
Protein Model Construction and Evaluation

Daniel Peter Klose

University College London

Division of Mathematical Biology 
National Institute for Medical Research 
The Ridgeway 
Mill Hill
NW7 1AA



UMI Number: U591516

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U591516
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



I, Daniel Klose, confirm that the work presented in this thesis is my own. Where 
information has been derived from other sources, I confirm that this has been 
indicated in the thesis.



Abstract

The prediction of protein secondary and tertiary structure is becoming increasingly 

important as the number o f sequences available to the biological community far exceeds 

the number of unique native structures. The following chapters describe the conception, 

construction, evaluation and application of a series of algorithms for the prediction and 

evaluation of two and three-dimensional protein structure. In chapter 1 a brief overview 

of protein structure and the resources required to predict protein features is given. 

Chapter 2 describes the investigation of sequence identity and alignments on the 

prediction o f two-dimensional protein structure in the form of long and short range 

protein contacts a feature which is known to correlate with solvent accessibility. It also 

describes the identification of a feature which is referred to as the ‘Empty Quarter’ 

which forms the basis of an evaluation function described in Chapter 3 and developed in 

Chapter 4. Chapter 3 introduces the Dynamic Domain Threading method used during 

round six of the CASP exercise. Phobic, a protein evaluation function based on 

predicted solvent accessibility is described in Chapter 4. The de novo prediction of a /p  

proteins is described in Chapter 5, the method introduces a new approach to the old 

problem of combinatorial modelling and breaks the size limit previously imposed on de 

novo prediction. The final experimental chapter describes the prediction of solvent 

accessibility and secondary structure using a novel combination of the fuzzy k-nearest 

neighbour and support vector machine. Chapter 7 closes this piece of work with a 

review of the field and suggests potential improvements to the way work is conducted.
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Introduction

Today there are in excess of 60 million linear amino acid sequences in the GenBank 

database (Benson et al., 2005). In comparison there are only 40,000 three dimensional 

(3D) structures available in the Worldwide Protein Data Bank (PDB) (Berman et al., 

2000). With high throughput genome sequencing projects elucidating data at an 

astonishing rate it is likely that the sequence structure gap will continue to expand.

While biophysical techniques, such as X-ray crystallography (crystallography) and 

nuclear magnetic resonance spectroscopy (NMR), provide detailed information about 

the 3D coordinates of atoms within a protein they suffer from several, currently 

unavoidable, problems, including a size restraint of approximately 60kd for NMR and 

the ability to form crystals for X-ray crystallography. This means that structures such as 

trans-membrane proteins are difficult to solve because of their membrane bound 

location and large size. This is reflected in the PDB where there are only 234 structures 

of which 120 are unique1. Even without these problems a major hurdle remains: a vast 

amount of skill and time has to be invested in each structure to overcome a myriad of 

potential problems, making rapid, automated elucidation of structures very challenging.

With the advent of the Human Genome Project1 the field of computational biology has 

taken on a new importance. Bioinformatics, as it is now often called, uses expertise 

from the fields of computer science and mathematics to record, analyse and predict 

biological features from sequences and structures. For over thirty years it has been 

generally accepted that the amino acid sequence provides enough information to specify

1 http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
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the overall 3D shape of a protein. This concept is supported by the pioneering work of 

Anfinsen and co-workers (Anfinsen, 1972, Anfinsen, 1973) and, as a result of this, one 

of the grand challenges of bioinformatics has been to use the wealth of sequence data to 

predict the folded protein structure.

Protein Structure

Protein Primary Structure

All proteins (polypeptides) consist of a linear chain comprising a mix of twenty possible 

amino acids (monomers). Each monomer consists of an amino group (NH2), a central 

carbon atom (C J  and a carboxyl group (COOH). The polypeptide chain is synthesised 

by a condensation reaction which forms a peptide bond between the amino group of one 

monomer and the carboxyl group of another monomer (see figure 1.1). The order of the 

monomers is called the primary structure of a protein.
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Figure 1.1: Amino acid structure: Individual amino acids are linked by a peptide bond synthesized 
during a condensation reaction. The angles between atoms intra and inter-residue are important to overall 
protein structure and especially the limited torsional freedom about the peptide bond. The diagram 
indicates the bond lengths, angles and names in proteins.
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Protein Secondary S tructure

The dictionary of secondary structure of proteins (DSSP) (Kabsch and Sander, 1983) 

defines eight states of secondary structure: alpha helix (H); 3/10 helix (G); pi helix (I); 

extended strand (beta sheet) (E); isolated beta-bridge (B); hydrogen bonded turn (T); 

bend (S); and ‘the rest’, which is identified by a blank space in the programs output. 

The ‘rest’ category is often interpreted as being ‘random coil’ however one never knows 

if blank means loop, no output or error 2! For the sake of brevity, three broad classes 

will be discussed here: a  helix which is an umbrella term used to refer to the distinct H, 

I and G classes; p sheet which comprises E and B; and coil covering the rest. The a  and 

P categories are defined by main chain hydrogen bonding and combined phi (<|>) and psi 

(\|j) angle repetitions. Helical structures are formed by local hydrogen bonding whilst p 

structures are formed by more distant parts of the backbone. The archetypal (3/10) a  

helix structure has hydrogen bonds between the CO of residue i and the NH of residue 

/+4 where <|> -  -60° and op *» -40°. p sheets have <|)»-120° and -  140° and are less local 

and modular than helices due to hydrogen bonds between strands. The result is not a 

single p-strand but a pair, which can bond either in a parallel or anti-parallel 

arrangement. The coil category does not posses a fixed or ordered structure like the a  

and p class and is the most prevalent of the states.

2 http://swift.cmbi.ru.nl/gv/dssp/
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Protein Tertiary Structure

The tertiary structure of a protein refers to its overall shape in 3D space. Tertiary 

structure also includes domains which are stable, compact units that fold autonomously 

and perform associated functions semi-independently.

Protein r o lding

It has been said that proteins ‘understand’ how to fold but biochemists do not. Over the 

years many theories have tried to explain the mechanisms behind protein folding (see 

(Dill, 1990) for an in-depth review). Today the paradigm is that protein folding is 

driven by hydrophobic partitioning of amino acids based upon their physicochemical 

properties (Anfinsen, 1972, Anfinsen, 1973, Rose and Roy, 1980). Taylor showed that 

amino acids can be divided, on paper, into several overlapping classes based on these 

properties (Taylor, 1986, Taylor, 1997b). The two largest groups are the non-polar 

(hydrophobic) and the polar (hydrophilic) residues, it is the partitioning of the hydro­

philic/phobic residues with respect to the solvent (essentially water) which is the overall 

driving force behind protein folding and stability. Hydrogen bonding is important in 

maintaining specific structural features but it is crucial to remember that for every 

hydrogen bond formed internally two bonds with water are lost and one water-water 

bond formed -  a simple bond count reveals no net gain (Klose and Taylor, 2007). The 

resulting structure is a core of hydrophobic residues (from which water has been 

excluded), surrounded by a shell of hydrophilic residues which interface with the 

solvent making the protein soluble.
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A consequence of these properties is that proteins typically fold so that the secondary 

structure elements are arranged into common topological patterns (Sternberg and 

Thornton, 1976, Sternberg and Thornton, 1977, Levitt and Chothia, 1976, Richardson, 

1976). The fascinating arrangements of these elements shared by proteins with different 

functions (Orengo et al., 1993a) allows for them to be split into families (much like the 

kingdom of life) based upon similar tertiary structure (Overington et al., 1993, Orengo 

et al., 1993b, Yee and Dill, 1993). Today, such classifications are found in the CATH 

(Orengo et al., 1997) and SCOP (Murzin et al., 1995) databases which will be 

considered in more detail later.

Solvent Accessibility

Taylor’s Venn diagram (Taylor, 1997b) has two main groups, the hydrophobic or non­

polar residues and the hydrophilic or polar residues. When examining a folded protein 

it can be useful to look at the entire protein surface or single residues with this 

classification in mind (Manavalan and Ponnuswamy, 1978, Nozaki and Tanford, 1971). 

Examination of the protein surface may yield some insight into whether the protein is 

folded properly with the hydrophobic residues sequestered to the core and hydrophilic 

residues on the surface where they interact with the solvent (Rose and Roy, 1980). 

There are two values which can be used to describe the solvent accessibility of a 

residue, absolute solvent accessibility (ASA) and relative solvent accessibility (RSA) 

(Lee and Richards, 1971). The ASA is the total exposed surface area of a residue, while 

the RSA is a measure of exposure based on a residue being in a GLY-x-GLY (Rost and 

Sander, 1994) or ALA-jc-ALA (Ahmad et al., 2004a, Ahmad et al., 2004b) tripeptide 

conformation depending on the scheme used. Both of measures can be calculated using
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the ACCESS program (Lee and Richards, 1971), repacked as NACCESS (Hubbard, 

1993) using the atomic radii of (Alden and Kim, 1979) which, along with DSSP 

(Kabsch and Sander, 1983), are regarded as the ‘gold-standard’.

Contact Number

Contact number (CN) was first described and used for structure evaluation in the 1980s 

by Nishikawa and Ooi (Nishikawa and Ooi, 1980, Nishikawa and Ooi, 1986). They 

described a “simple and good measure” to show the relative location of a residue on the 

surface or interior of a protein (Nishikawa and Ooi, 1980). The Ooi number, as it was 

termed, was an estimate of the number of C a atoms within an 8A sphere centred on the 

C a of a given residue. It was also proposed as a meaningful alternative to the 

prediction of secondary structure as, at the time, it could be predicted to similar 

accuracies (Nishikawa and Ooi, 1980). Today contact number is generally considered 

as an alternative measure to solvent accessibility, as they are strongly correlated and 

equally well predicted (Kinjo et al., 2005, Yuan, 2005, Hamelryck, 2005). While they 

are well correlated, it has been suggested that contact number is more conserved across 

a familial alignment (Hamelryck, 2005) and so should lend itself more towards 

prediction. The relationship between contact number is simple: a residue found in the 

core of a protein is likely to be surrounded by a number of other core residues, thus it is 

unlikely that much of its surface will be exposed to solvent, the result being a high 

contact number and a low ASA/RSA. A residue located in an exposed loop is unlikely 

to have many surrounding residues (neglecting its sequence neighbours) and thus has a 

low contact number and high ASA/RSA. The big difference between contact number
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and solvent accessibility is that the former provides some clue as to the location a 

residue while the latter cannot (Hamelryck, 2005).

Today, contact number is typically defined as the number of residues within an n 

angstrom (A) sphere of a central residue (i). The radius of the sphere is typically set to 

10A and is placed directly on the Cp of i (both the sphere location and size differ to that 

proposed by Nishikawa and Ooi). There are many variations on this method including 

altering the size of the sphere placed on i, the position of the sphere -  on the Cp,a (Kinjo 

et al., 2005) for all residues except glycine or the use of half-spheres (Hamelryck, 

2005).

Databases & Resources

For a reference to all of the databases in the following section please refer to (Galperin, 

2007).

Sequence Databases

The Non-redundant database

The non-redundant database (nrdb) is compiled by the National Center for 

Biotechnology Information (NCBI) as a database for Basic Local Alignment Search 

Tool (BLAST) (Altschul et al., 1990). The nrdb contains non-identical sequences from 

GenBank CoDing Sequence (CDS) translations (Benson et al., 2005), the Brookhaven 

Protein Data Bank (PDB) (Berman et al., 2000), SwissProt (Boeckmann et al., 2003),
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Protein Information Resource (PIR) (Barker et al., 1999) and PRF (PRF, 2007). 

Sequence alignments are crucial to structure prediction (see chapter 2 for a detailed 

discussion), and the nrdb is a commonly used resource. Changes are made to the nrdb 

before being used in structural pursuits, this includes filtering to remove low complexity 

(LC), transmembrane (TM) and coiled coil (CC) regions. These regions are removed as 

they tend to produce spurious, insignificant matches with regions that do not share 

biological function.

UniProt

The Universal Protein Resource (UniProt) is a comprehensive resource or protein 

sequence and annotation data (Apweiler et al., 2004, Leinonen et al., 2004). The data 

consists of three projects: Knowledgebase (UniProtKB) (Boutet et al., 2007, Leinonen 

et al., 2006, Martin, 2005) which is a collection of functional information; Reference 

Clusters (UniRef) (Suzek et al., 2007, Apweiler, 2008) which contains clustered sets of 

sequences from knowledgebase as well as information from UniParc; and Archive 

(UniParc) (Apweiler, 2008) which is a comprehensive, non-redundant database that 

contains almost all publicly available sequence records. UniProt is a collaboration 

between the European Bioinformatics Institute, the Swiss Institute of Bioinformatics 

and the Protein Information Resource (mentioned above) and is designed as a 

replacement for the aforementioned databases.



The Conserved Domain Database (CDD)

The Conserved Domain Database or CDD (Marchler-Bauer et al., 2002) is a database of 

conserved domain alignments with links to 3D structures of domains. The alignments 

in CDD are based on publicly available data from Pfam (Bateman et al., 2000) and 

Simple Modular Architecture Research Tool (SMART) (Schultz et al., 1998) and are 

based primarily on sequence alignments.

Structure Databases

The Brookhaven/RCSB Protein Data Bank (PDB)

The Brookhaven/RCSB Protein Data Bank (Berman et al., 2000) was established in 

1971 as a repository for biological macromolecular crystal structures. The number of 

submissions has grown year on year and it is now a requirement that structural data is 

submitted to the PDB prior to publication. The database is no longer limited to 

crystallographic structures and now includes Nuclear Magnetic Resonance (NMR) 

spectroscopy, cryoelectron microscopy and theoretical models. Alongside the 3D data 

the PDB also provides access to sequence, secondary structure, structural classification 

and function information via external databases such as the Gene Ontology (Ashburner 

et al., 2000).
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Protein Structure Classification: SCOP and CATH

The Structural Classification of Proteins (SCOP) database (Murzin et al., 1995, 

Andreeva et al., 2004, Lo Conte et al., 2002, Lo Conte et al., 2000, Hubbard et al., 

1999, Hubbard et al., 1998) provides a comprehensive, manually curated, description of 

the structural and evolutionary relationships of proteins with known 3D structure. The 

database works by classifying proteins on hierarchical levels; family; superfamily; 

common fold; class. The family level addresses the issue of common evolutionary 

origin, proteins that share ‘significant’ sequence similarity or extremely similar 

structure and function but dissimilar sequence, such as globins, are grouped. The 

superfamily group classifies proteins solely on the basis of function and low sequence 

identity, such a classification encompasses the immunoglobulins with their variable and 

constant domains. The third tier is based on the major secondary structure elements -  

all members of the class adhere to the same arrangement and topological connections.

Proteins that follow these rules are said to share a common fold. The final level of

classification comes at the secondary structure level where the proteins are grouped into 

5 major classes:

1. All-a: proteins that consist predominantly of a-helices;

2. All-p: proteins that consist predominantly of P-sheets;

3. a/p: proteins containing intermixed a-helices and p-sheets;

4. a+P: proteins in which there are segregated a-helices and p-sheets;

12



5. Multi-domain: proteins that consist of domains belonging to different classes or 

for which there are no known homologues.

There are several other small classes that address peptides, small proteins, nucleic acids 

and carbohydrates, more details can be found in (Hubbard et al., 1999). The distinction 

between each category is important for theoretical work as the use of particular scoring 

functions can depend upon the class of the target (see chapter 4).

Based on an automatic comparison method (Taylor and Orengo, 1989b, Taylor and 

Orengo, 1989a) Orengo et al., produced a method for semi-automated classification of 

proteins in response to the increasing number of protein structures (Orengo et al., 1997). 

The database groups proteins into four main categories: class (c), architecture (a), 

topology (t) and homologous superfamily (h) and was dubbed CATH. The first tier of 

CATH is class, as with SCOP, this division is based on the relative content of a-helices 

and p-sheets with the exception that there are only three groups - the a+p  & a /p  are 

merged into an a-P  class. Also, in a similar fashion to SCOP, CATH has additional 

groups containing structures that have minimal secondary structure. The A-level, 

distinguishes structures which occupy the same class but differ in architecture. This 

does not include discrimination on a topological level, but along more general lines -  

such as the number of layers in an a-P  sandwich i.e. it does not include the details of the 

connections between secondary structure elements. The provision of the architecture 

division is unique to the CATH database. The third tier addresses the issue of fold 

variation, proteins that share the same overall fold - arrangement of secondary structure 

elements and connections - are grouped together. At this level there is structural

13



similarity, yet at the same time there is not necessarily common function. The final (H) 

level groups proteins that share similar structure and function, which is strong evidence 

to suggest that they diverged from a common ancestor. Further details can be found in 

(Orengo et al., 1997). CATH classifications are also presented in the PDB alongside 

those of SCOP.

ASTRAL

The ASTRAL compendium (Brenner et al., 2000) provides a link between the structures 

in the PDB and SCOP protein domains. Sequence information is provided in the form 

of both the SEQRES and ATOM PDB records while structural information exists in the 

form of domains unique to ASTRAL. Tools and lists are also provided which give 

access to subsets of the data held, this includes the ability to extract sequences that share 

a maximum identity (pre-computed lists cover 40 and 95% identity) as well as the 

option to retrieve lists of structures. For a detailed description of ASTRAL see 

(Brenner et al., 2000, Galperin, 2007).

Family of Structurally Similar Proteins

The family of structurally similar proteins (FSSP) is a database of protein structure- 

structure alignments based on information from the PDB. Initiated in 1992 by Holm et 

al., it was one of the original structure alignment databases (Holm et al., 1992), however 

as of November 2004 it was no longer maintained. FSSP consists of ‘sets’ of proteins. 

Each set represents proteins that share some structural similarity with a probe protein. 

In addition to the structural constraints there are also sequence restraints, each set has a
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minimum sequence identity of approximately 30% and a maximum no greater than 

70%. All structures that share greater than 70% identity are discarded because they 

have marked structural similarity with the probe. The alignments were computed using 

the DALI algorithm for optimal pairwise structure alignment (Holm and Sander, 1993).

Structural Alignment Database

The Structural Alignment Database (SAD (Marsden and Abagyan, 2004)) comprises a 

collection of structural alignments designed for derivation and optimisation of 

sequence-structure alignment algorithms. The alignments are sourced from 

HOMSTRAD (Mizuguchi et al., 1998b), BaliBase (Thompson et al., 1999) and SCOP- 

based Gerstein databases (Marsden and Abagyan, 2004). To maintain status as a high 

quality resource the creators of SAD define 6 criteria that have to be met for inclusion 

in the database:

1. Non-redundancy -  sequences should be represented once.

2. Cover fold space -  contain as many representatives as is required to 

represent fold space. At the same time the dataset must be normalised to 

avoid over-representation -  IgG folds are abundant in the PDB.

3. High quality and quantity -  must contain a number of alignments to be 

statistically viable. Alignments are in sufficient number to allow for 

derivation and optimisation of new algorithms.
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4. Contain alignments derived from structures with good resolution (better 

than 2.5A).

5. Contains alignments that are ‘structurally significant’. Alignments with 

a small number of aligned pairs are not likely to be reliable.

6. Cover a wide range of sequence identities, allowing the effects of 

sequence identity to be studied.

One of the unique features of this dataset is that it does not use RMSD to evaluate 

structure alignments, instead a measure based on contact area distance (CAD) is used 

(Marsden and Abagyan, 2004). SAD contains 1927 high-resolution structures that 

cover a range of fold and sequence space.

Benchmark ALIngment dataBASE

The benchmark alignment database (BAliBASE (Thompson et al., 1999)) is a collection 

of manually refined multiple sequence alignments categorised by blocks of sequence 

conservation sequence length, similarity and the presence of N/C terminal extensions 

(Thompson et al., 1999). The constituent sequence information was gathered from 

FSSP, HOMSTRAD and manually constructed structural alignments from literature. 

Where there is insufficient structure data additional sequence information is gathered 

from the HSSP database (Sander and Schneider, 1993). Each alignment is manually 

checked so that conserved blocks and secondary structure elements are aligned. As of 

version 3 (October 2005) BaliBase contained 6255 alignments.
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HOMologous STRucture Alignment Database (HOMSTRAD).

HOMSTRAD (Mizuguchi et al., 1998b) comprises a set of protein structure alignments 

for homologous families. Akin to SAD, HOMSTRAD enforces a resolution limit, a 

minimum number of structures per family and low sequence identity. The identity 

measure is not deliberate but is useful as it results in an average sequence identity 

greater than 20% for proteins that connect two subgroups. Information about local 

structural environments calculated by JOY (Mizuguchi et al., 1998a) are also made 

available. All information in HOMSTRAD is obtained using an automatic pipeline 

connected to the PDB and as such complements the SCOP and CATH databases. As of 

June 2007 HOMSTRAD contained 1032 families constructed from 3454 structures as 

well as 6412 singleton families.

Protein Structure Prediction

Before starting this section, there are two terms that require definition as they will be 

used extensively throughout this work. The first is target; this refers to the protein 

sequence that we are trying to assign structure to. The second is template, which refers 

to a complete, or section of, protein chain that has a known structure and can or has 

been used to infer structure on the target. A generic approach to structure prediction is 

shown in figure 1.2 - it should be noted that not all steps are used in all methods.
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Figure 1.2 Generic Protein Structure Prediction Pipeline; The flow chart presents a generic approach 
to prediction o f three-dimensional structure. It should be noted that a large number o f groups do not look 
for functional annotations and predict their own domain boundaries. The three shaded boxes represent 
the main approaches for predicting protein structure.
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As shown in figure 1.2 there are many aspects to protein structure prediction, ranging 

from the prediction of 2D features all the way to 3D structure and substrate docking (see 

CAPRI (Henrick, 2006) for details).

Two Dimensional Protein Structure Prediction

Two dimensional structure prediction thrives as a field distinct from three-dimensional 

structure. It has it roots in the 1970s when Chou and Fasman developed a technique for 

assigning secondary structure by hand (Chou and Fasman, 1978). Their method was 

simple -  using observed frequencies of amino acids in known structures probabilities 

were assigned to residues being in certain structures. The structure classifications are 

not those used today but rather strong helix formers (H), weak helix formers (h), 

indifferent (I), weak helix breakers (b) and strong helix breakers (B). This method was 

quickly developed by Garnier, Osguthorpe and Robson (GOR) (Garnier et al., 1978) 

which aside from being ideal for computational use, was more sophisticated. Since the 

1980s the number of methods for prediction of secondary structure has grown rapidly 

including the use of Bayesian Theory (Thompson and Goldstein, 1997), fuzzy k nearest 

neighbours (chapter 6), neural networks (Rost, 1996, Jones, 1999b) and support vector 

machines (Ward et al., 2003) and combinations of each (chapter 6).



Three Dimensional Protein Structure Prediction

Protein structure prediction methods can be roughly split into three categories (shaded 

grey in figure 1.2), however it should be noted that the boundaries between fold 

recognition and de novo prediction are becoming increasingly less well defined.

Comparative / Homology Modelling (CM)

Where there is clear sequence similarity, the problem of constructing a 3D model is 

largely how to substitute the existing side-chains with the new side-chains to which they 

have been matched (aligned) (Marti-Renom et al., 2000, Guex and Peitsch, 1997, 

Schwede et al., 2003). Since there is clear overall similarity, many of these will be the 

same and most will involve only minor substitution of groups (for example, ASP -> 

ASN). In addition, most of the substitutions will occur on the surface of the protein 

leaving much of the hydrophobic core intact, this is due to evolutionary constraints 

which mean that it is easier to accept a mutation when the residue is not buried. In this 

situation, the simple axiom: ‘if it ain't broke, don't fix it’ is the best advice to follow. 

Indeed, even better advice is to let it all be done automatically as there are now several 

programs that can construct good models providing the sequences are clearly related. 

Many of these are commercial but the Swiss-model (Schwede et al., 2003) program can 

be used freely over the internet for non-commercial purposes.

Where sequence similarity decreases, the problem of indels (relative insertions and 

deletions) becomes important as they imply that the protein backbone will need to be 

remodelled (to close the gaps after deletion, or add new chain for an insertion).
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Fortunately, most of these changes tend to be found on the protein surface where there 

is usually scope to make larger changes. If changes apparently do not occur on the 

surface, then this is a strong indication that the alignment between sequence and 

structure may be incorrect. While such problems can be attempted using programs like 

Swiss-model, the limiting factor becomes being able to specify the correct alignment on 

which to base the model.

Fold Recognition (FR)

Jones et al., coined the term threading in 1992 (Jones et al., 1992a) to describe a method 

for predicting 3D structure where sequence similarity drops into the twilight zone 

(Doolittle, 1986). Since then, threading has been used more widely to describe any fold 

recognition (FR) method. Following common usage, “ threading” will be used to refer 

to all FR techniques.

The strategy of aligning protein sequences using typical alignment methods and then 

building a model is no longer the standard approach for distantly related sequences . 

Interaction is needed between the emerging model and the alignment. As mentioned 

above, if an insertion is found in the core, then the answer is usually to change the 

alignment - not the structure. Historically, this was carried out in a series of iterations 

with manual realignment at each stage; as for example, in the construction of the HIV 

protease model (Pearl and Taylor, 1987). Eventually it became apparent that this 

progress could become more automated with the alignment and model being calculated 

simultaneously.
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True threading

To thread a sequence over a structure two components are necessary: a packing measure 

for the substituted amino acid and an alignment method that can optimise the sum of the 

packing scores. The former is available in the ‘rough’ empirical potentials of Sippl 

(Sippl, 1990), referred to as ‘potentials of mean force’. These are ‘rough’ in that they 

do not directly consider side-chain interactions (to do so would be impossible until the 

full model was constructed) but capture the preference of an amino acid to be in a 

particular environment and, indirectly, secondary structure state. The second 

component, the alignment method, is readily available from the sequence alignment 

field, but cannot be used directly. One solution is to apply the alignment in a series of 

iterations, gradually substituting new residues into the existing structure. Another 

solution is to take the double dynamic programming method developed for structure 

comparison (Taylor and Orengo, 1989b) and apply it to the threading problem (Jones et 

al., 1992a).

3D/1D Alignment

The sequence/structure matching problem was also approached from the sequence 

alignment side. Beginning with a pure sequence alignment, structural features are 

predicted (such as secondary structure state and degree of burial) which are then 

matched to features of protein structures along with its sequence (Bowie et al., 1991, 

Luthy et al., 1991, Rice and Eisenberg, 1997). Unlike the ‘true’ threading methods 

described above, this approach does not take account of 3D interactions in the
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calculation of the alignment and so can use the dynamic programming algorithm 

without complication.

In theory, the 3D/1D approach is less powerful than the ‘true’ threading methods, 

however, when applied to very distant relationships, there is little perceptible difference 

in the methods. This probably results from the common incorporation of multiple 

sequence data into the 3D/1D methods and from accurate prediction of secondary 

structure. The ‘true’ threading methods also make the assumption that the basic core 

structure of the model protein will be the same as the structure on which it was built: for 

distant relationships this is seldom completely true.

