
Efficient Bayesian Metho

for Clustering

Katherine Ann Heller
B.S., Computer Science, Applied Mathematics and Statistics,

State University of New York at Stony Brook, USA (2000)

M.S., Computer Science, Columbia University, USA (2003)

Gatsby Computational Neuroscience Unit
University College London

17 Queen Square
London, United Kingdom

THESIS

Submitted for the degree of
Doctor o f Philosophy, University of London

2007

UMI Number: U591498

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U591498
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

I, Katherine Ann Heller, confirm that the work presented in this thesis is my own.
Where information has been derived from other sources, I confirm that this has been
indicated in the thesis.

Abstract

One of the most important goals of unsupervised learning is to discover meaningful
clusters in data. Clustering algorithms strive to discover groups, or clusters, of data
points which belong together because they are in some way similar.

The research presented in this thesis focuses on using Bayesian statistical techniques
to cluster data. We take a model-based Bayesian approach to defining a cluster, and
evaluate cluster membership in this paradigm. Due to the fact that large data sets are
increasingly common in practice, our aim is for the methods in this thesis to be efficient
while still retaining the desirable properties which result from a Bayesian paradigm.

We develop a Bayesian Hierarchical Clustering (BHC) algorithm which efficiently ad
dresses many of the drawbacks of traditional hierarchical clustering algorithms. The
goal of BHC is to construct a hierarchical representation of the data, incorporating both
finer to coarser grained clusters, in such a way that we can also make predictions about
new data points, compare different hierarchies in a principled manner, and automati
cally discover interesting levels of the hierarchy to examine. BHC can also be viewed as
a fast way of performing approximate inference in a Dirichlet Process Mixture model
(DPM), one of the cornerstones of nonparametric Bayesian Statistics.

We create a new framework for retrieving desired information from large data collec
tions, Bayesian Sets, using Bayesian clustering techniques. Unlike current retrieval
methods, Bayesian Sets provides a principled framework which leverages the rich and
subtle information provided by queries in the form of a set of examples. Whereas
most clustering algorithms are completely unsupervised, here the query provides su
pervised hints or constraints as to the membership of a particular cluster. We call this
“clustering on demand”, since it involves forming a cluster once some elements of that
cluster have been revealed. We use Bayesian Sets to develop a content-based image
retrieval system. We also extend Bayesian Sets to a discriminative setting and use this
to perform automated analogical reasoning.

Lastly, we develop extensions of clustering in order to model data with more complex
structure than that for which traditional clustering is intended. Clustering models
traditionally assume that each data point belongs to one and only one cluster, and
although they have proven to be a very powerful class of models, this basic assump
tion is somewhat limiting. For example, there may be overlapping regions where data
points actually belong to multiple clusters, like movies which can each belong to mul
tiple genres. We extend traditional mixture models to create a statistical model for
overlapping clustering, the Infinite Overlapping Mixture Model (lOMM), in a non
par ametric Bayesian setting, using the Indian Buffet Process (IBP). We also develop a
Bayesian Partial Membership model (BPM), which allows data points to have partial
membership in multiple clusters via a continuous relaxation of a finite mixture model.

Acknowledgments

I would first like to thank my PhD advisor, Zoubin Ghahramani, for all the support
he has given me throughout my time as a student; I have been extremely fortunate.
I am also very grateful to have been a PhD student at the Gatsby Computational
Neuroscience Unit, which always provided me with a lively and intellectually stimulat
ing environment in which to work. I would like to thank all the faculty, Peter Latham,
David MacKay, Maneesh Sahani, Yee Whye Teh, and particularly director Peter Dayan.

I would like to thank my fantastic collaborators Ricardo Silva and Edo Airoldi, and our
wonderful 4th year student Yang Xu, whose hard work have all gone into this thesis.
Also, Alexei Yavlinsky for his advice and assistance regarding content-based image
retrieval. I am very grateful to my examiners, David Blei and John Shawe-Taylor, for
taking the time to give me such useful feedback.

I would like to thank all the people I have met and worked with during my time at the
Gatsby Unit. It is not possible to thank everyone here but I would particularly like to
mention Iain Murray, Ed Snelson, and the rest of the 501 crew for their scientific input,
discussions, and friendship over the years. I would also like to thank Alex Boss for all
of her administrative help, and Deb Ray for submitting my thesis.

I am grateful to everyone who has supported me financially. In particular, the Gatsby
Charitable Foundation, UCL, the UK government, and the PASCAL network of excel
lence.

Lastly, I would like to thank my parents, Mary Noberini and Donald Heller, my sister,
Elizabeth, and my friends who have supported me all these years, even from thousands
of miles away.

C ontents

Abstract 3

Acknowledgments 4

Contents 5

List of figures 8

List of tables 10

List of algorithms 11

1 Introduction 12

2 Bayesian methods and clustering 15
2.1 Bayesian M e th o d s .. 15

2.1.1 Exponential Family M odels.. 17
2.2 C lustering... 20

2.2.1 K-means... 20
2.2.2 Finite Mixture M o d e l... 21
2.2.3 Bayesian Mixture M odel.. 22

2.3 Nonpar ametric Bayesian Methods.. 23
2.3.1 Dirichlet Process Mixture Models... 23

2.3.1.1 Derivation from the Infinite Limit of a Finite Mixture
M odel.. 23

2.3.2 Indian Buffet P ro c e s s ... 24
2.4 Directed Graphical Models ... 25

3 Bayesian Hierarchical Clustering 26
3.1 IVaditional Hierarchical C lustering... 26
3.2 The Bayesian Hierarchical Clustering Algorithm 27
3.3 BHC Theory and Dirichlet Process Mixture Models.................................. 30
3.4 Learning and Prediction... 34

3.4.1 Learning Hyperparameters .. 34

CONTENTS

3.4.2 Predictive Distribution... 35
3.5 Results.. 36
3.6 Randomized BHC Algorithms... 44
3.7 Related W o rk .. 47
3.8 Discussion.. 48

4 Information Retrieval using Bayesian Sets 49
4.1 Information Retrieval ... 49
4.2 Retrieving Sets of I te m s .. 50
4.3 Bayesian Sets Algorithm.. 51
4.4 Bayesian Sets and Sparse Binary D a ta .. 53
4.5 Discussion of Implicit Feature S e lec tio n ... 54
4.6 Exponential Families.. 55
4.7 Results.. 55
4.8 Discussion.. 60

5 Content-based Image Retrieval with Bayesian Sets 64
5.1 Image Retrieval... 64
5.2 Bayesian Image Retrieval S ystem ... 65

5.2.1 Features... 65
5.2.2 Preprocessing.. 65
5.2.3 Algorithm... 66

5.3 Results... 67
5.4 Related W ork .. 73
5.5 Conclusions and Future W ork... 75

6 Analogical Reasoning with Bayesian Sets 76
6.1 Analogical Reasoning.. 76
6.2 Related W o rk .. 78
6.3 Automated Analogical Reasoning using Discriminative Bayesian Sets . . 78
6.4 Results.. 81

6.4.1 Synthetic experiment.. 83
6.4.2 The WebKB experiment.. 84
6.4.3 Biological A pplication... 86

6.5 Discussion.. 91

7 Infinite Overlapping Mixture Model 92
7.1 Overlapping Clustering... 92
7.2 Overlapping Mixture Models ... 94
7.3 Infinite Overlapping Mixture Models via the I B P 96
7.4 lOMM Learning .. 98
7.5 Related W o rk .. 99
7.6 Experiments.. 101

CONTENTS

7.7 Discussion..104

8 Bayesian Partial Membership Model 106
8.1 Partial Membership ..106
8.2 A Partial Membership M o d e l.. 107
8.3 Conjugate-Exponential M o d e ls ... 109
8.4 Bayesian Partial Membership Models.. 109
8.5 BPM L e a rn in g ...112
8.6 Related W ork ..113
8.7 Experiments...115
8.8 Conclusions and Future W ork.. 119

9 Summary and future work 120

References 121

List o f figures

2.1 Example Directed Graphical M o d e l... 25

3.1 BHC dendrograms and tree-consistant p a rtitio n s 29
3.2 Log marginal likelihood vs. p u r i t y .. 36
3.3 BHC Digits re su lts ... 38
3.4 BHC Newsgroup results - Full dendrogram s... 39
3.5 BHC 2D exam ples... 40
3.6 Synthetic DPM com parison.. 41
3.7 Digits DPM com parison.. 42
3.8 Variational Bayes DPM comparison ... 43
3.9 BHC Newsgroup results: High level tree structure 44

4.1 Bayesian Sets Graphical M o d e l.. 52

5.1 Flowchart for the Bayesian CBIR system... 67
5.2 CBIR summary results... 68
5.3 CBIR P-R curves.. 68
5.4 CBIR desert q u e ry ... 69
5.5 CBIR building q u e ry .. 69
5.6 CBIR sign q u e r y .. 69
5.7 CBIR pet query... 70
5.8 CBIR penguins q u e r y ... 70

6.1 Bayesian logistic regression graphical m o d e l... 80
6.2 Analogical Reasoning Model Comparison .. 81
6.3 Analogical Reasoning Synthetic R e s u lts ... 82
6.4 Results for student —> course relationships... 84
6.5 Results for faculty —> project relationships.. 85
6.6 Protein Interaction Precision-Recall R esu lts ... 89
6.7 Protein Interaction Results Histograms.. 90

7.1 Product of Two Gaussians... 95
7.2 IBP Sam ple... 97
7.3 lOMM versus Factorial M odel... 99

LIST OF FIGURES

7.4 lOMM Generative P lo t s ...101
7.5 lOMM Synthetic Results P l o t s ...102
7.6 lOMM Synthetic Results A n a ly s is ...103

8.1 Finite Mixtures versus Partial Membership M odels......................................108
8.2 Graphical model for the B P M ..110

8.3 BPM Generative P l o t .. I l l
8.4 Admixture Generative P l o t ...114
8.5 BPM Synthetic Results ...115
8.6 BPM Sentate Roll Call R esu lts ...118
8.7 Fuzzy K-Means Senate and DPM Roll Call R esults..................................... 118
8.8 BPM Image R e s u lts ...119

List o f tables

3.1 BHC results tab le .. 37

4.1 Bayesian Sets Protein Queries.. 58
4.2 Bayesian Sets Movie Query 1 .. 58
4.3 Bayesian Sets Move Query 2 ... 59
4.4 Bayesian Sets Movie Query Evaluation... 59
4.5 Bayesian Sets Author Query 1 .. 59
4.6 Bayesian Sets Author Queries 2 and 3 .. 60
4.7 Bayesian Sets Literature Query 1 ... 61
4.8 Bayesian Sets Literature Query 2 .. 62

5.1 CBIR R esu lts.. 72

6.1 Area under the precision/recall curve for each algorithm and query. . . . 85
6.2 Protein Interaction Results T ab le... 89

7.1 lOMM Synthetic Results T a b le ..103
7.2 lOMM Movie Genre Results..104

8.1 Comparison between the BPM and a DPM in terms of negative log
predictive probability (in bits) across senators...................................... 117

List o f algorithm s

3.1 Traditional Hierarchical C lustering.. 27
3.2 Bayesian Hierarchical Clustering A lgorithm ... 30
3.3 Algorithm for computing prior on merging for BHC................................... 32
3.4 Randomized Bayesian Hierarchical Clustering (RBHC) Algorithm 45
3.5 Filter Algorithm for R B H C .. 45
3.6 A randomized BHC algorithm using EM (EMBHC) 46
4.1 Bayesian Sets Algorithm.. 52
5.1 Bayesian CBIR Algorithm... 66
6.1 Analogical Reasoning A lg o rith m ... 80
7.1 MCMC for the lO M M ... 98

Chapter 1

Introduction

The research presented in this thesis focuses on using Bayesian statistical techniques
for clustering, or partitioning, data. Abstractly, clustering is discovering groups of data
points that belong together. As an example, if given the task of clustering animals, one
might group them together by type (mammals, reptiles, amphibians), or alternatively
by size (small or large). Typically, any particular data set does not have a uniquely
correct clustering, and the desired clustering may depend on the particular application.
Some examples of applications of clustering are; clustering related genes together from
gene expression data to help elucidate gene functions (Eisen et al., 1998), clustering
news stories by topic to automatically organize online news feeds (Zhang et al., 2004),
and clustering images of celestial objects in order to identify different classes of quasars
and dwarfs (Pelleg and Moore, 1999).

There has been a great deal of previous work on different methods for clustering data,
including hierarchical clustering (Johnson, 1967; Duda and Hart, 1973), spectral clus
tering (Shi and Malik, 2000; Meila and Shi, 2001; Ng et al., 2002), k-means clustering
(Hartigan and Wong, 1979; Duda and Hart, 1973), and mixture modeling (McLachlan
and Peel, 2000). While these methods have been widely used in practice, many suffer
from some serious limitations. For example, many of these methods cluster data based
on pairwise distances, and do not provide a coherent way to predict the probability or
cluster assignments of new data points. In this thesis, we work towards developing a
new framework for clustering, which addresses many of the limitations of prior work
by taking a Bayesian approach.

We also look at ways of extending the traditional domain of clustering methods to
new situations, including using clustering methods in new application areas with new
demands (e.g. information retrieval problems which need to utilize queries), or prob
lems for which the original formulation of the task of clustering needs to be modified
(e.g. overlapping clustering, which requires additional flexibility to allow data points
to belong to multiple clusters).

13

Lastly, given the explosion of data available from the web (e.g. digital pictures), from
scientific research (e.g. protein databases), and from companies (e.g. credit card trans
actions), developing effective methods which are also very efficient has become increas
ingly important. Most of the clustering methods presented in this thesis were developed
with efficiency in mind, and with the aim of being accessible and useful to researchers
and developers working on a diverse range of applications.

The rest of this thesis proceeds as follows:

• In chapter 2 we give a broad overview of Bayesian methods and the task of
clustering. This includes a review of nonparametric Bayesian methods which are
relevant to the work contained within this thesis.

• In chapter 3 we present the Bayesian Hierarchical Clustering (BHC) algorithm.
BHC provides a novel algorithm for agglomerative hierarchical clustering based
on evaluating marginal likelihoods of a probabilistic model. It presents several
advantages over traditional distance-based agglomerative clustering algorithms,
and can be interpreted as a novel fast bottom-up approximate inference method
for a Dirichlet process (i.e. countably infinite) mixture model (DPM).

• In chapter 4 we develop a new framework for retrieving desired information from
large data collections. Specifically, we consider the problem of retrieving items
belonging to a concept or cluster, given a query consisting of a few known items
from that cluster. We formulate this as a Bayesian inference problem and describe
a very simple algorithm for solving it. We focus on sparse binary data and show
that our algorithm can retrieve items using a single sparse matrix multiplication,
making it possible to apply our algorithm to very large datasets.

• In chapter 5 we take a Bayesian approach to performing content-based image
retrieval (CBIR), based on the framework laid out in chapter 4. Our CBIR system
retrieves images, in real-time, from a large unlabeled database using simple color
and texture features.

• In chapter 6 we extend the work presented in chapter 4 to create a framework
for performing analogical reasoning with relational data. Analogical reasoning is
the ability to generalize about relations between objects. Given examples of pairs
of objects which share a particular relationship, the method presented in this
chapter retrieves other pairs of objects which share the same relationship from a
relational database.

• In chapter 7 we introduce a new nonparametric Bayesian method, the Infinite
Overlapping Mixture Model (lOMM), for modeling overlapping clusters. The
lOMM uses exponential family distributions to model each cluster and forms
an overlapping mixture by taking products of these distributions. The lOMM
allows an unbounded number of clusters, and assignments of points to (multiple)
clusters is modeled using an Indian Buffet Process (IBP).

14

• In chapter 8 we present the Bayesian Partial Membership Model (BPM), for
modeling partial memberships of data points to clusters. This means that, unlike
with a standard finite mixture model, data points can have fractional membership
in multiple clusters. The BPM is derived as a continuous relaxation of a finite
mixture model, which allows Hybrid Monte Carlo to be used for inference and
learning.

• Lastly, in chapter 9, we review the main contributions of this thesis, and discuss
future work.

Chapter 2

Bayesian m ethods and clustering

In this chapter we review some concepts which are fundamental to this thesis and which
will appear multiple times in the upcoming chapters. We discuss Bayesian methods in
general, followed by a brief overview of clustering techniques and an introduction to
nonparametric Bayesian methods.

2.1 Bayesian M ethods

Bayesian methods provide a way to reason coherently about the world around us, in
the face of uncertainty. Bayesian approaches are based on a mathematical handling of
uncertainty, initially proposed by Bayes and Laplace in the 18th century and further
developed by statisticians and philosophers in the 20th century. Recently, Bayesian
methods have emerged as models of both human cognitive phenomena, in areas such
as multisensory integration (Ernst and Banks, 2002), motor learning (Kording and
Wolpert, 2004), visual illusions (Knill and Richards, 1996), and neural computation
(Hinton et al., 1995; Knill and Pouget, 2004), and as the basis of machine learning
systems.

Bayes rule states that:

and can be derived from basic probability theory. Here x might be a data point and 6
some model parameters. P{6) is the probability of B and is refered to as the prior, it
represents the prior probability of 9 before observing any information about x. P{x\9)
is the probability of x conditioned on B and is also refered to as the likelihood. P{B\x) is
the posterior probability of B after observing x, and P{x) is the normalizing constant.

Letting P{x, B) be the joint probability of x and B, we can marginalize out B to get:

Bayesian Methods 16

P(x) = j P(x,e)dB. (2.2)

Thus we can also refer to P{x) as the marginal probability of x. In this thesis we often
use Bayes rule to perform model comparisons. For some data set of N data points,
V = {x\^X2 y. . . , Xiv}, and model m with model parameters d\

(2.3)

We can compute this quantity for many different models m and select the one with the
highest posterior probability as the best model for our data. Here:

P{V\m) = j P{V\e,m)P{e\m)dO (2.4)

is called the marginal likelihood, and is necessary to compute equation (2.3). Computing
marginal likelihoods (in order to compare different clustering models) is fundamental
to this thesis.

We can also try to predict the probability of new data points, x*, which have not yet
been observed :

P(x*|D,m) = J P{x‘ \e)P(e\V,m)d$ (2.5)

P(Vie,m)P(eim)
where

P{0\V,m) =
P{V\m)

is the posterior probability of model parameters 9 conditioned on the data T>, and is
simply computed using Bayes rule.

Bayesian probability theory can be used to represent degrees of belief in uncertain
propositions. In fact, Cox (1946) and Jaynes (2003) show that if one tries to represent
beliefs numerically and makes only a few basic assumptions, this numerical representa
tion of beliefs results in the derivation of basic probability theory. There is also a game
theoretic result, called the Dutch Book Theorem, which states that if one is willing to
place bets in accordance with ones beliefe, then unless those beliefs are consistent with
probability theory (including Bayes Rule), there is a dutch book of bets that one will
be willing to accept that is guaranteed to lose money regardless of the outcome of the
bets.

Bayesian methods inherently invoke Occam’s razor. Consider two models m\ and m 2 ,
where m 2 contains mi as a special case (for example linear functions mi are special
cases of higher order polynomials m2). The marginal likelihood (equation (2.4)) for m 2

will be lower than for mi if the data is already being modeled well by mi (e.g. a linear

Bayesian Methods 17

function). There are some data sets however (e.g. nonlinear functions) which m 2 will
model better than m\. Therefore, Bayesian methods do not typically suffer from the
overfitting problems commonly encountered with other methods.

2.1.1 E xponential Fam ily M odels

Much of the work in this thesis revolves around the computation of marginal likelihoods
(equation (2.4)). Unfortunately marginal likelihoods are intractable to compute exactly
for complicated probabilistic models {P{T>\6,7n)) and priors {P{6\m)). Therefore we
tend to focus on models from the exponential family, for which marginal likelihoods
can be computed analytically due to the fact that they have conjugate priors.

An exponential family distribution can be written in the form;

p{x\e) = exp{s(x)^0 + h(x) 4- g{B)} (2.6)

where s(x) is a vector depending on the data known as the sufficient statistics^ 0 is a
vector of natural parameters, h(x) is a function of the data, and g(0) is a function of
the parameters which ensures that the probability normalizes to one when integrating
or summing over x.

A probability distribution p{0) is said to be conjugate to the exponential family distribu
tion p(x|0) if p(^|x) has the same functional form as p{B). In particular, the conjugate
prior to the above exponential family distribution can be written in the form:

p{B) oc exp{A^^ -I- I'giB)} (2.7)

where A and v are hyperparameters of the prior. Given a data set V = { x \ , . . . ,xj^}
the posterior p(BfT>) has the same conjugate form as (2.7) but with parameters:

N
A = A + ^ s{xi)

1=1

and
I/' = u + N

Here we give equations for the marginal likelihoods of some simple probability distri
butions in the exponential family using their conjugate priors:

Bayesian Methods 18

Bernoulli-Beta

The Bernoulli distribution is a distribution over binary data and has the following form:

p(v\e) = n n (1 - (2.8)
i=l d=l

where N is the number of data points in the dataset, D is the total number of dimen
sions, and dfi gives the probability that the dth dimension is a 1 for any given data
point, = 1.

The prior distribution which is conjugate to the Bernoulli is the Beta distribution:

P(g|a,/3) = n (2.9)

where a and f3 are hyperparmeters for the Beta distribution. Here r(z) is the gamma
function generalizing the factorial function to positive reals, r(m) = (m — 1)! for integer
m and r(x) = {x — l) r (x — 1) for x > 1.

Plugging these equations into our marginal likelihood expression (2.4) we see that:

_ TT r(Qd + /?d)r(Qd + md)T{^d + N — rrid)
p{V\oc, ^ r { a d)T m r{ a d + f3d + N)

where ^d^-

M ultinomial-Dirichlet

The Multinomial distribution is a distribution over discrete data and has the following
form: ^

= (2.10)
i=l

where = 1, ÜT is the total number of discrete bins, x^^ is a binary indicator
variable indicating that the ith data point takes on the A:th discrete value, and N is
the number of data points in the dataset.

The prior distribution which is conjugate to the Multinomial is the Dirichlet distribu
tion: ^

P{e\a) = Q̂fc)̂ ai- 1 ^qk - 1 (2 .1 1)

where a is a hyperparameter vector for the Dirichlet prior.

Bayesian Methods 19

Plugging these equations into our marginal likelihood expression (2.4) we see that:

where rufc =

N orm al-Inverse W ishart-N orm al

The Normal distribution is a distribution over real, continuous data and has the fol
lowing form:

P(P|S,M) = n (2,,)£./2|e |1/2«^P - m)) (2.13)

where N is the number of datapoints in V, D is the dimensionality, /x is the mean and
E is the covariance matrix.

The prior distribution which is conjugate to the Normal is the Normal-Inverse Wishart
distribution:

D /2
P (E ,/x |m ,S ,r,u) = ~ m)'^rE-^(Ax m)

|5 |v /2 |5] |- (u - l-D -l- l) /2 g - |tr a c e (S i: - i)

2 vD /2 ^ D (D -1)/4 r (2 i ± ^)
(2.14)

The hyperparameters for this prior include: m which is the prior mean on the mean, S
is the prior mean on the precision matrix, r is the scaling factor on the prior precision
of the mean, and v is the degrees of freedom.

Plugging these equations into our marginal likelihood expression (2.4) we see that:

p(V \ix ,m ,S ,r ,v) = (2 ^) - ^ (] v ^)

(2)’̂ n t i r (^)

where:

S' = S H-XX^-1- N + r

N (p ^ w)

Clustering__ ^

and:
v' = V N

where X is the observed data.

2.2 Clustering

Clustering is a fundamentally important unsupervised learning problem. There are a
variety of commonly used clustering methods some of which are reviewed in this section:

K -m eans clustering (Hartigan and Wong, 1979) and M ix tu re M odeling (McLach
lan and Peel, 2000): K-means and Mixture modeling are the most common methods
for canonical, flat clustering and are described in detail in the following subsections.

H ierarchical c lustering (Johnson, 1967): In hierarchical clustering the goal is not to
find a single partitioning of the data, but a hierarchy (generally represented by a tree)
of partitionings which may reveal interesting structure in the data at multiple levels of
granularity. Hierarchical clustering algorithms may be of two types, agglomerative algo
rithms look at ways of merging data points together to form a hierarchy, while divisive
methods separate the data repeatedly into finer groups. Methods for agglomerative
hierarchical clustering will be discussed in more detail in chapter 3.

Spectra l clustering (Shi and Malik, 2000; Meila and Shi, 2001; Ng et al., 2002): In
spectral clustering a similarity matrix is computed between all pairs of data points.
An eigenvalue decomposition is then performed, data points are projected into a space
spanned by a subset of the eigenvectors, and one of the previously mentioned clustering
algorithms (typically K-means or hierarchical clustering) is used to cluster the data.
Spectral clustering will not be discussed further in this thesis since it does not directly
relate to the probabilistic methods presented here.

2.2.1 K -m eans

K-means (Hartigan and Wong, 1979) is a method for clustering a data set, T> =
{x\^X2 i . ■. of N unlabelled data points into K clusters, where K is specified
by the user. The objective of the K-means algorithm is to minimize the following cost
function:

K

V = (2-15)
i=l XjÇ.Ci

where the Q are each of the K clusters and are their respective cluster centers
(means). The algorithm starts by randomly placing each of the K centers and assigning
each data point to the cluster with the closest center. It then iteratively recalculates

Clustering 21

the cluster center based on the new assignments of data points to clusters, and then
reassigns each data point, until convergence. This cost function has many local minima
and several runs of the algorithm may be needed.

2.2 .2 F in ite M ixture M odel

In a finite mixture model, data is modeled by a mixture of K probability distributions:

N K

P(A-|e, ■>r) = n E (2.16)
i=l j=l

where ttj is the mixing weight (or mass) of cluster j (Y^j TTj = > 0), P(xil&j)
is the probability density for cluster j with parameters 0j, 0 = and Xj
is data point i in a data set of size N. Although the distribution P(xi\0j) may be
in the exponential family, the mixture model is not, making inference and learning
more difficult. Maximum likelihood learning for mixture models can be performed
by computing partial derivatives of equation (2.16) with respect to the unknowns ©
and 7r. These partials can then be used for gradient-based learning. More commonly,
however, the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is used
for learning mixture models. The EM algorithm iterates between two steps:

1) Evaluate the responsibilities for each data point conditioned on the current param
eter values. The responsibilites can be computed as follows:

P(s, = Jlxi) = (2.17)

where s* are latent indicator variables such that = J means that data point i belongs
to cluster j .

2) Optimize the parameters © given the responsibilities calculated in the previous step.

These two steps are iterated until convergence and Dempster et al. (1977) proves that
at each iteration the likelihood is guaranteed to increase.

We can relate a finite mixture of Gaussians to the K-means algorithm from the previous
section. In a finite mixture of Gaussians the clusters in our mixture model {P{xi\dj))
are Gaussians with parameters © = {/x, E}. If we constrain 7Tj = ^ and Efe = cr^/ in the
limit as ̂0 then the responsibilities for data points are binary with value 1 for the
cluster with the closest mean and 0 otherwise. This results in an EM procedure which is
equivalent to the K-means algorithm (Roweis and Ghahramani, 1997). These K-means
assumptions result in a very restrictive version of EM for mixtures of Gaussians which
has limited modeling capability. The unrestricted mixture of Gaussians model is much
more flexible, but still has potential problems with overfitting due to the maximum

Clustering 22

likelihood learning. For example, if a particular Gaussian cluster in the mixture is
responsible for only one data point at some iteration then the re-estimated covariance
for that Gaussian cluster will be singular, causing the algorithm to crash. In the next
section we will describe a Bayesian mixture model which can avoid some of these issues.

2.2 .3 B ayesian M ixture M odel

A Bayesian Mixture Model is an extension of the finite mixture model described in the
previous section. In order to avoid overfitting when estimating the parameters 0 , we
put a prior, P (0) on model parameters and integrate them out. Integration makes
sense here since 0 is unknown and we should average over all possible values the model
parameters can take on. This is also called computing the marginal likelihood, given
in section 2.1 (equation (2.4)). Following the same reasoning as with 0 , we also put
a Dirichlet prior on 7r and integrate over it. We can thus write out the analogous
equation to (2.16) from section 2.2.2 as follows:

P (X |./,a) = ^ P (S |a)P (X |S ,j /) (2.18)
s

where the sum is over all possible settings of indicator variables S', P (S |a) integrates
over 7t:

P(S\a) = j P{S\Tr)P{w\a)dn

= j J\P(si\n)P{ir\a)d

where P(7r|a) is the Dirichlet prior over tf with hyperparameters a. P{X\S^v) inte
grates over 0:

P(X\S ,v) = j P(X\B ,S)P(S\v)dQ

K
\[P(O iW)
3=1

d e

and so the probability of the data is now only conditioned on hyperparameters a and
f/. The sum over S in (2.18) is intractable, so in practice approximation methods such
as Markov Chain Monte Carlo (MCMC) (Neal, 2000) or variational approximations
(Ghahramani and Beal, 1999) are used.

