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ABSTRACT

Background:

The management of pain in children is a common but difficult symptom to treat and the 

use of strong analgesics is often limited, for a variety of reasons, including fear of 

inducing side effects. Morphine is normally considered to be a centrally acting analgesic 

but recently, the beneficial effects of peripheral opioids have been demonstrated in 

adults for a number of painful inflammatory conditions. When administered in this non- 

invasive way, opioids provide analgesia without achieving significant plasma 

concentrations and therefore it can be assumed that many of the adverse effects 

associated with oral or systemic opioids are avoided.

Methods:

A) The first part of the thesis describes the mechanism of action of peripheral opioids 

through development and particularly their effect during inflammation. This work was 

conducted using different ages of Sprague Dawley rat pups and skin inflammation was 

induced using carageenan.

B) The second section is a description of a double-blinded, randomised-controlled, 

placebo-controlled trial with crossover design, to assess the efficacy of peripheral 

opioids in paediatric inflammatory pain. This was conducted in children with a 

diagnosis of Epidermolysis Bullosa (EB), as a model for acute and chronic 

inflammatory pain

Results:.

The laboratory study demonstrates that mu opioid receptor (MOR) expression is up 

regulated in neonatal plantar skin and significantly up regulated in neonatal lumbar 

dorsal root ganglion (DRG) four hours post hind paw inflammation, MOR protein levels 

in the rat hind paw plantar skin are significantly up regulated post-natally, and MOR 

protein levels are significantly up regulated in both neonatal and young adult plantar 

skin four hours post hind paw inflammation. Clinically, pain reduction was most 

significant with background pain
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Conclusion:

The developmental regulation of peripheral MOR both in naive and inflamed cutaneous 

tissue may have implications for the use of topically / peripherally applied opioids in 

infants and children.

“I, Gillian Watterson confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been indicated 

in the thesis”.
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CHAPTER 1

1.1 GENERAL INTRODUCTION

Pain is a complex and multi-dimensional symptom, which we all experience at some 

time in our lives. Under-treatment of pain can lead to long-lasting catastrophic effects 

both physiological and psychological. Fortunately, much has changed in the field of 

paediatric pain research since the initial reports of inadequate pain management in 

infants and children documented well over 25 years ago (Swafford and Allan 1968). 

Although laboratory research has now revealed the precise pain mechanisms, 

demonstrating that even the youngest infant is capable of painful experiences and 

therefore in potential need of analgesia (Fitzgerald et al 1988), there is still a gap 

between this knowledge and implementation in the clinical setting. Strict ethical 

processes exist, particularly for clinical trials involving children and yet there is a 

pressing need for research, especially in the areas of pain assessment, management of 

neuropathic and persistent pain states in children as well as the introduction of novel 

analgesics.

Traditionally opioids act through the central nervous system but studies in the adult 

population have now characterised definite peripheral actions of opioids upon peripheral 

morphine receptors (MOR), providing both anti-nociceptive and anti-inflammatory 

effects (Stein et al 1991, Krajnik and Zylicz 1997; Flock et al 2000; Stein et al 2001). 

This exciting development of opioid receptor pharmacology could potentially lead to 

effective analgesia when opioids are applied to peripheral tissues, but without the 

centrally mediated and often intolerant adverse effects.

My research, both a laboratory and clinical project, has attempted for the first time to 

provide evidence for the existence of peripheral opioid receptors throughout 

development in skin tissue, from the neonatal period onwards. It also explores whether 

inflammation might have an effect on the quantity of receptors (chapter 3). The second 

part of the thesis is clinical work exploring the efficacy of a novel route of peripheral 

opioids in a paediatric population (chapter 4).
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Layout of thesis:

The thesis is divided to two main sections:

A) Laboratory study The first part of my thesis describes various studies carried out in 

the Department of Anatomy and Developmental Biology laboratory, University College 

London. This work focuses on the existence of peripheral opioid receptors throughout 

development and whether there is any alteration in receptor number following an 

inflammatory painful insult, using immunofluroescence and light microscopy, as well as 

quantification of the MOR protein using Western Blot technique. The skin tissue of rat 

pups are used in these studies.

B) Clinical study The second part explores the efficacy and use of topical (peripheral) 

opioids in children and young people with Epidermolysis Bullosa (EB). EB is a group 

of inherited mechano-bullous disorders involving blistering of the skin and mucous 

membranes, in response to minor frictional trauma. I focus on one of its main symptoms 

namely pain, because different sub-types of pain are experienced in EB patients and it 

is therefore an extremely useful model for the purpose of this work (Herod et al 2002). I 

have not included details of the patho-physiology or management of the disorder. 

Previous studies investigating peripheral opioids, have only been carried out in the adult 

population and have recruited mainly a population of patients who are in the palliative 

phase of their illness and who have experienced a varying range of cutaneous lesions, 

triggering episodes of either acute inflammatory pain, acute incident pain, chronic 

inflammatory pain, neuropathic pain or indeed a combination of these pain types 

(Krajnik and Zylicz 1997; Twillman et al 1999; Flock 2003; Zeppetella et al 2003). 

This study focuses on the use of topical morphine and its efficacy particularly in 

incident pain, background inflammatory pain and post-procedural pain in a paediatric 

patient group.
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In order to understand the neurobiology, physiology and classification of pain in the 

developing human, I will first document the commonly used definition of pain and 

summarise how important historical theories have provided a foundation for our current 

knowledge, of pain and its mechanisms in the human adult.

1.2 PAIN DEFINITION

The International Association into the Study of Pain has defined pain as “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage.” 

This definition encompasses both the physical and emotional perception of pain, rather 

than considering the actual amount of tissue damage leading to the pain i.e nociception 

(IASP Taskforce on taxonomy 1994).

However considering the diverse and individual nature of pain experiences, the above 

definition is not suitable to be applied in all situations; e.g. in the preverbal child or the 

cognitively impaired. The relationship of the perception to the stimulus is variable and 

depends on the patient’s previous experiences, emotional state and cognition. In 

particular relation to pain in neonates and infants, it is also necessary to consider the 

development of sensory pathways as well as development of consciousness and the 

mind.

1.3 PAIN THROUGH THE CENTURIES

The first mechanism of pain perception was suggested by Descartes almost four 

centuries ago 1664 - he stated that pain was “fast moving particles o f fire., the 

disturbance passes along the neurofilament until it reaches the brain”. This simply 

described the concept that the pain system was a direct channel from the skin to the 

brain. He stated that a flame sets alight particles in the foot into motion up the leg and 

back and into the head where an alarm system is then set off, causing the person to feel 

pain (Descartes 1664).

In the nineteenth century, Max Von Frey, physician proposed that specific pain 

receptors in the body project via pain fibres to a pain centre within the central nervous 

system. His second suggestion was that below each sensory spot in the skin lay a 

specific receptor, linked to each of the four sensory modalities but this has never been 

proven.
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However a final proposal which was accepted was the pattern theories of pain, which 

suggests that painful information generated by peripheral skin receptors is coded in 

patterns of nerve impulses (von Frey 1894).

In 1965 the Melzack and Wall Gate Control Theory was published in Science entitled a 

“A New Theory of Pain”. Simply speaking it stated that pain transmission from the 

peripheral nerve through to the spinal cord was subject to both intrinsic controls and 

controls originating from the brain. Melzack and Wall proposed that the perception of 

pain depends not only upon pain signals in small fibres, but also upon the balance of 

activity in large myelinated fibres (A-alpha and A-beta fibres) and small myelinated and 

unmyelinated nociceptive fibres (A-delta and C fibres). They hypothesised that under 

normal conditions, any stimulus which increases the activity of the large 

mechanoreceptive fibres tends to reduce pain, and anything that increases the activity of 

small nociceptive fibres tends to increase pain (Melzack and Wall 1965), (See Fig 1.1). 

However they failed to include the peripheral processes involved in pain.

For example, when there is tissue damage and inflammatory pain ensues, there is a 

peripheral inflammatory soup of chemical mediators released which sensitise the 

peripheral sensory nerve endings and following neuropathic pain, excitability changes 

occur within the peripheral nerves themselves. Both of the above peripheral 

mechanisms then cause change within the central pain systems (McMahon et al 1993). 

Pain as a symptom continues to emerge as a complex sensory modality, initiating from 

Descartes’ basic linear theory, to the current theories based on Wall’s Gate Theory.
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Higher Centres in Brain

1
©

©

Ap Fibre
A8 Fibre 

AC Fibre

Key: Inhibitory Intemeurone + inhibition - excitation

Projection Interneurone

1. Explanation: When there is no simulation, all pain fibres are inactive and the inhibitory 

intemeuron blocks the signal in the projection neuron. The gate is therefore closed and 

no pain is experienced.

2. With a noxious stimulus, A5 and AC fibres are activated, which in turn stimulate the 

projection neuron and blocks the inhibitory neuron. The gate is open and there is pain.

3. When a non- painful stimulus such as touch is experienced, the Ap fibres are stimulated 

and activates the projection neuron as well as the inhibitory neurones which in turn 

blocks the projection neuron which connects to the spinothalamic tract ascending to the 

pain centres in the brain and no pain is experienced

Fig 1.1 Basic Diagram explaining the Gate Control pain Theory
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1.4 TYPES OF PAIN IN CHILDREN

1.4.1 Classification

I will first discuss a simple pain classification system and then will follow on with a 

description of the more commonly known pain mechanisms.

There are several ways to categorise pain in both adults and children but broadly 

speaking there are two major divisions; Acute and Chronic pain.

Acute pain as a response to tissue injury, is where healing will occur thus protecting the 

patient from further injury and the pain usually decreases steadily over time. Acute 

nociceptive pain, is a normal predicted physiological response to an adverse chemical, 

thermal or mechanical stimulus such as that associated with trauma, surgery, and acute 

illness. It occurs when there is an alteration in the nociceptor properties but usually 

resolves as the tissue damage begins to subside and healing is initiated. It is a protective 

pain, in that the patient is protected from further tissue damage. There is normal neural 

transmission. Post- operative pain in children may be used as an example to 

demonstrate the various immediate neurochemical and neurophysiological responses, as 

well as longer term psychological effects.

Acute pain may arise from tissue damage following an inflammatory insult, such as in 

bums. Juvenile rheumatoid arthritis is a classic example of inflammatory pain, where an 

influx of immunocytes, such as mast cells and macrophages release excitatory 

neurotransmitters in response to a noxious stimulus and subsequent tissue damage.

Chronic or persistent pain was previously defined by the International Association for 

the Study of Pain (IASP 1986), as pain which is constant for 6 months or longer, but it 

has now become clear that there are elements of chronic pain which may actually arise 

much earlier and the revised classification is now pain less than 1 month, 1 to 6 months 

or longer than 6 months (IASP Subcommittee on Taxonomy 1994).

This may be a result of prolonged acute pain secondary to an underlying organic 

disorder such as a tumour, a skeletal dysplasia or in arthritis, where there are repeated 

inflammatory episodes such as in those patients with EB.
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It can be distinguished from recurrent pain syndromes where there are alternate periods 

of painful and pain free episodes, for example in chronic recurrent headaches or in the 

recurrent abdominal pain syndrome.

Chronic pain may also exist where there is no underlying pathological cause. Possible 

predisposing factors are female gender, hypermobility, maladaptive coping strategies, 

and parental modelling of pain behaviours.

Unfortunately this pain may go unrecognised for years and may progress to a pain 

disability syndrome affecting the child’s physical, emotional and psychological coping 

mechanisms (Zeltzer et al 1997). Sleep disturbance is often a huge problem for these 

patients as well as school absenteeism. It is believed that for some of these patients, 

there is reinforcement of the sick role and apparent pain amplification (Eccleston 2003).

Neuropathic Pain is a characteristic type of pain which persists independent of 

ongoing tissue damage or inflammation. It may be acute or chronic and is due to an 

altered excitability of the peripheral, central or autonomic nervous system (Bennett

1997). It is generally not protective and usually persists even though the original 

noxious stimulus has subsided. There are a range of particular sensory disturbances such 

as allodynia (a pain response secondary to a non-noxious stimulus) and hyperalgesia 

(heightened pain response to a painful/thermal or mechanical stimulus) as well as motor 

disturbances such as weakness and spasms and autonomic symptoms such as cyanosis, 

sweating and swelling of the affected site (Devor 1984). This subtype of pain occurs in 

such conditions as the Complex Regional Pain Syndromes (Wilder et al 1992), 

secondary to tumour compression or tumour therapies, in phantom limb pain 

(Wilkins et al 1998) or in diabetic patients who have ulcerative lesions as well as 

peripheral neuropathy.

Breakthrough Pain The terms, breakthrough /episodic and incident pain are often 

confused. Breakthrough pain was initially described by Portenoy and Hagen (1990) 

following a study on cancer patients, as a “transient increase in the intensity of moderate 

or severe pain, occurring in the presence of well-established pain.”
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Just over a decade later, the American Pain Society (2005) consolidated the definition 

as “intermittent exacerbations of pain that can occur spontaneously or in relation to 

specific activity; pain that increases above the level of pain addressed by the ongoing 

analgesic; includes incident pain and end-of-dose failure.”

Incident pain is the description traditionally given to pain which may occur on 

movement, for example coughing/vomiting or whilst walking.

There is also a subtype of incident pain unrelated to motion and occurs when the patient 

is at rest with no known triggering factor. These pains are episodic in nature such as 

secondary to spasms. Incident pain may therefore be acute or chronic depending o the 

disease progress and treatment given. Management of breakthrough pain is 

straightforward and requires regular review and alteration of medication and dosage. 

However it is more difficult to achieve adequate control of incident pain and requires an 

individualised approach of balancing efficacy of each drug against adverse effects 

(McQuay 1989).

1.5 MECHANISMS OF PAIN

Several types of pain are now recognised and the complex mechanisms behind such 

pains are becoming clearer. The following mechanisms will now be discussed in more 

detail:

A) nociception

B) peripheral sensitisation

C) phenotypic switches

D) central sensitisation

E) neuropathic pain mechanisms

A) Nociception

Nociception is the detection of a painful noxious stimulus and it encompasses the entire 

process from the actual site of active tissue damage, through to the cortical perception 

of pain via a complex array of physiological and biochemical events. It involves four 

major processes:

• transduction

• transmission

18



• modulation

• perception

Transduction

Transduction involves relaying the specific noxious physical and chemical stimuli to the 

spinal cord, once they have been converted into electrical impulses, at the peripheral 

terminals of nociceptor sensory fibres.

These terminals are known as primary afferent nociceptors and give rise to sensory 

fibres, which possess characteristic properties, distinguishing them from other sensory

nerve fibre. The table below, (table 1.1) summarises the properties of these nociceptors:

Adelta (A 5) Abeta ( A P ) C

finely myelinated, small 

fibres

large, myelinated unmyelinated, small cell 

bodies

rapid firing -  10-40 m/s rapidly conducting j slow rate < 2 m/sec

sharp ; first acute pain transmit innocuous 

information

i1
! dull; second pain
j

; mechanothermal 

i  mechanosensitive

respond to touch, 

vibration,deep pressure

polymodal receptors- 

respond to

thermal,mechanical and 

chemical noxious

Table 1.1 Properties of Primary Afferent Nociceptors
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Transmission

Transmission is the propagation of an impulse from neuron to neuron throughout the 

sensory nervous system, by primary afferent neurons which synapse in the dorsal horn 

of the spinal cord. Afferent fibres enter the spinal cord and travel via Lissauer’s tract 

before sending processes into the dorsal horn. A5 fibres synapse in laminae 1 and 5, C 

fibres synapse in laminae 1 and 2 (substantia gelatinosa) and Ap fibres synapse in 

laminae 3, 4, 5 and 6. (See Table 1.1 for the properties of these fibres).

Then this process activates projection neurons, either directly of via intemeurons, which 

then cross over the midline and ascend to the brainstem and thalamus. These fibres 

along with the second order neurons, form the spinothalamic tract, the major ascending 

pathway for pain and temperature.

Modulation

Modulation is the process of both attenuation and amplification of the initial noxious 

signal. It occurs between pathways of descending inhibition originating within the 

somatic sensory cortex, the hypothalamus, the periaqueductal gray matter of the 

midbrain, the raphe nuclei and other nuclei of the rostral ventral medulla. Complex 

modulatory effects occur at each of these sites as well as in the dorsal horn. Both 

excitatory and inhibitory neurotransmitters are involved.

Descending pathways release transmitters such as 5HT, noradrenaline, and endogenous 

opioids to produce inhibitory control. At the spinal cord level, there are classes of 

intemeurons which contain one or more peptides such as enkephalins or inhibitory 

amino acids such as GABA and glycine. Overall these neurotransmitters aim to act 

upon inhibitory interneurons, thus causing a decrease in pre and postsynaptic activity, or 

excite the second order neuron, producing descending excitation.

Perception of Pain

Pain is a complex phenomenon not only involving the transduction of a noxious 

stimulus but also cortical processing, which then determines the individual 

perception of pain.

Pain perception is largely a cognitive process influenced by physiological, 

neurochemical, contextual, emotional and behavioural variables.
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Cognitive factors affect pain perception at all ascending neural levels of pain, from 

transmission of nociceptor input, through to thalamic and cortical pathways. Perception 

of pain depends not only on the extent of the physical injury, but also on a series of 

complex interactions, where modification of the nerve impulses which have been 

generated by tissue damage and it occurs by means of ascending systems and 

descending pain suppressing systems.

B) Peripheral sensitisation

Tissue damage at the periphery, following a noxious stimulus, triggers the release of 

peptides such as substance P as well as serotonin, histamine, in combination with the 

involvement of inflammatory cells, which then forms an “inflammatory soup”. This 

directly activates and sensitises peripheral nerve endings to cause pain, swelling and 

tenderness, secondary to vasodilatation and plasma extravasation (Dray 1997).

Primary hyperalgesia may develop from the above process around the area of tissue 

damage so non-noxious stimuli seem painful (allodynia) and noxious stimuli produce an 

even more heightened pain response (hyperalgesia).The entire process of chemical 

signalling, which arises from local damage, not only protects the damaged area, but also 

promotes healing and helps to prevent infection, due to the increased blood flow and 

inflammation.

C) Phenotypic changes

Following tissue injury and inflammatory pain, transport of neurotransmitters from the 

periphery to the dorsal root ganglion activates intracellular pathways, which then alter 

the properties of sensory neurons, e.g. in neuropathic pain, changes in the phenotypic 

expression of sodium and potassium channels post nerve injury lead to 

hyperpolarisation of the membrane (Amir et al 2006).
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D) Central Sensitisation

This is characterised by reduction in threshold and an increase in responsiveness of 

dorsal horn neurons, as well as enlargement of their receptive fields and sensitivity to 

non- noxious stimuli (allodynia and secondary hyperalgesia ).During central 

sensitisation in the dorsal horn, there is a repeated constant C fibre stimulus which can 

induce an augmented response to subsequent C fibre input - “wind up.” This leads to an 

intense acute pain secondary to closely repeated stimuli.

The NMDA (N methyl-D- aspartate) receptor is required for this amplification, as well 

as activation of other ion channels such as the AMPA (amino hydroxy methyl isoxazole 

proprionic acid) receptor, the neurokinin receptor and tyrosine kinase receptors 

(Dickenson and Beeson 1997).The release of peptides such as substance P into the 

spinal cord, removes the magnesium block from the channel of the NMDA receptor and 

permits glutamate to activate the receptor into a persistent pain state (De Felipe et al

1998). Also activation of the NMDA receptor allows calcium to enter the neurone, 

which leads to further production of other mediators from spinal neurones contributing 

to the overall process.

E) Neuropathic Pain mechanisms.

A combination of the above pain mechanisms may exist in the syndrome of 

neuropathic pain. Human studies have demonstrated that A fibre activity leads to 

neuropathic pain, more specifically the touch evoked allodynia, while burning 

spontaneous pain is probably maintained via C nociceptors. Peripheral sensitisation has 

been shown in certain neuropathic pain states such as post-herpetic neuralgia, where C 

fibre sensitisation has been shown to induce touch evoked Ap allodynia (Chabal 1989). 

Axon damage in the adult also leads to a change in the function, structure and 

phenotypic expression of cell bodies within the dorsal root ganglion including opioid 

peptide receptor and glutamate receptor expression (Alvares and Fitzgerald 1999, Woolf 

and Mannion 1999). This may be due to loss of peripheral neurotrophic influences.
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It has also been demonstrated that spontaneous ectopic discharges within the DRG can 

occur after nerve section, as well as accumulation of sodium channels at the axotomy 

site, which then may lead to a hyperalgesic, persistent pain state (Amir et al 2006). 

Centrally, following adult axotomy, there is a synaptic rearrangement whereby Ap 

fibres, which normally occupy Laminae 3 and 4, sprout up to Laminae 1 and 2 and thus 

contributing to allodynia (Shortland and Woolf 1993).

Central sensitisation including the wind-up phenomenon are the hallmarks of 

neuropathic pain but advances in molecular studies as well as functional imaging have 

led to the introduction of novel clinical therapies in an attempt to manage this complex 

pain state.

1.6 THE DEVELOPMENT OF PAIN PROCESSING IN NEONATES AND 

INFANTS

1.6.1 Introduction

Table 1.2 documents the neurodevelopment of human pain pathways.

Until very recently, it was the common belief that neonates and even infants did not 

have the ability to experience or even to remember early painful events. Under 

treatment of pain in children occurs because of the following common misconceptions 

and views held about infant and paediatric pain which include (Schechter and Allen 

1986, McGrath and Finley 1996).

a) The nervous system of the infant is immature.

b) Active children are not in pain.

c) Children always report their pain.

d) Children cannot reliably describe or locate their pain

e) Parent’s are the best reliable source of their child’s pain

f) Analgesics are not safe in infants and children.

g) Psychological intervention such as cognitive therapy is not effective in reducing 

children’s pain.

h) Fear of adverse effects using stronger analgesics such as opioids.
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A major source of under treatment is lack of knowledge and awareness amongst 

medical professionals, concerning the mechanisms of children’s pain. Until fairly 

recently, there have been a lack of paediatric textbooks and other teaching materials, 

which focus specifically on the management on pain in children (Rana 1987).

In view of these factors, pain in the clinical setting has been under recognised and under 

treated and coupled with inappropriate fears of increased adverse effects from strong 

analgesics such as opioids, even many surgical and other invasive procedures, such as 

chest drain insertion and removal have been performed without analgesia (Barker and 

Rutter 1995).

However now, due to well conducted laboratory and clinical research, it is more widely 

accepted that infants not only experience pain, but possibly even more acutely than the 

adult population (Fitzgerald and Koltzenburg 1986; Anand 2000).