Ab initio / De novo / New Fold Modelling (NF)

The last resort -  although arguably the most exciting -  is ab initio prediction. Ab initio 

(Latin: “from the beginning”) prediction relies on the assumption that natively folded 

proteins exist in a state of low free energy. To obtain the structure of a protein one 

simply has to compute all possible interactions between all residues in a sequence until 

the lowest free energy conformation is found! In reality this problem is far from trivial 

-  in fact it has only been done for short polypeptides up to 30 residues (Duan and 

Kollman, 1998). Frustrated with a lack of progress, ab initio methods have begun to 

use structural information, often in the form of fragment packing, allowing for proteins 

up to 100 residues to be predicted -  although no longer from first principles (Rohl and 

Baker, 2002) (Bradley et al., 2005). In order to retain correct nomenclature -  as well as 

to keep physicists happy -  the name of this approach has been changed to de novo or 

new fold modelling.
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Model Evaluation

Regardless of the method used to generate the protein structures many thousands of 

models can be produced by a single prediction attempt. While some models resemble 

real proteins, with well-formed secondary structure and a hydrophobic core, the 

majority tend to be poorly formed with little or no secondary structure and ‘unnatural’ 

packing (exposed hydrophobics and buried hydrophilics). To build and identify models 

that resemble real proteins it is crucial to use reliable evaluation functions, such as CAO 

(Lin et al., 2003) and Phobic (Klose, in preparation) an updated version of 

burial/hydrophobic matching described in (Taylor et al., 2006), for hydrophobic core 

evaluation. Scoring functions are diverse but can be categorised as physical or 

knowledge based.

Physical scoring functions are based around force fields such as CHARMm, which aim 

to describe the physical interactions that occur within the protein between residues and 

atoms (Brooks et al., 1983). Such functions include bonded and unbonded energies, 

dihedral (torsion) angles and Van der Waals terms. As such they are mathematically 

complex and require all-atom models to be constructed.

Knowledge based scoring functions rely on the identification of characteristics that are 

common among native protein structures. Additionally, some methods use

characteristics that are common to decoy (non-native) structures to differentiate 

between the two sets (native and non-native). The characteristics are then used to design 

a function which empirically captures these features from a limited amount of 

information.
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Sequence. Alignment -  Eairwise and Multiple,

The first step in predicting protein structure is to scour resources looking for 

information on the target, this typically involves sequence alignments. Historically 

sequence alignment began with the alignment of two sequences, which is referred to as 

a ‘pairwise alignment’ (Needleman and Wunsch, 1970, Smith and Waterman, 1981) 

only later, with the development of sophisticated algorithms, were methods expanded to 

deal with rapid alignment of numerous sequences (Altschul et al., 1997, Edgar, 2004, 

Higgins and Sharp, 1988, Taylor, 1987).

Both methods work by examining sequences for a series of elements or patterns that 

occur in the same order. By hand, short sequences can be aligned by writing them 

down in two columns. Characters that match are placed in the same column while 

dissimilar characters are aligned as a mismatch. In more advanced methods another 

‘character’, a gap, can be introduced. Mismatched positions and gaps are placed so as 

to maximise the number of identical characters in register, as pioneered by Saul 

Needleman and Christian Wunsch (Needleman and Wunsch, 1970).

Pairwise sequence alignments can be categorised as either local or global. In global 

alignment an attempt is made to maximise the register over the entire sequence. Local 

alignment (Smith and Waterman, 1981) aims to maximise vertical register where 

sequence similarity is greatest, resulting in the formation of islands of aligned positions. 

The nature of local alignment makes the technique suitable for the comparison of a 

small segments to large expanses of sequence -  as found in modern genomics.
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Machine Learning

Machine learning is a broad sub-field of the artificial intelligence which covers the 

development of algorithms and techniques that allow computers to ‘learn’ (Cristianini 

and Shawe-Taylor, 2000). The methods can be split into one of several types: 

transductive, where observed, specific training cases are used to solve a specific 

problem (as opposed to inductive learning); inductive, where general rules and patterns 

are elucidated from a training set; deductive, where a conclusion is necessitated by 

previously know premises (Vapnik, 1998, Cristianini and Shawe-Taylor, 2000). The 

methods in this area include decision trees, k nearest neighbour (&NN (Wilson, 1972), 

genetic algorithms (Holland, 1975), artificial neural networks (Minksy and Edmonds, 

1954) and support vector machines (Vapnik, 1998). It is not possible, or relevant, to 

cover all methods here, instead the reader should refer to (Klose and Taylor, 2007) for 

an overview. The methods that are relevant to this thesis are those based on nearest 

neighbour and support vector machine learning. Support vector machines play an 

important role in chapters 2 and 6, while the £NN is crucial for chapter 6, the basics of 

each method is described briefly below, more detail is given in the respective chapters.

The k  Nearest Neighbour Algorithm

The k nearest neighbour method is one of the most simple methods for inferring class to 

an unknown ‘object’ given prior knowledge (Wilson, 1972). It is simple in as much as 

there is only one parameter to optimise -  the number of neighbours (k) required to 

optimally infer class. Figure 1.3 shows a basic example using a two-dimensional 

feature vector to distinguish between squares and circles. Using a set of known
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examples, the optimal value of k is determined to be equal to 3. By applying the same 

measure of distance as used to define k, the three closest known samples are 

determined, the class of these determines the class of the unknown point x. In this 

instance x  is determined to be a square.
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Figure 1,3: An idealised k  nearest neighbour model: The ANN approach is simple, requiring only one 
parameter, the number o f k used to infer class, to be identified. With k established as three the unknown 
vector (jc) is compared to each known example in the dataset. The class inferred on x  is the most 
represented o f the k nearest neighbours, in this example a square.
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Although effective in some situations the &NN can be improved. In a £NN the 

contribution to class membership is treated equally for each of the k in figure 1.3, to 

solve this problem a ‘fuzziness’ parameter can be added. This parameter controls the 

contribution to class membership of each of the k neighbours by using a function to 

weight the class contribution by distance. The result of this is a probability of the 

unknown sample belonging to the circle and square classes. Although basic, the k 

nearest neighbour based approaches have been used with success in the filed of protein 

structure prediction (Sim et al., 2005, Bondugula and Xu, 2007).

Support Vector Machines

Support vector machines (SVMs)(Boser et al., 1992, Vapnik and Lerner, 1963, 

Scholkopf and Smola, 2002) are more complex than the £NN-like approaches. SVMs 

belong to a class of machine learning methods called maximum margin classifiers 

because they were initially constructed to optimally separate linearly separable data. 

Figure 1.4 shows how a linearly separable problem could be solved by adopting any one 

of the possible dividing hyperplanes on which to make classifications. The overall 

effectiveness of these hyperplanes is unlikely to be optimal when classifying unknown 

examples.
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Figure 1.4; A linearly separable problem: The two classes (circles and diamonds) can be divided by a 
number of lines, som e o f which are shown. The margin hyperplanes (shown) are non-optimal but would 
allow for classification on unknown samples. Because the hyperplanes are non-optimal there is scope for 
misclassification which would be minimised if the hyperplane was placed such that it was an equal 
distance from both classes.
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This is where the support vector machines stand out, by calculating the hyperplane 

which is equidistant from both classes (maximum margin hyperplane). This is achieved 

by calculating two additional hyperplanes which define the boundary from each class to 

the dividing hyperplane as shown in figure 1.5.
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Figure 1.5: The m axim um  m argin hvperplane: To define the maximum margin hyperplane, two 
further planes, support hyperplanes, have to be identified. The support hyperplanes allow for the 
definition o f the maximum margin hyperplane, which is equidistant from both classes, these hyperplanes 
are defined by support vectors.
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The support hyperplanes are defined by the feature vectors which identify the boundary 

of each class (Poggio and Girosi, 1990), these vectors are termed the support vectors 

and form the basis of the model. All training examples which are not identified as 

support vectors are discarded, resulting in a reduction of the data used to define the 

model which is later tested against.

So far the focus has been on linearly separable problems. In real-world applications 

linearly separable problems appear to be in the minority and, as such, a method needs to 

be able to function on non-linearly separable data. This is achieved through the 

introduction of slack variables (Smith, 1968, Bennet and Mangasarin, 1992) and the 

kernel trick (Aronszajn, 1950) (see chapter 2 for mathematical description). Slack 

variables (1;) measure the degree of misclassification for each point (figure 1.6), all non­

zero slack variables are then penalised such that the definition of the model becomes a 

trade off between the margin size and the error penalty.
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Classification Regression

Figure 1.6: Slack variables in C lassification and Regression: The left hand side o f the diagram shows 
the use o f slack variables in a linearly separable classification problem, the shaded squares and circles 
represent the support vectors. The right hand side o f the diagram shows the use o f slack variables in a 
linear regression problem. The mathematical explanation is covered in chapters 2 and 6 for regression 
and classification respectively.
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The kernel trick (Aizerman et al., 1964) is the feature which allows for classification 

and regression solutions to be found for non-linearly separable problems. In the 

original solution for linear problems, proposed by Vapnik, dot products were used; the 

kernel trick replaces each dot product with a kernel function (see chapters 2 & 6 for 

details). The function allows the algorithm to fit the maximum-margin hyperplane in a 

transformed feature space, such transformations can be non-linear and the transformed 

space can be multidimensional, in fact if a Gaussian radial basis function is applied, the 

feature space is a Hilbert space3 of infinite dimensions. There are numerous kernels 

which can be applied and many of the existing architectures, such as Libsvm (Chih- 

Chung and Chih-Jen, 2001) and SV M ^' (Joachims, 1999), include upwards of four 

methods as well as the option for a user defined functions. Typical kernel functions 

include the polynomial, sigmoid and radial basis functions as shown in table 1.1.

Table 1.1: Standard Kernel Options

Kernel Function Formula

Polynomial (a: * x')d

Radial Basis exp|—y| X  — j for y greater than 0

Gaussian Radial 
Basis

/  II / 2 \\ \x - x  
CXP OrJI /

Sigmoid tanh(kx * x ' + c )  for values where k>0 & c <  0.

So far, only classification problems have been addressed, however SVMs are also 

applicable for regression problems. As illustrated above, classification relies on a set of 

training data, discarding all points that do not aid in the identification of the support 

hyperplanes. Support vector regression is analogous with the exception that the model

a mathematical concept which generalises the notion o f  Euclidean space in a way that extends methods 
o f  vector algebra from 2D /3D  space to infinite-dimensional spaces, allowing for distances and angles to 
be measured.
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‘ignores’ data points that are within a threshold e (diagram 1.6) of the margin. These 

concepts are important for the work described in chapters 2 and 6.

Aims

The aim of this work was to contribute to the field of protein structure prediction by 

utilising existing tools in a novel fashion to predict and asses two and three dimensional 

protein structure. The work presented here describes the construction of two model 

evaluation functions; one based on the prediction of contact number from idealised 

sequence alignments; the second based on a feature referred to as the ‘empty quarter’ 

which attempts to exploit the theory of protein folding through hydrophobic collapse. 

Two novel methods for the prediction of three dimensional structures are then described 

and evaluated; the first method, based on existing fold recognition methodology, aims 

to provide a solution to the problem of domain definition through the application of 

Ising-like models as described by Taylor (Taylor, 1999a). The second method describes 

an approach for the De novo prediction of large (greater than 100 amino acid) a /p  

proteins that share a simple a /p  sandwich architecture. This method, also designed on 

existing methods, uses Taylor’s periodic table as a start point for the identification of a 

suitable architecture on which ‘threading’ templates are based. The final section 

describes the novel combination and application of f/:NN and SVM to predict secondary 

structure and solvent accessibility to improve the performance of both the 3D modelling 

procedures as well as two dimensional structure prediction.
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Chanter 2

Assessment of Sequence Structure Alignments and the Hydrophobic Q uarter
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Introduction

One of the first reports of a sequence being solved was that of the phenylalanyl chain of 

insulin by Sanger and Tuppy in 1951 (Sanger and Tuppy, 1951a, Sanger and Tuppy, 

1951b). The development of their method led to the sequences of several proteins, 

representative of protein families, being elucidated. In the early 1960s Margaret 

Dayhoff and her colleagues began to assemble the first sequence databases which 

eventually became the Protein Information Resource (PIR) (George et al., 1986). The 

development of this resource resulted in construction of the Dayhoff substitution 

matrices which play a role in protein sequence alignment today.

Deoxyribonucleic acid (DNA) sequences followed later as a result of work by Sanger 

(Sanger and Coulson, 1975, Sanger et al., 1977) and Maxam & Gilbert (Maxam and 

Gilbert, 1977) which eventually resulted in a Noble prize in chemistry for Sanger and 

Gilbert in 1980. As more DNA and protein sequences became available so to did 

demand for computer algorithms to analyse them. Gibbs and McIntyre (Gibbs and 

McIntyre, 1970) had already described a method for comparing two amino acid 

sequences which, despite its simplicity, remains in use today. The method requires one 

sequence to be placed along the x-axis the other along the y-axis, at every position 

along each sequence where two positions match a dot is placed. This graph is scanned, 

by eye, for diagonal lines which reveal sequence similarities, insertions and deletions. 

Despite these features the so called DOT-plot does not lend itself to the automatic 

identification of regions that are similar but interrupted by regions of low sequence 

similarity. This problem was largely solved by Needleman and Wunsch (Needleman 

and Wunsch, 1970) and redefined by Smith and Waterman (Smith and Waterman,
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1981). The techniques, although designed for different purposes, global and local 

alignment respectively, relied upon the same approach, called dynamic programming. 

In turn these methods formed the basis for multiple sequence alignment, which today is 

fundamental to biological research from the creation of PCR primers to phylogenetic 

analysis (Higgins and Sharp, 1988, Taylor et al., 1994).

One of the most widely used alignment tools is PSI-BLAST (Altschul et al., 1997). 

Probably an artefact of its age, PSI-BLAST forms the base of a number of structure 

prediction tools through the creation of position specific scoring matrices (PSSMs) 

(Gribskov et al., 1987, Staden, 1988). A PSSM is a common method for representation 

of biological sequences, more specifically it is a matrix of scores that gives a weighted 

match to any given substring of fixed length (N). Each row represents a symbol in the 

starting protein sequence, while columns are used for observations of constituents of the 

full alphabet (in the case of proteins, 20 amino acids). The log odds values in the 

columns are used to evaluate matches with target sequences, for each column the log 

odds scores are summed to obtain a new log odds score for the alignment to that 

sequence position, the higher the logs odds score the more significant the match.

Multiple sequence alignments and PSSMs play a crucial role in the prediction of protein 

structure, from the estimation of solvent accessibility to the identification of templates 

used to predict 3D structure in comparative modelling, as such, the axiom “rubbish in, 

rubbish out” holds true -  meaning that if the alignment is poor then any predictions that 

depend on it will also be poor -  it is, therefore, beneficial to have a way of identifying if 

one alignment is better than another for predicting 2D or 3D structure.
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In this chapter I will present an unsuccessful approach to identify ideal sequence 

alignments for protein structure prediction. The first part of this work led to the 

identification of an interesting feature which will be referred to as the ‘empty quarter’ 

and the development o f a structure fragment library used in the development of a novel 

protein refinement method (Jonassen et al., 2006) and reconstruction of the SPREK 

scoring function library (Taylor and Jonassen, 2004). The second section describes the 

use of alignments to assess the effect of sequence diversity on the prediction of protein 

contact number using support vector regression. This approach was taken as an 

alternative means of examining the effect of ideal sequence alignments.

Methods

Evaluation of Sequence Alignments part 1: Can Ideal Alignments be identified?

In the initial phase of this work the approach was to examine hydrophobic positions in 

multiple sequence alignments. In an ‘ideal’ protein, hydrophobic positions would be 

buried within the hydrophobic core. These positions play a crucial role in stabilising the 

protein structure (Taylor, 1986), as such it is expected that they are well conserved -  i.e. 

not so prone to mutation as exposed hydrophilic residues. By creating and examining 

sequence-structure alignments, positions of conserved hydrophobicity can be identified. 

Making the assumption that good alignments should preserve a number of crucial core 

blocks, a search was conducted as described below.
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Generating Sequence Structure Alignments.

Sequence-structure alignments were extracted from the following high quality 

alignment databases: the Structural Alignment Database (SAD) (Marsden and Abagyan, 

2004); HOMologous STRucture Alignment Database (HOMSTRAD) (Stebbings and 

Mizuguchi, 2004); Families of Structurally Similar Proteins (FSSP) (Holm and Sander, 

1994). The sequence structure alignments, where necessary were augmented using 

alignments from the Conserved Domain Database (CDD) (Marchler-Bauer et al., 2002) 

and the Benchmark Alignment dataBase (BAliBase) (Thompson et al., 1999). One of 

the criteria used in the construction of SAD was that alignments must sample a number 

of sequences to be structurally statistically significant. A similar criteria was applied in 

this work, with any alignment containing less than four sequences aligned to the probe 

being discarded.

An additional set of sequence alignments were generated from the SCOP dataset. Using 

the ASTRAL database a set of protein domains sharing a maximum pairwise identify of 

40% were selected from the PDB. Alignments for each of these domains was generated 

using a method based on the combination of MULTAL and MULSEL (Higgins and 

Taylor, 2000), described below.

MULTAL is designed to deal with a large number of sequences that are typical of 

family analysis or database wide sequence searching. It uses single-linked clustering 

over a number of user-defined cycles to filter sequences. At the start of each cycle only 

sequences that have a pairwise identity above the cycle threshold are kept. Calculation 

of similarity is controlled by three parameters: span, window and peptide pre-sort.
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Rather than optimising the positions of sequences within the alignment, for example 

ranking sequences from left to right based on sequence identity, MULTAL considers 

pairwise identity over a number of adjacent sequences -  the number of sequences to be 

considered is called the span, by default the span starts small and expands from one 

cycle to the next. As cycles progress the number of sequences (including sub­

alignments) decreases relative to the span so that by the final cycles the number of sub 

alignments and sequences (called ‘blocks’) is less than the span resulting in an all 

against all comparison. The window parameter controls the width of the path the 

alignment back-tracks through the scoring matrix and is increased in each cycle. The 

final parameter, the peptide sort, is a method for sorting the initial starting sequences. It 

uses a dynamic radix tree to store and compare sets o f strings (tripeptides) which are 

used to define a rough order of starting sequences.

To control alignment quality there are two adjustable parameters, the substitution 

matrices and the gap penalty. Two matrices are used by MULTAL, an identity matrix 

(where amino acid identities score 10, 0 otherwise) and the PAM matrix, however these 

are not exclusive and can be replaced by BLOSUM, PAM250 or the JTT matrices. The 

gap penalty for MULTAL is very soft, in as much as there is a single gap penalty which 

is paid only once when gap is opened. The rational is that locations at which insertions 

can occur in the protein are generally on the surface and that if a small insertion can be 

made then there are probably few constraints on the formation of a linker between 

domains to an even larger insertion. As with all other MULTAL parameters the gap 

penalty can be changed but was kept in the range of 20-30 over the entire run. 

Establishing where to stop is a problem for all alignment methods so in this work 

MULTAL was run with default parameters.
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Measuring Conserved Hydrophobicity

In 1997 Taylor proposed a scheme to ‘illuminate’ multiple sequence alignments with 

colour (Taylor, 1997b) (see figure 2.1). The scheme forms the foundation of a measure 

of conserved hydrophobicity which was implemented as follows. The original scheme

relied on each amino acid being assigned a pure (spectral) colour and that as a collection
/

they could be prescribed a cyclic ordering. The order of the amino acids is dominated 

by two crucial chemical and physical properties -  hydrophobicity and size both playing 

a critical role in protein stability (Taylor, 1986). As in the original method, cysteine is 

yellow, the negatively charged acidic residues red, positively charged basic groups are 

blue. The inclusion of yellow as a primary colour allows for four equidistant points to 

be placed around a circle. Using these four points the remaining amino acids are placed 

at equal points around the circle. Hydrophobic residues are green, aromatics are green- 

blue, amino acids commonly found in loops are red-orange and large polar amino acids 

are purple-blue as shown in figure 2.1.
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Figure 2.1: Colours o f the Amino Acids: Each amino acid is described by a three element vector: 
either as hue, saturation and intensity (HSI) or as a mix o f  red, green and blue (RGB). For simplicity 
yellow is included as a prim ary colour allowing for equidistant points to be placed on the circle (Asp, 
Cys, Met, Arg). These four residues are then used to place the remaining amino acids around the circle at 
equal distances.
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Using this scheme, each position in a multiple sequence alignment is described using a 

vector of length 3: either as hue, saturation and intensity (HIS) or as a mix of Red, 

Green and Blue (RGB). This approach allows for a measure of overall conservation as 

well as biochemical conservation.

To establish the conserved hydrophobicity (h) of each column in an alignment the 

colours of the amino acids were averaged and the hydrophobic (green) component of 

the vector extracted. The degree of conservation was encoded as the number of 

different amino acids at any position (a) in the alignment, augmented by the fraction of 

gaps (g). In addition, a contribution from the fraction of proline residues (p) was 

introduced. These terms were combined as:

c = (h +1) • g(a, A) • g(g, G) • g(p, P) - 1, (2.1)

where the function g(x,y) is the Gaussian transform: exp(-2^210_y), A = 2, G = 1 and 

P = 0, the result is that all values of c fall into the range -1 ... +1.

Calculating Solvent Accessibility from Structure

To evaluate the solvent accessibility (SA) of models that contain only C a atoms it was 

not possible to use DSSP (Kabsch and Sander, 1983) or NACCESS (NACS) (Hubbard, 

1993) as they rely on full atomic structures. Instead a heuristic program, Parameter 

OPtimised Surfaces (POPS) (Cavallo et al., 2003) was used, the version of POPS used 

in this work was a C++ reimplementation of POPS-Residue (POPS-R). The POPS
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algorithm is based on the technique proposed by Still et al., (Still, 1990) and the 

probabilistic method of Wodak and Janin (Wodak, 1980).

The Solvent Accessible Surface Area (SASA) of the protein (A) is defined as:

where S, = 4jt(Ri + Rsolv)2 which is the SASA of the z'th atom (or residue in POPS-R) 

with radius Rt and a solvent probe with a radius Rsoiv- b y  is the SASA of Si covered by 

the overlap of atoms / and j  at a set distance r tJ = |r { -  r j .  If ry  > Rt + Rj + Rsoiv, b y (ry )  =

work, residue level spheres were centred over the Ca. pt depends upon the atom type in 

the original definition while p y  serves as an additional reduction factor that 

distinguishes between the first and next neighbours. These factors were optimized by 

Hasel et al., (Hasel, 1988). In order to evaluate the packing of amino acids within the 

structure the overall SASA is ignored in favour of the residue level SASA.

n

S A S A ( A )  = ' 2 a i

where the protein A has n residues.

The Wodak and Janin formula is defined as:

(2.3)

0, otherwise ^ (^ .)  = jr(^f + i?Joh;)(^. + /?; +2Rsolv -^ .)[ l + (/^  -Z?.)^"1]. In order to
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The residue exposure levels were mapped into the range -1 ... +1 (exposed ... buried) 

using the Gaussian transform:

e -  2exp(-ca2) -1  (2.4)

where a is the surface area estimated by POPS and c (the inverse variance) has the value 

0.0003, which was found over a number of native structures to give an approximate 

mean of zero for the transformed value e.

The use of a measure of conserved hydrophobicity as a measure of sequence alignment 

quality is a defensible approach to the problem, based of the concept that protein folding 

is driven by the aversion for water on the nonpolar residues (Dill, 1990). Despite the 

role that the hydrophobic effect plays in protein folding, the observations made did not 

yield a measure which could be used to definitively assign one alignment ‘better’ for 

prediction or modelling purposes than any other. While some interesting observations 

were made, as will be described in the results, the decision was reached to change the 

focus of the investigation to a feature which can be observed, measured and controlled, 

namely sequence identity.

Evaluation of Sequence Alignments part 2; Testing the effect of sequence identity 

on Contact Prediction.

In the second phase of this work the original question ‘can ideal alignments be 

identified?’ was rephrased. The objective became to examine if altering the level of 

sequence similarity across multiple sequence alignments, less error prone predictions of
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contact number could be made for application in model ranking and fold recognition. 

To achieve this, the Representative Protein Databank (Noguchi et al., 1997) was used to 

select structures from the PDB which matched the following criteria: minimum 

resolution of 3A by X-ray crystallography only; R-factor less than 0.3; no chains breaks 

or non-standard residues and a minimum length of 60 residues. In addition to these 

features, all membrane proteins, mutant and complex structures were discarded. Of the 

initial 914 proteins only 815 passed the criteria. From this set of structures only those 

which were identified as a /p  proteins were selected, leaving 172 proteins. The choice 

of a /p  proteins was based upon ongoing work in the laboratory which is described in 

chapter 5 and (Taylor et al., 2008). Sequence information was extracted from the 

ATOM records. The advantage of a small dataset is the speed at which the support 

vector machines can be trained and tested.

Generating ‘Ideal’ Sequence Alignments.

Where sequences with high similarity and structure can be found, the comparative 

modelling approach should be applied, however this approach is not possible for every 

target. For such cases it becomes necessary to create an alignment which includes 

information from close to distance homologs giving some insight into the evolution of 

the target. In this work, alignments were generated such that a specific range of 

sequence identities were sampled -  these alignments are referred to as ‘ideal 

alignments’. The sequence alignments were generated using the procedure outlined in 

figure 2.2. The method used is an extension of the MULTAL-MULSEL method, 

described above, to generate a series of sequence alignments which conform to specific
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sequence identity cut-offs using a combination of the MULTAL-MULSEL scores 

(figure 2.3).

Initial multiple sequence alignments were generated using a standard PSI-BLAST 

search performed against a filtered copy of the non-redundant database (nr). The nr 

database was pre-filtered to remove all low complexity and coiled-coil regions using 

Pfilt, this was done to avoid spurious hits. Instead of creating a position specific 

scoring matrix (PSSM), PSI-BLAST was run with the -m  6 switch to return the default 

PSI-BLAST multiple sequence alignment.

