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Abstract

My PhD focusses on argumentation-based communication between agents. I take, as a starting point, 

the argumentation system proposed by Garcia and Simari [22], which allows a.single agent to reason 

about its beliefs. I define a novel dialogue system that allows two agents to use Garcia and Simari’s 

system to carry out inter-agent argumentation. I define two specific protocols for two different types of 

inquiry dialogue that I define: argument inquiry and warrant inquiry. Argument inquiry dialogues are 

often embedded within warrant inquiry dialogues.

Other existing inquiry dialogue systems only model dialogues, meaning that they describe what a 

legal inquiry dialogue is, but they do not provide the means to actually generate such a dialogue. Such 

systems provide a protocol, which dictates what the possible legal next moves are at each point in a 

dialogue but not which o f these moves to make. I present a system that not only includes two dialogue- 

game style protocols, one for the argument inquiry dialogue and one for the warrant inquiry dialogue, 

but also includes an intelligent strategy, for an agent to use with these protocols, that selects exactly one 

of the legal moves to make.

As my system is generative, it allows me to investigate the precise behaviour of the dialogues it 

produces. I propose a benchmark against which I compare my dialogues, and use this to define soundness 

and completeness properties for argument inquiry and warrant inquiry dialogues. I show that these 

properties hold for all dialogues produced by my system. Finally, I go on to define another intelligent 

strategy for use with warrant inquiry dialogues. I show that this also leads to sound and complete 

dialogues but, in many situations, reduces the redundancy seen in the dialectical tree produced during 

the dialogue.
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Chapter 1

Introduction

In this chapter I start by giving an overview of the work presented here and describe the structure of this 

thesis. I then provide the context for this work, summarise the research questions I address, and end by 

highlighting the contributions made by this work.

1.1 Overview
The work described here is intended to inform the CREDO project1—an ongoing project being under­

taken at the Advanced Computation Laboratory2 at Cancer Research UK. The aim of CREDO is to 

develop and test a general approach to building and verifying clinical systems for supporting multidisci­

plinary patient care. In such systems, different parts of the care process are the responsibility of different 

individuals (doctors, nurses, etc.), who possess different skills and responsibilities, and who are fre­

quently in different places, but who must nevertheless work together as a team. These properties make 

it natural to model such an organisation as a multi-agent system, where the different agents involved are 

working in parallel to meet their own objectives, but are also working towards the same overriding goal 

of maximising the quality of patient care [63].

The goal of the project is to develop a software agent architecture in which agents can support 

the individuals in their work, and support communication and coordination between them in a way that 

produces measurable benefits in speed and effectiveness of care, and in improvements to patient safety. 

It is expected that such a system would bring serious improvements to patient care [31, 27], the standard 

of which often differs immensely depending on which medical centre is visited. Indeed, various studies 

have suggested that a patient with breast cancer who visits a specialist centre may be up to seven times 

more likely to receive successful treatment than a patient who visits a general medical facility [20, page 

5]. The CREDO system is intended to ensure that all medical professionals are providing the best 

treatment, thus standardising patient care.

The dialogue system I propose in this thesis focusses on the communication between exactly two 

agents in the CREDO system. Agent communication is a key issue in multi-agent systems, as it allows 

agents to coordinate their actions and share information in order to jointly achieve their goals. The 

work reported here is theoretical in nature and is concerned with inquiry dialogues in particular. Walton

1 http://www.acl.icnet.uk/lab/credo.html
2http://www.acl.icnet.uk/lab/index.html

http://www.acl.icnet.uk/lab/credo.html
http://www.acl.icnet.uk/lab/index.html
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and Krabbe [65, page 66] define an inquiry dialogue as arising from an initial situation of “general 

ignorance”, and as having the main goal to achieve the “growth of knowledge and agreement”. They 

say that each individual participating in an inquiry dialogue has the goal to “find a ‘proof’ or destroy 

one”. No formal definition of inquiry dialogues is given, leaving this classification somewhat open to 

interpretation. To address this, I have defined two different types of inquiry dialogue, each of which I 

believe fits this general definition: argument inquiry and warrant inquiry. In a warrant inquiry dialogue, 

the ‘proof’ takes the form of a dialectical tree (essentially a tree with an argument at each node, whose 

arcs represent the counter-argument relation, and that has at its root an argument whose conclusion is 

the topic of the dialogue). In an argument inquiry dialogue, the ‘proof’ takes the form of an argument 

for the topic of the dialogue. Argument inquiry dialogues are commonly embedded in warrant inquiry 

dialogues.

A key contribution of this work is that I not only provide a protocol for modelling inquiry dialogues, 

but I also provide two specific strategies to be followed, making this system sufficient to also generate 

inquiry dialogues. Other works have also addressed the automation of dialogues (e.g. [1 ,5 , 29, 51)), 

however, none have provided a specific mechanism that, at each point in time in an inquiry dialogue, se­

lects exactly one move to make. This makes it hard to analyse the precise behaviour of inquiry dialogues, 

and it misses the opportunity to make intelligent selection of the next move. As far as I am aware, mine 

is the only example of a system that incorporates an intelligent strategy capable of generating inquiry 

dialogues.

My dialogues are defined in terms of a set of moves that can be made within the dialogue, a pro­

tocol that returns a set of moves that may legally be made at any point in the dialogue, and a strategy 

function that returns exactly one of the legal moves at any point in the dialogue, which is the move that 

is subsequently made. I propose a benchmark against which to compare my dialogues and show that 

the first strategy I define leads to sound and complete inquiry dialogues in relation to this benchmark. I 

then consider types of redundancy that appear in the dialectical tree constructed during a warrant inquiry 

dialogue, and define another strategy that I show reduces such redundancy and yet still leads to sound 

and complete warrant inquiry dialogues.

This thesis is structured as follows.

•  Chapter 1—this chapter. Provides the context for this work and explains the research questions 

addressed.

• Chapter 2—is a review of the relevant literature.

• Chapter 3—describes the argumentation system used in this framework, based on that of Garcia 

and Simari [22].

•  Chapter 4— describes the general dialogue system, gives the protocols for the warrant inquiry 

and argument inquiry dialogues, and gives the first strategy for investigation, called the exhaustive 

strategy.
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•  Chapter 5—is an analysis of the general framework and of dialogues produced by the exhaustive 

strategy.

•  Chapter 6—gives details of the strategy intended to lead to reduced redundancy in the dialectical 

tree produced by the warrant inquiry dialogue, called the pruned tree strategy.

•  Chapter 7—is an analysis of dialogues produced by the pruned tree strategy.

•  Chapter 8—summarises the contributions made in this thesis, discusses its shortcomings and 

considers future work.

1.2 Context
In this section I discuss the context of this thesis. This is split into two sections. Firstly, Section 1.2.1 

discusses a problem that has arisen in the medical domain, called the medical knowledge crisis [20, 

pages 3-12]. A promising approach to solving this problem is to provide multi-agent technology that 

will support doctors and other health care professionals, but to do so the agents in the system must be 

able to communicate effectively and reliably, which is where the focus of my thesis lies. In Section 1.2.2 

I discuss the issues concerning agent communication.

1.2.1 Medical knowledge crisis and a possible solution

The medical profession is facing a knowledge crisis of increasing severity [20, pages 3-12]. Medical 

knowledge is expanding at an unprecedented rate, while the resources available to apply it remain fixed. 

Similarly, medical technologies and theories have progressed substantially over the last few decades, 

whilst the practices and skills within the medical profession have remained largely unchanged. The 

disparity between human capabilities and the results that it should, given our knowledge, be possible to 

achieve is exacerbated by the lack of financial resources available to the medical profession. This has 

led to the undesirable situation in which patients receive varying levels of care, with the likelihood of 

recovery dependent on which medical centre the patient visits. For example, breast cancer is one of the 

more common forms of cancer, with about one in eleven western women contracting it at some point in 

their lives. As such, there is an international consensus on the best way to go about treating the disease. 

Despite this, there is much variation in the likelihood of curing the disease between different treatment 

centres. According to various studies, a patient may be up to seven times more likely to receive a cure at 

one of the best specialist centres than at a general medical facility [20, page 5].

Why is it the case then that there are variations in levels of care of breast cancer when there is an 

established ‘best practice’ for treating the disease? There may be differences in resources available in 

treatment centres, and it is also likely that there will be different levels of experience and expertise in 

different treatment centres. A doctor faced with a form of cancer that they have not seen before will not 

have as much relevant knowledge to draw on as a doctor who specialises in that form of cancer. It must 

also be remembered that doctors are only human and may make the wrong decision even if they have all 

the relevant information available to them.
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Currently in the United Kingdom, a general practitioner (GP) is responsible for providing primary 

care for a couple of thousand people. This means they need good knowledge of hundreds of diseases 

and their symptoms, and also of a drug database of thousands of items. As well as this, they are also 

required to act as gatekeepers to hundreds of specialist services, which requires them to have enough 

knowledge to know when to refer a patient and who to refer the patient to. They must keep abreast of 

medical developments in order to continue to provide a high standard of care, and any mistakes that they 

make could have disastrous consequences for their patients.

Doctors are expected by many to be infallible and are held responsible for any mistakes that they 

may make. However, levels of care provided by doctors are not going to improve simply by demanding 

the impossible from them. Doctors cannot be expected to hold such a large body of knowledge in their 

head, nor can they be expected to always make the correct decisions. It is widely believed that the only 

way to improve this situation is to introduce new technologies that will aid clinicians in the organisation 

of their knowledge, and in their decision-making and the management of their work [27], In the UK, a 

national secure network, called NHS net, is being developed to link every organisation and healthcare 

professional in the NHS. This should cause a dramatic improvement to communications within the health 

service. It will allow new knowledge to be effectively distributed throughout the medical community. 

With the coming use of electronic medical records, the NHS net will also allow much better access 

to patient data. While this sort of development will help to ensure that doctors have all the relevant 

knowledge available to them, it does not guarantee that they will make the best decision based on this 

knowledge.

It is clear that patients are not uniformly receiving the best level of care that medical knowledge 

makes available. This has led to the interest in “evidence-based medicine” [45], in which any decisions 

made are based on all the available scientific information, and not just on a clinician’s individual expe­

rience and opinion. In order to make this possible, ways must be found of aiding the clinicians in their 

knowledge management, so that they are able to recall all the relevant knowledge when required and 

make the best possible decision based on all this information.

One set of tools currently widely available to aid doctors are clinical guidelines. These usually 

come in the form of official statements from health organisations and agencies on how best to care for 

medical conditions or to perform clinical procedures [16] and are intended to guide the doctor in his 

treatment of the patient. Clinical guidelines exist for many common diseases. For example, some of the 

clinical guidelines produced by the National Institute for Health and Clinical Excellence (NICE3) are for 

antenatal care, depression, epilepsy, and hypertension.

As well as aiding doctors in their decision-making, such as what course of treatment to embark 

on, guidelines also give advice on task management. They do not, however, commonly aid with dis­

ease diagnosis. There is a clear need for such guidelines, as a recent estimate from the US Institute of 

Medicine suggests that there may be as many as 98,000 unnecessary deaths each year that are the result 

of avoidable clinical error [31]. However, these paper-based guidelines are often not used in practice.

3http://www.nice.org.uk

http://www.nice.org.uk
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There are several reasons for this: they can be difficult to follow and may consist of many pages of text 

and diagrams; they are not able to give patient specific advice; there are so many of them that doctors 

often have problems retrieving the relevant guideline at the appropriate time; they are often viewed as 

intrusive if used during a doctor-patient consultation.

An important aim of these guidelines is to try and achieve a consistent level of care across the 

country. However, to have any chance of being effective, a way of implementing these guidelines must be 

found that ensures doctors will follow them. Passive dissemination of guidelines, by simply publishing 

them in journals and distributing them to the medical community, is not enough. A review of nineteen 

studies of passive dissemination of guidelines concluded that it is unlikely that this sort of dissemination 

alone will lead to any change in the behaviour of healthcare professionals [37]. Whilst considerable 

effort has gone into developing clinical guidelines, there has been less of an attempt made to ensure that 

these guidelines are used effectively on a day-to-day basis.

According to [19], there are three factors that play an important part in shaping peoples behaviour.

•  Perceived benefits weighed against perceived costs; for example, improved patient outcome versus 

costs associated with the change.

•  Perceptions about the attitudes of “respected others” to the behaviour.

•  Self-efficacy, or the belief in one's ability to perform a particular behaviour.

So, to ensure that doctors modify their behaviour to meet a clinical guideline, it is important to 

minimise the cost to the doctor that this change in behaviour entails. It is also vital to maximise doctors’ 

confidence in their ability to follow the guideline, and to make the guideline as easy to follow as possible. 

An alternative to publishing paper guidelines is to represent the medical knowledge contained in these 

guidelines formally, in such a way that the knowledge can be applied by a computer to support clinicians 

in their work [8], Experience suggests that embedding clinical guidelines in a computer decision support 

system, rather than presenting them as static, paper-based guidelines, improves the clinician acceptance 

of the guideline, notably changes behaviour and practice, and significantly improves the quality of patient 

care [53, 10].

An executable computer language for representing clinical guidelines has been developed at the 

Advanced Computation Laboratory. This language is called PROforma [21, 20, 8]. PROforma makes it 

possible to capture a range of clinical tasks, such as reminders for the collection of patient data, decision­

making and the scheduling of actions. Individual tasks may be grouped together to form plans that can 

then represent complex clinical procedures. Once such a procedure has been represented in PROforma 

it can be used in the following ways [21].

• It can be reviewed by specialist clinicians and scientists to ensure that it captures best clinical 

practice.

•  It can be electronically disseminated as a source of up-to-date reference material.

•  It can be enacted by a computer in order to assist medical staff to follow the recommended process.
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• It can also be more easily retrieved at the appropriate time, as the standardised form makes it easier 

to index the guidelines.

The intention is that this new technology will allow clinicians to use the established clinical guide­

lines much more effectively.

CREDO is an ongoing project at the Advanced Computation Laboratory that uses PROforma to rep­

resent the knowledge needed to support the care of patients in the breast cancer domain. This domain is 

typical of the more general medical domain in that it consists of many different services, located in many 

different locations, that all have to interact in many different ways in order to ensure the best possible 

care for the patients. For example, there is the screening service—often provided by a mobile unit that 

is in a different location each day, the radiotherapy service—located in a department at a hospital, and 

the genetics and risk assessment service—often a unit in a different hospital. When the specialists are 

deciding on a diagnosis or the best treatment plan for a patient they may need information and expertise 

from these, and other, services.

The need for distributed decision-making means that multi-agent systems are a reasonable candi­

date for modelling medical organisations such as the breast cancer domain. The AgentCities Working 

Group on Health Care have identified some other features that are common in the health care domain 

and suggest the application of multi-agent technology [44]: data is distributed; the software solution is 

complex; there is a lack of centralised control; there is a need to maintain independence between the 

health care entities; communication and coordination are essential; information and advice need to be 

obtained proactively.

Medical services in general represent an interesting and challenging domain in which to investigate 

multi-agent functionality, because of the requirements for coordinating heterogeneous networks of ser­

vices. which may be time-critical and may involve significant levels of uncertainty about the situations 

that can arise, the consequences of actions etc. In such systems different parts of the care process are 

the responsibility of different individuals (doctors, nurses etc.), who possess different skills and respon­

sibilities, and who are frequently in different places but who must nevertheless work together as a team. 

The CREDO goal is to develop a multi-agent system in which agents can support the individuals in their 

work, and support communication and coordination between them in a way that produces measurable 

benefits in speed, effectiveness and safety of patient care processes.

It is the communication between the different CREDO agents that I am particularly interested in. 

As an example of the kind of communication I wish to support, consider the following scenario—called 

the referral agent scenario. When a patient displaying breast symptoms visits a GP, the GP must decide 

whether the symptoms warrant a normal referral to the breast cancer clinic, an urgent (within two weeks) 

referral to the breast cancer clinic, or if the patient can be managed by the GP. There is an official clinical 

guideline that states how this decision should be made and which doctors should adhere to, but, in reality, 

these are very seldom referred to by GPs. As a result, mistakes in referral are often made, with the most 

common result being that people are referred for urgent appointments when actually they should have 

been normally referred or treated by the GP. This puts an unnecessary strain on the breast cancer clinics,
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and means that people who really do need urgent referrals may have to wait longer.

Suppose that each GP has their own agent that keeps track of all the GP’s patients’ information. 

There is also a central referral agent, which is programmed with information from the guidelines as 

to when patients should be referred and what level of referral they demand. A patient comes to see 

the GP. He types her symptom information into his computer. The GP’s agent immediately sees that 

these are breast symptoms and knows that a referral decision must be made. The GP agent enters into a 

communication with the referral agent to see what the official guideline recommendation for this specific 

patient is. The two agents pool the relevant parts of their patient specific and general guideline knowledge 

in order to come up with this recommendation. The GP agent immediately reports the recommendation 

and the reasons for it to the GP, who is still with the patient and can now act on this recommendation.

1.2.2 Agent communication

Wooldridge and Jennings describe an agent as a computer system that displays the following properties 

(these bullet points are quoted verbatim) [66, pages 4-5].

•  autonomy: agents operate without the direct intervention of humans or others, and have some kind 

of control over their actions and internal state;

• social ability: agents interact with other agents (and possibly humans) via some kind of agent 

communication language;

•  reactivity: agents perceive their environment (which may be the physical world, a user via a graph­

ical user interface, a collection of other agents, the internet, or perhaps all of these combined), and 

respond in a timely fashion to changes that occur in it;

•  pro-activeness: agents do not simply act in response to their environment, they are able to exhibit 

goal-directed behaviour by taking the initiative.

A multi-agent system, then, is a network of two or more of these agents interacting in some way 

to achieve both their own internal goals and the shared, overarching goals of the network. Multi-agent 

technology has earned much interest in recent years and is currently being applied in many different 

domains. They are commonly applied to problems that are solved more efficiently by division of the 

problem into smaller parts and distribution of these smaller problems among the agents. These problems 

are often distributed in the real world, such as with the problem of caring for a breast cancer patient, 

making it natural to apply a multi-agent system.

Agent communication is a key issue in multi-agent systems. It allows agents to coordinate their 

actions and share information in order to cooperate to jointly achieve their goals. Labrou and Finin go 

so far as to say that [35]

Agent-to-agent communication is key to realizing the potential of the agent paradigm, just 

as the development of human language was key to the development of human intelligence 

and societies.



1.2. Context 17

In order to communicate, agents firstly need a shared, unambiguously specified language. It is com­

putationally infeasible to provide agents with a language as expressive as natural language. Instead, the 

convention in agent communication languages (ACLs) is to provide a small set of language primitives, 

which classify the intention of the message, called performatives. The content of the message is then 

treated separately, and this is the proposition to which the performative applies.

This approach stems from speech act theory, which was developed by Austin [4] and Searle [62]. 

They focussed on the intention and effect of language, rather than what is actually said. For example, 

if someone said to you “Can you pass the salt?”, it is likely that they do not want to know whether you 

are physically able to pass the salt, but rather that they desire you to pass it to them. Messages sent by 

agents are considered as intentional actions that may have consequences on the environment [38].

There have been two main attempts at developing ACLs: KQML and FTPA-ACL. The first ACL to 

be developed was KQML [17]. This came about as a result of the Knowledge Sharing Effort—a initia­

tive of the Defense Advanced Research Projects Agency of the US Department of Defense. A KQML 

message can be conceptualised into three distinct layers [36]. The communication layer specifies the 

sender, the receiver, and the unique identifier of the message. The message layer specifies the intentional 

force (or performative) of the message, as well as the knowledge representation language being used to 

specify the content, and any ontologies being used. Finally, the content layer specifies the content of the 

message, in whatever knowledge representation language has been specified in the message layer.

I will now give an example of a KQML message where AGENT 1 tells AGENT2 that it is forecast 

to snow tomorrow. The language used to represent the content of the message is Prolog and a weather 

ontology is being used.

(tell

: sender AGENT 1

:receiver AGENT2

language Prolog

:ontology Weather

rcontent forecast(snow, tomorrow)

The syntax to KQML is relatively simple but it was originally defined without any precise formal 

semantics, attracting some criticism [11]. Finin and Labrou went on to provide the semantics of KQML 

in terms of preconditions, postconditions and completion conditions of each performative [32, 33, 34],

A more recent attempt to provide a standard ACL is FIPA-ACL. This is a result of the Foundation 

for Intelligent Physical Agents (FIPA) initiative4. FIPA-ACL has a precise semantics based on a formal 

language called SL. The semantics of each performative is given in terms of feasibility conditions and 

rational effects [38]. Feasibility conditions are the necessary conditions that the sender of the message 

must achieve. Rational effects describe the effects that an agent can expect to occur as a result of 

the message. For example, if AGENT 1 wishes to INFORM AGENT2 of proposition P, then it must 

satisfy the feasibility conditions that AGENT 1 believes the proposition P, AGENT 1 does not believe that

4http://www.fipa.org/

http://www.fipa.org/
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AGENT2 already has some belief about the proposition P and AGENT 1 intends that AGENT2 comes to 

believe that the proposition P is true. The rational effect of sending this inform message is that AGENT2 

comes to believe proposition P [18].

Agents use communication to further their intentions. Due to the complexity of the agents and the 

situations they find themselves in, sequences of single, unrelated messages are normally not sufficient 

for this task; instead the agents must engage in coherent dialogues. At any point in the dialogue, an 

agent must select the appropriate message that has the greatest chance of affecting the world in such a 

way as to help them achieve their goals. One approach to allowing agents to have extended dialogues is 

to simply provide the agents with an ACL and allow the dialogues to emerge from the ACL semantics. 

In order to make the best attempt at choosing the optimal message to send, an agent must try to infer 

what the other agents’ intentions are. However, an agent cannot reliably infer another agent’s intentions 

based simply on the messages that have been produced, as these messages could have been intended to 

achieve any one of several different goals. Greaves et al. [23, page 119] call this the Basic Problem:

Modem ACLs, especially those based on logic, are frequently powerful enough to encom­

pass several different semantically coherent ways to achieve the same communicative goal, 

and inversely, also powerful enough to achieve several different communicative goals with 

the same ACL message.

If nothing constrains the use of the language apart from its semantics then it is very hard for agents to 

compute what message they should send in order to optimise their position, as they cannot be sure what 

the other agents’ mental states are.

Conversation policies have been used to reduce the complexity of deciding what message to send. 

They limit the amount of messages that an agent has to consider by constraining the sequences of se­

mantically coherent messages that lead to a goal [23]. As Greaves et al. say [23, page 23]

[...] conversation policies limit the possible ACL productions that an agent can employ in 

response to another agent, and they limit the possible goals that an agent might have when 

using a particular ACL expression.

So, conversation policies make the decision process used by the agents to select a message tractable. 

However, they have been criticised as being often only semi-formally stated [9], and very inflexible 

[9, 12].

An alternative approach is the use of dialogue games to structure the dialogue. This gives us some­

thing between conversation policies—which appear to be too restrictive, and free use of the agent com­

munication language—which is computationally intractable, and it is this approach which I intend to use 

to structure the dialogues within my system.

Dialogue games stem from argumentation theory, and this is a particular draw for the medical do­

main. Argumentation-based communication languages allow a rich flow of information between agents. 

They allow agents to give reasons for their position and to alter their position in light of new informa­

tion. In the medical domain, it is vital that agents are able to back up their claims, giving the reasons
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why they have arrived a a particular diagnosis or made a particular decision. It is also true that infor­

mation is changing all the time, whether this is information about the state of the environment such as a 

patient’s blood pressure, or information resulting from research into the general behaviour of a disease.

It is important that agents in the medical domain can respond to new information, altering their position

accordingly.

Dialogue games are played between two or more players, although for the sake of simplicity this 

work will deal only with games between exactly two players, called the participants. For a given dialogue 

game there are generally

•  a set of legal moves that the players can make;

•  one commitment store for each of the participants in the dialogue, which maintains the set of 

propositions that the participant is currently committed to;

• a set of rules governing the use of these moves;

•  a set of rules defining the effect of a move on the commitment stores.

Dialogue games typically formalise one or more of the Walton and Krabbe typology of human 

dialogues [65]: information-seeking, inquiry, persuasion, negotiation, deliberation and eristic. These 

dialogue types are classified according to three characteristics

•  the initial situation—particularly in terms of what conflicts of knowledge exist;

•  the main goal of the dialogue—to which all participating agents subscribe;

•  the participants’ individual aims.

Multi-agent research has so far chosen to ignore the eristic type of dialogue, as this is intended 

to “serve primarily as a substitute for [physical] fighting” [65, page 76] and so is not expected to be a 

useful type of dialogue for agents to take part in. The classifications for the other five dialogue types are 

given in Table 1.1. One attraction of dialogue games is that it is possible to embed games within games, 

allowing complex conversations made up of nested dialogues of more than one type (e.g. [59, 41]).

Dialogue game protocols have been defined for all the five main dialogue types, for example: 

information-seeking [48, 26]; inquiry [40, 39]; persuasion [3, 12]; negotiation [2, 26, 42, 61]; delib­

eration [25]. However, almost all of these only provide the protocols intended to model the dialogues, 

they are not generative systems. This brings us to an area of the literature which appears to be particu­

larly lacking—how an agent should navigate through the legal dialogue structure. The agent must make 

these choices in such a way that it maximises its chance of achieving its goals. This is a concern that is 

usually left up to the agent developers, with no theoretical guidance.

Although most of the existing work on dialogue games is concerned with dialogue modelling and 

not dialogue generation, there are a few exceptions to this. Rahwan, McBumey and Sonenberg [58] give 

an account of the different factors which must be considered when designing a dialogue strategy. Work 

done by Parsons, Wooldridge and Amgoud [46,47] explores the effect of different agent attitudes, which
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Table 1.1: Types of dialogue [65, page 66].

reduce the set of legal moves from which an agent must choose a move, but do not select exactly one of 

the legal moves to make. Pasquier’s cognitive coherence theory [50] attempts to address the pragmatic 

issue of dialogue generation, and I will discuss this further in the next chapter.

In recent work, Amgoud and Hameurlain [ 1 ] propose a decision model that selects the best move 

to make at a point in a dialogue and a formalism for representing the arguments on which to base this 

decision, but they do not provide a specific strategy for use with inquiry dialogues. Another group that 

have proposed a framework for defining strategies is Kakas et al. [28, 29]. However, they also do not 

provide any specific strategies. As far as I am aware, the work presented here is the only work that 

proposes a specific strategy that allows the generation of inquiry dialogues.

As agent communication is such a young field, and as a consequence of the fact that there are 

very few proposals of specific strategies, we still don’t know much about the formal properties of the 

dialogues produced by the various systems proposed. There are some results on termination. Sadri et al. 

[61] show that a dialogue under their protocol always terminates in a finite number of steps, and Parsons 

et al. [46, 47] consider the termination properties of the protocols given in [3, 2], There are also some 

complexity results: Parsons et al. [46, 47], and Dunne et al. [15, 14] consider questions such as “How 

many algorithm steps are required, for the most efficient algorithm, for a participant to decide what to 

utter in a dialogue under a given protocol?” and “How many dialogue utterances are required for normal 

termination of a dialogue under the protocol?”.

If we are to use dialogue game protocols in the safety-critical medical domain, then we must cer­

tainly understand the behaviour of the dialogues that they produce. I am particularly interested in the 

outcome of my dialogues, and propose a benchmark which I use to define soundness and completeness 

properties. As far as I am aware, the only other similar work that considers soundness and completeness 

properties is that of Sadri at al. [60], who define different agent programs for negotiation. If such an
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agent program is both exhaustive and deterministic, then exactly one move is suggested by the program at 

a timepoint, making such a program generative and allowing consideration of soundness and complete­

ness properties. They discuss the soundness and completeness of some proposed agent programs. Other 

work misses the chance to better understand the dialogue behaviour by considering such properties, as 

they do not provide specific strategies.

1.3 Research questions
I will now summarise the three main research questions that I address in this thesis, which were derived 

from the requirements of the medical domain and the CREDO project in particular. In the literature 

review in Chapter 2 ,1 consider existing dialogue systems and show that none of them address each of 

my research questions.

1. Can I define a system that allows automatic generation o f inquiry dialogues between two agents? 

I want my system to be of practical use within the medical domain, and this means that agents 

must be able to actually generate dialogues (i.e. the system must provide more than just a protocol 

for modelling legal inquiry dialogues, it must also provide a specific strategy for selecting exactly 

one of the legal moves). I am focussing on inquiry dialogues as these are particularly useful in a 

cooperative medical domain, where different agents may often need to share knowledge in order to 

come up with new information (for example, the referral agent scenario described in Section 1.2.1, 

page 15).

2. Can I propose a benchmark system against which to compare my system, and then show that the 

dialogues produced by my system are sound and complete in relation to the conclusions drawn by 

the benchmark system? As my dialogue system is intended for use in the safety-critical medical 

domain, it is essential that dialogues it produces arrive at the appropriate outcome. This guarantee 

of a certain outcome given a certain situation is lacking from most other comparable proposals.

3. Can 1 define a second specific strategy that generates dialogues that produce a smaller output 

than those generated by the first strategy, and yet are still sound and complete ? This research 

question is not driven particularly from the medical domain, but from a general desire to improve 

the system.

1.4 Novel contributions made by this thesis
The contributions made by this thesis address the three main research questions summarised in Sec­

tion 1.3.

1. Can I define a system that includes a specific, intelligent strategy that allows automatic generation 

o f inquiry dialogues between two agents?

In Chapter 4 ,1 present a dialogue system along with a protocol for the argument inquiry dialogue 

and a protocol for the warrant inquiry dialogue. These protocols (Definitions 4.3.2 and 4.4.3) 

return the set of legal moves at a point in a dialogue. I go on to provide a specific strategy for use
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by an agent with either of these protocols (Definition 4.5.4) that returns exactly one of the legal 

moves at a point in a dialogue, which is the move that the agent makes (and so allows automatic 

dialogue generation). The strategy I provide is intelligent as I will show that it leads to sound and 

complete dialogues.

2. Can I propose a benchmark against which to compare my system, and then show that the dia­

logues produced by my system are sound and complete in relation to the conclusions drawn by the 

benchmark system ?

In Chapter 5, I propose a benchmark and use this to define what it means for an argument in­

quiry dialogue to be sound and complete (Definitions 5.5.1 and 5.5.2) and what it means for a 

warrant inquiry dialogue to be sound and complete (Definitions 5.7.1 and 5.7.2). I go on to show 

that dialogues generated by my system are both sound and complete (Theorems 5.5.1, 5.5.2,5.7.1 

and 5.7.2).

3. Can I  define another specific strategy that is, in some sense, more efficient than the first but still 

leads to sound and complete dialogues?

In Chapter 6, I consider types of redundancy that appear in dialectical trees. I then define an­

other specific strategy (Definition 6.0.1) that reduces the amount of occurrences of these types of 

redundancy that appear in the dialectical tree constructed during a warrant inquiry dialogue. In 

Chapter 7, I show that dialogues generated by this strategy are both sound and complete (The­

orems 7.6.1 and 7.6.2). I then show that the dialectical tree produced by this second strategy is 

never larger, and is sometimes smaller, than that produced by agents following the first strategy 

that I defined in Chapter 4 (Theorems 7.8.1 and 7.8.2).

1.5 Summary
In this chapter, I have introduced my work and the context for it. I have given an overview of the 

structure of this thesis, and summarised the three main research questions that it addresses. Finally, I 

have highlighted the contributions made here. In the next chapter I will give a review of the existing 

systems that are relevant to mine.



Chapter 2

State of the art

In this chapter I review the main proposals that are comparable to mine. I start by identifying four 

desirable properties that hold for my system, and go on to show that no existing system has all four of 

these properties.

2.1 Desired features for my dialogue system
When I first started to investigate this area of research what struck me most was that none of the existing 

theories provided everything necessary for an agent to automatically generate dialogues. If such a theory 

is to be useful in a project such as CREDO, then it needs to be of practical use, and this motivated my 

work. I have decided on four features that I believe are necessary for a dialogue system to be useful as 

part of a multi-agent system in the medical domain.

•  Provides inquiry protocol. I chose to focus my attentions on the inquiry dialogue as it is a 

cooperative dialogue that embodies one of the more general goals of the medical domain—making 

a justified claim, such as providing reasons for why a patient should be urgently referred to a 

specialist. It is also one of the dialogue types to receive the least attention in the literature so far.

• Generative. I am interested in defining a practical system that will allow two agents to automati­

cally generate a dialogue. For a dialogue system to be generative it must specify exactly one move 

to be made at any point in the dialogue.

• Formally specified. I want my system to be of use in the real world. Specifying such a system for­

mally should remove any ambiguity about how the protocol should be followed and will facilitate 

the investigation of the properties of the system.

•  Provides results about dialogue outcome. As I am concerned with designing a theory that may 

be used in the medical domain, it is important that the behaviour of the system is well-understood 

and suitable to the domain. This means that it needs to be certain that the system is going to behave 

in the intended manner. In particular, I am interested in results about the outcome of the dialogue 

and need to know that a dialogue system is always going to produce the desired outcome in any 

given situation.
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Inquiry protocol Generative Formal Outcome results

The dialogue system 

proposed in this thesis

YES YES YES YES

Amgoud et al. 

[3, 2, 46,47, 48]

YES NO YES YES

McBumey and Parsons 

[39,40]

YES NO NO NO

Bench-Capon [5] NO YES NO NO

Sadri et al. [60,61] NO NO YES YES

Kakas et al. [28,29, 30] NO NO YES. NO

Amgoud and Hameurlain [1] NO NO YES NO

Pasquier and Chaib-draa 

[50,49,51,52]

NO YES NO NO

Prakken [54, 55, 56] NO NO YES YES

Table 2.1: Comparison of different features of dialogue systems.

As I am concerned with the medical domain, it is desirable that my dialogues are predetermined. 

That is to say. I do not wish it to be possible for an agent to use an intelligent strategy to influence the 

outcome of the dialogue, rather, I wish the dialogues to always lead to the ‘ideal’ outcome. I wish my 

dialogues to be sound and complete, in relation to some standard benchmark. I compare the outcome of 

my dialogues with the outcome that would be arrived at by a single agent that has as its beliefs the union 

of both the agents participating in the dialogue’s beliefs. This is, in some sense, the ‘ideal’ situation, 

where there are no constraints on the sharing of beliefs. I discuss this further in Chapter 5.

In the rest of this chapter I am going to discuss other similar approaches that go someway to pro­

viding the features discussed above. First, I present a table, Table 2.1, comparing these works with mine 

on the four features listed above. As this table shows, none of the existing dialogue systems discussed 

in this chapter provide all four features. The system that I propose in this thesis does provide all four 

features.

I will now give an overview of the works other than mine that are mentioned in Table 2.1.

2.2 Amgoud et al
My framework provides two specific protocols for two types of inquiry dialogue. Along with delibera­

tion, this is a dialogue type that has been somewhat overlooked in the field, and there are only two other 

groups with examples of inquiry protocols. One of these groups is the Liverpool-Toulouse group (Am­

goud et al.). When the Liverpool-Toulouse group carried out their work, there were very few existing 

results concerning dialogue protocols, and their work addresses this. They formally defined some pro­

tocols for several different dialogue types [3, 2], including inquiry, and intentionally kept these simple, 

allowing them to explore the protocol properties in some depth [46, 47, 48].
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The simplicity of the protocols put forward, whilst being a good place to start, restricts the behaviour 

of the agents so much that they would not always be usable, particularly in a domain as complicated as 

the medical domain. For example, let us consider a version of the Liverpool-Toulouse inquiry protocol 

[48. page 360], The goal of this protocol is to find, from the union of the agents’ beliefs, a set of 

propositions that will act as the support of an argument for a specific conclusion. This is precisely the 

same as the goal of my argument inquiry dialogue. In this thesis, I will go on to show that if such a 

support exists in the union of the agents’ beliefs, then the dialogue generated by my system will find 

it. However, this is not the case of the Liverpool-Toulouse protocol, as you will see from the following 

example.

Let us assume that we have two agents, I  and R , and that these agents are trying to find a support 

for a. Let an agent X ’s beliefs be represented by Y x .

=  { b ^  a}

T,r  = {c —> a, c}

We can construct an argument for a from Y 1 U  Y r : ( { c , c  —> a}, a).  However, if we follow the

Liverpool-Toulouse protocol [48, page 360], then we get the following dialogue (presuming that b —> a

is acceptable to agent R).

I  : assert : b —> a

R  : accept : b —» a

R  : pass 

I  : pass

The dialogue terminates now, as two pass moves have been made in sequence. The argument for 

a does not appear in the union of the agents’ commitment stores and so the dialogue is unsuccessful, 

despite the fact that there is potentially an argument to be found. This is not intended to be a criticism of 

the Liverpool-Toulouse work; the simplicity of the protocols was deliberately enforced by the group in 

order to allow them to start investigating protocol properties.

Since the theory provided by the Liverpool-Toulouse group is intended for modelling dialogues, it 

is not generative. That is to say, there is no strategy given that precisely informs an agent which of the 

available legal moves it should make at any point in a dialogue. They do, however, assign agent attitudes 

[48, pages 353-355], and these act as partial strategies, restricting the set of legal moves further, but not 

usually to a unique move. For example, if an agent is thoughtful, then it can only assert a proposition p  if 

it can construct an acceptable argument for p, but the Liverpool-Toulouse theory does not describe how 

an agent must choose between several possible assert moves.

In the Liverpool-Toulouse system, agents are thought of as having certain characteristics, for exam­

ple, an agent can have a confident, careful or thoughtful assertion attitude, depending on which arguments 

it is prepared to assert. My strategies were designed with a specific goal in mind regarding the outcome
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of the dialogue that both participating agents share. It is not clear how the different attitudes of the 

Liverpool-Toulouse agents would affect the dialogue outcome.

It is not yet clear whether one of these approaches is better than the other, but it seems likely that 

this will depend on the application for which the framework is intended. The approach that I adopted 

was to define different strategies to be used with a specific protocol. If an agent in my system enters 

a dialogue then the outcome of the dialogue is predetermined by the fixed protocol, the strategy being 

followed, and the belief bases of the agents involved. As the Liverpool-Toulouse group point out [47], 

this could be viewed as a positive or negative feature. In a safety-critical domain, such as that of breast 

cancer care, this is a positive property. We want dialogues to always lead us to a certain outcome given 

the current situation. However, you might imagine that in a more competitive environment we would not 

want the outcome of the dialogue to be predetermined. We might want it to be possible for an agent to 

behave intelligently in order to alter the outcome of the dialogue in its favour.

The Liverpool-Toulouse group show that their protocols terminate and also put an upper bound on 

the number of moves to termination [48]. They provide some complexity results, but these are to do with 

determining whether an argument for a certain conclusion exists in a knowledge base, and not about the 

complexity of the dialogue as a whole. In [47], the group consider the outcome of dialogues, however, 

as their dialogues are not predetermined, they were not able to give results about what specific outcome 

to expect from a dialogue.

Inquiry protocol Generative Formal Outcome results

Amgoud et al. [3, 2, 46, 47, 48] YES NO YES YES

2.3 McBurney and Parsons
The other work that provides something that could be classified as an inquiry dialogue is that proposed 

by McBumey and Parsons. They provide two protocols that each could be classed as inquiry protocols 

[39, 40]. In one paper [39], they present a protocol for what they call a discovery dialogue. They 

state that this type of dialogue differs from inquiry dialogues as, in a discovery dialogue, agents are 

trying to discover a proof for something previously not known. Inquiry dialogues, the authors claim, are 

concerned with finding a proof for a specific fact. For example, the aim of an inquiry dialogue might be 

to try to find a proof for a specific risk associated with a situation, whilst the aim of a discovery dialogue 

would be to try and find proofs for any risks associated with the situation. I feel that McBurney and 

Parsons’ discovery protocol has sufficiently similar goals to what I require for it to be an interesting 

comparison for my system. I also feel it is unproductive to overly concern oneself with classifying 

dialogue protocols in terms of the Walton and Krabbe terminology, as it can be somewhat subjective.

The authors present an informal model of the ten stages involved in a discovery dialogue. Examples 

of some of these stages are [39, page 129]

Open Dialogue: Opening of the discovery dialogue.

Discuss Purpose: Discussion of the purpose of the dialogue.
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Share Knowledge: Presentation of date items relevant to the purpose, drawing only on each 

individual participant’s individual knowledge base.

Discuss Mechanisms: Discussion of potential rules of inference, causal mechanisms, 

metaphorical modes of reasoning, legal theories, etc.

An informal description of some of the moves that may be made within the discovery dialogue 

is given, and the authors then go on to claim that each of the ten stages presented can be executed by 

judicious choice of the available moves. This theory is intended for modelling dialogues and is not 

generative.

In another paper [40], McBurney and Parsons present a protocol for scientific inquiry. This protocol 

is presented in a similar manner. They list Hitchcock’s Principles of rational mutual inquiry [24], which 

they desire to hold for their protocol, and then detail the possible moves that may be made. They go a 

little further than in [39] in defining the behaviour of the system, but it is still not a generative theory 

and no strategy for choosing the correct move to make is given. Some results are given regarding the 

properties being upheld, but as these are informal it is more of a discussion than a set of proofs. No 

results regarding the outcome of dialogues is given.

Neither of these inquiry dialogue systems provides a specific strategy for use by the agents. In fact, 

there is a clear lack of specific strategies in the literature. One that does exist is that provided by Bench- 

Capon [5], for what he classifies as a persuasion dialogue but I believe is very similar to my warrant 

inquiry dialogue. I discuss Bench-Capon’s proposal in the following section.

Inquiry protocol Generative Formal Outcome results

McBumey and Parsons [39, 40] YES NO NO NO

2.4 Bench-Capon
Bench-Capon does provide agents with the ability to automatically generate dialogues. His paper defines 

preconditions on moves to be made, telling us whether a move is legal at a point in the dialogue, but 

beyond that it also describes a strategy that is sufficient to determine which of the available legal moves 

an agent should make at any point in a dialogue. Interestingly, Bench-Capon states that the participating 

agents [5, page 6 ]

[...] are not intended to “win”, but rather to arrive at a position where there is a supported 

claim on which they agree, together with a fully formed supporting argument structure.

As in my inquiry dialogues, Bench-Capon’s agents are concerned with arriving at the best answer given 

their joint knowledge, not with persuading the other agents to accept its beliefs. I believe that this 

goal means that this dialogue could actually be classified as an inquiry dialogue, and is equivalent to my 

warrant inquiry dialogue. Unlike my work, Bench-Capon’s strategy is not given formally, and this would 

lead to problems if someone were to try and investigate this system further. No evaluation of this system
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is given, and a more formal specification would be needed before the properties of the system could be 

properly explored.

Inquiry protocol Generative Formal Outcome results

Bench-Capon [5] NO YES NO NO

2.5 Sadri et al.
Sadri et al. provide us with a theory for agent negotiation [60, 61]. They give an approach to defining 

negotiation protocols in terms of dialogue constraints which take the form of if-then rules: IF you just 

received performative p  AND the conditions in the conjunction c\ A . . .  A  c-n hold THEN make the move 

p'. This work is interesting to me as the authors consider some similar properties to those I have been 

considering. They discuss the fact that in order for a protocol to produce exactly one reply at any point 

in the dialogue then exactly one dialogue constraint must fire. They give some examples of protocols 

and discuss whether this property holds for them. If this property does hold for a protocol then it may be 

considered to be generative, which is the result that I am interested in.

The authors also consider properties of completeness and correctness for their system, and show 

that correctness and weak completeness properties hold for certain classes of agents. I feel that it is 

important to consider these kinds of properties when proposing new dialogue theories, as this allows us 

to assess the suitability of the theory for different situations. However, as the authors here deal only with 

the unique negotiation context, it is not possible to make further comparisons between their work and 

mine.

Inquiry protocol Generative Formal Outcome results

Sadri et al. [60, 61] NO NO YES YES

2.6 Kakas et al.
Kakas et al. [28, 29, 30] have proposed a formalism that can be used to represent both public dialogue 

protocols and private agent strategies. It is a three level formalism. The bottom level gives rules of the 

form

rJ'l ( Y ,S ' . S ) : p J( X ,Y 1 S ') < - p i ( Y ,X .S ) ,c lJ

where i and j  are taken from the set of performatives in use (e.g. assert, request, accept) and 

Cij (which may be empty) are the conditions under which it the agent X  may utter Pj (X,  Y, S')  upon 

receiving pi{Y,  X , S ) from agent Y.  r j a (Y. S'. S ) names the rule. These rules are called dialogue steps 

by Kakas et al. An example of such a rule [30, page 196] is

r a c c , r e q { Y , P, P ) : accept{X , Y, P) <— request(Y. X , P ), have(X . P)

which states that if an agent has a resource and receives a message requesting that resource then it 

can accept the request.
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The next level consists of rules that, given a set of particular circumstances, assign a higher priority 

to one dialogue step than to another. At the top level there are rules that take the same form as those at the 

middle level but only assign priorities to rules from the top two levels. Kakas et al. use this formalism to 

represent both the private agent strategy and the public dialogue protocol. Argumentation is then applied 

to these representations to determine either the utterance to be made (in the case of the strategy) or the 

set of legal utterances (in the case of the protocol).

When representing strategies, Kakas et al. assume the existence of some dialogue steps that express 

the general requirement that making two different moves at the same time is not allowed (i.e. at most one 

move to be made will be generated by the strategy). They discuss the fact that in order for a strategy to 

produce at least one utterance it must be exhaustive. They do not formally define this term but state “in 

the sense that the conditions of at least one of its [dialogue steps] are always satisfied” [30, page 2 0 0 ]. 

They then define what it means for a strategy to be hierarchical and give the theorem that if a strategy 

is exhaustive and hierarchical, and its priority relation does not contain any cycles of length greater than 

two, then it will always produce exactly one move to utter.

Kakas et al. are concerned with providing a flexible formalism for representing both private agent 

strategies and public dialogue protocols. They do not provide an inquiry protocol and they do not provide 

any specific strategies. Although they define the properties required for a strategy to be generative they 

do not give such a strategy. As this is the case, they are not able to consider the outcome of specific 

dialogues and do not provide any outcome results.

Inquiry protocol Generative Formal Outcome results

Kakas et al. [28, 29, 30] NO NO YES NO

2.7 Amgoud and Hameurlain
Like Kakas et al., Amgoud and Hameurlain [1] also provide a formal framework for defining private 

agent strategies. They claim that deciding on a move to utter is a two stage process; first the agent must 

decide what type of move to make (e.g. assert, accept, offer), then the agent must decide on the most 

suitable content for this move. Amgoud and Hameurlain assume that an agent consists of strategic goals, 

strategic beliefs, functional goals and basic beliefs. Strategic goals and strategic beliefs are meta-level 

concepts which are generally independent of the subject of the dialogue and are used to determine what 

type of move should be made. The functional goals and basic beliefs are used to determine the content 

of the move. Functional goals represent what an agent wishes to achieve regarding the subject of the 

dialogue. Basic beliefs refer to the environment and to the subject of the dialogue.

Amgoud and Hameurlain define an argumentation-based decision model that is used to compute 

firstly the most preferred type of move to make and then the best content for this move, based on the 

different types of goals and beliefs as discussed in the previous paragraph. If there is more than one most 

preferred move type then one is selected at random, similarly for the best content, and so their system 

does ensure that exactly one move for utterance is returned by the strategy.
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Amgoud and Hameurlain are interested in providing a formalism for representing agent strategies 

and a decision model which uses this representation to select a move to utter. They do not, however, 

provide an inquiry protocol. They give one very specific example relating to negotiation of the price of 

an object but do not provide a strategy for use in inquiry dialogues and so do not allow generation of 

inquiry dialogues. They do not provide any results about the outcome of dialogues.

Inquiry protocol Generative Formal Outcome results

Amgoud and Hameurlain [ 1 ] NO NO YES NO

2.8 Pasquier and Chaib-draa
A completely different approach to dialogue strategy is Pasquier and Chaib-draa’s cognitive coherence 

approach [50,49, 51,52], They, like me, are particularly interested in providing agents with the ability to 

dynamically generate dialogues. Pasquier and Chaib-draa are looking for answers to pragmatic questions 

such as “When should an agent enter into a dialogue?”, “Who should the agent enter into a dialogue 

with?”, “What type of dialogue should be entered into? And on what topic?”, “How should an agent 

behave within a dialogue?”, “When should a dialogue terminate?”, and “How does a dialogue impact on 

an agent’s private beliefs?”.

Their theory extends and adapts a major social psychology theory called the cognitive dissonance 

theory. The cognitive dissonance theory appeals to the concept of homoeostasis, and tries to reduce 

the dissonance between cognitive elements. In Pasquier and Chaib-draa’s formulation of the theory, 

the cognitive elements are both the agent’s private cognitions (beliefs, desires and intentions) and the 

agent’s public cognitions (social commitments). Elements can be either accepted (interpreted as true, 

activated or valid depending on the element’s type), or rejected (interpreted as false, inactivated or not 

valid depending on the element’s type). Depending on the pre-existing relations that hold between them, 

two types of non-ordered, binary constraints between elements are inferred.

•  Positive constraints are inferred from positive relations such as: explanation relations, deduction 

relations, facilitation relations.

•  Negative constraints are inferred from negative relations such as: mutual exclusion, incompati­

bility, inconsistency.

Weights arc assigned to these constraints, although one can imagine that it may be a difficult task 

to come up with these numbers, as the only guidance as to how these weights are assigned given in [51 ] 

is that they should reflect “the importance and validity degree for the underlying relation”. A constraint 

may be satisfied or not. A positive constraint is said to be satisfied if and only if the two elements that 

it binds are either both accepted or both rejected. A negative constraint is said to be satisfied if and 

only if one of the two elements that it binds is accepted and the other rejected. Two elements are said 

to be coherent if they are connected by a satisfied constraint, or incoherent if they are connected by a 

non-satisfied constraint.
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The basic principle behind the theory is that an incoherence produces a tension in an agent which 

incites the agent to act somehow, in order to reduce the incoherence. This may mean altering an private 

element, such as a belief or an intention, or it may mean altering a public social commitment. In the case 

of altering a social commitment, the agent must enter into a dialogue. The agent chooses what type of 

dialogue to enter into, who with, and on what topic by matching the expected successful outcome of the 

dialogue with a new commitment that will reduce the incoherence.

The cognitive coherence approach is intended to be an all encompassing approach to agent be­

haviour. Not only should it allow an agent to determine when to enter into a dialogue, what type of 

dialogue that should be, who it should be with and what topic that dialogue should be on, it should also 

allow an agent to decide which of all the legal messages to send at any point in a dialogue. However, 

there is no formal account of how this should occur. The general principle of maximising coherence is 

explained but no formal details are given.

It is not very clear how the constraints between the elements are inferred, as no formal description 

is given. For example, imagine an agent had two beliefs, one for b and one for -<b; it seems clear that 

these two elements would be linked by a negative relation. Now, imagine that the agent had the following 

beliefs: a, a —> b, 6 , ->6 . What constraints should be attached to these elements? Should we link a and 

6 with a positive constraint as a is a member of the support of an argument whose conclusion is 6? A 

more difficult question is should we have a negative constraint from ->6 to either a or a —»• 6 ? ->b is 

not inconsistent with either a or a —> b on their own but if you put them all together then you get an 

inconsistency.

