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Abstract 3

Abstract

This thesis introduces coherent dependence clusters and shows their relevance
in areas of software engineering such as program comprehension and mainte-
nance. All statements in a coherent dependence cluster depend upon the same
set of statements and affect the same set of statements; a coherent cluster’s
statements have ‘coherent’ shared backward and forward dependence.

We introduce an approximation to efficiently locate coherent clusters and
show that its precision significantly improves over previous approximations.
Our empirical study also finds that, despite their tight coherence constraints,
coherent dependence clusters are to be found in abundance in production code.
Studying patterns of clustering in several open-source and industrial programs
reveal that most contain multiple significant coherent clusters. A series of
case studies reveal that large clusters map to logical functionality and pro-
gram structure. Cluster visualisation also reveals subtle deficiencies of program
structure and identify potential candidates for refactoring efforts. Supplemen-
tary studies of inter-cluster dependence is presented where identification of
coherent clusters can help in deriving hierarchical system decomposition for
reverse engineering purposes. Furthermore, studies of program faults find no
link between existence of coherent clusters and software bugs. Rather, a longi-
tudinal study of several systems find that coherent clusters represent the core
architecture of programs during system evolution.

Due to the inherent conservativeness of static analysis, it is possible for
unreachable code and code implementing cross-cutting concerns such as error-
handling and debugging to link clusters together. This thesis studies their effect
on dependence clusters by using coverage information to remove unexecuted
and rarely executed code. Empirical evaluation reveals that code reduction

yields smaller slices and clusters.
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Chapter 1

Introduction

Program dependence analysis is a foundation for many activities in software en-
gineering such as testing, comprehension, and impact analysis |[Binkley| 2007].
For example, it is essential to understand the relationships between different
parts of a system when making changes and the impacts of these changes |Gal-
lagher and Lyle, [1991]. This has led to static [Yau and Collofello, 1985, Blackl,
2001], dynamic [Korel and Laski, [1988| [Law and Rothermel |2003| and blended
(static and dynamic) [Ren et al., 2006, 2005] dependence analyses of the rela-

tionships between dependence and impact.

One important property of dependence is the way in which it may cluster.
This occurs when a set of statements all depend upon one another, forming a
dependence cluster. Within such a cluster, any change to any element poten-
tially affects every other member of the cluster. Binkley and Harman [2005b]
introduced dependence clusters and later demonstrated in a large scale em-
pirical validation that large dependence clusters were (perhaps surprisingly)
common, both in industrial and in open source system |[Harman et al., [2009].
Their study of a large corpus of C code found that 89% of the programs studied
contained at least one dependence cluster that consumed at least 10% of the
program’s statements. The average size of the programs studied was 20KLoC,
so these clusters of more than 10% denoted significant portions of code. They
also found evidence of super-large clusters: 40% of the programs had a depen-

dence cluster that consumed over half of the program.

More recently, dependence clusters have been identified in other languages
and systems, both in open source and in industrial systems [Acharya and
Robinson|, 2011]. Large dependence clusters were also found in Java systems
[Beszédes et al.l [2007, [Savernik, 2007, |Szegedi et al.; 2007 and in legacy Cobol
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systems |[Hajnal and Forgécs, 2011].

Since its inception, dependence clusters have been thought of as potential
problem points as large inter-twined dependence is thought to make the task
of program comprehension and maintenance difficult [Binkley and Harman)
2005b]. Binkley et al. [2008b] have regarded dependence clusters as bad code
smells and considered them to be dependence ‘anti-patterns’ because the high
impact of changes that may lead to problems for on-going software mainte-
nance and evolution [Savernik} 2007]. To this end there has been work that
studies the link between impact analysis and dependence clusters [Acharya and
Robinson| 2011} |Jasz et al., [2012].

There has been interesting work that investigates the relationship between
program faults, software metrics, and dependence clusters [Black et al., 2009].
A possible link between dependence clusters and program faults has also been
suggested [Black et al., 2006]. As a result, approaches have been proposed that
identify linchpin vertices (responsible for holding clusters together) in both
traditional dependence clusters [Binkley and Harman| 2009, Binkley et al.,
2013a] and SEA-based clusters [Beszédes et al., [2007].

Despite their potentially negative impact, dependence clusters are not well
understood. Cluster analysis is complicated because inter-procedural depen-
dence is non-transitive; thus, the definition of a dependence cluster is sub-
tle, even surprising. One implication of this complexity is that past studies
have focused on the internal aspects of dependence clusters and thus largely
ignored the extra-cluster dependences (both in to and out of the cluster). Non-
transitivity of dependence means that the statements in a traditional depen-
dence cluster, though they all depend on each other, may not each depend on
the same set of statements, nor need they necessarily affect the same set of

statements.

This thesis introduces and empirically studies coherent dependence clus-
ters. In a coherent dependence cluster all statements share identical intra-
cluster and extra-cluster dependence. A coherent dependence cluster is thus
more constrained than a general dependence cluster. A coherent dependence
cluster retains the essential property that all statements within the cluster are
mutually dependent, but adds the constraint that all incoming dependence
must be identical and all outgoing dependence must also be identical. That

is, all statements within a coherent cluster depend upon the same set of state-
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ments outside the cluster and all statements within a coherent cluster affect

the same set of statements outside the cluster.

This means that, when studying a coherent cluster, we need to under-
stand only a single external dependence context in order to understand the
behaviour of the entire cluster. For a dependence cluster that fails to meet the
external constraint, each statement of the cluster may have a different external

dependence context, because inter-procedural dependence is not transitive.

It might be thought that very few sets of statements would meet these
additional coherence constraints or that, where such sets of statements do
meet the constraints, there would be relatively few statements in the coherent
cluster so-formed. Our empirical findings provide evidence that this is not the
case, coherent dependence clusters are common and they can be very large.
This finding provides a new way to investigate the dependence structure of a

program and the way in which it clusters.

This thesis looks at dependence clusters in a new light. Unlike previ-
ous understanding, this thesis shows that coherent clusters are not necessarily
problems hindering code maintenance and comprehension, instead clusters are
found to depict logical structure of a program. The thesis shows that visuali-
sation of coherent clusters can help reveal these logical structures and can also

help identify potential structural problems and refactoring opportunities.

A study on the link between program faults and coherent clusters find no
evidence to suggest that coherent clusters have a link to program faults. On
the other hand, a study of system evolution finds that coherent clusters remain
surprisingly stable during evolution of systems. These two studies provide
further support for the central theme of the thesis where we show that coherent
clusters are not potential problems but occur naturally in programs and depict

the logical structure of the program.

Finally, the thesis presents a study where coverage information is used
to reduce programs by removing unexecuted and rarely executed code, leaving
code that is of most interest to developers and maintainers. This allows for im-
proved static analysis by excluding many cross-cutting concerns. For example,
the average slice size of the reduced programs drop by 30% when compared to
the original versions. An evaluation of coherent clusters show that the clusters

in the reduced version capture more fine-grained logical structures in programs.
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1.1 Problem Statement

Analyse and visualize coherent dependence clusters and to study their impact

on program comprehension and maintenance.

1.2 Research Questions

Formally, this thesis addresses the following fourteen research questions. This
section gives a brief description of these questions and their relationship.

The first three research questions [RQ1.1]HRQI.5 form the core validation
study of the thesis and are addressed in Chapter validates the ex-
perimental setup and its methodology. asks whether coherent clusters
are indeed common in production systems, making them worthy of further
study. studies the conservatism introduced by using approximations for

slice-based clusters.

RQ1.1 How precise is hashing as a proxy for comparing slices?
RQ1.2 How large are coherent clusters that exist in production source code?

RQ1.3 How conservative is using the same-slice relationship as an approzi-

mation of slice-inclusion relationship?

Research question uses graph-based cluster visualisations to study
the cluster profile for the subject programs. Patterns of clustering visible from
the cluster profile of the graph-based visualisation are identified and form the
answer to this question. Many of the later research questions are based on iden-
tifying changes in the cluster profile making this research question of identifying
patterns important. studies the impact of various pointer analysis al-

gorithms on the size of slices and how this affects the coherent clusters found

in programs. Both [RQ2.1 and are addressed in Chapter

RQ2.1 Which patterns of clustering can be identified using graph-based cluster

visualisation?
RQ2.2 What is the effect of pointer analysis precision on coherent clusters?

Research question [R()3. 1| forms a major contribution of this thesis. [RQ)S3. 1
is answered using a series of four case studies, which together show that co-

herent clusters map to logical constructs of programs. This is achieved by
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employing the decluvi cluster visualisation tool to analyse the mapping be-
tween clusters and functions of the programs. [R()3.7 presents a quantitative
study of how functions and coherent clusters map to each other. Both these

questions are addressed in Chapter [6]

RQ3.1 Which structures within a program can coherent cluster analysis re-

veal?

RQ3.2 How do functions and clusters overlap, and do overlap and size cor-

relate?

looks explicitly at the relationship between coherent clusters and
program faults. It finds no link between faults and coherent clusters. [RQ4.
on the other hand studies the changes of coherent cluster profile during system
evolution and finds them to be very stable. Answers to [RQ/. 1 and [RQ/.7
provide additional support to the answer of and bolster the central

claim of the thesis that dependence clusters map to logical program structure.

[RQ)/.3 studies the implications of inter-cluster dependence and shows how they
may be leveraged to identify larger dependence structures. [RQ)4.4 looks at the
existence of coherent clusters in object-oriented paradigm by studying Java

programs. [RQ4. IHRQ4.4) are addressed in Chapter [7]

RQ4.1 How do program faults relate to coherent clusters?
RQ4.2 How stable are coherent clusters during system evolution?

RQ4.3 What are the implications of inter-cluster dependence between coherent

clusters?

RQ4.4 Are coherent clusters prevalent in object-oriented programs?

The final set of research questions [RQ5.1HRQ5.5 are related to the code
reduction framework aimed at reducing the size of static slices and clusters.
(R()5. 1| studies the impact of different test suites on static slicing and depen-
dence clusters. [RQ)5.9 analyses the existence and change in clustering profile
following code reduction, whereas ascertains whether code reduction
improves the quality of the clustering. [RQ5. IHRQ5.3 are addressed in Chap-
ter B

RQ5.1 What is the impact of different test suites on static program slices and

dependence clusters in coverage-based reduced programs?



1.3. Contributions 17

RQ5.2 How large are coherent clusters that exist in the coverage-based reduced

programs and how do they compare to the original version?

RQ5.3 Which structures within a coverage-based reduced program can coher-
ent cluster analysis reveal and how do they compare to the original ver-

sion?
1.3 Contributions
The primary contributions of the thesis are as follows:
1. Definition of coherent dependence clusters
2. An algorithm for efficient and accurate clustering

3. Empirical evaluation of the impact of pointer analysis precision on clus-

tering

4. Empirical evaluation of the frequency and size of coherent dependence

clusters in production grade software

5. A cluster visualisation tool for graph-based and interactive multi-level

visualisation of dependence clusters

6. A series of case studies showing that coherent clusters map to logical

program structure

7. Studies into the relationship between software bugs and software evolu-

tion with coherent dependence clusters

8. Identification of inter-cluster dependence and highlighting how coherent
clusters form the building blocks of larger program dependence structures

and can support reverse engineering

9. Introduction of a framework for coverage-based code reduction to elimi-
nate unwanted cross-cutting concerns or other features in order to reduce

size of static slices and clusters.
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1.4 Publications

Publications on Coherent Dependence Clusters:

e Syed Islam, Jens Krinke, David Binkley, and Mark Harman. Coher-
ent dependence clusters. In PASTE ’10: Proceedings of the 9th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 53—-60. ACM Press, 2010.

e Syed Islam, Jens Krinke, and David Binkley. Dependence cluster vi-
sualization. In SoftVis ’10: 5th ACM/IEEE Symposium on Software
Visualization, pages 93-102. ACM Press, 2010.

e Syed Islam, Jens Krinke, David Binkley, and Mark Harman. Coherent
clusters in source code. Journal of Systems and Software, 88(0):1 — 24,
2014.

Publications on Dependence Clusters:

e David Binkley, Mark Harman, Youssef Hassoun, Syed Islam, and Zheng
Li. Assessing the impact of global variables on program dependence and
dependence clusters. Journal of Systems and Software, 83(1):96-107,
2010.

e David Binkley, Nicholas Gold, Mark Harman, Syed Islam, Jens Krinke,
and Zheng Li. Efficient identification of linchpin vertices in dependence
clusters. ACM Transactions on Programming Languages and Systems
(TOPLAS), 35(2):1-35, July 2013.

1.5 Research Methodology

This thesis uses both Quantitative research and Qualitative research. The tech-
niques are used to complement each other rather than compete as suggested
by Wohiln et al. [2003]. The quantitative research broadly looks at ascertain-
ing the presence and frequency of dependence clusters in real-world systems.
As part of the quantitative research, experiments were conducted to replicate
results of previous studies and validate current results against them. As this
thesis is the first to present Coherent Clusters, it is important to replicate pre-

vious results from closely related work on dependence clusters for the purpose
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of validation and comparison. An extension of the quantitative studies also
looks into the effect of other dependence properties of the clusters.

The qualitative research looks in-depth into four of the subject programs
to ascertain different properties and implications of the presence of coherent
clusters in them. The qualitative research is done by considering the production
systems as case studies where their clustering is studied and compared to logical

program structure.

1.6 Thesis Structure
The remainder of this thesis is organised into eight chapters. Chapter [2| pro-

vides a literature review on clustering and work related to dependence clusters.
Chapter [3| provides the necessary background on dependency graphs, program
slicing and various instantiations of dependence clusters. Chapter [4] introduces
coherent clusters and its various slice based instantiations. Chapter [5] intro-
duces various graph-based visualisations and the decluvi cluster visualisation
tool. Chapter [0 presents a series of four case studies for qualitative and quanti-
tative studies of mapping between coherent clusters and functions. Chapter [7]
presents studies on the link between clusters and bugs, clusters and system
evolution, inter-cluster dependence and existence of clusters in object-oriented
programs. Chapter [§| presents the coverage-based code reduction framework
and its impact on static slicing and clustering. Finally, Chapter [J] presents

threats to validity, highlights future work and draws conclusions of the thesis.



20

Chapter 2

Background

2.1 Software Clustering

Clustering is the process of grouping entities such that entities within a group
are similar to one another and different from those in other groups. The sim-
ilarity between entities is determined based on their features. Clustering is a
very important activity widely researched and has a wide variety of applica-
tions in various different domains [Anderberg, (1973| Everitt, 1974, [Romesburgj,
1984], including software engineering.

According to Anquetil et al. [1999] and Magbool et al. [2007] the following

need to be considered before clustering can be performed:

Entities: What is to be grouped?

It is necessary to group together entities that result in a partition (clus-
tering result) which is of interest to software engineers. The goal is to
create subsystems that contain entities that are related based on a spe-
cific set of criteria. In case of software clustering these entities are files,
functions, global variables, types, macros statement block, syntactic units
etc. For large systems, the desired entities may be abstract, and mod-
elled using architectural components such as subsystems and subsystem
relations. For even larger systems, hundreds of subsystems themselves
might be collected into other subsystems, resulting in a subsystem hier-
archy [Lakhotia, (1997].

Selection of features: What characteristics will be considered?
The entities selected for clustering will have a lot of features that they
exhibit. A set of features, which can be used as a basis for judging sim-

ilarity of entities, must be selected for the clustering process. In case
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of software clustering, both formal (function calls, file inclusion, vari-
able referencing, type referencing etc.) and informal features (comments,
identifier names, directory path, LOC, last modification time, developer,
change requests) have been widely used as basis of clustering [Andritsos
and Tzerpos, 2005, Lakhotia, 1997]. More recently, the use of dynamic
information (for example, the number of function calls made at run-time)

has also been explored [Tzerpos|, 2005].

Entities’ coupling: How will the relationship between entities be represented?
Once the entities and the features have been selected, the next step is to
decide how to group them into cohesive units. There are two approaches,
‘direct link” and ‘sibling link’ The first puts together entities based on
direct relationship between the entities, while the second puts together
entities that exhibit the same behaviour. The approaches are discussed
in further details in Section 2.2

Clustering algorithm How will the clusters be grouped?
There are many different algorithms that are successful for clustering,
however all of these may not be applicable to software clustering and
may not produce results that are of interest from a software engineering
point of view. An example is the grid method, where entities are clustered
based on their geographical position within a grid structure [Asif et al.,
2009]. This will not be useful as software artefacts do not have any spacial

properties.

Software clustering can thus be described as the process of gathering soft-
ware entities (such as files, functions, etc.) that compose the system into
meaningful (cohesive) and independent (loosely coupled) subsystems.

There have been many surveys of the vast amount of techniques applied
in the field of software clustering. Many frameworks have been proposed for
classifying these techniques. It is beyond the scope of the review presented
here to consider all the various approaches and classifications in detail. For
our review we consider in detail the two most popular approaches in software
clustering: hierarchical clustering (Section and search-based clustering
(Section . Other approaches are briefly outlined in Section . Below, we
briefly note major surveys, frameworks and classifications of the area.

From the rich literature on clustering [Xu and Wunsch, [2005 Ander-
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berg, 1973, [Everitt, 1974, [Romesburg, [1984], a set of suitable clustering al-
gorithms that may be applied to software clustering process was surveyed
by Wiggerts [1997], Mitchell [2004] and Tzerpos et al. [1998]. Magbool and
Babri [2007], Anquetil and Lethbridge [1999] provide a detailed survey of hier-
archical techniques.

Lakhotia [1997] gives a survey on subsystem classification techniques and
provides a unified framework for entity description and clustering methods in
order to facilitate comparison between various subsystem classification tech-
niques. Koschke [2002] presents a classification in his PhD thesis where he
considers 23 different approaches and classifies them based on relationships
between entities. Other studies |[Armstrong and Trudeau, [1998| Storey et al.,
2000] look at reverse engineering applications and provide evaluation and com-
parison of tools. Ducasse and Pollet [2009] provide a comprehensive taxonomy
of the software architecture recovery field and evaluate 34 techniques/tools

based on various capabilities.

2.2 Direct and Sibling link approaches

Before proceeding further we must discuss the representation of the relation-
ships between the various entities. This is of particular importance to us as
they will lead to different clustering approaches that we will review, namely hi-
erarchical clustering and search-based clustering. Tzerpos [1998] distinguishes

the following kinds of relationships:

Direct relationship: FEntities depend on each other.

In this case, entities and relationships are represented as a graph, where
the nodes are the entities and the edges are the relations. Where multiple
relations exist, the graph will have multiple kinds of edges, also weighted
features may be represented in a weighted graph. The direct link ap-
proach has an appealing simplicity, for example, if a function calls another
function or a file includes another file they are related to each other. How-
ever, this often brings us back to the graph partitioning problem which
is known to be NP-Hard |Garey and Johnson| 1990]. This direct link
approach is thus mostly and commonly used by graph-theoretic cluster-
ing and search-based techniques |Hutchens and Basili, 1985, Lung et al.,
2004, Mancoridis et al., 1998, |Mitchell and Mancoridis|, 2001al |Muller
et al [1993] (Section [2.4).
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Sibling link approach: Features that entities share.
This approach is based on representing the commonality of features of
the different entities rather than a direct relationship between the en-
tities themselves [Anquetil and Lethbridge, 2003, |Anquetil et al., |1999|
Schwanke, 1991]. Whereas in the previous approach entities could not
be clustered unless there was a link between them, using this approach
two entities that have no link between them may also be clustered based
on some feature that they have in common. Sibling link approach is also
known to produce better clustering results than direct link approach [An-
quetil and Lethbridge, [1999, Kunz, 1993, Ricca et al. 2004]. We de-

scribe the similarity measure that can be applied to this approach in

Section 2.3.1]

2.3 Hierarchical Clustering

Hierarchical clustering algorithms produce a nested decomposition of the sys-
tem into subsystems, which in turn may be broken down into smaller subsys-
tems and entities. At one end of the hierarchy is the partition where each entity
is in a different cluster and at the other end the partition where all the entities
are in the same cluster. The multi-level architectural views facilitates both
architectural and implementation understanding as they provide both detailed
view and abstractions at various levels that intuitively match the structural
decomposition of software [Shtern and Tzerpos, 2004]. Hierarchical clustering
methods can be divided into two major categories on the basis of the strategy

it adapts to cluster the entities, divisive (top down) or agglomerative (bottom
up).

