0.5,2,1.25) -68 -66 -66.6 -67.4 -68 -78.2 -65.4
pE(3,2,1.25) -72.6 -64.8 -71.6 -72.6 -72.6 -73 -64.4
pF (5.5,2,1.25) -72.8 -64 -72.4 -72.2 -73 -72.8 -64.8
pG(0.5,3.5,1.25) -74.4 -72.4 -72.8 -72.8 -74.8 -77.8 -72.2
pH(3,3.5,1.25) -68.2 -66.6 -67.2 -68.4 -68.6 -67.2 -67.4
pI(5.5,3.5,1.25) -63.6 -74.4 -63.4 -63.8 -63.6 -64 -70.8
pJ(0.5,5,1.25) -63.4 -70 -63 -63.4 -65.2 -65.8 -70.4
pK(3.5,1.25) -71.4 -72.4 -70.8 -70.2 -70.2 -69.8 -67.2
pL(5.5,1.25) -67.2 -73.6 -66.2 -66.2 -66 -67 -73

(a) (b)

Figure 4.1: Wi-Fi Fingerprinting online phase result of Wiko Highway (a)
and HTC One S (b)

printing gave errors about 1,5-3 meters from the actual position. Thus, an
improvement toward the position observation should be performed. Those
improvement could be adding the reference points or using other positioning
algorithm, probably the probabilistic one, because it can provide more variable
measurements.

4.2 Filtering Result

In this section, the results of the filtering by the complementary filter to esti-
mate the orientation, while the Kalman filter for the position. The following
parts are presented by statistical evaluation and explanations towards the qual-
ity of the result, while the graphical representation is presented in appendix.



22

Table 4.4: Evaluation of Orientation Estimation (Azimuth) of No-Rotation
Case

Smartphone Azimuth Standard Deviation (degrees)

Wiko Highway 5.935
Samsung S4 16.136
HTC One S 1.768

Table 4.5: Evaluation of Orientation Estimation (Pitch,Roll) of No-Rotation
Case

Smartphone Averaged Absolute Error (degrees)
Pitch Roll

Wiko Highway 2.116 0.703
Samsung S4 0.818 1.741
HTC One S 0.198 0.323

4.2.1 Orientation Estimation by Complementary Filter

As described in the previous chapter, the evaluation of the orientation estima-
tion filter is based on four (4) movement tests by hand. They are no rotation,
rotation in X-axis (roll), rotation in Y-axis (pitch), and rotation in Z-axis
(azimuth). The three rotations are performed approximately 90°.

The quality of the filtering is measured statistically by absolute error. Ab-
solute error evaluates how far did the measurements go from a desired value.
Thus, the smaller value of absolute error means the better result.

In some cases, an angle is evaluated by standard deviation. Standard de-
viation is used because quality is based on the consistency to a single value
which is unknown. The smaller the value of standard deviation, the estimation
is more constant, which is better.

No Rotation

The smartphones were not experiencing any rotation in this case. Thus, the
desired azimuth, pitch, and roll value should be constant. The pitch and roll
value can be presumed as zero (0), while the azimuth cannot. It is because the
azimuth is influenced by digital compass which always pointing to the digital
north. Thus, the standard deviation evaluation is applied to the azimuth,
while pitch and roll are evaluated by absolute error towards 0°. The graphical
representation of the performance of the three smartphones is depicted by
Figure B.1 in Appendix. The numerical evaluation of azimuth is presented on
Table 4.4, while for pitch and roll is presented on Table 4.5.

From the graphical representation of Figure B.1, the azimuth estimation
for the Samsung S4 is a little bit slower and noisier than the other two. Thus,
the stability of the estimation is not good as the other two. From the numerical
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Table 4.6: Evaluation of Orientation Estimation (Azimuth) of Rotation over
Z-axis Case

Smartphone Averaged Absolute Error (degrees)

Wiko Highway 22.261
Samsung S4 32.406
HTC One S 18.579

Table 4.7: Evaluation of Orientation Estimation (Pitch,Roll) of Rotation over
Z-axis Case

Smartphone Averaged Absolute Error (degrees)
Pitch Roll

Wiko Highway 2.495 0.553
Samsung S4 1.034 1.281
HTC One S 0.342 0.736

evaluation presented from three table, the HTC has better sensor in the no
rotation case.