The only validation of this theory that is given is an example of a dialogue carried out by two agents 

in a dialogue game simulator that was developed in the authors’ lab. We are told nothing about the 

expected behaviour of agents. For example, it may be possible to enter into an infinite dialogue using 

this theory, something that would be unacceptable in the medical domain. Nothing is said about the 

outcome of the dialogues that are carried out under this theory.

Pasquier and Chaib-draa’s theory is, in one sense, very appealing, as it sets out to give a unified ap­

proach that addresses several fundamental issues that have been mostly overlooked in the agent dialogue 

literature. However, it is hard to understand how this theory would be applied to an argumentation-based 

inquiry dialogue, such as those supported by my system.

Inquiry protocol Generative Formal Outcome results

Pasquier and Chaib-draa 

[50,49,51,52]

NO YES NO NO

2.9 Prakken
Another piece of work that was of particular interest to me is Prakken’s work on coherence and flexibility 

in dialogue games [54, 55,56], Prakken proposes a formal framework for modelling, but not generating, 

persuasion dialogues [56]. These take place between two agents that he denotes P  (for proponent) and
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O (for opponent). P  moves first, either claiming that the topic of the dialogue is true, or putting forward 

an argument for that topic. It is up to P  to try and persuade O that the topic of the dialogue holds. 

Prakken is particularly focussed on persuasion dialogues, as he comes from an artificial intelligence and 

law background. My framework does not currently deal with persuasion dialogues, although it seems 

reasonable to expect that it could be extended to do so. However, although Prakken is considering a 

different dialogue type to me, our systems are similar.

Prakken’s framework is modular, allowing the use of different underlying logics, various sets of lo­

cutions, different rules for commitment updates, alternative tumtaking rules, and various sets of protocol 

rules. It also allows different rules on whether multiple replies to a move, postponing of replies, and 

backtracking (returning to earlier choices and making alternative moves) are allowed. My system is also 

modular, although it was mainly with the intention of altering the protocol and strategy rules that this 

design choice was made. Prakkken’s framework does not provide any strategy rules and this is one of 

the major differences between Prakken’s and my work. Unlike my system, agents cannot automatically 

generate dialogues using Prakken’s framework alone, as there is no strategy component given. This is 

not an oversight of Prakken, rather it highlights the different background from which we are approaching 

this problem; Prakken is interested in modelling realistic legal dialogues, whereas it is my intention to 

provide agents with the ability to generate dialogues.

Prakken’s framework distinctively imposes an explicit reply structure on dialogues. Each dialogue 

move either explicitly attacks or explicitly surrenders to some earlier move of the other participant. In 

most systems, such as mine, this is not made explicit. Within my framework it is only possible to make 

attacking moves, and the moves that these are aimed at are left implicit. It may be the case that a move 

made within my system attacks more than one previous move.

Prakken defines something called the dialogical status of a move, which may be either in or out. 

This allows Prakken to consider the outcome of dialogues. A move in a dialogue is said to be surrendered 

in a dialogue if and only if either it is a move putting forward an argument A  and there is a reply to that 

move that concedes A's  conclusion, or there is a surrendering reply to that move. A move in a dialogue 

is said to be in if and only if either the move is surrendered in the dialogue, or else all the attacking 

replies to that move are out; otherwise the move is out. The current winner of a dialogue is defined to be 

P  if and only if the first move of the dialogue is in, and is O otherwise.

Prakken goes on to investigate some soundness and fairness results. His concepts of soundness 

and fairness are similar, but perhaps not as strong, as my concepts of soundness and completeness. 

Interestingly, Prakken compares the outcome of the dialogue to the dialectical tree that is implicitly 

constructed during the dialogue. I explicitly define the dialectical tree constructed during a dialogue 

(which I call the dialogue tree), but I use this tree to determine the outcome of the dialogue, and compare 

this with the dialectical tree constructed from the union of the two participating agents’ beliefs.

Let me explore Prakken’s soundness and fairness results further. The outcome of one of Prakken’s 

dialogues depends on the status of the first move of the dialogue, which depends on the following moves 

that have been made. In order to investigate soundness and fairness results of his system, Prakken
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compares this outcome to a dialectical tree constructed from all of the things asserted so far in the 

dialogue. So both the dialogue outcome and the dialectical tree are dependent on the moves made, and 

hence arguments asserted, throughout the dialogue. Prakken is checking whether the labelling function 

that labels moves in or out does indeed leave you with the outcome that you would expect, given the 

arguments that have been moved during the dialogue. I compare my dialogue outcome with that which 

you would get if you merged the two agents’ knowledge and carried out the reasoning internally.

Prakken is particularly interested in how consideration of relevance and focus of moves enforce 

various degrees of flexibility and coherence of dialogues. He defines a move as being relevant if and 

only if it changes the status of the initial move of the dialogue. Prakken defines a new version of his 

protocol which has the added rule that moves made must be relevant. His motivation for this is that if 

this relevance is not enforced, then we end up with unintuitive dialogues. This is particularly undesirable 

for Prakken, as he is trying to model natural dialogues. Prakken states that his soundness and fairness 

results easily translate from his liberal to his relevant dialogues, but he makes no evaluation as to whether 

the relevant protocol is better in any way.

I have also been considering how to ensure that moves made are relevant. This is evident in some 

of the rules of my protocols. For example, I restrict an agent to only being able to assert an argument 

that attacks something that has already been asserted. I have also considered relevance of moves at a 

strategical level. The motivation behind the pruned tree strategy (defined in Chapter 6 ) is for the agents 

to use the most relevant move at any point in a dialogue.

Inquiry protocol Generative Formal Outcome results

Prakken [54, 55, 56] NO NO YES YES

2.10 Summary
To conclude this chapter, there are no existing, formally specified dialogue systems that are sufficient to 

automatically generate inquiry dialogues, and which provide results about the behaviour and outcome of 

such dialogues. My work addresses this shortcoming.

In the next chapter I present Garcia and Simari’s argumentation system [22], which is intended for 

internal reasoning by a single agent.



Chapter 3

System for internal argumentation within a 

single agent

In this section I introduce an argumentation system intended for internal reasoning, which is an adaption 

of Garcfa and Simari’s Defeasible Logic Programming system (DeLP) [22], DeLP is a formalism that 

combines results of logic programming and defeasible argumentation. It allows an agent to reason with 

inconsistent, uncertain and incomplete knowledge that may change dynamically over time, making it 

ideal for dealing with knowledge from the medical domain.

In DeLP, a query q is successful when there is a warranted argument A  for q. That is to say, there 

is an argument A  whose claim is q, and A  is not defeated. In order to determine whether A  is defeated 

or not, we must consider each possible defeater for A  in turn. For each of these defeaters, all of their 

possible defeaters must be considered, and so on. This is made possible by a dialectical analysis of 

A. DeLP provides us with a warrant procedure that implements this dialectical analysis. Therefore, if 

the argument A  for q is found undefeated by this warrant procedure, then that means that the query q 

is successful. Garcfa and Simari also impose some constraints on the warrant procedure for avoiding 

undesirable situations, such as producing an infinite sequence of defeaters.

I choose DeLP as the system for internal argumentation as it is sufficient for my needs without being 

too complicated, and as it provides a nice visualisation for the warrant procedure. I ruled out abstract ar­

gumentation systems such as Dung’s [ 13], as my system needs to be able to deal with specific arguments 

(i.e. I want to generate arguments from a knowledge base so that the support for each argument is a set 

of formulae). I then considered argumentation systems based on classical logic, such as that of Besnard 

and Hunter [6 , 7]. Classical logic is a rich formalism that is very expressive, and as such it is an attrac­

tive option for representing the medical domain. However, my system is a complicated one with several 

interacting components and processes, and in order to be able to provide concrete results regarding the 

outcome of dialogues in my system I needed something more restrictive than classical logic.

DeLP restricts the language and types of inference, giving us something less complicated than 

classical logic. It also appears easier to edit a defeasible logic knowledgebase to provide particular 

arguments in particular situations [7, Chapter 11], as we might wish to do in a system such as CREDO. 

The emphasis of this thesis is a general framework for dialogue generation and so it would be interesting
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to consider the use of other defeasible logics other than DeLP (such as [64] or [57]) and to see what 

effect this might have on the system. DeLP is a recent proposal that has benefited from being able to 

incorporate ideas from other proposals for defeasible reasoning. It also has the added advantage of being 

implemented1 and so examples can be tested.

The reader should note that this chapter is very closely based on [22]. The system used in my work 

is a subset of DeLP, with only minor changes from [22]. The only significant difference is that Garcia 

and Simari assume the existence of facts, strict rules and defeasible rules. I want a system that will deal 

with knowledge that is entirely defeasible. I have dealt with this by assuming that the set of strict rules 

is empty and by making facts defeasible.

3.1 Knowledge representation
Garcia and Simari define the DeLP language in terms of three disjoint sets: a set of facts, a set of strict 

rules and a set of defeasible rules. However, I am dealing with knowledge from the medical domain, 

that we know to often be incomplete, unreliable and inconsistent, hence I want all of the knowledge to 

be treated as defeasible. Medical knowledge is constantly expanding. What we might have thought of as 

a strict rule ten years ago we may now realise is defeasible in certain situations. I want facts to also be 

considered as defeasible for two reasons. Firstly, it is conceivable that a mistake may have been made, 

as the medical domain is highly stressful and occasional human error is unavoidable. Secondly, I want 

it to be possible for a set of facts to be inconsistent, as it is possible that a doctor may have inconsistent 

beliefs. For example, a patient’s set of symptoms might strongly suggest a certain disease but, when the 

test for that disease is carried out, the results come back negative. The doctor would then have reasons 

to believe that the patient did have that disease and reasons to believe that she did not.

In order to address this issue, I have left out Garcfa and Simari’s definitions of a fact and a strict rule, 

and added a new definition of a defeasible fact. Note that I use a propositional logic in which a literal 

is either an atom a  or a negated atom ->c*. This is a slightly simplified version of Garcfa and Simari, 

who assume a first-order logic in which literals are either ground atoms or negated ground atoms. I have 

chosen to use propositional logic for ease of presentation.

Definition 3.1.1 A defeasible rule is an ordered pair, denoted “Body —> H ead '’ whose first member, 

Body, is a finite, non-empty set o f literals, and whose second member, Head, is a literal. For ease o f 

reading, I will denote a defeasible rule in which Body is ( a i , . . . ,  a n} and Head is (3 as: e*i A ... Aan —» 

3 (this is slightly different to the notation in [22]).

Note that the symbols A and —> are not being used here to represent classical conjunction or impli­

cation. They represent meta-relations between sets of literals. In particular, there is no contraposition.

I will now define a defeasible fact. This is simply a literal, as is a fact in Garcfa and Simari’s system. 

Unlike Garcfa and Simari, however. I consider facts as defeasible.

Definition 3.1.2 A defeasible fact is a literal, a.

1 http://lidia.cs.uns.edu.ar/delp_client

http://lidia.cs.uns.edu.ar/delp_client
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The warrant procedure defined by Garcfa and Simari assumes that a formal criterion exists for 

comparing two arguments. This criterion allows an agent to decide whether one argument defeats another 

or not. Garcfa and Simari do not specify what this criterion should be, but do give two examples: 

specificity of an argument, and a preference relation between arguments. I have decided to define a 

preference relation on agent beliefs for use as the comparison criterion.

The choice of comparison criterion is by no means trivial. It is not the main focus of my PhD and 

much more time could be spent investigating other criteria. However, preference ordering is a common 

approach which seems to be suited to the medical domain. Medical knowledge arises as a result of 

clinical trials, published work, laboratory work etc., and some sources may be regarded to be more 

reliable than others. For example, if we encode some knowledge from an established clinical guideline, 

then you might assume this to be preferred to knowledge that has resulted from a small clinical trial, 

hence we can imagine some sensible way of associating a preference level with a belief that depends on 

where the belief has arisen from. I will now go on to define a belief. This is not something that appears 

in Garcfa and Simari [22]. It allows us to associate preference levels with defeasible facts and defeasible 

rules.

A belief is either a defeasible fact or a defeasible rule that has associated with it a preference level. 

This is an integer that gives an indication of how confident the agent is in the belief. The lower the 

preference level the more strongly the agent believes the belief. Note that I denote the set of natural 

numbers as N  =  { 1 ,  2. 3, . . . } .

Definition 3.1.3 A belief is a pair ( 0 , L ) where 0  is either a defeasible fact or a defeasible rule, and 

L 6  N  is a label that denotes the preference level o f the belief. The function p L e v e l  returns the pref­

erence level o f the belief: p L e v e l ( ( 0 . L)) — L. The function b e l  returns the first element o f the belief: 

b e l ( ( 0 , L)) = O- The set o f all beliefs is denoted B.

I also make a distinction between beliefs in defeasible facts and beliefs in defeasible rules. Beliefs 

in defeasible facts are called state beliefs, as these are beliefs about the specific state of the environment. 

Beliefs in defeasible rules are called domain beliefs, as these are beliefs about how the domain is expected 

to behave. Note that all beliefs are defeasible.

Definition 3.1.4 A state belief is a belief (<p, L) where 0 is a defeasible fact. The set o f all state beliefs 

is denoted S.

Definition 3.1.5 A domain belief is a belief (0 , L) where 0  is a defeasible rule. The set o f all domain 

beliefs is denoted 7Z.

I also define associated sets that include only the first element of a belief, i.e. the set of all defeasible 

rules and defeasible facts, the set of all defeasible facts, and the set of all defeasible rules.

Definition 3.1.6 The set o f all defeasible rules and defeasible facts is denoted B* — {0 | ( 0 , L) E B). 

The set o f all defeasible facts is denoted S* =  {0 | ( 0 , L) E  5 } . The set o f  all defeasible rules is 

denoted TV = {0 | ( 0 , L )  E  K }.
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Note that B* = S* U  T V , as a belief is either a belief in a defeasible rule or a belief in a defeasible

fact.

Each agent is identified by a unique id x  taken from a set J .  I will refer to an agent that is uniquely 

identified by x , such that i £ l ,  simply as x. Each agent has associated with it a, possibly inconsistent, 

finite belief base. I assume that an agent’s belief base is fixed, at least for the duration of a dialogue.

That is to say, a belief base does not change over time.

Definition 3.1.7 A belief base associated with an agent x  is a finite set Ex such that E x C B and i G l

Example 3.1.1 Consider the following belief base associated with agent x\.

(a —» c, 3), (h —► - >c, 2), (d —> —<b, 1), (~<a —> —<b. 1)

The top four elements are state beliefs and you can see that the agent conflictingly believes strongly in 

both a and ->a. The bottom four elements are all domain beliefs.

p L e v e l ( ( a .  1 ) )  =  1 . p L e v e l ( ( - > a ,  1) )  =  1 . p L e v e l ( ( 6 ,  2 ) )  =  2. p L e v e l ( ( d ,  1 ) )  =  1. p L e v e l ( ( a  —> c, 3)) =

3. p L e v e l ( ( 6  —» ->c, 2 )) =  2 . p L e v e l ( ( d  —> ->b, 1) )  =  1. p L e v e l ( ( - > a  —> ->b, 1 ) )  =  1.

Recall that the lower the p L e v e l  value, the more preferred the belief.

I will now define what constitutes a defeasible derivation. This has been adapted from the Garcia 

and Simari definition in order to deal with my definition of a belief.

Definition 3.1.8 Let ^  be a set o f beliefs and a  a defeasible fact. A defeasible derivation o f a  from 

denoted 'I' |~  a, is a finite sequence a \,a .2 - .. -, a n o f literals such that a n is the defeasible fact a  and

each a m, 1 < m  < n  , is in the sequence because either

•  (a m, L) is a state belief in or

• there exists a domain belief {f3\ A . . .  A 3j —> a m - L ') in ^  such that every literal f3it 1 < i < j,

is a literal q  ̂  o f the sequence appearing before a  m (k < m).

It may be possible to defeasibly derive conflicting defeasible facts from the same belief base. This 

can be seen in the following example, where defeasible derivations of, for instance, b and ->6 have been 

constructed from the same belief base.

Example 3.1.2 I f  we continue with the running example started in Example 3.1.1 we see that the fo l­

lowing defeasible derivations exist from  £ Xl.

a. -> a . 6. d. a ,  c. b, —>c. d, ->6. - > a , ->b.

I also define a function that takes a set of beliefs ^  and returns the set of literals that can be defea­

sibly derived from

Definition 3.1.9 The function D e f D e r i v a t i o n s  : p(B) >—► S* returns the set of literals that can be 

defeasibly derived from a set o f beliefs ^  C B, such that D e f D e r i v a t i o n s ^ )  =  {fi \ there exists $  C 

^  such that $  0 }.
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Defeasible derivation is used to infer the claim of an argument from its support, as I will show in 

the next section.

3.2 Argument structure
In this section, Garcia and Simari’s defeasible argumentation formalism will be introduced. First I define 

an argument as, informally, a minimally consistent set from which the claim can be defeasibly derived.

Definition 3.2.1 An argument A  constructed from a, possibly inconsistent, belief base '3' C B, is a 

tuple ($ , d>) where <p is a literal and $  is a set o f  beliefs such that

1 . $  C O',

2. $  | ~  fi,

3. V0, <p' such that $  |~  and $  |~  <$, it is not the case that q U4>' h i .  (where h represents classical 

implication), and

4. $  is minimal: there is no proper subset o/4> such that <$' satisfies conditions (1), (2) and (3).

$  is called the support o f the argument, and is denoted Support(/l). is called the claim o f the 

argument, and is denoted Claim(.4). The set o f all arguments that can be constructed from a knowledge 

base \& is denoted

Example 3.2.1 Continuing the running example, the following arguments can be constructed by the 

agent.

ai =  {{(a. 1 )} ,a) a 5 =  ({(a. 1 ), (a -» c,3)}.c)

a 2 =  ({(“’a, 1 )}, ~>a) a 6 =  ({(6 , 2 ), (b -» -.c, 2 )}, ^c)

a 3 =  ({(6 , 2 )}. b) a 7 =  ({(d, 1 ). (d —> ->b, 1 )}, ->&)

a4 =  {{{d, 1 )}, d) as = {{(^a, 1 )- (-,a —► _|6 , 1 )}, ~<b)

I now define the sub-argument relation. In the next section, where we consider conflicting argu­

ments, we will see that it is possible for one argument to attack another argument by being in conflict 

with a sub-argument of that argument.

Definition 3.2.2 Let A \ and A 2 be two arguments. A \ is a sub-argument o f A 2 iff Support(4i] ) C 

Support(il2 )- This is denoted A \ C 4̂2-

Example 3.2.2 Continuing the running example, we see that «i C «5, a2 C a8, a3 O a6 and a4 C a7. 

Note also that an argument is always a sub-argument o f itself so a\ C a\, a2 C a2 etc.

If we consider Example 3.2.1 then we see that it is possible to construct two arguments from the 

same belief base that have contradictory claims, for example Claim(ai) =  a and Claim(a2 ) =  ->a, and 

so these arguments are in conflict.
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3.3 Conflicts and counter-arguments
As may be inconsistent, there may be conflicts between arguments within A(\&). Two arguments are 

said to conflict with one another if and only if the union of their claims is inconsistent.

Definition 3.3.1 Let A \ and A 2 be two arguments. A \ is in conflict with A 2 iff C l a i m ( A i )  U 

C l a i m ( A 2 )  b_L, where b represents the classical consequence relation (i.e. C l a i m ( A i )  =  - > C la im ( A 2 )  

as the claim o f an argument is always a literal) .  This is denoted A \ cx A 2 .

Example 3.3.1 Continuing the running example, a 4 cxi 0 2 , 0 3  t x  <27 , 0 3  e x  as, and a 5 tx oq.

I now use the previous definitions to define an attack relation between arguments. This is slightly 

different from the definition in [2 2 ], as it has been altered to include the sub-argument that is being 

specifically attacked. This is so that, when we are using the preference levels to determine whether an 

argument defeats another or not. we can base the comparison on the preference level of the specific 

sub-argument that is being attacked, as this may differ from the preference level of the entire argument.

Definition 33.2  Let A i, A 2 and As be arguments. A \  attacks A 2 at As iff As Q A 2 and A \  tx A3. This 

is denoted A \ o  A 2 (A f). A \ is called a counter-argument fo r  A 2 , and As is called the disagreement 

sub-argument o f A \ attacking A 2 .

Note that, in the previous definition, the disagreement sub-argument As is unique. A \ and As  

conflict (Ai tx A3), and so the claim of Ai is the negation of the claim of A3. Let us assume that there is 

another disagreement sub-argument such that Ai attacks A2 at A4, Ai and A4 conflict, and so the claim 

of Ai is the negation of the claim of A4. As Ai is a literal, this means that the claim of A4 is the same 

as the claim of A3 . As an argument is minimal (Definition 3.2.1, condition 4), this means that A3 and 

A4 must be the same arguments.

Example 33.2  Continuing the running example, the following counter-argument relations hold.

a i  O  0 2 ( 0 2 )  a i  > 0 3 ( 0 2 )  0 2 > a i ( a i )

0 2  > 0 5 (0 1 ) 0 3  > 0 7 (0 7 ) as >  a8 (a8)

0 5 > a 6 (a6) a6 >  0 5 (0 5 ) a 7 >  0 3 (0 3 )

a 7 > o 6 (o3 ) o8 >  o3 (a3) a 8 >  as(as)

Let us imagine that an agent can construct two arguments from its set of beliefs, Ai and A2 , and that 

Ai is a counter-argument for A2 . The agent must make a decision about whether Ai defeats A2 or not, 

and so it needs some kind of criterion forjudging which is a more powerful argument. Garcfa and Simari 

do not specify a comparison criterion that must be used but suggest two examples, one which relates to 

the specificity of arguments and one which uses a preference relation defined among defeasible rules. 

As discussed earlier, I have decided to specify a comparison criterion based on the preference ordering 

of the beliefs. This is very similar to the comparison of the preference level of rules suggested by Garcfa 

and Simari but also considers the preference level of defeasible facts. My comparison criterion will be 

introduced in the following section.
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3.4 Comparing arguments
When deciding whether one argument defeats another or not, an agent in my system will consider the 

preference level of each argument. This gives an instantiation of Garcia and Simari’s framework. The 

preference level of an argument is equal to the preference level of the least preferred belief used in its 

support.

Definition 3.4.1 Let A  be an argument. The preference level o f A, denoted pLevel(A), is equal to 

pLevel(<£) such that

1. (j) € Support(A)

2 . fo r  all 4>' e  Support(A), pLevel(0 ') <  pLevel(^)

Example 3.4.1 Continuing the running example, the arguments have the following preference levels. 

pLevel(ai) =  1 pLevel(a2 ) =  1 pLevel(as) =  2 pLevel(a4 ) =  1

pLevel(a5 ) =  3 pLevel(ae) =  2  pLevel(a7 ) =  1 pLevel(a8) =  1

One argument is strictly preferred to another if the preference level of the first argument is less than 

that of the second.

Definition 3.4.2 Let A \ and A 2 be two arguments. A \ is strictly preferred to A 2 iff pl_evel(Ai) < 

pl_evel( A2 ). This is denoted as A \ >p A 2.

Example 3.4.2 Continuing the running example

a 1 >p &3 0 2 0 3 a 4 > p 0 3 O7 > p O3 0 8 > p 0 3

« i (15 0 2 > p 0 5 0 4 > P O5 O7 > p O5 0 8 > P 0 5

O l >p 0 6 0 2 0 6 0 4 > p 0 6 O7 > p Oq 0 8 > p 0 6

O3  ^ p  O5 Oq I > p  ( I 5

Observe that the preference level of an argument may differ from that of its sub-arguments, and so 

it makes sense to base the comparison between arguments on the preference level of the sub-argument 

that is being attacked. Assume that given two arguments, A \  and A 2, we know that A \ attacks A 2 at 

disagreement sub-argument A 3 . In some cases A \ defeats A 2 , and in some cases A \ does not defeat A 2. 

The agent makes the decision as to which of these cases holds depending on the preference levels of A \  

and A 3 . In order to defeat the argument A 2 , the preference level of A \  must be the same or less (meaning 

more preferred) than the preference level of A3 . If it is the same, then A i is a blocking defeater for A 2. 

If it is less, then A \ is a proper defeater for A 2.

Definition 3.4.3 Let A \, A 2 and A 3 be arguments such that A 3 is the disagreement sub-argument o f A \  

attacking A 2. A \ is a proper defeater fo r  A 2 iff
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1 . A i I> A 2 {A$),

2. A \ >p A 3 .

This is denoted as A \ =>p A 2.

Definition 3.4.4 Let A \, A 2 and As be arguments such that As is the disagreement sub-argument o f A \  

attacking A 2 . A i is a blocking defeater fo r A 2 iff

1. Ai  t> ^ 2 ( ^ 3 ) ^

2 . A i  f>v ^ 3 ,

3. As 'fp  A i.

This is denoted as A i = H  A 2.

Example 3.4.3 Continuing the running example, a i (12, ai =>5 ag, 0 2  = H  a. 1 , 0 2  =H 0 5 , ag =yp a$, 

(L’j —r*p as, 0 7  =̂>p (t6 f Os =*'p 0.3 and ag ~~̂ p

If A i is a proper defeater for A 2, then it is not possible for A 2 to be a defeater of A i.  However, if 

A i is a blocking defeater for A 2, then there will always be some sub-argument of A 2 that is a blocking 

defeater for A \. This result is not given by Garcia and Simari so I give it here for completeness.

Proposition 3.4.1 Let A i and A 2 be arguments. I f  A i =>b A 2 then there exists A s such that A s  E A 2 

and As =>& A i.

Proof: Assume A \ =̂>b A 2. From this, the definition o f blocking defeaters (Definition 3.4.4), and the 

definition o f strict preference (Definition 3.4.2), we get that there exists As Q A 2 such that A i t> A 2 {As), 

and pL e v e l(^x) =  p L e v e l ( ^ 3 ) .  From the definition o f attack (Definition 3.3.2) and the definition o f  

conflict (Definition 3.3.1), we get that C l a i m ( A i )  U  C l a i m ( / 13 ) h _ L . A\ C  A 1, from the definition o f  

a sub-argument (Definition 3.2.2), hence, from the definition o f attack (Definition 3.3.2), we get that 

Ag t> A i(A i) . From the definition o f a blocking defeater (Definition 3.4.4), we get that A s  =>6 A \. □

In this section I proposed a criterion that allows us to decide whether an argument A i that conflicts 

with an argument A 2 defeats A 2 or not. In the next section I introduce Garcia and Simari’s method for 

visualising defeat relations that occur within a set of interacting arguments.

3.5 Argument trees and acceptable argumentation lines
It is often the case that there are many different interactions within a set of arguments. A useful method 

for visualising these interactions is to use an argument tree. Each node in an argument tree represents an 

argument, and the branches between the nodes represent the defeat relation (blocking or proper).

Definition 3.5.1 An argument tree, T, is a tree in which every node N  is labelled with an argument 

A. Any child o f N , Ni, is labelled with an argument Ai such that Ai is a defeater for A. The level of 

a node, N , is the number o f arcs on the path from the root to node N , and this value is returned by the 

function L e v e l  ( A ) .  The label of a node is returned by the function L a b e l  such that L a b e l  ( A )  =  A  iff
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N 2 : ({(->0 , 1 )} ,->a) N 3 : ({(6 , 2), (6  —» -c , 2 )} ,->c)

N 4  : ({ (a ,l)} ,o )

N 5 : ({(d, 1), (d -  - 6 , 1 )}, - 6) N 6 : <{(-a. 1 ), h a  -  - 6 , 1 )}, - 6 }

Figure 3.1: An argument tree.

node N  is labelled with A. The set o f  all the nodes in an argument tree T  is denoted Nodes(T). The 

root node o f an argument tree T  is denoted Root(T).

Example 3.5.1 Continuing the running example, an example o f an argument tree is shown in Figure 3.1. 

For each node, the name o f the node is given followed by the argument that the node is labelled with. 

Leve\(Ni) = 0 , L e v e l ( 7V2 )  =  L e v e l(A T 3 ) =  1 , L e v e l(A T 4 ) =  2, L e v e l ( 7V5 ) =  2 , and L e v e l ( iV 6 ) =  2 . 

L a b e l ^ )  =  ( { ( o , l ) ,  (a -  c,3 )} ,c)f L a b e l ( iV 2 ) =  ( { ( - a ,  1) } .  - a ) ,  L a b e l ( / V 3 ) =  < { ( 6 , 2 ) ,  (b -  

->c, 2)}, -c ) , L a b e l ( 7V4 )  =  ({(a, l)} ,a ), L a b e l ( iV 5 )  =  ({(d, l ) , ( d  —> ->6.1)}, ->6 ), and L a b e l ( i V 6 )  =  

({(-.0 , 1 ), (-.a -> - 6 . 1 ) } , - 6 ).

Root(T) =  N i. Nodes(T) =  {N^. iV2. iV3, iV4, N b, N 6}.

Note that I will omit the name of the nodes in argument trees that appear henceforth in this thesis 

as doing so does not cause any confusion.

Each path from the root node to another node in an argument tree is called an argumentation line.

Definition 3.5.2 Let be a, possibly inconsistent, belief base and A 0  be an argument constructed from

VL. An argumentation line fo r  A q is a sequence o f arguments from  'I' denoted A [,4o, A \, A i  ]

where each element o f the sequence Ai, 0  < i, is a defeater (proper or blocking) o f its predecessor A i- \ .

Note that every branch in an argument tree is an argumentation line.

Example 3.5.2 Continuing the running example, the following are all examples o f argumentation lines.

Al =  [0 5 , 0 2 , 0 1 , (22 , 0 1 , 0 2 ]

A2 =  [^5, «6 , O7]

A3 =  [0 5 , 0 6 , Os]
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As each argument in an argumentation line [Ao, A \ , A 2 , - - ■] defeats its predecessor, A \ defeats A 0 

and so is an interfering argument for the claim of Ao- A2 defeats A \ and so is a supporting argument 

for the claim of A0. If we carry on in this manner then we can split an argumentation line into two sets, 

supporting arguments for the claim of Ao and interfering arguments for the claim of Aq.

Definition 3.5.3 Let A =  [Ao- A \ , A 2 , ■ ■.] be an argumentation line. The set o f  supporting arguments 

for  Claim(Ao) is A5  =  {Ao, A 2 , A4 , . ..} . The set o f  interfering arguments fo r  Claim(Ao) is A7 =  

{Ai, A3 , A5 , ...} .

Example 3 .53  Continuing the running example, the following are examples o f sets o f support­

ing/interfering arguments.

A f =  {a5 ,a i}  A7 =  {a2}

^2 =  {^5: <17} A2 =  {rt6}

A3 =  {0 5 . ag} A3 =  {ae}

As discussed in [22], there are certain undesirable situations in which we may end up with an

infinite argumentation line. An example of this is circular argumentation, where an argument is used 

more than once in an argumentation line to defend itself. In order to avoid these undesirable situations 

some constraints must be imposed on what is an acceptable argumentation line. The interested reader is 

referred to [2 2 ] for a full discussion of such situations.

Before defining what an acceptable argumentation line is, I define what it means for a set of ar­

guments to be concordant. A set of arguments is said to be concordant if and only if the union of the 

supports of all of the arguments is consistent.

Definition 33 .4  A set o f arguments {Ai, A2 , . . . ,  An } is concordant /j9r{J”=1 Support(Aj) l/±.

I now define the four constraints that Garcfa and Simari place on an acceptable argumentation line.

Definition 33.5 Let A =  [Ao, A 1? A2, ...] be an argumentation line. A is an acceptable argum enta­

tion line iff

1 . A is a finite sequence,

2. the set As o f supporting arguments is concordant, and the set A/ o f interfering arguments is 

concordant,

3. no argument Ak appearing in A, 0 < k < n, is a sub-argument o f an argument A j that appears 

earlier in At, j  < k,

4. fo r all i, such that the argument Ai is a blocking defeater fo r  A i - 1, if  A 1+i exists, then A i+\ is a 

proper defeater for  Aj.

The first constraint is not surprising, clearly we cannot easily deal with infinite paths in a tree. 

Garcfa and Simari include the second constraint as they believe, intuitively, that there should be agree­

ment among the set of supporting arguments and among the set of interfering arguments. The third
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constraint is included to ensure that circular argumentation does not occur. The fourth constraint is in­

cluded by Garcia and Simari as they wish to avoid the situation in which, given a set of arguments that 

are either for claim a  or claim ->a, if they all have the same preference level and there are more argu­

ments for a  than for ->a, then a  is preferred to ->a. For a more thourough discussion of these constraints 

please refer to [2 2 , pages 113-116].

Example 3.5.4 Continuing the running example, we see that only A 2 is an acceptable argumentation 

line. Ai is not acceptable as it breaks constraints (3) and (4), A3 is not acceptable as it breaks constraint 

(2 ).

In the next section I describe Garcia and Simari’s mechanism for determining whether, given a set 

of possibly inconsistent beliefs, an argument should be considered warranted .or not.

3.6 Warrant through dialectical analysis
Given a set of beliefs 'F and an argument A \ e  A('F), in order to know whether A \ is defeated or not, an 

agent has to consider each argument from A('I') that attacks A \ and decide whether or not it defeats it. 

However, a defeater of A \  may itself be defeated by another argument A 2 G A ^ ) .  Defeaters may also 

exist for A 2 , themselves of which may also have defeaters. Therefore, in order to decide whether A \ is 

defeated, an agent has to consider all defeaters for A \, all of the defeaters of those defeaters, and so on. 

It does so by constructing a special type of argument tree called a dialectical tree, where all acceptable 

argumentation lines are represented in the tree.

Definition 3.6.1 Let be a, possibly inconsistent, belief base and Ao be an argument such that Ao g 

A ('!/). A dialectical tree for  Ao constructed from  'J, denoted T ^ o, is a special type o f argument tree 

that is defined as follows.

1. The root o f the tree is labelled with Ao-

2 . Let N  be a node o f the tree labelled A n, n >  0, and let At =  [Ao,. - . ,  An] be the sequence o f 

labels on the path from the root to node N . Let arguments B j, B 2, . . . ,  Bk be all the defeaters fo r  

A n that can be formed from

For each defeater B j, 1 < j  < k, such that the argumentation line A' =  [Aq. . . . ,  An . Bj] is an 

acceptable argumentation line, then the node N  has a child N j that is labelled B j.

I f  there is no defeater for A n or there is no B j such that A' is acceptable, then N  is a leaf node.

Example 3.6.1 Continuing the running example, the dialectical tree constructed by agent Xi with the 

argument a 5 at its root, T ^ 1, is shown in Figure 3.2.

Note that the example argument tree shown in Figure 3.1 is not an example of a dialectical tree as it 

contains two unacceptable argumentation lines. The path that leads to {{(-'a. 1)}, ->a) breaks constraints 

3 and 4 of the definition of an acceptable argumentation line (Definition 3.5.5) as the subargument 

({(a, 1 )), a) appears twice in the argumentation line and we have a blocking defeater followed by another
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!)}. ^ a) {{k  2 ), (b -* --c. 2 )}, c)

< { ( d , l ) , ( d - - M ) } ; -&)

Figure 3.2: A dialectical tree.

blocking defeater. The path that leads to ({(->a, 1), (->a —► -^b, l)},->6) breaks constraint 2 of the 

definition of an acceptable argumentation line as the set of supporting arguments is not concordant.

I now define what it means for two dialectical trees to be equal to each other. This definition is used 

later in the analysis of this system to compare the trees generated by different warrant inquiry dialogues.

Definition 3.6.2 Let T ^  and T^, be two dialectical trees. T ^ equals T ^ ,, denoted T ^  =  T ^,, iff

1. S u p p o r t ( A )  =  S u p p o r t ( A ' ) ,

2 .  C l a i m ( A )  =  C l a i m ( A ') ,

3. the argumentation line [A, A \ . . . . ,  A n] appears in T ̂  iff the argumentation line [A', A \ , . . . ,  A n\ 

appears in T %.

Note that a sub-tree of a dialectical tree (i.e. a node with all its descendants) is not always a 

dialectical tree [22, page 118]. This is because of the constraints on an acceptable argumentation line. 

Suppose an agent constructs an acceptable argumentation line and the defeater A  cannot be included in 

this line as it would make the line unacceptable. There may be a sub-sequence of this line, however, 

where A  could be included without violating any of the acceptable argumentation line constraints.

Following from [22], in order to determine whether the root of a dialectical tree is undefeated or 

not, we have to recursively mark each node in the tree as D (defeated) or U (undefeated).

Definition 3.6.3 Let T* be a dialectical tree. The corresponding marked dialectical tree o f  T^ is 

obtained by marking every node in T^ as follows.

1. All leaves in T^ are marked U.

2. I f  B  is a node o f and B  is not a leaf node, then B  will be marked U iff every child o f B  is 

marked D. The node B  will be marked D iff it has at least one child marked U.

Example 3.6.2 Following the running example, the corresponding marked dialectical tree o f  T^ * is 

shown in Figure 3.3.



3.7. Summary 46

({(a, 1), (a -> c,3)},c) D

U {{(_1o. 1)}, ->a) ({&, 2 ), (6  —> ->c, 2 )}, ->c) D

<{(d, 1), (d -> - 6 , 1)}? - 6> U

Figure 3.3: A marked dialectical tree.

The function S t a t u s  takes a node of a dialectical tree and returns either D or U, depending on what 

the node is marked with in the marked version of the dialectical tree. If the node does not appear in the 

dialectical tree then this is indicated by the function S t a t u s  returning null.

Definition 3.6.4 The status o f a node N  in a dialectical tree, T * ,  is returned by the function  S t a t u s  

such that S t a t u s ( 7V , T ^ )  =  U  iff N  is marked U  in the corresponding marked dialectical tree o f  T ^ [ ,  

and  S t a t u s ( i V ,  T ^ )  = D iff N  is marked with D in the corresponding marked dialectical tree o /T *  else 

S t a t u s (N, T * )  =  null.

The claim of an argument is warranted by the belief base if and only if the status of the root of the 

associated dialectical tree is U. We can see from Figure 3.3 that the claim of argument ({(a. 1), (a —> 

c, 3)}, c) is not warranted, as the status of the root of the associated dialectical tree is D.

Definition 3.6.5 Let A be an argument such that A  E  .4('F). We say that the claim o f argument A  is 

w arranted by ^  S t a t u s ( R o o t ( T ^ ) .  T * )  =  U.

Example 3.6.3 Continuing the running example, ( { ( a ,  1). ( a  —> c, 3)}, c) is not warranted by £ X l .

The warrant procedure makes it possible for an agent to reason with incomplete, inconsistent, and 

uncertain knowledge—three of the defining characteristics of knowledge in the medical domain. Another 

characteristic of medical knowledge is that it is constantly changing. The defeasible nature of the rules 

makes it possible to deal efficiently with changes in knowledge, by adding new defeasible rules to the 

knowledge base.

Garcia and Simari also point out that the notions of acceptable argumentation line and the dialectical 

tree provide a flexible structure for defining different argumentation protocols [22, page 119]. That 

is to say, this structure allows us to easily consider different strategies for accepting defeaters during 

argumentation.

3.7 Summary
I have presented Garcia and Simari’s argumentation system for internal reasoning in this chapter. I have 

made two changes to their system. Firstly, I made a trivial generalisation in assuming that their set of
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strict facts and set of strict rules are always empty. Secondly, I have introduced defeasible facts, which 

can be thought of as defeasible rules with an empty body. Garcia and Simari state that defeasible rules 

have a non-empty body, but this is an arbitrary decision that reflects the fact that they do not desire the 

existence of defeasible facts. I have relaxed this constraint, as I want all knowledge to be defeasible. 

Neither of these changes have any effect on Garcia and Simari‘s framework or their results.

In the next chapter, I go on to present my dialogue system, that allows us to apply Garcia and 

Simari’s warrant procedure to inter-agent reasoning between two agents.



Chapter 4

Dialogue system for argumentation between 

two agents

In this chapter I formally define a novel dialogue system. This system is capable of generating dialogues 

of different types. A dialogue of one type may be embedded in another dialogue of the same or different 

type. I define two particular types of dialogue, which I call argument inquiry and warrant inquiry. I 

provide a protocol for each of these dialogue types that returns the set of legal moves at a point in the 

dialogue. I also provide a strategy, for use by an agent with these protocols, that returns exactly one of 

the legal moves at a point in the dialogue. The move returned by the strategy is the move that gets made, 

hence this system is generative. I conclude this chapter with several dialogue examples.

In my opinion, both the argument inquiry and the warrant inquiry dialogue can be classified as 

inquiry dialogues according to the Walton and Krabbe typology [65]. Walton and Krabbe define an 

inquiry dialogue as follows [65, page 6 6 ],

Type Initial Situation Main Goal Participant’s Aims

Inquiry General ignorance Growth of knowledge 

and agreement

Find a ‘proof’ or de­

stroy one

No formal definition of inquiry dialogues is given, leaving this classification somewhat open to 

interpretation. I believe that each of my argument inquiry and warrant inquiry dialogue types fit this 

general definition. In the warrant inquiry dialogue, the ‘proof’ takes the form of a dialectical tree, which 

has an argument at its root whose claim is the topic of the dialogue. In the argument inquiry dialogue, 

the ‘proof’ takes the form of an argument whose claim is the topic of the dialogue.

I have chosen to focus on inquiry dialogues for two reasons. Firstly, it is a dialogue type that has 

received little attention to date in the literature. The only groups that I am aware of who have defined 

inquiry protocols are Amgoud et al [3, 2, 46, 47, 48] and McBumey and Parsons [39, 40]. However, the 

main reason that I am focussing on inquiry dialogues is because this is a key dialogue type for use in a 

cooperative domain such as breast cancer care. It is common for doctors to need to share their knowledge 

in order to jointly make a decision, for example when diagnosing a condition whose symptoms span
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more than one medical speciality. These dialogue types are also sufficient for the referral agent scenario 

described in Section 1.2.1.

The warrant inquiry dialogue allows two agents to share parts of their knowledge in order to jointly 

decide whether a certain argument with a certain claim is warranted. It effectively allows us to take 

the dialectical reasoning mechanism given by Garcia and Simari [22], which is intended for internal 

reasoning by one agent, and to use this mechanism for inter-agent reasoning between two agents.

The topic of a warrant inquiry dialogue is a literal. One agent will open a warrant inquiry dialogue 

about a certain topic and then both agents will share knowledge relevant to this topic. They exchange 

arguments that are used to construct a dialectical tree that has an argument for the topic at the root. 

In order to do this, the agents frequently need to share beliefs in order to jointly find arguments for a 

particular claim, and to do so they enter into an embedded argument inquiry dialogue that has that claim 

as its topic. The argument inquiry dialogue allows two agents to share parts of their knowledge, with 

the specific purpose of entailing new information. It is particularly useful in cooperative domains, where 

agents can be trusted to give truthful information and are willing to enter into such a dialogue.

A key feature of this work that sets it apart from much of the existing literature is the agents’ 

capability to automatically generate dialogues. Most existing work is intended only to model dialogues 

(e.g. [48, 56]), that is to say they provide a protocol that tells us what moves are legal at a particular 

point, but not which in particular of these legal moves an agent should make. My framework provides 

intelligent strategies, for use with different dialogue types, that allow an agent to select exactly one of the 

set of legal moves at any point in a dialogue. Hence, my system allows agents to automatically generate 

dialogues. As far as I am aware, mine is the only example of a system that incorporates one or more 

intelligent strategies capable of generating inquiry dialogues. The set of moves used in a dialogue is 

defined in the next section.

4.1 The moves
The communicative acts in a dialogue are called moves. My move structure follows the normal conven­

tions of agent communication languages in that it follows Austin and Searle’s speech act theory [4, 62]. 

Austin and Searle propose that a speech act can be classified by its illocutionary force, that is the type 

of effect that the speaker hopes the speech act will have. For example, a speech act may be a request, 

where the speaker wishes the hearer to carry out an action, or an assertion, where the speaker wishes the 

hearer to be aware that the speaker believes a certain thing.

I assume that there are always exactly two agents, called participants, taking part in a dialogue, 

each with its own identifier taken from the set T. Each participant takes it in turn to make a move to the 

other participant. For a dialogue involving participants x \  . 1 2  € 1 ,1  also refer to participants using the 

meta-variables P  and P , such that if P  is x \  then P  is X2 and if P  is X2 then P  is x \ .

A move in my system is a tuple of the form {Agent, Act. C ontent). Agent is the identifier of 

the agent to which the move is addressed (the receiver of the move), Act is the type of move, and the 

C ontent gives the details of the move. The format for moves used in warrant inquiry and argument 

inquiry dialogues is shown in Table 4.1. Note that the system allows for other types of dialogues to be



4.2. The general dialogue 50

M o v e F o r m a t

open

assert

close

( x .  open, dialogue(6,7 ) )  

( x .  assert,  ( 4>, 0 ) )

( x .  close, dialogue(0,7 ) )

Table 4.1: The format for moves used in dialogues, where x is an agent id (x  e T), (4>, 0) is an argument, 

and either 0 =  wi (for warrant inquiry) and 7  <G S* (i.e. 7  is a defeasible fact), or 8 — ai (for argument 

inquiry) and 7  € TV (i.e. 7  is a defeasible rule). The set of all moves meeting this format is denoted Ad.

generated and these might require the addition of extra moves.

The open move is used to open a dialogue of a certain type with a certain topic. If an open move is 

made within a dialogue then it causes an embedded dialogue to be opened. Note that a warrant inquiry 

dialogue takes a defeasible fact as its topic, whilst an argument inquiry dialogue takes a defeasible rule 

as its topic. The assert move is used to exchange arguments. The close move is used to terminate a 

dialogue. Note that the two participants must be in agreement in order to terminate a dialogue, that is to 

say they must both make a close move one after the other.

The following function returns the receiver of a move.

D e f i n i t i o n  4. 1.1 The r e c e i v e r  o f a move (Agent, Act, Content) is returned by R e c e i v e r  : A i  •—» T such 

that R e c e i v e r  ((Agent. Act, C ontent))  =  Agent.

In the next section I give the general definition of a dialogue.

4.2 The general dialogue
A dialogue is simply a sequence of moves, each of which is made from one participant to the other. As 

a dialogue progresses over time, I denote each timepoint by a natural number. Each move is indexed 

by the timepoint when the move was made. Exactly one move is made at each timepoint. The dialogue 

itself is indexed with two timepoints. indexing the first and last moves of the dialogue. Although I am 

only considering argument inquiry and warrant inquiry type dialogues here, this is a general definition 

that is sufficient for dialogues of other types that one may want to specify.

D e f i n i t i o n  4.2.1 A d i a l o g u e ,  denoted D lr, is a sequence o f moves o f the form  [m r , . . . ,  m * ]  involving

two participants x \ and  X 2 such that X\,X2  6  X, x \ f  X2> r ,  t e N, r < t and the following conditions

hold
1) m r is a move o f the form (P. open, dialogue(6,7 ) ) ,

2) for all s such that r < s < t, R e c e i v e r (m s) €  { x i ,  X 2 } ,

3) for all s such that r  <  s < t, R e c e i v e r ( m s ) 7^ R e c e i v e r ( m s + i ) .

The t o p i c  o f the dialogue is returned by the function T o p i c ( D * ) such that T o p i c ( D * )  =  7 . The t y p e

o f the dialogue is returned by the function  T y p e  such that Type(D tr ) — 9. The set o f all dialogues is 

denoted T>.

The first move of a dialogue D lr must always be an open move (condition (1) of the definition 

above), every move of the dialogue must be made to a participant of the dialogue (condition (2 )), and the
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a g e n t s  t a k e  i t  in  t u r n s  t o  r e c e i v e  m o v e s  ( c o n d i t i o n  ( 3) ) .

Example 4.2.1

1. Let [ m i , m 2 ,  m 3 ,  m 4] be a sequence o f moves such that

m i  =  ( i ' i  - open , dialogue(9. 7 ) )

m 2  =  (x2, assert, 

m 3  =  ( x i , close, dialogue{9\  y ' ) )

7714 =  ( x 2 ,  assert , ( $ ,  0 } )

[ m i , m 2 ,  m 3 ,  m i )  i s  o  dialogue according to the above definition.

2. Let [ m i , m  2 , m 3 ]  fee a  sequence o f moves such that

m i  =  (x\.open ,d ia logue{6 , 7 ) )

m 2  =  (x2,open,dialogue(9' . j 1)) 

m3 = (x2, a ssert , (<I>, 0 ) )

[ m i ,  m 2 ,  m 3 ]  is  n o t  n  dialogue according to the above definition, as it breaks condition (3).

3. Let [m 3 ,7 7 1 4 ,7 7 1 5 , T7i 6, 1717] fee a sequence o f moves such that

m3 — (x \.  open, dialogue^ . ' ) ) )

m i =  (X 2 , o p e n ,d i a lo g u e ( 9 . y )) 

m s  =  (x i .open ,d ia logue(9 . 'Y) )  

m  6 =  ( X2.open ,d ia logue(9 . ' y)) 

m7 =  ( x i . o pe n , d i a lo gu e(9 . 7 ) )

[ m 3 ,  m i ,  m s ,  r7i 6, 7777] i s  a  dialogue according to the above definition.

4. Let [ m i ,  m 2 ,  m 3 ]  fee a sequence o f moves such that

m i  =  ( x i.open ,d ia logue(9. j ) )

m2 =  ( x 2 ,  close, dialogue{9, 7 ) )

7773 =  (X3, close, dialogue(9, 7 ) )

[ m i ,  m 2 ,  m 3 ]  i s  n o t  <3 dialogue according to the above definition, as it breaks condition (2).

N o t e  t h a t  i f  r  =  1, t h e n  t h i s  i n d i c a t e s  t h a t  t h e  d i a l o g u e  i s  a  top-level dialogue ( i . e .  a  d i a l o g u e  t h a t  i s  

n o t  e m b e d d e d  w i t h i n  a n o t h e r  d i a l o g u e ) .  I f  r  ^  1 t h e n  t h i s  i n d i c a t e s  t h a t  t h e  d i a l o g u e  m u s t  b e  e m b e d d e d  

w i t h i n  o n e  o r  m o r e  o t h e r  d i a l o g u e s .

D e f i n i t i o n  4.2.2 Let D lr be a dialogue. D lr is a t o p - l e v e l  d i a l o g u e  iff r — 1. The set o f  all top-level 

dialogues is denoted T>to p •



4.2. The general dialogue 52

I now define some extra terminology to allow us to talk about relationships between dialogues. The 

first of these is extends. The dialogue D p  extends the dialogue D lr if and only if the sequence that is D\. 

appears at the beginning of the sequence that is D p .

Definition 4.2.3 Let D lr be a dialogue that is a sequence o f  n moves, n = t — (r — 1). For any dialogue 

D p , D p  extends D lr iff t <  t\ and the first n  moves o f D p are the sequence o f moves that is D f

Example 4.2.2 Let D lr =  [mr , m r+i, m t\ be a dialogue (note t =  r  +  2 ).

