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Abstract

This thesis introduces coherent dependence clusters and shows their relevance
in areas of software engineering such as program comprehension and mainte-
nance. All statements in a coherent dependence cluster depend upon the same
set of statements and affect the same set of statements; a coherent cluster’s
statements have ‘coherent’ shared backward and forward dependence.

We introduce an approximation to efficiently locate coherent clusters and
show that its precision significantly improves over previous approximations.
Our empirical study also finds that, despite their tight coherence constraints,
coherent dependence clusters are to be found in abundance in production code.
Studying patterns of clustering in several open-source and industrial programs
reveal that most contain multiple significant coherent clusters. A series of
case studies reveal that large clusters map to logical functionality and pro-
gram structure. Cluster visualisation also reveals subtle deficiencies of program
structure and identify potential candidates for refactoring efforts. Supplemen-
tary studies of inter-cluster dependence is presented where identification of
coherent clusters can help in deriving hierarchical system decomposition for
reverse engineering purposes. Furthermore, studies of program faults find no
link between existence of coherent clusters and software bugs. Rather, a longi-
tudinal study of several systems find that coherent clusters represent the core
architecture of programs during system evolution.

Due to the inherent conservativeness of static analysis, it is possible for
unreachable code and code implementing cross-cutting concerns such as error-
handling and debugging to link clusters together. This thesis studies their effect
on dependence clusters by using coverage information to remove unexecuted
and rarely executed code. Empirical evaluation reveals that code reduction
yields smaller slices and clusters.
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Chapter 1

Introduction

Program dependence analysis is a foundation for many activities in software en-
gineering such as testing, comprehension, and impact analysis [Binkley, 2007].
For example, it is essential to understand the relationships between different
parts of a system when making changes and the impacts of these changes [Gal-
lagher and Lyle, 1991]. This has led to static [Yau and Collofello, 1985, Black,
2001], dynamic [Korel and Laski, 1988, Law and Rothermel, 2003] and blended
(static and dynamic) [Ren et al., 2006, 2005] dependence analyses of the rela-
tionships between dependence and impact.

One important property of dependence is the way in which it may cluster.
This occurs when a set of statements all depend upon one another, forming a
dependence cluster. Within such a cluster, any change to any element poten-
tially affects every other member of the cluster. Binkley and Harman [2005b]
introduced dependence clusters and later demonstrated in a large scale em-
pirical validation that large dependence clusters were (perhaps surprisingly)
common, both in industrial and in open source system [Harman et al., 2009].
Their study of a large corpus of C code found that 89% of the programs studied
contained at least one dependence cluster that consumed at least 10% of the
program’s statements. The average size of the programs studied was 20KLoC,
so these clusters of more than 10% denoted significant portions of code. They
also found evidence of super-large clusters: 40% of the programs had a depen-
dence cluster that consumed over half of the program.

More recently, dependence clusters have been identified in other languages
and systems, both in open source and in industrial systems [Acharya and
Robinson, 2011]. Large dependence clusters were also found in Java systems
[Beszédes et al., 2007, Savernik, 2007, Szegedi et al., 2007] and in legacy Cobol
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systems [Hajnal and Forgács, 2011].

Since its inception, dependence clusters have been thought of as potential
problem points as large inter-twined dependence is thought to make the task
of program comprehension and maintenance difficult [Binkley and Harman,
2005b]. Binkley et al. [2008b] have regarded dependence clusters as bad code
smells and considered them to be dependence ‘anti-patterns’ because the high
impact of changes that may lead to problems for on-going software mainte-
nance and evolution [Savernik, 2007]. To this end there has been work that
studies the link between impact analysis and dependence clusters [Acharya and
Robinson, 2011, Jasz et al., 2012].

There has been interesting work that investigates the relationship between
program faults, software metrics, and dependence clusters [Black et al., 2009].
A possible link between dependence clusters and program faults has also been
suggested [Black et al., 2006]. As a result, approaches have been proposed that
identify linchpin vertices (responsible for holding clusters together) in both
traditional dependence clusters [Binkley and Harman, 2009, Binkley et al.,
2013a] and SEA-based clusters [Beszédes et al., 2007].

Despite their potentially negative impact, dependence clusters are not well
understood. Cluster analysis is complicated because inter-procedural depen-
dence is non-transitive; thus, the definition of a dependence cluster is sub-
tle, even surprising. One implication of this complexity is that past studies
have focused on the internal aspects of dependence clusters and thus largely
ignored the extra-cluster dependences (both in to and out of the cluster). Non-
transitivity of dependence means that the statements in a traditional depen-
dence cluster, though they all depend on each other, may not each depend on
the same set of statements, nor need they necessarily affect the same set of
statements.

This thesis introduces and empirically studies coherent dependence clus-
ters. In a coherent dependence cluster all statements share identical intra-
cluster and extra-cluster dependence. A coherent dependence cluster is thus
more constrained than a general dependence cluster. A coherent dependence
cluster retains the essential property that all statements within the cluster are
mutually dependent, but adds the constraint that all incoming dependence
must be identical and all outgoing dependence must also be identical. That
is, all statements within a coherent cluster depend upon the same set of state-
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ments outside the cluster and all statements within a coherent cluster affect
the same set of statements outside the cluster.

This means that, when studying a coherent cluster, we need to under-
stand only a single external dependence context in order to understand the
behaviour of the entire cluster. For a dependence cluster that fails to meet the
external constraint, each statement of the cluster may have a different external
dependence context, because inter-procedural dependence is not transitive.

It might be thought that very few sets of statements would meet these
additional coherence constraints or that, where such sets of statements do
meet the constraints, there would be relatively few statements in the coherent
cluster so-formed. Our empirical findings provide evidence that this is not the
case, coherent dependence clusters are common and they can be very large.
This finding provides a new way to investigate the dependence structure of a
program and the way in which it clusters.

This thesis looks at dependence clusters in a new light. Unlike previ-
ous understanding, this thesis shows that coherent clusters are not necessarily
problems hindering code maintenance and comprehension, instead clusters are
found to depict logical structure of a program. The thesis shows that visuali-
sation of coherent clusters can help reveal these logical structures and can also
help identify potential structural problems and refactoring opportunities.

A study on the link between program faults and coherent clusters find no
evidence to suggest that coherent clusters have a link to program faults. On
the other hand, a study of system evolution finds that coherent clusters remain
surprisingly stable during evolution of systems. These two studies provide
further support for the central theme of the thesis where we show that coherent
clusters are not potential problems but occur naturally in programs and depict
the logical structure of the program.

Finally, the thesis presents a study where coverage information is used
to reduce programs by removing unexecuted and rarely executed code, leaving
code that is of most interest to developers and maintainers. This allows for im-
proved static analysis by excluding many cross-cutting concerns. For example,
the average slice size of the reduced programs drop by 30% when compared to
the original versions. An evaluation of coherent clusters show that the clusters
in the reduced version capture more fine-grained logical structures in programs.
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1.1 Problem Statement
Analyse and visualize coherent dependence clusters and to study their impact
on program comprehension and maintenance.

1.2 Research Questions
Formally, this thesis addresses the following fourteen research questions. This
section gives a brief description of these questions and their relationship.

The first three research questions RQ1.1–RQ1.3 form the core validation
study of the thesis and are addressed in Chapter 4. RQ1.1 validates the ex-
perimental setup and its methodology. RQ1.2 asks whether coherent clusters
are indeed common in production systems, making them worthy of further
study. RQ1.3 studies the conservatism introduced by using approximations for
slice-based clusters.

RQ1.1 How precise is hashing as a proxy for comparing slices?

RQ1.2 How large are coherent clusters that exist in production source code?

RQ1.3 How conservative is using the same-slice relationship as an approxi-
mation of slice-inclusion relationship?

Research question RQ2.1 uses graph-based cluster visualisations to study
the cluster profile for the subject programs. Patterns of clustering visible from
the cluster profile of the graph-based visualisation are identified and form the
answer to this question. Many of the later research questions are based on iden-
tifying changes in the cluster profile making this research question of identifying
patterns important. RQ2.2 studies the impact of various pointer analysis al-
gorithms on the size of slices and how this affects the coherent clusters found
in programs. Both RQ2.1 and RQ2.2 are addressed in Chapter 5.

RQ2.1 Which patterns of clustering can be identified using graph-based cluster
visualisation?

RQ2.2 What is the effect of pointer analysis precision on coherent clusters?

Research question RQ3.1 forms a major contribution of this thesis. RQ3.1
is answered using a series of four case studies, which together show that co-
herent clusters map to logical constructs of programs. This is achieved by
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employing the decluvi cluster visualisation tool to analyse the mapping be-
tween clusters and functions of the programs. RQ3.2 presents a quantitative
study of how functions and coherent clusters map to each other. Both these
questions are addressed in Chapter 6.

RQ3.1 Which structures within a program can coherent cluster analysis re-
veal?

RQ3.2 How do functions and clusters overlap, and do overlap and size cor-
relate?

RQ4.1 looks explicitly at the relationship between coherent clusters and
program faults. It finds no link between faults and coherent clusters. RQ4.2
on the other hand studies the changes of coherent cluster profile during system
evolution and finds them to be very stable. Answers to RQ4.1 and RQ4.2
provide additional support to the answer of RQ3.1 and bolster the central
claim of the thesis that dependence clusters map to logical program structure.
RQ4.3 studies the implications of inter-cluster dependence and shows how they
may be leveraged to identify larger dependence structures. RQ4.4 looks at the
existence of coherent clusters in object-oriented paradigm by studying Java
programs. RQ4.1–RQ4.4 are addressed in Chapter 7.

RQ4.1 How do program faults relate to coherent clusters?

RQ4.2 How stable are coherent clusters during system evolution?

RQ4.3 What are the implications of inter-cluster dependence between coherent
clusters?

RQ4.4 Are coherent clusters prevalent in object-oriented programs?

The final set of research questions RQ5.1–RQ5.3 are related to the code
reduction framework aimed at reducing the size of static slices and clusters.
RQ5.1 studies the impact of different test suites on static slicing and depen-
dence clusters. RQ5.2 analyses the existence and change in clustering profile
following code reduction, whereas RQ5.3 ascertains whether code reduction
improves the quality of the clustering. RQ5.1–RQ5.3 are addressed in Chap-
ter 8.

RQ5.1 What is the impact of different test suites on static program slices and
dependence clusters in coverage-based reduced programs?
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RQ5.2 How large are coherent clusters that exist in the coverage-based reduced
programs and how do they compare to the original version?

RQ5.3 Which structures within a coverage-based reduced program can coher-
ent cluster analysis reveal and how do they compare to the original ver-
sion?

1.3 Contributions
The primary contributions of the thesis are as follows:

1. Definition of coherent dependence clusters

2. An algorithm for efficient and accurate clustering

3. Empirical evaluation of the impact of pointer analysis precision on clus-
tering

4. Empirical evaluation of the frequency and size of coherent dependence
clusters in production grade software

5. A cluster visualisation tool for graph-based and interactive multi-level
visualisation of dependence clusters

6. A series of case studies showing that coherent clusters map to logical
program structure

7. Studies into the relationship between software bugs and software evolu-
tion with coherent dependence clusters

8. Identification of inter-cluster dependence and highlighting how coherent
clusters form the building blocks of larger program dependence structures
and can support reverse engineering

9. Introduction of a framework for coverage-based code reduction to elimi-
nate unwanted cross-cutting concerns or other features in order to reduce
size of static slices and clusters.
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1.4 Publications
Publications on Coherent Dependence Clusters:

• Syed Islam, Jens Krinke, David Binkley, and Mark Harman. Coher-
ent dependence clusters. In PASTE ’10: Proceedings of the 9th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 53–60. ACM Press, 2010.

• Syed Islam, Jens Krinke, and David Binkley. Dependence cluster vi-
sualization. In SoftVis ’10: 5th ACM/IEEE Symposium on Software
Visualization, pages 93–102. ACM Press, 2010.

• Syed Islam, Jens Krinke, David Binkley, and Mark Harman. Coherent
clusters in source code. Journal of Systems and Software, 88(0):1 – 24,
2014.

Publications on Dependence Clusters:

• David Binkley, Mark Harman, Youssef Hassoun, Syed Islam, and Zheng
Li. Assessing the impact of global variables on program dependence and
dependence clusters. Journal of Systems and Software, 83(1):96–107,
2010.

• David Binkley, Nicholas Gold, Mark Harman, Syed Islam, Jens Krinke,
and Zheng Li. Efficient identification of linchpin vertices in dependence
clusters. ACM Transactions on Programming Languages and Systems
(TOPLAS), 35(2):1–35, July 2013.

1.5 Research Methodology
This thesis uses both Quantitative research and Qualitative research. The tech-
niques are used to complement each other rather than compete as suggested
by Wohiln et al. [2003]. The quantitative research broadly looks at ascertain-
ing the presence and frequency of dependence clusters in real-world systems.
As part of the quantitative research, experiments were conducted to replicate
results of previous studies and validate current results against them. As this
thesis is the first to present Coherent Clusters, it is important to replicate pre-
vious results from closely related work on dependence clusters for the purpose
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of validation and comparison. An extension of the quantitative studies also
looks into the effect of other dependence properties of the clusters.

The qualitative research looks in-depth into four of the subject programs
to ascertain different properties and implications of the presence of coherent
clusters in them. The qualitative research is done by considering the production
systems as case studies where their clustering is studied and compared to logical
program structure.

1.6 Thesis Structure
The remainder of this thesis is organised into eight chapters. Chapter 2 pro-
vides a literature review on clustering and work related to dependence clusters.
Chapter 3 provides the necessary background on dependency graphs, program
slicing and various instantiations of dependence clusters. Chapter 4 introduces
coherent clusters and its various slice based instantiations. Chapter 5 intro-
duces various graph-based visualisations and the decluvi cluster visualisation
tool. Chapter 6 presents a series of four case studies for qualitative and quanti-
tative studies of mapping between coherent clusters and functions. Chapter 7
presents studies on the link between clusters and bugs, clusters and system
evolution, inter-cluster dependence and existence of clusters in object-oriented
programs. Chapter 8 presents the coverage-based code reduction framework
and its impact on static slicing and clustering. Finally, Chapter 9 presents
threats to validity, highlights future work and draws conclusions of the thesis.
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Chapter 2

Background

2.1 Software Clustering
Clustering is the process of grouping entities such that entities within a group
are similar to one another and different from those in other groups. The sim-
ilarity between entities is determined based on their features. Clustering is a
very important activity widely researched and has a wide variety of applica-
tions in various different domains [Anderberg, 1973, Everitt, 1974, Romesburg,
1984], including software engineering.

According to Anquetil et al. [1999] and Maqbool et al. [2007] the following
need to be considered before clustering can be performed:

Entities: What is to be grouped?
It is necessary to group together entities that result in a partition (clus-
tering result) which is of interest to software engineers. The goal is to
create subsystems that contain entities that are related based on a spe-
cific set of criteria. In case of software clustering these entities are files,
functions, global variables, types, macros statement block, syntactic units
etc. For large systems, the desired entities may be abstract, and mod-
elled using architectural components such as subsystems and subsystem
relations. For even larger systems, hundreds of subsystems themselves
might be collected into other subsystems, resulting in a subsystem hier-
archy [Lakhotia, 1997].

Selection of features: What characteristics will be considered?
The entities selected for clustering will have a lot of features that they
exhibit. A set of features, which can be used as a basis for judging sim-
ilarity of entities, must be selected for the clustering process. In case
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of software clustering, both formal (function calls, file inclusion, vari-
able referencing, type referencing etc.) and informal features (comments,
identifier names, directory path, LOC, last modification time, developer,
change requests) have been widely used as basis of clustering [Andritsos
and Tzerpos, 2005, Lakhotia, 1997]. More recently, the use of dynamic
information (for example, the number of function calls made at run-time)
has also been explored [Tzerpos, 2005].

Entities’ coupling: How will the relationship between entities be represented?
Once the entities and the features have been selected, the next step is to
decide how to group them into cohesive units. There are two approaches,
‘direct link’ and ‘sibling link’. The first puts together entities based on
direct relationship between the entities, while the second puts together
entities that exhibit the same behaviour. The approaches are discussed
in further details in Section 2.2.

Clustering algorithm How will the clusters be grouped?
There are many different algorithms that are successful for clustering,
however all of these may not be applicable to software clustering and
may not produce results that are of interest from a software engineering
point of view. An example is the grid method, where entities are clustered
based on their geographical position within a grid structure [Asif et al.,
2009]. This will not be useful as software artefacts do not have any spacial
properties.

Software clustering can thus be described as the process of gathering soft-
ware entities (such as files, functions, etc.) that compose the system into
meaningful (cohesive) and independent (loosely coupled) subsystems.

There have been many surveys of the vast amount of techniques applied
in the field of software clustering. Many frameworks have been proposed for
classifying these techniques. It is beyond the scope of the review presented
here to consider all the various approaches and classifications in detail. For
our review we consider in detail the two most popular approaches in software
clustering: hierarchical clustering (Section 2.3) and search-based clustering
(Section 2.4). Other approaches are briefly outlined in Section 2.5. Below, we
briefly note major surveys, frameworks and classifications of the area.

From the rich literature on clustering [Xu and Wunsch, 2005, Ander-
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berg, 1973, Everitt, 1974, Romesburg, 1984], a set of suitable clustering al-
gorithms that may be applied to software clustering process was surveyed
by Wiggerts [1997], Mitchell [2004] and Tzerpos et al. [1998]. Maqbool and
Babri [2007], Anquetil and Lethbridge [1999] provide a detailed survey of hier-
archical techniques.

Lakhotia [1997] gives a survey on subsystem classification techniques and
provides a unified framework for entity description and clustering methods in
order to facilitate comparison between various subsystem classification tech-
niques. Koschke [2002] presents a classification in his PhD thesis where he
considers 23 different approaches and classifies them based on relationships
between entities. Other studies [Armstrong and Trudeau, 1998, Storey et al.,
2000] look at reverse engineering applications and provide evaluation and com-
parison of tools. Ducasse and Pollet [2009] provide a comprehensive taxonomy
of the software architecture recovery field and evaluate 34 techniques/tools
based on various capabilities.

2.2 Direct and Sibling link approaches
Before proceeding further we must discuss the representation of the relation-
ships between the various entities. This is of particular importance to us as
they will lead to different clustering approaches that we will review, namely hi-
erarchical clustering and search-based clustering. Tzerpos [1998] distinguishes
the following kinds of relationships:

Direct relationship: Entities depend on each other.
In this case, entities and relationships are represented as a graph, where
the nodes are the entities and the edges are the relations. Where multiple
relations exist, the graph will have multiple kinds of edges, also weighted
features may be represented in a weighted graph. The direct link ap-
proach has an appealing simplicity, for example, if a function calls another
function or a file includes another file they are related to each other. How-
ever, this often brings us back to the graph partitioning problem which
is known to be NP-Hard [Garey and Johnson, 1990]. This direct link
approach is thus mostly and commonly used by graph-theoretic cluster-
ing and search-based techniques [Hutchens and Basili, 1985, Lung et al.,
2004, Mancoridis et al., 1998, Mitchell and Mancoridis, 2001a, Muller
et al., 1993] (Section 2.4).
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Sibling link approach: Features that entities share.
This approach is based on representing the commonality of features of
the different entities rather than a direct relationship between the en-
tities themselves [Anquetil and Lethbridge, 2003, Anquetil et al., 1999,
Schwanke, 1991]. Whereas in the previous approach entities could not
be clustered unless there was a link between them, using this approach
two entities that have no link between them may also be clustered based
on some feature that they have in common. Sibling link approach is also
known to produce better clustering results than direct link approach [An-
quetil and Lethbridge, 1999, Kunz, 1993, Ricca et al., 2004]. We de-
scribe the similarity measure that can be applied to this approach in
Section 2.3.1.

2.3 Hierarchical Clustering
Hierarchical clustering algorithms produce a nested decomposition of the sys-
tem into subsystems, which in turn may be broken down into smaller subsys-
tems and entities. At one end of the hierarchy is the partition where each entity
is in a different cluster and at the other end the partition where all the entities
are in the same cluster. The multi-level architectural views facilitates both
architectural and implementation understanding as they provide both detailed
view and abstractions at various levels that intuitively match the structural
decomposition of software [Shtern and Tzerpos, 2004]. Hierarchical clustering
methods can be divided into two major categories on the basis of the strategy
it adapts to cluster the entities, divisive (top down) or agglomerative (bottom
up).

Divisive (Top-Down): Divisive hierarchical clustering algorithms start with
one cluster containing all the entities representing the systems and use
the top down strategy to iteratively divide the cluster into smaller ones,
until each entity form a cluster on its own or satisfy certain termination
condition. Such algorithms however suffer from excessive computational
complexity and are unpopular, as it has to consider an exponential num-
ber of partition possibilities at every step (2n−1 − 1 possibilities in the
first step) [Wiggerts, 1997].

Agglomerative (Bottom-up): Agglomerative hierarchical clustering starts
by placing each entity in its own cluster and then iteratively merges the
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most similar clusters based on some criteria to get larger and larger clus-
ters until certain termination condition is satisfied or all the entities are
in one cluster. At each level of the merging, a clustering result (parti-
tion) of the system is obtained and represents a solution. The partitions
achieved at initial stages contain more clusters and provide a detailed
view whereas the ones at later stages contain fewer clusters and provide
a more high-level view. Hierarchical agglomerative clustering algorithms
are by far the most popular choice when it comes to software architecture
recovery [Anquetil et al., 1999, Anquetil and Lethbridge, 2003, Hutchens
and Basili, 1985, Schwanke, 1991]. There are many agglomerative hier-
archical algorithms that have been applied to the problem of software
architecture recovery and vary on the strategy used to decide on which
clusters to merge based on similarity of entities contained within the
clusters. The similarity measures are described in Section 2.3.1 and the
various cluster merging strategies are described in Section 2.3.2.

2.3.1 Sibling link similarity measures
The sibling link approach takes into consideration features of the entities, and
two entities with the most features in common are considered to be most sim-
ilar. To be able to do this we must be able to decide that “entity a is more
similar to entity b than entity c”, based on some kind of a measure of commonal-
ity. Similarity metrics thus compute a coupling value between two entities and
the choice of the measure is important as the choice of the similarity measure
has more influence on the result than the clustering algorithm [Jackson et al.,
1989]. There is a large number of similarity measures/metrics that are found
in the literature and can be grouped into the four categories [Anquetil and
Lethbridge, 1999, Maqbool and Babri, 2007]: association coefficients, distance
measures, correlation coefficients and probabilistic coefficients.
Association coefficients
These compare the features that two entities have in common considering
whether features are present or not. The idea behind association metrics is
very intuitive: the more relevant feature matches there are between two en-
tities under comparison, the more similar the two entities are. Association
coefficients for two entities i and j are expressed in terms of the number of
features which match and mismatch in the entities, as shown in Table 2.1. In
the matrix, a represents the number of features i and j have in common, b rep-
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resents the number of features unique to j, c represents the number of features
unique to i, and finally d represents the number of features missing from both
i and j. As the features are represented in binary a, b, c and d are also known
as 1− 1, 1− 0, 0− 1 and 0− 0 matches.

entity j 1 entity j 0
entity i 1 a b
entity i 0 c d

Table 2.1: Association matrix

Association coefficients based similarity metrics vary mainly in two places:

1. The handling of 0− 0 matches. Some measures do not take into account
0 − 0 matches and some assign it lower weights than the other three
matches. In the case of software, features are considered to be asymmet-
ric, that is their presence may indicate similarity, but their absence may
not tell us anything. For example, it is significant whether two functions
use the same global variable (a 1 − 1 match), since this indicates that
they may be similar. But, the fact that two functions do not use a global
variable (a 0 − 0 match) does not indicate a similarity between them;
hence, a 1− 1 match is more significant than a 0− 0 match.

2. The weight that is applied to matches 1−1 and mismatches 0−1 or 1−0.
In other words, should features unique to mismatches play a bigger role
in deciding the dissimilarity between entities or the other way around.

Some well-known association based similarity measures are shown in Ta-
ble 2.2. For example the Jaccard coefficient is the ratio of 1 − 1 matches,
without considering 0 − 0 matches. The simple matching coefficient counts
both 1 − 1 and 0 − 0 matches as relevant. The Sorenson coefficient is similar
to the Jaccard coefficient, but the number of 1 − 1 matches, a, is given twice
the weight.

Table 2.3 illustrates an example with three entities with eight attributes.
A 1 entry indicates that the attribute is present in the corresponding entity,
while a 0 indicates the absence of the feature. Entity x in Table 2.3, consists of
attributes 1, 3, 4, and 8; entity y is positive to attributes 1, 2, 3, and 7. Entity x
and y share two common attributes 1 and 3, or these entities have two 1−1 (a)
matches. Similarly, there are 1−0 (b), 0−1 (c), and 0−0 (d) attribute matches
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Similarity measure (sim) Formula
Simple matching coefficient a+d

a+b+c+d

Jaccard coefficient a
a+b+c

Sorenson-Dice 2a
2a+b+c

Rogers and Tanimoto a+d
a+2(b+c)+d

Sokal and Sneath a
a+2(b+c)

Gower and Legendre a+d
a+1/2(b+c)+d

Russel and Rao Coefficient a
a+b+c+d

Yule coefficient ad−bc
ad+bc

Table 2.2: Well-known similarity measures (association coefficients) [Romes-
burg, 1984]

Entity Attribute
1 2 3 4 5 6 7 8

x 1 0 1 1 0 0 0 1
y 1 1 1 0 0 0 1 0
z 0 1 1 0 1 0 1 0

Table 2.3: Data matrix

between the two entities. Therefore, the association coefficients for entities x
and y are a = 2, b = 2, c = 2, and d = 2. Similarly, for entities x and
z, we obtain a = 1, b = 3, c = 3, and d = 1; for entities y and z, a = 3,
b = 1, c = 1, and d = 3. By applying the Sorenson matching coefficient to the
example in Table 2.3, we get simxy = (2 ∗ 2)/(2 ∗ 2 + 2 + 2) = 1/2. Likewise,
simxz = (2∗1)/(2∗1+3+3) = 1/4 and simyz = (2∗3)/(2∗3+1+1) = 3/4. For
this particular data representation, the higher a coefficient, the more similar
the two corresponding entities represented. Hence, entity y and z are the most
similar pair, since the resemblance coefficient simyz is the largest.

Results in the literature [Anquetil et al., 1999, Maqbool and Babri, 2007]
show that for software clustering it is best not to consider zero-dimensions,
Jaccard association coefficient and the Sorensen-Dice (which do not consider
zero-dimensions) both achieve good results.

Distance coefficient
Instead of measuring features in binary (qualitatively), they can also be mea-
sured quantitatively on a ordinal scale. For example, x = (3, 5, 10, 2) indicates
that entity x contains four attributes with values of 3, 5, 10, and 2, respectively.
To calculate the resemblance coefficients based on the quantitative input data,
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distance measures are commonly used. Distance metrics measure the dissimi-
larity of entities as opposed to association coefficient that measure similarity.
The greater the outcome the more dissimilar the entities are. The distance
between two entities is zero iff the entities have the same score on all features.
Common distance measures are given in Table 2.4, where x and y represent
points in the Euclidean space Rs.

Table 2.4: Common Distance Measures [Maqbool and Babri, 2007]

Correlation coefficients

Correlation coefficients are originally used to correlate features. The most
popular coefficient of this sort is the Pearson product-moment correlation co-
efficient. The value of a correlation coefficient lies in the range from -1 to 1. A
value of 0 means not related at all, 1 means completely related and negative
implies a inverse trend. They are not commonly found in the literature except
one reference where in an experiment Anquetil and Lethbridge [1999] report
them to yield similar results to Jaccard measures.
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Probabilistic coefficients
Probabilistic measures are based on the idea that agreement on rare features
contribute more to the similarity between two entities than agreement on fea-
tures which are frequently present. So probabilistic coefficients take into ac-
count the distribution of the frequencies of the features present over the set of
entities [Wiggerts, 1997]. However, although they were listed in several litera-
ture as an option, they were not studied or used to perform software clustering.

By far the most popular choice amongst researchers is the use of associa-
tive coefficients for similarity measures in the form of Jaccard coefficients and
Sorsen-Dice coefficients. For dissimilarity measures the Euclidean Distance is
preferred [Maqbool and Babri, 2007].

2.3.2 Agglomerative Hierarchical Clustering algorithms
An agglomerative hierarchical clustering method is a sequence of operations
that incrementally groups similar entities into clusters. The sequence be-
gins with each entity in a separate cluster. At each step, the two clus-
ters that are closest to each other are merged and the number of clusters
is reduced by one. So, in the beginning there are n clusters with each of
the n entities in one of the clusters. At the end of the process there is
only one cluster which contains all the n entities. The generic algorithm
for agglomerative hierarchical clustering is listed below as Algorithm 1.

Algorithm 1: Agglomerative hierarchical clustering algorithm
Put each entity of the system into its own cluster;
Calculate similarity between every pair of clusters within the system;
repeat

Merge the two most similar clusters to form one cluster;
Re-calculate similarity between this newly formed cluster and all
other clusters;

until more than one cluster left;

The similarity/dissimilarity measures that we looked at in the last sec-
tion allows for similarity between entities to be calculated. However, when it
comes to calculating similarity between clusters, the metrics cannot be applied
directly as clusters contain multiple entities. The various agglomerative hier-
archical algorithms in the literature use different strategies for this purpose.
The strategy used by the four basic hierarchical algorithms (also called group
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measures [Maqbool and Babri, 2007]) are presented next, where Ei, Em, and
Eo represent entities, and Emo represents the cluster formed by merging entities
Em and Eo. Also, Ei is considered to be in a singleton cluster.
Single linkage (SL)
Using the single linkage or nearest neighbour strategy the similarity between
two clusters are calculated as:

SL(Ei, Emo) = Max(sim(Ei, Em), sim(Ei, Eo))

It defines the similarity measure between two clusters as the maximum simi-
larity among all pair entities in the two clusters.
Complete linkage (CL)
Using the complete linkage or furthest neighbour strategy the similarity be-
tween two clusters are calculated as:

CL(Ei, Emo) = Min(sim(Ei, Em), sim(Ei, Eo))

It defines the similarity measure between two clusters as the minimum similar-
ity among all pair entities in the two clusters.
Weighted average linkage (WAL)
Clusters may not have the same number of entities and thus to achieve a more
uniform result, weighted average linkage assigns different weights to entities
depending on which cluster they belong to. The similarity between two clusters
using WAL is calculated as:

WAL(Ei, Emo) = 1/2(sim(Ei, Em)) + 1/2(sim(Ei, Eo))

The similarity measure between two clusters is calculated as the simple
arithmetic average of similarity among all pair of entities in the two clusters.
Unweighed average linkage (UWAL)
Unweighed average linkage similarity measure is also an average link measure
but uses the size of both the clusters, therefore all entities have the same weight
(i.e. they are not weighted). UWAL similarity is measured as:

UWAL(Ei, Emo) = sim(Ei, Em) ∗ size(Em) + sim(Ei, Eo) ∗ size(Eo)
size(Em) + size(Eo)
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Other algorithms

The four algorithms presented above lead to a large number of arbitrary deci-
sions, especially toward the latter half of the clustering process. The arbitrary
decision arises from the algorithm being unable to decide which clusters to com-
bine when more than one cluster have the same similarity measure. Arbitrary
decisions in hierarchical algorithms adversely affect the quality of clustering
results [Maqbool and Babri, 2007]. This is because in hierarchical algorithms
once an entity is assigned to a cluster, it cannot be reassigned to a new cluster.

