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ABSTRACT 
Investigating new ways to deliver care, such as the use of self-service kiosks to collect 
and monitor signs of wellness, supports healthcare efficiency and inclusivity. Self-
service kiosks offer this potential, but there is a need for solutions to meet acceptable 
standards, e.g., provision of accurate measurements. This study investigates the 
design and optimization of a prototype healthcare kiosk to collect vital signs 
measures. The design problem was decomposed, formalized, focused and used to 
generate multiple solutions. Systematic implementation and evaluation allowed for 
the optimization of measurement accuracy, first for individuals and then for a 
population. The optimized solution was tested independently to check the suitability 
of the methods, and quality of the solution. The process resulted in a reduction of 
measurement noise and an optimal fit, in terms of the positioning of measurement 
devices. This guaranteed the accuracy of the solution and provides a general 
methodology for similar design problems. 
 
Practitioner Summary  
We developed an interactive self-service kiosk for healthcare. The aim was to apply a 
formal design methodology, to optimize positioning of vital signs monitors, and 
facilitate measurement accuracy. The contribution is two-fold in outlining a 
generalizable and rigorous approach to design, and showing how it guarantees 
optimality for certain properties. 
 
Keywords:  human-machine interface; self-service healthcare kiosk; measurement 
accuracy; design methodology; parameter identification 

1 INTRODUCTION  
Worldwide, there are both immediate and far-reaching challenges to the provision 

of healthcare. For many countries, changes in demographic, growth in Long Term 
Conditions (LTCs) and changes in the ratio of caregivers to cared for is forcing a 
rethink in the way that healthcare is provided. Recently, a new kind of healthcare 
technology has emerged, based upon the use of self-service kiosks (PK, 2013; 
SoloHealth, 2013). These systems can be used to take physiological measures such as 
blood pressure, in order to provide healthcare advice.  

When it comes to the design of such technology, the Human Factors and 
Ergonomics literature provides many classic and applicable design rules, relating to 
the physical characteristics of technology. Designers can also apply data relating to 
the statistical characteristics of the target population in order to fit a proposed solution 
to the characteristics of the user population. There are also guidelines relating to 
design methods (AAMI, 2009; Maguire, 2001; Salvendy, 1997; Vincent et al., 2012), 
and user interfaces (Borchers et al., 1995; Johnson et al., 2005; Maguire, 1999). All of 
the above can help match the design of healthcare kiosks with the properties of both 
users and environments, but doesn’t necessarily guarantee accuracy of measurement.  

1.1 The need for measurement accuracy  
Given the potential use of physiological measures in healthcare diagnosis, 

monitoring, and clinical decision-making, there is a need for accuracy.  Measures 
need to be in compliance with clinical standards. This imposes challenges upon the 
design of the kiosk, because there is rarely a one size fits all solution. In addressing 
these challenges, it helps to break down the problem, consider the factors that impact 
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on measurement accuracy, and control them. The kiosk measurement process can be 
considered as an interaction between human and machine, of which there are multiple 
components (e.g. physical, sensorimotor and psychological). They include traditional 
physical capabilities, as characterized by anthropometry and biomechanics. These 
factors contribute to the measurement accuracy and include aspects such as body 
posture, measuring device height, spatial arrangement of the equipment, etc. For 
instance, different postures can cause a variation of more than 20% in the measured 
systolic/diastolic blood pressure (MacWilliam, 1933). Another component relates to 
the psychological or mental state of the individual. This can result in a variation of 
more than 20% on cardiovascular measurements (Madden and Savard, 1995).  

Getting an accurate measure is important, as almost two-thirds of hypertensive 
individuals would be denied morbidity preventing treatment if the diastolic blood 
pressure is underestimated by 5 mmHg. Conversely, the number of people diagnosed 
with hypertension would more than double if systolic pressure is overestimated by 5 
mmHg (Campbell and McKay, 1999). Therefore, the design of an interactive self-
service kiosk for the reading of vital signs needs careful consideration, including 
theoretical modelling of measurement accuracy and optimization across a number of 
factors.   

1.2 Optimizing device interactivity 
When it comes to the user interface, although researchers have frequently studied 

the efficiency of using different interactive components to control equipment; 
comparatively few have investigated how to optimize the properties of equipment, to 
support the accuracy of measurement. Studies have contrasted the efficiency of 
various input modalities, for example the use of touch screens versus manual controls 
and tangible elements (Rogers et al., 2005; Zuckerman and Gal-Oz, 2013). There are 
also studies focusing on the use of formal methods to improve interactivity, such as 
the use of model checking to verify safety properties (Bolton et al., 2012); nonlinear 
programming to calibrate and tune the properties of the design prior to 
implementation (Eslambolchilar and Murray-Smith, 2008), and optimization though 
the use of parametric design problem solving (Motta and Zdrahal, 1996) (examples 
from outside of healthcare).  

This paper focuses on the design of the physiological kiosk from the perspective 
of optimizing HMI and improving measurement accuracy. The proposed kiosk 
integrates several medical devices and sensors for reading the physiological 
characteristics of participants, including the blood pressure (BP), blood oxygen 
(SpO2), pulse rate (PR), electrocardiograph (ECG), blood glucose (BG), height and 
weight. These vital signs are useful for both ubiquitous (general) and clinical 
(specialist) applications. Furthermore, amongst the educated population, the origins 
and meanings of these terms are well known. The main contributions of this paper 
are: 

• Structuring the design problem formally, stating the factors that might impact 
on the formulation and choosing an appropriate design methodology.  

• Stating the design method and linking it to a proposed implementation.  
• Implementation of a design to realise the methodology.  
• Conducting user trials to check the accuracy of the solution.  
To do this, we formulated and analysed the design problem (section 2); generated 

and applied a design methodology (section 3); tested and analysed the implementation 
(section 0) and made conclusions about the success of the overall process (section 0). 
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2 FORMALIZING THE PROBLEM  
In formulating the HMI design problem, we proposed a series of factors that 

could feasibly impact on physiological measurement. We then narrowed these down 
to create an approximate expression of the factors that could be considered and 
controlled during the design.  

2.1 Design goal 
The value of a vital sign (y), as read from a sensor could be formulated as a 

combination of factors emanating from human (Xhuman) and machine (Xmachine) as 
defined by the function � (Equation (1)).  

