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Abstract

We study a local linearization approach put forward by Ramermrovide an approximate vari-

ance for predictions in partial least squares regressi@ndte and correct some problems with
the original formulae, study the stability of the resultaggproximation using some simulations,
and suggest an alternative method of computation using arpsric bootstrap. The alterna-

tive method is more stable than the algebraic approximatiahis faster when the number of
predictors is large.

Keywords. multivariate calibration, partial least squares regm@ssinean squared prediction
error, linearization, parametric bootstrap

1. Introduction

Attaching a variance to the predictions made by a partiatlsguares (PLS) regression model
is not straightforward because the factor scores on whielitlear predictor is based are them-
selves nonlinear functions of the data. Various approxématthods have been proposed, see
Zhang and Garcia-Munoz [1] for a recent review, includindeaist two diferent approaches
that involve local linearizations of the prediction forraul The method of Denham (Denham
[2], Serneels et al. [3], and Phatak et al. [4]) expands atfmibbserved value of the dependent
variable. A more recent method, due to Romera [5] expandatdhe observed variances and
covariances of all the variables in the data. This is fund#ally different from Denham’s ap-
proach in that it takes into account the variability in thedtictors as well as that in the response
variable. In trying to implement this latter approach ag p&ia comparative study of method-
ologies, we discovered some problems with the formulaegntesl in Romera [5]. The current
paper corrects these formulae, studies their stabilitgl, arggests an alternative computational
approach using a parametric bootstrap that is more stablesaiso faster when the dimension
of the explanatory variables is large.
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2. Theory

Suppose we have calibration and prediction sets of datarggakfrom the following linear
models

Vo = BotXdB+e, (1)
Yp Bo+ XpB + €, (2)

wherey. andy, are calibration and prediction set response variablegn x k) and>'(p (np xK)

are calibration and prediction explanatory variable neasj3, andg (k x 1) are intercept and
regression cdécients, anc is the error term that has a normal distribution with meaio zerd
varianceo2. The dot on, for examplg/, denotes an un-centered variable, and its corresponding
centered variable ig.. To apply PLS regression to such data Romera [5] employstangonal
scores algorithm.

2.1. Orthogonal Scores Algorithm

The orthogonal scores algorithm by Martens and Naes [6] iplsinstable and widely used.
With the number of factors chosen to &ethei-th step of the algorithm gives the results for the
i-th factor, where = 1,--- ,a.

2.1.1. Calibration
The algorithm starts from the centered calibration dataimat., = Xe.

wi = XgYe

ti = Xgw;

pi = Xgti/(tt)
a = yi/(tit)

Xew = Xg—tipf

In thei-th step of the algorithm, the column vecter (k x 1) is the weight vector defined by the
covariance betweeX. andy.. Thenx ascore matrixr = ( t; ty --- ta)is orthogonal.
The k x a weight matrix isW = (w; wy --- Wy ), and thek x a x-loading matrix is
P=(p1 p2 -+ Ppa)- The y-loadings vectoq is defined as ama x 1 column vector. In
the first step, ifw; were scaled to be of length one, the algorithm would becomerstable,
and it would be easier to compare scores, but the normalizatbuld not change the regression
codficient estimate. Helland [7] shows that the PLS1 regressiefficient estimates can be
written as A
B=W(FP'W)q. ®3)

The scores can also be writtenTas: X W (P’W)™L.

2.1.2. Prediction

A predictionf/p can be produced via the scorexyf (1 x K). In contrast to the calibration,
wheret; is a column ofT, the predictor scorg, is a row vectorf, = ( t, tp, --- t,, ), and
thet, are computed recursively as

Iy Xpy Wi
Xp., = Xp—lp pi/
with Xp, = Xp — X. Equivalentlyt, = xpW(P'W)~1. The prediction is:/p =y+ tpa.
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2.2. A Random Sampling Model for the Data

We suppose that thé&k ¢ 1) x 1 vectorc = ( y X )/, comprising dependent and predictor
variables from one case from either the calibration or mtash set, is randomly sampled from
a distribution for which the covariancepfindxisy =( y1 y2 --- v ), andthe variance
matrix ofx is X with elementsri;, 1 <i, j < k. These parameters can be put ik(la+ 3)/2 x 1
vectorg = (' vecut(X) ), wherevecut denotes an operator that returns a column vector
whose elements are taken in order along the rows, includiagliagonal elements, from the
upper triangular part of a symmetric matrix. Let the 1 vectors,, = X(yc and thek x k matrix
S = XX be the sample sums of squares and products for the calibisgtio Then we denote
byb = ( Sy Vecut (Sx)’ " the vector random variable made up of these quantities, gnd b
by the actual observed value of the random variable for a pdaticalibration set. The random
variableb is an unbiased estimator af £ 1)¢.

