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Abstract
Respiratory m otion is a m ajor factor contributing to errors and uncertainties in 

Radiotherapy (RT) treatment o f lung tumours. Knowledge o f  this motion may improve 

the planning and delivery o f RT treatment for lung cancer patients. This thesis develops 

and evaluates methods o f  building patient specific respiratory motion models. These 

relate the internal m otion to respiratory parameters derived from an external surrogate 

signal that can be m easured during data acquisition and treatment delivery. The models 

offer a num ber o f advantages over current methods o f imaging and analysing respiratory 

motion, in particular their ability to account for variations in the respiratory motion.

Com puter Tom ography (CT) data is acquired over several respiratory cycles to sample 

som e o f  the variation in the respiratory motion. B-spline registrations are used to 

recover the motion and deformation from the CT data. The models are then constructed 

by fitting functions that relate the registration results to the respiratory parameters. This 

thesis describes the CT data and respiratory parameters that have been used to construct 

the m otion models. It details the registrations protocols used and evaluates their results. 

The initial models presented in the thesis relate the registration results to a single 

parameter, the phase o f  the respiratory cycle, and average out any variation in the 

respiratory motion. The later models relate the registration results to two respiratory 

parameters, with the intention o f modelling some o f the variation. A number o f different 

functions are assessed for both the single and two parameter models. The results show 

that the models can predict the respiratory motion in the CT data very accurately (mean 

error < 1.4 mm). This thesis also discusses some o f the uses o f the motion models in RT 

and, in particular, explores the use o f  the motion models for ‘tracking’ respiratory 

motion while delivering intensity modulated RT.
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Chapter 1

Introduction

Respiratory motion is a significant problem for many medical imaging applications. It 

can cause artefacts when reconstructing images and can be the source o f errors and 

uncertainties in image directed therapies and image guided interventions. One area 

where respiratory motion can be particularly problematic, and where it has been the 

focus o f  much research in the last few years, is the delivery o f Radiotherapy (RT) to 

sites in the thorax and abdomen, e.g. the lung. This PhD has been primarily focussed on 

creating models o f  the respiratory motion for use in planning and delivering RT 

treatment to lung cancer patients, as this is one o f  the applications that may benefit the 

most from accurate and detailed models o f the respiratory motion. However, it is 

expected that many o f  the findings o f  this research, and the methodologies developed as 

part o f it, will potentially be o f interest and use in a wide range o f applications in image 

acquisition, image guided interv entions (o f which RT is just one), and studies o f  lung 

physiology.
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The respiratory motion can be thought o f as being 'quasi-periodic'. It is generally 

thought that the motion during most respiratory cycles is similar (unless the subject is 

undergoing erratic breathing, such as couching), although it is also known that there can 

be short and long term variations in the respiratory motion. Furthermore, it is generally 

thought that the internal motion can be related to "external" respiratory surrogate signals 

that can be m easured during image acquisition and treatment delivery, such as the 

displacement o f  the chest or abdomen. There are many different surrogate signals that 

could be used including internally measured signals such as the position o f the 

diaphragm.

Advances in im aging technology over the last five to ten years, in particular the 

developm ent o f  m ulti-slice Computed Tomography (CT) scanners, have enabled the 

acquisition o f  three dimensional (3D) volumetric data at a high enough temporal 

resolution to image respiratory motion. However, current CT scanner technology is 

unable to sim ultaneously scan the entire region o f interest, usually the entire thorax for 

planning lung RT. This means it is necessary to acquire data at different locations (or 

from different projections) during different respiratory cycles, and to sort the data 

according to a respiratory parameter (derived from a surrogate signal) into respiratory 

correlated, or Four Dimensional Computed Tomography (4DCT), volumes. This 

process relies on there being a relationship with the chosen respiratory parameter, at 

least for the duration o f the image acquisition. Any variation in the motion cannot be 

accounted for and may produce artefacts in the 4DCT volumes.

This thesis presents a method o f modelling the respiratory motion that uses the unsorted 

12-16 slice 'sub-volumes', referred to in this thesis as Cine CT volumes (as they are 

acquired with the scanner in Cine mode) rather than 4DCT volumes that have already 

been sorted according to a respiratory parameter. This allows variations in the 

respiratory m otion to be measured and accounted for in the models. The models can be 

used to analyse different relationships with different respiratory parameters and can 

average out variation that is not explained by the parameters. The models are fully 

continuous over one or two o f the respiratory parameters. The models are also fully 

continuous in the three spatial dimensions as they are based on 3D non-rigid 

registrations.

3D image registration is the task o f finding correspondence between two different 3D 

volumes, and is a very useful tool in a large number o f  medical imaging applications.
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W hen the images are from the same subject image registration can be used to recover 

the motion and deformation that has occurred between the images. This means that 

image registration can potentially be used to determine the local 3D motion and 

deform ation that occurs in the lungs and the surrounding anatomy due to respiration.

The main aim o f  this thesis was to investigate the hypothesis that the respiratory motion 

o f  the internal anatomy can be predicted from an external respiratory surrogate signal. 