 (1) 
An example of a factor relating to the human would be the position of their arm, 

relative to a blood pressure monitor. An example of a factor relating to a machine 
would be the ability for an ECG monitor to determine the rate of the heartbeat from 
analysis of the input signal. One of the aims of designing the kiosk was to integrate 
multiple standard sensors, to obtain physiological measures. We therefore focused on 
the human factors (Xhuman) that had the potential to affect measurement accuracy, as 
the equipment we were using had already been assessed in terms of quality and 
performance (e.g. the affects from the machine, Xmachine, were discarded). 

So, given the vital sign set V = {BP, SpO2, PR, BG, ECG, Height, Weight}, the 
design goal was to minimize the total measurement error of each vital sign i, as a 
result of human factors, as described in the following optimization Equation (2): 

 
(2) 

For Equation (2), �i(Xhuman) is the measured value of vital sign i, as determined by 
the range of human factors (signal + noise). vi is the reference value, believed to be 
the real value of the vital sign i when artifacts and noise are eliminated.   

In order to decompose the range of human factors (Xhuman), we considered the 
range of possible influences that might impact on the vital signs. The kiosk was 
designed to measure vital signs, as derived from intrinsic factors (changes that occur 
within the body, such as cardiovascular disease), as a result of the overall health of the 
user. We also needed to consider non-intrinsic inputs from either outside of the body 
(e.g. postural changes or environmental changes) as well as those from inside the 
body, but not relating to the general health of the user e.g. mood / emotions etc 
(Cacioppo et al., 2007; MacWilliam, 1933). The intrinsic inputs reflected the health 
status of the person using the kiosk. They determined the values of the vital signs, as 
denoted by reference value vi. The non-intrinsic inputs determined the noise to the 
vital signs; they were the ones that we needed to control and optimize when designing 
and implementing the kiosk. We therefore defined the value of the vital sign yi as: 

 (3) 

which means that the measured value of the vital sign yi , is composed of the intrinsic 
value vi  and the noise �i(Xi) relating to human factors Xi (the Xhuman in Equation (2)). 
This means that Equation (2) can be rewritten as: 

( , )human machiney X X= Γ

min. | ( ) |i human i
i V

X v
∈

Φ = Γ −∑

( ) ( )i i i i i iy X v Xδ= Γ = +
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(4) 

2.2 Considering the range of human factors 
Table 1 shows a summary on the factors that could affect the vital signs, which 

are collected from the known physiological measurement guidelines (AAMI, 2009; 
Campbell and McKay, 1999; MacWilliam, 1933; Madden and Savard, 1995; Myrtek 
et al., 2000, Pickering et al., 2005).  
 
Table 1: Human factors that could affect the vital signs. 
Factor  Possible effects 
Posture  Postures may affect the signal quality or the vital signs, e.g. 

sitting or standing,  
Position  Positioning of the user may affect the signal quality or the vital 

signs arm position, etc. 
Senses Inputs from eyes, ears or touch may affect the vital signs.  
Psychological 
activities 

Moods, mental states and other mental activities may affect the 
vital signs. 

Environment Temperature, humidity, noise, lighting, etc. may affect the vital 
signs. 

Exercise Exercise affects some vital signs (e.g. blood pressure, heart rate, 
etc.). 

Food  Food (e.g. salt content) may affect the vital signs.  
Drink  Drink (e.g. coffee) may affect the vital signs (e.g. heart rate). 
Time  Time (e.g. time of the day) may affect the vital signs. 
Space The location of the kiosk (e.g. private / public) may affect the 

vital signs.  
 

Based on this summary, we developed a basic model of the range of factors that 
could impact on the vital sign measurements. This allowed us to decompose the 
optimization problem (Figure 1). Factors relating to exercise and food intake were 
difficult to control and optimize through the kiosk design and thus ignored in this 
model, although it is possible that they could be addressed though training and user 
instructions. From the perspective of the kiosk design, they were considered as 
background factors. 

min. | ( ) |

| ( ) |

i i i i
i V

i i
i V

v X v

X

δ

δ
∈

∈

Φ = + −

=

∑

∑



6 
 

 
Figure 1: A black-box view of the human body with respect to the factors that impact 
on physiological measurement. 

 
Regarding the black-box model, we needed to consider what was and wasn’t 

likely to impact on the vital sign set (the output side). We formalized this in the 
following way: 

• Let affecting factor set E = {Body posture, Sensory inputs, Psychological 
activities, Time, Space, Environment}.  

• For any vital sign i � V, the measurement error δi(Xi) in Equation (4) can 
be formulated as shown in Equation (5), according to the black-box model 
(Figure 1).  

• This provided the total error caused by all of the affecting factors (e.g. 
Figure 1, left-hand side).  

• The subscript i of each affecting factor is ignored. 

min. ( )
( ) ( ) | ( ) |

| ( ) | | ( ) | ( )

i i i

B B S S P P

T T A A E E

X
f X f X f X

f X f X f X

δΦ =

= + +

+ + +  

(5) 

In Equation (5), XB, XS, …, XE denote the variables of body posture, sensory input, 
psychological activities, time, space, and environment. These variables are listed in 
the affecting factor set E. The Xi is therefore equivalent to a set:  

( , , , , , )i j B S P T A Ej E
X X X X X X X X

∈
= ∪ =∪  

The fB(XB), fS(XS), …, fE(XE) denote the measurement errors of the vital signs 
which are affected by these variables. For convenience, let: 

( , , , , , )Aff j B S P T A Ej E
X X X X X X X X

∈
= ∪ =∪  

which is referred to as the affecting variable set. 

2.3 Considering the measurement sequence  
In solving the optimization problem in Equation (4), we came across several 

challenges. Firstly, not all of the vital sign functions were explicitly defined. 

Physiological 
systems

Posture 
(arms/legs/head…)

Sense 
(eyes/ears/nose/touch…)

Psychological activities
(happy/sad/nervous…)

BP

Time & space

Environment
(temperature, humidity…)

BO

Pulse

ECG

BG

Height

Weight



7 
 

Secondly, it may be that some of the factors influencing the vital signs, Xi  (Figure 1), 
overlapped with each other. For example, both the blood pressure and pulse rate could 
have been correlated with posture (XB). There were common variables, within the 
affecting factor set Xi. This made the problem in Equation (4) difficult to solve. To 
address this we conducted further decomposition and simplification.  