Divisive (Top-Down): Divisive hierarchical clustering algorithms start with
one cluster containing all the entities representing the systems and use
the top down strategy to iteratively divide the cluster into smaller ones,
until each entity form a cluster on its own or satisfy certain termination
condition. Such algorithms however suffer from excessive computational
complexity and are unpopular, as it has to consider an exponential num-
ber of partition possibilities at every step (2"~! — 1 possibilities in the
first step) [Wiggerts, [1997].

Agglomerative (Bottom-up): Agglomerative hierarchical clustering starts

by placing each entity in its own cluster and then iteratively merges the
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most similar clusters based on some criteria to get larger and larger clus-
ters until certain termination condition is satisfied or all the entities are
in one cluster. At each level of the merging, a clustering result (parti-
tion) of the system is obtained and represents a solution. The partitions
achieved at initial stages contain more clusters and provide a detailed
view whereas the ones at later stages contain fewer clusters and provide
a more high-level view. Hierarchical agglomerative clustering algorithms
are by far the most popular choice when it comes to software architecture
recovery |Anquetil et all (1999 |Anquetil and Lethbridgel 2003} [Hutchens
and Basili, (1985, Schwanke, 1991]. There are many agglomerative hier-
archical algorithms that have been applied to the problem of software
architecture recovery and vary on the strategy used to decide on which
clusters to merge based on similarity of entities contained within the
clusters. The similarity measures are described in Section [2.3.1 and the

various cluster merging strategies are described in Section [2.3.2]

2.3.1 Sibling link similarity measures

The sibling link approach takes into consideration features of the entities, and
two entities with the most features in common are considered to be most sim-
ilar. To be able to do this we must be able to decide that “entity a is more
similar to entity b than entity ¢”, based on some kind of a measure of commonal-
ity. Similarity metrics thus compute a coupling value between two entities and
the choice of the measure is important as the choice of the similarity measure
has more influence on the result than the clustering algorithm [Jackson et al.
1989]. There is a large number of similarity measures/metrics that are found
in the literature and can be grouped into the four categories [Anquetil and
Lethbridgel |1999, Maqgbool and Babri, 2007]: association coefficients, distance
measures, correlation coefficients and probabilistic coefficients.

Association coefficients

These compare the features that two entities have in common considering
whether features are present or not. The idea behind association metrics is
very intuitive: the more relevant feature matches there are between two en-
tities under comparison, the more similar the two entities are. Association
coefficients for two entities ¢ and j are expressed in terms of the number of
features which match and mismatch in the entities, as shown in Table 2.1} In

the matrix, a represents the number of features ¢ and 5 have in common, b rep-
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resents the number of features unique to j, ¢ represents the number of features
unique to ¢, and finally d represents the number of features missing from both
i and j. As the features are represented in binary a, b, ¢ and d are also known
as1—1,1—0,0—1 and 0 — 0 matches.

entity 7 1 | entity 57 O
entity ¢ 1 a b
entity ¢ 0 c d

Table 2.1: Association matrix

Association coefficients based similarity metrics vary mainly in two places:

1. The handling of 0 — 0 matches. Some measures do not take into account
0 — 0 matches and some assign it lower weights than the other three
matches. In the case of software, features are considered to be asymmet-
ric, that is their presence may indicate similarity, but their absence may
not tell us anything. For example, it is significant whether two functions
use the same global variable (a 1 — 1 match), since this indicates that
they may be similar. But, the fact that two functions do not use a global
variable (a 0 — 0 match) does not indicate a similarity between them;

hence, a 1 — 1 match is more significant than a 0 — 0 match.

2. The weight that is applied to matches 1—1 and mismatches 0—1 or 1—0.
In other words, should features unique to mismatches play a bigger role

in deciding the dissimilarity between entities or the other way around.

Some well-known association based similarity measures are shown in Ta-
ble 2.2 For example the Jaccard coefficient is the ratio of 1 — 1 matches,
without considering 0 — 0 matches. The simple matching coefficient counts
both 1 — 1 and 0 — 0 matches as relevant. The Sorenson coefficient is similar
to the Jaccard coefficient, but the number of 1 — 1 matches, a, is given twice
the weight.

Table illustrates an example with three entities with eight attributes.
A 1 entry indicates that the attribute is present in the corresponding entity,
while a 0 indicates the absence of the feature. Entity  in Table[2.3] consists of
attributes 1, 3, 4, and 8; entity y is positive to attributes 1, 2, 3, and 7. Entity x
and y share two common attributes 1 and 3, or these entities have two 1 —1 (a)
matches. Similarly, there are 1—0 (b), 0—1 (¢), and 0—0 (d) attribute matches



2.3. Hierarchical Clustering 26

Similarity measure (sim) Formula
Simple matching coefficient - +Zig d
Jaccard coefficient P
Sorenson-Dice QQE; -
Rogers and Tanimoto #j@m
Sokal and Sneath 20650
Gower and Legendre #bic)w
Russel and Rao Coefficient TThterd
Yule coefficient adThe

Table 2.2: Well-known similarity measures (association coefficients) [Romes-
burg, [1984]

) Attribute
Entity | 09 5 4 5 6 7 8
z 1011000 1
Y 1 1100010
e 01101010

Table 2.3: Data matrix

between the two entities. Therefore, the association coefficients for entities x
and y are a = 2, b = 2, ¢ = 2, and d = 2. Similarly, for entities x and
z, we obtain a = 1, b = 3, ¢ = 3, and d = 1; for entities y and z, a = 3,
b=1,c=1, and d = 3. By applying the Sorenson matching coefficient to the
example in Table [2.3] we get sim,, = (2%2)/(2%2+2+2) = 1/2. Likewise,
simg, = (2x1)/(2¥143+3) = 1/4 and sim,,, = (2%3)/(2+«3+1+1) = 3/4. For
this particular data representation, the higher a coefficient, the more similar
the two corresponding entities represented. Hence, entity y and z are the most
similar pair, since the resemblance coefficient sim,, is the largest.

Results in the literature [Anquetil et al., 1999, Maqgbool and Babri, 2007]
show that for software clustering it is best not to consider zero-dimensions,
Jaccard association coefficient and the Sorensen-Dice (which do not consider

zero-dimensions) both achieve good results.

Distance coefficient

Instead of measuring features in binary (qualitatively), they can also be mea-
sured quantitatively on a ordinal scale. For example, x = (3,5, 10, 2) indicates
that entity x contains four attributes with values of 3, 5, 10, and 2, respectively.

To calculate the resemblance coefficients based on the quantitative input data,
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distance measures are commonly used. Distance metrics measure the dissimi-
larity of entities as opposed to association coefficient that measure similarity.
The greater the outcome the more dissimilar the entities are. The distance
between two entities is zero iff the entities have the same score on all features.
Common distance measures are given in Table where x and y represent

points in the Euclidean space R°.

Table 2.4: Common Distance Measures [Magbool and Babri, |2007]

Correlation coefficients

Correlation coefficients are originally used to correlate features. The most
popular coefficient of this sort is the Pearson product-moment correlation co-
efficient. The value of a correlation coefficient lies in the range from -1 to 1. A
value of 0 means not related at all, 1 means completely related and negative
implies a inverse trend. They are not commonly found in the literature except
one reference where in an experiment Anquetil and Lethbridge [1999] report

them to yield similar results to Jaccard measures.
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Probabilistic coefficients
Probabilistic measures are based on the idea that agreement on rare features
contribute more to the similarity between two entities than agreement on fea-
tures which are frequently present. So probabilistic coefficients take into ac-
count the distribution of the frequencies of the features present over the set of
entities [Wiggerts, |1997]. However, although they were listed in several litera-
ture as an option, they were not studied or used to perform software clustering.
By far the most popular choice amongst researchers is the use of associa-
tive coefficients for similarity measures in the form of Jaccard coefficients and

Sorsen-Dice coefficients. For dissimilarity measures the Euclidean Distance is

preferred [Magbool and Babri, 2007].

2.3.2 Agglomerative Hierarchical Clustering algorithms

An agglomerative hierarchical clustering method is a sequence of operations
that incrementally groups similar entities into clusters. The sequence be-
gins with each entity in a separate cluster. At each step, the two clus-
ters that are closest to each other are merged and the number of clusters
is reduced by one. So, in the beginning there are n clusters with each of
the n entities in one of the clusters. At the end of the process there is
only one cluster which contains all the n entities. The generic algorithm

for agglomerative hierarchical clustering is listed below as Algorithm [I}

Algorithm 1: Agglomerative hierarchical clustering algorithm

Put each entity of the system into its own cluster;
Calculate similarity between every pair of clusters within the system;

repeat
Merge the two most similar clusters to form one cluster;

Re-calculate similarity between this newly formed cluster and all

other clusters;
until more than one cluster left;

The similarity/dissimilarity measures that we looked at in the last sec-
tion allows for similarity between entities to be calculated. However, when it
comes to calculating similarity between clusters, the metrics cannot be applied
directly as clusters contain multiple entities. The various agglomerative hier-
archical algorithms in the literature use different strategies for this purpose.

The strategy used by the four basic hierarchical algorithms (also called group
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measures [Magbool and Babri, 2007]) are presented next, where E;, E,,, and
E, represent entities, and E,,, represents the cluster formed by merging entities
E,, and E,. Also, FEj; is considered to be in a singleton cluster.

Single linkage (SL)

Using the single linkage or nearest neighbour strategy the similarity between

two clusters are calculated as:
SL(E;, Eno) = Maz(sim(E;, Ey,), sim(E;, E,))

It defines the similarity measure between two clusters as the maximum simi-

larity among all pair entities in the two clusters.
Complete linkage (CL)
Using the complete linkage or furthest neighbour strategy the similarity be-

tween two clusters are calculated as:
CL(E;, Enmo) = Min(sim(E;, Ey,), sim(E;, E,))

It defines the similarity measure between two clusters as the minimum similar-
ity among all pair entities in the two clusters.

Weighted average linkage (WAL)

Clusters may not have the same number of entities and thus to achieve a more
uniform result, weighted average linkage assigns different weights to entities
depending on which cluster they belong to. The similarity between two clusters

using WAL is calculated as:

WAL(E;, Eno) = 1/2(sim(E;, En)) + 1/2(sim(E;, E,))

The similarity measure between two clusters is calculated as the simple
arithmetic average of similarity among all pair of entities in the two clusters.
Unweighed average linkage (UWAL)

Unweighed average linkage similarity measure is also an average link measure
but uses the size of both the clusters, therefore all entities have the same weight

(i.e. they are not weighted). UWAL similarity is measured as:

sim(E;, Ey) * size(Ey,) + sim(E;, E,) x size(E,)
size(Ey,) + size(E,)

UWAL(E;, Epo) =
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Other algorithms

The four algorithms presented above lead to a large number of arbitrary deci-
sions, especially toward the latter half of the clustering process. The arbitrary
decision arises from the algorithm being unable to decide which clusters to com-
bine when more than one cluster have the same similarity measure. Arbitrary
decisions in hierarchical algorithms adversely affect the quality of clustering
results [Magbool and Babri, 2007]. This is because in hierarchical algorithms

once an entity is assigned to a cluster, it cannot be reassigned to a new cluster.

The Combined algorithm (CA) [Saeed et al., 2003], Weighted combined al-
gorithm (WCA) [Magbool and Babri, 2004], and LIMBO [Andritsos and Tzer-
pos, [2005], three recently proposed hierarchical clustering algorithms adopt a
two-step approach to determine the similarity of a cluster with existing clus-
ters. As the first step, they associate a new feature values with the newly
formed cluster. This new feature values are based on the feature values of the
constituent entities. At the second step, similarity between the cluster and
existing clusters is recomputed. This approach allows useful feature-related
information to be retained, thus reducing the number of arbitrary decisions
and improving clustering results. Adnan et al. [2008] presents an adaptive
clustering algorithm, which is based on the same idea of minimising arbitrary
decisions but does not implement a two step process. Instead it is a hybrid
approach that switches between the various algorithms trying to minimise the

number of arbitrary decisions.

2.3.3 Summary

It is relevant to note that although the aim of clustering methods is to extract
natural clusters in the data, it is quite possible that a method imposes a struc-
ture where no such structure exists [Choi and Scacchi, 1990, Muller and Uhl|
1990|. Different algorithms thus produce different clusters. For example, SL is
known to favour non-compact but more isolated (less coupled) clusters whereas,

CL usually results in more compact (cohesive) but less isolated clusters.

There has been numerous studies into the quality of the clustering pro-
duced by the algorithms which report, WCA to be the best and CA second
best [Magbool and Babri, 2007, Lung et al. 2006]. The rest are graded from
CLA, WLA, UWLA down to SLA [Anquetil et al 1999, Davey and Burd,

2000] in order of their performance.
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2.4 Search-based clustering

As opposed to hierarchical algorithms that work on the sibling linking ap-
proach, this class of algorithms are applied to situations where the direct link
approach is used. This approach employs a graph of entities as nodes and
edges linking the entities representing direct relationships between the entities,
such as, function calls, file inclusion etc. The optimal algorithm to perform
the partitioning would investigate every possible partition of the system and
choose the best one based on some criteria. However, this approach faces a
combinatorial explosion as the number of possible partitions is extremely large,
rendering the algorithm impractical. To overcome this problem, optimisation
algorithms are employed. These algorithms start with an initial partition and
try to modify it in an attempt to optimise a criterion that represents the qual-
ity of a given partition. We will describe two such algorithms as implemented
by the Bunch tool [Mancoridis et al., 1999, Mitchell and Mancoridis| 2007].

2.4.1 Module Dependence Graph

The first step of the clustering process is representing the system entities and
their inter-relationships as a module dependency graph (MDG) |[Mancoridis
et al., [1999]. Formally M DG = (M, R) is a graph where F is a set of entities
of a software system, and R C M x M is the set of ordered pairs (u,v) that
represent the source-level dependencies (e.g. procedural invocation, variable
access, file inclusion) between entities v and v of the system. Such MDGs in
the literature are automatically constructed using source analysis tools such as
CIA [Chen et all 1990] for C programs and ACACIA [Chen et al. 1995] for
C++.

2.4.2 Fitness function

The fitness function defines the quality of a partition (clustering result).
Search-based algorithms try to improve this value in order to achieve a better
result. The fitness functions used in the literature aim to improve cohesion
and reduce coupling as good software design dictates that subsystems should
exhibit high cohesion and have low coupling with other subsystems [Mancoridis
et al., [1998]. Cohesion and coupling in MDGs are defined in terms of intra-

connectivity and inter-connectivity of clusters.
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Intra-connectivity

Intra-connectivity (A) is a measure of the connectivity between the entities that
are grouped together in the same cluster. A high degree of intra-connectivity
indicates good subsystem partitioning because the entities grouped within a
common subsystem are inter-dependent. A low degree of intra-connectivity
indicates poor subsystem partitioning because the entities assigned to a partic-
ular subsystem share few dependencies (limited cohesion). Intra-connectivity
measurement, A; of cluster ¢ consisting of n; entities and p; intra-edge depen-

dencies is defined as:

This measure is a fraction of the maximum number of intra-edge depen-
dencies that can exist for cluster ¢, which is n;2. The value of A; is bounded
between the values of 0 and 1. A; is 0 when entities in a cluster do not have any
dependency between them; A; is 1 when every entity in a cluster is dependent

on all other entities within the cluster.
Inter-connectivity

Inter-Connectivity (£) is a measure of the connectivity between two distinct
clusters. A high degree of inter-connectivity is an indication of poor subsystem
partitioning. A low degree of inter-connectivity indicates that the individual
clusters of the system are largely independent of each other. Inter-connectivity
E; ; between clusters 7 and j consisting of n; and n; entities, respectively, with

€i,; inter-edge dependencies is defined as:

0 if i =
S i

277,1'71]'

By =

The inter-connectivity measurement is a fraction of the maximum number
of inter-edge dependencies between clusters ¢ and j (2n;n; ). This measurement
is bound between the values of 0 and 1. E; ; is 0 when there are no cluster-level
dependencies between subsystem ¢ and subsystem j; F; ; is 1 when each entity

in subsystem ¢ depends on all of the entities in subsystem j and vice-versa.
Modularisation quality

The fitness function is defined as modularization quality (MQ). It establishes

a trade-off between inter-connectivity and intra-connectivity that rewards the
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creating of highly cohesive clusters and penalises the creation of too many inter-
cluster dependencies. This trade-off is achieved by subtracting the average
inter-connectivity from the average intra-connectivity. The MQ for a partition
with k clusters, where 4; is the inter-connectivity of the i*" cluster, and E ; is

the interconnectivity between the i** and j** clusters, is defined as:

k
SA D Ei
i=1 3,j=1

MQ = ~ ey k>l

MQ is thus bound between -1 (no cohesion within the clusters) and 1 (no
coupling between the clusters). Other module clustering quality measure such
as EVM has also been experimented with and were found to be similar in
nature to MQ [Harman et al., 2005]

2.4.3 Hill-Climbing clustering algorithm

The Hill Climbing clustering algorithm starts with a random partition and
relies on moving entities between the clusters of the partition to improve the
MQ of the result. The moving of entities between the cluster is accomplished
by generating a set of neighbouring partitions. Two partitions are said to be
neighbours when there is only one difference between them, that is, a single
entity is placed in different clusters within the two partitions. The generic
hill-climbing algorithm is listed below as Algorithm [2]

Algorithm 2: Hill-climbing algorithm

Generate an initial random partition of the system:;

repeat
| Replace current partition with a better neighbouring partition;

until no further “improved” neighbouring partitions can be found,

A better neighbouring partition is discovered by going through the set of
neighbouring partitions of the current partition, iteratively, until a partition
with a higher MQ is found. During discovery of a better neighbour there are
two strategies commonly employed, choosing the first neighbour partition with
better MQ as the partition of the next iteration or examine all neighbouring

partitions and pick the one with the largest MQ as a base of the next itera-
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tion. The first approach is called next ascent hill-climbing (NAHC) [Mancoridis
et al.,|1999], runs slow but often provides good results. The second approach is
called steepest ascent hill-climbing (SAHC) [Mancoridis et al., |1998], is much
faster but runs the risk of obtaining sub-optimal results that are not useful.
A well-known problem with hill-climbing algorithms is that certain initial
starting points may converge to poor /unacceptable solutions (local maximum).
One approach (multiple hill-climbing |[Mahdavi et al., 2003]) to solving this
problem is to repeat the experiment many times using different initial random
partitions. The experiment that results in the largest MQ is presented as the
sub-optimal solution. As the number of experiments increases, the probability
of finding the globally optimal partition also increases at the expense of more
computation time. The other approach (simulated annealing [Mitchell and
Mancoridis, |2007]) enables the search algorithm to accept, with some prob-
ability, a worse variation as the new solution of the current iteration. The
idea is that by accepting a worse neighbour, occasionally the algorithm will
“jump” to a new area in the search space, hence avoid getting stuck at the

local maximum.

2.4.4 Genetic clustering algorithm

Genetic algorithms which have been successfully applied to many problems
that involve exploring large search spaces can also be used for software clus-
tering. GAs have been found to overcome some of the problems of traditional
search methods such as hill-climbing; the most notable problem being “get-
ting stuck” at local optimum, and therefore missing the global optimum (best
solution) [Doval et all 1999, Kazem, Ali Asghar Pourhaji And Lotfi, [2006],
Mitchell, [1998].

Discovering an acceptable sub-optimal solution based on genetic algo-
rithms involves starting with a population of randomly generated initial par-
titions and systematically improving them until all of the initial samples con-
verge. In this approach, the resultant partition with the largest M () is used as
also a sub-optimal solution.