1. Let D f  =  [mr>,mr'+ i,m r>+2 ,m t'} be a dialogue (t' = r' 4-3) where m r' =  m r, rrv + i = m r +1  

and m r '+ 2 =  m t. D f  extends D f

2. Let D f  = [mr' ,m r'+i,mt<] be a dialogue (t' = r’ 4-2) where m r> = m r, m r '+ 1  =  m r + 1 and 

m t' — m t. D f  extends D f

3. Let D f  =  [mr' , mr'+i , m r/+3 ,m*'] be a dialogue (t ' = r' +  4) where m r >+1 =  m r, 

m r ' + 2 =  w r+ i and m r>+ 3 =  m r+ 2 . D lr, does not extend D lr.

I now define an operator that appends a move to a dialogue sequence, to give us a dialogue extension.

Definition 4.2.4 Let D fr = [mr , m r+1 , . . . ,  m t] be a dialogue. The extension o f dialogue D lr by move 

m t+ 1 is denoted D lr +  m t+\ such that D* +  m t + 1 =  [mr , m r+ 1 , . . . ,  m t , m t+i}.

Example 4 .23 Let D f =  [(a‘i, open , dialogue{6 , y)), (x-2 , a ssert, {$>, 0 )), (x i, assert, {$', 0'))] be a 

dialogue. The extension o f dialogue D \ by move =  (X2 , close, dialogue(9 , 7 )) is the dialogue D \ = 

[(xi,open,dialoyue(0 ,y )) , (X2 , assert, (4>,0)), (xi,  assert, ($ ', <£')), (x'2 , close, dialogue{0 , 7 )}]

(i.e. D f + 1714 = D\).

I also define the sub-dialogue relation. The dialogue D p  is a sub-dialogue of the dialogue D lr if 

and only if the sequence that is D lr\ is a sub-sequence of the sequence that is D*. If a dialogue D p  is 

a sub-dialogue of a dialogue D lr then this means that D lr\ is embedded within D lr . A dialogue may be 

embedded within several other dialogues, creating a nesting of dialogues and this will be illustrated in a 

later example (Example 4.2.5).

Definition 4.2.5 Let D\. =  \mr , m r+1 , . . . ,  m t - \ ,m t] be a dialogue that is a sequence o f n moves, 

n =  t -  (r -  1 ). Let Dp be a dialogue that is a sequence o f m  moves, rn = t\ -  (77 — 1 ). D p  

is a sub-dialogue o f D l iff r < r\, t\ < t, and the sequence Dpi is a sub-sequence appearing in the 

sequence D f

Example 4.2.4 Let D lr — [m T, m r+ 1 , m r+2 , m r+3 . mt] be a dialogue (t = r + 4).

1. Let Dp, — [rnr>. m r>+i . mt'] be a dialogue (t' =  r' + 2 ) where m r/ =  m r+i, rnr ' + 1 =  m r + 2 and 

m t’ = m r_f 3 . D p is a sub-dialogue o f DP

2. Let D f  = [mr’,m r'+i ,m t'] be a dialogue (t' = r' +  2) where m r> — m r, mr/+ i =  m r + 1 and 

m t' = m r+2 - DP is not a sub-dialogue o f D f

3. Let D f  =  [rrv , m r'+i, r r v +2 , m t>] be a dialogue (t' = r' + 3) where m r> = m r+ lf m r >+ 1  =  m r+2, 

m r >+ 1 =  m r + 3 and m t' = m t. D f  is a sub-dialogue o f D f
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4. Let DP  =  [ m r / ,  r r v + i ,  m * /]  be a dialogue (tf = r ' +  2) where m r> =  m r + 3 and m r ' + 1 =  m t. DP 

is not a sub-dialogue o f DP

A top-dialogue of a dialogue is any top-level dialogue that it appears in. If a dialogue is not a 

top-level dialogue then this means that it must be embedded within one or more other dialogues. A top- 

dialogue of a dialogue D lr is the outermost dialogue in which D lr is embedded. (Note that the following 

four definitions will be illustrated shortly in Example 4.2.5).

Definition 4.2.6 Let D \ be a top-level dialogue. D\ is a top-dialogue o f the dialogue D lr iff the partic­

ipants o f D \ are the same as the participants o f D lr, and either the sequence that is D\ is the same as 

the sequence that is D lr or D lr is a sub-dialogue o f D \.

In order to terminate a dialogue, two close moves must appear next to each other in the sequence, 

called a matched-close.

Definition 4.2.7 Let D lr be a dialogue with participants x \  and x^ such that Topic(Z>£) =  7  

and Type(D tr) =  0. We say that m s, r < s < t, is a matched-close for D lr iff m s- i  =  

(P, close, dialogue(0,7 )) and m s =  ( P ,  close, dialogue(6 , 7 )).

So a matched-close will terminate a dialogue D* (condition (1) of the following definition), but only 

if D lr has not already terminated (condition (2 ) of the following definition) and any sub-dialogues that 

are embedded within D lr are also terminated (condition (3) of the following definition). This ensures that 

a dialogue does not terminate after an inner embedded dialogue has been opened but not yet terminated.

Definition 4.2.8 Let D lr be a dialogue. D lr term inates at t iff the following conditions hold:

1. m t is a matched-close fo r  D lr,

2. there does not exist D\} such that D frl terminates at t\  and D lr extends D p,

3. for all D lr\, i f  D p  is a sub-dialogue o f D lr,

then there exists D p such that D p  terminates at £2

and [either Dpx extends Dpx or Dpi extends D lp  ] 

and D lp  is a sub-dialogue o f DP

As we are often dealing with multiple nested dialogues, it is sometimes useful to refer to the current 

dialogue, which is the innermost dialogue that has not yet terminated. The first condition of the follow­

ing definition states that the current dialogue must start with an open move (necessary for the current 

dialogue to be a dialogue). The second condition states that all sub-dialogues of the current dialogue 

have terminated, and the third condition states that the current dialogue has not yet terminated.

Definition 4.2.9 Let D lr be a dialogue. The current dialogue is returned by C u r r e n t ( D ^ )  such that 

C u r r e n t ( D * )  =  D p  where 1 <  r  <  r\ < t and the following conditions hold:

1. m ri =  (x, open. dialogue{6 , 7 ) )  fo r some x  e l ,  some 7  e B and 6 e  {w i, ai},
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2. for all D p , i f  D lr * is a sub-dialogue o f D lri,

then there exists D p  such that either D p  extends Dp2 or D p extends D p  

and D p  is a sub-dialogue o f D l 

and D p  terminates at t2,

3. there does not exist D p  such that D lri extends D p  and D p  terminates at t%.

I f  the above conditions do not hold then C u r r e n t ( J 9 * ) =  null.

The topic of the current dialogue is returned by c T o p i c  such that c T o p i c ( Z ) * ) =  T o p i c ( C u r r e n t ( D * ) ) .  

The type of the current dialogue is returned by c T y p e  such that c T y p e ( D ^ )  =  T y p e ( C u r r e n t ( Z ) £ ) ) .  

Note, T o p i c ( n u I / )  =  null and Type(null) =  null.

I now give a schematic example of nested dialogues.

Example 4.2.5 An example o f nested dialogues is shown in Figure 4.1. In this example, D\ is a top- 

level dialogue that has not yet terminated. D \ is a sub-dialogue o f D\ that terminates at t. D j is a 

sub-dialogue o f both D \ and D\, that terminates at k.

D \ is a top-dialogue o f D \. D \ is a top-dialogue o f D p  D \ is a top-dialogue o f D\. D \ is a top- 

dialogue o f D p

C u r r e n t ( D j )  =  D\. C u r r e n t ( D j _ 1 )  =  D - _ 1 . C u r r e n t ( D f )  =  D p  C u r r e n t ( D j _ 1 ) =  D j~ l

C u r r e n t ( Z ) | )  =  null. C u r r e n t ( Z ) * - 1 ) =  D \~ A. C u r r e n t ( Z ) f )  =  D p  C u r r e n t ^ * - 1 ) =  D *

3
\k— 1 
3

Current(Dj) =  null. C u rre n t^ * -1 ) =  D j-1 .

I adopt the standard approach of associating a commitment store with each agent participating in 

a dialogue. A commitment store is a set of beliefs that the agent has asserted so far in the course of 

the dialogue. As a commitment store consists of things that the agent has already publicly declared, its 

contents are visible to the other agent participating in the dialogue. For this reason, when constructing 

an argument, an agent may make use of not only its own beliefs, but also those from the other agent’s 

commitment store.

Definition 4.2.10 A commitment store associated with an agent x a ta  timepoint t, denoted C S fx, where 

x  6 T  and t e N, is a set o f beliefs, C S X C B.

An agent’s commitment store grows monotonically over time. An agent’s commitment store is 

updated when the agent makes an assert move. If an agent makes a move asserting an argument, every 

element of the support is added to the agent’s commitment store. This is the only time the commitment 

store is updated.

Definition 4.2.11 (Commitment store update) Let D lr be the current dialogue such that Receiver(mt) =  

P.
‘ 0 i f ft  = 0,

C5^T1 U^> iff m t = {P, assert,

C  S lp  1 otherwise.

C S lP =  <
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______________________________________________________ D i

[ m i , . . . .

7? i j , . . .  , m j t - i . m j k

l < z < ; < & < / — 1

m i =  (P i,open ,d ia logue(9 i,(p i)),m i =  (Pi,open,dialogue(9i,4>i))

=  (Pj,open.dialogue(Oj,(f>j)),mk-i = {P k-i, close. dialogue(9k. 4>k)) 

rrik =  (Pk- close. dialogue(0k, ((>k))i m t- i  =  (P t-i, close, dialogue(6 t . 4>t )} 

m t = (Pt, close, dialogue(9t , (f>t))

Figure 4.1: Nested dialogues. D\ is a top level dialogue that has not yet terminated. D\ is a sub-dialogue 

of D\ that terminates at t. Dj is a sub-dialogue of both D \ and D \, that terminates at k.
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Example 4.2.6 Let D \ be a dialogue that terminates at 7 with participants x i  and X2 such that

rrii = (x 2 ,open,dialogue(0 ,'y))

m 2 =  (x \, assert, ({(a, 2 ). (a —> b, 1 )}, b))

m 3 =  (x2, assert, {{(c, 1 ), (c —> ->a, 1 )}, ->a))

m 4 = (x i, close, dialogue(9, j)}

m$ = (x2, assert, ({(d, 1 ), (d —> ->6 , 2 )}, ->6))

me = (x \, close, dialogue{6 ,^ ))

tn j =  (#2 , close, dialogue{6 ,'-f))

Recall that the first element o f a move denotes the agent that is receiving the move, hence agent x \ makes

the first move, agent X2 makes the second move and so on. The commitment stores fo r each time point in

the dialogue are as follows

CS>, =  0 C S } 2 =  0

CS?, = 0  C S * 2 =  { (a ,2), ( a - b , l ) }

C S l = { ( c , l ) , ( c ^ - a . l ) }  C S l  =  { ( a ,2 ) , ( a - 6 , l ) }

CS?, =  {(c, 1), (c -  - a .  1)} C S i,  =  {(a, 2 ). (a b, 1 )}

CSJ, =  {(c. 1 ), (c -a .  1 ), (d, 1 ), (d -  - 6 , 2 )} C S sX2 = {(a, 2 ): (a 6 ,1)}

C S l  =  {(c, 1), (c ̂  - a ,  1), (d, 1), (d — -.6,2)} CS«2 =  {(a, 2), ( a - 6 , 1 ) }

C S l  = {(c. 1 ), (c -  -a .  1 ), (d, 1 ), (d -  - 6 , 2 )} C S l2 =  {(a, 2 ). (a -  6 , 1 )}

Each dialogue type has a specific protocol associated with it. A protocol is a function that returns 

the set of moves that are legal for an agent to make at a particular point in a particular type of dialogue. In 

the following sections. I will give specific protocols for argument inquiry and warrant inquiry dialogues, 

but the definition given here is a general one. A protocol function takes the top-level dialogue that two 

agents are participating in and the identifier of the agent whose turn it is to move, and returns the set of 

legal moves that the agent may make.

Definition 4.2.12 A protocol, He, is a function such that 6 6 {ai, wi} and II# : T>top x l n  p(A4).

Note that in order for it to be easily possible to check an agent’s conformance with a protocol, the 

protocol should only refer to public elements of the dialogue and not, for example, to an agent’s private 

beliefs.

I believe that it is important to consider properties such as soundness and completeness if we are 

to understand the behaviour of dialogues. In order to consider such properties, I must first define what 

the outcome of a dialogue is and then later define a benchmark to compare such dialogue outcomes to 

(Section 5.5). The outcome function returns the outcome at any particular point in a particular type of 

dialogue. Specific outcome functions for different dialogue types will come later.

Definition 4.2.13 The outcome o f a dialogue, Outcome#, is a function such that 6 € {w i,a i} and 

Outcome# : V  i—> p(A{B)).
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Along with the definition of a specific strategy function (that will come later in Section 4.5), the 

specification of specific outcome functions for different dialogue types (that will also come later in

outcome of a dialogue, with a notable exception being [47], making it hard to analyse the behaviour of 

such systems.

This completes the general definition of my dialogue framework. In the next sections I will give the 

details that specify the argument inquiry and warrant inquiry dialogue types.

4.3 The argument inquiry dialogue
The goal of an argument inquiry dialogue is to jointly construct an argument for a particular claim. It 

is easy to imagine an example of a situation in which neither of the two participants could construct a 

particular argument independently, but if they cooperated and pooled their knowledge then they would 

be able to do so. For example, when called in to help diagnose a patient, a consultant may have the 

specialist knowledge about which combinations of symptoms suggest which diseases but, having not yet 

examined the patient, may not know what the patient’s particular symptoms are. A nurse working on the 

same ward as the patient will not have the specialist knowledge that the consultant has, but will know 

all about the patient’s symptoms. The nurse and the specialist could then enter into an argument inquiry 

dialogue to try and jointly construct arguments for different diagnoses.

An argument inquiry dialogue has a set associated with it called a question store. This set is used 

to keep track of literals that, if known to be true, would allow an argument for the consequent of the 

topic of the dialogue to be constructed. An argument inquiry dialogue is initiated when an agent wants 

to construct an argument for a certain claim, let us say 0 ,  that it cannot do so alone. If the agent knows 

of a domain belief whose consequent is that claim, let us say (e*! A . . .  A a „  —» 0 ,  L ) ,  then the agent 

will open an argument inquiry dialogue with a i  A . . .  A  a n —> 0  as its topic. If, between them, the two 

participating agents could provide arguments for each of the elements ai, 1 < i < n, in the antecedent 

of the topic, then it would be possible for an argument for 0 to be constructed. The question store is used 

to keep track of these elements.

When an argument inquiry dialogue is opened with topic a j  A . . .  A q „ —»• 0 ,  a question store 

associated with that dialogue is created whose content is { a i , . . . ,  a „ ,  0 } .  Throughout the dialogue, the 

participating agents will both try and provide arguments for the elements in the question store. This may 

lead them to open further nested argument inquiry dialogues that have as a topic a rule whose consequent 

is an element in the question store.

Definition 4.3.1 For a dialogue D lr with participants x \ and X2 , a question store, denoted Q Sr, is a 

finite set o f literals such that

The question store of the current dialogue is returned by cQS such that cQS(D*) = Q Sn  iff 

Current(D^) =  D ^ .

Sections 4.3 and 4.4) sets this theory apart from most other similar systems. Most do not define the

{ a j , . . . .  tt-n . iff m r =  (P, open. dialogue(ai, a i  A . . .  A  a n —> ff)) ( 1  < n), 

0  otherwise.
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I will now give an example of an argument inquiry dialogue illustrating the intuition behind the 

protocol which I will define shortly (Definition 4.3.2).

Example 4.3.1 Let D ] 1 be an argument inquiry dialogue that terminates at 11 with participants x \  and 

X2 such that

=  {(a A 6 —► c, 1), (e 6,2)}

£ «  = { (< f ,l) ,(e, l ) , ( d ^ a , l ) }

Agent x \ wishes to construct an argument for c and believes that agent X2 may be able to help.

tti\ =  (x2 , open, dialogue(ai, a A 6 —> c)) 

r?i2 =  (x i, a ssert, ({(d, 1 ), (d —> a, 1 )}, a)) 

m.3 =  {x-2 , open, dialogue{ai, e —>• b))

7774 =  (x i,a sser t,  {{(e, 1 )} ,e))

7775 =  (x2, assert, {{(e, 1 ), (e —> 6 , 2 )}, 6 ))

7776 =  {x\, close, dialogue(ai. e —> 6 ))

77?7 =  (x2 -close, dialogue(ai. e —► 6 ))

7778 =  (ari, close, dialogue{ai. a A 6 —> c))

mg =  (x2, assert, ({(e, 1). (e —>■ 6 , 2), (d, 1), (d —> 77,1), (a A 6 —> c, 1)}, c))

777x0 =  (xi,c lose,d ia logue(a i,a  A 6 —> c))

777ii =  (-C2 , close, dialogue(ai, a A 6 —» c))

Timepoint 1. When agent xi makes the move m i it opens the argument inquiry dialogue D \l that 

terminates at 11. Agent x \  wishes to collaborate with agent X2 to try and construct an argument for c, 

and it has a belief in the defeasible rule a A 6 —> c that may help in the construction o f an argument for c. 

The question store associated with D \l is Q S 1 =  {a, 6 , c}. I f  x \ and X2 can jointly construct arguments 

for a and b then x i  will be able to use these along with its belief in a A 6 —► c to construct an argument 

for c. The element c is also included in the question store as it may be the case that x \ and X2 are not 

able to jointly construct arguments for X\ and X2 , but one o f them may know o f a different defeasible 

rule that may allow them to jointly construct an argument for c (e.g. f  A g —» c). Both commitment 

stores are empty, C S ^  =  C S f2 = 0.

Timepoint 2. When making the move m 2 , X2 examines the question store fo r  the current argument 

inquiry dialogue (Q S\ =  {a ,b ,c}) and sees i f  it can provide an argument for any o f the elements in it. It 

finds that it can provide an argument for a and so asserts this argument. This causes the support o f this 

argument to be added to X2 ’s commitment store, C S f2 = {(d, 1 ), (d —» a, 1 )}. xi ’s commitment store 

is still empty, C S^  =  0.

Timepoint 3. Agent x \ now examines the current question store (QS\ =  (a , b. c}) and although it 

cannot provide an argument for any o f its elements, it does know o f a defeasible rule which may help to 

construct an argument fo r an element o f the current question store, e —> 6. Agent x j makes the move m 3 , 

opening the embedded argument inquiry dialogue that terminates at 7. The question store associated 

with D 3 is Q S3 =  {e. 6 }. No assert move has been made so the commitment stores remain the same,
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C S l= ld ,C S %  = { ( d , l ) , ( d ^ a ,  1)}.

Timepoint 4. The current dialogue is Z?J and so agent X2 examines the question store associated with 

this dialogue (QSg — {e. b}) and finds that it can provide an argument for one o f its elements, e. Agent 

X2 makes move asserting this argument, causing the support o f this argument to be added to its 

public commitment store. C S X2 = {(d. 1 ), (d —> a , 1), (e. 1 )}. x \ ’s commitment store does not change, 

CS*Xl = 0.

Timepoint 5. Agent x \ is now able to use the elements just added to X2 ’s commitment store along with its 

belief in c -> b to construct an argument fo r  b (an element o f the current question store, QSg =  {e, b}), 

and so asserts this argument in move m$. This causes the support o f this argument to be added to x \ ’s 

commitment store, C S Xi =  {(e. l ) ,(e  —> 6,2)}. X2 s commitment store does not change, C S X2 =  

{ { d .l ) : {d —» a , l ) , ( e . l ) } .

Timepoint 6 . Agent X2 checks to see whether it is able to construct any arguments fo r an element o f  

the current question store (QSg = {e.b}) that cannot already be constructed from the union o f the two 

public commitment stores. It cannot and so makes the move mg to close the current dialogue. The 

commitment stores do not change, C S ^  =  {(e, 1 ), (e —> 6 ,2)}, C S X2 =  {(d , 1 ), (d —> a, 1), (e, 1)}. 

Timepoint 7. Agent x \  now checks to see whether it is able to construct any arguments fo r an element 

o f the current question store (Q S3 = {e.b}) that cannot already be constructed from the union o f the 

two public commitment stores. It cannot and so makes the move m 7 to close the current dialogue. As 

rn7 is a matched-close fo r and there are not any dialogues embedded within D \ that have not yet 

terminated, D \ terminates at 7. The commitment stores do not change, C S Xl =  {(e, 1), (e —> b.2)}, 

C S 7, ,  =  { ( d , l ) , ( r f - .a , l ) , ( e , l ) } -

Timepoint 8 . As has terminated the current dialogue is now D f, and so the current question store 

is Q S 1 =  {a, 6 , c}. Agent X2 checks to see whether it can construct any arguments fo r an element 

o f Q S\ that cannot already be constructed from the union o f the two public commitment stores. It 

cannot and so makes the move mg to close the current dialogue. The commitment stores do not change, 

C S l  = <(c, 1), (e -* b. 2)}, C S ?2 =  {(<(. 1), {d a, 1 ), (e, 1)}.

Timepoint 9. Agent x \  checks to see whether it can construct any arguments for an element o f the 

current question store (Q S\ =  {a, b, c}) that cannot already be constructed from the union o f the two 

public commitment stores. It can use the elements added to the commitment stores at timepoints 4 and 

5, along with its belief in a A b —> c, to construct an argument for c and so asserts this argument in 

move mg. This causes the support o f the argument to be added to x \ ’s commitment store, C S Xl = 

{(e, 1), (e —» 6 , 2), (d , 1). (d —> a, 1). (a A b —» c, 1)}. x \ ’s commitment store does not change C S X2 =  

{{d ,l) .{d  - > a , l ) , ( e Tl)}.

Timepoint 10. Agent x \ checks to see whether it is able to construct any arguments fo r  an element o f 

the current question store (Q S\ = {a, 6 , c}) that cannot already be constructed from the union o f the 

two public commitment stores. It cannot and so makes the move mio to close the current dialogue. The 

commitment stores do not change, CS™ = {(e, 1), (e —> b, 2), (d, 1), (d —> a, 1), (a A b —> c, 1)}, 

C S ^  =  { ( r f , l ) , ( r f ^ a , l ) , ( e : l)}.
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Timepoint 11. Agent x \  now checks to see whether it is able to construct any arguments fo r an element 

o f the current question store (Q Sj =  {a, b,c}) that cannot already be constructed from the union o f the 

two public commitment stores. It cannot and so makes the move m u  to close the current dialogue. As 

m u  is a matched-close for D \ l and there are not any dialogues embedded within D ] 1 that have not 

yet terminated, D \ l terminates at 11. The commitment stores do not change, =  { (e ,1 ) , (e —>

b: 2), (d, 1), (d -> a, 1): (a A b  -  c. 1)}, C S ll  = U d< J )' (d -  “ > J ) ’ (e > !)}•

The two agents have successfully jointly constructed an argument for c, ({(e, 1), (e —> 6 ,2), (d, 1), (d —*• 

a, 1). (a A b —► c. l)} ,c).

I now give the specific protocol function for argument inquiry dialogues. It takes the top-level 

dialogue that the agents are participating in and the identifier of the agent whose turn it is to move, 

and returns the set of legal moves that the agent may make. Note that it is straightforward to check 

conformance with the argument inquiry protocol, as it only refers to public elements of the dialogue. 

That is to say, it does not refer to either participating agent’s beliefs.

Definition 43.2 The argument inquiry protocol is a function IIai : V top x l n  p{M ). I f  D\ is a 

top-level dialogue with participants x \  and X2 , Receiver (mi) =  P, 1 <  t and cTopic(Pi) =  y, then 

IIai(D \,P )  is

U ^ sert(D tl ,P )u U ° â en(D tl ,P )  U { (P ,close,dialogue(ai,y))}

where

n assert(D \ ,P )  = {(P , assert, {&,<t>))\

(1 ) 0  e cQ S(D \),

(2) $  ^  C S ^  U C SL}

I I ^ en(D j. P ) =  {(P, open , dialogue{ai, 0i A . . .  A {3n —> a )) |

(1 ) a e c Q S ( D \ ),

(2 ) there does not exist t' such that 1 <  t' < t

and Q St> =  {/?i,. . .  ,(3n ,a }}

As previously remarked, the argument inquiry protocol refers only to public elements of the dia­

logue, this is deliberate to ensure that conformance with the protocol can be checked. The first condition 

of a legal assert move (<fi £ cQ S(D \)) states that the claim of the argument being asserted must be 

present in the current question store. This helps to ensure the focus of the dialogue; the participating 

agents of an argument inquiry dialogue are trying to provide arguments for the elements in the question 

store, as if they do so then they will be able to form an argument with the desired claim. They should not 

waste time by asserting arguments that will not help to do this. The second condition of a legal assert 

move (<f> % C S p  U CSP) states that the support of the argument being asserted is not already present in
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the union of the commitment stores. This ensures that assert moves are not repeated and also that agents 

do not waste time asserting arguments which can already be constructed by both participating agents.

The first condition of a legal open move (a e  cQS(jDi)) states that the consequent of the topic 

of the argument inquiry dialogue being opened with the move must be present in the current question 

store. Again, this is to maintain the focus of the dialogue. If the argument inquiry dialogue being 

opened is successful in finding an argument for the consequent of the topic, then this may help the 

agents to construct an argument for the consequent of the topic of the dialogue in which the argument 

inquiry dialogue being opened is embedded. The second condition of a legal open move (there does not 

exist t r such that 1 < t ' < t and QSt> =  {0 1 , . . .  . 0 .n .a } )  ensures that open moves are not repeated 

by an agent. It also ensures that an agent will not open a new argument inquiry dialogue with topic 

A ... A 0n —> a  if an argument inquiry dialogue has previously been opened whose topic has an 

antecedent that is some permutation of 0\ A ... A 0n, e.g. if an argument inquiry dialogue with topic 

3\ A 0 2  A —> a  had previously been opened then it would not be possible to open a new argument 

inquiry dialogue with /?2 A /?3 A /5i —> a  as its topic. This helps avoid redundancy, as two such argument 

inquiry dialogues would lead to the same outcome.

A well-formed argument inquiry dialogue is a dialogue whose first move is an open move that has 

dialogue(ai, 0 ) as its content where 0  is a defeasible rule (condition ( 1) of the following definition). 

Condition (2) of the following definition ensures that there must be a continuation of the dialogue that 

terminates (ensuring that outer dialogues are not closed after an inner one has been opened but not yet 

closed), and that all the moves in the terminating continuation of the dialogue are legal according to the 

argument inquiry protocol.

Definition 4.3.3 A well-formed argument inquiry dialogue is a dialogue o f the form D lr = 

[mr , . . . ,  m t\ with participants x \  and X2 such that

1. m r =  (P, open, dialoguc(ai, 0)) where P  e  {xq, and 0 6  P* (i.e. 0  is a defeasible rule),

2. there exists t' such that t < t \  D lr extends D f  and D \ terminates at t', and

fo r  all s such that r < s < t' and D lr extends D f  i f  D\ is a top-dialogue o f D f  and D \ is a 

top-dialogue o f D* and D \ extends D \ and Receiver(ms) =  P ' (where P ' e  {X1.X2 }), then 

m s + 1  e n ai{ D fP ') .

The set o f all well-formed argument inquiry dialogues is denoted Dcn.

I define the outcome of an argument inquiry dialogue as the set of all arguments that can be con­

structed from the union of the commitment stores and whose claims are the consequent of the topic of 

the dialogue.

Definition 4.3.4 The argument inquiry outcome o f a dialogue is a function Outcome^ : T)ai i-> 

I f  D lr is a well-formed argument inquiry dialogue with participants x \ and X2 , then 

Outcome^ (£>*) =  { ($ ,0 ) | Topic (D f) =  a\ A ... A an f  and ($,</>) e  A(CSlXi U C 5 | 2)}
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Example 4.3.2 Considering the dialogue in Example 4.3.1, the outcome o f the top-level argument in­

quiry dialogue D J1 is {({(e, 1), (e —> b, 2), (d , 1), (d —> a. 1), (a A b —> c, 1)}, c)}.

O u tco m e^ /)} 1) =  {({(e. 1), (e -» 6 , 2). (d, 1). (d -> a, 1), (a A b -> c, 1)}, c)}

The outcome o f the embedded argument inquiry dialogue is {{{(e. 1), (e —» b, 2)}, b)}.

Outcome^ (£>J) =  {({(e, 1), (e -► b,2)},b)}

Although in this example, the outcome o f each dialogue only contains one element, we will see in later 

examples (Section 4.7) that the outcome o f an argument inquiry dialogue may sometimes be the empty 

set if  the agents fail to jointly construct an argument fo r the desired claim,.or may sometimes contain 

more than one argument if  the agents can jointly construct more than one argument fo r the desired claim.

In this section, I have given the specific protocol that allows us to model argument inquiry dialogues. 

In the next section I will give details relating to warrant inquiry dialogues. In the section following that, 

I will provide a specific strategy for use by agents with either the argument inquiry or warrant inquiry 

protocol.

4.4 The warrant inquiry dialogue
The goal of a warrant inquiry dialogue is to jointly arrive at a warrant for an argument for a particu­

lar claim, which is the topic of the dialogue. This warrant takes the form of a dialectical tree. The 

participants take it in turn to exchange arguments that they believe to have some bearing on the status 

of the argument for the topic. A warrant inquiry dialogue would be opened if an agent believed that 

another agent had some knowledge that it was missing, and felt that this information could be relevant 

for consideration. For example, if a trainee doctor needed to make a critical diagnosis then they may 

enter into a warrant inquiry dialogue with a consultant, who the trainee would expect to have extra spe­

cialist knowledge that could help in the diagnosis. Or, as in the referral agent scenario that I described 

in Section 1.2.1, the knowledge of the two agents may be completely distinct (with one knowing only 

state beliefs and the other only domain beliefs) and so neither would be able to construct the relevant 

dialectical tree alone.

As two agents participating in a warrant inquiry dialogue exchange arguments, a dialectical tree is 

constructed that has an argument for the topic at the root, called the root argument. As it may be the case 

that more than one argument for the topic are asserted during the dialogue, the root argument is the first 

argument for the topic that gets asserted. If the root argument is null then this means that no argument 

for the topic has been asserted yet.

Definition 4.4.1 The function RootArg : T> ■—> A(B ) U {null} returns the root argument o f a warrant
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inquiry dialogue. Let D lr be a warrant inquiry dialogue with participants x \ and x 2.
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(r, 7) i f  there exists an s such that r < s < t. and

m s =  {P. a ssert , ( I \  7 ) )  and T o p i c ( D * ) =  7  and P  e  { x i , X2} and 

there does not exist s' such that r < s' < s and 

R o o t A r g (Dl) = there exists T '  such that m s> =  ( P ' ,  assert , ( T ' ,  7 ) )

and P ' e { x i , x 2},

else

null otherwise.

As discussed earlier, the goal of a warrant inquiry dialogue is to find a warrant for an argument for 

a particular claim in the form of a dialectical tree. As the agents exchange arguments, they construct 

a special type of dialectical tree (Definition 3.6.1) called a dialogue tree. This is simply a dialectical 

tree that has the root argument of the dialogue at its root, and is constructed from the contents of the two 

commitment stores. The dialogue tree at the end of a warrant inquiry dialogue is the warrant for the topic 

of the dialogue if and only if the status of the root of the dialogue tree is U. If the root argument is null 

(meaning no argument for the topic has been asserted yet), then the dialogue tree is also null (meaning 

that the tree is empty).

Definition 4.4.2 A dialogue tree associated with a warrant inquiry dialogue D ' is a special type 

o f dialectical tree that is denoted DialogueTree(P*). I f  RootArg(D^) =  A and $  =  C Sp  U 

CSP, then DialogueTree(D lr) is the dialectical tree T \ .  Otherwise, if  RootArg(D*) =  null, then 

DialogueTree(Z)*) =  null.

I will now give an example of a warrant inquiry dialogue illustrating the intuition behind the proto­

col which I will define shortly (Definition 4.4.3).

Example 4.4.1 Let D \ 4 be a warrant inquiry dialogue that terminates at 14 with participants x \ and 

x 2 such that

=  {(«, 2 ), (c —► ->a, 1 ), (c, 2 ), (d, 1 )}

Agent x \ wishes to search for a warrant fo r  an argument fo r  h and believes that agent x 2 may be able to
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help.
m i =  (X2 , open, dialogu,e(wi, b)) 

m 2 =  (x i, open, dialogue(ai, a —» b)) 

m 3 =  (x2, assert, ({(a, 2 )}, a))

7774 =  (^ i, assert, (({(a, 2 ), (a —> 6 , 1 )} ,6)) 

ari5 =  (x2, close, dialogue(ai, a —► £>))

77i6 =  (x j, close, dialogue(ai, a —» 6 )) 

m 7 =  (x2, assert, ({(c, 2 ). (c —> -ia, 1 )}))

777.8 =  (x i 5 open, dialogue(ai, d —► ->c))

7719 =  (x2, assert, {{(d, 1 )}, d)) 

m io  =  (x i, asse rt, (({(d, 1 ), (d -* -«c, l)} ,^c)) 

m u  =  (x2, close, dialogue{ai, d —> ->c)) 

m i2 =  ( x i , close, dialogue(ai, d —> ->c)) 

m i3 =  (x2, close, dialogue(wi,b))

777i4 =  (x i , close, dialogue(wi, b))

Timepoint 1. When agent x \ makes the move 77? 1 it opens the warrant inquiry dialogue D{° that termi­

nates at 10. Agent x \ wishes to collaborate with agent x 2 to try and construct a warrant (in the form o f 

a dialectical tree) fo r an argument fo r  b. Both commitment stores are empty, C S * =  CS]. — 0. The 

root argument is currently null, meaning no argument fo r  b has been asserted yet, and so the dialogue 

tree is null, DialogueTree(Dj) =  null, meaning the current dialogue tree is empty.

Timepoint 2. As no argument fo r  the topic o f the dialogue has been asserted yet, agent x 2 checks to see if 

it can construct such an argument from its beliefs and the commitment stores. It cannot, but it does know 

o f a defeasible rule whose consequent is the topic o f the dialogue, a —> b, and so it opens an embedded 

argument inquiry dialogue D® that terminates at 6 . The question store associated with this argument 

inquiry dialogue is Q S 2 = {a. b}. Both commitment stores are still empty, C S ^ =  C S 2I 2  =  0. As the 

root argument is still null, the dialogue tree associated with the top-level warrant inquiry dialogue (a 

top-dialogue o f D%) is still empty, DialogueTree( D \ ) =  null.

Timepoint 3. The current dialogue is now the embedded argument inquiry dialogue D \ and so x \  ex­

amines the current question store (Q S 2 = {a.b}) and sees if  it can provide an argument for any o f its 

elements. It can provide an argument fo r  a and so asserts this argument, causing the support o f this ar­

gument to be added to its commitment store, C S^  =  {(a, 2 )}. x 2 ’s commitment store does not change, 

C S f2 = 0. It is still the case that no argument fo r the topic o f the top-level warrant inquiry dialogue 

have yet been asserted and so the dialogue tree is still empty, DialogueTree(Dj) =  null.

Timepoint 4. Agent x 2 is now able to use elements from x \ ’s public commitment store along with its 

belief in a —> b to construct an argument fo r b (an element o f  the current question store, Q S2 =  {a, b}), 

and so asserts this argument. This causes the support o f this argument to be added to x 2 ’s commit­

ment store, C S * 2 =  {a, 2), (a —»■ 6 , 1 )}}. x \ ’s commitment store does not change, C S ^ =  {(a, 2 )}. 

It is now the case that within the top-level warrant inquiry dialogue, D f, an argument for the topic, 

({(a, 2 ). (a —> b, !)},&), has been asserted and so this is the root argument and the dialogue tree
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DialogueTree(Df) is as follows

U ({(a, 2), ( a - 6 ,1 ) } ,  6)

65

Timepoint 5. As the current dialogue is still the embedded argument inquiry dialogue Df, x \  now ex­

amines the current question store (Q S2 = {a, b}) to see if it can construct an argument for any o f its 

elements that cannot already be constructed from the union o f the commitment stores. It cannot and so 

makes a move to close the embedded argument inquiry dialogue. The commitment stores do not change, 

C S X2 =  {a, 2), (a — 6 ,1)}}, C S Xj =  {(a, 2)}. As the construction o f the dialogue tree depends on the 

root argument and the contents o f the commitment stores, the dialogue tree also does not change. 

Timepoint 6 . We are still in the embedded argument inquiry dialogue and so x 2 now examines the 

current question store (Q S2 =  {a, b}) to see if it can construct an argument for any o f its elements that 

cannot already be constructed from the union o f the commitment stores. It cannot and so makes a move 

to close the embedded argument inquiry dialogue. As me is a matched-close fo r  D f and there are not 

any dialogues embedded within D f that have not yet terminated, D f terminates at 6 . The commitment 

stores do not change, C S X2 =  {a. 2), (a —> 6,1)}}, CS'f =  {(a, 2)}. The dialogue tree does not 

change.

Timepoint 7. The current dialogue is now the top-level warrant inquiry dialogue D \. As the dia­

logue tree is not empty, x \  examines the current dialogue tree to see if  it can construct any arguments 

which, i f  asserted, would cause some change to the dialogue tree. It does find such an argument, 

({(c, 2). (c — ->a, 1)}), and so asserts this argument. The causes the support o f the argument to be 

added to X \ ’s commitment store, C S Xl — {(a, 2 ). (c, 2), (c —> ->a, 1)}. X2 ’s commitment store does not 

change, C S l2 =  {a, 2), (a —> 6 ,1)}}. The change to the commitment stores causes a new node to be 

added to the dialogue tree, DialogueTree(D[), as follows

U ({ (c ,2 ) ,(c — -a ,l)} ,-> a )

D ({(a, 2), ( a - 6 ,1 ) } ,  6)

Timepoint 8 . X2 now checks to see i f  it can construct any argument which would change the current 

dialogue tree. It cannot but it does know o f a defeasible rule with the consequent ->c. I f  an argument for  

-'C were found then this may cause a new node to be added to the dialogue tree (dependent on whether 

the conditions o f an acceptable argumentation line are met), and so X2 makes a move to open an embed­

ded argument inquiry dialogue with this defeasible rule as its topic, causing the question store QSg = 

{d , ^c} to be created. The commitment stores do not change C S Xl =  {(a, 2), (c, 2), (c —> ->a, 1)}, 

C S X2 =  {a, 2), (a — 6 ,1)}}- The dialogue tree does not change.

Timepoint 9. x \  checks the current question store (QSg =  {d, ->c}) to see if it can construct an argument 

fo r  any o f its elements. It finds that it can, ({(d, 1)}, d), and so asserts this argument. This causes the sup­
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port o f this argument to be added to x \ ’s commitment store C S %1 =  {(a, 2 ), (c, 2 ), (c —> ~>a, 1 ), (d, 1 )}. 

X2 ’s commitment store does not change, C S %2 =  {a, 2), (a —> 6 ,1)}}. Although the union o f the com­

mitment stores have changed, the dialogue tree has not.

Timepoint 10. X2 checks the current question store (Qg = {d,-*c}) to see if it can construct 

an argument fo r  any o f its elements. It finds that it can, ({(d. 1), (d —> ->c, 1)}. ~>c), and so as­

serts this argument. This causes the support o f the argument to be added to X2 ’s commitment 

store, CS™ = {a, 2), (a —> b, 1), (d, 1 ), (d —> —»c, 1)}}. x \ ’s commitment store does not change, 

CS™  =  {(a, 2), (c. 2), (c —» -ia, 1), (d, 1)}. This change to the commitment stores has caused a new 

node to be added to the dialogue tree as follows

U < { (d ,l ) ,(d -* -c ,l )} ,- ,c )

D ( { ( c . 2) , ( c - > -■a,l)},-.a)

U {{fa,2 ), (a —> 6 , 1 )} ,6 )

Timepoint 11. x \ checks the current question store (QSg = {d.~^c}) to see if  it can construct 

an argument for any o f its elements that cannot already be constructed from the union o f the pub­

lic commitment stores. It cannot and so makes a move to close the embedded argument inquiry di­

alogue. The commitment stores do not change, CS™ =  {a, 2), (a —>• 6 ,1), (d, 1), (d —> ->c, 1)}}, 

=  {(a. 2 ), (c, 2 ), (c —> ->a. 1 ), (d. 1 )}, and the dialogue tree does not change.

Timepoint 12. X2 is also unable to construct any new arguments fo r an element o f the current 

question store and so also moves to close the dialogue. As m \ 2  is a matched-close fo r  D™ and 

there are not any dialogues embedded within D™ that have not yet terminated, D™ terminates at 

12. The commitment stores do not change, CS™  =  {a, 2), (a —» 6 ,1), (d. 1), (d —» —-c, 1)}}, 

CS™ = {(a. 2), (c, 2 ), (c —> ->a. 1), (d, 1)}, and the dialogue tree does not change.

Timepoint 13. The current dialogue is now the top-level warrant inquiry dialogue D™ and so x i 

checks to see if  there are any arguments that it could assert which would cause the dialogue tree 

to change. There are not and so it checks to see whether it knows o f any defeasible rules that 

have as a consequent something which is in conflict with an element o f the union o f the commitment 

stores (as if  an argument fo r  such a consequent could be found during an embedded argument in­

quiry dialogue then it may cause a new node to be added to the dialogue tree). It does not find any 

such defeasible rules and so moves to close the dialogue. The commitment stores do not change, 

CS™  =  {a, 2), (a —» b, 1), (d. 1), (d —» -<c, 1)}}, CS™ = {(a, 2), (c, 2), (c —> ->a, 1), (d, 1)}, and 

the dialogue tree does not change.

Timepoint 14. x 2 now performs the same checks that x \ did at timepoint 13, but also finds that there
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are no useful moves it could make and so also moves to close the dialogue. As m  14 is a matched 

close fo r D \4, D \A terminates at 14. The commitment stores do not change, =  {a, 2), (a —»

b. 1), (d , 1), (d —> -ic, 1)}}, CS** =  {(a. 2), (c, 2), (c —> ->a, 1), (d, 1)}, and the dialogue tree does not 

change.

The final dialogue tree is

U  ( { ( d .  1 ) ,  (d - »  ->c, 1 ) } ,-> c )

D ({(c. 2), (c —> -ia, 1)}, ->a)

U ({(a, 2), (a —> b, 1)}, 6)

and so the agents have successfully found a warrant fo r an argument for b.

I now give the specific protocol and outcome functions that make up the warrant inquiry dialogue. 

The protocol function tells us which moves are legal at a point in a warrant inquiry dialogue. Note 

that, as the only type of open move that it is legal to make within a warrant inquiry dialogue is one 

that opens an embedded argument inquiry dialogue, the only type of dialogue that can be embedded 

within a warrant inquiry dialogue is an argument inquiry dialogue. Recall that argument inquiry dialogue 

may themselves have argument inquiry dialogues embedded within them, and so it is possible to have 

multiple nested argument inquiry dialogues embedded within a warrant inquiry dialogue. However, it is 

not possible to nest warrant inquiry dialogues within other warrant inquiry dialogues or within argument 

inquiry dialogues. Also note that, like with the argument inquiry protocol, the warrant inquiry protocol 

only depends on public elements of the dialogue, hence there is no problem in checking an agent’s 

conformance with the protocol.

Definition 4.4.3 A warrant inquiry protocol is a function n ro, : V top x i  h  p (M ). I f  D\ is a

top-level dialogue with participants x \ and x 2, Receiver(mt ) =  P, 1 < t and cTopic(Z)|) =  7 , then 

IT wi(D \ ,P ) is

j j o s s e T - t ^ t   ̂ p^  u P ) U {(P.  close. dialogue(wi,  7))}

where
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n n i ert{D \,P ) = {(P , assert, ($,<j)))|

DialogueTree(Current(Z)i) +  (P, assert, ( $ ,0 ))) /  DialogueTree(Current(.Di))}

U ^ n (D \, P ) = { (P , open, dialogue(ai, pi A . . .  A f t  —> a))\

(1) ->ct € DefDerivations(C5p U C S~) or

RootArg(Current(D2 )) =  null and a  =  7 ,

(2 ) there does not exist t' such that 1 < t' < t

a n d Q S f  =  { f t , . . . ,  f t ,  a}}

An assert move is only legal if it changes the dialogue tree in some way (DialogueTree(Z)| +  

(P, assert, (3>, 0)}) 7  ̂ D ialogueTree^*)), i.e. adding the argument to the commitment stores causes a 

new node to be added to the dialogue tree, it does not necessarily change the status of the root node. This 

ensures that the dialogue stays focussed on only exchanging arguments that may have some bearing on 

the status of the root argument. It also ensures that agents do not repeat assert moves.

The first condition of a legal move opening an embedded argument inquiry dialogue with topic 

f t  A . . .  A f t  a  states that one of the following must hold.

•  It must be possible to defeasibly derive ->a from the union of the commitment stores f t  a  e 

DefDerivations(C5,p  U C S~)). This condition is again intended to ensure that the focus of the 

dialogue stays relevant. If an agent can form an argument for the negation of something that can be 

derived from the commitment stores, then that means that the argument conflicts with something 

that has been previously asserted, a necessity for an argument that is going to alter the dialogue 

tree.

•  The root argument for the current dialogue is null (i.e. no argument whose claim is the topic 

of the current dialogue has yet been asserted during the current dialogue) and a  (the consequent 

of the topic of the argument inquiry dialogue being opened) is the topic of the current dialogue 

(RootArg(Current(Z?j)) =  null and a  =  7 ). This condition allows agents to open nested argu­

ment inquiry dialogues which will not lead to arguments that will conflict with things that have 

already been asserted, but which may lead to an argument for the topic of the warrant inquiry 

dialogue in which it is embedded, if no such argument has previously been asserted.

The second condition of a legal open move (there does not exist t ' such that 1 <  t' < t and Q St> =  

{0 i , . . . ,  0 n , a })  ensures that open moves are not repeated by an agent (as it does in the argument 

inquiry dialogue). It also ensures that an agent will not open a new argument inquiry dialogue with topic 

Qi A ... A pn —► a if an argument inquiry dialogue has previously been opened whose topic has an 

antecedent that is some permutation of f t  A . . .  A f t ,  e.g. if an argument inquiry dialogue with topic 

Pi A 0 2  A 03 —> Oi had previously been opened then it would not be possible to open a new argument
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inquiry dialogue with p 2 A @3 A f3\ —> a  as its topic. This helps avoid redundancy, as two such argument 

inquiry dialogues would lead to the same outcome.

A well-formed warrant inquiry dialogue is a dialogue whose first move is an open move that has 

dialogue(wi. f )  as its content where (j) is a defeasible fact (condition ( 1) of the following definition). 

Condition (2) of the following definition ensures that there must be a continuation of the dialogue that 

terminates (ensuring that outer dialogues are not closed after an inner one has been opened but not yet 

closed), and that all the moves in the terminating continuation of the dialogue are legal according to the 

protocol for the relevant current dialogue.

Definition 4.4.4 A well-formed warrant inquiry dialogue is a dialogue o f the form D f =  

[m r , . . . ,  mt) with participants x \ and x 2 such that

1. m r =  (P, open, dialogue(wi, <j>)) where P  £ { x i . x 2} and (f> £ S* (i.e. <j> is a defeasible fact),

2. there exists t' such that t < t', D f extends Df, and D f terminates at t ', and

fo r  all s such that r < s < t' and D f extends D f, if D \ is a top-dialogue o f D f and D f is 

a top-dialogue o f Df. and D\ extends D f and Receiver(ms) =  P ' (where P ' £ { x \ , x 2}) and 

cType(D f) = 0, then m s+1 £ I I ^ D f , P ').

The set o f  all well-formed warrant inquiry dialogues is denoted D wl.

Note, if I refer simply to a well-formed dialogue, then I mean either well-formed argument inquiry 

dialogue or a well-formed warrant inquiry dialogue.

Definition 4.4.5 A well-formed dialogue is either a well-formed argument inquiry dialogue or a well- 

formed warrant inquiry dialogue.

The outcome of a warrant inquiry dialogue is determined by its dialogue tree. If the root argument is 

undefeated in the dialogue tree then a warranted argument for the topic of the dialogue has successfully 

been found and the set containing the root argument is the outcome, otherwise the outcome is the empty 

set.

Definition 4.4.6 The warrant inquiry outcome o f a dialogue is a special type o f outcome function 

OutcomeWj such that O utcom e^ : Dun ■—» p(A (B ) ). Let D f be a well formed warrant inquiry dia­

logue.

O utcom e^ (.£>*) =  <

{RootArg(D£)} zyStatus(Root(DialogueTree(D£)), DialogueTree(Z)£)) 

=  U, else

0 z/Status(Root(DialogueTree(Dj.)), DialogueTree(P^))

=  D o r RootArg(P^) =  null.

Example 4.4.2 Considering the dialogue in Example 4.4.1, the outcome o f the top-level warrant inquiry 

dialogue D \ 4 is {({(a, 2 ), (a —» 6 , 1 )}, 6)}.

O utcom e^(D \a) = {({ (a,2 ), (a -» 6 , 1 )}, b)}
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The outcome o f the embedded argument inquiry dialogue D f is {({(a, 2). (a —» b ,1)}. b)}.

Outcomeai(D f) =  {({(a, 2 ), (a -> b, 1)}, b)}

The outcome o f the embedded argument inquiry dialogue Dg2 is {({(d, 1), (d —> ->c, 1)}, —>c) }.

I have now defined the specific details of the argument inquiry and warrant inquiry dialogue, how­

ever this is not yet sufficient for generating inquiry dialogues, as there is no mechanism for selecting 

exactly one of the legal moves returned by a protocol. 1 address this in the next section by providing a 

specific agent strategy for use in a dialogue.

4.5 The exhaustive strategy
I now define a strategy for use by agents participating in a well-formed, top-level dialogue. This is 

a function that returns exactly one of the legal moves at a particular point in a dialogue. It is this 

function that sets my system apart from many of the comparable existing systems, as it allows the actual 

generation of dialogues. Most systems only go so far as to provide something equivalent to my protocol 

function (e.g. [48, 56]). Such systems are intended for modelling legal dialogues, whilst my system 

allows automatic generation of dialogues, by providing specific strategy functions that allow agents to 

intelligently select one specific, legal move to make. A strategy function takes the top-level dialogue 

that two agents are participating in, and the identifier of the agent whose turn it is to move, and returns 

exactly one move to be made.

Definition 4.5.1 A strategy, Qq, is a function such that 9 6  {wi, ai} and $1# : V top x T  M .

I will now define a specific strategy called the exhaustive strategy. A  strategy is personal to an 

agent, as the move that it returns depends on the agent’s private beliefs. The exhaustive strategy states 

that if there are any legal moves that assert an argument which can be constructed by the agent, then the 

most preferred of these moves is selected, else if there are any legal open moves with a defeasible rule 

as their content that is in the agent’s beliefs, then the most preferred of these moves is selected. If there 

are no such moves then a close move is made.

