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Abstract
This paper deals with the fractional order model for GATA-switching for regulating the
differentiation of a hematopoietic stem cell. We give a detailed analysis for the
asymptotic stability of the model. The Adams-Bashforth-Moulton algorithm has been
used to solve and simulate the system of differential equations.
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1 Introduction
Hematopoiesis is a highly orchestrated developmental process that comprises various de-
velopmental stages of hematopoietic stem cells (HSCs). During development, the deci-
sion to leave the self-renewing state and selection of a differentiation pathway is regu-
lated by a number of transcription factors. Among them, genes GATA- and PU. form
a core negative feedback module to regulate the genetic switching between the cell fate
choices of HSCs. The transcription factors PU. and GATA- are known to be important
in the development of blood progenitor cells. Specifically they are thought to regulate the
differentiation of progenitor cells into the granulocyte/macrophage lineage and the ery-
throcyte/megakaryocite lineage. Although extensive experimental studies have revealed
the mechanisms to regulate the expression of these two genes, it is still unclear how this
simple module regulates the genetic switching [, ].
The notion of fractional calculus was anticipated by Leibniz, one of the founders of stan-

dard calculus, in a letter written in . Recently great considerations have been made
to the models of FDEs in different areas of research. The most essential property of these
models is their non-local property which does not exist in the integer order differential
operators.Wemean by this property that the next state of a model depends not only upon
its current state but also upon all of its historical states [–].
In this paper, we consider the fractional model for GATA-switching for regulating the

differentiation of a hematopoietic stem cell. We give a detailed analysis for the asymptotic
stability of the model. The Adams-Bashforth-Moulton algorithm has been used to solve
and simulate the system of differential equations.
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2 Description of themodel
In [], Tian and Smith-Miles proposed a mathematical model for the GATA-PU. regula-
tory network including genes GATA-, GATA- and PU.. Under some assumptions, they
proposed themodel to realize the genetic switching of theGATA-PU. regulatory network
of the following form:

dx
dt

=
ax + ay

a + ax + ay + az + axz
– kx,

dy
dt

=
by

b + bx + by + bz + byz
– ky, (.)

dz
dt

=
cz

c + cx + cy + cz + cxz + cyz
– kz,

where x, y and z are the concentrations of TFs GATA-, GATA- and PU., respectively,
a, b and c represent the expression rates of genes GATA-, GATA- and PU. auto-
regulated by itself, respectively, a is the expression rate of gene GATA- regulated by
TF GATA-, k, k and k are the degradation rates of TFs GATA-, GATA- and PU.,
respectively. There are  rate constants in the proposed mathematical model (.). Now
we introduce fractional order into the ODE model by (.). The new system is described
by the following set of fractional order differential equations:

Dα
t x =

ax + ay
a + ax + ay + az + axz

– kx,

Dα
t y =

by
b + bx + by + bz + byz

– ky, (.)

Dα
t z =

cz
c + cx + cy + cz + cxz + cyz

– kz,

where α is a parameter describing the order of the fractional time derivative in the Caputo
sense defined as

Dα
t f (t) =


�(n – α)

∫ t



f (n)(s)
(t – s)α–n+

ds, n = [α] + .

3 Equilibrium points and stability
In the following, we discuss the stability of the commensurate fractional ordered dynam-
ical system

Dα
t xi = fi(x,x,x), α ∈ (, ), ≤ i≤ . (.)

Let E = (x∗
 ,x∗

,x∗
) be an equilibrium point of system (.) and xi = x∗

i + ηi, where ηi is a
small disturbance from a fixed point. Then

Dα
t ηi = Dα

t xi

= fi
(
x∗
 + η,x∗

 + η,x∗
 + η

)

≈ η
∂fi(E)
∂x

+ η
∂fi(E)
∂x

+ η
∂fi(E)
∂x

. (.)
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System (.) can be written as

Dα
t η = Jη, (.)

where η = (η,η,η)T and J is the Jacobian matrix evaluated at the equilibrium points.
UsingMatignon’s results [], it follows that the linear autonomous system (.) is asymp-
totically stable if | arg(λ)| > απ

 is satisfied for all eigenvalues of matrix J at the equilibrium
point E = (x∗

 ,x∗
,x∗

).
If p(x) = x + ax + ax+ a, let D(p) denote the discriminant of a polynomial p(x), then

D(p) = –

∣∣∣∣∣∣∣∣∣∣∣∣

 a a a 
  a a a
 a a  
  a a 
   a a

∣∣∣∣∣∣∣∣∣∣∣∣
= aaa + (aa) – aa – a – a.

Following [, –], we have the proposition.

Proposition One assumes that E exists in R
+.

