
A Linearization Method for Partial Least Squares Regression
Prediction Uncertainty

Ying Zhang, Tom Fearn

Department of Statistical Science, University College London, Gower Street, London, WC1E 6BT, U.K.

Abstract

We study a local linearization approach put forward by Romera to provide an approximate vari-
ance for predictions in partial least squares regression. We note and correct some problems with
the original formulae, study the stability of the resultingapproximation using some simulations,
and suggest an alternative method of computation using a parametric bootstrap. The alterna-
tive method is more stable than the algebraic approximationand is faster when the number of
predictors is large.

Keywords: multivariate calibration, partial least squares regression, mean squared prediction
error, linearization, parametric bootstrap

1. Introduction

Attaching a variance to the predictions made by a partial least squares (PLS) regression model
is not straightforward because the factor scores on which the linear predictor is based are them-
selves nonlinear functions of the data. Various approximate methods have been proposed, see
Zhang and Garcia-Munoz [1] for a recent review, including atleast two different approaches
that involve local linearizations of the prediction formula. The method of Denham (Denham
[2], Serneels et al. [3], and Phatak et al. [4]) expands aboutthe observed value of the dependent
variable. A more recent method, due to Romera [5] expands about the observed variances and
covariances of all the variables in the data. This is fundamentally different from Denham’s ap-
proach in that it takes into account the variability in the predictors as well as that in the response
variable. In trying to implement this latter approach as part of a comparative study of method-
ologies, we discovered some problems with the formulae presented in Romera [5]. The current
paper corrects these formulae, studies their stability, and suggests an alternative computational
approach using a parametric bootstrap that is more stable and is also faster when the dimension
of the explanatory variables is large.

Email addresses: ying.zhang@ucl.ac.uk (Ying Zhang),t.fearn@ucl.ac.uk (Tom Fearn)

Preprint submitted to Chemometrics and Intelligent Laboratory Systems November 11, 2014

2. Theory

Suppose we have calibration and prediction sets of data generated from the following linear
models

ẏc = β0 + Ẋcβ + ǫ, (1)

ẏp = β0 + Ẋpβ + ǫ, (2)

whereẏc andẏp are calibration and prediction set response variables,Ẋc (n × k) andẊp (np × k)
are calibration and prediction explanatory variable matrices,β0 andβ (k × 1) are intercept and
regression coefficients, andǫ is the error term that has a normal distribution with mean zero and
varianceσ2

ǫ . The dot on, for example,̇yc denotes an un-centered variable, and its corresponding
centered variable isyc. To apply PLS regression to such data Romera [5] employs an orthogonal
scores algorithm.

2.1. Orthogonal Scores Algorithm
The orthogonal scores algorithm by Martens and Næs [6] is simple, stable and widely used.

With the number of factors chosen to bea, thei-th step of the algorithm gives the results for the
i-th factor, wherei = 1, · · · , a.

2.1.1. Calibration
The algorithm starts from the centered calibration data matrix, Xc1 = Xc.

wi = X′ci
yc

t i = Xci wi

pi = X′ci
t i/(t′it i)

qi = y′ct i/(t′it i)

Xci+1 = Xci − t ip′i

In thei-th step of the algorithm, the column vectorwi (k × 1) is the weight vector defined by the
covariance betweenXci andyc. Then × a score matrixT = (t1 t2 · · · ta) is orthogonal.
The k × a weight matrix isW = (w1 w2 · · · wa), and thek × a x-loading matrix is
P = (p1 p2 · · · pa). The y-loadings vectorq is defined as ana × 1 column vector. In
the first step, ifwi were scaled to be of length one, the algorithm would become more stable,
and it would be easier to compare scores, but the normalization would not change the regression
coefficient estimate. Helland [7] shows that the PLS1 regression coefficient estimates can be
written as

β̂ =W(P′W)−1q. (3)

The scores can also be written asT = XcW(P′W)−1.

2.1.2. Prediction
A prediction ˆ̇yp can be produced via the score ofxp (1 × k). In contrast to the calibration,

wheret i is a column ofT, the predictor scoret p is a row vector,t p = (tp1 tp2 · · · tpa), and
the tpi are computed recursively as

tpi = xpi wi

xpi+1 = xpi − tpi p
′
i

with xp1 = ẋp − ¯̇x. Equivalently,t p = xpW(P′W)−1. The prediction iŝ̇yp = ¯̇y + t pq.
2

2.2. A Random Sampling Model for the Data

We suppose that the (k + 1) × 1 vectorċ = (ẏ ẋ)′, comprising dependent and predictor
variables from one case from either the calibration or prediction set, is randomly sampled from
a distribution for which the covariance of ˙y andẋ is γ = (γ1 γ2 · · · γk)′, and the variance
matrix of ẋ is Σ with elementsσi j, 1 ≤ i, j ≤ k. These parameters can be put in ak(k + 3)/2× 1
vectorφ = (γ′ vecut (Σ)′)′, wherevecut denotes an operator that returns a column vector
whose elements are taken in order along the rows, including the diagonal elements, from the
upper triangular part of a symmetric matrix. Let thek × 1 vectorsxy = X′cyc and thek × k matrix
Sxx = X′cXc be the sample sums of squares and products for the calibration set. Then we denote
by b =

(

s′xy vecut (Sxx)′
)′

the vector random variable made up of these quantities, and by
b0 the actual observed value of the random variable for a particular calibration set. The random
variableb is an unbiased estimator of (n − 1)φ.