In order to select the most preferred of the legal assert or open moves, I assign a unique number to 

the move content and carry out a comparison of these numbers. Let us assume that B* is composed of a 

finite number Z  of atoms. Let us also assume that there is a registration function p  over these atoms: so, 

for a literal a, p(a) returns a unique single digit number base Z  (this number is only like an id number 

and can be arbitrarily assigned). For a rule c*i A . . .  A a n —> a n+ i, p{at\ A . . .  A a n —> a n+i) is an 

n + 1 digit number of the form p (a i ) . . .  p (a n)p (a n+i). This gives a unique base Z  number for each 

formula in B* and allows an agent to choose the most preferred open move using the natural ordering 

relation < over base Z  numbers.

Definition 4.5.2 Let !E =  {{P, open. dialogue{9\, (j>i) ) , . . . ,  (P. open, dialogue(6 k, fk ) ) }  be a set o f 

open moves made by agent P. The function PrefQ returns the preferred open move to make. Pref0 (H) =  

(P, open, dialogue(9i, (pi)), 1 < i < k, such that fo r all j ,  1 <  j  < k, i f i  /  j ,  then p((pi ) < M j ) -
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If the set E taken by the function PrefQ is not the empty set then PrefQ always returns a unique open

move. I now give an example to illustrate the function PrefQ.

Example 4.5.1 Let us assume that we have a set o f possible open moves E as follows.

E =  {(P, open, dialogue{ai, b A a —> c)), (P, open, dialogue(ai, c —* a)).

(P, open, dialogue(ai, a A 6 —» c))}

Le/ M5 a /5 0  assume that the registration function p arbitrarily assigns a single digit number base Z  as 

follows.

p(a) = 1, p(b) =  2, p(c) = 3

This gives us the following unique base 3 numbers fo r  the defeasible rules that appear in the above open 

moves.

p(b A a —> c) — 213, p(c  —» a) =  31, p(a  A b —> c) =  123

A5 p(c —> a) < p(a  A 6 —> c) <  /r(6 A a -^ c ) ,  we get Pref0(E) =  (P, open, dialogue(ai, c —> a)).

I similarly assign a number to each argument in A{B) using a registration function A together 

with p. For an argument ({(0i, L i ) , . . . ,  (0n; L n)}, 4>n+i), A « {(p i, L i ) , . . . ,  (<j>n , L n)}, <j>n+i)) = 

( d \ , . . .  dn ,d n+i) where d\ < . . .  < dn < dn + 1 and ( d \ , . . .  ,d n ,d n+1) is a permutation of 

(p{4>\),. . . ,  p((pn), p(<fin+1)), (where p  is the registration function for B). The function A returns a 

unique tuple of base Z  numbers for each argument. I use a standard lexicographical comparison, de­

noted -<iex, of these tuples of numbers to chose the most preferred move content (i.e. the maximum 

element in the lexicographical ordering).

Definition 4.5.3 Let E =  {(P. assert. ( $ 1 , </>i)),. . . ,  (P. assert, {$>£, 0a-))} be a set o f assert moves 

made by agent P. The function Prefa returns the preferred assert move to make. Prefa(E) =  

(P, assert, (<̂ i, f i) ) ,  1 <  i < k, such that for all j , 1 < j  < k, if i j , then A ((3>j,<^)) -<iex

If the set E taken by the function Prefa is not the empty set then Prefa always returns a unique assert 

move. Again, I give an example to illustrate this function.

Example 4.5.2 Let us assume that we have a set o f possible assert moves E as follows.

E =  {(P, assert, ({(b. 1), (a, 1), (b A a —>■ c, l)} ,c)). (P, assert, ({(c, 1). (c -» a, l)} ,a )) ,

(P, assert, ({(a, 1). (b, 1), (a A 6 —> c, l)} ,c))}

Let us also assume that the registration function p  arbitrarily assigns a single digit number base Z  as 

follows.

p{a) = 1 , p(b) = 2, p(c) =  3

This gives us the following unique tuples o f base 3 numbers fo r the arguments that appear in the above 

assert moves.

A(({(f>. 1), (a, 1), (b A a c, 1)}, c)) =  (1, 2, 213)
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M ( { ( c , l ) , ( c - » M ) } :a)) =  (3,31)

A (({(a, 1), (6 ,1), (a A 6 -> c, 1)}, c»  =  (1,2.123)

As A(({(a, 1), (6 .1), (a A 6 —> c ,l)} ,c ))  A(({(6 , 1), (a, 1). (6  A a -> c, l)} ,c )) ^ ea:

A(({(c, 1), (c -»■ a, 1)}, a)), w  ger Prefa(~) =  (P, asse rt, ({(a, 1), (6 ,1), (a A 6 -» c, 1)}, c)).

I now define the exhaustive strategy. This defines a set of legal assert moves and a set of legal open 

moves. If the set of legal assert moves is not empty, then the most preferred of these moves is made, else 

if the set of legal open moves is not empty, then the most preferred of these is made, else a close move is 

made.

Definition 4.5.4 The exhaustive strategy is a function £lexh : V top x l n  M , where cTopic(D^) =  7 , 

cType(Pi) =  6  and

Prefa(Assertsexh(D \.P ))  iff Assertsexh(D \, P) f  0

Prefo(0pensexft(D j, P )) iff Assertsexh(D \, P) =  0 and Opensexh{D \.P )  0

(P, close, dialogue(8 , 7 )) iff Assertsexh{D\, P) = 0 and Opensexh(D \,P )  =  0

n exh{ D\ , P)  =  <

where

Asserts.lh (£> |,P ) =  {(P ,a ssert, (4>: <p)) £ IIf s M (D \,P )  | € A ( Z P U C 5 |,)}

Openseif.(-D '-P) =  {{P,open,dialogue(ai, ip)) e IIT e" (D \,P )  | (ib.L) e  S p }

This strategy is called the exhaustive strategy as it ensures that all moves which might have a 

bearing on the outcome of the dialogue will get made. This is because an agent will not make a close 

move unless it cannot make any more assert or open moves and both agents must make a close move in 

order to terminate the dialogue.

Note the restrictions on the sets of legal moves from which an agent can pick a next move. As I 

am considering a cooperative domain, an agent will only assert an argument that it can construct from 

the union of its beliefs and the other agent’s commitment store (and so will not make arguments up or 

deliberately deceive). Agents are restricted to only opening a new argument inquiry dialogue with topic 

d> if they have a belief (4>,L). This prevents an agent from opening a nested sub-dialogue unless it at 

least knows of a rule that might help construct the desired argument.

I now define a well-formed exhaustive dialogue. This is a well-formed dialogue that is generated 

by two agents who both follow the exhaustive strategy at all times.

Definition 4.5.5 A well-formed exhaustive dialogue is a well-formed dialogue D lr with participants 

x \ and X2 such that

fo r all s such that r < s < t and D lr extends D f

i f  D\ is a top-dialogue o f D\. and Df is a top-dialogue o f D sv 

and D\ extends D{ and Receiver(ms) =  P  (where P  e {xi, X2 }) 

and cType(Z)*) =  6 ,

then n exh(D\, P)  =  m s + 1
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In the next section I give an algorithm to demonstrate how an agent uses the exhaustive strategy to 

generate a well-formed exhaustive dialogue.

4.6 Dialogue behaviour
In order to demonstrate how the agents actually behave during a dialogue, I will give an algorithm that 

simulates a top level dialogue, shown in Figure 4.2. The algorithm simulates two agents, P  (who makes 

the first move opening the dialogue) and P , that enter into a top-level dialogue of type 9 with topic (ft, 

and who are both using the exhaustive strategy.

It is important to note that I assume some higher-level planning component, beyond the scope of this 

work, that has led to P ’s decision to enter into a top level dialogue of type 6  with topic (ft, i.e. an agent P  

has some mechanism which determines when it should make the move m \ =  (P, open, dialogue{6 , (ft)) 

to agent P . The agents then take it in turns to apply the exhaustive strategy, that in turn calls the relevant 

protocol for the current dialogue, in order to select the next move to make. If an assert move is made 

then the relevant commitment store is updated.

In the following section I give examples of well-formed exhaustive dialogues generated in this way.

4.7 Dialogue examples
In this section I give examples of well-formed exhaustive dialogues that take place between two agents, 

xi and X2 - Throughout all the examples in this section, I will assume that g(a) = 1, p(-^a) = 2, 

p.(b) =  3, n(-<b) — 4, p(c) =  5, p{~'c) =  6 , g(d) =  7 etc.

I represent a top-level dialogue as a table, the first column of which gives the value of t, the second 

column gives the commitment store of agent x i, the third column gives the move m t, the fourth column 

gives agent X2 ’s commitment store, and the fifth column gives the details of any question stores that are 

not equal to the empty set.

4.7.1 Argument inquiry dialogue example 1

In the following example we have an agent xi who wishes to enter into a dialogue with agent X2 in order 

to try to find an argument for d. We have

= { ( b A c ^ d , l ) }  £*’ =  { (c ,l ) ,(M )}

Agent x \  is aware of a defeasible rule whose consequent is d, and so opens an argument inquiry 

dialogue with this defeasible rule as its topic. The dialogue proceeds as in Table 4.2.

Note that at t =  3 agent x \ makes a move to close the dialogue, as it cannot assert any arguments 

for an element in the commitment store, nor can it open any new argument inquiry dialogues. However, 

this does not close the dialogue, as each agent must make a close move in succession in order to close 

the dialogue.

As the agents successfully find an argument for d, the outcome of the dialogue is this argument.
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topDialogue(P, P , 9, 4>) : 

t = 1 ;

C S ‘P =  {}

C 5L  =  {}

m t =  (P ,open,dialogue(6 ,(j)))

D\ = [mt]

while D\ is not terminated

t — t -)-1

m t =  P)

Dj -  D 1- 1 +  m t

CS*P = C S lf l

if m t =  (P, assert, (\&, V7)}

then C 5P  =  C S i - 1  U $  

else C SP =  CS1- 1 

if D\ is not terminated then 

t = t 1

m t =  0 ex/l ( P 5_ 1) ,P )

Di =  d ; - 1 +  m f

CSL =  C S i r 1

if mt =  (P , assert, (^ , ?/’))

then =  CS^T1 u #  

else C 5p  =  C S lp l

return D\

Figure 4.2: An algorithm that simulates the behaviour of a top-level dialogue. This algorithm takes 

as input the identifier of the agent who opens the dialogue (P  e X), the identifier of the other agent 

participating in the dialogue (P  e X), the type of the dialogue (9 e {w i.a i}), and the topic of the 

dialogue (</> e B*, i.e. 0 is either a defeasible rule if 9 = ai, or a defeasible fact if 9 — wi). It returns a 

well-formed top-level exhaustive dialogue.
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t cs*Xl m t c s i 2 Q St

1 (x2 , open, dialogue(ai, b A c —>d)) Q Si = {b ,c,d}

2 (xx, assert, ({(b, l)},b)) (b, 1 )

3 (x 2 , close, dialogue(ai, b A c —>d))

4 (xi, assert, ({(c, 1 )} ,6 )) (c, 1 )

5 ( M ) , ( c , l )  

(6  A c —> rf, 1)

(x2, assert, ({(6 ,1), (c. 1), (b A c —* d, 1 )},d))

6 ( x \ , close, dialogue(ai, b A c —>d))

7 (x 2 , close, dialogue(ai, b A c —>d))

Table 4.2: Argument inquiry dialogue example 1.

t c s i , m t c s l 2 Q St

1 (x2 , open. dialogue(ai, b A c - + d)> QS\ =  {&. c. d}

2 (x \, assert, ({(c, 1 )} ,c}) (c: l)

3 (x2 , close, dialogue(ai, b A c  - ->d))

4 ( x \ , close, dialogue{ai, b A c  -- d ) )

Table 4.3: Argument inquiry dialogue example 2.

OutcomeQi(Z){) =  {({(6 .1), (c, 1), (6  A c —> d, 1 )}.d )}

Note that the commitment stores build up monotonically, so, for example, CS]. =  0, C S ^ 2 —

{(&> 1)} and C S *2 = {(b, 1), (c, 1 )}.

4.7.2 Argument inquiry dialogue example 2

In the following example we have an agent x \  who wishes to enter into a dialogue with agent X2 in order 

to try to find an argument for d. We have

E * 1 = { ( & A c - d , l ) }  E * 2 =  {(c ,l)}

Agent x \ is aware of a defeasible rule whose consequent is d, and so opens an argument inquiry 

dialogue with this defeasible rule as its topic. The dialogue proceeds as in Table 4.3.

As the agents do not find an argument for d, the outcome of the dialogue is the empty set.

Outcomeai(Z)i) =  0

4.7.3 Argument inquiry dialogue example 3

In the following example we have an agent x \  who wishes to enter into a dialogue with agent x^ in order 

to try to find an argument for d. We have
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t cs*Xi rnt c s i QSt
1 (x2, open, dialogue(ai, b A c — d)) QSi — {b.c,d}
2 (xi, assert, ({(c, l)} ,c )) (c, 1 )

3 (M ) (x2, assert, ({(&, l)} ,b))

4 (x i, close, dialogue(ai, b A c —>d)>

5 M )

(b A c —> d, 1)

(x2, assert, ({(b, 1), (c, 1), (b A c-> d. l)},d))

6 (x\, close, dialogue(ai, b Ac —>d))
7 (x2, close, dialogue(ai, b Ac —>d))

Table 4.4: Argument inquiry dialogue example 3.

= { (& A c - .d ,l ) , ( f c , l ) }  £ «  =  {(c,l)}

Agent x\ is aware of a defeasible rule whose consequent is d and so opens an argument inquiry 

dialogue with this defeasible rule as its topic. The dialogue proceeds as in Table 4.4.

As the agents successfully find an argument for d, the outcome of the dialogue is this argument.

Outcome^ (£>[) =  {({(6.1), (c, 1), (6 A c -> d,l)}.d)}

4.7.4 Argument inquiry dialogue example 4

In the following example we have an agent x\ who wishes to enter into a dialogue with agent X2 in order 

to try to find an argument for c. We have

£ Xl = { ( b ^ c „  1), (a, 1)} £ 12 =  {(a -> b, 1)}

Agent xi is aware of a defeasible rule whose consequent is c and so opens an argument inquiry 

dialogue with this defeasible rule as its topic. The dialogue proceeds as in Table 4.5.

As the agents successfully find an argument for c, the outcome of the dialogue is this argument.

Outcome^ (£>?) =  {{{(a, 1), (a -» b , 1), (b c, 1)}, c)}

There is also an nested argument inquiry sub-dialogue, D f, that terminates at 6  and whose topic is 

a —> b. As the agents successfully find an argument for b, the outcome of the dialogue is this argument.

Outcome^(D®) =  {({(a, 1), (a b, 1)}, b)}

4.7.5 Argument inquiry dialogue example 5

In the following example we have an agent x \  who wishes to enter into a dialogue with agent X2 in order 

to try to find an argument for e. We have



4.7. Dialogue examples 77

t cs*Xl rnt c s *X2 QSt
1 (x2, open, dialogue(ai, 6 --> c)) QSi =  {6, c}

2 (.x\, open, dialogue(ai, a -& )> QS2 = {a, 6}

3 (a, 1) (x2-assert, ({(a. 1)},a))

4 (x\, assert, ({(a, 1), (a —* 6,1)}, 6) (a,I),

(a 6.1)

5 (x2-close, dialogue(ai, a ->6))

6 (x i. close, dialogue(ai, a - 6 ) )

7 (a -> 6,1) (x2, assert, ({(a, 1). (a —>& ,l) , (6->  c , l ) } , c ) )

(6 c, 1)

8 (x i, close, dialogue(ai, b - c)>
9 (x2, close, dialogue(ai, b - c)>

Table 4.5: Argument inquiry dialogue example 4.

£ X1 =  { ( 6  A d -> e. 1), (c — d. 1)} £ X2 =  {(a — 6 , 1), (a, 1)}

Agent xi is aware of a defeasible rule whose consequent is e and so opens an argument inquiry 

dialogue with this defeasible rule as its topic. The dialogue proceeds as in Table 4.6.

As the agents do not successfully find an argument for e, the outcome of the top-level dialogue is 

the empty set.

Outcomeaj(Z>J°) =  0

Note that there are two nested argument inquiry dialogues that appear within the top level dialogue 

D j0: that terminates at 5 and whose topic is c —> d, and D q that terminates at 8  and whose topic is

a —> b. As the agents do not successfully find an argument for d, the outcome of is also the empty 

set.

Outcome^ (D f) =  0

As there is an argument for b in the union of the commitment stores, the outcome of D q is the set 

containing this argument.

Outcome^ (£>|) =  {({(a, 1 ), (a -> b, 1 )}, 6)}



4.7. Dialogue examples 78

t CS*Xl Q St

1 (x 2 , open, dialogue(ai, b A d —> e)) Q Si =  {6 , d, e}

2 (x i, assert, ({(a; 1 ), (a —> b, 1 )}, b)) (a, 1 )

(a b ,l)

3 (x2 , open, dialogue(ai. c —> d)) Q S3 =  {c,d}

4 (x i , close, dialogue(ai, c —» d))

5 (x‘2 , close, dialogue(ai, c —> d))

6 (x i, open, dialogue(ai. a —> b)} £?S6 =  {ar6 }

7 (x2 , close, dialogue(ai, a —» b))

8 { x \ , close, dialogue(ai, a —> b))

9 (x2 , close, dialogue{ai. b A d —> e))

1 0 (x i, close, dialogue(ai. b A d —> e))

Table 4.6: Argument inquiry dialogue example 5.

4.7.6 Argument inquiry dialogue example 6

In the following example we have an agent xi who wishes to enter into a dialogue with agent X2 in order 

to try to find an argument for c. We have

E * 1 =  {(d, 1), (b -» c, 1)} E 12 =  {(e, 1), (d A e -  b ,1), (a -  b, 1)}

Agent x \ is aware of a defeasible rule whose consequent is c and so opens an argument inquiry 

dialogue with this defeasible rule as its topic. The dialogue proceeds as in Table 4.7.

As the agents successfully find an argument for c, the outcome of the top-level dialogue, D \3, is 

this argument.

Outcome^(£>}3) =  {({(d, 1), (e, 1), (d A e -> b, 1), (b -»• c, 1)} ; c)}

Note that there are two nested argument inquiry dialogues that appears within the top-level dialogue: 

Z>2° that terminates at 10 whose topic is a —> b; and D \ that terminates at 8  and whose topic is d A e —» b.

Outcomeoi(£>£0) =  {({(d, 1), (e, 1), (d A e -» b ,1)}, 6)}

O utcom e^(£>f) =  {<{(d, 1), (e, 1). (d A e —> b, 1)}, 6)}
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t CSJ, m t c s i j Q St

1 (x2 , open, dialogue(ai, b —> c)) Q S x = {b,c}

2 (x \, open, dialogue(ai. a —> 6)) Q S 2 = {a, 6}

3 (i'2 , close, dialogve(ai, a —> 6 )}

4 (x i, open, dialogue(ai, d A e  b)) QS4 =  {d, e, 6}

5 (d, 1) (x2, a ssert, ({(d, 1)}, d)}

6 (x \, assert, ({(d, 1 ), (e, 1 ), (d, 1 ), (e, 1 )

(d A e —> 6 ,1)}, 6)) (d A e —> 6 .1)

7 (x2, close, dialogue(ai, d A e —> 6))

8 (xi, close, dialogue(ai, d A e  -> 6))

9 (z 2 ,close,dialogue(ai,a  —> 6))

10 (xi ,close,dialogue(ai,a  —> 6))

11 (e ,l) (x2, assert, ({(d, 1). (e. 1),

(d A e —> 6 ,1) (d A e —» 6 ,1), (6 —»• c, 1)}, c)

(6 -> c, 1)

12 (x i, close, dialogue(ai. b —* c))

13 (j‘2, close, dialogue(ai, b —> r))

Table 4.7: Argument inquiry dialogue example 6.
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4.7.7 Argument inquiry dialogue example 7

In the following example we have an agent x\ who wishes to enter into a dialogue with agent X2 in order 

to try to find an argument for d. We have

£ Xl =  {(c -> d, 1 ), (6  -  c, 1 ), (a -> 6 , 1 )} E * 2 =  {(a, 1 ), (6 , 1 )}

Agent x\ is aware of a defeasible rule whose consequent is d and so opens an argument inquiry 

dialogue with this defeasible rule as its topic. The dialogue proceeds as in Table 4.8.

As there are two arguments for d that can be constructed at the end of the top-level dialogue D \7, 

the outcome of this dialogue is the set of these two arguments.

Outcomeai(L>{7) =  {{{(a,l), (a -> 6 , 1 ). (6  -* c. 1 ), (c -»■ d, 1 )},d),

({(6 , 1 ), (6  -» c. 1 ), (c -» d, 1 )}, d)}

There are two sub-dialogues of D \7: D \ 3 that terminates at 13 and has topic 6 —> c; and D \l that 

terminates at 11 and has topic a —» 6 . D \l is also a sub-dialogue of of

Outcomeai{Dl3) = {({(a, 1). (a -> 6 ,1), {b -* c, l)},c>, ({(6,1), (6  -> c. l)} ,c)}  

Outcom ea^Dj1) =  {({(a, 1 ). (a -► 6 , 1 )}. 6), ({(6 , 1 )}, 6)}

4.7.8 Argument inquiry dialogue example 8

In the following example we have an agent x \  who wishes to enter into a dialogue with agent X2 in order 

to try to find an argument for 6 . We have

E Xl =  {(a — 6 . 1 )} £ X2 =  { ( 6  — a)}

This is an interesting example to consider as one might worry that this would lead to an infinite 

dialogue, however, as agents may not repeat moves that have already been made, this is not the case.

Agent xi is aware of a defeasible rule whose consequent is 6 and so opens an argument inquiry 

dialogue with this defeasible rule as its topic. The dialogue proceeds as in Table 4.9.

As there are no arguments for 6 that can be constructed from the union of the commitment stores at 

the end of the top-level dialogue D f, the outcome of this dialogue is the emptyset. The outcome of the 

embedded dialogue D% is also the emptyset as no arguments for a can be constructed.

Outcomea,(D j) =  Outcome^ (.D^) =  0

4.7.9 Warrant inquiry dialogue example 1

In the following example we have an agent x\ who wishes to enter into a dialogue with agent X2 in order 

to try to find a warrant for an argument for 6 . We have
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t cs*xi m t Q St

1 (x 2 , open, dialogue(ai, c - -d)> QSt = {c, d}

2 (xi, close, dialogue(ai, c -- d ) )

3 (x2 ; open, dialogue(ai, 6 - c)> Q S3 = {b,c}

4 (x i . assert. ({(6 , 1 )}, 6 )) (6 , 1 )

5 (M ) {j’2 - assert. ({(6 , 1 ), (6  —>C, l ) } ,c ) )

(6  -» c, 1 )

6 (x i. close, dialogue(ai, b -> c))

7 (x2 , open. dialogue(ai, a - 6 )) Q S7 — {a, 6 }

8 (x \, assert, ({(a, 1 )}, a)) (a, 1)

9 (a ,l) (x2 , assert, ({(a, 1), (a —► M )},6»

( c i - M )

10 (xi, close, dialogue(ai, a ->&))

11 (x2 , close, dialogue(ai, a ~*b))

12 (x i. close, dialogue(ai, b -► c))

13 (x2 -close, dialogue(ai, b -» c))

14 ( x \ , close, dialogue(ai, c -- d ) )

15 (c —»■ d, 1) (x2 , assert, ({(a, 1). (a —» 6 . 1 ),

(6  -» c, l ) , ( e - -d ,l)} .r f ) )

16 (X2 , close, dialogue(ai, c --d )>

17 (x i, close, dialogue(ai, c -- d ) )

Table 4.8: Argument inquiry dialogue example 7.
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t cs*xi m t c s i , Q St

1 ( i 2 , open, dialogue(ai, a - f t ) ) Q S\ =  {a, b}

2 {x\ , open, dialogue(ai, b — a)) QS={b,a}

3 (z2 , close, dialogue(ai, b — a))

4 (x \ , close, dialogue(ai, b — a))

5 (x-2 , close, dialogue{ai, a - f t ) )

6 (x i , close, dialogue(ai, a - f t ) )

Table 4.9: Argument inquiry dialogue example 8 .

({(a. 2), (a —► 6 , 2)}, b) D

U < { ( c , l ) , ( c - . - 0 ,l)},-,a> {{{d,2) , (d -  -.fr, 1)}, -.*>> D

({(-.d, l)} ,-d>  I!

Figure 4.3: The marked dialogue tree for warrant inquiry dialogue example 1.

E 11 =  {(c. 1 ), (c - a ,  1 ), (-rf, 1 )}

E «  = {(o, 2). (a -  6 , 2 ), (d, 2), (d -  - 6 , 1 ), (^c, 2 )}

Agent x \ opens a warrant inquiry dialogue with b as its topic. The dialogue proceeds as in Ta­

ble 4.10.

The outcome of the top-level warrant inquiry dialogue D ] 6 depends on the dialogue tree 

DialogueTree(£)J6). The corresponding marked dialogue tree is shown in Figure 4.3.

As the root argument of the dialogue tree is defeated, the outcome of the dialogue is the empty set.

Outcom e^ (Z)J6) =  0

Note that agent X2 cannot assert the argument ({(->c, 2)}, ->c) at t = 4, even though it conflicts with 

the argument ({(c, 1). (c ->a, 1)}. ->a). This is because doing so would not alter the dialogue tree, as 

({(—>c, 2)}. -»c) only has a preference level of 2 and so is not a defeater for ({(c, 1 ), (c —> ->a, 1 )}, ->a).
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t m t

1 (x2 , open, dialogue(wi, 6))

2 (x \,a sser t, {{(a, 2 ), (a —> 6 ,2 )}, b)) (a, 2 )

(a -> 6.2)

3 (c ,l) (x2 , assert, ({(c, 1 ), (c —» ->a, 1 )}. ->a))

(c —> -la. 1 )

4 (x i, assert, ({(d , 2 ), (d —> ->6, 1)}, ->b)) (d ,2 )

(d -  ->6,1)

5 M ,  l) (x2 , assert, ({(->d, 1 )}, -id))

6 (x i, open, dialogue(ai, a —> b)) QS6 =  {a, &}

7 (x‘2, close, dialogue(ai, a —► 6)}

8 (x \, close, dialogue(ai, a —> 6))

9 (x2, open, dialogue(ai,c —> ~>a)) QSg =  {c, ~>a}

1 0 (x i , close, dialogue(ai, c —> ~>a))

11 (x2- close, dialogne(ai, c —> —>a))

1 2 (x \, open, diulogue(ai, d —> ->b)) Q5i2 =  {a, 6}

13 (X2, close, dialogue{ai, d —> ->6))

14 (x i , close, dialogue(ai, d ->b))

15 (x2, close, dialogue(wi, 6))

16 (xi, close, dialogue(wi, b))

Table 4.10: Warrant inquiry dialogue example 1.
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V  {{(«, 2), {a —* b, 1)}, b)

D ({(c. 1), (c -> ^a , l)} ,^ a )

U < { b c ,l)} .-c>

Figure 4.4: The marked dialogue tree for warrant inquiry dialogue example 2.

Also note that there are three nested argument inquiry dialogues that appear in D \ 6 (Dq, Dq1 and 

D]^) none of which bring any new information to either agent.

Outcome,,, (£>g) =  0

Outcome,,, (.Dg1) =  0

Outcome,, j (£>12) =  0

4.7.10 Warrant inquiry dialogue example 2

In the following example we have an agent x \  who wishes to enter into a dialogue with agent x 2 in order 

to try to find a warrant for an argument for 6 . We have

£ x> =  {(a, 2 ), (-c . 1 )} =  {(a -> b, 1 ), (c -  --a, 1 ), (c, 1 )}

Agent x \ opens a warrant inquiry dialogue with b as its topic. The dialogue proceeds as in Ta­

ble 4.11.

The outcome of the top-level warrant inquiry dialogue £ ) } 4 depends on the dialogue tree 

DialogueTree(Z?{4). The corresponding marked dialogue tree is shown in Figure 4.4.

As the root node of the dialogue tree is marked as undefeated, the outcome of the dialogue D \l is 

the argument at the root of the tree.

Outcomewi(£)}4) =  {{{(a, 2 ), (a -> b, 1 )}, b)}

There are two nested argument inquiry dialogues that are sub-dialogues of D \A: and D \q.

Outcome^(Z)®) =  {({(«,2), («■ -»■ b, !)},&)}

Outcome™ (.D®) =  0
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t cs*Xl m t c s i , Q St

1 (x 2 ,open, dialogue(wi, b)}

2 (x i, open, dialogue(ai, a —► 6)) Q S2 =  {a, 6}

3 (a, 2) (x2 , assert, ({(a, 2)}, a))

4 (xi, assert, ({(a, 2), (a —> 6,1)}, 6)) (a, 2)

(a —* b, 1)

5 (x2 , close, dialogue(ai, a —» 6))

6 (x \, close, dialogue(ai, a —> b))

7 (X2 , close, dialogue(wi, 6))

8 ( x i ,assert, ({(c. 1), (c -»■ ->a. 1)}, ^a)) M )

(c -* -.a, 1 )

9 h e ,  l) (x2, assert, ({(^c, l)}-*c))

1 0 (x i , open, dialogue(ai, c —> ->a)) QSio =  {c, ->a}

11 (x2 , close, dialogue(ai, c —*■ ->a))

1 2 (x j , close, dialogue(ai, c —> _,a))

13 (x i, close, dialogue(wi, b))

14 (x2, close, dialogue(wi, b))

Table 4.11: Warrant inquiry dialogue example 2.
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<{(or3 ) ,(o - .6 ,2 )} ,6 >  D

86

U <{(dr2 ) , ( d - . c , l M c - . - A l ) } , - 6 )  ( { ( d ,2 ) ,(d - .-o ,3 )} ,-o >  U

Figure 4.5: The marked dialogue tree for warrant inquiry dialogue example 3.

4.7.11 Warrant inquiry dialogue example 3

In the following example we have an agent x i  who wishes to enter into a dialogue with agent x^  in order

to try to find a warrant for an argument for b. We have

£*■ = { (a ,3 ) ,(d ,2 )}

EX2 =  {(a —» b, 2), (d —> c. 1), (c —> -■&. 1), (d —> ->a, 3)}

Agent x \ opens a warrant inquiry dialogue with b as its topic. The dialogue proceeds as in Ta­

ble 4.12.

The outcome of the top-level warrant inquiry dialogue D 22 depends on the dialogue tree 

D i a l o g u e T r e e ( D P ) .  The corresponding marked dialogue tree is shown in Figure 4 .5.

As the root node of the dialogue tree is marked as defeated, the outcome of the dialogue D 26 is the 

empty set.

Outcomeu.j(Z)i6) =  0

There are four nested argument inquiry dialogues that are sub-dialogues of D j6: D 8, Dg8, £>}q and 

£>2 2 • D\* is also a sub-dialogue of D \8.

O utcom e^(D f) =  {({(a, 3), (a -> 6. 2)}, 6)}

Outcome^(£)g8) =  {({(d, 2 ), (d c, 1), (c -» 1)}, b)}

Outcomeai(D{J) =  { ({ (d ,2 ) ,(d  -> c; l)} ,c)}

Outcomeai(£)2 2) =  0
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t cs*xi m t c s l , Q St

1 (x 2 , open, dialogue(wi, b))

2 (x \.open ,d ia logue(a i,a  —» 6 )) Q S 2 = {a,b}

3 (a, 3) (x2 .assert, ({ (a ,3 )} .a))

4 (x \. assert, {{(a, 3), (a —> 6 , 2)}, b)) (a, 3)

(a - b ,  2 )

5 (x 2 -close.dialogue(ai,a  —> 6 ))

6 (x i . close. dialogue(ai, a —> 6 ))

7 (x2 , close, dialogue(wi. b)}

8 (.X \. open, dialogue(ai, c —> - 16)) Q S 8 = {c, ^ 6 }

9 (x2 - close. dialogue(ai, c —> - 16))

1 0 (x i , open. dialogue(ai, d —> c)) Q S 10 =  {d,c}

11 (d, 2 ) (x2 , assert, ({(d, 2 )}. d))

1 2 {x\, assert, ({{d, 2 ), (d —> c, 1 )}, c)) (</.2 ) , ( d - * c , l )

13 (x2 , close, dialogue(ai,d —> c))

14 (x \, close, dialogue(ai, d —► c))

15 (x 2 -close. dialogue(ai, c —> ->&))

16 (x j . assert, ({(d, 2 ), (d —> <?, 1 ). (c —> -<fr, 1 )}, -»&))

17 (x2 r close. dialogue(ai, c —> - 16))

18 (x i . close. dialoguc(ai, e —> -<b))

19 (x2 , close, dialogue(wi, b))

2 0 (x i, assert, ({(d, 2), (d - 4  -.a. 3)}, ->a)) (d —► ->a, 3)

2 1 (x2 , close, dialogue(wi. b))

2 2 (x i . open, dialogue(ai, d —» ->a)) Q S 22 = {d, ->a}

23 (x2 , close, dialogue(ai, d —» ->a))

24 (x i . close. dialogue(ai, d —> ->a))

25 (x2 , close, dialogue(wi. b))

26 (x i , close, dialogue(wi. b))

Table 4.12: Warrant inquiry dialogue example 3.
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t c s l 2 QSt

1 {x2 : open, dialogue(wi, b))

2 ( x \ . close, dialogue(wi, b))

3 {x2 -assert, ({(a. 2 ), (a —> 6 , 1 )}, b)) (a, 2 )

(a -> b, 1 )

4 ( x i , open, dialogue(ai, c —> ~,a)) Q S4 = {c, - 10}

5 (x2, assert, ({(c, l)} ,c)) (c, 1 )

6 (xi, assert, ({(c, 1 ), (c —>• ~̂ a, 1 )}. ->a)) (c —» ->a. 1 )

7 (x2 , close, dialogue(ai, c —> _,a))

8 (x \, close, dialogue(ai, c —» ~^a))

9 ( -* ,! ) (x2 , a ssert. ({(—>c, 1 )}, ->c))

1 0 (xi. open, dialogue(wi, b))

11 (x2 - close, dialogue{wi, b))

Table 4.13: Warrant inquiry dialogue example 4.

4.7.12 Warrant inquiry dialogue example 4

In the following example we have an agent x \ who wishes to enter into a dialogue with agent X2 in order 

to try to find a warrant for an argument for b. We have

£*• = { ( a , 2 ) , ( o - . 6 , l ) . ( c , l ) , ( - c , l ) }  =  { (c - * - a ,  1 )}

Agent x \  opens a warrant inquiry dialogue with b as its topic. The dialogue proceeds as in Ta­

ble 4.13.

The outcome of the top-level warrant inquiry dialogue D \l depends on the dialogue tree 

DialogueTree(Z)J1). The corresponding marked dialogue tree is shown in Figure 4.6.

As the root argument of the dialogue tree is undefeated, the outcome of the dialogue is the argument 

at the root of the tree.

O utcom e^ (D \l ) = {{{(a, 2 ), (a -> b, 1)}, b)}

Note that there is a nested argument inquiry dialogue that appears as a sub-dialogue of D \l : D \.

Outcom e^{D \) =  {({(c: 1), (c -> - a ,  1 )}, -.a)}

Also observe that the constraints on acceptable argumentation lines (Definition 3.5.5) means that 

the argument ({(c, l)} ,c) is not added as a leaf of the dialogue tree. In fact, doing so would violate 

two constraints: that no argument Ak in an argumentation line is a sub-argument of an argument A 3
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U ({(a, 2 ), (a — 6 , l)>,b>

D ({(c. 1), (c -* -■a, l )} ,^ a )

U <{(-C, l ) } ,- c )

Figure 4.6: The marked dialogue tree for warrant inquiry dialogue example 4. 

D {{(a,4), (a —> 6 .4 )} ,6 )

U ({ (-.d ,l)} ,^J>  ( { ( e ,2 ) , ( e - > - d 2 ) } . - d )  D

{ { ( ^ , 1) } . ^ )  U

Figure 4.7: The marked dialogue tree for warrant inquiry dialogue example 5.

appearing earlier in the argumentation line (j  < k ); and that for all i, such that the argument A t is a 

blocking defeater for A i- \ ,  if exists then Ai+\ is a proper defeater for A t .

4.7.13 Warrant inquiry dialogue example 5

In the following example we have an agent x i  who wishes to enter into a dialogue with agent x2 in order 

to try to find a warrant for an argument for b. We have

S * 1 =  {(a, 4), (a -» b, 4). (c, 3), (c -  3), (e, 2)}

£ 12 -  {(d,3),(d-> -.a,3):(-id,l),(e -» 2), ( - e ; 1)}

Agent xi opens a warrant inquiry dialogue with b as its topic. The dialogue proceeds as in Ta­

ble 4.14.

The outcome of the top-level warrant inquiry dialogue D f3 depends on the dialogue tree 

DialogueTree(Z)^3). The corresponding marked dialogue tree is shown in Figure 4.7.

As the root argument of the dialogue tree is defeated, the outcome of the dialogue is the empty set.
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t cs*Xl m t C S ‘I2 QSt

1 (x2, open. dialogue(wi, b))

2 (x i, close, dialogue(wi, 6))

3 (a, 4) (x2 , assert, ({(a, 4), (a —» 6 ,4)}, 6 ))

(a -> 6,4)

4 (x-i, assert, ({{d, 3), (d —> ->a, 3)}, ->a)) (d, 3)

(d —» ^o, 3)

5 M ) (x2 , assert, ({(c, 3), (c —» —>6 ,3)}, ->6 ))

(c -> ->6 ,3)

6 {xi, assert, <{(—«<i, 1 )}, -id)) M ,3 )

7 (x2 , open, dialogue(ai, a —» 6 )) Q S 7 =  {a. 6 }

8 (x i , close, dialogue(ai. a —> 6 ))

9 (x2 , close, dialogue(ai. a —> 6 ))

1 0 (x \,open ,d ia logue(a i,d  —> ->a)) QSio =  {d, —>a}

11 (x'2 , close, dialogue(ai, d —» -ia))

1 2 (x\,close, dialogue(ai,d  —» ->«))

13 (x2 , open, dialogue(ai, c —» ->6 )) Q-S'is =  {c, ->6 }

14 (x i , close, dialogue(ai. c —> ->6 ))

15 (x2 , close, dialogue(ai, c —> -<b))

16 {.x\,open,dia.loguc{ai,c  —+ -id)) Q5i6 =  {e, ->d}

17 (e ,2 ) (x2, assert, ({(e,2 )}.e))

18 (x i, assert, ({(e, 2 ), (e —> -id. 2 )}, -id)) (e ,2 )

( e - W , 2 )

19 (x2, close, dialogue(ai. e —» -id))

2 0 (x i , close, dialogue(ai. e —» -id))

2 1 (x2 , close, dialogue(wi, 6 ))

2 2 (xi, assert, ({(-ie, 1 )}, -ie)) H M )
2 2 (x2 , close, dialogue(wi, 6 ))

23 (x i , close, dialogue(wi, b))

Table 4.14: Warrant inquiry dialogue example 5.
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O utcom e^ ( D f 3 )  =  0

Note that there are four nested argument inquiry dialogue that appears as sub-dialogues of D f i : 

D l D \ l  DU and £>g.

O u t c o m e a i ( D f )  =  0  

O u t c o m e ^  (£ > 1q )  =  0 

O u t c o m e ^  ( D } | )  =  0 

O u t c o m e s (Dfs) =  {{{(e, 2 ), (e -»• ->d, 2 )}, -.<£)}

4.8 Summary
In this chapter I have formally defined my novel dialogue system. I have provided protocols for the 

argument inquiry dialogue and the warrant inquiry dialogue, and proposed a strategy to be used to gen­

erate such dialogues, which I call the exhaustive strategy. I have provided several examples of dialogues 

generated by this strategy. In the next chapter, I will give an analysis of my system and the dialogues 

that the exhaustive strategy produces.



Chapter 5

Analysis of dialogue system with exhaustive 

strategy

In this chapter I give results about the dialogue system that I have defined and, in particular, about dia­

logues produced by the exhaustive strategy (i.e. well-formed exhaustive dialogues). In the first section, 

I discuss results relating to the system in general that hold regardless of what strategy is being followed 

(i.e. hold for all well-formed dialogues), regarding the sets of arguments that can be formed during a 

dialogue. In the later sections, I consider the specific dialogue behaviour when the participating agents 

are following the exhaustive strategy. I give results about the commitment stores generated during a di­

alogue produced by two agents following the exhaustive strategy, results about the moves that get made 

in such a dialogue, and results about the dialogue trees produced by such dialogues. Finally, I define 

soundness and completeness properties, and show that all well-formed exhaustive dialogues produced 

by my system are sound and complete. Recall, if I refer to a well-formed exhaustive dialogue then the 

reader is to assume that I am referring to either a well-formed argument inquiry dialogue that has been 

generated by the exhaustive strategy or a well-formed warrant inquiry dialogue that has been generated 

by the exhaustive strategy (Definition 4.5.5).

The reader should note that some of the lemmas included in this chapter are very simple (i.e. follow 

directly from definitions) but they are included here as they are useful building blocks for the main results 

that come later in this chapter.

5.1 Results about arguments
This section gives results about relationships between sets of arguments produced by the argumentation 

system defined in Chapter 3.

The first lemma states that if we have a set T  that is a subset of a set of beliefs then the set of 

arguments that can be constructed from T is a subset of the set of arguments that can be constructed 

from

Lemma 5.1.1 Let T C S  and ^  C B be two sets. I f  T  C vp, then .4(T) C v4(^).

Proof: Let us assume that T  C ^  and (4>, 0 ) is an argument such that ( $ ,0 ) € -4(Y). From the 

definition o f an argument (Definition 3.2.1), we see that $  C T. As $  C T and Y C \P, and the
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subset relationship is transitive, we get <J> C 4'. Hence, we see (from the definition o f an argument, 

Definition 3.2.1) that (3>, <£} G Hence, i f T  C and A  G -4(T), then A  G .A(S&). Hence, if

T C $ ,  then ,4(T) C A ($ ) .  □

The next lemma states that if a set of beliefs is finite, then the set of defeasible facts that can be 

defeasibly derived from that set is also finite.

Lemma 5.1.2 I f  'h C B is a finite set, then the set returned by D e f D e r i v a t i o n s ( ^ )  is also finite.

Proof: From the definition o f D e f D e r i v a t i o n s  (Definition 3.1.9) and the definition o f defeasible derivation 

(Definition 3.1.8), we see that i f f  G D e f D e r i v a t i o n s ^ ) ,  then there either exists a state belief { f ,  L) G 

or there exists a domain belief (a  i A . . .  A a n —■► f .  L') G db As 'I' is a finite set, D e f  D e r i v a t i o n s ^ ) 

is also finite. □

The final lemma in this section states that the set of arguments that can be constructed from a finite 

set is also finite.

Lemma 5.13 //\& (2 B is a finite set, then the set yt(^) is also finite.

Proof: Consider the definition o f an argument (Definition 3.2.1). It states that if  (<f>, f )  G then

1 . $  C

2 . $  |~  f ,

3. V f, $  s.t. #  |~  0  and $  |~  f t ,  it is not the case that f  U  f t  b_L (where b  represents classical 

implicaion), and

4. $  is minimal: there is no proper subset <f>; o f  $  such that <&' satisfies conditions (1), (2) and (3).

As vp is finite, there are only a finite number o f sets 3> that satisfy condition 1. From Lemma 5.1.2, we 

see that the set D e fD e r iv a t io n s ( < f> )  (i.e. the set { f  j $  |~  ft), Definition 3.1.8) is finite. Hence, the set 

is also finite. □

The results about arguments given in this section hold regardless of what strategy is being followed, 

as they relate only to the system for internal argumentation given in Chapter 3. In the next section I give 

results about commitment stores constructed during a dialogue in which both participants are following 

the exhaustive strategy (i.e. a well-formed exhaustive dialogue).

5.2 Results about commitment stores
This section gives results about the contents of commitment stores that are constructed during a well- 

formed exhaustive dialogue.

The first lemma states that if the exhaustive strategy selects a move that asserts an argument, then it 

will be possible to construct that argument from the union of the agent making the move’s beliefs and the 

other participating agent’s commitment store. This is clear from the definition of the exhaustive strategy 

(Definition 4.5.4) but is included as a lemma so it can be easily referred to in further results.
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Lemma 5.2.1 Let D lr be a well-formed exhaustive dialogue with participants x \  and X2 such that D \ is 

a top-dialogue o f D lr. I f  Ftexh{D\, P ) =  {P , assert, {<£, 0 ) ) ,  then {$, 0 )  e .4 (£ p U C S p ).
Proof: The definition o f the exhaustive strategy (Definition 4.5.4) ensures that if the assert move 

(P, assei't, ($ , <t>)) is selected, then it will be the case that ($. 0 )  £ U C Sp). □

The next lemma states that an agent’s commitment store is always a subset of the union of the 

agents’ beliefs. This is because the commitment stores are empty at the beginning of a dialogue and the

only way that the commitment stores change are if an argument gets asserted, in which case the support

of the argument (which must be a subset of the agent asserting the argument’s beliefs) gets added to the 

relevant commitment store.

Lemma 5.2.2 I f  D lr is a well-formed exhaustive dialogue with participants x \ and X2, then C S * U

C S lX2 c  £ Xl U £ X2.

Proof: Commitment stores are updated as follows (Definition 4.2.11).

0 ifft =  0,

CS'p_ 1 U $  iff m t = (P, assert, ($,<p)),CS'p =

C S p  1 otherwise.

Hence, the only time that a commitment store is changed is when an agent P  makes the move 

(P, a ssert, {3>, 0)). From Lemma 5.2.1, we see that for  (P , a ssert, (<J>, 0)} to be a move made at point 

t +  1 in a dialogue, the condition (<f>, 0 ) £ -4 ( £ p U CSC) must hold, hence C £ p U C SL  (from the 

definition o f an argument, Definition 3.2.1). As a commitment store is empty when t = 0, all elements o f 

the commitment stores must be an element o f the agents’ beliefs, hence C S tXl U C SX C £ Xl U £ X2. □

The next lemma states that commitment stores are always finite. This is based on the assumption 

that an agent’s belief base is finite.

Lemma 5.23 Let D lr be a well-formed exhaustive dialogue with participants x \ and X2 - The sets C S X 

and C S X2 are both finite.

Proof: From Lemma 5.2.2 we know that C S Xi U C S X2 C EXl u  £ X2. As the belief bases £ Xl and £ X2 

are each assumed to be finite we know that the sets C SXl and C S X2 are both finite. □

The next lemma states that commitment stores grow monotonically throughout a well-formed ex­

haustive dialogue. Note that this holds regardless of what strategy is being followed and is due to the 

fact that the only time a commitment store changes is when the support of an argument that has been 

asserted is added.

Lemma 5.2.4 Let D lr be a well-formed exhaustive dialogue with participants x \  and X2 ■ For all s such 

that r < s < t, i fD lr extends D x, then C S SP C C S p fo r  P  £ {xi, x 2}.

Proof: According to the definition o f commitment store update (Definition 4.2.11), C S p  = 0 ifft  =  0, 

else C S p  = C S tf l U $  iff m t = (P, assert, ( $ . 0 ) ) ,  else C S p  = C S tf l otherwise. Hence, the only 

time the contents o f a commitment store C S p  change are i f  m t =  (P , assert,  (<&, 0 ) ) ,  in which case the 

commitment store grows with the inclusion o f <&. As C S p  is empty it must be the case that a commitment 

store grows monotonically throughout a dialogue, hence C S p  C C Sp. □
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In this section, I have given results about commitment stores and the relationship between them 

and the participating agents’ beliefs. In the next section, I give some results about moves made in a 

well-formed exhaustive dialogue and, in particular, define an upper bound on the moves that get made in 

a dialogue.

5.3 Results about moves
In this section I propose some sets that are intended to act as upper bounds on the set of moves made 

during a dialogue. I go on to define the sets of different types of moves made during a dialogue where 

the agents are following the exhaustive strategy, and show that these are subsets of the upper bounds. 

First, I consider assert moves.

I now define the set of possible assert moves for a well-formed dialogue, that I will go on to show 

acts as an upper bound on the moves made in a well-formed exhaustive dialogue. I define the set of 

possible assert moves as the set of all moves that assert an argument which can be constructed from the 

union of the two participating agents’ beliefs. Note that the set of possible assert moves is defined for 

any well-formed dialogue, and not just one in which the participating agents are following the exhaustive 

strategy.

Definition 5.3.1 Let D \ be a well-formed dialogue with participants x \ and X 2 -  The set o f  possible 

assert moves for D lr is denoted P o s s A s s e r t s  ( .D * ) such that

P o s s A s s e r t s ( Z } £ )  =  {{X.  assert. ( $ . ( f > ) )  \ X  6 { x \ , X 2 }  and

($,(t>) e A ( Z Xl u £ * 2)}

I will now show that the set of possible assert moves remains static for the duration of the dialogue. 

This rests on the assumption that an agent’s beliefs remain static throughout any well-formed dialogue.

Lemma 5.3.1 Let D fr be a well-formed dialogue. For all s, 1 < s < t, if  D lr extends D f  then 

P o s s A s s e r t s ( Z ) * )  =  P o s s A s s e r t s ( Z ) * ) .

Proof: The set o f possible assert moves (Definition 5.3.1) depends on the set o f participants, which is 

static, and the two belief bases o f the participants, which are also assumed to be static. Hence, fo r all s, 

1 < s < t, i f  D lr extends Df., then P o s s A s s e r t s (Df)  =  P o s s A s s e r t s ( Z ) * ) .  □

The next lemma states that the set of possible assert moves for any well-formed dialogue is always 

finite. This rests on the assumption that an agent’s beliefs are finite.

Lemma 5.3.2 I f  D\. is a well-formed dialogue, then the set P o s s A s s e r t s ( D ^ )  is finite.

Proof: The set o f possible assert moves (Definition 5.3.1) depends on the set o f participants, which is 

finite, and the arguments that can be constructed from the union o f the two belief bases o f the partici­

pants, which is finite (due to the fact that belief bases are assumed to be finite and from Lemma 5.1.3). 

Hence, the set P o s s A s s e r t s  (D^) is finite. □
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We will see shortly that the set of possible assert moves is an upper bound on the set of assert moves 

that are made during a well-formed exhaustive dialogue. That is to say, if an assert move is made during 

a dialogue, then it must be part of the set of possible assert moves. I first need to define the set of all assert 

moves that are made during a dialogue. Note that this set does not consider the move made at t = 1. This 

is deliberate, as the first move in a top-level dialogue is chosen by some assumed higher-level planning 

process, distinct from this dialogue system.