GAs operate on a set (population) of strings (individuals), where each
string is an encoding of the problems input data. In the case of software
clustering each individual item on the string represents the cluster association
of entities. Fach strings fitness (quality value) is calculated using MQ. In

GA terminology, each iteration of the search is called a generation. In each
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generation, a new population is created by keeping a certain portion of the
fittest individuals of the previous generation and merging the rest to form new
solutions. GAs use three basic operators to produce new generation of solutions

from the existing ones:

Selection and Reproduction: Individuals are randomly selected from the
current population, who are then combined to form the new population.
However, the selection is not completely random and are biased to favour
fittest members. Also, in some approaches the fittest member of the
current population is always retained in the next generation, ensuring

that results do not degrade over successive iterations.

Crossover: The crossover operator is used to combine the pairs of selected
individuals (parents) to create new members, that potentially have a
higher fitness than either of their parents. This is the core step of the

algorithm that concentrates on improving the results at each iteration.

Mutation: The mutation operator is applied to every individual created from
the crossover process. Mutation has a fixed probability and changes the
members construction arbitrarily, thus avoiding getting stuck at local

optimum.

The genetic algorithm used by Bunch [Doval et al., [1999] for partitioning
of software systems is listed as Algorithm [3]

Algorithm 3: Genetic algorithm

Generate the initial population, creating random strings of fixed size;

repeat
Create a new population by applying the selection and

reproduction operator to select pairs of strings;

Apply the crossover operator to the pairs of strings of the new
population;

Apply the mutation operator to each string in the new population;

Replace the old population with the newly created population;

until number of iterations is more than the mazimum;

GA algorithms generally iterate for a fixed number of times as the func-

tions’ upper bound (the maximum fitness value possible) is often not found.
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The number of generations must be limited to guarantee termination of the
search process. Mancoridis et al. [2001] developed a web-based portal (Re-
portal), which used genetic algorithms to perform architecture recovery for C,

C++ and Java programs.

2.5 Other clustering approaches

This section briefly outlines several other approaches where software clustering

is targeted at software architecture recovery.

2.5.1 Graph theoretic clustering
Graph theoretic partitioning can also be applied to graphs depicting direct re-

lationships between entities just as in the previous section. Graph partitioning
algorithms do not start from individual nodes (entities), but try to find sub
graphs like connected components, maximal complete sub graphs or spanning
trees to derive clusters [Xu and Wunsch, 2005|. However, this technique is not
so common in the literature as graph partitioning also suffers from the same
problem as optimal clustering algorithms.

Choi and Scacchi [1990] presented an approach to finding subsystem hier-
archies based on graphs that represent resource exchanges between functions.
They used graph-theoretic algorithms to remove articulation points so that
strongly connected sub graphs are separated into clusters. Muller et al. [1993]
presented an extension of this work. Lakhotia [1997] looked at four graph-
theoretic based software clustering techniques and found that with exception
of Choi and Sacchi’s work [1990] the rest [Livadas and Johnson, 1994, Ong
1994 produced flat results. Mancoridis et al. [1996] have also presented an
approach where “Tube Graph” interconnection clustering is done to reduce the
number of interconnection between the clusters detected by other techniques.
This system complements other clustering techniques but on its own is not

capable of doing clustering.

2.5.2 Knowledge based approaches

Another approach to the problem of understanding a software system and
recovering its design is the knowledge-based approach. This technique involves
reverse engineering smaller subsystems separately using domain knowledge.
Finally, the understanding of the subsystems is combined to gain an overall

understanding of the system. This approach has been shown to work well with
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small systems, but fails to perform effectively on large systems [Tzerpos and
Holt, |199§].

2.5.3 Pattern based approach
ACDC (Algorithm for Comprehension-Driven Clustering) [Tzerpos and Holt,

2000a] uses a pattern driven approach, where the common patterns (source file
pattern, directory structure pattern, body header pattern, library pattern etc.)
are located and are used for the clustering. The number and size of the clusters

are also closely controlled to ensure that results are comprehensible and useful.

2.5.4 Formal methods based approaches

Formal methods have been also used for reverse engineering. Due to the math-
ematical nature of formal specification languages, formal methods are time
consuming and tedious. When applied as a standalone technique the complex-
ity of this approach was reported to be unmanageable [Gannod and Cheng
1997]. Such techniques are cost effective only when studying safety critical

systems.

2.5.5 Structure based approaches

The structure based approaches either use formal features or informal features

of source code to perform clustering.
Formal features

A feature is considered to be formal if it consists of information that has direct
impact on the software system’s behaviour. For example, describing an entity
with the “functions it calls” is a formal descriptive feature because it is an in-
formation source that has direct impact on the system’s behaviour. Changing
a function call in the code will result in a change in the system behaviour [An-
quetil et al., [1999]. Lakhotia [1997] in his framework defines 21 such formal
relationships, amongst which are: function assigns to global variable, function

calls and file inclusion. The following techniques use formal features:

Concept analysis: Concept Analysis [van Deursen and Kuipers, (1999, Lindig
and Snelting, 1997 Stiff and Reps|, [1997] was also used for software clustering
and has been shown to work well in certain scenarios, such as identification of

objects.
Metric based: Belady and Evangelisti’s [1981] approach groups related en-

tities using a similarity metric based on data bindings. A data binding is a
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potential data exchange via a global variable. Hutchens and Basili [1985] ex-
tend Belady and Evangelisti’s work by using a hierarchical clustering technique
to identify related entities and subsystems.

Schwanke presented his tool called ARCH [1991} 1993] where he pioneered
the “classic” low-coupling and high-cohesion heuristics as a basis of software
clustering. Also, his maverick analysis enabled refinement of a partition by
identifying entities that were put in the wrong cluster to counter shortcoming
of hierarchical algorithms.

Muller et al. |1988] [1993] introduced semi-automatic approaches in the
form of the tool RIGI. They introduced the principles of small interfaces (the
number of elements of a subsystem that interact with other subsystems should
be small compared to the total number of elements in the subsystem) and of
few interfaces (a given subsystem should interact only with a small number of

the other subsystems).
Informal features

Many researchers have also used informal features to perform software cluster-
ing. Informal features are those features which do not have a direct influence
on the system’s behaviour. An example is the name of a function, chang-
ing the name of function has no impact on the system’s behaviour. Informal
features are also independent of programming languages and are regarded to
provide better quality information than formal ones, as they are intended for
human readers [Anquetil and Lethbridge, 1997]. Some commonly used in-
formal features are file names, identifier names, function names, comments,

physical organisation, developer, change request etc.

File name: Many organisations have well established rules for naming files
and functions which means programmers name related files using meaningful
and related suffixes or prefixes which can be easily extracted. A lot of work on
clustering thus uses file names |[Anquetil and Lethbridge, (1999, [1998]. Some
researchers have also used several other heuristics based on naming conven-
tions [Cimitile et al., 1997, Burd et al., |1996].

Developer: The organisation of system developers into teams can help reverse
engineer a software’s architecture as each member is likely to be dealing with

one or related subsystems [Vanya et al., 200§].

Evolution history: Entities of the system that evolve together represent a

relationship. This relationships can be mined from repositories and has also
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been used as a basis of clustering [Beck, 2009, [Hutchens and Basili, [1985].

Fault based approach: Similar to the previous approach, entities of the sys-
tem that were modified to fix a bug/fault is also related and has been used as

a basis of clustering [Selby and Basili, [1991].

2.5.6 Association rule mining

Maletic and Marcus applied information retrieval techniques called Latent Se-
mantic Indexing (LSI) for architecture recovery [Maletic and Marcus, [2001}
Kuhn et all [2005]. This allowed them to extract various keywords from dif-
ferent entities and perform clustering based on similarity and frequency of

keywords found.

2.5.7 Reflexion

Another approach in software clustering is the use of reflexion, where the de-
veloper creates a partitioning of the system that he thinks is correct. This is
then compared to the partitioning extracted from the actual system using a
tool and the difference between the tool’s result and the programmer’s views

are compared to iteratively refine the clustering [Murphy et al.| [1995].

2.5.8 Task driven approach

Tonella [2003] presents a task driven approach to software clustering where
entities are clustered based on the support that they provide for understanding

a set of modification tasks.

2.6 Clustering evaluation

This section of the review considers the techniques used to evaluate the cluster-
ing results (partitions) produced by various clustering techniques. The results
can be evaluated qualitatively for suitability of use or can be measured quan-

titatively against set criteria and values.

2.6.1 Qualitative assessors

The primary purpose of software clustering is to aid in program comprehension,
thus Anquetil and Lethbridge [1999] proposes that clustering results should
exhibit the following high-level traits:

o Actually represent the system.

The view achieved by the clustering should give a view of the current
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state of the system rather than impose an ideal view based on domain

understanding.

e Make sense to the software designers.
The results should be presented in such a way that it is understandable

and usable by designers and engineers.

e Be adaptable to different needs.
The clustering process should provide various (hierarchical) views of the
system, so that both the implementation details and overall design struc-

ture can be easily ascertained.

e Be general.
The clustering process itself should not be tailored to fit one particular
problem or language. It should be general so that it may be applied to

different systems.

2.6.2 Quantitative assessors

Although the qualitative assessment is important in ensuring that the results
obtained are useful, in most cases researchers want to assess their results against
an expert decomposition of the system. By expert decomposition we refer to
a decomposition that is carried out by the designer/developer who is also an
expert on the system. Anquetil [1999] proposes to compare two partitions
(results) by considering pairs of entities, where entities are in the same cluster

(intra-pair). The quality is then measured in terms of Precision and Recall:

Precision: Percentage of intra-pairs proposed by the clustering method which

are also intra-pairs in the expert partition.

Recall: Percentage of intra-pairs in the expert partition which were also found

by the clustering method.

Although precision and recall are good indicators of clustering matches,
they have issues where a bad result ranks high on one of the measures. A
result partition containing only singleton clusters will have excellent precision
and poor recall. On the other hand a partition with one huge cluster containing
all the system entities will have excellent recall and poor precision.

To alleviate this problem of balancing the two measures, a single measure

called MoJo [Tzerpos and Holt| |1999] was introduced. It counts the minimum
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number of operations (such as moving an entity from one cluster to another
and joining two clusters) needed to transform one partition to the other. A
smaller MoJo value denotes higher similarity between the proposed clustering
and expert decomposition whereas, a large value denotes the opposite.
Researchers have also proposed other metrics for comparing two partitions,
for example, the Measure of Congruence [Lakhotia and Gravley, 1995], Mo-
JoFM [Wen and Tzerpos, 2004], EdgeSim and MeCl [Mitchell and Mancoridis|,
2001a], and the Koschke-Eisenbarth (KE) measure [Koschke and Eisenbarthl,
2000]. All the six measures mentioned above compare flat software decom-
positions, where all subsystems are presented at a single level. Shtern and

Tzerpos [2004] present a framework for comparing hierarchical decompositions.

2.6.3 External assessment

Clustering results are validated using three different approaches: external, in-
ternal, and relative assessment [Jain et al. [1999, Magbool and Babri, 2007].
The external assessment involves comparing the results obtained from the clus-

tering technique to an expert or external decomposition.

Expert decomposition

Expert decomposition, also known as the gold standard, is obtained by a man-
ual inspection of the system by the designer/architect or an expert. According
to the literature review, this technique is by far the most common evalua-
tion technique applied by researchers [Tzerpos and Holt, 2000a]. However,
Magbool [2007] notes in his work that experts often do not agree on a de-
composition. They have different points of view from which they look at the
system resulting in different outcomes. It is thus noted in the literature that
“a classification is neither true or false” [Everitt, |1974] and there is no single

“best” approach [Anderberg, 1973| to clustering.

Physical structure

Obtaining expert decomposition is not always possible. An alternative is the
use of the physical/directory structure of the system |[Anquetil et al.,|{1999]. The
structure of well-known open systems (such as Linux) are organised in several
directories which form a reasonable decomposition of the systems and may be
used in the place of an actual expert decomposition. However, this technique
should be employed with caution as it relies on the fact that developers would

responsibly organise the system physically.
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2.6.4 Internal assessment

The internal assessment is where instead of comparing the results to a de-
composition not produced by the system, properties and characteristics of the

system are used to validate the results.

Arbitrary decisions

During the clustering process, when computing which two clusters to combine,
there are instances where multiple clusters have the same similarity value,
forcing the algorithm to pick one of the pairs arbitrarily. Arbitrary decisions
may turn out to be problematic [Magbool and Babri, 2004], especially in the
case of hierarchical clustering algorithms, where once a decision is made it
cannot be reversed. Magbool [2007] in his study used this as a criteria for

deciding upon the quality of the clustering.

Redundancy

Anquetila et al. [1999] argue that formal features often provide redundant
information. Considering file inclusion will also automatically consider variable
and function inclusion. Thus the result of a clustering process can be assessed

using the number of redundant features used.

Number and size of clusters

The number of clusters and cluster size have also been used for evaluating
clusters internally |[Anquetil and Lethbridge, (1999, [Davey and Burd, 2000, [Wu
et al., 2005]. The number of clusters obtained at each step of the clustering pro-
cess can be used as an indicator of the quality of a clustering approach [Davey
and Burd), 2000]. Similarly, the number of singleton clusters can also be an
indicator of the quality. Thus, algorithms that tend to start attracting all the
entities into one cluster, those that tend to have a lot of singleton clusters or
ones where all clusters suddenly seem to merge into one large cluster are all

indicators of poor quality.

Design criterion

Anquetil and Lethbridge [1999] use the measure of cohesion and coupling be-
tween subsystems within a partition to evaluate its quality. Well-designed
clusters are more likely to be of interest to the software engineers which should

also exhibit high cohesion and low coupling [Sommerville, 1995].
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2.6.5 Relative Assessment

Relative assessment is used for comparing results of two different clustering
algorithms or results of the same algorithm.

Stability

An algorithm is said to be stable if the clustering results that it produces do not
change drastically when small changes are made to the system. This approach
has been widely used [Tzerpos and Holt} 2000bja, Wu et al. [2005] [Hutchens
and Basili, [1985] to assess the quality of clustering approaches.

CRAFT [Mitchell and Mancoridis|, 2001b| is a tool that supports relative
evaluation of clustering results. When supplied with a clustering algorithm and
a system, the tool compares the result of the algorithm with results produced
by a common set of algorithms already built into the tool. This tool can be
the starting point of assessing quality of results produced by new techniques

against already existing ones.

2.7 Other issues

The literature also identifies a few issues which needs to be considered when

proposing new clustering approaches.

2.7.1 Cluster labelling

Providing meaningful names to subsystems detected during clustering will al-
low maintainers to understand the results faster. One of the earliest works
on cluster labelling is by Schwanke and Platoff [1993], who use a summary of
features to suggest labels, which are then assigned manually. Ricca et al. [2004]
and Kuhn et al. [2005] perform clustering and cluster labelling on the basis of
keywords. Magbool and Babri [2006] use function identifiers as representative

keywords for labelling entities.

2.7.2 Omni-present entities

In software systems there are entities, such as utility functions, which act as
suppliers to other entities of the system. It is often the case that these entities
are frequently called by others and have have far more inter-relationships than
most other entities. The results of attempting to group such entities are thus
unpredictable [Lung et al., [2004]. Most of the work in the literature detect om-
nipresent entities based on their high number of interconnections [Mancoridis
et al.l 1999, Hutchens and Basilil 1985, Mitchell and Mancoridis, 2006, |[Muller
and Uhl, 1990, Wen and Tzerpos, 2005] and deal with them separately.
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2.8 Dependence-based Clustering

The chapter has thus far discussed various clustering techniques based on prop-
erties shared by entities or dependency relationships between the entities such
as file or variable access. This section discusses some of the recent work on
software clustering which uses data and control flow information in programs

to ascertain dependencies and uses that for clustering.

The notion of using data and control dependence to perform software
clustering was first introduced by Binkley and Harman [2005b]. They defined
a dependence cluster, which is a set of mutually dependent program elements.
They looked at 20 subject programs and found that a significant number of
programs have large dependence clusters. They also introduced approximations
where static program slicing could be used efficiently to locate dependence
clusters in programs. Harman et al. [2009] later extended this initial study
with a large-scale empirical study of 45 programs. They again found slice-
based dependence clusters to be common in the programs and defined separate

clustering techniques depending on the dependency flow direction considered.

Jiang et al. [2008] proposed the use of search-based program slicing to
identify dependence structures in programs using evolutionary algorithms (Hill
Climbing and Genetic). Rather then using traditional program slicing to cap-
ture dependence clusters, Static Execute After/Before (SEA/SEB) was pro-
posed as an alternative [Jasz et al., [2008]. SEA-based clustering is more effi-
cient as it considers functions of the program as entities and clusters based on

execution traces, however this efficiency comes at the price of precision.

Although dependence clusters were found to be quiet common in pro-
grams, they were not well-understood because of their intricate interweaving
of dependencies and subtleties of dependency in programs. As such, they were
regarded as problems that may make it difficult for developers and maintain-
ers in understanding programs. Black et al. [2006] have indicated that there
may even be the potential for a link between program faults and dependence
clusters. To this end, Binkley et al. [2008b]| regarded dependence clusters as
anti-patterns that developers should be aware of. Binkley et al. [2005b] identi-
fied that global variables as one of the causes for the formation of dependence
clusters and found that over half of the programs have a global variable that
was causing a significant cluster. This has also motivated other work [Binkley,

2008, Binkley and Harman| [2009] where low-level causes of dependence clusters
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are identified and their removal is attempted. Recent extension to this idea has
proposed an improved algorithm |[Binkley et al., 2013a] for identifying linchpin
vertices (vertices that are responsible for dependence clusters). The search for
linchpin vertices that cause dependence clusters have also been extended for the
SEA-based clusters, where linchpins are functions of the program [Schrettner
et al., 2012} Jasz et al.| [2012].

Lehnert [2011] has considered the relationship between dependence clus-
ters and impact analysis and found that clustering can be used to determine the
ripple-effect during software maintenance. Beszédes [2007] looks at the rela-
tionship between SEA-based clusters and software maintenance and found that
SEA can be used to identify hidden dependencies helping in many maintenance

tasks, including change propagation and regression testing.

2.9 Our Clustering Technique

The work in this thesis will use dependence-based clustering. The use of
dependence-based clustering is expected to yield clusters consisting of pro-
gram elements that share dependency properties. Similar to previous work by
Binkley and Harman [2005b] and Harman et al. [2009], we will be performing
our clustering on the vertices of the System Dependence Graph. As such, the
clustering process will treat the vertices of the SDG as entities. This not only
ensures that dependence relationship between various program points are cor-
rectly identified but will also alleviate issues of source code layout and various

programming styles.

Vertices of the SDG that have the exact same relationship will be grouped
together in the same cluster. The dependence relationships will be extracted
in the form of program slice, vertices that yield the same slice will be grouped
together into the same cluster. We therefore use the sibling link approach
where we consider the similarity of the slices produced by the entities. For the
similarity measure we rely on a binary measure of whether vertices yield the

exact same slice or not.

Finally, we use a variation of the expert decomposition technique for eval-
uation, where we study whether the clusters represent the high-level logical
structure of the programs as done by similar work [Beszedes et al, 2013, [Hamil-

ton and Danicic, [2012] in the area.
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2.10 Chapter Summary

This chapter gives a literature survey on software clustering and the various
techniques used in such clustering. The literature survey shows that there
is no single best approach to clustering. Different clustering algorithms may
provide different results or views of the same system. As architecture is not
explicitly represented at the source code level, clustering infers it from the
entire system based on some criteria. Different researchers propose different
criteria and often developers working on the same system cannot fully agree
on how a system should be decomposed.

In our clustering approach we will be using vertices of the system depen-
dence graph as entities and cluster them based on dependencies that they have

in common. The full details of the clustering is presented in Chapters 3] and [4]
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Chapter 3

Dependence Clusters

3.1 Overview

This chapter provides detailed background information on dependence clus-
ters and its various instantiations which is later extended to define coherent
dependence clusters (in Chapter . The chapter also provides the necessary
background on program slicing, dependence analysis and existing dependence
cluster visualisation techniques.