2.3. Romera’s Approach

Romera [5] explores the dependence of regression coefficientsβ̂ on b via the y-loadingsq.
The estimated y-loadings can be expanded about the observedvalueb0 of b according to the
first-order Taylor expansion

qb ≈ qb0 + J(b − b0).

The approximate variance of the estimated y-loadings Var (q) ≈ JVar (b)J′, where the Jacobian
matrixJ (a×k(k+3)/2) is the first derivative ofq with respect tob evaluated atb0, J =

(

∂q/∂b
)

b0
.

Romera [5] then useŝβ = Wq which gives Var (̂β) = WVar (q)W′, so the approximate variance
of xpβ̂ becomes

Var (xpβ̂) ≈ xpWJVar (b)J′W′x′p.

However, there are problems with Var (β̂) = WVar (q)W′. As shown in Equation (3),̂β =
W(P′W)−1q for the orthogonal scores algorithm, and notβ̂ = Wq, which is the result of the
PLS1 orthogonal loadings algorithm. There is also a second problem, in that the weight matrix
W is dependent onb, soW cannot be treated as fixed.

2.4. Corrected Formulae

Linearizing aroundb0 we have the following approximate formula for the variance of xpβ̂ for
fixed ẋp

Var (xpβ̂) ≈ xp
(∂β̂

∂b
)

b0
Var (b)

(∂β̂

∂b
)′

b0
x′p = VL. (4)

To calculate this we need expressions for Var (b) and for (∂β̂/∂b)b0. If we assume that thėc
defined in Section 2.2 is normally distributed, both the distribution and the variance ofb are
known from standard normal theory. Appendix A gives the distribution of b. The algebra for
(∂β̂/∂b)b0 is in Appendix B.

2.5. Estimating Var (β̂) by a Parametric Bootstrap

An alternative approach that avoids all the algebra is to usea parametric bootstrap to estimate
Var (β̂). For them-th bootstrap sample (m = 1, . . . ,M), a sum of squares and products matrix is
drawn from the Wishart distribution in Appendix A andbm is extracted from it. Now we need

to calculateβ̂
B
m from bm, rather than fromXc andyc. The formula for doing this were given by

Romera [5] and are presented in Appendix C. The variance of regression coefficients from the
3

bootstrap algorithm is Var (β̂
B
) = n

n+1
1

M−1

∑M
m=1(β̂

B
m − β̄)(β̂

B
m − β̄)′, whereβ̄ = 1

M

∑M
m=1 β̂

B
m and the

factor n
n+1 adjusts for the bias in the bootstrap (See Efron and Tibshirani [8]). The approximate

variance ofxpβ̂ is

Var (xpβ̂) ≈ xpVar (β̂
B
)x′p = VB. (5)

3. Numerical Experiments

In this section, we use simulation studies to investigate how the linearization method and
its bootstrap version perform under different conditions. Our purpose is not to carry out an
extensive simulation study, but to demonstrate some of the properties of the method using a few
simple simulations. Each of theN repetitions in the simulation generates a calibration set of size
n = 200 and a prediction set of sizenp = 200 using the models in Equations (1) and (2) but with
ǫ set to zero in Equation (2). Taking the additive noise component out of the predictions enables
the performance of the variance formulae in Equations (4) and (5) to be seen more clearly. The
explanatory variables are independently and normally distributed with mean 0 and variances
(σ2

1 σ2
2 · · · σ2

k) in both calibration and prediction sets. The number of PLS factors is
fixed to bea in each of the repetitions. Of course an extensive simulation study would need to
explore both correlated predictors and the effect of extrapolation, but our purpose here is just to
demonstrate some of the properties of the methods investigated using a few simple simulations.

For each of theN × np predictions in the simulation we calculate a squared prediction error
and the estimated variancesVL andVB given by Equations (4) and (5). These variance formulae
neglect the contributions from the variation of¯̇x and ¯̇y over repeated drawing of the calibration
set. The contribution froṁ̄y, σ2

ǫ/n, was added to each of the estimated variances, so that the Lin
variance formula becomesσ2

ǫ /n+VL, and the Linb variance formula isσ2
ǫ/n+VB. In practice of

course one would need to use an estimate forσ2
ǫ ; the rationale for using the known value here is

to focus on the performance ofVL andVB. The contribution from̄̇x is of orderk/n2 and can be
neglected for the examples considered here.

To examine the performance of Lin and Linb we plot observed squared error and the two
estimated variances against eitherVL or VB after taking averages in 20 bins defined by the x-
axis variable. The bins were set up using percentage points of a scaled chi-squared random
variable with scale and degrees of freedom chosen so that itsfirst two moments match those of
the observed values of eitherVL or VB. This gives roughly equal numbers of observations per
bin.

We begin by studying two simulations withk = 2 anda = 1. In the first the linearization is
stable. In the second the linearization approximation performs badly.

3.1. Simulation: k = 2, a = 1, σ2
1 = 25, σ2

2 = 1, β0 = β1 = 1, β2 = 0, σ2
ǫ = 0.25, N = 10000.