In this Bayesian mixture model we still need to set K, the number of clusters, in ad
vance, but we can perform model comparisons. If we compute or approximate P{X\i/, a)
for many different values of K we can select the K with the highest value of this marginal

Nonparametric Bayesian Methods 23

probability of our data. In the next chapter we discuss nonparametric Bayesian meth
ods (specifically Dirichlet Process Mixtures), which allow K to be inferred without
explicitly performing expensive model comparisons. There is a very large literature on
Bayesian mixture models, see Banfield and Raftery (1993) and Richardson and Green
(1997).

2.3 Nonparametric Bayesian M ethods

Nonparametric Bayesian methods give very flexible models in a Bayesian setting. Since
Bayesian methods are most accurate when the prior adequately encapsulates one’s be
liefs, nonparametric priors are able to model data better than inflexible models with the
number of parameters set a priori (e.g. a mixture of 3 Gaussians). Many nonparamet
ric Bayesian models can be derived by starting with a standard parametric model and
taking the limit as the number of parameters goes to infinity (e.g. an infinite mixture
of Gaussians). These nonparametric models will automatically infer the correct model
size (i.e. number of relevant parameters) from the data, without having to explicitly
perform model comparisons (e.g. comparing a mixture of 3 Gaussians to a mixture of
4 Gaussians to determine the correct number).

2.3.1 D irich let Process M ixture M odels

A classic model from nonparametric Bayesian statistics which will play a central role
in this thesis is the Dirichlet Process Mixture (DPM). The DPM defines a mixture
model with countably infinitely many components and can be used both for flexible
density estimation and for clustering when the number of clusters is a priori unknown.
There are many different derivations and constructions resulting in the DPM, and
good reviews can be found in Teh et al. (2006) and Blei (2004). Here we focus on the
derivation of DPMs starting from finite mixture models (Neal, 2000).

2.3.1.1 Derivation from the Infinite Limit of a Finite M ixture M odel

This review of the derivation of a DPM from the infinite limit of a finite mixture
model follows Rasmussen (2000). For each of N data points being modelled by a
finite mixture, we can associate cluster indicator variables, which can take
on values Si € {1...RT}, where K is the number of mixture components, or clusters.
The joint distribution of the indicator variables is multinomial with parameter vector
7T = (7ri...7Tx):

K N
p(si...SAr|7r) =

j=l i=l

Nonparametric Bayesian Methods 24

Here rij is the number of data points assigned to class j and S{k,j) = 1 if k = j and 0
otherwise. If we place a symmetric Dirichlet prior on tt with concentration parameters

^ K
p(^,...7r^|a) =

i= i

we can integrate tt out, obtaining (2.12):

p(« l—«w|a) = J p(si...SAr|7ri,..7r/f)p(7ri...7rK-)d7ri...7TK

r(g) A r(nj + a /K)
r (N + a) y r (a /K)

From this we can compute the conditional probability of a single indicator given the
others:

p(si = j|s_i,Q) =

where n - i j is the number of data points, excluding point i, assigned to class j . Finally,
taking the infinite limit (K —> oo), we obtain:

p (s i= j ls - i ,a) = — , (2.19)

p(si ^ ^ i \ s —i,oc) = — —— (2.20)
iV — 1 + 0 !

The second term is the prior probability that point i belongs to some new class that no
other points belong to. These equations relate the DPM to the distribution over parti
tions of N objects known as the Chinese Restaurant Process (Aldous, 1983). Equation
(2.19) says that the probability of data point i joining cluster j is proportional to the
number of other points in cluster j — a sort of “rich get richer” property of these clus
terings. Equation (2.20) indicates that with some probability proportional to a, the
data point forms a new cluster. Thus the DPM allows new clusters to be represented
as new points are observed.

By performing inference in the DPM, for example by Gibbs sampling (Neal, 2000), we
automatically infer the total number of clusters represented in the data set and the
assignment of data points to them.

2.3.2 Indian B uffet P rocess

Another nonparametric Bayesian model which we make use of in this thesis is the Indian
Buffet Process (IBP) (Griffiths and Ghahramani, 2006). The IBP defines a distribution
which can be used as a prior in probabilistic models for the representation of data items
which may have a potentially infinite number of hidden features. More specifically, it
defines a distribution over infinite binary matrices, which can be derived by starting

Directed Graphical Models 25

©
Figure 2.1: Example Directed Graphical Model

with a finite N x K matrix (where N is the number of data items, and K is the number
of features), and taking the limit as K goes to infinity. Exchangeability of the rows is
preserved, and the columns are independent. The IBP is a simple generative process
which results in this distribution, and Markov Chain Monte Carlo algorithms have
been used to do inference in this model (Goriir et al., 2006). The IBP has been applied
to modeling the presence or absence of objects in images (Griffiths and Ghahraniani,
2006), and the underlying diseases of patients with multiple symptoms (Wood et al.,
2006). An in-depth description of the IBP is provided in chapter 7.

2.4 Directed Graphical Models

Directed graphical models are occasionally provided in this thesis in order to formal
ize the independence assumptions between random variables in models. A directed
graphical model (Pearl, 1988) represents a factorization of the joint probability dis
tribution over all random variables, where the nodes are the random variables, edges
represent potential dependencies between variables, and plates encapsulate nodes and
edges which are replicated in accordance with the indexing of the variables on the plate.

An example of a directed graphical model is given in figure 2.1. This graphical model
represents a data set X = {x\,X 2 , . . . ,xj^} which is generated iid (independently and
identically distributed) from a probabilistic model with parameters 6. The exact form
of the probabilistic model is not provided by the graphical model. However if our data
was generated from a Gaussian distribution, here 9 might be the mean and variance
parameters of the particular Gaussian which generated X. Some of the variables in the
graphical model may be latent (or unobserved), for example we might not know the
mean and variance of the Gaussian which generated om data, and we may be interested
in infering these values.

Chapter 3

Bayesian H ierarchical C lustering

In this chapter we present a novel algorithm for agglomerative hierarchical clustering
based on evaluating marginal likelihoods of a probabilistic model. We show that this
algorithm has several advantages over traditional distance-based agglomerative clus
tering algorithms. (1) It defines a probabilistic model of the data which can be used
to compute the predictive distribution of a test point and the probability of it belong
ing to any of the existing clusters in the tree. (2) It uses a model-based criterion to
decide on merging clusters rather than an ad-hoc distance metric. (3) Bayesian hy
pothesis testing is used to decide which merges are advantageous and to output the
recommended depth of the tree. (4) The algorithm can be interpreted as a novel fast
bottom-up approximate inference method for a Dirichlet process (i.e. countably infi
nite) mixture model (DPM). In section 3.3 we prove that it provides a new lower bound
on the marginal likelihood of a DPM by summing over exponentially many clusterings
of the data in polynomial time. In section 3.4 we describe procedures for learning the
model hyperparameters, computing the predictive distribution, and extensions to the
algorithm. In section 3.5, experimental results on synthetic and real-world data sets
demonstrate useful properties of the algorithm. Lastly, in section 3.6 we propose using
randomized algorithms to improve the running time, so our method can be used on
very large data sets.

3.1 Traditional Hierarchical Clustering

Hierarchical clustering is one of the most frequently used methods in unsupervised
learning. Given a set of data points, hierarchical clustering outputs a binary tree
(dendrogram) whose leaves are the data points and whose internal nodes represent
nested clusters of various sizes. The tree organizes these clusters hierarchically, where
the hope is that this hierarchy agrees with the intuitive organization of real-world
data. Hierarchical structures are ubiquitous in the natural world. For example, the
evolutionary tree of living organisms (and consequently features of these organisms such

The Bayesian Hierarchical Clustering Algorithm 27

as the sequences of homologous genes) is a natural hierarchy. Hierarchical structures
are also a natural representation for data which was not generated by evolutionary
processes. For example, internet newsgroups, emails, or documents from a newswire,
can be organized in increasingly broad topic domains.

The traditional method for hierarchically clustering data, as given in Duda and Hart
(1973) and shown in algorithm 3.1, is a bottom-up agglomerative algorithm. It starts
with each data point assigned to its own cluster and iteratively merges the two closest
clusters together until all the data belongs to a single cluster. The nearest pair of
clusters is chosen based on a given distance measure (e.g. Euclidean distance between
cluster means, or distance between nearest points).

A lgorithm 3.1 Traditional Hierarchical Clustering

input: Data D = and distance metric F
initialise: number of clusters c = n, and D* =
while c > 1 do

Find the pair Di and Dj which minimise:

distk = F{Di,Dj)

Merge Dk *— D{U Dj, Delete Di and Dj, c c — I
end while
o u tp u t: A sequence of cluster merges, and the corresponding tree

There are several limitations to the traditional hierarchical clustering algorithm. The
algorithm provides no guide to choosing the “correct” number of clusters or the level at
which to prune the tree. It is often difficult to know which distance metric to choose,
especially for structured data such as images or sequences. The traditional algorithm
does not define a probabilistic model of the data, so it is hard to ask how “good” a
clustering is, to compare to other models, to make predictions and cluster new data into
an existing hierarchy. In this chapter, we use statistical inference to overcome these
limitations. Previous work which uses probabilistic methods to perform hierarchical
clustering is discussed in section 3.7.

3.2 The Bayesian Hierarchical Clustering Algorithm

Our Bayesian hierarchical clustering algorithm uses marginal likelihoods to decide which
clusters to merge and to avoid overfitting. Basically it asks what the probability is that
all the data in a potential merge were generated from the same mixture component,
and compares this to exponentially many hypotheses at lower levels of the tree.

The generative model for our algorithm is a Dirichlet process mixture model (i.e. a
countably infinite mixture model), and the algorithm can be viewed as a fast bottom-
up agglomerative way of performing approximate inference in a DPM. Instead of giving

The Bayesian Hierarchical Clustering Algorithm 28

weight to all possible partitions of the data into clusters, which is intractable and would
require the use of sampling methods, the algorithm efficiently computes the weight of
exponentially many partitions which are consistent with the tree structure (section 3.3).

Our Bayesian hierarchical clustering algorithm is similar to traditional agglomerative
clustering in that it is a one-pass, bottom-up method which initializes each data point
in its own cluster and iteratively merges pairs of clusters. As we will see, the main
difference is that our algorithm uses a statistical hypothesis test to choose which clusters
to merge.

Let V = . . . , xW} denote the entire data set, and Vi C V the set of data
points at the leaves of the subtree Tj. The algorithm is initialized with n trivial trees,
{Ti : i = 1 .. .n} each containing a single data point D* = At each stage the
algorithm considers merging all pairs of existing trees. For example, if Ti and Tj are
merged into some new tree T* then the associated set of data is Vk = Vi U Vj (see
figure 3.1(a)).

In considering each merge, two hypotheses are compared. The first hypothesis, which
we will denote is that all the data in Vk were in fact generated independently and
identically from the same probabilistic models p(x|^) with unknown parameters 0. Let
us imagine that this probabilistic model is a multivariate Gaussian, with parameters
0 = (/i, E), although it is crucial to emphasize that for different types of data, different
probabilistic models may be appropriate. To evaluate the probability of the data under
this hypothesis we need to specify some prior over the parameters of the model, p{6\l3)
with hyperparameters (3. We now have the ingredients to compute the probability of
the data Vk under Hi'.

p{Vk\n1) = f p(Vk\0)mi3)d» = f [X{p(:x.^ \̂e)\p(e\())de (3 .1)

This calculates the probability that all the data in Vk were generated from the same
parameter values assuming a model of the form p(x|0). This is a natural model-based
criterion for measuring how well the data fit into one cluster. If we choose models
with conjugate priors (e.g. Normal-Inverse-Wishart priors for Normal continuous data
or Dirichlet priors for Multinomial discrete data) this integral is tractable. Through
out this chapter we use such conjugate priors so the integrals are simple functions of
sufficient statistics of Vk- For example, in the case of Gaussians, (3.1) is a function of
the sample mean and covariance of the data in Vk.

The alternative hypothesis to H\ would be that the data in Vk has two or more clusters
in it. Summing over the exponentially many possible ways of dividing Vk into two
or more clusters is intractable. However, if we restrict ourselves to clusterings that
partition the data in a manner that is consistent with the subtrees Ti and Tj, we
can compute the sum efficiently using recursion. (We elaborate on the notion of tree-

The Bayesian Hierarchical Clustering Algorithm 29

1 2 3 4

F igure 3.1; (a) Schematic of a portion of a tree where Tj and Tj are merged
into Tk, and the associated data sets T>i and Vj are merged into T>k. (b) An
example tree with 4 data points. The clusterings (12 3)(4) and (12)(3)(4) are
tree-consistent partitions of this data. The clustering (1)(23)(4) is not a tree-
consistent partition.

consistent partitions in section 3.3 and figure 3.1(b)). The probability of the data
under this restricted alternative hypothesis, is simply a product over the subtrees
p{T^k\^2) = piPi\Ti)p{'Dj\Tj) where the probability of a data set under a tree (e.g.
p{T>i\Ti)) is defined below.

Combining the probability of the data under hypotheses Tii and Ti*, weighted by the
prior that all points in T>k belong to one cluster, TTk = p(Ti*), we obtain the marginal
probability of the data in tree 7^:

(3.2)

This equation is defined recursively, where the first term considers the hypothesis that
there is a single cluster in T>k and the second term efficiently sums over all other
clusterings of the data in T>k which are consistent with the tree structure (see figure
3.1(b)). A clustering of T> is tree consistent with tree T if each cluster consists of data
points in some subtree of T . In section 3.3 we show that equation (3.2) can be used
to derive an approximation to the marginal likelihood of a Dirichlet Process mixture
model, and in fact provides a new lower bound on this marginal likelihood.^ We also
show that the prior for the merged hypothesis, tt^, can be computed bottom-up in a
DPM.

The posterior probability of the merged hypothesis p{Hi\T>k) is obtained using
Bayes rule:

_______________ ,3 3 .
+ (1 - 7rt)p(Dj|Ti)p(Pj|Tj)

This quantity is used to decide greedily which two trees to merge, and is also used
to determine which merges in the final hierarchy structure were justified. The general

Ît is important not to confuse the marginal likelihood in equation (3.1), which integrates over the
parameters of one cluster, and the marginal likelihood of a DPM, which integrates over all clusterings
and their parameters.

BHC Theory and Dirichlet Process Mixture Models 30

algorithm is very simple (see algorithm 3.2).

A lgorithm 3.2 Bayesian Hierarchical Clustering Algorithm

input: data V = model p(x|0), prior p{8\P)
initialize: number of clusters c = n, and Vi = {x̂ *)} for 2 = 1 . . . n
while c > 1 do

Find the pair Vi and Vj with the highest probability of the merged hypothesis:

T^kP{T^k\H\)
rk p{Vk\Tk)

Merge Vk Vi \J Vj, Tk ^ {Ti, Tj)
Delete Di and Dj, c <— c — 1

end while
o u tp u t: Bayesian mixture model where each tree node is a mixture component
The tree can be cut at points where rk < 0.5

Our Bayesian hierarchical clustering algorithm has many desirable properties which
are absent in traditional hierarchical clustering. For example, it allows us to define
predictive distributions for new data points, it decides which merges are advantageous
and suggests natural places to cut the tree using a statistical model comparison criterion
(via Tk), and it can be customized to different kinds of data by choosing appropriate
models for the mixture components.

3.3 BHC Theory and Dirichlet Process M ixture M odels

The above algorithm is an approximate inference method for Dirichlet Process mix
ture models (DPMs). Dirichlet Process mixture models consider the limit of infinitely
many components of a finite mixture model (see chapter 2). Allowing infinitely many
components makes it possible to more realistically model the kinds of complicated dis
tributions which we expect in real problems. We briefly review DPMs here, starting
from finite mixture models.

Consider a finite mixture model with K components

K

p(x^'^|0) = = j\p) (3.4)
3=1

where Si E {1 ,... ,K } is a cluster indicator variable for data point i, p are the param
eters of a multinomial distribution with p{si = j\p) = pj, 6j are the parameters of the
jith component, and 4> = (^i ,. . . , p)- Let the parameters of each component have
conjugate priors p{9\(3) as in section 3.2, and the multinomial parameters also have a

BHC Theory and Dirichlet Process Mixture Models 31

conjugate Dirichlet prior

Given a data set T> = . . . , the marginal likelihood for this mixture model is

p{V\a,(3) = J J]^p(xW|0)
.%=!

p{(f)\a, (3)d4) (3.6)

where p{4>\a,P) = p(pla) Y[^=iPi^j\P)- This marginal likelihood can be re-written as

p{V\a,/3) = '^p(s\a)p{T>\8,p) (3.7)
8

where s = (s i , . . . , s„) and p(«|a) = f p(s|p)p(p|a)dp is a standard Dirichlet integral.
The quantity (3.7) is well-defined even in the limit AT —> oo. Although the number of
possible settings of s grows as AT” and therefore diverges as A" —̂ oo, the number of
possible ways of partitioning the n points remains finite (roughly d(n")). Using V to
denote the set of all possible partitioning of n data points, we can re-write (3.7) as:

p{V\a, /)) = ^ p{v\o)p{V\v, (3) (3.8)
u€V

Rasmussen (2000) provides a thorough analysis of DPMs with Gaussian components,
and a Markov chain Monte Carlo (MCMC) algorithm for sampling from the partition
ings V. We have also included a more substantial review of DPMs in chapter 2 of this
thesis. DPMs have the interesting property that the probability of a new data point
belonging to a cluster is proportional to the number of points already in that cluster
(Blackwell and MacQueen (1973)), where a controls the probability of the new point
creating a new cluster.

For an n point data set, each possible clustering is a different partition of the data,
which we can denote by placing brackets around data point indices: e.g. (1 2) (3) (4).
Each individual cluster, e.g. (1 2), is a nonempty subset of data, yielding 2” — 1 possible
clusters, which can be combined in many ways to form clusterings (i.e. partitions) of
the whole data set. We can organize a subset of these clusters into a tree. Combining
these clusters one can obtain all tree-œnsistent partitions of the data (see figure 3.1(b)).
Rather than summing over all possible partitions of the data using MCMC, our algo
rithm computes the sum over all exponentially many tree-consistent partitions for a
particular tree built greedily bottom-up. This can be seen as a fast and deterministic
alternative to MCMC approximations.

Returning to our algorithm, since a DPM with concentration hyperparameter a defines
a prior on all partitions of the data points in 7) ̂ (the value of a is directly related

BHC Theory and Dirichlet Process Mixture Models 32

to the expected number of clusters), the prior on the merged hypothesis is the relative
mass of all points belonging to one cluster versus all the other partitions of those
rik data points consistent with the tree structure. This can be computed bottom-up as
the tree is being built (algorithm 3.3). In algorithm 3.3, right(leftj^) indexes the right
(left) subtree of Tk and dright*.) is the value of d computed for the right (left) child
of internal node k.

A lgorithm 3.3 Algorithm for computing prior on merging for BHC.

initialize each leaf i to have di = a, ni = I
for each internal node k do

dk = o;r(fifc) -f- dfight̂ .

end for

We now have the ingredients to relate our algorithm to exact inference in DPMs.

Lem m a 3.1 The marginal likelihood of a DPM is:

r rCrifc+a)
u€V

r(nfc+g)
r(Q) t=\

where V is the set of all possible partitionings ofDk, m^ is the number of clusters in
partitioning v, Ug is the number of points in cluster i of partitioning v, and Dg are the
points in cluster £ of partitioning v.

This is easily shown since:
P(Pk) = '^p{v)p{V ^)

v€V

(3.9)
r(a)

and: ruv
pi-D")= n p(® <)

e=i

Here p{Dk) is a sum over all partitionings, u, where the first (fractional) term in the
sum is the prior on partitioning v and the second (product) term is the likelihood
of partioning v under the data. Expression (3.9) for p{v) follows from (2.19) and
(2.20) applied to a data set of nk points clustered according to v. Each of the my
clusters contributes an a by (2 .2 0) and the remaining terms follow from the fact that
r(z) = { x - l)T(a: - 1), (2.19) and (2.20).

Theorem 3.1 The quantity (3.2) computed by the Bayesian Hierarchical Clustering

BHC Theory and Dirichlet Process Mixture Models 33

algorithm is:

P iv , \n) = y : l jp (p ?)
v€Vt . ̂ e= i

where Vt ̂ is the set of all tree-consistent partitionings o fVk consistent with

P ro o f Rewriting equation (3.2) using algorithm 3.3 to substitute in for TTfc we obtain:

p (V k \m = + p(V i\T i)p(1> j\T j)^

We will proceed to give a proof by induction. In the base case, at a leaf node, the
second term in this equation drops out since there are no subtrees. r(rifc = 1) = 1 and
dk = ot yielding p{Vk\Tk) = p(Dk|?Yi) as we should expect at a leaf node.

For the inductive step, we note that the first term is always just the trivial partition
with all Uk points into a single cluster. According to our inductive hypothesis:

^ = 1

and similarly for p{T>j\Tj), where Vj; (Vtj) is the set of all tree-consistent partitionings
of Vi (Vj). Combining terms we obtain:

p { V im)p { v j\T j)^ ^

dk

dk
(m t m i \ (

\v'çyTi d=\ d=\
E X [n n } ,) '[lp (T > } ,)

\v”eVTj d'=i d'=i

vGVntt ^ = 1

where V n t t is the set of all non-trivial tree-consistent partionings of Vk- For the trivial
single cluster partition, = 1 and nf = n^. By combining the trivial and non-trivial
terms we get a sum over all tree-consistent partitions yielding the result in Theorem 3.1.
This completes the proof. Another way to get this result is to expand out p{V\T) and
substitute for tt using algorithm 3.3.

C orollary 3.1 For any binary tree Tk with the data points in Dk at its leaves, the
following is a lower hound on the marginal likelihood of a DPM:

rP(DfclTfc) < p(%)F(nfc 4 -a)'

P ro o f This follows trivially by multiplying p{Vk\Tk) by a ratio of its denominator and
the denominator from p{Vk) from lemma 3.1 (i.e. from the fact that
tree-consistent partitions are a subset of all partitions of the data.

Learning and Prediction 34

Proposition 3.1 The number of tree-consistent partitions is exponential in the number
of data points for balanced binary trees.

P ro o f If Ti has C* tree-consistent partitions of D* and Tj has Cj tree-consistent parti
tions of Dj, then Tk = {Ti,Tj) merging the two has CiCj 4 - 1 tree-consistent partitions
of T>k = Vi U Vj, obtained by combining all partitions and adding the partition where
all data in Vk are in one cluster. At the leaves Ci = 1. Therefore, for a balanced binary
tree of depth £ the number of tree-consistent partitions grows as 0{2^^) whereas the
number of data points n grows as 0(2^)

In summary, p{Vk\Tk) sums the probabilities for all tree-consistent partitions, weighted
by the prior mass assigned to each partition by the DPM. The computational complexity
of constructing the tree by algorithm 3.2 is O(n^), the complexity of computing the
marginal likelihood, give a tree, is 0 {n) , and the complexity of computing the predictive
distribution (see section 3.4.2) is 0(n).

3.4 Learning and Prediction

This section discusses ways of learning the hyperparameters and computing predictive
distributions for BHC.

3.4.1 Learning H yperparam eters

For any given setting of the hyperparameters, the root node of the tree approximates
the probability of the data given those particular hyperparameters. In our model the
hyperparamters are the concentration parameter a from the DPM, and the hyperpa
rameters (3 of the probabilistic model defining each component of the mixture. We
can use the root node marginal likelihood p{V\T) to do model comparison between
different settings of the hyperparameters. For a fixed tree we can optimize over the
hyperparameters by taking gradients. In the case of all data belonging to a single
cluster:

v(-D\Hi) = j p(v\e)p(e\i})da

we can compute Using this and equation (3.2) we can compute gradients for
the component model hyperparameters bottom-up as the tree is being built:

Learning and Prediction 35

Similarly, we can compute

= ^ p (V k \n i) - ^ p { V i \T i) p { V j \T j)

+ (1 - + (1 -9a da

where from algorithm 3.3:

da a dk
and:

These gradients can be computed bottom-up by additionally propogating This
allows us to construct an EM-like algorithm where we find the best tree structure
in the (Viterbi-like) E step and then optimize over the hyperparameters in the M
step. In our experiments we have only optimized one of the hyperparameters with a
simple line search for Gaussian components. A simple empirical approach is to set the
hyperparameters by fitting a single model to the whole data set.

3.4.2 P red ictive D istribution

For any tree, the probability of a new test point x given the data can be computed by
recursing through the tree starting at the root node. Each node k represents a cluster,
with an associated predictive distribution p(x|'Pfe) = / p{^\d)p{0\Dk, (d)dd where T>k is
the set of data points in cluster k. The overall predictive distribution sums over all
nodes weighted by their posterior probabilities:

p(xlP) = V] Wk p(x|X>jk) (3.10)
keM

where
defdet TT= Vk I I

i&Ĵ k
(i - n)

n f + 4- Tii-
(3.11)

is the weight on cluster k, N is the set of all nodes in the tree, and A4 is the set of
nodes on the path from the root node to the parent of node k. Here nf+ is the number
of data points in the child node of node i on the path to node k, and rii- is the number
of data points in the sibling child node.

To account for the possibility that the new test point x is in its own cluster and does
not belong to any of the |A/"| clusters represented in the tree, the tree is augmented with
a new node placed as a sibling to the root node. This new node is given a fictional data
points and predictive distribution p(x). Since it is a sibling of the former root, for
the root is therefore a. Including this node adds the required term ^^^p(x) into the
sum (3.10), and downweights the predictions of the rest of the tree by

Results 36

Marginal Ukathood

Figure 3.2: Log marginal likelihood (evidence) vs. purity over 50 iterations of
hyperparameter optimization on the Newsgroups data set.

This expression (3.10) can be derived by rearranging the sum over all tree-consistent
partitionings into a sum over all clusters in the tree, noting that a cluster can appear
in many partitionings. We can dissect equation (3.11) to gain intuition about the
weights. The kth cluster appears in no partitionings represented below node k, so
we must consider the path from the root to node k, stopping at k. To reach k, at
each node i along this path, the merged hypothesis must not be chosen; this happens
with probability 1 — r*. At each branch point, the child node leading to k is chosen
in proportion to the number of points in that node^, introducing the terms ^ .
Finally, the process stops at node k without any further splits, with probability r^.
Putting these terms together gives us equation (3.11). It is easy to confirm that the
weights Uk sum to one, and that for a simple tree with two data points expression (3.10)
is exact since all partitionings are tree consisent.

For conjugate priors and exponential family components the predictive distribution
is simple to compute by summing over the nodes in the tree. For example, Gaussian
components with conjugate priors results in a predictive distribution which is a mixture
of multivariate t distributions. We show some examples of this in the Results section.

3.5 Results

We compared Bayesian hierarchical clustering to traditional hierarchical clustering us
ing average, single, and complete linkage over 5 datasets (4 real and 1 synthetic). These
traditional algorithms are described in Duda et al. (2001) and implemented in the Mat-
lab statistics toolbox. We also compared our algorithm to average linkage hierarchical
clustering on several toy 2D problems (figure 3.5). On these toy problems we were able
to compare the different hierarchies generated by the two algorithms, and visualize clus
terings and predictive distributions. We can see in figure 3.5 that the BHC algorithm
behaves structurally more sensibly than the traditional algorithm. For example, point

^This is necessarily so given that the model is a Dirichlet Process Mixture.

Results 37

18 in the middle column is clustered into the green class even though it is substantially
closer to points in the red class. In the first column the traditional algorithm prefers
to merge cluster 1-6 with cluster 7-10 rather than, as BHC does, cluster 21-25 with
cluster 26-27. Finally, in the last column, the BHC algorithm clusters all points along
the upper and lower horizontal parallels together, whereas the traditional algorithm
merges some subsets of points veritcally(for example cluster 7-12 with cluster 16-27).

D ata S e t S in g l e L in k C o m p l e t e L ink Av e r a g e L in k BHC

S y n t h e t ic 0.599 ± 0.033 0.634 0.024 0.668 ± 0.040 0.828 0.025
N e w s g r o u p s 0.275 ± 0.001 0.315 ± 0.008 0.282 ± 0.002 0.465 db 0.016
S p a m b a s e 0.598 dt 0.017 0.699 ± 0.017 0.668 ± 0.019 0.728 i 0.029
3DIGITS 0.545 ± 0.015 0.654 ± 0.013 0.742 ± 0.018 0.807 ± 0.022
IO D ig it s 0.224 ± 0.004 0.299 ± 0.006 0.342 0.005 0.393 ± 0.015
G l a ss 0.478 ± 0.009 0.476 ± 0.009 0.491 0.009 0.467 ± 0.011

Table 3.1: Purity scores for 3 kinds of traditional agglomerative clustering, and Bayesian
hierarchical clustering.