The Combined algorithm (CA) [Saeed et al., 2003], Weighted combined al-
gorithm (WCA) [Maqbool and Babri, 2004], and LIMBO [Andritsos and Tzer-
pos, 2005], three recently proposed hierarchical clustering algorithms adopt a
two-step approach to determine the similarity of a cluster with existing clus-
ters. As the first step, they associate a new feature values with the newly
formed cluster. This new feature values are based on the feature values of the
constituent entities. At the second step, similarity between the cluster and
existing clusters is recomputed. This approach allows useful feature-related
information to be retained, thus reducing the number of arbitrary decisions
and improving clustering results. Adnan et al. [2008] presents an adaptive
clustering algorithm, which is based on the same idea of minimising arbitrary
decisions but does not implement a two step process. Instead it is a hybrid
approach that switches between the various algorithms trying to minimise the
number of arbitrary decisions.

2.3.3 Summary
It is relevant to note that although the aim of clustering methods is to extract
natural clusters in the data, it is quite possible that a method imposes a struc-
ture where no such structure exists [Choi and Scacchi, 1990, Muller and Uhl,
1990]. Different algorithms thus produce different clusters. For example, SL is
known to favour non-compact but more isolated (less coupled) clusters whereas,
CL usually results in more compact (cohesive) but less isolated clusters.

There has been numerous studies into the quality of the clustering pro-
duced by the algorithms which report, WCA to be the best and CA second
best [Maqbool and Babri, 2007, Lung et al., 2006]. The rest are graded from
CLA, WLA, UWLA down to SLA [Anquetil et al., 1999, Davey and Burd,
2000] in order of their performance.
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2.4 Search-based clustering
As opposed to hierarchical algorithms that work on the sibling linking ap-
proach, this class of algorithms are applied to situations where the direct link
approach is used. This approach employs a graph of entities as nodes and
edges linking the entities representing direct relationships between the entities,
such as, function calls, file inclusion etc. The optimal algorithm to perform
the partitioning would investigate every possible partition of the system and
choose the best one based on some criteria. However, this approach faces a
combinatorial explosion as the number of possible partitions is extremely large,
rendering the algorithm impractical. To overcome this problem, optimisation
algorithms are employed. These algorithms start with an initial partition and
try to modify it in an attempt to optimise a criterion that represents the qual-
ity of a given partition. We will describe two such algorithms as implemented
by the Bunch tool [Mancoridis et al., 1999, Mitchell and Mancoridis, 2007].

2.4.1 Module Dependence Graph

The first step of the clustering process is representing the system entities and
their inter-relationships as a module dependency graph (MDG) [Mancoridis
et al., 1999]. Formally MDG = (M,R) is a graph where E is a set of entities
of a software system, and R ⊆ M ×M is the set of ordered pairs 〈u, v〉 that
represent the source-level dependencies (e.g. procedural invocation, variable
access, file inclusion) between entities u and v of the system. Such MDGs in
the literature are automatically constructed using source analysis tools such as
CIA [Chen et al., 1990] for C programs and ACACIA [Chen et al., 1995] for
C++.

2.4.2 Fitness function

The fitness function defines the quality of a partition (clustering result).
Search-based algorithms try to improve this value in order to achieve a better
result. The fitness functions used in the literature aim to improve cohesion
and reduce coupling as good software design dictates that subsystems should
exhibit high cohesion and have low coupling with other subsystems [Mancoridis
et al., 1998]. Cohesion and coupling in MDGs are defined in terms of intra-
connectivity and inter-connectivity of clusters.
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Intra-connectivity
Intra-connectivity (A) is a measure of the connectivity between the entities that
are grouped together in the same cluster. A high degree of intra-connectivity
indicates good subsystem partitioning because the entities grouped within a
common subsystem are inter-dependent. A low degree of intra-connectivity
indicates poor subsystem partitioning because the entities assigned to a partic-
ular subsystem share few dependencies (limited cohesion). Intra-connectivity
measurement Ai of cluster i consisting of ni entities and µi intra-edge depen-
dencies is defined as:

Ai = µi

ni
2

This measure is a fraction of the maximum number of intra-edge depen-
dencies that can exist for cluster i, which is ni

2. The value of Ai is bounded
between the values of 0 and 1. Ai is 0 when entities in a cluster do not have any
dependency between them; Ai is 1 when every entity in a cluster is dependent
on all other entities within the cluster.
Inter-connectivity
Inter-Connectivity (E) is a measure of the connectivity between two distinct
clusters. A high degree of inter-connectivity is an indication of poor subsystem
partitioning. A low degree of inter-connectivity indicates that the individual
clusters of the system are largely independent of each other. Inter-connectivity
Ei,j between clusters i and j consisting of ni and nj entities, respectively, with
εi,j inter-edge dependencies is defined as:

Ei,j =


0 if i = j
εi,j

2ninj

if i 6= j

The inter-connectivity measurement is a fraction of the maximum number
of inter-edge dependencies between clusters i and j (2ninj ). This measurement
is bound between the values of 0 and 1. Ei,j is 0 when there are no cluster-level
dependencies between subsystem i and subsystem j; Ei,j is 1 when each entity
in subsystem i depends on all of the entities in subsystem j and vice-versa.
Modularisation quality
The fitness function is defined as modularization quality (MQ). It establishes
a trade-off between inter-connectivity and intra-connectivity that rewards the
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creating of highly cohesive clusters and penalises the creation of too many inter-
cluster dependencies. This trade-off is achieved by subtracting the average
inter-connectivity from the average intra-connectivity. The MQ for a partition
with k clusters, where Ai is the inter-connectivity of the ith cluster, and Ei,j is
the interconnectivity between the ith and jth clusters, is defined as:

MQ =



k∑
i=1

Ai

k
−

k∑
i,j=1

Ei,j

k(k−1)
2

k > 1

Ai k = 1

MQ is thus bound between -1 (no cohesion within the clusters) and 1 (no
coupling between the clusters). Other module clustering quality measure such
as EVM has also been experimented with and were found to be similar in
nature to MQ [Harman et al., 2005]

2.4.3 Hill-Climbing clustering algorithm
The Hill Climbing clustering algorithm starts with a random partition and
relies on moving entities between the clusters of the partition to improve the
MQ of the result. The moving of entities between the cluster is accomplished
by generating a set of neighbouring partitions. Two partitions are said to be
neighbours when there is only one difference between them, that is, a single
entity is placed in different clusters within the two partitions. The generic
hill-climbing algorithm is listed below as Algorithm 2.

Algorithm 2: Hill-climbing algorithm
Generate an initial random partition of the system;
repeat

Replace current partition with a better neighbouring partition;
until no further “improved” neighbouring partitions can be found;

A better neighbouring partition is discovered by going through the set of
neighbouring partitions of the current partition, iteratively, until a partition
with a higher MQ is found. During discovery of a better neighbour there are
two strategies commonly employed, choosing the first neighbour partition with
better MQ as the partition of the next iteration or examine all neighbouring
partitions and pick the one with the largest MQ as a base of the next itera-
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tion. The first approach is called next ascent hill-climbing (NAHC) [Mancoridis
et al., 1999], runs slow but often provides good results. The second approach is
called steepest ascent hill-climbing (SAHC) [Mancoridis et al., 1998], is much
faster but runs the risk of obtaining sub-optimal results that are not useful.

A well-known problem with hill-climbing algorithms is that certain initial
starting points may converge to poor/unacceptable solutions (local maximum).
One approach (multiple hill-climbing [Mahdavi et al., 2003]) to solving this
problem is to repeat the experiment many times using different initial random
partitions. The experiment that results in the largest MQ is presented as the
sub-optimal solution. As the number of experiments increases, the probability
of finding the globally optimal partition also increases at the expense of more
computation time. The other approach (simulated annealing [Mitchell and
Mancoridis, 2007]) enables the search algorithm to accept, with some prob-
ability, a worse variation as the new solution of the current iteration. The
idea is that by accepting a worse neighbour, occasionally the algorithm will
“jump” to a new area in the search space, hence avoid getting stuck at the
local maximum.

2.4.4 Genetic clustering algorithm
Genetic algorithms which have been successfully applied to many problems
that involve exploring large search spaces can also be used for software clus-
tering. GAs have been found to overcome some of the problems of traditional
search methods such as hill-climbing; the most notable problem being “get-
ting stuck” at local optimum, and therefore missing the global optimum (best
solution) [Doval et al., 1999, Kazem, Ali Asghar Pourhaji And Lotfi, 2006,
Mitchell, 1998].

Discovering an acceptable sub-optimal solution based on genetic algo-
rithms involves starting with a population of randomly generated initial par-
titions and systematically improving them until all of the initial samples con-
verge. In this approach, the resultant partition with the largest MQ is used as
also a sub-optimal solution.

GAs operate on a set (population) of strings (individuals), where each
string is an encoding of the problems input data. In the case of software
clustering each individual item on the string represents the cluster association
of entities. Each strings fitness (quality value) is calculated using MQ. In
GA terminology, each iteration of the search is called a generation. In each
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generation, a new population is created by keeping a certain portion of the
fittest individuals of the previous generation and merging the rest to form new
solutions. GAs use three basic operators to produce new generation of solutions
from the existing ones:

Selection and Reproduction: Individuals are randomly selected from the
current population, who are then combined to form the new population.
However, the selection is not completely random and are biased to favour
fittest members. Also, in some approaches the fittest member of the
current population is always retained in the next generation, ensuring
that results do not degrade over successive iterations.

Crossover: The crossover operator is used to combine the pairs of selected
individuals (parents) to create new members, that potentially have a
higher fitness than either of their parents. This is the core step of the
algorithm that concentrates on improving the results at each iteration.

Mutation: The mutation operator is applied to every individual created from
the crossover process. Mutation has a fixed probability and changes the
members construction arbitrarily, thus avoiding getting stuck at local
optimum.

The genetic algorithm used by Bunch [Doval et al., 1999] for partitioning
of software systems is listed as Algorithm 3.

Algorithm 3: Genetic algorithm
Generate the initial population, creating random strings of fixed size;
repeat

Create a new population by applying the selection and
reproduction operator to select pairs of strings;
Apply the crossover operator to the pairs of strings of the new
population;
Apply the mutation operator to each string in the new population;
Replace the old population with the newly created population;

until number of iterations is more than the maximum;

GA algorithms generally iterate for a fixed number of times as the func-
tions’ upper bound (the maximum fitness value possible) is often not found.
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The number of generations must be limited to guarantee termination of the
search process. Mancoridis et al. [2001] developed a web-based portal (Re-
portal), which used genetic algorithms to perform architecture recovery for C,
C++ and Java programs.

2.5 Other clustering approaches
This section briefly outlines several other approaches where software clustering
is targeted at software architecture recovery.

2.5.1 Graph theoretic clustering
Graph theoretic partitioning can also be applied to graphs depicting direct re-
lationships between entities just as in the previous section. Graph partitioning
algorithms do not start from individual nodes (entities), but try to find sub
graphs like connected components, maximal complete sub graphs or spanning
trees to derive clusters [Xu and Wunsch, 2005]. However, this technique is not
so common in the literature as graph partitioning also suffers from the same
problem as optimal clustering algorithms.

Choi and Scacchi [1990] presented an approach to finding subsystem hier-
archies based on graphs that represent resource exchanges between functions.
They used graph-theoretic algorithms to remove articulation points so that
strongly connected sub graphs are separated into clusters. Muller et al. [1993]
presented an extension of this work. Lakhotia [1997] looked at four graph-
theoretic based software clustering techniques and found that with exception
of Choi and Sacchi’s work [1990] the rest [Livadas and Johnson, 1994, Ong,
1994] produced flat results. Mancoridis et al. [1996] have also presented an
approach where “Tube Graph” interconnection clustering is done to reduce the
number of interconnection between the clusters detected by other techniques.
This system complements other clustering techniques but on its own is not
capable of doing clustering.

2.5.2 Knowledge based approaches
Another approach to the problem of understanding a software system and
recovering its design is the knowledge-based approach. This technique involves
reverse engineering smaller subsystems separately using domain knowledge.
Finally, the understanding of the subsystems is combined to gain an overall
understanding of the system. This approach has been shown to work well with
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small systems, but fails to perform effectively on large systems [Tzerpos and
Holt, 1998].

2.5.3 Pattern based approach
ACDC (Algorithm for Comprehension-Driven Clustering) [Tzerpos and Holt,
2000a] uses a pattern driven approach, where the common patterns (source file
pattern, directory structure pattern, body header pattern, library pattern etc.)
are located and are used for the clustering. The number and size of the clusters
are also closely controlled to ensure that results are comprehensible and useful.

2.5.4 Formal methods based approaches
Formal methods have been also used for reverse engineering. Due to the math-
ematical nature of formal specification languages, formal methods are time
consuming and tedious. When applied as a standalone technique the complex-
ity of this approach was reported to be unmanageable [Gannod and Cheng,
1997]. Such techniques are cost effective only when studying safety critical
systems.

2.5.5 Structure based approaches
The structure based approaches either use formal features or informal features
of source code to perform clustering.

Formal features

A feature is considered to be formal if it consists of information that has direct
impact on the software system’s behaviour. For example, describing an entity
with the “functions it calls” is a formal descriptive feature because it is an in-
formation source that has direct impact on the system’s behaviour. Changing
a function call in the code will result in a change in the system behaviour [An-
quetil et al., 1999]. Lakhotia [1997] in his framework defines 21 such formal
relationships, amongst which are: function assigns to global variable, function
calls and file inclusion. The following techniques use formal features:

Concept analysis:Concept Analysis [van Deursen and Kuipers, 1999, Lindig
and Snelting, 1997, Stiff and Reps, 1997] was also used for software clustering
and has been shown to work well in certain scenarios, such as identification of
objects.

Metric based:Belady and Evangelisti’s [1981] approach groups related en-
tities using a similarity metric based on data bindings. A data binding is a
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potential data exchange via a global variable. Hutchens and Basili [1985] ex-
tend Belady and Evangelisti’s work by using a hierarchical clustering technique
to identify related entities and subsystems.

Schwanke presented his tool called ARCH [1991, 1993] where he pioneered
the “classic” low-coupling and high-cohesion heuristics as a basis of software
clustering. Also, his maverick analysis enabled refinement of a partition by
identifying entities that were put in the wrong cluster to counter shortcoming
of hierarchical algorithms.

Muller et al. [1988, 1993] introduced semi-automatic approaches in the
form of the tool RIGI. They introduced the principles of small interfaces (the
number of elements of a subsystem that interact with other subsystems should
be small compared to the total number of elements in the subsystem) and of
few interfaces (a given subsystem should interact only with a small number of
the other subsystems).

Informal features
Many researchers have also used informal features to perform software cluster-
ing. Informal features are those features which do not have a direct influence
on the system’s behaviour. An example is the name of a function, chang-
ing the name of function has no impact on the system’s behaviour. Informal
features are also independent of programming languages and are regarded to
provide better quality information than formal ones, as they are intended for
human readers [Anquetil and Lethbridge, 1997]. Some commonly used in-
formal features are file names, identifier names, function names, comments,
physical organisation, developer, change request etc.

File name:Many organisations have well established rules for naming files
and functions which means programmers name related files using meaningful
and related suffixes or prefixes which can be easily extracted. A lot of work on
clustering thus uses file names [Anquetil and Lethbridge, 1999, 1998]. Some
researchers have also used several other heuristics based on naming conven-
tions [Cimitile et al., 1997, Burd et al., 1996].

Developer:The organisation of system developers into teams can help reverse
engineer a software’s architecture as each member is likely to be dealing with
one or related subsystems [Vanya et al., 2008].

Evolution history:Entities of the system that evolve together represent a
relationship. This relationships can be mined from repositories and has also
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been used as a basis of clustering [Beck, 2009, Hutchens and Basili, 1985].

Fault based approach: Similar to the previous approach, entities of the sys-
tem that were modified to fix a bug/fault is also related and has been used as
a basis of clustering [Selby and Basili, 1991].

2.5.6 Association rule mining
Maletic and Marcus applied information retrieval techniques called Latent Se-
mantic Indexing (LSI) for architecture recovery [Maletic and Marcus, 2001,
Kuhn et al., 2005]. This allowed them to extract various keywords from dif-
ferent entities and perform clustering based on similarity and frequency of
keywords found.

2.5.7 Reflexion
Another approach in software clustering is the use of reflexion, where the de-
veloper creates a partitioning of the system that he thinks is correct. This is
then compared to the partitioning extracted from the actual system using a
tool and the difference between the tool’s result and the programmer’s views
are compared to iteratively refine the clustering [Murphy et al., 1995].

2.5.8 Task driven approach
Tonella [2003] presents a task driven approach to software clustering where
entities are clustered based on the support that they provide for understanding
a set of modification tasks.

2.6 Clustering evaluation
This section of the review considers the techniques used to evaluate the cluster-
ing results (partitions) produced by various clustering techniques. The results
can be evaluated qualitatively for suitability of use or can be measured quan-
titatively against set criteria and values.

2.6.1 Qualitative assessors
The primary purpose of software clustering is to aid in program comprehension,
thus Anquetil and Lethbridge [1999] proposes that clustering results should
exhibit the following high-level traits:

• Actually represent the system.
The view achieved by the clustering should give a view of the current
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state of the system rather than impose an ideal view based on domain
understanding.

• Make sense to the software designers.
The results should be presented in such a way that it is understandable
and usable by designers and engineers.

• Be adaptable to different needs.
The clustering process should provide various (hierarchical) views of the
system, so that both the implementation details and overall design struc-
ture can be easily ascertained.

• Be general.
The clustering process itself should not be tailored to fit one particular
problem or language. It should be general so that it may be applied to
different systems.

2.6.2 Quantitative assessors
Although the qualitative assessment is important in ensuring that the results
obtained are useful, in most cases researchers want to assess their results against
an expert decomposition of the system. By expert decomposition we refer to
a decomposition that is carried out by the designer/developer who is also an
expert on the system. Anquetil [1999] proposes to compare two partitions
(results) by considering pairs of entities, where entities are in the same cluster
(intra-pair). The quality is then measured in terms of Precision and Recall:

Precision: Percentage of intra-pairs proposed by the clustering method which
are also intra-pairs in the expert partition.

Recall: Percentage of intra-pairs in the expert partition which were also found
by the clustering method.

Although precision and recall are good indicators of clustering matches,
they have issues where a bad result ranks high on one of the measures. A
result partition containing only singleton clusters will have excellent precision
and poor recall. On the other hand a partition with one huge cluster containing
all the system entities will have excellent recall and poor precision.

To alleviate this problem of balancing the two measures, a single measure
called MoJo [Tzerpos and Holt, 1999] was introduced. It counts the minimum
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number of operations (such as moving an entity from one cluster to another
and joining two clusters) needed to transform one partition to the other. A
smaller MoJo value denotes higher similarity between the proposed clustering
and expert decomposition whereas, a large value denotes the opposite.

Researchers have also proposed other metrics for comparing two partitions,
for example, the Measure of Congruence [Lakhotia and Gravley, 1995], Mo-
JoFM [Wen and Tzerpos, 2004], EdgeSim and MeCl [Mitchell and Mancoridis,
2001a], and the Koschke-Eisenbarth (KE) measure [Koschke and Eisenbarth,
2000]. All the six measures mentioned above compare flat software decom-
positions, where all subsystems are presented at a single level. Shtern and
Tzerpos [2004] present a framework for comparing hierarchical decompositions.

2.6.3 External assessment
Clustering results are validated using three different approaches: external, in-
ternal, and relative assessment [Jain et al., 1999, Maqbool and Babri, 2007].
The external assessment involves comparing the results obtained from the clus-
tering technique to an expert or external decomposition.

Expert decomposition

Expert decomposition, also known as the gold standard, is obtained by a man-
ual inspection of the system by the designer/architect or an expert. According
to the literature review, this technique is by far the most common evalua-
tion technique applied by researchers [Tzerpos and Holt, 2000a]. However,
Maqbool [2007] notes in his work that experts often do not agree on a de-
composition. They have different points of view from which they look at the
system resulting in different outcomes. It is thus noted in the literature that
“a classification is neither true or false” [Everitt, 1974] and there is no single
“best” approach [Anderberg, 1973] to clustering.

Physical structure

Obtaining expert decomposition is not always possible. An alternative is the
use of the physical/directory structure of the system [Anquetil et al., 1999]. The
structure of well-known open systems (such as Linux) are organised in several
directories which form a reasonable decomposition of the systems and may be
used in the place of an actual expert decomposition. However, this technique
should be employed with caution as it relies on the fact that developers would
responsibly organise the system physically.
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2.6.4 Internal assessment

The internal assessment is where instead of comparing the results to a de-
composition not produced by the system, properties and characteristics of the
system are used to validate the results.

Arbitrary decisions

During the clustering process, when computing which two clusters to combine,
there are instances where multiple clusters have the same similarity value,
forcing the algorithm to pick one of the pairs arbitrarily. Arbitrary decisions
may turn out to be problematic [Maqbool and Babri, 2004], especially in the
case of hierarchical clustering algorithms, where once a decision is made it
cannot be reversed. Maqbool [2007] in his study used this as a criteria for
deciding upon the quality of the clustering.

Redundancy

Anquetila et al. [1999] argue that formal features often provide redundant
information. Considering file inclusion will also automatically consider variable
and function inclusion. Thus the result of a clustering process can be assessed
using the number of redundant features used.

Number and size of clusters

The number of clusters and cluster size have also been used for evaluating
clusters internally [Anquetil and Lethbridge, 1999, Davey and Burd, 2000, Wu
et al., 2005]. The number of clusters obtained at each step of the clustering pro-
cess can be used as an indicator of the quality of a clustering approach [Davey
and Burd, 2000]. Similarly, the number of singleton clusters can also be an
indicator of the quality. Thus, algorithms that tend to start attracting all the
entities into one cluster, those that tend to have a lot of singleton clusters or
ones where all clusters suddenly seem to merge into one large cluster are all
indicators of poor quality.

Design criterion

Anquetil and Lethbridge [1999] use the measure of cohesion and coupling be-
tween subsystems within a partition to evaluate its quality. Well-designed
clusters are more likely to be of interest to the software engineers which should
also exhibit high cohesion and low coupling [Sommerville, 1995].
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2.6.5 Relative Assessment
Relative assessment is used for comparing results of two different clustering
algorithms or results of the same algorithm.
Stability
An algorithm is said to be stable if the clustering results that it produces do not
change drastically when small changes are made to the system. This approach
has been widely used [Tzerpos and Holt, 2000b,a, Wu et al., 2005, Hutchens
and Basili, 1985] to assess the quality of clustering approaches.

CRAFT [Mitchell and Mancoridis, 2001b] is a tool that supports relative
evaluation of clustering results. When supplied with a clustering algorithm and
a system, the tool compares the result of the algorithm with results produced
by a common set of algorithms already built into the tool. This tool can be
the starting point of assessing quality of results produced by new techniques
against already existing ones.

2.7 Other issues
The literature also identifies a few issues which needs to be considered when
proposing new clustering approaches.

2.7.1 Cluster labelling
Providing meaningful names to subsystems detected during clustering will al-
low maintainers to understand the results faster. One of the earliest works
on cluster labelling is by Schwanke and Platoff [1993], who use a summary of
features to suggest labels, which are then assigned manually. Ricca et al. [2004]
and Kuhn et al. [2005] perform clustering and cluster labelling on the basis of
keywords. Maqbool and Babri [2006] use function identifiers as representative
keywords for labelling entities.

2.7.2 Omni-present entities
In software systems there are entities, such as utility functions, which act as
suppliers to other entities of the system. It is often the case that these entities
are frequently called by others and have have far more inter-relationships than
most other entities. The results of attempting to group such entities are thus
unpredictable [Lung et al., 2004]. Most of the work in the literature detect om-
nipresent entities based on their high number of interconnections [Mancoridis
et al., 1999, Hutchens and Basili, 1985, Mitchell and Mancoridis, 2006, Muller
and Uhl, 1990, Wen and Tzerpos, 2005] and deal with them separately.
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2.8 Dependence-based Clustering
The chapter has thus far discussed various clustering techniques based on prop-
erties shared by entities or dependency relationships between the entities such
as file or variable access. This section discusses some of the recent work on
software clustering which uses data and control flow information in programs
to ascertain dependencies and uses that for clustering.

The notion of using data and control dependence to perform software
clustering was first introduced by Binkley and Harman [2005b]. They defined
a dependence cluster, which is a set of mutually dependent program elements.
They looked at 20 subject programs and found that a significant number of
programs have large dependence clusters. They also introduced approximations
where static program slicing could be used efficiently to locate dependence
clusters in programs. Harman et al. [2009] later extended this initial study
with a large-scale empirical study of 45 programs. They again found slice-
based dependence clusters to be common in the programs and defined separate
clustering techniques depending on the dependency flow direction considered.

Jiang et al. [2008] proposed the use of search-based program slicing to
identify dependence structures in programs using evolutionary algorithms (Hill
Climbing and Genetic). Rather then using traditional program slicing to cap-
ture dependence clusters, Static Execute After/Before (SEA/SEB) was pro-
posed as an alternative [Jasz et al., 2008]. SEA-based clustering is more effi-
cient as it considers functions of the program as entities and clusters based on
execution traces, however this efficiency comes at the price of precision.

Although dependence clusters were found to be quiet common in pro-
grams, they were not well-understood because of their intricate interweaving
of dependencies and subtleties of dependency in programs. As such, they were
regarded as problems that may make it difficult for developers and maintain-
ers in understanding programs. Black et al. [2006] have indicated that there
may even be the potential for a link between program faults and dependence
clusters. To this end, Binkley et al. [2008b] regarded dependence clusters as
anti-patterns that developers should be aware of. Binkley et al. [2005b] identi-
fied that global variables as one of the causes for the formation of dependence
clusters and found that over half of the programs have a global variable that
was causing a significant cluster. This has also motivated other work [Binkley,
2008, Binkley and Harman, 2009] where low-level causes of dependence clusters
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are identified and their removal is attempted. Recent extension to this idea has
proposed an improved algorithm [Binkley et al., 2013a] for identifying linchpin
vertices (vertices that are responsible for dependence clusters). The search for
linchpin vertices that cause dependence clusters have also been extended for the
SEA-based clusters, where linchpins are functions of the program [Schrettner
et al., 2012, Jasz et al., 2012].

Lehnert [2011] has considered the relationship between dependence clus-
ters and impact analysis and found that clustering can be used to determine the
ripple-effect during software maintenance. Beszédes [2007] looks at the rela-
tionship between SEA-based clusters and software maintenance and found that
SEA can be used to identify hidden dependencies helping in many maintenance
tasks, including change propagation and regression testing.

2.9 Our Clustering Technique
The work in this thesis will use dependence-based clustering. The use of
dependence-based clustering is expected to yield clusters consisting of pro-
gram elements that share dependency properties. Similar to previous work by
Binkley and Harman [2005b] and Harman et al. [2009], we will be performing
our clustering on the vertices of the System Dependence Graph. As such, the
clustering process will treat the vertices of the SDG as entities. This not only
ensures that dependence relationship between various program points are cor-
rectly identified but will also alleviate issues of source code layout and various
programming styles.

Vertices of the SDG that have the exact same relationship will be grouped
together in the same cluster. The dependence relationships will be extracted
in the form of program slice, vertices that yield the same slice will be grouped
together into the same cluster. We therefore use the sibling link approach
where we consider the similarity of the slices produced by the entities. For the
similarity measure we rely on a binary measure of whether vertices yield the
exact same slice or not.

Finally, we use a variation of the expert decomposition technique for eval-
uation, where we study whether the clusters represent the high-level logical
structure of the programs as done by similar work [Beszedes et al., 2013, Hamil-
ton and Danicic, 2012] in the area.
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2.10 Chapter Summary
This chapter gives a literature survey on software clustering and the various
techniques used in such clustering. The literature survey shows that there
is no single best approach to clustering. Different clustering algorithms may
provide different results or views of the same system. As architecture is not
explicitly represented at the source code level, clustering infers it from the
entire system based on some criteria. Different researchers propose different
criteria and often developers working on the same system cannot fully agree
on how a system should be decomposed.

In our clustering approach we will be using vertices of the system depen-
dence graph as entities and cluster them based on dependencies that they have
in common. The full details of the clustering is presented in Chapters 3 and 4.
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Chapter 3

Dependence Clusters

3.1 Overview
This chapter provides detailed background information on dependence clus-
ters and its various instantiations which is later extended to define coherent
dependence clusters (in Chapter 4). The chapter also provides the necessary
background on program slicing, dependence analysis and existing dependence
cluster visualisation techniques.

Previous work [Binkley and Harman, 2005b, Harman et al., 2009] has
used the term dependence cluster for a particular kind of cluster, termed a
mutually-dependent cluster herein to emphasise that such clusters consider only
mutual dependence internal to the cluster. This later allows the definition to
be extended to incorporate external dependencies.

3.2 Mutually-dependent clusters
Informally, mutually-dependent clusters are maximal sets of program state-
ments that mutually depend upon one another. Harman et al. [2009] present
the following formalisation of mutually dependent sets and clusters.

Definition 1 (Mutually-Dependent Set and Cluster)
A mutually-dependent set (MDS) is a set of statements, S, such that
∀x, y ∈ S : x depends on y.

A mutually-dependent cluster is a maximal MDS; thus, it is an MDS not prop-
erly contained within another MDS.

The definition of an MDS is parametrised by an underlying depends-on
relation. Ideally, such a relation would precisely capture the impact, influ-
ence, and dependence between statements. Unfortunately, such a relation is
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not computable. A well known approximation is based on Weiser’s program
slice [Weiser, 1981]: a slice is the set of program statements that affect the
values computed at a particular statement of interest (referred to as a slicing
criterion). While its computation is undecidable, a minimal (or precise) slice
includes exactly those program elements that affect the criterion and thus can
be used to define an MDS in which statement t depends on statement s iff s is
in the minimal slice taken with respect to slicing criterion t.

The slice-based definition is useful because algorithms to compute (approx-
imations to minimal) slices can be used to define and compute approximations
to mutually-dependent clusters. A slice can be computed as the solution to a
reachability problem over a program’s System Dependence Graph (SDG) [Hor-
witz et al., 1990]. The following subsections will give the necessary background
information on SDGs and program slicing before continuing with the various
definitions that instantiate mutually-dependent clusters.

3.3 System Dependence Graphs
An SDG [Horwitz et al., 1990] is an inter-connected collection of Procedure De-
pendence Graphs (PDGs) [Ferrante et al., 1987]. A PDG is a directed graph
comprised of vertices, which essentially represent the statements of the pro-
gram, and two kinds of edges: data dependence edges and control dependence
edges.

A data dependence edge is essentially a data flow edge that connects a
definition of a variable with each use of the variable reached by the defini-
tion [Ferrante et al., 1987]. For example, in Figure 3.1, there is a data depen-
dence between the point i=1 and the point while (i < 11) indicating that the
value of i flows between those two points.

A control dependence connects a predicate p to a vertex v when p has
at least two control-flow-graph successors, one of which can lead to the exit
vertex without encountering v and the other always leads eventually to v [Ball
and Horwitz, 1993]. That is, v must not post-dominate p and there must
exist a vertex n in the path from p to v post-dominated by v (Ferrante et al.
[1987]). Thus p controls the possible future execution of v. For example, in
Figure 3.1, there is a control-dependence edge between the vertex representing
the statement while (i < 11) and the statements sum = sum + i and i = i + 1, whose
execution depends on whether the former evaluates to true. For structured
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code, control dependence reflects the nesting structure of the program.