1.6.2 Neurodevelopment of pain pathways (Table 1.2)

It is practically impossible to study pain in children, particularly the neonatal age group 

mainly due to ethical reasons. Animal models have been therefore been developed and 

because of the similarities in the pain systems of the rat and human the neonatal rat pup 

is the most frequently accepted model for understanding the neurodevelopment of the 

pain pathways. Some of the principle similarities between the two species include;

• neurotransmitters released in response to pain (Anand 1999; Marti et al 1987)

• large receptive fields in the dorsal horn (Yi and Barr 1995)

• presence of functional C polymodal receptors ( Fitzgerald 1987)

• immature descending inhibitory systems ( Fitzgerald and Koltzenburg 1986)

• exaggerated cutaneous reflexes ( Fitzgerald et al 1988)
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Table 1.2 Neurodevelopment of human pain pathways

(Puchalski et al 2002)
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The following Tablel.3 gives a guide to the age equivalents of rats and humans 

(Anand 2000) but it is it is still important take into account the differences in 

complexity between the human and rodent central nervous system , in particular the 

cognitive and emotional development of the human neonate.

Table 1.3 Age of rat pups and equivalent human age

Age of rat pup Equivalent human age

P0 24 weeks

P7 Full term

P14 1 year old

P21 Toddler

The nervous system at birth exhibits a much greater hypersensitivity to various stimuli 

in comparison to the adult. The developing human neonate’s central nervous system 

(CNS) demonstrates plasticity, that is the ability to be moulded or reformed. This may 

be beneficial, as an enriched environment may assist the neonate to remodel his brain 

with a regeneration of neurons and consequently they have the ability to recover more 

readily from cortical results. Conversely, persistent pain during the neonatal period may 

have permanent detrimental consequences on long- term nociceptive neuronal 

development (Woolf and Salter 2000).

It is now known that pain experienced in the neonatal period will be remembered by this 

ever-changing nervous system for a long time and lead to permanent alterations within 

the neural circuits, therefore strategies aimed at reducing or abolishing these early pain 

experiences are essential (Ruda et al 2000).

1.6.3 Long -term effects of neonatal and infant pain

There are now a series of elegant laboratory studies which illustrate the long-lasting 

changes (cellular, neurophysiological and behavioural) that ensue both centrally and 

peripherally, following neonatal noxious insults (Fitzgerald and Swett 1983; Fitzgerald 

1985; Fitzgerald and Koltzenburg 1986; Alvares et al 2000).
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Following repeated painful insults, it has also been demonstrated there are changes in 

the central and peripheral pain systems in the neonate rat pup and it is becoming more 

evident that these early pain experiences will have an impact on the developing nervous 

system and lead to permanent alterations (Anand 1999).

1: Spinal and supraspinal changes. Repetitive stimulation leads to “wind up”, where 

there are lower thresholds to any further stimuli and due to the larger receptive fields, 

any weaker noxious stimuli actually produce exaggerated responses. It has also been 

demonstrated that there is an immature descending inhibitory pain system as well as 

lack of neurotransmitters ( Fitzgerald and Koltzenburg 1986) and even some inhibitory 

mediators nay actually be excitatory in the neonate such as glycine and GABA 

contributing to the increased susceptibility of neonates and infants to experience an 

heightened pain response.

2: Peripheral changes : The number of sensory neurons responding to pain depends on 

neurotrophic factors such as nerve growth factor (NGF), which also determines skin 

innervation. If there has been a series of noxious insults to the skin at birth, then an 

increase in NGF exists leading to skin hyperinnervation and sprouting of cutaneous 

nerve fibres (Reynolds et al 1997).The laboratory studies conducted to study the effects 

of long- term pain include neonatal rat pups who had 4 daily needle pricks during the 

first week of life and were more hypersensitive to pain at 16 and 22 days (Anand 1999).

Neonatal rat pups who had local inflammatory pain for 5-7 days, had an increase of 

sensory fibres which formed connections with the laminae 1 and 2 as well as caudally 

L5/S1, where there is usually no sensory input. The dorsal horns were then noted to be 

hyperexcitable at rest and led to an overall increased pain response (Ruda et al 2000). 

Behavioural studies showed that neonatal rats who were exposed to repeated noxious 

stimuli grew up to be adults who had withdrawal behaviours, increased alcohol 

preference as well as decreased latencies to heat showing that they may have an altered 

ability to cope and deal with stress (Anand 1999).
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In human infants, following a series of brief noxious stimuli (heel lances), it has been 

demonstrated, using the cutaneous withdrawal reflex, that responses are not as 

discriminative, more exaggerated, with larger receptive fields, lower threshold and 

therefore increased sensitivity and with a tendency to hypersensitivity (Andrews and 

Fitzgerald 1994) .This threshold was half that of the contralateral heel which led to 

hypersensitivity but that this could be prevented with the local anaesthetic cream EMLA 

(Fitzgerald et al 1988).Those infants who have been in the neonatal intensive care unit 

requiring repeated painful tests displayed an immature facial response following each 

procedure (Johnson and Strada 1986).

It has been shown that full-term neonates, who underwent circumcision without any 

anaesthetic, had an associated heightened pain response at 4-6 months post operation 

during their routine immunisations. This hypersensitivity was partially reduced with 

application of a local anaesthetic during circumcision (Taddio et al 1997).

A subsequent patient group which included full term neonates of diabetic mothers, who 

required repeated heel lances in the first 36 hours of life, demonstrated a greater pain 

response than normal infants and learned to anticipate pain, with subsequent noxious 

stimuli (Taddio et al 2002). Even though they may not consciously recall their early 

painful experiences, it has been suggested that they may be more likely to display 

abnormal behavioural patterns or altered sensory processing in later life (Grunau and 

Craig 1987).

In summary, repeated noxious stimuli experienced in the fetal of neonatal period may 

lead to permanent changes within the adult pain sensory system such as;

• skin hyperinnervation

• increased skin nerve sprouting

• hyperexcitable sensory neurons within dorsal horns which cause adaptive 

changes causing an overall hypersensitivity and susceptibility to pain
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1.7 MANAGEMENT OF PAIN IN CHILDREN

Recently, there has been an increase research into the study of the safety, efficacy, 

pharmacokinetics, pharmacodynamics and clinical outcomes associated with a variety 

of analgesics for children. (Berde and Sethna 2002).

The best method of managing acute pain is with a combination of both pharmacological 

and non-pharmacological approaches using protocols for specific use in the paediatric 

patient group.

The World Health Organisation guidelines recommend an analgesic ladder approach, 

which emphasises the initial use of simple analgesics such as paracetamol, then 

proceeding to stronger analgesics, such as codeine and then finally strong opioids, 

although the terms “weak opioids and adjuvants” are rather ambiguous in the current 

environment of advancing analgesic pharmacology (WHO 1990). It is intended to 

provide a basic pathway for pain management. This ladder was initially introduced for 

management of pain in adult cancer patients with little adjustment for paediatric or non- 

malignant pathology.

There are 4 basic concepts summarising the ladder approach in relation to children;

• by the ladder

• by the clock

• by the appropriate route

• by the child

There are questions surrounding the use of the ladder in other diagnoses such as non- 

malignant pain other than cancer and although it has not been formally validated for 

these conditions, it is generally widely accepted that the principles of the step wise 

analgesia ladder may be applied (Fig 1.2 ).
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Increasing pain intensity

Strong opioid 
+Non- opioid
+/-adjuvants STEP 3

Weak opioid 
+ Non-opioid

+/-Adjuvants STEP 2

Non-opioid 
+/ - Adjuvant

STEP 1

Fig 1.2 WHO Analgesic Ladder: The World Health Organisation Analgesic Ladder 

has provided an excellent framework for the escalation of analgesia for many years. A 

more flexible approach is now advocated, particularly for children’s pain with 

management strategies customised according to the child's pain, the mechanism 

involved, the child's particular needs and response to previous treatments. The entry 

level onto the ladder will be influenced by these factors. Treatment should be frequently 

reassessed and modified. An adjuvant analgesic agent can be added at any point on the 

ladder if  indicated by the clinical circumstances eg. bone pain, neuropathic pain, 

inflammatory pain. (The World Health Organization 1998). The addition o f non

steroidal anti-inflammatory drugs (NSAIDs) and co-analgesics should be considered at 

any stage throughout the treatment process.



A variety of analgesics are available, but oral paracetamol is the most widely used 

analgesic for children. It is a safe drug with a potential of becoming toxic in a few states 

including fever, dehydration or hepatic impairment.

Its mechanism of action involves central blockade of cycloxygenase with little 

peripheral effect and so it possesses no anti-inflammatory properties.

It is not however as effective for procedural pain such as venepuncture (Lesko and 

Mitchell 1999).

Non- steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen inhibit 

cyclooxygenase in the spinal cord and periphery and are analgesic as well as antipyretic. 

Ibuprofen is the most commonly used NSAID in children and has a synergistic effect 

with paracetamol. It is very effective in inflammatory juvenile arthritis and peri- 

operatively (Romsing and Walther-Larsen 1997). Both paracetamol and the NSAIDs 

have a ceiling effect and may also be opioid sparing (Korpela et al 1999). Adverse 

effects of NSAIDs such as gastrointestinal bleeding secondary to platelet dysfunction, 

peptic ulcer formation and nephrotoxicity need to be monitored in children, especially 

those requiring regular use (Lesko and Mitchell 1999). Paracetamol and NSAIDs such 

as ibuprofen are particularly useful in combination with each other for mild to moderate 

pain especially if there is bony pain, such as arthritis (Williams et al 1986).

Paediatric protocols have now been devised for the safe use of opioids and experience 

with analgesic use in children is improved. Opioids are discussed in greater detail in the 

following chapter.

For acute procedural pain in children, local topical anaesthetic agents, EMLA / Ametop 

are effectively used for short procedures such as venepuncture (Gunter 2002).

The combination of therapeutic agents and cognitive behavioural strategies such as 

guided imagery or visualisation should always be encouraged in children undergoing 

acute procedures (Kuttner et al 1988). Patient controlled analgesia may be used in 

children greater than 5 years for administering opioids or ketamine and in adult patients, 

local nerve blocks and epidural anaesthesia for acute pain post-operatively, have been 

studied, confirming their safety and efficacy (Monitto et al 2000).

Most research in chronic pain syndrome management in the paediatric and adolescent 

population has focused on the use of a multidisciplinary rehabilitation programme.

There are different models worldwide; for example some require the child and a family 

member to be residential for a period of up to three weeks (Bennett et al 2000).

31



It has been demonstrated that patient education and cognitive behavioural therapy as 

well as regular physiotherapy and occupational therapy with minimal medical 

intervention is successful in reducing symptoms of chronic pain syndrome improving 

school attendance (Eccleston et al 2003). Care should be provided in a way, which 

approaches all of the dimensions of the chronic pain and after an initial assessment with 

the child and family, the management plan can be individualised (Perquin et al 2000). 

Non-pharmacological options include, relaxation techniques such as visualisation and 

guided imagery; physical therapies such as transcutaneous electrical stimulation 

(TENS) (Chabal et al 1998), heat and cold therapies are particular useful if there is a 

defined neuropathic element and alternative therapies such as acupuncture, 

aromatherapy and massage are currently being trialled for use in paediatric chronic pain 

as adjuncts to conventional treatments (Rusy and Weisman 2000; Kemper et al 2000; 

van Epps et al 2007).

Drug treatments which are currently used clinically in adult patients with chronic pain, 

include the sodium channel blockers: amitriptyline, the antiepileptics: including 

carbamazepine, lamotrigine and gabapentin (although the precise target of action is still 

unclear) and NMDA antagonists: the most commonly used being ketamine (McQuay et 

al 1995, 1996). Although there have been various randomised controlled trials (RCTs) 

in adult patients which suggest the efficacy of gabapentin in painful neuropathies such 

as in diabetic patients and in post-herpetic neuralgia (Rowbotham et al 1998), there are 

no such trials in paediatric patients with neuropathic pain and in fact there are limited 

case reports only to suggest there may be a use for gabapentin and amitriptyline 

(Wheeler et al 2000; Collins et al 1995).

Most evidence for these therapies is anecdotal in children. Also there are potential 

limitations to the use of these drugs due to the known adverse effects such as 

anticholinergic effects and life threatening cardiac events with amitriptyline (Varley 

2001) and severe hallucinogenic episodes with ketamine.
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Local nerve blocks have been used in children with neuropathic pain and there is some 

evidence for their benefit for complex regional pain syndrome (Lloyd-Thomas and 

Lauder 1995). They are usually used when conventional therapies have failed and are 

beneficial in combination with physiotherapy in a combined rehabilitation setting.

1.8 PAIN IN EPIDERMOLYSIS BULLOSA

1.8.1 Clinical Background

Epidermolysis bullosa (EB) is a genetically inherited skin disorder, characterised by 

extreme fragility of the skin and mucosa and its susceptibility to blister and separate 

from the underlying tissue in response to minimal every day friction and trauma. 

Children with the more severe forms of EB may lead a very disrupted life and may even 

be excluded from daily physical activities or be unable to attend school on a regular 

basis mainly due to the severe pain they are experiencing. Broadly speaking there are 

three main categories, with over 25 sub-types of varying severity depending on the 

affected level within the skin: simplex, junctional and dystrophic, (Fine et al 2000) 

(Table 1-4).

The lesions may be localised or generalised. Each form has a specific cleavage plane 

within the epidermal-dermal basement membrane zone, as well as specific clinical 

manifestations and has distinguishing pathophysiology, mode of inheritance and 

prognosis (Tidman and Garzon 2003).

It is likely to affect 1 in 17,000 live births and it is estimated that there are currently 

5,000 people with the condition in the UK (Dystrophic Epidermolysis Bullosa Research 

Association Research Association-Debra).

Dystrophic EB (DEB) affects 25% of all sufferers and may be dominant or recessive in 

its inheritance. The clinical severity of DEB as well as in all the other major variants of 

EB is based on the type of mutation.

The blisters in DEB usually heal with scarring and are usually associated with some 

degree of nail dystrophy, joint contractures, microstomia, narrowing of the oesophagus 

and pseudodactyly. Those patients with the recessive type may alsol go on to develop 

squamous cell carcinoma.
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EB Simplex is the most common type of EB and affects around 75% of all patients 

with EB; it is dominantly inherited or may arise as a spontaneous mutation. Currently 

there are approximately seven subtypes of EBS, each with specific clinical 

manifestations. EBS Weber-Cockayne is a variant with blistering confined primarily to 

the palms and soles. EBS Koebner is a different variant with widespread blistering at 

sites of friction.

EBS Dowling-Meara is a form of the disease with neonatal widespread blistering 

progressing to blistering in characteristic clusters. EBS is inherited in an autosomal 

dominant manner but with a few exceptions. The Weber-Cockayne and Koebner 

variants account for the majority of EBS cases.

Junctional epidermolysis bullosa (JEB) is the rarest form of EB with only 5 % of all EB 

patients affected. The usually lethal form of JEB is called JEB-Herlitz. All types of JEB 

are inherited in an autosomal recessive manner.
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Table 1.4: Molecular Classification of EB (Uitto and Pulkkinen 2001)
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1.8.2 Pain in EB: which model exists?

As the bullae may affect both internal and external mucosal surfaces, there is a huge potential 

for both acute and chronic pain in patients with EB. Although there is little research discussing 

the symptom of pain in EB, it was evident from my involvement in the EB multidisciplinary 

teams that pain exists as a major symptom. Many discussions with parents, young people and 

children both at Great Ormond Street and in other centres within the UK, confirmed this. There 

has been one case study relating to the use of amitriptyline, in combination with cognitive 

behavioural therapy, in an 11- year old with junctional EB ( Chiu et al 1999) and there is 

ongoing research at Great Ormond Street investigating the efficacy of amitriptyline in EB in 

neuropathic pain, sleep and mobility ( Howard et al). There have been very few review articles 

providing information on best clinical practice in relation to anaesthesia management in EB 

patients (Herod et al 2002; Iohom and Lyons 2002; Lin and Golianu 2006). I have summarised 

potential sources of pain in EB in Table 1.5.

ACUTE PAIN CHRONIC PAIN

superficial bullae inflammatory pain from scars

corneal ulcers contractural pain

dental dental

gastro-oesophageal reflux osteoporosis

anal fissures constipation

procedural pain

Table 1.5 Possible sources of Acute and Chronic Pain in EB

It is believed as mentioned above that as well as acute and chronic pain, neuropathic pain may 

exist in these patients as anecdotally there appears to be a beneficial response to low dose 

amitryiptyline which is often used as an analgesic for neuropathic pain in adults. The 

pathophysiology behind this proposed neuropathic element to pain in EB may be due to the 

sustained C fibre discharge occurring within the early neonatal period as a result of constant 

painful stimuli which this patient group experiences, inducing “ wind -up phenomenon”- the 

hallmark of central sensitisation. However this needs further investigation.
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Incident pain occurs in EB patients especially secondary to dressing changes, daily activities 

such as bathing and in some cases as a result of any slight movement such as waving “ bye.” 

Control of the symptoms such as constipation and osteoporosis is possible with appropriate 

medication such as laxatives and calcium supplementation, bisphosphonates (Fewtrell et al 

2006) and anti-reflux medication (Fine et al 2008).

Regular dental and opthamological assessments (Wright et al 1994 ; Tong et al 1999) are 

necessary and treatment of superficial skin infections, which seem to exacerbate acute pain, 

with topical or oral antibiotics is essential. Procedures in patients with EB are a major source of 

pain, for example both dressing changes and baths which form a large part of EB management, 

may induce both actual pain due to anticipatory fear.

In some of the children, bathing may be difficult because of the simultaneous exposure of all 

wounds and pain from being lifted in and out of the bath. Due to the physically disfiguring 

nature of EB and the shortened life- span for the patients, psychological anxiety and distress are 

common especially in those with dystrophic EB (Landsown et al 1986). Older children are 

aware that their condition is progressively disabling and they may even lose previously 

mastered skills. They become anxious about school and socialising and this may contribute to 

reduced compliance especially during the adolescent period. Management of dystrophic and 

junctional EB is symptomatic and eventually palliative, as no cure is currently available.

Why I chose patients with EB as the pain model for my research study.

Having now discussed the various types of EB, I would like to explain why I chose this 

patient group to be the pain model for my clinical research. It is evident now that 

neonates bom with a diagnosis of EB, especially those with DEB and JEB will be 

susceptible from birth to a variety of pain sub-types.

Above in (section 1.6.3, Long term effects of neonatal pain, page 26), I have 

summarised the findings both in laboratory and clinical studies, occurring as a result of 

repeated painful noxious injuries, e.g. lower sensory thresholds causing a 

hypersensitivity in the wounded area, delayed facial reaction in response to future pain 

and stronger pain response to future painful stimuli leading to an altered ability to cope 

with stress and pain in adulthood. Particularly in relation to skin wounding and even 

perhaps in the intrauterine period, these patients will have an increase in expression of 

nerve growth factor which in turn leads to hyperinnervation , sprouting of cutaneous 

nerves and therefore hypersensitivity in the surrounding area of skin.
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Consequently the patients may have a combination of not only acute pain but also have 

a susceptibility to chronic persistent pain.

In addition to this, peripheral sensitisation and central sensitisation resulting from 

repetitive and sustained C - fibre discharge is likely to be present, secondary to the 

noxious inflammatory stimuli in patients with EB, therefore leading to possible 

neuropathic pain. In chapter 2 ,1 will explain why this patient group may also have an 

increase expression of peripheral mu opioid receptors enabling the use of peripherally 

applied morphine.

1.8.3 Current pain management strategies used in EB

There are a few reviews providing guidelines for mainly the anaesthetic management in 

EB but there are no studies investigating analgesic management in children and young 

people (Lin and Golianu 2006; Iohom and Lyons 2002).When analgesia is required for 

mild pain e.g. small blisters requiring a quick dressing change, combining simple 

analgesia such as paracetamol with an NSAID e.g. ibuprofen is usually sufficient. 

However with more severe pain associated with dressing changes or baths, opioid 

analgesia and sedation such as midazolam is usually necessary. In this case, doses of 

oral morphine should be in the range of 0.3 -  0.6mg/kg and buccal midazolam, 

0.5mg/kg given around 30 to 45 minutes prior to the procedure (Herod et al 2002). 

Procedural pain has also been managed by novel methods of analgesia such as Entonox 

and fentanyl lozenges (Kalach et al 2002; Schechter et al 1995). In both of these cases, 

the child should be able to self-administer the method of pain control.

In order to manage the chronic background pain administration of long-acting, slow 

release morphine (MST or Zomorph) on a daily basis may be required if milder 

analgesics are insufficient.

One case study has demonstrated the efficacy of amitriptyline (Chiu et al 1999) and 

there is anecdotal evidence from its use on a subset of children and young people with 

EB at Great Ormond Street Hospital, where at low dose, 0.5mg/kg, those with pain 

causing restriction to mobility and sleep interference have benefited further 

strengthening the proposal that there is an neuropathic element. There is currently a 

much larger open labelled trial to further assess its use.
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In the terminal stages of their disease, higher doses of opioid analgesics may be required 

via subcutaneous or intravenous route, in combination with anti-emetics and sedatives 

together in a syringe driver for children.

As well as the above pharmacological therapies, physical and psychological treatments 

such as physiotherapy, hydrotherapy, visualisation and guided imagery should be 

offered, in combination with conventional analgesics, to assist in the management of the 

patient’s pain.

1.9 PAIN ASSESSMENT IN CHILDREN

Accurate pain assessment is essential as it allows pain to be recognised and managed 

promptly. The assessment of pain is a broad term to describe not just the measurement 

of degree of pain but also other dimensions such as the family’s understanding of pain 

and cultural differences. There is a variety of pain assessment approaches in paediatrics 

and their appropriateness of use depends on the age of the child, the child’s cognitive 

awareness, the nature of the underlying pathology and whether the pain is acute or 

chronic.

1.9.1 Pain Assessment tools

Pain perception is individual and children and adolescents vary greatly in their cognitive 

and emotional ability to conceptualise their pain experience. A combination of the uni

dimensional, multi-dimensional and composite measures, which can identify the 

sensory, psychological and emotional aspects of pain, provide a more accurate and 

realistic estimation. Self -report measures are regarded as the gold standard of pain 

assessment and in order to decide which scale is the best for a particular patient, the 

level of cognitive understanding should initially be determined by the clinician. Table 

1.6 is a guide to the cognitive levels at different ages based on the well - known Piaget’s 

levels of cognitive development. (Piaget 1972).