This was broken down into three more specific aims:

• Use non-rigid registration to determine the 3D motion that occurs between 

volumes sampling the respiratory motion.

• Develop motion models that relate the internal motion (encoded by the 

registration results) to a single respiratory parameter, modelling the 'average' 

respiratory motion, and investigate the ability o f the models to predict the 

internal motion.

• Further develop the motion models to relate the internal motion to two 

respiratory parameters, potentially allowing some o f  the variation to be 

modelled, and investigate the ability o f  the models to predict the internal motion.

An additional aim o f this thesis was to:

•  Demonstrate how the motion models developed above could be used to help 

account for respiratory motion when delivering RT treatment to lung tumours.

The work presented in this thesis has made a number o f contributions that help to 

address the problem o f  respiratory motion in lung RT:

• A methodology for constructing patient specific respiratory motion models has 

been developed. These models relate the internal motion, described by non-rigid 

registrations, to an external respiratory signal that can be measured during data 

acquisition and RT treatment.
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• It has been demonstrated that the models can accurately predict the internal 

motion from the external surrogate signal. The final models assessed as part o f 

this thesis were found to have a mean error less than 1.4 mm when assessed 

using manually identified landmark points.

•  It is possible to produce ‘artefact free’ predicted volumes using the motion 

models. These volumes do not contain any discontinuities at the boundaries 

between adjacent couch positions frequently seen in 4DCT volumes, and so 

should provide a better estimate o f the true appearance o f the anatomy.

•  The performance o f  different respiratory parameters and modelling functions has 

been investigated.

• The potential o f using the motion models to deliver RT treatment that ‘tracks’ 

the respiratory motion has been demonstrated.

•  Appropriate data acquisition and non-rigid registration protocols have been 

developed.

There now follows a brief overview o f  the contents o f each o f  the chapters in this thesis.

Chapter 2 provides background information and reviews the current literature. It 

contains sections on: the problem o f  respiratory motion in lung RT and some potential 

methods o f addressing respiratory motion in lung RT, methods o f imaging respiratory 

motion, respiratory surrogate signals and parameters, image registration, modelling 

respiratory motion, and possible uses for the motion models outside o f lung RT.

Chapter 3 provides a detailed description o f  the data that has been acquired for the 

m otion models and the methods and protocols that have been used to acquire it. This 

includes details o f the CT data that has been acquired to image the internal motion, and 

the respiratory surrogate signals and the respiratory parameters that have been 

calculated from them.

Chapter 4 describes the non-rigid registrations that have been performed to recover the 

respiratory motion, and evaluates the registration results that are used to construct the 

motion models in the following chapters.
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Chapter 5 describes how to construct motion models that relate the internal motion to a 

single respiratory parameter, the phase o f  the respiratory cycle. It evaluates a number o f 

different potential functions that can be used to describe the relationship between the 

phase and the internal motion. It then assesses the ability o f the motion models to 

predict the Cine CT data. Finally it explains how the model predictions from different 

couch positions can be combined into a single continuous prediction over the whole 

region o f interest.

Chapter 6 explains how to construct motion models that relate the internal motion to 

two respiratory parameters. It describes several example functions that can be used in 

the two parameter models, and evaluates their performance both against the registration 

results and the Cine CT data.

Chapter 7 describes some o f the ways the motion models can be used for lung RT, and 

details two experiments performed as part o f  this research that demonstrate the use o f 

the motion models: the comparison o f  breath-hold and free-breathing motion models, 

and the delivery o f  tracked IMRT (Intensity-M odulated Radiation Therapy) treatment.

Chapter 8 summarises and discusses the findings and conclusions from this research and 

gives pointers to future work
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Chapter 2

Background and 

Literature review

2.1 Introduction to problem

2.1.1 Lung cancer

Lung cancer is the leading cause o f cancer-related death worldwide. It has a “death to 

incidence” ratio o f  0.87 and was responsible for 1.18 million deaths worldwide in 2002. 

For men it is the most common cause o f  cancer-related death and for women the second 

most common, behind breast cancer (Parkin et al. 2005). There are approximately 8 

male cases for every 5 female cases diagnosed each year, and approximately 50 new 

cases per hundred thousand population each year. Incidence increases with increasing 

age, with the most prevalent age group being 75+.The method o f treatment for lung



26

cancer will depend on histological diagnosis, stage o f disease, patient fitness, and 

patient choice. Treatments can involve combinations o f surgery, chemotherapy, 

radiotherapy, and supportive care.