Previous work [Binkley and Harman, 2005b, [Harman et al., 2009] has
used the term dependence cluster for a particular kind of cluster, termed a
mutually-dependent cluster herein to emphasise that such clusters consider only
mutual dependence internal to the cluster. This later allows the definition to

be extended to incorporate external dependencies.

3.2 Mutually-dependent clusters

Informally, mutually-dependent clusters are maximal sets of program state-
ments that mutually depend upon one another. Harman et al. [2009] present

the following formalisation of mutually dependent sets and clusters.

Definition 1 (Mutually-Dependent Set and Cluster)
A mutually-dependent set (MDS) is a set of statements, S, such that
Vr,y € S :x depends on y.
A mutually-dependent cluster is a maximal MDS; thus, it is an MDS not prop-
erly contained within another MDS.

The definition of an MDS is parametrised by an underlying depends-on
relation. Ideally, such a relation would precisely capture the impact, influ-

ence, and dependence between statements. Unfortunately, such a relation is
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not computable. A well known approximation is based on Weiser’s program
slice [Weiser], [1981]: a slice is the set of program statements that affect the
values computed at a particular statement of interest (referred to as a slicing
criterion). While its computation is undecidable, a minimal (or precise) slice
includes exactly those program elements that affect the criterion and thus can
be used to define an MDS in which statement ¢ depends on statement s iff s is

in the minimal slice taken with respect to slicing criterion t.

The slice-based definition is useful because algorithms to compute (approx-
imations to minimal) slices can be used to define and compute approximations
to mutually-dependent clusters. A slice can be computed as the solution to a
reachability problem over a program’s System Dependence Graph (SDG) [Hor-
witz et al., [1990]. The following subsections will give the necessary background
information on SDGs and program slicing before continuing with the various

definitions that instantiate mutually-dependent clusters.

3.3 System Dependence Graphs

An SDG [Horwitz et al.,|1990] is an inter-connected collection of Procedure De-
pendence Graphs (PDGs) [Ferrante et al., [1987]. A PDG is a directed graph
comprised of vertices, which essentially represent the statements of the pro-
gram, and two kinds of edges: data dependence edges and control dependence
edges.

A data dependence edge is essentially a data flow edge that connects a
definition of a variable with each use of the variable reached by the defini-
tion [Ferrante et al) [1987]. For example, in Figure [3.1] there is a data depen-
dence between the point i=1 and the point while (i < 11) indicating that the

value of i flows between those two points.

A control dependence connects a predicate p to a vertex v when p has
at least two control-flow-graph successors, one of which can lead to the exit
vertex without encountering v and the other always leads eventually to v [Ball
and Horwitz, 1993|. That is, v must not post-dominate p and there must
exist a vertex m in the path from p to v post-dominated by v (Ferrante et al.
[1987]). Thus p controls the possible future execution of v. For example, in
Figure there is a control-dependence edge between the vertex representing
the statement while (i < 11) and the statements sum = sum +iand i =i+ 1, whose

execution depends on whether the former evaluates to true. For structured
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code, control dependence reflects the nesting structure of the program.

1 int main() {

2 int sum = 0;

3 inti=1;

4: while (i < 11) {

5: sum = sum + i;
6: i=i+1;

7 }

8 printf(“%d\n", sum);
9 printf(“%d\n", i);

10:: }

sum=0 i=1 ——p> while (i <11) printf(sum)
\ T
T 1
\ v }
sum =sum + i b oi= i+

v Control Dependence ——p>
Data Dependence e

printf(i)

Figure 3.1: Program Dependence Graph (PDG)

An SDG is a directed graph consisting of interconnected PDGs, one per
function in the program. Interprocedural control-dependence (dashed blue
lines in Figure edges connect procedure call sites to the entry points of the
called procedure. Interprocedural data-dependence edges (broken green lines
in Figure represent the flow of data between actual parameters and formal
parameters (and return values).

In an SDG, in addition to the vertices representing statements and pred-
icates, each PDG explicitly contains entry and exit vertices, vertices repre-
senting parameters and return values. A PDG contains formal-in vertices
representing the parameters to the function and formal-out vertices represent-
ing the variables returned by the function. A function call is represented by a

call-site vertex and there is an interprocedural control-dependence edge from
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1: int main() {

2: int sum = 0;

3: inti = 1;

4: while (i < 11) { 11:  int add (int x, int y) {
5: sum = add(sum, i); 12: X=Xx+Yy;

6: i = add(i, 1); 13: return x;

7 } 14:  }

8: printf(“%d\n", sum);

9: printf(“%d\n", i);

10}

Enter main Control Dependence —p>

Data Dependence >

\ 4 \
while (i < 11)

printf(sum) printf(i)

Call add

— e ——— — —

U ~ A AN

Figure 3.2: System Dependence Graph (SDG)

each call site to the corresponding entry point of the callee. There is also a
control-dependence edge from a procedure’s entry vertex to each of the top-
level statements in that procedure, as any of the top-level statements are only
reachable by the execution of the function. Finally there is also an inter-
procedural data-dependence edge between the actual-in parameters associated
with a call-site and the formal-in parameters of a procedure. There is an inter-
procedural data-dependence edge between PDGs formal-out vertices and the

associated actual-out vertices in the calling procedure.
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Non-local variables such as globals, file statics, and variables accessed indi-
rectly through pointers are handled by modelling the program as if it used only
local variables. Fach non-local variable used in a function, either directly or
indirectly, is treated as a “hidden” input parameter, and thus gives rise to ad-
ditional program points. For each global used or modified by a procedure there
is a global-formal-in vertex and for each variable modified by a procedure there
is a global-formal-out vertex. There is an inter-procedural data-dependence
edge between the global-actual-in parameters associated with a call-site and
the global-formal-in parameters of a procedure. There is an inter-procedural
data-dependence edge between PDGs global-formal-out vertices and the associ-
ated global-actual-out vertices in the calling procedure. The PDG/SDG-based
representation subsumes the notion of call graphs and data flow graphs [An-
derson and Teitelbaum, [2001].

3.4 Program Slicing

Since its advent, program slicing has come a long way and has been extended in
many directions and specialised to individual programming languages and lan-
guage independent ones |[Binkley et al., 2013b]. The huge number of program
slicing related publications have resulted in several survey papers [Harman
and Hierons, 2001, Xu et al., 2005, [Tip, (1995, Binkley and Harman, 2004].
The various slicing techniques are summarised in Figure by a recent survey
on program slicing by Silva [2012]. It is beyond the scope of this thesis to
provide a comprehensive survey of the slicing techniques and we only include

background that is relevant to this thesis.

Program slicing is a technique which computes a set of program state-
ments, known as a slice, that may affect a point of interest known as the
slicing criterion. In other words program slicing reveals all the program points
that the slice criterion depends on. Mark Weiser [1979] first introduced pro-
gram slicing in 1979. A slice S is a set of statements calculated for program P
with respect to a slicing criterion represented as a pair (V, s), where V is a set
of variables and s is a program point of interest. The slice S of P is obtained

by removing all statements and predicates of P which cannot affect V at s.

A program can be traversed forwards or backwards from the slicing cri-
terion. As defined by Weiser when traversed backwards, all those statements

that could influence the slicing criterion are found and is hence termed back-
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Figure 3.3: Slicing Survey [Silval 2012]

ward slicing. In contrast, when traversed forwards, all those statements that
could be influenced by the slicing criterion can be found and is referred to as

forward slicing |[Reps and Bricker; [1989].

The original definition of program slicing defined by Weiser was also
static [Weiser, |1984] in the sense that it did not consider any particular in-
put for the program being sliced. The slice for a particular criterion did not
consider any particular execution, and was created for all possible inputs. Ko-
rel and Laski [1988] introduced the concept of dynamic slicing where a slice is
computed using information from a trace of an execution of the program for a
specific set of inputs. In general, dynamic slices are much smaller (precise) than
static ones because they contain the statements of the program that affect the
slice criterion for a particular execution (in contrast to any possible execution
in case of static slicing). More recently, Binkley et al. [2013b| have introduced
observation-based slicing which uses program execution and observation of the

output to perform program slicing for multi-language systems.

In order to extract a slice from a program, the dependencies between its
statements must be computed first. Ottenstein and Ottenstein [1984] noted

that the program dependence graph (PDG) was the ideal data structure for
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program slicing because it allows for slicing to be done in linear time on the
number of vertices of the PDG. An intraprocedural slice can be computed as
a simple graph reachability problem. For example in Figure slicing on the
statement printf(i) produces a slice that includes all the nodes of the graph that
are reachable by traversing the directed edges. Edges and vertices of the PDG

included in the slice are shown in bold.

1: int main() {

2: int sum = 0;

3: inti =1;

4. while (i < 11 ){

5: sum = sum + i;
6: i=i+1;

7 }

8: printf(“%d\n", sum);
0: printf(“%d\n", i);
10}

V ¥

sum=0 i=1 while (i < 11) printf(sum)

T
! \V }
sum =sum + i i=i+1

v Control Dependence ——p>
Data Dependence —>

Figure 3.4: Intraprocedural program slicing

The original definition of program slicing has been later classified as in-
traprocedural slicing, because the original algorithm does not take into account
information related to the fact that slices can cross the boundaries of procedure
calls. In such cases, simple traversal of the graph leads to an imprecise slice
with edges traversed that are not feasible in the control flow of the program,
failing to respect calling context |Gallagher 2004, Binkley and Harman, |2005b)
Horwitz et all, [1990, [Krinke| 2002 Binkley and Harman), 2003|, Krinke, [2003].
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For example, in Figure |3.2| backward (transitive) traversal of all directed edges
from the statement printf(i) would include both calls to add. However, it is clear
that the call to add from line 5: sum = add(sum,i); cannot influence printf(i) and
should not be included in the slice. If dependence were transitive and slicing
could be done as a transitive closure, both calls to add would be included in
the slice.

Horwitz et al. [1988] proposed to address this problem by introducing call-
ing context during the graph traversal. When slicing an SDG, a slicing criterion
is a vertex from the SDG. Horwitz et al. [1990] introduced an algorithm that
makes two passes over the system dependence graph to compute a valid slice.
Each pass traverses only certain kinds of edges. To calculate a backward slice
taken with respect to SDG vertex v, denoted BSlice(v), the traversal in Pass
1 starts from v and goes backwards (from target to source) along flow edges,
control edges, call edges, summary edges, and parameter-in edges, but not
along parameter-out edges. The traversal in Pass 2 starts from all actual-out
vertices reached in Pass 1 and goes backwards along flow edges, control edges,
summary edges, and parameter-out edges, but not along call or parameter-in
edges. The result is an inter-procedural backward slice consisting of the set
of vertices encountered during Pass 1 and Pass 2, and the edges induced by
those vertices. Symmetrically, for a forward slice with respect to SDG vertex
v, denoted FSlice(v), the traversal in Pass 1 starts from v and follows only
edges up into calling procedures and Pass 2 traverses edges down into called
procedures.

The valid backward slice for statement printf(i) is shown in Figure
which respects the calling context. Here the backward slice on printf(i) no
longer includes the additional call to function add.

We employ both kinds of context-sensitive static SDG slices in this thesis,
backward slice and forward slice.

Definition 2 (Backward Slice)
The backward slice taken with respect to vertex v of an SDG, denoted BSlice(v),
is the set of vertices reaching v via a path of control and data dependence edges

of the SDG, where the path respects context.
Definition 3 (Forward Slice)

The forward slice, taken with respect to vertex v of an SDG, denoted FSlice(v),
is the set of vertices reachable from v via a path of control and data dependence

edges of the SDG, where the path respects context.
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1: int main() {

2: int sum = 0;

3: inti=1;

4: while (i < 11) { 11:  int add (int x, int y) {
5: sum = add(sum, i); 12: X=X +vy;

6: i = add(i, 1); 13: return Xx;

7 } 14:  }

8: printf(“%d\n", sum);

9: printf(“%d\n", i);

10}

Control Dependence ——p
Data Dependence —>

while (i< 11) printf(sum) printf(i) I

Call add

Figure 3.5: Interprocedural program slicing

3.5 Slice-based Clusters

A slice-based cluster is a maximal set of vertices included in each others slice.
The following definition essentially instantiates Definition [I] using BSlice. Be-
cause x € BSlice(y) < y € FSlice(z) the dual of this definition using FSlice
is equivalent. Where such a duality does not hold, both definitions are given.
When it is important to differentiate between the two, the terms backward
and forward will be added to the definition’s name as is done in this chapter.

Harman et al. [2009] provide the following definition:

Definition 4 (Backward-Slice MDS and Cluster)
A backward-slice MDS is a set of SDG vertices, V', such that
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Vr,y € V : x € BSlice(y).
A backward-slice cluster is a backward-slice MDS contained within no other
backward-slice MDS.

Note that as x and y are interchangeable, this is equivalent to Vx,y €
V : x € BSlice(y) Ay € BSlice(z). Thus, any unordered pair (x,y) with x €
BSlice(y) Ay € BSlice(x) creates an edge (x, y) in an undirected graph in which a
complete subgraph is equivalent to a backward-slice MDS and a backward-slice
cluster is equivalent to a maximal clique. Therefore, the clustering problem is
the NP-Hard mazimal cliques problem [Bomze et al., [1999] making Deﬁnition
prohibitively expensive to implement. An efficient and practical approximation

of slice-based clusters are discussed in subsequent sections of this chapter.

3.6 Identifying causes of Dependence Clusters

There have been multiple studies into the causes of dependence clusters. The
first of these studies by Binkley et al. [2010] explicitly looked at the impact
of global variables on dependence clusters. Other studies include identifica-
tion of linchpin vertices [Binkley and Harman, 2009], which are responsible for
holding clusters together. Dependence clusters essentially group together pro-
gram statements that have mutual dependency, as such there are three primary

constructs that are responsible for formation of dependence clusters.

3.6.1 Loops

A loop is a sequence of instruction(s) that is continually repeated until a certain
condition is reached. Loop carried dependence can lead to mutual dependence
between the statements forming the body of the loop. An example of such a
cluster is seen in Figure [3.6| The statement on line 5 and the two predicates
all depend upon each other as the data dependence on i is carried forward
during iterations of the loop. As loops have inherent dependence within, the
body of the loop and consequently the termination condition become mutually
dependent on each other, leading to formation of dependence clusters.
Although one could assume that a program whose execution is controlled
via an infinite loop would have all of its statements in a large dependence clus-
ter, it would be wrong. Because interprocedural dependence is not transitive
(discussed in Section loops on its own will rarely lead to large dependence
clusters in real-world production code. However, intraprocedural dependence

is transitive and the formation of an intraprocedural dependence cluster always
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P backward slice on i at line 5 P
1:
2| ...
| 3 while (i < 10)
| 4: if (a[i]) > 0)
| 5: i=i+2;
6:

Figure 3.6: Depenence Cluster caused by loop

requires a loop construct, albeit not all statements of a loop need to be part of

the same dependence cluster.

3.6.2 Global Variables

The use of global variables is another cause of dependence cluster formation.
When various components of programs interact with each other using globals,
in other words when several components read and write to a global, it is possible
for the components to become mutually dependent with the variable and in-
turn mutually dependent upon each other. An example of this is seen in
Figure where both functions f1 and f2 read and write to the global x. This
causes each of the functions bodies to have mutual dependence with the global
x and subsequently on each other.

Global variables and pointers that refer to globals have a scope that covers
the entire code. The definitions and use of global variables can ‘glue together’
statements to form a large cluster. This is even more evident in places where the
global variables link various smaller clusters together into one very large cluster
of mutual dependence. For example, where a global variable is responsible for
mutual data flow between two large and otherwise unconnected clusters. The
variable acts as a small ‘capillary vessel’ along which the dependence ‘flows’
linking two unconnected sub-clusters to create one larger cluster. A study by
Binkley et al. [2010] found that a quarter of programs have a global variable

that is solely responsible for large dependence clusters.

3.6.3 Mutually Recursive Calls

Mutual recursion of function calls can also lead to formation of dependence
clusters because each function (transitively) calls all the others, making the

outcome of each function dependent upon the outcome of some call to the
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P backward slice on x at P
line 7 line 13
1:
2: | x
3:
| | 4 | 101
| | 5: locall = x;
| | 6:
| | 7 x=locall;
8 |}
9:
| | 10: | 2()f
| | 11: local2 = x;
| | 12:
| | 13: x=local2;
14: | }
15:
| \ 16: | main(){
| | 17: f1();
| | 18: f2()
| 19: f1();
20: |}

Figure 3.7: Dependence Cluster caused by global variable

others. Figure[3.§ gives an example of a cluster formed due to mutual recursion.
The functions even and odd call each other recursively causing mutual inter-
dependence and a slice-based cluster.

The clusters projected due to mutually recursive calls are sometimes ag-
gravated and deemed to be larger because of the nature of safe (conservative)

approximation employed by static analysis (discussed further in section [6.2.4)).

3.7 Dependence Intransitivity

A naive definition of a dependence cluster would be based on transitive closure
of the dependence relation and thus would define a cluster to be a strongly
connected component in the SDG. Unfortunately, for certain language fea-
tures, dependence is not transitive. Examples of such features include proce-
dures [Horwitz et al., [1990] and threads [Krinke|, 1998]. Thus, in the presence of

these features, strongly connected components overstate the size and number
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P backward slice on r at P
line 8 line 16
1
| | 2: | even (i){
| | 4: if (i ==0)
\ | 5: r=1
| | 6: else
| | 7 r = odd(abs(i)-1);
| | 8: return r;
9 |}
10:
\ | 11: | odd (i){
| | 12: if (i ==0)
| | 13: r=0;
| | 14: else
| | 15: r = even(abs(i)-1);
\ \ 16: return r;
17: | }
18:

Figure 3.8: Dependence Cluster caused by mutual recursion

of dependence clusters. Fortunately, context-sensitive slicing captures the nec-
essary context information |[Binkley and Harman) |2005b, Horwitz et al., {1990,
Krinke, 2002, Binkley and Harman) [2003|, Krinke, 2003].

The program P shown in Figure illustrates the non-transitivity of slice
inclusion. The program has six statements (a, b, ¢, d, e and f) whose dependen-
cies are shown in columns 1-6 using backward slice inclusion. The dependency
relationship between these variables are also extracted and shown in Figure [3.10]
using a directed graph where the nodes of the graph represent the statements
and the edges represent the backward slice inclusion relationship in Figure 3.9,
In the diagram, a depends on b (b € BSlice(a)) is represented by b — a. The
diagram firstly shows two instances of dependence intransitivity in P. Although
b depends on nodes a,c and d, node f that depends on b does not depend on a,
c or d. Similarly node d depends on node e but nodes a, b and ¢ that depend
on d do not depend on node e.

Because dependence is not transitive, calculating slice-based clusters is
equivalent to the maximal clique problem which is NP-Hard [Bomze et al.
1999|. Other than the high cost of calculating maximal cliques, the problem

is further compounded by the fact that even when maximal cliques can be
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34:

f1(x) {
a = f2(x, 1) + f3(x);
return f2(a, 2) + f4(a);

}

f2(x, y) {
b=x+vy;
return b;

}

f3(x) {
if (x>0) {
c = f2(x, 3) + f1(x);
return c;

}

return O;

}

fa(x) {
d =x;
return d;

}

f5(x) {
e = f4(5);
return f4(e);

}

f6(x){
f = 2(42, 4),
return f;

}

Figure 3.9: Dependence intransitivity and clusters

60

calculated at higher costs it may lead to undecideable situations where depen-

dencies have to be arbitrarily ignored. For example in Figure we see an

example where vertices i, j, k are mutually dependent and vertices i, j, | are
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Slice Criterion | Backward Slice | Forward Slice

° , b, c, d , b, c, d
' Ched | obean

° ° {a, b, ¢, d} {a, b, ¢, d}
‘e e {a, b,c,d, e} | {a, b c d e}

{d, e} {d, e}
Figure 3.10: Backward slice inclusion relationship for Figure

-~ O QO 0O

{b, f} {f}

also mutually dependent. It should be noted that vertices k and | do not have
any dependencies between them because of dependence intransitivity. In such
a case it is not clear whether a dependence cluster (or maximal) clique should
be formed from {i, j, k} leaving {I} in its own cluster or forming {i, j, I} into a
cluster leaving {k} in its own cluster. To overcome this partitioning problem,

an approximation of the same-slice clusters were introduced by Binkley and

Harman [2005b].