Sequences from the PSI-BLAST search were used to form a local ‘hits’ list which was 

used as input to the MULTAL-MULSEL pipeline. Prior to execution of the pipeline, 

each sequence in the PSI-BLAST list was extended by 10 residues at both the N and C 

terminal to aid in realignment during the later stages of the pipeline. If more than 1000 

sequences were identified during the initial PSI-BLAST run, then sequences were 

discarded at random until there were only 1000 left in the set.



sequence

Local Hitlist

more than 
1000 hits? Yes

Sequence
identity
specific

alignemnts

NR OB
PSI-BLAST

-15
-eQ.01

randomly select 
1000 sequences

Extend Sequences • 
+10 residues at N & 

C termini

multal - discard 
sequences 

greater than x% 
similarity

mulsel - discard 
sequences less 

thanx% 
similarity

Figure 2.2: G eneration o f  Sim ilarity Specific Sequence Alignments: The input sequence is scanned 
against the non-redundant database ( nrdb) using five iterations o f  PSI-BLAST and a sequence threshold 
o f  0.01. The output o f  the scan is parsed into a list o f  hits -  sequence identity numbers and associated 
amino acid sequences. Each sequence is extended at the N and C termini to help reduce clustering errors 
that could potentially be introduced in later steps. If there are more than 1000 hits returned then 1000 
proteins are selected at random from the hit list. The final MULTAL and MULSEL steps filter the 
remaining sequences on identity. Two brackets are defined at the start o f  the process, one for low and the 
other for upper tolerance o f  sequence identity. Sequences that fall outside o f  these brackets are discarded.
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Figure 2.3 Clustering Sim ilar Sequences Using M ULTAL & MULSEL: 1. The red circle represents 
the seed sequence. Each o f  the black circles represents a single sequence identified by the initial PSI- 
BLAST search. Through stages 2-4 sequences are clustered by their MULTAL-M ULSEL scores. 
Clustering leads to the identification o f 4 clusters, 3 o f  which fall below a predefined MULTAL limit. 
From each o f  these clusters a representative sequence is chosen (rather than a consensus sequence), if  a 
sequence has an associated structure in the PDB it is short listed as the representative o f the family. In 
this example, after the M ULTAL and MULSEL steps three sequences are left that fit the predefined 
criteria.
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Calculation of Contact Number.

A C++ program was designed to calculate contact number. To simplify the problem, 

only C a coordinates were considered -  the alternative being Cp and pseudo-Cp for 

glycine. The distance between two atoms was calculated using Euclidean Distance 

(equation 2.5). Two residues (r,) and (rj) are said to be in contact if the distance 

between them is less than a cut-off distance (rj) and they are separated by at least q 

other residues in the sequence. Thus contract number, in raw form, is calculated as 

shown in equations 2.6 & 2.7. In this work rj  was set to 12A and q to 3.

1
2 )(« , -  bt)2 = •>/(«! ~ b lf  + (a2 -  b2f ( a n -  bn )2 (2.5)
i-1

where a and b are vectors of length n.

(2.6)C n , -  2 /(r„ )

Where C/i, is the contact number of the zth residue and ry is defined as:

/ f l  + expftoC?;.. -  r</)]) (2.7)

To smooth the contact number equation 2.7 is applied. This sigmoid function blurs the 

cut-off boundary such that the contact numbers are continuous rather than discrete 

(Kinjo et al., 2005).



Prediction of Contact Number using Support Vector Regression

To predict contact number, a function is required to learn a relationship between an 

input, the information contained in the multiple sequence alignments, and the output, 

the number of contacts a particular residue has. There were several methods which 

could have been applied to this problem however, due to the small size of the dataset, 

support vector regression was opted for.

The dataset is defined as (X, Y) where X  = (xj, X2, x,) and Y= (y/, y 2, ..., yi) where x,

is an ^-dimensional vector of length / and y is the associated label. The aim of epsilon 

(e) insensitive SVR (e-SVR) is to map a set of features to an output space.

f  :x~*  y is defined by / ( x f) := (a>,<£(xf)) + b (2.9)

where co is the weight vector and b is the bias. The function (x,y)  is the inner product 

of the weight vector co and 0 (x f). Where is a non-linear function that maps a

data point from the inner dimension space to ‘feature space’ allowing for non-linear 

separation to be performed (a kernel function).

In order to obtain the best solution to the regression problem, the values of co and b are 

found using an optimisation criteria -  in this case the prLO Q O  method (Smola, 1997). 

The aim of this step is to minimise the following function:

x iH r+c2 (£ +£ ) <2-10) z «•-1
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which is subject to:

f ( x i) - y i £ £  + ^ i

y , - / ( • * , )  * £  + §,* (2-11)

a 0  for 1 = 1 . . . /

The parameter c controls the trade off between the slack variables (§,,§*) and the 

margin, c is also referred to as the softness/hardness parameter as increasing it makes 

the margin greater. The parameters measure the deviation of x, outside of the e- 

insensitive tube, the solution is then given by:

/ ( * ) = 2 ( ° i + a i +b C2-12)
/ - I

The two a  parameters are Lagrangian multipliers and those that assume non-zero values 

are the support vectors, those with zero values are discarded. The inner product 

can then be replaced by a kernel function such that:

(<J>(x,.),<I>(z)) = K(x„x) = exp(-y||x, -  x f )  (2.13)

The third term in equation 2.13 is called the Radial Basis Function (RBF). The gamma 

(y) parameter defines the width of the Gaussian and was optimised using five fold cross 

validation. SVMs are not limited to the RBF kernel, indeed there are several other
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options including polynomial and sigmoid functions, however the RBF kernel has been 

shown to deal well with linear and non-linear problems.

For this work, the input vectors encoded the local environment using a window of seven 

residues either side of the residue being predicted. Each position in the window was 

represented by a 21 element vector, the first twenty elements corresponding to the 

transition values extracted from the PSSMs and the 21st element representing 

observations outside the target sequence. Where observations were made outside the 

sequence (at the N & C-terminals) the first twenty elements were set to zero and the 

twenty-first element to 0.5. The final input vectors had 315 dimensions. Three fold 

cross validation was completed using 100 randomly selected proteins. The remaining 

72 proteins comprised the hold-out test set.

Evaluation of Protein Models using predicted contacts

To assess the potential application of the predictions, in the later stages of development 

the predicted contact numbers were used to create model evaluation functions, the 

output of which is shown in figures 2.5-2.10 and described further in the results and 

discussion. The first function used the difference between the predicted contact number 

and the observed contact number calculated from models generated using a method 

similar to that described in (Taylor et al., 2008). The second approach applied a 

Bayesian rule outlined below:

i
fitness = (2.8)

i-1
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Equation 2.8 translates as: the probability of residue / (in the native structure) having a 

contact number Cnative given that the predicted contact number of i is Cprediction- The 

concept was that a Bayesian rule would apportion different penalties to under and over 

prediction of contact number resulting in better discriminatory power. Using the 

training dataset a lookup table was generated, allowing for probability assignments to be 

made (the probability of a residue having 3 contacts when 1 .. n contacts are predicted 

etc). When a new target is attempted, either from the hold out test set or new target, the 

fitness is the sum of the probabilities, theoretically the greater the score the more native­

like the protein should be. The problem experienced here was that the distribution of 

predicted and actual contact numbers were marked, i.e. the bins were quite distinct, 

while this sounds good, in fact on such a small dataset it means that sampling was not 

sufficient and that there is no generalisation. Several smoothing functions were used to 

overcome this limitation (caused by the small dataset) however none produced 

satisfactory results and so a simple difference between the predicted contact number and 

that seen in models was adopted.
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Results and Discussion

The aim of this work was to find one or more characteristics which could be used to 

identify multiple sequence alignments as good or bad for structure prediction. This 

started as an examination of the conserved hydrophobic positions across 

sequence/structure alignments. The alignments were extracted from several existing 

datasets as well as the construction of a custom set of structures from the PDB40 and 

ASTRAL database. The starting hypothesis was that hydrophobic positions, which are 

conserved across alignments play a crucial role in defining structures -  being situated in 

the core and conserved suggest, from an evolutionary perspective, that this is the case. 

A simple count of the number of conserved hydrophobic positions did not yield any 

pattern. Additionally it becomes very difficult to examine the alignment quality without 

something to compare to -  random sequences do not fill this role. The advantage of 

using the conserved hydrophobic measure was that is could easily be compared to 

solvent accessibility derived from structural information. This comparison showed an 

interesting pattern, as shown in figure 2.4, which was seen across all structure alignment 

datasets listed in the methods section.
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Transformed Hydrophobic component

Figure 2.4; The Em pty Q u arte r: The x-axis is the hydrophobic component extracted from the Taylor colour scheme, -1 corresponds to totally exposed while +1 is 
totally buried. The y-axis is the Gaussian transformed POPS-R value where -1 represents total exposure and +1 total burial. Each data point represent a single amino 
acid from a structure within the data. The bottom right hand corner is sparsely populated compared to the rest o f the plot and as such was coined the ‘Empty Quarter’. 
This pattern is visible in all the datasets mentioned in the method section (data not shown).



The pattern shown in figure 2.4 was coined the ‘Empty Quarter’ and shows that, in 

native structures, it is rare for conserved hydrophobic positions identified in the 

alignments to correlate with exposed residues in native structures. By generating a set 

of non-native/decoy structures is was clear that this property was not well conserved - 

the empty quarter becomes heavily populated. The combination of the structure and 

sequence provides a solid starting point for the creation of a protein structure evaluation 

function, but clearly does not aid in the evaluation of the multiple sequence alignments, 

given that a structure is necessary. However, the alignments generated for the 

aforementioned work, because they are based on sequences with known structures, 

allowed for the generation of a protein structure library for use in the SPREK and 

Furball fragment tessellation programs (Taylor et al., 2006, Jonassen et al., 2006).

Because the first phase of this work did not yield a result directly relevant to the initial 

line of investigation an alternative approach was adopted. The new approach was to 

explore the effect of varying sequence identity on the prediction of contact number to 

see if a specific range of sequence variation was better for prediction than a ‘default’ 

MSA. Rather than attempting to reverse engineer the problem, the focus is changed to 

examine the effect o f sequence identity on the prediction of a particular protein feature. 

While solvent accessibility can be predicted from multiple sequence alignments, it has 

been suggested that it is not a feature which is well conserved across a family sequence 

alignment (Przybylski and Rost, 2002). Instead, contact number, a value that is well 

correlated with solvent accessibility, was calculated as it has been suggested that it is 

better conserved across family alignments (Hamelryck, 2005).
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Prediction of contact number, like solvent accessibility, can be approached as either a 

classification or regression problem. As a predicted feature, contact number is a 

relatively new area but has been explored, most notably, by Akira Kinjo who used 

linear regression to predict contact number to a similar degree of accuracy as solvent 

accessibility (Kinjo et al., 2005). Considering the previous work and that contact 

number is supposed to be more conserved across a familial alignment it seemed a good 

alternative feature to predict, in addition accurate prediction of contact number has 

potential applications in threading and model evaluation.
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Observed contact number

Figure 2.5 A lpha/B eta  p ro te in  contact p red ic tions: The observed C a  contact numbers run along the x- 
axis. The predicted C a  contact numbers run along the y-axis. The overall correlation is reasonable and 
the means square error is 6.8.

61



Table 2.1: The effect of sequence identity on the prediction of contact num ber

S equence  Iden tity  
Range (% )

correlation
coefficient MSE

10-40 0.684 7.75
10-50 0.704 7.40
10-60 0.700 7.40
20-50 0.688 7.75
10-90 0.699 7.70
30-60 0.660 8.00
30-90 0.640 8.00
50-90 0.570 8.50

Standard PSI-BLAST 0.730 6.80

The selection of the boundaries for sequence alignment were chosen such that a series 

alignments were made ranging from close homologs to very distantly related sequences 

and in-between. Initial expectations were that there would be a drop in prediction 

accuracy at both the top and bottom of the ranges. These expectations were verified, to 

some degree, as shown in the table 2.1 but are not as dramatic as initially expected, with 

the lowest boundary (10-40% sequence identity) having a correlation coefficient (cc) of 

0.68, insignificantly less than the best predictions across the 10-60 and 20-50 ranges. 

The worst performance was obtained in the 50-90 range, which addresses close 

homologs (50% ... 90% similarity). The correlation coefficient was 0.57 and the mean 

error was 8.5, although this is not much worse than other thresholds, it does reflect an 

increased error in what is a sensitive measure. The decrease is probably a result of the 

lack of variation in the sequences from which the PSSM is derived. When compared to 

a standard PSI-BLAST generated PSSM -  i.e. one that ‘naturally’ samples the same 

sequence database -  the overall performance is worse still, as the PSI-BLAST PSSM 

obtains a cc of 0.73 and an error of 6.8 (figure 2.5) which, as mentioned above, is 

comparable to that of (Yuan, 2005). This suggests that attempting to generate 

‘artificial’ alignments, i.e. those that cover specific sequence identities, does nothing to 

improve contact number prediction, in fact it does the opposite. Repeating the results
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for long and sort range contacts shows the same pattern. It is possible that the effect of 

sequence similarity may have a more profound effect on feature prediction where there 

is a stronger conservation of structure -  such as secondary structure.

To test the potential use of these predictions, now based on the PSI-BLAST derived 

PSSMs, two simple scoring functions were designed, the first based on simple 

difference and the second based on a Bayesian approach as described in the methods. 

The Bayesian approach suffered from the outset because the overall size of the datasets 

and inconsistency of prediction. The simple difference did however work with the 

limited dataset but does not punish under and over prediction equally, something that 

the Bayes-like approach would have. The overall results are interesting, in as much as it 

is obvious that the predictions are not robust enough to be used in final model 

evaluation -  with an MSE of 6.84 which is comparable to that of (Yuan, 2005) and 

(Kinjo et al., 2005). When applied to five de novo predictions (figures 2.6-10) there is 

some indication that this type of function may be use, as outlined below.

As will be detailed in chapters 3 & 5, it is often useful to evaluate models post 

construction and prior to final refinement more often than not to save compute time, as 

demonstrated in (Taylor et al., 2008, Taylor et al., 2006). It is this niche were the 

contact predictions could be of future use. Figures 2.6-. 10 show, despite the function 

being simple, that there is some discriminatory power. The worst performance is shown 

in figure 2.6 for glycerol-3-phosphate cytidylyltransferase (pdb lcoz chain A) a 129 

amino acid protein. For this target no ‘good’ models were produced (those under 5A) 

and this is reflected in the performance of the evaluation function which fails to 

discriminate the lower RMSD models (6A) from the rest. Using the evaluation function
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solely on this performance would be unwise based on the fact the even by selecting the 

top 200 models no low score models make it into the final ensemble. Figure 2.7 shows 

the polar opposite performance of the evaluation function on 1DI0, for this target a 

number of good models were produced. Selecting the top 200 constructs would result 

in almost all of models being taken forward to the refinement stage being within 6A of 

the native structure. For the remaining three structures, shown in figures 2.8-. 10, the 

results fall between the two prior examples. For each model there is no clear distinction 

between the ensembles of structures, however by selecting the top 200 models, a mix of 

good models (those below 6A) and less desirable models (greater than 6A) would be 

taken forward to the refinement stage. This means, that by using the techniques 

described in chapters 3 and 5, the number of ‘good’ models should increase relative to 

the ‘bad’.
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Figure 2.6 ICOZA contact score: 1COZA produced the worst results for contact prediction. The top 
scoring native fold structure has a score o f  ~3.8, the rest scoring the same as, or less than, the non-native 
structures. Although some native-fold structures do make it into the top 500 they are in minority.
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Figure 2.7 1DI0 contact score: The prediction o f contact number for 1DI0 was good, this is shown by 
native-fold structures ranking better than the non-native structures. Such a prediction suggests that 
homology was present in the training set, however 1 DIO was identified in the HOT set not the training set. 
All structures in both the training and testing sets shared a maximum o f 25% sequence identity so 
memorisation can be ruled out.
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Figure 2.8 1F4P contact score: Lower scores represent structures which exhibit contact patterns closer 
to the predicted pattern. Although there is not a clear separation o f the ensembles this score would be 
useful in the prediction pipeline where the top 500 models are taken. For l F4P some native folds would 
proceed into the next round o f refinement as well as incorrect folds which may be identified by more 
sophisticated functions such as Phobic, Sprek and TUNE.
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Figure 2.9 2trxA  contact score: As with lF4p (figure 2.8) native folds are identified in the top scoring 
models but there is a clear overlap with structures which are dissimilar from the native target structure. 
As with the previous structures, selection o f the top 200 models would result in a number o f good 
structures being taken forward to refinement.
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Figure 2.10 3CHY contact score: Structures which adopt the native 3CHY fold are identified in the top 
500 structures, but like the previous examples structures which do not adopt the correct fold also score 
well.
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Conclusion

Although the initial aim of this work was not achieved, two interesting observations 

were made. The identification of the ‘Empty Quarter’, a pattern based on conserved 

hydrophobicity in multiple sequence alignments and estimations of solvent accessibility 

in protein structures, led to the development of an effective protein evaluation tool 

called Phobic (see chapter 2). Phobic, initially called burial/hydrophobic matching, was 

applied in dynamic domain threading (Taylor et al., 2006), structure fragment 

tessellation (Jonassen et al., 2006) and a de novo structure prediction pipeline (Taylor et 

al., 2008, Jonassen et al., 2006). The second observation was that sequence variation in 

multiple alignments does not have a dramatic effect on the prediction of contact 

number, showing that only marginally better predictions can be made in the presence of 

remote sequence homology than close. Furthermore it is clear that better predictions 

can be made using a PSI-BLAST derived PSSM than using the routines currently 

applied in our prediction pipelines.

It has been suggested that all one needs to accurately model the three dimensional 

structure of a protein are accurate predictions of secondary structure, contact number 

and residue wise contact number (RWCO (Kinjo et al., 2005)). This work shows that, 

despite having a correlation coefficient of 0.74, the margin of error is sufficient to 

prevent the use of predicted contact number in a final stage model evaluation function. 

However, it does show that the predictions may be of some use in post-construction / 

pre-refinement evaluation functions (as will be described in chapter 5). While the 

simple difference function, examined here, shows some, albeit limited, potential for the 

selection of native-like folds from the ensembles of models, it is not unreasonable to
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assume that the performance could be improved. This improvement may be achieved 

through the application of a larger training dataset and implementing an algorithm that 

is capable of punishing under and over prediction independently, such as the Bayesian 

method described previously.

In summary, despite failing to achieve the aims described at the start of this chapter, the 

work conducted as part of this investigation played an important role in the initial 

development of two protein structure prediction pipelines, one model evaluation 

function and a novel method for the prediction of secondary structure and solvent 

accessibility which will be described in the following chapters.
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Chapter 3

The Critical Analysis of Structure Prediction: 

Round 6 and Dynamic Domain Threading



Introduction

The aim of protein structure prediction is to map a sequence with unknown structure, 

referred to as the target, to structural space using any information available. This 

problem is one of the grand challenges in computational biology and is assessed 

biennially by the Critical Analysis of Structure Prediction (CASP) and Critical Analysis 

of Fully Automated Structure Prediction (CAFASP) exercises.

CASP was initiated in 1994 by John Moult with the aim of becoming an internal control 

mechanism to direct the future of the field (Moult et al., 1995). The procedure is 

simple, CASP runs for approximately seven months of which four are devoted to 

structure prediction and three to analysis. During the four months sequences with 

privately known structure are distributed to participants, none of whom know the native 

structure of the target. Each of the targets is assigned a deadline dependent on the use 

of fully automated servers or ‘expert’ guidance. The deadlines range from 24 hours (for 

server groups) to several weeks depending on when the native structure is released to 

the scientific community.

At the end of the prediction period, all submitted models are evaluated by a panel of 

experts using the longest-continuous-segment-global-distance-test (LCS-GDT) (Zemla, 

2003) as well as any tools of their choice. The analysis is composed of several 

categories each with a number of sub-categories -  the major division of CASP can be 

drawn between two dimensional (2D) and three dimensional (3D) predictions. In the 

past, the 2D category has covered secondary structure, solvent accessibility, disorder
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and contact number, however it is generally regarded as ‘second fiddle’ to three 

dimensional prediction as 2D features are used to improve overall structure prediction.

Overall performance is assessed by the ability of each method to consistently predict the 

three dimensional coordinates of all Ca atoms of the protein. Assessment at this level is 

dived into three categories based on the approach deemed most suitable by the 

assessors. These categories are identical to those introduced in chapter 1: Comparative 

modelling (CM), which is divided into easy and hard targets based on the ease of which 

a sequence with known structure (template) can be identified using tools such as PSI- 

BLAST (Altschul et al., 1997). Hard targets fall into an area close to the twilight zone 

(Doolittle, 1986) where diminishing sequence similarity makes template identification 

difficult; Fold recognition (FR) is also split into easy and hard targets. The boundary 

between hard CM and easy FR is not clearly defined but could potentially be measured 

by sequence similarity. Hard FR targets are typically attempted by complicated 

fragment packing methods that borrow sections of structure from a number of templates 

and ‘glue’ them back together, an effective example of this approach is the SAM series 

by Karplus (Karplus et al., 2003); New fold modelling (NF), as with CM and FR, 

overlaps with FR. NF is applied in cases where there is very little or no information 

available on a target. Many methods aim to solve this problem using prior knowledge 

by incorporating fragment packing -  the idea that reducing the size of the probe 

sequence increases the probability of getting a hit from the databases but at the expense 

of the noise-signal ratio. NF modelling is beset with difficulties including the 

introduction of knowledge based scoring potentials which suffer from massively 

reduced capacity in the absence of detectable homology. Ultimately the NF category is
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‘the’ problem to solve and arguably over recent years more progress has been made 

here than in CM and FR modelling fields.

Post assessment the success of each groups attempts on all structures is made publicly 

available and an unofficial ‘winner’ of the current round is identified -  over the last 

three rounds there has been no change at the top! Assessment at this resolution allows 

widespread changes to be made to methods and effectively forces participants to adopt 

new methods. At the group level CASP allows for identification of weak spots in their 

methods such as consistent failure to identify the best template or the absence of a 

suitable model evaluation function(s).

In this chapter I will introduce the method used in the 6th round of the critical analysis 

of structure prediction exercise (CASP6). The method, dynamic domain threading, is a 

new threading approach that attempts to side-step the problem of domain definition in 

templates. I will present a review of the overall performance at CASP6 and describe 

how the method could be improved.

Methods

Construction of Protein Models Using Dynamic Domain Threading.

A full description of the model construction process used in CASP6 can be found in 

(Taylor et al., 2006). Before giving a brief overview of the techniques used it is 

important for the reader to be aware of the meaning of two terms: target, the name used
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to refer to sequences whose structure is to be modelled; template, the term used to refer 

to sequences with known structure which are used to construct models of the target.

The feature which distinguishes DDT from other threading techniques is the use of an 

Ising-like model to define a series of sub domains within each template (as described 

below). Each sub domain is based around different positions within the template and 

for each variation the sequence, secondary structure and degree of residue burial are 

compared against that of the target (Taylor, 1997a). The resultant alignment is used to 

generate Ca models for the target. Because the sub-domains are borne from different 

regions of the template variation is introduced. The result of this variation is that a 

number of structurally different models are produced from a single template. Each of 

these models is then evaluated using a number of scoring functions described below.

Domain Definition using an Ising-like Model

Domain definition was based on an Ising-like method described in (Taylor, 1999a). 

This method uses multiple seed points within the template structure from which sub- 

domains grow and form a combined sub-domain or remain separate. This means that 

the domains defined are not guaranteed to be similar in size to the target. To avoid the 

problem of small or giant domains the growth of the domain model was biased to select 

the same number of residues as the target. The bias was not perfect and occasionally 

fragments of structure were generated. To suppress this problem a smoothing stage was 

introduced to unite or remove fragments.
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Alignment of the Target and Domains

The DDT program was developed from the MST program (Taylor, 1997a) which uses a 

comparison of secondary structure state and predicted residue exposure along with a 

measure of sequence similarity to align the target and the template. Unlike the original 

MST method, pairwise spatial restraints are ignored in DDT. This approach is like the 

3D/1D methods described in Chapter 1.

Secondary structure matching

Template secondary structures were defined by the STICK program (Taylor, 2001) that 

uses only Ca coordinate data, giving a consistent definition across both native 

structures and models.

Secondary structures were predicted using the PSI-Pred program (Jones, 1999b). To 

obtain variation in the secondary structure predictions, a separate prediction was made 

for each sequence in the family-based alignments. The result, on average, was that at 

least one prediction was a close approximation of the native structure.

Burial/hydrophobic matching

Residue exposure was calculated using a version of the POPS program (Fratemali and 

Cavallo, 2002, Cavallo et al., 2003) which had been optimised to work with Ca models, 

which like STICK, gives a consistent measure across native structures and models. The
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output of POPS was mapped into the range -1 ... +1 (exposed -  buried ) using the 

Gaussian transform:

e = 2exp(-ctf2) - l

where a is the surface area estimated by POPS and c is the inverse variance which has 

the value 0.003, which was found to give a zero mean for the transformed value e. 

Predicted burial was calculated as a function of conserved hydrophobicity, which was 

calculated using the colour scheme described in chapter 2. The degree of conservation 

was encoded as the number of different amino acids at a particular position in an MSA 

(a) augmented by the fraction of gaps (g). In addition, a contribution from the prolines 

ip) present was introduced. The terms were combined as follows:

c = (h +1) ■■ £(a, A) • £(g,G) • £(p,P) -1  

where the function Z(x,y) is the Gaussian transform:

where A=2, G=l, P=0. As the hydrophobic component (h) falls into the range -1 ... +1 

and all other values are transformed using equation (<NUMBER>), c always falls into 

the range -1 ... +1. The value of c was shifted slightly to give a zero mean over the 

positions in the alignment to correspond with the exposure measure (e).



Sequence/Structure alignment

The alignment of the sequence and structure properties used a conventional dynamic 

programming algorithm. The score matrix was built by the addition of a sequence 

component derived from a Dayhoff-like matrix of amino acid similarity (Jones et al., 

1992b) of the template/probe residue match scaled into the range 0 ... 1. The score 

matrix was then supplemented by secondary structure matching where a (3 match was 

evaluated to +4, a  matching +2 and loop matching +1. The burial hydrophobic match 

was then included.

The matrix generated by this scoring scheme was then modified by the current domain 

definition by reducing the score by an order of magnitude for positions excluded from 

the domain. The matched residues form the framework over which models were 

constructed using a modified version of the RAMBLE program (Taylor et al., 2002).

The new program (called TRACK) imposes a constraint to ‘encourage’ selected

residues to lie close to given probe points. To be a ‘core’ residue (m) the following 

conditions had to be met:

• m is buried;

• m is in, and not on the end, of a secondary structure fragment;

• the percentage match in secondary structure must be greater than 70%;

• the template residue («) aligned with m must also be within a predicted 

secondary structure fragment;

• the number of matched residues must be more than half the length of the 

template.
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To avoid directional bias during construction, RAMBLE starts at residue n (aligned to 

residue m in the template) and expands towards both termini. Where the template and 

domain residues are paired, a large number of semi-random trial positions were tested 

until a new position was found within 1.5A of the template for residue n -  this step 

generates a small amount of variation between the template and target structures. If this 

was successful the new position was shifted towards the template position by a random 

factor between 0 and 1. If the new position was within lA of the template it was 

accepted, otherwise a default torsion based random walk position was used, with 

torsional angles appropriate for the local secondary structure.

Each model was then refined using routines similar to those from the DRAGON and 

GADGET programs (Petersen and Taylor, 2003). These procedures adjust the Ca-Ca 

bond length between residues and also the distance between the residue and residue /+2. 

Non-bonded contacts were repelled if the distance between them was less that 5.0A in a 

P-sheet, 5.5A in a-helix and 6.5A otherwise. Pairs of residues predicted as P were 

refined towards 5.0A if they met the criteria defined in (Taylor, 1999a).