2.3. Romera’s Approach

Romera [5] explores the dependence of regressiofﬁctmtsﬁ on b via the y-loadingg.
The estimated y-loadings can be expanded about the obseaezlb, of b according to the
first-order Taylor expansion

b ~ O, + (b = bo).

The approximate variance of the estimated y-loadings §Jar(JVar (b)J’, where the Jacobian
matrixJ (axk(k+3)/2) is the first derivative off with respect td evaluated albo, J = (9q/db),,, .
Romera [5] then usg8 = Wq which gives Var) = WVar ()W’, so the approximate variance
of xpB becomes

Var (xpﬁ) ~ XpWJVar (b)J'W'x,.

However, there are problems with V#)(= WVar (@W’. As shown in Equation B =
W(P'W)~1q for the orthogonal scores algorithm, and ot Wq, which is the result of the
PLS1 orthogonal loadings algorithm. There is also a secoobl@m, in that the weight matrix
W is dependent oh, soW cannot be treated as fixed.

2.4. Corrected Formulae

Linearizing aroundby we have the following approximate formula for the varianf:&;;ii’ for
fixedxp

Var (xpB) ~ Xo( 2 o, Var () ), = Vi @

To calculate this we need expressions for \@rgnd for Gﬁ/éb)bo. If we assume that the

defined in Section 2.2 is normally distributed, both theribstion and the variance di are

known from standard normal theory. Appendix A gives theriigtion of b. The algebra for
(0B/30)p, is in Appendix B.

2.5. Estimating Var (f}) by a Parametric Bootstrap

An alternative approach that avoids all the algebra is tcaysarametric bootstrap to estimate
Var (). For them-th bootstrap sampler(= 1,..., M), a sum of squares and products matrix is
drawn from the Wishart distribution in Appendix A abyg, is extracted from it. Now we need
to calculatq@f,: from by, rather than fronX. andy.. The formula for doing this were given by

Romera [5] and are presented in Appendix C. The variancegoéssion cofficients from the
3



bootstrap algorithm is Vagl) = -1 -1 ¥M . (8" _ B)(Br - B), whereB = & M | B and the
factor -1 adjusts for the bias in the bootstrap (See Efron and Tibshig}). The approximate

variance o8 is

Var (xB) ~ XpVar (BB)X;) = V. (5)

3. Numerical Experiments

In this section, we use simulation studies to investigate tte linearization method and
its bootstrap version perform underfigrent conditions. Our purpose is not to carry out an
extensive simulation study, but to demonstrate some of thyegsties of the method using a few
simple simulations. Each of thé repetitions in the simulation generates a calibration Esize
n = 200 and a prediction set of sing = 200 using the models in Equations (1) and (2) but with
€ set to zero in Equation (2). Taking the additive noise congmbout of the predictions enables
the performance of the variance formulae in Equations (d)(&hto be seen more clearly. The
explanatory variables are independently and normallyridiged with mean 0 and variances
(o2 o3 --- o2 )in both calibration and prediction sets. The number of Pa&dfs is
fixed to bea in each of the repetitions. Of course an extensive simulagtady would need to
explore both correlated predictors and tlfieet of extrapolation, but our purpose here is just to
demonstrate some of the properties of the methods invéstigesing a few simple simulations.

For each of theN x n, predictions in the simulation we calculate a squared ptiedi@rror
and the estimated variancés andVg given by Equations (4) and (5). These variance formulae
neglect the contributions from the variationsohndy over repeated drawing of the calibration
set. The contribution fron, 2/n, was added to each of the estimated variances, so that the Lin
variance formula becomeg/n+ V,, and the Linb variance formulais?/n + Vg. In practice of
course one would need to use an estimaterfothe rationale for using the known value here is
to focus on the performance ¥f andVg. The contribution fronk is of orderk/n? and can be
neglected for the examples considered here.