Figure 3.11: Overlapping dependence clusters

3.8 Same-Slice Clusters

An alternative definition of slice-based clusters uses the same-slice relation in

place of slice inclusion [Binkley and Harman| |2005b]. This relation replaces

the need to check if two vertices are in each others slice with checking if two

vertices have the same slice. The result is captured in the following definitions

for same-slice cluster [Harman et al., 2009]. The first uses backward slices and

the second uses forward slices.

Definition 5 (Same-Slice MDS and Cluster)
A same-backward-slice MDS is a set of SDG vertices, V', such that
Va,y € V : BSlice(x) = BSlice(y).
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A same-backward-slice cluster is a same-backward-slice MDS contained within

no other same-backward-slice MDS.

A same-forward-slice MDS is a set of SDG vertices, V', such that
Vz,y € V : FSlice(x) = FSlice(y).
A same-forward-slice cluster is a same-forward-slice MDS contained within no

other same-forward-slice MDS.

Because = € BSlice(z) and = € FSlice(x), two vertices that have the same
slice will always be in each other’s slice. If slice inclusion were transitive, a
backward-slice MDS (Definition [4)) would be identical to a same-backward-slice
MDS (Definition [5]). However, as illustrated by the example in Figure 3.9} slice
inclusion is not transitive; thus, the relation is one of containment where every
same-backward-slice MDS is also a backward-slice MDS but not necessarily a
maximal one.

For example, in Figure the set of vertices {a, b, c} form a same-
backward-slice cluster because each vertex of the set yields the same backward
slice. Whereas the set of vertices {a, ¢} form a same-forward-slice cluster as
they have the same forward slice. Although vertex d is mutually dependent
with all vertices of either set, it doesn’t form a same-slice cluster with either
set because it has additional dependence relationship with vertex e.

Although the introduction of same-slice clusters was motivated by the need
for efficiency, the definition inadvertently introduced an external requirement
on the cluster. Comparing the definitions for slice-based clusters (Definition
and same-slice clusters (Definition [f]), a slice-based cluster includes only the
internal requirement that the vertices of a cluster depend upon one another.
However, a same-backward-slice cluster (inadvertently) adds to this internal
requirement the external requirement that all vertices in the cluster are affected
by the same vertices external to the cluster. Symmetrically, a same-forward-
slice cluster adds the external requirement that all vertices in the cluster affect

the same vertices external to the cluster.

3.9 Same-Slice-Size Cluster

Even calculating same-slice clusters is expensive. In practice it requires tens of
gigabytes of memory for even modest sized programs. Thus, a second approxi-

mation was also employed by Binkley and Harman [2009]. This approximation
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replaces ‘same-slice’ with ‘same-slice-size’: rather than checking if two ver-
tices yield identical slices, the approach simply checks if the two vertices yield
slices of the same size. The resulting same-slice-size approach is formalised by

Harman et al. [2009] as follows:

Definition 6 (Same-Slice-Size Backward MDS/Cluster)
A Same-Slice-Size Backward MDS is a set of statements, S, such that
Vz,y € S : |BSlice(x)| = |BSlice(y)|.
A Same-Slice-Size Backward Cluster is a Same-Slice-Size Backward MDS con-
tained within no other Same-Slice-Size Backward MDS.
Definition 7 (Same-Slice-Size Forward MDS /Cluster)
A Same-Slice-Size Forward MDS is a set of statements, S, such that
Va,y € S : |FSlice(x)| = |FSlice(y)].
A Same-Slice-Size Forward Cluster is a Same-Slice-Size Forward MDS con-

tained within no other Same-Slice-Size Forward MDS.

The observation motivating this approximation is that two slices of the
same (large) size are likely to be the same slice. In practice, this approximation
is very accurate if a small tolerance for difference is allowed. With a tolerance
of 1% the approximation is 99% accurate. However, in the strict case of zero
tolerance the accuracy falls to 78.3% |Binkley and Harman| 2005b].

3.10 Existence of dependence clusters in pro-

duction code

Harman et al. [2009] addressed the question of whether same-slice-size depen-
dence clusters are common in production code. They studied 45 production
programs and found that such clusters are indeed prevalent.

Figure shows the statistics for the largest same-slice-size dependence
clusters present in 45 production programs. The y-axis of the graphs shows
the number of programs that have a large cluster which is at least of a certain
size. This threshold size is shown on the z-axis. For example, at the thresh-
old of 0%, both graphs show that all 45 programs meet the threshold. At a
largeness threshold of 50%, 19 of the 45 programs have a backwards same-slice-
size cluster (Figure [3.12h). Similarly at the 50% threshold, 25 programs have
a large forward same-slice-size cluster (Figure [3.12b). Even considering very
high thresholds such as 75% the graphs show that around 5 programs have a

large same-slice-size cluster.
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Figure 3.12: Existence of same-slice clusters

3.11 Chapter Summary

This chapter introduces the notion of dependence clusters and the necessary
background information. It presents various instantiations of dependence clus-
ters using program slicing. In particular it discusses the same-slice clusters
which was introduced for efficient partitioning of slices and subsequently to
make it implementable in practice. A further approximation was introduced
that replaces the need to compare slice content with slice size. The chapter
also discusses dependence intransitivity and illustrates how this gives same-
slice clusters internal and external properties. Finally, the chapter shows that

same-slice clusters are prevalent in production programs.
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Chapter 4

Coherent Clusters

4.1 Overview

This chapter introduces the notion of coherent dependence clusters which is a
stricter form of dependence clusters. The chapter first formalises coherent de-
pendence clusters and then presents a slice-based instantiation of the definition.
It then presents an approximation of coherent clusters which is efficient and
accurate making the clustering implementable in practice. This is followed by
the introduction of experimental subjects and setup. The chapter then goes on
to answer the validation questions about the precision of the efficient approx-
imation for coherent clusters. Finally, a study into the prevalence of coherent
clusters in production code is presented. More formally, the chapter addresses

the three following research questions:
RQ1.1 How precise is hashing as a proxy for comparing slices?
How large are coherent clusters that exist in production source code?

How conservative is using the same-slice relationship as an approxi-

mation of slice-inclusion relationship?

4.2 Coherent Dependence Clusters

Coherent clusters are dependence clusters that include not only an internal
dependence requirement (each statement of a cluster depends on all the other
statements of the cluster) but also an external dependence requirement. The
external dependence requirement includes both that each statement of a clus-
ter depends on the same statements external to the cluster and also that it

influences the same set of statements external to the cluster. In other words, a
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coherent cluster is a set of statements that are mutually dependent and share
identical extra-cluster dependence. Coherent clusters are defined in terms of
the coherent MDS:

Definition 8 (Coherent MDS and Cluster)
A coherent MDS is a MDS V, such that

Ve,y € V : x depends on a implies y depends on a and a depends on x
implies a depends on y.

A coherent cluster is a coherent MDS contained within no other coherent MDS.

The slice-based instantiation of coherent cluster employs both backward
and forward slices. The combination has the advantage that the entire cluster
is both affected by the same set of vertices (as in the case of same-backward-
slice clusters) and also affects the same set of vertices (as in the case of same-
forward-slice clusters). In the slice-based instantiation, a set of vertices V' forms
a coherent MDS if

Va,y € V : x € BSlice(y) the internal requirement of an MDS
A a € BSlice(z) = a € BSlice(y) = and y depend on same external a
A a € FSlice(z) = a € FSlice(y) = and y impact on same external a

Because x and y are interchangeable
Ve,y e Vi x € BSlice(y)

A a € BSlice(z) = a € BSlice(y)

A a € FSlice(z) = a € FSlice(y)

Ay € BSlice(z)

(
A a € BSlice(y) = a € BSlice(z)

A a € FSlice(y) = a € FSlice(x)

This is equivalent to

Ve,ye V: x € BSlice(y) Ay € BSlice(z)
A (a € BSlice(z) < a € BSlice(y))
A (a € FSlice(z) < a € FSlice(y))
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which simplifies to
Va,y € V : BSlice(x) = BSlice(y) A FSlice(z) = FSlice(y)

and can be used to define coherent-slice MDS and clusters:

Definition 9 (Coherent-Slice MDS and Cluster)
A coherent-slice MDS is a set of SDG vertices, V', such that

Vz,y € V : BSlice(x) = BSlice(y) A FSlice(z) = FSlice(y)

A coherent-slice cluster is a coherent-slice MDS contained within no other
coherent-slice MDS.

At first glance the use of both backward and forward slices might seem
redundant because x € BSlice(y) < y € FSlice(x). This is true up to a point:
for the internal requirement of a coherent-slice cluster, the use of either BSlice
or FSlice would suffice. However, the two are not redundant when it comes
to the external requirements of a coherent-slice cluster. With a mutually-
dependent cluster (Deﬁnition, it is possible for two vertices within the cluster
to influence or be affected by different vertices external to the cluster. Neither
is allowed with a coherent-slice cluster. To ensure that both external effects
are captured, both backward and forward slices are required for coherent-slice

clusters.

In Figure the set of vertices {a, ¢} form a coherent cluster as both
these vertices have exactly the same backward and forward slices. That is, they
share the identical intra- and extra-cluster dependencies. Coherent clusters are
therefore a stricter from of same-slice clusters, all coherent clusters are also
same-slice MDS but not necessarily maximal. It is worth noting that same-
slice clusters partially share extra-cluster dependency. For example, each of
the vertices in the same-backward-slice cluster {a, b, c} is dependent on the
same set of external statements, but do not influence the same set of external

statements.

Coherent slice-clusters have an important property: If a slice contains a

vertex of a coherent slice-cluster V', it will contain all vertices of the cluster:

BSlice(x) NV # 0 — BSlice(z) NV =V (4.1)
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This holds because:

Vy,y' €V : y € BSlice(r) = x € FSlice(y)

= x € FSlice(y') = ¢ € BSlice(z)

The same argument clearly holds for forward slices. However, the same is not
true for non-coherent clusters. For example, in the case of a same-backward-
slice cluster, a vertex contained within the forward slice of any vertex of the
cluster is not guaranteed to be in the forward slice of other vertices of the same

cluster.

4.3 Hash-based Coherent Slice Clusters

The computation of coherent-slice clusters (Definition @ grows prohibitively
expensive even for mid-sized programs where tens of gigabytes of memory are
required to store the set of all possible backward and forward slices. The com-
putation is cubic in time and quadratic in space. An approximation is employed
to reduce the computation time and memory requirement. This approximation
replaces comparison of slices with comparison of hash values, where hash values
are used to summarise slice content. The result is the following approximation

to coherent-slice clusters in which H denotes a hash function.

Definition 10 (Hash-Based Coherent-Slice MDS and Cluster)
A hash-based coherent-slice MDS is a set of SDG vertices, V', such that
Vz,y € V : H(BSlice(x)) = H(BSlice(y)) A H(FSlice(z)) = H(FSlice(y))
A hash-based coherent-slice cluster is a hash-based coherent-slice MDS con-
tained within no other hash-based coherent-slice MDS.

The precision of this approximation is empirically evaluated in Section [4.6]
From here on, this thesis considers only hash-based coherent-slice clusters un-
less explicitly stated otherwise. Thus, for ease of reading, hash-based coherent-

slice cluster is referred to simply as coherent cluster.

4.4 Hash Algorithm

The use of hash values to represent slices reduces both the memory requirement
and runtime, as it is no longer necessary to store or compare entire slices. The
hash function, denoted H in Definition [I0] uses XOR operations iteratively on

the unique vertex IDs (of the SDG) which are included in a slice to generate
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a hash for the entire slice. We chose XOR as the hash operator because we do
not have duplicate vertices in a slice and the order of the vertices in the slice
does not matter.

A slice S is a set of SDG vertices {v1, ..,v,} (n > 1) and id(v;) represents
the unique vertex ID assigned by CodeSurfer to vertex v;, where 1 < i < n.
The hash function H for S is defined as Hs, where

n

Hs = Pid(v;) (4.2)

i=1

Hence, our hashing algorithm uses XOR operator iteratively on the unique
vertex IDs (of the SDG) which are included in a slice to generate a hash for
the entire slice. The precision achieved by this hash function in terms of both

slicing and clustering are examined and presented in Section [4.6]

4.5 Experimental Subjects and Setup
The slices along with the mapping between the SDG vertices and the ac-

tual source code are extracted from the mature and widely used slicing tool
CodeSurfer |Anderson and Teitelbaum) 2001] (version 2.1). The cluster visu-
alisations were generated by decluvi [Islam et all 2010a] using data extracted
from CodeSurfer. The data is generated from slices taken with respect to
source-code representing SDG vertices. This excludes pseudo vertices intro-
duced into the SDG, e.g., to represent global variables which are modelled as
additional pseudo parameters by CodeSurfer. Cluster sizes are also measured
in terms of source-code representing SDG vertices, which is more consistent
than using lines of code as it is not influenced by blank lines, comments, state-
ments spanning multiple lines, multiple statements on one line, or compound
statements. The decluvi system along with scheme scripts for data acquisition
and pre-compiled datasets for several open-source programs can be downloaded
from http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html. Chapter
gives further details about decluvi.

The study considers the 30 C programs shown in Table which provides
a brief description of each program alongside seven measures: number of files
containing executable C code, LoC — lines of code (as counted by the Unix
utility we), SLoC — the non-comment non-blank lines of code (as counted by the
utility sloccount [Wheeler, 2004]), ELoC — the number of source code lines that

CodeSurfer considers to contain executable code, the number of SDG vertices,


http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html
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the number of SDG edges, the number of slices produced, and finally the size (as
a percentage of the program’s SDG vertex count) of the largest coherent cluster.
All LoC metrics are calculated over source files that CodeSurfer considers to

contain executable code and, for example, do not include header files.

Columns 10 and 11 provide the runtimes recorded during the empirical
study. The runtimes reported are wall clock times captured by the Unix time
utility while running the experiments on a 64-bit Linux machine (CentOS 5)
with eight Intel(R) Xeon(R) CPU E5450 @ 3.00GHz processors and 32GB
of RAM. It should be noted that this machine acts as a group server and is
accessed by multiple users. There were other CPU intensive processes intermit-
tently running on the machine while these runtimes were collected, and thus

the runtimes are only indicative.

Column 10 shows the time needed to build the SDG and the CodeSurfer
project that is subsequently used for slicing. The build time for the projects
were quite small and the longest build time (2m33.456s) was required for geal
with 46,827 SLoC. Column 11 shows the time needed for the clustering al-
gorithm to perform the clustering and create all the data dumps for decluvi
to create cluster visualisations. The process completes in minutes for small
programs and can take hours and longer for larger programs. It should be
noted that the runtime include both the slicing phase which runs in O(ne),
where n is the number of SDG vertices and e is the number of edges, and the
hashing and clustering algorithm which runs in O(n?). Therefore the overall
complexity is O(ne). The long runtime is mainly due to the current research
prototype (which performs slicing, clustering and extraction of the data) using
the Scheme interface of CodeSurfer in a pipeline architecture. In future we plan
to upgrade the tooling with optimisations for fast and massive slicing [Binkley’
et al., [2007] and merging the clustering phase into the slicing to reduce the

runtime significantly.

Although the clustering and building the visualisation data can take a
long time for large projects, it is still useful because the clustering only needs
to be done once (for example during a nightly build) and can then be visualised
and reused as many times as needed. During further study of the visualisation
and the clustering we have also found that small changes to the system do not
show a change in the clustering, therefore once the clustering is created it still

remains viable through small code changes as the clustering is found to rep-



4.6. Validity of the Hash Function 72

resent the core program architecture (discussed in Section . Furthermore,
the number of SDG vertices and edges are quite large, in fact even for very
small programs the number of SDG vertices are in the thousands with edge
counts in tens of thousands. Moreover, the analysis produces a is-in-the-slice-of
relation and graph with even more edges. We have tried several clustering and
visualisation tools to cluster the is-in-the-slice-of graph for comparison, but
most of the tools (such as Gephi [Bastian et al., 2009]) failed due to the large
dataset. Other tools such as CCVisu [Beyer, |2008] which were able to handle
the large data set simply produced a blob as a visualisation which was not at
all useful. The underlying problem is that the is-in-the-slice-of graph is dense

and no traditional clustering can handle such dense graphs.

4.6 Validity of the Hash Function
This section addresses research question How precise is hashing as a

proxy for comparing slices? The section validates the use of comparing slice
hash values in lieu of comparing actual slice content. The use of hash values to
represent slices reduce both the memory requirement and runtime, as it is no
longer necessary to store or compare entire slices. The hash function, denoted
H in Definition determines a hash value for a slice based on the unique
vertex ids assigned by CodeSurfer. Validation of this approach is needed to
confirm that the hash values provide a sufficiently accurate summary of slices to
support the correct partitioning of SDG vertices into coherent clusters. Ideally,
the hash function would produce a unique hash value for each distinct slice.
The validation study aims to find the number of unique slices for which the
hash function successfully produces an unique hash value.

For the validation study we chose 16 programs from the set of 30 subject
programs. The largest programs were not included in the validation study to
make the study time-manageable. Results are based on both the backward
and forward slices for every vertex of these 16 programs. To present the notion
of precision we introduce the following formalisation. Let V' be the set of all
source-code representing SDG vertices for a given program P and US denote

the number of unique slices:
US = |{BSlice(z) : x € V}| + |[{FSlice(z) : z € V'}|

Note that if all vertices have the same backward slice then {BSlice(z) : z € V'}
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is a singleton set. Finally, let UH be the number of unique hash-values,
UH = |{H(BSlice(x)) : x € V'}| + |{H(FSlice(x)) : x € V'}|

The accuracy of hash function H is given as Hashed Slice Precision, HSP:

UH
HSP = —
UsS

A precision of 1.00 (US = UH) means the hash function is 100% accurate
(i.e., it produces a unique hash value for every distinct slice) whereas a precision
of 1/US means that the hash function produces the same hash value for every

slice leaving UH = 1.

Table [4.2] summarises the results. The first column lists the programs. The
second and the third columns report the values of US and UH respectively. The
fourth column reports HSP, the precision attained using hash values to com-
pare slices. Considering all 78,587 unique slices the hash function produced
unique hash values for 74,575 of them, resulting in an average precision of
94.97%. In other words, the hash function fails to produce unique hash values
for just over 5% of the slices. Considering the precision of individual programs,
five of the programs have a precision greater than 97%, while the lowest pre-
cision, for findutils, is 92.37%. This is, however, a significant improvement over
previous use of slice size as the hash value, which is only 78.3% accurate in the
strict case of zero tolerance for variation in slice contents [Binkley and Harman,
2005b].

Coherent cluster identification uses two hash values for each vertex (one
for the backward slice and other for the forward slice) and the slice sizes. Slice
size matching filters out some instances where the hash values happen to be the
same by coincidence but the slices are different. The likelihood of both hash
values matching those from another vertex with different slices is less than that
of a single hash matching. Extending US and UH to clusters, Columns 5 and
6 (Table report C'C', the number of coherent clusters in a program and
HCC', the number of coherent clusters found using hashing. The final column

shows the precision attained using hashing to identify clusters, HCP.