2.1.2 Radiotherapy

This research is concerned with Radical Radiotherapy (RT) for non-small cell lung 

cancer, as this is the form o f  lung cancer treatment that may benefit most from having 

greater knowledge o f  m otion and deformation that occurs due to respiration. RT is the 

use o f electrom agnetic radiation to kill cancer cells by causing irreparable damage to 

their DNA. Radical RT involves treating the tumour with high dose radiation, with the 

intent o f curing the patient or providing long term control o f the disease. The radiation 

is delivered in the form o f  a beam o f megavoltage x-rays from a machine known as a 

Linear Accelerator, or LINAC. Although all o f  the anatomy in the path o f a RT beam 

will receive some radiation dose, by using beams from two or more different directions 

it is possible to create regions o f high dose around the target. Conformal radiotherapy 

attempts to make the region o f high dose conform to the shape and location o f the target 

(the tum our and other areas requiring RT treatment such as involved mediastinal nodes), 

so as to limit the dose delivered to Organs At Risk (OARs, e.g. the lungs, the heart, the 

spinal cord, etc.). One way the beam can be shaped to conform to the tumour is to use 

M ulti-leaf Collim ators (MLCs) located in the head o f the LINAC. MLCs are a series o f 

opposing leaf pairs (each 5 -10mm wide) that can be adjusted to shape the RT beam.

MLCs can also be used to deliver Intensity M odulated Radiotherapy (IMRT). This goes 

beyond conformal RT by varying the amount o f dose delivered at different points in the 

beam, allowing for much more complex dose distributions. IMRT can be delivered in 

two ways, using the step-and-shoot method where the beam is switched o ff while the 

MLCs move to another position, and using dynamic delivery where the (opening in the) 

leaves sw eep across the beam, with the time between the leading (opening) and trailing 

(closing) leaves determining the dose delivered at each point (Webb 2000).
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The current clinical practice for planning and delivering RT treatment for lung cancers 

in most UK institutions is to first acquire a Computed Tomography (CT) scan for 

planning. This can provide full 3D information on the location o f the anatomy, and 

contains the x-ray attenuation values that are needed for the RT dosimetry calculations. 

The standard CT scanning protocol used for RT planning acquires the data in helical 

mode while the patient is free breathing, as they will be during RT treatment. It is hoped 

that the scan will represent the average location o f the tumour and other anatomy. 

However, several groups have demonstrated that the inter-play that can exist between 

the motion o f the scanner gantry during acquisition and the respiratory motion o f the 

anatomy can cause large errors and artefacts in the planning CT scans (Balter et al.

1996, Rietzel et al. 2005a, Shimizu et al. 2000). This means that not only is the location 

o f the anatomy in the image unlikely to be its average location over the respiratory 

cycle, but that its size and shape can be completely misrepresented, particularly for 

m obile lung tumours.

The target and OARs are delineated on the planning scan. As lung tumours may exhibit 

some respiratory (and possibly cardiac) motion, and there can be errors associated with 

setting up the RT treatment, it is necessary to add margins which enlarge the region o f 

high dose in order to avoid a geographic miss and ensure the intended target is not 

under-dosed during the treatment. The use o f  such margins also increases the dose 

received by healthy tissue surrounding the intended target, and hence may reduce the 

dose that can be safely delivered to target.

The planning scan does not provide any information on the target motion that may 

occur, so standard margins (ICRU report 50 1993, ICRU report 62 1999) need to be 

added to account for motion and setup errors. However, it has been shown using 4D 

imaging techniques that the standard margins added do not usually represent the actual 

respiratory m otion very well (Alasti et al. 2006, Allen et al. 2004, Lagerwaard et al.

2001, Underberg et al. 2004). This can lead to both under-dosing o f the target and 

unnecessary dosing o f  healthy tissue, even for the same patient. There is evidence that 

the delivery o f  higher RT doses to the target will result in an improved survival for non

small cell lung cancer patients (Kong et al. 2005), but the amount o f dose that can be 

delivered to the target is limited by the amount that the OARs can tolerate (Graham et 

al. 1999, W emer-W asik et al. 2002).
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Once the target and the OARs have been delineated candidate plans are generated. 

Dosimetry calculations are performed to determine the dose received by the target and 

the OARs, and this information is used to assess the candidate plan and decide if  it is 

acceptable. Dosimetry calculations that are perform ed on the 'static' 3D planning scans 

will differ from the actual dose delivered in the presence o f  respiratory motion (Bortfeld 

et al. 2004, Flampouri et al. 2006). This may cause the dose delivered to the tumour to 

be overestimated and the dose delivered to the OARs to underestimated.

For more information see the report o f  AAPM Task Group 76 ("The management o f 

respiratory motion in radiation oncology", Keall et al. 2006) which gives a good concise 

description o f the different problems that respiratory motion can cause for RT planning 

and treatment delivery. It also summarises many studies that have measured respiratory 

motion, and explains and discusses several methods o f accommodating or compensating 

for respiratory motion in RT treatment (see below for further discussion o f these topics).

2.1.4 M agnitude of the problem

There have been many studies to measure the respiratory motion o f lung tumours using 

several different modalities (see Section 2.2 for a description o f the different modalities 

used to image respiratory motion). The report o f  AAPM Task Group 76 (Keall et al. 

2006) summarises the results o f many o f  these studies. For the majority o f these studies 

(most o f  which were based on 10-30 patients) the mean tumour motion in at least one 

direction is greater than 5mm, and the maximum tumour motion is greater than 10mm, 

with one study reporting tumour motions o f  up to 50mm (Chen et al. 2001). Similar 

results have been reported by more recent studies not included in the report referenced 

above (Britton et al. 2007, Guckenberger et al. 2007, Mori et al. 2007, Sonke et al. 