To examine the performance of Lin and Linb we plot observashsed error and the two
estimated variances against eithgror Vg after taking averages in 20 bins defined by the x-
axis variable. The bins were set up using percentage pofrasscaled chi-squared random
variable with scale and degrees of freedom chosen so tHasitéwo moments match those of
the observed values of eithgf or V. This gives roughly equal numbers of observations per
bin.

We begin by studying two simulations with= 2 anda = 1. In the first the linearization is
stable. In the second the linearization approximationgrer$ badly.

3.1 Smulation: k=2,a=1,02=2502=1,0=p81 = 1,82 = 0,02 = 0.25, N = 10000

The first predictor variable, which has a non-zero regressasficient, has a much bigger
variance than the second, which has a zerdfment. Not surprisingly, PLS works rather well,
and both Lin and Linb also work well (Figure 1). The plot agaMs looks equally good. Figure
2 shows how the estimated regressionftiokents change with. j3; is always close to 1 while
B> depends on two elementsofn a linear fashion.
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Figure 1: PLS estimated variances and actual squared poedirror versus/,. k = 2,a = 1, a-i = 25, o-g =1,
Bo=p1=1,82=0,02 = 0.25. SPE: squared prediction errgp € Yp)2. Lin: Vi + o2/n. Linb: Vg + o2/n.
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Figure 2: PLS3 against whenk = 2,a= 1,03 = 25,03 = 1,50 = f1 = 1,42 = 0,02 = 0.25.



3.2. Smulation: k=2,a=1,02=2505=16,=0,80=p2=1,02=0.25N = 10000

This is a more dficult case for PLS; the first predictor has the larger varidntéas no con-
tribution to the regression, whereas the second, with alsmalriance, is linked to the response
variable. The large variance of the first predictor means e¢llan a small sample correlation
with the response variable is enough to gain it weight in th& Rictor. The fact that the sign
of B switches along with the sign of this correlation leads toliheakdown of the linearization
approximation. Figure 3(a) and Figure 3(b) show that bothdrid Linb fail, though in dferent
ways.

Figure 4 and Figure 5 show why Lin fails. In Figure 4 we can $ee the distribution of; as
b varies is bimodal, with the mode switching as the signb;odindb, change. In Figure 5 we
see how the local linearization method breaks down for ohieresion set. The blue dotted lines
were computed by changitg and recalculating using the PLS algorithm. They represent how
B1 and, vary with small changes df;. The red dashed lines are the linear approximations to
the relationships between the estimated regressiofficieats andd;. The are fine locally, but
only over a very narrow range.

The failure of Linb is less dramatic. It underestimates SBEtWo reasons: the bootstrap
underestimates the actual variance offthand it ignores a contribution from the bias in the PLS
B which is not negligible for this example. The underestimatf the variance of the predictions
can be explained by considering Figure 4, and in partichlatap left hand panel. The repeated
training sets are generated from a joint distribution f@pense and predictor variables in which
b, is centred on zero. It can be seen from Figure 4 that the iegdi values will have a
bimodal distribution with equal weights in each mode. Thetbtyap estimation procedure for
any particular training set will be centred on the obsenvetbr that set, which in general will
not be zero. The bootstrgh values will usually still have a bimodal distribution butvaevith
unequal weights in the two modes and consequently with smediriance than that of th&’s
in the repeated training sets. This accounts for about 20&eofliscrepancy between Linb and
SPE. Therestis due to a substantial bias in thef?.LS

33. Smulation: k=3,a=20%2=03=2505=1,80=p1=p2=1p3=0 02 =025
N = 10000

The previous simulation was deliberately chosen to béfacdit case for PLS and it is perhaps
not surprising that the linearization fails. Unfortungthbwever it can also fail in what appear
to be innocuous examples. In this simulation we have twoipr@dvariables with big variances
and strong correlations with the response, and a third gi@divith much smaller variance and
no correlation. The bootstrap version, Linb, works well, e algebraic version, Lin, fails badly
for some calibration sets. Figure 6 shows, for one of theBbration sets, how the cdiécient
vector3 changes withb, (the sum of squares of the first predictor) in the vicinitytoé bbserved
value. As before, the linear approximation has much tooowag range of validity and leads to
a gross overestimation of the variancegof