Model Evaluation

Before application of sophisticated scoring functions each model was filtered using 

some ‘basic’ geometric checks described below.



Radius of Gyration.

The predicted radius of gyration (how much the protein spreads from its center (RoG)) 

was calculated from the probe sequence length (N) as:

R = (3.1)

where rho (p )  is the density of the protein estimated as 3*10"3 and ( 3
\3j tpj

is the

estimated radius of a spherical protein while converts this to the RoG. The RoG of

the model was also calculated from the template sub-domain over which the model was 

constructed (RJ). The value can take a wide range of values dependant upon the shape 

of the domain, to moderate the values an average was taken between the structures. To 

allow for variation 2A was added:

R = 2 + (Rc + Rd)/2 (3.2)

where Rd = l /N  ̂  x f for a set of coordinates (x) with zero centroid. Models with a 

RoG score greater than R were discarded.

Hydrogen Bonded p-sheets, Tangles and Distortions

The maximum number of hydrogen bonded pairs in a p sheet was estimated from the 

number and length of predicted p-strands. This is achieved using the sum of the lengths
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of all the (3-strands with the exception of the longest. Models with approximately 20 

bonded pairs typically contained a sheet of five well connected strands.

Although tangles and knotted structures occur only rarely in native structures, they pose 

a problem for modelling and can be justifiably excluded due to their rarity. The current 

modelling strategy employed a smoothing algorithm in which the number of steps (s) 

required to reduce the protein to linear form and the number of chain ‘bumps’ (r) 

experienced in the process were used as indicators. The logarithm of the product of s 

and r was used to give a score:

f = log(l + r  • s) (3.3)

Geometric quality of the final model were measured as the number of non-adjacent 

residues within 4A (b in equation 3.4) and the number of adjacent residues with a Ca- 

C a RMSD of 4A {a in equation 3.4). Again the logarithmic value of the product of a 

and b was taken:

d  = log((l + #)(1 + by) (3.4)

As the scores are related they were combined (G) as:

G = t + d  (3.5)

Models with a G-score greater than 20 were rejected. The value of 20 was a result of 

coarse grain optimisation over a small set of proteins.
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Detailed Evaluation

While the previous scores are capable of removing some structures that violate basic 

constraints they are too coarse to discriminate good models from the ensemble of 

predicted structures. While any (or all possible) evaluation functions can be applied to 

the models, in the current work only three methods were applied, each derived from a 

distinct physical basis to avoid redundancy. The scores used were based on the POPS 

program (as described in chapter 2 and above), TUNE-3D (Lin et al., 2002) and SPREK 

(Taylor and Jonassen, 2004), because each of these scores was applied to models of the 

same length it was unnecessary to normalise for length or structural type.

Burial and secondary structure matching

Using POPS, the solvent accessible surface area of residues in the model were estimated 

and mapped into the range -1 ... +1 as described above for the template structure. The 

value was then compared to the measure of conserved hydrophobicity (c, mentioned 

above) by taking the sum of their product over all residues. Positive values of this sum 

indicated a better than random correspondence.

The segment based method (STICK) was then applied to each of the models. Effects of 

the modelling process meant that each model may have different secondary structure 

and also differ from those in the template protein. As in the template/probe matching, a 

simple count was taken of the number of residues at which the observed and predicted 

structure matched.
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Residue Packing using TUNE and SPREK

TUNE encodes the propensity of pairwise residue interactions in an artificial neural 

network and uses a reduced representation of protein structure based on the Ca and the 

residue centroid (Lin et al., 2002). For this work TUNE was modified so that the 

centroid was constructed 2A beyond the bisector of the Ca bond. The network was 

retrained using the new representation and evaluated on the 4-state decoys of Park and 

Levitt (Park and Levitt, 1996) prior to the construction of the pipeline.

The SPREK method scans local fragments of structure against a non-redundant database 

of known protein structure. The number of patterns matched against the database is 

used as an indication of how protein-like the construct is. In this work the database of 

known structures was extended using a set of alignments based on the SCOP domain 

database (Murzin et al., 1995) (Klose & Taylor, unpublished data) described in chapter 

2 .

Comparison of Protein Structures

Two methods were used to compare the predicted structures to the native structures. 

Each method is described below.

Structure Alignment (SAP) Program

Structure alignments were made with the SAP program which is based on the sequence 

structure alignment algorithm of Needleman and Wunsch (N&W) (Needleman and
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Wunsch, 1970). The application of the N&W algorithm allows for incorporation of 

insertions and deletions, a necessary requirement when dealing with distantly related 

proteins. The difference between the sequence and structure alignment is the situation 

of the amino acid in the structure -  a buried core residue is different to an exposed loop 

residue, whereas two residues in a linear sequence are fundamentally the same. The 

difference in location is used to advantage in SAP, with a measure of local structural 

environment of each residue forming the basis of similarity score. In addition to this 

basic measure, a representation of the 3D structure is required. In SAP this is achieved 

by aligning sections of each protein and then maximising their local environment 

scores. SAP is suited to the current work as it requires only Ca coordinates and can be 

forced to give one-to-one alignments as well as optimal alignments. The output of SAP 

is the number of equivalenced carbon alphas, the number of selected residues that lay on 

the alignment and the root mean squared deviation (RMSD). If either of the first two 

values falls far below 50% caution must be exercised in the interpretation of the results. 

An additional file is created by SAP that contains a rigid body superposition of the two 

structures which can be further analysed in molecular graphics software. There is also a 

plot of the RMSD with increasingly large subsets of residues -  similar to the LCS-GDT 

measure used to assess CASP.

The DALI Method

DALI is an algorithm for pairwise structure alignment using Ca coordinates (Holm and 

Sander, 1993). As stated by the authors the method has two steps, each consisting of 

several sub-steps and several scores. The first score measures how similar two 

structures are on a sub-structure level. In this measure only residues that are matched
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contribute to the score and as such the larger the value the more optimal the set of 

equivalenced residues are. The remaining two scores address the problems of searching 

for predefined patterns in structures and the search for the largest common sub-structure 

between two structures. The first step is a pairwise comparison of all elementary 

contact patterns in the two distance matrices. DALI stores equivalenced hexapeptide- 

hexapeptide contact patterns between two proteins (A & B) in a non-exclusive list of 

pairs. The second step assembles pairs of contact patterns into sets of pairs in order to 

maximise the similarity score. After this step a Monte Carlo algorithm is used to build 

alignments from contact patterns, this step is then followed by a final refinement stage. 

DALI is available as a pairwise and multiple structure alignment tool, however it was 

only used for multiple alignment in this work.

The output from the web-based DALI algorithm contains a multiple sequence alignment 

plus five measures of similarity: raw-score, the value initially computed by the DALI 

algorithm; the Z-score -  the number of standard deviations from the mean, the larger 

this value the more similar two structures are considered to be; the id, a simple measure 

of percentage sequence identity; the length of the structure alignment (similar to SAP); 

RMSD, as returned by most structure comparison algorithms however this value varies 

between methods (SAP and DALI) as the protocol for calculation differs.
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Results and Discussion

Conserved Hydrophobicity, TUNE and SPREK

From preliminary investigation it was observed that the scatter plot of conserved 

hydrophobicity against solvent accessible surface area (first introduced in chapter 2 as 

the ‘empty quarter’) did not show a linear trend, but tended to be well populated 

everywhere except for the quadrant corresponding to conserved hydrophobic residues 

that were exposed in native structures (c >0 and s < 0) (see chapter 2, figure 2.4). A 

simple evaluation function was developed from a count of the number of points 

(residues) found within the ‘empty quarter’, the greater the count the less ideal the 

model.

To evaluate the effectiveness of the three model evaluation functions, a set of decoy 

models were generated from all SCOP domains starting with the code “d la”. The 

decoy structures were constructed by reversing the native structure and using this as a 

template on which to construct models (Taylor and Jonassen, 2004, Jonassen et al., 

2000). For each protein in the decoy set two classes of models were generated: those 

based on the native structure which deviated by approximately 1.4A on average (over 

500 structures) from the native structure; those based on the reversed structure which 

deviated by approximately 10A on average. The same geometry parameters, described 

previously, were used to select these models, resulting in many models being rejected. 

The result of this was a set of decoy models that were compact and protein-like with 

reasonable secondary structure and a minimum of ten forward and reverse models per 

structure. The final dataset consisted of 36 proteins with 20,000 models in all (11,500
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native and 8,000 reverse). The ability of each method to discriminate the native (true) 

from the reversed (false) was quantified using a simple measure: for each method, a 

value of its score (x) was found where the number of false models scoring over x (false 

positions, FP) equalled the number of True models scoring less than x  (false negatives, 

FN). The number of false negatives is a measure of how well the two populations have 

been discriminated.

Over the sample of 543 structures 16 were misclassifled by TUNE, 18 by SPREK and 

46 by The Empty Quarter. In contrast to TUNE and SPREK, the POPS based score is 

basic, having no facility to check for homology and lacking any form of optimisation, 

this resulted in a limited ability to discriminate between the true and false models. For 

this reason it was removed from the fine grain evaluation and the SPREK and TUNE 

scores were combined as follows:

S = (s(t + 10))^ (3.6)

where t is the TUNE score with 10 added to it to ensure it is positive and s is the 

SPREK score. The square root was taken to avoid large numbers and has no effect on 

final rankings. The combination of scores in this fashion resulted in 8.3 errors per 

protein, a drop by half when compared to the individual techniques.

DDT Compared to Standard Threading

To evaluate the quality of models and their scores in a more realistic environment, the 

bacterial chemotaxis protein family (CHEY) was modelled on a variety of templates.
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Using an alignment of 8 sequences based on the Che-Y protein (pdb 3CHY), a diverse 

collection of template structures was selected, ranging from the structure itself, through 

homologs included in the alignment to analogous folds identified using the DALI 

structure comparison server (Holm and Sander, 1995). For the structures in the set, a 

large number of models were generated with and without the dynamic domain threading 

turned on. The method without the DDT is identical to the DDT method with the 

exception that the domain definition was set to include all residues in the template 

structure. This minor change means that the same number of modelling attempts was 

made for each template structure, allowing the numbers and quality of the models 

resulting from each group to be compared directly. In the following paragraphs, the 

dynamic domain method will be referred to as DD and the single domain SD.

Assessment of Structural Quality

The quality of the models was assessed by structural superposition of the model onto 

the known structure of the probe protein (3CHY) using the SAPit program (Taylor, 

1999b). The models were then ranked on their RMSD fit and plotted from smallest to 

largest value for both the DD and SD methods as shown in figure (3.1).

For the homologous single domain templates, there was essentially no difference 

between the plots of the ranked RMSD values, except sometimes where a small number 

of very poor structures had been generated, probably as a result of unpredicted 

secondary structure elements allowing the chain path to deviate from the template too 

far to get back on the ‘right’ track. Many of these models were avoided by discarding 

the worst 20% of the models, typically those over 460 in figure 3.1.
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Figure 3.1 R anked RM SD deviations for closely related tem plate  stru c tu res; The RMSD deviations 
for the models constructed using the dynamic-domain approach (solid lines) are plotted along with the 
data obtained without domain definition (dashed lines). Data are plotted for two proteins: the lower 
curves are from modeling the CHEY sequence on its own structure (3chy) while the upper is from a 
homologous CHEY protein (ltm y) with 30% sequence identity. The sharp rise in RMSD values to the 
right is discussed in the text body. The RMSD values (Y-axis in A) for each model are plotted in rank 
order along the X-axis.
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It should be noted that in this method, the stoichastic component contributes a ‘noise’ 

level of approximately lA  RMSD on average. This means that a ‘self model is likely 

to differ from the template upon which it was based. However, the component becomes 

negligible when more distantly related templates are used. The best models obtained 

for CHEY were based on the distant homolog from Thermotoga Maritima (1TMY), 

which shares 30% sequence identity, having an average RMS deviation of 2A, 

compared to 1.9A obtained by aligning the two structures.

On the more distant, multi-domain proteins, the RMSD profiles of the models generated 

by the DD and SD modes showed greater separation. For the majority the profile of the 

SD models tracked at a higher RMDS, indicating that the operation of the DD definition 

had resulted in an increase in lower RMSD models. This is shown for the double 

domain protein NARL (1A04, 205aa) (figure 3.2) and methylmalonyl-voA mutase 

(1REQA, 727aa) (figure 3.3). The sequence identity with CHEY is low, 25% for 1A04 

and 11% for 1REQA (as measured by structure comparison).
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Figure 3.2 R anked  RM SD  fo r double dom ain  p ro te in  1A04: The RMSD deviations for the models 
constructed using the dynamic-domain approach (solid lines) are plotted along with the data obtained 
without domain definition (dashed lines). The RMSD values (Y-axis) for each model re plotted in rank 
order along the X-axis.
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Figure  3.3 R anked  RM SD fo r double dom ain  p ro tein  1REO; The RMSD deviations for the models 
constructed using the dynamic-domain approach (solid lines) are plotted along with the data obtained 
without domain definition (dashed lines). The RMSD values (Y-axis) for each model are plotted in rank 
order along the X-axis.

93



Quantifying the DDT improvement

While it is clear from figures 3.2 & 3.3 that the DDT method results in a greater number 

of good models being produced, it is necessary to quantify the effect. This was 

achieved by summing the separation of the DD and SD plots. However, separation at 

points where both curves derive from poor models (those with high RMDS values) is 

not as important as when one curve is low and the other high. To incorporate this 

feature, the separation of the curves was modified by division by the value of the lower 

curve. The weighted separation was then summed over the best 80% of the models. If 

one curve had less points than the other by a margin greater than 20%, then a gap was 

filled by retaining the last RMSD value seen in the shorter curve as the ceiling value. 

The summed values is referred to as the ‘Curve Separation Value’ (CSV).

The CSV was calculated for the proteins identified by the DALI method as having a Z- 

score of 6. Although this value appears high, proteins in this family which have a Z- 

score less than 10 cannot be considered as homologous, furthermore none under Z=15 

have more than 21% sequence identity. To avoid complications with domain definition 

and modelling across gaps, structures that contained chain breaks greater than 8A were 

omitted. The CSV for the remaining 43 proteins that fulfilled the above criteria were 

plotted against their chain length (figure 3.4).
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Figure 3.4 Q uantify ing  DDT Im provem ents: The effect o f  the DDT algorithm on the number o f  good 
models produced was quantified using the CSV measure relative to the SD models. The CSV was plotted 
for each protein against the chain length (N).
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The data in figure 3.4 shows an increasing trend for improvement with chain length, 

with only two proteins showing any marked deterioration in the quality of the resulting 

models. These models include the single domain protein 1QJ4A and a double domain 

protein 1CIPA.

Alongside this data, there is a set of proteins that are neglected by the CSV evaluation, 

namely those proteins for which models were only generated using the DDT method. 

This group is not insubstantial, comprising over half those with a DALI Z-score greater 

than 6. When these models are ranked by RMSD many of the models are poor (RMSDs 

over 5A) however, a number of models do have acceptable RMSDs (under 4A) that 

would have otherwise been missed without DDT. These models were based on large 

template structures 1F6D, 1B16A, 1ESC, 10FGA and 1LIV, many of which have 

complex multi-linked domain structures.

Evaluation of CASP 6

During CASP6 attention was focused on comparative modelling and fold recognition 

targets at the expense of new fold modelling. For each target a sequence alignment was 

generated using the method described previously. Templates were identified using the 

TUNE and GenThreader tools and then run through the DDT method with dynamic 

domain threading switching turned on and off. All models were pooled and assessed as 

described above, the top three structures where submitted to the CASP evaluators for 

assessment.
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To establish if the best template structure was identified the target structure was scanned 

against the PDB using the DALI algorithm. For all the targets where a template should 

have been identified there are several outcomes: the best template is identified and used 

to construct models; the best template is identified but discarded; the best template is 

not identified and therefore not used. To be considered as an appropriate match, the 

template used to construct models had to be in the top 5 DALI structures.
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Tabic 3.1 Target Template Identification at CASP6.

No m atch Match - d iscarded Match - used
1 9 7 2 1 3 2 0 3
1 9 8 2 2 8 2 2 2
1 9 9 2 3 7 2 2 3
2 0 2 2 4 3 2 2 4
2 0 6 2 4 8 2 3 0
2 0 9 2 4 9 2 3 5
2 1 2 2 5 1 2 4 9
2 1 4 2 8 0 2 6 3
2 6 2
2 7 2
2 7 2
2 8 1

Each number in the above table is an identifier from the sixth round o f  CASP. There were 87 targets 
released during CASP6, not all targets were predicted and some were cancelled because o f  early release 
or failure to solve the structure on time. The above table shows for the targets attempted, with the 
exception o f de novo, whether the best possible templates were identified and used. Match means the 
template used to construct models was found in the DALI top five hits.

Twenty-eight targets were identified as suitable for comparative modelling or fold 

recognition approaches (Table 3.1). Table 3.1 identifies the attempted CASP targets for 

which suitable template should have been identified. For 12 of these targets the best 

possible templates were not identified and, as a result, predictions were poor. For a 

further 8 targets the best template was identified but discarded by the evaluation 

functions. For the remaining 8 targets the template used to construct models was 

identified (afterwards) by DALI as being an ideal template. For targets T0230 & 

T0249, where good templates were identified, the method produced some of the better 

submitted models from all groups (see figure 3.5). Nevertheless, table 3.1 shows that, 

for the majority of targets, the best possible template was either not identified or 

discarded.
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Figure 3.5 SAP s tru c tu re  superposition of T0230 and 1W CJ: The native structure is coloured blue is 
an a /p  protein 102 residue in length. The red structure is first model submitted to CASP for evaluation. 
The overall RMSD is 5.61 A with much o f the variation occurring in the long interconnecting loops 
between secondary structure elements.
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The failure to identify good templates for comparative modelling and fold recognition 

has the obvious knock-on effect, that the final outcome of the prediction pipeline is 

likely not to be as good as if the correct template had been identified and used. The net 

result was a poor overall performance at CASP6.

The evaluation of the scoring functions used during the 6 round of CASP deliberately 

ignored the basic evaluation functions described in the method section, instead focusing 

on the TUNE and SPREK knowledge-based scoring functions which ranked the final 

predictions. Performance evaluation using the CASP6 results proves to be problematic 

because, overall, the models produced were not of a particularly high standard. There 

are two further extenuating circumstances, visual assessment of the top scoring models 

often conflicted with the evaluation function score, resulting in the submitted models 

not being the ones with the highest rank. Manual refinement of models also took place, 

this included changing connections, loop lengths and secondary structure. Indeed, for 

all targets, the model with the lowest RMSD produced by the prediction pipeline was 

not identified and, for some targets, the best models were in excess of 10A from the 

native structure. Even for targets T0230 (figure 3.6) and T0249 (figure 3.7) the 

evaluation functions did not identify the model with the lowest RMSD, but a member of 

the closest ensemble of structures. Figure 3.6 shows the RMSD plotted against the 

evaluation score for each predicted structure; each point on the plot represents one of 

these models. In addition the two models submitted for assessment are highlighted rank 

1 (green), rank 2 (red). By contrast figure 3.7 shows a threading target, where the 

template was correctly identified (table 3.1) and used. The figure clearly shows that the 

combination of the scoring function fails to identify the ‘best’ models which fall within 

3A of the native structure, the figure also shows the three models submitted to CASP
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for assessment (green, red and blue). One thing that figures 3.6 and 3.7 clearly show is 

that the performance of the scoring functions is not consistent.

In summary, the CASP6 results were not unsurprising, with the DDT method able to 

generate good approximations for some comparative modelling targets, where suitable 

templates were identified. For fold recognition, the overall performance was ‘hit and 

miss’, depending on identification of a good template and performance of the evaluation 

function.
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Figure 3.6 CA SP Sum Scores for T arget T0231: Target T0231 was a comparative modelling target, 
142 residues in length. Each dot represents one o f the models generated by the DDT pipeline. The red 
dot represents the ‘best’ structure submitted to CASP6, while the green dot represents the second ‘best’ 
structure submitted to CASP6. Both models were approximately 2.5A from the native structure.
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Figure 3.7 Sum Scores for T0223: Each point represents a single model constructed using the DDT method described above. The green point is the first model 
submitted to CASP, red is second and blue third. Each o f these models was chosen despite being outside the top ten constructs. O f the top ten models the first six all 
have RMSDs over 10A, the seventh model has an RMSD just over 5A and the remainder are all over 10A.
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Conclusion

The DDT method represents a new approach to the modelling problem of domain 

definition. The way the method works, with on-the-fly domain definition, allows a 

wide range of templates to be used irrespective of their size. The generation of so many 

artificial domains combined with the variation in secondary structure prediction results 

in the generation of thousands of models from each target/template alignment. The 

number of models produced, although computationally expensive, has an advantage, as 

increased sampling leads to an increase in the number of native-like models -  a feature 

that is also noticed in the de novo approach described in chapter 5. Each of these 

constructs was assessed by a number of coarse grain geometric functions before finally 

being assessed by fine-grain evaluation methods TUNE and SPREK. It is clear that, 

while both functions have been shown to work individually, there is scope for 

improvement. This could be achieved through the application of algorithms to optimise 

the combination of existing functions as well as the development of novel evaluation 

functions for assessment of different features of protein structure.

Comparisons of the dynamic domain method switched on and off showed an increase in 

the number of good models being generated with the DDT switched on. In some cases 

the dynamic domain method produced models where the SD method failed to produce 

any models, clearly indicating an advantage in adopting the DD method over the SD 

method. One drawback of the method is that it is not ideal for modelling close 

relationships as the random component, designed to introduce variation, draws the 

model away from the template, which helps to explain the performance in the 

comparative modelling area of CASP 6.
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While the DDT method is an improvement over the SD method, it is also abundantly 

clear from this work that two areas needed to be improved: template identification and 

model evaluation. Having already attempted to utilise a measure of solvent accessibility 

to evaluate multiple sequence alignments and identifying the ‘empty quarter’ (see 

methods and chapter 2), the decision was made to examine the possibility of improving 

the DDT method through the design and application of a novel model evaluation 

function.
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Chapter 4

The Construction and Evaluation of Protein Models: Phobic



Introduction

Where Ab initio structure prediction pipelines allow single structures to change over 

time, an alternative approach is to generate many static “snap-shots” of possible 

structures for the protein and then and pick the best one. The later approach is referred 

to as combinatorial modelling and was demonstrated in chapter 3. The combinatorial 

approach requires a vast amount of compute time and, unlike ab initio modelling, a 

number of evaluation functions for the selection of good models from the ensemble. 

There are two types of evaluation function: physical and knowledge based, of course, 

combinations of the two are common as demonstrated by Simons and Baker (Simons et 

al., 1999b).

Physical scoring functions (also called potentials of mean force and effective energy 

functions) are based on the thermodynamic hypothesis. This theory postulates that the 

native state of a protein is the state of lowest free energy under physiological conditions. 

The aim of physical scoring functions (PSFs) is to capture the relevant free energy 

components that contribute to the overall stability of a protein in a native state 

compared to misfolded or unfolded conformations. The most important contributions in 

PSFs comes from intra-molecular bonded and non-bonded energy terms as well as the 

free energy of solvation in the aqueous solution. One of the most popular approaches is 

the Molecular-Mechanics-Poisson Boltzmann/Surface area (MMPB/SA) method 

developed by Srinivasan et al (Srinivasan et al., 1998):

AG = AG„m + AGPB + AGsa -  TAS (4.1)
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where AGmm is the internal protein energy derived from a molecular mechanics force 

field; AGpb is the polar contribution to free energy of solvation obtained as a solution to 

the Poisson or Poisson-Boltzmann equation; AGsa is the hydrophobic contribution to 

free energy of solvation from the solvent accessible surface area obtained by equation 

4.1; TAS is the relative protein entropy.

yS A S A  + b (4.2) 

where y = 5.42 cal mol*1 x A2 and b = 920 cal mol*1.

The TAS term is expensive to calculate and has been found to vary little for similarly 

compact proteins, and as such is regularly ignored (Feig and Brooks, 2002). Further to 

this, it is common practice to estimate free energies of solvation by more empirical 

implicit solvent models that produce relative free energies:

AG = AGm„ + AGro;„„,„ (4.3)

These models are parameterised to fit experimental data (Wesson and Eisenberg, 1992). 

PSFs have proven to be successful at discrimination of native and non-native-like folds 

on standard decoy sets (Lazaridis and Karplus, 1999) as well during CASP exercises 

(Feig and Brooks, 2002). Despite this misleading simplicity, PSFs require full atomic 

models and considerable compute time. A poor historical record, through 

misinterpretation of data, has led to a decline in their use in favour of knowledge based 

potentials (Novotny et al., 1984, Lazaridis and Karplus, 2000). Knowledge based 

potentials (also called pseudo-potentials) are an alternative to PSFs. They are derived
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from two sources: observed pairing frequencies of amino acids in databases of protein 

structures and approximations & assumptions about the physical processes that these 

quantities measure (Thomas and Dill, 1996). The idea was proposed by Tanaka and 

Scherga in 1975 (Tanaka and Scheraga, 1975) and later developed by Miyazawa & 

Jernigan in 1985 (Miyazawa and Jernigan, 1985) before taking a step forward in 1990 

when Manfred Sippl developed his Potentials of Mean Force (PMFs) (Sippl, 1990). 

Since then methods have expanded to include various terms, from hydrogen bonding to 

contact number and solvent accessibility.

This chapter introduces a novel knowledge based statistical scoring function that assess 

the hydrophobic packing of protein models based on predicted and observed patterns of 

hydrophobicity. The scoring function, called Phobic, is shown to outperform methods 

used in current prediction pipelines and effectively discriminate low RMSD models 

from non-native models as well as native structures from ensembles of models (Taylor 

et al., 2006, Jonassen et al., 2006).
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Methods.

Structure Data

Sequence and structure information was obtained from the PDB25 (Hobohm et al., 

1992) and the Astral domain database. The PDB25 is a list of proteins that share a 

maximum of 25% sequence identity between any two sequences in the list, it can be 

obtained from the Imperial Cancer Research Fund4. The Astral database (Brenner et al., 

2000) is a compendium of SCOP allowing direct access to sequence information from 

SEQRES and ATOM records as well as full three dimensional coordinates. From this 

set all structures that were less than sixty residues in length or were not identified as 

belonging to SCOP classes a , p, a+p or a/p  were removed, resulting in a dataset of 

1852 proteins.

Measuring Solvent Accessibility from All Atom Structures

The solvent accessible surface area ( S A S A )  of an amino acid indicates how buried or 

exposed it is. There are two ways of expressing this value - absolute solvent accessible 

surface area ( A S A )  and relative solvent accessible surface area ( R S A ) .  R S A  is the most 

convenient method as it defines the ratio of the surface exposed to the solvent ( S A S A j )  

and the maximum solvent accessible surface for a particular amino acid (Maxi) as 

shown in equation 4.4.