2008).

Overall it can be said that lower lobe tumours are likely to move more than middle lobe 

tumours, which are likely to move more than upper lobe tumours, but there is 

considerable variation and there are examples o f  upper lobe tumours that move more 

than lower lobe tumours (Seppenwoolde et al. 2002, van Somsen de Koste et al. 2003). 

Likewise, tumours are likely to exhibit more motion in the Superior-Inferior (S-I) 

direction than in the Anterior-Posterior (A-P) direction, and are likely to exhibit more 

motion in the A-P direction than the Left-Right (L-R) direction, but tumours that exhibit
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considerable (> 5mm) L-R motion and/or negligible S-I motion have been reported 

(Table I, Keall et al. 2006). It has been shown that there are no statistically significant 

correlations between the extent o f the tum our motion and patient characteristics such as: 

weight, height, age, stage o f disease, tumour size, degree o f chest wall motion, or 

pulmonary function (Giraud et al. 2001, Stevens et al. 2001).

Hysteresis is the term commonly used to mean the respiratory motion follows a 

different trajectory during inhalation than it does during exhalation. Most studies on 

tum our motion have reported hysteresis for some patients, and separations o f up to 5mm 

between the inhalation and exhalation trajectories have been observed (Seppenwoolde et 

al. 2002).

2.1.4.1 Inter-cycle variation

It is known from physiological studies o f airflow and other measurements (Benchetrit 

2000) that although individuals tend to have characteristic breathing patterns, there can 

also be considerable short and long term inter-cycle (breath to breath) variations. As RT 

treatment is typically performed over several minutes and is repeated for several 

fractions over the course o f a few weeks, both the short term and long term variations in 

respiratory motion will be o f interest. In addition to the long term variation seen in 

healthy subjects, further changes to the respiratory motion may be seen in patients due 

to the effects o f  the RT treatment and changes to the pathology. There can be variations 

in both the period o f the respiratory cycle and the internal motion path. Generally 

variations in the internal motion path are o f  more concern than variations in the period 

for most RT treatments, although variations in the period may well produce 

corresponding variations in the internal motion path.

Seppenwoolde et al (2002) studied both short and long term variation in the respiratory 

motion using implanted gold markers and x-ray imaging. They found that both long and 

short term shifts and drifts in the average tumour location could occur. However, the 

shapes o f the tumour trajectories were fairly constant throughout the duration o f 

treatment for 19 out o f 20 patients. Small short term variations in the trajectories did 

occur and the end-exhale location was found to be more reproducible than the end- 

inhale location. Sonke et al. (2008) studied long term variation in 56 patients using 4D 

Cone-Beam CT. They also found that the shape o f the tumour trajectories was stable,
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with mean variability not exceeding 1mm, but there were again large baseline variations 

(shifts in the average tumour location). Britton et al. (2007) studied long term variation 

in 8 patients using 4DCT and found that large variations in both tumour size and 

mobility occurred. The plots they produce o f the 3D tumour trajectories indicate that 

they are not as stable as found by Seppenwoolde et al. (2002) and Sonke et al. (2008).

Guckenberger et al. (2007) studied short term variation in 10 patients (with a total o f 14 

tumours) using 4DCT, acquiring 4 scans over 30 minutes. Note: the patients were 

immobilised in a stereotactic body frame and abdominal compression was applied to 7 

patients in order to limit breathing. They concluded that for most patients short term 

variation was relatively small, with a drift in the mean tumour location greater than 3 

mm and 5 mm observed for five and two o f the tumours respectively. One patient with 

poor pulmonary function displayed a continuous increase in respiratory motion from 17 

mm to 28 mm throughout the 30 minutes.

The above studies indicate that inter-cycle variation can have a large effect on 

respiratory motion, particularly between different fractions o f RT treatment. It should be 

noted that most o f these studies have been published recently, and that measuring and 

analysing inter-cycle variation is a very active area o f research. Several groups have 

proposed the use o f audio, visual, or audio-visual feedback to try and reduce the inter

cycle variation (George et al. 2006, Kini et al. 2003, Mageras et al. 2004, Neicu et al.

2006). There have been mixed results from using such devices, but it is generally agreed 

that with further development such devices will help to regularise the respiration o f 

some patients.

2.1.5 Treating tumours affected by respiratory motion

There are a number o f approaches to treating lung tumours that are subject to respiratory 

motion, including: treating at breath hold, accurate target delineations and dose 

calculations, gated treatment, and tracked treatment.

Treating at breath hold literally stops the respiratory motion, although there may still be 

some residual motion due to muscle relaxation. Although treating at (deep inspiration) 

breath hold has been shown to have considerable dosimetric advantages, it is not 

suitable for all patients, can increase treatment time, and relies on the reproducibility o f
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the breath hold position (Hanley et al. 1999, Mah et al. 2000). The reproducibility o f the 

breath holds can be improved by use o f the Active Breathing Control device which can 

enforce a breath hold at the same level o f inspiration each time (Dawson et al. 2001). 