One way to do this was to consider the sequencing of the measurements; that is, 
the Xi for each vital sign could be distinguished by the time at which the measurement 
was taken. This made it possible to separate the factors, for example, the postural 
factor XB in Xi was configured for blood pressure, and then configured separately for 
the ECG. As long as the optimal solution is achieved for each vital sign, the total 
measurement error will be optimal (see Annex 1 for the proof). 

2.4 Identifying independent variables 
Furthermore, we could also determine which of the variables listed in Equation (5) 

could be regarded as independent.  For example, if we change body posture from 
sitting to standing, other variables (e.g. environment - temperature) are unlikely to 
change. At the same time, some variables were sufficiently related that they could 
impact on the measurement error either directly and/or indirectly. For example, 
disagreeable sights or sounds may affect measurements indirectly, by causing a 
change in mood as a result of a corresponding sensation; they may also impact 
directly, for example a loud noise causing a change in a measurement purely as a 
result of the sensation.  

We needed to differentiate between dependent and independent sets (see Annex 2 
for detailed definitions and the proof). The formal design optimization then became 
possible and could be solved using standard optimization techniques (see Annex 3 for 
the detailed analysis using nonlinear optimization methods). 
 

3 METHODS  

3.1 Kiosk design  

3.1.1 Designing for a population 
As the kiosk was designed for public use, we needed to generalize a solution (i.e. 

design for a population), based on our formulation (section 2). Applying the 
optimization process for an entire population was not practical, but applying it for an 
individual and then generalizing to a population was. Validation was achieved using 
an inferential approach, whereby we checked that our generalized solution, met the 
needs of individuals, within a predefined “error tolerance” (Figure 2): 

Firstly, our population sample (the potential users of the kiosk) was divided into 
two groups; the training group and the testing group. For everyone in the training 
group, the optimized HMI design was achieved using the problem formulation 
(section 2), e.g. in the “individual optimization” stage in Figure 2.  
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Figure 2: Validating the design methodology for the population. 
 

We then took the sets of optimization parameters and balanced them for use 
across the population (population fitting). The process of population fitting needed to 
keep the individual measurement errors within a given significance. This was 
measured during the “testing group phase” that occurred after the population fitting 
had occurred. It provided an independent check of the fitting results. Each individual 
in the “testing group” was asked to try the design and measurement errors were 
recorded. We either accepted (submitted) the design solution, or repeated the overall 
process, (based on a 5% significance test) (Figure 2). 

3.1.2 Optimizing for individuals  
The process of generalizing for the population was dependent upon the results of 

an individuals’ optimization process (Figure 3). This started by setting design 
parameters, to evaluate the functions in Equation (8) (Annex 3). This step required a 
model of the target design, including properties relating to the placement of devices.  

 
Figure 3: The optimization process. 

The parameter identification process was not only used to specify the design, but 
also provided the basis for the optimization process. In solving this process, we got a 
design solution; although it was not always possible to do this explicitly (even if 
independent variables were established). In this case an iterative measurement process 
/ analytical solver was used, which found the local optima in the KTT condition (as 
described in Annex 3).  

Sample 
selection

Training 
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Testing 
group

Individual 
opt.

Population 
fitting

Fitting 
Test

Submit

Verified?

No

Yes

Design 
Parameterization

Initial Design 
Solution
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verification
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Design Search

Final Solution

Parameter Identification: 
optimal solution search

Accept?No

Yes

Reanalyze  
design & 
individual



9 
 

A search domain was defined, (i.e. a sub-domain of the variables), because the 
theoretical domain could have been infinite but the experimental measures were 
finite. The initial solution was assigned (for the iterative search routine), and the 
relationship between the variables / measurement accuracy derived by defining the 
turning (stationary) points. This process was robust to noise. 

After the search routine was completed, the relationship between the variables and 
the measurement error was fitted. The formulation was solved based on the fit, e.g. 
through solving Equation (8) (Annex 3). In this way, the final design solution was 
achieved for the individual in question. 

Although the solution should have been optimal, when the search was finished, an 
additional evaluation and verification process was used to check that the design was 
acceptable. If the solution was not reasonable, the design parameterization for the 
given individual was reanalysed, or the individual was excluded from the process.  

3.1.3 Population fitting and testing  
We proceeded to the population-fitting stage when the (individual) solutions were 

accepted for the training group. In this step, the dominant characteristics of the 
individuals, relating to the optimal solutions were found, using correlation analysis. 
For example, the optimal solution of the blood pressure monitor was highly correlated 
with the shoulder-width and the height of the individuals, so the population-fitting 
curve of the optimal position could be based upon the should-width and height. We 
could provide a general solution, as long as such a relationship could be determined. 
If this wasn’t the case, it meant that there was too much noise in the measurement 
data and we needed to review, collect more or restart the optimization process. The 
fitted curve for the population was then verified during the “testing group phase” that 
occurred after the population fitting. It provided an independent check of the fitting 
results (as per section 3.1.1).  

3.1.4 Controlling for noise  
In order to minimize noise during the measurement process, we also: 
1) Used clinical standards. e.g. (Pickering et al., 2005).  
2) Used statistical analysis e.g. use of confidence levels.  

3.1.5 Selection of sub-problems 
The formulae in Equations (7) and (8) provided the theoretical basis for the 

design of the kiosk. We went about a process of selecting independent sub-problems 
based upon the categories of factors that could potentially influence the vital signs 
(Figure 1). We split these into insensitive factors (those where variation should be 
minimized), shielding factors (needing to be kept constant) and dominant factors (the 
focus of the optimization). For more information about how these sources of noise 
were defined and controlled see Annex 4 and Table 2. The paper focuses on the 
dominant factors (postural factors), which were those that had a major effect on the 
measures taken by the self-service kiosk. We assumed them to be measurable and 
controllable.  
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Table 2: Methods of controlling noise. 
Factor  Control 
Insensitive 
Factor  

The sessions were finished within 30 minutes. 
 

Insensitive 
Factor 

The sessions maintained the same spatial position and geographical 
location. 