Pain perception is also based on other factors including, genetic, psychological, socio

cultural and previous pain experiences (Bursch et al 1998). Children exhibit individual 

reactions to pain e.g. one child may withdraw silently, whilst another may display 

fighting behaviour in an attempt to alleviate pain.
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AGE GROUP COGNITIVE DEVELOPMENT

Infants No verbalisation.

Toddlers Use simple words for pain 

Stranger anxiety -  more distressing if 

parents not present during procedure

Preschool Concrete language to assess pain at

sensory level only

No cause / effect concept

Tries to delay painful procedures

Believe they have pain as a punishment

Magical thinking

School age Fear body mutilation -  more blood = 

greater injury.

Cause / effect understanding 

Understands time 

Logical reasoning -  still related to 

concrete ideas.

Rely less on parents for coping

Adolescents Understand abstract

Need to maintain self esteem

May not display pain behaviour due to

embarrassment / stoical

Lack of compliance with pain treatments

Table 1.6: Understanding of pain perception in relation to cognitive development in 

children based on Paiget’s Theory 1972 ).
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Important factors to consider when choosing a pain assessment tool

Age of child

Cognitive awareness

Acute vs chronic pain assessment

Underlying pathology of pain

Understanding of parents / nurses completing assessment

Length of time of pain assessment -  i.e. daily assessment required then a simple quick 

tool should be used.

Physical ability of child / adolescent completing assessment 

The reliability, validity and discriminatory power of the test.

There are numerous tools presently available to measure infant and paediatric pain, and 

there is no one uniform technique but the various methods can be broadly classified.

• Self -  report

• Physiological

• Behavioural

• Multi-dimensional

1: Self -report measures of pain

Self-report of pain is a description of the child’s subjective experience of pain and does 

not consider the nociceptive aspect of pain. It is regarded as the gold standard 

measurement and several self-report tools have been validated and are reliable methods 

of pain assessment.

There are three factors, which determine which particular tool should be selected:

1) The cognitivedevelopmental maturity of the child

2) The category of the pain; acute vs chronic

3) Whether the pain ratings are required for research or for clinical purposes
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Self -rating scales may be divided into, visual analogue scales, category rating scales 

and numeric rating scales.

Visual Analogue Scales (VAS1

A VAS is a straight line either horizontal or vertical and usually measures 10 

centimetres. A horizontal line has been shown to produce a more uniform distribution of 

scores than a vertical line (Huskisson 1983).

The two end points are no pain and worst pain and the patient is asked to place a mark 

along the line corresponding to their level of pain. The distance in centimetres to this 

mark is used as a numerical pointer of the pain severity.

The main advantage of a VAS is its ease of use and it takes a very short time to 

complete. The results are generally reproducible and it can be applied in a variety of 

clinical settings. It is also sensitive to pharmacological interventions and it has been 

used in children as young as aged 5 (Goodenough et al 1999).

Category Pain Scales

Category or verbal rating scales use words to describe the severity of pain. It was the 

earliest type of pain scale devised and most use the 4 -word category, from none, to 

slight, moderate and then severe. Later pain relief scales were constructed with a 5 - 

point scale ranging from none, to slight, moderate, good and then complete relief. 

Children choose the word, which describe best their pain.

Face scales are the most common form of categorical pain scale used in children, as 

they do not depend greatly on cognitive or language skills (Wong and Baker 1988). 

There are considerable variations of the face scale, ranging from simple line drawings, 

to photographs of children’s faces and cartoon like faces. Some of the scales have 5 

points, some have 6 or even 7. The worst face may or may not have tears and the no 

pain face may be a smiling or a neutral face. There has now been some work validating 

the different face scales (Bieri et al 1990). Face scales are easy to use and are appealing 

to young children and many do possess good psychometric properties (for example 

reliability and validity) (Chambers and Craig 1998).
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Numeric Pain Scales

These are ordinal scales using numbers to measure the increasing degree of pain. They 

are easy to use but the child must understand the concept of numbers. Work on numeric 

scales has shown good correlation between pain diaries and behavioural components of 

pain. It is important to note that the intervals cannot be assumed to be equal, e.g. a 

difference from 2-4 is not necessarily the same change in pain as 4-6. A pain 

thermometer is a variation of the numeric pain scale, graduated from 0 (no hurt) to 

either 10 or 100 (most hurt).These sales have been introduced and developed by Hester 

and colleagues who detected a good correlation between concurrent diary reports of 

pain ( Hester 1979).

Other examples of self -report tools

The Poker Chip Tool allows children to concretely describe their pain using 4 red pieces 

of “hurt” and one white piece of “no hurt”. The validity of this measure is questionable 

and children should have number concept as more red chips equates to more severe pain 

(Hester et al 1990).

The Eland colour scale allows a child to choose different colours of crayons and then to 

devise a key of corresponding pain severity. The child draws the location of the pain on 

a line drawing. This scale however is difficult to validate due to inability to convert the 

drawing into numerical data, but is very useful for those children from different ethnic 

cultures and it also helps to differentiate between separate pains (Eland and Anderson 

1977).

2: Physiological methods of pain assessment

Following a painful stimulus, the metabolic, endocrine and autonomic systems interact 

to initiate the fight, flight and fright response (Anand and Carr 1989). Variables such as 

heart rate (Johnston and Strada 1986), blood pressure (Jay et al 1987) and oxygen 

saturation fluctuate (Williamson and Williamson 1983). These variables are used in 

neonates and infants and those critically ill children who are in the intensive care 

environment, as an objective measure of their acute pain.
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However at present there is no one perfect physiological measure of pain and heart rate 

appears to be the most promising, but by no means is specific (Owens 1986). It is easy 

to record and observe using non-invasive techniques (van Dijk et al 2001).

There are some major reasons why physiological measures should not be used in 

isolation to assess pain, e.g. the variability of the measures is not necessarily related to 

pain, but in fact they reflect an overall response to pain associated with stress and there 

is habituation over time of the physiological indicators to pain, following repeated or 

persistent pain. The physiological responses produced secondary to a noxious stimulus 

reflect the intensity, location and duration of that stimulus but may in fact be 

independent of the final sensation produced by the stimulus. They are not specific and 

may occur for many other reasons including, anxiety, handling, general malaise, for 

example pyrexia.

Consequently they are most useful in acute incident pain, or as an aid to measurement 

of pain in those children who are preverbal or who have an element of cognitive 

impairment. Clinicians usually associate changes ranging from 10- 20 % in the 

physiological parameters, which are measured non-invasively, to a painful experience, 

however there are no validated assessment scores based on these parameter changes. 

During the initial phase of a painful experience the sympathetic nervous system is 

activated producing the changes otherwise known as the fight, flight or fright response. 

It is the measurements of these changes, which provide the most useful information 

related to pain.

However following this acute phase, due to homeostatic mechanisms, the 

parasympathetic nervous system comes in to play, resulting in opposing physiological 

alterations, which do not serve as an aid for pain assessment (Sweet and McGrath 

1998).

3: Observational / Behavioural Pain Scales

These pain rating scales are most often used in the preverbal child or critically ill 

patients, or children undergoing painful procedures in the hospital setting. They may 

also be useful as an adjunct to self-report scales. The behaviours most often related to 

pain include cry, facial expression, posture and rigidity of torso and body movements.
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The following are 4 examples of observational methods of assessing children’s pain:

1) Behaviour rating scales: e.g. the “procedural behaviour rating scale” which was 

originally devised for children aged 6-18 years old, undergoing bone marrow 

aspirations (Jay et al 1987). It is made up of 13 defined behaviours, which are 

suggestive of pain prior during and after bone marrow aspiration. However the scale 

just documents the presence or absence of these behaviours and does not quantify them.

2) It is extremely difficult to assess a neonate’s pain, changes in the facial expression is 

the most consistent pain- related behaviour and the Neonatal Facial Coding System 

comprises of an observational scale based purely on the neonate’s facial response to 

pain including bulging brow, eyes squeezed tightly, open lips, taut tongue etc (Grunau 

and Craig 1987).

3) Premature Infant Pain Profile (PIPP) is a multi-dimensional tool to assess pain in 

preterm infants > 28 weeks and combines both the neonate’s behaviour, as well as 

physiological parameters. It has been validated for use in post-op pain and other non- 

pharmacological procedures in preterm infants (Stevens et al 1996).

4) In older children, the Children’s Hospital of Eastern Ontario Pain Scale (CHEOPS) 

scale has been validated for use in aged 1-7 years post- operatively (McGrath et al

1985). It consists of 6 pain indicators such as crying, facial expression, torso activity, 

which are described in great detail and are scored by the patient’s carer.

Behaviour pain scales are beneficial in the preverbal and post -  operative patient, but 

they have limitations. It is difficult to differentiate between pain related and anxiety 

related behaviour. Also children and adolescents have individualised and inconsistent 

behaviour related to their pain. Some children may exhibit withdrawal of behaviour 

rather than increased expression, in an attempt to achieve their own coping mechanisms. 

It is essential that the observer documenting the behavioural ratings is skilled in pain 

assessment. Therefore behavioural rating scales should be used cautiously, as many 

factors contribute to an alteration in a child’s behaviour.
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1.9.2 Chronic Pain Assessment

Despite the recent advances in children’s pain assessment, there are several populations 

of children where pain assessment is not optimal including children with cognitive 

impairment or neurodevelopmental delay and in chronic pain states (Rucker et al 1996). 

When pain becomes chronic, it influences many aspects of a patient’s life, increasing 

the complexity of the patient’s perception of pain and subsequently the prescribed 

treatment. There are a few comprehensive pain questionnaires, which have been 

designed for use in children with chronic illness and associated pain (Jenson et al 1996):

al The McGill Pain Questionnaire -  originally designed for use in adults, this scale has 

been used with older adolescents and consists of 78 items describing the quality and 

intensity of the pain as well as affective dimensions. These are represented as 20 

clusters of between 3 and 5 similar descriptors ordered for least to most painful. The 

patients circle the clusters, which describe their pain experience.

The questionnaire has 4 subscales; the first and second are the sensory and evaluative 

and measures the intensity and type of pain; the third measures the emotional response 

and the fourth, captures a number of miscellaneous items. It takes approximately 15 

minutes to complete (Melzack 1975).

b) The Vami / Thompson Paediatric Pain questionnaire, has been used to assess chronic 

pain in juvenile rheumatoid arthritis. It takes into account both the child’s and parents 

perception of the child’s pain experience and includes a combination of visual analogue 

scales, colour coded rating scales, and verbal descriptors which provide information 

about the sensory, affective, and evaluative dimensions of children’s chronic pain as 

well as information about the child’s and family’s pain history, symptoms and pain 

relief interventions and socio-environmental situations which influence pain. It contains 

10 pages to be completed each separately by parent, physician and child and may take 

up to 20 minutes to finish (Vami et al 1987).
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c) Douleur Echelle Gustave -  Roussv: DEGR This was developed and validated for its 

use in children aged 2 - 6  yearswith cancer. It is composed of 3 main categories, signs 

of pain, voluntary expressions of pain and psychomotor atonia. This scale requires 

observation for 4 hours and a rating of 17 behavioural items. It is also quite time 

consuming to complete and has not been validated for use on other patient populations 

(Gauvain -  Piquard et al 1987).

d) Pain Diaries Previous work with children who have juvenile rheumatoid arthritis, has 

illustrated the benefits of using a daily pain diary, with a high compliance and indeed 

daily pain measures may be more sensitive than periodic measures, in the assessment of 

subtle, day -  to day changes, which occur following an intervention (Schanberg et al 

1997).

e) The Paediatric Pain Profile (PPP) Children and adolescents who have a 

neurodisability or who are cognitively impaired often have many reasons to be in both 

acute and chronic pain and are unable to easily communicate their pain, e.g. 

medical problems such as hip dislocation, scoliosis and gastro oesophageal reflux 

procedural pain inconsistent signs to suggest pain. This profile is a 20 item rating scale 

specifically for this group of children. It is validated for use in both clinical and 

research situations (Hunt et al 2004).

(f) The Brief Pain Inventory The Brief Pain Inventory This tool was originally devised 

for use in adult patients, who had a diagnosis of cancer and based on The Wisconsin 

Brief Pain Questionnaire (Daut et al 1983 ) where patients with a diagnosis of cancer 

and rheumatoid arthritis were interviewed regarding the differing parameters of pain 

they were experiencing as well as impact of enjoyment of life. The long form BPI was 

then introduced (Cleeland and Ryan 1994).

It provides a quick and easy method of assessing pain intensity as patients note their 

worst, least, average and current pain as well as the impact of their pain on their daily 

function such as sleep, mobility and mood. The BPI has also now been validated for its 

use in those with chronic or a disability related pain (Tan et al 2004). The short form 

only takes 5 minutes to complete.
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1.9.3 What tools I chose for the pain assessment in my research study and why

VAS

I chose the VAS as the tool to measure the pre, during and post dressing changes, as it 

was the quickest for the patients to complete. Many of the children wanted to complete 

the assessments themselves in order to have some control and ownership of part of the 

study and as some had problems with manual dexterity,the completion of the VAS was 

most achievable for them.lt was completed on a daily basis or on the days when 

dressings were changed.

BPI

I chose this assessment in order to have an evaluation of the multidimensional aspects 

of the patients’ pain . I used the short form and focused on the 7 daily functions of 

sleep, mood, mobility, school, friends, general activity, enjoyment of life and 

schoolwork. With permission I modified these slightly in order to be age appropriate. It 

was completed on a weekly basis throughout the study.
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CHAPTER 2: OPIOIDS AND THEIR RECEPTORS

2.1 BACKGROUND

“Among the remedies which it has pleased Almighty God, to give man to relieve his 

sufferings, none is so universal and so efficacious as opium ” (Sydenham, seventeenth century). 

Opium, the dried poppy juice from the unripe seed capsules of the opium poppy contains 

several alkaloids of which only a few; morphine, codeine, noscapine and papaverine are 

clinically useful.

Fig 2.1 The opium poppy (www.opioids.com/images/opiumpoppy)

In the nineteenth century, a German pharmacist, Friedrich Sertumer isolated the 

component of opium with the most marked analgesic activity and named it morphium 

after the Greek god of sleep, Orpheus. Morphine remains the most widely used, even 

though a variety of synthetic opioids have emerged such as pethidine and fentanyl.
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As there is now a more liberal approach to the use of opioid analgesics especially in 

cancer patients, but also in non-malignant pain such as in sickle cell crises (Jacobson et 

al 1997), the total consumption of opioids appears to be increasing worldwide.

Over the last twenty years, considerable progress has been made in the understanding of 

the various endogenous opioid peptides, their anatomical distribution and the receptors 

with which they interact (Nagasaka et al 1996, Harrison et al 1998). In particular, the 

identification of peripheral opioid receptors through which locally applied opioids could 

interact, would provide advantages for paediatric patients, in whom the use of centrally 

administered morphine continues to produce troublesome adverse effects (Stein et al 

1993, Antonijevic et al 1995). Multiple receptor sites, which recognize opioid drugs as 

well as endogenous peptides, exist (Standifer and Pasternak 1997; Satoh and Minami 

1995). The classical subgroups are the mu (p), kappa (k) and delta (5) receptors and 

subsequent activation leads to a variety of effects mediating modulation of nociception, 

locomotion, respiration and motivation .The p receptors have been further sub classified 

into two distinct subtypes, pi and p2 (Pasternak et al 1993).

2.1.1 Location and action of opioid receptors in adult (rat) CNS

All three opioid receptors mu, (MOR), kappa (KOR), delta (DOR), mediate pain 

inhibition and are found throughout the nervous system, in somatic and visceral sensory 

neurons, spinal cord projections and intemeurons, midbrain and cortex (Pasternak 1993; 

Nagasaka et al 1996) (Table 2.1). The actions of OR in the adult CNS will be briefly 

reviewed before focusing on the developmental aspect of OR.
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Table 2.1 Location of opioid receptors in adult (rat) CNS

LOCATION ACTION

Spinal •  Superficial horn o f  spinal •  Presynaptic:

cord hyperpolarisation o f  C

•  Highest density in lamina 1 fibre terminals

and substantia gelatinosa •  Suppress release o f

•  50-70% presynaptic excitatory transmitters

location •  Attenuation o f pain

•  M O R -70% transmission entering

•  KOR & DOR -  30% the spinal cord

•  Postsynaptic: unclear

action

(Dickenson 1994) (Lombard and Beeson 1989)

•  Brainstem, cortex, •  Behavioural and mood

Supraspinal thalamus, amygdala, effects linked with pain

hippocampus •  Endocrine functions

• MOR -  highest in cortex, •  Autonomic reflexes

hypothalamus, raphe, locus •  Role in descending

coerulus mechanism o f  pain

(Atweh and Kumar 1977) (Mansour et al 1995)
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2.1.2 Opioid receptor binding

Opioid receptors are G protein coupled receptors that are activated by opioid peptides 

and alkaloids (Cruciani et al 1993). Both classes of these agonists have analgesic effects 

in the central and peripheral nervous system. G proteins all have a similar structure, with 

an extracellular N terminal region and 7 transcellular domains as well as an intracellular 

C terminal tail structure. G proteins are heterodimers of a, p, and y subunits.

Opioid receptors are coupled with 6 members of the Gi family. Once a ligand has bound 

to the receptor, G proteins can be activated by coupling and GDP is replaced by GTP, 

with dissociation of a  subunit from the py dimer (see Fig 2.2). The GTP a and py unit 

then interact with the effectors producing for example, inhibition of adenylyl cyclase 

which in turn results in diminished pain (Woolf and Salter 2000). GTP then reconverts 

back to GDP and the a unit re-associates with the Py unit. There are potentially many 

steps within this process, as one receptor may activate one or many G proteins, 

conversely several receptors may activate an isolated G protein.

It has been demonstrated that with the application of an opioid agonist, G protein 

activation was significantly enhanced in animal models with peripheral painful 

inflammation, thus providing one possible explanation why topical opioids may be 

effective where peripheral inflammation is present (Zollner et al 2003).

Fig 2.2 Morphine as a G protein coupled receptor showing a p y subunits.

(http://mosberglab.phar.umich.edu/projects/pictures/proj 7pic 1 .gif)
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There are around 20 endogenous peptides, which are mostly derived from three 

precursor proteins: pro-opiomelanocortin (POMC), prepro-enkephalin (PPE) and 

prepro-dynorphin (PPD). Endorphin, enkephalin and dynorphin are the 3 derivatives and 

are relatively selective for the p, 8  and k  opioid receptors respectively.

Opioid binding and subsequent receptor activation to the agonist, initiates a cascade of 

biological events such as analgesia, bradycardia, miosis, sedation, hypothermia and 

depression of flexor reflexes. A series of the following events all resulting in diminished 

pain sensation, occur:

1) Inhibition of adenyl cyclase

2) Activation of potassium conductance

3) Inhibition of calcium conductance

4) Inhibition of transmitter release (Duggan and North 1993, Moises et al 1994)

And more recently, the following observations have extended the actions of opioids to 

include:

1) Activation of protein kinase

2) The release of calcium form extracellular stores

3) The activation of the mitogen activated protein kinase cascade

(Connor and Christie 1999)

2.1.3 Development of the opioid receptors and their function in CNS

The presence and distribution of opioid receptors, the G protein messenger system and 

their endogenous ligands are developmentally regulated (Szucs and Coscia 1990). 

Opioid receptors are present from early fetal life in rat and human in the brain, spinal 

cord and exhibit pre and postnatal maturational change (Kar and Quirion 1995). Studies 

have investigated the development of opioid receptors using tissue homogenate binding 

methods, which provide information relating to the overall receptor density but not to 

the exact localization within the tissue (Attali et al 1990).

However it is difficult to predict from the density of receptor binding sites, the actual 

degree of function of the receptors.
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MOR and KOR binding sites have been found diffusely throughout the spinal cord from 

PO (see chapter 1 page 26, Table 1.3, Age of rat pups and equivalent human age) in 

rat pups, using in vitro autoradiography and selective ligands (Rahman et al 1998). 

Binding peaked at P7 and decreased to mature levels with the MOR binding sites 

becoming denser in the superficial dorsal horn.

DOR binding was initially seen at P7 with no difference seen in the distribution between 

superficial and deeper laminae. The same study, using in vivo electrophysiological 

methods, showed that rat pups at P21 were more sensitive to spinal morphine compared 

to adults and P14 pups even though in PI4, the MOR binding was greater.

The conclusion was that receptor binding sites were not the only factor in determining 

function, but other factors such as coupling of the receptors should also be considered as 

important.

Within the primary afferent neurons, it is now clearly established, with 

immunohistochemistry, using neurofilament antibody (NF200 which stains the large 

non-nociceptive sensory afferents) and MOR and DOR antibody staining of the lumbar 

dorsal root ganglia in neonatal rat pups, that both MOR and DOR are developmentally 

regulated in these afferents during postnatal development.

In fact, they are down-regulated as the neonatal animal progresses throughout 

development, in the large diameter sensory neurons which are the cell bodies of the non

nociceptive A p proprioceptors and mechanoreceptors (Beland and Fitzgerald 

2001).This results in a more abundant expression of MOR expression in the neonatal rat 

pup in comparison with the adult.

In the neonatal rat, opioids can depress the Ap fibre mediated responses as well as A and 

C nociceptive inputs in contrast to adults, when only the A and C fibre responses are 

selectively depressed. Also, the neonatal withdrawal reflex is known to be mediated via 

the A p fibres (Fitzgerald and Jennings 1999).

Subsequent work using immunohistochemistry on dissociated neurons from cultured 

lumbar dorsal root ganglia in neonatal rat pups has confirmed that there is an over - 

expression of MOR in the neonatal primary sensory afferents. Using calcium imaging, 

these receptors were shown to be functional concluding that this over abundance of 

MOR may be a vital factor in the developmental responses to opioids (Nandi et al 

2004).
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2.2 PERIPERHAL OPIOID RECEPTORS

2.2.1 Introduction

Opioids are used in both severe acute and chronic pain and provide analgesia via 

activation of their receptors within the CNS. In the nineteenth century Wood first 

reported that morphine induced analgesia occurred when it was applied topically to 

peripheral tissues (Wood 1885). More recently, the presence of peripheral opioid 

receptors in various tissues, which respond to both endogenous and exogenous opioids, 

has enabled effective analgesia without any centrally mediated side effects. As well as 

possessing a potent analgesic role, peripheral opioids are thought to induce an anti

inflammatory action, which would be an additional benefit for acute and chronic 

inflammatory pain (Stein et al 2001).