The 4 real datasets we used are the spambase (100 random examples from each class,
2 classes, 57 attributes) and glass (214 examples, 7 classes, 9 attributes) datasets from
the UCI repository the CEDAR Buffalo digits (20 random examples from each class, 10
classes, 64 attributes), and the CMU 20Newsgroups dataset (120 examples, 4 classes -
rec.sport.baseball, rec.sport.hockey, rec.autos, and sci.space, 500 attributes). We also
used synthetic data generated from a mixture of Gaussians (2 0 0 examples, 4 classes,
2 attributes). The synthetic, glass and toy datasets were modeled using Gaussians,
while the digits, spambase, and newsgroup datasets were binarized and modeled using
Bernoullis. We binarized the digits dataset by thresholding at a greyscale value of 128
out of 0 through 255, and the spambase dataset by whether each attribute value was
zero or non-zero. We ran the algorithms on 3 digits (0,2,4), and all 10 digits. The
newsgroup dataset was constucted using Rainbow (McCallum, 1996), where a stop
list was used and words appearing fewer than 5 times were ignored. The dataset was
then binarized based on word presence/absence in a document. For these classification
datasets, where labels for the data points are known, we computed a measure between
0 and 1 of how well a dendrogram clusters the known labels called the dendrogram
purity.^ We found that the marginal likelihood of the tree structure for the data was
highly correlated with the purity. Over 50 iterations with different hyperparameters
this correlation was 0.888 (figure 3.2). Table 1 shows the results on these datasets.

On all datasets except Glass, BHC found the highest purity trees. For Glass, the
Gaussian assumption may have been poor. This highlights the importance of model

®Let r be a tree with leaves 1, . . . , n and c i , . . . , Cn be the known discrete class labels for the data
points at the leaves. Pick a leaf £ uniformly at random; pick another leaf j uniformly in the same class,
i.e. ct = Cj. Find the smallest subtree containing £ and j. Measure the fraction of leaves in that subtree
which are in the same class (c/). The expected value of this fraction is the dendrogram purity, and can
be computed exactly in a bottom up recursion on the dendrogram. The purity is 1 iff all leaves in each
class are contained in some pure subtree.

Results 38

Average Linkage Hierarchical Clustering

4.5

3.5

2.5

1.5

0.5

■780

60

- -292-------

40

30
 1-47-

 42.1----

H i i i i i i i i l f l l i A i i a n l i i i i i > f t M i ' l ' m T l u j * É i É * m a u M É É É < M a t g m u i i i i i i i i i 1 i i i i i i i i i i i i u i

Figure 3.3: (a) The tree given by performing average linkage hierarchical clus
tering on 120 examples of 3 digits (0,2, and 4), yielding a purity score of 0.870.
Numbers on the x-axis correspond to the true class label of each example, while
the y-axis corresponds to distance between merged clusters, (b) The tree given by
performing Bayesian hierarchical clustering on the same dataset, yielding a purity
score of 0.924. Here higher values on the y-axis also correspond to higher levels of
the hierarchy (later merges), though the exact numbers are irrelevant. Red dashed
lines correspond to merges with negative posterior log probabilities and are labeled
with these values.

Results 39

4 Newsgroups Average Linkage Clustering

4 Newsgroups Bayesian Hierarchical Clustering

Figure 3.4: Full dendrograms for average linkage hierarchical clustering and BHC
on 800 newsgroup documents. Each of the leaves in the document is labeled with a
color, according to which newsgroup that document came from. Red is rec.autos,
blue is rec.sport.baseball, green is rec.sport.hockey, and magenta is sci.space.

Results 40

: I

4T\ ̂ >*•-ai«»M tinw i«M rrttftt»ii * ■ « ••» » » , $ # « # » * # # * ,* ,

Figure 3.5: Three toy examples (one per column). The first row shows the
original data sets. The second row gives the dendrograms resulting from average
linkage hierarchical clustering, each number on the x-axis corresponds to a data
point as displayed on the plots in the fourth row. The third row gives the dendro
grams resulting from Bayesian Hierarchical clustering where the red dashed lines
are merges our algorithm prefers not to make given our priors. The numbers on
the branches are the log odds for merging (log yz^)- The fourth row shows the
clusterings found by our algorithm using Gaussian components, when the tree is
cut at red dashed branches (r& < 0.5). The last row shows the predictive densities
resulting from our algorithm.

Results 41

CamiMnMo o(BHC t OPM |«ynlh< »P-0|

6 BHC IB
110

ia
130

1«

190I

170

190

190

CM* S«*

CMMwici b*A»—m BHC t DPM Itynttwlic b*m*u#i data witti p C I
0.46

04

036

0 2

S 016

006
a BH CA w m atO PM

DalaSiza
IW .N h . o m BHCArpzu BHC LB

3 -1007828 -100 5588 -100 7828
4 -1204993 -120 083 -120 4993
5 -134 1851 -133 6535 -134 1852
« -148.1364 -147 5225 -1481364
7 -159 5938 -158 9237 -159 5938
S -170 6413 -169 9252 -1706413
» -180 3924 -179 6381 -180 3924

mon of BHC I. DPM |*yi«iMK banxw* data w*h pM) 5|
-60

■100

r̂
.200

260

•300

DalaSiz*

BHC&DPM tic bamouli data «M ftp«.5|

■»■■■ BHCA*)pro»6DPM
6 BHCIB&DPM

03

-0.1

DalaSiz*

0*4* Bn* om BHCAppm BHC LB
3 -876613 -874589 -876828
4 -1208116 -120 4874 -120 9037
5 -1694232 -1690739 -169 6056
6 -203 5377 -203 1959 -203 803
7 -234 105 -233 8324 -234.5027
8 -2674521 -267 6208 -268 3361
9 294 6543 -2951163 -295 8698

Figure 3.6: The top plots and table compare the BHC approximation and lower
bound to the true log marginal likelihood of a DPM on a synthetic Bernoulli data
set where data points are all Os or all Is (50 dimensional). The left plot shows
the data set size versus log marginal likelihood, while the right plot gives the data
set size versus the percentage difference of the approximation methods from the
truth. The table lists the computed log marginal likelihoods by method and data
set size. The bottom two plots and table are the same but for a synthetic dataset
where all features for all data points have a 0.5 probability of being a 1.

Results 42

CoiniMnMn of BHC 1 OPM [« (• • o(IM M l
-40

» BHC A^fHoi
t> B H C IB

•60

■100

■140

•in

OHOranct boMMOT BHC t DPM [digltt or torool
07 ■■■ BHCAwreiiOPM

OS

04

S
I

Dm* Bit» DPM BHC BHC LB
3 -58 6484 -584167 -58 6407
4 •69314» -68 9381 •69.3226
5 •91735 -916119 •92 1011
« -1067813 -106 4346 •106 9996
7 -133.8339 -133 3741 -134 0369
S -1507373 -1504006 -151 1096
* -1754661 -175 0759 -175 8292

Compwioon y BHC 6 DPM libglo or locoo ond iwotl

100

120

I
5

16D

180

200

220

•240

280

DMonnco b o lw m BHC t DPM Idigilo or loroo onil Mmol

• ■••• B H C A op w u tD P M

035

015

006

DataSm DÏM BH CA rpra BHC LB
3 -80 6996 -804756 •8069%
4 •108 002 -107 5857 -108.002
5 -139 095 -138 5668 -139 0984
6 •173 3023 -1727176 -173 3315

-190 1874 -189 5284 -190 1985
8 -227 4512 -226 7703 •227 4864
9 -244 5553 -2438142 -244 5685

Figure 3.7: The top plots and table compare the BHC approximation and lower
bound to the true log marginal likelihood of a DPM on the digits data set where
all data points are the digit 0 (binary, 64 dimensional). The left plot shows the
data set size versus log marginal likelihood, while the right plot gives the data
set size versus the percentage difference of the approximation methods from the
truth. The table lists the computed log marginal likelihoods by method and data
set size. The bottom two plots and table are the same but for a digits data set
with both the digits 0 and 2.

Results 43

Comparison of DPM. BHC & VB (2 Neighbored Clusters)
•10

-•-D PM Exact
BHC Approximate
BHC Lower Bound

— VB

■15

-20

-25

-30

I

-40

-45

-50

-56

Data Size

Comparison of BHC & VB (Iris Data)
-100

BHC Approximate
BHC Lower Bound

-150 — VB

-200

-250

-350

-400

-450

-500 60 120 150
Data Size

F igure 3.8: The top plot compares the BHC approximation and lower bound
to the true log marginal likelihood of a DPM and to the lower bound given by
Variational Bayes. The synthetic data in this plot was generated from two close
Guassians (and Gaussian clusters are used to model the data). The bottom plot
compares the BHC approximation and lower bound to that of Variational Bayes
on the Iris UCI dataset. Here the true log marginal likelihood is not known but
since both BHC and VB give lower bounds we can still see which is performing
better. The VB results are taken over multiple runs and therefore have associated
box plots.

Randomized BHC Algorithms 44

All Data
799

Quabac
Jat
Boaton ^

Car
Baaaball
Englna >

All Data
354 446

797
Car
Space
NASA

Game
Team
Play

Pitcher
Boaton
BaN

Car
Player
Space205 162149 284 796

NHL
Hockey
Round

Space
NASA
Otbtt

Baseball
Pitch

. Hit ,

Car
Dealer
Drive

Team
Gama
Hockey

Vahlda
Dealer
Driver

F igu re 3.9: Top level structure, of BHC (left) vs. Average Linkage HC with a
Euclidean distance metric, for the newsgroup dataset. The 3 words shown at each
node have the highest mutual information between the cluster of documents at
that node versus its sibling, and occur with higher frequency in that cluster. The
number of documents at each cluster is also given.

choice. Similarly, for classical distance-based hierarchical clustering methods, a poor
choice of distance metric may result in poor clusterings.

Another advantage of the BHC algorithm, not fully addressed by purity scores alone,
is that it tends to create hierarchies with good structure, particularly at high levels.
Figure 3.9 compares the top three levels (last three merges) of the newsgroups hierar
chy (using 800 examples and the 50 words with highest information gain) from BHC
and average linkage hierarchical clustering (ALHC). Continuing to look at lower levels
does not improve ALHC, as can be seen from the full dendrograms for this dataset,
figure 3.4. Although sports and autos are both under the newsgroup heading rec, our
algorithm finds more similarity between autos and the space document class. This is
quite reasonable since these two classes have many more common words (such as en
gine, speed, cost, develop, gas etc.) than there are between autos and sports. Figure
3.3 also shows dendrograms of the Sdigits dataset.

Lastly, we have done some preliminary experiments evaluating how well BHC approx
imates the marginal likelihood of a DPM (using Bernoulli clusters). These results are
given in figures 3.6 and 3.7 on data sets of 3 to 9 data points, for which we can com
pute the true marginal likelihood of the DPM exactly. As demonstrated by the figures
both the BHC approximation and lower bound give promising results. We have also
compared the BHC approximation and lower bound with the lower bound given by
Variational Bayes. These results are given in figure 3.8.

3.6 Randomized BHC Algorithms

Our goal is to run Bayesian Hierarchical Clustering on very large datasets, but to ac
complish this we need a BHC algorithm which has very small computational complexity.
The BHC algorithm as given in section 3.2 is O(n^), and computation is dominated

Randomized BHC Algorithms 45

by pairwise comparisons of data points at the lowest levels. This seems wasteful and
limits its use for large data sets. We aim to capitalize on this inefficiency, combined
with the powerful resource of randomized algorithms (Motwani and Raghavan, 1995),
to create a faster BHC algorithm. We propose the following randomized algorithm for
fast Bayesian Hierarchical Clustering (RBHC):

Algorithm 3.4 Randomized Bayesian Hierarchical Clustering (RBHC) Algorithm
input: data V =
pick m <^n points randomly from D, so C V
run BHC(Z)('^]) obtaining a tree T
Filter(%)\%)W), V = V l U Vr^ through the top level of T, obtaining T>i and V r
recurse: run RBHC(X>l) and RBHC(%)

output: Bayesian mixture model where each tree node is a mixture component

The algorithm takes in a data set V and randomly selects a subset of m data
points from the data set. The original BHC algorithm is run on that subset of m data
points, obtaining a tree T. The remaining (n — m) data points (%)\%)W) are then
filtered through the top level (last merge) of tree T. The filter algorithm (algorithm
3.5) takes in the top level partitioning of tree T (%)^ ̂ and %)^^), along with the priors
(ttl and tt/j) computed in the BHC algorithm, and all remaining data points. It then
takes each remaining data point (zi) and computes the probabilities that X{ belongs
to the left subtree and right subtree (in cluster or V̂ r)̂. The data point is then
added to the highest probability cluster (subtree). The assignments of all n data points
to the left and right subtrees are returned to the RBHC algorithm, which then runs
itself separately on each subtree. The constant m may be reduced as the data set
becomes smaller.

Algorithm 3.5 Filter Algorithm for RBHC
input:
initialize: % = = v \
foreach e

compute p(x(^)|D^^) and p(x(^)|D^^)
if 7rf,p(x(*)|%)^^) > 7Ti2p(x(*)|X>̂)̂

then V l ^ T>l\J {x̂ *̂ }
else V r <— T > r U {x̂ *̂ }

output: T>l ,T>r

The RBHC algorithm rests on two assumptions. The first assumption is that the top
level clustering, built from a subset of m data points (%)W), will be a good approximar
tion to the top level clustering of V. This means that the assignments of data points
into V l and T>r will be similar for the subsample and filter based RBHC as compared
to running the full BHC algorithm. The second assumption is that the BHC algorithm
tends to produce roughly balanced trees with (7 7 1 , (1 — 7)71) points in each of the top
level clusters (i.e. 0{n) points per branch rather than 0(1) points). This is necessary

R

Randomized BHC Algorithms___ ^

for RBHC to maintain its smaller running time.

P roposition 3.2 The RBHC algorithm is 0(nm log n)

The number of operations required to run RBHC can be expressed recursively as:

Ops(RBHC(n)) = + nm + Ops (RBHC ("yn)) 4 - Ops(RBHC((l — j)n))

Here the m? term comes from running BHC on m data points and the nm term comes
from the Filter algorithm. Expanding this expression out to L levels of recursion and
letting 7 = 5 we get:

Ops(RBHC(n)) = 4 - nm 4 - 2(m^ 4- - ^) 4- 4(m^ 4- 4-... 4- 2^(m^ 4- - ^)

This gives us logn terms of 0(nm). We can generalize so that 7 takes on other values,
and this yields the same result, merely adjusting the base of the log. In practice, when
a level where m is comparable to n/2^ is reached the algorithm can simply call BHC
on the n/2^ points. Since we are generally interested in the top few levels of the tree, it
may make sense to truncate the algorithm after the first several, say eight or so, levels,
and avoid running down to the levels where individual points are in their own clusters.
This truncated algorithm is 0{nmL).

We also propose the following alternative randomized algorithm based on EM (algo
rithm 3.6). This algorithm takes advantage of the fact that BHC can be run on clusters
of points rather than individual points (i.e. it can cluster clusters):

A lgorithm 3.6 A randomized BHC algorithm using EM (EMBHC)
input: data V =
subsample m points randomly from P , so C D
foreach point x̂ *̂ G create a cluster p M = }
F ilte r (P \p f’”)̂ into these m clusters
refine the clusters by running k steps of hard EM:

for each point in P reassign to most probable cluster
run BH C on the m clusters output by EM

outpu t: Bayesian mixture model where each tree node is a mixture component

P roposition 3.3 The EMBHC algorithm is 0{nm)

The number of operations for this alternate algorithm is nm —m^+knm+m^ = 0{knm),
where the nm — m? term comes from the filtering step, which filters n — m points into
m clusters, the knm term from running EM, and from the BHC step. So for small
k and m this algorithm is linear in n.

Related Work___ ^

3.7 Related Work

The work presented in this chapter is related to and inspired by several previous proba
bilistic approaches to clustering'^, which we briefly review here. Stolcke and Omohundro
(1993) described an algorithm for agglomerative model merging based on marginal like
lihoods in the context of hidden Markov model structure induction. Williams (2000)
and Neal (2003) describe Gaussian and diffusion-based hierarchical generative models,
respectively, for which inference can be done using MCMC methods. Similarly, Kemp
et al. (2004) present a hierarchical generative model for data based on a mutation pro
cess. Ward (2001) uses a hierarchical fusion of contexts based on marginal likelihoods
in a Dirichlet language model.

Banfield and Raftery (1993) present an approximate method based on the likelihood
ratio test statistic to compute the marginal likelihood for c and c — 1 clusters and use this
in an agglomerative algorithm. Vaithyanathan and Dom (2000) perform hierarchical
clustering of multinomial data consisting of a vector of features. The clusters are
specified in terms of which subset of features have common distributions. Their clusters
can have different parameters for some features and the same parameters to model other
features and their method is based on finding merges that maximize marginal likelihood
under a Dirichlet-Multinomial model.

Iwayama and Tokunaga (1995) define a Bayesian hierarchical clustering algorithm which
attempts to agglomeratively find the maximum posterior probability clustering but it
makes strong independence assumptions and does not use the marginal likelihood.

Segal et al. (2002) present probabilistic abstraction hierarchies (PAH) which learn a
hierarchical model in which each node contains a probabilistic model and the hierar
chy favors placing similar models at neighboring nodes in the tree (as measured by a
distance function between probabilstic models). The training data is assigned to leaves
of this tree. Ramoni et al. (2002) present an agglomerative algorithm for merging time
series based on greedily maximizing marginal likelihood. Friedman (2003) has also re
cently proposed a greedy agglomerative algorithm based on marginal likelihood which
simultaneously clusters rows and columns of gene expression data.

The BHC algorithm is different from the above algorithms in several ways. First,
unlike Williams (2000); Neal (2003); Kemp et al. (2004) it is not in fact a hierarchical
generative model of the data, but rather a hierarchical way of organizing nested clusters.
Second our algorithm is derived from Dirichlet process mixtures. Third the hypothesis
test at the core of our algorithm tests between a single merged hypothesis and the
alternative which is exponentially many other clusterings of the same data (not one
vs two clusters at each stage). Lastly, our BHC algorithm does not use any iterative

 ̂There has also been a considerable amount of decision tree based work on Bayesian tree structures
for classification and regression (Chipman et al. (1998); Denison et al. (2002)), but this is not closely
related to work presented here.

Discussion 48

method, like EM, or require sampling, like MCMC, and is therefore significantly faster
than most of the above algorithms.

3.8 Discussion

We have presented a novel algorithm for Bayesian hierarchical clustering based on
Dirichlet process mixtures. This algorithm has several advantages over traditional
approaches, which we have highlighted throughout this chapter. We have presented
prediction and hyperparameter optimization procedures and shown that the algorithm
provides competitive clusterings of real-world data as measured by purity with respect
to known labels. The algorithm can also be seen as an extremely fast alternative
to MCMC inference in DPMs. Lastly, we proposed randomized versions of BHC to
improve on the computational complexity of the original algorithm which is quadratic
in the number of data points.

The limitations of our algorithm include its inherent greediness and the lack of any
incorporation of tree uncertainty.

In future work, we plan to try BHC on more complex component models for other
realistic data—this is likely to require approximations of the component marginal like
lihoods (3.1). We also plan to extend BHC to systematically incorporate hyperparam
eter optimization and test the proposed randomized versions of BHC with improved
running times. We will compare this novel, fast inference algorithm for DPMs to other
inference algorithms such as MCMC (Rasmussen, 2000), EP (Minka and Ghahramani,
2003) and Variational Bayes (Blei and Jordan, 2004). We also hope to explore the
idea of computing several alternative tree structures in order to create a manipulable
tradeoff between computation time and tightness of our lower bound. Lastly, we have
started to apply BHC to hierarchically cluster gene expression data with some good
preliminary results and we hope to continue this work on this application. There are
many exciting avenues for further work in this area.

Chapter 4

Inform ation Retrieval using
Bayesian Sets

Humans readily learn new concepts after observing a few examples and show extremely
good generalization to new instances. In contrast, search tools on the internet exhibit
little or no learning and generalization. In this chapter, we present a novel framework
for retrieving information based on principles governing how humans learn new concepts
and generalize. Given a query consisting of a set of items representing some concept,
our method automatically infers which other items are relevant to that concept and
retrieves them. Unlike previous such tools, this method evaluates items in terms of
set membership, and is based on a Bayesian statistical model of human learning and
generalization. Moreover, the underlying computations reduce to an extremely efficient
sparse linear equation, making it practical for large scale retrieval problems. We show
example applications including searches for scientific articles, proteins, and movies.

4.1 Information Retrieval

The last few decades have seen an explosion in the amount of valuable information
available to people. This information has the potential to greatly impact science, society
and commerce, but to maximize its use we need advanced tools which meet the challenge
of identifying and extracting information that is relevant to us, while filtering out the
irrelevant (Salton and McGill, 1983; Schatz, 1997; Brin and Page, 1998; Manning et al.,
2007).

Tools such as Google , Amazon , PubMed , and eBay allow a person to type a query rep
resenting her information need, and attempt to retrieve items that are relevant to this
query. Most successful tools for information retrieval have exploited advances in com
puter science such as novel data structures, faster computers and vast datasets. How
ever, the problem of information retrieval is also fundamentally an inference problem—

Retrieving Sets of Items__ ^

what is the user’s intended target given the relatively small amount of data in the query?
For example, given the query consisting of the names of two movies: “Gone with the
Wind” and “Casablanca,” the intended target might be classic romance movies. To
answer such queries, we need an understanding of human cognitive patterns of gener
alization from the point of view of statistical inference.

In the rest of this chapter we demonstrate a novel and efficient approach to informa
tion retrieval based on models of human generalization from limited information. The
problem of human generalization has been intensely studied in cognitive science and
mathematical psychology, and various models have been proposed based on some mea
sure of similarity and feature relevance (Shepard, 1987; Tversky, 1977; Nosofsky, 1986).
We focus on a recent framework for human category learning and generalization based
on Bayesian inference (Tenenbaum and Griffiths, 2001). While attempts have been
made to view information retrieval from a probabilistic framework, (e.g. Robertson
and Sparck-Jones (1976); Lafferty and Zhai (2003); Ponte and Croft (1998); Cowans
(2006)) none have considered models of human cognition in a fully Bayesian treatment
of the problem, nor have they focused on the problem of retrieving sets of items as we
now describe.

4.2 Retrieving Sets of Items

Consider a universe of items V. Depending on the application, the set T> may consist
of web pages, movies, people, words, proteins, images, or any other object we may wish
to form queries on. The user provides a query in the form of a very small subset of
items Q (I'D. The assumption is that the elements in Q are examples of some concept
/ class / cluster in the data. The algorithm then has to provide a completion to the
set Q—that is, some set Q! (I'D which presumably includes all the elements in Q and
other elements in D which are also in this concept / class / cluster^.

We can view this problem from several perspectives. First, the query can be interpreted
as elements of some unknown cluster, and the output of the algorithm is the completion
of that cluster. Whereas most clustering algorithms are completely unsupervised, here
the query provides supervised hints or constraints as to the membership of a particular
cluster. We call this view clustering on demand, since it involves forming a cluster
once some elements of that cluster have been revealed. An important advantage of
this approach over traditional clustering is that the few elements in the query can give
useful information as to the features which are relevant for forming the cluster. For
example, the query “Bush”, “Nixon”, “Reagan” suggests that the features republican
and US President are relevant to the cluster, while the query “Bush” , “Putin”, “Brown”
suggests that current and world leader are relevant. Given the huge number of features

^Prom here on, we will use the term “cluster” to refer to the target concept.

Bayesian Sets Algorithm 51

in many real world data sets, such hints as to feature relevance can produce much more
sensible clusters.

Second, we can think of the goal of the algorithm to be to solve a particular information
retrieval problem. As in other retrieval problems, the output should be relevant to the
query, and it makes sense to limit the output to the top few items ranked by relevance
to the query. In our experiments, we take this approach and report items ranked by
relevance, where our relevance criterion is closely related to the Bayesian framework
for understanding patterns of generalization in human cognition given by Tenenbaum
and Griffiths (2001).

4.3 Bayesian Sets Algorithm

Let 25 be a data set of items, and x G 25 be an item from this set. Assume the user
provides a query set Q which is a small subset of 25. Our goal is to rank the elements
of 25 by how well they would “fit into” a set which includes Q. Intuitively, the task is
clear: if the set 25 is the set of all movies, and the query set consists of two animated
Disney movies, we expect other animated Disney movies to be ranked highly.

We use a model-based probabilistic criterion to measure how well items fit into Q.
Having observed Q as belonging to some concept, we want to know how probable it
is that X also belongs with Q. This is measured by p(x|Q). Ranking items simply by
this probability is not sensible since some items may be more probable than others,
regardless of Q. For example, under most sensible models, the probability of a string
decreases with the number of characters, the probability of an image decreases with
the number of pixels, and the probability of any continuous variable decreases with the
precision to which it is measured. We want to remove these effects, so we compute the
ratio:

score(x) = (4.1)p(x)

where the denominator is the prior probability of x and under most sensible models
will scale exactly correctly with number of pixels, characters, discretization level, etc.
Using Bayes rule, this score can be re-written as:

which can be interpreted as the ratio of the joint probability of observing x and Q, to
the probability of independently observing x and Q. Intuitively, this ratio compares the
probability that x and Q were generated by the same model with the same, though un
known, parameters Û, to the probability that x and Q came from models with different
parameters 0 and 6' (see figure 4.1 left and right respectively). Finally, up to a mul
tiplicative constant independent of x, the score can be written as: score(x) = p(Q|x),

Bayesian Sets Algorithm 52

v

P{x)P{Q)

Figure 4.1: Our Bayesian score compares the hypotheses that the data was
generated by each of the above graphical models.

which is the probability of observing the query set given x.

From the above discussion, it is still not clear how one would compute quantities such
as p('x.\Q} and p(x). A natural model-based way of defining a cluster is to assume that
the data points in the cluster all come independently and identically distributed from
some simple parameterized statistical model. Assume that the parameterized model is
p(yi\0) where 0 are the parameters. If the data points in Q all belong to one cluster,
then under this definition they were generated from the same setting of the parameters;
however, that setting is unknown, so we need to average over possible parameter values
weighted by some prior density on parameter values, p{0). Using these considerations
and the basic rules of probability we arrive at:

p{x)

P(0)

p{x\Q)

P(^IG)

d0I P(x|6>)p(6>)

[n p{̂) d0

j p(x\e)p{e\Q)d0

p{Q\e)p{«)
p{Q)

(4.3)

(4.4)

(4.5)

(4.6)

We are now fully equipped to describe the “Bayesian Sets” algoritlmi:

Algorithm 4.1 Bayesian Sets Algorithm_______________________
background: a set of items T>, a probabilistic model p{x\0) where

X e T>, a prior on the model parameters p{0)
input: a qiieiy Q = { x i } C T >
for all X G X) do

compute score(x) = —p{x)
end for
output: return elements of V sorted by decreasing score

We mention two properties of this algorithm to assuage two common worries with

Bayesian Sets and Sparse Binary Data 53

Bayesian methods—tractability and sensitivity to priors:

1. For the simple models we will consider, the integrals (4.3)-(4.5) are analytical.
In fact, for the model we consider in section 4.4 computing all the scores can be
reduced to a single sparse matrix-vector multiplication.

2. Although it clearly makes sense to put some thought into choosing sensible models
p{^\0) and priors p{d), we will show in 4.7 that even with very simple models and
almost no tuning of the prior one can get very competitive retrieval results. In
practice, we use a simple empirical heuristic which sets the prior to be vague but
centered on the mean of the data in T> (a scale factor « is used on the data mean
m) .

4.4 Bayesian Sets and Sparse Binary Data

We now derive in more detail the application of the Bayesian Sets algorithm to sparse
binary data. This type of data is a very natural representation for the large datasets we
used in our evaluations (section 4.7). Applications of Bayesian Sets to other forms of
data (real-valued, discrete, ordinal, strings) are also possible, and especially practical
if the statistical model is a member of the exponential family (section 4.6).