Insensitive 
Factor 

The temperature, humidity, lighting, air quality, and noise level of the 
environment were maintained at similar levels for each session. 
Abnormal days in terms of rainy/heavily cloudy/heavily windy 
weather were skipped.   

Shielding 
Factor  

The measurements were taken in a silent room with suitable lighting, 
18ºC - 20 ºC, 40% - 60% humidity, and air conditioning. 

Shielding 
Factor 

The participants were asked to refrain from physical exercise and 
maintain a state of rest at least one hour before the testing. 

Shielding 
Factor 

The participants were asked to wear headphones and listen to piano 
music. 

Shielding 
Factor 

The participants were well trained. We conducted a familiarization 
session prior to the experiment in order to ensure the smooth running 
of the later sessions.  

Shielding 
Factor 

The experimenters would talk to participants and gently respond to 
their questions, but not do anything that might change their affective 
state or mood.  

3.2 Kiosk implementation 

3.2.1 Design Plan 
Participants 

There were 32 volunteers (12 female) recruited to participate during the design 
process; the training group consisted of 16 volunteers (6 female), the testing group 
consisted of 16 volunteers (6 female). There were two physicians who evaluated the 
participants, assigned the candidates to groups and then supervised the measurement 
process. Table 3 lists descriptive statistics for the training group. It should be noted 
that the characteristics of the training and testing group impacts on the 
generalizability of the solution (e.g. the output of the optimization process). This 
means the properties of the final design relate to the population selected. Regardless, 
the theory and methods in this paper can be employed for any other population.  

Table 3: Statistics for the training group: Age (years), height (cm), weight (kg), 
Body Mass Index (BMI) (kg/m2), shoulder width (ssh_w, cm) and length of arm to 
shoulder (Arm_s, cm) were measured. The BMI was calculated as follows: 
weight/height2 (kg/m2).  
 
 Age Height Weight BMI Sh_w Arm_s 
Mean 27.2 1.75 62.3 20.8 40.8 95.1 
SD 2.6 0.08 12.5 3.1 4.4 6.9 
 
Measurement sessions 

The design optimization needed a series of measurements, for different vital signs, 
to be taken from both the training and testing groups. The series of measurements 
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were organized into sessions. A session was defined as the period during which one 
participant carried out sequenced measurements of the same vital sign, across a given 
time duration. The use and organization of sessions was designed to provide for 
Theorem 1 (Annex 1).  

Measurements relating to 4 vital signs were chosen for optimization through the 
kiosk design, i.e. VE={BP, SpO2, PR, ECG}. They were measured using clinically 
standard, commercially available equipment (Table 4). The four vital signs needed at 
least three sessions for each participant. We optimized the position for all devices, but 
only report results relating to the blood pressure monitor.  

 
Reference values 

In order to calculate the error component of the vital sign, we needed to calculate 
reference values. The reference value for each vital sign was measured and recorded 
by a physician, according to clinical best practice (Pickering et al., 2005). Multiple 
readings were taken. Reference values were measured every day before the 
participants started their sessions; average values were then adopted and applied as 
described in Equation (3).  

3.2.2 Design flow 
Design Parameterization 

The kiosk consisted of three medical devices, used to read vital signs (Table 4), 
selected for a “self-service” scenario.   

 
Table 4: The devices integrated in the kiosk. 

Device Description 
BP monitor An automatic blood pressure monitor without the cord-cuff. 
Oximeter A fingertip oximeter for SpO2 and pulse rate (PR).  
ECG monitor A single-lead ECG monitor with three ECG limb-clamps.  

 
We applied the design method to determine where best to place them in the kiosk 

“target model” or prototype. We were setting the final coordinates of the devices in 
the 3D Cartesian coordinate system to optimize the measurement accuracy. The user 
of the kiosk was defined as being seated, with upright posture. The origin (xo, yo, zo) of 
the target model was set to the centre of the ground projection of the user. The 
following variables were extracted in order to formulate the relationship between user 
position and measurement device position (Figure 4).  

• The position of the blood pressure monitor: ( ). 
• The position of the oximeter: ( ). 
• The position of the three ECG clamps: ( ) for the right ankle, (

) for the left ankle and ( ) for the right wrist. One of 
the three is shown in the Figure 4. 

 

, ,bp bp bpx y z

, ,ox ox oxx y z
1 1 1, ,ecg ecg ecgx y z

2 2 2, ,ecg ecg ecgx y z 3 3 3, ,ecg ecg ecgx y z



12 
 

 
Figure 4: The parameters in the kiosk design. The figure shows the directions and the 
interval of the trials (5cm), for the blood pressure monitor at ( ). 

 
The user position was regarded as fixed (at the origin), and the device positions, 

i.e. the BP, oximeter and ECG, variable. The aim was to optimize the design solution 
within this problem space. The device positions were moved along an interval of 5cm 
in each direction of X, Y and Z. The measurement error of a given vital sign on a 
given device was refined using Equation (10) (Annex 3). The following Equation 
shows the linear sum, similar to the independent sub-problems in Theorem 2 (Annex 
2): 

 

 

where x, y and z are the coordinates of the devices outlined in Table 4. The following 
lemma can be proved based on Theorem 2 (Annex 2), so independence among the 
errors caused by x, y and z can be assumed. 
Lemma 1 (Equivalence Based on Cartesian Coordinates): is the 
optimal solution of � � x*, y*, z* are the optimal solutions of the independent sub-
problems , !and  respectively. 

The proof is similar to that of Theorem 2 (Annex 2) and Theorem 1 (Annex 1) and 
omitted here. 

Based on the Lemma 1, the parameter identification can be carried out as follows. 
 
Parameter Identification 

According to the Theorem 1 (Annex 1), the devices were arranged to be optimized 
separately, in sequenced sessions. This provided independence between the 
optimization processes conducted for each device.  