Rotation over Z-axis (Azimuth)

In this case, the smartphones were experiencing approximately 90°over Z-axis
in the local reference. Thus, the change of azimuth should be nearly 90°, while
pitch and roll should be constant at zero (0). Then, the three angles should be
evaluated by absolute error. The absolute error of azimuth is toward 90°, while,
of course, pitch and roll’s absolute error should be toward 0°. The graphical
representation of the performance of the three smartphones is depicted by
Figure B.2 in Appendix. The numerical evaluation of azimuth is presented on
Table 4.6, while for pitch and roll is presented on Table 4.7.

The results for the estimation of orientation in this case is not very good.
The maximum error of the azimuth change is up to 32.406°for Samsung Galaxy
S4, while the minimum error is up to 18.579°by HTC One S. This is possible to
happened because of the disturbance of magnetic field around the smartphone.
Because the smartphone is rotated quickly, the fusion of the digital compass
cannot be performed fast enough to handle the better estimation. It could be
easily observed in Samsung Galaxy S4 that the change nearly 140°happened
or in Wiko Highway that the estimation is noisier when the smartphone expe-
rienced the rotation rapidly. Even though so, the best estimation approach is
achieved by the HTC One S.

Rotation over X-axis (Pitch)

In this case, the smartphones were experiencing approximately 90°over X-axis
in the local reference. Thus, the change of pitch should be nearly 90°, while roll
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Table 4.8: Evaluation of Orientation Estimation (Pitch) of Rotation over
X-axis Case

Smartphone Averaged Absolute Error (degrees)

Wiko Highway 8.008
Samsung S4 4.855
HTC One S 9.821

Table 4.9: Evaluation of Orientation Estimation (Azimuth) of Rotation over
X-axis Case

Smartphone Standard Deviation (degrees)

Wiko Highway —
Samsung S4 —
HTC One S 8.214

should be constant at zero (0) and azimuth should be stable at unknown value.
But, they might not be zero or stable at all because the surface relative to the
ground of the smartphone change often. Nevertheless, the numerical evaluation
will be performed those three. The absolute error of pitch change is toward
90°, while, of course, roll’s absolute error should be toward 0°. The azimuth
should be evaluated by standard deviation. The graphical representation of the
performance of the three smartphones is depicted by Figure B.3 in Appendix.
The numerical evaluation of pitch is presented on Table 4.8, while for azimuth
is presented on Table 4.9 and roll is on Table 4.10. Some azimuth standard
deviation evaluations cannot be presented because of some reasons which will
be discussed after.

As can be seen in Figure B.3, the rotation of pitch heavily affected azimuth
and slightly influenced roll. As have discussed before, it is proved that the
change of the surface relative to the ground, in this case phone Z-axis to X-
axis, relates to the digital compass. Hence, some observations toward the
stability of the azimuth in this case were omitted because they were heavily
disturbed.

Even though the measurement toward pitch might be disturbed also, but
the change of the angle seemed to be indifferently not far from 90°. For those

Table 4.10: Evaluation of Orientation Estimation (Roll) of Rotation over
X-axis Case

Smartphone Averaged Absolute Error (degrees)

Wiko Highway 2.237
Samsung S4 5.818
HTC One S 4.640
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Table 4.11: Evaluation of Orientation Estimation (Roll) of Rotation over
Y-axis Case

Smartphone Averaged Absolute Error (degrees)

Wiko Highway 7.182
Samsung S4 4.828
HTC One S 2.042

Table 4.12: Evaluation of Orientation Estimation (Azimuth) of Rotation over
Y-axis Case

Smartphone Standard Deviation (degrees)

Wiko Highway 2.854
Samsung S4 —
HTC One S 8.214

three smartphones, their absolute error of angle change is around 8-10 degrees.
While the averaged absolute error of roll measurements were assured not to
be more than 6 degrees in this experiment. Thus, it could be inferred that the
filtering is good enough to handle the disturbance.