The first predictor variable, which has a non-zero regression coefficient, has a much bigger
variance than the second, which has a zero coefficient. Not surprisingly, PLS works rather well,
and both Lin and Linb also work well (Figure 1). The plot againstVB looks equally good. Figure
2 shows how the estimated regression coefficients change withb. β̂1 is always close to 1 while
β̂2 depends on two elements ofb in a linear fashion.

4

0 1 2 3 4 5 6 7

x 10
−3

1

2

3

4

5

6

7

8

9

10
x 10

−3

VL

S
P

E
, L

in
, L

in
b

SPE
Lin
Linb

Figure 1: PLS estimated variances and actual squared prediction error versusVL. k = 2, a = 1, σ2
1 = 25, σ2

2 = 1,
β0 = β1 = 1, β2 = 0,σ2

ǫ = 0.25. SPE: squared prediction error (˙yp − ˆ̇yp)2. Lin: Vl + σ
2
ǫ /n. Linb: VB + σ

2
ǫ /n.

0.5 1 1.5
b5
n
=Var(ẋ2)

−2 −1 0 1 2
b4
n
=Cov(ẋ1, ẋ2)

0 10 20 30 40
b3
n
=Var(ẋ1)

−2 −1 0 1 2
b2
n
=Cov(ẋ2, ẏ)

0 10 20 30 40

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

b1
n
=Cov(ẋ1, ẏ)

β̂
2

0.95

1

1.05

β̂
1

Figure 2: PLSβ̂ againstbn whenk = 2, a = 1,σ2
1 = 25,σ2

2 = 1, β0 = β1 = 1, β2 = 0,σ2
ǫ = 0.25.

5

3.2. Simulation: k = 2, a = 1, σ2
1 = 25, σ2

2 = 1, β1 = 0, β0 = β2 = 1, σ2
ǫ = 0.25, N = 10000.

This is a more difficult case for PLS; the first predictor has the larger variancebut has no con-
tribution to the regression, whereas the second, with a smaller variance, is linked to the response
variable. The large variance of the first predictor means that even a small sample correlation
with the response variable is enough to gain it weight in the PLS factor. The fact that the sign
of β̂ switches along with the sign of this correlation leads to thebreakdown of the linearization
approximation. Figure 3(a) and Figure 3(b) show that both Lin and Linb fail, though in different
ways.

Figure 4 and Figure 5 show why Lin fails. In Figure 4 we can see that the distribution of̂β1 as
b varies is bimodal, with the mode switching as the signs ofb1 andb4 change. In Figure 5 we
see how the local linearization method breaks down for one calibration set. The blue dotted lines
were computed by changingb1 and recalculatinĝβ using the PLS algorithm. They represent how
β̂1 andβ̂2 vary with small changes ofb1. The red dashed lines are the linear approximations to
the relationships between the estimated regression coefficients andb1. The are fine locally, but
only over a very narrow range.

The failure of Linb is less dramatic. It underestimates SPE for two reasons: the bootstrap
underestimates the actual variance of theβ̂, and it ignores a contribution from the bias in the PLS
β̂which is not negligible for this example. The underestimation of the variance of the predictions
can be explained by considering Figure 4, and in particular the top left hand panel. The repeated
training sets are generated from a joint distribution for response and predictor variables in which
b1 is centred on zero. It can be seen from Figure 4 that the resulting β̂1 values will have a
bimodal distribution with equal weights in each mode. The bootstrap estimation procedure for
any particular training set will be centred on the observedb1 for that set, which in general will
not be zero. The bootstrap̂β1 values will usually still have a bimodal distribution but now with
unequal weights in the two modes and consequently with smaller variance than that of thêβ1’s
in the repeated training sets. This accounts for about 20% ofthe discrepancy between Linb and
SPE. The rest is due to a substantial bias in the PLSβ̂.

3.3. Simulation: k = 3, a = 2, σ2
1 = σ

2
2 = 25, σ2

3 = 1, β0 = β1 = β2 = 1, β3 = 0, σ2
ǫ = 0.25,

N = 10000.

The previous simulation was deliberately chosen to be a difficult case for PLS and it is perhaps
not surprising that the linearization fails. Unfortunately however it can also fail in what appear
to be innocuous examples. In this simulation we have two predictor variables with big variances
and strong correlations with the response, and a third predictor with much smaller variance and
no correlation. The bootstrap version, Linb, works well, but the algebraic version, Lin, fails badly
for some calibration sets. Figure 6 shows, for one of these calibration sets, how the coefficient
vectorβ̂ changes withb4 (the sum of squares of the first predictor) in the vicinity of the observed
value. As before, the linear approximation has much too narrow a range of validity and leads to
a gross overestimation of the variance ofβ̂.

3.4. Simulation: k = 24, a = 7, σ2
1 = 64, σ2

2 = 49, σ2
3 = 36, σ2

4 = 25, σ2
5 = 16, σ2

6 = 9, σ2
7 = 4,

σ2
8 = · · · = σ

2
24 = 1, β0 = 1, β1 = 8, β2 = 7, β3 = 6, β4 = 5, β5 = 4, β6 = 3, β7 = 2,

β8 = · · · = β24 = 1, σ2
ǫ = 0.25, N = 500.