3.4. Smulation: k=24,a=7, O'i = 64, 0'3 = 49, 0'5 = 36, 0'[21 = 25, 0'523 = 16, o-é =9, o-% =4,
O-g == 0—54 = 1|ﬂ0 = 1|ﬂl = 8|ﬂ2 = 7|ﬂ3 = 6!ﬂ4 = 5|ﬂ5 = 4|ﬂ6 = 3|ﬂ7 = 2|
ﬂ8= =ﬂ24= 1,0’?20.25, N 2500.

The simulations so far have involved very small numbers efifotor variables. This one has

k = 24 variables and-g/ factors. Most of the x-variability and most of the predietpower is

in the first 7 variables so this is in some sense an easy prdbleRLS. The algebraic method,
6
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Lin, breaks down as before, giving extreme overestimatesoance for a small proportion of
calibration sets. The bootstrap version, Linb, works reabty well, as can be seen from Figure
7. It slightly underestimates the average squared errepgotally at the top end of the scale.
This time the discrepancy is all due to the neglected bias;bttotstrap makes a good job of
estimating the variance @ Interestingly, with N reduced to 500, which is large enotmbive
reproducible results, Linb is slightly faster to computarifin for this example. This is because
the computations for Lin involve matrices of side« 1)? x (k + 1)?, which is 625x 625 with

k = 24. For much larger problems, Linb is a good deal faster thanNot much &ort has been
put into optimising the code for either calculation, so adetl comparison of timings would not
mean a lot, but it does seem reasonable to conclude that &ipiobably preferable to Lin on
grounds of speed as well as stability.

3.5. A Brief Discussion about the Use of a Real Data Set

At this point in the paper one might expect to see the methbgdgrated on a real data set.
We have applied Linb to real data sets whthp to 100. It gives plausible looking variances in a
reasonable amount of computing time. Apart from this theneot much to be learned. With a
fixed calibration set it is not possible to evaluate the pentmnce of the method. It would be like
trying to evaluate the correctness of, for example, the tdarfor the variance of a sample mean
using a single fixed data set. One might do something with Eagpitting, but it would require
an enormous data set to get any useful results.

4. Estimating the Missing Components of the Error

Equations (4) and (5) only estimate the variance in the ptiedis that is a consequence of
the variance ifB. There are several more contributions to the total erresehcome from the
variance iry andx, the observation error that was omitted from $faén our simulations, and the
bias that results from using PLS rather than multiple limegression. One possible approach
to estimating the joint contribution of all of these would toeuse either cross-validation or a
separate test set to find an empirical estimate of the avgnagictive mean squared error and
subtract from this the averadfg (or V. ) for the samples predicted. The remainder (truncated at
zero should it turn out to be negative) is an estimate of tine slithe missing components, and
could be added to the sample-specificto quantify the uncertainty in any future predictions.
The main limitation of this approach is that it applies therage squared bias to all predictions,
whereas the bias will in general dependxgn However, if we had enough data to estimate this
dependence we could have used multiple regression ratiePLts in the first place, so it seems
unlikely that we can do any better than this in general.

5. Conclusion

Although we have been able to provide a corrected versioroai€ta’s linearization method,
we are forced by the simulations to the conclusion that irédbpbly not a good idea to use this
algebraic version in practice. In the simulations it onlysféor occasional calibration sets, but
when it does fall, it fails badly. For a single real data setr¢his no simple way of checking
whether this is one of the bad cases, and so the risk thatrtbarlapproximation is very poor
will always be present. The bootstrap version, as well asgogiuch easier to implement, is also
more stable and performs reasonably well in the, admittediy limited, simulations. It is a
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variance formula, so neglects bias, but at least the avesquggered bias can be accounted for as
described in the previous section.