Rotation over Y-axis (Roll)

In this case, the smartphones were experiencing approximately 90°over Y-
axis in the local reference. Thus, the change of roll should be nearly 90°,
while pitch and azimuth should be constant at zero (0).But, they might not
be zero at all because the surface relative to the ground of the smartphone
change often. Nevertheless, the three angles should be evaluated by absolute
error. The absolute error of roll is toward 90°, while, of course, pitch and
azimuth’s absolute error should be toward 0°. The graphical representation
of the performance of the three smartphones is depicted by Figure B.4 in
Appendix. The numerical evaluation of roll change is presented on Table 4.11,
while for azimuth is presented on Table 4.12 and pitch is on Table 4.13.

Table 4.13: Evaluation of Orientation Estimation (Pitch) of Rotation over
Y-axis Case

Smartphone Averaged Absolute Error (degrees)

Wiko Highway 2.015
Samsung S4 0.583
HTC One S 4.640

As can be seen in Figure B.4, the rotation of roll affected the azimuth
also, but not as much as the pitch rotation. The reason was same, the change
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of the surface which relative to the ground, where in this case the change
is from Z-axis to Y-axis. Hence, similar to the previous measurements, the
azimuth observation of Samsung Galaxy S4 was omitted because the change
was dependent to the pitch change. However, the two other smartphones’
azimuth seemed not to be disturbed much about this surface change.

The overall result of this case was indifferently good, similar to the pitch
change. The averaged absolute value error regarding the roll change was mostly
at 7.182°by the Wiko Highway and in minimum at 2.042°by HTC One S. Thus,
it can be inferred that the filter was good enough in this case.

Summary

Overall, the Complementary can estimate the orientation sufficiently good,
while mostly having around single digit degrees error in best case of three
smartphone. Judging from the charts, the drift which often caused by gyro-
scope has been successfully minimized. However, it might performed badly if
there was any sudden considerable change in magnetic field around the smart-
phone. In future, it might be considered to have a constrain to handle this
kind of sudden change for the magnetometer.

4.2.2 Position Estimation by Kalman Filter

In this part, the position estimation will be evaluated graphically and by nu-
merical value similar to the previous orientation estimation if possible. The
experiment scenario consisted of 3 movements repetitively, each movement cor-
responds to a single axis of smartphone’s local reference. Those three move-
ments are 15 cm right and left side of the smartphone, 15 cm forth and back,
and 15 cm up and down. This scenario is performed in two approaches, the first
is the usage Kalman Filter without the Wi-Fi fingerprinting result (accelerom-
eter only) and the second is the Kalman Filter with the fusion of accelerometer
and Wi-Fi fingerprinting result.

Accelerometer Only

In this part, the estimations of position of two smartphones: Wiko Highway
and HTC One S will be presented. The Samsung Galaxy S4 results was not
displayed because it wasn’t available at the time of testing. The state estima-
tion here is performed by using the linear acceleration (accelerometer) data.
The result of the Wiko Highway is presented in Figure 4.2, while HTC One S
in Figure 4.3.

From both figures of the results, it is proved that using accelerometer only
didn’t make any good estimation of position. This was because the sensor
data from the linear acceleration were horribly noisy, which can be seen on
the appendices: Figure C.1 for Wiko Highway S and Figure C.2 for HTC
One S. This horrible noise might be only a small value of acceleration in the
observation. But, when it was integrated two times to acquire the position
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(a) (b)

(c)

Figure 4.2: The result of position estimation in X-axis (a), Y-axis (b), and
Z-axis (c) by Kalman Filter of Wiko Highway, case: using only Linear

Acceleration sensor data

(a) (b)

(c)

Figure 4.3: The result of position estimation in X-axis (a), Y-axis (b), and
Z-axis (c) Kalman Filter of HTC One S, case: using only Linear Acceleration

sensor data
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estimation, the estimation wil accumulate this error value on each timestep of
estimation. Hence, the error could grow into several meters in a short time.