RSA; =
'SA SA }

Max 11
100 (4.4)

www.bmm.icnet.uk/loop

1 1 0
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The RSA was calculated using two tools, DSSP (Kabsch and Sander, 1983) and 

NACCESS (Hubbard, 1993) both of which require full atomic models. NACCESS 

calculates the RSA and ASA for each residue by default while DSSP only calculates the 

ASA. To obtain RSA values for DSSP the maximum solvent accessibility values of 

Ahmad (Ahmad et al., 2004a), established using an extended Ala-x-Ala tri-peptide 

conformation, were used. Comparison of the NACCESS and DSSP values yielded a 

correlation coefficient of 0.98.

Estimating Solvent Accessibility from Ca Chains

The prediction pipelines produce Ca-only models which are later completed using a 

program like SCWRL (Canutescu et al., 2003). To obtain a measure of solvent 

accessibility at the Ca level heuristic tools are required. These tools provide an 

accurate and rapid estimation of solvent accessibility which would otherwise not be 

possible.

In this work two heuristic methods were applied: POPS-R (Cavallo et al., 2003) as 

described in chapter two and SAC AO (Solvent Accessibility from ContAct Order), a 

new method (described below) that relies on contact number to estimate solvent 

accessibility from pseudo-C(3 models (Lin, K and Klose, D, unpublished).
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SACAO

SACAO is based on the fact that contact number and solvent accessibility are well 

correlated (Hamelryck, 2005). SACAO uses two spheres to represent each residue in 

Ca model. One sphere represents the Ca atom and the other represents a pseudo-Cp. 

The sphere placed over the Ca has a fixed radius while the sphere placed over the 

pseudo-CP varies with residue size -  smaller residues have a smaller radius (Alanine 

CH3) and larger have bigger radii (Lysine (CH2)4NH3 +). A third 8A sphere is then 

placed over the center of the CP as illustrated in figure 4.1. Any residues that fall 

within this sphere are flagged as forming potential contacts. Within this area a true 

contact is identified where the distances between two pseudo-CP (Rd) is less than the 

sum of their radii (RCpj.j plus two times the solvent radius (Rsoiv -  typically set to 1.4A) 

(equation 4.5). Residues also have to be in Tine of sight’ and no further apart that the 

size of the solvent (Rsoiv)- The number of contacts a residue has (Cni) is then compared 

to the maximum possible number of contacts.

Cni = + RCp + 2Rmlv (4.5)
/ - I

The value returned is scaled into the range 0 ... 1, where 0 infers total burial and 1 total 

exposure.
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C betasolC beta

Figure 4.1 SACAO: A schem atic represen tation  Each amino acid is represented by two spheres, one 
placed on the Ca the other place on the Cp. The sphere placed over the Ca is o f fixed size while the radius 
o f  the Cp reflects the size o f the amino acid side. A third sphere o f 8A is then placed over the center o f 
the Cp. All amino acids within this sphere are assigned as potential contacts. True contacts are identified 
where the distances between two pseudo-Cp is less than the sum o f their radii plus two times the solvent 
radius.
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Prediction of Solvent Accessibility from Sequence.

Three methods were used to predict solvent accessibility from sequence: a modified 

version of Taylor colour scheme (TCS) (Taylor, 1997b); Sable (Adamczak et al., 2004) 

and AccPro20 (Pollastri et al., 2002). Both Sable and AccPro are more complex than 

the TCS and are outlined in below.

The modified TCS was used to establish the conserved hydrophobicity of each column 

within a multiple sequence alignment. This was achieved by extracting the hydrophobic 

(green) component of the TCS, which is an estimation of the overall hydrophobicity of 

a column. The hydrophobic value attributed to each amino acid is defined by the Sharke 

and Rupley scale (Shrake and Rupley, 1973).

Sable was designed to predict RSA on a continuous scale using a combination of 

nonlinear regression, feed forward and recurrent artificial neural networks (ANNs). As 

well as using a continuous scale, Sable also applies a binary and ten state classification. 

For the purpose of this work the ten state classification was used. Each class 

corresponds to a bin such that class 0 encompasses all residues within 0...10% solvent 

accessibility while class 9 represents all residues with 90... 100% accessibility. The 

artificial neural networks were trained on a dataset of 860 protein structures derived 

from the PFAM database and tested on a set of 603 non-homologous protein structures 

from the PDB. In the 860 protein dataset the optimal prediction threshold, the point 

where 50% of residues are buried or exposed, was 17%. The original publication 

reports an accuracy of 77% at the 25% threshold which represents a slight bias toward 

buried residues, theoretically making prediction easier. The most important part of the 

system is the input, like many other machine learning methods, Sable, uses information
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extracted from position specific scoring matrices (PSSMs). The PSSMs are derived 

from a PSI-BLAST search against unfiltered versions of the SWISS-PROT and non- 

redundant database. The profiles form the base of the feature vectors, using a sliding 

window of 11 residues, the residue of interest is located at position 6. To the basic 11 

residue window, measures of average hydrophobicity, volume and entropy are added as 

well as a binary vector which describes the secondary structure propensities for the 

central residues and its two immediate neighbours.

AccPro is one half of a web server for prediction of contact number and solvent 

accessibility. In this work only solvent accessibility was used. AccPro addresses 

solvent accessibility solely as a binary classification problem (buried or exposed) and is 

achieved using bi-directional artificial neural networks (BRNN). The theory is that 

BRNNs are less prone to over fitting than feed forward neural networks. AccPro was 

trained on a larger set of protein structures than Sable, however this set represented a 

slightly lower sequence identity threshold of 22%. The 1008 proteins in the set were 

split using a three fold cross-validation protocol and twenty different classification 

schemes were applied. Each scheme represents a 5% increment in solvent accessibility 

and covers thresholds from 0...95% exposure. The input to the system is again 

important, having reaching implications for the Phobic function. Like Sable, AccPro 

uses a PSI-BLAST PSSM as the base on which feature vectors are constructed. Unlike 

Sable, a COILS and SEG filtered version of the nrdb was used with a is-value threshold 

of 10'10 per iteration and a final threshold E < 10'3 for inclusion into the multiple 

sequence alignments, the number of iterations are fixed to three. The profiles generated 

in this step are then used to scan SWISS-PROT, TrEMBL and PDB before each 

sequence is weighted using the following scheme:
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W (* )~ 2  log !»[*(<:)]
c

where P[5(c)] is the probability of letter s in profile column c. Unlike Sable, no 

additional features, such as sequence entropy, are added to the input vectors.

Method Combinations -  Corners & Phobic.

When examining native structures, structures present in the PDB, certain patterns are 

expected. One such pattern is the exposure of hydrophilic residues on the surface of the 

protein and burial of hydrophobic residues in the core (chapter 1). This is a gross- 

oversimplification as, in an Orwellian sense, all residues are hydrophobic but some 

residues are more hydrophobic than others.

One problem with prediction of structure, from a theoretical perspective, is the lack of 

information available about the target. For instance, the location of each residue within 

a 3D structure, while it is possible to identify residues as hydrophilic (see chapter 2) this 

gives no idea of how buried, or exposed, it may be in a native structure. The solution to 

this problem is to predict solvent accessibility -  here this is achieved using Sable and 

AccPro. The prediction forms the foundation of what is expected to be ‘true’ and 

deviation from it is assumed to be ‘bad’. The following sections describe the 

development of the Phobic scoring function (Taylor et al., 2006, Jonassen et al., 2006) 

through a method, Corners, derived from the “Empty Quarter” concept introduced in 

chapter 2.
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Corners

Comers is based on the ‘Empty Quarter’ (chapter 2) however, instead of using the 

Taylor Colour Scheme, it leverages the power of the Sable neural network to estimate 

the relative solvent accessibility for each residue in a sequence. The predicted solvent 

accessibility was compared to structurally observed solvent accessibility using the 

POPS-R tool for a set of native and non-native (decoy) structures. Decoy structures 

were generated using the methods described in (Taylor et al., 2006, Taylor, 2006). 

Comparison of the native and non-native (decoy) structures reveals two points of 

interest: first, residues which are predicted as being exposed are more often found to be 

buried in decoy than in native structures; second, residues which are predicted as 

exposed are more prone to be buried in decoy than in native structures.

The aim of Comers was to exploit the observed differences by defining two planes 

which optimally separate native and non-native structures based on this pattern. In 

practice this is a function that takes the sum of the positions in each zone penalising 

structures which have more residues falling into either area. This means that Comers 

completed a similar function to the Burial/Hydrophobic matching described in Chapter 

2 and (Taylor et al., 2006) with the addition of a contribution from residues predicted 

buried but exposed in C a models. Comers was a stepping stone towards Phobic and as 

such will not be discussed in further detail.

117



Phobic

The Phobic scoring function (Taylor et al., 2006, Jonassen et al., 2006) is based on the 

same dataset as Corners but exploits two different tools to achieve a similar function. In 

place of POPS-R the SACAO tool (described above) was used to estimate the solvent 

accessibility of individual amino acids. To predict solvent accessibility AccPro took the 

place of SABLE as it is able to predict binary state exposure at 5% increments (SABLE 

predicts at 10%).

The original AccPro method is described above, however to be used in this work 

modifications had to be made to the code. AccPro is a ‘black-box’, training and testing 

was performed outside the laboratory and so and all potential influences of homology 

had to be removed prior to application. These changes occurred in the generation of the 

input profiles passed to the ANN. The original method uses PSI-BLAST to scan the 

target against the nrdb which has been filtered for low complexity, trans-membrane and 

coiled-coil regions. This scan produces a sequence profile which is then used to scan 

the TrEMBL, Swiss-Prot and PDB databases before generating a weighted profile. In 

the modified version, a standard PSI-BLAST search is performed against a filtered 

version of the nr database. Scanning of other databases, such as SWISSPROT, is 

prevented so that the overall profile passed to the ANN would not be the same for 

proteins used in the training set. In addition to this AccPro employs a correction 

facility. After making an initial prediction, a scan is completed against a local database 

of sequences and associated structure, if a suitable hit is found the prediction is altered 

to match information gathered from the database search. With this method switched on, 

predictions reach 100% accuracy. By removing these two steps the accuracy of AccPro
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at the 25% threshold falls to 77% - a similar result to the initial test dataset, indicating 

that input sequences had not been memorised.

To obtain a prediction of the relative solvent accessibility of each residue AccPro had to 

be further modified so that a single PSI-BLAST run was completed (instead of one per 

threshold). At each threshold a binary output, exposed or buried, is presented, when all 

predictions are combined, they form an output similar to that illustrated in figure 4.2.

0% eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 
5% eeeebeebbeebeeeeeeebebeebeebbeeeeeeeeeeebeebbeebeeeeeeeeeeeebeeee 
10% eeeebeebbeebeeeeeeebebeebeebbeeeeeeeeeeebeebbeebeeeeeeebeeeebeeee 
15% eeeebeebbeebeeeeebebebeebeebbeebeeeeeeeebeebbeebeeeeeeebebeebbeee 
20% eeeebeebbebbeeeeebebbbebbeebbeebeeebeeeebeebbeebeeeeeeebebeebbeee 
25% eeeebeebbebbeeeeebebbbebbeebbeebeeebeeeebeebbeebbeeeebebebeebbeee 
30% eeeebeebbebbbeeeebbbbbebbbebbeebeeebeeebbeebbeebbeeeebebebeebbeee 
35% eeebbeebbebbbeeeebbbbbebbbebbeebeeebeeebbeebbebbbeeeebebebebbbebe 
40%eeebbeebbebbbeeeebbbbbebbbbbbebbeeebbeebbeebbebbbeeeebebebebbbebe 
45% eeebbbebbebbbeeeebbbbbebbbbbbbbbbeebbeebbbebbebbbeeeebebbbebbbebe 
50% eeebbbbbbbbbbebeebbbbbebbbbbbbbbbeebbeebbbbbbbbbbbbeebbbbbebbbebe 
55% eeebbbbbbbbbbebeebbbbbebbbbbbbbbbbebbbebbbbbbbbbbbbbebbbbbebbbebb 
60% ebebbbbbbbbbbebbbbbbbbbbbbbbbbbbbbbbbbebbbbbbbbbbbbbebbbbbebbbebb 
65% ebbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
70%ebbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
75% ebbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
80% ebbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
85% bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
90% bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
95% bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Figure  4.2 B inary  P red ic tion  o f SA using A ccPro: A t each threshold a prediction o f  each residue being 
buried or exposed is made. W hen combined across all thresholds a profile can be constructed from which 
the relative solvent accessibility (RSA) can be estimated. The RSA is taken as the final threshold in 
which the residue is seen as exposed. For the first residue this yields an RSA o f  80% while for the last 
residue the RSA is 50%. This example was created for illustrative purposes only and does not 
deliberately relate to any protein in the dataset.
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For each residue, the maximum threshold at which the predicted state is exposed is 

assigned as the RSA. For the fist residue in the residue in figure 4.2 this yields an RSA 

of 80%, while for the last residue the RSA is estimated as 50%. This process was 

completed for each of the proteins in the dataset. The same information was extracted 

from native protein structures using the SACAO tool.

Using the decoy dataset described above, the SACAO solvent accessibility values are 

calculated and compared to the AccPro output. The combination of AccPro and 

SACAO for both the native and non-native datasets gives two samples for which there 

are twenty underlying distributions (one per threshold prediction), these distributions 

are used to construct the Phobic scoring matrix. For each state the native and non­

native distributions are normalised and split into ten discrete bins according to the 

SACAO value. The division of the SACAO value was based on steps of 0.1 resulting in 

10 bins per threshold and a final scoring matrix of 20 * 10. The scores in the matrix are 

simply the difference between the two distributions:

Matrix tj = ^  Native ̂  ^  Random ̂  (4.7)

where M a tr ix is the recall value used in the final matrix, i is the index of the AccPro

prediction and j  is the index of the SACAO bin. When the matrix is complete it is used 

as a “look-up” table. When presented with a new target the solvent accessibility is 

predicted from the sequence, this gives a value for each amino acid which is constant 

for every predicted model -  given that the sequence is constant. Then for every model 

(~10,000 per target) the solvent accessibility is estimated using SACAO. These values 

are then used to extract the corresponding ‘score’ from the look-up table based on the
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bin values. The sum of the scores across all residues is used as a measure of fitness, the 

more positive the score the more native-live the model is.

At this point there had been no effort to distinguish between the four major SCOP 

classes (a, p, a+p, a/p). It has been shown that all a  proteins cause problems for 

model evaluation functions due to the sheer number of packing possibilities of the 

helices (Berglund et al., 2004). In an attempt to circumvent this problem four class- 

specific matrices were generated using the method described above however no overall 

improvement was observed.

Results & Discussion

There are several components to the Phobic scoring function. This section explains 

why specific tools were used and how effective each component and combination was.

POPS-R and SACAO

To assess the accuracy of SACAO and compare it to POPS-R, 2000 proteins were 

selected at random from the PDB40 dataset (all proteins share a maximum of 40% 

pairwise identity). RSA was obtained from all-atom structures using both DSSP and 

NACCESS as described previously. The correlation coefficients (cc) for DSSP and 

POPS was 0.68 while for DSSP and SACAO it was -0.74.
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Sable and AccPro

It is difficult to compare two structure prediction tools irrespective of function -  

secondary structure, solvent accessibility, contact number and so on. There are several 

problems, each of which are outlined below. First is the dataset -  it is rare to find two 

papers describing prediction tools that are built using the same dataset. By changing the 

dataset and leaving the method essentially untouched, performance jumps can be gained 

(Rost, 1996, Jones, 1999b). This is tied to a common method of comparing two unique 

methods (developed on different datasets) using a set of commonly used sequences such 

as the Rost and Sander secondary structure set or the Manesh set for solvent 

accessibility which will be discussed later.

Corners

As mentioned previously, Comers was a stepping stone between the Empty Quarter and 

the Phobic function, improving on the Empty Quarter, such that it compared favourably 

against TUNE and SPREK on the forward and reverse models described in chapter 3 

(see table 4.1 for results and chapter 3 for a description of model construction and the 

evaluation procedure). The performance of each method is summarised in table 4.1 

which shows the target and the score for each of the method: TUNE; SPREK; Empty 

Quarter; Corners; Phobic. The smaller the values the better the function performs at 

distinguishing the native-like models from the non-native.
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Table 4.1 Performance of Evaluation Functions on Tavlor Derived Decoy Sets

Target TUNE SPREK
Empty

Q uarter Corners Phobic
1A0A A 3 0 0 8 7
1A12 A 73 85 0 0 0
1A1W 22 8 47 16 8
1A2P A 3 20 13 0 0
1A6M 15 9 124 15 9
1A7S 22 38 28 11 16
1AC5 0 1 0 0 0
1ACF 25 3 52 1 0
1AEP 21 0 11 20 10
1AFJ 12 12 28 10 6
1AGR E 32 31 1 1 1
1A11 A 78 68 91 1 0
1A1U 107 130 4 3 2
1AMX 5 34 7 1 1
1AOE A 2 0 10 0 0
1AQZ_A 0 0 3 4 2
IASS 3 0 2 0 0
1ATZ A 1 0 19 0 0
1AU1 A 27 18 183 1 0
1AUI A 2 0 61 0 0
1AUY_A 3 33 46 0 0

The above table shows how the original Empty Quarter method, described in chapter 3, did not perform 
as well as TUNE and SPREK. When comparing the Corners function to SPREK and TUNE the 
performance is similar, w ith Corners being equal to and better than both TUNE and SPREK across most 
proteins. The Phobic function improves on the Corners scores, although not dramatically, with only 
SPREK outperforming it on three proteins (1A O A A , 1 AEP_ & 1AQZ A).

Performance of the Empty Quarter, first described in Chapter 3, is worse than the 

TUNE and SPREK functions, failing to differentiate between the forward and reverse 

structures (having large values in table 4.1). Table 4.1 shows that the Comers function 

improves on the Empty Quarter, probably by taking better account of the buried 

hydrophilic residues, for all but one of the structures (1AEP). 1AEP is a helix bundle 

protein, more specifically an apolipoprotein, whose ampipathic nature may help explain 

why there was a minor decrease in performance. The overall performance is better than 

that of TUNE and is comparable to SPREK. Lastly is the Phobic function, which 

performs better than both its predecessors as well as the TUNE and SPREK functions, 

producing lower scores for the majority of the decoys in the test set.
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Phobic

In addition to the above test, Phobic underwent testing on the 4State decoy set of Park 

and Levitt (Park and Levitt, 1996) and four random proteins from the Rosetta decoy set 

(Tsai et al., 2003). For reasons that will be explained below, a large number of real 

threading attempts were also used to analyse the performance of Phobic. So that an 

accurate analysis could be completed, Phobic was also compared to two evaluation tools 

currently used in all Taylor group prediction pipelines.

The 4State Decoy Set

The 4State decoy set consists of seven small proteins which cover a number of different 

folds and classifications. The proteins are all ‘small’ ranging in size from 54 to 75 

amino acids and, as such, are not really large enough to form an extensive hydrophobic 

core, something that Phobic is designed to look for. Despite this size disadvantage 

Phobic performs comparably to the re-trained TUNE function described in chapter 3. 

Figures 4.3-9 show the TUNE and Phobic scores plotted against the cRMSD. Table 4.2 

summarises the information, showing the cRMSD of the top three ranking models and if 

the native structure were identified in the top 10 models.
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Figure 4.3 Target 4RXN evaluation using Phobic and TUNE: 4RXN, classified as a small protein by 
SCOP, is 54 residues long, a) Phobic does not identify the native structure as the best model, however it 
is ranked 6th overall. The Top scoring model is 3.4A from the native structure using PROFIT for a 1:1 
structure alignment, b) Tune fails to identify the native structure from the ensemble ranking it outside the 
top 20. The best scoring models is similar to Phobic at 3.4A using PROFIT.
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Rubredoxin, PDB code 4RXN, is classified as a small protein by SCOP. It is 54 

residues in length, of which 9 residues are incorporated into a-helical structures and 12 

residues into p-strands. For both TUNE and Phobic the native structure is not identified
iL

as the ‘best’ structure in the set, Phobic ranks it at 6 while it is falls outside the top 20 

for TUNE. Both functions identify the best model at 3.4A from the native structure (see 

figure 4.3).
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Figure 4.4 Target 4PTI evaluation using Phobic and TUNE: 4PTI, classified as a small protein by 
SCOP, is 58 residues long, a) Phobic failed to identify the native structure, however the top ranking 
model is 3.2A from the native using PROFIT, b) TUNE ranks the native structure 1st overall but the best 
ranking model has an RMSD just over 4A from the native using PROFIT.
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The small protein inhibitor of trypsin and trypsinogen (PDB 4PTI) is classified as a 

‘small’ protein by SCOP. It is 58 residues in length having two a-helices composed of 

12 residues and 3 p-strands composed of 15 residues. Phobic fails to identify the native 

structure in the top 10 models while TUNE correctly identified the structure from the 

ensemble of non-native structures. The best model identified by Phobic was 3.2A from 

the native structure while the best structure identified by TUNE had an RMSD of 4A. 

Both methods did not separate the ensemble of structures into distinct groups based on 

their overall similarity to the native structure, however this is not of great concern as 

any function which can continually identify a low RMSD structure from an ensemble is 

useful to the prediction pipeline (see figure 4.4).
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F igure  4.5 T a rg e t 1SN3 evaluation  using Phobic an d  T U N E: 1SN3 is the third protein in the set to be 
classified as a small protein by SCOP. It is larger than 4RX N  and 4PTI at 65 residues but proves to be 
more o f  a problem for both Phobic and TUNE, a) Phobic fails to identify the native structure from the 
ensemble, furthermore the top ranking model has an RMSD over 8A. The top ranking model, however, is 
clearly not folded correctly and would be discarded if viewed by eye. The second ranked structure has an 
RMSD just over 3A from the native when using PROFIT, b) TUNE performs better on this target, the 
native structure is ranked 1st over all possible models, w hile the exact opposite o f  Phobic occurs with the 
2nd ranked model having an RMSD just over 4A and the 3rd ranking model having an RMSD slightly 
under 7 A.
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Scorpion toxin variant (1SN3) is the third protein to be classified as “small” by SCOP, 

meaning that the structure has little or no ordered secondary structure and often no 

hydrophobic core.. It adopts a knottins fold and is 65 residues in length, composed of 1 

<x-helix of 8 residues and seven p-strands composed of 16 residues. While larger than 

4PTI and 4RXN, 1SN3 posses the most problems for Phobic as the native structure is 

not identified in the top 10 structures and the highest scoring model has an RMSD over 

8A. An encouraging aspect of this evaluation is that the top scoring model does not 

look native when viewed by eye, something that is always done with the Taylor 

pipelines (chapters 3 and 5). If this model is excluded, the best model has an RMSD of 

just over 3A from the native structure. The TUNE function is successful at identifying 

the native structure from the ensemble but, like Phobic, does not perform well at 

identifying a low RMSD structure from the ensemble, with the top scoring model have 

an RMSD greater than 4A. Both functions also discard a number of structures both 

close and distant from the native where the score is less than 0 (see figure 4.5).
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F igure 4.6 T a rg e t 1C T F evaluation  using Phobic and  TU N E: The performance o f  Phobic (a) and 
TUNE (b) is comparable for 1CTF, a 74 residue a + p  protein. The native structure is ranked 1st by TUNE 
and 4th by Phobic. Both functions have a top scoring model which is approximately 3A from the native 
structure.
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The C-terminal domain of ribosomal protein L7/L12 (PDB 1CTF) is the largest protein 

in the 4State set at 74 amino acids. It is classified, by SCOP, as an a+p protein and 

consists of a ClpS-like fold which has 4 a-helices and 4 (3-strands consuming 75% of 

the residues in the protein. The native structure is the 4th highest scoring model behind 

three structures between 4 and 2A. The performance of TUNE is comparable to Phobic, 

with TUNE identifying the native structure ahead of all models and the top 5 scoring 

structures having RMSDs around 3A from the native (see figure 4.6).
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Figure 4.7 T a rg e t 1R69 evaluation using Phobic and  TU N E: 1R69 is 69 residues in length and is 
classified as all-alpha by SCOP. Both functions perform well, with Phobic (a) ranking the native 
structure 3rd and TUNE (b) ranking it ju st outside the top 10 at 13th. The top ranking Phobic structures 
have a lower RM SDs than those o f  TUNE.
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The amino-terminal of phage 434 repressor, PDB 1R69, is an all alpha protein that is 69 

residues in length. It adopts a lambda repressor-like DNA binding domain fold 

consisting of 5 a-helices which cover 57% of sequence space. The native structure is 

ranked third overall behind two structures under 3A. Three of the top five models, not 

including the native, are under 3A from the native using a 1:1 superposition using 

ProFit. TUNE did not perform as well as Phobic on 1R69. The native structure ranks 

outside the top 10 structures (13th place) and the top 5 structures fall between 2.7A and 

4.95A (see figure 4.7).
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Figure 4.8 T a rg e t 2C R O  evaluation  using Phobic an d  T U N E: The performances on 2CRO are fairly 
reasonable for both functions. W hile neither ranks the native structure above some models they are 
ranked 5th and 9th for TUNE (b) and Phobic (a) respectively. The top ranking models are closer to the 
native structure for Phobic than TUNE with the 1st ranked structures having RM SDs o f  2.45A and 4.96A 
respectively.
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Phage 434 CRO protein, PDB 2CRO, is an all-a protein 71 residues in length. The fold 

classification of 2CRO is lambda repressor-like DNA-binding domain which consists of 

5 a-helices covering 40% of the sequence with the rest of the residues involved in 

connecting loops. Neither TUNE or Phobic correctly rank the native structure ahead of 

the bundle, being ranked 5th and 9th respectively. The top five scoring Phobic structures 

all fall under the 3A threshold with the best model having an RMSD of 2.4A. TUNE 

does not perform as well as Phobic with the top scoring model having an RMSD of 

4.9A from the native structure, additionally this structure looks like a reasonable 

structure when viewed by eye. The remaining top four structures score 2.1 A, 2.2A, 

3.7A and 2.65A respectively (see figure 4.8).
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Figure 4.9 T arg e t 3IC B  evaluation  using Phobic and  TU N E: Phobic (a) does not perform well on 
3ICB, an all-alpha protein 75 residues in length. The native structure fall outside the top 10 and the top 5 
structures have RMSDs o f  4.9, 6.3, 5.7, 2.5 and 2.3A. TUNE (b) in contrast performs well at ranking 
models, but, like Phobic, fails to distinguish the native structure from the ensemble o f  models.
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Vitamin D dependent calcium binding protein, PDB 3ICB, is an all alpha protein. It 

adopts an EF-hand-like fold which consists of four a-helices covering 57% of the 

sequence. The performance of Phobic on 3ICB was not outstanding as the native 

structure was not identified in the top 10 models, however the top 5 scoring structures 

had RMSDs of 4.9, 6.3, 5.7, 2.5 and 2.3A. TUNE ranked the native structure 22nd 

among a group of models which were within 3.0A of the native structure (see figure 4.9 

or table 4.2).

Table 4.2:Performance Summary of TUNE and Phobic on the 4 State Decov Set.