Assume each item Xj e Q is a binary vector x% = {xn ,. . . , Xij) where Xij e {0,1}, and
that each element of x* has an independent Bernoulli distribution:

j
(4.7)

j=i

The conjugate prior for the parameters of a Bernoulli distribution is the Beta distribu
tion:

= n (1 - (4.8)

where a and j3 are hyperparameters, and the Gamma function is a generalization of
the factorial function. For a query Q = {x*} consisting of N vectors it is easy to show
that:

(4.9)

where:
N

t=l

and
N

À = A 4- ^ ^ Xij
t=i

Discussion of Implicit Feature Selection 54

For an item x = (ar.i. , . x . j) the score, written with the hyperparameters explicit, can
be computed as follows:

r { a j+ ^ j + N) r(q j +x.j) r 0 j + 1 —x.j)

—w ' $S5r ' n
j r { a j + 0 j U) r (aj)r ((3 j)

This daunting expression can be dramatically simplified. We use the fact that F(z) =
{x — 1) r (z — 1) for X > 1. For each j we can consider the two cases x . j = 0 and x . j = 1
separately. For x . j = 1 we have a contribution ^ j = 0 we have a

contribution a^+X^+N^ ' Putting these together we get:

= '(I) (4 11)
1—X.,

3

The log of the score is linear in x:

where

and

log score(x) = c -f ^ QjX.j (4.12)
3

c = ^ log(oj + /?j) - log(aj + 13j + N)-\- log Pj - log Pj (4.13)
3

Qj = log&j - log aj - log pj + log pj (4.14)

If we put the entire data set T> into one large matrix X with J columns, we can compute
the vector s of log scores for all points using a single matrix vector multiplication

s = c -f Xq (4.15)

For sparse data sets this linear operation can be implemented very efficiently. Each
query Q corresponds to computing the vector q and scalar c. This can also be done
efficiently if the query is also sparse, since most elements of q will equal log Pj — log(^j 4-
N) which is independent of the query.

4.5 Discussion of Implicit Feature Selection

We can analyze the vector q, which is computed using the query set of items, to see that
our algorithm implicitly performs feature selection. We can rewrite equation (4.14) as
follows:

= log g - log I = log (l + t o) _ log (l + (4.16)

Exponential Families___ ^

If the data is sparse and aj and ^j are proportional to the data mean number of
ones and zeros respectively, then the first term dominates, and feature j gets weight
approximately:

/ querymean» \
Qj « log (1 + const—— I (4.17)\ datameanj /

when that feature appears in the query set, and a relatively small negative weight
otherwise. Here querymean^ = ^ ^ feature which is frequent in the query
set but infrequent in the overall data will have high weight. So, a new item which has a
feature (value 1) which is frequent in the query set will typically receive a higher score,
but having a feature which is infrequent (or not present in) the query set lowers its
score.

4.6 Exponential Families

We generalize the result from section 4.4 to models in the exponential family. The dis
tribution for such models can be written in the form p(x|0) = /(x)p(0) exp{^^ti(x)},
where w(x) is a i^-dimensional vector of sufficient statistics, 6 are the natural pa
rameters, and / and g are non-negative functions. The conjugate prior is p{d\rj ̂u) =
/i(ry, i/)p(0)^exp{0^i/}, where g and i/ are hyperparameters, and h normalizes the dis
tribution.

Given a query Q = {x*} with N items, and a candidate x, it is not hard to show that
the score for the candidate is:

scorefx) = + 1. + »(x)) Kn + iV, + E i «(x.)) , ,

This expression helps us understand when the score can be computed efficiently. First
of all, the score only depends on the size of the query {N), the sufficient statistics
computed from each candidate, and from the whole query. It therefore makes sense to
precompute U, a matrix of sufficient statistics corresponding to X. Second, whether
the score is a linear operation on U depends on whether log h is linear in the second
argument. This is the case for the Bernoulli distribution, but not for all exponential
family distributions. However, for many distributions, such as diagonal covariance
Gaussians, even though the score is nonlinear in U, it can be computed by applying
the nonlinearity elementwise to U. For sparse matrices, the score can therefore still be
computed in time linear in the number of non-zero elements of U.

4.7 Results

We have built four systems which directly apply the Bayesian retrieval principles de
scribed here to diverse problem domains. These applications illustrate the wide range of

Results __ ^

problems for which our paradigm of retrieval by examples and our methodology provide
a powerful new approach to finding relevant information. We show sample results from
these five applications. When setting the hyperparameters we found little sensitivity
to the value of the scale factor k but order of magnitude changes across applications
did sometimes make a difference.

(1) Retrieving movies from a database of movie preferences.

When deciding what movies to watch, books to read, or music to listen to, we often
want to find movies, books or music which are similar to some set of favorites. We used
our retrieval paradigm on a database of the movie preferences of 1813 users of an online
service. Each of the 1532 movies in this dataset was represented by a binary vector of
length equal to the number of users, where a 1 in the vector indicates that that user
liked the movie. We can retrieve additional movies by giving a query consisting of a set
of movies, which may represent our favorite or least favorite movies, a particular genre
or some other unspecified category. For example, when given the query “Casablanca”
and “Gone with the Wind”, the system retrieves other movies in this classic romantic
genre (e.g. “African Queen”, Table 4.2). The movie retrieval results are given by our
method and by Google Sets , an online set retrieval system provided by Google , which
does query-by-example for items represented by words or phrases in list structures on
the internet. Another set of results from a query of children’s movies is also given in
table 4.3. These results were evaluated by human judges, who showed a preference for
the Bayesian retrieval results 4.4. Since Google Sets is a publicly available tool which
can be used to query sets of movies, we feel that it is useful to make this comparison,
but an interpretation of the results should take into account that the two methods are
obviously not based on the same data.

(2) Finding sets of researchers who work on similar topics based on their
publications.

The space of authors (of literary works, scientific papers, or web pages) can be searched
in order to discover groups of people who have written on similar themes, worked in
related research areas, or share common interests or hobbies. We used a database
of papers presented at the Neural Information Processing Systems (NIPS) conference
between 1987 and 1999 to retrieve authors who wrote on similar topics. Each of the 2037
authors is represented by a binary vector corresponding to the distribution of words
they used in their NIPS papers. When given the query “Alex Smola” and “Bernhard
Schoelkopf”, the system retrieves authors who also presented NIPS papers on the topic
of Support Vector Machines (Table 4.5). Additional author queries are given in table
4.6

Results 57

(3) Searching scientific literature for clusters of similar papers.

Our method provides a novel paradigm for searching scientific literature. Instead of pro
viding keywords, one can search by example: a small set of relevant papers can capture
the subject matter in a much richer way than a few keywords. We implemented a system
for searching the NIPS database in this manner. Each paper is represented by its distri
bution over words. A query consisting of two papers on Gaussian processes—“Bayesian
Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel
Classifiers” and “ Predictive Approaches for Choosing Hyperparameters in Gaussian
Processes”—results in other papers on this topic, including “Computing with Infinite
Networks” which is in fact a paper about Gaussian Processes despite the title (Table
4.7). Another query consisting of papers on perceptron learning is given in table 4.8.

(4) Searching a protein database.

Recent efforts in creating large-scale annotated genomic and proteomic databases have
resulted in powerful resources for drug discovery, biomedicine, and biology. These
databases are typically searched using keywords or via specialized sequence match
ing algorithms. Using our Bayesian retrieval method, we have created an entirely
novel approach to searching UniProt (Universal Protein Resource), the “world’s most
comprehensive catalog of information on proteins” . Each protein is represented by
a feature vector derived from GO (Gene Ontology) annotations, PDB (Protein Data
Bank) structural information, keyword annotations, and primary sequence information.
The user can query the database using by giving the names of a few proteins, which
for example she knows share some biological properties, and our system will return a
list of other proteins which, based on their features, are deemed likely to share these
biological properties. Since the features include annotations, sequence, and structure
information, the matches returned by the system incorporate vastly more information
than that of a typical text query, and can therefore tease out more complex relation
ships. We queried our system with two hypothetical proteins, “METC_YEAST” and
“YHR2_YEAST”, which are predicted in a separate database (COG; Clusters of Or-
thologous Groups (Tatusov et al., 1997)) to have the functional category “Cystathionine
betarlyases/cystathionine gamma-synthases.” Interestingly, our system retrieves other
proteins from UniProt which fit into the same functional category, e.g. “CYS3_YEAST”
(Table 4.1 (Left)). The retrieved protein “MET 17_YEAST” is also in the same COG
category, even though its entry in the UniProt database does not explicitly mention
this function; finding such matches using keywords would be difficult. Another example
of protein retrieval is given in table 4.1 (Right).

Although the evaluations in this chapter are qualitative, additional quantitative results
are presented in chapter 5.

Results 58

Query: METC.YEAST, HR2_YEAST
Proteins Top Features

METC.YEAST
HR2.YEAST

METC.ECOLI
METC.ARATH
CYS3-YEAST
CGLJiUMAN

MET17.YEAST
CGLJklOUSE
STR3-YEAST
METBÆCOLI

G0:0006878
methionine biosynthesis

pyridoxal phosphate
CWP
ECW
lyase
WTH

amino-acid biosynthesis
YAW
YWV

Query:
1433EJDROME
1433F.HUMAN
1433F-MOUSE
Top Members

1433F.HUMAN
1433F.MOUSE
1433E_DROME
1433G.MOUSE

1433GJIAT
1433GJIUMAN
1433G-BOVIN
1433GJSHEEP
1433Z_DROME
1433Z_MOUSE

Table 4.1; Results from UniProt query: (Left) The first column lists the top 10 proteins
returned for the given query which consists of two hypothetical proteins belonging to the
COG functional category “Cystathionine beta-lyases/ cystathionine gamma-synthases”.
The returned proteins share this function. The second column lists the top 10 features
(GO annotation, keywords, and sequence 3-mers) for this entire group of proteins.
(Right) Top 10 proteins returned for a query consisting of three proteins from the
14-3-3 family.

Q u e r y : G o n e w i t h t h e w i n d , Ca s a b l a n c a

G o o g l e S e t s B a y e s i a n R e t r i e v a l

CASABLANCA (1942)
g o n e w i t h t h e w i n d (1939)

ERNEST s a v e s CHRISTMAS (1988)
CITIZEN KANE (1941)

PET DETECTIVE (1994)
VACATION (1983)

WIZARD OF OZ (1939)
THE GODFATHER (1972)

LAWRENCE OF ARABIA (1962)
ON THE WATERFRONT (1954)

GONE WITH THE WIND (1939)
CASABLANCA (1942)

THE AFRICAN QUEEN (1951)
THE PHILADELPHIA STORY (1940)

MY FAIR LADY (1964)
THE ADVENTURES OF ROBIN HOOD (1938)

THE MALTESE FALCON (1941)
REBECCA (1940)

SINGING IN THE RAIN (1952)
IT HAPPENED ONE NIGHT (1934)

Table 4.2: Movies found by Google Sets and our Bayesian retrieval method when
queried with “Gone with the Wind” and “Casablanca”. The top 10 movies retrieved
are shown for both methods. Our Bayesian retrieval method returns mainly classic
romances, while Google Sets returns some classic movies, but other probably don’t
qualify (like “Ernest Saves Christmas”).

Results 59

Q u e r y : M a r y P o p p i n s , T o y S t o r y

G o o g l e S e t s

TOY STORY
MARY POPPINS
TOY STORY 2

MOULIN ROUGE
THE FAST AND THE FURIOUS

PRESQUE RIEN
SPACED

BUT i ’m a c h e e r l e a d e r
MULAN

WHO FRAMED ROGER RABBIT

B a y e s ia n R e t r ie v a l

MARY POPPINS
TOY STORY

WINNIE THE POOH
CINDERELLA

THE LOVE BUG
BEDKNOBS AND BROOMSTICKS

DAVY CROCKETT
THE PARENT TRAP

DUMBO
THE SOUND OF MUSIC

Table 4.3: Movies found by Google Sets and our Bayesian retrieval method when
queries with two children’s movies, “Mary Poppins” and “Toy Story”. The top 10
retrieved movies are shown for both methods. Our Bayesian retrieval method returns
all children’s movies, while Google Sets returns some children’s movies, but many which
are not (like “Moulin Rouge” or “But I’m a Cheerleader”).

Q u e r y % P r e f e r B a y e s R e t r i e v a l P-VALUE

G o n e w it h t h e W in d
M a r y P o p p in s

86.7
96.7

< 0.0001
< 0.0001

Table 4.4: Both movie queries (listed by first query item in the first column) were
evaluated by 30 naive human judges. We give the percentage of these judges who
preferred the results given by our Bayesian retrieval algorithm as opposed to Google
Sets in the second column, and the p-value rejecting the null hypothesis that Google
Sets is preferable to our algorithm on that particular movie query.

Q u e r y : A.S m o l a , B.S c h o e l k o p f

T o p M e m b e r s T o p W o r d s

A.S m o l a VECTOR
B. S c h o e l k o p f SUPPORT

S. M ik a KERNEL
G .R a t s c h PAGES

R .W il l ia m s o n MACHINES
K.M u l l e r QUADRATIC
J. W e s t o n SOLVE

J .S h a w e -T a y l o r REGULARIZATION
V .V a p n ik MINIMIZING
T .O n o d a MIN

Table 4.5: NIPS authors found by our method based on the query “Alex Smola” and
“Bernhard Schoelkopf”, who both work on Support Vector Machines. The top 10
returned authors are shown, all of whom have also worked in this area, along with the
top 10 words associated with this entire group of authors.

Discussion 60

Q u e r y : L .S a u l , T . J a a k k o l a Q u e r y : A.No, R .S u t t o n

T o p M e m b e r s T o p W o r d s T o p M e m b e r s T o p W o r d s

L .S a u l LOG R .S u t t o n DECISION
T . J a a k k o l a LIKELIHOOD A.No REINFORCEMENT

M . R a h im MODELS Y .M a n s o u r ACTIONS
M . J o r d a n MIXTURE B .R a v in d r a n REWARDS

N . L a w r e n c e CONDITIONAL D . R o l l e r REWARD
T . J e b a r a PROBABILISTIC D .P r e c u p START

W.W lEGERINCK EXPECTATION C. W a t k in s RETURN
M .M e il a PARAMETERS R .M o ll RECEIVED
S .I k e d a DISTRIBUTION T.P e r k in s MDP

D .H a u s s l e r ESTIMATION D . M e A l l e s t e r SELECTS

Table 4.6: NIPS authors found by our method based on the given queries, where the
data consists of papers written between 1987 and 1999. The top 10 retrieved authors
are shown for each query along with the top 10 words associated with that cluster of
authors, (left) The query consisted of two people who work on probabilistic modelling
and the additional authors retrieved and the words associated with the retrieved set
correctly indicate this, (right) Similarly, the query consisted of two people who worked
on decision making and reinforcement learnining, and the returned results accurately
match this description.

4.8 Discussion

We have described an algorithm which takes a query consisting of a small set of items,
and returns additional items which belong in this set. Our algorithm computes a score
for each item by comparing the posterior probability of that item given the set, to
the prior probability of that item. These probabilities are computed with respect to
a statistical model for the data, and since the parameters of this model are unknown
they are marginalized out.

For exponential family models with conjugate priors, our score can be computed exactly
and efficiently. In fact, we show that for sparse binary data, scoring all items in a
large data set can be accomplished using a single sparse matrix-vector multiplication.
Thus, we get a very fast and practical Bayesian algorithm without needing to resort
to approximate inference. For example, a sparse data set with over 2 million nonzero
entries can be queried in just over 1 second on a standard laptop in Matlab.

Our method does well when compared to Google Sets in terms of set completions,
demonstrating that this Bayesian criterion can be useful in realistic problem domains.
One of the problems we have not yet addressed is deciding on the size of the response
set. Since the scores have a probabilistic interpretation, it should be possible to find a
suitable threshold to these probabilities.

The problem of retrieving sets of items is clearly relevant to many application domains.
Our algorithm is very flexible in that it can be combined with a wide variety of types

Discussion 61

Q u e r y :
• Bayesian Model Selection for Support Vector Ma

chines, Gaussian Processes and Other Kernel
Classifiers (Seeger)

• Predictive Approaches for Choosing Hyperparam-
eters in Gaussian Processes (Sundararajan and

_______Keerthi)_______________________________________

Top Words

Title (Authors)
1. Bayesian Model Selection for Support Vector

Machines, Gaussian Processes and Other Kernel
Classifiers (Seeger)

2. Predictive Approaches for Choosing Hyperparam-
eters in Gaussian Processes (Sundararajan and
Keerthi)

3. Gaussian Processes for Regression (Williams and
Rasmussen)

4. Gaussian Processes for Bayesian Classification via
Hybrid Monte Carlo (Barber and Williams)

5. Probabilistic Methods for Support Vector Machines
(Sollich)

6. Efficient Approaches to Gaussian Process Clas
sification (Csato, Fokoue, Opper, Schottky and
Winther)

7. Discovering Hidden Features with Gaussian Pro
cesses Regression (Vivarelli and Williams)

8. Computing with Infinite Networks (Williams)

9. General Bounds on Bayes Errors for Regression
with Gaussian Processes (Opper and Vivarelli)

10. Finite-Dimensional Approximation of Gaussian
Processes (Ferrari-Trecate, Williams, and Opper)

Table 4.7; (left) NIPS papers found by our method based on the given query of two
papers on the topic of Gaussian Processes. The top 10 retrieved papers are shown,
all of which are also on the topic of Gaussian Processes, (right) The top 10 words
associated with this entire group of papers.

Bayesian
Covariance
Gaussian

Prior
Process

Processes
Williams

Idea
Posterior

Prediction

Discussion 62

Q u e r y ;
Online Learning from Finite TVaining Sets; An An
alytical Case Study (Sollich and Barber)
Learning Stochastic Perceptrons Under K-Blocking
Distributions (Marchand and Hadjifaradji)________

Title (Authors)
Online Learning from Finite Training Sets;
Analytical Case Study (Sollich and Barber)

An

2. Learning Stochastic Perceptrons Under K-Blocking
Distributions (Marchand and Hadjifeuradji)

3. Online Learning from Finite Training Sets in
Nonlinear Networks (Sollich and Barber)

4. Strong Unimodality and Exact Learning of Con
stant Depth ^-Perceptron Networks (Marchand
and Hadjifaradji)

5. Learning from Queries for Maximum Information
Gain in Imperfectly Learnable Problems (Sollich
and Saad)

6. On Learning ^-Perceptron Networks with Binary
Weights (Golea, Marchand and Hancock)

7. The Learning Dynamics of a Universal Approximate
tor (West, Sand and Nabney)

8. Learning in Latrge Lineatr Perceptrons and Why
the Thermodynamic Limit is Relevamt to the Read
World (Sollich)

9. Leaurning with Ensembles; How Overfitting Can Be
Useful (Sollich and Krogh)

10. Online Learning of Dichotomies (Bairkai, Seung
amd Somplinksky)

Table 4.8: Results from the literature search application using NIPS conference papers
from volumes 0-12 (1987-1999 conferences). The query consisted of two papers related
to the topic of perceptron learning. The top 10 returned papers are shown, all of which
also relate to perceptron learning, and some of which are by the same authors.

Discussion 63

of data (e.g. sequences, images, etc.) and probabilistic models. We plan to explore
efficient implementations of some of these extensions. We believe that with even larger
datasets the Bayesian Sets algorithm will be a very useful tool for many application
areas.

Chapter 5

C ontent-based Im age R etrieval
w ith Bayesian Sets

In this chapter we present a Bayesian framework for content-based image retrieval which
models the distribution of color and texture features within sets of related images.
Given a user-specified text query (e.g. “penguins”) the system first extracts a set of
images, from a labelled corpus, corresponding to that query. The distribution over
features of these images is used to compute the Bayesian Sets score, discussed in chapter
4, for each image in a large unlabelled corpus. Unlabelled images are then ranked using
this score and the top images are returned. Since, in the case of sparse binary data,
all images can be scored with a single matrix-vector multiplication, it is extremely
efficient to perform image retrieval using this system. We show that our method works
surprisingly well despite its simplicity and the fact that no relevance feedback is used.
We compare different choices of features, and evaluate our results using human subjects.

5.1 Image Retrieval

As the number and size of image databases grows, accurate and eflScient content-based
image retrieval (CBIR) systems become increasingly important in business and in the
everyday lives of people around the world. Accordingly, there has been a substantial
amount of CBIR research, and much recent interest in using probabilistic methods for
this purpose (see section 5.4 for a full discussion). Methods which boost retrieval per
formance by incorporating user provided relevance feedback have also been of interest.

In the remainder of this chapter we describe a novel framework for performing efficient
content-based image retrieval using Bayesian statistics. Our method focuses on per
forming category search, though it could easily be extended to other types of searches,
and does not require relevance feedback in order to perform reasonably. It also em
phasizes the importance of utilizing information given by sets of images, as opposed to

Bayesian Image Retrieval System 65

single image queries.

5.2 Bayesian Image Retrieval System

In our Bayesian CBIR system images are represented as binarized vectors of features.
We use color and texture features to represent each image, as described in section 5.2.1,
and then binarize these features across all images in a preprocessing stage, described
in section 5.2.2.

Given a query input by the user, say “penguins”, our Bayesian CBIR system finds all
images that are annotated “penguins” in a training set. The set of feature vectors
which represent these images is then used in a Bayesian retrieval algorithm (section
5.2.3) to find unlabelled images which portray penguins.

5.2.1 Features

We represent images using two types of texture features, 48 Gabor texture features and
27 Tamura texture features, and 165 color histogram features. We compute coarseness,
contrast and directionality Tamura features, as in Tamura et al. (1978), for each of 9
(3x3) tiles. We apply 6 scale sensitive and 4 orientation sensitive Gabor filters to each
image point and compute the mean and standard deviation of the resulting distribution
of filter responses. See Howarth and Riiger (2004) for more details on computing these
texture features. For the color features we compute an HSV (Hue Saturation Value)
3D histogram (Heesch et al., 2003) such that there are 8 bins for hue and 5 each for
value and saturation. The lowest value bin is not partitioned into hues since they are
not easy for people to distinguish.

5.2.2 Preprocessing

After the 240 dimensional feature vector is computed for each image, the feature vectors
for all images in the data set are preprocessed together. The purpose of this prepro
cessing stage is to binarize the data in an informative way. First the skewness of each
feature is calculated across the data set. If a specific feature is positively skewed, the
images for which the value of that feature is above the 80th percentile assign the value
T ’ to that feature, the rest assign the value ’O’. If the feature is negatively skewed, the
images for which the value of that feature is below the 20th percentile assign the value

and the rest assign the value ’O’. This preprocessing turns the entire image data
set into a sparse binary matrix, which focuses on the features which most distinguish
each image from the rest of the data set. The one-time cost for this preprocessing is a
total of 108.6 seconds for 31,992 images with the 240 features described in the previous
section, on a 2GHz Pentium 4 laptop.

Bayesian Image Retrieval System 66

5.2.3 A lgorithm

Using the preprocessed sparse binary data, our system takes as input a user-specified
text query for category search and outputs images ranked as most likely to belong to
the category corresponding to the query. The algorithm our system uses to perform this
task is an extension of the method for clustering on-demand presented in the previous
chapter, Bayesian Sets (Ghahramani and Heller, 2005).

First the algorithm locates all images in the training set with labels that correspond
to the query input. Then, using the binary feature vectors which represent the images,
the algorithm uses the Bayesian Sets criterion, based on marginal likelihoods, to score
each unlabelled image as to how well that unlabelled image fits in with the training
images corresponding to the query. This Bayesian criterion, which was presented in
chapter 4, can be expressed as follows:

= 0 m)

where Q = {xi,...Xiv} are the training images corresponding to the query, and x*
is the unlabelled image that we would like to score. We use the symbol x% to refer
interchangably both to image i, and to the binary feature vector which represents
image i. Each of the three terms in equation (5.1) are marginal likelihoods. For more
details refer to chapter 4.

Algorithm 5.1 summarizes our Bayesian CBIR framework and a flowchart is given in
figure 5.1.

A lgorithm 5.1 Bayesian CBIR Algorithm

background: a set of labelled images Vi, a set of unlabelled images 7>u,
a probabilistic model p(x|0) defined on binary feature vectors representing images,
a prior on the model parameters p{0)

compute texture and color features for each image
preprocess: Binarize feature vectors across images
input: a text query, q
find images corresponding to g, Q = {x%} C
for all X * G T>u do

pfx* Q.) compute score(x*) = / -p{x*)p{Q)
end for
ou tpu t: sorted list of top scoring images in Vu

We still have not described the specific model, p(x|0), or addressed the issue of com
putational efficiency of computing the score. Each image x* G Q is represented as
a binary vector x ̂ = {xn ,.. . ,Xij) where Xij e {0,1}. As in chapter 4, we define a
model in which each element of x* has an independent Bernoulli distribution, and use
a conjugate Beta prior on the model parameters.

Results 67

Z taxt query /
(’penguins') i

find labelled
Images matching

text query

labelled
images

I
I

set of
imays

Clustering on Demand

retrieve unlabelled
images

unlabelled
images

return top
scoring
images 7

Figure 5.1: Flowchart for the Bayesian CBIR system

If we put the entire data set into one large matrix X with J columns, we can compute
the vector s of log scores for all images using a single matrix vector multiplication

s = c + Xq (5.2)

where qj = log à j — logaj — log/5j + log(3j represents the query set of images (a and
/3 are the Beta hyperparameters) and c is a query-specific additive constant which has
no effect on the ranking. The full derivation of equation (5.2) is given in the previous
chapter.

For our sparse binary image data, this linear operation can be implemented very ef
ficiently. Each query Q corresponds to computing vector q and scalar c, which can
be done very efficiently as well. The total retrieval time for 31,992 images with 240
features and 1.34 million nonzero elements is 0.1 to 0.15 seconds, on a 2GHz Pentium
4 laptop. We can analyze the vector q, to understand which features our algorithm
implicitly selecting, as discussed in 4.

5.3 Results

We used our Bayesian CBIR system to retrieve images from a Corel data set of 31,992
images. 10,000 of these images were used with their labels as a training set, T>e, while
the rest comprised the unlabelled test set, T>u- We tried a total of 50 different queries,
corresponding to 50 category searches, and returned the top 9 images retrieved for each
query using both texture and color features, texture features alone, and color features
alone. We used the given labels for the images in order to select the query set, Q, out
of the training set. To evaluate the quality of the labelling in the training data we

Results 68

BIP BIRtex BIRcd BO NNall NNmean Train

Figure 5.2: mean ± s.e. % correct retrievals over 50 queries

1

0.8

g 0.6

I
Û. 0.4

0.2

♦ BIR
• NNmean

— NNall

0.2 0.4 0.6
Recall

0.8

Figure 5.3: Precision-recall curves for our method (blue) and both nearest neigh
bor comparison methods, averaged over all 50 queries, and using the Corel data
labellings

Results 69

Figure 5.4: Query: desert

Figure 5.5: Query: building

Figure 5.6: Query: sign

also returned a random sample of 9 training images from this query set. In all of our

experim ents we set k = 2.

Results 70

Figure 5.7: Query: pet

Figure 5.8: Query: penguins

The above process resulted in 1800 images: 50 queries x 9 images x 4 sets (all features,
texture features only, color features only, and sample training images). Two uninformed
human subjects were then asked to label each of these 1800 images as to whether
they thought each image matched the given query. We chose to compute precisions
for the top nine images for each query based on factors such as ease of displaying
the images, reasonable quantities for human hand labelling, and because when people
perform category searches they generally care most about the first few results that are
returned. We found the evaluation labellings provided by the two human subjects to
be highly correlated, having correlation coefficient 0.94.

We then compared our Bayesian CBIR results on all features with the results from
using two different nearest neighbor algorithms to retrieve images given the same image
data set, query sets and features. The first nearest neighbor algorithm found the nine
images which were closest (euclidean distance) to any individual member of the query
set. This algorithm is approximately 200 times slower than our Bayesian approach.
More analagous to our algorithm, the second nearest neighbor algorithm found the

Results 71

nine images which were closest to the mean of the query set. Lastly we compared to
the Behold Image Search online . Behold Image Search online runs on a more difficult
1.2 million image dataset. We compare to the Behold system because it is a currently
available online CBIR system which is fast and handles query words, and also because
is was part of the inspiration for our own Bayesian CBIR system. The results given by
these three algorithms were similarly evaluated by human subjects.

The results from these experiments are given in table 5.1. The first column gives the
query being searched for, the second column is the number of images out of the nine
images returned by our algorithm which were labelled by the human subjects as being
relevant to the query (precision x 9). The third and fourth columns give the same
kind of score for our system, but restricting the features used to texture only and color
only, respectively. The fifth column shows the results of the Behold online system,
where N/A entries correspond to queries which were not in the Behold vocabulary.
The sixth and seventh columns give the results for the nearest neighbor algorithms
using all members of the query set and the mean of the query set respectively. The
eighth column gives the number of images out of the 9 randomly displayed training
images that were labelled by our subjects as being relevant to the query. This gives
an indication of the quality of the labelling in the Corel data. The last column shows
the number of training images, n, which comprise the query set (i.e. they were labelled
with the query word in the labellings which come with the Corel data).