Accelerometer with Wi-Fi Fingerprinting

In this part, the same two smartphones result of Kalman Filter using the Wi-
Fi fingerprinting and linear acceleration sensor data will be presented. The
results of the position estimation are presented in Figure 4.4 for the Wiko
Highway S and Figure 4.5 for HTC One S.

(a) (b)

(c)

Figure 4.4: The result of position estimation in X-axis (a), Y-axis (b), and
Z-axis (c) Kalman Filter of Wiko Highway, case: using only Linear

Acceleration sensor data

From Figure 4.4, we can see that Wi-Fi positioning affected the position
estimation heavily. The result of Wi-Fi fingerprinting give an inaccurate posi-
tion toward the smartphone position when the smartphone moved. When the
smartphone only moved about 15 cm, the Wi-Fi fingerprinting resulted in a
jump of 3 m or no movements at all.

Hence, it was still far from accurate. The movement in all the three axis is
merely about 15 cm, but the 3D position estimation was not good enough to
achieve that precision. The influence of the linear acceleration existed also, but
not too visible. The most notable contribution by the linear acceleration can
be seen in the Z-axis position estimation subfigure, because the fingerprinting
method only took a single value of Z (1.25 m) in the offline phase. In the Z-axis
position estimation, the fluctuation was only about a few milimeters, which is
nearly 100 times smaller than actual movement of 15 cm. In the larger scale
error of other estimation, for example in the X-axis or Y-axis, this influence
of the acceleration cannot be seen because of the bigger effect of the Wi-Fi
fingerprinting. The more detailed observation data can be seen in appendix:
Figure C.3 for the linear acceleration and Figure C.4 for the Wi-Fi positioning.
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(a) (b)

(c)

Figure 4.5: The result of position estimation in X-axis (a), Y-axis (b), and
Z-axis (c) Kalman Filter of HTC One S, case: using only Linear Acceleration

sensor data

From Figure 4.5, similar to the result from Wiko Highway, HTC One S
position estimation also experienced the same heavy influence from Wi-Fi po-
sitioning observation. And, indeed, it was also far from accurate. Even though
so, a better estimation in Z-axis than the Wiko Highway was presented there.
It can be inferred from the estimation that the smartphone moved up by 1
cm, then moved back at the same position given some delays, and descends by
2 cm, then moved back again at the same position. However, it was still far
from the desired outcome. The more detailed observation data can be seen in
appendix: Figure C.5 for the linear acceleration and Figure C.6 for the Wi-Fi
positioning.

Summary

By the two approaches of each smartphone, it can be concluded that both
the options of using accelerometer only and the fusion of accelerometer and
Wi-Fi fingerprinting result were not sufficient to produce good estimation of
position of a smartphone. The accelerometer observation cannot give stable
acceleration, while the Wi-Fi fingerprinting give far measurement from actual
position. Thus, the movement of smartphone by hand, which is necessarily
have to be precise up until the centimeter precision, cannot be observable
using this method.
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4.3 Object Pointing by Smartphone

Initially, the proposed method to evaluate both estimation of position and
orientation is by moving the smartphone to desired position while rotating it
to a designated object. This scenario needs the two estimation to be worked
simultaneously and yields precise results. However, because of the insufficient
result of position estimation, this scenario is modified.

The new proposed scenario is an object pointing scenario without position
estimation. This scenario counted heavily on the orientation estimation while
minimizing movement of the smartphone to point at several objects. Thus,
the position of the smartphone must be as stable as possible, if not, the rota-
tion when pointing an object would be slightly slanted and become imprecise
because of difference in position.

The new scenario is composed of two different parts with different aims.
The aim of the first part is to assure that the orientation estimation is stable
after several random rotations. The aim of the second part is to measure the
orientation estimation of the smartphone is approximately correct mathemat-
ically. The details of those two scenarios will be explained after.

The similarity of these two scenarios is the starting point. The smartphone
will be hold by hand at a fixed position. Then, aided by a laser pointer attached
to the smartphone, the smartphone will be rotated around to point at a desired
object. The desired objects are presented in Figure 4.6 for the first scenario
and Figure 4.7 for second scenario.