2.2.2 Background: Location and possible mechanism of action

Opioid receptors have been detected using immunohistochemisty, simple light 

microscopy and electronmicroscopy techniques, on the peripheral processes of primary 

afferent neurons in laboratory animal studies. Dorsal root ganglia house mRNA for all 3 

opioid receptors and following their synthesis they are transported centrally and 

peripherally via axonal transport (Fig 2.3). They have been located in various tissues 

including lung, colon, immunocytes and skin as well as on sympathetic postganglionic 

neuron terminals (Stein et al 1993). More specifically 29% of MOR and 38 % DOR 

have been located on the unmyelinated cutaneous sensory nerve fibres in adult rat tissue, 

which also express substance P, calcitonin gene related peptide and isolectin B4 

(Coggeshall et al 1997).

The binding properties of both central and peripheral receptors are similar (Hassan et al 

1993). Modulation of calcium currents appears to be the main mechanism of action of 

opioids acting upon peripheral receptors at peripheral sensory terminals. These effects 

are also mediated by the G protein system.
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Also, similar to their action at the soma and central terminals, opioids have the 

following actions at peripheral opioid receptors

1) attenuate the excitability of peripheral nociceptor terminals (Russell et al 1987)

2) attenuate the propagation of action potentials (Andreev et al 1994)

3) reduce the release of excitatory neuropeptides such as substance P 

(Yaksh et al 1980)

4) decrease the vasodilatation, which arises by C fibre stimulation (Stein et al 2001)

Fig 23  The transport of opioid receptors and signalling in primary afferent 
neurons

OP = endogenous OR: EO = exogenous receptor: 
G i/o = inhibitory G proteins 
Sp = substance P

(Stein et al 2003)
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2.2.3 Inflammation, analgesia and peripheral opioid receptors-possible 

mechanisms of action

The action of peripheral opioid receptors is not evident when there is uninjured tissue, 

but under inflammatory conditions the peripheral analgesic effects of exogenous opioids 

are enhanced, most likely due to an up regulation of receptors at the periphery 

(Antonijevic et al 1995).

As the analgesic effects of exogenous opioid agonists are seen as early as 24 hours 

following acute inflammation secondary to a peripheral injection of complete ffeund’s 

adjuvant (CFA) into an adult rat hindpaw, it suggests that opioid receptors are pre

existent on the peripheral terminals of primary neurons (as CFA normally induces acute 

on chronic inflammation at 12 hours post injection reaching its peak effect at 96 hours). 

It has also been demonstrated that neither the m RNA for mu opioid receptors in the 

DRG, nor the number of peripheral MOR increases in early inflammation, so other 

mechanisms must come into play at the start of the inflammatory process (Stein et al 

1993).

In early inflammation, the tight perineurium, which normally surrounds the peripheral 

nerve fibres, has been shown to be disrupted, facilitating passage of opioids and agonists 

to the receptors (Antonijevic et al 1995). In later stages of inflammation, higher doses of 

OR antagonists have been required at 96 hours in comparison to 12 hours, to diminish 

their effect, suggesting an a probable increase in the axonal transport of the receptors to 

the cutaneous nerve fibres later during the process of inflammation (Zhou et al 1998). 

How does this relate to my laboratory work?

The above work was demonstrated in adult rat models and my study aims to 

demonstrate the presence of peripheral mu opioid receptors in the skin tissue of rat pups 

at various age groups and whether there is developmental regulation and an increase in 

number of receptors following a painful inflammatory insult, quantified by Western Blot 

technique (see chapter 3, page 87).
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2.2.4 Peripheral opioid receptors and immunosuppression

In parallel with the increase of peripheral opioid receptors during inflammation, 

endogenous ligands at opioid receptors are manufactured in circulating immune cells 

and then migrate to the site of tissue injury. During the inflammatory process, memory T 

lymphocytes migrate towards the inflamed tissue and dose dependent release of the {3 

endorphin triggered by inflammatory factors such as corticotropohin -  releasing factor 

(CRF) and interleukin IL-1, as well as environmental stressful stimuli, such as viruses, 

endotoxins and cytokines (Cabot et al 1997).

Migration towards the site of tissue injury is mediated by cell adhesion molecules, 

which are up regulated and located on immune cells and vascular endothelium. The 

opioid peptides also bind to the OR on peripheral sensory nerves inhibiting pain.

This process is abolished if there is immunosuppression, (Machelska and Stein 2002) 

thus enhancing the production of endogenous opioid peptides and promoting the use of 

peripheral opioid receptors in patients who are immunosuppressed would be particularly 

beneficial.

2.2.5 Tolerance at peripheral opioid receptors

There are conflicting reports as to whether there is tolerance at peripheral OR. Studies 

reveal that repeated peripheral administration of opioids in mice produced tolerance, 

which could be reversed using an NMDA antagonist, but there was no initial tissue 

inflammation present (Kolesnikov and Pasternak 1999). There was no tolerance after 

repeated application of loperamide, which is a p agonist in animal thermal inflammatory 

model (Nozaki-Taguchi and Yaksh 1999). Also in two further studies where morphine 

is administered peripherally over time, no tolerance developed (Tokuyama et al 1998; 

Ueda et Inoue 1999). The overall evidence currently is more supporting lack of 

tolerance at peripheral OR.
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2.2.6 Developmental regulation of peripheral opioid receptors

In contrast to the work demonstrating the developmental regulation of opioid receptors 

in the CNS (Beland and Fitzgerald 2001, Nandi et al 2004, Rahman et al 1998, Kar and 

Quirion 1995), there is very little research to investigate the developmental regulation of 

peripheral opioid receptors during an inflammatory process.

There are however a number of developmental processes in neonates, such as the 

perineural membrane maturation, the functional regulation of central nervous system 

opioid receptors and the maturation of the immune system, all of which would suggest 

there might be potential differences in the analgesic and anti-inflammatory actions of 

opioids upon peripheral opioid receptors.

The analgesic effects of peripheral opioids have been tested in infant rats in two studies 

(Barr 1999; Barr 2003).

In the first of these two behavioural studies, peripheral inflammation was induced by the 

intraplantar injection of formalin in p3, plO and p21 ratpups (see chapter 1 page 26, 

table 1.3, Age of rat pups and equivalent human age). Three different doses of 

morphine were also injected into the same area using controls of saline or subcutaneous 

morphine injections. Expression of fos protein in the dorsal horns was measured using 

immunohistochemistry (Barr 1999).

The results showed that, in the P3 pups, local injection of morphine using the middle 

dose was more effective than the same dose given subcutaneously. However the higher 

dose in this age group was equally effective given by both methods probably due to the 

immature permeable blood brain barrier. In the other 2 ages, the intraplantar injections 

of the morphine doses were significantly more effective than the subcutaneous 

injections of the same doses.

The group’s subsequent study explored which of the receptors mediated peripheral 

analgesia. Unexpectedly the kappa agonist was the most effective at local pain reduction 

in both phases of the formalin test in P3 and P21 pups.

Consistent with previous work on opioid receptor development, the 5 agonist was 

inactive in both P3 and P21 most likely due to the later postnatal development of the 8 

opioid receptor (Rahman et al 1998).
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However the p opioid receptor agonist was ineffective at P3 but effective at P21 

contradicting the results of the previous study (Barr et al 2003).

Recent work has concluded that MOR and DOR within the brainstem are 

developmentally regulated (Kivell et al 2004). My following work describes whether 

there is a similar developmental regulation of MOR within cutaneous tissue and if acute 

cutaneous inflammation alters the MOR expression at different ages in the rat.

These preliminary studies investigating the development of peripheral opioid receptors 

in the neonatal rat provide a mechanistic basis for the potential use of low dose locally 

applied opioids in human neonates and older children who experience painful cutaneous 

lesions.

2.3 PHARMACOKINETICS OF MORPHINE THROUGH DEVELOPMENT

2.3.1 Introduction

Although morphine has now been used for many years, there is still a lack of knowledge 

surrounding its pharmacology, both kinetic and dynamic. There are marked 

interindividual differences as well as variability in the kinetics of morphine and its 

metabolites related to age, route of administration, and duration of treatment and 

presence of renal impairment (Chay et al 1992).

In neonates and young children, there is a marked variation between dose requirements 

of opioids and the subsequent response. Many factors contribute one of which is the 

pharmacokinetic handling of opioids (Kart et al 1997). Establishing pharmacokinetic 

differences during development is vital in order to enable dosage guidelines to be 

established for neonates, infants and children. However pharmacokinetic handling is 

only one factor that impacts upon the analgesic efficacy of opioids and age and inter / 

intra patient variability must always be considered. Many pharmacokinetic studies 

involving morphine have been performed in order to evaluate the handling of opioids in 

neonates, infants and children-see below.

Although overall, these studies are helpful in providing a basic understanding, there are 

variabilities in the studies due to design, indication for analgesia, and analytical methods 

(Choonara et al 1989; Bouwmeester et al 2003, 2004).
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The major differences in pharmacokinetic handling at various ages are due to 

differences in clearance and elimination half-life.

2.3.2 Main differences in pharmacokinetic handling of opioids in neonates and 

infants

• Protein binding is decreased in preterm and term infants (18-22%) in comparison 

to adults (20-35%) (Koren et al 1985; Kart et al 1997).

• The elimination half- life of morphine is twice as long in neonates less than 1 

week of age, than in older infants and adults (Kart et al 1997).

• Infants from 2 months of age have similar values to adults (Kart et al 1997; Lynn 

and Slattery 1987) or from 6 months in some studies (Olkkola et al 1995).

• Clearance is similarly decreased in the neonate (McRorie et al 1992; Bhat et al 

1990; Kart et al 1997).

• Immature cytochrome P450 at birth may be a reason for prolonged clearance and 

elimination of some opioids and their derivatives in early life (Hakkola et al

1998). Also the neonate has little CYP2D6 (the most important enzyme substrate 

of the P450 system which is responsible for metabolism of greater than 40 drugs 

including morphine derivatives) and therefore newborns receive little analgesic 

effect from codeine in the first weeks of life (Treluyer et al 1991).

• Possible reduced metabolic capacity to produce morphine glucuronides in 

neonates, although there are conflicting views (Choonara et al 1989; Barrett et al 

1996).

2.4 CLINICAL ACTION OF ORAL AND SYSTEMIC OPIOIDS AND THEIR 

ADVERSE EFFECTS

The clinical use of opioids needs to be titrated against actual pain, as whatever occurs 

whenever opioids are administered to someone in pain is different from when they are 

given to someone who is not in pain. (Table 2.2 shows the various physiological actions 

of opioids and consequent clinical effects).
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For example, respiratory depression, which is seen with the acute use of morphine 

when someone is not in pain, is kept at bay when lower regular doses are given to 

patients with chronic pain (Borgbjerg et al 1996). The main approaches for dealing with 

opiate adverse effects are:

• Reduction of dose

• Specific therapy to treat the side effect

• Opioid rotation

• Change route of administration
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Table 2.2 Actions of opioids

ACTION EFFECT

Depress minute ventilation by 

reducing the sensitivity of the 

respiratory centre to 

hypercarbia / hypoxia

Respiratory depression 

Depress cough reflex

Peripheral vaso / venodilator Hypotension

Inhibits the intestinal smooth 

muscle

Decreases peristalsis 

Increases the tone in pylorus, 

ileo-caecal valve and anal 

sphincter

Stimulation of 

chemorceceptor trigger zone

Nausea, vomiting

Increase tone of detrusor 

muscle

Urinary retention

Triggers release of histamine Pruritus
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Tolerance is the requirement for a higher dose of drug to be administered to achieve 

the same desired pharmacological effect. Patients vary greatly in their ability to 

handle opioids. When the need for a drug escalation arises, a variety of processes 

may be involved.

True pharmacological tolerance is a much less common reason than disease 

progression or increasing psychological distress.

Pharmacological tolerance may be in part caused by the down-regulation, 

internalization and desensitization of opioid receptors, but it is more likely thought 

to be related to mechanisms at the sub-cellular and intracellular level such as in 

regulation of secondary and tertiary messengers e.g. cyclic AMP (Bohn et al 2000). 

Clinically tolerance to the non-analgesic effects of morphine may occur at different 

rates, for example tolerance to respiratory depression occurs rapidly and 

constipation, slowly. Escalating pain in a patient receiving opioids may be due to 

disease progression rather than true tolerance.

Physical dependence is the term used to describe the phenomenon of withdrawal 

when an opioid is abruptly discontinued or if an opioid antagonist is administered. 

Some of the typical signs of a withdrawal syndrome are nervousness, anxiety, hot 

flushes, lacrimation, and sneezing. Gradual weaning to 75% of the previous daily 

opioid dose is recommended and parents and patients should be reassured that 

physical dependence is not synonymous with addiction.

Psychological dependence and addiction refer to a syndrome characterized by a 

constant craving for an opioid mainly to achieve the effects, which are mediated in 

the CNS. It is now known that the risk of developing addictive behaviour secondary 

to the medical use of opioids is low; patients, family and health care professionals 

commonly over estimate the risk of addiction in the clinical setting; physical 

dependence and addiction are often confused and together these concerns contribute 

to some physicians’ reluctance to prescribing opioids (Mortimer and Bartlett 1997).
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2.5 ROUTES OF ADMINISTRATION OF OPIOIDS

The route of administration should be the least invasive and safest route of providing the 

best analgesia

• Oral preparations are best for those patients who can swallow and tolerate them. 

Morphine is available either as liquid or tablets and may be short or sustained 

release preparations. The aim for a child with chronic malignant pain is to 

achieve adequate analgesia with the long acting preparations, which only require 

twice-daily administration. The standard intravenous dose for a child is 0.1 

mg/kg and because only 20-30% of an orally administered opioid reaches the 

circulation, when converting from an oral dose, it should be divided by three 

times. However opioids when given orally, vary substantially with respect to the 

analgesic potency.

• Parenteral administration is used for those patients with impaired swallowing, 

who require rapid onset of analgesia or with gastrointestinal obstruction. 

Continuous infusions of morphine are used for the more acute post-operative 

patients’ analgesia and may be achieved using doses of 0.02-0.03mg/kg in a 

PCA (patient controlled device where a steady background dose of morphine is 

administered with frequent mini doses initiated by the patient. The time intervals 

between boluses (“lock-out period”) are programmed in order to minimize 

overdose. A child as young as 5 may be capable of this method otherwise a NCA 

(nurse controlled analgesia) system is set up (Monitto et al 2000). The 

subcutaneous route is the usual and most appropriate method of administering 

analgesia in combination with sedation, in children who are at the terminal 

stages of their disease and who are unable to tolerate oral medication.
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• Spinally administered opioids.The delivery of low dose opioids near the direct 

site of action at the opioid receptors located in the dorsal horn of the spinal cord 

provide longer spells of analgesia with lower supraspinally mediated adverse 

effects. They are used for post-operative acute pain or in some cases of chronic 

pain. Epidural opioids are effective after thoracic, abdominal and cardiac surgery 

even if given caudally. Facial and segmental pruritus, nausea, urinary retention 

and respiratory depression are the possible adverse effects with epidural 

morphine.

• Transderma 1 fentanyl patches in children are beneficial for those children with 

chronic pain who require steady pain relief and they are thought to have reduced 

side effects especially constipation and nausea (Haazen et al 1999). Fentanyl is 

highly lipophilic and so can be easily absorbed across any membrane. A 

reservoir immediately below the patch in the strateum comeum is established 

over a 12-16 hours once a system is applied and then constant blood fentanyl 

concentrations are maintained for up to 3 days. It is contraindicated for acute 

pain management because of its long onset of action, inability to rapidly adjust 

drug delivery and long elimination half-life and it continues to be released for 

almost 24 hours after the patch is removed (Grond et al 2000). Transdermal 

buprenorphine is a partial opioid antagonist and it has x60 the potency of 

morphine. It needs 24 hours to establish its full effect and this patch can be cut.

• The transmucosal fentanyl lozenge is effective for acute procedural pain. It 

looks like a lozenge and is fruit flavoured. The child rubs the lozenge on the 

inside of the cheek for around 20 minutes when it is rapidly absorbed (around 

25%-33% of a given dose) into the systemic circulation. It lasts around 2 hours 

and has been licensed for use in children as a premedication pre-operation or for 

procedural pain such as in lumbar punctures. It is best used in non - opioid naive 

patients because of the main side effects of nausea and respiratory depression 

(Schechter et al 1995).
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• Intranasal/ buccal opioids are also mucosally absorbed and have been used in 

adults when there is no intravenous access or when they cannot tolerate the oral 

preparation. An RCT in children aged 3-16 years who presented with fractures to 

Accident and Emergency department concluded that the use of intranasal 

diamorphine had a quicker onset than intramuscular morphine, had fewer side 

effects and was a more acceptable method of administration for the patients.

The major side effect of intranasal routes is the localized irritation as seen with 

midazolam (Kendall et al 2001).

• Rectal administration of opioids is a route available for those patients who are 

unable to swallow or have persistent vomiting in spite of anti-emetic therapy. 

The absorption from the rectal mucosa is hugely variable depending on which 

formulation is used as this route may have limited absorption due to partial 

bypassing of the presystemic hepatic metabolism.

• Nebulised opioids have been used in palliative care patients who suffer with 

dyspnoea at the end stages of life (Chandler et al 1999). The mechansim of 

action of inhaled opioids is thought to be targeted at the opioid receptors situated 

in the lung tissue. However this route has low bioavailability of around 5%-30% 

and morphine administered in this way may even cause bronchospasm patients 

with underlying airway disease.

When using different routes of administration or rotating the opioids used, equivalent 

doses will be needed and this needs to be carefully calculated. Unmanageable side 

effects, which are due to opioid action on a particular opioid receptor, will not be 

abolished by switching to a different opioid, which acts upon the same receptor.
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2.5.1 Difficulties with administering opioids via the above routes in children with 

EB

Patients with EB may tolerate oral preparations of morphine, but if they experience 

dysphagia and pain on swallowing due to internal blistering then the morphine may be 

given via a gastrostomy tube. Children with EB are usually unable to use a PCA as they 

have very limited finger dexterity due to fusion of fingers from their scarring and 

contractures. Transdermal fentanyl is contraindicated as children with EB due to their 

extensive skin damage. It has been anecdotally documented that transmucosal fentanyl 

can be rather painful to use in children with EB as it is necessary to rub the lozenge for 

20 minutes on their blistered inner cheeks for any analgesic benefit. The rectal route is 

not ideal for paediatric patients and especially those with EB due the common 

occurrence of rectal blistering preventing any drugs to be administered by this method.

2.6 THE USE OF PERIPHERAL OPIOIDS IN ADULT PATIENTS

2.6.1 Introduction

Historically, opioids have been thought of as having a central action through their 

respective receptors distributed throughout the central nervous system.

However even as long ago as the late 19th century, the English Physician William 

Heberden, included in his renowned Commentaries on the History and Cure of Disease 

(published 1802) that as pain relief for haemmorhoids, he previously advised to apply a 

“mixture o f an ointment and the soft extract o f opium for immediate analgesia” 

(Heberden 1774).
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2.6.2 Peripheral (locally injected) opioids in clinical models of acute inflammatory 

pain

The first controlled clinical trials investigating peripheral (intra-articular) (LA) 

morphine were performed in patients with arthritis and those patients requiring 

knee surgery.

A systematic review was completed in 1997, containing information of 31 RCTs 

with 1500 patients (Kalso et al 1997)). Those reports were included if they 

fulfilled the following criteria:

1) randomised comparisons of I.A. morphine to saline

2) Dose studies of LA morphine

3) IA morphine compared to systemic morphine

4) Use of intra -articular bupivicaine as a marker of internal sensitivity

The Jadad scale was used to assess the validity of the study as a RCT i.e. 

to ensure correct method of randomisation, double blinding and reporting of 

withdrawals. The outcomes of the RCT were whether extra analgesia was required 

or any change in the measures of pain intensity.

The effectiveness of the treatment was defined as a significant difference in pain 

intensity between drug and placebo, covering two periods, up to 6 hours or from 6 

hours to 24 hours; or total consumption of rescue analgesics required.

Only six of the RCTs investigated groups comparing saline, morphine and 

bupivacaine (active control) were valid, but only 4 of these groups demonstrated 

internal sensitivity.

In these 4 studies, LA morphine was significantly analgesic in comparison with 

placebo at both early and late time points, therefore fulfilling the desirable criteria 

set out in 1-4 above. There was no dose response evident in the range of 0.5 mg -  

5mg used in the studies. It was difficult to conclude, due to the low numbers of 

trials assessed, in this systematic review, whether this route of peripheral morphine 

was efficacious.
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However a subsequent systematic review performed by the same authors was 

designed to include the majority of RCTs, aiming to simplify the study sensitivity 

(Kalso et al 2002).

The review included those studies, which fulfilled the criteria as set out 

previously, except 3 time periods were evaluated; 0-2 h, 2-6h and 6-30 hours. 

Sensitivity for each of these time periods was accepted if pain on the VAS was 

30% of 100 in the placebo group. Effectiveness was the difference between the 

quantities of rescue analgesics required via patient controlled anaesthesia, when 

saline or morphine was administered. For any secondary outcomes, effectiveness 

of the RCT was defined as a statistically significant difference in analgesic effect 

between different doses of IA morphine or LA morphine providing a better 

analgesia than systemic morphine.

In this review, 28 RCTs were included and in the early test period, 14 trials were 

sensitive (7 positive), in the intermediate period, 11 trials were sensitive (8 

positive) and in the late period, 12 trials were sensitive (10 positive). 5 mg of LA 

morphine provided the optimum analgesia in any one of the three time periods and 

provided analgesia up to 24 hours, which would be advantageous for the post 

operative arthroscopic day case.

Randomised controlled trials have also assessed the benefit of peripherally injected 

morphine in dental patients and concluded that they were effective where there 

was evidence of local inflammation and in low doses which were ineffective, 

when administered systemically (Likar et al 2001).

2.6.3 Topical opioids in chronic inflammatory pain

Opioids appear to be efficacious if topically applied to areas of local painful 

inflammation. Topical morphine and diamorphine have been researched in adult 

patients suffering from a number of inflammatory skin disorders such as pressure 

sores and fungating lesions (Krajnik and Zylicz 1999). Pressure sores or ulcers 

arise as a direct consequence of prolonged periods of immobilization or secondary 

to an underlying organic condition such as sickle cell disease and diabetes.
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Usual malignancies progressing to such lesions include breast carcinomas, 

squamous cell carcinomas and in children, lymphomas and rhabdomyosarcomas. 

The emergence of such a painful symptom additionally causes psychological 

distress due to altered body image.