1: int main() {
2: int sum = 0;
3: int i = 1;
4: while (i < 11) {
5: sum = sum + i;
6: i = i + 1;
7: }
8: printf(“%d\n”, sum);
9: printf(“%d\n”, i);
10: }

Figure 3.1: Program Dependence Graph (PDG)

An SDG is a directed graph consisting of interconnected PDGs, one per
function in the program. Interprocedural control-dependence (dashed blue
lines in Figure 3.2) edges connect procedure call sites to the entry points of the
called procedure. Interprocedural data-dependence edges (broken green lines
in Figure 3.2) represent the flow of data between actual parameters and formal
parameters (and return values).

In an SDG, in addition to the vertices representing statements and pred-
icates, each PDG explicitly contains entry and exit vertices, vertices repre-
senting parameters and return values. A PDG contains formal-in vertices
representing the parameters to the function and formal-out vertices represent-
ing the variables returned by the function. A function call is represented by a
call-site vertex and there is an interprocedural control-dependence edge from
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1: int main() {
2: int sum = 0;
3: int i = 1;
4: while (i < 11) { 11: int add (int x, int y) {
5: sum = add(sum, i); 12: x = x + y;
6: i = add(i, 1); 13: return x;
7: } 14: }
8: printf(“%d\n”, sum);
9: printf(“%d\n”, i);
10: }

Figure 3.2: System Dependence Graph (SDG)

each call site to the corresponding entry point of the callee. There is also a
control-dependence edge from a procedure’s entry vertex to each of the top-
level statements in that procedure, as any of the top-level statements are only
reachable by the execution of the function. Finally there is also an inter-
procedural data-dependence edge between the actual-in parameters associated
with a call-site and the formal-in parameters of a procedure. There is an inter-
procedural data-dependence edge between PDGs formal-out vertices and the
associated actual-out vertices in the calling procedure.
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Non-local variables such as globals, file statics, and variables accessed indi-
rectly through pointers are handled by modelling the program as if it used only
local variables. Each non-local variable used in a function, either directly or
indirectly, is treated as a “hidden” input parameter, and thus gives rise to ad-
ditional program points. For each global used or modified by a procedure there
is a global-formal-in vertex and for each variable modified by a procedure there
is a global-formal-out vertex. There is an inter-procedural data-dependence
edge between the global-actual-in parameters associated with a call-site and
the global-formal-in parameters of a procedure. There is an inter-procedural
data-dependence edge between PDGs global-formal-out vertices and the associ-
ated global-actual-out vertices in the calling procedure. The PDG/SDG-based
representation subsumes the notion of call graphs and data flow graphs [An-
derson and Teitelbaum, 2001].

3.4 Program Slicing
Since its advent, program slicing has come a long way and has been extended in
many directions and specialised to individual programming languages and lan-
guage independent ones [Binkley et al., 2013b]. The huge number of program
slicing related publications have resulted in several survey papers [Harman
and Hierons, 2001, Xu et al., 2005, Tip, 1995, Binkley and Harman, 2004].
The various slicing techniques are summarised in Figure 3.3 by a recent survey
on program slicing by Silva [2012]. It is beyond the scope of this thesis to
provide a comprehensive survey of the slicing techniques and we only include
background that is relevant to this thesis.

Program slicing is a technique which computes a set of program state-
ments, known as a slice, that may affect a point of interest known as the
slicing criterion. In other words program slicing reveals all the program points
that the slice criterion depends on. Mark Weiser [1979] first introduced pro-
gram slicing in 1979. A slice S is a set of statements calculated for program P
with respect to a slicing criterion represented as a pair (V , s), where V is a set
of variables and s is a program point of interest. The slice S of P is obtained
by removing all statements and predicates of P which cannot affect V at s.

A program can be traversed forwards or backwards from the slicing cri-
terion. As defined by Weiser when traversed backwards, all those statements
that could influence the slicing criterion are found and is hence termed back-
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Figure 3.3: Slicing Survey [Silva, 2012]

ward slicing. In contrast, when traversed forwards, all those statements that
could be influenced by the slicing criterion can be found and is referred to as
forward slicing [Reps and Bricker, 1989].

The original definition of program slicing defined by Weiser was also
static [Weiser, 1984] in the sense that it did not consider any particular in-
put for the program being sliced. The slice for a particular criterion did not
consider any particular execution, and was created for all possible inputs. Ko-
rel and Laski [1988] introduced the concept of dynamic slicing where a slice is
computed using information from a trace of an execution of the program for a
specific set of inputs. In general, dynamic slices are much smaller (precise) than
static ones because they contain the statements of the program that affect the
slice criterion for a particular execution (in contrast to any possible execution
in case of static slicing). More recently, Binkley et al. [2013b] have introduced
observation-based slicing which uses program execution and observation of the
output to perform program slicing for multi-language systems.

In order to extract a slice from a program, the dependencies between its
statements must be computed first. Ottenstein and Ottenstein [1984] noted
that the program dependence graph (PDG) was the ideal data structure for
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program slicing because it allows for slicing to be done in linear time on the
number of vertices of the PDG. An intraprocedural slice can be computed as
a simple graph reachability problem. For example in Figure 3.4, slicing on the
statement printf(i) produces a slice that includes all the nodes of the graph that
are reachable by traversing the directed edges. Edges and vertices of the PDG
included in the slice are shown in bold.

1: int main() {
2: int sum = 0;
3: int i = 1;
4: while (i < 11 ){
5: sum = sum + i;
6: i = i + 1;
7: }
8: printf(“%d\n”, sum);
9: printf(“%d\n”, i);
10: }

Figure 3.4: Intraprocedural program slicing

The original definition of program slicing has been later classified as in-
traprocedural slicing, because the original algorithm does not take into account
information related to the fact that slices can cross the boundaries of procedure
calls. In such cases, simple traversal of the graph leads to an imprecise slice
with edges traversed that are not feasible in the control flow of the program,
failing to respect calling context [Gallagher, 2004, Binkley and Harman, 2005b,
Horwitz et al., 1990, Krinke, 2002, Binkley and Harman, 2003, Krinke, 2003].
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For example, in Figure 3.2 backward (transitive) traversal of all directed edges
from the statement printf(i) would include both calls to add. However, it is clear
that the call to add from line 5: sum = add(sum,i); cannot influence printf(i) and
should not be included in the slice. If dependence were transitive and slicing
could be done as a transitive closure, both calls to add would be included in
the slice.

Horwitz et al. [1988] proposed to address this problem by introducing call-
ing context during the graph traversal. When slicing an SDG, a slicing criterion
is a vertex from the SDG. Horwitz et al. [1990] introduced an algorithm that
makes two passes over the system dependence graph to compute a valid slice.
Each pass traverses only certain kinds of edges. To calculate a backward slice
taken with respect to SDG vertex v, denoted BSlice(v), the traversal in Pass
1 starts from v and goes backwards (from target to source) along flow edges,
control edges, call edges, summary edges, and parameter-in edges, but not
along parameter-out edges. The traversal in Pass 2 starts from all actual-out
vertices reached in Pass 1 and goes backwards along flow edges, control edges,
summary edges, and parameter-out edges, but not along call or parameter-in
edges. The result is an inter-procedural backward slice consisting of the set
of vertices encountered during Pass 1 and Pass 2, and the edges induced by
those vertices. Symmetrically, for a forward slice with respect to SDG vertex
v, denoted FSlice(v), the traversal in Pass 1 starts from v and follows only
edges up into calling procedures and Pass 2 traverses edges down into called
procedures.

The valid backward slice for statement printf(i) is shown in Figure 3.5
which respects the calling context. Here the backward slice on printf(i) no
longer includes the additional call to function add.

We employ both kinds of context-sensitive static SDG slices in this thesis,
backward slice and forward slice.
Definition 2 (Backward Slice)
The backward slice taken with respect to vertex v of an SDG, denoted BSlice(v),
is the set of vertices reaching v via a path of control and data dependence edges
of the SDG, where the path respects context.
Definition 3 (Forward Slice)
The forward slice, taken with respect to vertex v of an SDG, denoted FSlice(v),
is the set of vertices reachable from v via a path of control and data dependence
edges of the SDG, where the path respects context.
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1: int main() {
2: int sum = 0;
3: int i = 1;
4: while (i < 11) { 11: int add (int x, int y) {
5: sum = add(sum, i); 12: x= x + y;
6: i = add(i, 1); 13: return x;
7: } 14: }
8: printf(“%d\n”, sum);
9: printf(“%d\n”, i);
10: }

Figure 3.5: Interprocedural program slicing

3.5 Slice-based Clusters
A slice-based cluster is a maximal set of vertices included in each others slice.
The following definition essentially instantiates Definition 1 using BSlice. Be-
cause x ∈ BSlice(y) ⇔ y ∈ FSlice(x) the dual of this definition using FSlice
is equivalent. Where such a duality does not hold, both definitions are given.
When it is important to differentiate between the two, the terms backward
and forward will be added to the definition’s name as is done in this chapter.
Harman et al. [2009] provide the following definition:

Definition 4 (Backward-Slice MDS and Cluster)
A backward-slice MDS is a set of SDG vertices, V , such that
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∀x, y ∈ V : x ∈ BSlice(y).
A backward-slice cluster is a backward-slice MDS contained within no other
backward-slice MDS.

Note that as x and y are interchangeable, this is equivalent to ∀x, y ∈
V : x ∈ BSlice(y) ∧ y ∈ BSlice(x). Thus, any unordered pair (x, y) with x ∈
BSlice(y)∧y ∈ BSlice(x) creates an edge (x, y) in an undirected graph in which a
complete subgraph is equivalent to a backward-slice MDS and a backward-slice
cluster is equivalent to a maximal clique. Therefore, the clustering problem is
the NP-Hard maximal cliques problem [Bomze et al., 1999] making Definition 4
prohibitively expensive to implement. An efficient and practical approximation
of slice-based clusters are discussed in subsequent sections of this chapter.

3.6 Identifying causes of Dependence Clusters
There have been multiple studies into the causes of dependence clusters. The
first of these studies by Binkley et al. [2010] explicitly looked at the impact
of global variables on dependence clusters. Other studies include identifica-
tion of linchpin vertices [Binkley and Harman, 2009], which are responsible for
holding clusters together. Dependence clusters essentially group together pro-
gram statements that have mutual dependency, as such there are three primary
constructs that are responsible for formation of dependence clusters.

3.6.1 Loops
A loop is a sequence of instruction(s) that is continually repeated until a certain
condition is reached. Loop carried dependence can lead to mutual dependence
between the statements forming the body of the loop. An example of such a
cluster is seen in Figure 3.6. The statement on line 5 and the two predicates
all depend upon each other as the data dependence on i is carried forward
during iterations of the loop. As loops have inherent dependence within, the
body of the loop and consequently the termination condition become mutually
dependent on each other, leading to formation of dependence clusters.

Although one could assume that a program whose execution is controlled
via an infinite loop would have all of its statements in a large dependence clus-
ter, it would be wrong. Because interprocedural dependence is not transitive
(discussed in Section 3.7) loops on its own will rarely lead to large dependence
clusters in real-world production code. However, intraprocedural dependence
is transitive and the formation of an intraprocedural dependence cluster always
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P backward slice on i at line 5 P
1:
2: ...

| 3: while (i < 10)
| 4: if (a[i]) > 0)
| 5: i = i + 2;

6: ...

Figure 3.6: Depenence Cluster caused by loop

requires a loop construct, albeit not all statements of a loop need to be part of
the same dependence cluster.

3.6.2 Global Variables
The use of global variables is another cause of dependence cluster formation.
When various components of programs interact with each other using globals,
in other words when several components read and write to a global, it is possible
for the components to become mutually dependent with the variable and in-
turn mutually dependent upon each other. An example of this is seen in
Figure 3.7 where both functions f1 and f2 read and write to the global x. This
causes each of the functions bodies to have mutual dependence with the global
x and subsequently on each other.

Global variables and pointers that refer to globals have a scope that covers
the entire code. The definitions and use of global variables can ‘glue together’
statements to form a large cluster. This is even more evident in places where the
global variables link various smaller clusters together into one very large cluster
of mutual dependence. For example, where a global variable is responsible for
mutual data flow between two large and otherwise unconnected clusters. The
variable acts as a small ‘capillary vessel’ along which the dependence ‘flows’
linking two unconnected sub-clusters to create one larger cluster. A study by
Binkley et al. [2010] found that a quarter of programs have a global variable
that is solely responsible for large dependence clusters.

3.6.3 Mutually Recursive Calls
Mutual recursion of function calls can also lead to formation of dependence
clusters because each function (transitively) calls all the others, making the
outcome of each function dependent upon the outcome of some call to the
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P backward slice on x at P
line 7 line 13

1:
2: x;
3:

| | 4: f1(){
| | 5: local1 = x;
| | 6: ...
| | 7: x=local1;

8: }
9:

| | 10: f2(){
| | 11: local2 = x;
| | 12: ...
| | 13: x=local2;

14: }
15:

| | 16: main(){
| | 17: f1();
| | 18: f2()
| 19: f1();

20: }

Figure 3.7: Dependence Cluster caused by global variable

others. Figure 3.8 gives an example of a cluster formed due to mutual recursion.
The functions even and odd call each other recursively causing mutual inter-
dependence and a slice-based cluster.

The clusters projected due to mutually recursive calls are sometimes ag-
gravated and deemed to be larger because of the nature of safe (conservative)
approximation employed by static analysis (discussed further in section 6.2.4).

3.7 Dependence Intransitivity
A naïve definition of a dependence cluster would be based on transitive closure
of the dependence relation and thus would define a cluster to be a strongly
connected component in the SDG. Unfortunately, for certain language fea-
tures, dependence is not transitive. Examples of such features include proce-
dures [Horwitz et al., 1990] and threads [Krinke, 1998]. Thus, in the presence of
these features, strongly connected components overstate the size and number
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P backward slice on r at P
line 8 line 16

1:
| | 2: even (i){
| | 4: if (i == 0)
| | 5: r =1 ;
| | 6: else
| | 7: r = odd(abs(i)-1);
| | 8: return r;

9: }
10:

| | 11: odd (i){
| | 12: if (i == 0)
| | 13: r =0 ;
| | 14: else
| | 15: r = even(abs(i)-1);
| | 16: return r;

17: }
18:

Figure 3.8: Dependence Cluster caused by mutual recursion

of dependence clusters. Fortunately, context-sensitive slicing captures the nec-
essary context information [Binkley and Harman, 2005b, Horwitz et al., 1990,
Krinke, 2002, Binkley and Harman, 2003, Krinke, 2003].

The program P shown in Figure 3.9 illustrates the non-transitivity of slice
inclusion. The program has six statements (a, b, c, d, e and f) whose dependen-
cies are shown in columns 1–6 using backward slice inclusion. The dependency
relationship between these variables are also extracted and shown in Figure 3.10
using a directed graph where the nodes of the graph represent the statements
and the edges represent the backward slice inclusion relationship in Figure 3.9.
In the diagram, a depends on b (b ∈ BSlice(a)) is represented by b → a. The
diagram firstly shows two instances of dependence intransitivity in P. Although
b depends on nodes a,c and d, node f that depends on b does not depend on a,
c or d. Similarly node d depends on node e but nodes a, b and c that depend
on d do not depend on node e.

Because dependence is not transitive, calculating slice-based clusters is
equivalent to the maximal clique problem which is NP-Hard [Bomze et al.,
1999]. Other than the high cost of calculating maximal cliques, the problem
is further compounded by the fact that even when maximal cliques can be



3.7. Dependence Intransitivity 60

backward slice on
assignment to

a b c d e f P
1:

| | | | 2: f1(x) {
| | | | 3: a = f2(x, 1) + f3(x);
| | | | 4: return f2(a, 2) + f4(a);

5: }
6:

| | | | | 7: f2(x, y) {
| | | | | 8: b = x + y;
| | | | | 9: return b;

10: }
11:

| | | | 12: f3(x) {
| | | | 13: if (x>0) {
| | | | 14: c = f2(x, 3) + f1(x);
| | | | 15: return c;

16: }
| | | | 17: return 0;

18: }
19:

| | | | | 20: f4(x) {
| | | | | 21: d = x;
| | | | | 22: return d;

23: }
24:

| | 25: f5(x) {
| | 26: e = f4(5);
| 27: return f4(e);

28: }
29:

| | 30: f6(x){
| 31: f = f2(42, 4);

32: return f;
33: }
34:

Figure 3.9: Dependence intransitivity and clusters

calculated at higher costs it may lead to undecideable situations where depen-
dencies have to be arbitrarily ignored. For example in Figure 3.11 we see an
example where vertices i, j, k are mutually dependent and vertices i, j, l are
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Slice Criterion Backward Slice Forward Slice
a {a, b, c, d} {a, b, c, d}
b {a, b, c, d} {a, b, c, d, f}
c {a, b, c, d} {a, b, c, d}
d {a, b, c, d, e} {a, b, c, d, e}
e {d, e} {d, e}
f {b, f} {f}

Figure 3.10: Backward slice inclusion relationship for Figure 3.9

also mutually dependent. It should be noted that vertices k and l do not have
any dependencies between them because of dependence intransitivity. In such
a case it is not clear whether a dependence cluster (or maximal) clique should
be formed from {i, j, k} leaving {l} in its own cluster or forming {i, j, l} into a
cluster leaving {k} in its own cluster. To overcome this partitioning problem,
an approximation of the same-slice clusters were introduced by Binkley and
Harman [2005b].

Figure 3.11: Overlapping dependence clusters

3.8 Same-Slice Clusters
An alternative definition of slice-based clusters uses the same-slice relation in
place of slice inclusion [Binkley and Harman, 2005b]. This relation replaces
the need to check if two vertices are in each others slice with checking if two
vertices have the same slice. The result is captured in the following definitions
for same-slice cluster [Harman et al., 2009]. The first uses backward slices and
the second uses forward slices.

Definition 5 (Same-Slice MDS and Cluster)
A same-backward-slice MDS is a set of SDG vertices, V , such that
∀x, y ∈ V : BSlice(x) = BSlice(y).
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A same-backward-slice cluster is a same-backward-slice MDS contained within
no other same-backward-slice MDS.

A same-forward-slice MDS is a set of SDG vertices, V , such that
∀x, y ∈ V : FSlice(x) = FSlice(y).

A same-forward-slice cluster is a same-forward-slice MDS contained within no
other same-forward-slice MDS.

Because x ∈ BSlice(x) and x ∈ FSlice(x), two vertices that have the same
slice will always be in each other’s slice. If slice inclusion were transitive, a
backward-slice MDS (Definition 4) would be identical to a same-backward-slice
MDS (Definition 5). However, as illustrated by the example in Figure 3.9, slice
inclusion is not transitive; thus, the relation is one of containment where every
same-backward-slice MDS is also a backward-slice MDS but not necessarily a
maximal one.

For example, in Figure 3.10 the set of vertices {a, b, c} form a same-
backward-slice cluster because each vertex of the set yields the same backward
slice. Whereas the set of vertices {a, c} form a same-forward-slice cluster as
they have the same forward slice. Although vertex d is mutually dependent
with all vertices of either set, it doesn’t form a same-slice cluster with either
set because it has additional dependence relationship with vertex e.

Although the introduction of same-slice clusters was motivated by the need
for efficiency, the definition inadvertently introduced an external requirement
on the cluster. Comparing the definitions for slice-based clusters (Definition 4)
and same-slice clusters (Definition 5), a slice-based cluster includes only the
internal requirement that the vertices of a cluster depend upon one another.
However, a same-backward-slice cluster (inadvertently) adds to this internal
requirement the external requirement that all vertices in the cluster are affected
by the same vertices external to the cluster. Symmetrically, a same-forward-
slice cluster adds the external requirement that all vertices in the cluster affect
the same vertices external to the cluster.

3.9 Same-Slice-Size Cluster
Even calculating same-slice clusters is expensive. In practice it requires tens of
gigabytes of memory for even modest sized programs. Thus, a second approxi-
mation was also employed by Binkley and Harman [2009]. This approximation
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replaces ‘same-slice’ with ‘same-slice-size’: rather than checking if two ver-
tices yield identical slices, the approach simply checks if the two vertices yield
slices of the same size. The resulting same-slice-size approach is formalised by
Harman et al. [2009] as follows:
Definition 6 (Same-Slice-Size Backward MDS/Cluster)
A Same-Slice-Size Backward MDS is a set of statements, S, such that
∀x, y ∈ S : |BSlice(x)| = |BSlice(y)|.

A Same-Slice-Size Backward Cluster is a Same-Slice-Size Backward MDS con-
tained within no other Same-Slice-Size Backward MDS.
Definition 7 (Same-Slice-Size Forward MDS/Cluster)
A Same-Slice-Size Forward MDS is a set of statements, S, such that
∀x, y ∈ S : |FSlice(x)| = |FSlice(y)|.

A Same-Slice-Size Forward Cluster is a Same-Slice-Size Forward MDS con-
tained within no other Same-Slice-Size Forward MDS.

The observation motivating this approximation is that two slices of the
same (large) size are likely to be the same slice. In practice, this approximation
is very accurate if a small tolerance for difference is allowed. With a tolerance
of 1% the approximation is 99% accurate. However, in the strict case of zero
tolerance the accuracy falls to 78.3% [Binkley and Harman, 2005b].

3.10 Existence of dependence clusters in pro-
duction code

Harman et al. [2009] addressed the question of whether same-slice-size depen-
dence clusters are common in production code. They studied 45 production
programs and found that such clusters are indeed prevalent.

Figure 3.12 shows the statistics for the largest same-slice-size dependence
clusters present in 45 production programs. The y-axis of the graphs shows
the number of programs that have a large cluster which is at least of a certain
size. This threshold size is shown on the x-axis. For example, at the thresh-
old of 0%, both graphs show that all 45 programs meet the threshold. At a
largeness threshold of 50%, 19 of the 45 programs have a backwards same-slice-
size cluster (Figure 3.12a). Similarly at the 50% threshold, 25 programs have
a large forward same-slice-size cluster (Figure 3.12b). Even considering very
high thresholds such as 75% the graphs show that around 5 programs have a
large same-slice-size cluster.
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(a) Same-backward-slice clusters

(b) Same-forward-slice cluster

Figure 3.12: Existence of same-slice clusters

3.11 Chapter Summary
This chapter introduces the notion of dependence clusters and the necessary
background information. It presents various instantiations of dependence clus-
ters using program slicing. In particular it discusses the same-slice clusters
which was introduced for efficient partitioning of slices and subsequently to
make it implementable in practice. A further approximation was introduced
that replaces the need to compare slice content with slice size. The chapter
also discusses dependence intransitivity and illustrates how this gives same-
slice clusters internal and external properties. Finally, the chapter shows that
same-slice clusters are prevalent in production programs.
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Chapter 4

Coherent Clusters

4.1 Overview
This chapter introduces the notion of coherent dependence clusters which is a
stricter form of dependence clusters. The chapter first formalises coherent de-
pendence clusters and then presents a slice-based instantiation of the definition.
It then presents an approximation of coherent clusters which is efficient and
accurate making the clustering implementable in practice. This is followed by
the introduction of experimental subjects and setup. The chapter then goes on
to answer the validation questions about the precision of the efficient approx-
imation for coherent clusters. Finally, a study into the prevalence of coherent
clusters in production code is presented. More formally, the chapter addresses
the three following research questions:

RQ1.1 How precise is hashing as a proxy for comparing slices?

RQ1.2 How large are coherent clusters that exist in production source code?

RQ1.3 How conservative is using the same-slice relationship as an approxi-
mation of slice-inclusion relationship?

4.2 Coherent Dependence Clusters
Coherent clusters are dependence clusters that include not only an internal
dependence requirement (each statement of a cluster depends on all the other
statements of the cluster) but also an external dependence requirement. The
external dependence requirement includes both that each statement of a clus-
ter depends on the same statements external to the cluster and also that it
influences the same set of statements external to the cluster. In other words, a
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coherent cluster is a set of statements that are mutually dependent and share
identical extra-cluster dependence. Coherent clusters are defined in terms of
the coherent MDS:

Definition 8 (Coherent MDS and Cluster)
A coherent MDS is a MDS V , such that

∀x, y ∈ V : x depends on a implies y depends on a and a depends on x

implies a depends on y.

A coherent cluster is a coherent MDS contained within no other coherent MDS.

The slice-based instantiation of coherent cluster employs both backward
and forward slices. The combination has the advantage that the entire cluster
is both affected by the same set of vertices (as in the case of same-backward-
slice clusters) and also affects the same set of vertices (as in the case of same-
forward-slice clusters). In the slice-based instantiation, a set of vertices V forms
a coherent MDS if

∀x, y ∈ V : x ∈ BSlice(y) the internal requirement of an MDS
∧ a ∈ BSlice(x) =⇒ a ∈ BSlice(y) x and y depend on same external a
∧ a ∈ FSlice(x) =⇒ a ∈ FSlice(y) x and y impact on same external a

Because x and y are interchangeable

∀x, y ∈ V : x ∈ BSlice(y)

∧ a ∈ BSlice(x) =⇒ a ∈ BSlice(y)

∧ a ∈ FSlice(x) =⇒ a ∈ FSlice(y)

∧ y ∈ BSlice(x)

∧ a ∈ BSlice(y) =⇒ a ∈ BSlice(x)

∧ a ∈ FSlice(y) =⇒ a ∈ FSlice(x)

This is equivalent to

∀x, y ∈ V : x ∈ BSlice(y) ∧ y ∈ BSlice(x)

∧ (a ∈ BSlice(x)⇔ a ∈ BSlice(y))

∧ (a ∈ FSlice(x)⇔ a ∈ FSlice(y))
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which simplifies to

∀x, y ∈ V : BSlice(x) = BSlice(y) ∧ FSlice(x) = FSlice(y)

and can be used to define coherent-slice MDS and clusters:

Definition 9 (Coherent-Slice MDS and Cluster)
A coherent-slice MDS is a set of SDG vertices, V , such that
∀x, y ∈ V : BSlice(x) = BSlice(y) ∧ FSlice(x) = FSlice(y)

A coherent-slice cluster is a coherent-slice MDS contained within no other
coherent-slice MDS.

At first glance the use of both backward and forward slices might seem
redundant because x ∈ BSlice(y) ⇔ y ∈ FSlice(x). This is true up to a point:
for the internal requirement of a coherent-slice cluster, the use of either BSlice
or FSlice would suffice. However, the two are not redundant when it comes
to the external requirements of a coherent-slice cluster. With a mutually-
dependent cluster (Definition 1), it is possible for two vertices within the cluster
to influence or be affected by different vertices external to the cluster. Neither
is allowed with a coherent-slice cluster. To ensure that both external effects
are captured, both backward and forward slices are required for coherent-slice
clusters.

In Figure 3.10 the set of vertices {a, c} form a coherent cluster as both
these vertices have exactly the same backward and forward slices. That is, they
share the identical intra- and extra-cluster dependencies. Coherent clusters are
therefore a stricter from of same-slice clusters, all coherent clusters are also
same-slice MDS but not necessarily maximal. It is worth noting that same-
slice clusters partially share extra-cluster dependency. For example, each of
the vertices in the same-backward-slice cluster {a, b, c} is dependent on the
same set of external statements, but do not influence the same set of external
statements.

Coherent slice-clusters have an important property: If a slice contains a
vertex of a coherent slice-cluster V , it will contain all vertices of the cluster:

BSlice(x) ∩ V 6= ∅ =⇒ BSlice(x) ∩ V = V (4.1)
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This holds because:

∀y, y′ ∈ V : y ∈ BSlice(x) =⇒ x ∈ FSlice(y)

=⇒ x ∈ FSlice(y′) =⇒ y′ ∈ BSlice(x)

The same argument clearly holds for forward slices. However, the same is not
true for non-coherent clusters. For example, in the case of a same-backward-
slice cluster, a vertex contained within the forward slice of any vertex of the
cluster is not guaranteed to be in the forward slice of other vertices of the same
cluster.

4.3 Hash-based Coherent Slice Clusters
The computation of coherent-slice clusters (Definition 9) grows prohibitively
expensive even for mid-sized programs where tens of gigabytes of memory are
required to store the set of all possible backward and forward slices. The com-
putation is cubic in time and quadratic in space. An approximation is employed
to reduce the computation time and memory requirement. This approximation
replaces comparison of slices with comparison of hash values, where hash values
are used to summarise slice content. The result is the following approximation
to coherent-slice clusters in which H denotes a hash function.

Definition 10 (Hash-Based Coherent-Slice MDS and Cluster)
A hash-based coherent-slice MDS is a set of SDG vertices, V , such that
∀x, y ∈ V : H(BSlice(x)) = H(BSlice(y)) ∧ H(FSlice(x)) = H(FSlice(y))

A hash-based coherent-slice cluster is a hash-based coherent-slice MDS con-
tained within no other hash-based coherent-slice MDS.

The precision of this approximation is empirically evaluated in Section 4.6.
From here on, this thesis considers only hash-based coherent-slice clusters un-
less explicitly stated otherwise. Thus, for ease of reading, hash-based coherent-
slice cluster is referred to simply as coherent cluster.

4.4 Hash Algorithm
The use of hash values to represent slices reduces both the memory requirement
and runtime, as it is no longer necessary to store or compare entire slices. The
hash function, denoted H in Definition 10, uses XOR operations iteratively on
the unique vertex IDs (of the SDG) which are included in a slice to generate
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a hash for the entire slice. We chose XOR as the hash operator because we do
not have duplicate vertices in a slice and the order of the vertices in the slice
does not matter.

A slice S is a set of SDG vertices {v1, .., vn} (n ≥ 1) and id(vi) represents
the unique vertex ID assigned by CodeSurfer to vertex vi, where 1 ≤ i ≤ n.
The hash function H for S is defined as HS, where

HS =
n⊕

i=1
id(vi) (4.2)

Hence, our hashing algorithm uses XOR operator iteratively on the unique
vertex IDs (of the SDG) which are included in a slice to generate a hash for
the entire slice. The precision achieved by this hash function in terms of both
slicing and clustering are examined and presented in Section 4.6.

4.5 Experimental Subjects and Setup
The slices along with the mapping between the SDG vertices and the ac-
tual source code are extracted from the mature and widely used slicing tool
CodeSurfer [Anderson and Teitelbaum, 2001] (version 2.1). The cluster visu-
alisations were generated by decluvi [Islam et al., 2010a] using data extracted
from CodeSurfer. The data is generated from slices taken with respect to
source-code representing SDG vertices. This excludes pseudo vertices intro-
duced into the SDG, e.g., to represent global variables which are modelled as
additional pseudo parameters by CodeSurfer. Cluster sizes are also measured
in terms of source-code representing SDG vertices, which is more consistent
than using lines of code as it is not influenced by blank lines, comments, state-
ments spanning multiple lines, multiple statements on one line, or compound
statements. The decluvi system along with scheme scripts for data acquisition
and pre-compiled datasets for several open-source programs can be downloaded
from http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html. Chapter 5
gives further details about decluvi.

The study considers the 30 C programs shown in Table 4.1, which provides
a brief description of each program alongside seven measures: number of files
containing executable C code, LoC – lines of code (as counted by the Unix
utility wc), SLoC – the non-comment non-blank lines of code (as counted by the
utility sloccount [Wheeler, 2004]), ELoC – the number of source code lines that
CodeSurfer considers to contain executable code, the number of SDG vertices,

http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html
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the number of SDG edges, the number of slices produced, and finally the size (as
a percentage of the program’s SDG vertex count) of the largest coherent cluster.
All LoC metrics are calculated over source files that CodeSurfer considers to
contain executable code and, for example, do not include header files.