For each device, the parameter identification process sought to address the 
optimization problem defined for the individual optimization in section 3.1.2 (the 
Equation (10) in Annex 3). Variables were set up, with the functional form relating to 
the measurement error, as yet to be determined. The problem was then solved 

, ,bp bp bpx y z

2

2

2

min.
( )
( )
( )

x y z

x x

y y

z z

f x
f y
f z

Ψ =Ψ +Ψ +Ψ

Ψ =

Ψ =

Ψ =

( )* * * *, ,X x y z=

xΨ yΨ zΨ
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analytically using the pseudo code listed in Figure 5. The procedure takes any 
component of the device position (x, y, z) as the input, and records the measurement 
error accordingly. The interval d and the search directions are also shown in Figure 4. 

 
Procedure 1: opt_pos_solve (x) 
Input: the position component x, y or z 
Output: record the measurement error  

Begin  
1. Given the search domains [d1, d2]  
2. Given the interval d 
3. x = initial solution 
4. While (x <= d2) do 
5.        record the measurement error p 
6.        Iterate x using the iterval d 
7.  End while 
End 
Figure 5: The optimization procedure 
 
Procedure 1 was used to perform the main steps of the parameter identification 
(Figure 3), and was composed of the following sub routines.  
1) Search domain definition 

The domain of potential device positions (x, y, z) was constrained by the range 
within which the user could freely and comfortably take measurements.   
2) Initial design solution 

The physicians suggested the initial design solution should be based upon a 
position that the user would find comfortable.  
3) Iterative search, optimization and definition of the final solution 

The iterative search procedure consisted of three steps. The first step was to iterate 
a series of candidate design solutions within the domain of acceptable solutions. 
During this stage the measurement error was recorded. The second step was to fit the 
relationship (as outlined in section 3.1.2) and set up an explicit function expression (if 
possible). The third step was to solve the optimal solution according to the nonlinear 
optimization problem for the individual (Annex 3). If the functional expression could 
be fitted, it was; otherwise we manually selected local optima, through observation.  
Evaluation and verification.  

After the final solution was achieved (for each participant), the results were 
reviewed manually, with respect to how well the solution controlled / reduced noise. 
It was sometimes the case that measures taken on one day were inconsistent with 
preceding measures, in which case the data from the measurement session was 
discarded and another one was convened.  

3.2.3 Validating the design 
After the design was optimized for each individual, the solution needed to be 

generalized across the population. For each participant, the optimal solution for the 
“affecting factors” was determined through the design process, for example 

 for blood pressure. In order to derive the fitting curve for the optimal 
solution across the population, we needed to know which characteristics of the 
individuals were implicated (e.g. height, should-width, arm-length and/or BMI). For 
example, analysis revealed that the optimal x-position of the blood pressure monitor 

( )* * *, ,bp bp bpx y z
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was highly-correlated with the shoulder-width and the height of the individuals, so the 
population fitting curve over the x-position was based upon the should-width and 
height. If such a relationship could not be determined, it meant that there was too 
much noise in the measurement data and we needed to review the data, collect more 
or restart the measurement process.  

4 RESULTS AND DISCUSSION    

Results and analysis are presented for the blood pressure monitor, but a similar 
process was used for the other devices (identified separately as per theorem 1 – 
Annex 1). 

4.1 Blood pressure monitor 
There were three directions to optimize, i.e. x, y and z. The interval d was set to 

5cm, and 5 trials were conducted across each direction. Each participant performed 
one measurement session, comprising of the three directions within one day; where 
possible, the sessions were arranged continuously, e.g. day by day. Sessions were 
scheduled to minimize the variation of the vital signs caused by the time. More than 
one month was spent conducting the experiment, and there were 20 measurement 
results at each coordinate for each participant.  

4.1.1 Assumptions of normality   

Table 5 provides the systolic and diastolic pressures measured for an arbitrary 
participant for a given position during the 20 sessions. 
Table 5: Blood pressure measurement results (20 sessions). 
 Trial #Day 1 to 20 
Systolic 98 104 112 110 103 105 107 
(Mean=106 105 101 101 106 104 108 96 
SD=4.76) 109 108 107 109 112 115  
Diastolic 73 65 76 71 71 67 70 
(Mean=71 78 55 67 63 78 72 63 
SD=6.96) 67 70 78 87 72 75  
 
  



15 
 

 
Overall data was compliant with the Normal distribution (Figure 6). 

 
(a)                                                                   (b)  

Figure 6: The frequencies histograms of the data in Table 5: (a) the systolic pressures, 
and (b) the diastolic pressures. 
 
The systolic and diastolic readings were compliant with the Normal distribution (p= 
0.998 and 0.982) (Figure 7). 
 

 

 
Figure 7: K-S tests for normality based on the systolic and diastolic values in Table 5. 

4.1.2 Outlying data  
Measurements taken from two of the participants contained outlying data for 

systolic (one case) and diastolic readings (one case) (Table 6). Figure 8 provides a 
schematic of the outlying data (boxplot form), alongside Q-Q plots. The outlying data 
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was filtered via the Grubbs’ test. There was 2.39% of outlying data across the whole 
measurement dataset.  
Table 6: The multiple measurement results with outlying data. 
 Trial #Day 1 to 20 
Systolic 99 100 102 94 101 99 92 
(Mean=102 105 102 100 99 104 110 103 
SD=6.5) 122 100 103 107 96 95  
Diastolic 71 69 69 75 61 71 72 
(Mean=68 68 73 74 51 61 75 82 
SD=6.8) 60 66 67 64 68 72  
 

 

         
Figure 8: Boxplots showing three outlying data points; they were 92 (No. 7) and 122 
(No. 15) - systolic data and 51 (No. 11) - diastolic data. The Normal distribution with 
Q-Q plots showed similar results. 
 

4.1.3 Fitting the error function and optimizing for an individual  
After the outlying data was filtered, expectations were calculated for each of the 

coordinates (readings were compliant with the normal distribution).  Table 7 gives an 
example, for one participant, of the mean and standard deviations for each trial 
coordinate. For this example, they were calculated for systolic readings (mean=113, 
SD=5.64) and diastolic readings (mean=69, SD=5.61). The standard deviation is a 
little bigger than the 5 (mmHg) recommended manufacturing error for clinical blood 
pressure monitors. 
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Table 7: Means and SDs for an arbitrary participant (23 testing locations); each mean 
value was calculated from 20 readings. 
BP: Systolic readings on 23 coordinates (Mean ± SD) 
104±5.8 104±5.8 105±4.8 117±4.7 108±4.8 
102 ±5.5 104±5.1 111±5.5 108±6.3 109±4.9 
105±5.9 101±5.1 103±4.9 106±6.0 107±4.8 
114±5.8 108±5.2 112±4.8 101±4.7 105±4.5 
93±6.0 95±5.8 90±4.7   

After expectations were calculated from the distribution of measurements taken 
for each position, the explicit form of the objective function fi(X) (the error function of 
blood pressure) was fitted. X is composed of the Cartesian coordinate variables x, y 
and z.  As per Equation (8) and (9) (Annex 3), the square form f2

B(X) was employed to 
guarantee differentiability. An example is provided for an arbitrary participant. 
Systolic and diastolic fitting functions are shown in Figure 9 with explicit functions 
provided in the legend. 