HCC
HCP = —
P="cc
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Unique | Hashed Hash Hash
Unique | Hash Slice Cluster | Cluster | Precision
Slices values | Precision | Count | Count | Clusters
Program | (US) (UH) (HSP) (cc) | (HCC) | (HCP)
acct 1,558 1,521 | 97.63% 811 811 | 100.00%
barcode 2,966 2,792 | 94.13% 1,504 1,504 | 100.00%
bc 3,787 3,671 | 96.94% 1,955 1,942 | 99.34%
byacc 10,659 | 10,111 | 94.86% 5,377 5,377 | 100.00%
cflow 16,584 | 15,749 | 94.97% 8,457 8,452 | 99.94%
copia 3,496 3,398 | 97.20% 1,785 1,784 | 99.94%
ctags 8,739 8,573 | 98.10% 4,471 4,470 | 99.98%
diffutils 5,811 5,415 | 93.19% 2,980 2978 | 99.93%
ed 2,719 2,581 | 94.92% 1,392 1,390 | 99.86%
findutils 9,455 8,734 | 92.37% 4,816 4,802 | 99.71%
garpd 808 769 | 95.17% 413 411 | 99.52%
indent 3,639 3,491 | 95.93% 1,871 1,868 | 99.84%
time 1,453 1,363 | 93.81% 760 758 | 99.74%
userv 3,510 3,275 | 93.30% 1,827 1,786 | 97.76%
wdiff 2,190 2,148 | 98.08% 1,131 1,131 | 100.00%
which 1,213 1,184 | 97.61% 619 619 | 100.00%
Sum 78,587 | 74,575 — 40,169 | 40,083 -
Average 4,912 4,661 | 94.97% 2,511 2,505 | 99.72%

Table 4.2: Hash function validation

74
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The results show that of the 40,169 coherent clusters, 40,083 are uniquely iden-
tified using hashing, which yields a precision of 99.72%. Five of the programs
show total agreement, furthermore for each program HCP is over 99%, except
for userv, which has the lowest precision of 97.76%. This can be attributed to
the large percentage (96%) of single vertex clusters in userv. The hash values
for slices taken with respect to these single-vertex clusters have a higher po-
tential for collision leading to a reduction in overall precision. In summary, as
an answer to [RQ)1.1] the hash-based approximation is found to be sufficiently
accurate at 94.97% for slices and at 99.72% for clusters (for the studied pro-
grams). Thus, comparing hash values can replace the need to compare actual

slices.
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Figure 4.1: Size of largest coherent cluster

4.7 Do large coherent clusters occur in prac-

tice?

Having demonstrated that hash function H can be used to effectively approx-
imate slice contents, this section considers the validation research question,
How large are coherent clusters that exist in production source code?
The question is answered quantitatively using the size of the largest coherent
cluster in each program.

To assess if a program includes a large coherent cluster requires making
a judgement concerning what threshold constitutes large. Following prior em-
pirical work [Binkley and Harman| |2005b, Harman et al., 2009, Islam et al.,
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2010ayb|, a threshold of 10% is used to classify a large cluster. In other words,
a program is said to contain a large coherent cluster if 10% of the program’s
SDG vertices produce the same backward slice as well as the same forward
slice. It should be noted that the other classification names and threshold dif-
fer from previous studies as we report on coherent clusters which have stricter
properties.

Figure shows the size of the largest coherent cluster found in each of
the 30 subject programs. The programs are divided into 3 groups based on the

size of the largest cluster present in the program.

Small: Small consists of seven programs none of which have a coherent clus-
ter constituting over 10% of the program vertices. These programs are
archimedes, time, wdiff, byacc, a2ps, cflow and userv. Although it may be
interesting to study why large clusters are not present in these programs,
this thesis focuses on studying the existence and implications of large

coherent clusters.

Large: This group consists of programs that have at least one cluster with size
10% or larger. As there are programs containing much larger coherent
clusters, a program is placed in this group if it has a large cluster between
the size 10% and 50%. Over two-thirds of the programs studied fall in
this category.

The program at the bottom of this group (acct) has a coherent cluster
of size 11% and the largest program in this group (copia) has a coherent
cluster of size 48%. We present both these programs as case studies and
discuss their clustering in detail in Sections [6.2.1] and [6.2.4] respectively.

The program bc which has multiple large clusters with the largest of size

32% falls in the middle of this group and is also presented as a case study
in Section [6.2.3]

Huge: The final group consists of programs that have a large coherent cluster
whose size is over 50%. Out of the 30 programs 4 fall in this group. These
programs are indent, ed, barcode and gcal. From this group, we present

indent as a case study in Section [6.2.2]

In summary all but 7 of the 30 subject programs contain a large coherent

cluster. Therefore, over 75% of the subject programs contain a coherent cluster



4.8. Slice inclusion relation vs Same-Slice relation 77

of size 10% or more. Furthermore, half the programs contain a coherent cluster
of at least 20% in size. It is also interesting to note that although this grouping
is based only on the largest cluster, many of the programs contain multiple large
coherent clusters. For example, ed, ctags, nano, less, bc, findutils, flex and garpd all
have multiple large coherent clusters. It is also interesting to note that there
is no correlation between a program’s size (measured in SLoC) and the size of
its largest coherent cluster. For example, in Table two programs of very
different sizes, cflow and userv, have similar largest-cluster sizes of 8% and 9%,
respectively. Whereas programs acct and ed, of similar size, have very different

largest coherent clusters of sizes 11% and 55%.

Therefore as an answer to [RQ1.4 the study finds that 23 of the 30 pro-
grams studied have a large coherent cluster. Some programs also have a huge
cluster covering over 50% of the program vertices. Furthermore, the choice of
10% as a threshold for classifying a cluster as large is a relatively conservative
choice. Thus, the results presented in this section can be thought of as a lower

bound to the existence question.

4.8 Slice inclusion relation vs Same-Slice rela-
tion

This thesis has so far dealt with questions regarding same-slice clusters and the
specialised version, coherent dependence clusters. Both, coherent and same-
slice clusters are built from equivalent slices and only capture a portion of the
slice-inclusion relationship. This section presents a preliminary study which
assesses the conservatism introduced in using this approximation. This section
addresses research question How conservative is using the same-slice

relationship as an approzimation of slice-inclusion relationship?

As equivalence slices capture only a portion of slice-inclusion relationship
they also yield smaller clusters, and thus a conservative result. A more liberal
approach would require using mutual-inclusion to perform clustering which is
the NP-Hard mazimal cliques problem [Bomze et al) 1999]. A preliminary
experiment was designed to gain a better understanding of how conservative
it is to use slice equivalence. The experiment compares the number of pairs of
SDG vertices that are in each other’s slices to the number of pairs where both

vertices have the same slice, to find their ratio R.
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_ |{(x,y) : BSlice(x) = BSlice(y)}|
{(z,y) : © € BSlice(x) Ay € BSlice(y)}|

A large difference would give cause for further research into developing
better detection algorithms for dependence clusters. Due to the large run-
times for this experiment (bc required around 30 days) the study was limited
to a subset of the test subjects presented in Section The test subjects
considered and the results are shown in Table 4.3l The table shows various
statistics about the relationship study, Column 1 lists the program, Column 2
gives the vertex count, Column 3 show the number of slice comparisons that
were done, Column 4 gives the number of vertex pairs that were in each other’s
slice, Column 5 gives the number of vertex that yield the same slice. Finally,
the last column gives the percentage of mutually-interdependent vertices that

also have exactly the same slice.

Program | Vertex Slice Slice-inclusion | Same-Slice | Percentage
Count | Comparisons Count Count
acct 1,417 2,007,889 335,477 70,205 21%
barcode 4,801 23,049,601 8,291,421 7,894,155 95%
bc 7,538 56,821,444 30,935,773 18,354,919 59%
copia 3,327 11,068,929 2,587,437 2,584,221 99%
diffutils 8,061 64,979,721 19,671,054 13,413,596 68%
ed 5,688 32,353,344 15,082,352 14,703,994 97%
time 838 2,808,976 4,540 2,320 51%
wdiff 1,361 1,852,321 16,985 9,131 54%
which 1,902 3,617,604 1,213,936 947,870 78%
Average 3,881 22,062,203 8,682,108 6,442,268 69%

Table 4.3: Slice inclusion vs Same-slice Study

The results of the experiment shows the percentage can vary from 21% for
acct to 99% for copia. The sizes of the program (vertex count) does not seem
to have a correlation with the percentage of mutually-dependent vertices that
produce the same slice. For example, smaller programs like acct and wdiff with
similar vertex count have significantly different percentages at 21% and 54%.
Whereas, bc which is almost 6 times larger than wdiff has similar percentage
value to wdiff at 59%. The highest agreement is seen for copia at 99%. One
possible reason for this could be that copia is a very tightly knit program where

all the program logic is bound to a central mutually recursive structure. The
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program Copia is discussed in detail in Section

As an answer to[RQ1.5 we find that in the programs studied, on average
69% of the vertices that are mutually-dependent also have the same slice. This
finding is used to motivate the study (Section of inter-cluster dependence
based on cluster inclusion relationship which results in larger dependence struc-
tures than any same-slice cluster. Although this result suggests the need for
further research into new slice-inclusion based cluster identification techniques,
further experiments need to be conducted on the remaining test subjects to gain

a more generalised answer.

4.9 Chapter Summary

This chapter introduces the notion of coherent dependence clusters and
presents definitions for its slice-based instantiation. The slice-based instan-
tiation enables the identification of dependence clusters using program slicing.
The chapter also introduces an efficient approximation for coherent clusters
which enables the identification of such clusters using standard desktop and
server systems. The new approximation is also found to have a precision of
99.72% which is over 20% higher than those used in previous studies.

Finally, using a three-tier classification where programs are divided into
three groups (small, large, huge) depending on the size of the largest coherent
cluster in the program, an empirical study finds that over 75% of the subject
programs contain large clusters. This high occurrence of large coherent cluster
indicates that these need to be studied and understood to appreciate their

influence on program comprehension and maintenance.
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Chapter 5

Cluster Visualisation

5.1 Overview

This chapter introduces the various cluster visualisation techniques. The chap-
ter firstly introduces two graph-based visualisations which is followed by a dis-
cussion of the cluster visualisation tool decluvi. Graph-based visualisation is
used to highlight patterns of clustering found in the subject programs. The
cluster visualisation of decluvi is used in Chapter [6] to study clustering of pro-
grams in detail and identify program structures revealed by coherent cluster
visualisation. The chapter also presents a study on the effect of pointer analysis
accuracy on size of slices and the impact on coherent cluster sizes and patterns.

Formally, this chapter addresses the following research question:

\RQ2. 1) Which patterns of clustering can be identified using graph-based cluster

visualisation?

What is the effect of pointer analysis precision on coherent clusters?

5.2 Graph Based Cluster Visualisation

This section presents two graph-based visualisations. The first visualisation
is the Monotone Slice-size graph (MSG), it was introduced by Binkley and
Harman [2005b] to visualise slice sizes and estimate the presence of same-
slice-size clusters. The second graph-based visualisation is the Slice/Cluster
size graph (SCG) |Islam et al., [2010a], which is an extension of the MSG to
overcome the precision problems of the MSG and show clearer link between

the slices and clusters.
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Figure 5.1: Monotone Slice-size Graph (MSG) for the program bc. The z-axis
plots vertices with the slices in monotonically increasing order and the y-axis
plots the size of the backward/forward slice.

5.2.1 Monotone Slice-Size Graph (MSG)
The first visualisation, the Monotone Slice-size Graph (MSG) [Binkley and

Harman), 2005b], plots a landscape of monotonically increasing slice sizes where
the y-axis shows the size of each slice, as a percentage of the entire program,
and the z-axis shows each slice, in monotonically increasing order of slice size.
In an MSG, a dependence cluster appears as a sheer-drop cliff face followed
by a plateau. The visualisation assists with the inherently subjective task
of deciding whether a cluster is large (how long is the plateau at the top of
the cliff face relative to the surrounding landscape?) and whether it denotes
a discontinuity in the dependence profile (how steep is the cliff face relative
to the surrounding landscape?). An MSG drawn using backward slice sizes
is referred to as a backward-slice MSG (B-MSG), and an MSG drawn using
forward slice sizes is referred to as a forward-slice MSG (F-MSG).

As an example, the open source calculator bc contains 9,438 lines of code
represented by 7,538 SDG vertices. The B-MSG for bc, shown in Figure 5.1,
contains a large plateau that spans almost 70% of the MSG. Under the assump-
tion that same slice size implies the same slice, this indicates a large same-slice
cluster. However, “zooming” in reveals that the cluster is actually composed
of several smaller clusters made from slices of very similar size. The tolerance

implicit in the visual resolution used to plot the MSG obscures this detail.

5.2.2 Slice/Cluster Size Graph (SCG)

The second graph-based visualisation is the Slice/Cluster Size Graph (SCG) [Is-
lam et al. |2010b], that alleviates the resolution problem by combining both




5.2. Graph Based Cluster Visualisation 82

slice and cluster sizes. It plots three landscapes, one of increasing slice sizes,
one of the corresponding same-slice cluster sizes, and the third of the corre-
sponding coherent cluster sizes. In the SCG, vertices are ordered along the
xr-axis using three values, primarily according to their slice size, secondarily
according to their same-slice cluster size, and finally according to the coher-
ent cluster size. Three values are plotted on the y-axis: slice sizes form the
first landscape, and cluster sizes form the second and third. Thus, SCGs not
only show the sizes of the slices and the clusters, they also show the relation
between them and thus bring to light interesting links. Two variants of the
SCG are considered: the backward-slice SCG (B-SCG) is built from the sizes
of backward slices, same-backward-slice clusters, and coherent clusters, while
the forward-slice SCG (F-SCQ) is built from the sizes of forward slices, same-
forward-slice clusters, and coherent clusters. Note that both backward and
forward SCGs use the same coherent cluster sizes.

The B-SCG and F-SCG for the program bc are shown in Figure 5.2l In
both graphs the slice size landscape is plotted using a solid black line, the
same-slice cluster size landscape using a grey line, and the coherent cluster
size landscape using a (red) broken line. The B-SCG (Figure [5.2h) shows
that bc contains two large same-backward-slice clusters consisting of almost
55% and almost 15% of the program. Surprisingly, the larger same-backward-
slice cluster is composed of smaller slices than the smaller same-backward-
slice cluster; thus, the smaller cluster has a bigger impact (slice size) than the
larger cluster. In addition, the presence of three coherent clusters spanning
approximately 15%, 20% and 30% of the program’s statements are also visible
in the graphs.

5.2.3 Box Plot Visualisation
Figure shows two box plots depicting the distribution of (backward and

forward) slice sizes for bc. The average size of the slices are also displayed in
the box plot using a solid square box. Comparing the box plot information
to the information provided by the MSGs, we can see that all the information
available from the box plots can be derived from the MSGs itself (except for
the average). However, MSGs show a landscape (slice profile) which cannot be
obtained from the box plots. Similarly, the box plots in Figure show the
size distributions of the various clusters (i.e. a vertex is in a cluster of size x)

in addition to the slice size distributions. Although the information from these
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Figure 5.2: Slice/Cluster Size Graph (SCG) for the program bc. The z-axis
plots vertices ordered by monotonically increasing order of slices, same size
clusters and coherent clusters. The y-axis plots the size of the backward/for-
ward slices, same-slice clusters and coherent clusters.
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Figure 5.3: Slice/Cluster size distribution for be

box plots can not be derived from the SCGs shown in Figures and
directly, the profiles (landscapes) give a better intuition about the clusters, the
number of major clusters and their sizes. For our empirical study we use the
size of individual clusters and the cluster profile to find mappings between the
clusters and program components. Therefore, we drop box plots in favour of
SCGs to show the cluster profile and provide additional statistics in tabular

format where required.

5.3 Patterns of clustering

This section presents a visual study of SCGs for the three program groups

(identified in Section and addresses research question |RQ2. 1 Figures
m show graphs for the three categories (small, large and huge). The graphs in
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Figure 5.4: Programs with small coherent clusters

the figures are laid out in ascending order based on the largest coherent cluster

present in the program and thus follow the same order as seen in Figure {4.1]

Figure [5.4] shows SCGs for the seven programs of the small group. In
the SCGs of the first three programs (archimedes, time and wdiff) only a small
coherent cluster is visible in the red landscape. In the remaining four programs,
the red landscape shows the presence of multiple small coherent clusters. It is
very likely that, similar to the results of the case studies presented later, these

clusters also depict logical constructs within each program.

Figure [5.5) shows SCGs of the 19 programs that have at least one large,
but not huge, coherent cluster. That is, each program has at least one coher-
ent cluster covering 10% to 50% of the program. Most of the programs have
multiple coherent clusters as is visible on the red landscape. Some of these
have only one large cluster satisfying the definition of large, such as acct. The
clustering of acct is discussed in further detail in Section [6.2.1 Most of the
remaining programs are seen to have multiple large clusters such as bc, which is
also discussed in further detail in Section [6.2.3, The presence of multiple large
coherent cluster hints that the program consists of multiple functional com-

ponents. In three of the programs (which, gnuedma and copia) the landscape is
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Figure 5.6: Programs with huge coherent clusters

completely dominated by a single large coherent cluster. In which and gnuedma
this cluster covers around 40% of the program vertices whereas in copia the
cluster covers 50%. The presence of a single large dominating cluster points to
a centralised functionality or structure being present in the program. Copia is
presented as a case study in Section [6.2.4] where its clustering is discussed in
further detail.

Finally, SCGs for the four programs that contain huge coherent clusters
(with size >50%) are found in Figure[5.6] In all four landscapes there is a very
large dominating cluster with other smaller clusters also being visible. This
pattern supports the conjecture that the program has one central structure
or functionality which consists of most of the program elements, but also has
additional logical constructs that work in support of the central idea. Indent

is one program that falls in this category and is discussed in further detail in

Section [6.2.2]

As an answer to [RQ2.1], the study finds that most programs contain mul-
tiple coherent clusters. Furthermore, the visual study reveals that a third of
the programs have multiple large coherent clusters. Only three programs copia,
gnuedma, and which show the presence of only a single (overwhelming) cluster
covering most of the program. Having shown that coherent clusters are preva-
lent in programs and that most programs have multiple significant clusters,
Chapter [0] presents a series of four case studies that looks at how program

structures are represented by these clusters.
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5.4 Cluster Splitting

Coherent clusters are a stricter form of same-slice clusters, in fact, the in-
tersection of a same-backward-slice cluster with a same-forward-slice cluster
will produce a coherent MDS and if the intersection is not empty, a coher-
ent cluster. This often leads to observed splitting of the same-backward-slice
clusters and same-forward-slice clusters. This splitting can be seen visually in
the B-SCG for bc (Figure [5.2h), which includes a large same-backward-slice
cluster (the grey landscape) that runs from 10% to 65% on the horizontal axis.
The statements that make up this same-backward-slice cluster break in two
coherent-slice clusters (the dashed landscape): the first runs from 10% to 35%
and the second from 35% to 65%. Since these two coherent-slice clusters com-
prise the same statements (the same segment of the x-axis) they represent a
splitting of the single same-backward-slice cluster. This splitting phenomenon
is found to be very common and almost all programs exhibit this phenomenon
in either their B-SCG or F-SCG. It should be noted that it is possible for
same-backward-slice and same-forward-slice clusters for the same program to
have different size and frequency, and thereby capture different properties of

the program.

5.5 Impact of Pointer Analysis Precision

Recall that the definition of a coherent dependence cluster is based on an
underlying depends-on relation, which is approximated using program slicing.
Pointer analysis plays a key role in the precision of slicing and the interplay
between pointer analysis and downstream dependence analysis precision is com-
plex [Shapiro and Horwitz, [1997]. To understand how pointer analysis precision
impacts the clustering of the programs we study the effect in this section.

Usually, one would choose the pointer analysis with the highest precision
but there may be situations where this is not possible and one has to revert to
lower precision analysis. This section presents a study on the effect of various
levels of pointer analysis precision on the size of slices and subsequently on
coherent clusters. It addresses research question What is the effect of
pointer analysis precision on coherent clusters?