Definition 5.3.2 Let D lr be a well-formed exhaustive dialogue with participants x \  and x^. The set o f 

assert moves made during D lr is denoted A s s e r t s M a d e e x /j ( D £ )  as follows:

A s s e r t s M a d e e x ^ ( D ^ . )  =  {(X. assert, (4>, <£}} | X  G {xi,X 2 } and either

i fr  f=- 1, then (X , assert, (<I>, </>)) appears in the sequence D * 

else, i fr  =  1, then (X , assert, ($,<£)) appears in the sequence D £}

I now show that the set of possible assert moves is an upper bound on the set of assert moves that 

are made during a well-formed exhaustive dialogue. That is to say, if an assert move gets made in such 

a dialogue, then it is part of the set of possible asserts for that dialogue.

Lemma 5 3 3  I f  D lr is a well-formed exhaustive dialogue with participants x \ and x^, then 

A s s e r t s M a d eexh(D*) C  P o s s A s s e r t s ( Z ) * ).

Proof: Let us assume that (P, assert, (<I>, o)) G A s s e r t s M a d e e x /l ( D ^ ) ,  hence, from the definition 

o f assert moves made (Definition 5.3.2), (P, assert, (3>, cp)) appears either in the sequence D lr if  

r f  1 or in the sequence D \ i f  r = 1. Hence, according to the dialogue behaviour algorithm (Fig­

ure 4.2), if  D\ is a top-dialogue o f D lr, then (P, assert, ($,</>)) =  flex/, (Df, P), fo r  some s, where 

r — 1 < s < t and D\ extends D\. From Lemma 5.2.1, we get that ($>. <p) G .4 (£ p U CSp) .  

From Lemma 5.2.2 and Lemma 5.1.1, we get that ($ ,0 ) G «4(EP U E p ). Hence, from the defini­

tion o f the set o f possible asserts (Definition 5.3.1), (P, assert, 0 ) )  G P o s s A s s e r t s ( T > x ). Hence, 

A s s e r t s M a d e e x /l ( D ^ )  C  P o s s A s s e r t s (D lr). □

I now show that the set of assert moves that are made during a well-formed exhaustive dialogue 

is finite. This is clear because the set of assert moves made is a subset of the possible assert moves 

(Lemma 5.3.3), which I have already shown to be finite (Lemma 5.3.2).

Lemma 53.4 I f  D lr is a well-formed exhaustive dialogue, then the set A s s e r t s M a d e e x /l ( D * )  is finite. 

Proof: This follows from Lemma 5.3.2 and Lemma 5.3.3. □

I define the set of all possible open moves for a well-formed dialogue in a similar manner. I define 

the set of possible open moves as the set of all open moves that have as their content a defeasible rule 

from one or other of the participating agent’s beliefs. Again, this set is defined for all well-formed 

dialogues, and not just exhaustive ones.
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D e f i n i t i o n  5.3.3 Let D lr be a well-formed dialogue with participants x \  and X2 - The set o f  p o s s i b l e  

o p e n  m o v e s  for D lr is denoted P o s s O p e n s  ( D * ) such that

P o s s O p e n s ( . D * ) =  { ( ^ 5 open, d.ialogue(ai, a \ A . . .  A  a n ft)) I

X  € { x \ , X2 } and there exists L  € N such that 

( q i  A . . .  A c*n  -► ft, L)  e  T,Xl U  E * 2 }

I will now show that the set of possible open moves remains static for the duration of any well- 

formed dialogue. This is based on the assumption that an agent’s beliefs do not change during a dialogue.

L e m m a  5.3.5 Let D* be a well-formed dialogue. For all s, 1 < s < t, i f  D lr extends Df. then 

P o s s O p e n s ( Z ) r )  =  P o s s O p e n s ( Z ? x ).

Proof: The set o f possible open moves (Definition 5.3.3) depends on the set o f participants, which is 

static, and the two belief bases o f the participants, which are also assumed to be static. Hence, fo r  all s, 

1 < s < t, if  D lr extends Df. then P o s s O p e n s ( Z ) £ )  =  P o s s O p e n s ( Z ) ^ ) .  □

The next lemma states that the set of possible open moves is always finite. This is based on the 

assumption that an agent’s beliefs are finite.

L e m m a  53.6  I f  D lr is a well-formed dialogue, then the set P o s s O p e n s (  D lr) is finite.

Proof: The set o f possible open moves (Definition 5.3.3) depends on the set o f participants, which is

finite, and the two belief bases o f the participants, which are also assumed to be finite. Hence, the set

P o s s O p e n s ( D ^ )  is finite. □

We will see shortly that the set of possible open moves is an upper bound on the set of open moves 

that are made during a well-formed exhaustive dialogue. That is to say, if an open move is made during 

such a dialogue, then it must be part of the set of possible open moves. I first define the set of all open 

moves that are made during a well-formed exhaustive dialogue. Note that, like with the set of assert 

moves made during such a dialogue, I do not include the move made at t = 1, as this is assumed to be 

selected by some higher-level planning process external to this system.

D e f i n i t i o n  5.3.4 Let D lr be a well-formed exhaustive dialogue with participants x \  and x-i■ The set o f  

o p e n  m o v e s  m a d e  during D\. is denoted O p e n s M a d e e x / l ( D ‘ )  such that

O p e n s M a d e e x h ( D x ) =  {{X ,open,dialogue(ai,7 )) | X  € {xi,X 2 } and either

i f r f ^ l ,  then (X , open, dialogue(ai, 7 )) appears in the sequence D lr 

else, i f r  =  1, then {X, open, dialogue(ai, 7 )) appears in the sequence D \}

I now show that the set of possible open moves is an upper bound on the set of open moves that 

are made during a well-formed exhaustive dialogue. This follows from the definition of the exhaustive 

strategy (Definition 4.5.4).



5.3. Results about moves 98

Lemma 5.3.7 I f  is a well-formed exhaustive dialogue with participants 27  and X2 , then 

O p e n s M a d e e ;r / l(Z } * ) C  P o s s O p e n s ( £ > £ ) .

Proof: Let us assume that (P. open, dialogue(ai,y)) E OpensMadee;r/l(Z)J.), hence, from the definition 

of open moves made (Definition 5.3.4), (P. open, dialogue(ai, 7 )) either appears in the sequence D* if 

r f  1 else it appears in the sequence D \ ifr  = 1. Hence, according to the dialogue behaviour algorithm 

(Figure 4.2), if  D \ is a top-dialogue o f D f  then (P, open, dialogue(ai, 7 )) =  Dexh(Df ,  P), fo r some s, 

where r — 1 < s < t and D\ extends Df. From the definition o f the exhaustive strategy (Definition 4.5.4), 

we get that there exists L  E N such that (7 , L ) € £ p , hence (7 , L) E T.p  U £ p . Hence, from the def­

inition o f the set of possible opens (Definition 5.3.3), (P ,open,dialogue{ai,y)) E PossOpens(Z)*). 

Hence, OpensMadeex/l(Z)£) C PossOpens(Z)*). □

I now show that the set of open moves that are made during a well-formed exhaustive dialogue is 

finite. This is clear, as I have shown that the set of open moves made is a subset of the set of possible 

open moves (Lemma 5.3.7), which I have shown to be finite (Lemma 5.3.6).

Lemma 5.3.8 I f  D lr is a well-formed exhaustive dialogue, then the set O p e n s M a d e g x / i (Z >J.) is finite. 

Proof: This follows from Lemma 5.3.6 and Lemma 5.3.7. □

I now define the set of all possible moves for a well-formed dialogue. This set consists of the 

possible assert moves, the possible open moves, and the relevant close moves. I will go on to show that 

this set is an upper bound on the moves that get made during a well-formed exhaustive dialogue.

Definition 5.3.5 Let D lr be a well-formed dialogue with participants x \ and X2 ■ The set o f  possible 

moves for D lr is denoted P o s s M o v e s ( Z ) * ) such that

P o s s M o v e s ( D * )  =  {(X,  close, dialogue(6 , 7 )) | X  E {2 7 . 2 7 }, and there exists a move

( X ' , open, dialogue(9,y)) that appears in the sequence D * 

where X '  E {x \ , X 2 }} 

u P o s s A s s e r t s ( D ^ )  U  P o s s O p e n s ( D ^ )

Note that it is not the case that the set of possible moves remains static throughout a dialogue. This 

is because the close moves that appear as part of this set depend on the open moves already made, hence, 

as embedded sub-dialogues are opened, this set will grow.

The next lemma states that the set of possible moves that can be made in any well-formed dialogue 

is always finite. This is based on the assumption that an agent’s belief base is finite.

Lemma 5.3.9 I f  is a well-formed dialogue with participants 2 7  and X2 , then the set P o s s M o v e s ( D * ) 

is finite.

Proof: Consider the set taken from the definition o f possible moves (Definition 5.3.5),

{(X , close, dialogue{9,7 )) | X  E {x i, X2 }, and there exists a move

(X' ,  open, dialogue(6 , 7 )) that appears in the sequence D lr 

where X '  E {2 7 , X2}}
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I  have shown that the set o f open moves made in a dialogue not including the move at t = 1 is finite 

(Lemma 5.3.8), hence there are a finite number o f such moves (X ', open, dialogue(0,7 ) )  (including the 

one move made a tt  = l). Hence, the set above is finite. We know, from Lemma 5.3.2 and Lemma 5.3.6, 

that both the sets PossAsserts(D^) and PossOpens(D^) are finite. Hence, from the definition of possible 

moves (Definition 5.3.5), the set PossMoves(D^) is finite. □

I now define the set of moves made in a well-formed exhaustive dialogue. Note again that I am not 

considering the move made at t =  1 , as this is selected by some higher-level process that is beyond the 

scope of this work.

Definition 5.3.6 Let D lr be a well-formed exhaustive dialogue with participants x \ and X2 - The set o f 

moves made during D lr is denoted MovesMadeex/i(i?£) such that

MovesMadeex/j(j9*) =  {m | i f  r f  1, then m  appears in the sequence D^,

else, i f  r = 1 , then m appears in the sequence D 2}

I will now show that the set of possible moves is an upper bound on the set of moves made in a 

well-formed exhaustive dialogue. That is to say, if a move appears in the dialogue D lr , then it will be 

part of the set of possible moves for D lr .

Lemma 53.10 I f  D lr is a well-formed exhaustive dialogue with participants x \  and X2 , then 

MovesMadeex/l (D^) C PossMoves(Z)£).

Proof: Let us assume that m  6  MovesMadeex/i(.D£), hence, from the definition o f moves made 

(Definition 5.3.6), m  appears either in the sequence D lr if r f  1 or in the sequence D \ if r =  1. 

Hence, according to the dialogue behaviour algorithm (Figure 4.2), if D\ is a top-dialogue o f D lr, then 

m  — Qexh(Df , P ) fo r some s, where r — 1 < s < t and D\ extends D f (so m  is the move made at s). 

From the definition o f the exhaustive strategy (Definition 4.5.4), we see there are three cases to consider. 

(Case 1) m  — (P, assert, ($,</>)) such that ($,<}>) 6  A f L p  U C S ^ 1), hence m  6  PossAsserts(.D£) 

(from the definition o f possible asserts, Definition 5.3.1), hence rri <E PossMoves(D*) (from the defini­

tion o f possible moves, Definition 5.3.5).

(Case 2) m  — (P ,open,dialogue(ai,y)) such that there exists L € N such that ( 7 , L) e E p , 

hence m  £ PossOpens(D^) (from the definition o f possible opens. Definition 5.3.3), hence 

m  € PossMoves(Z)*) (from the definition o f possible moves, Definition 5.3.5).

(Case 3) m = (P, close, dialogue(9,y)) where 9 = c T y p e ^ j-1 ) and y =  cTopic(Dj_1), hence (from 

the definition o f the current dialogue, Definition 4.2.9), there must exist s' such that r < s' < s and 

rns' ~  (P ' , open, dialogue (9 ,7 )) where P ' € {X1 .X2 }. Hence (from the definition o f possible moves, 

Definition 5.3.5), m  6  PossMoves(£)£).

Hence, it follows from cases I, 2 and 3 that MovesMadeex/l (D*) C PossMoves(Z}*). □

I now show that the set of moves that are made during a well-formed exhaustive dialogue is finite. 

This is clear, as I have shown that the set of moves made is a subset of the set of possible moves 

(Lemma 5.3.10), which I have shown to be finite (Lemma 5.3.9).
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Lemma 5.3.11 I f  D lr is a well-formed exhaustive dialogue, then the set MovesMadeex/l (D*) is finite. 

Proof: This follows from Lemma 5.3.9 and Lemma 5.3.10. □

In this section, I have defined sets that act as upper bounds on the moves made during a well- 

formed exhaustive dialogue. I have shown that these sets are finite, and so the set of moves made in a 

well-formed exhaustive dialogue is also finite. This does not necessarily mean that a dialogue terminates 

though. Although I have shown that the set of moves made is finite, it may be the case that moves get 

repeated or that a dialogue does not end with a matched-close. In the next .section, I will show that all 

dialogues do indeed terminate and that it is not the case that moves get repeated.

5.4 Results about termination of dialogues
I will shortly show that all well-formed exhaustive dialogues terminate, but in order to do so I must first 

introduce some further lemmas.

The following lemma shows that a maximum of one assert move with a certain content appears in 

any top-level well-formed exhaustive dialogue. That is to say, the move m s =  (P , a ssert, ($ , 0)) (where 

P  £ {x i, X2 }) and the move m s> =  (P' ,  a ssert, ($, <j>)) (where P ' £ { x i, X2 }) both appear in dialogue 

D lr if and only if s — s'. This is clear from the definition of the warrant inquiry and argument inquiry 

protocols. The warrant inquiry protocol contains a constraint that something may only be asserted if it 

changes the dialogue tree, which would not occur if the argument had been previously asserted. The 

argument inquiry protocol contains a constraint that something may only be asserted if its support is not 

present in the union of the commitment stores, which it would be if the argument had previously been 

asserted.

Lemma 5.4.1 Let D lr be a well-formed exhaustive dialogue with participants x i and X2- I f  D \ is a 

top-dialogue o f D lr and m s = (P, assert, {$>,({))) fo r some s where 1 <  s < t and P  £ {xi,X 2 } 

and m s appears in the sequence D\, then there does not exist an s' such that 1 < s' < t, s f  s', 

m s> =  (P' ,  assert, ($, 0)} where P ' £ {xi, X2 } and m s> appears in D\.

Proof by contradiction: Let us assume that D\ is a top-dialogue o f D lr and there does exist an s' such 

that 1 < s' < t, s 7  ̂ s' and m s> = (P ', assert, (<£, 0}) where P ' £ {xi, X2 }. From the definition o f the 

exhaustive strategy (Definition 4.5.4) we see that either (1) (P, assert, ($ , 0 }) € U ^ sert(D^ 1 , P), or 

(2) {P, assert, ($ .0 ))  € II ,P).

(Case 1) According to the argument inquiry protocol and the definition of I I “ | sert  (Definition 4.3.2), $  f- 

C S p ~ l U C S~  1. Hence, it cannot be the case that s < s' as i f  that were so then $  C C S L ~ l would 

be true (from the definition o f commitment store update, Definition 4.2.11, and the fact that commitment 

stores grow monotonically, Lemma 5.2.4).

It also cannot be the case that s' < s, as i f  that were so then $  (Definition 4.2.11), and so

$  Q CSL, (Lemma 5.2.4), and so $  C C S ^  U CSf ,  (as P  £ {xi, X2 } and P ' £ {xi, X2 }). This would 

mean that it is not the case that (P, assert, ( 4 > , 0 ) )  €  I I “ f s e r t ( D j - 1 , P) (from the definition of the 

argument inquiry protocol, Definition 4.3.2). Hence, it must be the case that s =  s', which contradicts 

our assumption.
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(Case 2) According to the warrant inquiry protocol and the definition o / I I “®sert (Definition 4.4.3), 

DialogueTree(jDi +  (P', assert, ($ ,0 )))  ^  DialogueTree(Dj -1 ). Hence, it cannot be the case that 

s < s' as i f  this were true then it would be true that <3> C C S sp  ~ 1 U C ~ 1 (from Definition 4.2.11 and 

Lemma 5.2.4), which would mean that asserting (<3>. 0) would not have an effect on the dialogue tree 

and it would not be the case that DialogueTree(Df _ 1  +  (Pf. assert. (3>, </>))) ^  DialogueTree(.Di _1) 

(as the dialogue tree depends only on the root argument, which does not change, and the content o f the 

commitment stores, Definition 4.4.2). It also cannot be the case that s' < s, as then $  C C S ^ U C S f 1 

(from Definition 4.2.11 and Lemma 5.2.4), and so making the move m s would not alter the commitment 

stores and so would not alter the dialogue tree. Hence, it must be the case that s =  s', which contradicts 

our assumption. □

The next lemma is similar to the last lemma but concerns open moves. It states that a maximum of 

one open move with a certain content appears in any top-level well-formed exhaustive dialogue. That 

is to say, the move m s =  (P,open,dialogue(ai ,y))  (where P  E {%i,X2 }) and the move m s> =  

(P ' , open, dialogue(ai, 7 )) (where P ' e {2 1 , 2:2 }) both appear in dialogue D * if and only if s = s'. 

Again, this is clear from the definition of the warrant inquiry and argument inquiry protocols. Both 

these protocols contain the constraint that a move opening an argument inquiry dialogue with the topic 

o i A . . .  A a n —» 0  can only be made if a question store with the content {c ti,. . . ,  a n , 0} has not 

previously been constructed, which it would have been if a move opening an argument inquiry dialogue 

with the topic c*i A . . .  A a n —> 3 had previously been made.

Lemma 5.4.2 Let D'r be a well-formed exhaustive dialogue with participants x \  and xo. I f  D\ is a top- 

dialogue o f D*,. and m s = (P, open, dialogue(ai, A . . .  A a n —> 0)) fo r some s where 1 < s < t and 

P  E { x i , X2 } and m s appears in the sequence D\, then there does not exist an s ' such that 1 < s' < t 

and s 7̂  s' and m s> =  (P' , open. dialogue(ai, a  1 A . . .  A a n —» 0)) where P ' E {xi,X 2 } and m S' 

appears in D\.

Proof: From the definition o f the exhaustive strategy (Definition 4.5.4) we see that either (I)

(P, open, dialogue(ai,a\ A . . .  A a n —> 0)) € I I ^ en(D j_ 1 ,P )  or (2) (P, open, dialogue(ai,a\ A 

. . . A a n ^ 0 ) ) £ U Z en{Dsf f l .P).

Combining these cases we get that (P, open, dialogue(ai, a i  A . . .  A a n —> 3)) e  n ^ en(Z)*_1, P) U 

n ° Z r ( D \ ~ \  P)- According to the argument inquiry protocol and the warrant inquiry protocol and the 

definitions of I I ^ en and 11°^’ (Definition 4.3.2 and Definition 4.4.3), there does not exist t', 1 < t' < 

s —1, such that Q St> =  { a \ , . . .  ,ctn , 0}. Hence, from the definition o f a question store (Definition 4.3.1), 

there does not exist t', 1 < t' < s, such that mt> =  (P' ,  open, dialogue(ai, a i A . . .  A a n —> 0)) 

where P ' E {2:1 , 2:2 }. It also cannot be the case that there exists s' such that s < s' < t and 

m s' =  {P', open, dialogue(ai, a i A . . .  A a n —» 0)) where P ' e {2:1 , X2 } as Q Ss = { a i , . . .  ,ocn, 0 } 

and 1 < s < s' which violates a condition o f both the warrant inquiry protocol and the argument inquiry 

dialogue (Definition 4.3.2 and Definition 4.4.3). □

I am now able to prove the theorem that all well-formed exhaustive dialogues in my system termi­

nate. This follows from the fact that there are always a finite number of assert and open moves from
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which the participating agents can choose, that the agents cannot repeat these moves, and that the ex­

haustive strategy dictates that if an agent cannot make an assert or open move then it must make a move 

to close the current dialogue.

Theorem 5.4.1 I f  D lr is a well-formed exhaustive dialogue with participants x \  and X2 and D \ is a 

top-dialogue o f D f  then there exists t' such that t < t ', D lr extends D lr, D \ is a top-dialogue o f D lr , 

D\ extends D\ and D lr terminates at t'.
Proof: The set o f assert moves made during a well-formed exhaustive dialogue, Asserts Madeex/l (Z)* ), 

is finite (Lemma 5.3.4). The set of open moves made during a well-formed exhaustive dialogue, 

OpensMadeex/l(D* ), is finite (Lemma 5.3.8). Neither assert nor open moves may be repeated in a 

dialogue (Lemma 5.4.1 and Lemma 5.4.2), hence there must come a point in every dialogue where no 

more open or assert moves may be made. The exhaustive strategy (Definition 4.5.4) dictates that when 

there are no more assert or open moves that can be made, the participating agents must each make 

a move to close the current dialogue (called a matched close, Definition 4.2.7). When this occurs the 

dialogue terminates (Definition 4.2.8). □

Finally in this section, I show that if a dialogue terminates at t, then the subset of the set of legal 

moves from which an agent must select the move mt does not include any open or assert moves. This 

is clear from the definition of the exhaustive strategy (Definition 4.5.4), which states that a close move 

may only be made if there are no assert or open moves to choose from.

Lemma 5.43 I f  D lr is a well-formed exhaustive dialogue that terminates at t with participants x \ and 

X2 , such that Receiver(mt_ i) =  P, D lr extends D lr~l and D \~ l is a top-dialogue o f D fr~ l , then the set 

Assertse ih(L^-1 , P) ~  0 and the set Opensea.h (D ‘_1, P) =  0.

Proof: A dialogue is terminated with a matched-close (Definition 4.2.8). The exhaustive strategy (Defini­

tion 4.5.4) states that a close move will only be made by P  at timepoint t if the sets Assertsex/i(Di_ 1 , P ) 

and Opensexh{D\~l , P)  are empty. Hence, Assertsexh{D\~l , P)  = 0 and O p e n s ^ ^ D 1̂ 1 , P) = 0. □

In this section, I have shown that all well-formed dialogues generated by the exhaustive strategy 

terminate. In the next section I will define soundness and completeness properties of the argument 

inquiry dialogue, and show that all argument inquiry dialogues produced by the exhaustive strategy are 

sound and complete.

5.5 Results about soundness and completeness of argument in­

quiry dialogues
In this section I consider a benchmark against which to compare my dialogues and use this to define 

soundness and completeness properties for argument inquiry dialogues. I go on to prove that all well- 

formed argument inquiry dialogues generated by the exhaustive strategy are sound and complete.

I believe that it is important to consider soundness and completeness properties if we are to un­

derstand the behaviour of dialogues. This is something that most other dialogue systems miss out on,
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as their lack of a mechanism for selecting exactly one move to make means that they can only model 

different legal dialogues and cannot guarantee a certain outcome in a given situation (which I believe 

is a crucial requirement for a dialogue system that is to be used in a medical system such as CREDO). 

One notable example of similar work that does consider soundness and completeness properties is [60], 

in which Sadri et al. define different agent programs for negotiation. If such an agent program is ex­

haustive and deterministic, then exactly one move is suggested by the program at a timepoint, making 

such a program generative and allowing Sadri et al. to consider soundness and completeness properties. 

Since no other formal inquiry dialogue systems provide a specific strategy, they miss the chance to better 

understand the dialogue behaviour by considering such properties.

In order to consider such properties, I must define a benchmark against which to compare the 

outcome of my dialogues. To my knowledge, the only other similar work that defines an equivalent 

benchmark is that of Sadri et al. [60]. As they are concerned with the specific problem of negotiating 

resource reallocation, their benchmark relates to the existence of a solution to this problem. As I am 

concerned with the safety-critical, cooperative medical domain, I want my agents to arrive at the best 

dialogue outcome that they can, regardless of how their beliefs are split between them. For this reason, I 

use the arguments that can be constructed from the union of the two agents’ beliefs as a benchmark, and 

compare these arguments to the outcome of an argument inquiry dialogue in order to decide whether the 

dialogue is sound and complete.

The goal of an argument inquiry dialogue is for two agents to share appropriate parts of their knowl­

edge in order to try to construct an argument for a specific claim or claims. The benchmark that I compare 

the outcome of the dialogue with is the set of arguments that can be constructed from the union of the 

two agents’ beliefs. So this benchmark is, in a sense, the “ideal” situation where there is clearly no 

constraint on the sharing of beliefs.

I say that an argument inquiry dialogue is sound if and only if, when the outcome of the dialogue 

includes an argument, then that same argument can be constructed from the union of the two participat­

ing agents’ beliefs. Note that this definition of soundness holds for all well-formed argument inquiry 

dialogues, and not just those generated by the exhaustive strategy.

Definition 5.5.1 Let D lr be a well-formed argument inquiry dialogue with participants a,’i and x^. D lr 

is sound iff, i f  ($,$}  e  Outcome^(Z)£), then € A{T,Xl U XX2).

I now show that all well-formed exhaustive argument inquiry dialogues are sound. This is clear 

from the definition of argument inquiry outcome (Definition 4.3.4).

Theorem 5.5.1 I f  D lr is a well-formed exhaustive argument inquiry dialogue with participants x \  and 

X2 , then D * is sound.

Proof: Let us assume that (<f>, 4>) £ Outcome^ (D*). From the definition o f argument inquiry outcome 

(Definition 4.3.4) ($,</>) £ .4(C'5*1 U  C5*2). Hence, from Lemma 5.1.1 and Lemma 5.2.2, (4>. f )  £ 

„4(XXl U XX2). Hence, from the definition o f argument inquiry soundness (Definition 5.5.1), D lr is sound.
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Similarly, an argument inquiry dialogue is complete if and only if, if the dialogue terminates at t 

and it is possible to construct an argument for the consequent of the topic of the dialogue from the union 

of the two participating agents’ beliefs, then that argument will be in the outcome of the dialogue at t. 

Again this definition holds for all well-formed argument inquiry dialogues, and not just exhaustive ones.

Definition 5.5.2 Let D* be a well-formed argument inquiry dialogue with participants x \  and x2. D lr 

is complete iff, i f  D lr terminates at t and Topic(P*) =  c*i A . . .  A a n —> 0 and there exists $  such that 

($ ,0 )  G .A(£Xl U £ X2), then ($ ,0 ) € Outcom e^(£>£).

Before I show that argument inquiry dialogues are complete, I need to introduce some further lem­

mas. The first says that if two agents are participating in a well-formed exhaustive argument inquiry dia­

logue D lr that terminates at t such that 0  e Q Sr and there is an argument for 0  of the form ({(0 . L)}, 0 ) 

that can be constructed from the union of the two agents’ beliefs, then (0 , L ) will be in the union of the 

commitment stores at timepoint t.

Lemma 5.5.1 I f  D l is a well-formed exhaustive argument inquiry dialogue that terminates at t, with 

participants x \ and x2, such that D\ is a top-dialogue o f D f  0 G Q Sr and there exists ($ ,0 ) G 

.A( £ X1 U £ X2) such that $  =  {(0, L)},  then (0, L) G C S lXl U C S *2.

Proof: Let us assume that D\ is a top-dialogue o f D lr, 0 G Q Sr and ({(0, L)},  0) G .4 (£ Xl U £ X2),

hence either (0, L) € £ Xl or (0. L) € £ X2 (from the definition o f an argument. Definition 3.2.1). Hence, 

fo r  either P  — x \ or P  =  x 2, ({(0, L )} ,0) 6  A ( E P). Hence, from Lemma 5.1.1, ({(0, L )},0) G 

A(T,P U C S ~ )  for all values o f t2, (I < t 2 f t ) .  From the definition o f the argument inquiry protocol 

(Definition 4.3.2) and the definition o f the exhaustive strategy (Definition 4.5.4) we get that for all t 3, 

r < t 3 < t, (P , assert, ({(0, L)}, 0)) G Assertsex/i(P i3, P), where D\ extends D \3, unless {(0. L)} C 

C 5 *3 U C S lx\. As D lr terminates at t and from Lemma 5.4.3 we get that Asserts exh(D\ , P)  =  0, hence 

there must exist <4 , (1 < £4 < t), such that {(0, L)} C C S lff  U C S X42. As commitment stores grow 

monotonically (Lemma 5.2.4), (0. L) G CS Xl U C S X2. □

The next lemma states that if there is a defeasible rule whose consequent is present in the question

store, then there will be a timepoint at which a question store will be created that contains all the literals 

of the antecedent of the defeasible rule.

Lemma 5.5.2 I f  D lr is a well-formed exhaustive argument inquiry dialogue that terminates at t, with 

participants x \ and x 2, such that D\ is a top-dialogue o f D lr, 0 G Q Sr and there exists a domain belief 

(a \ A ... A an —» 0. L) G £ Xl U £X2, then there exists t\, 1 <  t\  < t, such thatQ Stl =  {q i, . . . ,  a n, 0}. 

Proof: Let us assume that D\ is a top-dialogue o f D lr, («i A . . .  A a n —> 0, L) G £ p , where P  

is either X\ or x2, and 0 G Q Sr. I f  Q Sr = { a i , . . . ,  a n , 0} then this proof is trivially true, so let 

us also assume that Q Sr f- {0 4 . . . .  , a n , 0}. From the definition o f the argument inquiry protocol 

(Definition 4.3.2) and the definition o f the exhaustive strategy (Definition 4.5.4), we get that for all £2, 

r  < t<2 < t, (P ,open ,d ia logue(a i,a i A . . .  A a n —* 0)) G 0pense2.ft(P j2 ,P )  (where D \ extends 

D \2) unless there exists t3 such that 1 < £3 <  t2 < t and Q S t3  =  { a i , . . . ,  a n , 0}. As D lr terminates
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at t and from Lemma 5.4.3, Opens exh(D\ , P)  = 0, hence there must exist t4, 1 < t 4 <  t, such that 

Q SU =  a n ,0}. □

I am now able to use the two previous lemmas to show that all argument inquiry dialogues are 

complete.

Theorem 5.5.2 I f  D lr is a well-formed exhaustive argument inquiry dialogue with participants x i and 

X2 , then D lr is complete.

Proof: I f  D lr does not terminate at t then D* is complete. So let us assume D lr terminates att ,  0 E Q Sr, 

and ($ ,0 ) E A(T,Xl U S X2). From the definition o f an argument (Definition 3.2.1), 3> C £ Xl u  £ X2. 

There are two cases to consider.

(Case 1) $  =  {(0, L)}. Hence from Lemma 5.5.1, (0, L) E C S tXi U C S lx,2. From Definition 4.3.4, 

(# ,0 )  E Outcome^ (D*).

(Case 2) There exists a domain belief (a i A . . .  A a n -> 0 ,1 ) E  From the definition o f an argument 

(Definition 3.2.1), for all a* where 1 < i < n, there exists such that (<!>*, a*) E  A {£ Xl U EX2). 

From Lemma 5.5.2, there exists t\, 1 < t\ < t, such that Q St1 = { a i , . . .  , a n .0}. Each <f>i is ei­

ther an example o f case 1 or case 2  and $  is finite, so, by recursion, 3 r2 , t 2 , r  < t 2 < t2 < t, 

such that E Outcomenz(L02). Hence, from the definition of an argument (Definition 3.2.1),

(# ,0 )  E Outcomeai(D£).

From case I, case 2 and the definition o f argument inquiry completeness (Defintion 5.5.2), is com­

plete. □

The theorem above becomes particularly interesting when I combine it with the theorem that all 

well-formed exhaustive dialogues terminate. This gives the desired result that if an argument can be 

constructed from the union of the two participating agents’ beliefs whose claim is the consequent of the 

topic of the current dialogue, then there will come a timepoint at which that argument is in the outcome 

of that dialogue.

Theorem 5.5.3 Let D* be a well-formed exhaustive argument inquiry dialogue with participants x \ and 

X2 - I f  Topic(Z)£) =  o i A . . .  A Qn —> 0 and there exists $  such that ($, 0) E .4(E Xl U XX2) then there 

exists t\, 1 < t < t\, such that D f  extends D lr and {$, 0) E O utcom e(D ^).

Proof: This follows from Theorem 5.4.1 and Theorem 5.5.2. □

I have shown that all well-formed exhaustive argument inquiry dialogues generated by the exhaus­

tive strategy are sound and complete. Before I can consider soundness and completeness of warrant 

inquiry dialogues I must give some results about dialogue trees, which I will do in the next section.

5.6 Results about dialogue trees
Before I can show that all warrant inquiry dialogues generated by the exhaustive strategy are sound and 

complete, I must give some results about the dialogue trees that they produce. I consider the relationship 

between a dialogue tree that is produced by a well-formed exhaustive warrant inquiry dialogue and the
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dialectical tree that is constructed from the union of the two participating agents’ beliefs and has the 

same argument at the root. In particular, I will go on to show that these two trees are the same.

The following lemma states that if we have a warrant inquiry dialogue D lr that terminates at t, 

whose root argument is {$, 0 ), and there is a path from the root node [{$. 0 ), (<3>i. 0 i ) . . . . ,  {<!>„, 0 n)] 

that appears in the dialogue tree DialogueTree(D^), then the same path from the root node appears in the 

dialectical tree that is constructed from the union of the two participating agents’ beliefs and has ($, 0 } 

at its root. This is due to the relationship between the commitment stores and Ihe agents’ beliefs.

Lemma 5.6.1 Let D lr be a well-formed exhaustive warrant inquiry dialogue that terminates 

at t with participants X\ and X2 such that RootArg(Z)*) =  (<f>. 0). I f  there exists a path

[(<£, 0), ($ i, 0 i ) , . . . ,  {$n , <f>n)} in DialogueTree(Z)*), then the same path exists in the dialectical 

tree T ^  where A = ($ , 0} and A =  £ Xl U £ X2.

Proof: Let us assume that the path [($, 0), ($ i, 0 i ) , . . . ,  ($ n , 0n}] appears in DialogueTree(Dx). 

From the definition o f a dialogue tree (Definition 4.4.2) we see that this means that the path 

[($, 0), ($ i,  0i fin)] appears in the dialectical tree T ^  where A ' =  C S Xl U CS X2.

Hence, for  1 < i < n, ($>{.00 G A ( C S Xl U C S X2) (from the definition of a dialectical tree, Def­

inition 3.6.1), hence (<I>i,0j) E U £ X2) (from Lemma 5.2.2 and Lemma 5.1.1), hence the path

[ ( $ ,0 ) , ( $ i ,0 i ) , . . . ,  ($ „ ,0 n)] can also be constructed from  A. As [($. 0), ( $ 1 : 0 i ) : • • •, {^n , 0n)] 

is an acceptable argumentation line in DialogueTree(D*), it must also be an acceptable argumenta­

tion line in T ^  (from the definition o f an acceptable argumentation line, Definition 3.5.5). Hence, 

i f  there exists a path [ ($ ,0 ), . . . ,  ($>n, 0 n)] in DialogueTree(£>*), then there exists a path

[<$,0 > ,< *i,0 1) , . . . ! < *„,0 „>]i/iT 2 .D

The next lemma is the reverse of the previous one. It states that if we have a warrant 

inquiry dialogue D * that terminates at t , whose root argument is ($,</>), and there is a path 

[($, 0 ), ($ i, 0 i } , . . . ,  ($ n , <t>n)] that appears in the dialectical tree that is constructed from the 

union of the two participating agents’ beliefs and has ($>, 0 ) at its root, then the same path 

[($, 0), ($ i, . . . ,  (3>n , 0„)] appears in DialogueTree(Z)*). This is due to the fact that the warrant

inquiry protocol along with the exhaustive strategy ensures that all arguments that change the dialogue 

tree (i.e. cause a new node to be added to the tree) get asserted during the dialogue (Definition 4.4.3: 

DialogueTree(D^ 4 - (P, assert ,  (<£,0 }}) /  DialogueTree(jDi)).

Lemma 5.6.2 Let D lr be a well-formed exhaustive warrant inquiry dialogue that terminates at t with 

participants x \  and .r2 such that RootArg(D lr) =  (<£, <j>). I f  D \ is a top-dialogue o f D lr and there exists a 

path [($►, 0), ($ i, 0 i ) , . . . ,  (<3>n , 0n)] in the dialectical tree T ^ , where A  =  (3>, 0) and A =  £ Xl U £ X2, 

then there exists a path [($, 0 ), (<!>!. 0 0 , . . . ,  (<hn , 0 n)] in DialogueTree(Z)*).

Proof: Let us assume that the path [($. 0), ($ 1; 0 0 . . . . ,  ( $ n , 0 n)] appears in the dialectical tree T^. 

Let us also assume that there exists t\ such that 4> C C S X\ U and there does not exist t' such that 

1 <  t' < t\ and <I> C CS i ,  U C S l2 <i.e. (, is the timepoint at which the root argument is asserted). 

According to the definition o f a dialectical tree (Definition 3.6.1) this means that for all i, 1 < i < n, 

(3>i, 0i) E *4(£Xl U £ X2). There are two cases.
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(Case 1) G >4(£p ) where P  = x \ or P  = X2 -

(Case 2 ) ($* ,0 *) ^  A (E Xl) and (<&i,4>i) ^  ^4(EX2), in which case there exists a defeasible rule 

(cti A . . .  A a m —► fa, L) G such that (q j A . . .  A a m —► fa, L) G £ p , where P  =  x 4 or P  =  £ 2- 

Ler ms now consider ( $ i , fa). It is either an instance o f case 1, or o f case 2.

I f  it is case 1: From the definition o f the warrant inquiry protocol and the definition o f the exhaus­

tive strategy (Definitions 4.4.3 and 4.5.4), for all £2 such that t\ < <2 <  t and D \ extends D \2, 

(P, assert, {$ i , fa))  G Assertsexh(D \2, P) unless DialogueTree(D52 +  -(P, assert, ($ i, fa ))) ±  

DialogueTree(Z)j2) (i.e making the move to assert (<J>i, fa ) does not change the dialogue tree).

As the path [($, fa), fa)) appears in it must be the case that ( $ i , f a )  is a defeater fo r  (3>, fa) 

and the argumentation line [(<£, fa, ($ i, fa)] is acceptable, from the definition o f a dialectical tree 

(Definition 3.6.1). Hence if (P, assert. ($ i, fa ))  Assertsexh(D[2 , P)  then the argumentation line 

[($,fa), (4>i, 0i)] must already appear in DialogueTree(Z)*2), otherwise asserting ($,fa) would cer­

tainly change the dialogue tree. As Assertse x h i D ^ 1, P)  =  0 (Lemma 5.4.3) it is the case that 

(P, assert, ($ i, fifa) £  A s s e r t s P )  and so the argumentation line [($, fa), ($ 1? fifa] must 

already appear in DialogueTree(D£1). Hence, there must exist £3 such that t\ < £3 < t and 

[($, fa), ($ i, fa)} appears in DialogueTree(Z)£3).

I f  it is case 2: As (<I>i,0i) is a defeater for (&,fa, -<fa G DefDerivations( C S X\  U C S *12). Hence, 

from the definition o f the warrant inquiry protocol and the definition o f the exhaustive strategy (Defini­

tions 4.4.3 and 4.5.4), for all £4 such that t\ < £4 < t, (P, open, dialoyue(ai. Qi A . . .  A « m —» fa ))  G 

Opertsexh(D\4, P) unless there exists a £5 such that 1 <  £5 <  £4 and Q Stb = {qi, . . .  ,ctm,fa}> in 

which case, from Theorem 5.5.3, there exists t& such that £5 < Iq < t and ( $ 1 , fa\) G Outcome^(D*6). 

As Opensexh{D\~l , P)  =  0 (Lemma 5.4.3), it must be the case that there exists t§ such that £5 < 

Iq < t and (<t>i, 0 i ) G Outcome,^ (D*6). From the definition o f argument inquiry outcome (Defini­

tion 4.3.4), ( $ 1 , (f>\) G C S ^  U C S X62, hence, from the definition o f a dialectical tree (Definition 3.6.1), 

[(<!>, 0), appears in DialogueTree(P>*6).

Now let us consider ($ 2 . fa)- VVe can apply the same reasoning again to show that there will ex­

ist a timepoint at which [(<£>, fa, ( $ 4, fai), ($ 2 , 0 2 )] appears in the dialogue tree. I f  we now con­

sider ($ 3 , fa) we can apply the same reasoning to show us that there will exist a timepoint at which 

[{$, fa), ($ 1 , fa ), ($ 2 - fa ), ($ 3 . fa)) appears in the dialogue tree. Hence, if  we continued in this way, 

by recursion, there exists a path [(<£, fa. ( $ 1 , f a ) , . . . ,  ($ n , fan)} in the dialogue tree DialogueTree(Z)£). 

□

The following theorem states that if we have a well-formed exhaustive warrant inquiry dialogue D lr 

that terminates at t, whose root argument is ($ , fa), then the dialogue tree DialogueTree(P^) equals the 

dialectical tree that is constructed from the union of the two participating agents’ beliefs and has {<&, fa) 

as its root.

Theorem 5.6.1 I f  D lr is a well-formed exhaustive warrant inquiry dialogue that terminates at t with 

participants Xj and X2 such that RootArg(Z)*) =  (<&,fa, then DialogueTree(Z)*) =  T ^  where A  =

($, fa and A =  £ Xl U £ X2.
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Proof: This follows from Definition 3.6.2 (the definition o f what it means for two trees to equal each 

other), Lemma 5.6.1 and Lemma 5.6.2. □

I have shown that the dialogue tree constructed during a well-formed exhaustive warrant inquiry 

dialogue is the same as the dialectical tree constructed from the union of the agents’ beliefs that has 

the same argument at its root as the dialogue tree. In the next section I will use this result to show that 

well-formed exhaustive warrant inquiry dialogues are sound and complete.

5.7 Results about soundness and completeness of warrant inquiry 

dialogues
The goal of a warrant inquiry dialogue is for two agents to share relevant parts of their knowledge in 

order to construct a dialogue tree that has an argument for the topic of the dialogue at the root. This 

dialogue tree then acts as a warrant for the root argument if the status of the root node is U (i.e. it is 

undefeated). The benchmark that I compare this to is the dialectical tree that has the same root argument 

as the dialogue tree but is constructed from the union of the two agents’ beliefs. Again, this benchmark 

is, in a sense, the “ideal” situation, in which there are no constraints on the sharing of beliefs.

However, accepting this benchmark as the ideal means assuming that one agent’s beliefs are as 

equally acceptable as the other’s. An agent’s knowledge is stratified internally, according to the prefer­

ence levels of its beliefs, but perhaps we should also consider a stratification between agents, perhaps 

where one agent’s beliefs on a certain topic are preferred to another’s.

Let us consider the case where a recently qualified junior house officer is having a conversation 

with an experienced oncologist about the diagnosis of a patient with breast symptoms. The junior house 

officer is very confident that the patient has a cyst (so his internal preference level for the belief is high), 

whilst the oncologist believes that the patient has breast cancer but is only fairly confident of this belief 

(so her internal preference level for the belief is not high). We might expect the junior house officer to 

give more credence to the oncologist’s opinions, as the oncologist is more expert in the domain of breast 

cancer, despite the oncologist not having a high confidence in her belief.

Perhaps, then, I should not only be internally stratifying the agents’ beliefs but should also be 

weighting one agent’s beliefs over another’s. If one agent is considered to be more expert than another 

than its beliefs could be given a higher weighting. Or it may be the case that an agent is an expert 

in certain topics but not in others. It would be interesting to consider a way of classifying an agent’s 

knowledge into different topics and giving each of these topics a rating depending on how expert the 

agent is in that topic. When an agent then asserts a belief that falls into a certain topic classification, that 

belief could be weighted according to whether the agent was more or less expert in that topic than the 

other participating agent.

My referral agent scenario contains two agents (Section 1.2.1, page 1.2.1). One of these agents 

contains only domain beliefs, that is knowledge relating to the guideline, the other agent contains only 

state beliefs, that is knowledge relating to the state of the world. As each agent contains only one type 

of knowledge, and each contains knowledge distinct from the other, it is reasonable to claim that each



5.7. Results about soundness and completeness o f  warrant inquiry dialogues 109

agent is the expert in its own knowledge. As each agent has only knowledge of a distinct type to that 

held by the other agent, there is no opportunity within the scenario for both agents to put forward things 

that are of the same type of knowledge. I therefore feel that it is reasonable, for this scenario at least, 

to compare a warrant inquiry dialogue tree to the equivalent dialectical tree constructed from the union 

of the participating agents’ beliefs. When considering dilferent scenarios at a later point, it would be 

interesting to consider different ideal inference systems with which to compare this system.

I say that a warrant inquiry dialogue is sound if and only if, when the. outcome of the terminated 

dialogue is an argument (<1>, 0 ), the status of the root node of a dialectical tree that is constructed from 

the union of the participating agents’ beliefs and has (3>. 0 ) at its root is U. Note that this definition holds 

for all well-formed warrant inquiry dialogues, regardless of what strategy was followed.

Definition 5.7.1 Let D\. be a well-formed warrant inquiry dialogue with participants x \ and X2 - D lr 

is sound iff, if  D lr terminates at t and Outcome^ (jD* ) =  {(<3>. 0 } } , then Status(Root(T^), T ^) =  U 

where A  =  ( $ ,  0 ) and A =  E Xl U  £ X2.

I now define what it means for a warrant inquiry dialogue to be complete. I say that a warrant 

inquiry dialogue is complete if and only if, if the root argument of the dialogue is ($ , 0 ) and the status 

of the root node of a dialectical tree that has ($, 0 ) at its root and is constructed from the union of the 

participating agents’ beliefs is U, then the outcome of the dialogue when it is terminated is ($ , 0 ) .  Again, 

this definition holds for all well-formed warrant inquiry dialogues.

Definition 5.7.2 Let D lr be a well-formed warrant inquiry dialogue with participants x \ and X2 - D lr 

is complete iff, if  D lr terminates at t, RootArg(jD*) =  ($ ,0 ) and Status(Root(T^), T^) =  U where 

A =  (<1>, 0) and A =  £ Xl U  £ X2, then Outcome^ (D*) =  {(<J>. 0 ) } .

I have shown that the dialogue tree produced during a warrant inquiry dialogue is the same as the 

dialectical tree constructed from the union of the participating agents’ beliefs that has the same argument 

at its root. Hence, it is clear that warrant inquiry dialogues produced by the exhaustive strategy are sound.

Theorem 5.7.1 I f  D* is a well-formed exhaustive warrant inquiry dialogue, then D lr is sound.

Proof: I f  D lr does not terminate at t, then D lr is sound. So, let us assume that D lr terminates at t. 

Theorem 5.6.1 states that DialogueTree(D‘ ) =  where A =  RootArg(Z)*) and A =  £ Xl U  E X2. 

7/Outcomeu,i(Z)^) =  { ( $ , 0 ) } ,  then Status(Root(DialogueTree(D*)), DialogueTree(D^)) =  U (from 

the definition o f warrant inquiry outcome, Definition 4.4.6), hence if  Outcome^ (D^.) — {($>, 0 ) } ,  then 

Status( Root(T ̂ ) =  U. Hence, from the definition o f warrant inquiry soundness (Definition 5.7.1 ), 

D lr is sound. □

I now show that all well-formed exhaustive warrant inquiry dialogues are complete, again, based on 

the fact that the dialogue tree is the same as the dialectical tree constructed from the agents’ beliefs with 

the same argument at the root.

Theorem 5.7.2 I f  D\. is a well-formed exhaustive warrant inquiry dialogue, then D lr is complete. 

Proof: I f  D l does not terminate at t, then D lr is complete. So, let us assume that D lr terminates at
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t. Theorem 5.6.1 states that DialogueTree(.D*) =  where A  = RootArg{Df) and A  =  £ Xl U 

£ X2. Hence z/Status(Root(T^), T ^) =  U, then Outcome,^(Z)£) =  { ($ ,0 )}  (from the definition of 

warrant inquiry outcome, Definition 4.4.6). Hence, from the definition o f warrant inquiry completeness 

(Definition 5.7.2), D lr is complete. □

I now combine the two previous theorems with the result that all dialogues terminate, to give us the 

following desired results. The first states that all warrant inquiry dialogues have a continuation such that 

if the outcome of this continuation is (<f>, 0 ), then the status of the root node of the dialectical tree that is 

constructed from the union of the agents’ beliefs with ($ ,0 )  at its root is U.

Theorem 5.7.3 Let D lr be a well-formed exhaustive warrant inquiry dialogue with participants x \  

and X2- There exists t' such that r < t ', D* extends D lr, and if  O u tcom e^D ^ ) =  { ( $ , 0 ) } ,  then 

S tatus(R oot(T ^).T ^) =  U where A  = ( $ , 0 )  and A  =  £ Xl U £ X2.

Proof: This follows from Theorems 5.7.1 and 5.4.1. □

The next theorem states that all warrant inquiry dialogues have a continuation such that if the root 

argument of the dialogue is ($, 0 } and the status of the root node of the dialectical tree that is constructed 

from the union of the participating agents’ beliefs and has {$, 0 ) at its root is U, then the outcome of the 

continuation of the dialogue is (<3>, 0).

Theorem 5.7.4 Let D fr be a well-formed exhaustive warrant inquiry dialogue with participants X\ 

and X2■ There exists t! such that r < t!, D lr extends D lr, and if  RootArg(£0) =  (<£>, 0) and 

Status(Root(T^). T ^) =  \J where A  =  ($ ,0 )  and A  =  £ Xl UE12, then Outcome*^(T>£) =  {($ ,0 )} . 

Proof: This follows from Theorems 5.7.2 and 5.4.1. □

5.8 Summary
I have shown in this chapter that dialogues generated by two agents in my system who are both following 

the exhaustive strategy (i.e. well-formed exhaustive dialogues) are sound and complete. In the next 

chapter I will introduce a new strategy called the pruned tree strategy. My intention when designing the 

pruned tree strategy was that it should be more efficient in some way than the exhaustive strategy, but 

that the dialogues it generates must also be sound and complete.



Chapter 6

Pruned tree strategy

In this chapter I introduce another strategy for use during a warrant inquiry dialogue, that I call the pruned 

tree strategy (unlike the exhaustive strategy, agents cannot use the pruned tree strategy in argument 

inquiry dialogues as well as in warrant inquiry dialogues). The motivation behind this strategy is to 

produce a pruned version of the dialogue tree, but to still produce sound and complete warrant inquiry 

dialogues. I give examples of warrant inquiry dialogues produced by this strategy later in this chapter. 

These examples are easily comparable with the examples of warrant inquiry dialogues produced by the 

exhaustive strategy given in Section 4.7, as the examples in this chapter are based on the same situations 

as the examples in Section 4.7 (i.e. the belief bases of the agents are the same and the topic of the 

dialogue is the same, only the strategy being followed changes).

Dialogue trees have the potential to be quite large. Even if the participating agents only have 

relatively small belief bases, it is possible that these beliefs can combine to create many interacting 

arguments. Some branches of a dialogue tree may be considered redundant and I will now discuss such 

redundancy in dialogue trees, that I intend to avoid with the use of the pruned tree strategy.

Consider the dialogue tree shown in the left of Figure 6.1. The node labelled with A 3 is defeated, as 

A 7 defeats this argument and there is no argument that defeats A 7 . A & also defeats A 3 but this node has 

no bearing on the status of A 3 as it is itself defeated by Ag . This is an example of a type of redundancy 

in dialogue trees. If a node that is defeated has any children that are also defeated, then the sub-tree that 

has the defeated child at its root is redundant.