Looking at the table we can notice that our algorithm using all features (BIR) performs
better than either the texture features (BIRtex) or color features alone (BIRcol); the
p-values for a Binomial test for texture or color features alone performing better than
all features are less than 0.0001 in both cases. In fact our algorithm can do reasonably
well even when there are no correct retrievals using either color or texture features alone
(see, for example, the query “eiffel”). Our algorithm also substantially outperforms all
three of the comparison algorithms (BO, NNmean, NNall). It tends to perform better
on examples where there is more training data, although it does not always need a
large amount of training data to get good retrieval results; in part this may result from
the particular features we are using. Also, there are queries (for example, “desert”) for
which the results of our algorithm are judged by our two human subjects to be better
than a selection of the images it is training on. This suggests both that the original
labels for these images could be improved, and that our algorithm is quite robust to
outliers and poor image examples. Lastly, our algorithm finds at least 1, and generally
many more, appropriate images, in the nine retrieved images, on all of the 50 queries.

The average number of images returned, across all 50 queries, which were labelled by
our subjects as belonging to that query category, are given in figure 5.2. The error
bars show the standard error about the mean. Some sample images retrieved by our
algorithm are shown in figures 5.5-5.8, where the queries are specified in the figure
captions.

Results 72

Query BIR BIRtex BIRcol BO NNmean NNall Train # Train
abstract 8 4 8 5.5 2 1 5 391

aerial 4 0.5 2 0 2 3 8 201
animal 8 5 6 1 3 9 9 1097

ape 4 1 0 0 2 7 8.5 27
boat 1 0 1 0.5 1 1 7 61

building 7.5 9 2.5 4 6 5.5 8 1207
butterfly 5 4 1 1 2 0 9 112

castle 3.5 2 2 1 0 3 8 229
cavern 5.5 1 2.5 0.5 2 1 9 34

cell 6 0 5 9 5 4 8 29
church 3.5 1 2 0 5 0 6 173
clouds 5 5.5 1.5 0 3 5 5.5 604
coast 7 3 2 1 2 2 9 299
desert 4.5 0 1 1 0 1.5 2 168
door 8.5 8 1 0 2 0 5.5 92

drawing 4 0 0 2 7 3 9 69
eiffel 6 0 0 N/A 0 0 8.5 15

fireworks 9 9 3 0 1 3 9 76
flower 9 1 7.5 2 3 1 9 331
fractal 3 0 5.5 0.5 0 2 8.5 43
fruit 5.5 0.5 6.5 0 0 1 8 199
house 6 8 0 1.5 1 2 8 184

kitchen 6 1 2 N/A 5 3 9 32
lights 6.5 3 1.5 N/A 1 0 7 203
model 5 4 0 N/A 3 4 9 102

mountain 6 1 2.5 1 2 3 8 280
mountains 7 2 8 N/A 1 3 8.5 368
penguins 6 1 5 N/A 0 0 8.5 34
people 6 2 0 1.5 4 5 8.5 239
person 4 0.5 1.5 1.5 4 5 7.5 114

pet 3 2 2 0.5 0 4.5 8.5 138
reptile 3 1 1 1 0 1 9 99
river 4.5 1.5 4.5 1.5 2 4 7 211
sea 7.5 6 3 0.5 2 3 6 90
sign 9 9 1 8 1 0 9 53
snow 6 0 4 1 2 3 9 259
stairs 3 3.5 2 0 1 2 8 53
sunset 9 7.5 4 2.5 3 2.5 8.5 187

textures 7 8 1 N/A 0 8 3 615
tool 4 1 4 1 1 5 9 28

tower 7.5 3.5 0.5 2.5 3 2.5 6 138
trees 9 1 8 N/A 6 8 8.5 1225
turtle 2 0 1 N/A 0 0 9 13
urban 7.5 4.5 2 N/A 3 3 9 133

volcano 2 0 3 0 0 0 3 54
water 9 3 5.5 0 5 9 5.5 1863

waterfall 2 0 2 1 0 3 9 103
white 9 3 9 4.5 1 6.5 7.5 240

woman 4 2 0 3 2 3 8.5 181
zebra 2 0 0 N/A 0 2 8 21

Table 5.1: Results table over 50 queries

Related Work___ 7̂

By looking at these examples we can see where the algorithm performs well, and what
the algorithm mistakenly assigns to a particular query when it does not do well. For
example, when looking for “building” the algorithm occasionally finds a large vertical
outdoor structure which is not a building. This gives us a sense of what features the
algorithm is paying attention to, and how we might be able to improve performance
through better features, more training examples, and better labelling of the training
data. We also find that images which are prototypical of a particular query category
tend to get high scores (for example, the query “sign” returns very prototypical sign
images).

We also compute precision-recall curves for our algorithm and both nearest neighbor
variants that we compared to (figure 5.3). For the precision-recall curves we use the
labellings which come with the Corel data. Both nearest neighbor algorithms perform
significantly worse than our method. NNall has a higher precision than our algorithm
at the lowest level of recall. This is because there is often at least one image in the Corel
test set which is basically identical to one of the training images (a common criticism
of this particular data set). The precision of NNall immediately falls because there
are few identical images for any one query, and generalization is poor. Our algorithm
does not preferentially return these identical images (nor does NNmean), and they are
usually not present in the top 9 retrieved.

Four sets of retrieved images (all features, texture only, color only, and training) for
all 50 queries can be found in additional materials ,̂ which we encourage the reader to
have a look through.

5.4 Related Work

There is a great deal of literature on content-based image retrieval. An oft cited early
system developed by IBM was “Query by Image Content” (QBIC Flickner et al. (1995)).
A thorough review of the state of the art until 2000 can be found in Smeulders et al.
(2000).

We limit our discussion of related work to (1) CBIR methods that make use of an
explicitly probabilistic or Bayesian approach, (2) CBIR methods that use sets of images
in the context of relevance feedback, and (3) CBIR methods that are based on queries
consisting of sets of images.

Vasconcelos and Lippman have a significant body of work developing a probabilistic
approach to content-based image retrieval (e.g. Vasconcelos and Lippman (1998)).
They approach the problem from the framework of classification, and use a probabilis
tic model of the features in each class to find the maximum a posteriori class label. In
Vasconcelos (2004) the feature distribution in each class is modelled using a Gaussian

ĥ t t p ://www. g a ts b y .u c l . a c . u k /'h e ller /B IR a d d .pdf

http://www.gatsby.ucl.ac.uk/'heller/BIRadd.pdf

Related Work 74

mixture projected down to a low dimensional space to avoid dimensionality problems.
The model parameters are fit using EM for maximum likelihood estimation. Our ap
proach differs in several respects. Firstly, we employ a fully Bayesian approach which
involves treating parameters as unknown and marginalizing them out. Second, we use
a simpler binarized feature model where this integral is analytic and no iterative fitting
is required. Moreover, we represent each image by a single feature vector, rather than a
set of query vectors. Finally, we solve a different problem in that our system starts with
a text query and retrieves images from an unlabelled data set—the fact that the train
ing images are given a large number of non-mutually exclusive annotations suggests
that the classification paradigm is not appropriate for our problem.

PicHunter (Cox et al., 2000) is a Bayesian approach for handling relevance feedback
in content based image retrieval. It models the uncertainty in the users’ goal as a
probability distribution over goals and uses this to optimally select the next set of
images for presentation.

PicHunter uses a weighted pairwise distance measure to model the similarity between
images, with weights chosen by maximum likelihood. This is quite different from our
approach which models the joint distribution of sets of images averaging over model
parameters.

Riii et al. (1997) explore using the tf-idf^ representation from document information
retrieval in the context of image retrieval. They combine this representation with a
relevance feedback method which reweights the terms based on the feedback and report
results on a dataset of textures. It is possible to relate tf-idf to the feature weightings
obtained from probablistic models but this relation is not strong.

Yavlinsky et al. (2005) describe a system for both retrieval and annotation of images.
This system is based on modeling p(xjtu) where x are image features and w is some
word from the annotation vocabulary. This density is modeled using a non-parameteric
kernel density estimator, where the kernel uses the Earth Mover’s Distance (EMD).
Bayes rule is used to get p{w\x) for annotation.

Gosselin and Cord (2004) investigate active learning approaches to efficient relevance
feedback using binary classifiers to distinguish relevant and irrelevant classes. Among
other methods, they compare a “Bayes classifier” which uses Parzen density estimators
with a fixed-width Gaussian kernel to model P(x|relevant) and P(x|irrelevant) where
X are image features. Our approach differs in several respects. First, we model the
probablity of the target x belonging to a cluster while integrating out all parameters
of the cluster, and compare this to the prior p(x). Strictly speaking, Parzen density
estimators are not Bayesian in that they do not define a prior model of the data, but
rather can be thought of as frequentist smoothers for the empirical distribution of the
data.

term-frequency inverse-document-frequency

Conclusions and Future Work 75

The combination of labeled and unlabeled data and the sequential nature of relevance
feedback, mean that active learning approaches are very natural for CBIR systems.
Hoi and Lyu (2005) adapt the semi-supervised active learning framework of Zhu et al.
(2003) as a way of incorporating relevance feedback in image retrieval.

In Assfalg et al. (2000), the user manually specifies a query consisting of a set of posi
tive and negative example images. The system then finds images which minimize the
distance in color histogram space to the positive examples, while maximizing distance
to the negative examples. While our method is not directly based on querying by ex
amples, since it uses text input to extract images from a labelled set, it implicitly also
uses a set of images as the query. However, in our system the set only contains positive
examples, the user only has to type in some text to index this set, and the subsequent
retrieval is based on different principles.

5.5 Conclusions and Future Work

We have described a new Bayesian framework for content-based image retrieval. We
show the advantages of using a set of images to perform retrieval instead of a single
image or plain text. We obtain good results from using the Bayesian Sets criterion,
based on marginal likelihoods, to find images most likely to belong to a query category.
We also show that using this criterion can be very eflBcient when image feature vectors
are sparse and binary.

In all of our experiments, the two free parameters, the preprocessing percentile thresh
old for binarizing the feature vectors and the scale factor on the means for setting the
hyperparameters («), are set to 20 and 2 respectively. In our experience, this initial
choice of values seemed to work well, but it would be interesting to see how performance
varies as we adjust the values of these two parameters.

In the future there are many extensions which we would like to explore. We plan
to extend the system to incorporate multiple word queries where the query sets from
all words in the query are combined by either taking the union or the intersection.
We would also like to look into incorporating relevance feedback, developing revised
qnery sets, in our Bayesian CBIR system. By combining with relevance feedback, the
principles used here can also be applied to other types of seaches, such as searching
for a specific target image. Lastly, we would like to explore using our Bayesian CBIR
fr^ew ork to perform automatic image annotation as well as retrieval.

Chapter 6

Analogical Reasoning w ith
Bayesian Sets

Analogical reasoning is the ability to learn and generalize about relations between
objects. Performing analogical reasoning in an automated manner is very challenging
since there are a large number of ways in which objects can be related. In this chapter
we develop an approach to performing automated analogical reasoning, which, given a
set of pairs of objects S = . . . , A ^:B ^} where each pair in S shares the
same relationship, R, measures how well other pairs A : 5 fit in with the pairs in set S,
thereby determining how similar (or analagous) the shared relation of A:B is to those
of the pairs in set S (relation R). In this problem the degree of similarity between
individual objects in the pairs is not necessarily relevant to discovering the correct
analogy. For example, the analogy between an electron orbiting around the nucleus of
an atom and a planet orbiting around the Sun cannot be detected by measuring the
non-relational similarity between an electron and a planet or a nucleus and the Sun. We
take a Bayesian approach to solving the problem of automated analogical reasoning by
developing a generative model for predicting the existance of relations, extending the
framework presented in chapter 4. The utility of our method is demonstrated though
practical applications in exploratory data analysis ̂

6.1 Analogical Reasoning

In order to discover analogies we need to be able to define a measure of similarity
between the structures of related objects, where typically we are not interested in how
similar individual objects in a candidate pair are to objects in the “query” pair(s). To
illustrate this we consider an analogical reasoning question from an SAT exam, where
for the given “query” pair of words water:river the examinee must choose the one of

^The work in this chapter was done in collaboration with Ricardo Silva and Eldo Airoldi. Some of
this work has been published at the AISTATS conference (Silva et al., 2007b).

Analogical Reasoning__ 77_

five possible pairs which is analogous (i.e. its relation best matches) to the query pair.
In this case the word pair caritraffic would be a better choice than soda.'ocean since the
relationship they share is the same (cars flow through traffic in the same way water does
through a river). This is the case regardless of the fact that water is more similar to
soda than to car, illustrating that the similarity of individual objects is not necessarily
meaningful. Therefore, in analogical reasoning features of objects are only themselves
meaningful in the context of predicting relations.

The specific type of problem which we address in this chapter can be illustrated through
the following two examples from Silva et al. (2007b):

Exam ple 1 A researcher has a large collection of papers. She plans to use such a
database in order to write an comprehensive article about the evolution of her field
through the past two decades. In particular, she has a collection organized as pairs of
papers where one cites the other. There are several reasons why a paper might cite
another: one of them is a big bibliographic survey, or one paper was written by the
advisor of the author of the second paper, or the cited paper was given a best paper
award, or the authors were geographically close, or a combination of several features
of such papers with different likelihoods. Such combinations define a (potentially very
large) variety of subpopulations of pairs of papers. While the features that imply such
subpopulations might be assumed to be recorded in the database, the way such groups
are defined is never explicitly indicated in the data. Yet the researcher is not completely
in the dark: she already has an idea of important subgroups of pairs of papers which are
representative of the most interesting subpopulations, although it might be difficult to
characterize any such set with a simple description. She, however, would like to know
which other pairs of papers might belong to such subgroups. Instead of worrying about
writing some simple query rules that explain the common properties of such subgroups,
she would rather have an intelligent information retrieval system that is able to identify
which other pairs in the database are linked in an analogous way to those pairs in her
selected sets. □

Exam ple 2 A scientist is investigating a population of proteins, within which some
pairs are known to interact, while the remaining pairs are known not to interact. It
is known that recorded gene expression profiles of the respective genes can be used as
a reasonable predictor of the existence or not of an interaction. The current state of
knowledge is still limited regarding which subpopulations (i.e., classes) of interactions
exist, although a partial hierarchy of such classes for some proteins is available. Given
a selected set of interacting proteins that are believed to belong to a particular level
of the class hierachy, the researcher would like to query her database to discover other
plausible pairs of proteins whose mechanism of linkage is of the same nature as in
the selected set, i.e., to query for analogous relations. Ideally, she would like to do it
without being required to write down query rules that explicitly describe the selected
set. □

Related Work 78

These are practical analogical reasoning problems which require performing information
retrieval for exploratory data analysis. As in chapter 4, the number of classes of interest
is not known a priori and may be quite large, and specifying representative negative
examples by hand is generally impractical.

6.2 Related Work

There is a large literature on analogical reasoning in artificial intelligence and psychol
ogy which is discussed in this section, from Silva et al. (2007b). We refer to French
(2002) for a recent survey, as well as to some recent work in the machine learning lit
erature (Marx et al., 2002; Turney and Littman, 2005). Other authors have benefited
from the idea of exploring similarity of relations for other problems such as dimension
ality reduction (Memisevic and Hinton, 2005). Here we will use a Bayesian framework
for inferring similarity of relations. Given a set of relations, our goal will be to score
other relations as relevant or not. The score is based on a Bayesian model comparison
generalizing the “Bayesian sets” score (Ghahramani and Heller, 2005) to discriminative
models over pairs of objects.

The graphical model formulation of Getoor et al. (2002) incorporates models of link
existence in relational databases, an idea used explicitly in Section 6.3 as the first step
of our problem formulation. In the clustering literature, the probabilistic approach of
Kemp et al. (2006) is motivated by principles similar to those in our formulation: the
idea is that there is an infinite mixture of subpopulations that generates the observed
relations. Our problem, however, is to retrieve other elements of a subpopulation
described by elements of a query set, a goal that is also closer to the classical paradigm of
analogical reasoning. A more detailed comparison of block models and our formulation
is presented in the next section.

Our focus here is not on predicting the presence or absence of relational links, as in,
e.g., (Popescul and Ungar, 2003) — a very hard task, due to the large discrepancy of the
number of positive and negative examples — but rather on retrieving similar relational
links from among those already known to exist in the relational database. Neither is
our focus to provide a fully unsupervised clustering of the whole database of pairs (as
in, e.g., Kemp et al., 2006), or to use relational information to improve classification of
other attributes (as in, e.g., Getoor et al., 2002).

6.3 Automated Analogical Reasoning using Discrimina
tive Bayesian Sets

In order to determine if a relation A:B is analagous to set S =
we need to define a measure of similarity between a

Automated Analogical Reasoning using Discriminative Bayesian Sets____________ TO

pair {A : B) and a set of pairs (S). The meausre of similarity that we are interested
in does not directly compare the information contained in the distributions of the
objects {A*} C A , {5*} C where A and B are object classes, but rather compares
the relations, or mappings which classify the pairs as being linked (i.e. the mappings
which discriminate the particular relationship shared by each of the pairs).

In order to formulate this concept more formally, we can consider a space of latent
functions in A x B ^ {0,1}. We assume that A and B are two objects which are
classified as linked by some unknown function f{A ,B) (i.e. f{A ,B) = 1). Our goal is
to measure the similarity between the function f{A ,B) and the function p(-, •), where
g{', •) classifies all pairs (A*, B^) e S as being linked (i.e. g(A\ B*) = 1). The similarity
measure we employ is a function of our observations (S, A, B) and prior distributions
over /(• ,') and p(

We define our similarity measure as computing a Bayes factor, which involves integrat
ing over the function space of latent functions /(•) and g{-). In the remainder of this
chapter we restrict ourselves to the case where our family of latent functions is param
eterized by a finite-dimensional vector, specifically the logistic regression function with
multivariate Gaussian priors for the parameters. This is not a necessary restriction,
this framework holds for arbitrary functions, but one done for convenience.

Given a pair (A* e A , B^ e B), we define = [0i(A*, B^)(^2 (A \ B ^) . . . 4>k{Â ,
to be a point in feature space given by the mapping 0 : (A x B) 72. .̂ We also
define (7*-̂ G {0,1} to be an indicator of a link (or relation) between A* and BK
© = [1̂ , . . . , B kŸ is the parameter vector for the logistic regression model:

p{&^ = 0) = logistic(©^A*J) (6.1)

where logistic(ar) = (1 -t-e~“̂)"^. The similarity measure we use to score a pair (A ,̂ B^)
with respect to a query set S is the Bayes factor given in chapter 4:

where C® is the vector of link indicators for S (figure 6.2). We compute:

p{&^ = i|A*̂ , s, c® = 1) = J p{& j = i|A';, e)P(0|s, c® = i) æ (6 .3)

in order to calculate the score for each pair. p(C^ ̂ = 1|A*-̂) is computed analogously by
integrating over the model parameters 0 . Since these integrals do not have a closed form
solution, we use the Bayesian variational approximation by Jaakkola and Jordan (2000)
in practice. An intuition behind this score is that we are comparing the hyposthesis that
the query set S and the pair being scored, are classified as linked by the same logistic

Automated Analogical Reasoning using Discriminative Bayesian Sets 80

(B]

/ m

Figure 6.1: (a) Graphical model for the relational Bayesian logistic regression,
where Na ,N b and Nc are the number of objects of each class, (b) Extra de
pendencies induced by further conditioning on C are represented by undirected
edges.

regression function, with the same set of parameters, to the hypothesis that they are
classified as linked by different logistic regression functions. If pairs are classified as
linked by the same logistic regression function, then they share the same relationship.

In the work we present in this chapter we assume that we are given a relational database
(D a ,D b ,R a b), where D a and Db are objects sampled from the object classes A
and B respectively, and R ab is a binary matrix which represents the existence of a
relationship (or link) between objects A and B. This binary matrix is assumed to have
been generated from a logistic regression model for relation existence.

The algorithm we use for retrieving relations is as follows:

A lgorithm 6.1 Analogical Reasoning Algorithm

background: sets of items D a and D b and a binary relationship matrix R aBj the
logistic regression model , ©), and a Gaussian prior on the model parameters
p(0)
input: a query set of pairs S which share some relationship
for all where = 1 do

compute score{A^, B^)
end for
ou tpu t: return pairs (A\ B^) sorted by decreasing score

The graphical model for the relational Bayesian logistic regression is given in figure
6.1(a). The latent parameter vector 0 and objects A and B are parents of the relation
indicator variable C. When we condition on C = 1 we introduce dependencies between
the elements of vector 0 and the objects {A, B} (shown in figure 6.1(b)). Due to this
information about a pair (A, B) can be passed on through 0 and used to evaluate other
pairs. The method presented here has a computational complexity of O(K^) due to
a matrix inversion necessary for the variational Bayesian logistic regression (Jaakkola
and Jordan, 2000).

Our framework assumes that feature space 0 encapsulates enough information to allow
for a reasonable classifier to predict the existence of relations. It can also be used for

Results 81

—(e) ^ © (£

Figure 6.2; The score of a new data point {A,B,C} is given by the Bayes
factor that compares models (a) and (b). a are the hyperparameters for 0. In
(a), the generative model is the same for both the point being scored and the
query set (which is represented in the rectangle). Notice that our set S of pairs in
{i4*} X might contain repeated instances of the same object (some A* or B^
might appear multiple times in different relations). In (b), the point being scored
and the query set do not share the same parameters.

solving non-relational problems with a variety of classifiers, instead of modeling the
presence and absence of interactions between objects as we have presented here. There
are algorithms for automatically selecting useful predictive features which can be used
with this method (Popescul and Ungar, 2003; Dzeroski and Lavrac, 2001). Jensen and
Neville (2002) also discusses some shortcomings of these automated feature selection
methods for relational classification.

We also assume that all subpopulations of relations of interest can be measured on the
same feature space. Although a very general formulation would not require this, in order
for the problem to be well-defined feature spaces must relate to each other somehow.
Experimenting with using a hierarchical Bayesian formulation to link different feature
spaoes is an area for future research. Also, this method can easily be extended to deal
with continuous measures of relationship (instead of using a binary indicator variable
C).

We set our priors in an analogous way to Bayesian Sets (chapter 4) where the prior is
set empirically from the observed data. We use the prior P (0) = VV(0, (cT)~^), where
A/"(m, V) is a Normal distribution with mean m and variance V, and 0 is the maximum
likelihood estimator of 0 computed on a subset of both positive and negative examples.
Matrix T is the empirical second moments matrix of the linked object features in X, a
measure of their variability. Constant c is a smoothing parameter set by the user. In
our experiments, we selected it to be twice the total number of relations.

6.4 Results

We now describe two experiments on analogical retrieval using the proposed model,
and taken from Silva et al. (2007b). Evaluation of the significance of retrieved items
often relies on subjective assessments (Ghahramani and Heller, 2005). To simplify our
study, we will focus on particular setups where objective measures of success can be

Results 82

first trial second trial

1
0.8

2 0.6

1 0.4

0.2

0

U
l-i- Uï,

k t i h

RBScls
SBScls
Cosine

—U.4—1...,.

0 0.2 0.4 0.6 0.8 1
Recall

third trial

Cosine

Recall

RBSets --------
S B S e ls--------

0.8

0.6

0.4

0.2

0.2 0.6 0.8 10 0.4
Recall

fourth trial

RBSets

Cosine

0.2 0.4 0.6 0.8
Recall

F igure 6.3: Precision/recall curves for four different random queries of size 10
for the three algorithms: relational Bayesian sets (RBSets), regular Bayesian sets
with Bernoulli model (SBSets-B) and cosine distance.

derived.

Our main standard of comparison will be a “flattened Bayesian sets” algorithm (which
we will call “standard Bayesian sets,” S B S e t s , in constrast to the relational model,
R B S e t s). Using a multivariate independent Bernoulli model as in chapter 4, we join
linked pairs into single rows, and then apply the original algorithm directly on this
joined data. This algorithm serves the purpose of both measuring the loss of not
treating relational data as such, as well as the limitations of treating similarity of pairs
through the generative models of A and B instead of the generative model for the latent
predictive function p(-,).

In both experiments, objects are of the same type, and therefore, dimensionality. The
feature vector for each pair of objects consists of the V features for
object Æ, the V features of object and measures {Zi,. . . , Zy}, where Zy = {A^ x
B;^)/(||Æ|| X ||B- |̂|), 11 A* 11 being the Euclidean norm of the U-dimensional representation
of Æ. We also use a constant value (1) as part of the feature set as an intercept
term for the logistic regression. The Z features are exactly the ones used in the cosine
distance measure, a common and practical measure widely used in information retrieval
(Manning et al., 2007). They also have the important advantage of scaling well with the
number of variables in the database. Moreover, adopting such features will make our
comparisons in the next sections more fair, since we evaluate how well cosine distance
performs in our task. Notice represents asymmetric relationships as required in
our applications. For symmetric relationships, features such as \Al — Bi\ could be used

Results 83

student > course (comell) student > course (texas)

/ RBSets
I SBSets 1

SBSets2 —
Cosine I
Cosine2 - -

Recall

student -> course (Washington)

0.8

0.6

RBSets -
SBSets I -
SBSets2 -
Cosine I
Cosine2 —

0.4

0.2

0 0.2 0.4 0.80.6
Recall

I

0.8

0.6

0.4

0.2
0

TiRBSets
SBSets I

Cosine I
Cosine2 -—

0.2 0.4 0.6
Recall

0.8

student > course (Wisconsin)

Figure 6.4: Results for student —̂ œurse relationships.

instead.

6.4.1 Synthetic experiment

RBSets
SBSets I -----

Cosine 1
Cosine2

Recall

We first discuss a synthetic experiment where there is a known ground truth. We
generate data from a simulated model with six classes of relations represented by six
different instatiations of 0, {0q, 0 i , . . . , ©5 }. This simplified setup defines a multiclass
logistic softmax classifier that outputs a class label out of {0 ,1 ,..., 5}. Object spaces
A and B are the same, and defined by a multivariate Bernoulli distribution of 20
dimensions, where each attribute has independently a probability 1/2 of being 1, We
generate 500 objects, and considered all 500 ̂pairs to generate 250,000 feature vectors
X. For each X we evaluate our logistic classifier to generate a class label. If this
class is zero, we label the corresponding pair as “unlinked.” Otherwise, we label it
as “linked.” The intercept parameter for parameter vector 0q was set manually to
make class 0 appear in at least 99% the data^, thus corresponding to the usual sparse
matrices found in relational data.

The algorithms we evaluate do not know which of the 5 classes the linked pairs originally
corresponded to. However, since the labels are known through simulation, we are able
to tell how well ranked are points of a particular class given a query of pairs from the
same class. Our evaluation is as follows. We generate precision/recall curves for three
algorithms: our relational Bayesian sets R B S e t s , “flattened” standard Bayesian sets

^Values for vectors 01, 02, ..,85 were otherwise generated by independent multivariate Gaussian
distributions with zero mean and standard deviation of 10

Results 84

faculty -> project (cornel!) faculty -> project (texas)

RBSets --------
SBSets 1 --------
SBSets2 ----- --0.8

Cosine2 -I 06

I 0.4

0.2

0.2 0.4 0.6 0.8 I0
Recall

faculty -> project (Washington)

RBSets —
SBSets I —
SBSets2 —
Cosine I —
Cosine2 —

0.8
0.6
0.4

0.2

0 0.2 0.4 0.6 0.8

RBSets --------
SBSets 1 --------
S B S ets2 --------
Cosine!
Cosine2 —

0.8
0.6
0.4

0.2

00 0.2 0.4 0.6 0.8 1
Recall

faculty -> project (Wisconsin)

RBSets —
SBSets I —
SBSets2 —
Cosine!
Cosine2 —

0.8

0.6

0.4

0.2

00 0.2 0.4 0.6 0.8 I
Recall Recall

Figure 6.5: Results for faculty —* project relationships.

with Bernoulli model (S B S e t s) and cosine distance (summing over all elements in the
query). For each query, we randomly sampled 10 elements out of the pool of elements
of the least frequent class (about 1% of the total number of links), and ranked the
remaining 2320 linked pairs. We counted an element as a hit if it was originally from
the selected class.

R B S ets gives consistently better results for the top 50% retrievals. As an illustration,
we depicted four random queries of 10 items in Figure 6.3. Notice that sometimes
S B S ets can do reasonably, often achieving better precision at the bottom 40% recalls:
by the virtue of having few objects in the space of elements of this class, a few of them
will appear in pairs both in the query and outside of it, facilitating matching by object
similarity since half of the pair is already given as input. We conjecture this explains
the seemingly strong results of feature-based approaches on the bottom 40%. However,
when this does not happen the problem can get much harder, making S B S ets much
more sensitive to the query than RBSETS, as illustrated in some of the runs in Figure
6.3.