 
Figure 9: The x-axis denotes the device position (Figure 4), and f2 is the error function 
of BP. The red solid curve is for the systolic BP, which has the fitted form (using 
polynomial fitting): fB(x) = 0.0000654x6 - 0.00017x5 + 0.0184x4 - 0.957 x3 + 24.38x2-
240.983x (R2=0.997, p=0.00); the blue dashed curve is for the diastolic BP, which has 
the fitted form: fB(x) = 0.0000786x6-0.00021 x5+0.0224x4-1.134x3+27.247x2-243.039x 
(R2=0.975, p=0.001). 
 

Following estimation of the curve functions, and the KTT points, optimal 
solutions were solved and selected according to Equation (10) (Annex 3). There was 
inconsistency between the optimal solution (e.g. the best position) for the systolic and 
diastolic pressures (indicated by two triangles in Figure 9). In these cases the 
measures were obtained via the same monitoring device, but the optima were 
different. Although we would expect the optima to be different, there was also 
potential for variation as a result of the positional interval being relatively coarse 
(5cm). We decided that the optimal positions should be a range rather than a point. 
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The optimal position for an individual was selected as the middle point of the range as 
indicated by the blue and red arrowheads.  

4.1.4 Testing the affecting factors  
After optimal solutions had been determined for each participant, the factors that 

were related to the blood pressure measurement data were determined, allowing for 
population fitting. The factors listed in Table 3 (age, height, weight, BMI, shoulder 
width and arm length) were tested for correlation over the optimal positions x, y and z. 

 

 
Figure 10: Correlation test with the characteristics of the participants in the testing 
group. 
 

Based upon the correlation tests, the measurement error for blood pressure 
readings across the x-direction was most correlated with the shoulder width (denoted 
as s, coefficient 0.72 with p=0.002), then the height (denoted as h, 0.664 with 
p=0.005) and then gender (denoted as g, 0.604 with p=0.13). As one would expect, 
some of these factors were also correlated; for example, gender and shoulder width 
(0.917 with p=0.00). A similar analysis was performed for the y and z directions 
(Table 8). 
 
Table 8: Correlation results for the x, y and z directions. BP_x, BP_y and BP_z are 
the measurement errors of the blood pressure in x, y and z directions respectively. 

 gender (g) arm-len (a) shoulder_w (s) height (h) 
BP_x 0.604(0.13) \ 0.720(0.002) 0.664(0.05) 
BP_y \ 0.704(0.002) \ 0.604(0.013) 
BP_z 0.772(0.00) \ \ 0.739(0.001) 
 

Correlations

1 .666** .518* .331 .592* .917** .604*
.005 .040 .210 .016 .000 .013

16 16 16 16 16 16 16
.666** 1 .662** .297 .799** .724** .664**
.005 .005 .263 .000 .002 .005
16 16 16 16 16 16 16

.518* .662** 1 .910** .739** .658** .398

.040 .005 .000 .001 .006 .127
16 16 16 16 16 16 16

.331 .297 .910** 1 .487 .473 .169

.210 .263 .000 .056 .064 .530
16 16 16 16 16 16 16

.592* .799** .739** .487 1 .611* .411

.016 .000 .001 .056 .012 .114
16 16 16 16 16 16 16

.917** .724** .658** .473 .611* 1 .720**

.000 .002 .006 .064 .012 .002
16 16 16 16 16 16 16

.604* .664** .398 .169 .411 .720** 1

.013 .005 .127 .530 .114 .002
16 16 16 16 16 16 16

Pearson4Correlation
Sig.4(2<tailed)
N
Pearson4Correlation
Sig.4(2<tailed)
N
Pearson4Correlation
Sig.4(2<tailed)
N
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Sig.4(2<tailed)
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N
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In the y direction, the most correlated factors (with measurement error) were the 
arm length and the height. In z direction, it was the gender and then the height. There 
were differences between the optimal positions for female (mean = 54.3 ± 1.5cm) and 
males (mean = 64.6 ± 2.5cm).  

4.1.5 Population fitting and testing 
Population fitting was performed for three directions based on the affecting 

factors outlined in the previous section. The following equation gives the final fit 
functions in the three directions based on the affecting factor height (h), arm length 
(a), shoulder width (s) and gender (g), which was generated from a similar process 
like that in Figure 9 (polynomial fitting).  

 

 

There are actually two possible forms in fitting the function of the z-direction: one 
is the piecewise form upon the gender and the other is the continuous form based 
upon the height. A constant-based piecewise function was chosen for the z-direction 
function due to the minimal standard deviation. The population-fitting functions 
provided high determination (R-square) and significance (p). After the population 
fitting was conducted for the training group, the testing group was employed. The 
testing group consisted of 16 people (6 female). For each person, the optimal 
positions were calculated, according to the population-fitting function in Equation (6). 
We then took three continuous measurements. The mean value of the readings was 
recorded and designated as the test reading for that person. At the same time, a 
physician took three continuous measurements using a clinical blood pressure 
monitor, to obtain the mean value of the readings for a reference blood pressure. The 
measurement error was calculated according to the test reading and reference reading. 
These results showed the average error was 3.94 ± 1.28 mmHg, which is in line with 
clinical standards (5mmHg). 