Appendix A. The Distribution of b

If we assume the random variabte= ( y X )’ defined in Section 2.2 has a multivariate
normal distribution with variance matrik, then the sample sums of squares and products matrix,

G = ( Zyz S ) based on a sample of sirehas a Wishart distribution with parametefrs

andn-1. Magnus and Neudecker [9] gives the variance of the coluauked vectowec(G),
Var{vec (G)} = n(l 42 + K) (¥ @ ¥),

wherevec denotes the operator that extracts columns from a matrixrto & column vector, and

® denotes the Kronecker produét.is a commutation matrik = Z“" Zjl’“'l‘ Mi; ® M’ Mij is

a (1+ k) x (1 + k) square matrix with thei (j)-th element equal to 1 and all other elements being
zero. Var p) can be obtained by selecting relevant elements fron{wée(G)}, because all the
elements ob belong tovec (G).

Appendix B. The derivative of B with respectto b

In this section, we present the algebra needed to calcuﬂﬁl@lﬁ)bo for use in the linearized
approximation presented in Equation (4). First we defineesnotation.

Derivative Let g be anl x 1 column vector, angt be anr x 1 column vector. The derivative
dg/dv is anl x r matrix with the (; j)-th element defined a&;/dv;.

Operators The operatodiag extracts the diagonal terms from a symmetric matrix as anegolu
vector. The operatorecut returns a column vector whose elements are taken in ordeg éhe
rows, including the diagonal elements, from the upper gidar part of a symmetric matrix.

In what follows the notationv; needs to be interpreted with care: the subscripts do nat refe
to the element’s position in the weight matii. Insteadw; is thel-th element ofw;, which is
thei-th column ofW. Let 3, be thel-th element of3, (I = 1,...,k). LetW, denote thd-th row
vector of the weight matri¥V, whereW, = ( wy Wx --- Wy ), andletR = (PW)™L. Then

B = WiRq,

and

3ﬂ| oW, R

)y, = wR( Dy, + a (T, (B.1)

Appendix B.1 and Appendix B.2 below give the calculat|0ns(<ilj/6b)b0 and 6\7v||§/6b)b0
respectively.

Appendix B.1. (dg/0b)p,

At thei-th step of the PLS algorithm, we define a working sum of squarel product vector
as

b = (Wil <.+ Wi vecut (S)’)/ >
11



wherewi, . .., wi are taken from theth column of the weight matriwv, andS; = X¢ Xc,. Thus
b; = b, with subsequent versions having had some variability keadolf we defined; by

Ai =1 - Swiw /(W Sw;),

then the updating formulae may be written in term#&\pas

A = |- SiWiW‘,/(W'/SWi)
XCi+1 = XCi - tipl XC|(| ,s ) = X A’
i
Wi = Xg Yo =AiXiYe = Aw, (B.2)
S = X’CMXCi+1 =A{SA/. (B.3)

At thei-th step, according to the chain rule we have

oG, _ 0% obi dbiy by db,
(G o0 = ob; dbi_1 dbi_,  Aby dby’ (B4)
Appendix B.1.1 and Appendix B.1.2 give details of the cadtioins ofdq; /db; anddbi,1/db;.

Appendix B.1.1. dq;/db;

@:( 99 oG ):( a9 vecut(ﬁq') )

6bi OW; avecut (S) OW;
where
% (W'Wi ) because; = ww;/(W;Sw;)
owp 6W.WSW. @i = Wi /AW Wi
1 , 0 1
= 6W.( i )Wi'SiWi +WiWI(9_V\/i(—Wi’SiWi)
B 2wy WW;  OW[SW;
O wWSW (WSw)?2 aw
2w, (AW WS (B.5)
= - ASH .
wSWi (Wi Swi)?
and
% _ Wiw; W Sw;
aS (W Swi)?2  9S
= Wi,W {2 -d wiw!)’l'} B.6
= ~wEwy {2wiw; — diag (w;w/)'1}. (B.6)

Appendix B.1.2. dbj.1/db;
The termobi,1/0b; used in the chain rule in Equation (B.4) can be decomposedfintr

blocks:
6bi+1 _ 9
obi (4))
1




BIock@ is ak x k matrix:

OWj,1 OAWi . .
= E B.2
@ W, aw using Equation (B.2)
L0y SV
Tooawi | wWSw,
6 "
= 1-Sq-Swigl
wheredq;/dw; is given in Equation (B.5).
Block@ is ak x @ matrix:
@ 6Wi+1 _ d _ SiWiWi'Wi )
dvecut(S) — ovecut(S) w/Sw
oS Wi 1 Sw; (9Wi'SiWi

= —wiwi{

avecut (S) W/ Sw; B (W/Sw;)? dvecut (S)

OSwi/dvecut (S) andow; Sw;/dvecut (S) are given below.

wip O o --- 0

W2 W1 0 0

wiz 0O wig --- 0

wg 0 0 - wn

oswi_ |0 w, 0 - 0
ovecut(S) [0 ws wp - O
0 wk O -+ W

0 0 0 - wyp

As shown in Equation (B.6) of Appendix B.1.1,

oW, SW; .
(;S - 2w;w; — diag (wiw;)’l

Wizl 2WitWip - 2Wiq Wik

2WiaWr W 22 Wik

2WikWi1 2WiWip - Wizk

Hence, we have
oW/ Sw;
W{(S) = (lel 2WiiWip -+ 2Wi Wik Wi22 W|2k)

Block@ is a@ x k matrix:
13



Using Equation (B.3) fo&;,1,

ovecut (S,1) 0 Swiw, Swiw;
—_— — —_— I_ . I _ ’
@ ow; ow; vecuti( Wi'Swi)S( Wi'Swi) }
0 SwiwS
= [ t .
oW vecut(S WS Wi )
0 1 vecut (Swiw/S)
= —— t W 2w'S,
aWi Vecu (SWIW| S) W;SWI + (W,’SiW|)2 WI S
(B.7)
Letu; = Sw;, then
@ ovecut(Sy1) _avecut(uiui’) oSw; 1 . vecut(uiui’)ZW/S
E - au; owi wSw;  (wWSw;)2 T
ovecut (u;u! : vecut (u;u!
_ Queonlun) S veewllut), o
ou; wiSwi - (W Sw;)
where dvecut (uiu’)/du; is calculated as follows. At thei-th step, letu =
(ul U ug --- uk)', omitting thei subscript for convenience. Then we have
2uy O 0 0
U2 Uy 0 0
Uz 0 U - 0
Uk 0 0 Uy
Avecut (Uiu)) 0 2, 0 --- O
6—ui =10 Uz Uy --- 0
0 Uk 0 -+ uw
0 0 23 --- O
0 0 0 -+ 2w
Block@ is a@ X @ matrix:
; WiW; §
@ ovecut(S.1) 0 vecut(S—S [ ,S)
ovecut (S) ovecut (S) W/ SWw;
dvecut(uiu))  ASw; 1 vecut (Uju;) oW Sw;

au avecut (S) w/ Sw; " (W/Sw;)? dvecut(S)

dvecut (ujuf)/du; is calculated as in Bloc@. dSw;i/dvecut (S§) andow;Sw;/dvecut (S) are

obtained as in the calculation of Blo.
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Appendix B.2. (dwjR/db)p,

Let the row vectod = WR, so its elemend; = Y, wifij, wherew; denotes thé-th element
of the column vectow;, andrjj is the element oR in thei-th row and thej-th column,j =
1,...,a

ady
i
6W| R %
(=55 o

a0,

ab /by
6dj il ~ 6 Ij
(ab) = (Z( IrIJ WISy Dby

where Appendix B.2.1 and Appendix B.2.2 below show how tawate @w; /db)y,, fi; and
(9Fij/0b)p,.
Appendix B.2.1. (0w /b)p,

(8w /8b)p, can be taken as theh row vectorfromfb—""'1 gg' L ggz , where 2" ‘9""' (@ @)
andz= Bb' > are given in Appendix B.1.2.

Appendix B.2.2. fij and (dFij/db)p,

Manne [10] gives thaR = PW is ana x a bidiagonal matrix whose only non-zero elements
arerii andri(i+1),

ri= 1 i=1,...,a
WiSwiyg
liGi+1)= W{S;Wil i=1...,a-1
rj= 0 otherwise.