CodeSurfer provides three levels of pointer analysis precision (Low,
Medium, and High) that provide increasingly precise points-to information at

the expense of additional memory and analysis time. The Low setting uses a
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minimal pointer analysis that assumes every pointer may point to every object
that has its address taken (variable or function). At the Medium and High
settings, CodeSurfer performs extensive pointer analysis using the algorithm
proposed by Fahndrich et al. [1998], which implements a variant of Andersen’s
pointer analysis algorithm [Andersen, 1994] (this includes parameter aliasing).
At the Medium setting, fields of a structure are not distinguished while the
High setting distinguishes structure fields. The High setting should produce
the most precise slices but requires more memory and time during SDG con-
struction, which puts a functional limit on the size and complexity of the
programs that can be handled by CodeSurfer. There is no automatic way to
determine whether the slices are correct and precise, Weiser [1984] considers
smaller slices to be better. Slice size is often used to measure the impact of
the analysis precision [Shapiro and Horwitz, [1997], similarly we also use slice

size as a measure of precision.

The study compares slice and cluster size for CodeSurfer’s three precision
options (Low, Medium, High) to understand the impact of pointer analysis
precision on slice and cluster size. The results are shown in Table 5.1} Column
1 lists the programs and the other columns present the average slice size, maxi-
mum slice size, average cluster size, and maximum cluster size, respectively, for
each of the three precision settings. The results for average slice size deviation
and largest cluster size deviation are visualised in Figures and [5.8] The
graphs use the High setting as the base line and show the percentage deviation

when using the Low and Medium settings.

Figure shows the average slice size deviation when using the lower
two settings compared to the highest. On average, the Low setting produces
slices that are 14% larger than the High setting. Program userv has the largest
deviation of 37% when using the Low setting. For example, in userv the minimal
pointer analysis fails to recognise that the function pointer oip can never point
to functions sighandler_alrm and sighandler_child and includes them as called
functions at call sites using *oip, increasing slice size significantly. In all 30

programs, the Low setting yields larger slices compared to the High setting.

The Medium setting always yields smaller slices when compared to the
Low setting. For eight programs, the Medium setting produces the same av-

erage slice size as the High setting. For the remaining programs the Medium
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Figure 5.7: Percentage deviation of average slice size for Low and Medium
CodeSurfer pointer analysis settings
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Figure 5.8: Percentage deviation of largest cluster size for Low and Medium
CodeSurfer pointer analysis settings

setting produces slices that are on average 4% larger than when using the High
setting. The difference in slice size occurs because the Medium setting does not
differentiate between structure fields, which the High setting does. The largest
deviation is seen in findutils at 34%. With the Medium setting, the structure
fields (options, regex_map, stat_buf and state) of findutils are lumped together as

if each structure were a scalar variable, resulting in larger, less precise, slices.

The increase in slice size observed is expected to result in larger clusters
due to the loss of precision. The remainder of this section studies the effect
of pointer analysis on cluster size. Figure visualises the deviation of the

largest coherent cluster size when using the lower two settings compared to the
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highest. The graph shows that the size of the largest coherent clusters found
when using the lower settings is larger in most of the programs. On average
there is a 22% increase in the size of the largest coherent cluster when using
the Low setting and a 10% increase when using the Medium setting. In a2ps
and cflow the size of the largest cluster increases over 100% when using the
Medium setting and over 150% when using the Low setting.

The B-SCGs for a2ps for the three settings is shown in Figure [5.9h. In the
graphs it is seen that the slice sizes get smaller and have increased steps in the
(black) landscape indicating that they become more precise. The red landscape
shows that there is a large coherent cluster detected when using the Low setting
running from approx. 60% to 85% on the z-axis. This cluster drops in size
when using the Medium setting. At the High setting this coherent cluster

breaks up into multiple smaller clusters which causes a drop in the cluster
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Figure 5.9: SCGs for Low, Medium and High pointer settings of CodeSurfer
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In the SCGs for cflow (Figure [5.9b) a similar drop in the slice size and
cluster size is observed. However, unlike a2ps the large coherent cluster does
not break into smaller clusters but only drops in size. The largest cluster when
using the Low setting runs from 60% to 85% on the z-axis. This cluster reduces
in size and shifts position running 30% to 45% z-axis when using the Medium
setting. The cluster further drops in size down to 5% running 25% to 30% on
the z-axis when using the High setting. In this case the largest cluster has a
significant drop in size but does not break into multiple smaller clusters.

f6(x) {
= *p(42, 4);

return f;

}

Figure 5.10: Replacement for coherent cluster example

Surprisingly, Figure also shows seven programs where the largest co-
herent cluster size actually increases when using the highest pointer analysis
setting on CodeSurfer. Figure [5.9¢ shows the B-SCGs for acm which falls in
this category. This counter-intuitive result is seen only when the more precise
analysis determines that certain functions cannot be called and thus excludes
them from the slice. Although in all such instances slices get smaller, the
clusters may grow if the smaller slices match other slices already forming a
cluster.

For example, consider replacing function f6 in Figure [3.9] with the code
shown in Figure[5.10] where f depends on a function call to a function referenced
through the function pointer p. Assume that the highest precision pointer
analysis determines that p does not point to f2 and therefore there is no call to
f2 or any other function from f6. The higher precision analysis would therefore
determine that the forward slices and backward slices of a, b and ¢ are equal,
hence grouping these three vertices in a coherent cluster. Whereas the lower
precision is unable to determine that p cannot point to f2, the backward slice
on f will conservatively include b. This will lead the higher precision analysis to
determine that the set of vertices {a, b, c} are one coherent cluster whereas the
lower precision analysis include only set of vertices {a, c} in the same coherent
cluster.

Although we do not explicitly report the project build times on CodeSurfer

and the clustering runtimes for the lower settings, it has been our experience
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that in the majority of the cases the build times for the lower settings were
smaller. However, as lower pointer analysis settings yield large points-to sets
and subsequently larger slices, the clustering runtimes were higher than when
using the highest setting. Moreover, in some cases with lower settings there
was an explosive growth in summary edge generation which resulted in excep-
tionally high project build times and clustering runtimes.

As an answer to [RQ2.9 we find that in the majority of the cases the
Medium and Low settings result in larger coherent clusters when compared to
the High setting. For the remaining cases we have identified valid scenarios
where more precise pointer analysis can result in larger coherent clusters. The
results also confirm that a more precise pointer analysis leads to more precise
(smaller) slices. Because it gives the most precise slices and most accurate
clusters, the experiments in this thesis uses the highest CodeSurfer pointer

analysis setting.

5.6 Cluster Visualisation Tool

This section gives details of the decluvi tool. It describes the design consider-

ations, multi-level visualisations and the evaluation of the interface.

5.6.1 Design Consideration

Several guidelines have been proposed for the construction of effective visual-
isation tools. Two of these are used to ensure that decluvi is of high-quality.
First is the framework proposed by Maletic et al. [2002] and second is the inter-
face requirements proposed by Shneiderman [1996]. Maletic et al’s framework
considers the why, who, what, where, and how of a visualisation. For decluvi

this leads to the following:

Tasks — why will the visualisation help?
The visualisation helps to quickly identify clusters of dependence and
their interaction in programs. In Chapter [6] we will see that the visual-
isation helps to understand program structure and helps in highlighting
potential re-structuring opportunities to improve cohesion and design ab-
straction. The visualisation therefore makes it easier to understand and
modify programs.

Audience — who will make use of the visualisation?
Developers will use the visualisation to gain an understanding of the

functional components or the logical program structure where they are
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unfamiliar with the system. Others will be able to use the visualisation
to check if their implementation matches their documented architecture
and to identify potential problems in the structure. Maintainers will also
use the visualisation to gain overall understanding of the program and

estimate the impact of changes.

Target — what data source is to be represented?

Details of dependence clusters calculated from program.

Medium — where to represent the visualisation?
The visualisation will involve highly interactive computer graphics being

displayed on a colour monitor.

Representation — how to represent the data?
The representation of the data will be through various abstract and con-
crete views, allowing both an overall architectural understanding of the

system and also details of the implementation.

Shneiderman’s requirements are aimed at providing high-quality inter-
faces for visualisation tools. They include Owverview, Zoom, Filter, Details-
on-demand, Relate, History and FExtract. These features were used to guide
the development of decluvi and are presented in Section making it possible

to evaluate the tool’s interface against these requirements.

5.6.2 Multi-level Views

Cluster visualisations such as the SCG can provide an engineer a quick high-
level overview of how difficult a program will be to work with. High-level
abstraction can cope with a tremendous amount of code (millions of lines) and
reveal the high-level structure of a program. This overview can help an engineer
form a mental model of a program’s structure and consequently aid in tasks
such as comprehension, maintenance, and reverse engineering [Balzer et al.|
2004]. However, the high-level nature of the abstraction implies less detail.
Furthermore, programmers are most comfortable in the spatial structure in
which they read and write (i.e., that of source code). To accommodate the
need for multiple levels of abstraction, the cluster visualisation tool decluvi
provides four views: a Heat Map view and three different source-code views.
The latter three include the System View, the File View, and the Source View,
which allow a program’s clusters to be viewed at increasing levels of detail.

A common colouring scheme is used in all four views to help tie the different
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Figure 5.11: Heat Map View for bc

views together.
Heat Map View

The Heat Map view aids an engineer in creating a mental model of the overall
system. This overview can be traced to the source code using the other three
views. The Heat Map provides a starting point that displays an overview of all
the clusters using colour to distinguish clusters of varying sizes. The view also
displays additional statistics such as the size of the backward and forward slices
for each coherent cluster and the number of clusters of each size. Figure |5.11
shows the Heat Map for bc, which has been annotated for the purpose of this
discussion. The three labels la, 1b, and 1c highlight statistics for the largest
cluster (Cluster 1) of the program, whereas 2a, 2b, and 2c highlight statistics of
the 24 largest cluster (Cluster 2) and the 3’s the 3" largest cluster (Cluster 3).
Starting from the left of the Heat Map, using one pixel per cluster, horizontal
lines (limited to 100 pixels) show the number of clusters that exist for each
cluster size. This helps identify cases where there are multiple clusters of the
same size. For example, the single dot next to the labels 1la, 2a and 3a depict
that there is one cluster for each of the three largest sizes. A single occurrence
is common for large clusters, but not for small clusters as illustrated by the long
line at the top left of the Heat Map, which indicates multiple (uninteresting)

clusters of size one.
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To the right of the cluster counts is the actual Heat Map (colour spectrum)
showing cluster sizes from small to large reading from top to bottom using
colours varying from blue to red. In grey scale this appear as shades of grey,
with lighter shades (corresponding to blue) representing smaller clusters and
darker shades (corresponding to red) representing larger clusters. Red is used
for larger clusters as they are more likely to encompass complex functionality,
making them more important “hot topics.”

A numeric scale on the right of the Heat Map shows the cluster size (mea-
sured in SDG vertices). For program bc, the scale runs from 1 — 2432, depicting
the sizes of the smallest cluster, displayed using light blue (light grey), and the
largest cluster, displayed in bright red (dark grey).

Finally, on the right of the number scale, two slice size statistics are dis-
played: |BSlice| and |FSlice|, which show the sizes of the backward and forward
slices for the vertices that form a coherent cluster. The sizes are shown as a
percentage of the SDG’s vertex count, with the separation of the vertical bars
representing 10% increments. For example, Cluster 1’s BSlice (1b) and FSlice
(1c) include approximately 80% and 90% of the program’s SDG vertices.

System View

Turning to decluvi’s three source-code views, the System View is at the highest
level of abstraction. Each file containing executable source code is abstracted
into a column. For bc this yields the nine columns seen in Figure [5.12] The
name of the file appears at the top of each column, colour coded to reflect
the size of the largest cluster found within the file. The vertical length of a
column represents the length of the corresponding source file. To keep the view
compact, each line of pixels in a column summarises multiple source lines. For
moderate sized systems, such as the case studies considered herein, each pixel
line represents about eight source code lines. The colour of each line reflects
the largest cluster found among the summarised source lines, with light grey
denoting source code that does not include any executable code. Finally, the
numbers at the bottom of each column indicate the presence of the top 10
clusters in the file, where 1 denotes the largest cluster and 10 is the 10" largest
cluster. Although there may be other smaller clusters in a file, numbers are
used to depict only the ten largest clusters because they are most likely to be
of interest. In the case studies considered in Chapter [0 only the five largest

coherent clusters are ever found to be interesting.
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Figure 5.12: System View for the Program bc showing each file using one column and each
line of pixels summarising eight source lines. Blue colour (medium grey in black & white)
represent lines whose vertices are part of smaller size clusters than those in red colour (dark

grey), while lines not containing any executable lines are always shown in light grey.
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File View

The File View, illustrated in Figure[5.13] is at a lower level of abstraction than
the System View. It essentially zooms in on a single column of the System View.
In this view, each pixel line corresponds to one line of source code. The pixel
lines are indented to mimic the indentation of the source lines and the number
of pixels used to draw each line corresponds to the number of characters in the
represented source code line. This makes it easier to relate this view to actual
source code. The colour of a pixel line depicts the size of the largest coherent
cluster formed by the SDG vertices from the corresponding source code line.
Figure shows the File View of bc’s file util.c, filtered to show only the two
largest coherent clusters, while smaller clusters and non-executable lines are

shown in light grey.

Source View

While the first two views aid in locating parts of the system involved in one or
more clusters, the Source View allows a programmer to see the actual source
code lines that makes up each cluster. This can be useful in addressing ques-
tions such as Why is a cluster formed? What binds a cluster together? and
Is there unwanted/unnecessary dependence? The Source View, illustrated in
Figure .14 is a concrete view that maps the clusters onto actual source code
lines. The lines are displayed in the same spatial context in which they were
written, line colour depicts the size of the largest cluster to which the SDG
vertices representing the line belong. Figure shows Lines 241-257 of bc’s
file util.c, which has again been filtered to show only the two largest coherent
clusters. The lines of code whose corresponding SDG vertices are part of the
largest cluster are shown in red (dark grey) and those lines whose SDG vertices
are part of the second largest cluster are shown in blue (medium grey). Other
lines that do not include any executable code or whose SDG vertices are not
part of the two largest clusters are shown in light grey. On the left of each line
is a line tag with the format a:b|c/d, which presents the line number (a), the
cluster number (b), and an identification c¢/d for the ¢ of d clusters having a
given size. For example, in Figure [5.14] Lines 250 and 253 are both part of a
20" largest cluster (clusters with same size have the same rank) as indicated
by the value of b; however they belong to different clusters as indicated by the

differing values of ¢ in their line tags.
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Figure 5.13: File View for the file util.c of Program bc. Each line of pixels correspond to one
source code line. Blue (medium grey in black & white) represents lines with vertices belonging
to the 2"? largest cluster and red (dark grey) represents lines with vertices belonging to the

largest cluster. The rectangle marks function init_gen, part of both clusters.
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244:1|1/1 init_gen ()

251:1|1/1 if [(compile only)
254:1|1/1 init load ();

255:1|1/1 had error = FALSE;

Figure 5.14: Source View showing function init_gen in file util.c of Program bc. The
decluvi options are set to filter out all but the two largest clusters thus blue (medium grey
in black & white) represents lines from the 2"¢ largest cluster and red (dark grey) lines from

the largest cluster. All other lines including those with no executable code are shown in light

grey.

5.6.3 Other features

Decluvi has features such as filtering and relative colouring. These features
help to isolate and focus on a set of clusters of interest. Filtering allows a
range of cluster sizes of interest to be defined. Only clusters whose size falls
within the filtered range are shown using the Heat Map colours. Those outside
the specified range along with non-executable lines of code are shown in light
grey where in grayscale they appear in the lightest shade of grey. The filtering
system incorporates a feature to hide non-executable lines of code as well as
clusters whose size falls outside the specified range. In addition, relative colour-
ing allows the Heat Map colours to be automatically adjusted to fit within a
defined cluster size range. Relative colouring along with filtering overcomes the
problem where clusters of similar sizes are represented using similar colours,

making them indistinguishable.

5.6.4 Decluvi’s Interface Evaluation

This subsection provides an evaluation of decluvi’s user interface against the

list of features suggested by Shneiderman [1996].

Overview — Gain an overview of the entire collection of data that is repre-
sented.

The abstract Heat-Map View and compact System View provide an
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overview of the clustering for an entire system.

Zoom — Zoom in on items of interest.
From the System View it is possible to zoom into individual files in either
a lower level of abstraction (File View) or the concrete (Source View)

form.

Filter — Filter out uninteresting items.
The control panel, shown in Figure includes sliders and ‘fast cluster
selection’ buttons. These allow a user to filter out uninteresting clusters
and thus focus only on clusters of interest. The tool also provides option
to hide non-executable lines and clusters whose size fall outside a specified
range.

Details-on-demand — Select an item or group and obtain details when
needed.
Although details for all items shown in the visualisation cannot be ob-
tained, cluster related details are available. For example, clicking on a
column of the System View opens the File View for the corresponding
file and clicking on a line in the File View highlights the corresponding
line in the Source View. Finally, the fast cluster selection buttons allow
the user to demand and get details on a given cluster.

Relate — Clear relationship between the various views.
There is a hierarchical relationship between the various views provided by
decluvi. Common colouring is used throughout to tie abstract elements
of the higher level views with the concrete source lines in the Source
View. In addition, File View and Source View preserve the layout of the

underlying source code (e.g., the indentation of the lines).

History — Keep history of actions to support undo, replay and progressive re-
finement.
Decluvi currently meets this requirement partially. The various views of
the tool retain their settings and viewing positions when toggled. How-

ever, current version of decluvi lacks support for undo, replay, or history.

Extract — Allow extraction of sub-collections and of the query parameters.

The tool provides support for exporting slice/cluster statistics.
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Figure 5.15: Decluvi control panel

5.7 Related Work

This review does not attempt to survey the area of software visualisation but
concentrates on the techniques which is the basis of the dependence cluster
visualisation presented in this chapter.

The Seesoft System [Eick et al. [1992] is a seminal tool for visualising
line oriented software statistics. The system pioneered the idea of abstracting
source code view to represent each source code line using a line of pixels.
This allowed for visualisation of up to 50,000 lines of code on a single screen.
The rows were coloured to represent the values of statistics being visualised.
The system pioneered four key ideas: reduced representation, colouring by
statistic, direct manipulation, and capability to read actual code. The reduced
representation was achieved by displaying files as columns and lines of code
as thin rows. The system was originally envisioned to help in a lot of areas
including program understanding. Ball and Eick [1994] also presented SeeSlice,
a tool for interactive slicing. This was the first slicing visualisation system that
allowed for a global overview of a program. Our visualisation inherits these
approaches and extends them to be effective for dependence clusters.

The approach pioneered by Seesoft was also used in many other visualisa-
tion tools. The SeeSys System [Baker and Eick, |1995] was developed to localize
error-prone code through visualisation of ‘bug fix’ statistics. The tool extended
the Seesoft approach by introducing tree maps to show hierarchical data. It
displayed code organised hierarchically into subsystems, directories, and files
by representing the whole system as a rectangle and recursively represent-
ing the various sub-units with interior rectangles. The area of each rectangle
was used to reflect a statistic associated with its sub-unit. Tarantula |Jones
et al., May 2001] also employs the “line of pixel” style code view introduced
by Seesoft. The tool was aimed at visualising the pass/fail of test cases. It
extended the idea of using solid colours to represent statistics by using hue and
brightness to encode additional information. CVSscan [Voinea et al.; [2005]
also inherited and extended the “line of pixel” based representation by intro-
ducing “dense pixel display” to show the overall evolution of programs. The

tool has a bi-level code display that provide views of both the contents of a
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code fragment and its evolution over time. Source Viewer 3D [Marcus et al.,
2003 is a software visualisation framework that is based on Seesoft and adds a
third dimension (3D) to the original approach allowing additional statistics to
be visualised. Augur [Froehlich and Dourish, 2004] is also based on the line-
oriented approach of Seesoft. The primary view is spatially organised as in
Seesoft with additional columns to display multiple statistics for each line. As-
pect Browser (Nebulous) [Yoshikiyo et al., [1999] provides a global view of how
the various aspect entries cross-cut the source code using “line of pixels” view
and uses Aspect Emacs to get the statistics and provide the concrete source
code view. BLOOM [Reiss, [2001b] uses the BEE/HIVE [Reiss, |2001a] architec-
ture, a powerful back-end that supports a variety of high-density, high-quality
visualisation one of which (File Maps) is based on the Seesoft layout.