When treating at breath hold knowledge o f the respiratory motion is not necessary, 

although an estimation o f the breath hold reproducibility will aid in defining appropriate 

treatment margins.

If the tumour motion can be imaged then a target can be delineated that encompasses 

the tumour during the entire respiratory cycle, rather than adding standard margins that 

may not reflect the motion. Alternatively, it has been proposed that if  the average 

tumour position can be located accurately then only relatively small margins are 

required to account for the respiratory motion (vein Herk 2007). Additional margins will 

still be required to account for variations in the motion and to account for setup errors. 

Defining the encompassing or average target may involve delineating the tumour in 

several 3D volumes acquired throughout the respiratory cycle (e.g. a 4DCT dataset, see 

Section 2.2.2.3). If the displacement o f the tumour from one volume to another is 

known (from registering the volumes, see Section 2.4) then the tumour only needs to be 

delineated in one volume and can be automatically propagated to the others (Weiss et al. 

2008). If the displacement o f all o f the anatomy is known then it is also possible to 

calculate dose distributions that account for the effects o f respiratory motion (Bortfeld et 

al. 2004, Flampouri et al. 2006, Heath et al. 2006, Keall et al. 2005, Pagnetti et al. 2004, 

Rietzel et al. 2005b, Rosu et al. 2005).

The idea o f respiratory gating is to deliver the RT treatment when the tumour is at a 

known location, and to stop the delivery when the tumour moves away from this 

location (Berbeco et al. 2005, Seppenwoolde et al. 2002, Shirato et al. 2000,

Tsunashima et al 2004, Vedam et al 2001, Zhang et al. 2003). The idea is similar to 

treating at breath hold and offers similar dosimetric benefits, but the patient is freely 

breathing, so the tumour motion must be followed during treatment. As the patient does 

not actually stop breathing during gated RT there will be some residual motion when the 

RT is being delivered. There will be a trade-off between the amount o f residual motion 

and the time that the beam is switched off for (known as the duty cycle). The less 

residual motion the greater the dosimetric benefits o f gated treatment, but the smaller 

the duty cycle the greater the increase to the treatment time (Vedam et al. 2001). 

Although there has been lots o f research into gated RT there is still debate over its
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potential benefits (van Herk 2007) and whether it is ready for clinical use (X. Li and 

Keall 2007).

Tracked RT treatment can be considered the most ambitious way to treat respiratory 

motion. The idea o f tracked treatment is to follow the tumour motion with the RT beam 

during treatment, hopefully offering similar dosimetric benefits to gated or breath hold 

treatment, but with no associated increase in treatment time (Murphy et al. 2004). There 

are two main methods o f delivering tracked treatment that have been proposed in the 

literature. The first is to robotically mount the LINAC and physically move it so that it 

follows the tumour (Schweikard et al 2000). The second is to use a Dynamic M ulti-Leaf 

Collimator (DMLC), as used to deliver dynamic IMRT (Intensity Modulated RT), to 

make the shape o f the beam follow the tumour (Keall et al 2001). A DMLC can be used 

to track the respiratory motion during the delivery o f both Conformal RT (Keall et al.

2005) and IMRT (Keall et al. 2001,). Although there are commercial products available 

based on both o f these tracking technologies (Cyberknife with Synchrony Respiratory 

Tracking System, http://www.accuray.com/Products/Synchrony/index.aspx, Accuray, 

Sunnyvale, California, USA, and TrackBeam, http://www.initiamed-rt.com/htm/sub- 

trackbeam.htm, Initia-RT, Petah Tikva, Israel), tracked delivery is still very much a 

research area, and more work is required both on developing the methodologies and 

verifying the accuracy o f such systems before they can enter routine clinical use 

(Robotically mounted LINAC: Schweikard et al 2004, Seppenwoolde et al 2007,

DMLC tracking: Alasti et al. 2006, McQuaid and Webb 2006, Neicu et al 2003, Papiez 

et al. 2005).

To plan gated or tracked treatment the respiratory motion o f the tumour, and ideally the 

rest o f the anatomy, must be determined prior to treatment. If the residual motion is 

small for gated treatment it may be possible to accurately estimate the dose distributions 

based on static anatomy (Flampouri et al 2006), but for tracked treatment the respiratory 

motion will need to be accounted for if  accurate dose distributions are to be calculated 

(Keall et al. 2005). To deliver gated or tracked RT treatment it is necessary to know the 

location o f the tumour during treatment delivery. This can be achieved by imaging the 

tumour during treatment, or by constructing a model that relates the internal motion to 

an external respiratory surrogate signal (see Section 2.3). Imaging the tumour directly 

during treatment is very difficult so implanted markers are often used to follow its 

motion, although their use has a number o f associated problems (see Section 2.2.1). The 

use o f external surrogate signals also has a number o f problems, the most important

http://www.accuray.com/Products/Synchrony/index.aspx
http://www.initiamed-rt.com/htm/sub-
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being establishing a stable relationship between the internal motion and the surrogate 

signal, and ensuring that the relationship is valid throughout treatment (see Section 2.3). 