Columns 10 and 11 provide the runtimes recorded during the empirical
study. The runtimes reported are wall clock times captured by the Unix time
utility while running the experiments on a 64-bit Linux machine (CentOS 5)
with eight Intel(R) Xeon(R) CPU E5450 @ 3.00GHz processors and 32GB
of RAM. It should be noted that this machine acts as a group server and is
accessed by multiple users. There were other CPU intensive processes intermit-
tently running on the machine while these runtimes were collected, and thus
the runtimes are only indicative.

Column 10 shows the time needed to build the SDG and the CodeSurfer
project that is subsequently used for slicing. The build time for the projects
were quite small and the longest build time (2m33.456s) was required for gcal
with 46,827 SLoC. Column 11 shows the time needed for the clustering al-
gorithm to perform the clustering and create all the data dumps for decluvi
to create cluster visualisations. The process completes in minutes for small
programs and can take hours and longer for larger programs. It should be
noted that the runtime include both the slicing phase which runs in O(ne),
where n is the number of SDG vertices and e is the number of edges, and the
hashing and clustering algorithm which runs in O(n2). Therefore the overall
complexity is O(ne). The long runtime is mainly due to the current research
prototype (which performs slicing, clustering and extraction of the data) using
the Scheme interface of CodeSurfer in a pipeline architecture. In future we plan
to upgrade the tooling with optimisations for fast and massive slicing [Binkley
et al., 2007] and merging the clustering phase into the slicing to reduce the
runtime significantly.

Although the clustering and building the visualisation data can take a
long time for large projects, it is still useful because the clustering only needs
to be done once (for example during a nightly build) and can then be visualised
and reused as many times as needed. During further study of the visualisation
and the clustering we have also found that small changes to the system do not
show a change in the clustering, therefore once the clustering is created it still
remains viable through small code changes as the clustering is found to rep-
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resent the core program architecture (discussed in Section 7.3). Furthermore,
the number of SDG vertices and edges are quite large, in fact even for very
small programs the number of SDG vertices are in the thousands with edge
counts in tens of thousands. Moreover, the analysis produces a is-in-the-slice-of
relation and graph with even more edges. We have tried several clustering and
visualisation tools to cluster the is-in-the-slice-of graph for comparison, but
most of the tools (such as Gephi [Bastian et al., 2009]) failed due to the large
dataset. Other tools such as CCVisu [Beyer, 2008] which were able to handle
the large data set simply produced a blob as a visualisation which was not at
all useful. The underlying problem is that the is-in-the-slice-of graph is dense
and no traditional clustering can handle such dense graphs.

4.6 Validity of the Hash Function
This section addresses research question RQ1.1 How precise is hashing as a
proxy for comparing slices? The section validates the use of comparing slice
hash values in lieu of comparing actual slice content. The use of hash values to
represent slices reduce both the memory requirement and runtime, as it is no
longer necessary to store or compare entire slices. The hash function, denoted
H in Definition 10, determines a hash value for a slice based on the unique
vertex ids assigned by CodeSurfer. Validation of this approach is needed to
confirm that the hash values provide a sufficiently accurate summary of slices to
support the correct partitioning of SDG vertices into coherent clusters. Ideally,
the hash function would produce a unique hash value for each distinct slice.
The validation study aims to find the number of unique slices for which the
hash function successfully produces an unique hash value.

For the validation study we chose 16 programs from the set of 30 subject
programs. The largest programs were not included in the validation study to
make the study time-manageable. Results are based on both the backward
and forward slices for every vertex of these 16 programs. To present the notion
of precision we introduce the following formalisation. Let V be the set of all
source-code representing SDG vertices for a given program P and US denote
the number of unique slices:

US = |{BSlice(x) : x ∈ V }|+ |{FSlice(x) : x ∈ V }|

Note that if all vertices have the same backward slice then {BSlice(x) : x ∈ V }
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is a singleton set. Finally, let UH be the number of unique hash-values,

UH = |{H(BSlice(x)) : x ∈ V }|+ |{H(FSlice(x)) : x ∈ V }|

The accuracy of hash function H is given as Hashed Slice Precision, HSP:

HSP = UH
US

A precision of 1.00 (US = UH ) means the hash function is 100% accurate
(i.e., it produces a unique hash value for every distinct slice) whereas a precision
of 1/US means that the hash function produces the same hash value for every
slice leaving UH = 1.

Table 4.2 summarises the results. The first column lists the programs. The
second and the third columns report the values of US and UH respectively. The
fourth column reports HSP, the precision attained using hash values to com-
pare slices. Considering all 78,587 unique slices the hash function produced
unique hash values for 74,575 of them, resulting in an average precision of
94.97%. In other words, the hash function fails to produce unique hash values
for just over 5% of the slices. Considering the precision of individual programs,
five of the programs have a precision greater than 97%, while the lowest pre-
cision, for findutils, is 92.37%. This is, however, a significant improvement over
previous use of slice size as the hash value, which is only 78.3% accurate in the
strict case of zero tolerance for variation in slice contents [Binkley and Harman,
2005b].

Coherent cluster identification uses two hash values for each vertex (one
for the backward slice and other for the forward slice) and the slice sizes. Slice
size matching filters out some instances where the hash values happen to be the
same by coincidence but the slices are different. The likelihood of both hash
values matching those from another vertex with different slices is less than that
of a single hash matching. Extending US and UH to clusters, Columns 5 and
6 (Table 4.2) report CC , the number of coherent clusters in a program and
HCC , the number of coherent clusters found using hashing. The final column
shows the precision attained using hashing to identify clusters, HCP.

HCP = HCC
CC
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Unique Hashed Hash Hash
Unique Hash Slice Cluster Cluster Precision
Slices values Precision Count Count Clusters

Program (US) (UH ) (HSP) (CC ) (HCC ) (HCP)
acct 1,558 1,521 97.63% 811 811 100.00%
barcode 2,966 2,792 94.13% 1,504 1,504 100.00%
bc 3,787 3,671 96.94% 1,955 1,942 99.34%
byacc 10,659 10,111 94.86% 5,377 5,377 100.00%
cflow 16,584 15,749 94.97% 8,457 8,452 99.94%
copia 3,496 3,398 97.20% 1,785 1,784 99.94%
ctags 8,739 8,573 98.10% 4,471 4,470 99.98%
diffutils 5,811 5,415 93.19% 2,980 2,978 99.93%
ed 2,719 2,581 94.92% 1,392 1,390 99.86%
findutils 9,455 8,734 92.37% 4,816 4,802 99.71%
garpd 808 769 95.17% 413 411 99.52%
indent 3,639 3,491 95.93% 1,871 1,868 99.84%
time 1,453 1,363 93.81% 760 758 99.74%
userv 3,510 3,275 93.30% 1,827 1,786 97.76%
wdiff 2,190 2,148 98.08% 1,131 1,131 100.00%
which 1,213 1,184 97.61% 619 619 100.00%
Sum 78,587 74,575 – 40,169 40,083 –
Average 4,912 4,661 94.97% 2,511 2,505 99.72%

Table 4.2: Hash function validation
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The results show that of the 40,169 coherent clusters, 40,083 are uniquely iden-
tified using hashing, which yields a precision of 99.72%. Five of the programs
show total agreement, furthermore for each program HCP is over 99%, except
for userv, which has the lowest precision of 97.76%. This can be attributed to
the large percentage (96%) of single vertex clusters in userv. The hash values
for slices taken with respect to these single-vertex clusters have a higher po-
tential for collision leading to a reduction in overall precision. In summary, as
an answer to RQ1.1, the hash-based approximation is found to be sufficiently
accurate at 94.97% for slices and at 99.72% for clusters (for the studied pro-
grams). Thus, comparing hash values can replace the need to compare actual
slices.

Figure 4.1: Size of largest coherent cluster

4.7 Do large coherent clusters occur in prac-
tice?

Having demonstrated that hash function H can be used to effectively approx-
imate slice contents, this section considers the validation research question,
RQ1.2 How large are coherent clusters that exist in production source code?
The question is answered quantitatively using the size of the largest coherent
cluster in each program.

To assess if a program includes a large coherent cluster requires making
a judgement concerning what threshold constitutes large. Following prior em-
pirical work [Binkley and Harman, 2005b, Harman et al., 2009, Islam et al.,
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2010a,b], a threshold of 10% is used to classify a large cluster. In other words,
a program is said to contain a large coherent cluster if 10% of the program’s
SDG vertices produce the same backward slice as well as the same forward
slice. It should be noted that the other classification names and threshold dif-
fer from previous studies as we report on coherent clusters which have stricter
properties.

Figure 4.1 shows the size of the largest coherent cluster found in each of
the 30 subject programs. The programs are divided into 3 groups based on the
size of the largest cluster present in the program.

Small: Small consists of seven programs none of which have a coherent clus-
ter constituting over 10% of the program vertices. These programs are
archimedes, time, wdiff, byacc, a2ps, cflow and userv. Although it may be
interesting to study why large clusters are not present in these programs,
this thesis focuses on studying the existence and implications of large
coherent clusters.

Large: This group consists of programs that have at least one cluster with size
10% or larger. As there are programs containing much larger coherent
clusters, a program is placed in this group if it has a large cluster between
the size 10% and 50%. Over two-thirds of the programs studied fall in
this category.

The program at the bottom of this group (acct) has a coherent cluster
of size 11% and the largest program in this group (copia) has a coherent
cluster of size 48%. We present both these programs as case studies and
discuss their clustering in detail in Sections 6.2.1 and 6.2.4, respectively.
The program bc which has multiple large clusters with the largest of size
32% falls in the middle of this group and is also presented as a case study
in Section 6.2.3.

Huge: The final group consists of programs that have a large coherent cluster
whose size is over 50%. Out of the 30 programs 4 fall in this group. These
programs are indent, ed, barcode and gcal. From this group, we present
indent as a case study in Section 6.2.2.

In summary all but 7 of the 30 subject programs contain a large coherent
cluster. Therefore, over 75% of the subject programs contain a coherent cluster
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of size 10% or more. Furthermore, half the programs contain a coherent cluster
of at least 20% in size. It is also interesting to note that although this grouping
is based only on the largest cluster, many of the programs contain multiple large
coherent clusters. For example, ed, ctags, nano, less, bc, findutils, flex and garpd all
have multiple large coherent clusters. It is also interesting to note that there
is no correlation between a program’s size (measured in SLoC) and the size of
its largest coherent cluster. For example, in Table 4.1 two programs of very
different sizes, cflow and userv, have similar largest-cluster sizes of 8% and 9%,
respectively. Whereas programs acct and ed, of similar size, have very different
largest coherent clusters of sizes 11% and 55%.

Therefore as an answer to RQ1.2, the study finds that 23 of the 30 pro-
grams studied have a large coherent cluster. Some programs also have a huge
cluster covering over 50% of the program vertices. Furthermore, the choice of
10% as a threshold for classifying a cluster as large is a relatively conservative
choice. Thus, the results presented in this section can be thought of as a lower
bound to the existence question.

4.8 Slice inclusion relation vs Same-Slice rela-
tion

This thesis has so far dealt with questions regarding same-slice clusters and the
specialised version, coherent dependence clusters. Both, coherent and same-
slice clusters are built from equivalent slices and only capture a portion of the
slice-inclusion relationship. This section presents a preliminary study which
assesses the conservatism introduced in using this approximation. This section
addresses research question RQ1.3 How conservative is using the same-slice
relationship as an approximation of slice-inclusion relationship?

As equivalence slices capture only a portion of slice-inclusion relationship
they also yield smaller clusters, and thus a conservative result. A more liberal
approach would require using mutual-inclusion to perform clustering which is
the NP-Hard maximal cliques problem [Bomze et al., 1999]. A preliminary
experiment was designed to gain a better understanding of how conservative
it is to use slice equivalence. The experiment compares the number of pairs of
SDG vertices that are in each other’s slices to the number of pairs where both
vertices have the same slice, to find their ratio R.



4.8. Slice inclusion relation vs Same-Slice relation 78

R = |{(x, y) : BSlice(x) = BSlice(y)}|
|{(x, y) : x ∈ BSlice(x) ∧ y ∈ BSlice(y)}|

A large difference would give cause for further research into developing
better detection algorithms for dependence clusters. Due to the large run-
times for this experiment (bc required around 30 days) the study was limited
to a subset of the test subjects presented in Section 4.5. The test subjects
considered and the results are shown in Table 4.3. The table shows various
statistics about the relationship study, Column 1 lists the program, Column 2
gives the vertex count, Column 3 show the number of slice comparisons that
were done, Column 4 gives the number of vertex pairs that were in each other’s
slice, Column 5 gives the number of vertex that yield the same slice. Finally,
the last column gives the percentage of mutually-interdependent vertices that
also have exactly the same slice.

Program Vertex Slice Slice-inclusion Same-Slice Percentage
Count Comparisons Count Count

acct 1,417 2,007,889 335,477 70,205 21%
barcode 4,801 23,049,601 8,291,421 7,894,155 95%

bc 7,538 56,821,444 30,935,773 18,354,919 59%
copia 3,327 11,068,929 2,587,437 2,584,221 99%

diffutils 8,061 64,979,721 19,671,054 13,413,596 68%
ed 5,688 32,353,344 15,082,352 14,703,994 97%

time 838 2,808,976 4,540 2,320 51%
wdiff 1,361 1,852,321 16,985 9,131 54%
which 1,902 3,617,604 1,213,936 947,870 78%

Average 3,881 22,062,203 8,682,108 6,442,268 69%

Table 4.3: Slice inclusion vs Same-slice Study

The results of the experiment shows the percentage can vary from 21% for
acct to 99% for copia. The sizes of the program (vertex count) does not seem
to have a correlation with the percentage of mutually-dependent vertices that
produce the same slice. For example, smaller programs like acct and wdiff with
similar vertex count have significantly different percentages at 21% and 54%.
Whereas, bc which is almost 6 times larger than wdiff has similar percentage
value to wdiff at 59%. The highest agreement is seen for copia at 99%. One
possible reason for this could be that copia is a very tightly knit program where
all the program logic is bound to a central mutually recursive structure. The
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program Copia is discussed in detail in Section 6.2.4
As an answer to RQ1.3, we find that in the programs studied, on average

69% of the vertices that are mutually-dependent also have the same slice. This
finding is used to motivate the study (Section 7.4) of inter-cluster dependence
based on cluster inclusion relationship which results in larger dependence struc-
tures than any same-slice cluster. Although this result suggests the need for
further research into new slice-inclusion based cluster identification techniques,
further experiments need to be conducted on the remaining test subjects to gain
a more generalised answer.

4.9 Chapter Summary
This chapter introduces the notion of coherent dependence clusters and
presents definitions for its slice-based instantiation. The slice-based instan-
tiation enables the identification of dependence clusters using program slicing.
The chapter also introduces an efficient approximation for coherent clusters
which enables the identification of such clusters using standard desktop and
server systems. The new approximation is also found to have a precision of
99.72% which is over 20% higher than those used in previous studies.

Finally, using a three-tier classification where programs are divided into
three groups (small, large, huge) depending on the size of the largest coherent
cluster in the program, an empirical study finds that over 75% of the subject
programs contain large clusters. This high occurrence of large coherent cluster
indicates that these need to be studied and understood to appreciate their
influence on program comprehension and maintenance.
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Chapter 5

Cluster Visualisation

5.1 Overview
This chapter introduces the various cluster visualisation techniques. The chap-
ter firstly introduces two graph-based visualisations which is followed by a dis-
cussion of the cluster visualisation tool decluvi. Graph-based visualisation is
used to highlight patterns of clustering found in the subject programs. The
cluster visualisation of decluvi is used in Chapter 6 to study clustering of pro-
grams in detail and identify program structures revealed by coherent cluster
visualisation. The chapter also presents a study on the effect of pointer analysis
accuracy on size of slices and the impact on coherent cluster sizes and patterns.
Formally, this chapter addresses the following research question:

RQ2.1 Which patterns of clustering can be identified using graph-based cluster
visualisation?

RQ2.2 What is the effect of pointer analysis precision on coherent clusters?

5.2 Graph Based Cluster Visualisation
This section presents two graph-based visualisations. The first visualisation
is the Monotone Slice-size graph (MSG), it was introduced by Binkley and
Harman [2005b] to visualise slice sizes and estimate the presence of same-
slice-size clusters. The second graph-based visualisation is the Slice/Cluster
size graph (SCG) [Islam et al., 2010a], which is an extension of the MSG to
overcome the precision problems of the MSG and show clearer link between
the slices and clusters.
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Figure 5.1: Monotone Slice-size Graph (MSG) for the program bc. The x-axis
plots vertices with the slices in monotonically increasing order and the y-axis
plots the size of the backward/forward slice.

5.2.1 Monotone Slice-Size Graph (MSG)
The first visualisation, the Monotone Slice-size Graph (MSG) [Binkley and
Harman, 2005b], plots a landscape of monotonically increasing slice sizes where
the y-axis shows the size of each slice, as a percentage of the entire program,
and the x-axis shows each slice, in monotonically increasing order of slice size.
In an MSG, a dependence cluster appears as a sheer-drop cliff face followed
by a plateau. The visualisation assists with the inherently subjective task
of deciding whether a cluster is large (how long is the plateau at the top of
the cliff face relative to the surrounding landscape?) and whether it denotes
a discontinuity in the dependence profile (how steep is the cliff face relative
to the surrounding landscape?). An MSG drawn using backward slice sizes
is referred to as a backward-slice MSG (B-MSG), and an MSG drawn using
forward slice sizes is referred to as a forward-slice MSG (F-MSG).

As an example, the open source calculator bc contains 9,438 lines of code
represented by 7,538 SDG vertices. The B-MSG for bc, shown in Figure 5.1a,
contains a large plateau that spans almost 70% of the MSG. Under the assump-
tion that same slice size implies the same slice, this indicates a large same-slice
cluster. However, “zooming” in reveals that the cluster is actually composed
of several smaller clusters made from slices of very similar size. The tolerance
implicit in the visual resolution used to plot the MSG obscures this detail.

5.2.2 Slice/Cluster Size Graph (SCG)
The second graph-based visualisation is the Slice/Cluster Size Graph (SCG) [Is-
lam et al., 2010b], that alleviates the resolution problem by combining both
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slice and cluster sizes. It plots three landscapes, one of increasing slice sizes,
one of the corresponding same-slice cluster sizes, and the third of the corre-
sponding coherent cluster sizes. In the SCG, vertices are ordered along the
x-axis using three values, primarily according to their slice size, secondarily
according to their same-slice cluster size, and finally according to the coher-
ent cluster size. Three values are plotted on the y-axis: slice sizes form the
first landscape, and cluster sizes form the second and third. Thus, SCGs not
only show the sizes of the slices and the clusters, they also show the relation
between them and thus bring to light interesting links. Two variants of the
SCG are considered: the backward-slice SCG (B-SCG) is built from the sizes
of backward slices, same-backward-slice clusters, and coherent clusters, while
the forward-slice SCG (F-SCG) is built from the sizes of forward slices, same-
forward-slice clusters, and coherent clusters. Note that both backward and
forward SCGs use the same coherent cluster sizes.

The B-SCG and F-SCG for the program bc are shown in Figure 5.2. In
both graphs the slice size landscape is plotted using a solid black line, the
same-slice cluster size landscape using a grey line, and the coherent cluster
size landscape using a (red) broken line. The B-SCG (Figure 5.2a) shows
that bc contains two large same-backward-slice clusters consisting of almost
55% and almost 15% of the program. Surprisingly, the larger same-backward-
slice cluster is composed of smaller slices than the smaller same-backward-
slice cluster; thus, the smaller cluster has a bigger impact (slice size) than the
larger cluster. In addition, the presence of three coherent clusters spanning
approximately 15%, 20% and 30% of the program’s statements are also visible
in the graphs.

5.2.3 Box Plot Visualisation
Figure 5.3a shows two box plots depicting the distribution of (backward and
forward) slice sizes for bc. The average size of the slices are also displayed in
the box plot using a solid square box. Comparing the box plot information
to the information provided by the MSGs, we can see that all the information
available from the box plots can be derived from the MSGs itself (except for
the average). However, MSGs show a landscape (slice profile) which cannot be
obtained from the box plots. Similarly, the box plots in Figure 5.3b show the
size distributions of the various clusters (i.e. a vertex is in a cluster of size x)
in addition to the slice size distributions. Although the information from these



5.3. Patterns of clustering 83

(a) B-SCG (b) F-SCG

Figure 5.2: Slice/Cluster Size Graph (SCG) for the program bc. The x-axis
plots vertices ordered by monotonically increasing order of slices, same size
clusters and coherent clusters. The y-axis plots the size of the backward/for-
ward slices, same-slice clusters and coherent clusters.
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Figure 5.3: Slice/Cluster size distribution for bc

box plots can not be derived from the SCGs shown in Figures 5.2a and 5.2b
directly, the profiles (landscapes) give a better intuition about the clusters, the
number of major clusters and their sizes. For our empirical study we use the
size of individual clusters and the cluster profile to find mappings between the
clusters and program components. Therefore, we drop box plots in favour of
SCGs to show the cluster profile and provide additional statistics in tabular
format where required.

5.3 Patterns of clustering
This section presents a visual study of SCGs for the three program groups
(identified in Section 4.7) and addresses research question RQ2.1. Figures 5.4–
5.6 show graphs for the three categories (small, large and huge). The graphs in
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Figure 5.4: Programs with small coherent clusters

the figures are laid out in ascending order based on the largest coherent cluster
present in the program and thus follow the same order as seen in Figure 4.1.

Figure 5.4 shows SCGs for the seven programs of the small group. In
the SCGs of the first three programs (archimedes, time and wdiff) only a small
coherent cluster is visible in the red landscape. In the remaining four programs,
the red landscape shows the presence of multiple small coherent clusters. It is
very likely that, similar to the results of the case studies presented later, these
clusters also depict logical constructs within each program.

Figure 5.5 shows SCGs of the 19 programs that have at least one large,
but not huge, coherent cluster. That is, each program has at least one coher-
ent cluster covering 10% to 50% of the program. Most of the programs have
multiple coherent clusters as is visible on the red landscape. Some of these
have only one large cluster satisfying the definition of large, such as acct. The
clustering of acct is discussed in further detail in Section 6.2.1. Most of the
remaining programs are seen to have multiple large clusters such as bc, which is
also discussed in further detail in Section 6.2.3. The presence of multiple large
coherent cluster hints that the program consists of multiple functional com-
ponents. In three of the programs (which, gnuedma and copia) the landscape is
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Figure 5.5: Programs with large coherent clusters
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indent ed barcode

gcal

Figure 5.6: Programs with huge coherent clusters

completely dominated by a single large coherent cluster. In which and gnuedma
this cluster covers around 40% of the program vertices whereas in copia the
cluster covers 50%. The presence of a single large dominating cluster points to
a centralised functionality or structure being present in the program. Copia is
presented as a case study in Section 6.2.4 where its clustering is discussed in
further detail.

Finally, SCGs for the four programs that contain huge coherent clusters
(with size >50%) are found in Figure 5.6. In all four landscapes there is a very
large dominating cluster with other smaller clusters also being visible. This
pattern supports the conjecture that the program has one central structure
or functionality which consists of most of the program elements, but also has
additional logical constructs that work in support of the central idea. Indent
is one program that falls in this category and is discussed in further detail in
Section 6.2.2.

As an answer to RQ2.1, the study finds that most programs contain mul-
tiple coherent clusters. Furthermore, the visual study reveals that a third of
the programs have multiple large coherent clusters. Only three programs copia,
gnuedma, and which show the presence of only a single (overwhelming) cluster
covering most of the program. Having shown that coherent clusters are preva-
lent in programs and that most programs have multiple significant clusters,
Chapter 6 presents a series of four case studies that looks at how program
structures are represented by these clusters.
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5.4 Cluster Splitting
Coherent clusters are a stricter form of same-slice clusters, in fact, the in-
tersection of a same-backward-slice cluster with a same-forward-slice cluster
will produce a coherent MDS and if the intersection is not empty, a coher-
ent cluster. This often leads to observed splitting of the same-backward-slice
clusters and same-forward-slice clusters. This splitting can be seen visually in
the B-SCG for bc (Figure 5.2a), which includes a large same-backward-slice
cluster (the grey landscape) that runs from 10% to 65% on the horizontal axis.
The statements that make up this same-backward-slice cluster break in two
coherent-slice clusters (the dashed landscape): the first runs from 10% to 35%
and the second from 35% to 65%. Since these two coherent-slice clusters com-
prise the same statements (the same segment of the x-axis) they represent a
splitting of the single same-backward-slice cluster. This splitting phenomenon
is found to be very common and almost all programs exhibit this phenomenon
in either their B-SCG or F-SCG. It should be noted that it is possible for
same-backward-slice and same-forward-slice clusters for the same program to
have different size and frequency, and thereby capture different properties of
the program.

5.5 Impact of Pointer Analysis Precision
Recall that the definition of a coherent dependence cluster is based on an
underlying depends-on relation, which is approximated using program slicing.
Pointer analysis plays a key role in the precision of slicing and the interplay
between pointer analysis and downstream dependence analysis precision is com-
plex [Shapiro and Horwitz, 1997]. To understand how pointer analysis precision
impacts the clustering of the programs we study the effect in this section.

Usually, one would choose the pointer analysis with the highest precision
but there may be situations where this is not possible and one has to revert to
lower precision analysis. This section presents a study on the effect of various
levels of pointer analysis precision on the size of slices and subsequently on
coherent clusters. It addresses research question RQ2.2 What is the effect of
pointer analysis precision on coherent clusters?

CodeSurfer provides three levels of pointer analysis precision (Low,
Medium, and High) that provide increasingly precise points-to information at
the expense of additional memory and analysis time. The Low setting uses a
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minimal pointer analysis that assumes every pointer may point to every object
that has its address taken (variable or function). At the Medium and High
settings, CodeSurfer performs extensive pointer analysis using the algorithm
proposed by Fahndrich et al. [1998], which implements a variant of Andersen’s
pointer analysis algorithm [Andersen, 1994] (this includes parameter aliasing).
At the Medium setting, fields of a structure are not distinguished while the
High setting distinguishes structure fields. The High setting should produce
the most precise slices but requires more memory and time during SDG con-
struction, which puts a functional limit on the size and complexity of the
programs that can be handled by CodeSurfer. There is no automatic way to
determine whether the slices are correct and precise, Weiser [1984] considers
smaller slices to be better. Slice size is often used to measure the impact of
the analysis precision [Shapiro and Horwitz, 1997], similarly we also use slice
size as a measure of precision.

The study compares slice and cluster size for CodeSurfer’s three precision
options (Low, Medium, High) to understand the impact of pointer analysis
precision on slice and cluster size. The results are shown in Table 5.1. Column
1 lists the programs and the other columns present the average slice size, maxi-
mum slice size, average cluster size, and maximum cluster size, respectively, for
each of the three precision settings. The results for average slice size deviation
and largest cluster size deviation are visualised in Figures 5.7 and 5.8. The
graphs use the High setting as the base line and show the percentage deviation
when using the Low and Medium settings.

Figure 5.7 shows the average slice size deviation when using the lower
two settings compared to the highest. On average, the Low setting produces
slices that are 14% larger than the High setting. Program userv has the largest
deviation of 37% when using the Low setting. For example, in userv the minimal
pointer analysis fails to recognise that the function pointer oip can never point
to functions sighandler_alrm and sighandler_child and includes them as called
functions at call sites using *oip, increasing slice size significantly. In all 30
programs, the Low setting yields larger slices compared to the High setting.

The Medium setting always yields smaller slices when compared to the
Low setting. For eight programs, the Medium setting produces the same av-
erage slice size as the High setting. For the remaining programs the Medium
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Figure 5.7: Percentage deviation of average slice size for Low and Medium
CodeSurfer pointer analysis settings

Figure 5.8: Percentage deviation of largest cluster size for Low and Medium
CodeSurfer pointer analysis settings

setting produces slices that are on average 4% larger than when using the High
setting. The difference in slice size occurs because the Medium setting does not
differentiate between structure fields, which the High setting does. The largest
deviation is seen in findutils at 34%. With the Medium setting, the structure
fields (options, regex_map, stat_buf and state) of findutils are lumped together as
if each structure were a scalar variable, resulting in larger, less precise, slices.

The increase in slice size observed is expected to result in larger clusters
due to the loss of precision. The remainder of this section studies the effect
of pointer analysis on cluster size. Figure 5.8 visualises the deviation of the
largest coherent cluster size when using the lower two settings compared to the
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highest. The graph shows that the size of the largest coherent clusters found
when using the lower settings is larger in most of the programs. On average
there is a 22% increase in the size of the largest coherent cluster when using
the Low setting and a 10% increase when using the Medium setting. In a2ps
and cflow the size of the largest cluster increases over 100% when using the
Medium setting and over 150% when using the Low setting.

The B-SCGs for a2ps for the three settings is shown in Figure 5.9a. In the
graphs it is seen that the slice sizes get smaller and have increased steps in the
(black) landscape indicating that they become more precise. The red landscape
shows that there is a large coherent cluster detected when using the Low setting
running from approx. 60% to 85% on the x-axis. This cluster drops in size
when using the Medium setting. At the High setting this coherent cluster
breaks up into multiple smaller clusters which causes a drop in the cluster
sizes.

Low Medium High
(a) a2ps
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Figure 5.9: SCGs for Low, Medium and High pointer settings of CodeSurfer
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In the SCGs for cflow (Figure 5.9b) a similar drop in the slice size and
cluster size is observed. However, unlike a2ps the large coherent cluster does
not break into smaller clusters but only drops in size. The largest cluster when
using the Low setting runs from 60% to 85% on the x-axis. This cluster reduces
in size and shifts position running 30% to 45% x-axis when using the Medium
setting. The cluster further drops in size down to 5% running 25% to 30% on
the x-axis when using the High setting. In this case the largest cluster has a
significant drop in size but does not break into multiple smaller clusters.

f6(x) {
f = *p(42, 4);
return f;

}

Figure 5.10: Replacement for coherent cluster example

Surprisingly, Figure 5.8 also shows seven programs where the largest co-
herent cluster size actually increases when using the highest pointer analysis
setting on CodeSurfer. Figure 5.9c shows the B-SCGs for acm which falls in
this category. This counter-intuitive result is seen only when the more precise
analysis determines that certain functions cannot be called and thus excludes
them from the slice. Although in all such instances slices get smaller, the
clusters may grow if the smaller slices match other slices already forming a
cluster.

For example, consider replacing function f6 in Figure 3.9 with the code
shown in Figure 5.10, where f depends on a function call to a function referenced
through the function pointer p. Assume that the highest precision pointer
analysis determines that p does not point to f2 and therefore there is no call to
f2 or any other function from f6. The higher precision analysis would therefore
determine that the forward slices and backward slices of a, b and c are equal,
hence grouping these three vertices in a coherent cluster. Whereas the lower
precision is unable to determine that p cannot point to f2, the backward slice
on f will conservatively include b. This will lead the higher precision analysis to
determine that the set of vertices {a, b, c} are one coherent cluster whereas the
lower precision analysis include only set of vertices {a, c} in the same coherent
cluster.