The simulations so far have involved very small numbers of predictor variables. This one has
k = 24 variables and a=7 factors. Most of the x-variability and most of the predictive power is
in the first 7 variables so this is in some sense an easy problemfor PLS. The algebraic method,

6

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

VL

S
P

E
, L

in
, L

in
b

SPE
Lin
Linb

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

VB

S
P

E
, L

in
, L

in
b

SPE
Lin
Linb

(b)

Figure 3: PLS estimated variances and actual squared prediction error versus (a)VL and (b)VB. k = 2, a = 1,σ2
1 = 25,

σ2
2 = 1, β1 = 0, β0 = β2 = 1,σ2

ǫ = 0.25. SPE: squared prediction error (˙yp − ˆ̇yp)2. Lin: VL + σ
2
ǫ /n. Linb: VB + σ

2
ǫ /n.

7

0.5 1 1.5
b5
n
=Var(ẋ2)

−2 −1 0 1 2
b4
n
=Cov(ẋ1, ẋ2)

0 10 20 30 40
b3
n
=Var(ẋ1)

0.5 1 1.5
b2
n
=Cov(ẋ2, ẏ)

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b1
n
=Cov(ẋ1, ẏ)

β̂
2

−0.2

−0.1

0

0.1

0.2

β̂
1

Figure 4: PLSβ̂ againstbn whenk = 2, a = 1,σ2
1 = 25,σ2

2 = 1, β1 = 0, β0 = β2 = 1 ,σ2
ǫ = 0.25.

−60 −40 −20 0 20 40 60
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

∆b
1

β̂
1

Actual Value
Approximation

−60 −40 −20 0 20 40 60

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

∆b
1

β̂
2

Actual Value
Approximation

Figure 5: Adequacy of the linearization approximation in the case whenk = 2, a = 1, σ2
1 = 25, σ2

2 = 1, β1 = 0,
β0 = β2 = 1 ,σ2

ǫ = 0.25. b1 = −1.9897,b2 = 215.3367,b3 = 4691.2, b4 = 4.123, andb5 = 224.8093.

8

−20 −10 0 10 20
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

∆b
4

β̂
1

Actual Value
Approximation

−20 −10 0 10 20
0.94

0.96

0.98

1

1.02

1.04

1.06

∆b
4

β̂
2

Actual Value
Approximation

−20 −10 0 10 20
−0.04

−0.02

0

0.02

0.04

0.06

0.08

∆b
4

β̂
3

Actual Value
Approximation

Figure 6: Adequacy of the linearization approximation in the case whenk = 3, a = 2, σ2
1 = σ

2
2 = 25, σ2

3 = 1,
β1 = β2 = 1, β3 = 0, σ2

ǫ = 0.25. b1 = 4145.5, b2 = 4192.6, b3 = −78.6, b4 = 4686.5, b5 = −483.1, b6 = −21.8,
b7 = 4674.7, b8 = −61.5, andb9 = 171.3.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

VB

S
P

E
, L

in
b

SPE
Linb

Figure 7: PLS estimated variances and actual squared prediction error versusVB. k = 24, a = 7; σ2
1 = 64,σ2

2 = 49,
σ2

3 = 36,σ2
4 = 25,σ2

5 = 16,σ2
6 = 9,σ2

7 = 4,σ2
8 = · · · = σ

2
24 = 1; β0 = 1, β1 = 8, β2 = 7, β3 = 6, β4 = 5, β5 = 4, β6 = 3,

β7 = 2, andβ8 = · · · = β24 = 0,σ2
ǫ = 0.25. SPE: squared prediction error (˙yp − ˆ̇yp)2. Linb: VB + σ

2
ǫ /n.

9

Lin, breaks down as before, giving extreme overestimates ofvariance for a small proportion of
calibration sets. The bootstrap version, Linb, works reasonably well, as can be seen from Figure
7. It slightly underestimates the average squared errors, especially at the top end of the scale.
This time the discrepancy is all due to the neglected bias; the bootstrap makes a good job of
estimating the variance ofβ̂. Interestingly, with N reduced to 500, which is large enoughto give
reproducible results, Linb is slightly faster to compute than Lin for this example. This is because
the computations for Lin involve matrices of size (k + 1)2 × (k + 1)2, which is 625× 625 with
k = 24. For much larger problems, Linb is a good deal faster than Lin. Not much effort has been
put into optimising the code for either calculation, so a detailed comparison of timings would not
mean a lot, but it does seem reasonable to conclude that Linb is probably preferable to Lin on
grounds of speed as well as stability.

3.5. A Brief Discussion about the Use of a Real Data Set

At this point in the paper one might expect to see the methods illustrated on a real data set.
We have applied Linb to real data sets withk up to 100. It gives plausible looking variances in a
reasonable amount of computing time. Apart from this there is not much to be learned. With a
fixed calibration set it is not possible to evaluate the performance of the method. It would be like
trying to evaluate the correctness of, for example, the formula for the variance of a sample mean
using a single fixed data set. One might do something with sample splitting, but it would require
an enormous data set to get any useful results.