The final set of systems discussed are those that aim to help in reverse en-
gineering but are not based on the “line of pixels” approach. Most of these tools
focus on visualising high-level system abstractions (often referred to as ‘clus-
tering’ or ‘aggregation’) such as classes, modules, and packages, using a graph-
based approach. Rigi [Storey et al., [1997] is a reverse engineering tool that
uses Simple Hierarchical Perspective (SHriMP) views, employs fisheye views of
nested graphs. Creoleﬂ is an open-source plugin for the Eclipse (IDE) based on
SHriMP. Tools such as GOOSEEI, Sotographﬂ and VizzAnalyzer [Panas et al.,
2004] work on the class and method levels allowing information aggregation to
form higher levels of abstractions. There are tools (Borland Together, Rational
Rose, ESS-Model, BluelJ, Fujaba, GoVisual [Diehl, 2005]) which also help in

reverse engineering by producing UML diagrams from source code.

5.8 Summary

This chapter firstly introduces the graph-based visualisations for dependence
clusters and uses these visualisations to identify patterns of clustering among
the subject programs. The study shows that most programs contain multiple
large clusters making them worthy of further detailed study. Four subject
programs showing interesting patterns are identified for further in-depth study.

This is followed by a study on the effect of varying the precision level of

CodeSurfer’s pointer analysis on size and frequency of coherent clusters. The

Thttp://www.thechiselgroup.org/creole
Zhttp://esche.fzi.de/PROSTextern/ software/goose/index.html
3http:// www.software-tomography.com/html/sotograph.html



5.8. Summary 104

various levels of pointer analysis offer a trade-off between required resources
and accuracy. The results show that the highest level of pointer analysis pre-
cision results in smaller slices and clusters, which is considered to be more
precise. Furthermore, contrary to common intuition, it was found that using
the lower pointer analysis settings often required larger SDG build times be-
cause of explosion in the number of summary edges that need to be calculated.
The chapter finally discusses the multi-level cluster visualisation tool decluwvi.
The following chapter uses visualisations generated from decluvi to identify

program structure and shows other applications of the cluster visualisation.
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Chapter 6

Program Structure and

Coherent Clusters

6.1 Overview

This chapter presents discussion of how coherent clusters map to the program
structure. The chapter presents a series of four case studies of programs taken
from the large and huge categories defined in Section 4.7} The case studies aim
to reveal how coherent clusters in the programs compare against the logical
structure identified by manual inspection of the systems. The manual exami-
nation is done by experts who have several years of software development and
program analysis experience.

Following the case studies, a quantitative study of how coherent clusters
and functions overlap. More formally, this chapter addresses the following

research questions:

\RQ)3.1 Which structures within a program can coherent cluster analysis re-

veal?

How do functions and clusters overlap, and do overlap and size corre-
late?

6.2 Coherent Cluster and program decompo-
sition
This section presents four case studies acct, indent, bc and copia. The case stud-

ies form a major contribution of this thesis and collectively addresses research
question [RQ)3. 1| Which structures within a program can coherent cluster anal-
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ysis reveal? The programs have been chosen to represent the large and huge
groups identified in the previous chapter. Three programs are taken from the
large group as majority of the programs fall in this category, and one from the
huge group as it has only three programs. Each of the three programs from
the large group were chosen because they exhibit interesting patterns. Acct
has multiple coherent clusters visible in its profile and has the smallest large
cluster in the group, bc has multiple large coherent clusters, and, copia has only
a single large coherent cluster dominating the entire landscape.

It should be noted that the following case studies perform an in-depth
qualitative study of the systems to identify mappings between coherent clusters
and logical program structure. Although multiple smaller clusters were found
in the systems, they were too small to map to logical structures of the programs

and thus were ignored.

6.2.1 Case Study: acct

The first of the series of case studies is acct, an open-source program used for
monitoring and printing statistics about users and processes. The program
acct is one of the smaller programs with 2,600 LoC and 1,558 SLoC from
which CodeSurfer produced 2,834 slices. The program has seven C files, two
of which, getopt.c and getoptl.c, contain only conditionally included functions.
These functions provide support for command-line argument processing and
are included if needed library code is missing.

Table shows the statistics for the five largest clusters of acct. Column
1 gives the cluster number, where 1 is the largest and 5 is the 5 largest cluster
measured using the number of vertices. Columns 2 and 3 show the size of the
cluster as a percentage of the program’s vertices and actual vertex count, as
well as the line count. Columns 4 and 5 show the number of files and functions
where the cluster is found. The cluster sizes range from 11.4% to 2.4%. These
five clusters can be readily identified in the Heat-Map visualisation (Figure
of decluvi. The rest of the clusters are very small (less than 2% or 30 vertices)

in size and are thus of little interest.

The B-SCG for acct (row one of Figure[5.5]) shows the existence of these five
coherent clusters along with other same-slice clusters. Splitting of the same-slice
cluster is evident in the SCG. Splitting occurs when the vertices of a same-
slice cluster become part of different coherent clusters. This happens when

vertices have either the same backward slice or the same forward slice but not
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Figure 6.1: Heat Map View for acct

Cluster Cluster Size Files Functions
% vertices/lines | spanned | spanned
1 11.4% 162/88 4 6
2 7.2% 102/56 1 2
3 4.9% 69/30 3 4
4 2.8% 40/23 2 3
5 2.4% 34/25 1 1

Table 6.1: acct’s cluster statistics

both. This is because either same-backward-slice or same-forward-slice clusters
only capture one of the two external properties captured by coherent clusters
(Equation [£.1)). In acct’s B-SCG the vertices of the largest same-backward-slice
cluster spanning the z-axis from 60% to 75% are not part of the same coherent
cluster. This is because the vertices do not share the same forward slice which
is also a requirement for coherent clusters. This phenomenon is common in the
programs studied and is found in both same-backward-slice and same-forward-
slice clusters. This is another reason why coherent clusters are often smaller
in size then same-slice clusters.

Decluvi visualisation (not shown) of acct reveals that the largest cluster
spans four files (file_rd.c, common.c, ac.c, and utmp_rd.c), the 2" largest clus-

ter spans only a single file (hashtab.c), the 3¢ largest cluster spans three files
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(file_rd.c, ac.c, and hashtab.c), the 4 largest cluster spans two files (ac.c and
hashtab.c), while the 5 largest cluster includes parts of ac.c only.

The largest cluster of acct is spread over six functions, log_in, log_out,
file_open, file_reader_get_entry, bad_utmp_record and utmp_get_entry. These
functions are responsible for putting accounting records into the hash table used
by the program, accessing user-defined files, and reading entries from the file.
Thus, the purpose of the code in this cluster is to track user login and logout
events.

The second largest cluster is spread over two functions hashtab_create and
hashtab_ resize. These functions are responsible for creating fresh hash tables and
resizing existing hash tables when the number of entries becomes too large. The
purpose of the code in this cluster is the memory management in support of
the program’s main data structure.

The third largest cluster is spread over four functions: hashtab_set_value,
log_everyone_out, update_user_time, and hashtab_create. These functions are
responsible for setting values of an entry, updating all the statistics for users,
and resetting the tables. The purpose of the code from this cluster is the
modification of the user accounting data.

The fourth cluster is spread over three functions: hashtab_delete,
do_statistics, and hashtab_find. These functions are responsible for removing
entries from the hash table, printing out statistics for users and finding entries
in the hash table. The purpose of the code from this cluster is maintaining
user accounting data and printing results.

The fifth cluster is contained within the function main. This cluster is
formed due to the use of a while loop containing various cases based on input
to the program. Because of the conservative nature of static analysis, all the
code within the loop is part of the same cluster.

Finally, it is interesting to note that functions from the same file or with
similar names do not necessarily belong to the same cluster. Intuitively, it can
be presumed that functions that have similar names or prefixes work together
to provide some common functionality. In this case, six functions that have
the same common prefix “hashtab” all perform operations on the hash table.
However, these six functions are not part of the same cluster. Instead the
functions that work together to provide a particular functionality are found in

the same cluster. The clusters help identify functionality which is not obvious
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from the name of program artefacts such as functions and files. As an answer
to [RQ3.1] in this case study we find that each of the top five clusters map to

specific logical functionality of the program.

6.2.2 Case Study: indent

Cluster Cluster Size Files | Functions
% vertices/lines | spanned | spanned
1 52.1% | 3930/2546 7 o4
2 3.0% 223/136 3 7
3 1.9% 144/72 1 6
4 1.3% 101/54 1 5
5 1.1% 83/58 1 1

Table 6.2: indent’s cluster statistics

The next case study uses indent to further support the answer found for
in the acct case study. The characteristics of indent are very different
from those of acct as indent has a very large dominant coherent cluster (52%)
whereas acct has multiple smaller clusters with the largest being 11%. We
include indent as a case study to ensure that the answer for is derived
from programs with different cluster profiles and sizes giving confidence as to
the generality of the answer.

Indent is a Unix utility used to format C source code. It consists of 6,978
LoC with 7,543 vertices in the SDG produced by CodeSurfer. Table shows
statistics of the five largest clusters found in the program. The BSCG for indent
is shown in the first row of Figure |5.6

Indent has one extremely large coherent cluster that spans 52.1% of the
program’s vertices. The cluster is formed of vertices from 54 functions spread
over 7 source files. This cluster captures most of the logical functionalities of
the program. Out of the 54 functions, 26 begin with the common prefix of “han-
dle_token”. These 26 functions are individually responsible for handling a spe-
cific token during the formatting process. For example, handle_token_colon, han-
dle_token_comma, handle_token_comment, and handle_token_|brace are responsi-
ble for handling the colon, comma, comment, and left brace tokens, respec-
tively.

This cluster also includes multiple handler functions that check the size of
the code and labels being handled, such as check_code_size and check_lab_size.

Others, such as search_brace, sw_buffer, print_comment, and reduce, help with
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tracking braces and comments in code. The cluster also spans the main loop
of indent (indent_main_loop) that repeatedly calls the parser function parse.

Finally, the cluster consists of code for outputting formatted lines such as
the functions better_break, computer_code_target, dump_line, dump_line_code,
dump_line_label, inhibit_indenting, is_comment_start, output_line_length and
slip_horiz_space, and ones that perform flag and memory management
(clear_buf_break_list, fill_buffer and set_priority).

Cluster 1 therefore consists of the main functionality of this program and
provides support for parsing, handling tokens, associated memory management,
and output. The parsing, handling of individual tokens and associated mem-
ory management are highly inter-twined. For example, the handling of each
individual token is dictated by operations of indent and closely depends on the
parsing. This code cannot easily be decoupled and, for example, reused. Sim-
ilarly the memory management code is specific to the data structures used by
indent resulting in these many logical constructs to become part of the same
cluster.

The second largest coherent cluster consists of 7 functions from 3 source
files. These functions handle the arguments and parameters passed to indent.
For example, set_option and option_prefix along with the helper function eqin to
check and verify that the options or parameters passed to indent are valid. When
options are specified without the required arguments, the function arg_missing
produces an error message by invoking usage followed by a call to DieError to
terminate the program.

Cluster 3, 4 and 5 are less than 3% of the program and are too small
to warrant a detailed discussion. Cluster 3 includes 6 functions that generate
numbered /un-numbered backup for subject files. Cluster 4 has functions for
reading and ignoring comments. Cluster 5 consists of a single function that
reinitialises the parser and associated data structures.

The case study of indent further illustrates that coherent clusters can cap-
ture the program’s logical structure as an answer to research question [RQ3.1]
However, in cases such as this where the internal functionality is tightly knit,

a single large coherent cluster maps to the program’s core functionality.

6.2.3 Case Study: bc

The third case study in this series is bc, an open-source calculator, which
consists of 9,438 LoC and 5,450 SLoC. The program has nine C files from
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which CodeSurfer produced 15,076 slices (backward and forward).

Analysing bc’s SCG (row 4, Figure [5.5)), two interesting observations can
be made. First, bc contains two large same-backward-slice clusters visible
in the light grey landscapes as opposed to the three large coherent clusters.
Second, looking at the B-SCG, it can be seen that the z-axis range spanned
by the largest same-backward-slice cluster is occupied by the top two coherent
clusters shown in the dashed red (dark grey) landscape. This indicates that
the same-backward-slice cluster splits into the two coherent clusters.

The statistics for bc’s top five clusters are given in Table [6.3] Sizes of
these five clusters range from 32.3% through to 1.4% of the program. Clusters
six onwards are less than 1% of the program. The Project View (Figure

shows their distribution over the source files.

Cluster Cluster Size Files | Functions
% vertices/lines | spanned | spanned
1 32.3% | 2432/1411 7 o4
2 22.0% 1655/999 5 23
3 13.3% 1003/447 1 15
4 1.6% 117/49 1 2
5 1.4% 102/44 1 1

Table 6.3: bc’s cluster statistics

In more detail, Cluster 1 spans all of bc’s files except for scan.c and bc.c.
This cluster encompasses the core functionality of the program — loading and
handling of equations, converting to bc’s own number format, performing cal-
culations, and accumulating results. Cluster 2 spans five files, util.c, execute.c,
main.c, scan.c, and bc.c. The majority of the cluster is distributed over the lat-
ter two files. Even more interestingly, the source code of these two files (scan.c
and bc.c) map only to cluster 2 and none of the other top five clusters. This
indicates a clear purpose to the code in these files. These two files are solely
used for lexical analysis and parsing of equations. To aid in this task, some
utility functions from util.c are employed. Only five lines of code in execute.c
are also part of Cluster 2 and are used for flushing output and clearing interrupt
signals. The third cluster is completely contained within the file number.c. It
encompasses functions such as _bc_do_sub, _bc_init_num, _bc_do_compare,
_bc_do_add, _bc_simp_mul, _bc_shift_addsub, and _bc_rm_leading_zeros,

which are responsible for initialising bc’s number formatter, performing com-
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parisons, modulo and other arithmetic operations. Clusters 4 and 5 are also
completely contained within number.c. These clusters encompass functions to
perform bed operations for base ten numbers and arithmetic division, respec-
tively.

As an answer to [RQ3.1], the results of the cluster visualisations for bc re-
veal its high-level structure. This aids an engineer in understanding how the
artefacts (e.g., functions and files) of the program interact, thus aiding in pro-
gram comprehension. The remainder of this subsection illustrates a side-effect
of decluvi’s multi-level visualisation, how it can help find potential problems
with the structure of a program aiding in program maintenance.

Util.c consists of small utility functions called from various parts of the
program. This file contains code from Clusters 1 and 2 (Figure . Five
of the utility functions belong with Cluster 1, while six belong with Cluster
2. Furthermore, Figure [5.13| shows that the distribution of the two clusters
in red (dark grey) and blue (medium grey) within the file are well separated.
Both clusters do not occur together inside any function with the exception
of init_gen (highlighted by the rectangle in first column of Figure . The
other functions of util.c thus belong to either Cluster 1 or Cluster 2. Sepa-
rating these utility functions into two separate source files where each file is
dedicated to functions belonging to a single cluster would improve the code’s
logical separation and file-level cohesion. This would make the code easier to
understand and maintain at the expense of a very simple refactoring. In gen-
eral, this example illustrates how decluvi visualisation can provide an indicator
of potential points of code degradation during evolution.

Finally, the Code View for function init_gen shown in Figure[5.14]includes
Lines 244, 251, 254, and 255 in red (dark grey) from Cluster 1 and Lines 247,
248, 249, and 256 in blue (medium grey) from Cluster 2. Other lines, shown
in light grey, belong to smaller clusters and lines containing no executable
code. Ideally, clusters should capture a particular functionality; thus, functions
should generally not contain code from multiple clusters (unless perhaps the
clusters are completely contained within the function). Functions with code
from multiple clusters reduce code separation (hindering comprehension) and
increase the likelihood of ripple-effects [Black, [2001]. Like other initialisation
functions, bc’s init_gen is an exception to this guideline.

This case study not only provides support for the answer to research ques-



6.2. Coherent Cluster and program decomposition 113

Cluster Cluster Size Files Functions
number | % | vertices/lines | spanned | spanned
1 48% 1609/882 1 239
2 0.1% 4/2 1 1
3 0.1% 4/2 1 1
4 0.1% 4/2 1 1
5 0.1% 2/1 1 1

Table 6.4: copia’s cluster statistics

tion |[R()3. 1| found in previous case studies, but also illustrates that the visual-

isation is able to reveal structural defects in programs.

6.2.4 Case Study: copia

The final case study in this series is copia, an industrial program used by the
ESA to perform signal processing. Copia is the smallest program considered in
this series of case studies with 1,168 LoC and 1,111 SLoC all in a single C file.
Its largest coherent cluster covers 48% of the program. The program is at the
top of the group with large coherent clusters. CodeSurfer extracts 6,654 slices.

The B-SCG for copia is shown in Figure [6.2h. The single large coherent
cluster spanning 48% of the program is shown by the dashed red (dark grey) line
(running approx. from 2% to 50% on the z-axis). The plots for same-backward-
slice cluster sizes (light grey line) and the coherent cluster sizes (dashed line)
are identical. This is because the size of the coherent clusters are restricted
by the size of the same-backward-slice clusters. Although the plot for the size
of the backward slices (black line) seems to be the same from the 10% mark
to 95% mark on the x-axis, the slices are not exactly the same. Only vertices
plotted from 2% through to 50% have exactly same backward and forward slice
resulting in the large coherent cluster.

Table shows statistics for the top five coherent clusters found in copia.
Other than the largest cluster which covers 48% of the program, the rest of
the clusters are extremely small. Clusters 2-5 include no more than 0.1% of
the program (four vertices) rendering them too small to be of interest. This
suggests a program with a single functionality or structure.

During analysis of copia using decluvi, the File View (Figure reveals
an intriguing structure. There is a large block of code with the same spatial ar-
rangement (bounded by the dotted black rectangle in Figure that belongs

to the largest cluster of the program. It is unusual for so many consecutive
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Figure 6.2: SCGs for the program copia

void selezional a)
int a:

switch (a) {
case 0: grid(); break;
case l: hex(); break;
case Z: tril): break:
case 3: rec(); break;
cage 4: squi): break:
case 51 W) hreak;

Figure 6.3: Decluvi’s File View for the file copia.c of Program copia. Each line
of pixels represent the cluster data for one source code line. The lines in red
(dark grey in black & white) are part of the largest cluster. The lines in blue
(medium grey) are part of smaller clusters. A rectangle highlights the switch
statement that holds the largest cluster together.
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source code lines to have nearly identical length and indentation. Inspection
of the source code reveals that this block of code is a switch statement han-
dling 234 cases. Further investigation shows that copia has 234 small func-
tions that eventually call one large function, seleziona, which in turn calls the
smaller functions effectively implementing a finite state machine. Each of the
smaller functions return a value that is the next state for the machine and
is used by the switch statement to call the appropriate next function. The
primary reason for the high level of dependence in the program lies with the
statement switch(next_state), which controls the calls to the smaller functions.
This causes what might be termed ‘conservative dependence analysis collat-
eral damage’ because the static analysis cannot determine that when function
f() returns the constant value 5 this leads the switch statement to eventually
invoke function g(). Instead, the analysis makes the conservative assumption
that a call to f() might be followed by a call to any of the functions called
in the switch statement, resulting in a mutual recursion involving most of the
program.

Although the coherent cluster still shows the structure of the program
and includes all these stub functions that work together, this is a clear case
of dependence pollution |[Binkley and Harman, |2005b], which is avoidable. To
illustrate this, the code was re-factored to simulate the replacement of the in-
teger next_state with direct recursive function calls. The SCG for the modified
version of copia is shown in Figure where the large cluster has clearly
disappeared. As a result of this reduction, the potential impact of changes to
the program will be greatly reduced, making it easier to understand and main-
tain. This is even further amplified for automatic static analysis tools such as
CodeSurfer. Of course, in order to do a proper re-factoring, the programmer
will have to consider ways in which the program can be re-written to change
the flow of control. Whether such a re-factoring is deemed cost-effective is a
decision that can only be taken by the engineers and managers responsible for
maintaining the program in question.

This case study reiterates the answ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>