(i) If the discriminant of p(x), D(p) is positive and the Routh-Hurwitz conditions are
satisfied, that is, D(p) > , a > , a > , aa > a, then E is locally asymptotically
stable.

(ii) If D(p) < , a > , a > , aa = a, α ∈ [, ), then E is locally asymptotically
stable.

(iii) If D(p) < , a < , a < , α > 
 , then E is unstable.

(iv) The necessary condition for the equilibrium point E to be locally asymptotically
stable is a > .

One can verify that system (.) has the following three steady states:

E = (, , ), E =
(
a – ka
ka

, , 
)
, E =

(
,,

c – kc
kc

)
.

Theorem . The trivial steady state E is locally asymptotically stable if the following
conditions are satisfied: a

a
< k, b

b
< k, c

c
< k.

Proof The trivial steady state E is locally asymptotically stable if all the eigenvalues λi,
i = , , , of the Jacobian matrix J(E) satisfy the following condition [, –]:

∣∣arg(λi)
∣∣ > απ


. (.)

The Jacobian matrix J(E) for the system given in (.) evaluated at the steady state E is
as follows:

J(E) =

⎛
⎜⎝

a
a

– k a
a


 b

b
– k 

  c
c
– k

⎞
⎟⎠ .

The eigenvalues of the Jacobian matrix J(E) are λ = a
a

– k, λ = b
b

– k, λ = c
c
– k.
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Hence E is locally asymptotically stable if the following conditions are satisfied: a
a

< k,
b
b

< k, c
c
< k. �

Theorem . The steady state E with high expression level of gene GATA- is stable if the
following conditions are satisfied:

ak
a

< ,
akb

akb + b(a – ak)
< k,

akc
akc + c(a – ak)

< k.

Proof The Jacobian matrix of nonlinear system (.) for this steady state E is

J(E) =

⎛
⎜⎜⎝
k( ak–aa

) k(aa+a(–a+ak))
aa

– (a–ak)(aak+a(a–ak))
aa

 akb
akb+b(a–ak)

– k 
  akc

akc+c(a–ak)
– k

⎞
⎟⎟⎠ .

The three eigenvalues of the Jacobian matrix are:

λ = k
(
ak – a

a

)
,

λ =
akb

akb + b(a – ak)
– k,

λ =
akc

akc + c(a – ak)
– k.

Theorem  of [] has the same results for the integer order model (and has somemisprints
in the first condition). They claimed that λ is negative, but the sign of λ depends on the
quantity ( ak–aa

). �

Theorem . The steady state E with high expression level of gene PU. is stable if the
following conditions are satisfied:

ck
c

< ,
ack

ack + a(c – ck)
< k,

bck
ckb + b(c – ck)

< k.

Proof The Jacobian matrix of nonlinear system (.) for this steady state E is

J(E) =

⎛
⎜⎜⎝

ack
ack+a(c–ck)

– k ack
ack+a(c–ck)



 bck
ckb+b(c–ck)

– k 

– (c–ck)(cck+c(c–ck))
cc

– (c–ck)(cck+c(c–ck))
cc

k( ck–cc
)

⎞
⎟⎟⎠ .

The three eigenvalues of the Jacobian matrix are:

λ = k
(
ck
c

– 
)
,

λ =
ack

ack + a(c – ck)
– k,

λ =
bck

ckb + b(c – ck)
– k.
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Table 1 The equilibrium points and the eigenvalues of the system

Equilibrium point Eigenvalues

E4 = (659.2192685, 0, 0) {–0.909177, 0.435225, –0.234831}
E5 = (322.17148, 1.36478, 0) {–0.909177, 0.435225, –0.234831}
E6 = (3.812275, 13.9889, 0) {–1.37375, 0.948121, –0.560537}
E7 = (15.99, 2.19× 10–12, 1.153) {26.522544, –0.929339, 0.0585563}
E8 = (3.6329, 13.065, 1.17301) {–1.38529, –0.591193, –0.203561}
E9 = (0.00054, 0.0042, 241.024) {–0.622622, –0.345295, 0.0472589}

Under the conditions of Theorem ., we can conclude that steady state E with high
expression level of gene PU. is stable. �

Following [], parameters of the model are as follows:

(a,a,a,a,a,a,a) = (., ., , ., ., ., .),

(b,b,b,b,b,b) = (., , ., ., ., .),

(c, c, c, c, c, c, c) = (., , ., ., ., ., .)

and

(k,k,k) = (., ., .).

Using these parameters, one can verify that the system has six nontrivial equilibrium
points. The equilibrium points and the eigenvalues of corresponding Jacobian matrix are
given in Table .
It is clear from the table, that the equilibrium point E is a stable point. The other points

are unstable.