4. Estimating the Missing Components of the Error

Equations (4) and (5) only estimate the variance in the predictions that is a consequence of
the variance in̂β. There are several more contributions to the total error: these come from the
variance in̄̇y and¯̇x, the observation error that was omitted from theẏp in our simulations, and the
bias that results from using PLS rather than multiple linearregression. One possible approach
to estimating the joint contribution of all of these would beto use either cross-validation or a
separate test set to find an empirical estimate of the averagepredictive mean squared error and
subtract from this the averageVB (or VL) for the samples predicted. The remainder (truncated at
zero should it turn out to be negative) is an estimate of the sum of the missing components, and
could be added to the sample-specificVB to quantify the uncertainty in any future predictions.
The main limitation of this approach is that it applies the average squared bias to all predictions,
whereas the bias will in general depend onxp. However, if we had enough data to estimate this
dependence we could have used multiple regression rather that PLS in the first place, so it seems
unlikely that we can do any better than this in general.

5. Conclusion

Although we have been able to provide a corrected version of Romera’s linearization method,
we are forced by the simulations to the conclusion that it is probably not a good idea to use this
algebraic version in practice. In the simulations it only fails for occasional calibration sets, but
when it does fail, it fails badly. For a single real data set there is no simple way of checking
whether this is one of the bad cases, and so the risk that the linear approximation is very poor
will always be present. The bootstrap version, as well as being much easier to implement, is also
more stable and performs reasonably well in the, admittedlyvery limited, simulations. It is a

10

variance formula, so neglects bias, but at least the averagesquared bias can be accounted for as
described in the previous section.

Appendix A. The Distribution of b

If we assume the random variableċ = (ẏ ẋ)′ defined in Section 2.2 has a multivariate
normal distribution with variance matrixψ, then the sample sums of squares and products matrix,

G =
(

∑

y2
i s′xy

sxy Sxx

)

, based on a sample of sizen has a Wishart distribution with parametersψ

andn − 1. Magnus and Neudecker [9] gives the variance of the column stacked vectorvec(G),

Var {vec (G)} = n(I (1+k)2 + K)(ψ ⊗ ψ),

wherevec denotes the operator that extracts columns from a matrix to form a column vector, and
⊗ denotes the Kronecker product.K is a commutation matrixK =

∑1+k
i=1

∑1+k
j=1 M i j ⊗M ′i j. M i j is

a (1+ k) × (1+ k) square matrix with the (i, j)-th element equal to 1 and all other elements being
zero. Var (b) can be obtained by selecting relevant elements from Var{vec (G)}, because all the
elements ofb belong tovec (G).

Appendix B. The derivative of β̂ with respect to b

In this section, we present the algebra needed to calculate (∂β̂/∂b)b0 for use in the linearized
approximation presented in Equation (4). First we define some notation.

Derivative Let g be anl × 1 column vector, andv be anr × 1 column vector. The derivative
∂g/∂v is anl × r matrix with the (i, j)-th element defined as∂gi/∂v j.

Operators The operatordiag extracts the diagonal terms from a symmetric matrix as a column
vector. The operatorvecut returns a column vector whose elements are taken in order along the
rows, including the diagonal elements, from the upper triangular part of a symmetric matrix.

In what follows the notationwil needs to be interpreted with care: the subscripts do not refer
to the element’s position in the weight matrixW. Instead,wil is thel-th element ofwi, which is
the i-th column ofW. Let β̂l be thel-th element of̂β, (l = 1, . . . , k). Let w̃l denote thel-th row
vector of the weight matrixW, wherew̃l = (w1l w2l · · · wal), and letR̃ = (P′W)−1. Then

β̂l = w̃lR̃q,

and
(∂β̂l

∂b
)

b0
= w̃lR̃

(∂q
∂b

)

b0
+ q′

(∂w̃lR̃
∂b

)

b0
. (B.1)

Appendix B.1 and Appendix B.2 below give the calculations of(∂q/∂b)b0 and (∂w̃lR̃/∂b)b0

respectively.

Appendix B.1. (∂q/∂b)b0

At the i-th step of the PLS algorithm, we define a working sum of squares and product vector
as

bi =
(

wi1 · · · wik vecut (Si)′
)′
,

11

wherewi1, . . . ,wik are taken from thei-th column of the weight matrixW, andSi = X′ci
Xci . Thus

b1 = b, with subsequent versions having had some variability removed. If we defineAi by

Ai = I − Siwiw′i/(w
′
iSiwi),

then the updating formulae may be written in terms ofAi as

Ai = I − Siwiw′i/(w
′
iSiwi)

Xci+1 = Xci − t ip′i = Xci (I −
wiw′iSi

w′iSiwi
) = XciA

′
i

wi+1 = X′ci+1
yc = AiX′ci

yc = Aiwi (B.2)

Si+1 = X′ci+1
Xci+1 = AiSiA′i . (B.3)

At the i-th step, according to the chain rule we have

(∂qi

∂b
)

b0
=
∂qi

∂bi

∂bi

∂bi−1

∂bi−1

∂bi−2
· · ·
∂b3

∂b2

∂b2

∂b1
. (B.4)

Appendix B.1.1 and Appendix B.1.2 give details of the calculations of∂qi/∂bi and∂bi+1/∂bi.