5  CONCLUSION  

Although a design kiosk design solution was achieved (based on the three 
devices), there was a need for compromise in creating a general solution. We know 
that different users had different optimal solutions (e.g. according to the population-
fitting functions , based upon the blood pressure results). It was hard to provide both a 
general and optimal solution when different users had different heights, shoulder 
widths and genders. There are two ways to resolve the issue: one is to provide a 
design that adapts for different users, the other is to use (published) data relating to 
population level anthropometry, biomechanics or ergonomics. In this study, we 
collected our own data from our target population. The anthropometric characteristics 
were as follows: height 169.31cm, arm length 54.43 and the shoulder length 43.42cm. 
Our blood pressure monitor was located at x = 33.74, y =56.66 and z = 58.76 (cms). 
The prototype design and the corresponding implementation based on the 
anthropometric data are shown in Figure 11.  Based on the population-fitting 
functions of the optimal device configuration, an automatic device adaption could be 
realized for any specific user. However, addressing the practicality of both obtaining 
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the user parameters and automatically configuring the devices requires additional 
work. 

 
Figure 11: The finalized design and the implementation of the healthcare kiosk. 

 
This study proposes a methodology that allows for both the development and 

optimization of a self-service physiological kiosk. For this domain, very few design 
studies provide a formalization of the problem, means to optimize it, and 
demonstration using a general, and compelling design problem.  The use of a 
dedicated design model and corresponding design and optimization methodology 
helps guarantee the accuracy of the implementation.  

Accurate physiological measurements in ubiquitous scenarios are a challenging 
issue; we provide a demonstration of how formal mathematical proofs can be applied 
to support them. To extend these methods we need formulations with additional 
variables that take into account more factors. In future work there may be ways to 
decrease the testing burden by “smartly” controlling noise. For example, deciding 
whether to accept or reject multiple measurements based on variability in the data. 
Given a generalizable and sufficiently accurate solution, the self-service healthcare 
kiosk could offer accurate physiological measurements that meet medical standards 
and serve large populations efficiently. The system could allow users to engage with 
the system over a period of time, to help support long-term monitoring. Before this 
can be realised, there are still a few practical issues to resolve. They form the basis for 
future work: 

1) Population adaption. We implemented the design based on a restricted 
population (e.g. the training and testing groups were recruited in a university 
campus). A more general solution would require additional testing. We need 
to find an appropriate balance between the generalizability of the solution and 
the cost of involving multiple user groups during the testing.  

2) The Graphical User Interface (GUI). Irrespective of the device configuration 
presented in this paper, the GUI needs to be optimized separately. We 
considered some factors for controlling the measurement noise, but a well-
designed GUI also plays a role in guiding the user to complete operations 
correctly (e.g. providing video based instruction on how to attach the sensors). 
The role of the GUI is important when it comes to preparing users (e.g. 
calming them prior to a measurement being taken). It can also be used to 
provide educational instructions e.g. tutoring on lifestyle options and healthy 
living.   

3) Maintenance. We need to consider the mechanisms for supporting the kiosk 
(e.g. training, cleaning, hardware and software support).  
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4) Integration with the wider health service. For the kiosk to be of maximum 
benefit, it needs to form part of a wider series of systems and services. For 
example: the kiosk could be used to collect data to support medical practice; it 
could provide the basis for telemedicine; it could support preventative 
medicine and community health initiatives; it could form forming the basis for 
wider social networks consisting of both community members and clinical 
professionals. 
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(All the numbers of the Equations and Figures in the annex are consistent with 

those in the main texts from section 1 to 5.) 

ANNEX 1, Sequenced Sub-Problems 
 
It is possible to provide proof of equivalence as per the following definitions:  
 

Definition 1 (sequenced sub-problems): , we can define the sequenced sub-
problem for each vital sign as Equation (6) shows: 

 (6) 

Theorem 1 (Equivalence based on sequenced sub-problems):  
is the optimal solution of the problem in Equation (4) � ,  is 

the optimal solution of the sub-problem of the vital sign i in Equation (6) . 
Proof:  � proof by contradiction.  

Suppose ,  is not the optimal. So we can assume there is  satisfying: 
 

Therefore the following must hold: 
 

which means X* is not the optimal solution of Equation (4). This contradicts with the 
known proposition. So the supposition is false.  
⇐proof by contradiction.  

Suppose X* is not the optimal solution of Equation (4). So we can assume there is 
 satisfying: 

 

Therefore there must be an satisfying: 
 

which results in the contradiction of the proposition that  is the optimal solution of 
the sub-problem for vital sign i (Equation (6)).  

So the supposition is false and the theorem holds.  
The optimization problem relating to the error sum in Equation (4) can be transformed 
to an equivalent series of optimization sub-problems for each vital sign (as per 
Equation (6)). 
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ANNEX 2, Independent Sub-Problems 
 
Definition 2 (Independent set):  
A variable set X is an independent set �  satisfies when Xi and Xj are 
independent with each other.  

Although linear and nonlinear correlations can be revealed using statistical 
methods, for this paper, independent sets of variables (listed in Equation 5) are stated 
and assumed as follows: 

• {XS, XP} are not an independent due to the strong linkage between sensory 
process and mental activity.  

• The set {XB, XT, XA, XE} is assumed independent.  
Let XSP= XS � XP, so the independent set of the affecting variables can be written 

as a hyper-set XInd={XB, XT, XA, XE, XSP} where the independence between XSP and the 
rest are assumed. We can also write EInd = {Body posture, Sensory and Psychological 
activities, Time, Space, Environment} accordingly. 

There are two properties on the independent set XInd: 
•  (no overlapping) 

• 
Ind

Aff
s X

s X
∈

=∪  (the same affecting variables)  

The proofs are omitted here. 
 
Definition 3 (Independent sub-problems): The independent sub-problems with 
respect to the independent variable sets are defined as: 

 (7) 

Theorem 2 (Equivalence based on independent sub-problems):  
is the optimal solution of the problem in Equation 

(5) �  are the optimal solutions of the independent sub-
problems in Equation (7). 
 
Proof:  proof by contradiction is similar with that in Theorem 1 and omitted here. 
 
The original optimization problem can therefore transformed into a series of smaller 
optimization problems surrounding each set of affecting factors defined in the set XInd. 

ANNEX 3, Measurement Error Optimization 
 
The objective function in Equation (7) can result in issues of non-differentiability. 