(a) (b)

Figure 4.6: The objects for field evaluation: first scenario

4.3.1 Object Pointing Scenario 1

After pointing at an object, the smartphone and the laser pointer will be hold
as stable as possible in that position and orientation for more than 5 seconds.
Afterwards, the smartphone will be moved and rotated randomly as much as
possible for several seconds. Next, the smartphone will be returned in the
same position and orientation as close as possible as previous when pointing
at the same object. Finally, the smartphone will be held again for more than
5 seconds. To get the closest value of the orientation estimation before and
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Figure 4.7: Object for the field evaluation: second scenario

after movement, the values of orientation of the predescribed 5 seconds will
be averaged. This way, the orientation before and after movement should be
approximately equal. Thus, the quality of the orientation estimation when
pointing an object can be assured.

The evaluation for object (a) and (b) are depicted in Figure 4.8 and Fig-
ure 4.9 respectively, and summarized in Table 4.14. It can be seen in the both
figures, the estimations of orientation in the end were changing into values sim-
ilar to the beginning after several intentional rotations. However, as calculated
mathematically, it seemed that the estimation values between the beginning
and the end has error around 10 degrees, which can be inferred has around 35
cm error if the object is placed 2 m away from the smartphone. This might be
happened because inconsistency of hand when holding the smartphone (human
error) or the error from the estimation itself, which could be the disturbance
of magnetic field.

Figure 4.8: Orientation Estimation in pointing object (a) of Scenario 1

4.3.2 Object Pointing Scenario 2

The next step is a little bit different from the previous scenario. From the
starting point, the smartphone will be held for more than 5 seconds. Then,
the smartphone will be rotated along the local reference axes, most probably
the azimuth and the pitch. Then, after the smartphone points to the desired
object, it will be held for more than 5 seconds. Those 5 second time range is
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Figure 4.9: Orientation Estimation in pointing object (b) of Scenario 1

Table 4.14: Evaluation of Orientation Estimation in Pointing Object of
Scenario 1

Smartphone
Estimated Angle (degrees)

Roll Pitch Azimuth

Beginning End Beginning End Beginning End

Object A −6.392 −11.380 7.477 9.204 −7.821 −18.629
Object B 0.559 5.012 8.386 10.828 −16.529 −5.771

to make sure the estimation have reached the stable orientation and to wipe
out the possible noise by averaging. Note that the position of the object is
also fixed and have been determined before.

By the fixed position of the smartphone and the object, the angle of the
rotation can be calculated mathematically. Then, the quality of the estimation
will be measured by the orientation change of the angles. These changes of
angles should be approximately equal to the calculated mathematical rotation.

The object of this test only differs in the height compared with the smart-
phone position. Thus, the angle which should be different is the pitch. So,
the only considered rotating angle in this test is the pitch. So, the pitch dif-
ference between the beginning and the end of the orientation estimation will
be compared with the actual angle between the smartphone and the object.
The sequences of the orientation estimation is depicted in Figure 4.10 and the
angle comparison is summarized in Table 4.15.

Table 4.15: Evaluation of Orientation Estimation in Pointing Object of
Scenario 1

Smartphone Pitch angle (degrees)
Estimated Difference Actual Difference Error

Object A 16.002 15.255 0.7470.7470.747

From the result of Table 4.15, the estimation performed nicely by only leav-
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Figure 4.10: Orientation Estimation in pointing object of Scenario 2

ing 0.747°difference. In this aspect, in can be concluded that the orientation
estimation gave good impression in locating object compared with mathemat-
ical computation.

4.3.3 Summary

To sum up, in the real field test, the estimation of orientation at fixed position
worked sufficiently to locate some objects. But, still, there are several errors
in consistency that should be taken into account because of the disturbance of
hand or the magnetic field. However, it was still considerably dependable by
mathematical evaluation in the case of pitch change.
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Chapter 5

Conclusion

In this chapter, a new study to approach to estimate both 3D position and
orientation using the fusion of sensors of smartphone has been presented. The
foreseen application of this study is to use the smartphone as a pointing device
to detect interesting object inside a room. The fusion is considered because of
the noisy and erroneous sensor raw data, thus the sensors alone would not be
sufficient to produce adequate estimation of indoor positioning. Moreover, the
desired accuracy of the positioning should be as precise as possible, and the
errors of position should be in centimeter range. The proposed method is using
the Complementary Filter and Kalman Filter to estimate the orientation and
position respectively. To aid the position estimation, Wi-Fi fingerprinting is
assigned as the observation for the position, even though it couldn’t reach an
accuracy as close to centimeter precision. To define how good the estimations
are, the stability of the filters are measured first through simple rotations and
movements. After that, the smartphones will be used to point several objects
in a room for the field test.