Appendix B.1.1. ∂qi/∂bi

∂qi

∂bi
=

(

∂qi

∂wi

∂qi

∂vecut (Si)

)

=
(

∂qi

∂wi
vecut (∂qi

∂Si
)

)

,

where

∂qi

∂wi
=

∂

∂wi
(

w′iwi

w′iSiwi
) becauseqi = w′iwi/(w′iSiwi)

=
∂

∂wi
(w′iwi)

1
w′iSiwi

+ w′iwi
∂

∂wi
(

1
w′iSiwi

)

=
2w′i

w′iSiwi
−

w′iwi

(w′iSiwi)2

∂w′iSiwi

∂wi

=
2w′i

w′iSiwi
−

w′iwi

(w′iSiwi)2
2w′iSi, (B.5)

and

∂qi

∂Si
= −

w′iwi

(w′iSiwi)2

∂w′iSiwi

∂Si

= −
w′iwi

(w′iSiwi)2
{2wiw′i − diag (wiw′i)

′I }. (B.6)

Appendix B.1.2. ∂bi+1/∂bi

The term∂bi+1/∂bi used in the chain rule in Equation (B.4) can be decomposed into four
blocks:

∂bi+1

∂bi
=















1 2

3 4















.

12

Block 1 is ak × k matrix:

1
∂wi+1

∂wi
=
∂Aiwi

∂wi
using Equation (B.2)

=
∂

∂wi
(wi −

Siwiw′iwi

w′iSiwi
)

= I − Siqi − Siwi
∂qi

∂wi
,

where∂qi/∂wi is given in Equation (B.5).
Block 2 is ak × k(k+1)

2 matrix:

2
∂wi+1

∂vecut (Si)
=

∂

∂vecut (Si)
(−

Siwiw′iwi

w′iSiwi
)

= −w′iwi{
∂Siwi

∂vecut (Si)
1

w′iSiwi
−

Siwi

(w′iSiwi)2

∂w′iSiwi

∂vecut (Si)
}.

∂Siwi/∂vecut (Si) and∂w′iSiwi/∂vecut (Si) are given below.

∂Siwi

∂vecut (Si)
=

























































































































wi1 0 0 · · · 0
wi2 wi1 0 · · · 0
wi3 0 wi1 · · · 0
...

...
...
. . .

...

wik 0 0 · · · wi1

0 wi2 0 · · · 0
0 wi3 wi2 · · · 0
...

...
...
. . .

...

0 wik 0 · · · wi2
...

...
...
. . .

...

0 0 0 · · · wip

























































































































′

.

As shown in Equation (B.6) of Appendix B.1.1,

∂w′iSiwi

∂Si
= 2wiw′i − diag (wiw′i)

′I

=



































w2
i1 2wi1wi2 · · · 2wi1wik

2wi2wi1 w2
i2 · · · 2wi2wik

...
...

. . .
...

2wikwi1 2wikwi2 · · · w2
ik



































.

Hence, we have

∂w′iSiwi

∂vecut (Si)
=

(

w2
i1 2wi1wi2 · · · 2wi1wik w2

i2 · · · w2
ik

)

.

Block 3 is a k(k+1)
2 × k matrix:

13

Using Equation (B.3) forSi+1,

3
∂vecut (Si+1)
∂wi

=
∂

∂wi
vecut {(I −

Siwiw′i
w′iSiwi

)Si(I −
Siwiw′i
w′iSiwi

)′}

=
∂

∂wi
vecut (Si −

Siwiw′iSi

w′iSiwi
)

= −
∂

∂wi
vecut (Siwiw′iSi)

1
w′iSiwi

+
vecut (Siwiw′iSi)

(w′iSiwi)2
2w′iSi,

(B.7)

Let ui = Siwi, then

3
∂vecut (Si+1)
∂wi

= −
∂vecut (uiu′i)

∂ui

∂Siwi

∂wi

1
w′iSiwi

+
vecut (uiu′i)

(w′iSiwi)2
2w′iSi

= −
∂vecut (uiu′i)

∂ui

Si

w′iSiwi
+

vecut (uiu′i)

(w′iSiwi)2
2w′iSi,

where ∂vecut (uiu′i)/∂ui is calculated as follows. At thei-th step, let ui =
(

u1 u2 u3 · · · uk

)′
, omitting thei subscript for convenience. Then we have

∂vecut (uiu′i)

∂ui
=



































































































































2u1 0 0 · · · 0
u2 u1 0 · · · 0
u3 0 u1 · · · 0
...

...
...
. . .

...

uk 0 0 · · · u1

0 2u2 0 · · · 0
0 u3 u2 · · · 0
...

...
...
. . .

...

0 uk 0 · · · u2

0 0 2u3 · · · 0
...

...
...
. . .

...

0 0 0 · · · 2uk



































































































































.

Block 4 is a k(k+1)
2 ×

k(k+1)
2 matrix:

4
∂vecut (Si+1)
∂vecut (Si)

=
∂

∂vecut (Si)
vecut (Si −

Siwiw′iSi

w′iSiwi
)

= I −
∂vecut (uiu′i)

∂ui

∂Siwi

∂vecut (Si)
1

w′iSiwi
+

vecut (uiui)
(w′iSiwi)2

∂w′iSiwi

∂vecut (Si)
.

∂vecut (uiu′i)/∂ui is calculated as in Block3 . ∂Siwi/∂vecut (Si) and∂w′iSiwi/∂vecut (Si) are

obtained as in the calculation of Block2 .
14

Appendix B.2. (∂wlR̃/∂b)b0

Let the row vectord = w̃lR̃, so its elementd j =
∑a

i=1 wilr̃i j, wherewil denotes thel-th element
of the column vectorwi, and r̃i j is the element of̃R in the i-th row and thej-th column, j =
1, . . . , a.