The Synchrony system used with the Cyberknife (Accuray, Sunnyvale, California,

USA) combines an external surrogate signal with infrequent internal imaging. This 

allows the relationship between the internal motion and the surrogate signal to be 

assessed and corrected during treatment (Schweikard et al 2000, Seppenwoolde et al.

2007).

However the tumour location is determined there will be some delay associated with the 

system, meaning that the location that has just been determined is not the tumour's 

current location, but was its location a short time earlier. Therefore, techniques that can 

predict the future tumour location (or surrogate values) are likely to be required for 

gated and tracked treatments to be delivered in a timely manner (Sharp et al. 2004, 

Vedam et al. 2004).
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2.2 Imaging Respiratory Motion

In order to study, and ultimately model, the respiratory motion o f lung tumours and the 

surrounding anatomy, it is necessary to acquire images that give us some information 

about the motion that occurs. Three imaging modalities have been widely used to study 

respiratory motion in the literature: projection X-ray imaging, Computed Tomography 

(CT), and Magnetic Resonance Imaging (MRI).

2.2.1 Projection X-ray imaging

Dynamic projection x-ray imaging (such as fluoroscopy), from here on simply referred 

to as x-ray imaging, is a popular choice for imaging respiratory motion o f lung tumours 

and other anatomy as the images can be acquired with a very high temporal resolution 

(up to 30Hz.). Another advantage o f x-ray imaging over other modalities is that it can 

be acquired during treatment, but x-ray imaging does have some serious limitations.

It can be very difficult to accurately identify the lung tumours directly on the x-ray 

images, although some groups have managed to do this manually (Hoisak et al. 2004, 

Tsunashima et al. 2004), and a semi-automatic method has been proposed (Schweikard 

et al. 2004). Some groups have implanted small radio-opaque markers close to or in the 

tumour in order to follow its motion (de Mey et al. 2005, Ozhasoglu and Murphy 2002, 

Schweikard et al. 2000, Shirato et al. 2000). These markers are easily detectable in x-ray 

images, and can be automatically tracked. Although inserted markers can greatly aid the 

real-time tracking o f tumours, they have a number o f disadvantages, including the 

invasiveness o f the insertion procedure, and the possibility o f the markers moving away 

from their intended locations (de Mey et al. 2005, Shirato et al. 2003).

Another disadvantage o f x-ray imaging is that it produces 2D projections data, so only 

2D motion can be measured from one view. 3D motion can be deduced by obtaining 

data simultaneously from two or more views, but this is only possible for points which 

can be easily identified in both x-ray images, such as implanted markers (Schweikard et 

al. 2000, Shirato et al. 2000). It is very difficult to obtain information on the full 3D 

anatomy and its motion from X-ray imaging, although recently Zeng et al. (2007a) have
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proposed a method that uses slowly rotating x-ray projections (from a Cone-Beam CT 

system) to estimate the full 3D respiratory motion.

A final disadvantage o f x-ray imaging is that it necessitates an extra dose o f radiation 

being delivered to the patient. The amount o f dose will depend on the system being used 

(in particular how many views are acquired simultaneously) and the length o f time for 

which the x-ray imaging systems are switched on. The dose delivered due to continuous 

x-ray imaging throughout treatment has been estimated to be in the order o f 1 % o f the 

treatment dose and mostly delivered to the skin (Shirato et al. 2000).

2.2.2 CT imaging

Computed Tomography (CT) uses x-ray projection data acquired from rotating views to 

reconstruct the internal anatomy in 3D. CT scanning is usually performed with a helical 

acquisition scheme, where the CT detector mounted on a gantry is constantly rotating as 

the CT couch moves through the CT bore, thus imaging all o f the desired anatomy. CT 

scanners were originally single-slice with a single row o f detectors acquiring one slice 

o f the anatomy at a time. When this research commenced multi-slice CT scanners, 

capable o f acquiring 12-16 slices simultaneously (giving a 2-3 cm coverage) with gantry 

rotation times o f approximately 0.5 seconds, were already being used for clinical 

practice. These scanners could acquire standard 3D volumes much faster than the 

single-slice scanners, and made acquiring respiratory CT data much more feasible (see 

below).

Although 3D CT data is extremely useful for planning RT, as already noted standard 

helical scans can be seriously degraded by respiratory motion, and do not give any 

information on the motion that occurs. Sections 2.2.2.1 - 2.2.23  describe methods o f 

acquiring CT data that gives some information on the respiratory motion. Section 

2.2.2.4 discusses 'Cone-Beam' CT and its potential for imaging respiratory motion.