6.4.2 The W ebKB experiment

The WebKB data is a collection of webpages from several universities, where relations
are directed and given by hyperlinks (Craven et al., 1998). Webpages are classified as
being of type c o u r s e , d e p a r tm e n t , f a c u l ty , p r o je c t , s ta f f , s t u d e n t and o th e r . Documents
from four universities { c o m e l l , te x a s , W a sh in g to n a n d W isc o n s in) are also labeled as such.
Binary data was generated from this database using the same methods of Ghaliramani

Results 85

Table 6.1: Area under the precision/recall curve for each algorithm and query.
C l C2 RB SBl SB2 C l C2 RB SBl SB2

student course faculty project
Cornell

texas
Washington

Wisconsin

0.87
0.55
0.67
0.75

0.61
0.54
0.64
0.73

0.87
0.77
0.76
0.88

0.84
0.62
0.69
0.77

0.80
0.48
0.44
0.55

0.19
0.24
0.40
0.28

0.04
0.07
0.11
0.07

0.24
0.29
0.48
0.27

0.18
0.07
0.29
0.20

0.18
0.12
0.18
0.21

and Heller (2005). A total of 19,450 binary variables per object are generated. To
avoid introducing extra approximations into R B S e ts , we reduced dimensionality in
the original representation using singular value decomposition, obtaining 25 measures
per object. This also improved the results of our algorithm and cosine distance. For
S B S e ts , this is a way of creating correlations in the original feature space.

To evaluate the gain of our model over competitors, we will use the following setup. In
the first query, we are given the pairs of webpages of the type student course from
three of the labeled universities, and evaluate how relations are ranked in the fourth
university. Because we know class labels (while the algorithm does not), we can use
the class of the returned pairs to label a hit as being “relevant” or “irrelevant.” We
label a pair (A*,H-)̂ as relevant if and only if A* is of type student and is of type
course, and A* links into B^.

This is a very stringent criterion, since other types of relations could also be valid
(e.g., staff course appears to be a reasonable match). However, this facilitates
objective comparisons of algorithms. Also, the other class contains many types of pages,
which allows for possibilities such as a student “hobby” pair. Such pairs might be
hard to evaluate (e.g., is that particular hobby incrementally demanding in a way that
coursework is? Is it as fun as taking a machine learning course?) As a compromise,
we omit all pages from the category other in order to better clarify differences between
algorithms^.

Precision/ recall curves for the student —» course queries are shown in Figure 6.4. There
are four queries, each corresponding to a search over a specific university given all
valid student —> course pairs from the other three. There are four algorithms on each
evaluation: the standard Bayesian sets with the original 19,450 binary variables for
each object, plus another 19,450 binary variables, each corresponding to the product
of the respective variables in the original pair of objects (S B S e ts I); the standard
Bayesian sets with the original binary variables only (S B S ets2); a standard cosine
distance measure over the 25-dimensional representation (CosiNE 1); a cosine distance
measure using the 19,450-dimensional text data with TF-IDF weights (C o s in e 2); our
approach, RBSETS.

®As an extreme example, querying student —» course pairs from the Wisconsin university returned
student —> other pairs at the top four. However, these other pages were for some reason course pages -
such as http : / /www. c s . w ise. edu/~markhill/cs752. html

Results 86

In Figure 6.4, R B S e t s demonstrates consistently superior or equal precision-recall.
Although S B S ets performs well when asked to retrieve only student items or only
course items, it falls short of detecting what features of student and course are relevant
to predict a link. The discriminative model within R B S e t s conveys this information
through the parameters.

We also did an experiment with a query of type faculty —* project^ shown in Figure 6.5.
This time results between algorithms were closer. To make differences more evident,
we adopt a slightly different measure of success: we count as a 1 hit if the pair retrieved
is a faculty —> project pair, and count as a 0.5 hit for pairs of type student —> project
and staff —» project. Notice this is a much harder query. For instance, the structure of
the project webpages in the texas group was quite distinct from the other universities:
they are mostly very short, basically containing links for members of the project and
other project webpages.

Although the precision/recall curves convey a global picture of performance for each
algorithm, they might not be completely clear way of ranking approaches for cases where
curves intersect on several points. In order to summarize individual performances with
a single statistic, we computed the area under each precision/ recall curve (with linear
interpolation between points). Results are given in Table 6.2. Numbers in bold indicate
the algorithm with the highest area. The dominance of R B S e t s should be clear.

Silva et al. (2007a) describe another application of R B S e t s , in th is case for sym m etric

protein-protein interactions. In this application, there are no individual object features

on which C osiN E and S B S ets can rely (every m easures a pairwise feature), and

R B S e t s performs substantially better.

6.4.3 B iological A pplication

In this section we consider the problem of automatically discovering analogies between
pairs of proteins that are known to interact (Silva et al., 2007a). The goal is to find
new subclasses of interactions that might be relevant for further study: e.g., a pair of
proteins Pi '.P2 might belong to a class of interactions that is not yet fully formalized, and
scientists exploring the interaction between Pi:P2 might want to find other interactions
which behave in an analogous way. This can lead to novel ways of categorizing proteins
based on functional similarity.

In the molecular biology experiments presented here, we use data that indicates if two
pairs of proteins interact or not. This reduces to a binary class problem with two
classes: interaction exists and interaction does not exist. The type of interaction will
depend on the data. For instance, the MIPS data (Mewes and Amid, 2004)indicate co
complex protein pairs. It is hand curated data and does not include information from
high-throughput datasets. Since the population of protein-protein interactions depend

Results__ ^

on the experimental conditions under which they were measured, the subpopulations
that our method is meant to find also depend on such conditions.

The approach cannot succeed if the underlying model is not a good classifier of protein-
protein interactions. Results from Qi et al. (2006) indicate that logistic regression can
provide reasonable predictions for the data we use in our experiments. It is always
important to check this condition before using our method, since it assumes from the
outset that the data can be reasonably separated into the interaction/no interaction
classes.

We evaluate our approach on data collected from yeast cells. Our gold standard for
protein-protein interactions is the Munich Information Center for Protein Sequences
(MIPS) catalog (Mewes and Amid, 2004). Moreover, we make use of the MIPS classifi
cation system for proteins in the evaluation criteria described shortly. We also describe
competing approaches against which we compare our algorithm.

Evaluation is not a straightforward process, and is prone to subjective assessments and
extended discussions, as typically happens in the development of a new taxonomy. In
our studies, we propose an objective measure of evaluation that is used to rank different
algorithms. We use the classes lying on the bottom of the MIPS classification system,
for instance, M\ = 67.04.01.02 {other cation transporters (Na, K, Ca , NH4, etc.)) and
M 2 = 67.5 {transport mechanism) to generate a precision-recall curve and calculate the
area under that curve (AUC). The retrieval algorithm that generates the ranked list of
protein pairs does not receive any information concerning the MIPS taxonomy.

Notice that in the experiments that follow, we want to focus on very specific MIPS
subclasses. Our criterion is rather stringent, in the sense it requires a perfect match of
each protein pair with the MIPS categorization, which is not an unique gold standard
for analogical similarity. AUC scores will be lower than in typical information retrieval
applications.

We compare our approach against two widely used similarity metrics for information
retrieval, and one state-of-the-art method:

• the nearest neighbor measure (NN) with Euclidean distances: for a given query
set S and a given candidate point the distance between the point and the set
is given by the minimum distance between and any individual point in S;

• the cosine distance metric (COS): the distance between any two vectors is taken
as the inner product of the normalized vectors, where the normalized vector is
obtained by dividing it by its Euclidean norm. To measure the distance between
a point and a set, we take the average of the distances;

• the Gaussian Bayesian sets metric (G B S ets): Bayesian sets (Ghahramani and
Heller, 2005) give state-of-the-art performance for tasks such as retrieval of word
concepts and images. Since our features are continuous, we used a variation based

Results__ ^

on Gaussian models.

Because our variation of Bayesian sets is motivated by relational data, we call our ap
proach the relational Bayesian sets method (R B S ets) , to contrast it with the Gaussian
Bayesian set (G B S e ts) described above.

None of these other approaches can be interpreted as measures of analogical similarity,
since they do not take into account how the protein pair features (gene expression,
in our case) contribute to their interaction. We are not aware of any other measure
which does. It is true that a direct measure of analogical similarity is not theoretically
required to perform well according to our evaluation metric. However, we will see that
in this task our measure can often perform an order of magnitude better than other
approaches by reasoning analogically.

We chose 4 different protein-protein combinations for our benchmark. They were chosen
according to the MIPS categorization and shown below, along with the percentage of
interacting pairs they represent after we remove the query elements:

• Q uery 1; 67.04.01.02 x 67.5 (i.e., other cation transporters (Na, K, Ca , NH4,
etc.) X transport mechanism), 1% of the interacting pairs;

• Q uery 2: 40.03 x 06.13.01 (i.e., cytoplasm x cytoplasmic and nuclear degrada
tion), 2.5% of the interacting pairs;

• Q uery 3: 04.03.03 x 04.01.04 (i.e., tRNA processing x rRNA processing), 0.3%
of the interacting pairs;

• Q uery 4: 8.04 x 8.04 (i.e., mitochondrial transport x mitochondrial transport),
0.7% of the interacting pairs;

For each query evaluation, we randomly choose 15 elements of the given class of pairs
and run the 4 algorithms with the selected input. This is repeated 20 times. Figure 6.6
shows the average precision-recall curves for each query, with the coordinates of each
point in the curve being the average of the 20 query results.

As expected, such curves are lower than typical precision-recall curves for the binary
classification problem of predicting protein-protein interactions, such as the ones de
picted in Qi et al. (2006). A direct comparison between the classification curves , as
in Qi et al. (2006), and the retrieval curves of Figure 6.6 is not appropriate, since
the classification curves have a well-defined loss function (0/1, for wrong and correct
predictions)"^.

We can see how much better RBSets performs when compared against different ap
proaches. Table 6.2 summarizes the difference in the area under curve between our

is also clear that we are dealing with many fewer “positive examples” (i.e., the selected query
size) than in a common binary classification setup. In Qi et al.’s setup, there are thousands of “positive
examples” against 15 of ours.

Results 89

67.04.01.02x67.5 40.03 x 6.13.01
RBSets —

NN •• ■
GBSets
Cosine

0.5

0.4

8
•a 0.3

I 0.2

0.1

0 0.2 0.4 0.6 0.8 1

RBSets0.5
GBSets
Cosine0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1
Recall

4.03.03 x 4.01.04

Recall

8.04 X 8.04
RBSets0.5
GBSets
Cosine0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1

RBSets
NN

GBSets
Cosine

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1
Recall Recall

F igure 6.6: Average precision/recall curves for four different types of queries of
size 15. Each curve is an average over 20 random trials.

Query R B S ets - NN R B S ets - G B S ets R B S ets - C o sine

1 0.14 (0.05) 0.14 (0.05) 0.16 (0.05)
2 0.04 (0.03) 0.06 (0.02) 0.08 (0.02)
3 0.10 (0.03) 0.08 (0.03) 0.10 (0.04)
4 0.11 (0.04) 0.12 (0.04) 0.12 (0.04)

Table 6.2: Differences in the area under the curve between our algorithm and each of the
other three algorithms.Each entry contains the average (over 20 trials) and the respec
tive standard deviations in parenthesis. The areas under the curve for our algorithm
are (0.17,0.14,0.10,0.13), with respective standard deviations of (0.05,0.02,0.03,0.04).

approach and the others. All differences are significant under a sign test at a 0.01 level
(the differences are all positive).

The limited performance of Gaussian Bayesian sets can be attributed not only to the
relational nature of the data, which this model was not designed for, but also to the
multimodality of the distribution of a few variables. However, removing these variables
did not alter significantly the behavior the algorithm, which now might be due to the
loss of information given by these variables.

It is also interesting to visualize the distribution of the ratios of the performance of
different algorithms 6.7. For the nearest neighbor algorithm, we computed the ratio
between the area under curve of RBSETS and the area for NN in each of the 20 trials.
Gains over an order of magnitude are common.

There are some explanations for the rapid degradation of precision in Query 2 (40.03 x

Results 90

AUC(RBS8ts) / AUC(NN): 67,04.01.02 X 67.5

0 S 10 16 20 2S 30 36 « « so
AUC(RBSot8) / AUC(NN): 4.03.03 X 4.01.04

AUC(RBSetS) / AUC(NN): 40.03 X 6.13.01

AUC(RBSets) / AUC(NN): 8.04 x 8.04

Figure 6.7: Histogram of the ratio AUC(RBSets) / AUC(NN) for the four
different types of queries.

Discussion______________________ ^

06.13.01). The particular difficulty in this case is the fact that every protein in all
queries is also of MIPS types (5.01,40.03) (with the ribosome biogenesis type (5.01)
being one of the most numerous categories in the MIPS data). This is a good illustration
of the strictness of our evaluation criterion, since in some sense pairs of type 40.03 x
06.13.01 are also of type 40.03 x 5.01, 40.03 x 4.03, 5.01 x 5.01. Had we counted pairs
of type (5.01,40.03) x (5.01,40.03) as valid hits, we would have achieved very high
precision-recall curves (e.g., close to 100% precision in the top 50 hits), but the query
would then be uninteresting due to the high concentration of pairs of this subpopulation.
The restriction of perfect matching makes results appear less dramatic, but implicitly
it might be ranking relevant subpopulations within (5.01,40.03) x (5.01,40.03). Only
further studies on determining the significance of such pairs might provide a more fair
evaluation.

6.5 Discussion

We have presented a probabilistically sound framework for performing automated ana
logical reasoning based on retrieving groups of objects with similar relationships given
a query set. There is a great deal of future work to be done, since there is more to au
tomated analogical reasoning than determining whether complex structures are similar
(like judging how significant similarities are). One could also be interested in explaining
why the relations of retrieved objects are similar. Ultimately, in case-based reasoning
and planning problems (Kolodner, 1993), one might have to adapt the similar structures
to solve a new case or plan. The contribution of the work presented in this chapter is to
provide one step towards creating automated analogical reasoning system with direct
applicability to problems in information retrieval and exploratory data analysis.

Chapter 7

Infinite Overlapping M ixture
M odel

Although clustering data into mutually exclusive partitions has been an extremely suc
cessful approach to unsupervised learning, there are many situations in which a richer
model is needed to fully represent the data. This is the case in problems where data
points actually simultaneously belong to multiple, overlapping clusters. For example
a particular gene may have several functions, therefore belonging to several distinct
clusters of genes, and a biologist may want to discover these through unsupervised
modeling of gene expression data. In this chapter, we present a new nonparametric
Bayesian method, the Infinite Overlapping Mixture Model (lOMM), for modeling over
lapping clusters. The lOMM uses exponential family distributions to model each cluster
and forms an overlapping mixture by taking products of such distributions, much like
products of experts (Hinton, 2002). The lOMM allows an unbounded number of clus
ters, and assignments of points to (multiple) clusters is modeled using an Indian Buffet
Process (IBP), (Griffiths and Ghahramani, 2006). The lOMM has the desirable prop
erties of being able to focus in on overlapping regions while maintaining the ability to
model a potentially infinite number of clusters which may overlap. We derive MCMC
inference algorithms for the lOMM and show that these can be used to cluster movies
into multiple genres.

7.1 Overlapping Clustering

The problem of clustering data has led to many pivotal methods and models in pattern
recognition and machine learning which are widely used across many fields. Unfortu
nately, while clustering methods are wonderful tools for many applications, they are
actually quite limited. Clustering models traditionally assume that each data point be
longs to one and only one cluster; that is, there are K exhaustive and mutually exclusive

Overlapping Clustering__ ^

clusters explaining the data. In many situations the data being modeled can have a
much richer and more complex hidden representation than this single, discrete hid
den variable (the cluster or partition assignment) which clustering strives to discover.
For example, there may be overlapping regions where data points actually belong to
multiple clusters (e.g. the movie “Scream” could belong to both the “horror” movie
cluster and the “comedy” cluster of movies). Also, in collaborative filtering one might
be interested in predicting which movies someone will like based on previous movies
they have liked, and the patterns of movie preferences of others. A common approach
is to cluster people; clusters could characterize gender, age, ethnicity, or simply movie
taste (e.g. people who like horror movies). However, any particular person can clearly
belong to multiple such clusters at the same time, e.g. a female in her 20s who likes
horror movies.

In this paper, we develop a new model for overlapping clusters based on a principled
statistical framework. Consider the traditional mixture model (Bishop, 2006) for clus
tering, which can be written

K
p (X i|©) = ^ % (x * | ^ j)

i=i

where ttj represents the mixing weight (or mass) of cluster j , pj(xi|0j) is the density
for cluster j with parameters Oj, and x* represents data point i. This mixture model
can be rewritten

K
p(xi|0) = ^ p (z i) J|pj(x*|0j)"'*^ (7.1)

j=i

where z; = , . . . , zik] is a binary vector of length K , Zij e {0, l}Vij, ^ij = 1, and
P{zii = 0 , . . . , Z ij-i = 0, Zij = 1, Zij+i = 0 , . . . , ZiK = 0) = 7Tj. The setting Zij = 1
means data point i belongs to cluster j.

To create a model for overlapping clusters, two modifications can be made to this rep
resentation. First of all, removing the restriction Ylj ^ij — 1 allows binary vectors
with multiple ones in each row. In other words, instead of K possible binary z vec
tors allowed in the mixture model, this allows 2^ possible assignments to overlapping
clusters. Removing this restriction will also introduce a normalization constant for the
product which for exponential family densities pj(x) will be easy to compute. Secondly,
the number of such overlapping clusters K can be taken to infinity by making use of
the Beta-Binomial model underlying the Indian Buffet Process (IBP), (Griffiths and
Ghahramani, 2006). This infinite limit means that the model is not restricted a priori
to having a fixed number of clusters; and it allows the data to determine how many
clusters are required. In the case where the pj{-) are Gaussian densities, this model
will define overlapping clusters in terms of the region where the mass of all Gaussians
j , such that Zij = 1, overlaps; this region itself will define a Gaussian since the product
of Gaussians is Gaussian. Other exponential family models (e.g. multinomials for text

Overlapping Mixture Models 94

data) will work analogously. In sections 7.2 and 7.3 we describe this Infinite Overlap
ping Mixture Model in detail, and in section 7.4 we outline how to perform inference
in the model.

This model for overlapping clusters can be seen as a modern nonparametric general
ization of the multiple cause factorial models (Saund, 1994; Ghaluramani, 1995). More
over, it can also be seen as an infinite nonparametric generalization of the influential
products-of-experts model (Hinton, 2002). These relationships will be discussed further
in section 7.5. Lastly, we give experimental results for our model in section 8.3.

7.2 Overlapping M ixture Models

We are interested in clustering data such that each data point is allowed to belong
to multiple clusters, instead of being constrained to a single cluster. In order to do
this we need a sensible way of modeling individual data points that belong to many
clusters, and which derives from the broad models for each individual cluster. We
modify a traditional finite mixture model (7.1) to achieve this. First we remove the
restriction that the binary assignment vector, z, for each data point must sum to 1, and
secondly, as we will discuss in the next section, we use a prior that allows a potentially
infinite number of clusters, where the actual required number of clusters is inferred
automatically from the data. Removing the restiction that z sums to one in (7.1),
results in a model in which, if a data point belongs simultaneously to several clusters,
the distribution of that point is given by the product of component distributions:

p(xf|zi, O) = - (7.2)
 ̂ k

Here z* = (zn . . . zik) is a binary vector of cluster assignments for data point i, $k
are the parameters of cluster k, and c is the normalizing constant which depends on z*
and 0 , and which is needed to ensure that the density integrates to one. Multiplying
distributions is a very natural and general way of encoding the idea of overlapping
clusters—each cluster provides a soft constraint on the probable region for observing a
data point, and overlapping clusters correspond to a conjunction of these constaints.

If the models we are using, p{xi\6k), are in the exponential family then:

p (x i|0 *) = (7.3)

where s(xi) are the sufficient statistics, <l){0k) are the natural parameters, and / and g
are non-negative functions. Substituting into equation (7.2) we get:

L k

Overlapping Mixture Models 95

1.5

0.5

-2

Figure 7.1: Product of two Gaussians. Here the product of the two blue Gaus
sians (/xi = — 1, //2 = 1 and o-j = 0.2, = 0.6) is the red Gaussian.

From this we see that, conditioned on ẑ , the product of exponential family distributions
results in a distribution in the same family (7.3), but with new natural parameters
0 = It follows that normalization constants like c are not problematic
when the component densities are in the exponential family.

In the case of Gaussian clusters:

p(xi|zi,Ai,E) = ie x p j
L k

k k)

Letting S~^ = Ylk^ik^k^ and m = J2k^ik^k^t^k from within equation (7.5), we can
see that the new parameters for the Gaussian product model are E = 5 and p, = 5m.

In the case of binary data and multivariate Bernoulli clusters:

p(xi|zi,0) = - exp j V^itXirflog(-) I
1m j

(7.6)

where d indexes the dimensions of x%. Using equation (7.6) we can derive that the new
parameters for the Bernoulli product model are:

0d = (7.7)

These product models have the desirable property that multiple cluster assignments
will help focus the model on a particular overlapping region. See Figure 7.1 for a
simple illustration. The two blue Gaussians each model independent Gaussian clusters
(zi = [10] and Z2 = [0 1]); the red Gaussian models the overlap of the two blue
Gaussians clusters and defines the overlapping cluster zg = [1 1].

Infinite Overlapping Mixture Models via the IBP_____________________________ ^

7.3 Infinite Overlapping Mixture Models via the IBP

The model in the previous section defines a generative distribution for overlapping
clusters by forming conjunctions of component models. The key component in this
model is the binary vector z* which indicates which clusters data point i belongs to.
We have defined in the previous section how the component models are combined,
given the binary assignment vector z%; we now turn to the distribution over these
binary assignment vectors.

A very simple model assigns each element Zik an independent Bernoulli distribution

~ Bernoulli (TTfc) (7.8)

where Tr/t is the mixing proportion, or probability of belonging to cluster k. Note that
the TTfc need not sum to 1 over k, since belonging to one cluster does not exclude
belonging to others. We give each nk a Beta distribution

TTfclo! ~ B e ta (^ ,l) (7.9)

which is conjugate to the Bernoulli, where a controls the expected number of clusters
a data point will belong to.

A classical problem in clustering, which also occurs in our overlapping clustering model,
is how to choose the number of clusters K. While it is possible to perform model
comparison for varying K, this is both computationally costly and statistically hard to
justify (Neal, 2000). A more elegant solution is to define a nonparametric model which
allows an unbounded number of clusters, K.

In order to derive the nonparametric model, we have defined the prior over tt* in (7.9)
to scale so that as K grows larger, the prior probability of each data point belonging to
cluster k decreases. Using this scaling it is possible to take the limit AT —> oo, integrate
out all the mixing proportions tt, and still obtain a well-defined distribution over the
binary assignment vectors z. This distribution over the assignment vectors results in a
process known as the Indian Buffet Process (IBP), (Griffiths and Ghahramani, 2006).

The IBP defines a distribution which can be used to represent a potentially infinite
number of hidden features, or in this case cluster assignments, associated with data
points. More specifically, it defines a distribution over infinite binary matrices, Z,
which can be derived by starting with a distribution over finite N x K matrices given
by (7.8) and (7.9), where N is the number of data items, K is the number of features,
and the ith row of Z is z*, and taking the limit as K goes to infinity. Exchangeability
of the rows is preserved, and the columns are independent.

The IBP is a simple generative process which results from this distribution, with an
analogy to customers eating from Indian Buffets. N customers line up on one side

Infinite Overlapping Mixture Models via the IBP 97

Prior sample from IBP

30

40

5 a
2 0

Clusters

Figure 7.2; The first 50 rows of the IBP sample (Z matrix) which was used to
assign data points to clusters in Figure 7.4b.

of an Indian Buffet with infinitely many dishes. The first customer serves himself
from Poisson(a) dishes (at which point his plate is full). The next customers serve
themselves dishes in proportion to their popularity, such that customer i serves herself
dish k with probability where nik is the number of previous customer which have
served themselves that dish. After passing all previously sampled dishes, customer i
then proceeds to try Poisson(j) new dishes. In terms of binary matrices, each of the
N customers is a row in the matrix, each dish is a column, and each binary value in
the matrix, Zik, indicates whether customer i helped themselves to dish k. A sample of
such a matrix is shown in Figure 7.2.

Markov Chain Monte Carlo algorithms have been used to do inference in this model
(Griffiths and Ghahramani, 2005; Gôrür et al., 2006). These algorithms need to com
pute the full conditional distribution of the assignment variables:

(7.10)

where X is the complete data matrix and Z is the full binary feature matrix, and
Z_(jjfc) is the binary matrix excluding element Zik- In order to compute the last term
in equation (7.10), we can generalize from the finite binary matrix case. Starting from

lOMM Learning__ 98

(7.8) and (7.9) and integrating out rck gives:

i,fc) — [P{^ik\'^k)P{.'^k\^—i,k)d7^k
Jo
TTl-î k + ^ (7.11)

where zjk and is z% excluding. Taking the limit as AT oo results
in:

P{zik = l|z-i,fc) = —̂ (7.12)

for any k in which rri-i^k > 0. The number of new features associated with i should be
drawn from a Poisson(^) distribution. The IBP is described in full detail in Griffiths
and Ghahramani (2005).

Incorporating this IBP prior over the assignment vectors into the OMM defined in
section 7.2 results in an Infinite Overlapping Mixture Model (lOMM), with all the
components required to do inference and learning.

7.4 lOM M Learning

We use Markov Chain Monte Carlo (MCMC) to do inference in our Infinite Overlapping
Mixture Model (lOMM). The MCMC algorithm that we implemented is based on
Algorithm 7.1, where k+ is the number of clusters that data points, excluding i, belong
to. Since the product model is non-conjugate we use Metropolis-Hastings (MH) to
resample the model parameters, 0.

A lgorithm 7.1 MCMC for the lOMM.

Initialize 0
for J = 1 to Numlters do

for i = 1 to AT do
for /c = 1 to do

Zik Zik\Z—î k̂ G
end for
Propose adding new clusters
Accept or reject proposal

end for
Resample 0 |Z , X using MH proposal

end for

At each iteration we resample the binary matrix, Z, using Gibbs sampling for existing
clusters k (i.e. those clusters which have data points other than i as members), where:

p(zik = l |z _ i,fc ,X i,0) oc ^ ^ ^ ^ p (xi|0 ,Z ife = l,z_ i,fe)

Related Work 99

Figure 7.3: Left: lOMM where the cluster component densities are Gaussian
(contours at 1 s.d.). Right: Factorial Model. In each figure, the original Gaussian
clusters are shown in red, while the Gaussian cluster modeling membership in both
of the original clusters is shown in blue. The lOMM is able to focus in on the area
where the original two Gaussians overlap, taking their (unrestricted) covariances
into account. The factorial model yields a Gaussian whose mean is the sum of the
means of the original two Gaussians, and the (typically axis-aligned) covariance is
restricted to be the same for all clusters, since it results from the same additive
noise.

and
p (2ifc = 0 | z _ i , f c ,X i , e) oc — p(Xi | 0 , Zik = 0 ,

After resampling the existing cluster assignments for a data point i, we then propose
adding assignments of i to new clusters using Metropolis-Hastings and following Meeds
et al. (2007). Here the number of new clusters and their parameters are proposed
jointly, where the number of new clusters is drawn from a Poisson(^) and the new
parameters for those clusters are drawn from the prior.

After resampling the entire Z matrix we resample each drawing from the proposal
distribution centered around the current value of Okd- The acceptance ratio for is:

CL —
p (^ ^ \ z ,e 'M ^ d) n e k d K i ,u >)
p {^ \z ,eM 0 d)T (0 'je k 4 ,i^) (7.13)

where 6'̂ is Bd substituting 0'̂ ^̂ for Okd̂ T is the transition probability between different
values of Okd, and w controls the width of this transition proposal distribution. For
example, for binary data we can use multivariate Bernoulli clusters (7.6), (7.7). A
sensible proposal for 6kd might be ~ Beta(w^tj,^(l - ^w))-

7.5 Related Work

The infinite overlapping mixture model has many interesting relationships to other
statistical models. In this section we review some of these relationships, highlighting
similarities and differences.