Although we do not explicitly report the project build times on CodeSurfer
and the clustering runtimes for the lower settings, it has been our experience
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that in the majority of the cases the build times for the lower settings were
smaller. However, as lower pointer analysis settings yield large points-to sets
and subsequently larger slices, the clustering runtimes were higher than when
using the highest setting. Moreover, in some cases with lower settings there
was an explosive growth in summary edge generation which resulted in excep-
tionally high project build times and clustering runtimes.

As an answer to RQ2.2, we find that in the majority of the cases the
Medium and Low settings result in larger coherent clusters when compared to
the High setting. For the remaining cases we have identified valid scenarios
where more precise pointer analysis can result in larger coherent clusters. The
results also confirm that a more precise pointer analysis leads to more precise
(smaller) slices. Because it gives the most precise slices and most accurate
clusters, the experiments in this thesis uses the highest CodeSurfer pointer
analysis setting.

5.6 Cluster Visualisation Tool
This section gives details of the decluvi tool. It describes the design consider-
ations, multi-level visualisations and the evaluation of the interface.

5.6.1 Design Consideration
Several guidelines have been proposed for the construction of effective visual-
isation tools. Two of these are used to ensure that decluvi is of high-quality.
First is the framework proposed by Maletic et al. [2002] and second is the inter-
face requirements proposed by Shneiderman [1996]. Maletic et al.’s framework
considers the why, who, what, where, and how of a visualisation. For decluvi
this leads to the following:

Tasks – why will the visualisation help?
The visualisation helps to quickly identify clusters of dependence and
their interaction in programs. In Chapter 6 we will see that the visual-
isation helps to understand program structure and helps in highlighting
potential re-structuring opportunities to improve cohesion and design ab-
straction. The visualisation therefore makes it easier to understand and
modify programs.

Audience – who will make use of the visualisation?
Developers will use the visualisation to gain an understanding of the
functional components or the logical program structure where they are
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unfamiliar with the system. Others will be able to use the visualisation
to check if their implementation matches their documented architecture
and to identify potential problems in the structure. Maintainers will also
use the visualisation to gain overall understanding of the program and
estimate the impact of changes.

Target – what data source is to be represented?
Details of dependence clusters calculated from program.

Medium – where to represent the visualisation?
The visualisation will involve highly interactive computer graphics being
displayed on a colour monitor.

Representation – how to represent the data?
The representation of the data will be through various abstract and con-
crete views, allowing both an overall architectural understanding of the
system and also details of the implementation.

Shneiderman’s requirements are aimed at providing high-quality inter-
faces for visualisation tools. They include Overview, Zoom, Filter, Details-
on-demand, Relate, History and Extract. These features were used to guide
the development of decluvi and are presented in Section 5.6.4 making it possible
to evaluate the tool’s interface against these requirements.

5.6.2 Multi-level Views
Cluster visualisations such as the SCG can provide an engineer a quick high-
level overview of how difficult a program will be to work with. High-level
abstraction can cope with a tremendous amount of code (millions of lines) and
reveal the high-level structure of a program. This overview can help an engineer
form a mental model of a program’s structure and consequently aid in tasks
such as comprehension, maintenance, and reverse engineering [Balzer et al.,
2004]. However, the high-level nature of the abstraction implies less detail.
Furthermore, programmers are most comfortable in the spatial structure in
which they read and write (i.e., that of source code). To accommodate the
need for multiple levels of abstraction, the cluster visualisation tool decluvi
provides four views: a Heat Map view and three different source-code views.
The latter three include the System View, the File View, and the Source View,
which allow a program’s clusters to be viewed at increasing levels of detail.
A common colouring scheme is used in all four views to help tie the different
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Figure 5.11: Heat Map View for bc

views together.
Heat Map View
The Heat Map view aids an engineer in creating a mental model of the overall
system. This overview can be traced to the source code using the other three
views. The Heat Map provides a starting point that displays an overview of all
the clusters using colour to distinguish clusters of varying sizes. The view also
displays additional statistics such as the size of the backward and forward slices
for each coherent cluster and the number of clusters of each size. Figure 5.11
shows the Heat Map for bc, which has been annotated for the purpose of this
discussion. The three labels 1a, 1b, and 1c highlight statistics for the largest
cluster (Cluster 1) of the program, whereas 2a, 2b, and 2c highlight statistics of
the 2nd largest cluster (Cluster 2) and the 3’s the 3rd largest cluster (Cluster 3).
Starting from the left of the Heat Map, using one pixel per cluster, horizontal
lines (limited to 100 pixels) show the number of clusters that exist for each
cluster size. This helps identify cases where there are multiple clusters of the
same size. For example, the single dot next to the labels 1a, 2a and 3a depict
that there is one cluster for each of the three largest sizes. A single occurrence
is common for large clusters, but not for small clusters as illustrated by the long
line at the top left of the Heat Map, which indicates multiple (uninteresting)
clusters of size one.
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To the right of the cluster counts is the actual Heat Map (colour spectrum)
showing cluster sizes from small to large reading from top to bottom using
colours varying from blue to red. In grey scale this appear as shades of grey,
with lighter shades (corresponding to blue) representing smaller clusters and
darker shades (corresponding to red) representing larger clusters. Red is used
for larger clusters as they are more likely to encompass complex functionality,
making them more important “hot topics.”

A numeric scale on the right of the Heat Map shows the cluster size (mea-
sured in SDG vertices). For program bc, the scale runs from 1 – 2432, depicting
the sizes of the smallest cluster, displayed using light blue (light grey), and the
largest cluster, displayed in bright red (dark grey).

Finally, on the right of the number scale, two slice size statistics are dis-
played: |BSlice| and |FSlice|, which show the sizes of the backward and forward
slices for the vertices that form a coherent cluster. The sizes are shown as a
percentage of the SDG’s vertex count, with the separation of the vertical bars
representing 10% increments. For example, Cluster 1’s BSlice (1b) and FSlice
(1c) include approximately 80% and 90% of the program’s SDG vertices.

System View

Turning to decluvi’s three source-code views, the System View is at the highest
level of abstraction. Each file containing executable source code is abstracted
into a column. For bc this yields the nine columns seen in Figure 5.12. The
name of the file appears at the top of each column, colour coded to reflect
the size of the largest cluster found within the file. The vertical length of a
column represents the length of the corresponding source file. To keep the view
compact, each line of pixels in a column summarises multiple source lines. For
moderate sized systems, such as the case studies considered herein, each pixel
line represents about eight source code lines. The colour of each line reflects
the largest cluster found among the summarised source lines, with light grey
denoting source code that does not include any executable code. Finally, the
numbers at the bottom of each column indicate the presence of the top 10
clusters in the file, where 1 denotes the largest cluster and 10 is the 10th largest
cluster. Although there may be other smaller clusters in a file, numbers are
used to depict only the ten largest clusters because they are most likely to be
of interest. In the case studies considered in Chapter 6, only the five largest
coherent clusters are ever found to be interesting.
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Figure 5.12: System View for the Program bc showing each file using one column and each
line of pixels summarising eight source lines. Blue colour (medium grey in black & white)
represent lines whose vertices are part of smaller size clusters than those in red colour (dark
grey), while lines not containing any executable lines are always shown in light grey.
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File View

The File View, illustrated in Figure 5.13, is at a lower level of abstraction than
the System View. It essentially zooms in on a single column of the System View.
In this view, each pixel line corresponds to one line of source code. The pixel
lines are indented to mimic the indentation of the source lines and the number
of pixels used to draw each line corresponds to the number of characters in the
represented source code line. This makes it easier to relate this view to actual
source code. The colour of a pixel line depicts the size of the largest coherent
cluster formed by the SDG vertices from the corresponding source code line.
Figure 5.13 shows the File View of bc’s file util.c, filtered to show only the two
largest coherent clusters, while smaller clusters and non-executable lines are
shown in light grey.

Source View

While the first two views aid in locating parts of the system involved in one or
more clusters, the Source View allows a programmer to see the actual source
code lines that makes up each cluster. This can be useful in addressing ques-
tions such as Why is a cluster formed? What binds a cluster together? and
Is there unwanted/unnecessary dependence? The Source View, illustrated in
Figure 5.14, is a concrete view that maps the clusters onto actual source code
lines. The lines are displayed in the same spatial context in which they were
written, line colour depicts the size of the largest cluster to which the SDG
vertices representing the line belong. Figure 5.14 shows Lines 241–257 of bc’s
file util.c, which has again been filtered to show only the two largest coherent
clusters. The lines of code whose corresponding SDG vertices are part of the
largest cluster are shown in red (dark grey) and those lines whose SDG vertices
are part of the second largest cluster are shown in blue (medium grey). Other
lines that do not include any executable code or whose SDG vertices are not
part of the two largest clusters are shown in light grey. On the left of each line
is a line tag with the format a : b|c/d, which presents the line number (a), the
cluster number (b), and an identification c/d for the cth of d clusters having a
given size. For example, in Figure 5.14, Lines 250 and 253 are both part of a
20th largest cluster (clusters with same size have the same rank) as indicated
by the value of b; however they belong to different clusters as indicated by the
differing values of c in their line tags.
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Figure 5.13: File View for the file util.c of Program bc. Each line of pixels correspond to one
source code line. Blue (medium grey in black & white) represents lines with vertices belonging
to the 2nd largest cluster and red (dark grey) represents lines with vertices belonging to the
largest cluster. The rectangle marks function init_gen, part of both clusters.
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Figure 5.14: Source View showing function init_gen in file util.c of Program bc. The
decluvi options are set to filter out all but the two largest clusters thus blue (medium grey
in black & white) represents lines from the 2nd largest cluster and red (dark grey) lines from
the largest cluster. All other lines including those with no executable code are shown in light
grey.

5.6.3 Other features
Decluvi has features such as filtering and relative colouring. These features
help to isolate and focus on a set of clusters of interest. Filtering allows a
range of cluster sizes of interest to be defined. Only clusters whose size falls
within the filtered range are shown using the Heat Map colours. Those outside
the specified range along with non-executable lines of code are shown in light
grey where in grayscale they appear in the lightest shade of grey. The filtering
system incorporates a feature to hide non-executable lines of code as well as
clusters whose size falls outside the specified range. In addition, relative colour-
ing allows the Heat Map colours to be automatically adjusted to fit within a
defined cluster size range. Relative colouring along with filtering overcomes the
problem where clusters of similar sizes are represented using similar colours,
making them indistinguishable.

5.6.4 Decluvi’s Interface Evaluation
This subsection provides an evaluation of decluvi’s user interface against the
list of features suggested by Shneiderman [1996].

Overview – Gain an overview of the entire collection of data that is repre-
sented.
The abstract Heat-Map View and compact System View provide an
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overview of the clustering for an entire system.
Zoom – Zoom in on items of interest.

From the System View it is possible to zoom into individual files in either
a lower level of abstraction (File View) or the concrete (Source View)
form.

Filter – Filter out uninteresting items.
The control panel, shown in Figure 5.15, includes sliders and ‘fast cluster
selection’ buttons. These allow a user to filter out uninteresting clusters
and thus focus only on clusters of interest. The tool also provides option
to hide non-executable lines and clusters whose size fall outside a specified
range.

Details-on-demand – Select an item or group and obtain details when
needed.
Although details for all items shown in the visualisation cannot be ob-
tained, cluster related details are available. For example, clicking on a
column of the System View opens the File View for the corresponding
file and clicking on a line in the File View highlights the corresponding
line in the Source View. Finally, the fast cluster selection buttons allow
the user to demand and get details on a given cluster.

Relate – Clear relationship between the various views.
There is a hierarchical relationship between the various views provided by
decluvi. Common colouring is used throughout to tie abstract elements
of the higher level views with the concrete source lines in the Source
View. In addition, File View and Source View preserve the layout of the
underlying source code (e.g., the indentation of the lines).

History – Keep history of actions to support undo, replay and progressive re-
finement.
Decluvi currently meets this requirement partially. The various views of
the tool retain their settings and viewing positions when toggled. How-
ever, current version of decluvi lacks support for undo, replay, or history.

Extract – Allow extraction of sub-collections and of the query parameters.
The tool provides support for exporting slice/cluster statistics.
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Figure 5.15: Decluvi control panel

5.7 Related Work
This review does not attempt to survey the area of software visualisation but
concentrates on the techniques which is the basis of the dependence cluster
visualisation presented in this chapter.

The Seesoft System [Eick et al., 1992] is a seminal tool for visualising
line oriented software statistics. The system pioneered the idea of abstracting
source code view to represent each source code line using a line of pixels.
This allowed for visualisation of up to 50,000 lines of code on a single screen.
The rows were coloured to represent the values of statistics being visualised.
The system pioneered four key ideas: reduced representation, colouring by
statistic, direct manipulation, and capability to read actual code. The reduced
representation was achieved by displaying files as columns and lines of code
as thin rows. The system was originally envisioned to help in a lot of areas
including program understanding. Ball and Eick [1994] also presented SeeSlice,
a tool for interactive slicing. This was the first slicing visualisation system that
allowed for a global overview of a program. Our visualisation inherits these
approaches and extends them to be effective for dependence clusters.

The approach pioneered by Seesoft was also used in many other visualisa-
tion tools. The SeeSys System [Baker and Eick, 1995] was developed to localize
error-prone code through visualisation of ‘bug fix’ statistics. The tool extended
the Seesoft approach by introducing tree maps to show hierarchical data. It
displayed code organised hierarchically into subsystems, directories, and files
by representing the whole system as a rectangle and recursively represent-
ing the various sub-units with interior rectangles. The area of each rectangle
was used to reflect a statistic associated with its sub-unit. Tarantula [Jones
et al., May 2001] also employs the “line of pixel” style code view introduced
by Seesoft. The tool was aimed at visualising the pass/fail of test cases. It
extended the idea of using solid colours to represent statistics by using hue and
brightness to encode additional information. CVSscan [Voinea et al., 2005]
also inherited and extended the “line of pixel” based representation by intro-
ducing “dense pixel display” to show the overall evolution of programs. The
tool has a bi-level code display that provide views of both the contents of a
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code fragment and its evolution over time. Source Viewer 3D [Marcus et al.,
2003] is a software visualisation framework that is based on Seesoft and adds a
third dimension (3D) to the original approach allowing additional statistics to
be visualised. Augur [Froehlich and Dourish, 2004] is also based on the line-
oriented approach of Seesoft. The primary view is spatially organised as in
Seesoft with additional columns to display multiple statistics for each line. As-
pect Browser (Nebulous) [Yoshikiyo et al., 1999] provides a global view of how
the various aspect entries cross-cut the source code using “line of pixels” view
and uses Aspect Emacs to get the statistics and provide the concrete source
code view. BLOOM [Reiss, 2001b] uses the BEE/HIVE [Reiss, 2001a] architec-
ture, a powerful back-end that supports a variety of high-density, high-quality
visualisation one of which (File Maps) is based on the Seesoft layout.

The final set of systems discussed are those that aim to help in reverse en-
gineering but are not based on the “line of pixels” approach. Most of these tools
focus on visualising high-level system abstractions (often referred to as ‘clus-
tering’ or ‘aggregation’) such as classes, modules, and packages, using a graph-
based approach. Rigi [Storey et al., 1997] is a reverse engineering tool that
uses Simple Hierarchical Perspective (SHriMP) views, employs fisheye views of
nested graphs. Creole1 is an open-source plugin for the Eclipse (IDE) based on
SHriMP. Tools such as GOOSE2, Sotograph3 and VizzAnalyzer [Panas et al.,
2004] work on the class and method levels allowing information aggregation to
form higher levels of abstractions. There are tools (Borland Together, Rational
Rose, ESS-Model, BlueJ, Fujaba, GoVisual [Diehl, 2005]) which also help in
reverse engineering by producing UML diagrams from source code.

5.8 Summary
This chapter firstly introduces the graph-based visualisations for dependence
clusters and uses these visualisations to identify patterns of clustering among
the subject programs. The study shows that most programs contain multiple
large clusters making them worthy of further detailed study. Four subject
programs showing interesting patterns are identified for further in-depth study.

This is followed by a study on the effect of varying the precision level of
CodeSurfer’s pointer analysis on size and frequency of coherent clusters. The

1http://www.thechiselgroup.org/creole
2http://esche.fzi.de/PROSTextern/ software/goose/index.html
3http:// www.software-tomography.com/html/sotograph.html



5.8. Summary 104

various levels of pointer analysis offer a trade-off between required resources
and accuracy. The results show that the highest level of pointer analysis pre-
cision results in smaller slices and clusters, which is considered to be more
precise. Furthermore, contrary to common intuition, it was found that using
the lower pointer analysis settings often required larger SDG build times be-
cause of explosion in the number of summary edges that need to be calculated.
The chapter finally discusses the multi-level cluster visualisation tool decluvi.
The following chapter uses visualisations generated from decluvi to identify
program structure and shows other applications of the cluster visualisation.
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Chapter 6

Program Structure and
Coherent Clusters

6.1 Overview
This chapter presents discussion of how coherent clusters map to the program
structure. The chapter presents a series of four case studies of programs taken
from the large and huge categories defined in Section 4.7. The case studies aim
to reveal how coherent clusters in the programs compare against the logical
structure identified by manual inspection of the systems. The manual exami-
nation is done by experts who have several years of software development and
program analysis experience.

Following the case studies, a quantitative study of how coherent clusters
and functions overlap. More formally, this chapter addresses the following
research questions:

RQ3.1 Which structures within a program can coherent cluster analysis re-
veal?

RQ3.2 How do functions and clusters overlap, and do overlap and size corre-
late?

6.2 Coherent Cluster and program decompo-
sition

This section presents four case studies acct, indent, bc and copia. The case stud-
ies form a major contribution of this thesis and collectively addresses research
question RQ3.1 Which structures within a program can coherent cluster anal-



6.2. Coherent Cluster and program decomposition 106

ysis reveal? The programs have been chosen to represent the large and huge
groups identified in the previous chapter. Three programs are taken from the
large group as majority of the programs fall in this category, and one from the
huge group as it has only three programs. Each of the three programs from
the large group were chosen because they exhibit interesting patterns. Acct
has multiple coherent clusters visible in its profile and has the smallest large
cluster in the group, bc has multiple large coherent clusters, and, copia has only
a single large coherent cluster dominating the entire landscape.

It should be noted that the following case studies perform an in-depth
qualitative study of the systems to identify mappings between coherent clusters
and logical program structure. Although multiple smaller clusters were found
in the systems, they were too small to map to logical structures of the programs
and thus were ignored.

6.2.1 Case Study: acct
The first of the series of case studies is acct, an open-source program used for
monitoring and printing statistics about users and processes. The program
acct is one of the smaller programs with 2,600 LoC and 1,558 SLoC from
which CodeSurfer produced 2,834 slices. The program has seven C files, two
of which, getopt.c and getopt1.c, contain only conditionally included functions.
These functions provide support for command-line argument processing and
are included if needed library code is missing.

Table 6.1 shows the statistics for the five largest clusters of acct. Column
1 gives the cluster number, where 1 is the largest and 5 is the 5th largest cluster
measured using the number of vertices. Columns 2 and 3 show the size of the
cluster as a percentage of the program’s vertices and actual vertex count, as
well as the line count. Columns 4 and 5 show the number of files and functions
where the cluster is found. The cluster sizes range from 11.4% to 2.4%. These
five clusters can be readily identified in the Heat-Map visualisation (Figure 6.1)
of decluvi. The rest of the clusters are very small (less than 2% or 30 vertices)
in size and are thus of little interest.

The B-SCG for acct (row one of Figure 5.5) shows the existence of these five
coherent clusters along with other same-slice clusters. Splitting of the same-slice
cluster is evident in the SCG. Splitting occurs when the vertices of a same-
slice cluster become part of different coherent clusters. This happens when
vertices have either the same backward slice or the same forward slice but not
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Figure 6.1: Heat Map View for acct

Cluster Cluster Size Files Functions
% vertices/lines spanned spanned

1 11.4% 162/88 4 6
2 7.2% 102/56 1 2
3 4.9% 69/30 3 4
4 2.8% 40/23 2 3
5 2.4% 34/25 1 1

Table 6.1: acct’s cluster statistics

both. This is because either same-backward-slice or same-forward-slice clusters
only capture one of the two external properties captured by coherent clusters
(Equation 4.1). In acct’s B-SCG the vertices of the largest same-backward-slice
cluster spanning the x-axis from 60% to 75% are not part of the same coherent
cluster. This is because the vertices do not share the same forward slice which
is also a requirement for coherent clusters. This phenomenon is common in the
programs studied and is found in both same-backward-slice and same-forward-
slice clusters. This is another reason why coherent clusters are often smaller
in size then same-slice clusters.

Decluvi visualisation (not shown) of acct reveals that the largest cluster
spans four files (file_rd.c, common.c, ac.c, and utmp_rd.c), the 2nd largest clus-
ter spans only a single file (hashtab.c), the 3rd largest cluster spans three files
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(file_rd.c, ac.c, and hashtab.c), the 4th largest cluster spans two files (ac.c and
hashtab.c), while the 5th largest cluster includes parts of ac.c only.

The largest cluster of acct is spread over six functions, log_in, log_out,
file_open, file_reader_get_entry, bad_utmp_record and utmp_get_entry. These
functions are responsible for putting accounting records into the hash table used
by the program, accessing user-defined files, and reading entries from the file.
Thus, the purpose of the code in this cluster is to track user login and logout
events.

The second largest cluster is spread over two functions hashtab_create and
hashtab_resize. These functions are responsible for creating fresh hash tables and
resizing existing hash tables when the number of entries becomes too large. The
purpose of the code in this cluster is the memory management in support of
the program’s main data structure.

The third largest cluster is spread over four functions: hashtab_set_value,
log_everyone_out, update_user_time, and hashtab_create. These functions are
responsible for setting values of an entry, updating all the statistics for users,
and resetting the tables. The purpose of the code from this cluster is the
modification of the user accounting data.

The fourth cluster is spread over three functions: hashtab_delete,
do_statistics, and hashtab_find. These functions are responsible for removing
entries from the hash table, printing out statistics for users and finding entries
in the hash table. The purpose of the code from this cluster is maintaining
user accounting data and printing results.

The fifth cluster is contained within the function main. This cluster is
formed due to the use of a while loop containing various cases based on input
to the program. Because of the conservative nature of static analysis, all the
code within the loop is part of the same cluster.

Finally, it is interesting to note that functions from the same file or with
similar names do not necessarily belong to the same cluster. Intuitively, it can
be presumed that functions that have similar names or prefixes work together
to provide some common functionality. In this case, six functions that have
the same common prefix “hashtab” all perform operations on the hash table.
However, these six functions are not part of the same cluster. Instead the
functions that work together to provide a particular functionality are found in
the same cluster. The clusters help identify functionality which is not obvious
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from the name of program artefacts such as functions and files. As an answer
to RQ3.1, in this case study we find that each of the top five clusters map to
specific logical functionality of the program.

6.2.2 Case Study: indent

Cluster Cluster Size Files Functions
% vertices/lines spanned spanned

1 52.1% 3930/2546 7 54
2 3.0% 223/136 3 7
3 1.9% 144/72 1 6
4 1.3% 101/54 1 5
5 1.1% 83/58 1 1

Table 6.2: indent’s cluster statistics

The next case study uses indent to further support the answer found for
RQ3.1 in the acct case study. The characteristics of indent are very different
from those of acct as indent has a very large dominant coherent cluster (52%)
whereas acct has multiple smaller clusters with the largest being 11%. We
include indent as a case study to ensure that the answer for RQ3.1 is derived
from programs with different cluster profiles and sizes giving confidence as to
the generality of the answer.

Indent is a Unix utility used to format C source code. It consists of 6,978
LoC with 7,543 vertices in the SDG produced by CodeSurfer. Table 6.2 shows
statistics of the five largest clusters found in the program. The BSCG for indent
is shown in the first row of Figure 5.6.

Indent has one extremely large coherent cluster that spans 52.1% of the
program’s vertices. The cluster is formed of vertices from 54 functions spread
over 7 source files. This cluster captures most of the logical functionalities of
the program. Out of the 54 functions, 26 begin with the common prefix of “han-
dle_token”. These 26 functions are individually responsible for handling a spe-
cific token during the formatting process. For example, handle_token_colon, han-
dle_token_comma, handle_token_comment, and handle_token_lbrace are responsi-
ble for handling the colon, comma, comment, and left brace tokens, respec-
tively.

This cluster also includes multiple handler functions that check the size of
the code and labels being handled, such as check_code_size and check_lab_size.
Others, such as search_brace, sw_buffer, print_comment, and reduce, help with
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tracking braces and comments in code. The cluster also spans the main loop
of indent (indent_main_loop) that repeatedly calls the parser function parse.

Finally, the cluster consists of code for outputting formatted lines such as
the functions better_break, computer_code_target, dump_line, dump_line_code,
dump_line_label, inhibit_indenting, is_comment_start, output_line_length and
slip_horiz_space, and ones that perform flag and memory management
(clear_buf_break_list, fill_buffer and set_priority).

Cluster 1 therefore consists of the main functionality of this program and
provides support for parsing, handling tokens, associated memory management,
and output. The parsing, handling of individual tokens and associated mem-
ory management are highly inter-twined. For example, the handling of each
individual token is dictated by operations of indent and closely depends on the
parsing. This code cannot easily be decoupled and, for example, reused. Sim-
ilarly the memory management code is specific to the data structures used by
indent resulting in these many logical constructs to become part of the same
cluster.

The second largest coherent cluster consists of 7 functions from 3 source
files. These functions handle the arguments and parameters passed to indent.
For example, set_option and option_prefix along with the helper function eqin to
check and verify that the options or parameters passed to indent are valid. When
options are specified without the required arguments, the function arg_missing
produces an error message by invoking usage followed by a call to DieError to
terminate the program.

Cluster 3, 4 and 5 are less than 3% of the program and are too small
to warrant a detailed discussion. Cluster 3 includes 6 functions that generate
numbered/un-numbered backup for subject files. Cluster 4 has functions for
reading and ignoring comments. Cluster 5 consists of a single function that
reinitialises the parser and associated data structures.

The case study of indent further illustrates that coherent clusters can cap-
ture the program’s logical structure as an answer to research question RQ3.1.
However, in cases such as this where the internal functionality is tightly knit,
a single large coherent cluster maps to the program’s core functionality.

6.2.3 Case Study: bc
The third case study in this series is bc, an open-source calculator, which
consists of 9,438 LoC and 5,450 SLoC. The program has nine C files from
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which CodeSurfer produced 15,076 slices (backward and forward).
Analysing bc’s SCG (row 4, Figure 5.5), two interesting observations can

be made. First, bc contains two large same-backward-slice clusters visible
in the light grey landscapes as opposed to the three large coherent clusters.
Second, looking at the B-SCG, it can be seen that the x-axis range spanned
by the largest same-backward-slice cluster is occupied by the top two coherent
clusters shown in the dashed red (dark grey) landscape. This indicates that
the same-backward-slice cluster splits into the two coherent clusters.

The statistics for bc’s top five clusters are given in Table 6.3. Sizes of
these five clusters range from 32.3% through to 1.4% of the program. Clusters
six onwards are less than 1% of the program. The Project View (Figure 5.12)
shows their distribution over the source files.

Cluster Cluster Size Files Functions
% vertices/lines spanned spanned

1 32.3% 2432/1411 7 54
2 22.0% 1655/999 5 23
3 13.3% 1003/447 1 15
4 1.6% 117/49 1 2
5 1.4% 102/44 1 1

Table 6.3: bc’s cluster statistics

In more detail, Cluster 1 spans all of bc’s files except for scan.c and bc.c.
This cluster encompasses the core functionality of the program – loading and
handling of equations, converting to bc’s own number format, performing cal-
culations, and accumulating results. Cluster 2 spans five files, util.c, execute.c,
main.c, scan.c, and bc.c. The majority of the cluster is distributed over the lat-
ter two files. Even more interestingly, the source code of these two files (scan.c
and bc.c) map only to cluster 2 and none of the other top five clusters. This
indicates a clear purpose to the code in these files. These two files are solely
used for lexical analysis and parsing of equations. To aid in this task, some
utility functions from util.c are employed. Only five lines of code in execute.c
are also part of Cluster 2 and are used for flushing output and clearing interrupt
signals. The third cluster is completely contained within the file number.c. It
encompasses functions such as _bc_do_sub, _bc_init_num, _bc_do_compare,
_bc_do_add, _bc_simp_mul, _bc_shift_addsub, and _bc_rm_leading_zeros,
which are responsible for initialising bc’s number formatter, performing com-
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parisons, modulo and other arithmetic operations. Clusters 4 and 5 are also
completely contained within number.c. These clusters encompass functions to
perform bcd operations for base ten numbers and arithmetic division, respec-
tively.

As an answer to RQ3.1, the results of the cluster visualisations for bc re-
veal its high-level structure. This aids an engineer in understanding how the
artefacts (e.g., functions and files) of the program interact, thus aiding in pro-
gram comprehension. The remainder of this subsection illustrates a side-effect
of decluvi’s multi-level visualisation, how it can help find potential problems
with the structure of a program aiding in program maintenance.

Util.c consists of small utility functions called from various parts of the
program. This file contains code from Clusters 1 and 2 (Figure 5.12). Five
of the utility functions belong with Cluster 1, while six belong with Cluster
2. Furthermore, Figure 5.13 shows that the distribution of the two clusters
in red (dark grey) and blue (medium grey) within the file are well separated.
Both clusters do not occur together inside any function with the exception
of init_gen (highlighted by the rectangle in first column of Figure 5.13). The
other functions of util.c thus belong to either Cluster 1 or Cluster 2. Sepa-
rating these utility functions into two separate source files where each file is
dedicated to functions belonging to a single cluster would improve the code’s
logical separation and file-level cohesion. This would make the code easier to
understand and maintain at the expense of a very simple refactoring. In gen-
eral, this example illustrates how decluvi visualisation can provide an indicator
of potential points of code degradation during evolution.

Finally, the Code View for function init_gen shown in Figure 5.14 includes
Lines 244, 251, 254, and 255 in red (dark grey) from Cluster 1 and Lines 247,
248, 249, and 256 in blue (medium grey) from Cluster 2. Other lines, shown
in light grey, belong to smaller clusters and lines containing no executable
code. Ideally, clusters should capture a particular functionality; thus, functions
should generally not contain code from multiple clusters (unless perhaps the
clusters are completely contained within the function). Functions with code
from multiple clusters reduce code separation (hindering comprehension) and
increase the likelihood of ripple-effects [Black, 2001]. Like other initialisation
functions, bc’s init_gen is an exception to this guideline.

This case study not only provides support for the answer to research ques-
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Cluster Cluster Size Files Functions
number % vertices/lines spanned spanned

1 48% 1609/882 1 239
2 0.1% 4/2 1 1
3 0.1% 4/2 1 1
4 0.1% 4/2 1 1
5 0.1% 2/1 1 1

Table 6.4: copia’s cluster statistics

tion RQ3.1 found in previous case studies, but also illustrates that the visual-
isation is able to reveal structural defects in programs.

6.2.4 Case Study: copia
The final case study in this series is copia, an industrial program used by the
ESA to perform signal processing. Copia is the smallest program considered in
this series of case studies with 1,168 LoC and 1,111 SLoC all in a single C file.
Its largest coherent cluster covers 48% of the program. The program is at the
top of the group with large coherent clusters. CodeSurfer extracts 6,654 slices.