From the 4 cases in the orientation estimation evaluation, the complemen-
tary filter showed that it could minimize the errors which produced by the
gyroscope and the digital compass (magnetometer and gravity, which is de-
rived from accelerometer). However, the error was only can be reduced into
one-digit value statistically for each smartphone. Thus, this quality of estima-
tion might draw some problem in the field test.

Unfortunately, the Kalman Filter, even by the aid of Wi-Fi, didn’t perform
well enough. The position estimation of Kalman filter resulted in the position
error because of the Wi-Fi fingerprinting impact. The estimation only suc-
ceeded in estimating position regarding available RSSI signal. Even though
small movements were detected and estimated, the position still returned to
observed position from the Wi-Fi. Position estimation using Kalman Filter
without Wi-Fi fingerprinting result had also been performed. But, the results
became terrible because of the double integration error from the acceleration.
The noise from the accelerometer-derived linear acceleration was the cause of
position error until several meters as if the smartphone was not moving at
all. Consequently, the estimation didn’t show any meaningful result when the
smartphone was moved in the range of several centimeters.

35
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Thus, the field test scenario were adapted to only measure the quality of
the orientation estimation. The field test result proved that the estimation
for the orientation was slightly stable enough and mathemtically adequate to
point at an object. Hence, it was feasible to use smartphone as a pointing
object in when the user stood at correct position.

This study only concentrates on using the Complementary Filter and Kalman
Filter within the Inertial Navigation System (INS) sensors of the smartphone
plus the Wi-Fi fingerprinting. The result of this study might be different by
several modifications and using other methods. It might be considerable to use
additional sensors such as bluetooth or light radar to refine the precision of the
estimation. However, it should be considered also about how the smartphone
can handle all the sensors provided. Similar to the additional observations, the
estimation methods might be modified as well. Several methods such as Wi-Fi
triangulation, Particle Filters, and some variations of Kalman Filter can be
counted also to do the estimation. Yet, conditions of the smartphone such as
battery and the computation power should be seen as parameters to be com-
pensated. But, it might be feasible to do these modification as the smartphone
development continues to be more sophisticated.



Bibliography

[1] U. Shala and A. Rodriguez, “Indoor positioning using sensor-fusion in
android devices,” 2011.

[2] O. J. Woodman, “An introduction to inertial navigation,” University of
Cambridge, Computer Laboratory, Tech. Rep. UCAMCL-TR-696, vol. 14,
p. 15, 2007.

[3] J. Doscher and M. Evangelist, “Accelerometer design and applications,”
Analog Devices, vol. 3, 1998.

[4] “Ieee standard specification format guide and test procedure for coriolis
vibratory gyros,” IEEE Std 1431-2004, pp. 1–78, Dec 2004.

[5] D. Hovde, M. Prouty, I. Hrvoic, and R. Slocum, “Commercial magnetome-
ters and their application,” Optical Magnetometry, p. 387, 2013.

[6] T. Ozyagcilar, “Implementing a tilt-compensated ecompass using ac-
celerometer and magnetometer sensors,” Freescale semiconductor, AN,
vol. 4248, 2012.

[7] S. Ayub, A. Bahraminisaab, and B. Honary, “A sensor fusion method for
smart phone orientation estimation,” in Proceedings of the 13th Annual
Post Graduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting, Liverpool, 2012.

[8] B. Ando, S. Baglio, C. O. Lombardo, and V. Marletta, “An advanced
tracking solution fully based on native sensing features of smartphone,”
in Sensors Applications Symposium (SAS), 2014 IEEE. IEEE, 2014, pp.
141–144.