(∂wlR̃
∂b

)

b0
=





































∂d1
∂b
∂d2
∂b
...
∂da
∂b





































b0

.

(
∂d j

∂b
)b0 =

(

a
∑

i=1

(
∂wil

∂b
r̃i j + wil

∂r̃i j

∂b
)
)

b0
,

where Appendix B.2.1 and Appendix B.2.2 below show how to calculate (∂wil/∂b)b0, r̃i j and
(∂r̃i j/∂b)b0.

Appendix B.2.1. (∂wil/∂b)b0

(∂wil/∂b)b0 can be taken as thel-th row vector from ∂wi
∂bi−1

∂bi−1
∂bi−2
· · ·
∂b2
∂b1

, where ∂wi
∂bi−1
=

(

1 2
)

and ∂bi−1
∂bi−2

are given in Appendix B.1.2.

Appendix B.2.2. r̃i j and (∂r̃i j/∂b)b0

Manne [10] gives thatR = PW is ana × a bidiagonal matrix whose only non-zero elements
arerii andri(i+1),























rii = 1 i = 1, . . . , a

ri(i+1)=
w′i Siwi+1

w′iSiwi
i = 1, . . . , a − 1

ri j = 0 otherwise.

R̃ = (PW)−1 is ana × a upper triangular matrix, where the upper triangular elements are
{

r̃i j = 1 i = j;
r̃i j = −r̃i(j−1)r(j−1) j/r j j i , j.

As R̃ is upper triangular, wheni ≥ j, ∂r̃i j/∂b = 0, a row vector withk(k+3)
2 elements. Because

r j j = 1, wheni < j, the derivative of ˜ri j with respect tobi can be calculated by an algorithm as
follows

∂r̃i j

∂bi
= −{
∂r̃i(j−1)

∂bi
r(j−1) j + r̃i(j−1)

∂r(j−1) j

∂bi
}.

Then according to the chain rule,

(
∂r̃i j

∂b
)

b0
=

(
∂r̃i j

∂bi

∂bi

∂bi−1
· · ·
∂b2

∂b1

)

b0
.

∂r(j−1) j/∂bi can be calculated in the form of∂ri(i+1)/∂bi as below.ri(i+1) can be further written
as a function ofwi andSi,

ri(i+1) =
w′iSiwi+1

w′iSiwi
= 1−

w′iSiSiwi

w′iSiwi
qi.

15

Hence, the derivative can be written as

∂ri(i+1)

∂bi
= −

∂

∂bi

w′iSiSiwi

w′iSiwi
qi

= −
∂w′iSiSiwi

∂Siwi

∂Siwi

∂bi

qi

w′iSiwi
−

w′iSiSiwi

w′iSiwi

∂qi

∂bi
+

w′iSiSiwi

(w′iSiwi)2
qi
∂w′iSiwi

∂bi

= −2w′iSi

(

Si
∂Siwi
∂vecut (Si)

) qi

w′iSiwi
−

w′iSiSiwi

w′iSiwi

∂qi

∂bi
+

w′iSiSiwi

(w′iSiwi)2
qi

(

2w′iSi
∂w′iSiwi

∂vecut (Si)

)

,

where ∂Siwi
∂vecut (Si)

and
∂w′i Siwi

∂vecut (Si)
are calculated in Block2 in Appendix B.1.2.

Appendix C. Computing β̂ from b

In the bootstrap procedure we need to compute the PLS coefficient vector fromb. The proce-
dure is as follows.w1 consists of the firstk elements ofb corresponding tow1 = X′cyc, andS1 is
a square matrix built by the (k+1)-th to{k(k+3)/2}-th elements ofb. Wheni ≥ 2,wi = Ai−1wi−1,
andSi = Ai−1Si−1A′i−1. For i = 1, . . . , a,

Ai = I − Siwiw′i/w
′
iSiwi.

vi = wi/

√

w′iwi.

pi = Sivi/v′iSivi.

qi = w′ivi/v′iSivi.

β̂
B
= V(P′V)−1q. The normalizationvi = wi/

√

w′iwi is used here because it makes the orthogo-
nal scores algorithm more stable, though it does not change the estimated regression coefficients.

References

[1] L. Zhang, S. Garcia-Munoz, A comparison of different methods to estimate prediction uncertainty using partial
least squares (PLS): a practitioner’s perspective, Chemometrics and Intelligent Laboratory Systems 97 (2009)
152–158.

[2] M. C. Denham, Prediction intervals in partial least squares, Journal of Chemometrics 11 (1997) 39–52.
[3] S. Serneels, P. Lemberge, P. J. Van Espen, Calculation ofPLS prediction intervals using efficient recursive relations

for the jacobian matrix, Journal of Chemometrics 18 (2004) 76–80.
[4] A. Phatak, P. Reilly, A. Penlidis, The asymptotic variance of the univariate PLS estimator, Linear Algebra and its

Applications 354 (2002) 245–253.
[5] R. Romera, Prediction intervals in partial least squares regression via a new local linearization approach, Chemo-

metrics and Intelligent Laboratory Systems 103 (2010) 122–128.
[6] H. Martens, T. Næs, Multivariate Calibration, new ed., Wiley-Blackwell, 1991.
[7] I. S. Helland, On the structure of partial least squares regression, Communications in Statistics - Simulation and

Computation 17 (1988) 581–607.
[8] B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall/CRC, 1994.
[9] J. R. Magnus, H. Neudecker, The commutation matrix: Someproperties and applications, The Annals of Statistics

7 (1979) 381–394.
[10] R. Manne, Analysis of two partial-least-squares algorithms for multivariate calibration, Chemometrics and Intelli-

gent Laboratory Systems 2 (1987) 187–197.