The B-SCG for copia is shown in Figure 6.2a. The single large coherent
cluster spanning 48% of the program is shown by the dashed red (dark grey) line
(running approx. from 2% to 50% on the x-axis). The plots for same-backward-
slice cluster sizes (light grey line) and the coherent cluster sizes (dashed line)
are identical. This is because the size of the coherent clusters are restricted
by the size of the same-backward-slice clusters. Although the plot for the size
of the backward slices (black line) seems to be the same from the 10% mark
to 95% mark on the x-axis, the slices are not exactly the same. Only vertices
plotted from 2% through to 50% have exactly same backward and forward slice
resulting in the large coherent cluster.

Table 6.4 shows statistics for the top five coherent clusters found in copia.
Other than the largest cluster which covers 48% of the program, the rest of
the clusters are extremely small. Clusters 2–5 include no more than 0.1% of
the program (four vertices) rendering them too small to be of interest. This
suggests a program with a single functionality or structure.

During analysis of copia using decluvi, the File View (Figure 6.3) reveals
an intriguing structure. There is a large block of code with the same spatial ar-
rangement (bounded by the dotted black rectangle in Figure 6.3) that belongs
to the largest cluster of the program. It is unusual for so many consecutive
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(a) Original (b) Modified
Figure 6.2: SCGs for the program copia

Figure 6.3: Decluvi’s File View for the file copia.c of Program copia. Each line
of pixels represent the cluster data for one source code line. The lines in red
(dark grey in black & white) are part of the largest cluster. The lines in blue
(medium grey) are part of smaller clusters. A rectangle highlights the switch
statement that holds the largest cluster together.
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source code lines to have nearly identical length and indentation. Inspection
of the source code reveals that this block of code is a switch statement han-
dling 234 cases. Further investigation shows that copia has 234 small func-
tions that eventually call one large function, seleziona, which in turn calls the
smaller functions effectively implementing a finite state machine. Each of the
smaller functions return a value that is the next state for the machine and
is used by the switch statement to call the appropriate next function. The
primary reason for the high level of dependence in the program lies with the
statement switch(next_state), which controls the calls to the smaller functions.
This causes what might be termed ‘conservative dependence analysis collat-
eral damage’ because the static analysis cannot determine that when function
f() returns the constant value 5 this leads the switch statement to eventually
invoke function g(). Instead, the analysis makes the conservative assumption
that a call to f() might be followed by a call to any of the functions called
in the switch statement, resulting in a mutual recursion involving most of the
program.

Although the coherent cluster still shows the structure of the program
and includes all these stub functions that work together, this is a clear case
of dependence pollution [Binkley and Harman, 2005b], which is avoidable. To
illustrate this, the code was re-factored to simulate the replacement of the in-
teger next_state with direct recursive function calls. The SCG for the modified
version of copia is shown in Figure 6.2b where the large cluster has clearly
disappeared. As a result of this reduction, the potential impact of changes to
the program will be greatly reduced, making it easier to understand and main-
tain. This is even further amplified for automatic static analysis tools such as
CodeSurfer. Of course, in order to do a proper re-factoring, the programmer
will have to consider ways in which the program can be re-written to change
the flow of control. Whether such a re-factoring is deemed cost-effective is a
decision that can only be taken by the engineers and managers responsible for
maintaining the program in question.

This case study reiterates the answer for RQ3.1 by showing the structure
and dependency within the program. It also identifies potential refactoring
points which can improve the performance of static analysis tools and make
the program easier to understand.
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6.3 Cluster and Function Mapping

The four case studies of this chapter provide a qualitative analysis of the map-
ping between clusters and functions, and show that dependence clusters do not
simply correspond to functional decomposition of programs but rather map
to higher-level logical structures. This section presents a quantitative study
of this mapping and addresses research question RQ3.2 How do functions and
clusters overlap, and do overlap and size correlate? For the purpose of this
discussion let C be the set of all coherent clusters, F the set of all functions,
cLargest the largest coherent cluster and fLargest the largest function, and
Overlap(c, f ) the intersection V (c) ∩ V (f ), where V (c) represents the set of
vertices in cluster c and V (f ) represents the set of vertices in function f .

Figures 6.4 and 6.5 show graphs comparing coherent cluster size to the
number of functions that the cluster overlaps. In the graphs, the x-axis shows
the function count while the y-axis shows the cluster size as a percentage of
the program. All the graphs show the same trend, the largest cluster overlaps
more functions than any other individual cluster. That is, ∀c∈C |{f ∈ F :
Overlap(c, f ) 6= ∅}| ≤ |{f ∈ F : Overlap(cLargest, f ) 6= ∅}|.

Figures 6.6 and 6.7 show graphs comparing function size to the number
of clusters that overlap the function. Intuitively, larger functions should have
more overlapping clusters. The x-axis shows a count of the clusters overlapped,
while the y-axis shows the size of the function as a percentage of program’s
size. Unlike the graphs in Figures 6.4 and 6.5, the trend of all the graphs
in Figures 6.6 and 6.7 do not agree. Here, acct is an exception. Its largest
function, main, overlaps more clusters than any other function in the program.
In all the remaining programs, the largest function does not have the maximum
number of clusters overlapping it. Still, overall it is not the case that the largest
function has the most overlapping clusters (i.e., ∀f∈F |{c ∈ C : Overlap(c, f) 6=
∅}| ≤ |{c ∈ C : Overlap(c, fLargest) 6= ∅}|).

As an answer to RQ3.2, the largest coherent cluster always overlaps more
functions than the other clusters. However, with the exception of acct, the
largest function is never overlapped by the highest number of clusters. The
study therefore finds support for the consistent overlap of the largest cluster
with the most functions, but not vice versa. This is also reflected in the case
studies where we found the largest five clusters in programs to be of importance.
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Figure 6.4: Cluster size vs. function count analysis
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Figure 6.5: Cluster size vs. function count analysis
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Figure 6.6: Function size vs. cluster count analysis
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Figure 6.7: Function size vs. cluster count analysis
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6.4 Related Work

Automatic feature location is an area that has seen significant research [Dit
et al., 2011]. There are interactive approaches where carefully designed test
cases are used to probe code to locate features [Wilde et al., 1992, Wilde and
Scully, 1995]. Semi-automated approaches also exist that helps build a ‘mental
map’ and locate features in code by identifying observable features triggered
by user [Eisenbarth et al., 2003]. There are automatic approaches for inferring
features from code, for example by studying transcripts of programmer inter-
action during development and debugging [Robillard and Murphy, 2003], and,
text-based independent component analysis [Grant et al., 2008]. Similarly we
use coherent clusters to highlight features and logical functions in programs.

Binkley et al. [2008a] study the relationship between concepts expressed in
source code and dependence. Their work found that for domain-level concepts
expressed in programs, it is likely that such concepts would have a degree of
semantic cohesion. This cohesion is often represented as dependence between
statements all of which contribute to the computation of the same concept.
They also find that code associated with concepts has a greater degree of co-
herence, with tighter dependence. Li [2009] proposed a framework for combin-
ing low-level program slicing and high-level concepts assignments and defined
metrics for evaluating concept extension, concept abbreviation and concept
refinement.

Recent work by Hamilton and Danicic [2012] applies community detection
algorithms to identify communities within software systems. They adapt algo-
rithms from social networks and show that software systems exhibit community
structure where the communities represent software components. They apply
the Louvian Method [Blondel et al., 2008] to software dependency graphs of
slice inclusion relationship. Although their approach works on small example
programs, it has not been evaluated using large industrial programs. Also, they
use Gephi [Bastian et al., 2009] for visualisation of the community structures
detected. In our experience Gephi fails to visualise graphs for even medium
sized programs and puts functional limit on the size of the graphs that may be
visualised (50K nodes and 500K edges).
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6.5 Chapter Summary
This chapter forms a major contribution of the thesis. It shows that coherent
clusters in programs map to logical program constructs and can be used to
gain an understanding of the program architecture. The chapter demonstrates
these through a series of four case studies which were chosen to represent
various interesting clustering patterns identified in Section 5.3.

All previous work on dependence clusters have emphasised on dependence
clusters being problems and encourages techniques for identifying their causes
for the purpose of reduction or removal. Instead, this chapter highlights that
coherent clusters occur naturally in programs and their visualisation can help
in program comprehension. As such, we are providing tools for developers to
identify dependence clusters in their system and to help with their comprehen-
sion.

The detailed study of the cluster visualisation for the four case studies
also show other positive side-effects. For example, in bc we identified a poten-
tial refactoring opportunity which will lead to better code structure, and, in
Copia we identified a large unwanted dependence structure which can also be
significantly reduced by refactoring.
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Chapter 7

Other applications of Coherent
Clusters

7.1 Overview
Having demonstrated that coherent clusters are indeed prevalent and that co-
herent clusters in programs map to logical constructs, this chapter presents a
few segregated studies into the properties of coherent clusters. It firstly con-
siders a study of coherent clusters and program bug fixes to establish a (lack
of) link between the two. It then presents further studies into the changes
in coherent clusters during system evolution. The chapter then presents the
notion of inter-cluster dependency and Cluster Dependency Graphs (CDG).
Finally, the chapter studies the existence of coherent cluster in object-oriented
paradigm by considering Java programs. More formally, this chapter addresses
the following research questions:

RQ4.1 How do program faults relate to coherent clusters?

RQ4.2 How stable are coherent clusters during system evolution?

RQ4.3 What are the implications of inter-cluster dependence between coherent
clusters?

RQ4.4 Are coherent clusters prevalent in object-oriented programs?

7.2 Dependence Clusters and Bug Fixes
Initial work on dependence clusters advised that they might cause problems
in software maintenance, and thus even be considered harmful because they
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represent an intricate interweaving of mutual dependencies between program
elements. Thus a large dependence cluster might be thought of as a bad
code smell [Elssamadisy and Schalliol, 2002] or an anti-pattern [Binkley et al.,
2008b]. Black et al. [2006] suggest that dependence clusters are potentially
where bugs may be located and also suggest the possibility of a link between
clusters and program faults. This section further investigates this issue using
a study that explores the relationship between program faults and dependence
clusters. In doing so, it addresses research question RQ4.1 How program faults
relate to coherent clusters?

Barcode, an open source utility tool for converting text strings to printed
bars (barcodes) is used in this study. A series of versions of the system are
available for download from GNU repository1. There are nine public releases
for barcode, details of which are shown in Table 7.1. Column 1 and column 2
shows the release version and date, Columns 3–6 show various metrics for the
size of the system in terms of number of source files and various source code
size measures. Columns 7–9 report the number of SDG vertices, SDG edges
and the number of slices produced for each release. Finally, Column 10 reports
the number of faults that were fixed since the previous release of the system.
In Table 7.1 the size of barcode increases from 1,352 lines of code in version 0.90
to 3,968 lines of code in version 0.98. The total number of faults that were
fixed during this evolution was 39.

Version Release C LoC SLoC ELoC SDG SDG Total Faults
Date Files Vertices Edges Slices Fixed

0.90 29-06-1999 6 1,352 891 716 7,184 23,072 3,148 -
0.91 08-07-1999 6 1,766 1,186 949 8,703 30,377 5,328 5
0.92 03-09-1999 8 2,225 1,513 1,221 10,481 37,373 5,368 9
0.93 26-10-1999 8 2,318 1,593 1,284 11,415 42,199 5,722 5
0.94 26-10-1999 8 2,318 1,593 1,284 11,414 41,995 5,722 1
0.95 03-02-2000 8 2,585 1,785 1,450 12,202 45,830 6,514 3
0.96 09-11-2000 11 3,249 2,226 1,799 14,733 56,802 8,106 9
0.97 17-10-2001 13 3,911 2,670 2,162 16,602 64,867 9,530 2
0.98 03-03-2002 13 3,968 2,685 2,177 16,721 65,395 9,602 5

Table 7.1: Fault fixes for barcode

Fault data gathered by manually analyzing the publicly available version
control repository2 for the system shows that total number of commits for
barcode during these releases were 137. Each update was manually checked
using CVSAnaly [Robles et al., 2004] to determine whether the update was a

1http://gnu.mirror.iweb.com/gnu/barcode/
2cvs.savannah.gnu.org:/sources/barcode

http://gnu.mirror.iweb.com/gnu/barcode/
cvs.savannah.gnu.org:/sources/barcode
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Figure 7.1: Backward slice sizes for barcode releases

bug fix or simply an enhancement or upgrade to the system. Those commits
that were identified as bug fixes were isolated and mapped to the release that
contained the update. All the bug fixes made during a certain release cycle were
then accumulated to give the total number of bugs fixed during a particular
release cycle (Column 10 of Table 7.1). The reported number only includes
bug fixes and does not include enhancement or addition of new functionality.

Figure 7.1 shows the backward slice size plots for all versions of barcode
in a single graph. The values of the axises in Figure 7.1 are shown as vertex
counts rather than relative values (percentages) as done with the MSG. This
allows the growth of barcode to be easily visualised. From the plots it is seen
that the size of the program increases progressively with each new release.
The graphs also show that a significant number of vertices in each revision
of the program yields identical backward slices and the proportion of vertices
in the program that have identical backward slices stays roughly the same.
Overall, the profile of the clusters and slices remains consistent. The graph
also shows that the plots don’t show any significant change in their overall
shape or structure. Interestingly, the plot for version 0.92 with 9 fault fixes is
not different in shape from revision 0.94 where only a single fault was fixed.

As coherent clusters are composed of both backward and forward slices,
the stability of the backward slice profile itself does not guarantee the stability
of coherent cluster profile. The remainder of this section looks at how the clus-
tering profile is affected by bug fixes. Figure 7.2 shows individual SCGs for each
version of barcode. As coherent clusters are dependent on both backward and
forward slices, such clusters will be more sensitive to changes in dependences
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barcode-0.90 barcode-0.91 barcode-0.92

barcode-0.93 barcode-0.94 barcode-0.95

barcode-0.96 barcode-0.97 barcode-0.98

Figure 7.2: BSCGs for various barcode versions

within the program. The SCGs show that in the initial version barcode-0.90
there were two coherent clusters in the system. The smaller one is around
10% of the code while the larger is around 40% of the code. As the system
evolved and went through various modifications and enhancements, the num-
ber of clusters and the profile of the clusters remained consistent other than its
scaled growth with the increase in program size. It is also evident that during
evolution of the system, the enhancement code or newly added code formed
part of the larger cluster. This is why in the later stages of the evolution we
see an increase in the size of the largest cluster, but not the smaller one.

However, we do not see any significant changes in the slice and cluster
profile of the program that can be attributed to bug fixes. For example, the
single bug fixed between revisions 0.93 and 0.94 was on a single line of code from
the file code128.c. The changes to the line is shown in Figure 7.3 (in version
0.93 there is an error in calculating the checksum value, which was corrected in
version 0.94). As illustrated by this example, the data and control flow of the
program and thus the dependencies between program points are not affected
by the bug fix and hence no change is observed between the SCGs of the two
releases (Figure 7.2).
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barcode-0.93, code128.c, line 139
checksum += code * i+1;

barcode-0.94, code128.c, line 139
checksum += code *(i+1);

Figure 7.3: Bug fix example

If dependence clusters correlated to faults, or, if dependence clusters were
directly related to the number of faults in a program, then a significant differ-
ence would be expected in the shape of the SCG when faults were rectified.
The SCGs for program barcode (Figure 7.2) show no change in their profile
when faults within the program are fixed. This provides evidence that faults
may not be dictated by the presence or absence of dependence clusters. As an
answer to RQ4.1, the study of barcode finds no correlation between the exis-
tence of dependence clusters and program faults and their fix. We have to be
careful in generalising the answer to this question because of the small dataset
considered in this study, further extended research is needed to derive a more
generalised answer. Moreover, this does not exclude the possibility that most
program faults occur in code that are part of large clusters. In future we plan to
extend this experiment in a qualitative form to study whether program faults
lie within large or small clusters, or outside them altogether.

7.3 Dependence Clusters and System Evolu-
tion

The previous section showed that for barcode the slice and cluster profiles re-
main quite stable (through bug fixes) during system evolution and the system’s
growth of almost 2.5 times over a period of 3 years. This chapter extends that
study by looking for cluster changes during system evolution. It addresses
RQ4.2 How stable are coherent clusters during system evolution? using longi-
tudinal analysis of the case studies presented earlier. From the GNU repository
we were able to retrieve four releases for bc, four releases for acct and 14 re-
leases for indent. As copia is an industrial program, we were unable to obtain
any previous versions of the program and thus the program is excluded from
this study.

The graphs in Figure 7.4 show backward slice size overlays for every version
of each program. Figure 7.4a and Figure 7.4c for bc and indent show that these
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Figure 7.4: Backward slice size plots for multiple releases

systems grow in size during its evolution. The growth is more prominent in
indent (Figure 7.4c) where the program grows from around 4800 vertices in its
initial version to around 7000 vertices in the final version. The growth for bc
is smaller, it grows from around 6000 vertices to 7000 vertices. This is partly
because the versions considered for bc are all minor revisions. For both bc and
indent the slice-size graphs show very little change in their profile. The graphs
mainly show a scale up that parallels the growth of the system.

For acct (Figure 7.4b) the plots do not simply show a scale up but show
a significant difference. In the 4 plots, the revisions that belong to the same
major release are seen to be similar and show a scaled growth, whereas those
from different major releases show very different landscapes. The remainder of
this section gives detail of these clustering profile changes.

Figure 7.5 shows the BSCGs for the four versions of bc. Initially, the
backward slice size plots (solid black lines) show very little difference. However,
upon closer inspection of the last three versions we see that the backward
slice size plot changes slightly at around the 80% mark on the x-axis. This is
highlighted by the fact that the later three versions show an additional coherent
cluster spanning from 85%–100% on the x-axis which is absent from the initial
release. Upon inspection of the source code changes between versions bc-1.03
and bc-1.04 the following types of updates were found:

1. bug fixes

2. addition of command line options

3. reorganisation of the source tree

4. addition of new commands for dc

The reorganisation of the program involved significant architectural changes
that separated out the code supporting bc’s related dc functionality into a
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separate hierarchy and moved files common to both bc and dc to a library. This
refactoring of the code broke up the largest cluster into two clusters, where a
new third cluster is formed as seen in the SCG. Thus, the major restructuring
of the code between revisions 1.03 and 1.04 causes a significant change in the
cluster profile with the addition of a new significant cluster. This supports the
answer for RQ3.1 by showing that the separation of the program logic leads
to separation of the clusters. Almost no other change is seen in the cluster
profile between the remaining three bc revisions 1.04, 1.05, and 1.06, where no
significant restructuring took place.
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Figure 7.5: BSCGs for various bc versions

Figure 7.6 shows the SCGs for the four versions of acct considered in this
study. The slice profile and the cluster profile show very little change between
acct-6.3 and acct-6.3.2. Similarly, not much change is seen between acct-6.5
and acct-6.5.5. However, the slice and the cluster profiles change significantly
between major revisions, 6.3.X and 6.5.X. The change log of release 6.5 notes
“Huge code-refactoring.” The refactoring of the code is primarily in the way
system log files are handled using utmp_rd.c, file_rd.c, dump-utmp.c and stored
using hash tables whose operations are defined in hashtab.c and uid_hash.c.

Finally, Figure 7.7 shows the SCGs for the 14 versions of indent. These
revisions include two major releases. It is evident from the SCGs that the slice
profile during the evolution hardly changes. The cluster profile also remains
similar through the evolution. The system grows from 4,466 to 6,521 SLoC
during its evolution which is supported by Figure 7.4c showing the growth of
the system SDG size. Indent is a program for formatting C programs. A study of
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Figure 7.6: BSCGs for various acct versions

the change logs for indent did not reveal any major refactoring or restructuring.
The changes to the system were mostly bug fixes and upgrades to support new
command line options. This results in almost negligible changes in the slice
and cluster profiles despite the system evolution and growth.

As an answer to RQ4.2, this study finds that unless there is significant
refactoring of the system, coherent cluster profiles remain stable during system
evolution and thus captures the core architecture of programs. The answer
found for RQ4.2 complements that for RQ3.1 providing further support for the
use of coherent clusters in revealing and understanding programs structure.

Future work will replicate this longitudinal study on a large code corpus
to ascertain whether this stability holds for other programs. If such stability
is shown to hold, then coherent clusters can act as signature of the program
architecture opening up application in many areas of software engineering.

7.4 Inter-cluster Dependence
This section addresses research question RQ4.3 What are the implications of
inter-cluster dependence between coherent clusters? The question attempts to
reveal whether there is dependence (slice inclusion) relationship between the
vertices of different coherent clusters. A slice inclusion relationship between
two clusters X and Y exist, if ∃x ∈ X : BSlice(x)∩Y 6= ∅. If such containment
occurs, it must be a strict containment relationship (BSlice(x)∩Y = Y ) because
of the external and internal requirements of coherent clusters.

In the series of case studies presented earlier we have seen that coherent
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clusters map to logical components of a system and can be used to gain an
understanding of the architecture of the program. If such inter-cluster de-
pendencies exist that allows entire clusters to depend on other clusters, then
this dependence relationship can be used to group clusters to form a hierar-
chical decomposition of the system where coherent clusters are regarded as
sub-systems, opening up the potential use of coherent clusters in reverse engi-
neering. Secondly, if there are mutual dependency relations between clusters
then such mutual dependency relationships can be used to provide a better
estimate of slice-based clusters.

All vertices of a coherent cluster share the same external and internal
dependence, that is, all vertices have the same backward slice and also the
same forward slice. Because of this, any backward/forward slice that includes
a vertex from a coherent cluster will also include all other vertices of the same
cluster (Equation 4.1). The study exploits this unique property of coherent
clusters to investigate whether or not a backward slice taken with respect to a
vertex of a coherent cluster includes vertices of another cluster. Note that if
vertices of coherent cluster X are contained in the slice taken with respect to
a vertex of coherent cluster Y , then all vertices of X are contained in the slice
taken with respect to each vertex of Y (follows from Equation 4.1).

Figure 7.8 shows Cluster Dependence Graphs (CDG) for each of the four
case study subjects. Only the five largest clusters of the case study subjects
are considered during this study. The graphs depict slice containment relation-
ships between the top five clusters of each program. In these graphs, the top
five clusters are represented by nodes (1 depicts the largest coherent cluster,
while 5 is the 5th largest cluster) and the directional edges denote backward
slice3 inclusion relationships: A→ B depicts that vertices of cluster B depend
on vertices of cluster A, that is, a backward slice of any vertex of cluster B will
include all vertices of cluster A (∀x ∈ B : BSlice(x) ∩ A = A). Bi-directional
edges show mutual dependencies, whereas uni-directional edges show depen-
dency in one direction only. The outer ring of the nodes are also marked in
solid black to represent the percentage of the program covered by the partic-
ular cluster that the node represents. For example, the largest cluster (node
1) of copia (Figure 7.8a) constitutes of approximately 48% of the program. In
the graph for copia, the top five clusters have no slice inclusion relationships

3A definition based on forward slices will have the same results with reversed edges.
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(a) copia (b) acct (c) indent (d) bc

Figure 7.8: Cluster dependence graphs

between them (absence of edges between the nodes of the CDG). Looking at
size of the clusters, only the largest cluster of copia is truly large at 48%, while
the other four clusters are extremely small making them unlikely candidates
for inter-cluster dependence.

For acct (Figure 7.8b) there is dependence between all of the top five
clusters. In fact, there is mutual dependence between clusters 1, 2, 3 and 4,
while cluster 5 depends on all the other four clusters but not mutually. Clusters
1 through 4 contain logic for manipulating, accessing, and maintaining the
hash tables, making them interdependent. Cluster 5 on the other hand is a
loop structure within the main function for executing different cases based on
command line inputs. Similarly for indent (Figure 7.8c), clusters 1, 2, 4, and
5 are mutually dependent and 3 depends on all the other top five clusters but
not mutually.

Finally, in the case of bc (Figure 7.8d), all the vertices from the top five
clusters are mutually inter-dependent. The rest of this section uses bc as an
example where this mutual dependence is used to identify larger dependence
structures by grouping of the inter-dependent coherent clusters.

At first glance it may seem that the grouping of the coherent clusters
is simply reversing the splitting of same-backward-slice or same-forward-slice
clusters observed earlier in Section 6.2.3. However, examining the sizes of the
top five same-backward-slice clusters, same-forward-slice clusters and coherent
clusters for bc illustrates that it is not the case. Table 7.2 shows the size of
these clusters both in terms of number of vertices and as a percentage of the
program. The combined size of the group of top five inter-dependent coherent
clusters is 70.43%, which is 15.67% larger than the largest same-backward-
slice cluster (54.86%) and 37.91% larger than the same-forward-slice cluster
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Same Same
Backward-Slice Forward-Slice Coherent

Cluster Cluster Size Cluster Size Cluster Size
Number vertices % vertices % vertices %

1 4,135 54.86 2,452 32.52 2,432 32.26
2 1,111 14.74 1,716 22.76 1,655 21.96
3 131 1.74 1,007 13.36 1,003 13.31
4 32 0.42 157 2.08 117 1.55
5 25 0.33 109 1.45 102 1.35

Group Size: 70.43

Table 7.2: Various cluster statistics of bc

(32.35%). Therefore, the set of all (mutually dependent) vertices from the top
five coherent clusters when taken together form a larger dependence structure,
a closer estimate of a slice-based cluster.

As an answer to RQ4.3, this section shows that there are dependence rela-
tionships between coherent clusters and in some cases there are mutual depen-
dencies between large coherent clusters. It also shows that it may be possible
to leverage this inter-cluster relationship to build a hierarchical system decom-
position. Furthermore, groups of inter-dependent coherent clusters form larger
dependence structures than same-slice clusters and provides a better approx-
imation for slice-based clusters. This indicates that the sizes of dependence
clusters reported by previous studies [Binkley et al., 2008b, Binkley and Har-
man, 2005b, 2009, Harman et al., 2009, Islam et al., 2010b] maybe conservative
and mutual dependence clusters are larger and more prevalent than previously
reported.

7.5 Coherent Clusters in Object Oriented
Paradigm

Recently, our finding that large clusters are widespread in C systems has been
replicated for other languages and systems by other authors, both in open
source and in industrial systems [Beszédes et al., 2007, Savernik, 2007, Szegedi
et al., 2007, Hajnal and Forgács, 2011]. This section presents a study which
looks at whether coherent clusters are prevalent or not in Java programs. For-
mally, this section aims to answer research question RQ4.4 Are coherent clusters
prevalent in object-oriented programs?



7.5. Coherent Clusters in Object Oriented Paradigm 135

The current slicing tools for Java are not very mature when compared
to the tools available for C programs. Most of the Java slicing tools have
limitations and are aimed at dynamic slicing [Hammacher, 2008]. Static slicing
of Java is supported by Wala4, Indus [Jayaraman et al., 2005] and Ariadne5.
For the results presented in this section, we use the Indus Slicing tool.

7.5.1 Slicing Tool: Indus Slicer
The Indus framework works with Jimple [Vallee-Rai and Hendren, 1998], an
intermediate representation of Java, provided by the Soot toolkit [Lam et al.,
2011]. The framework is a collection of program analyses and transformations
implemented in Java to customise and adapt Java programs. Indus combines
various static analyses which enable static slicing of Java programs.

Indus defines Object-flow Analysis (OFA), which is a points-to analysis
for Java. Each allocation site in the analysed system is treated as an abstract
object and its flow through the system is tracked to infer the possible types.
The precision of the analysis can be varied in terms of flow-sensitiveness for
method local variables and object-sensitiveness for instance fields.

Dependence Analyses in Indus includes entry-based control, exit-based
control, identifier-based data, reference-based data, interference, ready, syn-
chronisation, and divergence analysis, needed for program slicing and partial
evaluation. Additionally, Indus also includes escape analysis, side-effect anal-
ysis, monitor analysis, safe lock analysis and atomic analysis. Some analyses
have varying levels of precision which can be varied.

The Java slicer for Indus can be used as a standalone command line tool
or can be used as a plug-in for development platforms such as Kaveri for
Eclipse [Ranganath and Hatcliff, 2007]. Indus supports backward and for-
ward slice generation. Complete slices (union of backward and forward slices
starting from the same slice criteria) can also be generated.

7.5.2 Experimental Subjects
The Java test subjects that are chosen for this experiment are all small open-
source tools that are available as compilable/runnable JAR units. The exper-
iment was conducted on 380 such programs. The details of the programs are
listed in Table 7.3. Column 1 gives the name of the programs, Column 2 gives
the number of statements, Column 3 and 4 list the size of the largest backward

4http://wala.sourceforge.net/
5http://www.4dsoft.eu/solutions/4d-ariadne/try-ariadne

http://wala.sourceforge.net/
http://www.4dsoft.eu/solutions/4d-ariadne/try-ariadne
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and forward slices respectively. Columns 5 and 6 show the size of the largest
backward and forward same-slice clusters. Finally, Column 7 shows the size of
the largest coherent clusters. The size of the slices and clusters are presented
as a percentage of the program and not absolute statement counts.

The smallest program considered is frt2-1.0 with a mere 7 statements while
the largest program considered is commons-io-1.4 which is much larger with
7,886 statements. The size of backward slices range from 2% to 81% and for
forward slices range from 1% to 97%. The average size of backward slice for the
programs is 27% whereas that for forward slices is 31%. This finding is similar
to results found by Binkley and Harman [2005a], where they looked at 45 C
programs and found backward slices to be smaller than forward slices. Finally,
the table also show programs that do not contain any significant (larger than
1%) coherent clusters and ones with huge coherent cluster covering over 50%
of the program statements.