[9] G. Welch and G. Bishop, “An introduction to the kalman filter,” Chapel
Hill, NC, USA, Tech. Rep., 1995.

[10] O. Costilla-Reyes and K. Namuduri, “Dynamic wi-fi fingerprinting indoor
positioning system,” in International Conference on Indoor Positioning
and Indoor Navigation, vol. 27, 2014, p. 30th.

[11] Z. Chen, H. Zou, H. Jiang, Q. Zhu, Y. C. Soh, and L. Xie, “Fusion of
wifi, smartphone sensors and landmarks using the kalman filter for indoor
localization,” Sensors, vol. 15, no. 1, pp. 715–732, 2015.

47



48

[12] W. Kang, S. Nam, Y. Han, and S. Lee, “Improved heading estimation for
smartphone-based indoor positioning systems,” in Personal Indoor and
Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International
Symposium on, Sept 2012, pp. 2449–2453.

[13] C. Huang, G. Zhang, Z. Jiang, C. Li, Y. Wang, and X. Wang,
“Smartphone-based indoor position and orientation tracking fusing inertial
and magnetic sensing,” in Wireless Personal Multimedia Communications
(WPMC), 2014 International Symposium on, Sept 2014, pp. 215–220.

[14] N. Kothari, B. Kannan, and M. B. Dias, “Robust indoor localization on a
commercial smart-phone,” 2011.

[15] “Sensor manager | android developers.” [Online]. Avail-
able: http://developer.android.com/reference/android/hardware/
SensorManager.html

[16] “Sensors motion | android developers.” [Online]. Available: http:
//developer.android.com/guide/topics/sensors/sensors\_motion.html

[17] W. Elmenreich, “Sensor fusion in time-triggered systems,” 2002.

[18] B. Li, J. Salter, A. G. Dempster, and C. Rizos, “Indoor positioning tech-
niques based on wireless lan,” in LAN, First IEEE International Confer-
ence on Wireless Broadband and Ultra Wideband Communications. Cite-
seer, 2006.

[19] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Journal of Fluids Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[20] S. Colton and F. Mentor, “The balance filter,” Presentation, Mas-
sachusetts Institute of Technology, 2007.



Appendix A

Wi-Fi RSSI Capture Sample

Table A.1: Captured RSSI by Wiko Highway S (sample)

Position (x,y,z) Access Points
AP1 AP2 AP3 AP4 AP5 AP6 AP7

pA(0.5,0.5,1.25) 0 -86 -80 -65 -79 -72 -65
pB(3,0.5,1.25) -88 -88 -77 -62 -69 -69 -80
pC(5.5,0.5,1.25) -85 -84 -67 -65 -66 -67 -65
pD(0.5,2,1.25) 0 -86 -64 -65 -65 -64 -65
pE(3,2,1.25) 0 -86 -69 -69 -73 -68 -69
pF (3,2,1.25) 0 -86 -75 -69 -79 -75 -69
pG(0.5,3.5,1.25) -86 -86 -66 -69 -67 -67 -68
pH(3,3.5,1.25) -86 -86 -60 -67 -59 -59 -67
pI(3,3.5,1.25) -86 -86 -77 -68 -77 -76 -68
pJ(0.5,5,1.25) -86 -86 -67 -66 -71 -71 -66
pK(3,5,1.25) -86 -86 -65 -67 -62 -66 -72
pL(3,5,1.25) -86 -86 -69 -74 -67 -71 -73

Table A.2: Captured RSSI by Samsung Galaxy S4 (sample)

Position (x,y,z) Access Points
AP1 AP2 AP3 AP4 AP5 AP6 AP7

pA(0.5,0.5,1.25) -89 -83 -89 -86 -80 -89 -89
pB(3,0.5,1.25) -89 -86 -89 -86 -76 -89 -89
pC(5.5,0.5,1.25) -89 -86 -89 -86 -79 -89 -89
pD(0.5,2,1.25) -89 -86 -89 -86 -80 -86 -89
pE(3,2,1.25) -89 -86 -89 -86 -75 -89 -89
pF (3,2,1.25) -89 -89 -89 -86 -78 -89 -89
pG(0.5,3.5,1.25) -89 -89 -89 -86 -71 -89 -86
pH(3,3.5,1.25) -89 -86 -89 -86 -77 -89 -89
pI(3,3.5,1.25) -89 -89 -89 -86 -73 -89 -86
pJ(0.5,5,1.25) -89 -89 -89 -86 -71 -89 -86
pK(3,5,1.25) -89 -89 -89 -86 -74 -89 -89
pL(3,5,1.25) -89 -83 -89 -86 -74 -89 -86
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Table A.3: Captured RSSI by HTC One S (sample)