The first case reports using topical diamorphine mixed with Intrasite gel was 

reported in 1995 and the 3 patients were all being treated in palliative care units 

(Back et al 1995). Two of the patients in Back’s case reports had pressure sores 

and 1 had a fimgating malignant ulcer. They were already on long acting morphine 

sulphate or intravenous diamorphine as (doses ranging from 240mg -  500 mg in a 

24 hour period) as well as a non- steroidal anti-inflammatory drug. Diamorphine 

10 mg was mixed with the gel and applied to the wounds with a documentable 

effect after the first application, which lasted the duration of 24 hours. Intrasite, is 

a colourless transparent aqueous gel, which contains modified 

carboxymethylcellulose (CMC) polymer together with propylene glycol. It has the 

following beneficial properties:

• creates a mist environment to promote wound healing

• aids debridement

• absorbs exudates at wound surfaces

• the propylene glycol has bacterostatic properties

• generally non-adherent to dressings

The Intrasite /morphine gel mix has shown to be stable for up to 28 days at room 

temperature (Zeppetella et al 2005).

A subsequent isolated case report illustrated analgesia in a palliative patient 

suffering with Hodgkin’s lymphoma, who complained of intractable pain due to an 

inflammatory lesion on her scalp. The patient’s pain interfered markedly with her 

sleep despite large doses of ibuprofen and her altered self -image caused much 

psychological distress. After an application of just 3.2 mg mixed with 4 grams of 

Intrasite gel, to a surface area of 100cm on her scalp, her pain score decreased 

from 7 to 1,2 hours post administration of the gel. The gel as daily applied with 

continuous benefit and without adverse effects (Krajnik and Zylicz 1997).
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Further case series documented an exciting beneficial analgesic effect in the 

majority of patients without any central opioid adverse effects (Twillman et al

1999).In this series of n = 9, patients with painful skin ulceration secondary to a 

variety of diagnoses such as diabetes, Crohn’s disease and fimgating breast 

cancer, documented benefit using this method of analgesia. Morphine infused gel 

(MIG) was made in a uniform manner, so as to contain an equianalgesic dose of 

morphine to constitute a preparation of 0.1% weight to weight solution; i.e. 

approximately 1 mg of morphine mixed with 1 ml of Intrasite gel on a 4 x 4 cm 

gauze dressing.

The earliest time to achieve initial analgesia was 15 minutes. The longest time to 

maintain analgesia was 45 hours but on average the pain free period was 12 hours.

The topical morphine was efficacious in all of the patients except one man, whose 

skin lesion differed from the other patients in that the epidermis was intact and 

there were no definitive signs of inflammation.

This supports the hypotheses from animal studies, that in order for the peripheral 

morphine to provide effective analgesia, there needs to be epidermal and 

consequently perineural membrane disruption, presumably for the peripheral 

opiate receptors to be exposed (Antonijevic et al 1995).

In the above case series, the maximum dose of morphine used for topical 

application was 5mg, which if applied systemically, would be unlikely produce 

such a long-lasting analgesic effect. Apart from the size of the dressing used and 

the % of morphine mixture, there was no matching in the wound type or size or in 

the subject characteristics. What is illustrated in this study, is the variety of 

cutaneous and mucosal lesions which respond to the analgesic effect of peripheral 

morphine / diamorphine.

In a different case series (Krajnik and Zylicz 1999), the morphine gel was used as a 

mouthwash for oral mucositis, a frequent adverse effect secondary to chemotherapy. 

This patient gained almost immediate relief, within 30 minutes of administration. The 

only patient who experienced adverse effects in this report was an elderly woman with 

renal failure and who, after receiving the highest dose of morphine (80 mg) topically in 

this case series, experienced mild constipation.
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Similarly, in this report a variety of doses of morphine and therefore strength of 

morphine gel was administered ranging from 1.6 mg -  80 mg and applied to a range of 

sizes of wounds. The frequency of application differed from patient to patient and the 

length of use and time to documented initial analgesic effect widely varied.

Other examples of such published case reports but each with a slightly different 

emphasis, illustrated the use of diamorphine mixed with an antibiotic gel, metronidazole 

and this combination was used on a female patient whose underlying diagnosis was end- 

stage ovarian carcinoma and associated widespread, necrotic leg ulcers due to her 

immobility (Flock et al 2000).

She was having a combination of analgesics including paracetamol, diclofenac and oral 

morphine in order to attempt to control the resulting severe pain but without success. 

Remarkably, having stopped all analgesics and after one application of topical 

diamorphine / metronidazole gel (0.1%) this patient remained pain-free for 48 hours and 

the opioid toxicity from the oral morphine actually began to subside.

Two case reports of patients with sickle cell disease, who presented with deep 

penetrating leg ulcers not relieved by conventional analgesics, were trialled with topical 

opioids (Balias 2002). In the first patient, an ankle ulcer caused excruciating nocturnal 

pain to a degree of 10/10 on VAS. The woman took up to x 18, 5mg oxycodone tablets 

mainly at night in an attempt to reduce the pain, but without success.

However application of a mixture of her usual debridement ointment, with water and 

one 5mg oxycodone tablet, provided immediate analgesia to such a degree that the 

patient required to take only a maximum of x 2, 5mg oxycodone tablets daily. The 

second patient again had severe chronic bilateral ankle ulceration requiring a variety of 

measures to treat including, 2 hourly pethidine, topical xylocaine gel, grafting, 

debridement, hyperbaric oxygen and growth factor, all of which did not provide healing. 

Again use of the current oral opioid, pethidine, dissolved in water and mixed with 

topical xylocaine gel, produced almost immediate analgesia, reducing the requirement 

for the huge doses of oral opioids consumed.

The above case reports are useful in demonstrating the potential use of new 

pharmacological therapy in patients, but ultimately, randomised case controlled trials 

(RCT) provide the strongest evidence.
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There have been two recent small RCTs, which have been carried out in a similar 

population of adult palliative patients treated in 2 different hospices (Table 2.3, Flock 

2003; Zeppetella et al 2003). One of the groups showed no significant difference 

between placebo and morphine while the other demonstrated the efficacy of topical 

morphine without adverse effects. In Flock’s study, the Intrasite gel acted as the placebo 

and was demonstrated to have no analgesic effects.

Both of the following RCTs comprise very small trial numbers due to a high withdrawal 

rate from the patients. This is typical of such a patient population who are managed in a 

palliative setting as they may deteriorate very quickly.

It may be difficult to obtain an accurate pain intensity measure due to the severity of ill 

health and subsequent inability to complete serial pain scores vital for data analysis.

The majority of palliative care patients will not be opioid naive and this may interfere 

with clarity of results. Also during the study period, symptoms such as the pressure 

ulcers may indeed alter, for example heal or deteriorate both of which may be 

independent or indeed dependent on the actual trial.

2.7 KEY GOAL S FOR USE OF PERIPHERAL OPIOIDS IN PAEDIATRIC 

ACUTE AND CHRONIC INFLAMMATORY PAIN

Neonates, infants and children with acute incident pain and cutaneous inflammatory 

pain such as bums, blistering lesions in EB, mucositis post - operative surgical wounds 

and fungating malignancies such as lymphomas and rhabdomysarcoma have pain which 

may be severe and intractable. Topical application of morphine either as the sole 

analgesic agent or as an adjunct, may provide a life - changing advantage for these 

children, (who are also immunocompromised and therefore possess a minimum 

endogenous opioid response), if proven beneficial. The concept of peripheral analgesia 

with minimal or no systemic adverse effects is an additional beneficial property to this 

novel route of analgesia. The current study is the first to investigate peripheral and 

topical opioid use in paediatric inflammatory pain.
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Table 2.3 Randomised controlled double blind trials

SUBJECTS (Zeppetella et al 2003)

(Flock 2003) ^ 5 recruited and completed

13 recruited 
7 completed METHODS

day 1-3 placebo (Intrasite gel)
day 4-6 drug (diamorphine) or vice versa
wash out period: 2 days
size o f  lesion used: not specified
dose used: 0.1 % weight to weight

Day 1-2 placebo (water in intrasite gel)
Day 3-4 washout
Day 5-6 morphine in intrasite gel or vice 
versa
Dose used: lOmg / ml morphine in 8 g o f  gel 

1 ml o f  water in 8 g o f  gel 
Applied once daily

1 ulcer chosen; average size 8.5 cm2

CURRENT ANALGESIA

Nsaids constant use in both groups; 
Opioid and paracetamol no significant 
difference in use in 2 groups

\

DATA COLLECTED

VAS at 1 and 12 hours post 
application

Daily opioid adverse effect 
profile

N o change in analgesia 
Rescue analgesia permitted 
N o significant difference in 
analgesic use in 2 groups

VAS twice daily am / pm

Daily opioid adverse effect 
profile

No significant difference in two 
groups.
1 patient had opioid toxicity 
beginning in the placebo group 
(Fentanyl had just been increased 
prior to study)

6 patients improved pain 
scores significantly 
compared with placebo at 1 
and 12 hours post 
application. (P < 0.5)

RESULTS

ADVERSE EFFECTS 

/  \
N o systemic opioid adverse 
effects noted 
Less adverse effects with 
morphine group

Average VAS placebo -  
47 mm

Average VAS drug -  
15mm
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CHAPTER 3: LABORATORY STUDY

3.1 BACKGROUND

To understand the actions of peripheral opioids in children, it is important to investigate 

their possible mechanisms and sites of actions. Application of local opioids to the skin 

will lead to activation of opioid receptors in the cutaneous tissue. In Chapter 2 the 

expression of mu opioid receptors in peripheral sensory neurons in the dorsal root 

ganglia and their peripheral terminals and in peripheral tissues such as skin, colon, 

joints and cornea in adult rats, was described ( Stein et al 2003).

Less is known about opioid receptor expression in young rats but expression in dorsal 

root ganglia is known to be postnatally regulated, being more widespread in neonates 

than in older animals (Beland and Fitzgerald 2001; Nandi et al 2004). A greater number 

of cells in the DRG express opioid receptors at birth than later in life (Nandi et al 2004) 

as well as greater binding in the newborn spinal cord (Rahman et al 1998). Expression 

in skin and subcutaneous tissue has not being examined in young animals but it is 

reasonable to hypothesise that this may also be greater than in adults.

In adults, both tissue and sensory neuron opioid receptor expression has been reported 

to be up regulated in the presence of local inflammation (Hassan et al 1993; Coggeshall 

et al 1997; Sengupta et al 1999), and this suggests that peripheral opioids could be more 

effective under these conditions. Quantitative evidence for this is somewhat patchy in 

the literature and it is not known if the above also applies to young animals.
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3.1.1 Aims of study

The aims of the study were to test the following two hypotheses:

1) Mu opioid receptor expression is denser and more widespread in immature cutaneous 

tissue than in adult tissue and is down regulated postnatally.

2) Mu opioid receptor expression in cutaneous tissue (most probably located in the 

sensory neurons that supply this tissue), is up regulated in the presence of inflammation 

in neonatal rat pups

To test these hypotheses, we have used immunohistochemical and Western blot 

analyses of mu opioid receptor expression in both hindpaw skin and dorsal root ganglia 

in normal and peripherally inflamed rats of different postnatal ages. Although there are 

now mouse models for Recessive Dystrophic Epidermolysis Bullosa (RDEB)

(Professor Leena Brucker -  Tuderman, Germany) which are currently being used in 

research to investigate squamous cell carcinoma and a separate mouse model of 

Epidermolysis Bullosa Simplex (EBS) (Professor Dennis Roop, Houston), because the 

primary focus of my work was pain management in children, using peripheral analgesia, 

I wanted to use an animal model, the rat, which is the most commonly investigated 

model worldwide, in the field of neonatal and infant pain research.

3.2 GENERAL METHODS

3.2.1 Animals

All experiments were performed under personal and project licences in accordance 

with the United Kingdom Animal (Scientific Procedures) Act, 1986.

Sprague Dawley rat pups of both sexes were used for this study and were obtained from 

the Biological Services, Central Animal Facility at University College London.

3.2.2 Induction of Inflammation

Inflammation was induced in rat pups aged 3 days (P3), 7 days (P7) and 21 days (P21) 

under brief halothane anaesthetic (2-4 % in oxygen).
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2% carageenan (X. Sigma, St Louis, USA) was 50:50 mixed with sterile water and 

injected intradermally into the plantar surface of the left hindpaw using a 30-gauge 

needle.

The above human equivalent ages are P3, P7, and P21 are 28 weeks gestation, term and 

toddler and above (see table 1.3 page 26, “Age of rat pups and equivalent human age in 

previous chapter”). The volume injected was 5pi for P3 and P7 and 20 pi for the P21 

pups. This dose has been previously used to induce inflammatory pain in neonatal PO

PS rat pups (Walker et al 2003). In each animal, a single slow injection was 

administered with an aim to spread the carageenan evenly across the subcutaneous 

plantar surface and minimise leakage. These pups were earmarked and on recovery 

from anaesthesia, returned to their dam and litter for four hours with free access to food 

and water. After four hours, the 5 earmarked rat pups were taken from their litter and 

the paw diameter was measured across the midpoint of both hindpaws using a calibrated 

calliper across the dorsal to plantar surface. There were clinical signs of acute 

inflammation i.e. redness and swelling in all of the injected paws. The ratio of the 

injected paw to the contralateral paw was determined in order to standardise for 

variability between animals and changes with growth. The measurements were used to 

demonstrate the presence of acute inflammation.

3.3 PROTOCOL 1: IMMUNOFLUROESCENCE

3.3.1 Preparation of tissue

Pups were administered a lethal dose of sodium Phenobarbital (100 mg/kg, 

intraperitoneal injection). This was followed by a transcardial perfusion with 

heparinised saline (0.9%) and cold (4°C) 4% paraformaldehyde 0.1M in phosphate- 

buffered saline (PBS). The skin from the plantar surface of both the inflamed 

(ipsilateral) and non-inflamed (contralateral) paws along with the dorsal root ganglia, 

(DRG, both ipsi and contra) from the L4 and L5 spinal cord regions were removed from 

each animal. In some cases, the lumbar section of spinal cord was removed as a 

positive control for the MOR antibody. The tissue was post fixed in 4% 

paraformaldehyde for 2 hours and then stored in 30% sucrose in 0.1 M PBS at 4° C.
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Picric acid was also tried as a fixative, as it assists in binding of antigens to their 

respective antibodies, by making the epitopes more accessible. However this method 

seemed to cause abnormal morphology of both the skin and dorsal root ganglia. The 

fixed tissue was mounted in Cryo-M-Bed freezing compound (Bright Instrument, 

Huntington, UK).

Cryostat sections of the plantar surface of the hindpaw skin were cut at 40jim thickness, 

dorsal root ganglia at 10pm thickness (Beland and Fitzgerald 2001) and spinal cord at 

20 pm thicknesses (Raman et al 1998) and mounted serially on gelatinised slides. 100 

pm skin thicknesses have been used in neonatal models of skin wounding (Reynolds et 

al 1997) but having tested various skin thicknesses with MOR and immunostaining, I 

decided to choose 40 pm as the thickness most suitable for the antibody application. 

These slides were air-dried overnight before storage at -20° C.

3.3.2 Establishing an appropriate immunohistochemical method

Immunohistochemistry is a technique to detect, visualise and localise antigens at the 

cellular level, most commonly using primary and secondary antibodies, which bind to 

the antigens embedded in paraffin or frozen tissue sections. A number of different 

methods of immunohistochemistry staining were performed in this study to evaluate 

which technique was the most suitable for both the tissue and antigen being studied.

• Basic immunoflurescence, where a secondary fluorescent antibody binds to the 

primary antibody and detects the epitope of the antigen, was the first approach 

used. However, this technique was not suitable, as a lot of background tissue 

fluorescence was obtained making localisation of the mu opioid receptor hard to 

discriminate. Different concentrations of the mu antibody were tried but with 

similar results each time.

• The diaminobenzidine (DAB) method is another form of 

immunohistochemistry, involving an enzymatic reaction, which assists in 

amplification of the mu opioid receptor antigen signal. The ABC technique is 

then employed to detect the antibody / antigen complex. ABC stands for avidin, 

biotinylated horseradish peroxidase, macromolecular complex, which forms 

complexes for immunoperoxidase staining.
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• This method involves an additional step, using an avidin- biotinylated, 

horseradish peroxidase complex and the final stain is developed, following a 

reaction between a detection kit, which is composed of DAB, hydrogen 

peroxide and nickel.

Avidin is a 68, 000 molecular weight glycoprotein, which has an extremely high 

affinity for the small molecular weight vitamin, biotin and this affinity is actually 

x l,000,000 the binding of most antibodies for antigens and so this process is 

irreversible. Avidin has also 4 binding sites for biotin and most other proteins 

including antibodies can be conjugated with several molecules of biotin. Despite 

the increased sensitivity of this technique over classical immunofluorescence, it is 

better for the sections to be free floating, which means transferring the cut sections 

from the cryostat directly to a container with 0.1M Phosphate Buffer with azide and 

glucose. Any subsequent step in this procedure requires handling the sections with 

a fine paintbrush and with skin; it is very difficult to keep the fragile neonatal tissue 

intact throughout the entire process. This method also failed to detect MOR 

expression in the skin although MOR in the superficial dorsal horns was clearly 

stained.

• TSA Immunofluorescence TSA, Tyramide Signal Amplification. This method 

significantly enhances both chromogenic and fluorescent signals and was found 

to be the most successful method in these studies.

The principles of this method are shown in the diagram overleaf:
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Fig 3.1 Tvramide Signal Amplification method

Dye Dye Dye

HRPl H jO ?

Dye

DyeDye Dye

HRP

Taken from Molecular 
Invitrogen Detection Tool TSA 
information sheet.

1) The antigen is detected by the primary antibody, followed by a horseradish peroxidase 

labelled secondary antibody in conjunction with a dye-labelled tyramide, resulting in localised 

deposition of the activated derivative.

2) Further dye deposition and therefore higher deposition levels of signal amplification can be 

generated by detecting dye deposited in the first stage with a horseradish peroxidase labelled 

anti-dye antibody in conjunction with a dye-labelled antibody.

Because of the amplification, which occurs, increasing the dilution of the primary antibody by 
just 5 or 10 fold leads to better results.
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This method has been used to detect opioid receptors both MOR and delta (DOR) in 

cultures of brainstem neurons throughout late fetal and early postnatal development 

(Kivell et al 2004). The entire process is rather prolonged and takes up to three or four 

days to complete, however this was the method which worked best for both the skin and 

dorsal root ganglion in this study.

3.3.3 TSA Immunofluorescence protocol for MOR

Once the skin and DRG sections were placed on the gelatinised slide, they were 

blocked in a solution of 5 % normal goat serum and TTBS (0.3% triton X -100 in 

phosphate buffer) and left on the rocker at room temperature for 2 hours. The sections 

were then incubated overnight at 4° C with mu opioid receptor antibody.

The concentration used for the skin sections was 1: 2500 and 1: 40,000 for the DRG's 

and 1: 25000 for the spinal cord (xlO the dilution which was used previously in simple 

immunofluroescence).

The MOR antibody was a rabbit polyclonal antibody raised against the immunogen 

sequence corresponding to residues 1359-1403 of the carboxy terminus of rat MOR (mu 

opioid receptor IgG, Neuromics). The antibody was diluted in 5% goat serum diluted in 

TTBS. The primary antibody was then washed off the slides the following morning 3 

times in 0.1 M phosphate buffer (PB), each wash for 10 minutes, before being incubated 

at room temperature for 90 minutes with biotinylated goat anti-rabbit at a dilution of 1: 

400 in TTBS. The slides were again washed x 3 in 0.1 PB as before and then the 

incubated in Vectastain Elite ABC amplification kit solution for 30 minutes. After a 

further x3 washes in 0.1 PB, the slides were placed in biotinylated tyramide solution 

(Perkin Elmer TSA biotin system) for 7 minutes before a further 3 washes, for 10 

minutes each, as before. Lastly the slides were incubated with FITC avidin 1:600 in 

TTBS and left on the rocker at room temperature for 2 hours covered in foil. After 

washing the slides as before, the slides were cover slipped with gel mount (Sigma) and 

stored in foil at 4°C.

All sections were run concurrently with positive controls (the spinal cord) and 

negative controls (no primary antibody).
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3.3.4 Analysis of immunofluorescent staining

Immunofluorescent slides were examined under a Nikon E800 fluorescence microscope 

through red coloured filter at 470/505nm excitation/emission wavelengths. To estimate 

the intensity of staining, microscope images (xlO, x 20) were captured and analysed 

using MCID (Imaging research, GE Healthcare) image analyser software. For analysing 

MOR immunofluorescence, a threshold was set above background and the area of skin 

with staining intensity above that threshold was measured. The area analysed was a 

rectangle set by the computer programme as 500 x300 pm and fixed for all sections.

The real size of the rectangle was calculated and is documented in all the figures. The 

threshold was also kept constant for all sections and the software measured the number 

of pixels above that threshold in each section. This method is not, therefore a measure 

of staining intensity but a measure of staining above threshold. For this reason it is 

called “relative staining density”. For each skin section, the relative staining density was 

measured in 3 separate regions of epidermal/dermal tissue and the mean intensity 

calculated. The rectangles were placed with one long side on the epidermal surface 

measuring along the section. Measurements were made on both ipsilateral and 

contralateral skin sections; there were 20 sections per animal. The observer was blind to 

whether the sections were ipsilateral or contralateral and the same observer performed 

all the analyses.

The same computer programme was used to analyse DRG immunostaining. For each 

DRG section, thresholds were set and numbers of neurons above the threshold counted. 

Approximately 500 cells per DRG were analysed and the numbers of cells positive for 

MOR immunostaining were expressed as a percentage of the total cell count. This was 

repeated for each of the L4 and L5 DRGs on ipsi and contralateral sides. Again to 

eliminate observer bias, the observer was blind to the experimental status of the animal 

and the same observer performed the analysis throughout.
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3.4 PROTOCOL 2: WESTERN BLOTS

To obtain a more quantitative measure of the total amount of the MOR protein in our 

skin sample, western blots were carried out. In this method, protein bands of a particular 

antigen are obtained by gel electrophoresis.

The protein bands, which are charged ions, run at different speeds depending on their 

molecular weights and can be visualised for quantitative analysis.