Program Number Largest Largest Largest Largest Largest
of Backward Forward same-backward same-forward Coherent

Statements Slice Slice cluster cluster cluster
addheader-1.0.0 475 63 79 17 17 17
ag32_gui 135 19 16 4 1 1
AgiTerm_02 1764 8 7 1 1 1
ast-dpc 763 24 55 3 23 1
AudioWrapper-0.1.1 1512 11 17 3 3 3
awesum2 433 13 22 4 5 4
BabelFiche 5222 45 70 9 13 9
Base64-0.91 392 36 61 10 14 10
base91 397 52 81 18 13 11
baseconv-1.2 1054 10 11 0 0 0
beanpeeler 1200 21 20 7 5 3
bearjangler.07 1113 11 27 3 3 3
bincodec 331 5 5 2 0 0
binddata2ui 1591 7 14 1 1 0
binpacking-1.0 739 27 26 1 9 0
bitmapfontcreator 1076 8 13 1 1 1
bitXml09 160 62 83 22 11 4
BlinkenApplet0.7 4096 57 36 10 8 8
BloatedToString-0.11 760 35 39 21 33 21
bromo 3806 26 45 2 4 2
BrowserLauncher 689 65 97 24 4 4
brtool 728 11 30 1 0 0
btsim-0.3 3979 28 50 1 44 1
BusinessDaysCalendar 254 28 34 2 1 1
bwbunit-1.0 272 39 72 15 39 15
canyon 141 20 21 4 1 1
CatChat 2411 18 21 2 3 2
CBinstaller 947 51 69 14 15 14
cc004 2212 16 20 3 4 2
Chartster-0.1 2061 19 23 0 0 0
chatw-0.01-gui-client 944 13 13 13 12 12
chronicj-1.0-alpha-3 887 34 33 11 10 8
CIDEMORF_1.1 2289 27 37 2 3 1
Cipher.Cracker-0.1 2484 31 29 1 3 0
CipherCore-0.1.0 2358 14 31 3 4 1
cips-client-1_0 233 26 35 9 29 5
cjan-zip 734 51 62 8 8 6
classes 3108 28 30 1 2 1
classfind-v1.2 481 28 44 3 2 2
Classifier4J-0.6 3595 17 30 14 15 14
clcl-0.5.1 1786 20 27 2 5 1
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clientsession-0.2 279 25 15 2 1 1
CloneSweeper-bin-0.8 1624 37 68 13 8 5
clremote 1054 22 23 3 2 2
colorcrap06A 2985 15 11 1 1 1
comicviz-2.1 2052 20 23 6 6 6
commons-io-1.4 7886 9 10 2 2 1
CountdownTimer 2897 5 10 0 0 0
CpGIE2.0 3716 10 36 1 2 1
CreateTN 3815 15 24 2 3 2
CreditCardValidation 239 44 43 4 1 1
CrossIP 2241 42 61 9 8 7
CrozzSum (Kakuro) 1689 7 10 2 1 1
csgraph-1.00alpha1 1950 26 43 5 2 2
CUSP-0.2.5 1811 25 48 5 21 4
custom-phrase-1.0 656 16 21 1 2 0
DailyProphet-0.0.2 190 16 14 4 1 1
datapump 1578 16 27 8 7 6
Dataset_1.0 1934 14 22 1 1 1
DatePicker 13 14 1 0 0 0
de.axelrosenthal.jru 386 45 53 3 1 1
dealer2002 2810 29 35 1 4 1
DebtPayoff-1.01 406 22 45 3 1 1
denvir-1.0.1 268 32 57 8 7 7
DibujaChatUdp 989 25 11 6 6 6
diff 1196 81 78 28 28 27
DivideAndDo-0.6.0 2387 15 13 1 1 1
dom-result-set-1.0.rc-2 1096 19 18 2 3 2
dtdparser121 5009 40 47 11 17 10
easylayouts 1467 23 21 2 0 0
eclipseclient 89 60 65 24 24 24
EdCide 2778 9 8 1 1 1
editable-0.8.1beta 1493 3 6 1 1 1
Einsatzplanung 1240 37 31 0 0 0
elk_2.0 245 42 44 9 7 7
elvis 1409 48 51 2 3 2
enaf 1463 18 25 1 2 1
es.unizar.tecnodiscap 10 20 10 10 10 10
event4j-0.0.99 70 40 54 11 3 3
ExcelUtil 174 71 55 3 3 3
expresslib-1.2 1201 42 63 20 38 16
ezcontent-api 481 12 11 1 1 1
falseirc-20030930 4608 27 47 3 27 3
FARClient0.1.1 1549 28 30 2 7 2
feed-alfalfa 251 41 29 10 14 10
FileGrouper 586 18 30 2 1 1
filereplacer-0.3 515 45 59 3 3 3
filewatcher-1.1 1001 11 13 5 3 3
findEndorsedDirs 80 21 15 6 1 1
findinfiles 2210 20 21 3 5 1
finj-1.1.5 2670 20 23 1 2 1
flexitree 787 17 26 3 1 1
floatingAPI 615 17 29 2 2 1
form-authentication 253 38 35 1 0 0
FormantStat 3512 9 11 1 1 1
foxhunt-0.4 1325 22 14 3 0 0
framelauncher 185 31 34 6 6 6
framerd 4195 27 33 1 6 0
FreeGetNeo-0.2_bin 1425 24 33 14 15 14
freelance-bin-0.5 3543 9 17 1 1 1
freevoremotegui 229 10 11 3 1 1
freshtrash 474 18 7 1 0 0
frt2-1.0 7 29 14 14 14 14
fsp 4176 24 30 2 2 2
FtpGUI1_0 2166 14 20 1 3 1
Galaxian-.6 993 42 36 22 1 1
gandalf-0.2 627 5 10 1 1 1
gdsprint_0_2 722 9 8 1 0 0
goalSeeker1.0b 1523 35 34 8 6 3
gomoku-1.0 1290 38 36 11 16 10
graf-0.1 317 11 8 3 3 3
GraphADT 263 19 18 5 5 4
groab-0.2 1632 23 41 8 8 7
GuideLogFormatter 98 70 69 23 28 15
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HatChat0.2 1481 6 10 3 3 3
HOM 3351 34 14 3 3 2
Howdy2 2135 20 36 6 18 5
hsolitaire-0.9 865 33 21 5 5 5
ht-commons-rating 476 60 22 1 0 0
ibtrader_0.1.2 4531 36 41 6 10 5
image2html 776 38 52 2 1 0
ImageSlideShow 2965 30 28 9 6 5
infomap.graph 939 17 15 1 1 1
ipcv0-991 2779 20 20 8 9 8
ISOCalc 743 53 37 2 1 1
ITClient 326 70 73 34 30 30
Jaguar 303 13 9 3 3 3
jakarta-regexp 3548 60 72 13 12 7
jasciidammit 196 34 56 7 5 5
jauus 3241 18 30 5 9 5
Java-5.1 2542 46 62 10 27 6
java-br 160 62 58 3 4 3
java_color 4702 38 50 21 14 10
javaconfig 1626 24 37 2 8 2
javaintegrity 3153 35 40 2 3 1
javaonjava 1437 33 48 8 20 3
JavaTextEditor 818 8 6 1 1 1
JavelinOrgChart 1576 19 26 1 1 0
JBackgammon 2577 24 27 1 3 1
jcalendar 576 12 11 1 0 0
jcalendarbutton 1312 7 7 0 0 0
jcbed 471 21 19 3 0 0
jcola_01_beta 1379 13 15 3 3 3
jcom 549 41 46 15 3 2
JConPool 1193 27 38 7 17 7
jconx_0_1_1 709 42 44 18 34 16
jdbcfacade-0_7 1577 24 30 1 1 1
jdbctester 2201 33 20 1 1 1
jdbnuke 118 23 19 6 6 6
jdonkey 2645 10 11 4 8 4
jdstream_0.6 2323 25 40 3 3 3
JDynDns02 510 19 27 5 10 5
jekyll-0.9 2359 25 46 1 2 1
jeline020925 1120 33 27 2 8 2
JEOPS 5064 18 52 5 13 5
JExplosion.0.6.3 2570 24 40 8 4 3
jfeedreader 2942 22 22 9 10 8
JFEP-0.1.0 2453 21 23 9 12 6
JFontChooser 351 13 10 1 0 0
jfreeprofilingcenter 1649 16 20 1 1 1
jFunction 2014 24 43 11 20 11
jibte 1303 15 14 2 5 2
JIsdnCall 2160 37 33 6 18 6
jlibdiff 3011 17 21 1 2 1
jline 3241 22 25 2 12 1
JListeners 335 14 16 4 1 1
jll 4408 43 20 4 2 2
JMasqDiale 19 22 2 5 2 2
jmbf-0.8 482 36 43 26 32 20
jmerge 3848 6 9 2 1 1
jmines 694 43 31 6 1 1
jmisc-2.0 4291 13 13 2 5 2
jmsg 1158 18 23 3 1 1
JMTF 4131 24 45 2 5 1
JMUT-0.1 727 17 24 2 0 0
jnetlib_1-0 625 35 27 16 11 10
jnetsend 1043 13 13 5 5 5
Joppelganger 488 44 40 26 33 26
jPad 1383 11 6 0 0 0
JPassGen 670 14 18 2 0 0
jperfanal 2633 15 35 5 8 4
jpicprog-1.1alpha 3605 21 17 2 3 2
jplus 828 28 17 4 2 2
jpui-0.4.0 1071 11 10 1 1 1
JQHull 20 15 5 5 5 5
jreg 892 24 17 3 1 1
jRegexDebugger 385 9 9 2 2 2
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jRegexDyn-1.0.0 81 49 52 15 9 6
JReplace 742 23 36 7 7 7
jsiebex 1056 15 16 1 4 1
jsplitter 1620 32 44 8 32 8
jsrlog 1346 19 11 1 1 1
jSudoku 2071 28 22 4 5 3
jsvg 334 4 8 1 0 0
Jsymmetric 2515 26 30 6 2 2
jtemplate 2484 4 8 0 1 0
JTimeTrack 2976 13 9 1 1 1
jtranslit_1.3 1520 17 6 1 1 1
juc-1.0-b1 1001 23 46 7 9 7
jwf-1.0.1 520 14 9 2 0 0
JWizardComponent 2203 21 20 0 1 0
JXmlSql 3798 31 47 3 2 2
jz-decliner 6196 76 95 8 4 3
k5n-calendarpanel 2167 7 16 2 2 2
KFileCardLearn 4336 18 20 1 1 1
KGD 3756 60 50 19 36 10
ki18n 210 75 79 55 71 51
klang 965 55 54 7 6 6
kmap_ime-0.9 1466 27 34 5 30 5
Kritter 254 5 2 2 0 0
kxml2-2.3.0 6096 25 28 6 8 2
Laden 709 6 15 1 0 0
LayoutUtils 959 10 12 2 2 2
LBPool 1154 14 7 3 2 2
lexer 1364 31 34 5 13 2
lhadecompressor 3591 57 29 9 6 4
lib-pkg 792 10 14 5 10 5
lib4j-0.0.1 86 35 50 2 1 1
limacat-full-0.0.0.3 1073 19 9 1 0 0
lines 2497 19 22 2 0 0
litehttpd 1048 27 54 6 6 6
ln2-1-0RC 1489 20 25 3 5 3
LoadOMeter 518 9 15 3 4 3
log4jdbc 7803 49 24 0 0 0
LogView-1.1 869 11 13 2 2 2
LogWriter 2350 22 57 0 0 0
magelan 625 28 28 17 17 17
MailboxPkg 1179 18 22 3 7 3
ManyFold1.4 619 24 53 2 0 0
Mastermind 1200 49 24 8 9 8
matexRechnerPCE 2062 40 73 11 56 3
mathj-0.7 3246 28 36 11 7 5
maven-maximo 368 15 43 3 4 3
mbells_1.1 889 15 14 2 1 1
mcGPX-0.1 2158 32 21 0 1 0
MetaBossComponent 1168 35 61 11 17 10
mf2 1740 36 25 7 7 7
MicroDOM 532 32 43 9 15 8
microlaunch 5107 30 57 4 9 3
microten 650 28 51 2 11 1
millionenklick 529 19 70 6 12 4
MiniETL-jre14 586 49 84 11 19 8
MJFtpCL-0.3a 1178 43 78 2 17 2
ModuleDebug 158 11 7 3 1 1
monsoon-0.3 2968 7 12 1 1 1
Mp3Knife1 2593 35 32 7 4 3
mp3Splitter 1624 32 31 11 3 3
MRTGSpikeRemover 1333 23 23 5 4 3
msnj-0.3 2417 31 45 8 20 7
mucode 2851 23 45 3 9 3
multi-find 1057 15 12 5 7 5
mulumis 1111 32 39 10 6 5
nanoxml-2.2.1 3510 21 25 1 2 1
nanoXML-j2me 2900 46 52 8 6 5
NEOHacker0.7 3109 21 39 3 2 2
NetAntServer 437 78 76 57 57 57
netstool-0.2a 600 36 39 25 38 24
o3s 2081 22 34 8 14 8
objectsx 767 34 65 5 25 4
oow 1156 21 18 1 1 1
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openbil 658 12 9 4 1 1
openMosixInfoServer 1431 57 56 5 27 5
openspreadsheet 4782 6 11 1 2 1
opera2mozilla 2534 26 24 11 11 10
OQuery_release 4100 27 38 12 19 11
ottobus-1.0-bin 3559 27 32 1 3 1
ouvert-gui-0_7 1081 5 6 1 1 1
oxo 423 66 67 28 27 23
passwordAnyhwere 1109 11 19 1 1 1
pathway2d 193 2 1 1 1 1
PatternSandbox-svn 2069 4 4 1 1 1
perlforjava 787 42 25 6 7 6
phantom-common 1263 25 21 4 2 1
picomapping-0.1.0 603 27 14 3 4 3
pisolutions 65 18 20 8 12 8
PlayC4Networked 1360 22 37 13 13 12
plotlib 488 36 24 6 2 2
pmon1.0bin 353 48 23 2 2 1
POC_Network 277 72 59 10 26 9
PocketKrHyperJ2SE 5357 38 54 4 9 3
Pol-IPj 2141 12 19 3 4 3
poormscapi 651 16 16 1 2 0
Pop3Browser 2625 45 47 3 10 2
prefedit-0.7 1790 16 12 1 0 0
proxool-0.5 4062 40 57 5 9 4
pvc 1994 25 26 2 2 1
Pwing_Alpha 1554 13 13 1 0 0
qciutil 3617 21 28 2 3 2
qf-misc-1.01 105 19 36 7 4 4
qLearningFramework 2105 30 11 1 0 0
queryfish-1.0 934 12 21 4 5 1
queryviewer-0.2 1061 12 13 1 1 1
Quick_STV_1_2 3968 26 35 7 1 1
Quickit-0.1 3106 6 9 1 1 1
quj 4009 14 25 2 2 2
RacingGame 468 19 28 1 0 0
ran.1.00 2855 12 39 1 0 0
RandomSelector 3341 5 5 3 1 1
rbc 714 15 14 1 0 0
RegExp-0.1 681 34 36 4 3 1
replayer_1_0b4 2049 17 15 3 3 3
repo 434 14 22 2 4 0
ResBundleEdit 3621 13 23 1 3 1
ritopt-0.2.1-bin 2916 27 37 7 24 6
RoMap-0.0.1 814 57 66 51 56 49
romzinger-0_1 1763 24 27 5 10 5
RPGServer 1173 57 60 4 0 0
rpnfc 2482 27 31 3 2 1
RWFile 335 48 64 3 1 1
SA-TriZ 1696 34 32 15 6 5
safejdbc 1795 20 16 2 1 1
sbev 575 11 13 6 4 1
scbugdb 2527 16 27 3 4 1
SciPlot0.1 421 29 71 1 0 0
scoof 662 23 39 2 2 2
scratch 938 20 48 3 1 1
Sequence_Splitter 626 53 55 15 15 15
shipConstructor 2590 61 39 2 1 1
Shougou-0_01 407 57 71 28 23 22
SIM 68 51 72 10 1 1
SIMPLE-0.1 2563 17 35 2 33 2
simplesqltools 939 27 37 2 8 1
SmartFAQ-1.0 982 17 34 4 5 4
smoothmetal 1151 6 3 0 0 0
SMS 895 7 8 1 1 1
smslib-0.1b 1246 15 50 1 1 1
somipla_0-3-0 1163 60 80 37 23 17
SpamFryer 221 17 20 10 8 8
sphaero 5337 19 28 2 8 2
spontane-0.1 869 12 8 1 0 0
sqlblox_A1 1613 30 21 1 0 0
sqlrecordset 865 47 68 11 11 9
stax-1.0 1326 6 6 1 0 0
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stringtree-json 1081 38 46 16 22 15
Stringulator 1480 16 16 8 1 1
stucksweep 79 32 33 6 1 1
sudoku_0.1.1 947 38 44 16 19 12
sumproduct 20 65 35 10 5 5
swtautotester-0.15 423 12 23 3 1 1
syncop-gui-1.0 2017 6 17 1 1 1
tableview-1.4 3147 14 16 2 2 2
tagbuffer-beta4 571 49 56 3 2 1
tail 314 25 19 5 5 4
TallXSLT-0.0.2 585 29 29 10 7 3
TaxM 1027 11 7 0 0 0
tcpreflector-1.0.4 1041 8 14 2 5 1
test 62 18 11 8 3 3
tgIndex 2146 35 32 2 2 2
ThatIP-J 843 28 34 1 0 0
The15 1089 41 37 11 17 5
thememanager 732 20 26 9 9 8
ThreeD-2.0 4315 63 57 14 5 4
thumbnail1-beta 434 20 22 1 0 0
TiniDynDns-1.0 1206 58 78 19 54 17
TinyXML4Jsrc 152 9 7 1 1 1
tiwarriors 3355 29 18 2 2 1
tournament_manager 4830 9 13 1 1 1
TTT 759 18 12 6 0 0
TTTApplication 271 31 33 18 0 0
TWedit-beta4-source 1137 7 9 1 1 1
useful 830 22 8 2 2 2
variantcodec-0.0.3 3043 22 23 2 3 2
VersionCheckerV1.0 458 35 70 4 38 4
vschess-0.0 2545 38 42 1 2 1
watershed 475 31 32 5 2 2
WaveTree0.1 2518 58 57 4 10 3
weeje020924 729 13 9 1 0 0
WinRegistry-4.4 2625 64 56 4 4 4
WordLCSTest_V1 500 22 41 1 0 0
wsjl-swt-v0.2 651 12 9 0 0 0
xineo-xml-1.1.0 2725 24 30 5 13 4
xlife-masterserver 859 70 50 8 30 6
xml-im-exporter1 1640 12 16 3 2 1
xmlgridlayout0.4 457 18 33 4 0 0
xmltv2db-0.2 896 40 45 7 13 7
xparse-j-1.1 571 33 63 11 48 10
xsldb 718 77 65 9 12 9
XTransfer 1936 12 19 7 6 5
yadameter 1209 17 17 1 1 1
yajil-0.3.3 1974 16 11 4 2 2
Avg 1610 27 31 6 7 4
Min 7 2 1 0 0 0
Max 7886 81 97 57 71 57

Table 7.3: Subject programs

7.5.3 Do coherent clusters exist in Java Programs?
Figure 7.9 summarises the size of coherent clusters and shows the size of the
clusters as a percentage of the program on the y-axis while the x-axis shows
the program count in decreasing order of largest cluster size. The graph shows
that only two of the programs have a huge cluster whose size is over 50%. Even
more surprisingly only 41 programs contain a large coherent cluster whose size
is between 10% and 50%. All the remaining programs contain small clusters
which have size under 10%. In fact, 271 of the 380 subjects have clusters that
are no larger than 4% of the program.
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Figure 7.9: Coherent clusters in Java programs

The study therefore finds that only around 16% of the programs contain at
least one large cluster covering 10% of the program. This is significantly lower
than our findings for C programs where almost 70% of C programs contained
a large coherent cluster. It should however be noted that Indus is not as
mature and widely used as CodeSurfer and therefore there is less confidence in
the results. Furthermore, Indus works on a intermediate representation of the
Java byte code and does not provide mapping back to the original Java source
code. The lack of this mapping did not allow for a manual validation of the
quality of the results produced by Indus.

Additional quantitative study is also necessary to see if only programs
above or below a certain size contain such large clusters. Qualitative studies
of whether these clusters map to logical constructs in Java programs are also
worthy of future research. Finally, it would be interesting to study whether
this reduced clustering is specific to Java programs or are they a characteristics
of object-oriented programs in general.

This study therefore finds an affirmative answer to research question
RQ4.4, large dependence clusters do exist in Java programs, but they are less
common than in C programs.

7.6 Related Work
Black et al. [2009] present a study on fault analysis based on program slicing.
They investigate faults in barcode and extract measurements for Tightness and
Overlap and functions. They find that the Tightness metric can be used as a
predictor for program faults, functions with lower Tightness value were more
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prone to containing faults.
Csaba et al. [2013] recently presented one of the first studies which ex-

plicitly looks at the relationship between clusterisation measures and software
quality. They define various clusterisation measures for SEA-based dependence
clusters and study the relationship of the clusters to software quality measured
using probabilistic software quality model [Bakota et al., 2011]. They find that
software quality has low correlation with dependence clusters.

Similar to our work on Java programs, Szegedi et el. [2007] analysed Java
programs where they found existence of large dependence clusters amongst
the programs. Hajnal and Forgács [2011] in their study find large dependence
clusters in legacy industrial-scale COBOL systems.

7.7 Chapter Summary
This chapter presents four different studies between coherent clusters and var-
ious aspects of software engineering. The first of these studies looks at bug
fixes made to the open-source program barcode and finds that coherent clus-
ters have no links to bug fixes. The second study finds that coherent clusters
remain very stable during system evolution and depict the core architecture of
systems. Both these studies support the results of the previous chapter where
we saw that coherent clusters depict the systems logical structure and should
not be readily considered as harmful.

Inter-cluster dependency study shows that entire coherent clusters can be
mutually dependent and this dependency can be used to form a hierarchical
decomposition of programs. This relationship in future may be leveraged to
perform automated software reverse engineering. Finally, this chapter also
presents a study of 380 Java programs and finds that large coherent clusters
are much rarer in Java programs compared to C programs.



144

Chapter 8

Coverage-based code reduction
and Coherent Clusters

8.1 Overview
All work on dependence clusters thus far use static analysis in the form of static
program slicing. The inherent conservative nature of static analysis can nega-
tively impact the precision of static-analysis tools. The conservative nature of
static slices often yields unnecessarily large slices [Binkley and Harman, 2003],
leading to identification of large clusters. We saw an example of such prob-
lem in the case study for copia (Section 6.2.4), where (unwanted) dependence
and conservatism of static analysis lead to the detection of a large dependence
cluster. Some of this dependence is caused by unreachable code and code
implementing cross-cutting concerns such as error-handling and debugging.

This chapter presents a framework for coverage-based static analysis in
which coverage information is used to remove unexecuted and rarely executed
code, followed by application of the static analysis on the reduced version of
the program. The framework is applied to static slicing to reduce the size of
the slices and thereby reducing the size of the clusters. The intuition behind
the approach is that removing unwanted dependencies should break clusters,
improving the mapping between clusters and logical program structures that
we saw in Chapter 6.

More formally, this chapter addresses the following research questions:

RQ5.1 What is the impact of different test suites on static program slices and
dependence clusters in coverage-based reduced programs?

RQ5.2 How large are coherent clusters that exist in the coverage-based reduced
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programs and how do they compare to the original version?

RQ5.3 Which structures within a coverage-based reduced program can coherent
cluster analysis reveal and how do they compare to the original version?

8.2 Background
Although static program slicing has matured significantly and is widely used
by researchers, the uptake of the technology by software practitioners in the
industry is limited. One of the main reasons is that most static slicing tools
produce (necessary) conservative approximations. Some of this conservatism
comes from over-estimation associated with having to analyse the whole system
independent of ‘typical’ executions. For example, consider the need to analyse
only the code executed under normal conditions, effectively ignoring error-
handling code, which normally remains unexecuted. As a cross-cutting concern,
error-handling code can often tie a system’s components together, ignoring it
can sharpen the static analysis and in particular produce smaller slices.

The combination of unexecuted code and the conservative nature of static
analysis can negatively influence the clustering process and result in unwont-
edly large dependence clusters. For example, error handling code can create
a single large dependence cluster when all modules depend on the error han-
dling code and vice versa. If the error handling code is actually not executed
and thus removed before clustering, the cluster may break up into multiple
smaller clusters no longer held together by the error handling code. Moreover,
the clustering will be based on the frequently executed parts of the program,
which are more likely to be of interest to engineers working with the code.

This chapter presents a framework for coverage-based code reduction, which
applies program slicing only to the sub-program built from the code executed
(or covered) during typical executions. This will, for example, remove unreach-
able code, which is hard to identify during static analysis. While the framework
can be instantiated with (and will work with) any static analysis, this thesis
considers the impact of code reduction on static slicing and coherent clusters.

The approach is evaluated both quantitatively and qualitatively by study-
ing clustering changes. Empirical validation includes a quantitative analysis of
five open-source C programs. The study shows that large coherent clusters are
present in both the original and the reduced versions of the programs, while
a qualitative study of the program indent shows that clustering of the reduced
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Figure 8.1: Coverage-based code reduction framework for static analysis

code better reflects a conceptual model of the program.

8.3 Framework: Coverage-based code reduc-
tion

This section outlines the reduction framework. It describes how coverage in-
formation replicating typical program execution or use cases is used to remove
unexecuted code prior to static analysis.

The framework incorporates the following four stages:

1. Pre-processing – the first stage normalises the syntax of the code.

2. Gathering test coverage data – the second stage compiles and executes
the normalised source to gather coverage information. For example using
the programs regression test suite or typical use cases.

3. Code reduction – The coverage data is then used to remove code that
has not been sufficiently covered. Here the level of coverage taken as
sufficient is a parameter tuneable by the user. The most conservative
options is to remove only unexecuted code.
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4. Static analysis – The static analysis is applied to the reduced code.

Although the first three stages of the framework can be implemented in
a single tool, our implementation of the framework for C relies on well-known
Unix utilities as described below.

Stage 1: Pre-processing
The first stage pre-processes the system’s source code by stripping comments
and re-formatting the source using indent1 to achieve uniform layout, which
simplifies the reduction process in Stage 3.

1. Remove comments: All source files are pre-processed to remove single
line and multiple line comments. This is achieved using regex [Friedl,
2006] and sed2 utilities.

2. Layout formatting: This step uses indent to achieve a consistent layout
for the source files to counter various layout styles/conventions followed
by programmers. Consistent layout simplifies the process of removing
unexecuted/uncovered lines of code. For example, the formatting in-
volves limiting the maximum length of lines and placing entire method
declarations/signature on the same line.

Stage 2: Gathering test coverage data
The second stage of the process involves compiling C source files obtained for
Stage 1 with specific gcc flags to allow collection of test coverage data using
gcov3. Gcov is a test coverage utility used in concert with gcc to analyse line
coverage information when executing test suites.

1. Instrumented application build: This step involves building the
project with coverage flags enabled to allow capture of profiling and cov-
erage information. Projects built using GNU make will need the CFLAGS,
CXXFLAGS and LDFLAGS in the Makefile set to -fprofile-arcs
-ftest-coverage. The use of the coverage flag during compilation
will not only result in executable object files being created but will
also generate an additional .gcno file for each C source file. These gcno

1http://www.gnu.org/software/indent/
2http://www.gnu.org/software/sed/
3http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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files contain profiling arcs information and are used by gcov for post-
processing application’s statistics collected at runtime.

2. Execute test suites: Following the application build, the program is
executed using the test suites. Execution of the instrumented code col-
lects coverage statistics at runtime and creates a set of gcda files (or
updates existing ones) on exit. For every gcno file created during the
build, a corresponding gcda file is created following execution. Gcda files
are only generated when the application exits cleanly by either returning
from main() or by calling exit().

3. Coverage statistics collection: The last step of this stage involves
running gcov tool on each of the C source files. This creates gcov files
for each C source file from the corresponding gcno and gcda files. The
gcov file is a copy of the corresponding C file with the addition of tags
showing coverage information for each line. Gcovmarks each line as either
unexecutable, executable but not executed, or with the number of times
the line was executed. These files are used in the next stage to perform
transformation that removes executable but not executed lines of code.

Stage 3: Code reduction
A code transformation tool written by us is used to remove lines of code from
the C files that remain unexecuted after running test suites in Stage 2. The
tool uses information from the gcov files to perform the transformation. Gcov
prepends each line of code in gcov files with either of three tags, ‘-’ for lines that
does not have any executable code, ‘#####’ for lines that contain executable
code but was not covered by test suites, and n where n is the number of times
the line was executed. The transformation tool keeps lines marked with ‘-’ and
n intact and removes lines marked with ‘#####’. To keep the reduced code
syntactically and semantically legal, there are several special cases that need
to be handled and which makes the transformation challenging. For example,
when a line being removed has non-matching ‘{’ or ‘}’ or when a function being
removed is still referenced by other executed functions.

The reduction presently works at the line level because Gcov reports cover-
age information at line level. Using a zero percent threshold, this stage removes
lines marked by Gcov as unexecuted (i.e., uncovered). The removal process is
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made more aggressive by increasing the threshold and thus removing infre-
quently executed code (i.e., code not sufficiently covered during executions).

Stage 4: Static analysis
The framework’s last stage is instantiated by any static analysis which is ap-
plied to the reduced code producing results specific to the covered code. In our
case we use the following:

1. Generating SDG and slicing data: CodeSurfer is used to generate
SDG for the program. The tool is also used to extract slice information
for analysis.

2. Cluster Analysis: The slicing data extracted using CodeSurfer is used
to locate coherent clusters which are analysed using decluvi.

8.4 Impact of coverage-based code reduction
on Coherent Clusters

To empirically study the coverage-based static analysis framework, this section
presents an empirical evaluation of coverage-based code reduction’s impact on
coherent clusters. After discussing the research questions, this section gives
details of the experimental setup and the subject programs. It then presents a
validation study on the use of regression test suites and the coverage achieved.
This is followed by quantitative and qualitative studies of coherent clusters in
the original and the reduced programs.

The section addresses three research questions. The first two research
questions RQ5.1 What is the impact of different test coverage suites on static
program slices and dependence clusters in coverage-based reduced programs?
and RQ5.2 How large are coherent clusters that exist in the coverage-based
reduced programs and how do they compare to the original version? provide
empirical verification and validation. RQ5.1 establishes the level of coverage
achieved by regression test suites and compares it to the coverage for arbi-
trarily chosen test inputs. Whereas RQ5.1 is concerned with the veracity of
our approach, RQ5.2 investigates its validity; if large coherent clusters are not
present in the reduced code, our approach would not warrant further study.
Additionally RQ5.2 ascertains whether there are any discernible patterns in the
way the clustering changes between the original and the reduced code. Finally,
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Subject C Vertex count Average Slice Size (vertices) Largest Cluster Size
Files Original Reduced Original Reduced Original Reduced

bc 9 7,557 6,510 5,144 4,126 32% 26%
byacc 13 9,515 7,041 2,852 1,993 6% 4%
cflow 25 12,329 10,957 5,127 4,303 8% 15%
ed 8 5,706 4,028 3,747 2,418 54% 62%
indent 11 7,543 5,172 4,487 2,361 52% 33%

Table 8.1: Subject programs

RQ5.3 Which structures within a coverage-based reduced program can coherent
cluster analysis reveal and how do they compare to the original version? estab-
lishes whether clusters in the reduced program correspond to a logical system
decomposition and whether this mapping is different from the one found in
Chapter 6.

8.4.1 Experimental Subjects and Setup
The study considers five of the subject programs from Table 4.1. Table 8.1
presents statistics of these five programs, it shows the number of files contain-
ing executable C code (column 2), SDG vertex counts (column 3–4), average
slice size (column 5–6), and size of the largest coherent clusters (column 7–8)
as a percentage of the program. Two values are provided for the last three
attributes, one for the original program (columns 3, 5 and 7) and the other for
the reduced version (columns 4, 6 and 8).

8.4.2 Coverage achieved by regression suites
Research question RQ5.1 ascertains the level of coverage achieved by the re-
gression suite shipped with each system. For indent it also compares this cov-
erage with that attained using an arbitrarily chosen test input. We employ
an arbitrary test suite to do a two-fold verification study. Firstly, to check
that regression suites achieve higher coverage than an arbitrary test suite, and
secondly to understand the effect on clustering of using arbitrary test suite as
opposed to that of using a carefully-crafted (regression) test suite.

Table 8.2 presents coverage information for the five programs. Column
2 gives the lines of code, column 3 shows the executable lines as counted by
Gcov and subsequently columns 4 and 5 show the coverage achieved. The results
show that coverage varies widely between the test subjects. The lowest coverage
was recorded for ed at 42% with the highest at 81% for indent. The variation
in the coverage is due to the nature of the programs. Ed is an interactive line-
based text editor. As such, it is difficult to test its functionalities to the fullest
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Subject Lines of Executable Covered Coverage
Code Lines Lines (%)

bc 7,618 1,849 1,222 66%
byacc 7,320 3,450 2,604 76%
cflow 5,453 1,711 1,046 61%
ed 2,836 1,334 563 42%
indent 10,300 2,861 2,306 81%
Average 6,705 2,241 1,548 65%

Table 8.2: Regression suite coverage

via a scripted test suite and without user interaction. On the other hand,
indent is a source code formatter whose functionality can be easily exercised
using automated scripts. To answer the first half of RQ5.1 as to how much
coverage is achieved by regression test suites, we find that the average coverage
achieved for the programs is 65%.