R = (PW) ! is ana x a upper triangular matrix, where the upper triangular elemare

fij=1 =
Fij = =Tig-org-ni/rij 1# I

As R is upper triangular, when> |, ofij/ob = 0, a row vector With@ elements. Because

rijj = 1, wheni < j, the derivative ofij with respect tdy; can be calculated by an algorithm as
follows

3Fij 3[‘.(] 1) . 3[‘1 1)j
T — G + i a0
Then according to the chain rule,
(ar.,) onij b 6_b2)
bo = Yoy dbj_y by

Jr(j-1);/0b; can be calculated in the form 6f;.1)/0b; as belowr;;,1) can be further written
as a function ofv; andS,

I W SWis1 ~ W SSw;
i(i+1) = W{SWi = W;SWi q.
15




Hence, the derivative can be written as

Orig+1) _ 0 WSSWi
aby b wsw; |

_OWSSwioSw; g WSSWidg WSSW owSw
95w db wWSw  wSw db  (WSw2 ' ab
Coute asw, O WSSWidg  WSSW

- 2w S (S‘ 3Vecut(si)) W{SWi W{SWi ob; + (W{SWi)z

W, SWw;
G (ZW{S‘ 6vecut(S|)) ’

ISW; OV S Wi

where and are calculated in Bloc@ in Appendix B.1.2.

dvecut (S) avecut (S)

Appendix C. Computingi}from b

In the bootstrap procedure we need to compute the PLflicieat vector fromb. The proce-
dure is as followsw; consists of the first elements ob corresponding tav; = Xy, andS; is
a square matrix built by théc¢ 1)-th to{k(k+ 3)/2}-th elements ob. Wheni > 2, w; = Aj_1w;_3,

and§ = A;1S§1A7 . Fori=1,...,4,

Ai = | - Sww /W Sw;.
Vio= Wi/ WiW;.
pi = SVi/ViSvi.
G = WVi/ViSvi.

BB = V(P'V)™1g. The normalizatiow; = w;/ JWw; is used here because it makes the orthogo-
nal scores algorithm more stable, though it does not chdmgedtimated regression ¢heients.
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Figure 1: PLS estimated variances and actual squared fogdécror versuy/ . k =2,a=1,
0§ =25,03 =lpo=pL=1p2= 0,02 = 0.25. SPE: squared prediction errgp ¢ yp)?. Lin:
Vi + o2/n. Linb: Vg + o2/n.
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Figure 2: PLSB against2 whenk = 2,a = 1,02 = 25,03 = 1,80 = 1 = 1,82 = 0,
o2 =0.25.
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Figure 3: PLS estimated variances and actual squared picedarror versus (aY. and (b)
Ve. k=2,a=1,07=2505=1,81=0, =2 = 1,07 = 0.25. SPE: squared prediction
error {j, — yp)2. Lin: Vi + o2/n. Linb: Vg + o2/n.
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Figure 4: PLSB against% whenk = 2,a=1,02 =2505=1,8=0,6 = =1,
o2 =0.25.
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Figure 5: Adequacy of the linearization approximation ia tase whek = 2,a = 1,02 = 25,
0'5 = 1,,31 = O,ﬂo Zﬂg =1 ,0'5 =0.25. bl = —1.9897,b2 = 2153367,b3 = 46912,b4 = 4.123,
andbs = 224.8093.
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Figure 6: Adequacy of the linearization approximation ia thase whek = 3,a = 2, 0% =
0'5 = 25,0’% = 1,ﬂ1 = ﬂg = 1,ﬂ3 = O, 0’3 = 0.25. b1 = 41455, bg = 41926, b3 = —78.6,
by = 46865, b5 = —4831,bg = —21.8,b; = 46747,bg = —615, andbg = 1713.
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Figure 7: PLS estimated variances and actual squared ficed&rror versus/g. k = 24,
a=7,07=64,05=49,05=236,05 =250:=16,05=9,05=4,05="-- =05, = 1;
Bo=1,p1=8,B=7,p3=6,4=5pP5=4,=3,p7=2,andBg = -+ = fos = 0,02 =0.25.
SPE: squared prediction errgn(- Yp)?. Linb: Vg + o2/n.
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