PDB
ID

Method Model 1 
rm sd

Model 2 
rm sd

Model 3 
rm sd

Native in top 
10

4rxn Phobic 3.4 3 2.9 Yes
Tune 3.4 3.5 3.2 No

4pti Phobic 3.2 3.1 7 No
Tune 4.1 4.7 6.2 Yes

lsn3 Phobic 8.3 3.3 6.2 No
Tune 4.3 6.8 8 Yes

lc tf Phobic 3.5 2.1 4.1 Yes
Tune 3.4 3 3.2 Yes

lr69 Phobic 2.6 2.7 3.5 Yes
Tune 3.6 2.7 3.5 No

2cro Phobic 2.4 2.2 2.8 Yes
Tune 4.9 2.1 2.2 Yes

3icb Phobic 4.9 6.3 5.7 No
Tune 2.4 2.4 2.5 No

Over this set, the performance of Phobic is consistently good with the exception of one 

model -  the all-a 3ICB. It has been observed that scoring functions do not perform 

well on a-only structures because of the number of ways helices can pack together
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(Berglund et al., 2004), however on two other all-a structures (2CRO & 1R69) Phobic 

performed well. The poor performance could be due to the flexibility of the relatively 

large calcium binding loops between the helical structures, which in the native structure 

are exposed but hydrophobic, this feature was not observed in the models.

SCOP classifies three of the proteins (1SN3, 4RXN, 4PTI) in the 4state decoy set as 

‘small’. When training machine learning functions, such as SABLE, AccPro and 

Phobic, one of the first classes of proteins to be discarded are the small proteins. This is 

because they do not always form compact globular structures and have poorly formed 

secondary structure elements which are not characteristic of the larger, globular 

proteins. They remain present in decoy test sets because smaller structures are more 

amenable to physical scoring functions and dynamic modelling approaches.
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The Rosetta Decoy Set

Four structures were selected at random from the 78 proteins in the Rosetta set: 1CC5; 

1C5A;1CSP; 1KTE, these structures are all larger than 70 amino acids and provide an 

extra evaluation step which although designed for physical scoring functions, show 

some interesting results.

Cytochroms C5 (PDB 1CC5), is an all-alpha protein, 83 residues in length consisting of 

5 helices which adopt a cytochrome C fold. The native structure was the top scoring 

model for Phobic, however the method was unable to identify a low RMSD model from 

the ensemble with the top 5 models all having RMSDs greater than 8A. The 

performance for TUNE was worse than that of Phobic, not only did TUNE fail to 

identify the native structure but the top five models had RMSDs greater than 10A (see 

figure 4.10).

154



RM SD

+ + + + ++
+ ++ +

* +

+ + +

+ ++ ; + ;  +
* * +++ * a-+

: +W  *
+ + +^  + ^+ + % +

+ ■** ++ + +
++ +

- 0.6 -0 .4 - 0.2 0
Phobic Score

0.2 0 .4 0.6



-irl

RMSD

Tune Score



Figure 4.10 Rosetta set 1CC5 Phobic and TUNE; Neither method performed well on this target, both 
failing to distinguish between low and high RMSD structures. The big performance difference comes in 
the identification o f  the native structure, Phobic clearly identifies the native structure from the ensemble 
o f  structures while the polar opposite is true for TUNE.
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Figure  4.11 R osetta  set 1K TE Phobic and  TU N E: Phobic clearly identifies the native structure from 
the ensemble, but as with previous examples it fails to discriminate between the low and high RMSDs. 
Tune identifies the native structure in the top 5 structures (rank 3), but like Phobic makes no distinction 
between the low and high RMDS models.
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Thioltransferase, PDB 1KTE, proved to be another tough target. The protein is 105 

residues in length and is composed on 6  helices and 6  strands which adopt a 

Thioredoxin fold. Both Phobic and TUNE performed well at identifying the native 

structure 1st and 2nd respectively. The margin on the Phobic score is considerable with 

the vast majority of models being ranked as non-native (Phobic scores less than 0). The 

same is true for TUNE where the majority of models receive a score less than 0, which 

marks them as non-native (see figure 4.11).

The remaining models tested 1CSP and 1C5A both produced similar results (not shown) 

where the native structure is correctly identified but there is no distinction made 

between low and high RMSD models. The top scoring models had RMSDs of 6.1 A and 

1 lA for ICS A and 1CSP respectively.

The failure to discriminate between the low and high RMSD models is not unexpected 

for either Phobic or TUNE. Both methods assess proteins on a reduced representation, 

in the case of Phobic pure Ca and TUNE, a mixed Ca - pseudo Cp model. The Rosetta 

decoy set is not designed for reduced representation functions, although they can 

obviously be used, they prove to be a very tough test. This is because reduced 

representation functions are unable to examine side chain packing and other ‘fine grain’ 

elements of protein structure.

Model Evaluation using TRACK and the DDT protocol

To establish how effective the Phobic function would be in the prediction pipeline 

several targets were run through the DDT-TRACK protocol described in chapter 3. The
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performance of Phobic is shown in table 4.3 which identifies the protein and the RMSD 

of the top 5 scoring models. The table shows that Phobic is able to identify close 

approximations of the native structure from ensembles where they are present. The top 

three proteins, 1F3R, 1MP9 and 1HKQ, appear to be poor performances however the 

high RMSDs are a result of poor model construction with the lowest RMSD models 

being 5A, 8 A and 6.07A respectively.

Table 4.3 Phobic performance on DDT generated models

Target Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

1F3R B 7.79 6.51 8.98 8.90 7.25
1MP9 A1 9.74 9.97 10.53 10.75 10.38
1HKQ A 7.06 6.44 6.49 6.23 6.46
10TS Cl 3.78 2.79 3.69 5.33 5.59
1GXU A 5.37 5.46 11.62 5.83 5.21
1AE7 3.60 3.70 3.87 4.27 3.83
1DT9 A3 1.34 3.13 1.68 1.18 3.74
1IZ6 A2 4.19 4.31 4.03 3.96 4.42
1BXU A 4.65 4.40 4.54 4.47 4.53
1A8Y 2 2.04 3.71 1.94 2.25 1.91
10NI A 4.69 4.72 5.21 5.26 4.97
1I9E A 4.23 5.15 4.28 4.29 4.09
1QHF A 1.67 1.42 1.41 1.45 1.38
1IVH A1 7.25 6.61 6.73 7.58 7.22
The first four characters are the PDB IDs, the remaining alphanumeric combination identifies the chain 
where present. The rank 1..5 are the top five rated models according to the Phobic score. For all o f  these 
models, the top five structures w ere all from the best representative cluster. This means for templates like 
1MP9 A, no good models were produced by the DDT pipeline. The use o f  remote homology means that 
structures within 6 A o f  the native are considered reasonable.

As well as the above proteins, four of the 4State set proteins were run through the 

pipeline and then evaluated using SPREK, TUNE and Phobic as shown in figures 4.13- 

15. For proteins 4PTI, 3ICB and 2CRO, Phobic ranked 2nd, 3rd and 1st respectively. 

Unlike 1R69, the results of the remaining models were good for each of the evaluations 

with the top scoring models all under 3A from the native structure.
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F igure  4.13 1R69 D D T -T R A C K  evaluation  using TU N E: Ranked 2nd, the top 5 scoring models are 
approximately 2A  from the native structure and are based on the 1 B 0 N A  template. With the exception 
o f  the structures based on 1R69, TUNE does not discriminate as the templates become more remote.
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Figure 4.14 1R69 D D T -T R A C K  evaluation  using SPR E K : Ranking 3rd overall 1R69 doesn’t present a 
good result for SPREK. The top 5 scoring models having RMSDs greater than 9A from the native 
structure. However at ranks 6-8 models based on the 1R69 template are identified.
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Figure 4.15 1R69 D D T-T R A C K  evaluation using Phobic: Ranked 1st overall, Phobic not only
identifies models around lA  from the native structure, it also discriminates among models as the 
templates become more remote, this is shown by the four tiers.
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A common method to assess the functionality of an energy function is to calculate the 

correlation coefficient (cc) between the functions output and RMSD. This measure is 

useful but should not be considered absolute for the following reason. As demonstrated 

here and in other papers (Berglund et al., 2004, Lin et al., 2002) the cc does not 

necessarily reveal if a method consistently identifies one (or several) good models but 

fails to discriminate against the remainder. If cc is used as a sole measure of function it 

is clear that effective energy functions could be discarded, it is for this reason that 

graphical representations are presented instead of correlation coefficients or any other 

measure. Further more, because we are only interested in if a good models has been 

identified and we have no intention of comparing scores across multiple proteins, the 

approach taken to assess Phobic is not justifiable. While measures of enrichment are 

interesting, again, this work is solely concerned with assessing another physical feature 

of protein structure which can be combined with existing measures (TUNE, SPREK etc) 

to improve the current assessment routine, such as that described in chapter 3 (dynamic 

domain threading).

Conclusion

Compared to TUNE and SPREK, Phobic is simple. It relies on the observation of 

residue exposure from each predicted structure and a prediction of solvent accessibility 

from sequence using an artificial neural network. Performance on the 4State decoy set 

and models generated using DDT (chapter 3) shows that Phobic is as effective as TUNE 

and SPREK.

166



The structures in the 4state decoy set do not lend themselves to the evaluation of Phobic 

due to their small size, which means that they do not form compact hydrophobic cores, 

the very feature that Phobic ‘probes’ for. Despite this disadvantage, the performance of 

Phobic was encouraging, consistently ranking low RMSD and native structures. The 

exception to this performance being 3ICB which, while not as good as other targets, 

was acceptable as the top ranking structures are always examined by an ‘expert’ eye. 

When compared to TUNE the performance of Phobic also was good, if not better, on all 

but one structure (3ICB). In addition to this performance it should be noted that TUNE 

is not affected by the size problem which affects Phobic.

The Rosetta set was constructed for the evaluation of physical scoring functions. This 

means that the structures are designed to be well folded so that they have realistic 

intramolecular interactions such as hydrogen bonding and van der Waals forces. To 

present a challenge for physical scoring functions the violations found in the 4State set 

are too coarse, instead focusing on the intramolecular interactions. This has the knock- 

on effect off eliminating the types of error that TUNE and Phobic ‘look’ for. It is 

somewhat interesting then that the Phobic function was able to identify the native 

structure in the four instances used here.

Despite the good performance of Phobic in this instance, there are several problems 

with knowledge-based statistical scoring functions in general. The dependency on 

multiple sequence alignments is at the root of these problems. As stated in the 

introduction, scoring functions are subject to the axiom ‘rubbish in, rubbish out’ 

meaning that the alignment, be it sequence or structure based, can ‘make or break’ a 

function. Theoretically a ‘poor’ alignment used at any point in the function can
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manifest in a poor prediction, be it secondary structure, solvent accessibility or disorder. 

The poor prediction would almost certainly produce spurious results at the end of the 

prediction pipeline.

When dealing with alignments, homology is also important, especially with Phobic. 

Where clear or even remote homology is discovered, the performance of PSI-BLAST 

based prediction tools is reasonable, typically in the range of 75 ± 10%. In scenarios 

where there is little or no information obtained from an alignment then prediction will 

be less accurate. In fact the purpose of completing a sequence alignment is to generate 

a profile which is beneficial for prediction. The use of multiple sequence alignments for 

prediction of solvent accessibility is contentious, some claim that prediction accuracy is 

increased (Adamczak et al., 2004) while others claim there is little benefit, as solvent 

accessibility is not well conserved across familial alignments. It therefore becomes 

necessary to answer the following question: “does the use of poorly formed multiple 

sequence alignments result in worse prediction of a feature, than the use of a single 

sequence?”. This problem is not trivial, given that it is widely known that multiple 

sequence alignments are critical for secondary structure prediction, so the question then 

becomes ‘can we identify good alignments from bad’, the question posed in chapter 2  

that remains unanswered.

The third point, consistency, is intrinsically linked to the previous points. It is accepted 

that there is currently no single function which can identify the best model produced by 

a prediction pipeline. In attempting to solve this problem, it is useful to combine 

several scoring functions, which address different protein attributes into a single 

function. This combination is achieved in an ad hoc fashion (Taylor et al., 2006) or by
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using techniques such as artificial neural networks or partial least squares regression­

like methods (Berglund et al., 2004), however, even in combination, these scores are not 

infallible. This is one of many problems that continues to plague protein structure 

prediction as well as one that has no obvious solution.

In summary, Phobic has been shown to be effective at evaluating protein Ca models in 

the 4State decoy set and, arguably more importantly, those produced by the DDT and 

TRACKS pipelines. When compared to tools already applied in our prediction 

pipelines it performs equally well at discriminating amongst native, native-like and non­

native structures. It is currently used in the protein fragment tessellation tool (Jonassen 

et al., 2006) and in a novel method for de novo prediction of alpha/beta proteins 

(chapter 5).
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Chapter 5

De novo Prediction of alpha/beta proteins using Ideal Forms and CASP 7
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Introduction

For over thirty years it has been widely accepted that the amino acid sequence of a 

protein is sufficient to explain the fold of a poly-peptide chain (Anfinsen, 1973). This 

statement suggests that the problem of mapping the sequence to structural space is 

trivial, however over a period of nearly forty years there has been limited success in 

explaining how sequence dictates fold. The most robust way to demonstrate our 

understanding of protein folding is to predict the 3D structure armed only with 

knowledge of the sequence. Currently the only way to do this is to code a computer 

program that, given a sequence as input, returns the 3D coordinates as output.

There are two computational approaches to this problem. The first approach is to allow 

a flexible chain of twenty virtual amino acids to fold under specific physical and 

chemical restraints (referred to as Ab initio prediction). The second approach is to take 

numerous static ‘snap-shots’, where each image represents a potential conformation, 

and then try to pick the right one (referred to as combinatorial modelling) (Cohen et al., 

1979, Cohen et al., 1980).

Until recently, the most successful ab initio method was able to predict the approximate 

structure of a short polypeptide (36 residues in length) with an RMSD 4.5A from the 

native (Duan and Kollman, 1998). As mentioned in Chapter 1, recent advances in the 

field have been made by incorporating prior knowledge in the form of protein fragments 

(this is referred to as de novo prediction since it is no longer from first principles). As a 

result of these advances the maximum size of a protein which can be predicted has 

jumped to almost 100 residues (Bradley et al., 2005).
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Both of the methods operate close to the limit of conventional compute power and to 

extend either method could increase operation time in excess of linear extrapolation 

with protein length. For smaller proteins consisting predominantly of alpha helices, the 

fold of the protein can be approximated from local packing -  something of an ideal for 

folding simulations. However, where proteins exceed 100 residues in length and 

contain secondary structure elements that form non-local interactions (P-sheets) the 

increased time to search feature space is prohibitive.

The combinatorial approach is not subject to the same compute problems as the ab 

initio method where large proteins are involved. The ability to tackle these proteins is 

derived from the analysis of structure at the higher level of secondary structure 

elements. However, the approach does have a caveat -  it requires an accurate 

secondary structure prediction as well as a suitable framework on which to over lay the 

prediction. Provided these requirements can be met, it is reasonable to assume that this 

method would provide a solution to the prediction of large proteins (in excess of 1 0 0  

residues).

Improved computer resources and the classification of proteins into a Periodic Table­

like system ((Taylor, 2002) referred to as PT from this point) provided an opportunity to 

review and update combinatorial structure prediction. To this end a new system was 

devised that did not make direct use of structural information that was specific to the 

target protein. Instead the predicted protein structures are placed onto all frameworks in 

the PT. The resulting models are refined and evaluated before applying a conventional 

threading method that is dependent on matching secondary structure predictions and 

framework elements as demonstrated in (Taylor et al., 2006). Throughout the work
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sequence homologues were explicitly excluded ensuring that the method was truly de

novo.

Materials and Methods

An outline of the de novo prediction pipeline is given in figure 5.1.

Generation of Multiple Sequence Alignments

Multiple sequence alignments were generated automatically using the Multal-Mulsel 

method described in chapter 2. A sequence database was prepared using the non- 

redundant database as a template. All low complexity, coiled coil and trans-membrane 

sections were masked using PFILT version 1.3 (Jones et al., 1994). Sequences 

alignments were generated using three PSI-BLAST iterations (-j 3) with an e-value 

threshold (-h) of 0 . 0 0 1  for inclusion in a multipass model.

Secondary Structure Prediction

Secondary structure (SS) was predicted using PSI-PRED (McGuffin et al., 2000) and 

YASPIN (Lin et al., 2005), both tools derive sequence alignments from a standard PSI- 

BLAST (Altschul et al., 1997) search against the nrdb. Despite the introduction of 

multiple sequence alignments to SS prediction and an average accuracy of 75% over 

three states, a non-standard approach was taken. To circumvent error associated with 

secondary structure prediction for each sequence in the alignment predictions of 

secondary structure were made. The predictions were then pooled to create variation
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for the Ideal Forms. The variation over the 10-20 sequences in the alignments was 

sufficient such that at least one was a close approximation of the true secondary 

structure.
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Figure 5.1 de novo  p red ic tio n  pipeline: The prediction pipeline described in this chapter is a
development o f  the DDT method introduced in chapter 3 (Taylor et al., 2006). The ideal forms provide 
the starting point for the process, forming the framework onto which sequences are threaded. Following 
this step several rounds o f  model construction and evaluation are completed using the techniques 
described in previous chapters.
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Ideal Forms

The ideal forms were derived from Taylor’s “stick” models (Taylor, 2001). In these 

domain models, a layered structure is imposed by hydrogen-bonded links across p- 

sheets. The layers can consist of either a-structures or p-structures. Models are limited 

to four layers in a single domain with each layer consisting of one type of secondary 

structure.

Forms were represented following the approach of Chothia and Finkelstein (Chothia 

and Finkelstein, 1990) where each form is represented as a packed box with the a- 

structures taking the form of a square section 4*4 and the p-structures half the thickness 

(2*4). The assumption that the secondary structures have an equal depth allows volume 

and surface area to be estimated. The area (V), the perimeter (A) were calculated and a 

‘compactness’ score (cpri) was calculated as 10VIA. In all architectures a bias was 

imposed so that an even number of a-structures occurred above and below p-sheets. 

Asymmetry was penalised by a factor which was incremented by 10 for each 

unbalanced a-helix.

Another measure of solvent exposure was made for each element in the ideal forms. 

For the helices this ranges from 0 ... 16 (4*4) and for sheets 0 ... 8  (2*4 as each sheet is 

packed to an adjacent strand giving 8  rather than 12). The sum of the exposed edges 

was then normalised into the range ±5. To supplement this, a conserved measure of 

hydrophobicity was used (Taylor et al., 2006). This value was then summed over each 

secondary structure element and normalised by the square root of the number of
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elements in the section. This value was also scaled to the range ±5 to match the 

previous measure.

The combination of these two values gives a score for how well the predicted segments 

matches the degree of burial in the ideal form. A double weight was applied to the 13- 

sheets to reflect their importance in specifying the overall fold. The score for the cx- 

segments is denoted a  and the score for the p-segments is denoted p.

To maintain native-like connections between sections left-handed (between P-sheets) 

and crossing loop connections as well as knotted topologies were eliminated. Parallel 

connections were also penalised where edge strands or helices were not involved. The 

penalty (e) was initialised at 0.5 and incremented by 0.5 with each violation of the 

restraint. The final restraint was placed on the length of connections between segments. 

Longer connections were penalised using a Gaussian function which decays slowly, the 

result is that the penalty increases slowly and therefore is small. The function takes the 

form dist = 2 1  -  exp(-<52 /102) , the value 8  is defined by the amount the connection 

exceeds the 1 0 A limit.

All of these elements were combined, arbitrarily, into a final function f(s) such that 

s = lOw /(5 + a  + p + cpn + dist + e). Because the values in this function are small five 

was added.
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Generating Folds

For each sequence identified in the refined alignment, secondary structures were 

generated as described previously. A limited number of these sequences, typically 50 

(restricted by compute time and availability), were then mapped onto ideal forms. 

Because the arrangement of secondary structure elements is limited, so to are the 

number of ideal forms tested. The limited accuracy of secondary structure prediction 

(approximately 75% ±10%) meant that further variation in secondary structure was 

introduced by the ablation of weak a  and p predictions. This means that if five a  and 

five p sections are predicted rather than having a possible three ideal forms (0-5-5), (1- 

5-4) and (2-5-3) the choice is limited to (2-5-3) and (2-4-3). In the case of ambiguous 

predictions, such as (—HHHHHEEEEE—), rather than exclude the section two 

variations were allowed, one pure a  the other pure p.

Ideal Forms specify the overall architecture but do not define how secondary structure 

elements are connected. There are numerous ways to connect a number of secondary 

structure elements, to limit the compute time, restraints were used to make connections 

between strands in the same sheet, right handed; that two surface loops seldom cross 

and that protein knots are rare. Despite this the number of possible combinations 

remains prohibitively large for a protein of ~200 residues. To further reduce compute 

time the methods described above were implemented for a second time in combination 

with the hydrophobicity of each element. Using this score Ca models were constructed 

using the method described in (Taylor, 1993).
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In order to generate realistic models steps are taken to make Ca models less ‘ideal’. 

This is achieved using each Ca model as a template for threading. Two scores were 

used in the threading process, one to optimise the fit of the secondary structure and the 

model, the second to assess the hydrophobic packing of the model (chapter 5). To 

reduce compute time this score was first applied to the template because it is unlikely 

that a poor template can give rise to a good model(s). The remaining templates were 

then used to generate a number of models which were scored using the same method as 

the initial templates so that the best models were identified. Unfortunately the number 

of models that could be used in the following step is limited by compute resources. To 

bypass this problem the top 100 proteins plus the length (L) of the target are selected 

and assessed using the observed and predicted secondary structure, Phobic 

(predicted/observed exposure) and SPREK (residue packing).

The 100 + L proteins were further refined using the program Furball (Jonassen et al., 

2006). Furball encodes each model as a series of fragment patterns, each pattern 

describes the environment of a residue and it’s environment. These patterns are then 

scanned against a database of known proteins. In order to maintain the guise of 

minimal sequence identity and fit the de novo profile all targets are scanned against the 

Furball sequence database. Sequences (and patterns) that match the targets were 

removed from the Furball database.

Models were then further refined by the inclusion of main-chain atoms so that the extent 

of hydrogen bonding could be estimated. These models were then subjected to another 

round of scoring -  a combination of SPREK, Phobic and the number of hydrogen bonds
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where each bond in a p-structure counted twice. As in the previous step, the top 1 0 0  + 

L models were then assessed using the Periodic Table (Taylor, 2002).

Pipeline Evaluation

Despite attempts to reduce compute time, including serialisation across 50 compute 

nodes, a target approximately 1 0 0  residues in length takes over 1 2  hours to complete. 

The prolonged run-time meant that optimisation was problematic and, as such, five 

proteins, referred to as the Fives, were selected to cover several different folds and 

lengths. In addition to these five, the pipeline was applied in the 7 round of CASP and 

on lauo, a 218 residue Rossmann fold protein.
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a) b)

Figure 5.2 Native S tructures of 3CHY & 1F4P: The structures o f chemotaxis Y protein PDB 3CHY (a) and flavodoxin PDB 1F4P (b). Both proteins are 
approximately 150 residues in size and belong to the SCOP a /p  class. The overall structure for each protein is called the flavodoxin fold.
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/
Figure 5.3 Native S tru c tu re  1CO Z A; 1COZ, chain A is 126 residues in length, it is covered by the 2- 
5-3 Ideal Form but has different connections to the previous structures. The overall topology is that o f 
the Rossmann fold. Images were generated using PYMOL.
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Figure 5.4 Native S tructu re  of 1DI0 A and 2TRX A: Lumazine synthase (PDB 1DI0, a) is 147 residues in length and has a Rossmann fold topology, it assumes the 
Ideal Form 2-4-2, b) Thioredoxin (PDB 2TRX) is 108 residues in length and is the smallest protein in the test set. It adopts the Ideal Form 2-5-2 and has a helical 
connection between two anti-parallel |3-strands which is not, currently, supported by the Ideal Forms. Images were generated using PYMOL.
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In figure 5.2 the protein on the left (labelled a) is bacterial chemotaxis Y protein (3chy). 

It is 128 residues in length and matches the Ideal From 2-5-3. The protein on the right 

(b) is a flavodoxin mutant (tyrosine 98 -> tryptophan). Flavodoxin (lf4p) is 158 

residues in length and adopts the 2-5-3 Ideal Form. It is larger than 3chy and has longer 

loops between secondary structure elements. Both proteins share the common 

flavodoxin fold.

Glycerol-3P cytidyltransferase (lcoz) is 126 residues in length and assumes the Ideal 

Form 2-5-3. The difference between this protein and the others in the set is that the 

strand order in the sheets and loops is different. In addition to this ,lcoz has a small C- 

terminal helix that does not pack on the sheet (see figure 5.3).

The last two proteins are IdiO (figure 5.4 a) and 2trx (figure 5.4 b). IdiO or lumazine 

synthase is 147 residues in length and assumes the Ideal Form 2-4-2, it only has four 

strands which are packed against long a-helices. Thierodoxin (2trx) at 108 residues in 

length is the smallest protein in the test set. It assumes the Ideal Form 2-5-2 and has a 

helical connection between two anti-parallel p-strands. This feature is not well 

represented in the lattice models and is the subject of further work.
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Results

Four sets of proteins were used for construction and evaluation of the de novo pipeline. 

The first set are the Fives mentioned above; second, a number of proteins less than 150 

residues in length; third, a group of proteins in excess of 150 residues long; fourth, the 

CASP7 proteins identified as a/p. The results are presented as four pooled runs per 

target.

The ‘Fives’

Chemotaxis Y protein (3chy) produced the most consistent results. In all but one of the 

four runs only one incorrect fold ranked greater than 25 . Models that deviated from 

the native structure by under 5A are said to be correct. For this target, the highest 

scoring model had an RMSD of 4.4A when calculated as a 1:1 structure alignment. 