One problem with all CT scanning methods is that they deliver an extra dose o f 

radiation to the patient. The exact amount o f dose will depend on which type o f CT scan 

is being performed (and the settings used for it), but even for 4DCT scans (see Section 

2.2.2.3), which generally deliver more dose than other types o f CT scan, the dose 

delivered is orders o f magnitude smaller than the dose delivered from RT treatment. It
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can be argued that the increased accuracy in RT treatment (and corresponding reduction 

in dose to healthy tissue) made possible by the CT scan(s) more than outweighs the 

extra dose required by the scan. However, the extra dose delivered by the CT limits the 

use o f CT scanning, even for RT patients.

2.2.2.1 Slow CT

Slow CT techniques slow down the CT gantry rotation so that the whole respiratory 

cycle is captured in one rotation (Lagerwaard et al. 2001, Mori et al. 2006, van Somsen 

de Koste et al. 2003). This will produce a blurry image from which it may be possible to 

deduce information regarding the extent o f motion for high intensity objects surrounded 

by low intensity backgrounds, as is the case for lung tumours and lung tissue. The 

method can have problems when the tumours are attached to or located near other high 

intensity structures such as the chest wall or mediastinum. In addition, the slower gantry 

rotation used for Slow CT can produce large artefacts due to inter-play effects between 

the gantry and tumour motion (Mori et al. 2006, Rietzel et al. 2005a). Slow CT scans 

only give information o f the overall extent o f the tumour motion so their uses are 

limited, but they may be a useful aid for target and margin definitions when more 

advanced techniques are not available.

2.2.2.2 CT acquired at breath-hold

Another simple method used for studying respiratory motion is to acquire standard 

helical CT scans at breath hold (Balter et al. 1996, Mah et al. 2000, Sarrut et al. 2006, 

Schweikard et al. 2004). Most modem commercial CT scanners are capable o f acquiring 

a full volume covering the entire thorax, at a reasonably high resolution, within the time 

o f one comfortable breath hold (15-20s). The anatomy during deep 

inspiration/expiration breath hold scans will clearly be in a different location to where it 

is during normal tidal breathing, although if  the treatment is to be delivered at breath 

hold this is not a concern (Mah et al. 2000). However, it has also been shown that even 

at normal tidal breath holds, the location o f the anatomy can differ from the location 

during free breathing (Blackall et al. 2006, Rietzel 2005a, and Section 7.3 o f this thesis). 

Despite this breath hold scans can be useful for approximating the extent o f respiratory
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motion for all o f the anatomy (not just the tumour as with Slow CT scans), and can 

again be an aid to target and margin definitions when free breathing information is not 

available.

2.2.23 Four Dimensional CT (4DCT)

Four Dimensional CT (4DCT) attempts to image the patient's anatomy at a number o f 

different respiratory states while the patient is freely breathing. As it is not possible to 

image the entire region o f interest (usually the entire thorax, but sometimes a smaller 

region around the tumour due to limitations with the scanner, reconstruction software, 

or patient dose) simultaneously with current CT scanners, it is necessary to acquire data 

from different parts o f the anatomy at different times, and then sort this data into 

coherent volumes. Current 4DCT is based on the assumption that the respiratory cycle is 

reproducible, and that a simple respiratory surrogate signal (see Section 2.3) can be used 

to determine the respiratory state. The CT data and the respiratory surrogate signal are 

simultaneously acquired. The idea is to acquire CT data at each location being imaged 

over an entire respiratory cycle. The respiratory signal can then be used to sort the data 

into CT volumes covering the entire region o f interest at different respiratory states. 

There are three different methods o f acquiring 4DCT volumes that have been reported 

in the literature, which I will refer to as the 'helical' method, the 'stop-and-go cine' 

method, and the 'continuous cine' method.

The helical 4DCT method is similar to a standard helical CT scan, except that CT couch 

moves much more slowly so that projection data is acquired over an entire respiratory 

cycle (plus the gantry rotation time) at each location. This data is then sorted in 

sinogram space (i.e. the x-ray projection data is sorted) according to the respiratory 

signal, and CT volumes are reconstructed at the desired respiratory states from the 

appropriate projections. The spatial and temporal resolution o f the data will depend on 

the scanners capabilities and the settings used. Any desired number o f different 

respiratory states can be reconstructed, although there may be an overlap in the data 

used to reconstruct different respiratory states depending on the scanner settings, the 

desired number o f respiratory states, and the respiratory period o f the patient being 

scanned. The helical 4DCT method was originally proposed for a single slice scanner 

(Ford et al. 2003, Vedam et al. 2003). Even though the 4DCT volumes showed a
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considerable reduction in motion artefacts compared to standard planning CTs for both 

phantom and patient data (Vedam et al. 2003), and were successfully used to study 

tumour motion in patients (Mageras et al. 2004), it was acknowledged that the spatial 

and temporal resolutions o f the reconstructed images were limited due to using a single 

slice scanner. Keall et al. (2004) described an implementation o f the helical method on a 

multi-slice scanner, and this method has since been adopted commercially and widely 

used.