The likelihood function in equation (7.2) is a product of likelihoods from different

Related Work__100

component densities, which is highly reminiscent of the products of experts (PoE) model
(Hinton, 2002). In a PoE, the data model is:

Comparing to (7.2), we see that while in the lOMM, for each data point, a product
of a subset of the experts is taken depending on the setting of z*, in the PoE, each data
point is assumed to be generated by the product of all experts. This would appear to
be a large difference; however we will now show that it is not. Consider the special case
of a PoE where each expert is a mixture of a uniform and a Gaussian distribution (a
“unigauss” distribution), described in Section 4 of Hinton (2002).^ For this model, using
l{x) = 1, Vx, to denote the unnormalized uniform distribution (where normalization is
subsumed in c above):

Pfc(Xil̂ fc) = (1 - TTfc) l(Xi) + 7rfcAT(Xil/Xfc,Efc)

= P{^\zik,0k)p{zik\ek)
ZikG{0,l}

where p{zik = l\6k) = ^k and p{xi\zik,6k) = A/'(xi|/Xfc, Efc)"'**'. Conditioning on z% we
now see that

p(Xi|Zj,©) OC
k

which is of the same form as in the lOMM (7.2). More generally, we can therefore
view our lOMM as an infinite nonpaxametric Bayesian Product of Experts, under the
assumption that each expert is a mixture of a uniform and an exponential family
distribution.

Another line of thought relates the lOMM to multiple cause or factorial models (Saund,
1994; Hinton and Zemel, 1994; Ghahramani, 1995; Sahami et al., 1996). Factorial
models are closely related to factor analysis. Each data point x* is represented by a
latent vector z* = (z%i,. . . , z*;)̂. In factor analysis, z* is assumed to be multivariate
Gaussian, and x* and Zj are assumed to be linearly related. A factorial model can be
obtained by letting each Zik be discrete, the binary case Zik G {0,1} corresponds to data
points having 2^ possible feature vectors. The corresponding distributions over data for
each possible feature vector are formed by somehow combining parameters associated
with the individual features. In Hinton and Zemel (1994) and Ghahramani (1995),
the parameters of the individual features are simply added to form the mean of the
distribution of x% given Zj, with subsequent Gaussian noise added. That is, E\x.i] — Az*,
where A is some D x K matrix whose columns are means for the individual features,
and the binary vector z% picks out which columns to include in the sum for each point.
This idea was used to model gene expression data by Lu et al. (2004); it was also

^Strictly speaking a “uniform” on the reals is improper, but this can be approximated by a Gaussian
with very large variance.

Experiments 101

F igure 7.4: Two draws from the lOMM with Gaussian cluster models, a) left:
A draw with 6 independent Gaussian clusters. Label A shows data points which
belong to both the red and magenta clusters, label B shows data points which
belong to both the red and blue clusters, and label C shows datapoints which
belong to both the magenta and blue clusters, b) right: A larger draw from the
lOMM with more independent clusters. Part of the IBP sample (Z matrix) used
for assignments of data points to clusters is shown in Figure 7.2

independently re-invented by Segal et al. (2003) and Battle et al. (2005) and also used
to discover multiple overlapping processes in gene expression data. Recently, the model
of Segal et al. (2003) was extended by Banerjee et al. (2005) from Gaussians to other
exponential family distributions.

While all the models we have reviewed in the previous paragraph are clearly useful and
share with the lOMM the idea of using a binary latent vector z* to model presence or ab
sence of a hidden feature (which could be seen as indicating membership in a particular
“cluster”), they do not make reasonable models for overlapping clusters. The additive
combination rule of the factorial models 15 [xj] = Az{ does not capture the intuition of
overlapping clusters, but rather of multiple processes that add together (Figure 7.3).
For example, if the first and second columns of A are identical (ai = a2), then one
would expect that data points that simultaneously belong to both the first and second
cluster {zi\ = 1 = zi2) should have the same mean as the first cluster (ai). While this
is the case for the lOMM due to the overlapping model we define ((7.2)), this is not
the case in any of the factorial models described in the previous paragraph.

7.6 Experiments

Since the lOMM is a generative model, we first tried generating from the model using
full covariance Gaussians (7.5). Figure 7.4 shows two illustrative datasets that were
generated in 2D along with the Gaussians which represent each independent cluster in
the model. The IBP sample (or Z matrix) from which Figure 7.4b was generated is
given in Figure 7.2. The parameters for each independent cluster were drawn from the
prior (Normal-Inverse Wishaxt), and the data points were drawn from the product of
Gaussians which corresponded to their cluster assignments from the Z matrix. We can

Experiments 102

I. I'll
• . I I H, I I I I . I ,

» II Kv I III : i;

i n i i I *
I m i l w I m i l «1

I m i r M I : m I I ## !
r* m U;am

-li ; i Ï4 \ m# iiimi '1 ' n t
■ r n . n m - , m a M i m n . J i i M t i m u . * » « . I I a
Mita JiK 11:̂ 1 IitiiMn * 1 M jM

ââSîLi ifilbiii' (X i 11 *'

Figure 7.5: The U* (left) and learned Û (right) matrices showing the number of
shared clusters for each pair of data points in the synthetic data set.

see from these figures that even with a small number of components the lOMM can
generate richly structured data sets.

We also generated data from the lOMM with Bernoulli clusters, and then used this
synthetic data to test lOMM learning. This synthetic data consisted of iV = 100 data
points in D = 32 dimensions, and had K = 11 underlying independent clusters. We
ran our MCMC sampler for 4000 iterations, burning in the first 1000. Because the
clusters that specific columns in the Z matrix correspond to can be permuted, we
cannot directly compare the learned Z matrix to the true Z matrix which generated
the data. Instead we compute the matrix U = which is invariant to column
permutations. This N x N matrix computes the number of shared clusters between
each pair of data points in the data set, and is therefore a good column-invariant way of
determining how well the underlying cluster assignment structure is being discovered.
Since we have many MCMC samples from which to compute the learned U matrix
(which we will call Û"), we average all the U matrices together to get Ù. The true U
matrix, C/*, is constructed from the true Z matrix. Both U* and U are shown in Figure
7.5. Since U* is a single sample and Û is averaged over many samples, 17 is a little
lighter (it is reasonable to expect that a few samples will assign a data point to even
improbable clusters) and smoother, but the structure of U is extremely similar to that
of U*. We then rounded the values in U to the nearest integer and compared with
U*. Table 7.1 provides summary statistics for Û in terms of the percentage of pairs of
data points in U which share the exact same number of clusters as the same pair in
C/*, differ by at most 1 cluster, and differ by at most 2 clusters. Figure 7.6 (right) is a
box plot showing the distribution of the number of inferred overlaps in Û for each true
number of overlaps in U*. We can see that the model gives reasonable estimates of
the number of overlaps, but is less able to estimate the rare cases of large numbers of
overlaps. Lastly, Figure 7.6 (left) plots the inferred number of clusters at each MCMC
iteration, and suggests reasonable mixing of the sampler.

Experiments 103

20

1000 2000
MCMC iterations

3000 4000

3.5

2.5

1.5

2 3
True number of overlaps

50 1 4

Figure 7.6: Left: The number of discovered clusters, K, across MCMC iterations.
The true number of clusters is marked in red (11). Right: A box plot showing
the distribution of inferred number of shared clusters in U for each true number
of shared cluster in U*, for every data point pair.

Statistic Percent
|(£/-£/*)! < 0
|(!7-£/•)! < 1
\ (Û - U ') \ < 2

69.96
99.12
100.00

Table 7.1: Summary statistics for learned Û. Reports the percentage of pairs in Ù which have
the same number of shared clusters as the same pair in U*, or are off by at most 1 or 2 shared
clusters.

Lastly, we used the lOMM to cluster movies by genre using the MovieLens data set of
people rating movies. We normalized the data over movies such that the ratings for
each movie summed to 1 and then binarized the matrix so that a (movie,user) entry
was given a value 1 if the new rating value was greater than the mean of the values of
all movies that user rated. We then removed users with less than 20 movies given value
1, and movies which less than 10 users assigned a value 1 to. This resulted in a binary
matrix of 797 movies by 426 users from which we selected 500 movies at random. These
500 movies belonged to 18 diflFerent genres. Unfortunately, an unsupervised learning
algorithm does not know what a genre is, and would be very unlikely to cluster movies
in accordance with them unless we specify them in advance. In particular people’s
movie preferences are not simply correlated with genres, and there are many other
latent factors which can determine preference (e.g. actors, budget, recency, script, etc.)
Instead, we took a semi-supervised approach, randomly selecting 200 movies, fixing the
Z matrix for those data points to their correct genres, and trying to learn the remaining
300 movies using the cluster information given by the fixed 200. We ran our lOMM
sampler for 3000 iterations, burning in the first 1000 samples. If a movie was assigned
to a genre in over half the sampled Z matrices, we said that the movie was assigned
to that genre by the lOMM. We compared these lOMM results to two sets of results
obtained by using a Dirichlet Process Mixture model (DPM), which can only assign
each movie to a single genre. DPM inference was run semi-supervised on the same
data set by replicating each of the 200 fixed movies rrii times, once for each of the rrii

Discussion 104

Genre # Movies FI lOMM FI DPMI FI DPM2
Drama 183 0 .4978 0.2953 0.3046

Comedy 168 0.6032 0.5000 0.4962
Romance 81 0 .3030 0.2581 0.2581

Action 78 0.5696 0 .6 6 6 7 0 .6 6 6 7
Thriller 72 0 .2737 0.1404 0.1333

Adventure 50 0.3091 0.0000 0.0000
Children 46 0.3434 0.5714 0 .6 0 4 7
Horror 45 0 .7826 0.6667 0.6780
Sci-Fi 38 0 .3256 0.1000 0.0952
Crime 34 0 .2746 0.1818 0.1818

Animation 21 0 .2667 0.1429 0.1429

Table 7.2: The FI scores for the lOMM versus the DPM by genre. The first column is the
genre name, the second column is the number of movies in the data set which belong to that
genre, the third column is the lOMM FI score, the fourth column is the DPMI FI score, and
the last column is the DPM2 FI score for that genre.

genres they belong to. We compared the lOMM results to the DPM results using an
FI score (FI = where p is precision and r is recall), which takes into account both
precision and recall, and which can be computed from the true MovieLens assignments
of movies to genres. The difference between the two sets of DPM results is that in
DPMI genre membership is decided in the same way as in the lOMM, thus allowing
movies to belong to only one genre. In DPM2, we allow movies to belong to multiple
genres by saying that a movie belongs to a genre if the movie was assigned to that
genre in at least M /{K + 1) samples, where M is the total number of samples and K
is the known true number of genres that movie actually belongs to. These results are
presented in table 7.2, on the 11 genres with at least 10 movie members in the fixed
set.

We can see that the lOMM has a better FI score on 9 of the 11 genres, illustrating that
the flexibility of assigning movies to multiple genres leads to better performance even
when evaluating single genre membership. It is worth noting that the DPM in this case
is fully conjugate and that we took care to integrate out all parameters, resulting in a
sampler with much faster mixing. Despite this, the DPM was not able to capture the
genre assignments as well as the lOMM.

7.7 Discussion
We presented a new nonparametric Bayesian method, the Infinite Overlapping Mixture
Model, for modeling overlapping clusters. The lOMM extends traditional mixture
models to allow data points membership in an unrestricted number of clusters, where
the total number of clusters is itself unbounded. The lOMM uses products of models in
the exponential family to model overlaps, allowing it to focus in on overlapping regions.
We derived MCMC inference algorithms for the lOMM and applied it to the problem
of clustering movies into genres, where we showed that its performance is superior to
that of Dirichlet Process Mixtures, which restrict movies to a single genre. Our novel
approach to discovering overlapping clusters should be applicable to data modeling

Discussion 105

problems in a wide range of fields.

Chapter 8

Bayesian Partial M em bership
M odel

In this chapter we present a principled Bayesian framework for modeling partial mem
berships of data points to clusters. Unlike a standard mixture model which assumes
that each data point belongs to one and only one mixture component, or cluster, a par
tial membership model allows data points to have fractional membership in multiple
clusters. Algorithms which assign data points partial memberships to clusters can be
useful for tasks such as clustering genes based on microarray data (Gasch and Eisen,
2002) and global positioning and orbit determination (Soto et al., 2007). Our Bayesian
Partial Membership Model (BPM) uses exponential family distributions to model each
cluster, and a product of these distibtutions, with weighted parameters, to model each
datapoint. Here the weights correspond to the degree to which the datapoint belongs
to each cluster. All parameters in the BPM are continuous, so we can use Hybrid
Monte Carlo to perform inference and learning. We discuss relationships between the
BPM and Latent Dirichlet Allocation, Mixed Membership models. Exponential Family
PCA, and fuzzy clustering. Lastly, we show some experimental results and discuss
nonparametric extensions to the model.

8.1 Partial Membership

Partial membership is the cornerstone of fuzzy set theory. While in traditional set
theory, items either belong to a set or they don’t, fuzzy set theory equips sets with
a membership function /Xfc(x) where 0 < /it(z) < 1 denotes the degree to which x
partially belongs to set k.

The idea of partial membership is in fact quite intuitive and practically useful. Consider,
for example, an individual with a mixed ethnic background, say, partly asian and partly
white. It seems sensible to represent that individual as partly belonging to two different

A Partial Membership Model __ 107

classes or sets. Such a partial membership representation may be relevant to predicting
that individual’s phenotype, or their food preferences. We clearly need models that
can coherently represent partial membership.

Note that partial membership is conceptually very different from uncertain membership.
Being certain that a person is partly asian and partly white, is very different that being
uncertain about a person’s ethnic background. More information about the person,
such as DNA tests, could resolve uncertainty, but cannot make the person change his
partial membership.

The notion that probabilistic models are unable to handle partial membership has
been used to argue that probability is a subtheory of fuzzy logic, or that fuzzy logic
is different in character from probability (Zadeh, 1965; Kosko, 1992). While it might
be easy for many researchers in machine learning and statistics to dismiss fuzzy logic,
fuzzy set theory, fuzzy clustering, and their myriad fuzzy derivatives, it is undeniable
that the ability of this framework to represent partial membership has captured the
imagination of many researchers. A literature search using Google Scholar reveals over
45,000 papers mentioning fuzzy clustering, and the classic papers in this field have been
cited as many times as the most cited papers on topics usually covered in the NIPS
community, such as Support Vector Machines, Bayesian methods, and neural networks.

In this chapter we describe a fully probabilistic approach to data modelling with partial
membership. Our approach makes use of a simple way of representing partial mem
bership using continuous latent variables. We define a model which can cluster data
but which fundamentally assumes that data points can have partial membership in the
clusters.

8.2 A Partial Membership Model

We can derive our method for modeling partial memberships from a standard finite
mixture model. In a finite mixture model the probability of a data point, x„ given 0 ,
which contains the parameters for each of the K mixture components (clusters) is;

K
p(x„|0) = ^PfcPfe(x„|0fc) (8.1)

fe=i

where pt is the probability distribution of mixture component k, and p/t is the mixing
proportion (fraction of data points belonging to) component k ^

Equation (8 .1) can be rewritten using indicator variables Tr̂ = ['ïïn\T̂ n2 • ■-t̂ uk] as
follows:

^This notation differs slightly from standard notation for mixture models.

A Partial Membership Model 108

Figure 8.1: Left: A mixture model with two Gaussian mixture components,
or clusters, can generate data from the two distributions shown. Right: Partial
membership model with the same two clusters can generate data from all the
distributions shown (there are actually infinitely many), which lie between the
two original clusters.

K

p(Xn|0} =
fc=l

’̂ n k (8 .2)

where 7r„fc G 0,1 and 7r„fc = 1. Here we can notice that if itnk = 1 this means that
data point n belongs to cluster k (and also p(7Tn} = Pk)- Therefore the 7r„fe denote
memberships of data points to clusters.

In order to obtain a model for partial memberships we can relax the constraint 7r„fc G

{0,1} to now allow 7r„jfc to take any continuous value in the range [0,1]. However, in
order to compute the probability of the data under this continuous relaxation of a finite
mixture model, we need to modify equation (8 .2) as follows:

r 1 ^
p(x„|0) = / p{T^n)-'\\Pk{^n\OkY^'^dTVn

 ̂k=l
(8.3)

The modifications include integrating over all values of 7r„ instead of summing, and
since the product over clusters K from equation (8 .2) no longer normalizes we put in
a normalizing constant c, which is a function of 7r„ and 0 . Equation (8.3) now gives
us a model for partial membership.

We illustrate the difference between our partial membership model and a standard
mixture model in figure 8 .1 . Here we can see contours of the Gaussian distributions
which can generate data in the mixture model (left) and the partial membership model
(right), where both models are using the same two Gaussian clusters. As an example,
if one of these clusters represents the ethnicity “White British” and the other cluster
represents the ethnicity “Pakistani”, then the figure illustrates that the partial mem
bership model will be able to capture someone of mixed ethnicity, whose features may
lie in between those of either ethic group (for example skin color or nose size), better
than the mixture model.

Conjugate-Exponential Models___ 109

8.3 Conjugate-Exponential Models

In the previous section we derived a partial membership model, given by equation
(8.3). However we have not yet discussed the form of the distribution for each clus
ter, Pfc(x„|0 jfc), and we will now focus on the case when these distributions are in the
exponential family.

As described in chapter 2, an eooponential family distribution can be written in the form:

Pki^nWk) = exp{s{Xn)^dk + h{Xn) + (8.4)

where a(x„) is a vector depending on the data known as the sufficient statistics^ Ok is a
vector of natural parameters, h{xn) is a function of the data, and g{Bk) is a function of
the parameters which ensures that the probability normalizes to one when integrating
or summing over x„. We will use the short-hand x„ ~ Expon(^t) to denote that x„ is
drawn from an exponential family distribution with natural parameters Ok-

If we plug the exponential family distribution (equation (8.4)) into our partial mem
bership model (equation (8.3)) it follows that:

Xnkn, e ~ Expon(̂ T̂ nkOk) (8.5)
k

where x„ comes from the same exponential family distribution as the original clusters
P k , but with new natural parameters which are a convex combination of the natural
parameters of the original clusters. Ok, weighted by 7r„fc, the partial membership values
for data point x^. Computation of the normalizing constant c is therefore always
tractable when pk is in the exponential family.

We will use the short-hand, 0 ~ Conj(A, u) to refer to a probability distribution which
is conjugate to the exponential family distribution p(xnl ĵfc) and has the form:

p{0) OC exp{A^0 4- I'giO)} (8 .6)

where A and u are hyperparameters of the prior (see chapter 2 for more details).

Given the above conjugacy, it is easy to show that p{0\x) = Conj(A 4 - s(x), v 4 -1). In
general, for a data set V = {x„ : n = 1 ... N], we have p{0\V) = Conj(A4 - ^ ^ «(x^),
N). We now have the tools to define our Bayesian partial membership model.

8.4 Bayesian Partial Membership Models

Consider a model with K clusters, and a data set V = {x„ : n = 1 ... N}. Let a
be a AT-dimensional vector of positive hyperparameters. We start by drawing mixture

Bayesian Partial Membership Models 110

Figure 8.2: Graphical model for the BPM

weights from a Dirichlet distribution:

p ~ Dir(a) (8.7)

Here p ~ Dir(a) is shorthand for p{p\oc) — where c =
r'dCfc FIa; ^ normalization constant which can be expressed in terms of
the Gamma function^. For each data point, n we draw a partial membership vector 7r„
which represents how much that data point belongs to each of the K clusters:

7T„ ~ Dir(ap). (8.8)

The parameter a is a positive scaling constant drawn, for example, from an exponential
distribution p{a) = be~^, where 6 > 0 is a constant. We assume that each cluster k
is characterized by an exponential family distribution with natural parameters Ok and
that

~ Conj(A,i/). (8 .9)

Given all these latent variables, each data point is drawn from

Xn ~ E xp on (^ TVnk^k) (8.10)

In order to get an intuition for what the functions of the parameters we have just de
fined are, we return to the ethnicity example. Here, each cluster A: is an ethnicity (for
example, “White British” and “Pakistani”) and the parameters Ok define a distribution
over features for each of the k ethnic groups (for example, how likely it is that someone
from that ethnic group likes pizza or marmite or bindi bhaji). The parameter p gives
the ethnic composition of the population (for example, 75% “White British” and 25%
“Pakistani”), while a controls how similar to the population an individual is expected

^The Gamma function generalizes the factorial to positive reals: r(z) = (z — l)r(x - 1), r(n) =
(n — 1)! for integer n

Bayesian Partial Membership Models 111

a = 0.01 a = 0.1

-10

a = 1 a = 100

-1 0

Figure 8.3: 3000 BPM generated data points with partial assignments to 3
Gaussian clusters shown in red, as parameter a varies.

to be (Are 100% of the people themselves 75% “White British” and 25% “Pakistani”?
Or are 75% of the people 100% “White British” and the rest are 100% “Pakistani”?
Or somewhere in between?). For each person n, 7r„ gives their individual ethnic com
position, and finally Xn gives their individual feature values (e.g. how much they like
marmite). The graphical model representing this generative process is drawn in Figure
8 .2.

Since the Bayesian Partial Membership Model is a generative model, we tried generating
data from it using full-covariance Gaussian clusters. Figure 8.3 shows the results of
generating 3000 data points from our model with K = 3 clusters as the value of
parameter a changes. We can see that as the value of a increases data points tend to
have partial membership in more clusters. In fact we can prove the following lemmas:

Lemma 8.1 In the limit that a —> 0 the exponential family BPM is a standard miodure
model with K components and mixing proportions p.

Lemma 8.2 In the limit that o —> oo the exponential family BPM model has a single
component with natural parameters Pk^k-

Proofs of these lemmas follow simply from taking the limits of equation (8 .8) as a goes
to 0 and oo respectively.

BPM Learning__

8.5 BPM Learning

We can represent the observed data set D as an jVxD matrix X with rows corresponding
to Xn, where D is the number of input features.^ Let & he a K x D matrix with rows
dk and II be an TV X AT matrix with rows TTn- Learning in the BPM consists of inferring
all unknown variables, fl = {II, 0 , p, a} given X. We treat the top level variables in
the graphical model in Figure 8 .2 , = {a. A, u, b} as fixed hyperparameters, although
these could also be learned from data. Our goal is to infer p(fI|X, Ÿ), for which we
decide to employ Markov chain Monte Carlo (MCMC).

Our key observation for MCMC is that even though BPMs contain discrete mixture
models as a special case, all of the unknown variables fi of the BPM are continuous.
Moreover, it is possible to take derivatives of the log of the joint probability of all
variables with respect to fl. This makes it possible to do inference using a full Hybrid
Monte Carlo (HMC) algorithm on all parameters. Hybrid (or Hamiltonian) Monte
Carlo is an MCMC procedure which overcomes the random walk behaviour of more
traditional Metropolis or Gibbs sampling algorithms by making use of the derivatives
of the log probability (Neal, 1993; MacKay, 2003). In high dimensions, this derivative
information can lead to a dramatically faster mixing of the Markov chain, analogous
to how optimization using derivatives is often much faster than using greedy random
search.

We start by writing the probability of all parameters and variables'^ in our model:

p(X, n \^) = p (X |n , 0)p (0 |A , u)p{n\a, p)p{a\b)p{p\a) (8.11)

We assume that the hyperparameter u = 1, and omit it from our derivation. Since the
forms of all distributions on the right side of equation (8.11) are given in section 8.4
we can easily see that:

logp(X,n|'*^) = l0 g F (^ 0 !fc) - ^ logr(a!fc) + ^ (« fc - l)log/9fc
k k k

+ log6 - 6 a + TVlogF [~ N '^ \ogT {apk)
\ k / k

- 1) logTTnifc + ^ A + g{0k) + f(A)j
n k

TTnkOkV^n + h(Xn) + g I ^ TTnkOk
k \ k /

(8 .12)

The Hybrid Monte Carlo algorithm simulates dynamics of a system with continuous

®We assume that the data is represented in its natural representation for the exponential family
likelihood, so that s(x„) = x„.

formal distinction between hidden variables, e.g. the {7r„}, and unknown parameters is not
necessary as they are both unknowns.

Related Work_______________ 113

state n on an energy function €{ft) = - logp(X, 0 |^) . The derivatives of the energy
function provide forces on the state variables which encourage the system to find
high probability regions, while maintaining detailed balance to ensure that the correct
equilibrium distribution over states is achieved (Neal, 1993). Since f t has constraints,
e.g. a > 0 and YlkPk = 1 , we use a tranformation of variables so that the new state
variables are unconstrained, and we perform dynamics in this unconstrained space.
Specifically, we use a = pk = and TTnk = HMC to be valid in
this new space, the chain rule needs to be applied to the derivatives of S, and the prior
needs to be transformed through the Jacobian of the change of variables. For example,
p(a)da = p{r))dr} implies p{rj) = p{a){da/dr]) = ap{a). We also extended the HMC
procedure to handle missing inputs in a principled manner, by analytically integrating
them out, as this was required for some of our applications. More details and general
pseudocode for HMC can be found in MacKay (2003).

8.6 Related Work

The BPM model has interesting relations to several models that have been proposed
in machine learning, statistics and pattern recognition. We describe these relationships
here.

Latent D irichlet Allocation: Using the notation introduced above, the BPM model
and LDA (Blei et al., 2003) both incorporate a A'-dimensional Dirichlet distributed tt
variable. In LDA, 7r„ are the mixing proportions of the topic mixture for each doc
ument n. Each word in document n can then be seen as having been generated by
topic k, with probability TTnk, where the word distribution for topic k, is given by a
multinomial distribution with some parameters. Ok- The BPM also combines TTnk with
some exponential family parameters Ok, but here the way in which they are combined
does not result in a mixture model from which another variable (e.g. a word) is assumed
to be generated. In contrast, the data points are indexed by n directly, and therefore
exist at the document level of LDA. Each data point is assumed to have come from an
exponential family distribution parameterized by a weighted sum of natural parame
ters 0, where the weights are given by 7r„ for data point n. In LDA, data is organized
at two levels (e.g. documents and words). More generally, mixed membership (MM)
models (Erosheva et al., 2004), or admixture models, assume that each data attribute
(e.g. words) of the data point (e.g. document) is drawn independently from a mixture
distribution given the membership vector for the data point, Xnd ~ YLk'^nkP{x\Pkd)‘
LDA and mixed membership models do not average natural parameters of exponen
tial family distributions like the BPM. LDA or MM models could not generate the
continuous densities in Fig 8.3 from full-covariance Gaussians. The analagous gener
ative process for MM models is given in figure 8.4. Since data attributes are drawn

Related Work 114

a = 0.01 a = 0.1

• # * 4 *

• # ••••

* V -

a = 1 a= 100

4 # *
* '# # -# #
* * « *

Figure 8.4: Generative plot for MM model with 3 Gaussian clusters

independently, the original clusters (not explicity shown) are one dimensional and have
means at 0, 10 and 20 for both attribute dimensions. We can notice from the plot
that this model always generates a mixture of 9 Gaussians, which is a very different
behavior than the BPM, and clearly not as suitable for the general modeling of partial
memberships. LDA only makes sense when the objects (e.g. documents) being mod
elled constitute bags of exchangeable sub-objects (e.g. words). Our model makes no
such assumption. Moreover, in LDA and MM models there is a discrete latent variable
for every sub-object corresponding to which mixture component that sub-object was
drawn from. This large number of discrete latent variables makes MCMC sampling in
LDA potentially much more expensive than in BPM models.

Exponential Family PCA: Our model bears an interesting relationship to Expo
nential Family PCA (Collins et al., 2002). EPCA was originally formulated as the
solution to an optimization problem based on Bregman divergences, while our model is
a fully probabilistic model in which all parameters can be integrated out via MCMC.
However, it is possible to think of EPCA as the likelihood function of a probabilis
tic model, which coupled with a prior on the parameters, would make it possible to
do Bayesian inference in EPCA and would render it closer to our model. However,
our model was entirely motivated by the idea of partial membership in clusters, which
is enforced by forming convex combinations of the natural parameters of exponential
family models, while EPCA is based on linear combinations of the parameters. This
has several consequences: EPCA does not naturally reduce to clustering, none of the
variables can be interpreted as partial memberships, and the coefficients define a plane
rather than a convex region in parameter space.

The recent work of Buntine and Jakulin (2006) focusing on the analysis of discrete data
is also closely related to the BPM model. The framework of Buntine and Jakulin (2006)
section HI B expresses a model for discrete data in terms of linear mixtures of dual (or
mean) exponential family parameters where MAP inference is performed. Section V B

Experiments 115

Statistic Percent
|(U-f/*)l < 0 .1

|(Û-U*)| < 0 . 2

|(Û -t/*)| <0.3
|(Û-i7*)| <0.4
|(Û-U*)| <0.5

60.40
84.28
95.48
99.68

1 0 0 . 0 0

Figure 8.5: a) left - matrix U* showing the true shared partial memberships
for pairs of data points, b) right - matrix Û showing the learned shared partial
memberships, c) Summary statistics for learned U. Reports the percentag e of
pairs in Û whose difference from U* in terms of the amount of shared partial
memberships is at most the given threshold (0.1 - 0.5).

also provides insights on differences between using dual and natural parameters.