16

Figure 1: PLS estimated variances and actual squared prediction error versusVL. k = 2, a = 1,
σ2

1 = 25,σ2
2 = 1, β0 = β1 = 1, β2 = 0,σ2

ǫ = 0.25. SPE: squared prediction error (˙yp − ˆ̇yp)2. Lin:
Vl + σ

2
ǫ /n. Linb: VB + σ

2
ǫ /n.

17

0 1 2 3 4 5 6 7

x 10
−3

1

2

3

4

5

6

7

8

9

10
x 10

−3

VL

S
P

E
, L

in
, L

in
b

SPE
Lin
Linb

18

Figure 2: PLSβ̂ againstb
n whenk = 2, a = 1, σ2

1 = 25, σ2
2 = 1, β0 = β1 = 1, β2 = 0,

σ2
ǫ = 0.25.

19

0.5 1 1.5
b5
n
=Var(ẋ2)

−2 −1 0 1 2
b4
n
=Cov(ẋ1, ẋ2)

0 10 20 30 40
b3
n
=Var(ẋ1)

−2 −1 0 1 2
b2
n
=Cov(ẋ2, ẏ)

0 10 20 30 40

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

b1
n
=Cov(ẋ1, ẏ)

β̂
2

0.95

1

1.05

β̂
1

20

Figure 3: PLS estimated variances and actual squared prediction error versus (a)VL and (b)
VB. k = 2, a = 1, σ2

1 = 25,σ2
2 = 1, β1 = 0, β0 = β2 = 1, σ2

ǫ = 0.25. SPE: squared prediction
error (ẏp − ˆ̇yp)2. Lin: VL + σ

2
ǫ/n. Linb: VB + σ

2
ǫ /n.

21

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

VL

S
P

E
, L

in
, L

in
b

SPE
Lin
Linb

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

VB

S
P

E
, L

in
, L

in
b

SPE
Lin
Linb

(b)

22

Figure 4: PLSβ̂ againstb
n whenk = 2, a = 1, σ2

1 = 25, σ2
2 = 1, β1 = 0, β0 = β2 = 1 ,

σ2
ǫ = 0.25.

23

0.5 1 1.5
b5
n
=Var(ẋ2)

−2 −1 0 1 2
b4
n
=Cov(ẋ1, ẋ2)

0 10 20 30 40
b3
n
=Var(ẋ1)

0.5 1 1.5
b2
n
=Cov(ẋ2, ẏ)

−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

b1
n
=Cov(ẋ1, ẏ)

β̂
2

−0.2

−0.1

0

0.1

0.2

β̂
1

24

Figure 5: Adequacy of the linearization approximation in the case whenk = 2,a = 1,σ2
1 = 25,

σ2
2 = 1,β1 = 0,β0 = β2 = 1 ,σ2

ǫ = 0.25. b1 = −1.9897,b2 = 215.3367,b3 = 4691.2,b4 = 4.123,
andb5 = 224.8093.

25

−60 −40 −20 0 20 40 60
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

∆b
1

β̂
1

Actual Value
Approximation

−60 −40 −20 0 20 40 60

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

∆b
1

β̂
2

Actual Value
Approximation

26

Figure 6: Adequacy of the linearization approximation in the case whenk = 3, a = 2, σ2
1 =

σ2
2 = 25,σ2

3 = 1, β1 = β2 = 1, β3 = 0, σ2
ǫ = 0.25. b1 = 4145.5, b2 = 4192.6, b3 = −78.6,

b4 = 4686.5, b5 = −483.1, b6 = −21.8, b7 = 4674.7, b8 = −61.5, andb9 = 171.3.

27

−20 −10 0 10 20
0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

∆b
4

β̂
1

Actual Value
Approximation

−20 −10 0 10 20
0.94

0.96

0.98

1

1.02

1.04

1.06

∆b
4

β̂
2

Actual Value
Approximation

−20 −10 0 10 20
−0.04

−0.02

0

0.02

0.04

0.06

0.08

∆b
4

β̂
3

Actual Value
Approximation

28

Figure 7: PLS estimated variances and actual squared prediction error versusVB. k = 24,
a = 7; σ2

1 = 64,σ2
2 = 49,σ2

3 = 36,σ2
4 = 25,σ2

5 = 16,σ2
6 = 9, σ2

7 = 4, σ2
8 = · · · = σ

2
24 = 1;

β0 = 1,β1 = 8,β2 = 7,β3 = 6,β4 = 5,β5 = 4,β6 = 3,β7 = 2, andβ8 = · · · = β24 = 0,σ2
ǫ = 0.25.

SPE: squared prediction error (˙yp − ˆ̇yp)2. Linb: VB + σ
2
ǫ /n.

29

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

VB

S
P

E
, L

in
b

SPE
Linb

30