4 Numerical methods and simulations
Since most of the fractional-order differential equations do not have exact analytic solu-
tions, approximation and numerical techniques must be used. Several analytical and nu-
merical methods have been proposed to solve the fractional-order differential equations.
For numerical solutions of system (.), one can use the generalized Adams-Bashforth-
Moulton method. To give the approximate solution by means of this algorithm, consider
the following nonlinear fractional differential equation []:

Dα
t y(t) = f

(
t, y(t)

)
,  ≤ t ≤ T ,

y(k)() = yk, k = , , , . . . ,m – ,wherem = [α].

This equation is equivalent to the Volterra integral equation

y(t) =
m–∑
k=

y(k)
tk

k!
+


�(α)

∫ t


(t – s)α–f

(
s, y(s)

)
ds. (.)

Diethelm et al. used the predictor-correctors scheme [, ] based on the Adams-Bash-
forth-Moulton algorithm to integrate Eq. (.). By applying this scheme to the fractional-
order model GATA-switching for regulating the differentiation of a hematopoietic stem

http://www.advancesindifferenceequations.com/content/2014/1/201
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cell, and setting h = T
N , tn = nh, n = , , , . . . ,N ∈ Z+, Eq. (.) can be discretized as follows

[]:

xn+ = x +
hα

�(α + )

(
ax

p
n+ + ay

p
n+

a + ax
p
n+ + ay

p
n+ + az

p
n+ + ax

p
n+z

p
n+

– kx
p
n+

)

+
hα

�(α + )

n∑
j=

aj,n+
(

axj + ayj
a + axj + ayj + azj + axjzj

– kxj
)
,

yn+ = y +
hα

�(α + )

(
by

p
n+

b + bx
p
n+ + by

p
n+ + bz

p
n+ + by

p
n+z

p
n+

– ky
p
n+

)

+
hα

�(α + )

n∑
j=

aj,n+
(

byj
b + bxj + byj + bzj + byjzj

– kyj
)
,

zn+ = z +
hα

�(α + )

(
cz

p
n+

c + cx
p
n+ + cy

p
n+ + cz

p
n+ + cx

p
n+z

p
n+ + cy

p
n+z

p
n+

– kz
p
n+

)

+
hα

�(α + )

n∑
j=

aj,n+
(

czj
c + cxj + cyj + czj + cxjzj + cyjzj

– kzj
)
,

where

xpn+ = x +


�(α)

n∑
j=

bj,n+
(

axj + ayj
a + axj + ayj + azj + axjzj

– kxj
)
,

ypn+ = y +


�(α)

n∑
j=

bj,n+
(

byj
b + bxj + byj + bzj + byjzj

– kyj
)
,

zpn+ = z +


�(α)

n∑
j=

bj,n+
(

czj
c + cxj + cyj + czj + cxjzj + cyjzj

– kzj
)
,

aj,n+ =

⎧⎪⎨
⎪⎩
nα+ – (n – α)(n + ), j = ,
(n – j + )α+ + (n – j)α+ – (n – j + )α+, ≤ j ≤ n,
, j = n + ,

bj,n+ =
hα

α

(
(n – j + )α – (n – j)α

)
,  ≤ j ≤ n.

Figure  illustrates the distribution of the concentration GATA-, GATA- and PU. with
time. It is observed that GATA- is increasing with time and reaches its equilibrium point
(.), while PU. seems to decrease with time and reaches its steady state (.).
On the other hand, the GATA- gene seems to decrease with time and reach its equi-
librium point (.). Figure  indicates the behavior of the approximate solutions for
system (.) obtained for the values of α = .. In Figure , the variation of GATA- vs.
time t is shown for different values of α = , . by fixing other parameters. Figure  de-
picts GATA- vs. time t. Figure  shows similar variations of GATA- with various values
of α. In Figure , the variation of PU. vs. time t is shown for different values of α that
increase, α decreases with the concentration of PU. gene.

http://www.advancesindifferenceequations.com/content/2014/1/201
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Figure 1 Variation of GATA-1, GATA-2 and PU.1 with time for α = 1.

Figure 2 Variation of GATA-1, GATA-2 and PU.1 with time for α = 0.6.

Figure 3 Variation of GATA-1 with time for different values of α.

Figure 4 Variation of GATA-2 with time for different values of α.
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Figure 5 Variation of PU.1 with time for different values of α.

5 Conclusions
In this paper, we consider the fractional model for GATA-switching for regulating the
differentiation of a hematopoietic stem cell. We have obtained a stability condition for
equilibrium points. We have also given a numerical example and verified our results. One
should note that although the equilibrium points are the same for both integer order and
fractional order models, the solution of the fractional order model tends to the fixed point
over a longer period of time. One also needs to mention that when dealing with real life
problems, the order of the system can be determined by using the collected data.
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