3.4.1 Tissue Preparation for Western Blots

The skin of the plantar surface of both feet of P3 and P21 nai've and carageenan 

inflamed rat pups were dissected and snap frozen in liquid nitrogen and stored in 

eppendorfs at -80°C. Fresh tissue is essential for Western Blot analysis and should be 

kept frozen at all times to preserve the protein structure. The skin samples are then 

homogenised in RIPA buffer, which contains proteinases, phosphatase inhibitors in a 

solution of NaCl, NaF, ETDA, NP-40 and Hepes. This homogenises the protein and 

exposes the antigens. The homogenates are then kept on ice for 2 hours and then 

centrifuged (at 4°C, for 15 minutes at 12,000 rpm). The supernatants are then collected 

into sterile eppendorfs.

3.4.2 BCA Assay

The total protein extracted from the tissue was titrated using a BCA kit (Pierce, 

Rockford IL). This is an assay where the protein samples are normalised against a 

known concentration BSA (bovine serum albumin). It is an endpoint reaction, where the 

darker the colour of the samples, the more protein is present. The samples are then 

added to a volume of loading buffer in order to obtain a total concentration of 10 pg of 

protein in lOpl of solution. The normal starting point for a western blot is to load 10 pg 

of total protein per well.
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3.4.3 SDS-PAGE and Loading of samples for the Western Blot.

All samples were analysed by SDS-PAGE gel (10% Tris -HCL gels, Biorad). 

Appropriate amounts of protein were added to each lane alongside a prestained broad 

range 10,000 -  250,000 kd Kaleidoscope marker (Amersham). They were then 

electophoresed in running buffer (Tris base, SDS, glycine and distilled water) at 100V 

for 90 minutes.

Following activation using methanol and then rehydration, using transfer buffer (Tris 

base, methanol, SDS, glycine and distilled water), a PVDF (polyvinylidene difluoride) 

membrane was then used, onto which the proteins were transferred with 100 V for 45 

minutes.

3.4.4 Immunostaining of Western Transferred Proteins

PVDF membranes were then transferred to blocking agent (5% skimmed milk 

powder in PBS Tween (1ml Tween in phosphate buffer) and left for 1 hour on the 

Rocker. The membranes were then incubated with 1:2500 MOR antibody (Neuromics 

as used for immunofluorescence) diluted in the blocking agent and left overnight on a 

rocker at 4° C. The membranes were then washed 10 times for 5 minutes each in PBS 

with 0.1%Tween and then were incubated with Horse Radish Peroxidase (HRP) -  

conjugated secondary anti-rabbit antibody at 1:2000 for 45 minutes at room 

temperature. The membranes were washed as before.

3.4.5 Development of the protein bands

HRP- labelled proteins were then visualised using an enhanced chemiluminescent 

Substrate (ECL solution Amersham using 50:50 of each reagent) and developed using 

Kodak X- OMAT film in a dark room. The identified bands were labelled against the 

molecular weight of the kaleidoscope marker. The blots were then stripped using 

stripping buffer twice, for 10 minutes each and then washed with PBS tween as before. 

Following blocking as before, the membranes were then reprobed with GAPDH 

antibody at 1: 750 (Chemicon) and left overnight a 4°C.
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The blots were again washed and secondary antimouse antibody was added (1: 2000) 

for 45 minutes, then again washed. They were then developed again in a dark room 

using ECL solution and Kodak film.

It is essential to control for protein levels and this is usually done using GAPDH, as a 

“housekeeping gene”. However anecdotal evidence has suggested that GAPDH is 

developmentally regulated and so an alternative method of controlling for protein levels 

is to use coomassie, a blue dye. The blot is placed in the dye for 5 minutes and then 

destained, using acetic acid. The bands of protein are then clearly visualised as dark 

blue against a lighter background. Using the MCID computer package, the relative 

optical density x the scan area was analysed for the blots and calculated as a percentage

of the GAPDH or Coomassie blue 

values.

Fig 3.2 Summary of Western Blot 
Procedure

1) Proteins o f  interest are loaded into the 
wells are separated by gel electrophoresis, 
usually SDS-PAGE.

2) The proteins are transferred to a sheet o f  
special blotting paper called nitrocellulose, 
though other types o f  paper, or membranes, 
can be used. The proteins retain the same 
pattern o f  separation they had on the gel.

3) The blot is incubated with a generic protein 
(such as milk proteins) to bind to any 
remaining sticky places on the nitrocellulose. 
An antibody is then added to the solution, 
which is able to bind to its specific protein. 
The antibody has an enzyme (e.g. alkaline 
phosphatase or horseradish peroxidase) or dye 
attached to it, which cannot be seen at this 
time.

4) The location o f  the antibody is revealed by 
incubating it with a colourless substrate that 
the attached enzyme converts to a coloured 
product that can be seen and photographed.

5) To control for the amount o f  protein 
loaded, the blot is placed in coomassie blue 
dye and then destained

(Taken from www.bio.davidson.edu/COURSES/genomics/method/Westemblot)
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3.5 RESULTS

3.5.1 The effect of postnatal age on MOR protein levels in plantar skin

Figs 3.3 and 3.4 show Western blots of MOR protein levels in rat plantar skin at two 

postnatal ages, P3 and P21. Two bands are observed, one at 50 kd and one at 70kd.

contra ipsi

Western blot

P3 P21

Coomassie blue dye
contra ipsi

Figs 3.3 and 3.4 Typical Western blots of MOR expression in the plantar skin of P3 

and P21 rat pups. Two bands, 50 kd and 70kd are shown.
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p3/50 p21/50 P3/70P21/70 

n=5gup

Fig 3.5 Mean expression of bands 50 kd (p3/50, p21/50) and 70 kd (p3/70, p 21/70) 

MOR at P7 and P21

(D x a is density of the band x area of band scanned)

The intensity of the two bands from 5 animals in each group is shown in Fig 3.5. A one 

way ANOVA showed that there was a significantly greater expression of 50kd MOR 

protein in the younger P3 animals, compared to P21 (p<0.05). It also showed that there 

was a significantly greater amount of 50 kd MOR protein than 70kd MOR protein in the 

P3 animals (p<0.0001). The 70 kd protein was more variably expressed. Please see 

page 100 for possible explanation and significance of two bands.
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3.5.2 The effect of hindpaw carageenan inflammation on on MOR immunostaining

in plantar skin and DRGs of rat p u p s  P3, P7 and P21

(i) Carageenan inflammation in young rat pups

Carageenan was used as a model of inflammation in the rat pups. Previous reports 

in adults have shown that at four hours strong clinical signs of inflammation are 

evident.

4 - i

■ ■  ipsi 
[= 1  contra

p 3  P 3 in flam e<  p 7  p 7 in flam ed  p21 p21inflam ec

n =5/group

Fig 3.6 Mean (± SEM) paw diameter at P3, 7 and. 21,4  hours post carageenan 

injection. Data is shown for ipsilateral carageenan injected (ipsi) and contralateral 

control (contra) paws. Fig 3.6 shows the clinical signs of acute hindpaw 

inflammation measured as increases in hindpaw diameter in neonatal rats. Using one 

way ANOVA, statistically significant inflammation was evident in the animals of p7 

and p21 (p<0.05) and clinically significant in the youngest pups. This time point 

was therefore used for all the subsequent studies.
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(ii) Immunostaining of MOR in the plantar skin of control and inflamed hindpaws

Contra and ipsilateral images - TSA Immunostain in glabrous skin 
of the hindpaw for MOR in p3 rat pups

Mor -ve

Likely e x p r e s s io n  in 
p e r ip h e ra l  te rm in a ls  o f 
s e n s o r y  n e u ro n s  a s  w ell a s  
in im m u n o c y te s

Animal 1
contra x10 800 x1000 microns

Mor + ve

Ipsi X 1 0  500 x 800 microns

contra x20 450 x 500 microns

Animal 2
Ipsi X 20 300 x 400 microns

(Fig 3.7a)

(Fig 3.7b)
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Fig 3.7a shows examples of typical immunofluorescent staining of MOR in naive 

(contra lateral) and inflamed (ipsilateral, 4 hours post carageenan staining) plantar 

sections in the glabrous skin of the hindpaw in P3 rat pups.

Negative control showed no immunostaining without primary antibody application (fig 

not shown).

Fig 3.7b Positive control of MOR antibody present in the dorsal horn of the spinal cord 

of the control rat pups at all ages using immunofluroescent and DAB staining technique. 

In control tissue, the staining is relatively sparse in the epidermis and dermis but is 

concentrated in large cells in the subcutaneous tissue, which are likely to be 

immunocytes. Future work should then attempt to demonstrate this colocalisaton with 

double- staining immunoflurescence. In contrast, there is abundant staining in the 

inflamed skin, concentrated largely in the dermis while the epidermis remains relatively 

free of MOR expression. Cellular staining is clearly increased but some of the 

cutaneous MOR expression is likely to be on sensory terminals, which are concentrated 

in the dermis. Again this should be the next step using an antibody such as PGP 

9.5.which stains for nerve fibre within the superficial and deep dermis, and around 

adnexal structures such as hair follicles and sebaceous glands. Image analysis was 

performed in 20 contra lateral and 20 ipsilateral sections per animal at P3, in order to 

provide a quantitative analysis of this up regulation.
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n=5/ group

Fig 3.8 The mean relative density MOR immunolabelling in ipsi (inflamed, 4 hours) 

and contra (non-inflamed) plantar skin sections of P3 animals.The mean relative colour 

intensity was established for the contra, 0.07 ± 0.01 (SEM) and ipsilateral 0.11± 0.01 

(SEM) respectively. Although this was not statistically significant; t test 0.08, the trend 

was consistent with visual inspection of sections (Fig 3.8).
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(iii) Immunostaining of MOR in the L4 and L5 dorsal root ganglia of control and 

inflamed hindpaws.

Lumbar DRGs of P7 rat pups immunostained for MOR

:%r

MOR -Ive 

Animal 1

X 20 5 0 0  x 6 5 0  m ic ro n s

MOR -tve

5 0 0  X 6 5 0  m ic ro n s

X 20

Animal 2
5 0 0  x 6 5 0  m ic ro n s

x 10

ipsi contra

Fig 3.9 shows the typical immunofluorescent staining of MOR in non-inflamed (contra 

lateral) and inflamed (ipsilateral) sections of the P7 dorsal root ganglia. Negative 

controls were DRGs without primary antibody resulting in negative immunostaining 

(fig not shown).The DRG sections of the P3 animals were technically difficult to 

section intact and so immunostaining was not successful. The staining is localised to the 

cell bodies in the ganglia although some can be seen in the sensory nerve fibres and 

dorsal roots as well. It can be seen that the intensity of MOR staining is much greater 

on the inflamed side than the contra lateral control side. MOR immunoreactive positive 

cells were counted in 10 sections from each L4/5 DRG and expressed as a % of the 

unstained cells.
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Again the mean values for the relative colour intensity of the contra and ipsilateral 

samples were calculated as 25.2 ±2.1 (SEM) and 15.2± 4.7 (SEM) respectively and a t 

test showed that this difference was very significant with a value of < 0.009 (Fig 3.10)

CONTRA

Fig 3.10 The mean relative density MOR immunolabelling in ipsi (inflamed, 4 hours) and 

contra (non-inflamed) L4 DRG sections of P7 animals.

3.5.3 The effect of hindpaw carageenan inflammation on MOR protein levels in 

plantar skin in rat pups at P3 and P21

(i) Western blot analysis of MOR protein levels in the plantar skin o f control 

and inflamed hind paws

Figs 3.11 & 3.12 show the effect of hindpaw carageenan inflammation upon the 50kd 

and 70 kd MOR protein bands in P3 plantar skin based on the data obtained for Western 

Blot analysis. Fig 3.11 shows that it is the 50kd band that it is significantly up regulated 

in the presence of inflammation, whereas the 70kd band is more variable (Fig. 3-12).

(see pagelOO of this chapter for possible explanations for the two different bands 

detected).
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Although direct comparison cannot be made between Western blots, the up regulation 

at P3 was at least as great as that seen at in P21 animals (Figs 3.13 & 3.14).

1500

k
CD 1000

•  500

contra
ipsi ( carageenan) 
naive

p = 0.003
contra ipsi naive

n = 5 / group

Fig.3.11 Mean expression of 50 kd MOR in non-inflamed (contra), inflamed (ipsi), and 

naive skin 4 hours post carageenan injection in P3 rats. Data based on Western Blot 

Analysis of the sections obtained. Y axis shows the density times the area of band 

scanned as a percentage of GAPDH to control of amount of protein loaded, using the 

MCID image analyser

500-1

contra ipsi naive p = ns
n = 5 I group

Fig 3.12 Mean expression of 70kd MOR in non-inflamed (contra), inflamed (ipsi) and 

naive skin 4 hours post carageenan injection in P3 rats. Data based on Western Blot 

Analysis of sections obtained.
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Y axis shows the density times the area o f band scanned as a percentage of GAPDH to 

control of amount of protein loaded, using the MCID image analyser

2500- tm contra
S  2 0 0 0 - | ■  ipsi
< m  naive
0 1500 
o>

1  1000
2
% 500

contra ipsi naive p ” 0-03
n = 5 / group

Fig 3.13 Mean expression of 50 kd MOR in non-inflamed (contra), inflamed (ipsi), and 

naive skin 4 hours post carageenan injection in P21 rats. Data based on Western Blot 

Analysis of the sections obtained. Y axis shows the density times the area of band 

scanned as a percentage of GAPDH to control of amount o f protein loaded, using the 

MCID image analyser
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ipsi ( carageenan) 
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contra
p= ns

naive
n = 5 1 group

Fig 3.14 Mean expression of 70 kd MOR in non-inflamed (contra), inflamed (ipsi), and 

naive skin 4 hours post carageenan injection in P21rats.

Data based on Western Blot Analysis of sections obtained. Y axis shows the density 

times the area of band scanned as a percentage of GAPDH to control o f amount of 

protein loaded, using the MCID image analyser
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3.6 Discussion

In this chapter I have quantified, for the first time, peripheral MOR expression in 

the skin and its regulation during development and by peripheral inflammation. 

The data presented shows that

• MOR protein levels in the hindpaw plantar skin are significantly up 

regulated in the youngest animal and following carageenan inflammation 

as demonstrated by the Western Blot Analysis. Two bands were visible 

and a significant greater amount of 50kd MOR protein than the 70kd 

protein was present in the P3 animals (see Figs 3.5,3.11 to 3.14)

• MOR expression is up regulated in neonatal plantar skin and significantly 

up regulated in neonatal lumbar DRG four hours post hindpaw 

inflammation as demonstrated by analysis of immunofluorescence 

staining (see Fig 3.7 to 3.10).

The up regulation of peripheral MOR by carageenan inflammation and the 

postnatal regulation of peripheral MOR

As discussed in chapter 2, previous work, using light microscopy has demonstrated that 

MOR is expressed on the fine cutaneous nerves in the inflamed adult paw (Hassan et al 

1993). These studies did not provide much detail and did not say whether the opioid 

receptors were also expressed on normal skin nerves. Subsequent work, using 

immunolabelling combined with electron microscopy to detect the receptors, then 

confirmed that approximately 30% of peripheral cutaneous unmyelinated sensory fibres 

at the dermal -  epidermal junction express either MOR or delta opioid receptors, but it 

was unclear whether these were membrane bound or in structures within the nerves 

(Coggeshall et al 1997). It is generally accepted however, that following peripheral 

inflammation, there is an increase of the intraaxonal transport of opioid receptors from 

the dorsal root ganglia toward the periphery providing an up regulation in the receptors 

at the sensory nerve terminals (Stein et al 1993).

Our first aim was to confirm whether MOR is expressed in cutaneous tissue young rat 

pups and whether postnatal age and effects of carageenan inflammation affected this 

expression.
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Our first aim was to confirm whether MOR is expressed in cutaneous tissue young rat 

pups and whether postnatal age and effects of carageenan inflammation affected this 

expression.

The results of MOR immunostaining in the skin of neonatal rats verify the existence of 

the receptors within the epidermis, but in the absence of electronmicroscopy, it is not 

possible to state the exact location. It is likely however that they are located within the 

peripheral sensory nerve endings as demonstrated previously in adult animal models 

(Stein et al 1990).

Stander et al 2002 has shown immunoreactivity for the isoform of MOR, MOR-1A in 

large fibres in the superficial and deep reticular dermis, in small nerves in the papillary 

dermis, at the dermal-epidermal junction and within the epidermis, using double 

immunofluroescence staining for MOR 1-A and NF (neurofilament) and PGP9.5 

antibodies. This could also be confirmed in neonatal rat tissue as a possible follow-on 

study, by performing double immunofluorescence with a panaxonal antibody such as 

peripherin or PGP 9.5. MOR may also be located on various cells of the circulating 

immune system such as macrophages and lymphocytes (Machelska et al 2002).

Previous work has studied the effects of different inflammatory agents administered to 

neonatal rat pups and has provided useful information, particularly with respect to the 

onset of acute pain and the long term effects of the different inflammatory models.

In this study carageenan was chosen as the inflammatory agent as it acts almost 

immediately at around two to five hours post injection (Walker et al 2003) without 

long-lasting consequences. Although the clinical inflammation it produces may last up 

to 14 days with this agent, there are no alterations in longer term mechanical or heat 

behavioural response, in comparison to CFA( Complete Freunds’ Adjuvant), which may 

produce clinical inflammation lasting into adulthood without resolution.

Formalin has also been shown to be more severe noxious stimuli if injected into the 

neonatal rat pup and may actually lead to sensory neuron death (Tsujino et al 2000).

Up regulation of opioid receptors in the skin was evident on inspection of the 

immunostained sections but image analysis did not reveal significant results.
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Some reasons to account for this flawed method may be due to the fixation method or 

preparation of the tissue or may be due to the chosen size of the cryostat sections. The 

up regulation was clear, however, on Western blot analysis.

The method used to analysing immunofluorescent staining of opioid receptors in the 

skin is not a precise method, as it defines the colour intensity of the staining and is not a 

quantification of the actual number of cells or structures which are positively stained. It 

provides a relative change in colour intensity and so may not be entirely representative 

of the actual up regulation, which occurred. The method did produce statistically 

significant data for the DRG up regulation perhaps because of the more homogeneous 

nature of the tissue.

Recent work in adults, investigating the mechanism behind the transport of opioid 

receptors to the periphery as well as, how the inflammation at the periphery relays its 

signal towards the DRG, with the following results (Puehler et al 2004):

• There is a biphasic up regulation of mRNA for MOR at an early stage of 1-2 

hours and then at a later stage of 96 hours in the ipsilateral DRG, following 

inflammation, induced by a local injection of CFA in to the hindpaw of adult 

rats.

• There are no significant changes in the mRNA levels for the receptor on the non

inflamed side.

• At the initial stages of an inflammatory response (1-2 hours), there is an increase 

in opioid binding in the DRG suggesting that the MOR expression may be 

transcriptionally controlled following stages of peripheral inflammation.

• As early as 4 hours post-inflammation, an increase in MOR transport towards 

the periphery occurred, demonstrated in the ligated sciatic nerve.

• Local anaesthetic was shown to block the increase in MOR transcription, which 

suggests that the early up regulation is controlled by neuronal electrical activity.

The above explains that the early up regulation of MOR in the DRG is most likely 

due to increased transcription, presumably triggered by increased spike activity from the 

sensitized sensory nerve endings in the inflamed skin (time scales of the inflammatory 

response differ to that produced in my work, as CFA not carageenan was used in 

Peuhler’s research).
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This is followed by increased transport to the nerve endings in the skin. The above was 

investigated using PCR (polymerase chain reaction technique) which should be 

performed on neonatal tissue as the one of the follow- on studies.

This might explain the less significant results for the immunnoreactivity within the skin, 

which may have been clearer at a later time point. In order to provide a more precise 

quantification of MOR within the skin, western blots were performed.

Developmental regulation of peripheral MOR

The results show that was significantly more peripheral 50kD MOR expression in the 

skin of the P3 pup in comparison to the P21 rat. This is consistent with previous reports 

showing more widespread expression in the infant rat dorsal root ganglion (Beland and 

Fitzgerald 2001; Nandi et al 2004) and greater MOR binding in the infant spinal cord 

(Rahman et al 1998).

The postnatal developmental regulation of key receptors is a common feature of the 

developing nervous system and may well reflect the change from neural communication 

for the purpose of synaptogenesis and growth to mature synaptic transmission and 

modulation of neural signals (Pattinson and Fitzgerald, 2004).

Possible significance of two protein bands

Two visible bands were observed on the Western blot; the 50 and 70 kd bands. 

According to Neuromics, the MOR antibody manufacturer, the 50kd band is the typical 

band, which has been detected in various tissues such as brain, spinal cord and spinal 

cord in the adult rat in previous work (Arvidsson et al 1995). A second less clear band 

was seen at the 70kd in all of the westerns.

Similar banding patterns were reported in a study looking at the expression of MOR in 

the brainstem of rats throughout development. Although there were only 3 animals per 

age group in this study, the 50kd band was more likely to be expressed in the younger 

animal and the 70 kd band in the older animal (Kivell et al 2004). The different 

immunoreactive bands at 50 and 70 kd may be due to the presence of distinct isoforms 

of the receptor.

MOR-1 was first cloned just over 10 years ago and more recently studies have 

identified splice variants of this clone. Evidence now suggests that there are differences 

in the location both intracellularly and regionally of the splice variants.
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For example the MOR-1 or MOR- C are located within the cells of the DRG and spinal 

but not together. Also, MOR-1 is located both pre and postsynaptically and MOR-C is 

located is just located presynaptically (Abbadie et al 2000).

Other reasons to explain the different bands of MOR expression may be post 

translational changes, alternative promoters or splice variant differences. Focusing on 

the 50 kd band, there is a significant increase in expression of peripheral MOR in the 

younger naive neonate as well as following inflammation in both the younger and older 

age animal. A second conclusion is that the 50kd band is more commonly expressed in 

the neonate and the 70 kd band in the older animal.

The next important step would be to determine the exact cellular location of the 

peripheral opioid receptors using a pan neuronal marker such as PGP 9.5and whether 

the peripheral opioid receptors are functional -  this could be analysed using calcium 

imaging.

Clinical Implications

This study had shown that there is an up regulation of peripheral MOR following 

inflammation and that this up regulation is significant in the youngest animal in parallel 

to the findings of Beland and Fitzgerald (2001), in the developmental regulation of 

MOR in neonatal DRGs. It is reasonable to hypothesize; therefore, that the application 

of topical morphine should be more effective when applied to inflamed skin in the 

young rat pups but this would be a potential subsequent study to perform in order to 

confirm or dispute this hypothesis

Clinically, the developmental regulation in the presence of peripheral MOR may have 

implications for the use of topically or peripherally applied opioids in humans. There 

are limitations to extrapolating data from animal studies to man, but the sequence of 

events which occurs in the developing CNS of the rat, has some similarities to that of 

the human; P0 in the rat is approxiamately equivalent to a 24 week premature human 

neonate; P7 to an infant and P21 to an child/adolescent.