Now consider the node labelled with A 2 . This argument is defeated by both A 4 and A 3 , and both 

of these arguments are themselves undefeated. However, either one of A 4 or A 5 on its own is sufficient 

to defeat node A 2 , and this is is another type of redundancy that we see in argument trees. This type of 

redundancy is seen if a node that is defeated has more than one child that is not defeated.

The tree on the right hand side of Figure 6.1 shows a dialogue tree that we may generate from the 

same set of arguments with the redundancies detailed here removed. Note that the status of the root node 

is the same in both trees.

Adding a child to a node that is already defeated will have no effect on the status of that node, 

nor on the status of any other nodes in the dialogue tree. This is something that Garcia and Simari also 

considered. They observe that a marked dialectical tree resembles the minimax tree [22] and propose a
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A i U A i U

A 2 D A 3 D A2 D A 3 D

A4 U a 5 u a 6 d a 7 u a 5 u a 7 u

a 8 d a 9 u

A 10 u

Figure 6 .1: Redundancy in dialogue trees. The tree on the right is a pruned version of the tree on the left, 

with the redundancies discussed here removed.

PROLOG-like specification of the top-level of the warrant procedure with pruning, where the pruning 

process is similar to the a — 3  pruning of a minimax tree.

As a dialectical tree is constructed, the status of the nodes in the tree change. This means that, 

although adding a certain argument at some point in the construction of the tree might not affect the 

status of any nodes (because all the nodes that it defeats are already defeated) at another point this may 

no longer be the case (as the status of the nodes that it defeats may change). The reverse is also true. It 

may be the case that adding an argument at a certain point in the construction of a dialectical tree causes 

the status of a node to change. However, if that argument does not get added at that point, then it may be 

the case that there will never be another point at which adding it will change the status of a node, as the 

node whose status is changed is already defeated by some other argument.

An example of this is shown in Figure 6.2. Each of the trees in this figure are meant to represent a 

dialectical tree at three specific points in its construction, at which the agent has the opportunity to add 

the argument A4 which defeats the argument A 2. I have shown where A 4 would go in the tree if it were 

added with a dotted line. In the first tree (on the left of the figure) A 2 is already defeated by A 3 , which 

is itself undefeated, and so adding A 4 would have no effect on the status of any nodes. In the second 

tree (in the middle of the figure) A 2 is undefeated, as a new argument has been added, A 3 , which defeats 

A3 . So, at this point in the construction of the tree, adding A4 would change the status of both A 2 and 

Ai. In the final tree (on the right of the figure) A 2 is now back to being defeated again, as another new 

argument has been added, A6, that defeats A5. So adding A4 to the tree at this point would again have 

no effect on the status of any nodes in the dialogue tree.
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A i  U A i  D A i U

An. D A o V An D

a 3 u A 4 An. D a 3 v a 4

a 5 v As D

A>u

Figure 6.2: Changing node status in dialogue trees. Adding A 4 to the tree on the left or to the tree on the 

right does not affect the status of any node in the tree it is being added to. Adding A 4 to the tree in the 

middle does affect the status of existing nodes in the tree.

Garcia and Simari’s system is intended for use by a single agent. This means that an agent can 

construct a dialectical tree in a depth-first manner, and once it has constructed a path from the root to 

a leaf (for which it knows it has no acceptable defeaters) it can be sure that there will not be any more 

defeaters that will get added as a child of the leaf (as there is no acquisition of new information). It is 

then able to know which of the nodes in the path it is worth defeating, being the ones that are marked U.

As my system deals with inter-agent reasoning between two agents, the beliefs are split across 

the two agents, and new knowledge is acquired via the commitment stores, it is not always possible to 

construct dialogue trees in a depth-first manner. This is shown in the following example.

Example 6.0.1 Let Xi and x 2 be two agents that are participating in a well-formed exhaustive warrant 

inquiry dialogue.

£*■ = {(a,4), (e, l) ,M,l), (a->M),(e—>-M)}

£ «  =  {(c, 3), (d, 2 ) ,(c -  - a ,  3), (d -> 2)

Agent x 2 opens a warrant inquiry dialogue with topic h. Informally, the dialogue progresses as follows.

• agent Xi asserts ({(a, 4). (a —» 6,4)}. b)

•  agent x 2 asserts ({(c, 3). (c ->a, 3)}, ->a)

• agent x i asserts ({(e. 1 ), (e —> -•&,1 )}, ->&}

• agent x 2 asserts ({(d , 2), (d —*■ ->c, 2)}, ->c)
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((a, 4), (a —> 6 ,4)}. 6 ) 1

({(c,3),(c->->a,3)},-*a) 2 ({(e, 1), ( e -> --6 ,1 )} .->6) 3

< {(< f,2 ),(d -> -c ,2 )} ,^c) 4

({(^d, l)},-^d) 5

Figure 6.3: Dialogue tree from Example 6.0.1 labelled with a number representing the order in which 

the arguments were asserted.

•  agent x \ asserts ({(_|d. 1 )}, ~'d)

This produces the dialogue tree shown in Figure 6.3. I have numbered the nodes to show the order the 

tree was constructed, which is not in a depth-first manner.

There are, then, two principles that my pruned tree strategy adopts. Informally, these are: only 

assert an argument if it will alter the status of a node in the tree; if there is a choice of such arguments to 

assert then pick the one that changes the status of a node furthest away from the root. The pruned tree 

strategy, like the exhaustive strategy, dictates that the agent must pick the most preferred of a constrained 

set of assert moves if there are any, else it must pick the most preferred of a constrained set of open 

moves if there are any, else it must make a close move.

The set of assert moves from which an agent must pick the most preferred are those that assert an 

argument which the agent can construct and which would change the status of a node in the dialogue 

tree. In addition to this, the level of the node whose status it would change must be at least as great as 

the level of any other nodes whose status may be altered by asserting an argument that the agent can 

construct.

The set of open moves from which an agent must pick the most preferred are those that open an 

argument inquiry dialogue which has as its topic a domain belief which is present in the agent’s beliefs 

and, if an argument for the consequent of the topic were successfully found, then there exists a node 

in the tree, N , that is status U and that is labelled with an argument that would be in conflict with the 

argument for the consequent of the topic of the dialogue. In addition to this, if there are any other open 

moves that open an argument inquiry dialogue which has as its topic a domain belief that is present in 

the agent’s beliefs, then the level of any node in the tree that is labelled with an argument that would be 

in conflict with an argument for the consequent of the topic of the dialogue must be less than or equal to 

the level of node N .
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I will now formally define this strategy.

Definition 6.0.1 The pruned tree strategy is a function Qprn ■ T>topx l M ,  where cTopic(D^) =  7 ,

cType(Dj) =  wi, Current(D*) =  D l  and

Q prn(D \,P) = <

Prefa(AssertSprn(D i, P)) iff Assensprn{D \, P) ^  0

Prefo(0pensprn(Z>j, P )) iff Assertsprn(D \, P) = 0 and  Opensprn(D \,P )  ±  0 

(P, close, d ia logue{w i,'y))  iff Assertsprn(D \, P) =  ty-and Opensprn(D5, P) =  0

where

Assertspr„ (D ‘ . P ) =  {(P , assert , ($ , <b)) 6  I I P) | ($ , € _4(EP U CSP)

and either (1 ) 0  =  7  or

(2) there exists N  G Nodes(DialogueTree(.D*)) such that 

[Status(iV, DialogueTree(Z)*)) =  U and 

Status(AT, DialogueTree(Z)* +  {P, assert, ($ .0 ))))  =  D and 

for all (P, assert, ($ ', 0')} 6  n ^ ser*(Z)i, P ) szzc/z that 

( 4 > ',^ ') s ^ ( S p u C S |J)

[i/Af' G Nodes(DialogueTree(D*)) such that Status(iV', DialogueTree(Z)*)) =  U 

and Status(Af', DialogueTree(Z)* +  (P, assert, ($ ', 0 ')))) =  D, 

then Level (AT) > Level (A7-')]]}

Opensprn(D j, P ) =  {(P , open, dialogue(ai, a i  A . . . A a n -> /3)) € I I ^ en( P ^ P )  ] 

there exists L G N such that (a i A . . .  A an —> (3, L) G E p zz/zd 

either (7) RootArg(D*) =  nttii anti ft = j  or 

(2) there exists ($ , 0) G ^4(CPp U CSP) such that

[<J> j ~  3  and there exists N  G I M o d e s ( D i a l o g u e T r e e ( .D * ) )  such that 

L a b e l ( A f )  =  ( $ ,  0} and S t a t u s ( A T ,  D i a l o g u e T r e e ( P ^ ) )  =  U 

and fo r  all (P, open, dialogue(ai, a[ A . . .  A a'm —> p')) G U fffn (D \, P) 

such that there exists L G N such that (a[ A . . .  A a'm —► /?', L) G S p 

[z/there exists ($ ', 0 ') G A (C S p  U C S~) such that <&' |~  -i/7' 

and there exists N '  G N o d e s ( D i a l o g u e T r e e ( j D * ) )  szzc/z t/zat 

L a b e l ( A f ')  =  ($ ',0 '}  o r a / S t a t u s ^ V ' ,  D i a l o g u e T r e e ( Z ) * ) )  =  U , 

then L e v e l(T V ) >  L e v e l (T V ') ] ]}

The pruned tree strategy states that an agent must chose the most preferred assert move from 

Assertsprn(P j , P ) if this set is not empty. This set only consists of legal assert moves from the set 

IV ^ fert(D \.P ), and so they must change the dialogue tree in some way. It also only consists of 

moves that assert an argument that can be constructed from agent making the move’s beliefs and the 

other agent’s commitment store. If there is not already a root argument and there is such a move
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that asserts an argument whose claim is the topic of the dialogue, then the set A s s e r t s prn{D \,P )  

will consist of only this move. Otherwise, the set A s s e r t s prn(D \,P )  will consist of the set of such 

moves that assert an argument {<3>. 4>) such that there is a node N  in the dialogue tree that has status 

U ( S t a t u s ( A r, D i a l o g u e T r e e ( Z ) * ) )  =  U) and that asserting ($ , 4>) would cause the status of the node 

to change to D  ( S t a t u s ( N ,  D i a lo g u e T r e e ( Z ) *  +  (P, assert, {<!>,</>)))) =  D ) .  In addition to this, out of 

all the possible assert moves that would cause the status of a node in the dialogue tree to change from 

U to D ,  only those that would alter the status of a node at least as far away from the root of the tree 

as the other nodes whose status would be changed by other such assert moves will appear in the set 

A s s e r t s Pm { D \, P ). This is because for all (P. a ssert. ($ ', 4>')) £ n “ ŝert(D \, P ) such that {$', <//) £ 

A{T.P U  C S~) [if N ' £ N o d e s ( D i a l o g u e T r e e ( P * ) )  such that S t a t u s ^ ' ,  D i a l o g u e T r e e ( Z ) * ) )  = 

U and S t a t u s ^ ' ,  D i a l o g u e T r e e ( D £  +  (P, assert, (<&', 4>')))) =  D , then L e v e l(A T ) >  L e v e l ( J V ') ] .

If the set Assertsprn(P i, P ) is empty, then the agent must chose the most preferred move from 

OpenspT.n( P i ,P ) ,  as long as this set is not empty. This set only consists of legal open moves from 

the set U ° ^ n {D \,P ), and so they cannot cause a question store to be created with the same con­

tent as one that has previously been created during the dialogue. It also only consists of moves that 

open an argument inquiry dialogue whose topic is present in P ’s beliefs. If there is not yet a root 

argument for the dialogue, then Opensprn(£>i, P ) will consist of any such open moves that open an 

argument inquiry dialogue whose topic is a defeasible rule, the consequent of which is the topic of 

the top-level warrant inquiry dialogue. Otherwise, the set Opensprn(D i, P ) consists of moves that 

open an argument inquiry dialogue with topic q i A . . .  A a n —> p  as its topic such that there is a 

node in the dialogue tree whose status is U and that is labelled with an argument from which you can 

defeasibly derive (there exists (3>. (f>) £ A {C S lP U C S~) such that [$ |~  ->p and there exists N  £ 

Nodes(DialogueTree(D*)) such that Label(iV) =  ($ ,0 ) and Status(iV, DialogueTree(D*)) =  U]). In 

addition to this, out of all the open moves that fit this description, only the ones that conflict with a node 

that is at least as far away from the root node of the tree as other nodes that conflict with other such 

open moves appear in the set Opensprn(P j, P ). This is because for all (P ,open ,d ia logue(a i,a '1 A 

. . . A  —> 3')) £ U ° ^ n(D \. P) such that there exists L £ N such that (a[ A . . .  A a'm

Q'.L) £ £ F [if there exists ($ ', <$>') £ A (C S p  U C\SP) such that |~  - /̂3' and there exists N ' £ 

Nodes(DialogueTree(£>*)) such that Label(./V') =  ($ ', <j>') and Status(A^', DialogueTree(P^)) =

U, then Level(iV) > Leve^TV')].

If both the sets Assertsprn(D j, P ) and Opensprn(D j, P ) are empty, then the agent must make a 

close move.

I now define a well-formed pruned tree dialogue. This is a well-formed warrant inquiry dialogue 

that is generated by two agents who both follow the pruned tree strategy if the current dialogue is a 

warrant inquiry dialogue but still follow the exhaustive strategy if the current dialogue is an argument 

inquiry dialogue. Note that I have specified that a well-formed pruned tree dialogue must be a well- 

formed warrant inquiry dialogue as the pruned tree strategy can only be used for generating warrant 

inquiry dialogues.
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Definition 6.0.2 A well-formed pruned tree dialogue is a well-formed warrant inquiry dialogue D fr 

with participants x \ and X2 such that

for all s such that r < s < t and D lr extends D f

if D\ is a top-dialogue o f D \ and D \ is a top-dialogue o f D* 

and D\ extends D \

and R e c e i v e r ( m s )  =  P  (P  E {rci, X2 }) and c T y p e ( D * )  =  9, 

then if 9 =  wi, then il,prn(D f, P ) =  m s + 1 , 

else i f  6  =  ai, then Qexh{D f, P ) =  m s+1 ,

In the next section I give examples of well-formed pruned tree dialogues.

6.1 Dialogue examples
In this section I give examples of warrant inquiry dialogues that take place between two agents, x\ 

and X2 , both of which follow the exhaustive strategy whilst the current dialogue is a nested argument 

inquiry dialogue, but follow the pruned tree strategy whilst the current dialogue is the top-level warrant 

inquiry dialogue. Throughout all the examples in this section, I will assume that p.(a) =  1, /f(-’a) =  2, 

p(b) =  3, p{~'b) = 4, p(c) =  5, p(->c) =  6 , p(d) =  7 etc. Each example here has an equivalent example 

in Section 4.7, where the participating agents’ beliefs and the topic of the dialogue are the same as here. 

This is so I can directly compare warrant inquiry dialogues generated with the exhaustive strategy with 

warrant inquiry dialogues generated with the pruned tree strategy.

6.1.1 Warrant inquiry dialogue example 1

This example uses the same situation as the one from Section 4.7.9, except the agents apply the pruned 

tree strategy whilst taking part in a warrant inquiry dialogue. In the following example we have an agent 

xj who wishes to enter into a dialogue with agent X2 in order to try to find a warrant for an argument for 

b. We have

£ X1 =  { ( c -1)> ( c  —• 1). 1)}

£ «  =  {(a, 2 ), (a i>, 2 ), (d, 2 ), (d -  - 6 , 1 ), (-c , 2 )}

Agent x \ opens an warrant inquiry dialogue with 6 as its topic. The dialogue proceeds as in Ta­

ble 4.10.

The outcome of the top-level warrant inquiry dialogue D \ depends on the dialogue tree 

DialogueTree(Dj). The corresponding marked dialogue tree constructed at the end of the dialogue 

is shown in Figure 6.4.

As the root argument of the dialogue tree is defeated, the outcome of the dialogue is the empty set.

Outcome^ (£>j) =  0
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t cs*xi rnt c s i , QSt

1 (x2 , open, dialogue{wi, b))

2 (x \ , assert, ({(a, 2 ), (u -> 6 , 2 )}, 6 )) (a, 2 ) 

( o - i . , 2 )

3 (c, 1 )

(c —► ->a. 1 )

<x2, assert, {{(c, 1 ), (c —> ^a , 1 )}. ->a))

4 (x i, close, dialogue(wi, b))

5 (x2, close, dialogue(wi, b))

Table 6.1: Warrant inquiry dialogue example 1. 

{{(°r 2), (tt — b, 2)}, 6) D

U  <{(c,  1 ) ,  ( c  —► ^ a , l ) } , i a )

Figure 6.4: The marked dialogue tree for warrant inquiry dialogue example 1.

Note that agent x 2 cannot assert the argument ({(->c, 2)}, ->c) at t =  4, even though it conflicts with 

the argument ({(c, 1). (c —> ->a, 1)}. -<a}. This is because doing so would not alter the dialogue tree, as 

({( >c, 2 )}. —>c) only has a preference level of 2  and so is not a defeater for ({(c. 1 ), (c —> ->a, 1 )}, ->a).

Also note that the dialogue tree produced by this dialogue (Figure 6.4) has two less nodes than that 

produced in the equivalent dialogue using the exhaustive strategy (Figure 4.3). However, the outcomes 

of both dialogues are the same.

6.1.2 Warrant inquiry dialogue example 2

This example uses the same situation as the one from Section 4.7.10, except the agents apply the pruned 

tree strategy whilst taking part in a warrant inquiry dialogue. In the following example we have an agent 

x i who wishes to enter into a dialogue with agent X2 in order to try to find a warrant for an argument for 

b. We have

=  {(a, 2 ), ( - c : 1 )} £ * 2 =  {(a -> 6 , 1 ), (c -  - a ,  1 ), (c, 1 )}

Agent x\ opens an warrant inquiry dialogue with b as its topic. The dialogue proceeds as in Ta­

ble 6 .1 .2 .

The outcome of the top-level warrant inquiry dialogue D \ 4 depends on the dialogue tree 

DialogueTrpe(D}4). The corresponding marked dialogue tree constructed at the end of the dialogue 

is shown in Figure 6.5.

As the root node of the dialogue tree is marked as undefeated, the outcome of the dialogue D j1 is
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t c s ^ m t c s lX2 Q St

1 (x2, open, dialogue(wi, b))

2 ( x \ , open, dialogue(ai, a —> b)) QS2 = {a,b}

3 (a, 2) (x2, assert, ({{a, 2 )}, a))

4 (x1, assert, ({(a, 2), (a -» 6 , 1 )}, 6)) (a, 2 )

(a —> 6 . 1 )

5 (x 2 , close, dialogue(ai, a —> b))

6 (x i, close, dialogue(ai, a —» b))

7 (.x 2, close, dialogue(wi, b))

8 (xi, assert, ({(c, 1 ), (c —> --a, 1 )}, -<a)) (c, 1)

(c —» -na, 1)

9 H M ) (x2, assert, ({(->c, l)} -^ ))

1 0 (x i, open, dialogue(ai, c —> ^a)) Q S 10 =  {c,

11 (x2, close, dialogne(ai, c —» -■a))

1 2 (x i , close, dialogue(ai, c —»• ->a))

13 (x i, close, dialogue(wi, b))

14 (x2, close, dialogue(wi, b))

Table 6.2: Warrant inquiry dialogue example 2.

D ({(c. 1), ( c - .  -■a, l )} ,^ a )

U ( { ( - c , l ) } ^ c )

Figure 6.5: The marked dialogue tree for warrant inquiry dialogue example 2.
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({(a. 3), (a — 6, 2)}, 6) D

120

U ({(d. 2), (d —>■ c, 1). (c —> -<6,1)}, ->6)

Figure 6 .6 : The marked dialogue tree for the warrant inquiry dialogue example 3. 

the argument at the root of the tree.

Outcome™(£>}4) =  {({(a, 2 ), (a -> 6 , 1 )}, b)}

There are two nested argument inquiry dialogues that are sub-dialogues of D \a: D® and D \q.

Outcomeai(D 5 ) =  {({(a, 2 ), (a -» 6 , 1 )}, 6 )}

Outcome^ (D®) =  0

Note that the dialogue tree produced by this dialogue (Figure 6.5) is the same as that produced in 

the equivalent dialogue using the exhaustive strategy (Figure 4.4). In fact, both dialogues proceed in 

exactly the same way.

6.1.3 Warrant inquiry dialogue example 3

This example uses the same situation as the one from Section 4.7.11, except the agents apply the pruned 

tree strategy whilst taking part in a warrant inquiry dialogue. In the following example we have an agent 

2*1 who wishes to enter into a dialogue with agent 2*2 in order to try to find a warrant for an argument for 

6 . We have

EXl =  {(a. 3), (d, 2)} EX2 =  {(a -> 6,2), (d — c, 1), (c -» -6 ,1), (d -+ -<a, 3)}

Agent x \ opens an warrant inquiry dialogue with 6 as its topic. The dialogue proceeds as in Ta­

ble 6.3.

The outcome of the top-level warrant inquiry dialogue Df* depends on the dialogue tree 

DialogueTree(Z)^0). The corresponding marked dialogue tree constructed at the end of the dialogue 

is shown in Figure 6 .6 .

As the root node of the dialogue tree is marked as defeated, the outcome of the dialogue D \ 6 is the 

empty set.

O utcom e^ (D^0) =  0

There are three nested argument inquiry dialogues that are sub-dialogues of D%6: D%, Dg8 and 

D \i. D\q is also a sub-dialogue of jD|8.
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t c s 1̂ m t c s i 2 Q St

1 (x2 , open. dialogue{wi, &))

2 (x i, open, dialogve(ai, a —> 6)) Q S 2 = {a, 6}

3 (a. 3) (^2 , assert, ({(a. 3)}, a))

4 (x \, assert, ({(a. 3), (a —» 6,2)}, 6)) (a, 3)

(a —> 6 , 2 )

5 (x2 , close, dialogue(ai. a —> 6))

6 {x\,close,dialogue(ai,a  —» 6))

7 (#2 , close, dialogue(wi, b))

8 (x i, open, dialogue(ai, c —► ->6 )) r00

9 (x2, close, dialogue(ai. c —» ->6))

10 (x\, open, dialogue(ai. d —> c)) Q5 i0 =  {d, c}

11 (d, 2) (x2, assert, {{(d, 2)}, d))

12 (x i, assert, ({(d. 2), (d —> c, l)} ,c)) (d, 2)

(d -»• c, 1)

13 (x2 , close, dialogue(ai,d  —> c))

14 (x i , close, dialogue(ai, d —► c))

15 (x2, close, dialogue(ai, c —» ->&))

16 (x i, assert, {{(d, 2). (d —> c, 1 ), (c ->  -.6,1)

(c-> 6,1)})

17 (x2, close, dialogue(ai, c —> ->6))

18 (xi, close, dialogue(ai. c —» -.6))

19 (x’2, close, dialogue(wi, b))

20 (xi, close, dialogue(wi, b))

Table 6.3: Warrant inquiry dialogue example 3.
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t cs*Xl rnt c s lX2 QSt
1 (x2 .open, dialogue(wi, b))
2 ( x \ , close, dialogue(wi, 6 ))

3 (.X2 , assert, ({(a, 2 ), (a —> b, 1 )}, 6)) (a, 2 )

(a -»• b, 1 )

4 {xi, open, dialogue(ai, c —> ->a)) Q S 4 =  {c, ->a)

5 (x2, assert, ({(c, l)} ,c)) M )
6 (x i, assert, ({(c, 1 ), (c —> ->a, 1 )}. ->a)) (c —> ->a, 1 )

7 {x2 , close, dialogue(ai, c —► _,a))

8 (x i, close, dialogue(ai,c —» ->a))

9 h e ,  l) (X2 ■ assert, ({(—>c, 1 )}, -<c})

1 0 (x j. open, dialogue(ivi. b))
11 (x2 , close, dialogue{wi, b))

Table 6.4: Warrant inquiry dialogue example 4.

Outcome^(£>f) =  {({(a, 3), (a -» b. 2)}, 6)}

Outcome^(Dg8) =  {({{d ,2 ).{d  -> c, 1 ), (c -» -.6 , 1 )}, -*6)}

Outcome^(£>}q) =  {({(rf, 2 ), (d -> c, l)},c)}

Note that the dialogue tree generated here (Figure 6 .6 ) is one node smaller than that generated in 

Section 4.7.11, although the outcomes of the two dialogues are the same.

6.1.4 Warrant inquiry dialogue example 4

This example uses the same situation as the one from Section 4.7.12, except the agents apply the pruned 

tree strategy whilst taking part in a warrant inquiry dialogue. In the following example we have an agent 

x \ who wishes to enter into a dialogue with agent X2 in order to try to find a warrant for an argument for 

b. We have

£ x> =  {(a, 2 ), (a -  b ,1 ), (c, 1 ), h e ,  1 )} £ X2 -  {(c -> -,a, 1 )}

Agent x i opens an warrant inquiry dialogue with 6 as its topic. The dialogue proceeds as in Ta­

ble 6.4.
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U {{(a, 2 ), (a —* 6 , 1 )}, 6 )

D ({(c, 1), (c -»  - a ,  l)} ,^ o )

I) ({ ( -c , l)} ,-c )

Figure 6.7: The marked dialogue tree for the warrant inquiry dialogue example 4.

The outcome of the top-level warrant inquiry dialogue D \l depends on the dialogue tree 

DialogueTree(£)111). The corresponding marked dialogue tree constructed at the end of the dialogue 

is shown in Figure 6.7.

As the root argument of the dialogue tree is undefeated, the outcome of the dialogue is the argument 

at the root of the tree.

O u tco m e^ /)} 1) =  ({(a, 2 ), (a -» b, 1)}, 6)

Note that there is a nested argument inquiry dialogue that appears as a sub-dialogue of D \l .D \.

Outcomeai(D f) =  {({(c, 1), (c -»• -.a, 1)}, -^a}}

Also note that the dialogue tree produced by this dialogue (Figure 6.7) is the same as that produced 

in the equivalent dialogue using the exhaustive strategy (Figure 4.6). In fact, both dialogues proceed in 

exactly the same way.

6.1.5 Warrant inquiry dialogue example 5

This example uses the same situation as the one from Section 4.7.13, except the agents apply the pruned 

tree strategy whilst taking part in a warrant inquiry dialogue. In the following example we have an agent 

xi who wishes to enter into a dialogue with agent X2 in order to try to find a warrant for an argument for 

b. We have

£ Xl =  {(a, 4), (a —> 6 , 4 ); (c, 3), (c -  - 6 , 3), (e, 2)}

£ X2 =  {(d, 3), (d -» ->a, 3), (--</, 1), (e —> 2), (-e , 1)}

Agent x\ opens an warrant inquiry dialogue with b as its topic. The dialogue proceeds as in Ta­

ble 6.5.

The outcome of the top-level warrant inquiry dialogue D \3 depends on the dialogue tree 

DialogueTree(Z)J3). The corresponding marked dialogue tree constructed at the end of the dialogue 

is shown in Figure 6 .8 .
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t c s 1̂ m t c s i , Q St

1 (x2. open, dialogue(wi, 6))

2 (x i, close. dialogue(wi, 6))

3 (a, 4) (.X2 . assert, ({(a, 4), (a —» 6,4)}, 6))

(a -* 6, 4)

4 (xj. assert, ({(d, 3), (d —> ->a, 3)}, ->«)) (A  3)

(d —» —>a, 3)

5 (x2, close. dialogue(wi, b))

6 (x i. assert, ({(->d , 1)}, ->d)) H U )
7 (c ,3) (x2. assert, ({(c, 3), (c —* ->6,3)}. ->a))

(c —* —*6,3)

8 (x i. close. dialogue(wi, 6))

9 (x2, open. dialogue(ai, a —► 6)) QSg =  {a, 6}

10 (x i , close, dialogue(ai, a —> 6))

11 (x2, close, dialogue(ai, a —> 6))

12 (x i. close. dialogue(wi, 6))

13 (x2. close. dialogue(wi, 6))

Table 6.5: Warrant inquiry dialogue example 5.

D ({(a, 4), (a -» b. 4)}, b)

U ({ (c ,3 ) ,( c - .  - 6 ,3 )} ,- .6) <{(d,3), (cl - .a ,3 )} ,-« )  D

U < {( -d , l ) } , -d >

Figure 6.8: The marked dialogue tree for warrant inquiry dialogue example 5.
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As the root argument of the dialogue tree is defeated, the outcome of the dialogue is the empty set.

Outcome^ (£>J3) =  0

Note that the dialogue tree produced by this dialogue (Figure 6 .8 ) is two nodes smaller than that 

produced in the equivalent dialogue using the exhaustive strategy (Figure 4.7), although the outcomes of 

both dialogues are the same.

6.2 Summary
In this chapter I have specified a new strategy for use during warrant inquiry dialogues. I have also given 

several examples of dialogues generated by this strategy. These examples are easily comparable with the 

examples of warrant inquiry dialogues produced by the exhaustive strategy given in Section 4.7. I have 

observed that each dialogue example given here has the same outcome as that of the equivalent example 

using the exhaustive strategy (in Section 4.7). I have also observed that, in some of the examples where 

the pruned tree strategy is used, the dialogue tree produced has less nodes than the dialogue tree produced 

by the exhaustive strategy. In the next chapter I will give an analysis of the dialogues produced by the 

pruned tree strategy.



Chapter 7

Analysis of dialogue system with pruned tree 

strategy

In this chapter I give results about warrant inquiry dialogues produced by my system in which both 

participating agents follow the pruned tree strategy whilst participating in a warrant inquiry dialogue but 

still follow the exhaustive strategy whilst participating in an embedded argument inquiry dialogue (i.e. 

about well-formed pruned tree dialogues, Definition 6.0.2). I will go on to show that all well-formed 

pruned tree dialogues terminate and that they are sound and complete. I will then show that the dialogue 

tree produced by the pruned tree strategy is never bigger than, and sometimes smaller than, the dialogue 

tree produced in the same situation but by agents that are following the exhaustive strategy.

7.1 Results about commitment stores
This section gives results about the contents of commitment stores that are constructed during a well- 

formed pruned tree dialogue. These results are similar to those for well-formed exhaustive dialogues 

given in Section 5.2, but they follow from different definitions. These lemmas are particularly simple but 

are included as they are useful building blocks which are later reused to give more interesting results.

The first lemma states that if the pruned tree strategy selects a move that asserts an argument, then 

it will be possible to construct that argument from the union of the agent making the move’s beliefs and 

the other participating agent’s commitment store. This is clear from the definition of the pruned tree 

strategy.

Lemma 7.1.1 Let D lr be a well-formed pruned tree dialogue with participants x \ and x-2 - I f  D\ is a 

top-dialogue o f D* a n d flprn(D \, P) =  (P, assert, ($, then (<f>. <p) e A (£ p U CSj>).

Proof: The definition o f the pruned tree strategy (Definition 6.0.1) ensures that i f  the assert move 

(P , assert, (<$, <f>)) is selected then it will be the case that ($ , 0 )  € A (E P U  C Sp). □

The next lemma states that an agent’s commitment store is always a subset of the union of both of 

the participating agents’ beliefs. This is clear from the previous lemma and the fact that commitment 

stores are only updated when an assert move is made.

Lemma 7.1.2 I f  D\. is a well-formed pruned tree dialogue with participants x \  and X2 , then C S 1 U

C S l2 C £ Xl U £ X2.
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Proof: Commitment stores are updated as follows (Definition 4.2.11).

0  ifft  = 0 ,

C5’̂ T1 U $  iff m t — (P, assert, ( $ , 0 )), 

C S ’p 1 otherwise.

CS

Hence, the only time that a commitment store is changed is when an agent P  makes the move 

(P , assert, (3>, </>)). From Lemma 7.1.1, we see that fo r (P, a ssert, (3>, fi)) to be a move made at point 

t +  1 in a dialogue, the condition ($, <f>) e  A(T.P U CS~f) must hold, hence $  C £ p  U C SP (from the 

definition o f an argument, Definition 3.2.1). As a commitment store is empty when t = 0, all elements o f 

the commitment stores must be an element o f the agents’ beliefs, hence C S Xl U C S X2 C E Xl U EX2. □

The next lemma states that commitment stores are always finite. This is because they are subsets of 

the agents’ beliefs, which I have assumed to be finite.

Lemma 7.1.3 Let D lr be a well-formed pruned tree dialogue with participants x i  and x^. The sets C S Xl 

and C S X2 are both finite.

Proof: From Lemma 7.1.2 we know that C S X1 U C S X2 C E Xl U £ X2. As the belief bases £ Xl and £ X2 

are each assumed to be finite, we know that the sets C S X and C S X2 are both finite. □

In the next section I discuss moves made in a well-formed pruned tree dialogue.

7.2 Results about moves
In this section I define the sets of different types of moves made during a well-formed pruned tree 

dialogue I go on to show that these sets are subsets of the upper bounds that I defined in Section 5.3. 

Although the results given here are very similar to those given for well-formed exhaustive dialogues in 

Section 5.3. they follow from different definitions and lemmas.

We will see shortly that the set of possible assert moves that I defined in Chapter 5 (Definition 5.3.1) 

is an upper bound on the set of assert moves made during a well-formed pruned tree dialogue. I first 

define the set of all assert moves that are made during such a dialogue. Note that this set does not include 

the move made at t =  1. This is deliberate, as the first move in a dialogue is chosen by some higher-level 

planning process, assumed to be separate from this system.

Definition 7.2.1 Let Dx be a well-formed pruned tree dialogue with participants X\ and x^. The set o f 

assert moves made during D lr is denoted A s s e r t s M a d e p r n (_D *) as follows:

A s s e r t s M a d e p r n ( .D * )  =  {(X , assert. {$,(/>)} | X  £ {X \,X 2 } and either

i f r  f  1, then (X , a ssert , ($ , <f)) appears in the sequence

else, i fr  = l, then {X , assert, ($ , f ) )  appears in the sequence D \}

I now show that the set of possible assert moves (Definition 5.3.1) is an upper bound on the set of 

assert moves that are made during a well-formed pruned tree dialogue. That is to say, if an assert move 

appears in such a dialogue, then it is part of the set of possible assert moves for that dialogue. This is 

clear from the definitions of the exhaustive and the pruned tree strategies (Definitions 4 .5 .4  and 6.0.1).
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Lemma 7.2.1 I f  D* is a well-formed pruned tree dialogue with participants x \  and x<i, then 

AssertsMadeprn(D£) C  PossAsserts(Z>^).

Proof: Let us assume that (P, assert, ($, 0)) G AssertsM adeprn (D lr ) and D \ is a top-dialogue 

of D f  From the definition o f assert moves made (Definition 7.2.1), we see that either (1) 

(P, assert, ($ ,0 )) =  Tlexh(D[, P), for some s, where r  — 1 < s < t and D \ extends D\, or (2) 

(P, assert, (<I>, 0)} =  Qprn(Z)f, P), for some s, where r — 1 <  s < t and D \ extends D \.

(Case 1) From the definition o f the exhaustive strategy (Definition 4.5.4), we get that {<&. 0) G 

A(T.P U C S~ ). From Lemma 7.1.2 and Lemma 5.1.1, we get that (3>, 0 )  G * 4 ( £ p  U  £ p ). Hence (from 

the definition o f the set o f possible asserts, Definition 5.3.1), (P, assert, (<&, 0 ) )  G P o s s A s s e r t s ( Z ) * ). 

(Case 2) From the definition o f the pruned tree strategy (Definition 6.0.1), we get that (<3>, 0} G 

. 4 ( £ p  U C S p). From Lemma 7.1.2 and Lemma 5.1.1, we get that (<h, 0 )  G A(T,P  U  £ p ). Hence (from 

the definition o f the set o f possible asserts. Definition 5.3.1), (P, assert, ( 4 > , 0 ) )  G P o s s A s s e r t s ( D ^ ) .  

Hence, from case 1 and case 2, A s s e r t s M  a d e p r  n (D * ) C  P o s s A s s e r t s ( D ^ ) .  □

I now show that the set of assert moves that are made during a dialogue is finite, as I have shown 

that it is a subset of the set of possible assert moves (Lemma 7.2.1), which I have already shown to be 

finite (Lemma 5.3.2).

Lemma 7.2.2 I f  D lr is a well-formed pruned tree dialogue, then the set Asserts Madeprn(Z)£) is finite. 

Proof: This follows from Lemma 5.3.2 and Lemma 7.2.1. □

I now consider open moves. I will show shortly that the set of possible open moves (Definition 5.3.3) 

is an upper bound on the set of open moves made during a well-formed pruned tree dialogue. That is 

to say, if an open move is made during such a dialogue, then it must be part of the set of possible open 

moves. I now define the set of all open moves made during such a dialogue, which does not include the 

open move made at t =  1 , as this move is assumed to be selected by some higher-level planning process 

external to this dialogue system.

Definition 7.2.2 Let D* be a well-formed pruned tree dialogue with participants x \  and X2 - The set of 

open moves made during D lr is denoted OpensMadeprn(D*) such that

OpensMadeprn(Z)£) =  {(X,open,dia logue(ai,r))) | X  G { x \ ,X 2 } and either

i fr  f  1, then (X , open, dialogue(ai, y)) appears in the sequence D lr 

else, i fr  = 1 , then (X, open, dialogue(ai, 7 )) appears in the sequence D \}

I now show that the set of possible open moves is an upper bound on the set of open moves that are 

made during a well-formed pruned tree dialogue. This is clear from the definitions of the exhaustive and 

the pruned tree strategies (Definitions 4.5.4 and 6.0.1).

Lemma 7.23 I f  D lr is a well-formed pruned tree dialogue with participants x \  and X2 , then 

OpensMadeprn(Z)£) C  PossOpens(D^).
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Proof: Let us assume that (P,open,dialogue(a.i, 7 ) )  G O p e n s M a d e p r n ( D ‘ )  and D \ is a top- 

dialogue o f D lr. From the definition o f open moves made (Definition 7.2.2), we see that either (I)

(P ,open,dialogue{ai,y)) =  f lexh(D f, P), for some s, r -  1 < s < t, where D\ extends D\, or (2) 

{P, open, dialogue(ai, 7 ) )  =  Qprn(D l, P), for some s, r — 1 <  s < t, where D\ extends D{.

(Case 1) From the definition o f the exhaustive strategy (Definition 4.5.4), we get that there exists L  G N 

such that ( 7 ,  L) G Y>p , hence, ( 7 ,  L ) G T,p  U  E p . Hence, from the definition o f the set o f possible opens 

(Definition 5.3.3), (P.open,dialogue(ai,'y)) G P o s s O p e n s ( D £ ) .

Case 2: From the definition o f the pruned tree strategy (Definition 6.0.1), we get that there exists L  G N 

such that ( 7 ,  L) G £ p , hence, ( 7 ,  L) G £ p  U  £ p . Hence, from the definition o f  the set o f possible opens 

(Definition 5.3.3), (P,open,dialogue(ai,'y)) G P o s s O p e n s ( Z ) * ).

Hence, from case 1 and case 2, O p e n s M a d e p r n ( .D £ )  C P o s s O p e n s ( D * ) . D

I now show that the set of open moves that are made during a well-formed pruned tree dialogue is 

finite. This is clear as I have shown that the set of possible moves is an upper bound on the set of open 

moves made (Lemma 7.2.3), and I have shown that this set is finite (Lemma 5.3.6).

Lemma 7.2.4 I f  D lr is a well-formed pruned tree dialogue, then the set O p e n s M a d e p r n ( .D * ) is finite. 

Proof: This follows from Lemma 5.3.6 and Lemma 7.2.3. □

I now define the set of moves used in a well-formed pruned tree dialogue. Note again that I am not 

considering the move made at t = 1 , as this is selected by some higher-level process that is beyond the 

scope of this work.

Definition 7.2.3 Let D lr be a well-formed pruned tree dialogue with participants x \ and X2 - The set o f 

moves made during D lr is denoted M o v e s M a d e p r n (Z )* )  such that

M o v e s M a d e p r n (D * ) =  {m  | i f  r /  1, then m  appears in the sequence

else, i f r  — 1, then m appears in the sequence D \}

I will now show that the set of possible moves (Definition 5.3.5) is an upper bound on the set of 

moves made during a dialogue. Again, this is clear from the definitions of the exhaustive and the pruned 

tree strategies (Definitions 4.5.4 and 6.0.1).

Lemma 7.2.5 I f  D lr is a well-formed pruned tree dialogue with participants x \  and X2, then 

M o v e s M a d e p r n (£ > £ ) C  P o s s M o v e s ( D ^ ) .

Proof: Let us assume that m s G M o v e s M a d e p r n  (£>£), r < s < t. From the definition of 

moves made (Definition 7.2.3), we see that either cType(Dj_1) =  ai and Llexh{D{, P) — m s, or 

cTyp e (D j-1 ) =  wi and Qprn(Df, P ) =  m s. Let us first assume c T y p e ^ J -1 ) =  ai. I f  this is the case, 

then it follows from Lemma 5.3.10 that m s G P o s s M o v e s ( Z ) * ).

Let us now assume c T y p e ( £ ) j _ 1 ) =  wi. From the definition o f the pruned tree strategy (Definition 6.0.1), 

we see there are three cases to consider.

(Case 1) m s =  (P, assert, such that G -4(£p  U C S ^-1). From Lemma 5.1.1 and
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Lemma 7.1.2, we get that ($ , <f>) £ A(T,P U E p ). Hence (from the definition of possible asserts, Def­

inition 5.3.1), m s £ P o s s A s s e r t s ( D * ) .  Hence m s £ P o s s M o v e s ( D ^ )  (from the definition of possible 

moves, Definition 5.3.5).

(Case 2) m s =  (P,open,dialogue(ai, 7 )) such that there exists L £ N such that (7 , L) £ Y>p , 

hence m s £ P o s s O p e n s ( Z ) £ )  (from the definition o f possible opens, Definition 5.3.3), hence 

m s £ P o s s M o v e s  {D^) (from the definition of possible moves, Definition 5.3.5).

(Case 3) m s =  (P, close, dialogue(9,7 )} where 9 =  c T y p e ( D j _ 1 ) and 7  =  c T o p i c ( Z ) ^ - 1 ) , hence 

(from the definition o f the current dialogue, Definition 4.2.9), there must exist s' such that r  < s' < s 

and m s> — (P ', open. dialogue(9,7 )) (where P ' £ {2 7 , 2:2 }), hence (from the definition o f possible 

moves, Definition 5.3.5), m s £ P o s s M o v e s ( T ) * ) .

Hence, from case 1, case 2 and case 3, M o v e s M a d e p r n ( D * ) C  P o s s M o v e s ( D * ) . □

The following lemma shows that the set of moves made is finite. This is because this set is 

bounded above by the set of possible moves (Lemma 7.2.5), which I have already shown to be finite 

(Lemma 5.3.9).

L e m m a  7 . 2 .6  I f  D lr is a well-formed pruned tree dialogue, then the set M  o v e s  M  a d  e p r  n  (D lr ) is finite. 

Proof: This follows from Lemma 5.3.9 and Lemma 7.2.5. □

Although I have shown that the set of moves made during a well-formed pruned tree dialogue is 

finite, this does not necessarily mean that a dialogue terminates. It may be the case that moves get 

repeated or that a dialogue does not end with a matched-close. In the next section, I will show that all 

well-formed pruned tree dialogues do indeed terminate and that it is not the case that moves get repeated.

7.3 Results about termination of dialogues
I will shortly show that all dialogues produced by the pruned tree strategy terminate, but in order to do 

so I must first introduce some lemmas. The first two lemmas are concerned with the repetition of moves 

during a dialogue.

The following lemma shows that a maximum of one assert move with a certain content appears in 

any top-level well-formed pruned tree dialogue. That is to say, both moves rns — (P, assert, ($ , 0)) and 

m s> =  {Pf, assert, ($ ,0 ))  appear in well-formed pruned tree dialogue D \ (where P, P ’ £ {2 7 , 2:2 }), 

if and only if s = s'. This is clear from the definition of the warrant inquiry and argument inquiry 

protocols. The warrant inquiry protocol contains a constraint that something may only be asserted if it 

changes the dialogue tree, which would not occur if the argument had been previously asserted. The 

argument inquiry protocol contains a constraint that something may only be asserted if its support is not 

present in the union of the commitment stores, which it would be if the argument had previously been 

asserted.

L e m m a  7 .3 .1  Let D lr be a well-formed pruned tree dialogue with participants x \  and 2 7 , such that 

D \ is a top-dialogue o f D\. and m s =  (P, assert, (<3>, 0)} appears in the sequence D\ fo r  some s, 

1 < s < t, where P  £ {2 7 , X2 }. There does not exist an s' such that 1 <  s' < t, s A  s ' and
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m.s/ =  (P', assert, ($, 4>)) appears in the sequence D\ where P ' G {xi, X2 }.

Proof by contradiction: Let us assume that m s =  (P, a ssert, (3>, 0}}. Either Current(Z)j_1) =  ai and 

f lexh(P  i _1, P) — wis- bi which case the proof proceeds as in Lemma 5.4.1, or Current^D^-1 ) =  wi 

and flpm {D j~1, P) =  m s, in which case the proof proceeds as follows.

From the definition o f the pruned tree strategy (Definition 6.0.1) we see that (P, assert, (<&,<j))) G 

I I P). Let us assume that there does exist an s' such that 1 < s' < t, s s' and m s> =  

(P', assert, ($. </>)) where P ' G {x i, X2 }. According to the warrant inquiry.protocol (Definition 4.4.3) 

this means that DialogueTree(D* - 1  +  (P a s s e r t ,  ($ , (j>))) f  DialogueTree(Dj _1). Hence, it cannot 

be the case that s < s' as if  this were true then it would be true that $  C C S p  1 U C SP  1 (from 

the definition o f commitment store update and the fact that commitment stores grow monotonically, Def­

inition 4.2.11 and Lemma 5.2.4), which would mean that asserting (<£,</>} would not have an effect 

on the dialogue tree and it would not be the case that DialogueTree(D'j ~ l +  (P ', assert, (3>, </>))) f  

DialogueTree(Z)j _1) (as the dialogue tree depends on the root argument, which does not change, and 

the content o f the commitment stores, Definition 4.4.2). It also cannot be the case that s' < s, as then it 

would be the case that $  C C S fT 1 U C S ~  1 (from Definition 4.2.11 and Lemma 5.2.4), and so making 

the move m s would not alter the commitment stores and so would not alter the dialogue tree. Hence, it 

must be the case that s =  s', which contradicts our assumption.^

The next lemma is similar to the previous one but concerns open moves. It states that a maximum 

of one open move with a certain content appears in any top-level dialogue. That is to say, both moves 

m s = (P, open, dialogue(ai, 7 )) and rrv  =  {P ', open, dialogue(ai, 7 )} appear in dialogue D* (where 

P, P ' e {xi,X 2}), if and only if s = s'. Again, this is clear from the definitions of the warrant inquiry 

and argument inquiry protocols. Both these protocols contain the constraint that a move opening an 

argument inquiry dialogue with the topic A . . .  A a n —» (3 can only be made if a question store with 

the content { a i , . . . .  a n,(3} has not previously been constructed, which it would have been if a move 

opening an argument inquiry dialogue with the topic q i A . . .  A a n Q had previously been made.

Lemma 7.3.2 Let D lr be a well-formed pruned tree dialogue with participants x \  and X2 , such that D\ 

is a top-dialogue o f D lr and m s = (P, open, dialogue(ai. A . . .  A a n (3)) appears in the sequence 

D\ fo r some s, 1 < s < t, where P  6  {x i,X 2 }. There does not exist an s' such that 1 < s' < t, 

s ^  s' and m s< — (P ', open, dialogue(ai, cti A . . .  A a n —> (3)) appears in the sequence D \ where 

P ' € { x 1 , x 2}.

Proof: Let us assume that ins =  (P, open, d,ialogue(ai, A . . .  A a n —> (3)). Either Current(£>j_1) =  

ai and f lexh{D l~1, P ) =  m s, in which case the proof proceeds as in Lemma 5.4.2, or Current(Dj~1) =  

wi and Llprn( D ^ 1, P) = rns, in which case the proof proceeds as follows.

From the definition o f the pruned tree strategy (Definition 6.0.1) we see that (P, open, dialogue(ai, cti A 

. . .A  a n —> (3)) G n 0Jf n (D °~ \ P). According to the warrant inquiry protocol (Definition 4.4.3), 

this means that there does not exist t', 1 < t' < s — 1, such that Q St> =  { a i , . . .  , a n , (3). Hence 

(from the definition o f a question store, Definition 4.3.1), there does not exist s', 1 < s' < s, such that 

m s/ =  (P', open, dialogue(ai, A . . .  A a n —* (3)) where P ' G {xi, X2 }. It also cannot be the case
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that there exists s' such that s < s' < t and m s> =  (P ', open, dia.logue(ai, r*i A . . .  A a n —> /))) where 

P ' £ {x i,X 2 }, as QSs =  { a i , . . . ,  a n, /5} ora/ 1 < s < s' which violates a condition o f the warrant 

inquiry protocol (Definition 4.4.3). □

I am now able to prove the theorem that all well-formed pruned tree dialogues terminate. This 

follows from the fact that there are always a finite number of assert and open moves from which the 

participating agents can choose, that the agents cannot repeat these moves, and that the pruned tree 

strategy dictates that if an agent cannot make an assert or open move then it must make a move to close 

the current dialogue.

Theorem 73.1 I f  D lr is a well-formed pruned tree dialogue with participants x \ and X2 and D\ is a 

top-dialogue o f D\., then there exists t' such that t < t', D lr extends D f  D\ is a top-dialogue o f D lr , 

D\ extends D \ and D\. terminates at t'.

Proof: The set o f assert moves made during a well-formed pruned tree dialogue, A s s e r t s M a d e e x /l ( Z ) ^ .), 

is finite (Lemma 7.2.2). The set o f open moves made during a well-formed pruned tree dialogue, 

O p e n s M a d e e x / l ( D *  ), is finite (Lemma 7.2.4). Neither assert nor open moves may be repeated in a 

well-formed pruned tree dialogue (Lemma 7.3.1 and Lemma 7.3.2), hence there must come a point in 

every dialogue where no more open or assert moves may be made. The pruned tree strategy (Defini­

tion 6 .0 .1 ) dictates that when there are no more assert or open moves that can be made, the participating 

agents must each make a move to close the current dialogue (called a matched close, Definition 4.2.7). 

When this occurs the dialogue terminates (Definition 4.2.8). □

I now give two lemmas that relate to all well-formed warrant inquiry dialogues, regardless of what 

strategy is being followed. The next lemma states that if a well-formed warrant inquiry dialogue termi­

nates at t, then the commitment stores of the participating agents at t are the same as the commitment 

stores at t — 1 and at t — 2. This is because both agents must make a close move to terminate the dialogue 

and close moves have no effect on commitment stores.

Lemma 7 3 3  I f  D lr is a well-formed warrant inquiry dialogue that terminates at t with participants X\ 

andX 2 , then C S ‘XI = C S ‘- \  C S ‘ , =  C S ‘7 2. C S ‘X2 = C S ‘X~ \  a n d C S =  C S ^ 2.