Using SAPit (Taylor et al., 2000), which allows the structure alignment to ‘slip’ into the 

‘best’ position, the RMSD decreases to 3.8 A. The use of SAPit indicated that three of 

the p-strands had slipped by one position as shown in figure 5.5.
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Figure 5.5 S tru c tu re Superposition of Chem otaxis Y protein (3CHY) and Tod Scoring Model: a) The blue structure is the native conformation and red is the top
ranking model. The RMSD as measured by SAP is 3.7A over 121 matched residues. Although the 2D representation is not ideal it is clear that the model is a close 
approximation of the native structure, b) Structural superposition coloured from N-terminal (blue) to C-terminal (red), the structures are identical but shown from a 
different ancrle
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Flavodoxin (lf4pA, figure 5.6) shares the same fold as 3chy but is longer by 20 

residues. The size difference is absorbed by secondary structure elements and the 

interconnecting loops. By nature of being longer the diversity of secondary structure 

predictions increased, this resulted in an increased number of models being generated 

and evaluated. The increase in number of possible folds also meant that the number of 

incorrect folds increased relative to 3chy. Even with the increase in incorrect folds, the 

correct fold was identified and ranked 2nd twice and third once. The RMSD between 

the best structure and the native structure was ~5A, this was a result of the loop 

connecting P-strands three and four being sequestered to the edge of the sheet forming a 

sixth (3-element.
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a) b)

Figure 5.6 Flavodoxin (1F4P A); a) The blue structure is the native conformation and red is the top ranking model. The RMSD, as calculated by SAP is 5.169A. 
The large variations tend to be found in the loop regions at the north and south poles of the image, b) The structural superposition coloured from N-terminal (blue) to 
C-terminal (red), the structures are the same as in a but shown from a different angle.
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Predictions for glycerol-3P-cytidyltransferase (Icoz A) were consistently good over the 

four runs. In each case the native fold finished in the top 3, however there were some 

minor errors in overall structure. The errors manifested in larger loops on the surface of 

the protein and in helices which drifted out of position or were absent from the final 

models. The best models deviated by 5.1 A with a large amount of this difference 

coming from the aforementioned errors (see figure 5.7).
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a) b)

Figure 5.7 G lvcerol-3P-cvtidvItransferase (1COZ A): a) The blue structure is the native conformation and red is the top ranking model. The overall RMSD 
calculated by SAP is 5.255A over 123 residues. The errors are manifested in the large loops on the surface of the protein, there is also a large error at the C-terminal 
end of the protein. In the above image divergence of the structures seems large but is actually a curse of the 2D representation, b) The structural superposition 
coloured from N-terminal (blue) to C-terminal (red), the structures are the same as in a but shown from a different angle.
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In all four lumazine synthase runs (ldiO_A) the correct fold was identified by the 

scoring functions. The highest scoring model had an RMSD of 4.7A which, when 

considering the size of the protein (147 residues), is rather good as the loop regions are 

large and unstructured (figure 5.8). There were several topology violations, including 

the packing of a loop onto the edge of the p-sheet, resulting in an increased RMSD of

6.1k.
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a) b)

Figure 5.8 Lum azine synthase (IDIO A): a) The blue structure is the native conformation and red is the top ranking model. The best model achieves a RMSD of 
4.392A using SAP. The overall structure is good however there are clear overextensions of loops and the long helix that packs along the back of the sheet is broken, 
b) The structural superposition coloured from N-terminal (blue) to C-terminal (red), the structures are the same as in a but shown from a different angle.
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Thioredoxin (2trx_A) was also encouraging despite some minor errors. Fold 

competition was fierce and resulted in models with an incorrect series of connections 

scoring highest. It appears that this error is the result of poor modelling of the helix that 

bridges strands three and four. Rather than assuming the pap connection along the 

length of the P-strands it was packed across the edge of the sheet. Even with these 

complications the top fold had an RMSD of 4.8 A from the native structure (see figure 

5.9).
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a) b)

Figure 5.9 Thioredoxin (2TRX A): a) The blue structure is the native conformation and red is the top ranking model. The top scoring model has an RMSD of 
4.815A over 106 aligned residues. Despite there being some prediction errors with the helix that connects P-strands three and four the overall model is decent, b) The 
structural superposition coloured from N-terminal (blue) to C-terminal (red), the structures are the same as in a but shown from a different angle.
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The Small Proteins

The results for the small proteins mirror those of the Fives. There were five proteins in the 

set all of which are less than 150 residues in length. A succinct review of the results is 

provided below.

Of all proteins the smallest considered was a putative protein from Aquifex aeolicus ( lt 6 t). 

The protein is 108 residues in length and assumes a toprim domain fold which is a three 

layer a|3a with a four strand parallel (3-sheet. The results were similar to Icoz A in as 

much as the correct fold was top ranked however there were errors in the C-terminal helix.

Iv9w, a putative mouse protein, is 119 residues long and assumes a thioredoxin fold. It

♦ V isuffered from the same problems as 2trx with the best native ranked model finishing 9 of 

10,364. The final RMSD was 7.5A  which is attributed to unstructured residues at the N- 

terminus.

ltjn, a hypothetical protein, is 135 residues in length and assumes a chelatase-like fold. 

The problems for this target arose during the first stages of the pipeline with Yaspin and 

PSIPRED being unable to identify a [3-strand on the edge of the sheet. The results were not

tlias catastrophic as expected with a good model ranked at 12 position. The same problem 

occurred with flavoprotein (lrlj), a 135 amino acid protein, where only two of 45 secondary 

structure predictions were accurate. Despite this problem the results were encouraging, 

with the top scoring model deviating by 4.6A from the native structure.
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The final structure in the small set is lvk9, an ADP-phosphorylated protein from 

Thermotoga maritima which is 136 residues long and proved to be too much of a challenge 

for the pipeline. Secondary structure prediction was a complete failure with no correct 

combination of secondary structure elements occurring. There were no plausible 

predictions made for this structure.

The Large Proteins

The large protein set consisted of proteins greater than 150 amino acids in length. The 

results were similar to those of the small proteins where correct predictions of secondary 

structure were absent, to those where the top model was 4.5A from the native structure. 

The typical outcome was that the top fold was not the native, but a similar fold in which a 

pair of (3-strands had swapped places within the sheet (a buried-buried swap).

Methenyltetrahydrofolate synthetase (lsbq) proved to be the hardest target. At 189 

residues it is one of the largest targets consisting of a number of short |3-strands -  DSSP 

shows 10 (3-strands covering 35 residues and 7 helices covering 56 residues. In addition to 

this, the structure posses a large N-terminal helix that packs across the (3-sheet instead of 

along it, a feature which is not accommodated in the Ideal Forms. The result of these 

features meant that none of the predictions were close to the native structure. When ranked 

on RMSD the ‘best’ model was 13A from the native.
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N5-glutamine methyltransferase (lvql) is 178 residues in length. Unlike other targets the 

secondary structure was almost perfectly predicted. The exception was the C-terminal 

strand, which in the native structure is next to the edge of the sheet but, in models, was 

placed adjacent to the sheet in a more buried position. The overall hydrophobicity of the 

strand is greater than the one with which it had swapped. It is for this reason that it is 

understandable that the prediction and evaluation functions would favour this model. The 

RMSD of the top scoring structure was 7A with much of the error derived from a large loop 

region where the chain is fragmented in the X-ray structure.
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Figure 5.10 1UXO crysta l s tru c tu re  of YDEN gene product: The structure consists o f a six stranded 13- 
sheet sandwiched between two sets o f  a-helices. On one side o f  the sheet there are two helices and on the 
other there are five. One helix pulls away from the structure, projecting ‘out’ o f  the page, and almost forms a 
new layer.
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The YDEN gene product (luxo figure 5.10) is 186 residues long and suffered from the 

same Ideal Form limitations that affected lsbq. The native structure consists of a six 

stranded P-sheet sandwiched between two a-helices on one side and five on the other, one 

of the helices is displaced to such a degree that it almost forms a new layer. The use of the 

Ideal Forms means that helices were balanced around the sheets, this was reflected in the 

highest scoring model which assumed the form 3-6-3. The side-effect of this behaviour is 

that one of the helices is ablated and that another is forced to the opposite side of the sheet. 

Despite these changes the overall fold was correct with the differences manifesting in large 

loop shifts.

The Conserved Protein MTH1675 from Methanobacterium thermoautotrophicum, PDB 

lt57, is the same length as luxo (186 residues), and consists of eight helices and seven 

strands. Fold assessment revealed three clusters, two which had RMSDs over 10A. The 

lower of the clusters had the correct fold but with an internal strand swap and the prediction 

of the C-terminal strand as an a-helix. Further errors were introduced by a sequence of 

three helices, all which extend away from the body of the protein and are involved in 

subunit packing in the native multimeric state.

The final structure in the large set was that of Uracil-DNA glycosylase (TM0511) from 

Thermotoga maritima (lvk2). The highest scoring fold had some similarity to the native 

but with several strand swaps. The fifth ranked model was mostly correct with the 

exception of a (3-hairpin inversion on the edge of the sheet at the C-terminus. The overall 

result of these minor changes is an RMSD of just under 10A.
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Performance at CASP7.

The approach to CASP7 differed to that described in chapter 3. There was no effort 

invested in comparative or fold recognition modelling, nor in targets which were less than 

100 or greater than 200 residues in length. Rigorous checks were also made to remove 

traces of homology from sequence and structure resources, this was achieved using 

GenThreader (Jones, 1999a) and PSI-BLAST (Altschul et al., 1997). Sequences that 

returned ‘significant’ hits from PSI-BLAST searches were removed and only structures 

returning ‘LOW’ and ‘GUESS’ were considered as not violating the de novo threshold. 

From the possible 10 targets a further three were discarded because they were identified as 

all-alpha, one more was predicted as a+p and another remains unsolved.

In addition to running the de novo approach and using the Ideal Forms a second approach, 

similar to threading, was used. This method used native structures as templates instead of 

the Ideal Forms. The second approach was necessary to overcome the limitation of the 

Ideal Forms which currently only represents a small number of native structures.

Another difference between the above set, especially the fives, and the CASP targets is the 

absence/presence of multi-domain proteins. Multi-domain proteins pose problems for 

structure prediction because, while they fold and function semi-independently, the multi­

domain structure can be dramatically different to the single domain. Before building 

models there were two problems to be aware of: the native templates reduce the options 

available to the de novo pipeline, while poor domain definitions disrupt prediction accuracy
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when compared to the results reported earlier. To allow comparison of the original de novo 

method, the first set of results will cover target prediction using the Ideal Forms approach 

and the second set will cover the template based approach.

Target T0273 is a multi-domain protein. The domain definition used in this work was 

placed at the 150th residue and, unfortunately, contained some of the following domain. 

The 120 residues which were correctly identified by the domain definition assumed the 

correct fold, however differences were identified in the first edge strand, while the 

following helix and P-strand were not predicted. Using the SAPit program, an RMSD of 

8 A was calculated over the 1 2 0  residues.

Target T0299, the structure of conserved bacterial protein SP0830 (2hiy), is 180 residues 

and consists of 10 a-helices covering 73 residues and 8  p-strands covering 45 residues. 

The N-terminal domain of the protein was correctly predicted, ranking 3rd overall, and 

included the location of the domain swapped C-terminal helix. The native structure 

includes an internal duplication with each domain having its own distinct sheet. Although 

the method does not accommodate this feature, the overall RMSD of the best model is 6 .5 A 

over 1 0 0  residues.

Target T0357, the NMR solution structure of UPF0107 protein AF 0055 (2hi6), is 132 

residues long and consists of 3 a-helices and 11 P-strands. The structure assume an app 

architecture which is correctly predicted by the pipeline and identified as the top prediction.
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Target T0383 (2hng) is 124 residues long and consists of three a-helices and 5 p-strands. 

Each of the edge strands faced in the opposite direction to the native structure but, despite 

this, the core topology of the protein was correctly predicted.

Target T0353 was a failure due to an error in secondary structure prediction which missed a 

p-strand. Despite this a reasonable prediction, with an adjacent strand swap, was found at 

rank 23. The final two targets, T0319 & T0350 were dominated by alpha-helix packing. 

Furthermore T0319 could reasonably be excluded from the set because of the secondary 

structure prediction composition. T0250 had disordered termini which reduced the size of 

the protein to under 100 residues, thus eliminating it from the set. Predictions for these two 

targets was poor.

CASP7 and Native Forms

As mentioned previously, some CASP targets could not be approached using the de novo 

method described above. This is because, in their current state, the Ideal Forms have only 

been constructed for the a /p  class of proteins, additionally the approach is designed around 

proteins in excess of 100 residues but less than 250 -  targets that would be prohibitive for 

any other de novo method. To avoid this limitation and allow for more participation in the 

CASP7 event, the method was altered. Without the Ideal Forms there exists no lattice on 

which to build the initial structures, to solve this problem a ‘standard’ threading approach is 

used. As described previously all sequence and structure information was removed to 

avoid reducing the problem to comparative modelling (as described in chapter 2 ).
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GenThreader was used to identify reasonable templates -  those which did not share 

overwhelming structural similarity with the target. GenThreader returns a list of potential 

templates with a p- value which infers a likelihood of the fold being incorrectly assigned. In 

this work, templates with a score of low ( 1 %</?<1 0 %) and guess (p > 1 0 %) were 

considered as suitable templates. These templates were then used in place of the Ideal 

Forms.

Using the modified approach, described above, 20 targets were attempted. Table 5.1 shows 

the Ca RMS deviation (cRMSD) of each target from the solved structure using a sequence 

independent structural alignment. The most interesting looking result is that of domain one 

of target T0356 which has a cRMSD of 4.93 A, however this is somewhat misleading as the 

model represents only a small fraction of the target, consisting of a long helix and loop 

which incorrectly bridges the two domains in the native structure.
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Table 5.1 CASP7 Template Based Prediction Results

Target ID
Target & 

Domain ID
Target
Length cRMSD

T0348 T0348 68 9.35
T0353 T0353 D1 83 9.15
T0350 T0350 D1 91 11.13
T0300 T0300 102 16.77
T0347 T0347 D2 71 10.76
T0304 T0304 D1 101 13.59
T0382 T0382 D1 119 13.02
T0309 T0309 70 15.57
T0307 T0307 D1 123 13.59
T0356 T0356 D1 90 12.73
TO 361 T0361 D1 158 19.22
T0314 T0314 D1 103 15.33
T0356 T0356 D3 99 14.42
T0321 T0321 D2 155 15.7
T0287 T0287 199 18.63
T0319 T0319 135 16.49
T0347 T0347 205 15.38
T0296 T0296 214 12.74
T0321 T0321 251 18.38
T0356 T0356 D1 20 4.93
T0356 T0356 168 16.96
T0296 T0296 231 16.34
T0356 T0356 119 15.79
T0356 T0356 92 14.59
T0356 T0356 67 16.87

The Target ID is the standard CASP target nomenclature. cRMSD is the carbon-a root mean squared 
deviation from the native structure, in the case o f NM R structures the first chain in the file.

A number of the targets (13) fail to meet the size restraints either being less or greater than 

the desired length (100-200 residues) but are still run through the pipeline. While the 

cRMSDs are large 9-19A the same observations were made for the template based 

approach as for those based on the Ideal Forms. A summary of some of the more 

interesting structures is provided below.
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T0300 -  the native structure has a long helix which forms the axis of the protein, at either 

end there are loops which connect to short helices. The predicted structure breaks the long 

helix into two, one half of which double backs and packs against the first half and a 

correctly predicted helix. Visually the structure appeared to be native-like, possessing a 

compact structure. Had the helix axis helix not been split the overall structure would have 

been a good approximation.

T0353 - the native structure consists of three a-helices and four (3-sheets packed in an anti­

parallel sheet under which the helices pack. The overall prediction was good with the 

exception of the loop modelling which is where the large deviations are identified. The odd 

helix packing for this structure is not currently supported by the Ideal Forms.

The native structure of T0350 consists of a beta sheet which is packed against three helices, 

however unlike the balanced ideal forms the helices all pack on one side of the sheet. 

When run through the prediction pipeline the ideal forms attempt to balance the 

combination resulting with a 1 -3-2 form.

T0296 is a large structure, over 400 residues in length. The prediction, which only covers a 

small section of the structure, has elements representative of globular proteins but does not 

accurately account for interconnecting loops. The result was a top scoring model with an 

RMSD of 12.47A from the native structure.
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T0382 - an all alpha protein, 121 residues in length consists of 6  helices. As with previous 

predictions, the overall structure is native-like with packed helices. The error comes from 

the unstructured N and C terminals as well as the miss-prediction of two helices and 

interconnecting loops. The inaccurate prediction of secondary structure resulted in one set 

of helices being extended and the other reduced.

T0307 - the overall structure of the protein is not well predicted as a result of poor 

secondary structure prediction. The poor predictions result in stunted a-helices connected 

by extended loop regions. The problem with a helix bundle is the number of ways that the 

helices can pack together.

T0361 -  is another helix bundle, DSSP identifies 11 helices which are poorly predicted. 

Additionally the native structure is dimeric and involves a helix swap between domains. 

The model produced by the pipeline, while not an accurate prediction of the target, does 

look native-like. The predicted secondary structure, rather than indicating 11 separate 

helices, combines them into three extended structures which pack together.

In summary the models, while not perfect, all exhibit native-like protein features including 

compact overall structure and biologically realistic partitioning of the 

hydrophilic/hydrophobic amino acids. The test of the pipeline using the native structures in 

place of the Ideal Forms, the base on which the method was constructed, was foolhardy as 

it replaces one of the most important aspects of the prediction pipeline. Further to this, 

several of the targets within the size range are classed as all-a, which unlike the a/p
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proteins had not undergone optimisation. It has also been suggested that the all-a class 

proteins prove particularly challenging for evaluation functions because of the number of 

ways in which helices can pack together (Berglund et al., 2004). Despite these 

observations the level of accuracy across the groups of proteins is consistent with the 

original ‘fives’ set.

How could performance be improved?

Table (5.3) shows the results for the free modelling targets presented at CASP7, these are 

the targets that should have been approached using a fold recognition or de novo approach. 

The table itself presents the target id, the group whose model was highest ranked, the rank 

of our model and the number of models submitted. The data shows that the performance of 

the de novo method had mixed success, on some targets it performs better than other 

methods (T0296, T0356 D1), while on other targets, it performs poorly (T0309, 

T0361 D1).

The performance of our method compared to other groups, was distinctly average as shown 

in table 5.2. As described previously, the approach to each target was to manipulate the 

starting information such that it could be attempted as a true de novo target this instantly 

introduces a handicap for where a suitable template can be identified using threading-like 

techniques. Thus the methodology, while it suited our purposes, will produce misleading 

comparison between our method and others, simply because template fragment based 

modelling approaches may have been better suited.

207



Table 5.2: Rank of Free Modelling Targets using the

de novo prediction pipeline

CASP
Target

Top ranked 
group name

Taylor group 
rank

Number of models 
submitted

T0287 Pcons6 37 121
T0296 mGen-3D 2 134
TO 300 karypis.srv.4 94 135
T0304 D1 Zhang-Server 69 137
T0307 D1 panther2 41 136
T0309 mGen-3D 113 138
T0314 D1 POMYSL 83 133
T0319 SAM-T02 68 132
T0321 nFOLD 61 124
T0321 D2 FEIG 86 120
T0347 SAM-T99 31 135
T0347 D2 FORTE 1 41 128
TO 348 Akagi 27 142
T0350 D1 SAM-T02 47 138
T0353 D1 SAM-T02 14 147
T0356 nFOLD 9 137
T0356 D1 Jones-UCL 2 118
T0356 D3 UNI-EID_expm 28 115
T0361 D1 AMU-Biology 103 132
T0382 D1 SAM-T02 82 141

Where comparisons are made it is important to remember that during CASP7 the pipeline 

was in its infancy, possessing only a small number of the required ideal forms, some of 

which were subsequently used inappropriately. As I have already stated, the performance 

of our method appears to be consistently average, perhaps a more interesting question to 

address is “how could the method be improved?”.

The most obvious way to improve the current method would be to invest time in the 

development of a full ‘periodic table’ of ideal protein folds as proposed in (Taylor, 2002). 

Of course, before using the ideal forms, an accurate prediction of secondary structure is

208



required and this is one thing that is difficult to improve. At the time of writing, secondary 

structure prediction is performed using two methods, PSI-PRED and Yaspin, which limits 

the amount of variation the method requires. It may then be of worthwhile designing a new 

method to predict secondary structure as detailed in chapter 6  or, as is done by several 

server based predictors, use what is termed a metaserver to obtain predictions of secondary 

structure from multiple sources. Both methods would introduce needed variation, the 

second considerably more. One problem that is associated with increasing the amount of 

variation in secondary structure is the amount of time required per target. It is possible that 

a considerable amount of time could be saved by optimising the code base of the prediction 

pipeline, this includes removing many of the scripts which tie the existing modules 

together. A more complicated improvement would be to introduce a final all-atom phase at 

the end of the pipeline, this procedure would bring the method into line with other, better 

performing, structure prediction methods (Simons et al., 1999a). More work would be 

required than with the aforementioned changes as it would be necessary to introduce side 

chain addition and adjustment algorithms i.e. SCWRL (Canutescu et al., 2003), refinement 

functions and new evaluation routines such as those used in (Simons et al., 1999a, Qiu et 

al., 2007).
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Conclusion

The method described here marks a successful return to combinatorial modelling, enabling 

the prediction of larger proteins than was previously possible. The structures produced by 

this method, both like and unlike the target’s true structure, display features that are 

typically found in globular proteins. It would be easy to dismiss such models as complete 

failures, however they are important as they show that the pipeline is explores realistic fold 

space. The results for ‘the fives’ were interesting as, when pooled, they were more reliable. 

This suggests that increased sampling can lead to improved overall accuracy, an 

observation which was also made in chapter 3, however it should be noted that a ‘brute 

force’ method is not thought to be a realistic solution to protein structure prediction.

Consistent errors in models are typically a result of misprediction of secondary structure or 

limitations in the number of Ideal Forms. This suggests that the a /p  Ideal Forms require 

some extension -  allowing for ‘off lattice’ features which are necessary for protein-protein, 

or other, interactions. Further problems are encountered as a result of secondary structure 

prediction. Incorrect predictions can be partially solved by using each sequence in the 

multiple sequence alignment to predict secondary structure, this procedure typically 

resulted in at least one prediction being a close approximation of the native structure. As 

mentioned in the discussion, further variation may be included through the application of 

further prediction methods and allowing more sequences into the multiple sequence 

alignment.
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In conclusion, the de novo method has been shown to accurately predict the three 

dimensional structure of proteins in excess of 1 0 0  residues, it also marks a successful return 

to combinatorial modelling for such proteins. For those targets where structurally remote 

models were produced, the errors were often the result of an interchange of two elements 

between buried environments, suggesting that the method samples realistic fold space. We 

believe that the inclusion of side-chain/all atom scoring functions and side-chain adding 

tool(s) will help improve models produced by this method in the future.
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Chapter 6

Algorithmic Protein Structure Prediction: Improving pipeline performance
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Introduction

The prediction of two dimensional structure started in the mid to late 1970s with the 

prediction of protein secondary structure and conformation (Sternberg and Thornton, 1978, 

Chou and Fasman, 1974, Chou and Fasman, 1978). Today it remains an active field both in 

isolation and as part of 3D structure prediction, and since the seventies more progress has 

been made in the 2D field than in 3D. Indeed it has been suggested that secondary structure 

has reached its theoretical limit at approximately 75% ± 1 0  while new fields have been 

identified such as disorder and contact prediction. 2D features are not independent and 

address characteristics that are useful for experimentalists as well as theoreticians.

As the array of predictable structural features has increased so to has the array of methods 

at our disposal, these include simple approaches, like the nearest neighbour methods, to 

more complex machine learning approaches. Among the very first techniques for 

prediction of secondary structure was that of Chou and Fasman (Chou and Fasman, 1978). 

This technique relied upon the probability parameters determined from relative frequencies 

of each amino acids appearances in each secondary structure type. By modem standards it 

is basic and this is reflected in a prediction of accuracy of 50-60%. This was quickly 

followed by Gamier, Osguthorpe and Robinsons’ method (Gamier et al., 1978) which 

utilises the probability of an amino acid being in a particular structure as well as the 

conditional probability of its neighbours assuming the same structure. The incorporation of 

this extra information gained a 5% increase in accuracy which is attributed to much 

improved alpha helix prediction at the expense of beta sheet prediction. These methods
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brought a close to the first generation of methods -  those that relied on single amino acids 

and their propensities for particular structures (Rost and Sander, 1993, Rost and Sander,

2000). The methods that followed applied similar ideas to segments of adjacent residues 

but no matter what underlying algorithm was used, prediction accuracies stuttered at 60%. 

This problem was largely solved through the introduction of sequence variation in the form 

of multiple sequence alignments (Dickerson et al., 1976) and one of the first people to 

capitalise on this was Zvelebil (Zvelebil et al., 1987) whom incorporated multiple sequence 

alignments into an automatic prediction method. Rost refers to this group of methods as 

the, very brief, second generation of secondary structure prediction tools that struggle to 

break the 70% barrier (Rost and Sander, 2000). It is then, the third generation where the 

final breakthrough occurs through the use of sequence profiles, larger databases and new 

algorithms. It was the widespread adoption of new techniques and data sources that lead 

the current accuracies which approach 80% (based on three state prediction: alpha helix; 

beta sheet; coil/rest). One of the first ‘new’ algorithms was the artificial neural network 

(ANN) (Minksy and Papert, 1969, Rosenblatt, 1988, Widrow and Hoff, 1988, Minksy and 

Edmonds, 1954) which was brought to the attention of the wider community by Rumelhart 

(Rumelhart et al., 1986), the ANN was first applied in secondary structure prediction by 

Qian and Sejnowski (Qian and Sejnowski, 1988). The next ten years saw the growth of 

databases accompanying variation on the neural network theme (Rost, 1996) as well as the 

new application of ‘old’ methods including Bayesian statistics (Thompson and Goldstein, 

1997). What is generally agreed as one of the most significant steps forward was made by 

David Jones using a combination of the ANN and PSI-BLAST in a method that he called 

PSIPRED (Jones, 1999b). In constructing PSIPRED, Jones was not only one of the first
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people to effectively apply the PSI-BLAST position specific scoring matrix (pssm) profiles 

in secondary structure prediction, but also the first to apply a rigours culling of the 

sequence databases to avoid pollution of the PSSMs through spurious hits to unrelated 

proteins (Jones, 1997). While PSIPRED is a popular choice, it is worth noting that at the 

same time, Karplus et al, introduced an alternative method that used hidden Markov 

models to search sequence databases for remote homology before making predictions 

(Orengo et al., 1999, Karplus et al., 1998, Karplus et al., 1999). Over the last eight years 

there have been many more methods for secondary structure (Cuff and Barton, 2000) and 

solvent accessibility (Adamczak et al., 2004, Ahmad et al., 2003) prediction (more often 

than not, the same tools are used for each). Over the last five years the fashions in structure 

prediction have changed, this has included the increased usage of a machine learning tool 

called support vector machines (Hu and Li, 2007, Ward et al., 2003, Shamim et al., 2007, 

Kajan and Rychlewski, 2007, von Grotthuss et al., 2003, Ginalski and Rychlewski, 2003, 

Ginalski et al., 2003). Another popular method is the combination of existing 

methodologies into what are often referred to as metaservers, of which 3D-jury (von 

Grotthuss et al., 2003, Ginalski and Rychlewski, 2003, Ginalski et al., 2003) is one of the 

better (Kajan and Rychlewski, 2007).

In this chapter I will introduce a novel method for prediction of secondary structure and 

solvent accessibility. The method consists of two parts, a fuzzy k nearest neighbour (f£NN) 

algorithm and support vector classification (SVC) machine. This approach is different to 

the aforementioned methods sitting at the interface of the meta-servers and the single 

method predictors. The aim of this work was to provide an additional method for

215



prediction of secondary structure for a/p structure prediction and an new alternative 

method for prediction of solvent accessibility. Both of these features had been identified as 

playing a crucial role in the overall prediction of three dimensional structure (see chapters 

3, 4 and 5).