The data predicts that opioids will be especially effective when applied topically to 

inflamed tissue as the number of opioid receptors is increased under these conditions.
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The increased opioid expression on sensory nerve endings should lead to better pain 

relief and the increased opioid receptor expression on immunocytes may also relieve 

inflammation. The data also predicts that, since opioid expression is already higher in 

younger subjects, the effect may be even greater in young patients.

Chapter 5 describes the flaws noted in this work and essential follow on studies required 

to enable a clearer understanding of precise location of the MOR receptors as well as 

the specific clinical implications.
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CHAPTER 4: CLINICAL STUDY

4.1 BACKGROUND

My previously published case report (Watterson et al 2004 - see appendix) discusses the 

small pilot study, which was conducted prior to the main research project. It is a small 

case series, which describes the use of topical morphine gel in two teenagers with 

dystrophic EB. The results showed benefit in reduction of acute pain, following the 

morphine application and this benefit continued after prolonged use (five months) in 

one of the cases. There were no adverse effects following the use of the gel in these two 

cases. Following this success, I felt it would be valuable to expand upon the case studies 

with a much larger, randomised controlled study, in order to evaluate further as to 

whether there is reduction of other pain types using EB as the pain model. First I am 

going to briefly discuss the difficulties in conducting essential clinical studies, in 

particular randomised controlled trials in children and young people.

4.2 CONDUCTING CLINICAL TRIALS IN CHILDREN

Clinical practice should be governed by sound evidence and clinical trials in paediatric 

population have led to significant improvements in their health care. However this 

improvement tends to be clustered around certain childhood conditions such as cancer, 

where well organised multi - centre trials based on internationally agreed protocols, 

with strict review processes, have successfully recruited large numbers of patients. 

Conducting research in children is more challenging then in adults for a number of 

reasons related to the small number of patients available for trials in comparison to 

adults. There may also be difficult consent issues, stringent ethical board review 

procedures, lack of incentive for funding, parental anxieties, or even doctors’ 

perceptions that research involves extra work and time for recruitment (Menson et al 

2004). Consequently there is a lack of comparable randomised controlled trials (RCTs) 

in pain research for children and within the Cochrane Central Register of Controlled 

Trials, there are approximately 700 randomised trials of analgesics in children compared 

to well over 5000 such trials in adults (Cochrane Collaboration).
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Unfortunately as a result, clinicians may need to extrapolate results from adult research, 

which is highly inappropriate, especially in the field of pain research, where 

pharmacokinetic and pharmaco-dynamics vary so greatly with age. The risks as well as 

the benefits need to be carefully considered in this group of vulnerable young patients.

It is a well - known phenomenon that there are inclusion benefits for all participants in 

RCTs, the “Hawthorne effect” i.e. people’s behaviour or performance is noted to be 

altered whilst been observed in a situation and this alteration in behaviour is usually 

noted to be an improvement (Adair 1984). This advantage may be volunteer bias, but 

could also be as a result of better monitoring of trial patients.

On a local level, better education for doctors and nurses is required, regarding the 

benefits of trials and the risks of using medications, interventions which have not been 

adequately trialled for use in the paediatric population. Researchers have to consider 

ways of enhancing recruitment of children and young people to trials, such as keeping 

hospital/clinic visits to a minimum and reducing the need for extra blood samples. On a 

more national ( Royal College of Paediatrics and Child Health Guidelines for Good 

Practice 2001) and international level, the EU Medicines for Children legislation has 

ordered for more clinical trials involving paediatric medications to be conducted which 

are age specific, so that there is increased efficacy and safety of medicines used in 

children (Choonara 2000 ; Sammons et al 2004).

4.3 CLINICAL TRIAL DESIGN

I had the opportunity of conducting a RCT which was placebo-controlled, double

blinded and with crossover design, providing an ideal design for any clinical study.

• Crossover This study used the patients as their own controls therefore avoiding 

difficulties with mismatching. In a crossover trial, the response of intervention A 

is compared to that of intervention B. The major limitation is, whether a 

carryover effect exists between the two treatment periods and to avoid this, a 

wash-out period is necessary and it is essential to test the data for carryover and 

if this exists, then the outcome of the interventions will also be affected 

depending on their sequence (period effect).
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• Placebo-controlled It is a huge benefit to design a trial with placebo control in 

order to minimise bias. This crossover study ensures that each patient however 

not only trials the drug but also the placebo thus removing any ethical risk from 

the research. It has been historically documented that the placebo effect may 

occur in up to 33% of subjects (Beecher 1955). Particularly in studies of pain 

research, functional imaging has detected a placebo response (Petrovic et al 

2002), one mechanism of which is thought to be secondary to release of 

endogenous opioids, as the placebo response may be halted by a naloxone 

injection (Sauro and Greenberg 2005).

4.3.1 Objectives: To investigate the efficacy of peripherally applied (topical) morphine 

in a model of paediatric inflammatory pain using patients with EB.

4.3.2 Design: Randomised, placebo-controlled with crossover design and blinding of 

participants, investigators and assessors. The trial took place over a four-week period 

with, two weeks for placebo application and two weeks for morphine application.

4.3.3 Power calculations and sample size

It is conventional to have a pre-calculated power and sample size prior to commencing 

the study. Any research study relies on the results based on a random sample of the 

population and then inferences are made on the entire population. Power calculations 

are performed to calculate a sample size which may prevent a type I (that is wrongly 

rejecting the null hypothesis) or type II error (that is wrongly accepting the null 

hypothesis). Interim or post hoc calculations may also be performed but are less 

effective. My trial was a multi-phasic randomised controlled trial involving a rare 

condition in a paediatric population and following advice from statisticians it was 

considered not appropriate to calculate power or sample size as the numbers of patients 

who have the disorder even in the entire population are small.

4.3.4 Setting: The study took place at Great Ormond Street Hospital, London and 

within the patients’ homes, throughout the UK.
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4.3.5 Participants

Inclusion criteria:

• Patients in the UK, aged 1 to 18 years, with a diagnosis of dystrophic 

Epidermolysis Bullosa (DEB) were eligible for the trial.

• Patients must have all or part of their routine care at Great Ormond Street 

Hospital EB department.

• Patients should be experiencing either acute or chronic pain at time of 

recruitment as well as having at least 1 area of broken skin (Fig 4.1a shows a 

painful skin lesion in EB and Fig 4.1b shows the extent of skin lesions 

covered with dressings in this young patient with DEB).

Exclusion criteria:

• patients who had a previous adverse reaction to opioids

• those with renal or hepatic insufficiency

• known parental drug misuse.

Fig 4.1 a A painful skin lesion in EB
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Fig 4.1b Typical dressings required in EB

4.4 RECRUITMENT

The project, including all documentation, received approval by the local research ethical 

committee. A list o f all eligible patients was obtained from the Epidermolysis Bullosa 

patient list held in the dermatology office at Great Ormond Street Hospital. For each 

eligible child, it was then noted when the next inpatient visit had been arranged, so that 

approximately two weeks prior to this scheduled visit, a parental and child information 

leaflet was posted to the family, providing information regarding the study. A covering 

letter addressed personally to the child was also included.

One week after posting the letter, I followed this up with a telephone call with an aim of 

allowing the parent or child to ask any further questions regarding the written study.

At this stage I asked the family to consider participating in the study and if they were 

interested, I would prepare the materials required for the study, prior to their admission 

and would meet them on the ward. If the parents or patients declined to be involved in 

the study, I reassured them that this would have no impact upon their current or future 

management.
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I also attended the EB outpatient clinics within Great Ormond Street Hospital to recruit 

any eligible patients and I also discussed the study details with the EB nurse specialist in 

Scotland and informed her regarding the trial. These patients had joint care with Great 

Ormond Street Hospital and were also all eligible to be involved in the study (See Fig

4.3 for recruitment details).

4.5 CONSENT AND FIRST APPLICATION OF GEL

The first application of the gel took place in hospital or at home in my presence. After 

the parents were fully informed, written consent was obtained according to LREC 

requirements and a general clinical examination took place to ensure the child was well 

enough for participation in the study. The child was asked to choose one particular 

painful skin lesion, which would be used for gel application throughout the study. This 

lesion was measured and photographed. The child was able to continue any regular 

analgesia as well as breakthrough medication and it was asked, that this should be 

documented by the parent throughout the study.

Fig 4.2 Mother applying the gel to a dressing



Fig. 4.3 Participant Flow Through Study

42 EB Patients eligible for trial

1 teenager refused consent
1 parent refused consent
8 other patients either had no suitable 
lesions to use or had no pain at time of 
study
2 already involved in pilot study

30 patients

randomised

No. assigned to placebo first
No. assigned to morphine first

No. who completed the placebo arm 
of the trial second:

No who completed the morphine arm 
of the trial second:

No. who completed the placebo arm of 
the trial first:

Drop-outs 
1 - stinging

No. who completed the morphine arm 
of the trial first:

Drop-outs
1 -  stinging; 1- Admitted to 
hospital
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4.6 RANDOMISATION AND INTERVENTIONS

Participants were randomised to receive two weeks of placebo mixed with Intrasite gel 

and then to receive the drug mixed Intrasite gel for two weeks or vice versa. Each 

patient therefore acted as his or her own control.

Intrasite gel has been used in the management of adult patients with skin wounds (see 

page 72 chapter 2 for its properties). It is a hydrogel composed of water, propylene 

glycol and carboxy methyl cellulose which interestingly are thought to aid absorption 

go drugs from a skin surface which had suffered a bum (Aoyama et al 1984). The chief 

pharmacist randomised each patient using block randomisation method and was the 

only person not blinded in the study.

Block randomisation ensures that balance is enforced within each block randomised 

Therefore as sequential patients are distributed equally to each group, at no time 

imbalance will be large and at certain points, the numbers in each group should be 

equal- i.e. group and periodic balance.

The gel mixture was made up using either morphine sulphate IV preparation 

(10 mg / 2ml) or saline, which acted as the placebo. The pharmacy gave a package for 

each patient which consisted of 2 weeks worth of placebo and 2 weeks worth of drug 

(0.3mg /kg), all identical in appearance and made up in 2ml syringes either labelled 

week land 2 or week 3 and 4. The patient was also given 4 weeks supply of Intrasite 

gel. The agreed overall dose of the morphine mix was 0.3mg / kg for each dressing 

change so the same proportion of the total mix was instructed to be given throughout the 

entire study period. The essential point is that the concentration of the gel mix and the 

dose / kg remained equal throughout the study. The Intrasite gel was squeezed into a 

small gallipot and mixed with either the placebo or drug using a tongue depressor and 

the gel was applied to a chosen painful skin lesion in combination with the patient’s 

usual dressing. The syringes were provided to the parent in a locked box and asked to be 

kept in the fridge. Sufficient quantities of tongue depressors as well as gallipots were 

also provided.
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4.7 OUTCOMES AND DATA COLLECTION

4.7.1 Predefined primary outcomes

The primary outcomes were pain levels prior to, throughout dressing changes and one 

hour post dressing change.

• The pre dressing change pain scores were used to define background pain 

throughout the study period as the earliest time following a dressing change to 

the next pre pain score was 24 hours.

• The pain during the dressing changes was used to quantify procedural or 

incident pain.

• The post dressing change pain score (1 hour post) were used to define post

procedural pain through the study period.

•

4.7.2 Predefined secondary outcomes

The secondary outcomes were appearance of the skin lesion through the 4 week period 

as well as quality of life. An adverse effect profile was also recorded.

4.7.3 Data collection

Following consent, a patient history sheet was completed, which included demographic 

details as well as current analgesia, current symptoms associated with EB, any skin 

current infections. On a body outline diagram (see appendix), the skin lesion was 

documented with its dimensions. The patient was then shown their diary, which had 

written instructions regarding the making up of the gel mixture, and the researcher’s 

contact details.

The patient or parent were asked to complete pain diary sheets (see appendix), which 

consisted of visual analogue scales pre, during and 1 hour post dressing change as well 

as documenting any skin infections, or incidents which could exacerbate pain such as a 

fall. Any emergence of adverse effects possibly related to the opioids such as nausea, 

vomiting, constipation were also documented on a daily basis and given a score out of 

10 if present (10 = worst).

On a weekly basis the parent was asked to comment and document whether the lesion 

looked worse, the same or better than at the start of the study and using an amended 

(with permission) version of the Brief Pain Inventory (Cleland-see appendix).
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Aspects of quality of life were documented such as schoolwork, relationships, and 

sleep. As the lead researcher, I recruited all the patients and followed up with weekly 

phone calls to ensure that there were no parental concerns and also to remind parents to 

complete all the diary sheets. In the majority of patients I made a home visit half way 

through the study, to encourage both the child and parent to complete the trial, as well 

as to document any extra, relevant information. The children lived throughout Great 

Britain including Wales, Scotland and Ireland. I gave the family a stamped addressed 

large envelope to return all the diary sheets after completion of the study.

4.7.4 Statistical Analysis

Due to the complex nature of this multi-phasic trial with composite outcomes, the 

statistical analysis was discussed and advice given by the statistics team, led by 

Professor Tony Cole, at the Institute of Child Health.

Each study day comprised of three assessment sessions:

1) Pre application of either morphine/placebo

2) During application of morphine/placebo

3) Post application of morphine/placebo

As the study was a crossover design, it was first essential to perform significance testing 

on the following:

• Carry-over effect

• Treatment effect

• Period effect (i.e. is there a change over time irrespective of treatment?)

(Jones and Kenward 1989)

The significance tests chosen to perform theses analyses were two - tailed paired t tests 

and were performed for the background, incident pain and post-procedural pain scores.

I also analysed separately, the pain reduction of the pre application scores (background 

pain) from the first baseline pain scores using paired t tests, and compared the results of 

those who had daily dressings with those who had less frequent dressings.

Period 1 is week 2 and period 2 is week 4. Two way ANOVA with post hoc Bonferroni 

test were also performed to analyse the confounding variables of size of lesion and age 

of child on the pain scores. Both Excel XP and Prism 3.0 were used to perform 

statistical analyses.
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4.8 RESULTS (Fig 4-2 Participant flow chart)

At the time of the trial, out of 42 children at Great Ormond Street with DEB, there were 

a possible 42 patients who could have potentially been recruited for the trial. However, 

at time of recruitment, 8 of these children did not have appropriate lesions or did not 

complain of pain. 2 of the teenagers had already participated in the pilot study and so 

were not eligible. Only 1 teenager and 1 parent did not give consent for the trial. The 

parent who refused consent had a child who was just lyear old and felt frightened about 

enrolling their son at such a young age. The teenager gave no particular reason for not 

consenting.

A total of n=30 patients were enrolled. A total of six assents were given by young 

people aged 12-18.

Of these 30, 2 of those patients randomised to morphine for weeks 1 and 2, did not 

complete the study as 1 patient was admitted to hospital because of an intercurrent 

illness and 1 complained of stinging from the gel on day 1 so no data was collected. 1 

patient who was initially randomised to saline for weeks 1 and 2 did not complete due 

to stinging form the gel, again without any collected data.

Of the remaining 27 participants, a total of 24 completed data sheets were returned and 

analysed for the study. Fifty per cent of the subjects were female and fifty per cent male. 

Table 4.1 shows the patients data for age, weight and the variation of surface areas of 

lesions used in the trial. Fig 4.4 displays how frequently the dressings were changed in 

the patients and Fig 4.5 shows which analgesics, either singly or in combination were 

taken by the patients prior to and throughout the study
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A G E 1.74 16.95 9.28 9.19

(yrs)
WEIGHT 12 70 26.7 25.5

(kg)
SURFACE 18 1320 231.77 102”

AREA OF

LESION

(cm2)

Table 4.1 Patient Characteristics n =30

Frequency of dressing  
change

□daily
■ alternate days
□ 3/week
□ twice /week

Fig 4.4 Frequency of dressings



Analgesics taken prior to trial

□ paracetamol
■ NSAIDS
□ codeine

□ opioids
■ amitriptyline
□ gabapentin

no. of patients

analgesia

Fig 4.5 The number of patients who were prescribed a variety of analgesics prior to and 

throughout the study. Some patients consumed more than one type o f pain relief 

medication.

4.8.1 Crossover analysis The following three tables, Tables 4.2 to 4.4 provide the data 

for the crossover analysis of the background pain, incident pain and post 

procedural pain. Following each table, I have calculated and concluded whether 

there is a carry-over, treatment, or period effect based on Jones and Kenward 

definitions in Design and Analysis of Crossover Trials (1989) as recommended 

by the Institute of Child Health of London Statistics Department.
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Table 4.2 Background pain (Values tabulated = VAS (mm / 100) day 8/22, 24 hours 

post first application of morphine / placebo). Data for 1A IB 1C and explanation see 

next page

Patient
no.

GROUP 1

A morphine 
(period 1)

B placebo 
(period2)

1 6 3
2 0 27
3 7 29
4 3 5
5 0 0
6 29 10
7 5 11
8 6 9
9 0 0

10 9 63
11 0 15
12 0 0
13 27 14

GROUP 2

B placebo 
(Period 1)

A morphine 
(Period 2)

14 0 0
15 14 4
16 0 0
17 79 47
18 84 56
19 43 1
20 16 10
21 9 0
22 60 27
23 6 8
24 3 20
25 15 0

116



1A) Carry over effect

The null hypothesis being tested is that the carry over effects are equal between groups 

one (A = morphine first) and groups two (B = placebo first). This is tested, by 

comparing the sum of the values over both treatment periods between groups 1 and 2.

A 2-sample t test yields a p value of 0.18 and the conclusion is that the carry over effect 

is not significant.

IB) Treatment effect

We can only test this if the carry over effects are equal or not significant. The null 

hypothesis here being tested is that the treatment effects are equal. This is tested by 

comparing the difference, between period 1 and period 2 for the 2 groups. For group 1 

this will be time spent on treatment A minus those after spent on treatment B. For group 

2, differences will be for after time spent on time B minus those, after time spent on 

treatment A.

A 2-sample t test of the differences yields a p value of 0.0113.

The outcome of the 2-sample t test gives a 95% confidence interval for the difference - 

20.46 of (-35.83, - 0.5093). To estimate the size of the treatment effect, we take half of 

the difference between the average differences for each group and hence a 95% 

confidence interval for this would be -10.23 (-17.41, - 0.254). Thus it can be 

concluded that morphine has a significantly better effect on background pain 

reduction than placebo.

IC) Period effect

It is of interest to formally test the period effect; i.e. is there a change over time 

irrespective of treatment. This is performed by testing the difference between treatment 

A and B for the two groups.

For group 1 the differences will be for after time period 1 minus those after time period 

2; for group 2, differences will be for after period 2 minus those after period 1.

A 2-sample t test of the difference yields a p value of 0.46. The 95% confidence 

interval for the estimated period effect of 2.25 is (- 4, 10.45). This shows that there is 

not a significant period effect.
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Summary of crossover analysis for background pain

Following the crossover analysis, there was a significant treatment effect with morphine 

on pain reduction of background pain, without carryover or period effect (p= 0.0110). 

There is no such significant treatment effect with placebo.

It is clear from Fig 4.6 that topically applied morphine gel provides significant pain 

reduction over at least a 24 hour period. This is not true of pain reduction with placebo. 

However the reduction is only significant when the dressings are changed daily (Fig 

4.8; p<0.02) and although there is a clinical improvement in pain for those children who 

have less frequent than daily dressings, this was not a significant result (Fig 4.7). This 

group of children may need higher doses /kg of morphine applied to achieve a 

significant pain reduction but further dosing studies should be performed to decide this. 

The age of the child or the skin lesion size does not effect the background pain 

reduction (Figs. 4.9& 4.10).
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Table 4.3 Incident / Procedural pain (Values tabulated = Mean of total VAS (mm /100)

week 2 /4

during dressing change).Data for 2A 2B 2C and explanation next page

Patient
no.

GROUP1

A morphine 
(period 1)

B placebo 
(period2)

1 59 39
2 28 14
3 19 16
4 4 5
5 36 16
6 20 10
7 60 77
8 77 60
9 0 0

10 68 83
11 27 19
12 35 0
13 42 31

GROUP2

B placebo 
(period 1)

A morphine 
(period2)

14 4 3
15 17 8
16 9 50
17 34 37
18 75 62
19 81 1
20 32 34
21 100 94
22 21 87
23 51.5 61
24 90 89
25 58 5
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2A) Carry over effect

A 2-sample t test yields a p value of 0.228 concluding that the carry over effects are not 

significantly different.

2B) Treatment effect

A 2-sample t test yields a p value of 0.655 showing that the treatment effect is not 

statistically significantly different between morphine and placebo for procedural pain

2C) Period effect

A 2-sample t test gives a p value of 0.305 revealing that there is no significant period 

effect

Summary of crossover analysis for incident pain

The crossover analysis demonstrates that there is no significant treatment, 

carryover or period effect with reduction of incident pain with either morphine or 

placebo. Children with EB have severe pain at the moment the dressing is removed and 

anecdotal evidence suggests that, even higher doses of oral opioids do not reduce this 

pain. This may be due to a combination of the immense anticipatory fear as well as the 

pain and sedation is often more beneficial in combination with an opioid in this 

situation. Again the size o f the skin lesion and age of child do not affect the above 

results (Figs 4.11, 4.12).

120



Table 4.4 Post procedural pain Values = mean VAS (mm /100) week 2 / 4, 1 hour 

post dressing change. Data for 3A 3B 3C see explanation next page

Patient no. GROUP 1

A morphine 
(period 1)

B placebo 
(period2)

1 7 0
2 0 0
3 0 0
4 4 5
5 1 0
6 0 0
7 9 16
8 6 4
9 0 0

10 6 3
11 9
12 14 0
13 25 13

GROUP2

B placebo 
( period 1)

A morphine 
(period2)

14 0 0
15 10 3
16 0 6
17 36 23
18 15 18
19 2 0
20 14 10
21 6 3
22 50 70
23 8 9
24 3 1
25 0 0
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3A) Carryover effect

A t test yields a p value of 0.175 concluding that the carry over effect for post 

procedural pain is not significant

3B) Treatment effect

A t test gives a p value of 0.64 showing that there is no significant treatment effect 

3C) Period effect

A two-sample t test yields a p value of 0.0216, with an estimated size of this effect, 

giving a 95% confidence interval of 3.13 of (0.49, 5.6).Thus there is a statistically 

significant effect of whether morphine or placebo is given first or second for post 

procedural pain.