Position (x,y,z) Access Points
AP1 AP2 AP3 AP4 AP5 AP6 AP7

pA(0.5,0.5,1.25) -72 -66 -72 -72 -72 -72 -67
pB(3,0.5,1.25) -70 -59 -71 -71 -72 -71 -59
pC(5.5,0.5,1.25) -71 -72 -71 -75 -80 -77 -72
pD(0.5,2,1.25) -76 -63 -75 -76 -77 -76 -63
pE(3,2,1.25) -65 -73 -65 -63 -66 -64 -73
pF (3,2,1.25) -65 -62 -67 -65 -66 -65 -63
pG(0.5,3.5,1.25) -68 -72 -69 -67 -67 -67 -73
pH(3,3.5,1.25) -66 -71 -65 -65 -65 -65 -71
pI(3,3.5,1.25) -73 -66 -73 -72 -74 -73 -66
pJ(0.5,5,1.25) -65 -65 -63 -63 -63 -63 -66
pK(3,5,1.25) -82 -76 -85 -83 -83 -82 -76
pL(3,5,1.25) -61 -72 -63 -62 -62 -61 -72



Appendix B

Complementary Filter Result

(a) (b)

(c)

Figure B.1: The result of Complementary Filter, case: No rotation (a) Wiko
Highway (b) HTC One S (c) Samsung Galaxy S4
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(a) (b)

(c)

Figure B.2: The result of Complementary Filter, case: 90° Rotation over
Z-axis (a) Wiko Highway (b) HTC One S (c) Samsung Galaxy S4

(a) (b)

(c)

Figure B.3: The result of Complementary Filter, case: 90° Rotation over
X-axis (a) Wiko Highway (b) HTC One S (c) Samsung Galaxy S4

[This page is intentionally left blank]
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(a) (b)

(c)

Figure B.4: The result of Complementary Filter, case: 90° Rotation over
Y-axis (a) Wiko Highway (b) HTC One S (c) Samsung Galaxy S4





Appendix C

Kalman Filter Observation Data

(a) (b)

(c)

Figure C.1: The linear acceleration observation of Kalman Filter of Wiko
Highway in X-axis (a), Y-axis (b), and Z-axis (c), case: using only Linear

Acceleration sensor data
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(a) (b)

(c)

Figure C.2: The linear acceleration observation of Kalman Filter of HTC
One S in X-axis (a), Y-axis (b), and Z-axis (c), case: using only Linear

Acceleration sensor data

(a) (b)

(c)

Figure C.3: The linear acceleration observation of Kalman Filter of Wiko
Highway in X-axis (a), Y-axis (b), and Z-axis (c), case: fusion of Linear

Acceleration sensor data and Wi-Fi fingerprinting result
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(a) (b)

(c)

Figure C.4: The Wi-Fi positioning result observation of Kalman Filter of
Wiko Highway in X-axis (a), Y-axis (b), and Z-axis (c), case: fusion of Linear

Acceleration sensor data and Wi-Fi fingerprinting result

(a) (b)

(c)

Figure C.5: The linear acceleration observation of Kalman Filter of HTC
One S in X-axis (a), Y-axis (b), and Z-axis (c), case: fusion of Linear

Acceleration sensor data and Wi-Fi fingerprinting result
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(a) (b)

(c)

Figure C.6: The Wi-Fi positioning result observation of Kalman Filter of
HTC One S in X-axis (a), Y-axis (b), and Z-axis (c), case: fusion of Linear

Acceleration sensor data and Wi-Fi fingerprinting result
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