Methods and Materials

Three datasets were used for construction and evaluation of the method used in this work. 

To be included in each set the following criteria had to be met: The maximum pairwise 

sequence identity across all proteins had to be less than 25%, this is standard protocol for 

construction of machine learning tools; the structure had to be determined by X-ray 

crystallography to a resolution better than 2.5A and contain no chain breaks or missing 

atoms; the protein had to be globular -  to this end all proteins which were not identified in 

one of the four major SCOP classes were discarded - this includes small proteins and 

transmembrane proteins; all proteins less than 60 or greater than 500 residues were also 

discarded.

The first structure set was derived from the Representative PDB (Noguchi et al., 1997) and 

consisted of 764 proteins. The second set consisted of 1094 proteins which were derived 

from the DSSP select 25 list. The third and final set were identified using the PISCES 

server (Wang and Dunbrack, 2003), this list formed the final protein set comprising of 1024 

proteins.
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Sequence Alignments

Sequences were extracted from the PDB files and alignments were generated using the PSI- 

BLAST program (Altschul et al., 1997), a standard command was used:

-j 3 -h  0.001 -e  0.001 -F T -i  <input file> -<1 <database> -Q <PSSM FILE>

Where -j controls the number of iterations, -e defines the expectation value, -F T switches 

filtering with SEG on -  this was not required as the nr database was prefiltered using pfilt 

but was left on as a precaution. Several scoring matrices were tested but the BLOSUM62 

matrix was applied as initial tests did not yield an obvious advantage in using other 

matrices.

Vectors

Two sets of vectors were constructed for this work. Both are based on the information 

from within the PSSM but the second uses information from the Taylor colour scheme 

(Taylor, 1997b) as a supplement. Each set is described below and were constructed for 

each dataset.
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Set 1: The transition matrix.

Sequence vectors were constructed from the raw PSSM values. Each amino acid is 

represented by a 21 element vector. The first 20 elements pertain to the transition from the 

residue at the current position to each of the other amino acids. The 21st element indicates 

an unknown position, this can be an unknown or missing residue as well as a pseudo­

residue. The window scheme used in this work means that sampling occurs outside 

sequence space (i.e. beyond the N and C termini), to make this possible pseudo-residues are 

used. In a pseudo-vector the first 20 positions are set to zero and the 21st is set, arbitrarily, 

to 0.5. In this work a window length of 15 residues (7 residues either side of the central 

residue) was used, resulting in feature vectors o f l 5 * 2 1  = 315 dimensions.

Set 2: Transition matrix and entropy measures.

Raw data was extracted from PSSMs as in described above. The vector were supplemented 

using two measures, sequence and hydrophobic entropy. The equation used is shown in 

6 .1. The information content of a position (*;) is measured in bits, the lower the bit value 

the more conserved a position is. This is a simple measure of sequence conservation but 

not so arbitrary for hydrophobic entropy.

i
^ p O < ) lo g 2(l/p (x ,))  (6 . 1 )
1=1
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To address the hydrophobic problem all amino acids identified by Taylor (Taylor, 1986) as 

hydrophobic ( A G C T K H Y W F M I L V )  were grouped into one class and the remaining 

amino acids into another (P S N D E Q R) (Taylor, 1986). No attempt was made to 

optimise the window length for entropic features. The resulting vectors were of 345 (315 + 

15 + 15) dimensions.

Prediction Methods

Two methods were applied during this work, the fuzzy k nearest neighbour algorithm 

(fANN) which had not been applied to solvent accessibility or secondary structure and 

support vector classification with novel vector encoding. As well as trying each method 

independently the methods were combined into a combination fANN-SVC for prediction of 

secondary structure and solvent accessibility as shown in figure 6 .1 .
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Figure 6.1 An outline  o f  p red iction  m ethodology: 1 & 2) The first approach was to use pssm information 
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k and fuzzy-# nearest neighbour: Predicting solvent accessibility and secondary 

structure.

The fuzzy k nearest neighbour algorithm is a simple technique for assigning a class or a 

value to an unknown quantity. It is derived from the k nearest neighbour algorithm (#NN) 

(equation 6 .2 ), the difference being the weight parameter (equation 6 .3 ).

2 Cn ( d ij)  

Cn ( X l) = — k----------

2  4/
(6.2)

7=1

In a standard #NN each neighbour is given an equal weight -  this is as simple as counting k 

neighbours and assigning class based on the most numerous known class. The f#NN adds a 

weight to each of the k so that the closer the kth element is to the unknown sample (/'), the 

greater the contribution to the classification of /.

2 c»(rf«
Cn ( X i ) =

2 ^
7=1

(6.3)
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The weights are achieved by adding the -2/(ra -1). The parameter m is often called the 

‘fuzzifier’ and must be optimised along with k. The dy parameter is a measure of distance, 

there are many potential ways to do this, however in this work, two methods were used -  

Euclidean Distance (equation 6.4) and Manhattan City Block (CB) distance (equation 6.5). 

While the Euclidean distance is more accurate than the Manhattan distance, mainly because 

of the square boundaries imposed by the later, however it has consequences for compute 

time. Requiring both a power and a square root function imposes a time penalty on 

operation speed, and at least theoretically becomes prohibitive when a large number of 

calculations have to be made.

“AB 1
V  « - i

The Euclidean distance between 2 points (A & B), where A = (ai, a2, ... a„) and B = (bi, b2, ... b„). 

n

dAB = 2 K  “  H = \(ai - bi) + (a2- b 2) + ...+ (an -  bn)| (6.5)
/ - I

The City Block distance between 2 points (A & B), where A = (al5 a2,... ,  an) and B = ( b ^ , . . . ,  bn).

Support Vector Classification.

SVMs are used to construct optimal class separating hyperplanes in a high dimensional 

feature space. Most architectures are able to deal with sample sizes greater than 100,000 

instances and lend themselves well to biological application. In the introduction the 

concept on support vector machines was introduced in the form of a linearly separable

y  (a . -  b ) 2 = V(«1 -  bi f  + i a2 -  bi ) 2 + -  + K  -  K ) 2 (6.4)
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problem. In real-world problems linear separation is rarely a reality and two advanced 

features of SVMs have to be exploited: the handling of miss-classified instances, this is 

achieved through the introduction of ‘slack variables’ (§); the projection of data into a 

higher dimension, this is achieved using the ‘kernel trick’ (see chapter 1 ).
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Figure 6.2 Classification: The Application o f Slack Variables: In the classification the slack variables 
measure the violation o f  the support hyperplanes as shown. In regression the slack variables measure the 
deviation outside the support hyperplanes. As with all previous examples this diagram illustrates the point 
using a linearly separable problem.
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The introduction of slack is achieved as follows and is illustrated above in figure 6.2. The 

primal form (linear programming problem) for the maximal margin is stated as:

minimise W)b (w • w), 

subject to y,((w • jc,) + b) a: l,i = I , (6 .6 )

where w is the weight vector, b is the bias, y t is the label of the current instance and £ is the 

length of the feature vector. To optimise the margin slack vector, the slack variable have to 

be incorporated to allow margin constraint violation:

minimise Wjb (w • w),

subject to y ' ^ w + a 1 ( 6  ?)
§ a 0,i = l I

Including the C parameter, the optimisation problem is re-written:

minimise^b (w * w) +

yi((w ' xi) + b ) ^ l -  %i,i = l , . . . , f , 
subject to ' ’ (6 .8 )

The C parameter, or coefficient, affects the trade off between complexity and proportion of 

non-separable samples -  the margin and the size of the slack variables. Shawe-Talor and
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Cristianini note that it has no intuitive meaning and that it must be optimised by the user 

(Cristianini and Shawe-Taylor, 2000).

To address the problem of non-linearly separable problems Boser, Guy on & Vapnik 

(Bernhard et al., 1992) suggested a way to create non-linear classifiers by applying the 

kernel trick to maximum margin hyperplanes. The resulting algorithm is similar to the 

original method with the exception that each dot product is replaced by a non-linear kernel 

function. This allows the algorithm to fit the maximum margin hyperplane in a 

transformed feature space. There a several functions to complete transformations, in this 

work the Radial Basis Function (RBF) (equation 6.9) was implemented as it is equally able 

to deal with linear and non-linearly separable problems.

exp|-y||x -  jc '||2 J for y > 0. (6.9)

In this work C and y were optimised using five fold cross-validation. For secondary 

structure prediction the optimal value of C was 4, for solvent accessibility C was found to 

be 5. For both secondary structure and solvent accessibility the optimal value of the y 

parameter was found to be 0.001. A combination of the libsvm (Chih-Chung and Chih-Jen,

2001) and 6 SVM tools were used for secondary structure prediction while libsvm and 

svmlight (Joachims, 1999) was used for solvent accessibility.
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Solvent Accessibility

Traditionally solvent accessibility has been treated as a classification problem. The work of 

Thompson and Goldstein (Thompson and Goldstein, 1996) is a prime example of this. 

Such an approach requires the definition of a threshold; this is the ‘value’ at which a 

residue can be defined as exposed or buried. To do this the absolute solvent-accessible area 

(asa) is determined using DSSP and NACS (correlation coefficient 0.98); then using 

equation 6.10 the relative solvent accessibility (rsa) is calculated -  in the case of DSSP, 

Gromiha’s (Ahmad and Gromiha, 2002) maximum solvent accessible areas (Maxx) were 

used.

RSA(x) - 'ASA  '
\MaxxJ

100 (6.10)

The typical procedure is to use two or three values for the threshold, one of which separates 

the data such that 50% of the residues are classified as buried or exposed, paradigmatically 

this is 20-30% range. The balanced sets make training easier, when classes become 

unbalanced extra penalties should be imposed such that a misclassification of a minority 

class in more heavily penalised than that of the majority. Like the C and y parameters this 

is something that has to be optimised.
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Secondary Structure

Secondary structure was determined using DSSP. The standard eight-state to three state 

conversion was used where H, G, I are a-helical structures, E is P-structures and the 

remaining classes are grouped to represent coils. Beta-bridges were included as the 

‘random’ coil, because, as described in the introduction, secondary structure elements are 

defined by repetitive phi-psi angles. Isolated predictions of a  or p structure were left 

unaltered.

Results

The following sections give results for prediction of secondary structure and solvent 

accessibility including the accuracy of the ffeNN and SVM as well as the combination of the 

two. The results presented below for the fifcNN are based on the transition vectors only 

while the SVM results are based on the transition-entropy vectors combined with the f&NN 

output unless stated otherwise.
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Secondary Structure.

The overall effect of varying k is shown in figure 6.3. The optimal value of k in the leave 

one out validation was determined as 60, however a range of values from 50 to 60 achieves 

almost identical results as shown in the table 6 .1. The overall accuracy is determined to be 

75% which is standard performance for secondary structure prediction and is 1% less than 

that of the stand-alone SVM on the transition vectors.
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Effect of k on secondary structure prediction

o 50 100 150 200

Number of nearest neighbours (k)

F igure 6.3 T he E ffect o f  k  on Secondary  S tru c tu re  Prediction: The two parameters to be optimised with 
the fuzzy k nearest neighbour (ffcNN) -  k and m. With m fixed at 2, k can be varied such that an optimal 
prediction is obtained on a leave-one-out cross validation. The plot shows how the overall accuracy of the 
ffcNN method changes with the number o f ks used to assign a class to the neighbour. The optimal value o f k is 
60, however the accuracies around k = 60 are fairly similar as shown in table 6.1.
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Table 6.1 Accuracy of fkNN on secondary structure prediction

Number of k 60 53 56 51
Accuracy 75.363 75.361 75.356 75.352

The table shows the accuracy o f the f£NN on a leave one out cross validation o f 1024 proteins. Despite the 
optimal value o f  k being 60, almost identical results are obtained using values o f 53, 56 and 51, this is also 
shown in figure 6.3.

Combination of fA:NN and SVM

The combination of the f£NN and the SVM yielded slight improvements over each of the 

individual techniques resulting in an average accuracy of 78.8%. The Q3 scores, the 

accuracy of prediction of each state, are as follows: Q3 - 80.5%; Q3H 82%; Q3 E 71.7, these 

results are comparable to that of YASPIN.

Solvent Accessibility.

The original aim was to predict RSA by using the f&NN to approximate the RSA using a 

weighted mean. Due to problems establishing a suitable weighting scheme changes were 

made to the method to predict RSA using a threshold approach similar to that described in 

chapter 4. The first step in the method was to establish the threshold at which 50% of 

residues are classified as buried or exposed. The results are shown in figure 6.4 and clearly 

indicated that this point occurs approximately at the 2 0 % threshold.
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Division of classification across solvent accessibility thresholds

2
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Figure 6.4 Division o f  C lassification Across Solvent Accessibility Thresholds: For each dataset used to 
predict solvent accessibility the optimal threshold, the point where 50% o f residues are buried and 50% are 
exposed, should be identified. For the 1024 proteins presented here the optimal threshold is approximately 
20%. The optimal threshold presents the point where prediction is ‘hardest’ whilst straying either side makes 
the problem ‘easier’ because one class is over represented. In this work solvent accessibility was predicted in 
5% increments from 5% to 95%  (from totally buried to totally exposed).

232



For the solvent accessibility work a comparison was drawn between the fifcNN, the SVM 

and the combination of each method. Additionally for the SVM step a further comparison 

was made between the basic vectors and the combination vectors (including the entropy 

measure). The SVM alone, using the transition vectors, achieves an accuracy of 76.88% at 

the 20% threshold which is comparable to the 77.8% achieved by the fifcNN under the same 

circumstances (shown in figure 6.5 and table 6.4). By incorporating the entropy measure, 

slight performance increases are gained with the method achieving 78.16%. When 

combined the prediction accuracy using the transition vectors, the entropy measure and the 

fifcNN predictions accuracy increases to 78.72% with precision and recall being 73.96% and 

82.60% respectively.
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Prediction accuracy across 'state* thresholds
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Figure 6.5 P red ic tion  A ccuracy  fo r Solvent Accessibility T hresholds: The x-axis shows the solvent 
accessibility threshold at which residues were classified as buried (b) or exposed (e). The y-axis shows the 
overall accuracy, based on a leave one out cross validation on 1024 proteins, o f the f&NN approach. The 
optimal threshold for prediction is approximately 20% as shown in figure 6.3.
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The effect of changing m on accuracy

CM _r- 12AS_A m = 2 
12AS_A m = 5 
12AS_A m = 10

CO

50 100 150 2000

Number of nearest neighbours

F igure 6.6 T he E ffect o f  th e  Fuzzy P a ra m e te r  (m): The m parameter controls the effect distance has on the 
overall contribution of each k to the class membership of the A:th match. The greater the distance the match 
is, the less the contribution to the overall class membership. The figure shows the effect of three values of m 
(2,5,10) on prediction accuracy for the asparagine synthetase (PDB code 12AS, chain A). A leave one out 
cross-validation showed minimal overall difference on the 1024 protein set with m being set to 2 in final runs.
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For the remaining thresholds the performance accuracy at the ffcNN stage remain similar or 

increase, this is due to the change in the balance of buried and exposed residues which 

makes prediction easier. The overall performance at each threshold is shown in table 6.2.

Table 6.2: Prediction Accuracy of Solvent ffcNN

Threshold Number of k Averaae Accuracy
5 46 81.5
10 34 79.5
15 28 78.4
20 46 77.8
25 53 77.4
30 62 77.2
35 174 77.2
40 166 77.6
45 184 78.5
50 182 80.0
55 106 82.1
60 110 84.7
65 68 87.2
70 78 89.7
75 70 91.9
80 63 94.0
85 114 95.7
90 80 97.0
95 48 98.0

When combined with the entropy measures and the initial ffcNN predictions, the accuracy 

increases but only marginally. The prediction accuracies are shown in table 6.3 below.
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Table 6.3: Prediction Accuracy of Solvent Combination fkNN-SVM

Threshold Accuracy Precision Recall
5 81.53 75.43 61.75
10 80.38 78.37 69.09
15 79.67 81.05 72.06
20 79.43 83.17 74.54
25 79.18 84.41 76.76
30 79.16 85.14 79.23
35 79.58 85.24 82.85
40 79.73 84.59 86.4
45 80.79 84.33 90.68
50 82.2 84.49 94.35
55 83.7 84.28 98.28
60 84.84 84.86 99.91
65 87.69 87.69 100
70 90.31 90.31 100
75 92.6 92.6 100
80 94.53 94.53 100
85 96.18 96.18 100
90 97.42 97.42 100
95 98.24 98.24 100

Table 6.3 shows that the precision and recall values increase as residues become more 

buried, the threshold increases, but decrease as residues become exposed. This is most 

likely a result of non-optimal SVM parameters which could be solved using a fine-grain 

optimisation. The problem with a fine-grain approach is the amount time required to 

complete all cross validations because of the large data set and limited compute resources.
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Discussion and Conclusion

The application of a fuzzy fc nearest neighbour approach combines a simple classification 

function with the output of a PSI-BLAST search. By today’s standards the fkNN is one of 

the simplest techniques for assigning class to an unknown element. Despite its simplicity it 

performs remarkably well at predicting solvent accessibility (SA) and secondary structure 

(SS) and requires only three things: a measure of distance; the definition of fc; and the 

identification of an optimal weight (m) parameter. In this work the weight parameter has 

little noticeable effect on the overall accuracy of the predictor and as such will not be 

discussed further.

The choice of distance measure is important for the ffcNN as thousands of calculations have 

to be made per site. Earlier speculation was that the distance measure could have a 

negative impact on execution time and overall performance. In practise these concerns 

appear unfounded, by changing the original city-block measure to the ‘slower’ Euclidean 

function did not appear to result in a prohibitive increase in execution time or in overall 

performance. Changes in execution time may have gone unnoticed as the programs were 

run on a cluster rather than a standard desktop computer.

Initially the aim of the work was to predict RSA using a weighted mean applied to the fc 

nearest neighbours, however this was not achievable as a good solution to the weight 

problems could not be found, resulting in consistent prediction of residues being totally 

buried (rsa = 0%) or totally exposed (rsa = 100%). A reasonable, although not ideal
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solution to this, was to apply the same approach as described in chapter 4, where a binary 

classification was completed at a number of predefined thresholds. The benefit of this 

approach is that the technique was also suited to secondary structure prediction as it is a 

simple prediction of state.

For both features the ffcNN achieves reasonable results, 76% for secondary structure and 

77% for solvent accessibility. The overall results are good, but not better than published 

methods (although this comparison is almost entirely fruitless as described below). While 

this work was being completed another group, that of Julian Sim, described a similar 

method for prediction of solvent accessibility (Sim et al., 2005). Their method has two 

variations: the application of a weighted contribution from each position in the current 

window and the use of a larger dataset of 3644 proteins. The method described by Sim et 

al., achieves an accuracy of 78.5% at the 25% threshold, however the group does not report 

the point at which the residues are optimally separated and as such, the accuracy at 25% 

should be treated with some suspicion. A test was conducted on the contribution of the 

window weighting scheme using the method described above. The inclusion of a weighted 

contribution from each residue, dependent upon its distance from the central residue, did 

not yield an increase in the overall accuracy.

The second part of this method was the application of the support vector machine using the 

original ffcNN input combined with its output as the SVM input space. For the two state 

prediction of solvent accessibility the s v m ^  (Joachims, 1999) and libsvm toolboxes were 

used. The secondary structure problem could have been addressed, as described above
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using 6SVM, or by using a one class against all approach. The 6SVM method was used 

because it was designed for multi-class problems and does not require three models (helix, 

sheet and coil) to be trained and additional evaluation code to be written.

The results of using the SVM step were good, increasing the accuracy of the overall results. 

Although this method is not ground breaking, in terms of accuracy, it does provide another 

source of secondary structure predictions, something that was highlighted as necessary in 

chapter 5. The introduction of a third method not only increases the variation but allows 

for the creation of a consensus prediction, which may at a later date prove useful.

This method also lends itself to the de novo prediction pipeline because of its transparency 

and ease of retraining. The methods used in the pipelines (chapters 3 & 5) are black boxes 

and cannot be easily retrained, as such performing guaranteed de novo predictions is 

difficult in as much as it is unclear which proteins were used in training the systems and 

how similar they are to the target proteins. The process of identifying similar sequences in 

this method comprises of a scan against two sequence databases, the removal of sequences 

from the ffcNN library and the possible retraining of the SVM.

The solvent accessibility method, despite not fulfilling the original aim, could have been 

used to replace AccPro in the Phobic function (chapter 4) were it not for one minor 

problem. This problem manifests in the inconsistent prediction of burial and exposure 

across thresholds, a problem that does not affect AccPro. The assignment of RSA based on 

the maximum state at which the residue is exposed is troublesome when a residue is
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exposed at 30%, buried at 35 and 40%, but exposed again at 45%. While it may be 

possible to devise a solution to this problem, the overall accuracy of this method compared 

to AccPro did not warrant the time and effort that would be required.

As with all methods there are limitations, this is especially true for those which rely on 

multiple sequence alignments (MSAs). Problems arise with the generation and use of poor 

alignments to the absence of homologous sequences and structures. While it is widely 

accepted that MSAs do improve overall SS prediction accuracy the same is not true for 

solvent accessibility. Previous work has shown that MSAs do not aid the prediction of 

solvent accessibility (Przybylski and Rost, 2002) because it is not a feature well conserved 

across familial alignments, yet other groups (Adamczak et al., 2004) have shown that 

MSAs can improve prediction accuracy by up to 5%. Chapter 2 showed, using contact 

number (CN), that sequence alignments did not appear to play a large part in prediction 

accuracy despite the identification of CN being well conserved (Hamelryck, 2005). Despite 

this problem, the method made use of sequence profiles generated using PSI-BLAST. The 

fact that this method will not work without an MSA means that it cannot contribute to this 

debate.

One concern that should not be neglected, but almost invariably is, is that of the database 

which is used to train a method. The method presented here and that of Sim (Sim et al., 

2005) provides a good basis on which to comment. Both methods can be made identical 

with the exception of the dataset -  this work uses a set of 1024 proteins while that of Sim et 

al., uses 3644. When comparing the accuracy the difference is just over 1% (77.2% &
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78.5% respectively), while if repeated using a set of 764 proteins the accuracy decreases to 

75%. With the variation in datasets the comparison of methods which use alternative 

training sets seems meaningless, with the improvements, often within the 1-2%, most 

probably coming from larger datasets than from the methods.

In summary this chapter has presented a novel combination of the ffcNN algorithm and 

support vector classification to predict solvent accessibility and secondary structure to an 

accuracy similar to that of state of the art methods. While it does not break the 80% 

accuracy threshold, it provides a much needed supplementary method for use in the DDT 

and de novo prediction pipelines described in chapters 3 and 5.
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Chapter 7

Discussions, Conclusions and the Future



Summary

In this short chapter I will summarise all of the work described in the previous chapters. I 

would also like to draw attention to several issues I think need to be addressed to improve 

the development process of prediction tools such as those described in chapter 6 and I will 

devote some time to describing improvements to the prediction pipelines (chapters 3 & 5) 

which could improve overall success.

For the prediction of tertiary structure there are experiments, such as CASP, EVA (Eyrich 

et al., 2001) & LiveBench (Bujnicki et al., 2001) which assess the state of the art -  referred 

to as benchmarking. The aims of each are to provide continual assessment that highlights 

weak, strong and stagnant areas -  in CASP6 secondary structure prediction was closed. 

While successful at evaluation, none of the benchmarking utilities provide a resource which 

acts in a regulatory manner, providing a robust dataset which is large enough to test and 

train new tools. It maybe that this is not possible, or at best very challenging, for 3D 

structure but it would be possible for the prediction of 2D features. Considering that much 

of the ‘ground work’ for prediction of tertiary structure is based on the prediction of 2D 

features this could result in improvements at the final 3D stage. As shown in chapter 6 a 

small change in the number of sequences in a training database can result in a drop in 

accuracy -  a decrease in one correlates with a decrease in the other. A common method of 

analysing predictive tools is to use a set of proteins, such as the Rost and Sander (Rost and 

Sander, 1993) or Manesh (Naderi-Manesh et al., 2001) datasets to determine if methods is 

better than method B -  where A and B could be any single or combination of methods. This
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approach is logical if A and B are trained on exactly the same set of data, be it sequence or 

structure based, and allows for a direct comparison. Additionally the commonality of the 

data means that a simple statistical test, such as the t-test, can be used to determine if the 

improvement of A over B is statistically significant. The lack of statistical validation may 

seem odd given the mathematical heritage of the field, however it can be explained by the 

invalidity of comparing methods in which not only the datasets vary but the techniques 

themselves. In addition to this, another ‘test’ would be to take both tools (A&B) and see if 

the application of either improved overall structure prediction, again this is something 

which is rarely performed but tells us if the new tools really provides anything that existing 

tools do not. The simplest way to overcome this issue would be to provide a resource to 

which groups could upload their training and test sets as well as download other groups 

data, allowing a comparison of all methods and for the effects of features such as window 

length to be conclusively evaluated. Each group would then be able to choose the best 

methods for the prediction of the required structure from solvent accessibility to contact 

order, this approach would be particularly useful to the a/p  method introduced in chapter 5 

where secondary structure prediction proved to be problematic. An additional benefit 

would be the trivial nature of establishing whether a protein used to evaluate a prediction 

pipeline was used in the training of, for example, a secondary structure prediction tool and 

hence avoid any potential bias in the final outcome. Such a project would require large 

computer resources to store and distribute data as well as the cooperation of the prediction 

community and would be a bioinformatics project in itself.
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In addition to the aforementioned improvements it may also be beneficial, as far as the 

methods described in chapters 3 & 5 are concerned, to alter the model construction process 

such that the final constructs include side chains. Both prediction pipelines produce Ca 

models which are less complex to construct in part because the potential for constraint 

violation is less than an all atom construct and this allows for the generation of a large 

ensemble of structures which has been identified as beneficial for these approaches. 

Generation of the same number of models using an all atom approach would be prohibitive 

because of the extra evaluation steps required at each phase. The modular approach 

described in chapter 5 could easily accommodate full atom models either post-threading or 

post top 100 + n range (see figure 5.1). At these points the ensembles of models would still 

be diverse but many of the less ‘fit’ structures would have been removed by the low level 

functions. The inclusion of the side chains would lead to steric clashes which would either 

result in models being excluded or backbone remodelling. It would then be possible to use 

a finer grain version of Phobic as well as other new or existing scoring functions. These 

models could then be refined using more sophisticated, minimalisation-like methods.

The previous chapters have described the design, development and application of tools for 

the construction and evaluation of protein models. Each chapter is intrinsically related to 

the others describing two evaluation functions, two 3D structure prediction pipelines and a 

2D structure prediction architecture. The methods provide state of the art performance for 

each structural feature and as well as offering solutions to problems which have plagued the 

field, such as domain definition in threading and de novo prediction of large proteins.
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