To answer the second part of RQ5.1, we compare the coverage achieved
by the regression suite shipped with indent to that of an arbitrary test suite
composed of an assortment of C source files. The assortment of C files include
source code from Ubuntu and 30 open-source programs for a total of 21,085 C
source files with a combined 1,581,658 LoC. For ease of discussion we will refer
to this suite of files as the arbitrary test suite.

Table 8.3 shows the details of the coverage achieved by the two test suites.
Column 1 lists the source files of indent, with column 2 and 3 presenting the lines
of code in each source file and number of executable lines of code, respectively.
Columns 4, 5, and 6 present the coverage achieved by the two test suites: using
the supplied test suite (Column 4), the arbitrary test suite (Column 5), and
their combination (Column 6).

The results show that the regression test suite achieves higher coverage
than the arbitrary test suite. This is because the regression test suite is care-
fully designed to test system functionality by replicating use cases. The regres-
sion test suite and the arbitrary test suite independently achieve similar results
for most of indent’s source files with the exception of two. The regression suite
scores 42% higher coverage for args.c. This is because the regression test suite
exercises arguments and parameters to check their functionality, whereas, the
arbitrary suite was run with the same standard arguments. On the other hand,
the arbitrary test suite achieves 54% higher coverage for backup.c. This file has
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Executable Lines covered by test suite
File LoC lines Regression only Arbitrary Only Regression and

Arbitrary
args.c 1,233 189 104 25 104
backup.c 533 106 18 75 75
code_io.c 522 121 82 82 82
comments.c 879 292 265 200 270
globs.c 124 26 14 14 14
gperf.c 205 8 8 8 8
indent.c 3,339 1,037 846 868 893
lexi.c 1,201 359 303 305 325
output.c 1,550 501 457 448 474
parse.c 669 217 209 210 210
utils.c 45 5 0 0 0

Overall coverage 81% 78% 86%

Table 8.3: Test coverage for individual files of indent

functions that create unnumbered backups by appending a tilde or create in-
cremental numbered backups. The arbitrary suite is an assortment of C files
taken from systems where many files have the same name, resulting in the use
of incremental backup code. This increases the number of functions exercised
within the file resulting in higher coverage.

Finally, the use of the regression test suite in conjunction with the arbi-
trary test suite results in 5% higher coverage than using regression suite alone.
This could indicate that using a combination may be more suitable for our
approach as it achieves higher coverage. However, we are also interested in
knowing how this higher coverage relates to clustering.

The SCGs (Figure 8.2) for the reduced programs corresponding to each
test suite usage are similar. All three SCGs show a drop in the program size
from around 7,500 to 5,000. The graphs have a large coherent cluster (marked
with 1) towards the middle of the plot, running approximately 1,750 to 4,250
on the x-axis, and a smaller cluster (marked with 2) just to the right, running
approximately 4,300 to 4,600 on the x-axis. The only difference visible in the
graphs is the presence of a small cluster (marked with 3) in the versions that
use the regression test suite which is absent from the version that uses only the
arbitrary test suite. This cluster spans 650 to 700 of the x-axis in the B-SCG
of the versions using the regression suite.

Therefore, as an answer to second part of RQ5.1, we find that, although
the regression test suite exercises indent using a much smaller input (11,517
LoC) when compared to the arbitrary test suite of over 1.5 million LoC, better
coverage is achieved. Combined, the two suites yield slightly higher coverage,
but do not produce differences in clustering. This gives us some confidence
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Regression test suite Arbitrary test suite Regression & arbitrary suite
Figure 8.2: Indent B-SCGs for coverage based reduction

Figure 8.3: Top three coherent cluster sizes

that the use of regression test suite alone is sufficient. A future extended
study is planned to compare the impact of dedicated (regression) test suites
and those generated using automated test generation tools such as Klee [Cadar
et al., 2008], Austin [Lakhotia et al., 2010] and Milu [Jia and Harman, 2008].
Henceforth, the chapter reports results attained using each program’s supplied
regression test suite.

8.4.3 Change in Coherent Cluster Sizes and Patterns
This subsection addresses the validation study and thus answers research ques-
tion RQ5.2. This question asks whether large coherent clusters are present in
the reduced code and what pattern of change can be identified in the clustering
between the original and reduced version. If coherent clusters do not exist in
the reduced code or if the changes in clustering between the original and the
reduced version is minimal, then there is little value in applying the framework
to coherent clusters.

To answer RQ5.2, the classification of programs introduced in Section 4.7
is used. Programs are classified as containing small, large and huge clusters
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based on the size of the largest cluster in them. Figure 8.3 shows the size
of the three largest coherent clusters in the subject programs for both the
original and the reduced versions. 1, 2, 3 on the x-axis denotes these clusters,
with 1 denoting the largest cluster, 2 denoting the second largest cluster and 3
denoting the third largest cluster in each of the programs.

The original versions of two of the five subject programs, byacc and cflow
do not have any large coherent clusters. Original version of the remaining
programs, ed and indent have huge coherent clusters, with bc having a large
coherent cluster. The reduced version of bc also has a large coherent cluster
of size 26% after reduction of 6%. The reduced version of indent no longer
contains a huge cluster as the size of the largest cluster drops from 52% to
33% showing a significant reduction. Surprisingly, for ed the size of the largest
cluster grows from 54% to 62% as both versions of the program contains huge
clusters. Thus as answer to first part of RQ5.2 we see that coherent clusters
present in the reduced version of programs can be both large and huge.

Having established that coherent clusters are suitable for experiments with
the framework, the remainder of this section presents the outcome of a visual
inspection of the B-SCGs for the original and the reduced programs. The study
addresses RQ5.2 and identifies patterns of change in the clustering from the
original to the reduced version of the programs.

Figure 8.4 present the B-SCGs for both the original and the reduced ver-
sion of each program. The values of the axises of the graphs are shown as
vertex counts rather than relative values (percentages). This helps appreciate
the changes in the clustering following program transformation. The graphs
in the left column are for the original programs, those on the right are for the
reduced version. While not all large (surpassing the 10% threshold), coherent
clusters are visible in SCGs for both the original and the reduced version of all
five programs.

As shown by how far the plots extend along the x-axis, the SCGs of indent
show a substantial reduction of program’s size from approximately 7,500 to
5,000 vertices. The original version of indent has one large cluster running
from approximately 2,200 to 6,200 on the x-axis. There are also two smaller
clusters visible in the original version to the left of the main cluster. These
two are approximately 223 and 144 vertices in size. The largest cluster in the
reduced version is much smaller than the largest cluster in the original version.
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However, the second largest cluster both appears to the right of the largest and
is bigger than the second largest cluster from the original SCG. The implication
here is that the largest cluster from the original version has broken into two
clusters in the reduced version. This implication is confirmed by a detailed
study of indent presented in Section 8.4.4.

The original version of ed has three identifiable coherent clusters, one of
which is extremely large spanning from 1,650 to 4,800 on the x-axis of the B-
SCG. The other two coherent clusters are approximately 600 and 250 vertices
in size. The reduced version of the program on the other hand has only one
visible coherent cluster spanning from 500 to 3,000 of the x-axis in the B-SCG.
The largest cluster in the reduced version has also shifted left compared to
the original, indicating that vertices yielding small slices are removed during
reduction. The number of vertices in the program’s SDG is also reduced from
5,706 to 4,028. A qualitative study of the clustering change in ed is presented
in Section 8.4.5.

The SCGs of cflow show that coherent clusters present in both the original
and the reduced versions of the program are much smaller than those seen in
indent and ed. Multiple small coherent clusters are visible in the B-SCG of the
original program with the largest being about 500 vertices in size. The reduced
version also has multiple coherent clusters, with the largest two being clearly
identifiable. However, the largest cluster in the reduced version is bigger in
actual size than the largest cluster of the original version. This is the only
instance where an increase in the size of the largest cluster is observed despite
the reduction in program size. A detailed discussion of this phenomenon is
given later in Section 8.4.5.

As was the case in the previous three subjects, the SCGs of bc shows that
the size of the program decreases following reduction. However, bc exhibits
the least change in clustering between the original and the reduced version
of the code. Clustering in the reduced version remains identical except for
a proportionate drop in the size of the top two clusters. The drop can be
attributed to the reduction of the (average) slice size (solid black line).

For the last program, byacc, the SCGs show that the reduced program
has significantly fewer vertices compared to the original program. Unlike other
programs, the plot for slice size shows a significant change. However, there is
no change observed in terms of clustering other than a small reduction. This
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Figure 8.4: B-SCG (Backward Slice/Cluster Size Graph)
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is attributed to the original version having small clusters to begin with.
The change in clustering observed amongst the subject programs varied

significantly exhibiting some interesting patterns. There were four change pat-
terns identified as detailed below:

break: This pattern occurs where a large cluster breaks into multiple clusters
as in the case of indent. Although programs in this category will exhibit
reduction in cluster sizes, the change is dominated by the break.

join: This pattern will only occur in rare cases where two separate clusters
in the original version merge into a single cluster in the reduced version.
This can lead to the formation of a larger cluster not found in the original
version. Cflow is an example of where this pattern occurs.

remove: This pattern is exhibited by programs when clusters present in the
original program disappear in the reduced program. Ed is an example
where this pattern occurs.

drop: The fourth pattern occur when a reduction of the coherent clusters are
observed. Both bc and byacc are examples of programs that fall in this
category. Bc is a good example of a drop because the cluster sizes drop
but the overall profile remains the same.

As an answer to RQ5.2, this study finds that reduced version of programs
contain both large and huge coherent clusters. Furthermore, the SCGs show
that there are significant differences in the cluster profile of the original and
the reduced versions of the programs, where the changes can be classified into
four patterns. This motivates detailed study of the clustering changes for the
programs indent, ed and cflow, which are presented in the following sections.

It is also interesting to note that in each of the reduced version of the
programs, the average slice size drops significantly. Reduction for individual
programs are 20% for bc, 30% for byacc, 16% for cflow, 35% for ed and 47% for
indent. As both the original and the reduced version of the program can be
considered equivalent because both would give same results for the regression
test suites, this reduction can be seen as an improvement on the precision of
static slicing. Smaller slices make it easier for developers and programmers to
understand and use slicing.
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Original Reduced version (Regression Suite)
Cluster Cluster Size Files Functions Cluster Size Files Functions

% vertices spanned spanned % vertices spanned spanned
1 52.1% 3930 7 54 33.2% 1715 8 36
2 3.0% 223 3 7 10.1% 521 3 13
3 1.9% 144 1 6 3.2% 164 2 3
4 1.3% 101 1 5 0.5% 24 1 1
5 1.1% 83 1 1 0.3% 15 1 1

Table 8.4: indent’s cluster statistics

8.4.4 Case Study: indent

This subsection addresses RQ5.3. The subsection conducts a detailed compar-
ison of how the composition of the clusters vary between the original and the
reduced version of indent. We have shown that coherent clusters map to logi-
cal program constructs (Chapter 6) and hypothesise that removing unexecuted
(or rarely executed) code (which may be holding clusters together) will allow
clusters to reveal a finer grained logical model due to cluster breaking. We use
indent as a case study as it exhibits the break pattern.

The original version of indent consists of 10,300 LoC with 7,543 vertices
in its SDG. The reduced program on the other hand consists of 8,197 LoC
and 5,172 vertices. Table 8.4 shows statistics of the five largest clusters found
in the program. Column 1 gives the cluster number, where 1 is the largest
and 5 is the 5th largest cluster measured in number of vertices. Columns 2–5
give data for the original version of indent. Columns 2 and 3 show the size of
the cluster as a percentage of the program’s vertices and actual vertex count.
Columns 4 and 5 show the number of files and functions where the cluster is
found. Columns 6, 7, 8, and 9 give data for the reduced version of indent, and
mirror those presented in columns 2, 3, 4 and 5, respectively.

The original version of indent has one extremely large coherent cluster
covering 52% of the program. The remaining clusters are much smaller in size
with the second largest being only 3%. The details of the top five clusters along
with the functions that comprise of the cluster and their mapping to logical
structure for the original program is discussed in Section 6.2.2. The remainder
of this section discusses the change in clustering of the reduced version when
compared to the original version of indent.

The size of the overall program drops from 7,543 to 5,172 vertices for the
reduced version. This drop is due to the removal of code not covered by the
regression test suite. The top two coherent clusters in the reduced version are
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large clusters at 33.16% and 10.07%. The third cluster is just over 3% in size
whereas cluster 4 and 5 are less than 0.5% in size.

Cluster 1 in the reduced code consists of 36 functions also found in clus-
ter 1 of the original code. This cluster still contains all functions that begin
with the prefix “handle_token” and the helper functions such as check_code_size,
check_lab_size, search_brace, sw_buffer, print_comment and reduce. The cluster
also consists of the main loop of indent (indent_main_loop) and the parser func-
tion parse.

Cluster 2 of the reduced code now consists of 13 functions that are
part of cluster 1 in the original code. These functions which have bro-
ken away from cluster 1 to form their own cluster are responsible for out-
putting the formatted code. They include better_break, computer_code_target,
dump_line, dump_line_code, dump_line_label, inhibit_indenting, is_comment_start,
output_line_length and slip_horiz_space, and ones that do flagging and memory
management, clear_buf_break_list, fill_buffer and set_priority. This breaking of
a cluster supports the observation that post reduction clusters better reflect
the logical decomposition. In this case cluster 1 is now responsible for parsing
and handing of the individual tokens, and cluster 2 is responsible for memory
management and subsequent output.

Some of the error handling code of cluster 2 from the original program no
longer exist in the reduced program as it was not exercised by the regression
test suite. Example of functions completely removed are DieError, usage and
arg_missing. Furthermore, the code reduction doesn’t always remove entire
functions but also eliminates branches that remain uncovered by the regression
test suite. Figure 8.5 shows an example, extracted from indent. The first
element on each line (in red/grey) identifies whether the line has executable
code and the execution count for the line (if applicable). The second element is
the line number followed by the code. For example lines 664 and 667 executed
1,008 times while line 665 has executable code but is never covered. The code
shows an if ... else block which executes 1,008 times and leads to the else
branch every time. The true branch for the if statement is never covered by
the regression suite. Removal of line 665 removes the call to function DieError.
Similarly, another 4 uncovered calls to DieError are removed from indent, which
ultimately results in the complete removal of function DieError from the reduced
program. Removal of such code can improve the “sharpness” of static analysis
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Original Code Functions Reduced Code Functions
Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3
better_break |DieError| check_code_size better_break eqin
check_code_size addkey check_lab_size clear_buf_break_list option_prefix
check_lab_size arg_missing copy_id compute_code_target process_args
clear_buf_break_list eqin handle_the_token dump_line set_option
compute_code_target option_prefix handle_token_attribute dump_line_code
copy_id process_args handle_token_binary_op dump_line_label
dump_line set_option handle_token_colon fill_buffer
dump_line_code usage handle_token_comma inhibit_indenting
dump_line_label handle_token_comment is_comment_start
fill_buffer handle_token_decl output_line_length
handle_the_token handle_token_doublecolon set_next_buf_break
handle_token_attribute handle_token_form_feed set_priority
handle_token_binary_op handle_token_ident skip_horiz_space
handle_token_casestmt handle_token_lbrace
handle_token_colon handle_token_lparen
handle_token_comma handle_token_newline
handle_token_comment handle_token_nparen
handle_token_decl handle_token_postop
handle_token_doublecolon handle_token_preesc
handle_token_form_feed handle_token_question
handle_token_ident handle_token_rbrace
handle_token_lbrace handle_token_rparen
handle_token_lparen handle_token_semicolon
handle_token_newline handle_token_struct_delim
handle_token_nparen handle_token_swstmt
handle_token_overloaded handle_token_unary_op
handle_token_postop inc_pstack
handle_token_preesc indent_main_loop
handle_token_question parse
handle_token_rbrace parse_lparen_in_decl
handle_token_rparen print_comment
handle_token_semicolon reduce
handle_token_sp_paren search_brace
handle_token_struct_delim set_buf_break
handle_token_swstmt skip_buffered_space
handle_token_unary_op sw_buffer
inc_pstack
indent_main_loop
inhibit_indenting
is_comment_start
lexi
need_chars
output_line_length
parse
parse_lparen_in_decl
print_comment
reduce
search_brace
set_buf_break
set_next_buf_break
set_priority
skip_buffered_space
skip_horiz_space
sw_buffer

Table 8.5: Function Cluster Mapping (Original and Reduced indent)
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1008: 664: if (!found)
#####: 665: DieError (...)

-: 666: else
1008: 667: ...

Figure 8.5: Uncovered code reduction

and the clustering as we have seen above.
Cluster 3 of size 3.2% now consists of functions that were part of cluster 2

in the original version of the program. These functions are responsible for han-
dling command line options and include option_prefix, set_options, process_args
and equin. As the remainder of the clusters are smaller than 1% they are not
discussed in further detail.

The case study of indent illustrates that coherent clusters in the reduced
version of programs obtained by removing unexecuted error-handling and de-
bugging code can better capture the program’s logical model. The breaking of
the largest cluster by code reduction allows the clustering to be done on much
finer level of logical constructs. As an answer to research question RQ5.3, co-
herent clusters in the reduced program also map to logical constructs of the
program and possibly at a much finer level.

8.4.5 Increase in the size of the largest cluster
Coverage based code reduction (for coverage < 100%) always leads to a drop
in the program size and average slice size (Table 8.1). In the four test subjects
bc, byacc, ed, and indent, the size of the largest coherent cluster also decreases.
With the exception of ed, this decrease is also translated to a percentage drop.
In the case of ed there is a positive percentage change, which means that the
reduction removes more vertices outside the largest coherent cluster than from
within the cluster. In addition, Cflow shows an actual increase in the size of
the largest cluster.

The original version of ed has 5,706 vertices which is reduced to 4,028. The
size of the largest cluster of the original program is 3,064 vertices as opposed
to 2,485 vertices in the reduced version. However, despite the decrease in
actual size, the relative size of the largest cluster increases by almost 8%.
Cluster 1 of the original version includes 67 functions which increases to 74
functions in the reduced version. The additional functions are part of cluster
2 of the original version. The join happens because 9 of the functions in
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cluster 1 and 6 of the functions in cluster 2 from the original code are removed
during transformation. These functions are responsible for dealing with user
interaction and error-handling. The removal causes the slices of the remaining
vertices from both cluster 1 and cluster 2 to become identical. As vertices of
both clusters following transformation result in the same backward and forward
slice, they join into a single cluster.

The same phenomenon is also observed in cflow. Despite a drop in program
size from 12,329 to 10,957 vertices, the largest coherent cluster increases both
in actual and relative size. A detailed future study is planned to ascertain
which vertices were originally separating these joined clusters using variation
of linchpin identification technique [Binkley and Harman, 2009].

8.5 Related Work
Agarwal et al. [1993] present approximate dynamic slicing which is similar to
the reduction framework introduced in this chapter. An approximate dynamic
slice is obtained by taking the intersection of the appropriate static slice with
the program execution path for the test case that is of interest. In contrast we
first run all our test cases and identify all the execution paths exercised by the
test cases. Subsequently, we perform static slicing on the reduced version of
the program.

Ernst [2003] suggests that static and dynamic analysis have synergy and
duality, and promotes their use in conjunction as a form of hybrid analysis.
There are several slicing approaches that follow this idea. Call-mark slic-
ing [Nishimatsu et al., 1999] uses static control and data dependence analysis
along with function call information from dynamic execution traces to reduce
static slice size. Similarly, dependence-cache slicing [Takada et al., 2002] uses
static control dependence analysis and dynamic data dependence analysis to
create program dependence graph used for slicing. Hybrid slicing [Gupta et al.,
1997] uses dynamic function call graphs and break points information to reduce
static slice size. Similarly, calling context captured using call stack information
during execution is also used to reduce slices [Krinke, 2006]. Other methods
focus on the semantics of programs to reduce slices. Conditioned slicing [Can-
fora et al., 1998] employs a condition in a slicing criterion, where statements
not matching the condition are removed from slice. Amorphous slicing [Har-
man et al., 2003] allows for simplifying transformations that preserve semantic
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projection. Although these approaches use both static and dynamic analysis,
to the best of our knowledge we present the first approach where dynamic
analysis is used to reduce code, followed by static analysis of the transformed
program.

Binkley et al. [2013b] have recently introduced the notion of observation-
based slicing. A slice is obtained through repeated statement deletion and
validated by ensuring that the sliced and the original program behave exactly
the same with respect to the slice criterion. This approach is similar to our code
reduction where execution traces are used to identify and remove unwanted
code thereby improving static analysis (slicing).

Acharya and Robinson [2011] present an approach that trades off static
analysis (pointer analysis) precision for efficiency and speed, which is similar
to our work where we are able to vary the definition of “less” executed code to
reduce unwanted dependency. Beszédes [2007] introduce SEA-based clusters,
these are clusters that consider program functions as entities rather than ver-
tices of SDGs making the approach less precise but efficient. There are also
studies on identification of ‘linchpin vertices’ that hold clusters together, re-
moving which can reduce the size of dependence clusters significantly [Binkley
et al., 2013a, Schrettner et al., 2012].

8.6 Chapter Summary
The chapter introduces a novel framework of using test cases for coverage-
based code reduction to improve static analyses by reducing the source code
to the frequently executed parts. The approach is applied to coherent cluster
analysis. The change in the clustering following code reduction portrays four
different patterns of change. These patterns reveal that removing debugging
and error-handing code will often lead to breaking of larger clusters into smaller
ones.

A validation study shows that large coherent clusters are present in the
reduced code and a detailed study of indent shows that clusters in the reduced
code better model program’s logical structure. Future work will consider the
impact of use cases and test suites generated by automated test generation
tools within the framework and its application to other static analyses.
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Chapter 9

Conclusion

This chapter starts with a discussion of the threats to validity for the results
presented in this thesis. It then discusses the achievements of this thesis. This
is followed by an outline of the various strands of future work to be done as
follow up from this work and concluding summary.

9.1 Threats to validity
This section discusses the threats to the validity of the results presented in this
thesis. Threats to three types of validity (external, internal and construct)
are considered. The primary external threat arises from the possibility that
the programs selected are not representative of programs in general (i.e., the
findings of the experiments do not apply to ‘typical’ programs). This is a
reasonable concern that applies to any study of program properties. To address
this issue, a set of thirty open-source and industrial programs were analysed
in the quantitative study. The only criteria used to select the programs was to
ensure that CodeSurfer was able analyse each of the programs. However, these
were from the set of programs that were studied in previous work on dependence
clusters to facilitate comparison with previous results. The four case studies
(acct, indent, bc and copia) were also selected based on the interesting patterns
that their clustering profiles revealed during the experimentation with graph-
based visualisation. In addition, the majority of the research conducted in
this thesis was done on C programs, so there is greater uncertainty that the
results will hold for other programming paradigms such as object-oriented or
aspect-oriented.

Internal validity is the degree to which conclusions can be drawn about the
causal effect of the independent variables on the dependent variable. The use of
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hash values to approximate slice content during clustering is a source of poten-
tial internal threat. The approach assumes that hash values uniquely identify
slice contents. Hash functions are prone to hash collision which in our ap-
proach can cause clustering errors. The hash function used is carefully crafted
to minimise collision and its use is validated in Section 4.6. Furthermore, the
identification of logical structure in programs were done by us (academic col-
laborators and me). As we were not involved in the development of any of
the case study subjects, this brings about the possibility that the identified
structures do not represent actual logical constructs of the programs. As the
case studies are Unix utilities, their design specification are not available for
evaluation. However, all of us that studied the subject programs and their
architecture have many years of programming experience and independently
did their analysis before coming to a consensus providing internal validation.

Construct validity refers to the validity that observations or measurement
tools actually represent or measure the construct being investigated. In this
thesis, one possible threat to construct arises from the potential for faults in
the slicer. For the C programs analysed, a mature and widely used slicing tool
(CodeSurfer) is used to mitigate this concern. Another possible concern sur-
rounds the precision of the pointer analysis used. An overly conservative, and
therefore imprecise, analysis would tend to increase the levels of dependence
and potentially also increase the size of clusters. There is no automatic way
to tell whether a cluster arises because of imprecision in the computation of
dependence or whether it is ‘real’. Section 5.5 discusses the various pointer
analysis settings and validates its precision. CodeSurfer’s most precise pointer
analysis option was used for the study. There is however greater uncertainty
regarding the quality of the slices produced by the Indus Slicer for the study
concerning Java programs.

9.2 Achievements
This section gives a brief summary of the contributions from this thesis. The
achievements are divided into primary and additional contributions.

9.2.1 Primary
The primary contributions are those achievements that make significant con-
tributions to the area of software engineering and help us with improving our
knowledge and understanding of (coherent) dependence clusters in particular.
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1. Introduction of coherent dependence clusters along with formalisation and
extensive examples for various form of dependence clusters. This allows
for a new way to study the dependence structure of a program.

2. Empirical evaluation of the frequency and size of coherent dependence
clusters in production grade software (open source and industrial) demon-
strates the necessity of further study into coherent clusters as such clus-
ters are found to be common and significant in production systems.

3. Empirical evaluation of pointer analysis extensively looks at the impact
of various pointer analysis settings on slicing and clustering. Codesurfer
is widely used in both the research community and the industry, making
this study of significant importance not only to this thesis but the research
community as a whole.

4. Developed cluster visualisation tool for graph-based and interactive
multi-level visualisation of dependence clusters. This tool aids a devel-
oper or maintainer in visualising and studying the structure of systems
with ease. The tool has been made freely available to motivate further
research.

5. Detailed study and discussion of a series of four case studies show that
coherent clusters map to logical program structure and can aid a software
engineer gain an understanding of this structure.

6. Introduction of framework for test coverage-based code reduction pro-
vides a compromise between the dynamic and static analysis where exe-
cution traces from entire test suites are used to remove “less” important
(rarely executed) code improving the sharpness of static analysis. The
average size of static slices drop by 30%, and the average drop of the
largest coherent clusters is over 8% in the reduced programs.

9.2.2 Additional
Additional achievements are classified as those contributions which introduce
engineering improvements over previous techniques and probing research into
new areas which can be extended in the future.

1. Introduction of hashing algorithm for efficient and accurate clustering.
The hashing algorithm reduces the runtime and memory requirements
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for the clustering making it implementable in practice. It also gives
a significantly higher precision at 97% compared to previous approach
with precision of 78%.

2. A study into the evolution of barcode and correction of faults that occur
within the program over a period of three years shows that presence or
fixing of bugs does not show a change in the clustering profile of the
program. This dispels the previous notion of dependence clusters being
responsible for program faults.

3. Longitudinal study of the evolution of four programs also establishes that
coherent cluster profile of programs remain surprisingly stable during
system evolution. This provides further support that coherent clusters
represent the core architecture of the program.

4. Identification and formalisation of inter-cluster dependence lays the foun-
dation for using coherent clusters as the building blocks of larger program
dependence structures in support for reverse engineering endeavours.

Overall, this thesis makes six primary and four additional contributions
which together improve the current understanding of dependence clusters and
pave way for future research in areas where dependence clusters potentially
have applications.

9.3 Future Work
This thesis is the first to consider dependence clusters as being constructs
that naturally occur in program and to be useful in understanding program
structure. It no longer considers dependence clusters as problems as done by
previous studies (Binkley and Harman [2005b], Harman et al. [2009], Binkley
et al. [2010, 2008b], Black et al. [2006]), but sees them as phenomenons that
occur naturally in systems. As such, this thesis considers dependence clusters
to map to logical structures of programs and help software engineers in various
tasks such as comprehension, understanding and re-structuring. This thesis
poses and answers many research questions but also gives motivation and lays
down the foundation of future work in many areas.

The first set of future work is related to extending the work done in this
thesis to obtain more generalised answers through extended empirical evidence.
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The work on coherent clusters analysis presented in this thesis is for 30 produc-
tion programs. However, a significant number of these programs are small Unix
utility programs. The largest of these programs presented is just over 62KLoc
with the average size of just under 11KLoc. Future work should endeavour to
extend the size of the empirical study in terms of number of subject programs
and more importantly the size of programs to represent large industrial system
typically of hundreds of thousands of lines of code.

One issue seen with currently extending the study with large programs
has been the limitations imposed by Codesurfer in the ability to analyse large
systems and the scalability of the clustering algorithm. Codesurfer imposes
limitations on the size of the programs that can be analysed, a newer version
of Codesurfer is due to be launched which allows analysis of larger systems.
Furthermore, the clustering algorithm which now runs in a pipeline architec-
ture based on the scheme interface of Codesurfer has to be reimplemented to
improve the runtime.

This thesis also draws links between coherent clusters and program struc-
ture based on four case studies. The number of case studies and the size of the
program also need to be extended to be able to better generalise the answer.
This also applies to the study of the changes in clustering during software evo-
lution. Additional human studies can also be done to ascertain the intended
program structure and compare to the results obtained using clustering.

The study that looks at the relationship between software faults and de-
pendence clusters is currently based on a single case study for the program bar-
code. The study was not replicated using other cases because of the difficulty in
manually gathering and assessing fault data. As the scaling of Codesurfer and
the clustering algorithm improves it would be possible to analyse and study
larger modern systems that have bug repositories. Extending this study with
modern large systems will help derive a more generalised answer.

The application of the coverage based code reduction framework to static
slicing and dependence clusters found improvement in the size of static slicing
and improved mapping between clusters and logical program constructs. Fu-
ture studies should consider the application of the framework to other static
analysis. Furthermore, the current empirical validation which applies the
framework on coherent clusters can also be extended by addition of further
case studies.
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Finally, most of the experiments here have been on programs written in
C, which should be extended to other programming paradigms and languages.
The study into the existence of coherent clusters in Java programs should also
be replicated using other slicing tools such as Wala to validate results.

9.4 Summary
Previous work has deemed dependence clusters to be problematic as they in-
hibit program understanding and maintenance. This thesis views them in a
new light, it introduces and evaluates a specialised form of dependence cluster:
the coherent cluster. Such clusters have vertices that share the same inter-
nal and external dependencies. The thesis shows that such clusters are not
necessarily problems but rather their analysis can aid an engineer understand
program components and their interactions. This thesis is one of the first in
the area of dependence clusters to suggest that dependence clusters (coherent
clusters) are not problematic but represent program structure and give evi-
dence to that cause. Developers can exploit knowledge of coherent clusters as
such clusters represent logical constructs of the system and their interaction.

This thesis presents new approximations that support the efficient and
accurate identification of coherent clusters. Empirical evaluation finds that 23
of the 30 subject programs have at least one large coherent cluster. A series
of four case studies illustrate that coherent clusters map to a logical functional
decomposition and can be used to depict the structure of a program. In all four
case studies, coherent clusters map to subsystems, each of which is responsible
for implementing concise functionality. As side-effects of the study, we find that
the visualisation of coherent clusters can identify potential structural problems
as well as refactoring opportunities.

This thesis provides further support for the view that coherent clusters
map to logical program constructs through longitudinal study of four case
studies. The longitudinal studies show that coherent clusters remain stable
during system evolution as they depict the core architecture of the program.
Furthermore, the thesis presents a study on how bug fixes relate to the presence
of coherent clusters, and finds no relationship between program faults and
coherent clusters.

Finally, this thesis presents a code reduction framework based on coverage
information. The aim of the framework is to improve the “sharpness” of static
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analysis to alleviate some of the inherent conservatism associated with static
analysis. The framework allows for a blend between static and dynamic analysis
by removing code that is regarded as “less” important, thereby improving the
results of the static analysis. In particular we found reduction in size of static
slices and better mapping between clusters and logical program constructs.
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