Summary of crossover analysis for post procedural pain

The crossover analysis demonstrates that there is no significant treatment, carryover or 

period effect with reduction of post procedural pain with either morphine or placebo and 

again the age of the child and the size of the skin do not affect the above results (figs 

4.15 and 4.16). However analysing all the patients’ pain scores together for both day 

8/22 and the mean scores for period 1 and period 2, both morphine and placebo 

significantly reduced post procedural pain one hour after dressing change (figs 4.13, 

4.14)
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4.8.2 Overall background pain reduction from baseline pain on first application of

morphine and in relation size of lesion and age of patient

Fig 4.6 is the data of all children analysed together but the data from those children who 

had daily dressings was also analysed separately from those who had less frequent 

dressings as it is not appropriate to compare one pre value after 24 hour application of 

gel (daily dressings) with a child who may have had a dressing 72 hours previously (less 

frequent dressings) (Figs 4.7 & 4.8).

The mean pre scores of period 1 (week2) and period 2 (week4) were analysed in 

relation to size of lesion and age of child, to investigate whether these were both 

potential confounding variables (Figs 4.9 & 4.10).

■ baseline pain
□ first pre morphine
■ first pre placebo

n = 24

PO.Ol

Fig. 4.6 VAS scores with morphine and saline (placebo) at day 8 and day 22 (depending 

on randomisation order).The data was analysed using paired T test showing that there is 

a significant difference in baseline pain reduction with morphine, p< 0.01 with a mean 

VAS of 11.96 ±3.7 (SEM), compared to a mean VAS of 19.08 ±5.12 (SEM) with 

placebo.
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□  morphine 
■ I placebo

p-ns

n=11

Fig. 4.7: Percentage reduction in VAS from baseline pain at day 8 and day 22 

(depending on randomisation order) in those who had less frequent than daily 

dressings. The results were analysed using a paired t test; the mean reduction with 

morphine is 42.27±12.5 (SEM) and with placebo is 19.53±11.5 (SEM). Although there 

is a clinically a greater pain reduction with morphine, it is not statistically significant.

□  morphine 
■  placebo

p <0.02

n= 13

Fig. 4.8: Percentage reduction in VAS from baseline pain at day 8 and day 22 

(depending on randomisation order in those who had daily dressings. The results were 

analysed using a paired T test and the mean reduction with morphine was 51.8±12.9 

(SEM), compared to mean reduction o f 29.69± 10.57(SEM) with placebo.
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Fig 4.9 : The mean reduction in VAS from baseline pain to the mean pre pain scores 

during period 1 and 2, with morphine and placebo in relation to size o f lesion. The 

results were analysed using a two way ANOVA and were not statistically significant.
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Fig 4.10: The mean reduction of VAS from baseline to the mean pre pain scores during 

period 1 and 2, with morphine and placebo in relation to age of patient. The results were 

analysed using a two way ANOVA and were not statistically significant.
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4.83 Overall incident pain reduction in relation to size of lesion and age of patient

80 - m orphine

p lace b o

I
0-250 250-500 500-750

size of lesion 
(cm2 )

p =ns

750+

□

n=24

Figs 4.11 Mean reduction in VAS during a dressing change during period 1 and period 

2 and in relation to size. The results were analysed using two way ANOVA and were 

not statistically significant.
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Fig 4.12 Mean reduction in VAS during a dressing change during period 1 and period 2 

and in relation to age.
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4.8.4 Post procedural pain reduction 1 hour after first application of morphine and

in relation to size of lesion and age of patient

The pain reduction from pain during the dressing changes to pain at 1 hour post 

dressings was analysed. The data from all the children regardless o f the frequency of 

dressings was analysed together and were results of both day 8/22 ( depending in 

randomisation order) as well as the means of period 1 and period 2 are illustrated (figs 

4.13 & 4.14).

60-i

I
c(0
®

40-

20 -

***

X

CUD m orphine during 
CUD morphine pos t  
■ 1  p lacebo during 
■ ■  p lacebo post

p<0.0001

n=24

Fig 4.13 Mean VAS during and 1 hour post dressings on day 8/22. The results were 

analysed using one way ANOVA; the mean VAS during a dressing change was 

42.46±7.3(SEM), 1 hour post dressing the mean VAS with morphine 

wasl0.25±3.5(SEM). The mean VAS during dressings with placebo was 42.5±7.0 

(SEM) and 1 hour post dressings; the mean VAS with placebo was 10.29±3.47 (SEM). 

The mean VAS reduction 1 hour post dressing change was statistically significant 

(PO.OOOl) with morphine and placebo.
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p<0.0001

n=24

Fig 4.14 The mean VAS scores over periods 1 and 2, 1 hour post dressings. The mean 

VAS during dressings with morphine was 37.7± 6.1 (SEM) and 1 hour post dressings the 

mean VAS with morphine were 8.2±2.9 (SEM). The mean VAS during a dressing was 

39.9±6.3 (SEM) with placebo and 1 hour post dressing was 8.6±2.6 (SEM). The results 

were analysed with one way ANOVA and mean VAS reduction was statistically 

significant with morphine and placebo 1 hour post dressing change ( p<0.0001).
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Figs 4.15 & 4.16 Mean VAS post dressing change in relation to size of lesion and age 

o f patient during periods 1 and 2. The results were analysed using two way ANOVA 

and are not statistically significant.
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H MORPHINE 

□ PLACEBO

n =20

Fig 4.17 BPI outcome scores. There was no statistically significant difference between 

morphine and placebo in the BPI outcome scores. Using the mean scores documented 

on a weekly basis, there was no statistically significant difference detected with 

morphine or placebo in any of the criteria, which represented for the purpose o f this 

study, an overall quality of life score. Generally in patients with EB, a variety o f issues 

such as body image, self -  esteem, mobility have a huge impact on their quality of life 

and not just their pain (Fine et al 2004).

The subjects’ 21 parents were also asked to comment on the appearance of the skin 

lesion on a weekly basis and document this as worse, same or better. If the morphine 

was applied for the first two weeks, the skin appearance with morphine was comparable 

with the placebo throughout. The morphine may have provided some initial healing of 

the lesion which continued throughout the placebo arm. If the patient was randomised in 

receiving placebo first, there was a much better improvement on skin appearance with 

morphine in weeks 3 &4 than with placebo in the first two weeks. Morphine is known 

to have anti-inflammatory properties and the application of peripheral opioids directly 

to the peripheral opioid receptors may induce skin healing which would be a great 

additional benefit for EB patients.
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Fig 4.19 Possible opioid adverse effects

This shows the adverse effects graded out o f 10, noted with placebo and morphine 

mixed with Intrasite gel. The most severe effect was itch, followed by drowsiness with 

both saline and morphine. These 2 symptoms are extremely common problems 

experienced by patients with EB and may not be to the topical opioid.

The differences in effects with placebo and morphine were not significant. 54% of the 

subjects scored 0/10 in relation to at least any of the three adverse effects asked to be 

recorded. The most frequent side effects noted were itch and to a lesser extent 

drowsiness; there was no significance difference with the placebo or morphine gel, 

which would firmly suggest that these symptoms were in no way related to the study. 

Itch is a very common symptom in EB as well as drowsiness secondary to anaemia, 

poor nutritional status and immunodeficiency. The relative low number of side effects 

suggests that the topical morphine is not systemically absorbed in sufficient quantities.
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4.9 SUMMARY OF RESULTS

The following are a summary of the results.

• There was a significant treatment effect with topical morphine on pain 

reduction of background pain, without carryover or period effect (p=0.0110). 

There is no such significant treatment effect with placebo.

• Topically applied morphine gel provides significant pain reduction over at least 

a 24-hour period. This is not true of pain reduction with placebo. However the 

reduction is only significant when the dressings are changed daily and although 

there is a clinical improvement in pain for those children who have less frequent 

than daily dressings, this was not a significant result. This group of children 

may need higher doses /kg of morphine applied to achieve a significant pain 

reduction but further dosing studies should be performed to decide this.

• Incident pain is not significantly reduced with topical morphine, which is not a

surprising result as it is evident that a dressing change is an acutely painful 

procedure

• Post procedural pain is significantly reduced by both placebo and morphine but 

this is most likely due to the fact that the acute pain from the dressing change is 

over and the patient experiences no significant relief at this time point with the 

morphine gel.

• There appears to be a consistent pain reduction with placebo and this required 

further exploration. Intrasite gel may in fact have healing and therefore pain 

relieving properties and this should be studied.

• The age of the child or the skin lesion size does not significantly affect the 

background/incident or post procedural pain reduction.

• Using the BPI, quality of life is not significantly improved by use of topical 

morphine

• The appearance of the skin lesion under the topical morphine is not enhanced 

by either topical morphine or placebo

• Itch and drowsiness were noted as the most common side effects experienced, 

but there were no significant differences between topical morphine and placebo
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4.10 CONCLUDING REMARKS TO CLINICAL TRIAL

This is the first randomised control trial in children to investigate the use of peripherally 

applied opioids in children. It is also larger than the few similar trials, which have been 

performed, in the adult population (Zeppetella et al 2003; Flock et al 2003).

The benefits of topical morphine providing pain relief, are most evident in reduction of 

background pain, which is often the most difficult to control in this patient group. 

However I noted a number of difficulties/pitfalls surrounding the trial design noted 

whilst conducting this trial, which I will discuss in the next chapter.



CHAPTER 5: CONCLUSION

Linking the two trials: Pitfalls noted during the studies: Future research.

Although my work consisted of two entirely different projects, this concluding chapter 

explains how the results of the laboratory study provide a basis for the clinical use of 

topical opioids. I will explain the association between the two projects. I will also 

discuss what the next stage should be in the laboratory work, in order to provide further 

crucial information. I will explore what pitfalls I have noted in the trial design of the 

clinical study and how the design could be improved, as well as what future clinical 

research should be carried out.

5.1 LINKING THE TWO TRIALS

The results I obtained following my laboratory work provided me with ideas of how to 

proceed with the clinical work. The fact that I detected the presence of MOR in 

neonatal, infant and young adult rat skin and that these receptors were regulated not 

only throughout development but also following a painful inflammatory stimulus, led 

me to concur that human infants and young people may indeed also possess identical 

receptors with similar properties.

I hypothesised that in accordance with the finding of the animal studies, MOR existed in 

the skin of human infants and children and therefore the application of peripheral 

morphine to the skin would be efficacious and regulated throughout development and 

post inflammation.

It is known that following neonatal cutaneous skin wounding such as a noxious 

inflammatory insult, there is hyperinnervation of the affected and surrounding skin 

tissue, leading to a greater number of peripheral sensory nerves sprouting up to the 

epidermis, in response to increasing nerve growth factor levels (NGF)(Reynolds et al 

1997). This injury is thought to reduce pain thresholds and so produce a heightened pain 

response (hyperalgesia as well as allodynia in later life), as confirmed in a series of 

clinical trials by Taddio (Taddio et al 1997).
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Therefore, infants and children with a diagnosis of EB, who are known to be susceptible 

to painful skin injury in the early neonatal period or even intrauterine period, should 

have hyperinnervation of the cutaneous sensory neurons in the skin of the affected and 

surrounding area based on the above research. Subsequently as the quantity of sensory 

neurons increase post inflammation, the quantity of MOR will also increase, as they are 

positioned on the peripheral sensory neurons (Stein 1993; Stander et al 2002). Also it is 

also known that MOR effects are enhanced during inflammation most likely secondary 

to perineural membrane disruption. The membrane is disrupted in early inflammation 

(Antonijevic et al 1995) and so provides evidence for the efficacy of peripherally 

applied morphine in disorders such as EB, where there are painful inflammatory lesions, 

thus enabling access of the topical morphine via the disrupted perineurium and 

interaction with MOR which are situated on the sensory neuron.

Therefore, in summary, following a painful inflammatory insult in skin tissue, there will 

be a proportionally increased efficacy of peripheral opioids for the following reasons;

a) Hyperinnervation of region due to up-regulation of sensory neurons (Reynolds et al 

1997)

b) Proportional increase in MOR which are situated on the sensory neurons (Stander et 

al 2002)

c) Perineural disruption allowing ease of opioid binding (Antonijevic et al 1995).

5.2 FURTHER LABORATORY STUDIES REQUIRED

The laboratory study demonstrated via direct immunofluroescence, the presence of mu 

opioid receptors (MOR) in cutaneous tissue of neonatal, infant and young adult rat 

models. The study also proved that there was significantly more staining for MOR in 

the youngest animals and post inflammation and this was postnatally regulated. This is 

in keeping with the postnatal regulation of central MOR, which have found to be 

located on cells of dorsal root ganglia (DRGs) of all diameter size in the first 3 weeks 

of life, but persist on the largest diameter cell bodies of the Ap fibres in the youngest 

animals (Beland and Fitzgerald 2001 ).
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These are the sensory neurons, which are sensitive to innocuous stimuli but in rat pups 

these neurons respond to both noxious and innocuous stimuli, thus further 

distinguishing between opioid function in the adult and in the immature central nervous 

system.

Again a significant number of these MOR expressed centrally on DRG neurons have 

been shown by calcium imaging to be more functional in the neonate rat in comparison 

to the adult (Nandi et al 2004).

Western blot analysis in my work, quantified the MOR protein levels and again 

demonstrated two distinct bands; the 50kd band expressed significantly in the younger 

age group and the total protein levels increased following inflammation. Interestingly 

this correlates with the changing receptor profile throughout development. I will now 

note the problems detected with the laboratory study with suggested follow up work.

Problem 1: Detection of precise location of opioid receptors. The exact location of 

the receptors was not investigated in this study but it was assumed that they would be 

located on the sensory nerve fibres, as well as the keratinocytes or immunocytes in the 

epidermis, dermis or sub-epidermal region, as previously demonstrated in adult human 

tissue from patients with atopic dermatitis and psoriasis (Stander et al 2002).

Follow on study required. The precise location should be demonstrated in neonatal 

and infant rat pups as a follow up study, using double immunofluroescence with MOR 

and a pan neuronal antibody such as PGP 9.5 or NF200, to demonstrate co-localisation 

both with and without and a post inflammatory insult such as carageenan.

Problem 2: Clinical effect of topical morphine in rat pups was not tested. Direct 

application of topical morphine was not tested on the rat pups due to time constraints 

and would have provided beneficial parallel information

Follow on study required. Further laboratory work should focus on application of the 

topical morphine to various ages of rat pups with an inflammatory wound and by using 

the techniques of electrophysiology/behavioural testing identification of the effects of 

the topical morphine at different ages.
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Problem 3: No investigation of mRNA. Further work would help identify whether 

there is a similar biphasic up-regulation of m RNA for MOR in the neonatal and infant 

rat pup which has been studied in the adult rat model (Puehler et al 2004).

Follow on study required. This would involve performing Polymerase Chain Reaction.

5.3 FURTHER CLINICAL TRIALS REQUIRED

I noted a number of problems with the trial design on completion of the study which I 

would now like to highlight and then describe suggestions for future trials which could 

perhaps overcome these problems.

Problem 1: Application of morphine gel in those who have daily versus less 

frequent dressing changes was not trialled separately. It is not appropriate to 

compare analgesic effect of topical morphine for those who had daily dressings, versus 

those who had less frequent dressings, e.g. the same application of gel remained on 

some patients up to 4 days in those who had twice weekly dressings.

Follow on study required. Conduct separate trials to distinguish analgesic effect within 

groups who have same frequency of dressing changes per week.

Problem 2: No range of different doses trialled. Only one dose was trialled in this 

study and it would be worthwhile to repeat, using a range of doses, especially as the one 

dose was used on all sizes of lesions and it may be that larger lesions may in fact absorb 

the topical morphine more quickly than smaller lesions, therefore requiring a smaller 

dose or conversely larger lesions may require larger doses to achieve equitable analgesia 

to those with smaller lesions.

Follow up study required. Perform dosing studies using a range of doses and analyse 

against size of lesion.
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Problem 3: The action of Intrasite gel was not separately studied on the skin 

lesions and may contribute to healing of skin lesions. It is unclear what action 

Intrasite gel alone may have had, if any upon the lesions in this patient group. A 

previous smaller RCT in adults used Intrasite gel as the placebo and showed that 

analgesia was not achieved when it was applied to painful ulcers, whilst the topical 

application of diamorphine gel/Intrasite gel resulted in significant pain relief (Flock 

2003).

Further study required. It would be useful to have had a third arm in the trial using 

Intrasite gel alone and assessing analgesic effect. It would be also useful to identify 

during this work whether healing is occurring in either the Intrasite or topical morphine 

or even placebo arms of the trial.

Problem 4: There was no continuous documentation of concurrent use of analgesia 

throughout trial. This particular study did not specifically evaluate the concurrent use 

of the patients’ usual analgesia as a confounding variable, as there was no significant 

difference in the amount of opioids/NSAIDs/or paracetamol used by patients in the two 

treatment arms. In my study, the patients continued taking their prescribed systemic 

analgesics when required.

Follow on study required. An essential follow on trial would be to analyse data on 

analgesic consumption throughout, to determine if similar results to my RCT would 

have been documented. One case study has demonstrated that topical morphine is best 

used as an adjunct rather than the sole analgesic in painful skin lesions (Tran and 

Fancher 2007).

Problem 5: There was no precise identification of the mode of action of peripheral 

morphine in the subjects in this study. Although my trial assumed that topical 

morphine acts on the peripheral opioid receptors as has been demonstrated in the adult 

population (Stein et al 2003), it was not proven in the paediatric patients studied in this 

trial.
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Follow on study required. The detection of morphine and/or its metabolites in serum 

samples would be very useful to explore, even though studies in infants and children 

have verified that there is little correlation between systemic (although not peripheral) 

absorption and clinical effect (Bouwmeester et al 2004; Hansen et al 1996).

My research period did not allow time for this to be investigated but it is also very 

difficult to obtain serum samples from this patient group, as the fragility of their skin 

often prevents a straightforward venepuncture and so they become very needle phobic. 

Laboratory examination in the skin tissue of the patients for the actual presence, exact 

location and proposed up-regulation following painful inflammation would have 

provided exciting information to confirm the hypothesis.

Problem 6: Length of treatment arms. The length of each treatment arm may have 

been too long, and in fact the initial painful lesion may have begun to heal or in fact 

may have completely healed, thus allowing the researcher to have made inaccurate 

conclusions regarding the effect of the topical treatments.

The patients and their families in some incidences may also became uninterested in 

accurately completing the necessary dairy sheets.

Further study required It may have been more suitable to have shortened the 

treatment arm from two weeks to one week each with a few days washout period in 

order to avoid possible healing of lesions.

5.4 CONCLUDING REMARKS AND FUTURE RESEARCH

Although there are limitations in both my laboratory and clinical work I have attempted 

to contribute to pain research in children by investigating the presence of peripheral 

opioids in neonatal animal models and the effect of developmental regulation as well as 

any effect following a painful inflammatory insult. Although by no means ideal I have 

extrapolated the results form my laboratory work to propose that similar findings may 

exist in a human model of inflammatory pain along with similar developmental 

regulation. In this preliminary clinical work, I have provided initial evidence for clinical 

efficacy of this novel route of morphine in children particularly in background pain.
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There should of course be further trials as suggested above, to clarify the precise 

mechanism and in what situations this route of morphine, may be most beneficially used 

in paediatric patients.

In conclusion, topical morphine may perhaps be used, most likely as an adjunct to 

conventional analgesia in order to manage background cutaneous inflammatory pain 

and following further research, may even in the be beneficial in a variety of other 

paediatric diagnoses where background pain is problematic, for example in post 

operative wounds, in bums, in ulcerating vascular haemangiomas or ulcerating tumours 

and in pressure ulcers.
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My Pain Diary
Please fill In a new pain diary everyday.

The best time is one hour after your dressing change.

My name ...................................................................................

Which gel mixture is being used A or B (please circle) 

©  What time was my dressing changed ....................  D ate ....................

©

My pain one hour 
after dressing changed

My pain for the 
last 24 hours

My mobility over the 
last 24 hours

Draw a cross on the line showing how much pain you have 

0 10

no pain worst pain

Draw a cross on the line showing how much pain you have 

0 10

no pain worst pain

0 My mood over the 
last 24 hours

©  My quality of sleep over 
the last 24 hours

Draw a cross on the line showing how easy it is for you to move

0  10
no problem worst possible

Draw a cross on the line showing how you are feeling

10
happy

Draw a cross on the line to show how you are sleeping

best sleep

saddest

 10
no sleep

0  Did any special events happen today?
Did any of these happen to you today which 
may have effected your pain?

(please *)
> an accident / or fall
> a skin infection
> any other illness eg. a cold
> sports day or extra activity
^  Other (if Yes'please write below)

©  Did I have any of these 
symptoms today?

(please S)
> nausea
> vomiting
> constipation
>  drowsiness
> itching
^  Other (if Yes'please write below)



Brief Pain Inventory (Short Form)

Date Time

Name

1. ♦ On the diagram, shade in the areas where you feel pain. 
Mark the area where the gel is.

RightRight Left Left

2. Please rate your pain by circling the one number that best describes your pain when it was 
at its WORST in the last week

No pain 0 1  2 3 4 5 6 7 8 9  10 Pain as bad as you
can imagine

3. Please rate your pain by circling the one number that best describes your pain when it was 
at its LEAST in the last week

No pain 0 1  2 3 4 5 6 7 8 9  10 Pain as bad as you
can imagine

4. Please rate your pain by circling the one number that best describes your pain on the 
AVERAGE

No pain 0 1  2 3 4 5 6 7 8 9  10 Pain as bad as you



can imagine

5. Please rate your pain by circling the one number that tells how much pain you have
RIGHT NOW

No pain 0 1  2 3 4 5 6 7 8 9  10 Pain as bad as you
can imagine

6. What other treatments or medications are you receiving for your pain?

7. Circle the one number that describes how, during the last week, pain has INTERFERED with
your:

Does not interfere 0 1 2  3 4 5 6 7 8 9 10 Completely interferes

Does not interfere 0 1 2  3 4 5 6 7 8 9 10 Completely interferes

Does not interfere 0 1 2  3 4 5 6 7 8 9 10 Completely interferes

Does not interfere 0 1 2  3 4 5 6 7 8 9 10 Completely interferes

Does not interfere 0 1 2  3 4 5 6 7 8 9 10 Completely interferes

Does not interfere 0 1 2  3 4 5 6 7 8 9 10 Completely interferes

G. ENJOYMENT OF LIFE

Does not interfere 0 1  2 3 4 5 6 7 8 9 1 0  Completely interferes
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