Proof: From the definition o f terminates (Definition 4.2.8), we see that m t is a close move and m t- i  is 

a close move. From the definition o f commitment store update (Definition 4.2.11), we see that it must be 

the case that C S tx x = C S t~ \ C S =  C S £ ;2. C S ^, = C S ^ 1. and C S l 2 = C S ^ 2. □

The next lemma uses the previous result to show that if a well-formed warrant inquiry dialogue 

terminates at t then the dialogue tree at t is the same as the dialogue tree at t — 1 and at t — 2. This is 

clear as the dialogue tree depends on only two things. Firstly, the root argument, which does not change 

throughout a dialogue as it is the first argument for the topic that is asserted. Secondly, the tree depends 

on the commitment stores, which I have shown do not change from t — 2 to t (Lemma 7.3.3).

Lemma 73.4 I f  D lr is a well-formed warrant inquiry dialogue that terminates at t, then 

D i a l o g u e T r e e ( D x ) =  D i a l o g u e T r e e ( P x_ 1 ) and D i a l o g u e T r e e ( P x_ 1 )  =  D i a l o g u e T r e e ( P x~ 2 ).
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Proof: From the definition o f terminates (Definition 4.2.8), we see that rnt is a close move and rrit-i 

is a close move. From the definition o f a dialogue tree (Definition 4.4.2), and Lemma 7.3.3 we see 

that it must be the case that D ia l o g u e T r e e ( Z ) * )  =  D i a l o g u e T r e e ( Z ) * - 1 ) and D i a l o g u e T r e e ( D * _ 1 ) =  

D ia l o g u e T r e e ( .D * _ 2 ). □

Finally in this section, I show that if a well-formed pruned tree warrant inquiry dialogue terminates 

at t, then the subset of the set of legal moves from which an agent must select the move mt does 

not include any open or assert moves. This is clear from the definition of the pruned tree strategy 

(Definition 6.0.1), which states that a close move may only be made if there are no assert or open moves 

to choose from.

Lemma 7.3.5 I f  D lr is a well-formed pruned tree dialogue that terminates at t with participants x \  and 

X2 , such that R e c e i v e r ( m f _ i )  =  P, D lr extends D lr~l and D \ f l is a top-dialogue o f D \r 1, then the set 

A s s e r t s p r n (£ > J_ 1 . P) =  0 and the set O p e n s p r n (Z > i- 1 . P) = 0.

Proof: A dialogue is terminated with a matched-close (Definition 4.2.8). The primed tree strat­

egy (Definition 6.0.1) states that a close move will only be made by P  at timepoint t if  the sets 

A s s e r t s prn{D\~l ,P ) and O p e n s prn(D \~l ,P )  are empty. Hence, A s s e r t s prn(D tf 1, P ) =  0 and 

O p e n s prn(D \~ \P )  =  0. □

In this section, I have shown that all well-formed pruned tree warrant inquiry dialogues terminate. 

In the next section I discuss some results about the root argument of such a dialogue.

7.4 Results about root arguments
In this section I give two results relating to the root argument of a well-formed pruned tree warrant 

inquiry dialogue. I show that if there exists an argument for the topic of such a dialogue that can be 

constructed from the union of the agents’ beliefs, then there will exist a root argument for the dialogue 

when it terminates. I then combine this with the result that all such dialogues terminate.

The first lemma shows that if there is some argument for the topic of a well-formed pruned tree 

dialogue that can be constructed from the union of the agents’ beliefs, then, if the dialogue terminates at 

t , the root argument of the dialogue at t will not be null. This is clear from the definition of the pruned 

tree strategy.

Lemma 7.4.1 I f  D \ is a well-formed pruned tree dialogue that terminates at t with participants x \ and 

x-2 such that T o p i c ( D * )  =  f  and there exists (<I>, fi) e . 4 ( £ Xl U  £ X2), then R o o t A r g ( . D * ) null. 

Proof: There are two cases to consider.

(Case 1) (<I>. 4>) € A(T,P) fo r  some P  <E {xi,X 2 }. We see from the definition o f the warrant inquiry 

protocol (Definition 4.4.3) and the definition o f the pruned tree strategy (Definition 6.0.1) that if P  is the 

agent who opens the dialogue, then agent P  will make the move m 2 =  (P, assert, (3>. <fi)).

Else, if  P  is the agent who opens the dialogue, then agent P  will make the move m 3 =  

(P , assert, (<I>, 4>)) unless doing so does not change the dialogue tree, which would mean that there was 

already a root argument.
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(Case 2) (<&.(/)) $  A(Y,P) for some P  G {x'i, .r2}• Hence, it must be the case that there exists 

(c*i A . . .  A a n —> 13 ,L )  G T.p , for some P  G { x i,x 2} and some L  G N. We see from the defi­

nition o f the warrant inquiry protocol (Definition 4.4.3) and the definition o f the pruned tree strategy 

(Definition 6.0.1) that if P  is the agent who opens the dialogue, then agent P  will make the move 

m 2 =  (P, open, dialogue(ai, a  i A . . .  A a „  —» /))). As argument inquiry dialogues are complete 

(Theorem 5.5.3), it must be the case that (3>,0) G A (C S ^ 2 U C S ^ ) ,  hence there must be some root 

argument.

Else, if P  is the agent who opens the dialogue, then agent P  will make the move m .3 =  

(P ,open,dialogue(ai,a \ A . . .  A a„  —»• (3)) if  RootArg(D^) =  null, from the definition o f the 

pruned tree strategy (Definition 6.0.1). As argument inquiry dialogues are complete (Theorem 5.5.3), it 

must be the case that (<£, 0) G A (C S l2 U C S lXi), hence there must be some root argument. □

The next lemma states that for all well-formed pruned tree dialogues, if there is some argument for 

the topic of a well-formed pruned tree dialogue that can be constructed from the union of the agents’ 

beliefs, then the root argument of the dialogue at t will not be null. This is clear from the previous result 

and the theorem that all well-formed pruned tree dialogues in which the participants are following the 

pruned tree strategy terminate.

Lemma 7.4.2 I f  D lr is a well-formed pruned tree dialogue with participants x i and x 2 such that 

Topic(Z)£) =  0 and there exists ($ ,0 ) G A(Y.Xl U XX2), then there exists t! such that D \ extends 

Dl. and RootArg(D*) /  null.

Proof: This follows from Theorem 7.3.1 and Lemma 7.4.1.U

In the next section I give results about the dialogue trees constructed during well-formed pruned 

tree dialogues.

7.5 Results about dialogue trees
In this section I give some results concerning the dialogue tree constructed during a well-formed 

pruned tree dialogue. The following lemma states that if we have a well-formed pruned tree dia­

logue D l that terminates at t, whose root argument is (<f>, 0 ), and there is a path from the root node 

[($, 0), ( $ i ,0 1) , . . . ,  {3>n, 0n)] that appears in DialogueTree(Z)*), then the same path appears in the 

dialectical tree that is constructed from the union of the two participating agents’ beliefs and has ($ , 0) 

at its root. This is due to the relationship between the commitment stores and the agents’ beliefs. An ar­

gument that can be constructed from the union of the agents’ commitment stores can also be constructed 

from the union of their beliefs (Lemmas 5.1.1 and 7.1.2). As the dialogue tree is constructed from the 

commitment stores, it follows that a dialectical tree with the same argument at its root that is constructed 

from the agents’ beliefs will include any paths from the root that appear in the dialogue tree.

Lemma 7.5.1 Let D fr be a well-formed pruned tree dialogue that terminates at t with partic­

ipants x \ and x2 such that D\ is a top-dialogue o f D lr and RootArg(Z)*) =  ($ ,0 ). I f

there exists a path [($, 0 ), 0 x),. . . ,  (3>n , 0 n)] in DialogueTree(Z)*), then there exists a path
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[($, fi), ( $ 1 , (j)\), - - -, ($ n , <t>n)\ in the dialectical tree where A  =  (3>, </>) and A =  E Xl U E X2. 

Proof: Let us assume that the path [(<&, <fi), ($ i, f i i ) , . . . ,  (<J?n , fin)] appears in DialogueTree(Z?£). 

From the definition o f a dialogue tree (Definition 4.4.2), we see that this means that the path 

[($, </>}, ($ i, (pi),. . . ,  (3>n, fin)] appears in the dialectical tree where A ' =  C S Xl U C SX2. 

Hence, for  1 < i < n, £ A {C S lXl U C S X2), hence £ .4(EXl U EX2) (from

Lemma 7.1.2 and Lemma 5.1.1). As [($, (j>), (<f>i, < f > \ (3>n . fin)} is an acceptable argumenta­

tion line in DialogueTree(D*), it must also be an acceptable argumentation line from the root node 

o f T ^  (from the definition o f an acceptable argumentation line, Definition 3.5.5). Hence (from the 

definition o f a dialectical tree, Definition 3.6.1), if there exists a path [($, fi), (3>i, f i \ ) , . . . ,  (3>n , fin)] in 

DialogueTree(Z)*), then there exists a path [(<£, fi), (3>j, f i f ) , . . . ,  (# n , 4>n)] in T ^ . □

The previous result tells us that the dialogue tree constructed during a well-formed pruned tree 

dialogue in which the agents are following the pruned tree strategy, is a sub-tree of the dialectical tree 

constructed from the union of the two agents’ beliefs that has the same argument at the root. I will shortly 

show that if a well-formed pruned tree dialogue terminates at t , then there are no arguments that can be 

constructed from the union of the agents’ beliefs and which, if asserted, would change the status of a 

node in the dialogue tree. In order to show this, I show that if if there are any such arguments that could 

be asserted, then the sets of legal assert and open moves from which an agent selects the most preferred 

move to make cannot both be empty, in which case a close move would not be made and the dialogue 

would not terminate.

The next lemma states that if an agent participating in a well-formed pruned tree dialogue can 

construct an argument that, if asserted, would alter the status of a node in the dialogue tree, then the set 

of assert moves from which it may select the most preferred move is not empty. This is clear from the 

definition of the pruned tree strategy.

Lemma 7.5.2 Let D lr be a well-formed pruned tree dialogue with participants x \ and X2 such that 

RootArg(Dx) 7  ̂ null and D\ is a top-dialogue o f D lr. I f  there exists (3>, 4>) £ A(T,P U CSL) 

such that there exists N  £ Nodes(DialogueTree(D*)) and Status(7V, DialogueTree(Z)£)) =  U and 

Status(Af, DialogueTree(Z)* +  (P, assert, ($ ,0 ))) =  D, then Assertsprn(D \,P )  7  ̂ 0.

Proof: The pruned tree strategy (Definition 6.0.1), states that, as RootArg(D^.) f  null, the set 

Assertsprn(D \, P) consists o f the moves that assert arguments that can be constructed by P  and that 

when asserted change the status o f a node in the dialogue tree from  U to D.

(This appears in Definition 6.0.1 as the moves that assert (<£,</>) such that (<&, f )  £ A(TJP U CSL) 

and there exists N  £ Nodes(DialogueTree(.D£)) such that Status(iV, DialogueTree(D^)) =  U and 

Status(iV, DialogueTree(Z)* +  {P, assert, (<!>,<«») =  D.)

As an extra constraint, the moves in Assertsprn{D \,P ) must also change the status o f a node at least 

as far away from the root o f the dialogue tree than any other nodes whose status would be changed by 

some other legal assert move whose content can be constructed by P.

(This appears in Definition 6.0.1 as for all (P, assert, (<&', 4>')) £ n “s/ ert(Z)j, P) such that ($ ', 0 ') £ 

A f £ p  U CSjf), i f  N ' £ Nodes(DialogueTree(D*)) such that S ta tu s ^ ',  DialogueTree(D*)) =  U and
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S t a t u s ( A T ' ,  D i a l o g u e T r e e ( D £  +  (P ,assert, ($ ', (/>'}))) = D , then Leve\(N) > Leve\(N'))

Hence, i f  there exists ($>,0) £ A(T,P U C S~) such that there exists N  £ N o d e s ( D i a l o g u e T r e e ( D * )) 

and S t a t u s ( 7 V ,  D i a l o g u e T r e e ( D * ) )  =  U  and S t a t u s ( A / ' ,  D i a l o g u e T r e e ( Z ) *  +  ( P , assert, (<f>, 0))) =  D , 

then A s s e r t s prn{D \, P) must contain at least one assert move. □

The next lemma shows that if an agent has a belief in a defeasible rule whose consequent is p  and 

there is a node in the dialogue tree whose status is U and which is labelled with an argument ($ , 0 ), such 

that one can defeasibly derive ->{3 from <h, then the set of open moves from which it may select the most 

preferred open move is not equal to the empty set. This is clear from the definition of the pruned tree 

strategy.

Lemma 7.53 Let D lr be a well-formed pruned tree dialogue with participants xi and X2 such that 

R o o t A r g ( Z ) * )  7  ̂ null and D[ is a top-dialogue o f D\.. I f  there exists (a i A . . .  A a n —» (3, L) £ E p 

such that there exists ($, 0) £ A (C S lp l U C SP ~1) such that $> |~  -~>j3 and there exists N  £ 

N o d e s ( D i a l o g u e T r e e ( D ^ - 1 ) )  such that L a b e l(A T )  =  ($ ,0 )  and S t a t u s ( i V ,  D i a l o g u e T r e e ( .D * _ 1 ) )  =  U, 

then O p e n s prn(D \,P )  0.

P r o o f :  The pruned tree strategy (Definition 6.0.1) states that, as R o o t A r g (D f) f  null, the set 

O p e n s pi.n(D \, P) consists o f the moves that open an argument inquiry dialogue with a rule from P ’s 

beliefs cti A . . .  A a n —> 0 as its topic such that there is a node in the dialogue tree N  whose status is U 

and that is labelled with an argument, from the support o f which ->/3 can be defeasibly derived (and so 

an argument for 0  would conflict with it).

(This appears in Definition 6.0.1 as there exists L  £ N such that (cri A . . .  A a n —*■ j3, L) £ E F and there 

exists ($ ,0 ) € A (C S p  U CSP) such that $  |~  ->(3 and there exists N  £ N o d e s ( D i a l o g u e T r e e ( D ^ ) )  

such that L a b e l(A T ) =  (3>. 0 } and S t a t u s ( A r , D i a l o g u e T r e e ( Z ) £ ) )  =  U.)

As an extra constraint, for all other legal open moves that open an argument inquiry dialogue with a 

rule from P ’s beliefs a \ A . . .  A a'n —> (3' as its topic such that there is a node in the dialogue tree N  

whose status is U and that is labelled with an argument, from the support o f which ->j3' can be defeasibly 

derived, the distance from the root to N  must be at least as fa r as the distance from the root to N '.

(This appears in Definition 6.0.1 as for all (P, assert, (<£'. 0 ')) £ Yl^fisert(D \, P) such that ($ ',0 ')  £ 

A('71p  U CSP) if  N ' £ Nodes(DialogueTree(D*)) such that Status(Af', DialogueTree(Z)^)) =  U and 

Status(A/'/, DialogueTree(T>£ +  {P, assert, ( $ ',0 /)))) =  D, then Level(A^) > Level(Ar/)J 

Hence, if there exists ($ ,0 )  £ A (C S lp l U C S fp  1) such that $  |~  ->/? and there exists N  £ 

Nodes(DialogueTree(D^.-1 )) such that Label(AT) =  ($ ,0 )  and Status(AT, DialogueTree(Z)‘~ 1)) =  U, 

then Opensprn(D i, P) must contain at least one open move. □

The next lemma states that if a well-formed pruned tree dialogue terminates at t, then neither agent 

can construct an argument which, if asserted, would change the status of a node in the dialogue tree. 

This is because if an agent could construct such an argument, then the set of assert moves available to it 

would not be empty and so it would not make a close move and the dialogue would not terminate at t.

Lemma 7.5.4 Let D \ be a well-formed pruned tree dialogue that terminates at t with participants x i 

and X2 such that D\ is a top-dialogue o f D lr and R e c e i v e r ( m t )  =  X2 .
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Parti: There does not exist ( $ , 0 )  E A (E XlU C Sl2) such that there exists N  E N o d e s ( D i a l o g u e T r e e ( . D * ) )  

and S t a t u s ( i V ,  D i a l o g u e T r ee(Dtr)) =  U  a n t /  S t a t u s ( A / \  D ia l o g u e T r e e ( Z ) *  +  (x2, assert, (<3>, 0 ))) =  D . 

Part2: There does not exist (<&, 0 )  E A{T.X2 u C S l l ) such that there exists N  E N o d e s ( D i a l o g u e T r e e ( £ 0 ) )  

and S ta tu s ( . /V ,  D i a l o g u e T r e e ( Z ) £ ) )  =  U and S ta tu s ( A T .  D i a l o g u e T r e e ( D ‘ +  (x i, assert, ( $ , 0 ) ) )  =  D . 

Proof by contradiction:

(Part 1) As D lr terminates at t and R e c e i v e r (m t ) = x 2, it must be the case that agent x \ made the close 

move m t (from the definition of terminates, Definition 4.2.8), hence A s s e r t s Pm {D \ 1 , Xi) =  0 (from 

Lemma 7.3.5).

Let us assume that there does exist ($ ,0 )  E A(T7Cl U C S X2) such that there exists N  E 

Nodes(DialogueTree(D‘ )) and Status(N, DialogueTree(Z)*)) =  U and Status(AT, DialogueTree(D* + 

( x \ , assert, ($,<f>))) =  D. From Lemmas 7.3.3 and 7.3.4, there exists ($,</>) G .4 (£ Xl U C S£“ 1) 

such that there exists N  G Nodes(DialogueTree(D*-1 )) and Status(7V, DialogueTree(D*-1 )) =  U and 

Status(iV, DialogueTree(Z)£_1 + (x2, assert, ($ , 0))) =  D. From Lemma 7.5.2, we see that this means 

that there must be at least one element in.the set Assertsprn(D*- 1 . x \), contradicting the assumption. 

(Part 2) As D lr terminates at t and Receiver (m^) =  x 2, it must be the case that agent x 2 made the close 

move m t - 1  (from the definition o f terminates, Definition 4.2.8), hence Assertsprn (D \ ~ 2 , x 2) =  0 (from 

Lemma 7.3.5).

Let us assume that there does exist ($ ,0 )  G «4( £ X2 U C S Xi) such that there exists N  G 

N o d e s ( D i a l o g u e T r e e ( D * ) )  and S ta tu s ( A T ,  D i a l o g u e T r e e ( Z ) * ) )  =  U and S t a t u s (N , D i a l o g u e T r e e ( Z ) *  + 

(x \, assert, ($ , 0})) =  D . From Lemmas 7.3.3 and 7.3.4, there exists (# ,0 )  G .4 ( £ X2 U C S xf 2) 

such that there exists N  E N o d e s ( D i a l o g u e T r e e ( . D * ~ 2 ) )  and S t a t u s (N , D i a l o g u e T r e e ( Z ) * ~ 2 ) )  =  U and 

S t a t u s ( 7 V ,  D i a l o g u e T r e e ( D * ~ 2 + (x i, assert, (<£, 0))) =  D . From Lemma 7.5.2, we see that this means 

that there must be at least one element in the set Assertsprn(D t1~'2 , x 2), contradicting the assumption.^

The next lemma states that if a well-formed pruned tree dialogue terminates at t, then neither agent 

has a belief in a defeasible rule whose consequent is {3 such that there is an argument that appears at a 

node in the dialogue tree whose status is U and from the support of which one can defeasibly derive ->/?. 

This is because if an agent did have such a belief, then the set of open moves available to it would not be 

empty and so it would not make a close move and the dialogue would not terminate at t.

Lemma 7.5.5 Let D lr be a well-formed pruned tree dialogue that terminates at t with participants x \ 

and x 2 such that D\ is a top-dialogue o f D lr and R e c e i v e r (m t ) = x 2.

Part 1: There does not exist (a\ A . . .  A a n —> /i, L) G £ Xl such that there exists ( $ , 0 )  € 

A (C S lXl U C S X2) such that $  |~  ->/? and there exists N  G N o d e s ( D i a l o g u e T r e e ( L 0 ) )  such that 

L a b e l(T V )  =  ( $ , 0 )  and S t a tu s ( 7 V ,  D i a l o g u e T r e e ( Z ) * ) )  =  U .

Part 2: There does not exist (c*i A . . .  A a n —» (3,L) G £ X2, (L  E N), such that there exists 

(# ,0 ) G A (C S Xi U C SX2) such that $  |~  -̂ (3 and there exists N  E N o d e s ( D i a l o g u e T r e e ( D * ) )  such 

that L a b e l ( A ^ )  =  (3>, 0 )  and S t a t u s ( i V ,  D i a l o g u e T r e e ( Z ) * )) =  U .

Proof by contradiction:

(Part 1) As D lr terminates at t and R e c e i v e r  (m t) =  x 2, it must be the case that agent x.\ made the close
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move rnt (from the definition o f terminates, Definition 4.2.8), hence Opensprn(D j_1, x \)  =  0 (from 

Lemma 7.3.5).

Let us assume that there does exist (q i A ... A a n —» (3.L) G E Xl such that there exists (<£, 0} G 

U C S lX2) such that $  |~  — am/  r/iere ex/ste AV G Nodes(DialogueTree(.D*)) such that 

Label(TV) =  (<£, 0) and Status(iV, DialogueTree(D*)) =  U. From Lemmas 7.3.3 and 7.3.4, there exists 

($ ,0 ) € A iC S ^ f 1 U CS X such that $  |~  ->(3 and there exists N  G Nodes(DialogueTree(D^1)) 

such that Label(N ) =  ($ ,0 ) and Status(./V, DialogueTree(.D*_1)) =  U. From Lemma 7.5.3, we see 

that this means that there must be at least one element in the set Opensprn(Z)i_1, x \), contradicting the 

assumption.

(Part 2) As D\. terminates at t and Receiver(mf) =  x2, d rnust be the case that agent x 2 made the close 

move m t - 1  (from the definition o f terminates, Definition 4.2.8), hence Opensprn(D \~2, x 2) =  0 (from 

Lemma 7.3.5).

Let us assume that there does exist (q i A . . .  A a n —> 0. L) G E Xl such that there exists (<3>, 0) G 

A (C S Xl U C S X2) such that <2> |~  ->/3 and there exists N  G Nodes(DialogueTree(.D*)) such that 

Label(iV) =  (<I>, 0) and Status(/V, DialogueTree(Z)^)) =  U. From Lemmas 7.3.3 and 7.3.4, there exists 

($ , 0) G A {C S l~ 2 U C Sl~ 2) such that $  |~  ->0 and there exists N  G Nodes(DialogueTree(.D*_2)) 

such that Label(iV) =  ($ ,0 ) and Status(Ar, DialogueTree(Z)^-2 )) =  U. From Lemma 7.5.3, we see 

that this means that there must be at least one element in the set Opensprn{D\~2, x 2), contradicting the 

assumption. □

The next lemma states that if a well-formed pruned tree dialogue terminates at t, then there are no 

arguments that can be constructed from the union of the agents’ beliefs that, if asserted, would change 

the status of any node in the dialogue tree. This follows from the previous two lemmas.

Lemma 7.5.6 Let Dx be a well-formed pruned tree dialogue that terminates at t with partici­

pants x \ and x 2. There does not exist an argument ($ ,0 )  G ^4(EXl U E x'2) such that there 

exists a node N  G Nodes(DialogueTree(Z}*)) such that Status(./V, DialogueTree(£>*)) =  U and 

Status(N, DialogueTree(D‘ +  (P, assert, ($ ,0 )))  =  D.

Proof by contradiction: Let us assume that there does exist (<f>, 0} G A(T,P U E p ) such that 

there exists N  G Nodes(DialogueTree(D*)) such that Status(./V. DialogueTree(Z7*)) =  U and 

Status(N, DialogueTree(Z)* +  (P , assert, ($, 0)}) =  D. There are two cases to consider.

(Case 1) $  =  {(0, L)} in which case ($ ,0 )  G A(Y>P), fo r  some P  G { x i,x 2}. From Lemma 5.1.1, 

we see that ($ ,0 ) G -4(EP U C Sjf) such that there exists N  G Nodes(DialogueTree(Z)*)) such that 

Status(7V, DialogueTree(£>*)) =  U andStatus(iV, DialogueTree(Z)* -I- {P, assert, ($ .0 )))  =  D. How­

ever, it has been shown that this cannot be the case (Lemma 7.5.4), contradicting the assumption.

(Case 2) There must be a rule {a\ A . . .A a n —> (3,L) G $>, hence ( a iA .. .A a n —> 0 ,L )  G T.p ,forsome 

P  G { x \ , x2}, such that there is a node in the tree that is labelled with an argument, from the support set 

o f which we can defeasibly derive ~>(3 and that has status U, i.e. there exists ($ ', 0 ') g A (C S p  U C S~) 

such that there exists N  G Nodes(DialogueTree(D*)) such that Status(7V, DialogueTree(Z)*)) =  U. 

However, it has been shown that this cannot be the case (Lemma 7.5.5), and so we have contradicted the
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initial assumption. □

I have shown that when a well-formed pruned tree dialogue terminates, there are no more arguments 

from the union of the participating agents’ beliefs that, if asserted, would alter the status of any node. In 

the following section I will use this result to show that warrant inquiry dialogues produced by the pruned 

tree strategy are sound and complete.

7.6 Results about soundness and completeness of warrant inquiry 

dialogues
In this section I show that a warrant inquiry dialogue produced by two agents who are following the 

pruned tree strategy is both sound and complete. As a reminder, a well-formed pruned tree dialogue is 

sound if and only if, if it terminates with an argument ( $ , 0 ) as its outcome, then the status of the root 

node of the dialectical tree constructed from the union of the agents’ beliefs that has ($ , <p) at its root is 

U (Definition 5.7.1). I now show that all well-formed pruned tree dialogues are sound. This is because 

the dialectical tree in question is constructed from the union of the agents’ beliefs and, when a dialogue 

terminates, there are no arguments that can be constructed from the union of the agents’ beliefs that, if 

asserted, would alter the status of any node in the dialogue tree.

Theorem 7.6.1 I f  D lr is a well-formed pruned tree dialogue with participants x \  and X2 , then D lr is 

sound.

Proof: Let us assume that D lr terminates at t and O utcom e^ (£)£) =  {(<!>, <j>)} (recall that if this is not 

the case then D lr is trivially sound, Definition 5.7.1). From the definition o f warrant inquiry outcome 

(Definition 4.4.6) we see that this means that RootArg(D£) =  ($ , (p). From the definition o f a dialogue 

tree (Definition 4.4.2) we see that DialogueTree(jD*) =  where A — ( $ ,  <p) and A =  C S iXl U c s i 2 
(i.e. the dialogue tree is equal to the dialectical tree constructed from the union o f the commitment stores 

with the same argument at its root). In order to prove soundness we must compare the dialectical tree 

T ^ with the dialectical tree T^ where A ' =  £ Xl U T.X7 (i.e. with the dialectical tree which has the same 

argument at its root but which is constructed from the union o f the agents’ beliefs). It has been shown 

that there are no arguments that can be constructed from the union o f the agents ’ beliefs that, if  asserted, 

would alter the status o f any node in DialogueTree( D f) (Lemma 7.5.6). Hence, there are no arguments 

that can be constructed from the union o f the agents’ beliefs that, if  asserted, would alter the status o f any 

node in the dialectical tree T^. This means that there are no arguments that appear in the dialectical 

tree T ^  which, if  asserted, would change the status o f a node in T ^ , and hence in DialogueTree(D^). 

Hence the status o f the root node in DialogueTree(Z)*) must be the same as the status o f the root node in 

P 4 . As Outcome^(D*) =  {($ ,^)} , Status(Root(DialogueTree(.D*)), DialogueTree(Z)*)) =  U (from 

the definition o f warrant inquiry outcome, Definition 4.4.6), hence, Status(Root(T^). T ^ ) =  U, hence 

D lr is sound (from the definition o f warrant inquiry soundness, Definition 5.7.1). □

A well-formed pruned tree dialogue that terminates at t and has root argument (<f>, fi) is complete 

if and only if, if the status of the root node of the dialectical tree that is constructed from the union
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of the participating agents’ beliefs and has ($, 0) at its root is U, then the outcome of the dialogue at 

t is {($ ,0)}  (Definition 5.7.2). I now similarly show that all well-formed pruned tree dialogues are 

complete.

Theorem 7.6.2 I f  D lr is a well-formed pruned tree dialogue with participants x \ and then D lr is 

complete.

Proof: Let us assume that D lr terminates at t, RootArg(D*) =  (3>, 0 ) and Status(Root(T^), T ^) =  U 

where A  =  ($ ,0 )  and A =  £ Xl U £ X2 (recall that i f  this is not the case then D* is trivially com­

plete, Definition 5.7.2). As in the previous proof, from the definition o f a dialogue tree (Definition 4.4.2) 

we see that DiaiogueTree(D*) =  where A =  ($ ,0 )  and A =  C S tXl U C S lX2 (i.e. the dialogue 

tree is equal to the dialectical tree constructed from the union o f the commitment stores with the same 

argument at its root). In order to prove completeness we must compare the dialectical tree with 

the dialectical tree where A ' =  £ Xl U £ X2 (i.e. with the dialectical tree which has the same ar­

gument at its root but which is constructed from the union o f the agents’ beliefs). It has been shown 

that there are no arguments that can be constructed from the union o f the agents ’ beliefs that, if  as­

serted, would alter the status o f any node in DialogueTree(Z^) (Lemma 7.5.6). Hence, there are no 

arguments that can be constructed from the union o f the agents ’ beliefs that, if  asserted, would alter 

the status o f any node in the dialectical tree T^. This means that there are no arguments that appear 

in the dialectical tree T ^ which, i f  asserted, would change the status o f a node in T ^, and hence 

in DialogueTree(£0). Hence the status o f the root node in DialogueTree(L0) must be the same as 

the status o f the root node in T^. Hence, as Status(Root(T^ ) ,  T ^ ) =  U it must be the case that 

Status(Root(DialogueTree(D^.)). DialogueTree(Z)*)) =  U. From the definition o f warrant inquiry 

outcome (Definition 4.4.6) we get that Outcomewt(Z)J.) =  {{<!>, 0)}, hence D lr is complete (from the 

definition of warrant inquiry completeness. Definition 5.7.2). □

I have shown here the desired result that warrant inquiry dialogues produced by the pruned tree 

strategy are sound and complete. In the next section I will show that the number of nodes in such a 

dialogue tree is never more than, and is sometimes less than, the number of nodes in the dialectical tree 

constructed from the union of the participating agents’ beliefs that has the same argument at its root.

7.7 Results about the number of nodes in the dialogue tree
In this section Twill discuss the size of the dialogue tree produced during a warrant inquiry dialogue 

in which the participants are following the pruned tree strategy. In particular, I first show that such a 

dialogue tree never has more nodes than there are in the dialectical tree constructed from the union of 

the participating agents’ beliefs that has the same argument at its root. I then show that there exist some 

cases in which there are fewer nodes in the dialogue tree produced by the pruned tree strategy than there 

are in the relevant dialectical tree.

The following lemma shows that the number of nodes in a dialogue tree produced by two agents 

following the pruned tree strategy is never greater than the number of nodes that appear in a dialectical 

tree that is constructed from the union of the agents’ beliefs and that has the same argument at its root as
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the dialogue tree. This is clear as I have already shown that if a path appears in the dialogue tree then it 

also appears in the dialectical tree constructed from the agents’ beliefs.

Lemma 7.7.1 I f  D* is a well-formed pruned tree dialogue with participants x.\ and X2, then \ 

Nodes(DialogueTree(.D*)) | < | Nodes(T^) | where A  = RootArg(DialogueTree(D*)) and A =

£ Xl u £ X2.

Proof: It has previously been shown that if  a path appears in DialogueTree(Z)*), then it appears in the 

dialectical tree T ^ (Lemma 7.5.1), hence | Nodes(DialogueTree(jD*)) | <  | Nodes(T^) |. □

In the next lemma I show, by example, that sometimes the dialogue tree produced by two agents 

following the pruned tree strategy contains less nodes than appear in a dialectical tree that is constructed 

from the union of the agents’ beliefs and that has the same argument at its root as the dialogue tree

Lemma 7.7.2 There exists a well-formed pruned tree dialogue D lr with participants x \  and £ 2 , such 

that j Nodes(DialogueTree(£>£)) | < | Nodes(T^) |, where A  =  RootArg(DialogueTree(D*)) and

A =  £ Xl U £ X2.

Proof: Consider the examples o f warrant inquiry dialogues given in Sections 6.1.1, 6.1.3, and 6.1.5. In 

all o f these examples the number o f nodes in the dialogue tree produced is less than the number o f nodes 

in the equivalent dialectical tree constructed from the union o f the agents’ beliefs. □

In the next section I will use these results to show that warrant inquiry dialogues produced by the 

pruned tree strategy are, in a sense, more efficient than those produced by the exhaustive strategy. If 

we consider two agents following the pruned tree strategy, and they conduct a warrant inquiry dialogue 

with topic f ,  I will show that they will produce a dialogue tree that is not bigger than the dialogue 

tree produced by the same two agents (i.e. their beliefs do not change) when conducting a warrant 

inquiry dialogue with topic f  but following the exhaustive strategy. I will then show that the dialogue 

tree produced by the pruned tree strategy is sometimes smaller (has less nodes) than the dialogue tree 

produced by the exhaustive strategy in the same situation.

7.8 Comparison of dialogue tree with that produced by the exhaus­

tive strategy
I am using the number of nodes in a dialogue tree as a measure of efficiency, as I am interested in 

redundancy in dialogue trees. However, it is not necessarily the case that dialogue trees with less nodes 

are preferable. For example, when making the decision about whether or not a patient should be given 

chemotherapy it would be desirable to be able to present to them all the arguments involved. This is a 

decision that the patient makes with the doctor and so they should be made aware of all the different 

factors involved, especially as some of the arguments will depend on the personal values of the patient. 

So, in this situation, it would be desirable to present the patient with the dialogue tree produced by the 

exhaustive strategy. However, consider the situation in which it has been decided to give the patient 

chemotherapy but now the decision as to what chemotherapy to give the patient must be made. This 

is not normally something that the patient has any input into, and so we would not be as interested in
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({(a, 3 ) ,(a -> b ,3 )} ,b )  D

D ( { ( - d ,2 ) ,M ^ - o ,2 ) } , - ,o )  {{(c,2), (c —> ->6,2)}, ~̂ b) U

U <{(d.l)},d} ( { ( / , l ) , ( / - > d , l ) } ,d )  U

Figure 7.1: The marked dialogue tree for Example 7.8.1.

presenting all the arguments to them and would perhaps prefer a smaller tree that leads to the same 

outcome.

I hoped to be able to show in this section that, given a dialogue tree produced by two agents follow­

ing the pruned tree strategy, it is never the case that if a node in the dialogue tree has status D, then it has 

more than one child whose status is U. However, this is not always the case, as I show in the following 

example.

Example 7.8.1 In the following example we have an agent x \ who wishes to enter into a dialogue with 

agent X2 in order to try to find a warrant for an argument fo r b. We have

E 1 ' =  { h d ,  2), ( / , 1), (-.d  -> -.a, 2). ( /  d, 1), (d A  e  - >  -c , 1 ) }

E «  = {(a, 3), (c, 2). (d, 1), (a b. 3), (c ^b : 2)}

Agent Xj opens a warrant inquiry dialogue with b as its topic. The dialogue proceeds as in Table 7.1. 

The outcome o f the dialogue depends on the dialogue tree produced, that is shown in Figure 7.1. As 

the status of the root node o f the tree is D the outcome o f the dialogue is the empty set, Outcome^ (Z)£) =

0. Note that the defeated node labelled with {{(—>cZ, 2), (~^d —> ->a, 2)}, -ia) in the dialogue tree has two 

child nodes that are both undefeated.

Although I cannot show that the types of redundancy described in Chapter 6  are always avoided 

with the use of the pruned tree strategy, I can show that the dialogue trees produced by the pruned tree 

strategy are never bigger than those produced by the exhaustive strategy and that sometimes they are 

smaller. First I must show that if two agents following the pruned tree strategy conduct a warrant inquiry 

dialogue with topic fi, and the same two agents (i.e. their belief bases have not changed) conduct a 

warrant inquiry dialogue with topic but following the exhaustive strategy, then the root argument of 

both dialogues will be the same.

Lemma 7.8.1 Let D lr be a well-formed exhaustive dialogue that terminates at t with participants X\ and 

X-2 such that D lr is a warrant inquiry dialogue and Topic(.D*) =  <f. Let D^, be a well-formed pruned tree



7.8. Comparison o f dialogue tree with that produced by the exhaustive strategy 143

t mt c s l , QSt
1 (x2, open, dialogue(wi, b)}

2 (x i, assert, ({(a, 3), (a —> 6 ,3)}, 6)) (a, 3)

(a —> 6, 3)

3 H i ,  2) (x2, assert, {{(-■d, 2), (->d —* ->a, 2)}, —>«))

(~<d —> ~~>a, 2)

4 (x\,assert, ({(d. 1)},d)) (d5 l)

5 (x2, close, dialogue(wi, b))

6 (xi, assert, {{(c, 2), (c —»• -i&,2)})) (c,2)

(c -> -6 , 2)

7 (x2, open, dialogue(ai, d A e  —» ->c)) QSj =  {d, e , —«e}

8 (x i , close. dialogue(ai, d A e —> ->c))

9 (x2, assert, ({(/, 1), ( /  d, 1)}, d)) CM)

( /  — rf, l)

10 (xi, close, dialogue(ai,d A e - >  ->c))

11 ( x 2 , close, dialogue(ai, d  A e  —■» - i c ) )

12 (xi ,  open, dialogue(ai, a —> 6)) QS12 =  {a, &}

13 (.X2,close,dialogue(ai,a —> 6))

14 (x i , close, dialogue(ai, a —> 6))

15 (x2, close, dialogue(wi, 6))

16 (x i , close, dialogue(wi, 6))

Table 7.1: Dialogue from Example 7.8.1.
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dialogue that terminates at t' with participants x\ and X2 such that £)*, is a warrant inquiry dialogue 

Topic(Dp ) =  0. RootArg(Z)*) =  RootArg(D pf).

Proof: In order to show that RootArg(D lr ) = RootArg(D}.,) we must show that the first argu­

ment asserted for  0 during D\. is the same as the first argument asserted for  0 during D lr,. Con­

sider first the well-formed exhaustive dialogue D Lr. Let us assume that the first argument that is as­

serted for  0 during D lr is (3>. 0) and that this is asserted at m s. The exhaustive strategy (Defini­

tion 4.5.4) states that i f  an assert move m s is made, then (assuming it is P  who made the move, 

P  G {x\, X2 }) rns =  PrefQ(Assertsexh(D j- 1 . P)) (i.e. m s is the most preferred o f all the possible legal 

assert moves) where AssertSexhiD*-1 , P) = {((P ), assert, (&,cf>)) e II®*ser*(.Di_1. P )  | ($ ,0 ) € 

.4 (£ p U CSC)} (i.e. the possible legal assert moves consist o f all the legal assert moves which can be 

constructed by the agent making the move). The warrant inquiry protocol (Definition 4.4.3) states that if 

{P, assert, ($ ,0 )) € II^ ffert(D \~ l ,P ), then DialogueTree(Current(Di_1) +  (P, assert, ($ ,0 ))) 

DialogueTree(Current(Z}j-1 ) (i.e. asserting the argument ($ . 0) must cause a new node to be added to 

the dialogue tree). Now consider the well-formed pruned tree dialogue D lr,. Let us assume that the first 

argument that is asserted for  0 during D f  is (<£', 0) and that this is asserted at m s>. The pruned tree 

strategy (Definition 6.0.1) states that if an assert move m s> is made, then (assuming it was P ' who made 

the move, P ' € {x'i,a‘2 }j m s> =  P ref Q (Assertspr n (D \ -1 , P )) (i.e. rns is the most preferred o f all the 

possible legal assert moves) where

A s s e r tV n W '^ .-P )  =  {(P, assert, (4>: 0)) 6  n “f ert( D ; ' - \ P )  | <4>» e -4(SP U C S^) 

and either (1 ) 0  =  7  or

(2) there exists N  £ Nodes(DialogueTree(Z)* -1 )) such that 

[Status(iV, DialogueTree(D* _1)) =  U and 
Status(Ar, DialogueTree(.D^,_ 1  +  (P, assert, ($, 0)))) =  D and 
for all (P ,assert, {$ ',0 ')) € n ^ sert(Z )f” 1, P ) such that 

( $ ' , 0 ') 6  A{T,P UCSC)

\ifN ' £ Nodes(DialogueTree(D* -1 )) such that Status(7V', DialogueTree(P^ -1 )) =  U 

and Status(-/V', DialogueTree(D^ _ 1  +  (P, assert, (<£'. 0 ')))) =  D, 

then Level(TV) > Level(Af')]]}

where

cTopic(Pj _1) =  7  and Current(Pj _1) =

As m s _ 1 is the first move asserting an argument fo r the topic, it must be the case that 

RootArg(P>^_1) =  null (from the definition o f a root argument, Definition 4.4.1), hence 

DialogueTree(P* -1 ) =  null (from the definition o f a dialogue tree, Definition 4.4.2). Hence, it 

cannot be the case that there exists N  £ Nodes(DialogueTree(P® -1 )) and so it must be the case 

that 0  is the topic o f the dialogue (which it is). Therefore the set Assertsprn(£>j _ 1 ,P )  equals the 

set Assertsexh(D \~ l ,P ). Each strategy then uses the same deterministic function to select the most 

preferred o f their respective set o f possible legal assert moves, hence they both select the same one. 

Hence, RootArg(£)*) =  RootArg(D‘,). □
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It was shown in Section 5.6 that the dialogue tree produced by two agents following the exhaustive 

tree strategy is the same as the dialectical tree constructed from the union of the agents’ beliefs that has 

the same argument at its root. I am now able to use this result with the previous lemma and the first 

lemma from the previous section to show that if two agents following the pruned tree strategy conduct 

a dialogue with topic 0 , then the dialogue tree that they produce is never larger than the one that they 

would produce if following the exhaustive strategy.

Theorem 7.8.1 Let D fr be a well-formed pruned tree dialogue that terminates at t with participants 

X i and X2 such that T o p ic ( £ > * )  = 0  and D fr is a warrant inquiry dialogue. Let D lTf be a well-formed 

exhaustive dialogue that terminates at t! with participants x \  and a ;2 such that T o p i c ( 7 ? * ,)  =  0  and D\., 

is a warrant inquiry dialogue. J N o d e s ( D i a l o g u e T r e e ( D * ) )  | <  j N o d e s ( D i a l o g u e T r e e ( D * , )  |.

Proof: It has been shown that a dialogue tree produced by the exhaustive strategy (i.e.

D i a l o g u e T r e e ( j D * , ) j  is equal to the dialectical tree where A  = R o o t A r g ( Z ) * , )  and A  — £ Xl U X * 2 

(Theorem 5.6.1). It has been shown that R o o t A r g ( D * / )  =  R o o t A r g (D lr) (Lemma 7.8.1). It has 

also been shown that | N o d e s ( D i a l o g u e T r e e ( D * ) )  | <  | N o d e s ( T ^ , )  j, where A r =  R o o t A r g ( D ^ . )  

and A  — E p  U E p (Lemma 7.7.1). A  = A f, hence, | N o d e s ( D i a l o g u e T r e e ( D * ) )  j <

| N o d e s ( D i a l o g u e T r e e ( j 9 * , )  j. □

I now show, by example, that there exist circumstances in which the dialogue tree produced by the 

pruned tree strategy has less nodes than the one produced by the exhaustive strategy.

Theorem 7.8.2 There exists a well-formed pruned tree dialogue D lr with participants x \  and X2 and 

there exists a well-formed exhaustive dialogue D^, with the same participants x \  and 1 2  such that

• Dlr and D lr, are both warrant inquiry dialogues,

•  T o p ic ( £ > * )  =  T o p i c ( D * ’ ) ,

•  { N o d e s ( D i a l o g u e T r e e ( j D £ ) )  ) <  j N o d e s ( D i a l o g u e T r e e ( Z ) £ , )  |.

Proof by example: Consider the example o f a well-formed exhaustive warrant inquiry dialogue given 

in Section 4.7.13 and the example o f a well-formed pruned tree warrant inquiry dialogue given in Sec­

tion 6.1.5. Both dialogues have the same topic and the same participants, but the dialogue tree produced 

in Section 4.7.13 has two fewer nodes than in the dialogue tree produced in Section 6.1.5. □

7.9 Summary
In this chapter I have shown that warrant inquiry dialogues produced by the pruned tree strategy are 

sound and complete. Although I was not able to show that the types of redundancy I discussed in 

Chapter 6  are always avoided with the pruned tree strategy, I have compared the dialogue tree produced 

with that produced by the exhaustive strategy, and shown that the dialogue tree produced by the pruned 

tree strategy is never bigger, and sometimes smaller, than the dialogue tree produced by the exhaustive 

strategy.



Chapter 8

Conclusions

In this chapter I will summarise the contributions made by this work. I will then give a critical assessment

of my system and discuss possible future work.

8.1 Contributions made by this work
The work presented here addresses the three main research questions summarised in Section 1.3.

1. Can 1 define a system that allows automatic generation o f inquiry dialogues between two agents? 

In Chapter 4 ,1 presented a dialogue system along with a protocol for the argument inquiry dialogue 

and a protocol for the warrant inquiry dialogue. These protocols (Definitions 4.3.2 and 4.4.3) 

return the set of legal moves at a point in a dialogue. I provide a specific strategy for use by an 

agent with either of these protocols, called the exhaustive strategy (Definition 4.5.4), that returns 

exactly one of the legal moves at a point in a dialogue, which is the move that the agent makes 

(and so allows automatic dialogue generation). The exhaustive strategy is intelligent as I show that 

it leads to sound and complete dialogues (see next research question).

2. Can I propose a benchmark system against which to compare my system, and then show that the 

dialogues produced by my system are sound and complete in relation to the conclusions drawn by 

the benchmark system ?

In Chapter 5 ,1 proposed a benchmark against which to compare the outcome of my dialogues: 

I compare the outcome of my dialogues with the outcome that a single agent would reach if its 

beliefs were the union of the participating agents’ beliefs. I used this benchmark to define what it 

means for an argument inquiry dialogue to be sound and complete (Definitions 5.5.1 and 5.5.2), 

and what it means for a warrant inquiry dialogue to be sound and complete (Definitions 5.7.1 

and 5.7.2). I showed that dialogues generated by the exhaustive strategy are both sound and 

complete (Theorems 5.5.1, 5.5.2, 5.7.1 and 5.7.2).

3. Can I define a second specific strategy that generates dialogues that produce a smaller output than 

those generated by the first strategy, and yet are still sound and complete?

In Chapter 6 , I considered types of redundancy that appear in dialogue trees. I defined another 

specific strategy, called the pruned tree strategy (Definition 6.0.1), that allows automatic dialogue
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generation. In Chapter 7 ,1 showed that dialogues generated by the pruned tree strategy are both 

sound and complete (Theorems 7.6.1 and 7.6.2). I then showed that a dialogue tree produced 

by the pruned tree strategy is never larger, and is sometimes smaller, than that which would be 

produced if the agents were instead following the exhaustive strategy (Theorems 7.8.1 and 7.8.2).

My system goes some way towards providing what we need for two agents in the medical domain to 

have useful dialogues. In Section 2.1,1 gave four desirable features of a dialogue system for the medical 

domain.

•  Provides inquiry protocol. I chose to focus my attentions on the inquiry dialogue as it is a 

cooperative dialogue that embodies one of the more general goals of the medical domain—making 

a justified claim, such as providing reasons for why a patient should be urgently referred to a 

specialist. It is also one of the dialogue types to receive the least attention in the literature so far.

•  Generative. I am interested in defining a practical system that will allow two agents to automati­

cally generate a dialogue. For a dialogue system to be generative it must specify exactly one move 

to be made at any point in the dialogue.

•  Formally specified. I want my system to be of use in the real world. Specifying such a system for­

mally should remove any ambiguity about how the protocol should be followed and will facilitate 

the investigation of the properties of the system.

•  Provides results about dialogue outcome. As I am concerned with designing a theory that may 

be used in the medical domain, it is important that the behaviour of the system is well-understood 

and suitable to the domain. This means that it needs to be certain that the system is going to behave 

in the intended manner. In particular, I am interested in results about the outcome of the dialogue 

and need to know that a dialogue system is always going to produce the desired outcome in any 

given situation.

I discussed, in Chapter 2, how no existing dialogue system provided all four of these features. The 

system I have presented here does provide all of these features, as I will now show.

• Provides inquiry protocol. I have provided two protocols for two different types of inquiry 

dialogue, the argument inquiry protocol (Definition 4.3.2) and the warrant inquiry protocol (Defi­

nition 4.4.3).

• Generative. My system is generative as I have provided two strategies, each of which returns 

exactly one of the legal moves at any point in a dialogue. These strategies are the exhaustive 

strategy (Definition 4.5.4) and the pruned tree strategy (Definition 6.0.1).

• Formally specified. My system is formally specified in Chapters 3, 4 and 6 .

•  Provides results about dialogue outcome. I have shown that all dialogues generated by my 

system with either the exhaustive strategy or the pruned tree strategy are sound and complete 

(Theorems 5.5.1, 5.5.2, 5.7.1, 5.7.2, 7.6.1 and 7.6.2).
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To summarise, I have presented a formally specified dialogue system along with protocols for two 

types of inquiry dialogue between two agents, argument inquiry and warrant inquiry. I have presented 

a strategy, called the exhaustive strategy, which allows an agent to generate an argument inquiry or a 

warrant inquiry dialogue. I have presented another strategy, called the pruned tree strategy, which agents 

may also use to generate a warrant inquiry dialogue. I have defined a benchmark against which to 

compare my dialogue outcome, and have shown that all dialogues generated by my system are sound 

and complete in relation to this benchmark. I have also shown that the dialogue tree produced by the 

pruned tree strategy is never larger than, and sometimes smaller than, the dialogue tree produced by the 

exhaustive strategy. This is a novel contribution as there are no existing, formally specified dialogue 

systems that allow automatic generation of inquiry dialogues and provide results about the outcome of 

such dialogues.

Although my system goes some way to providing what is needed for a medical inquiry dialogue 

system, it is far from sufficient. In the following section I will discuss the shortcomings of my system 

and discuss interesting future work.

8.2 Critical assessment of my system and future work
I have addressed the main questions that I intended to address and presented an inquiry dialogue system 

that provides each of the four main features that I believe are desirable for the medical domain. However, 

my system is complex, with several interacting components, and in order to provide theorems about the 

behaviour of my system I had to make several simplifying assumptions.

Firstly, I assume that there are always exactly two agents participating in a dialogue. Whilst dia­

logues between exactly two agents will indeed be useful in the medical domain, there are occasions when 

we would wish for more than one agent to be able to take part in a dialogue. For example, in a breast 

cancer clinic there is commonly a multi-disciplinary meeting once a week. All professionals involved 

in breast cancer care (including statisticians and pathologists, as well as nurses, oncologists etc.) attend 

these meetings, and there can be around twenty people present, depending on the size of the clinic. Each 

individual breast cancer patient is discussed at this meeting and a consensus is reached on what the best 

treatment method for the patient is. It would be very useful to be able to model and support such meet­

ings, perhaps as several multi-participant, warrant inquiry dialogues, but this would not be possible with 

my inquiry dialogue system.