In this case, it is possible to use the square form. There are also constraints relating to 
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the domain of the function. So the finalized optimization problem takes these aspects 
into account (Equation (8)): 

 
(8) 

When constrained, the function Fi(Xi) can be a vector function and it can also 
cover situations of  the unequal, such as “≤” and “≥”. In the case of unequal forms, 
the equation can be converted by introducing redundant variables, e.g. f(x)  ≤ 0 can be 
converted to f(x) + xr = 0, xr ≥ 0.  

Discrete models and functions of this type are often used when deriving biological 
models. There are many techniques that can be used to generate continuous functions 
based upon the use of discrete data and models, including smoothing and interpolating 
(Faires and Burden, 2012), fitting (Hauser, 2009), and stochastic process (Øksendal, 
2003). Techniques such as piecewise derivatives and fractional derivatives (Podlubny, 
1999) can also be used to convert the functions to ones which are differentiable. So 
we can make the assumption that all the functions in Equation (8) are differentiable 
(or partially differentiable).  We cannot judge how much approximation there would 
be at this point since we do not know ground truth. However, the approximation 
maintains generality and is provided on a theoretical basis. 

For the system in Equation (8), the Lagrange Multipliers method (Bertsekas, 
1999) can be employed to convert the constraints into the objective function by 
introducing the Lagrange Multipliers method. This optimization problem can be 
converted to a Lagrange function as Equation (9) shows: 

 (9) 

The function may be a nonlinear function and the necessary condition of the 
Karush-Kuhn-Tucker (KKT) (Karush, 1939; Kuhn and Tucker, 1950). KTT points are 
often employed to give candidate optimal solutions in such cases; that is, to find out 
all the stationary points by letting the gradient equal to zero as Equation (10) shows.  

 (10) 

After the solutions have been achieved for Equation (10), the final solution can be 
obtained from these candidate optima.  

ANNEX 4, Magnitude of Different Factors Affecting 
Measures 
 

Insensitive factors 
  
Some of the “affecting factors” contribute to biological systems but in a way that 

had little consequence for the measures that were taken. For example, vital signs such 
as blood pressure, pulse rate, even the height and weight can vary across different 
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times (Stewart et al., 2009) or locations. However, such variations may be very slight 
when considered in a very short-time frame. For example, the vital signs in set V = 
{BP, SpO2, PR, BG, ECG, Height, Weight} can be approximated as invariant in a 
short time ∆t, i.e.: 

 
(11) 

which means the gradient value of the fT on a given point in Equation (10) is zero. 
Similar situations arise when considering the functions fA (space) and fE 
(environment). 

Factors {space, Environment} are hence classified as insensitive factors. This 
implies 1) a minimal contribution to measurement error and 2) the optimization 
process can be replaced by specifying constants. For example, for environmental 
variables such as temperature and humidity, small changes will result in a negligible 
change to the measurement error. This assumes that the measurement process can be 
done before the constants are invalidated, say, the temperature changes a lot, too 
much time passes, the space changes dramatically, etc. The kiosk usage scenarios 
means that it is unlikely this type of constant will be invalidated. We approximated 
for several “insensitive factors” during the implementation. 

 
Shielding factors  

 
In section 2.4 it was assumed that factors relating to sensory input and 

psychological activity (e.g. mental state) were sufficiently related that they could be 
modelled as a common variable in independent set EInd. In our case, it was difficult to 
measure and quantify psychological activities (for example, emotions relating to 
happiness, sadness, anger, etc. (Ekman et al., 1972)), and difficult to elucidate a 
specification for the computational OCC categories (Ortony et al., 1998), which could 
be used to define and control these factors or variables. It was hard to establish their 
impact on measurement error. 

We considered sensory input and psychological activities together, as shielding 
factors, where we wanted to reduce their impact on measurement error and maintain 
constancy as much as possible. We chose to do this in line with standard clinical 
practice, taking into account guidelines to reduce effects from the psychological 
activities, or keeping any effect constant. For example, a silent and clean space is 
required for ECG monitoring; at least 5-minutes rest is required before monitoring 
blood pressure, etc. 

Another means to reduce the impact of shielding factors was via the GUI. There 
were two approaches that were used:  

1) Making sure that the user knew what to do (e.g. using simple instructions).   
2) Making sure that the user knew what was going on and what was about to 

happen (e.g. which measurement was about to be taken, giving them time to prepare).    
 
The shielding factors affected the measurement results, but did not affect the 

optimization process. This was according to Theorem 2 (independent sub-problems). 
The reason why we needed to control the shielding factors is that the vital signs could 
not be divided into their ideal sub-parts (corresponding to the independent sets); they 
could only be read as a whole. For example, the blood pressure could be read from the 
monitor and the error component calculated (e.g. using the reference value), but the 
source of the error components could not be deduced. So the relationship between the 
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dominant factors and the measurement errors could only be observed when other 
shielding factors were controlled (e.g. kept constant). Such control didn’t seek to 
avoid the influence of the shielding factors, but instead aimed to keep them constant. 
The following control strategies were applied following reference to the guidelines in 
(Campbell and McKay, 1999; MacWilliam, 1933; Madden and Savard, 1995; 
Pickering et al., 2005): 
 
Insensitive vital signs 

 
As measurement of both height and weight is relatively straightforward in both 

ubiquitous (general) and clinical scenarios they don’t form the focus of this paper. 
Measures of height and weight may be influenced by body posture but are easy to 
correct for. Measures of blood glucose (BG) were also assumed to be insensitive to 
any of the affecting factors described in this paper. For these measures the process 
and resulting accuracy was outside of our scope and so the measurements are 
considered as insensitive vital signs and ignored during the optimization process. 

Conversely, collecting measures of blood pressure (BP), blood oxygen saturation 
(SpO2), pulse rate (PR) and ECG, was not straight-forward and could be influenced 
by position of the device relative to the user. Therefore postural factors that could 
influence the set of vital signs VE={BP, SpO2, PR, ECG} in Equation (7) were 
selected as the problems to optimize. Other aspects relating to insensitive factors and 
shielding factors were controlled / accounted for as described in the following design 
plan. The final design solution was near-optimal due to the approximation required 
for shielding factors and insensitive factors. This situation could have been resolved 
through additional investigation and improvements in the methods used to measure 
and control factors relating to “psychological activity” / “mental state”.  
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