Fuzzy Clustering: Fuzzy K-means clustering (Bezdek, 1981) iteratively minimizes
N K

the following objective: J = ^ ^ cjt), where 7 > 1 is an exponent parame-
n = l fc=l

ter, link represents the degree of membership of data point n in cluster fc (Xlfc '^nk = 1),
and d^(x„, Cfc) is a measure of squared distance between data point x„ and cluster cen
ter ct. By varying 7 it is possible to attain different amounts of partial membership,
where the limiting case 7 = 1 is K-means with no partial membership. Although the
TT parameters represent partial membership, none of the variables have probabilistic
interpretations.

8.7 Experiments

We generated a synthetic binary data set from the BPM, and used this to test BPM
learning. The synthetic data set had 50 data points which each have 32 dimensions and
can hold partial memberships in 3 clusters. We ran our Hybrid Monte Carlo sampler
for 4000 iterations, burning in the first half. In order to compare our learned partial
membership assignments for data points (H ,̂) to the true ones (Ht) for this synthetic
data set, we compute {Û = H^HJ) and {U* = H^HJ), which basically give the total
amount of cluster membership shared between each pair of data points, and is invariant
to permutations of cluster labels. Both of these matrices can be seen in figure 8.5. One
can see that the structure of these two matrices is quite similar, and that the BPM
is learning the synthetic data reeisonably. For a more quantitative measure table 8.5c
gives statistics on the number of pairs of data points whose learned shared membership
differs from the true shared membership by more than a given threshold (the range of
this statistic is [0 ,1]).

We also used the BPM to model two “real-world” data sets. The first is senate roll call
data from the 107th US congress (2001-2002) (.Jakulin, 2004), and the second is a data
set of images of sunsets and towers.

Experiments 116

The senate roll call data is a matrix of 99 senators (one senator died in 2002 and neither
he or his replacement is included) by 633 votes. It also includes the outcome of each
vote, which is treated as an additional data point (like a senator who always voted the
actual outcome). The matrix contained binary features for yea and nay votes, and we
used the BPM to cluster this data set using K = 2 clusters. There are missing values
in this dataset but this can easily be dealt with in the HMC log probability calculations
by explicitly representing both 0 and 1 binary values and leaving out missing values.
The results are given in figure 8 .6 . The line in figure 8 . 6 represents the amount of
membership of each senator in one of the clusters (we used the “Democrat” cluster,
where senators on the far left have partial memberships very close to 0 , and those on the
far right have partial memberships extremely close to 1). Since there are two clusters,
and the amount of membership always sums to 1 across clusters, the figure looks the
same regardless of whether we are looking at the “Democrat” or “Republican” cluster.
We can see that most Republicans and Democrats are tightly clustered at the ends
of the line (and have partial memberships very close to 0 and 1), but that there is
a fraction of senators (around 2 0 %) which lies somewhere reasonably in between the
extreme partial memberships of 0 or 1. Interesting properties of this figure include
the location of Senator Jeffords who left the Republican party in 2001 to become an
independent who caucused with the Democrats. Also Senator Chafee who is known
as a moderate Republican and who often voted with the Democrats (for example, he
was the only Republican to vote against authorizing the use of force in Iraq), and
Senator Miller a conservative Democrat who supported George Bush over John Kerry
in the 2004 US Presidential elections. Lastly, it is interesting to note the location of
the Outcome data point, which is very much in the middle. This makes sense since
the 107th congress was split 50-50 (with Republican Dick Cheney breaking ties), until
Senator Jeffords became an Independent at which point the Democrats had a one seat
majority.

We also tried running both fuzzy k-means clustering and Dirichlet Process Mixture
models (DPMs) on this data set. While fuzzy k-means found roughly similar rankings
of the senators in terms of membership to the “Democrat” cluster, the exact ranking
and, in particular, the amount of partial membership (7t„) each senator had in the
cluster was very sensitive to the fuzzy exponent parameter, which is typically set by
hand. Figure 8.7a plots the amount of membership for the Outcome data point in black,
as well as the most extreme Republican, Senator Ensign, in red, and the most extreme
Democrat, Senator Schumer, in blue, as a function of the fuzzy exponent parameter.
We can see in this plot that as the assignment of the Outcome data point begins to
reach a value even reasonably close to 0.5, the most extreme Republican already has
20% membership in the “Democrat” cluster. This reduction in range does not make
sense semantically, and presents a trade-off between finding reasonable values for 7r„ in
the middle of the range, versus at the extremes. This kind of sensitivity to parameters
does not exist in our BPM model, which models both extreme and middle range values

Experiments 117

Algorithm Mean Median Min Max “Outcome”
BPM 187 168 93 422 224
DPM 196 178 1 1 2 412 245

Table 8.1: Comparison between the BPM and a DPM in terms of negative log predictive
probability (in bits) across senators.

well.

We tried using a DPM to model this data set where we ran the DPM for 1000 it
erations of Gibbs sampling, sampling both assignments and concentration parameter.
The DPM confidently finds 4 clusters: one cluster consists solely of Democrats, one
consists solely of Republicans, the third cluster has 9 of the most moderate Democrats
and Republicans plus the “vote outcome” variable, and the last cluster has just one
member. Rollings (D-SC). Figure 8.7b is a 100x100 matrix showing the overlap of clus
ter assignments for pairs of senators, averaged over 500 samples (there are no changes
in relative assignments, the DPM is completely confident). The interpretation of the
data provided by the DPM is very different from the BPM model’s. The DPM does
not use uncertainty in cluster membership to model Senators with intermediate views.
Rather, it creates an entirely new cluster to model these Senators. This makes sense
for the data as viewed by the DPM: there is ample data in the roll calls that these
Senators are moderate — it is not the case that there is uncertainty about whether
they fall in line with hard- core Democrats or Republicans. This highlights the fact
that the responsibilities in a mixture model (such as the DPM) cannot and should
not be interpreted as partial membership, they are representations of uncertainty in
full membership. The BPM model, however, explicitly models the partial membership,
and can, for example, represent the fact that a Senator might be best characterized as
moderate (and quantify how moderate they are). In order to quantify this comparison
we calculated the negative log predictive probability (in bits) across senators for the
BPM and the DPM (Table 8.1). We look at a number of different measures: the mean,
median, minimum and maximum number of bits required to encode a senator’s votes.
We also look at the number of bits needed to encode the “Outcome” in particular. On
all of these measures except for maximum, the BPM performs better than the DPM,
showing that the BPM is a superior model for this data set.

Lastly, we used the BPM to model images of sunsets and towers. The dataset consisted
of 329 images of sunsets or towers, each of which was represented by 240 binary simple
texture and color features (see chapter 5). Partial assignments to i f = 2 clusters were
learned, and figure 8 . 8 provides an illustrative result. The top row of the figure has
the three images with the most membership in the “sunset” cluster, the bottom row
contains the three images with the most membership in the “tower” cluster, and the
middle row shows the 3 images which have closest to 50/50 membership in each cluster
{'^nk ~ 0.5). In this dataset, as well as all the datasets described in this section, our

Experiments 118

s n i i i i j i n i j l ” - — •*
liiMSMàèïailiélSi^lîéisîJii

Figure 8.6: Analysis of the partial membership results on the Senate roll call
data from 2001-2002. The line shows amount of membership in the “Democrat”
cluster with the left of the line being the lowest and the right the highest.

IJ
1.5 2 2.5

exponent

F igure 8.7: a) left - fuzzy k-means: plot of the partial membership values for
the Outcome data point (in black) and the most extreme Republican (in red)
and Democrat (in blue) as a function of the fuzzy exponent parameter, b) right
- DPMs: an ordered 100x100 matrix showing the fraction of times each pair of
senators was assigned to the same cluster, averaged over 500 Gibbs sampling iter
ations.

Conclusions and Future Work 119

Figure 8.8: Tower and Sunset images. The top row are the images found to have
largest membership in the “sunset” cluster, the bottom row are images found to
have largest membership in the “tower” cluster, and the middle row are the images
which have the most even membership in both clusters.

HMC sampler was very fast, giving reasonable results within tens of seconds.

8.8 Conclusions and Future Work

In summary, we have described a fully probabilistic approach to data modelling with
partial membership using continuous latent variables, which can be seen as a relaxation
of clustering with finite mixture models. We employed a full Hybrid Monte Carlo
algorithm for inference, and our experience with HMC has been very positive. Despite
the general reputation of MCMC methods for being slow, our model using HMC seems
to discover sensible partial membership structure after surprisingly few samples.

In the future we would like to develop a nonparametric version of this model. The
most obvious way to try to generalize this model would be with a Hierarchical Dirichlet
Process (Teh et al., 2006). However, this would involve averaging over infinitely many
potential clusters, which is both computationally infeasible, and also undesirable from
the point of view that each data point should have non-zero partial membership in only
a few (certainly finite) number of clusters. An more promising alternative is to use an
Indian Buffet Process (Griffiths and Ghahramani, 2005), where each 1 in a row in an
IBP sample matrix would represent a cluster in which the data point corresponding
to that row has non-zero partial membership, and then draw the continuous values for
those partial memberships conditioned on that IBP matrix.

Chapter 9

Summary and future work

This thesis has presented several Bayesian methods for clustering data and extensions
of the clustering paradigm. We have strived to make these methods as efficient as
possible so that they may be run on larger scale data sets. Chapter 3 presents a
novel Bayesian method for performing hierarchical cluster with the same efficiency as
traditional hierarchical clustering algorithms. We also show that this method can be
used as a fast approximation for doing inference in Dirichlet Process Mixture models.
In chapter 4 we describe an algorithm for retrieving information based on queries in
the form of sets of examples. Bayesian “clustering on demand” can be used to retrieve
items, often times by merely computing a sparse matrix-vector product. Chapter 5
applies the ideas presented in chapter 4 to performing content-based image retrieval.
Chapter 6 extends this work to discriminative learning, addressing the problem of
automated analogical reasoning. We present a nonparametric Bayesian method for
performing overlapping clustering in chapter 7, which allows an unbounded number
of clusters and assignments to clusters. Lastly, chapter 8 describes a Bayesian partial
membership model for modeling the partial memberships of data points to clusters.
This model can be derived from a continuous relaxation of a standard mixture model,
which allows Hybrid Monte Carlo to be used to perform more efficient inference.

There are many exciting directions for future research. It would be interesting to further
explore nonparametric Bayesian methods, particularly as they pertain to developing
richer, more complex methods for unsupervised learning at data modeling. There
appears to be a growing interest in the further incorporation of probabilistic inference
into information retrieval, which often demands efficient algorithms, and this would
also be an interesting area for future work. In chapter 3 we presented a combinatorial
lower bound on the marginal likelihood of a DPM, and in future research I would be
interested in further exploring these type of combinatorial lower bounds, possibly for
other nonparametric Bayesian methods, or possibly to improve the current bound for
DPMs.

Bibliography

Amazon, h ttp : / / www. amazon. com.

Behold image search online, h ttp ://photo .beholdsearch.com /.

eBay, h ttp : //www. ebay. com.

Google, http://www.google.com.

Google sets, h ttp ://lab s .g o o g le .co m /se ts .

PubMed. h ttp :/ / www.n cb i.nlm.n ih .gov/entrez/query. fcgi?DB=pubmed.

UniProt. h ttp : //www. p i r . u n ip ro t. org/.

D. Aidons. Exchangeability and related topics. In Vcole d ’t de probabilits de Saint-
Flour, XIII, 1983. (page 24)

J. Assfalg, A. D. Bimbo, and P. Pala. Using multiple examples for content-based image
retrieval. In Proceedings of the IEEE International Conference on Multimedia and
Expo (ICME 2000), 2000. (page 75)

A. Banerjee, C. Krumpelman, S. Basu, R. Mooney, and J. Ghosh. Model based over
lapping clustering. In International Conference on Knowledge Discovery and Data
Mining KDD, 2005. (page 1 0 1)

J. D. Banfield and A. E. Raftery. Model-based Gaussian and non-Gaussian clustering.
Biometrics, 49:803-821, 1993. (pages 23 and 47)

A. Battle, E. Segal, and D. Roller. Probabilistic discovery of overlapping cellular
processes and their regulation. Journal of Computational Biology, 12(7):909-927,
2005. (page 1 0 1)

J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms, kluwer,
1981. (page 115)

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. (page 93)

Blackwell and MacQueen. Ferguson distributions via Polya urn schemes. Ann. Stats.,
1973. (page 31)

http://photo.beholdsearch.com/
http://www.google.com
http://labs.google.com/sets
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed

BIBLIOGRAPHY__m

D. Blei. Probabilistic models of text and images. PhD. Thesis, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, 2004.

(page 23)

D. Blei and M. Jordan. Variational methods for Dirichlet process mixture models.
Technical Report 674, UC Berkeley, 2004. (page 48)

D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. JMLR, 2003. (page 113)

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
WWW7/Computer Networks, 30(1-7):107-117, 1998. (page 49)

W. Buntine and A. Jakulin. Discrete component analysis. LNCS, 3940, 2006. (page 114)

H. Chipman, E. George, and R. McCulloch. Bayesian CART model search (with discus
sion). Journal of the American Statistical Association, 93:935-960, 1998. (page 47)

M. Collins, S. Dasgupta, and R. Schapire. A generalization of principal components
analysis to the exponential family. In NIPS, 2002. (page 114)

P. Cowans. Probabilistic Document Modeling. PhD thesis. University of Cambridge,
2006. (page 50)

I. Cox, M. Miller, T. Minka, T. Papathornas, and P. Yianilos. The Bayesian image re
trieval system, pichunter: Theory, implementation, and psychophysical experiments.
IEEE Tran. On Image Processing, 9:20-37, 2000. URL c ite s e e r .is t .p su .e d u /
article/coxOObayesian.html. (page 74)

R. Cox. Probability, frequency, and reasonable expectation. Am. Jour. Phys., 14:1-13,
1946. (page 16)

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slat
tery. Learning to extract symbolic knowledge from the World Wide Web. Proceedings
of AAAP98, pages 509-516, 1998. (page 84)

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, 1977. (page 21)

D. Denison, C. Holmes, B. Mallick, and A. Smith. Bayesian Methods for Nonlinear
Classification and Regression. Wiley, 2002. (page 47)

R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley, 2001. (page 36)

R. O. Duda and P. E. Hart. Pattern classification and scene analysis. Wiley, 1973.
(pages 12 and 27)

S. Dzeroski and N. Lavrac. Relational Data Mining. Springer, 2001. (page 81)

BIBLIOGRAPHY__US

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci, 95:14863-8, 1998.

(page 12)

M. Ernst and M. Banks. Humans integrate visual and haptic information in a statisti
cally optimal way. Nature, 415:429-433, 2002. (page 15)

E. Erosheva, S. Fienberg, and J. LaflEerty. Mixed membership models of scientific
publications. PNAS, 101, 2004. (page 113)

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P.Yanker. Query by image and video
content: the qbic system. IEEE Computer, 28:23-32, 1995. (page 73)

R. French. The computational modeling of analogy-making. Trends in Cognitive Sci
ences, 6, 2002. (page 78)

N. Friedman. Pcluster: Probabilistic agglomerative clustering of gene expression pro
files. Technical Report 2003-80, Herbew University, 2003. (page 47)

A. Gasch and M. Eisen. Exploring the conditional coregulation of yeast gene expression
through fuzzy k-means clustering. Genome Biol., 3(11), 2002, (page 106)

L. Getoor, N. Friedman, D. Roller, and B. Taskar. Learning probabilistic models of
link structure. JMLR, 3:679-707, 2002. (page 78)

Z. Ghahramani. Factorial learning and the EM algorithm. In Adv. in Neural Informa
tion Processing Systems NIPS, 1995. (pages 94 and 100)

Z. Ghahramani and M. Beal. Variational inference for Bayesian mixture of factor
analysers. Advances in Neural Information Processing Systems, 12, 1999. (page 22)

Z. Ghahramani and K. Heller. Bayesian sets. 18th NIPS, 2005.
(pages 66, 78, 81, 84, and 88)

D. Goriir, Jakel, and C. Rasmussen. A choice model with inifinitely many latent
features. In International Conference on Machine Learning ICML, 2006.

(pages 25 and 97)

P. H. Gosselin and M. Cord. A comparison of active classification methods for content-
based image retrieval. In First International Workshop on Computer Vision meets
Databases (CVDB 2004), 2004. URL c ite se e r ,1 s t ,p8u,edu/730059.html.

(page 74)

T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet
process. Technical report, Gatsby Computational Neuroscience Unit, 2005.

(pages 97, 98, and 119)

BIBLIOGRAPHY__m

T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet
process. In Adv. in Neural Information Processing Systems NIPS, 2006.

(pages 24, 25, 92, 93, and 96)

J. Hartigan and M. Wong. A k-means clustering algorithm. Applied Statistics, 28(1):
100-108, 1979. (pages 12 and 20)

D. Heesch, M. Pickering, S. Riiger, and A. Yavlinsky. Video retrieval with a browsing
framework using key frames. In Proceedings of TRECVID, 2003. (page 65)

K. Heller and Z. Ghahramani. A nonparametric bayesian approach to modeling over
lapping clusters. In AISTATS, 2007.

K. A. Heller and Z. Ghahramani. Bayesian hierarchical clustering. In ICML, 2005a.

K. A. Heller and Z. Ghahramani. Randomized algorithms for fast Bayesian hierarchi
cal clustering. In PASCAL Workshop on Statistics and Optimization of Clustering,
2005b.

K. A. Heller and Z. Ghahramani. A simple Bayesian framework for content-based image
retrieval. In CVPR, 2006.

G. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14, 2002. (pages 92, 94, and 100)

G. Hinton, P. Dayan, B. Prey, and R. Neal. The wake-sleep algorithm for unsupervised
neural networks. Science, 268:1158-1161, 1995. (page 15)

G. E. Hinton and R. Zemel. Autoencoders, minimum description length, and helmholtz
free energy. In Adv. in Neural Info. Proc. Systems NIPS, 1994. (page 100)

S. C. H. Hoi and M. R. Lyu. A semi-supervised active learning framework for image
retrieval. In Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2005), 2005. (page 75)

P. Howarth and S. Riiger. Evaluation of texture features for content-based image
retrieval. In International Conference on Image and Video Retrieval (CIVR), 2004.

(page 65)

M. Iwayama and T. Tokunaga. Hierarchical Bayesian clustering for automatic text
classification. In C. E. Mellish, editor, Proceedings of IJCAI-95, 1 4 th International
Joint Conference on Artificial Intelligence, pages 1322-1327, Montreal, CA, 1995.
Morgan Kaufmann Publishers, San Francisco, US. (page 47)

T. Jaakkola and M. Jordan. Bayesian parameter estimation via variational bounds.
Statistics and Computing, 10:25-37, 2000. (pages 79 and 80)

A. Jakulin, 2004. URL h ttp ://w w w .a ila b .s i/a le k s /p o litic s /. (page 115)

http://www.ailab.si/aleks/politics/

BIBLIOGRAPHY__m

E. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press,
2003. (page 16)

D. Jensen and J. Neville. Linkage and autocorrelation cause feature selection bias in
relational learning. Proceedings of ICML, 2002. (page 81)

S. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241-254, 1967.
(pages 12 and 20)

C. Kemp, T. L. Griffiths, S. Stromsten, and J. B. Tenenbaum. Semi-supervised learning
with trees. In NIPS 16, 2004. (page 47)

C. Kemp, J. Tenenbaum, T. Griffiths, T. Yamada, and N. Ueda. Learning systems of
concepts with an infinite relational model. Proceedings of AAAP06, 2006. (page 78)

D. Knill and A. Pouget. The Bayesian brain: the role of uncertainty in neural coding
and computation. Trends in Neuroscience, 27(12):712-719, 2004. (page 15)

D. Knill and W. Richards, editors. Perception as Bayesian Inference. Cambridge
University Press, 1996. (page 15)

J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993. (page 91)

K. Kording and D. Wolpert. Bayesian integration in sensorimotor learning. Nature,
427:244-247, 2004. (page 15)

B. Kosko. Neural Networks and Fuzzy Systems. Prentice-Hall, 1992. (page 107)

J. Lafferty and C. Zhai. Probabilistic relevance models based on document and query
generation. In Language Modeling for Information Retrieval, volume 13 of Kluwer
International Series on Information Retrieval. Kluwer, 2003. (page 50)

X. Lu, M. Hauskrecht, and R. Day. Modeling cellular processes with variational
bayesian cooperative vector quantizer. In Proceedings of the Pacific Symposium on
Biocomputing PSB, 2004. (page 100)

D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2003. (pages 112 and 113)

C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. In
press, 2007. (pages 49 and 82)

Z. Marx, I. Dagan, J. Buhmann, and E. Shamir. Couple clustering: a method for
detecting structural correspondence. JMLR, 3:747-780, 2002. (page 78)

A. K. McCallum. Bow: A toolkit for statistical language modeling, text retrieval,
classification and clustering, http://www.cs.cmu.edu/~mccallum/bow, 1996.

(page 37)

http://www.cs.cmu.edu/~mccallum/bow

BIBLIOGRAPHY 126

G. McLachlan and D. A. Peel. Finite Mixture Models. Wiley, 2000. (pages 12 and 20)

E. Meeds, Z. Ghahramani, S. Roweis, and R. Neal. Modeling dyadic data with binary
latent factors. In Adv. in Neural Information Processing Systems NIPS, 2007.

(page 99)

M. Meila and J. Shi. Learning segmentation with random walk. In Neural Information
Processing Systems, 2001. (pages 12 and 20)

R. Memisevic and G. Hinton. Multiple relational embedding. 18th NIPS, 2005. (page 78)

H. Mewes and C. Amid. Mips: analysis and annotation of proteins from whole genome.
Nucleic Acids Research, 2004. (page 87)

T. Minka and Z. Ghahramani. Expectation propagation for infinite mixtures. In NIPS
Workshop on Nonparametric Bayesian Methods and Infinite Models, 2003. (page 48)

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995. (page 45)

R. Neal. Probabilistic inference using markov chain monte carlo methods. Technical
report. University of Toronto, 1993. (pages 112 and 113)

R. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal
of Computational and Graphical Statistics, 9:249-265, 2000. (pages 22, 23, 24, and 96)

R. M. Neal. Density modeling and clustering using dirichlet diffusion trees. In Bayesian
Statistics 7, pages 619-629, 2003. (page 47)

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algo
rithm. In NIPS, 2002. (pages 12 and 20)

R. Nosofsky. Attention, similarity, and the identification-categorization relationship.
Journal of Experimental Psychology: General, 115(l):39-57, 1986. (page 50)

J. Pearl. Probabilistic Reasoning in Expert Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988. (page 25)

D. Pelleg and A. Moore. Accelerating exact k -means algorithms with geometric rea
soning. In KDD, 1999. (page 12)

J. Ponte and W. Croft. A language modeling approach to information retrieval. In
SIGIR, 1998. (page 50)

A. Popescul and L. H. Ungar. Structural logistic regression for link analysis. Multi-
Relational Data Mining Workshop at KDD-2003, 2003. (pages 78 and 81)

Y. Qi, Z. Bar-Joseph, and J. Klein-Seetharaman. Evaluation of different biological data
and computational classification methods for use in protein interaction prediction.
Bioinformatics, 63:490-500, 2006. (pages 87 and 88)

BIBLIOGRAPHY__m

M. F. Ramoni, P. Sébastian!, and I. S. Kohane. Cluster analysis of gene expression
dynamics. Proc Nat Acad Soi, 99(14):9121-9126, 2002. (page 47)

C. E. Rasmussen. The infinite Gaussian mixture model. In NIPS 12, pages 554-560,
2000. (pages 23, 31, and 48)

S. Richardson and P. Green. On bayesian analysis of mixtures with an unknown number
of components. Journal of the Royal Statistical Society, 1997. (page 23)

S. Robertson and K. Sparck-Jones. Relevance weighting of search terms. J. Amer. Soc.
Information Science, 27(3): 129-146, 1976. (page 50)

S. Roweis and Z. Ghahramani. A unifying review of hnear gaussian models. Neural
Computation, 1997. (page 21)

Y. Rui, T. Huang, and S. Mehrotra. Content-Based image retrieval with relevance feed
back in MARS. In Proceedings of IEEE International Conference on Image Process
ing, pages 815-818, 1997. URL citeseer.ist.p su .edu /ru i97con ten tbased .h tin l.

(page 74)

M. Sahami, M. A. Hearst, and E. Saund. Applying the multiple cause mixture model to
text categorization. In International Conference on Machine Learning ICML, 1996.

(page 100)

G. Salton and M. McGill. Introduction to Modem Information Retrieval. McGraw-Hill,
1983. (page 49)

E. Saund. Unsupervised learning of mixtures of multiple causes in binary data. In Adv.
in Neural Info. Proc. Systems NIPS, 1994. (pages 94 and 100)

B. Schatz. Information retrieval in digital libraries: Bringing search to the net. Science,
275:327-334, 1997. (page 49)

E. Segal, D. Roller, and D. Ormoneit. Probabilistic abstraction hierarchies. In NIPS
1 4 , 2002. (page 47)

E. Segal, A. Battle, and D. Roller. Decomposing gene expression into cellular processes.
In Proceedings of the Pacific Symposium on Biocomputing, 2003. (page 101)

R. N. Shepard. Toward a universal law of generalization for psychological science.
Science, 237(4820):1317-1323, 1987. (page 50)

J, Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000. (pages 12 and 20)

R. Silva, E. Airoldi, and R. Heller. Small sets of interacting proteins suggest latent
linkage mechanisms through analogical reasoning. Gatshy Technical Report, GCNU
TR 2007-001, 2007a. (page 86)

BIBLIOGRAPHY___

R. Silva, K. Heller, and Z. Ghahramani. Analogical reasoning with relational bayesian
sets. In AISTATS^ 2007b. (pages 76, 77, 78, and 81)

A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based
image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(12), 2000. (page 73)

J. Soto, M. Aguiar, and A. Flores-Sintas. A fuzzy clustering application to precise
orbit determination. Journal of Computational and Applied Mathematics, 204, 2007.

(page 106)

A. Stolcke and S. Omohundro. Hidden Markov Model induction by bayesian model
merging. In NIPS 5, pages 11-18, 1993. (page 47)

H. Tamura, S. Mori, and T. Yamawaki. Textual features corresponding to visual per
ception. IEEE Trans on Systems, Man and Cybernetics, 8:460-472, 1978. (page 65)

R. Tatusov, E. Koonin, and D. Lipman. A genomic perspective on protein families.
Science, 278(5338):631-637, 1997. http://www.ncbi.nlm.nih.gov/COG/. (page 57)

Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical dirichlet processes. JASA, 101
(476), 2006. (pages 23 and 119)

J. Tenenbaum and T. Griffiths. Generalization, similarity, and Bayesian inference.
Behavioral and Brain Sciences, 24:629-640, 2001. (pages 50 and 51)

P. Turney and M. Littman. Corpus-based learning of analogies and semantic relations.
Machine Learning Journal, 60:251-278, 2005. (page 78)

A. Tversky. Features of similarity. Psychological Review, 89:123-154, 1977. (page 50)

S. Vaithyanathan and B. Dom. Model-based hierarchical clustering. In UAI, 2000.
(page 47)

N. Vasconcelos. Minimum probability of error image retrieval. IEEE Transactions on
Signal Processing, 52(8), 2004. (page 73)

N. Vasconcelos and A. Lippman. A bayesian framework for content-based indexing and
retrieval. In Proceedings of IEEE Data Compression Conference, 1998. (page 73)

D. J. Ward. Adaptive Computer Interfaces. PhD thesis. University of Cambridge, 2001.
(page 47)

C. Williams. A MCMC approach to hierarchical mixture modelling. In NIPS 12, 2000.
(page 47)

F. Wood, T. Griffiths, and Z. Ghahramani. A non-parametric Bayesian method for
inferring hidden causes. In UAI, 2006. (page 25)

http://www.ncbi.nlm.nih.gov/COG/

BIBLIOGRAPHY__m

A. Yavlinsky, E. Schofield, and S. Rüger. Automated image annotation using global
features and robust nonparametric density estimation. In Proceedings of the Inter
national Conference on Image and Video Retrieval, 2005. (page 74)

L. Zadeh. Fuzzy sets. Information and Control, 8, 1965. (page 107)

J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model for online document
clustering with application to novelty detection. In NIPS, 2004. (page 12)

X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised
learning using Gaussian fields and harmonic functions. In Proceedings of the ICML-
2003 Workshop on the Continuum from Labeled to Unlabeled Data, 2003. URL
c ite s e e r .1 s t .psu.edu/zhuOScombining.html. (page 75)