As I am concerned with the cooperative medical domain, I assume that there is full trust between 

the participating agents. If dealing with a less cooperative domain, it would perhaps be interesting to 

consider a way of weighting new beliefs depending on the trustworthiness of their source. It could also 

be important to consider what might happen if a rogue agent did get into the system, for example if 

someone hacked an agent within a medical organisation.

I also make the assumption that an agent’s belief base does not change throughout the course of 

a dialogue. If the dialogues are very quick then perhaps this is not that unrealistic, as an agent would 

be able to put a hold on anything else it was doing whilst it was participating in a dialogue. However, 

it is likely that an agent will be carrying out several tasks at the same time. It may be involved in
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more than one dialogue at once, which may be updating its beliefs. It may also have many sensors 

to its environment that are also updating its beliefs. This is something that needs to be explored more 

fully. It is this assumption that allowed me to prove many of the results about my system. It would be 

very interesting to know how a change in an agent’s beliefs during a dialogue would affect the dialogue 

outcome. For example, if an agent’s belief base kept growing during a dialogue, would it be possible 

to generate infinite dialogues? And what should an agent do if it has cause to remove a belief that it 

asserted earlier in the dialogue?

It is interesting to note that there is no move in my system for retracting things that an agent has 

previously asserted. As I am interested in providing a system for a cooperative domain, as all beliefs in 

my system are defeasible, and, particularly, as I am interested in a growth of knowledge between agents, 

I have not included such a move. Both of my strategies ensure that any arguments from the union of the 

agents’ beliefs that will have a bearing on the status of any nodes in the dialogue tree will be asserted. If 

an argument that can be constructed from the agents’ commitment stores becomes defeated by another 

argument in the commitment stores then it does not need to be retracted, as it is clear to both agents that 

the argument is defeated. If I were to consider dialogues for a more competitive domain, where an agent 

may want to assert something that it does not actually believe, then it would be useful to consider adding 

a retract move to the set of moves available to an agent.

My system uses a restricted set of propositional logic. This is not expressive enough for the medical 

domain. I restricted my language to propositional logic for simplicity of presentation, however it would 

be possible to follow an approach used by Garcia and Simari [22], and actually use a restricted set of 

first order logic in which all literals are either ground atoms or ground negated atoms, and so there are 

no variables in any beliefs. However, it may be the case that this is still not expressive enough for the 

medical domain. Before using my dialogue system in a real-world setting, it would be necessary to apply 

the system to real-world data and to test it thouroughly.

This is an important point. It was my intention to provide theoretical results for my system, as I 

believe it is important that we understand its behaviour, especially as it is intended for the safety-critical 

domain of breast cancer care. I have not, however, been able to apply my system to any actual data from 

the medical domain. The complexity of such data makes it hard to extract the defeasible rules needed 

for argument generation in such a way that they reflect the actual interactions between the real-world 

knowledge. In order to be able to show soundness and completeness results of my system, I also had to 

restrict defeasible rules to an ordered pair: a set of literals, the Body, that together provide a defeasible 

reason for believing in the Head, a literal. Rules used in real-world arguments do not always take this 

form. Often, the claim of an argument may include disjunctions, conjunctions and implications, and 

rules used in such arguments would need to be logically translated to fit the form of my defeasible rule.

Considering applying this system to real-world data raises another issue concerning my system, and 

in particular the warrant inquiry dialogue. The topic of a warrant inquiry dialogue is a literal. Given this 

topic and the beliefs of the participating agents, a root argument for the dialogue is asserted. Throughout 

the course of the dialogue, the agents construct a dialogue tree that has the root argument at its root,
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which may be found to be defeated or undefeated. However, there may be other arguments for the topic 

of the dialogue that may be constructed from the union of the agents’ beliefs and, as my dialogues are 

predetermined, it will never be possible to generate a dialogue in which they are the root argument. 

It would be interesting to provide a new version of the warrant inquiry dialogue that instead has an 

argument as its topic, which becomes the root argument of the dialogue tree. Let us consider again the 

referral agent scenario from Section 1.2.1. In order to use my warrant inquiry dialogue in this scenario, 

the GP agent must have a specific topic in mind with which it opens the dialogue, for example “patient 

should be urgently referred”. Assuming there is one, a root argument will be asserted for this dialogue 

and, together, the GP agent and the referral agent will decide whether this argument is warranted or not. 

They may find that this argument is not warranted but there may be another argument that they can assert 

for the topic of the argument that would be warranted if it were the root argument. However, as my 

system stands, this argument would never be asserted as the root argument of a warrant inquiry dialogue.

Another issue this scenario raises is how the agents would go about considering different referral 

options. Imagine that the GP has three choices: patient should be referred urgently, patient should be 

referred normally, patient should be managed in clinic. As my system stands, the agents would have 

to open three separate warrant inquiry dialogues, each with one of these options as its topic, and see if 

any were warranted. Perhaps these should combine to make up a deliberation dialogue, and it would be 

interesting to define a protocol and strategy for doing so.

Another area that needs serious consideration is whether preference levels are the best way of de­

ciding whether an argument defeats another or not, and, if so, how to assign the preference level of 

beliefs. Where should these preference levels come from? A global ordering based on the source of the 

information could perhaps be applied, with data from more reliable sources being more preferred. But 

do we want this preference ordering to also be defeasible? I believe that including defeasible preferences 

would make a system such as mine more flexible and more realistic, however, this may be at the expense 

of being able to provide such soundness and completeness results as I have shown here. There is some 

work on defeasible preferences (e.g. [43,57]) and it would be interesting to see if this could be integrated 

with my system and how it would affect the outcome of the dialogues.

Something that I have not explored is the complexity of my system. My system is complicated and 

involves many interacting components. At each step in a warrant inquiry dialogue, the agents construct 

a dialogue tree from the contents of the commitment stores. This is not a trivial task, especially with the 

constraints on an acceptable argumentation line to consider. There may be some optimisation techniques 

that could be applied, such as caching a copy of the tree, and it would be interesting to consider these.

It would also be interesting to provide more results for my system. In particular, when comparing 

warrant inquiry dialogues generated by the pruned tree strategy with those generated by the exhaustive 

strategy, I have only considered the difference in the number of nodes in the dialogue tree produced by 

the two different strategies. As I discussed in Section 7.8, whether it is preferable for a dialogue tree 

to have fewer nodes will depend on the application. I would like to consider other points on which to 

compare the dialogues generated by the different strategies. For example, is it the case that the pruned
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tree strategy always leads to a shorter dialogue in terms of the number of moves made?

I would also like to further explore the benchmark against which I compare the outcome of my 

dialogues. I currently compare the outcome that two agents participating in a dialogue arrive at with 

that which would be arrived at by a single agent that had as its beliefs the union of the participating 

agents’ beliefs. This seems like an ideal situation as there are no constraints on the sharing of beliefs. 

However, as discussed in Section 5.7, it is only ideal if we accept that the agents each have the same level 

of expertise regarding the beliefs. Consider the situation in which a medical student is discussing with a 

consultant whether an argument regarding a patient’s treatment is warranted or not. In this situation, the 

ideal benchmark might be the outcome that the consultant would reach without taking into account any 

of the student’s beliefs.

When I first started investigating this area there were many important questions that I hoped to 

address, which have ended up being beyond the scope of this work.

• When should an agent enter into a dialogue?

• Who should an agent enter into a dialogue with?

• What type of dialogue should an agent enter into?

• What topic should the dialogue have?

• How should an agent update its beliefs at the end of, or during, a dialogue?

Although the cognitive coherence approach of Pasquier and Chaib-draa [50, 49, 51 ] addresses all of 

these questions, their theory is a general one and they have not been able to give the kind of results about 

the specific outcome of dialogues that the breast cancer domain requires. I would be interested in further 

investigating the relationship between the goals of an agent and the pragmatic questions given above.

I would also be interested in applying work done by other groups on formalising strategies to the two 

strategies I have given here. Both Kakas et al. [28, 29] and Amgoud and Hameurlain [1] have presented 

formalisms for defining dialogue strategies and it would be interesting to see whether the strategies I 

have defined here could be represented in their formalisms, and what benefits this would give.

8.3 Summary
I have taken as a starting point the breast cancer care domain and, from this, determined some research 

questions to be addressed and some desirable features that should hold for a dialogue system that ad­

dresses these questions. I have formally specified a dialogue system that I have shown addresses the 

research questions defined and provides the desirable features discussed. Finally, in this chapter, I have 

identified some shortcomings of this work and discussed future work that it would be interesting to carry 

out regarding my system.
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Table of uniform notation

In this appendix I give a table of uniform notation that appears in this thesis.

Natural numbers k, m ,n

Set of all natural numbers N

Cardinality of a set X  \ X  \

Powerset of a set X  p (X )

Defeasible rule Qi A . . .  A a n —> /3

Defeasible fact/Literal a, ft, c*i, . . . ,  , . . . ,  0, i/>

Defeasible rule or defeasible fact ■ 1

Examples of propositional atoms a ,b ,c . . . .

Preference level L, L', Li,  L 2 , L%

Belief (<£, L ),0 , <fi'

Preference level of belief <j> pLevel(0)

Set of all beliefs B

Set of all state beliefs S

Set of all domain beliefs 7Z

Set of all defeasible facts S*

Set of all defeasible rules 7Z*

Union of set of all defeasible facts and set of all defeasible rules B* =  S* U TV

Set of agent identifiers X

Agent x ,x \ ,X 2 ,P ,P

Belief base of agent x  E x

Set of beliefs 'I>/, 3>: A, A ', T, T '

Defeasible derivation of literal a  from set of beliefs 'P ^  |~  a

Set of all literals that can be defeasibly derived from set of be- DefDerivations('P)

liefs
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Argument

Examples of arguments 

Support of an argument A 

Claim of an argument A

Set of all arguments that can be constructed from a set of beliefs 

$

Argument A \ is a sub-argument of argument A 2 

Argument A\ is in conflict with argument A 2 

Argument A\ attacks argument A 2 at disagreement sub­

argument A3

Preference level of argument A

Argument A\ strictly preferred to argument A 2

Argument A \ proper defeater for argument A 2

Argument A\ blocking defeater for argument A 2

Node in a tree

Argument tree

Level of a node N

Label of a node N

Set of all nodes in argument tree T

Root node of an argument tree T

Argumentation line

Set of supporting arguments

Set of interfering arguments

Dialectical tree for argument A  constructed from set of beliefs

Status of node N  in dialectical tree 

Member of set {ai, wi}

Move opening argument inquiry dialogue with defeasible fact 7  

as its topic whose receiver is agent P

Move opening warrant inquiry dialogue with defeasible rule 7  

as its topic whose receiver is agent P  

Move asserting argument ($ ,0 ) whose receiver is agent P  

Move closing argument inquiry dialogue with defeasible fact 7  

as its topic whose receiver is agent P

Move closing warrant inquiry dialogue with defeasible rule 7  as

its topic whose receiver is agent P

Set of all moves meeting defined format

Move

{&,<!>'),A ,A 0 ,A i,  

A 2, . . .  , B \ .  b 2, . . .

a l . a 2 . a 3 . . .

Support(A)

Claim(A)

A(V)

A 1 C A 2 

A j [xi A 2 

A \  [> A 2 {A%)

pLevel(A)

A i >p A 2 

A i  =7>p A 2 

A \  =H A 2 

N . N i ,  N j  

T

Level(AT)

Label(TV)

Nodes(T)

Root(T)

A, Ai, A', A'

A s  

A 1 

T *1 A

Status(A^, T j )

9

(P , open,  dialogue(ai ,  7 ))

(P, open , d ialogue(wi ,  7 ))

(P, asse r t ,  ($,  (p))

(P, close,  dialogue(ai ,  7 ))

(P, c lose , d ialogue{wi ,  7 ))

M

m ,m \ , . . . ,  m !, m 'j,. . .
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Receiver of move m  

Timepoint

Dialogue that is sequence of moves [mr , . . . ,  m t]

Topic of dialogue D lr

Type of dialogue D lr

Set of all dialogues

Set of all top-level dialogues

Extension of dialogue D lr by move m

Current dialogue of dialogue D lr

Topic of current dialogue of dialogue D lr

Type of current dialogue of dialogue D lr

Commitment store associated with agent x  at timepoint t

Question store for timepoint r

Question store of current dialogue of dialogue D lr

Set of moves { m i , , m n} that agent P  can make such that

dialogue extension D\ +  m,, where rrii e { m i , . . . ,  m n }, is a

well-formed dialogue and cType(Pi) =  ai

Set of moves { m i , . . . ,  m n} that agent P  can make such that

dialogue extension D\ + rrii, where rrii € { m i , . . . ,  m n), is a

well-formed dialogue and rrii is of the form (P,- assert, (<f>, </>})

and cType(D{) =  ai

Set of moves { m i , . . . , m n} that agent P  can make 

such that dialogue extension D\ + rrii » where rrii £ 

{ m i , . . . ,  m n], is a well-formed dialogue and rrii is of the form 

(P,open,dialogue(ai, 7 )} and cType(P{) =  ai 

Set of all well-formed argument inquiry dialogues 

Argument inquiry outcome of well-formed argument inquiry di­

alogue Dfr

Root argument of warrant inquiry dialogue D lr 

Dialogue tree associated with warrant inquiry dialogue D lr 

Set of moves { m i , . . . ,  m n} that agent P  can make such that 

dialogue extension D\ +  rrii, where rrii £ {m i, • • ■ > m n), is a 

well-formed dialogue and cType(D{) =  wi 

Set of moves { m i , . . . ,  m n} that agent P  can make such that 

dialogue extension D{ +  rrii, where rrii £ {mi, • • •, m n}, is a 

well-formed dialogue and m, is of the form (P , assert, ($, $)) 

and cType(D{) =  wi

Receiver (m)

V.  .S, t , T 1 ,  T 2 ,  ■ • - , S \ ,  S 2 ,  • • • ,

D lJSr

Topi c(D l)

Typ e(D*)

V

Vtop

Dl. +  m  

Current (D j) 

cTopic(P*) 

cType(D*)

c s l

Q Sr

cQS (D l)

Il a i ( D \ , P )

U ^ sert(D \,P )

n  T nm . P )

Outcomeaj(P^)

RootArg (D l)

T (D l) 

nwi(D\,p)



Set of moves that agent P  can make

such that dialogue extension D \ +  m ,, where rnt e 

{ m i , . . . ,  m n), is a well-formed dialogue and m* is of the form 

(P, assert, open, dialogue(ai, 7 )} and cType(Dj) =  wi 

Set of all well-formed warrant inquiry dialogues 

Warrant inquiry outcome of well-formed warrant inquiry dia­

logue D l 

Set of moves

Preferred open move from a set of moves E

Preferred assert move from a set of moves E

Move returned by exhaustive strategy for agent P  participating

in a top-level dialogue D\

Set of possible assert moves for dialogue D lr

Set of assert moves made during dialogue D lr in which agents

follow exhaustive strategy at all times

Set of possible open moves for dialogue D lr

Set of open moves made during dialogue D * in which agents

follow exhaustive strategy at all times

Set of possible moves for dialogue D lr

Set of moves made during dialogue D lr in which agents follow 

exhaustive strategy at all times

Move returned by pruned tree strategy for agent P  participating 

in a top-level dialogue D\

Set of assert moves made during dialogue D lr in which agents 

follow exhaustive strategy if current dialogue is argument in­

quiry but follow pruned tree if current dialogue is warrant in­

quiry

Set of open moves made during dialogue D* in which agents 

follow exhaustive strategy if current dialogue is argument in­

quiry but follow pruned tree if current dialogue is warrant in­

quiry

Set of moves made during dialogue D lr in which agents follow 

exhaustive strategy if current dialogue is argument inquiry but 

follow pruned tree if current dialogue is warrant inquiry

KT(DIP)

Pwi

Outcome^ (D^

Pref0(E)

Prefa(E)

flexh (D \,P )

PossAsserts (D*) 

AssertsMadeex/l (P^)

PossOpens(P*)

OpensMadeex/l(P>*)

PossMoves(P^)

MovesMadeexh(D*)

f lprn(D \,P )

AssertsMadeprn(D*)

OpensMade (£>*)

M oves Mad eprn (D lr)
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Definition 3.1.2, definition of a defeasible fact page 35

Definition 3.1.3, definition of a belief page 36

Definition 3.1.4, definition of a state belief page 36

Definition 3.1.5, definition of a domain belief page 36
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Definition 3.1.7, definition of a belief base page 37

Definition 3.1.8 , definition of defeasible derivation page 37
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Definition 3.3.1, definition of conflict page 39
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Definition 3.5.5, definition of an acceptable argumentation line page 43

Definition 3.6.1, definition of a dialectical tree page 44

Definition 3.6.2, definition of a equals (for trees) page 45

Definition 3.6.3, definition of a marked dialectical tree page 45
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Definition 4.5.4, definition of the exhaustive strategy page 72

Definition 4.5.5, definition of a well-formed exhaustive dialogue page 73
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Appendix C

Index of lemmas and theorems

In this appendix I list all of the lemmas and theorems that appear in this thesis and give a page reference 

for each.

Lemma 5.1.1, Let T C  B  and $  C  B  be two sets. If T  C  then ,4( Y) C  .4(\Ir). page 93

Lemma 5.1.2, If C B is a finite set, then the set returned by DefDerivations(^) page 93

is also finite.

Lemma 5.13. If C B  is a finite set, then the set ^4(^) is also finite. page 93

Lemma 5.2.1, Let be a well-formed exhaustive dialogue with participants xi page 94

and X2 such that D\ is a top-dialogue of D lr . If Qexh{D [ , P ) =  (P, assert, (4>, 0)), 

then ( $ ,0 ) € A iY fu C S tp ) .

Lemma 5.2.2, If Dlr is a well-formed exhaustive dialogue with participants x \  and page 94

x2, then C S lXi U C S lX2 C  EXl U  £ X2.

Lemma 5.2.3, Let D lr be a well-formed exhaustive dialogue with participants xi page 94

and X2 . The sets C S tXl and C S lX2 are both finite.

Lemma 5.2.4. Let D\. be a well-formed exhaustive dialogue with participants x \  page 94

and x"2- For all s such that r < s < t, if D lr extends D x, then C S P C  C S P for 

P  e {xi,X2 }.

Lemma 5.3.1, Let D lr be a well-formed dialogue. For all s, 1 < s < t, if D * page 95 

extends D% then PossAsserts(P^) =  PossAsserts(P>*).

Lemma 5.3.2, If D lr is a well-formed dialogue, then the set PossAsserts(Z)*) is page 95 

finite.

Lemma 5.3.3, If D lr is a well-formed exhaustive dialogue with participants X\ and page 96 

x 2 , then AssertsMadeex/l (P^) C  PossAsserts(P*).

Lemma 5.3.4, If D\. is a well-formed exhaustive dialogue, then the set page 96 

AssertsMadeex/l (D^) is finite.

Lemma 53.5. Let Dx be a well-formed dialogue. For all s, 1 < s < t, if D fr page 97 

extends D * then PossOpens(Z)*) =  PossOpens(Px).



Lemma 5.3.6. If D lr is a well-formed dialogue, then the set PossOpens{Dlr) is 

finite.

Lemma 5.3.7, If D lr is a well-formed exhaustive dialogue with participants x \  and 

x-2 , then OpensMadeea;h(D*) C PossOpens(Z)*).

Lemma 53.8. If D lr is a well-formed exhaustive dialogue, then the set 

OpensMadeea.fe(D*) is finite.

Lemma 5.3.9, If D lr is a well-formed dialogue with participants x i  and X2 , then 

the set PossMoves(P£) is finite.

Lemma 5.3.10, If D lr is a well-formed exhaustive dialogue with participants x \  and 

X2 , then MovesMadee;r/i(jD*) C PossMoves(D*).

Lemma 5.3.11. If D lr is a well-formed exhaustive dialogue, then the set 

MovesMadeea;/l(Z)*) is finite.

Lemma 5.4.1. Let D lr be a well-formed exhaustive dialogue with participants x \ 

and X2 - If D\ is a top-dialogue of D* and ms = (P , a sser t, ($, 0)} for some s 

where 1 < s < t and P  G {x \,X 2 } and ms appears in the sequence D \, then there 

does not exist an s' such that 1 < s' < t, s ^  s', m S' =  (P ', assert, ($ , 4>)) where 

P ' G {X1.X2} and ms> appears in D\.

Lemma 5.4.2. Let D lr be a well-formed exhaustive dialogue with participants x \

and X2 • If D\ is a top-dialogue of D lr and m s = (P, open, dialogue{ai, ot\ A . . .  A 

a n —> (3)) for some s where 1 < s < t and P  e  {xi, X2 } and m s appears in the 

sequence D{, then there does not exist an s' such that 1 < s' < t and s ^  s' and 

m s/ =  (P ', open, dialogue(ai, a \ A . . .  A a n —> /?)) where P ' G { x \ . X2 } and m s> 

appears in D \.

Theorem 5.4.1, If D lr is a well-formed exhaustive dialogue with participants x \  

and X2 and D\ is a top-dialogue of D lr , then there exists t! such that t <  t!, D lr 

extends D*, D\ is a top-dialogue of , D \' extends D \ and terminates at t'. 
Lemma 5.4.3. If D lr is a well-formed exhaustive dialogue that terminates at t, with 

participants x \  and X2 , such that Receiver(mf_ i)  =  P , D lr extends D ^r1 and 

D \~ x is a top-dialogue of D tr~1, then the set Assertsex/l (P i_1, P ) =  0 and the 

set Opensexft {D{ ~ 1 , P ) =  0.

Theorem 5.5.1. If D lr is a well-formed exhaustive argument inquiry dialogue with 

participants x \ and X2 , then DI is sound.

Lemma 5.5.1. If D lr is a well-formed exhaustive argument inquiry dialogue that 

terminates at t, with participants x \  and X2 , such that D\ is a top-dialogue of D lr , 

(t> G Q Sr and there exists ($,<£) G A {S Xl U E X2) such that $  =  {{<p.L)}, then

page 97 

page 98 

page 98 

page 99 

page 99 

page 1 0 0  

page 101

page 101

page 10 2  

page 102

page 103 

page 104
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Lemma 5.5.2, If D lr is a well-formed exhaustive argument inquiry dialogue that 

terminates at t, with participants x \  and x 2, such that D\ is a top-dialogue of D lr, 

4> e QSr and there exists a domain belief (c*i A . . .  A a n —► 0, L) € XXl U XX2, 

then there exists t\, 1 < t\ < t, such that Q Stl — { a i , . . . ,  a n , 0 }.

Theorem 5.5.2. If D * is a well-formed exhaustive argument inquiry dialogue with 

participants x \ and X2 , then D lr is complete.

Theorem 5.5.3. Let D lr be a well-formed exhaustive argument inquiry dialogue 

with participants x \ and x2. If Topic(£)£) =  a \  A . . .  A a n —» 0 and there exists 

$  such that (<$,0} £ .4(XXl U XX2) then there exists t \ ,  1 < t < tj,  such that D *1 

extends D lr and ($, 0} e  Outcome(I)^1).

Lemma 5.6.1. Let D\. be a well-formed exhaustive warrant inquiry dialogue that 

terminates at t with participants x \  and x 2 such that RootArg(Z)*) =  {<£, 0). If 

there exists a path [($ ,0). ( $ i , 0 i ) , . • •, (<hn ,0 n)] in DialogueTree(Z)*), then there 

exists a path [($, 0), (<I>i, 0 i ) , . . . ,  (3>n, 0 n}] in the dialectical tree where A  —

($ ,0 ) and A =  £ Xl U E 12.

Lemma 5.6.2, Let D lr be a well-formed exhaustive warrant inquiry dialogue that 

terminates at t with participants x \  and x 2 such that RootArg(D*) =  (<3>, 0). If D\ 

is a top-dialogue of D lr and there exists a path [(<!>, 0 ), (4>i, 0 i ) , . . . ,  ($ n , 0n)] in 

the dialectical tree T ^ , where A =  (<&. 0) and A =  XXl U E X2, then there exists a 

path [($ ,0). ($ i ,0 i ) ,  ■ • •, <$»,0n)] in DialogueTree(£>*).

Theorem 5.6.1. If D lr is a well-formed exhaustive warrant inquiry dialogue that 

terminates at t with participants x i and x 2 such that RootArg(D^) =  ($, 0), then 

DialogueTree(D^) =  where A  =  (<£, 0) and A =  E Xl U E X2.

Theorem 5.7.1. If D* is a well-formed exhaustive warrant inquiry dialogue, then 

D lr is sound.

Theorem 5.7.2. If D lr is a well-formed exhaustive warrant inquiry dialogue, then 

D lr is complete.

Theorem 5.7.3. Let D * be a well-formed exhaustive warrant inquiry dialogue with 

participants x \  and x 2. There exists t' such that r  <  t ' , extends D*, and if 

O utcom e^(D* ) =  {($, 0)}, then Status(Root(T^). T ^ )  =  U where A =  ($ ,0)  

and A =  E Xl U E X2.

Theorem 5.7.4. Let be a well-formed exhaustive warrant inquiry dialogue with 

participants xi and x2. There exists t' such that r < t ' , D lr extends £>*, and if 

RootArg(i)*) =  ($ .0 ) and Status(Root(T^), T ^ ) =  U where A  =  ($ ,0 ) and 

A =  £ X1 U EX2, then Outcome^,*(£)*) =  {(<£. 0)}.

Lemma 7.1.1, Let D lr be a well-formed pruned tree dialogue with participants x \ 

and x2. If D\ is a top-dialogue of D lr and Q.prn{D \,P ) = (P, assert, ($, 0}), then 

($, 0) € A { T f  U CS'p).
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Lemma 7.1.2. If D lr is a well-formed pruned tree dialogue with participants x i and 

x2, then C S fXl U C S lX2 C £ Xl U £ X2.

Lemma 7.1.3. Let D lr be a well-formed pruned tree dialogue with participants x \ 

and x'2 - The sets C SXl and C SX2 are both finite.

Lemma 7.2.1, If Dlr is a well-formed pruned tree dialogue with participants x \  and 

X2 , then AssertsMadeprn(.D*) C PossAsserts(Z7*).

Lemma 7.2.2, If D\. is a well-formed pruned tree dialogue, then the set

AssertsMadeprn(D£) is finite.

Lemma 7.2.3, If D lr is a well-formed pruned tree dialogue with participants x,\ and 

£ 2 , then OpensMadeprn(D*) C PossOpens(D*).

Lemma 7.2.4. If D lr is a well-formed pruned tree dialogue, then the set

OpensMadepT.n (P*) is finite.

Lemma 7.2.5, If D lr is a well-formed pruned tree dialogue with participants x \  and 

X2 , then MovesMadeprn(£>r) Q PossMoves(D*).

Lemma 7.2.6, If D\. is a well-formed pruned tree dialogue, then the set 

MovesMadeprn(L>*) is finite.

Lemma 7.3.1. Let D x be a well-formed pruned tree dialogue with participants x\ 

and x‘2 , such that D\ is a top-dialogue of D lr and m s =  (P, a sser t, (<3>, 0 )} appears 

in the sequence D\ for some s, 1 < s < t, where P  E  { x i . £ 2 }- There does not 

exist an s' such that 1 < s' < t, s ^  s' and m s> =  (P ' . a sser t , (<&. 0 )} appears in 

the sequence D\ where P ' e  {xi, x 2}.

Lemma 7.3.2. Let D* be a well-formed pruned tree dialogue with participants x\ 

and £2 , such that D\ is a top-dialogue of D lr and m s =  (P. open , dialogue(ai, q i A

. . .  A a n —> ($)) appears in the sequence D \ for some s, 1 <  s < t, where P  E

{xi ,£ 2 }. There does not exist an s' such that 1 <  .s' <  t, s 7  ̂ s' and m.s> = 

(P ', open, dialogue(ai, a i A . . .  A a n —> p)) appears in the sequence D\ where 

P ' E {X'1 ,X2 }-

Theorem 7.3.1. If D lr is a well-formed pruned tree dialogue with participants x \ 

and x 2 and D\ is a top-dialogue of D lr , then there exists t' such that t < t', Dx 

extends D lr, D \ is a top-dialogue of Dx , D \ extends D \ and Dx terminates at t'. 

Lemma 7.3.3. If D lr is a well-formed warrant inquiry dialogue that terminates at 

t with participants x \  and x 2, then C S Xl =  C S^T1, C S Xl =  CS^T2, C S X2 =  

C S l* 1, and C S X2 =  C SX~2.

Lemma 7.3.4. If D lr is a well-formed warrant inquiry dialogue that terminates 

at t, then DialogueTree(P^) =  DialogueTree(P*_1) and DialogueTree(D£-1 ) =  

DialogueTree(P*-2 ).

162

page 127

page 127

page 128

page 128

page 129

page 129

page 130

page 130

page 131

page 132

page 132 

page 132 

page 133



Lemma 7.3.5. If D lr is a well-formed pruned tree dialogue that terminates at t 

with participants x \ and x,2 , such that R e c e i v e r =  P , D lr extends D ^r1 and 

D \~ l is a top-dialogue of D lr~ l , then the set Assertspr.n (£>i_1. P ) = 0 and the set 

Opensprn(Dtf  \ P )  =  0.

Lemma 7.4.1. If D\. is a well-formed pruned tree dialogue that terminates at t 

with participants x \ and X2 such that Topic(P>*) =  0 and there exists (<3>,0) G 

«4(SXl U TP2), then RootArg(£>*) /  null.

Lemma 7.4.2, If is a well-formed pruned tree dialogue with participants x\ and 

x 2 such that Topic(Z)J.) =  4> anc* ^ere exists ($ , 0 ) G A (T Xl U T x2), then there 

exists t' such that D* extends D lr and RootArg(D^:) ^  null.

Lemma 7.5.1. Let D lr be a well-formed pruned tree dialogue that terminates 

at t with participants x \ and X2 such that D\ is a top-dialogue of D lr and 

RootArg(P*) =  ($, 0). If there exists a path [(4>, 0), ( $ i , 0 i ) , . . . ,  ($„ , 4>n)] in 

DialogueTree(.D£), then there exists a path [($ ,0 ), (<i>i; 0 i ) ,  • ■ •, (4>n, 0 n)] in the 

dialectical tree where A =  ($ ,0)  and A =  £ Xl U £ X2.

Lemma 7.5.2. Let D lr be a well-formed pruned tree dialogue with participants x \ 

and X2 such that RootArg(D^.) ^  null and D\ is a top-dialogue of D lr. If there ex­

ists ($, 0) G A (T P U CSP) such that there exists N  G Nodes(DialogueTree(D£)) 

and Status(Air, DialogueTree(D*)) =  U and Status(A^, DialogueTree(.D* +  

(P, assert, ($, 0))) =  D, then Assertsprn(P j ,  P ) /  0.

Lemma 7.5.3. Let D lr be a well-formed pruned tree dialogue with participants x \  

and X2 such that RootArg(.D*) ^  null and D \ is a top-dialogue of D*. If there 

exists (qi A . . .  A a n —» 0, L) G T p  such that there exists (4>, 0) G ^(C S ^T 1 U 

C S ^ 1) such that $  |~  ->/3 and there exists N  G Nodes(DialogueTree(P£-1 )) 

such that Label(AT) =  ($ ,0) and Status(A^, DialogueTree(Z)^1)) =  U, then 

Opensprn{D \,P ) /  0.

Lemma 7.5.4, Let D lr be a well-formed pruned tree dialogue that terminates 

at t with participants x \  and X2 such that D\ is a top-dialogue of D l and 

R e c e i v e r ( m t )  =  X2 . Part 1: There does not exist (<$. 0) G . A ( £ Xl UC>S‘2) such that 

there exists N  G N o d e s ( D i a l o g u e T r e e ( . D * ) )  and S t a t u s ( A f ,  D ia l o g u e T r e e ( £ > * ) )  =  

U and S t a t u s ( A f ,  D i a lo g u e T r e e ( Z ) *  +  (x2, assert, (<$, 0))) =  D . Part 2:

There does not exist (4>, 0) G »4(£X2 U  such that there exists

N  G N o d e s ( D i a l o g u e T r e e ( D * ) )  and S t a t u s (N , D i a l o g u e T r e e ( D * ) )  =  U and 

S ta tu s ( A T ,  D ia lo g u e T r e e ( .D *  +  ( x i ,  assert, (4> , 0 ))) =  D .

163

page 133

page 134 

page 134 

page 135

page 136

page 136

page 137



Lemma 7.5.5. Let D lr be a well-formed pruned tree dialogue that terminates 

at t with participants x \  and x2 such that D \ is a top-dialogue of D lr and 

Receiver(m*) =  X2 ■ Part 1: There does not exist (a \ A . . .  A a n —► (3, L) G £ Xl 

such that there exists ($.<f>) G A (C S tXl U C S X2) such that $  |~  ->/3 and 

there exists N  G Nodes(DialogueTree(Z)*)) such that Label(TV) =  (4>,0) and 

Status(AT, DialogueTree(i)£)) =  U. Part 2: There does not exist (a i A . . .  A a n —> 

(3, L) g £ X2, (L G N), such that there exists ($ ,0 )  G A {C S Xl U CS*2) 

such that $  |~  ->(3 and there exists N  G Nodes(DialogueTree(D*)) such that 

Label(iV) =  (4>, </>) and Status(7V, DialogueTree(Z)*)) =  U.

Lemma 7.5.6. Let D lr be a well-formed pruned tree dialogue that terminates 

at t with participants x \  and x2. There does not exist an argument (4>,</>) G 

.A(£Xl U £ X2) such that there exists a node N  e  Nodes(DialogueTree(D*)) 

such that Status(iV, DialogueTree(.D*)) =  U and Status(AT, DialogueTree(i)* +  

(P, assert, (4>, (j>))) =  D.

Theorem 7.6.1. If D lr is a well-formed pruned tree dialogue with participants x \  

and X2 , then D\. is sound.

Theorem 7.6.2, If D lr is a well-formed pruned tree dialogue with participants x\ 

and X2 , then D lr is complete.

Lemma 7.7.1. If D£ is a well-formed pruned tree dialogue with participants 

xi and x2, then | Nodes(DialogueTree(P*)) | < | Nodes(T^) | where A  =  

RootArg(DialogueTree(P*)) and A =  £ p U E p .

Lemma 7.7.2, There exists a well-formed pruned tree dialogue D lr with participants 

x \ and X2 , such that | Nodes(DialogueTree(D^)) | <  | Nodes(T^) |, where A  =  

RootArg(DialogueTree(D*)) and A =  £ p U T,p .

Lemma 7.8.1. Let D lr be a well-formed exhaustive dialogue that terminates at 

t with participants xi and x2 such that D lr is a warrant inquiry dialogue and 

Topic(Z)*) =  cj). Let D lr, be a well-formed pruned tree dialogue that termi­

nates at t' with participants x \ and x2 such that £>*, is a warrant inquiry dialogue 

Topic(Z)*,) =  4>. RootArg(Z)*) =  RootArg(D*,).

Theorem 7.8.1. Let D lr be a well-formed pruned tree dialogue that terminates at t 

with participants x \  and x 2 such that Topic(D*) =  4> and D lr is a warrant inquiry 

dialogue. Let D be a well-formed pruned tree dialogue that terminates at t' with 

participants x \ and x2 such that Topic(D*,) =  </> and D*, is a warrant inquiry 

dialogue. | Nodes(DialogueTree(P^.)) | <  j Nodes(DialogueTree(D*,) j.

Theorem 7.8.2. There exists a well-formed pruned tree dialogue D lr with par­

ticipants x’i and x’2 and there exists a well-formed exhaustive dialogue D p with 

the same participants x \  and x 2 such that D lr and D p, are both warrant in­

quiry dialogues, Topic(D^) =  Topic(D*,/), and | Nodes(DialogueTree(Z>*)) | <

| Nodes(DialogueTree(D*/) |.

164

page 138

page 139

page 139 

page 140 

page 141

page 141

page 144

page 145

page 145



Bibliography

[1] Leila Amgoud and Nabil Hameurlain. An argumentation-based approach for dialogue move selec­

tion. In Third International Workshop on Argumentation in Multi-Agent Systems (ARGMAS 2006), 

pages 111-125, Hakodate, Japan, 8 -1 2  May 2006.

[2] Leila Amgoud, Nicholas Maudet, and Simon Parsons. Arguments, dialogue and negotiation. In 

14th European Conference on Artificial Intelligence (ECAI2000), pages 338—342, Berlin, Germany 

2000, 20 - 25 August 2000. IOS Press.

[3] Leila Amgoud, Nicholas Maudet, and Simon Parsons. Modelling dialogues using argumentation. 

In Fourth International Conference on Multi-Agent Systems, pages 31-38, Boston, USA, 7 - 1 2  

July 2000. IEEE Press.

[4] John L. Austin. How To Do Things with Words. Oxford University Press, Oxford, UK, 1962.

[5] Trevor J. M. Bench-Capon. Specification and implementation of Toulmin dialogue game. In 

Eleventh International Conference on Legal Knowledge-Based Systems (Jurix 1998), pages 5-20, 

Nijmegen: Gerard Noodt Instituut, December 1998.

[6] Philippe Besnard and Anthony Hunter. A logic-based theory of deductive arguments. Artificial 

Intelligence, 128:203-235,2001.

[7] Philippe Besnard and Anthony Hunter. Elements o f Argumentation. MIT Press, 2006. In prepera- 

tion.

[8] Jonathan Bury, John Fox, and David Sutton. The PROforma guideline specification language: 

Progress and prospects. In First European Workshop on Computer-based Support for Clinical 

Guidelines and Protocols (EWGLP 2000), Leipzig, 13-14 November 2000. IOS Press.

[9] Brahim Chaib-draa, Nicholas Maudet, and Marc-Andre Labrie. Request for action reconsidered 

as a dialogue game based on commitments. In Marc-Philippe Huget, editor, Communication in 

Multiagent Systems - Agent Communication Languages and Conversation Policies, volume 2650 

of Lecture Notes in Computer Science (LNCS) State o f the Art Survey, pages 284-299. Springer- 

Verlag, July 2003.

[10] David Classen. Clinical decision support systems to improve clinical practice and quality of care. 

Journal o f the American Medical Association, 280(15): 1360-1361, 1998. Editorial.



Bibliography 166

[11] Philip R. Cohen and Hector J. Levesque. Communicative actions for artificial agents. In V. Lesser 

and L. Gasser, editors, Proceedings o f the First International Conference on Multi-Agent Systems 

(ICMAS 1995), pages 65-72, Cambridge, MA, USA, 1995. MIT Press.

[12] Frank Dignum, Barbara Dunin-Keplicz, and Rineke Verbrugge. Dialogue in team formation. 

In Frank Dignum and Mark Greaves, editors, Issues in Agent Communication, pages 264-280. 

Springer-Verlag, 2000.

[13] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic 

reasoning, logic programming and n-person games. Artificial Intelligence, 77:321-357, 1995.

[14] Paul E. Dunne and Trevor J. M. Bench-Capon. Two party immediate response disputes: Properties 

and efficiency. Artificial Intelligence, 149(2):221-250, 2003.

[15] Paul E. Dunne and Peter McBumey. Optimal utterances in dialogue protocols. In Second Interna­

tional Conference on Autonomous Agents and Mutli-Agent Systems (AAMAS 2003), pages 608-615, 

New York, NY, USA, 2003. ACM Press.

[16] Martin Eccles and Jeremy Grimshaw, editors. Clinical Guidelines: From Conception to Use. Rad- 

cliffe Medical Press, Abingdon, UK, 2000.

[17] Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communication language. In 

J. Bradshaw, editor, Software Agents, pages 291-316. AAAI/MIT Press, 1997.

[18] Foundation for Intelligent Physical Agents (FIPA). Fipa communicative act library specification. 

http://www.fipa.org/specs/fipa00037/SC00037J.html, 2002.

[19] NHS Centre for Reviews and Dissemination. Getting evidence into practice. Effective Health Care 

Bulletin 5(1), 1999.

[20] John Fox and Subrata Das. Safe and Sound: Artificial Intelligence in Hazardous Applications. 

AAAI Press and The MIT Press, 2000.

[21] John Fox, Nicky Johns, and Ali Rahmanzadeh. Disseminating medical knowledge: The PROforma 

approach. Artificial Intelligence in Medicine, 14(1-2): 157—181, 1998.

[22] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming an argumentative 

approach. Theory and Practice o f Logic Programming, 4(l-2):95-138, 2004.

[23] Mark Greaves, Heather Holmback, and Jeffrey Bradshaw. What is a conversation policy? In Frank 

Dignum and Mark Greaves, editors, Issues in Agent Communication, pages 118—131. Springer- 

Verlag, 2000.

[24] David Hitchcock. Some principles of rational mutual inquiry. In Frans H. van Eemeren et al., editor, 

Second International Conference on Argumentation, pages 236-243, Amsterdam, The Netherlands, 

1991. SICS AT: International Society for the Study of Argumentation.

http://www.fipa.org/specs/fipa00037/SC00037J.html


Bibliography 161

[25] David Hitchcock, Peter McBumey, and Simon Parsons. A framework for deliberation dialogues. 

In Hans V. Hansen et al., editor, Fourth Biennial Conference o f the Ontario Society fo r  the Study o f 

Argumentation (OSSA 2001), Windsor, Ontario, Canada, 2001.

[26] Joris Hulstijn. Dialogue Models for Inquiry and Transaction. PhD thesis, Universiteit Twente, 

Enschede, The Netherlands, 2000.

[27] Institute of Medicine Institute of Medicine Comittee on Quality of Health Care in America, editor. 

Crossing the Quality Chasm: A New Health System fo r the 21st Century. National Academies 

Press, 2001.

[28] Antonis Kakas, Nicolas Maudet, and Pavlos Moraitis. Flexible agent dialogue strategies and soci­

etal communication protocols. In Nicholas R. Jennings, Carles Sierra, Liz Sonenberg, and Milind 

Tambe, editors, Third International Joint Conference on Autonomous Agents and MultiAgent Sys­

tems (AAMAS 2004), pages 1434-1435. ACM Press, July 2004. Extended abstract.

[29] Antonis Kakas, Nicolas Maudet, and Pavlos Moraitis. Layered strategies and protocols for 

argumentation-based agent interaction* In Iyad Rahwan, Pavlos Moraitis, and Chris Reed, editors, 

First International Workshop on Argumentation in MultiAgent Systems (ARGMAS 2004), Lecture 

Notes in Artificial Intelligence (LNAI) 3366, pages 66-79, New York, 2004. Springer-Verlag.

[30] Antonis Kakas, Nicolas Maudet, and Pavlos Moraitis. Modular representation of agent interaction 

rules through argumentation. Journal o f Autonomous Agents and Multiagent Systems, 11(2): 189— 

206, 2005. Special Issue on Argumentation in Multi-Agent Systems.

[31] Linda T. Kohn, Janet M. Corrigan, and Molla S. Donaldson, editors. To Err is Human: Building a 

Safer Health System. Committee on Quality of Health Care in America. National Academies Press, 

2000.

[32] Yannis Labrou. Semantics for an Agent Communication Language. PhD thesis, Computer Science 

and Engineering Department, University of Maryland, Baltimore County, 1996.

[33] Yannis Labrou and Tim Finin. Semantics and conversations for an agent communication language. 

In Michael Huhns and Munindar Singh, editors, Readings in Agents, pages 235-242. Morgan Kauf- 

mann, 1997.

[34] Yannis Labrou and Tim Finin. Semantics for an agent communication language. In Munindar P. 

Singh, Anand Rao, and Michael J. Wooldridge, editors, Intelligent Agents TV: Agent Theories, 

Architectures, and Languages, volume 1365 of Lecture Notes in Computer Science, pages 209- 

214. Springer-Verlag, Heidelberg, Germany, 1998.

[35] Yannis Labrou and Tim Finin. Short course: Agent communication in the semantic web era, 2003. 

Fifth European Agent Systems Spring School 2003, Barcelona.



Bibliography 168

[36] Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages: The current landscape. 

IEEE Intelligent Systems, 14(2):45-52, 1999.

[37] Jonathan Lomas. Words without action? the production, dissemination, and impact of consensus 

recommendations. Annual Review Public Health, 12:41-65, 1991.

[38] Nicholas Maudet and Brahim Chaib-draa. Commitment-based and dialogue-game based protocols: 

new trends in agent communication languages. The Knowledge Engineering Review, 17(2): 157— 

179, 2002.

[39] Peter McBumey and Simon Parsons. Chance discovery using dialectical argumentation. In New 

Frontiers in Artificial Intelligence: Joint JSA I2001 Workshop Post Proceedings, Lecture Notes in 

Artificial Intelligence 2253, pages 414-424. Springer, Berlin, Germany, 2001.

[40] Peter McBumey and Simon Parsons. Representing epistemic uncertainty by means of dialectical 

argumentation. Annals of Mathematics and Artificial Intelligence, 32(1-4): 125—169, 2001.

[41] Peter Mcbumey and Simon Parsons. Games that agents play: A formal framework for dialogues 

between autonomous agents. Journal o f Logic, Language and Information, 11 (3):315—334, 2002. 

Special issue on logic and games.

[42] Peter McBumey, Rogier van Eijk, Simon Parsons, and Leila Amgoud. A dialogue-game proto­

col for agent purchase negotiations. Journal o f Autonomous Agents and Multi-Agent Systems. (In 

press)., 7(3):235-273, 2003.

[43] Sanjay Modgil. Hierarchical argumentation. Accepted for publication in 10th European Conference 

on Logics in Artificial Intelligence (JELIA 2006), September 2006.

[44] John Nealon and Antonio Moreno. The application of agent technology to health care. In AgentC- 

ities workshop: research in large scale open agent environments. First International Joint Confer­

ence on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), 2002.

[45] OpenClinical. OpenClinical White Paper, http://www.openclinical.org/whitepaper.html, 2000.

[46] Simon Parsons, Michael Wooldridge, and Leila Amgoud. An analysis of formal inter-agent dia­

logues. In First International Conference on Autonomous Agents and Mutli-Agent Systems (AAMAS

2002), pages 394- 401, New York, 2002. ACM Press.

[47] Simon Parsons, Michael Wooldridge, and Leila Amgoud. On the outcomes of formal inter-agent 

dialogues. In Second International Conference on Autonomous Agents and Mutli-Agent Systems 

(AAMAS 2003), pages 616-623, 2003.

[48] Simon Parsons, Michael Wooldridge, and Leila Amgoud. Properties and complexity of some for­

mal inter-agent dialogues. Journal o f Logic and Computation, 13(3):347-376, 2003. Special issue 

on computational dialectics.

http://www.openclinical.org/whitepaper.html


Bibliography 169

[49] Philippe Pasquier, Nicolas Andrillon, and Brahim Chaib-draa. An exploration in using cognitive 

coherence theory to automate BDI agents’ communicational behaviour. In Agent Communication 

Language and Dialogue Workshop, pages 37-58. Second International Conference on Autonomous 

Agents and Mutli-Agent Systems (AAMAS 2003), 2003.

[50] Philippe Pasquier and Brahim Chaib-draa. The cognitive coherence approach for agent commu­

nication pragmatics. In Second International Conference on Autonomous Agents and Mutli-Agent 

Systems (AAMAS 2003), pages 544 -  551. ACM Press, 2003.

[51] Philippe Pasquier and Brahim Chaib-draa. Agent communication pragmatics: the cognitive coher­

ence approach. Cognitive Systems Research, 6(4):364—395, 2005.

[52] Philippe Pasquier, Iyad Rahwan, Frank Dignum, and Liz Sonenberg. Argumentation and persua­

sion in the cognitive coherence theory. In First International Conference on Computational Models 

o f Argument (COMMA 2006), pages 223-234. IOS Press, 2006.

[53] Stanley L. Pestotnik, David C. Classen, R. Scott Evans, and John P. Burke. Implementing antibiotic 

practice guidelines through computer-assisted decision support: Clinical and financial outcomes. 

Annals o f Internal Medicine, 124:884-890, 1996.

[54] Henry Prakken. On dialogue systems with speech acts, arguments, and counterarguments. In 

M. Ojeda-Aciego, I.P. de Guzman, G. Brewka, and L. Moniz Pereria, editors, Proceedings o f 

JELIA’2000, The 7th European Workshop on Logic for Artificial Intelligence, Springer Lecture 

Notes in AI 1919, pages 239-253. Springer Verlag, 2000.

[55] Henry Prakken. Relating protocols for dynamic dispute with logics for defeasible argumentation. 

Synthese, 127(1, 2): 187-219, 2001.

[56] Henry Prakken. Coherence and flexibility in dialogue games for argumentation. Journal o f Logic 

and Computation, 15(6): 1009-1040, 2005.

[57] Henry Prakken and Giovanni Sartor. Argument-based logic programming with defeasible priorities. 

Journal o f Applied Non-Classical Logics, 7:25-75, 1997. Special issue on handling inconsistency 

in knowledge systems.

[58] Iyad Rahwan, Peter McBumey, and Liz Sonenberg. Towards a theory of negotiation strategy (a 

preliminary report). In Fifth Workshop on Game Theoretic and Decision Theoretic Agents (GTDT-

2003), pages 73-80. Second International Conference on Autonomous Agents and Mutli-Agent 

Systems (AAMAS 2003), 2003.

[59] Chris Reed. Dialogue frames in agent communications. In Third International Conference on 

Multi-Agent Systems (ICMAS 1998), pages 246-253. IEE Press, 1998.

[60] Fariba Sadri, Francesca Toni, and Paolo Torroni. Dialogues for negotiation: Agent varieties and 

dialogue sequences. In John-Jules Meyer and Milind Tambe, editors, Pre-proceedings o f the Eighth



Bibliography 110

International Workshop on Agent Theories, Architectures, and Languages (ATAL-2001), pages 69- 

84, 2001.

[61] Fariba Sadri, Francesca Toni, and Paolo Torroni. Logic agents, dialogues and negotiation: an 

abductive approach. In Michael Schroeder and Kostat Stathis, editors, Symposium on Information 

Agents for E-Commerce (AISB 2001). AISB, 2001.

[62] John Searle. Speech Acts: An Essay in the Philosophy o f Language. Cambridge University Press, 

Cambridge, UK, 1969.

[63] Venky Shankararaman, Vivian Ambrosiadou, Trushar Panchal, and Brian Robinson. Agents in 

health care. In Venky Shankararaman, editor, Workshop on Autonomous Agents in Health Care, 

pages 1-11. ACM Press, 2000.

[64] Guillermo R. Simari and Ronald P. Loui. A mathematical treatment of defeasible reasoning and its 

implementation. Artificial Intelligence, 53:125-157, 1992.

[65] Douglas N. Walton and Erik C. W. Krabbe. Commitment in Dialogue: Basic Concepts o f Interper­

sonal Reasoning. SUN Y Press, 1995.

[66] Michael J. Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice. Knowl­

edge Engineering Review, 10(2): 115-152, 1995.