The other two methods o f acquiring 4DCT data use the scanner in cine mode. In cine 

mode the CT couch is stationary while data is being acquired. Data is acquired at one 

couch position, then the scanner stops acquiring data and moves the couch to an 

adjacent position, where it resumes acquiring data. Enough couch positions are used to 

fully cover the region o f interest. At each couch position a series o f Cine CT volumes 

(small sub-volumes covering a thin slab o f data) are acquired. The number o f slices and 

superior-inferior coverage o f these volumes is limited by the number and size o f the 

slices that the CT detector can acquire simultaneously. The Cine CT volumes are then 

sorted according to the respiratory signal, and concatenated to produce 4DCT volumes 

covering the entire region o f interest at the desired respiratory states. At each couch 

position the Cine CT volumes can be acquired either using the continuous method (Pan 

et al. 2004) or the stop-and-go method (Low et al. 2003).

When using the continuous method the CT gantry is continuously rotating and acquiring 

data for the duration o f one respiratory cycle (plus the gantry rotation time) at each 

couch position. The desired number o f Cine CT volumes can then be reconstructed for 

each couch position and sorted into 4DCT volumes. As with the helical method, there 

may be an overlap in the data used to reconstruct temporally adjacent volumes. Note, 

the Cine CT volumes are usually reconstructed equally spaced over the acquisition time, 

but the start o f the acquisition is not synchronised to the respiratory cycle so these 

volumes will actually represent slightly different respiratory states from each couch 

position. This may result in small 'binning errors' when sorting them into 4DCT 

volumes. These binning errors could be avoided by sorting the data in sinogram space 

prior to reconstruction (Pan et al. 2005, Rietzel et al. 2005a), as is done in the helical 

method, but this approach is not usually adopted, maybe because the binning errors are 

relatively small when enough Cine CT volumes are reconstructed. The continuous cine 

method has also been commercially adopted and widely used to study respiratory 

motion.
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When using the stop-and-go method the CT gantry will perform a complete rotation 

acquiring enough data to reconstruct a volume. There will then be a brief period o f 

'dead-time', with the x-ray switched off and the gantry still, before the gantry performs 

another complete rotation (with the x-ray switched on) to acquire another volume. In 

order to sample the respiratory motion at a high enough temporal frequency data is 

acquired over a few respiratory cycles. Originally 15 Cine CT volumes were acquired 

over 11 seconds (Low et al. 2003), but this has been increased to 25 volumes over 18 

seconds more recently (Lu et al. 2006). Note, there is a danger that if  the length o f the 

respiratory cycle is approximately an integer multiple o f the time between Cine CT 

volumes, the same respiratory states will be sampled from each respiratory cycle, and 

the effective temporal frequency will be reduced. The stop-and-go cine method is not as 

efficient for acquiring 4DCT data as the other acquisition methods, as they only need to 

sample one respiratory cycle at each location. However, the stop-and-go method has 

still been successfully used in several studies, and having data from multiple respiratory 

cycles at each location permits the study o f some inter-cycle variation using the 

unsorted Cine CT volumes (Low et al. 2005).

Pan et al. (2004) discuss the difference between the three 4DCT acquisition methods, 

and perform a more detailed comparison between the helical and continuous cine 

methods in Pan et al. (2005). He concludes that both methods have their advantages, but 

more o f these are in favour o f the continuous cine method. There are some problems 

common to all methods o f acquiring 4DCT volumes. Firstly, they can deliver up to an 

order o f magnitude more radiation than a standard planning CT scan (Li et al. 2005), but 

as already noted this is small in comparison to the RT dose and it may be possible to 

substantially reduce this dose using a deformation model (Li et al. 2005). The quality o f 

the 4DCT volumes may be affected by the choice o f respiratory surrogate signal and 

respiratory parameter used to sort the volumes (Lu et al. 2005a, Lu et al. 2006). The 

different signals and parameters are discussed in Section 2.3. Another drawback with 

4DCT is that it assumes that all respiratory cycles are identical and that no inter-cycle 

variation occurs. Therefore the 4DCT volumes cannot be used to study inter-cycle 

variation, and can contain artefacts when it occurs.

Recently, a prototype CT scanner has been developed that can acquire 256 x 0.5 mm 

slices simultaneously, giving a much wider coverage (12.8 cm) at a finer spatial 

resolution than present scanners (Mori et al. 2006). Although the tumour's motion can 

be studied by acquiring data at a single couch position (Mori et al. 2007), multiple
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couch positions will still be required for full dosimetry calculations, even with the 

extended coverage o f this prototype scanner. However, given current trends it can be 

envisaged that a scanner capable o f acquiring data over the entire lungs simultaneously 

may be available in the near future. Indeed, Cone-Beam CT systems already acquire 

data over most o f the lungs simultaneously, albeit over multiple respiratory cycles due 

to a far slower gantry rotation time. Being able to acquire high resolution (both temporal 

and spatial) 3D data over the whole lungs would be extremely useful for the detailed 

study o f inter-cycle variation.

In-slice motion artefacts can be present in all 4D or Cine CT volumes due to the finite 

time required to acquire enough projection data to reconstruct a slice (Lu et al. 2005b, 

Rietzel et al. 2005a). These artefacts can be reduced by using a faster gantry rotation 

time, employing half-scan reconstruction (Hui et al. 2000, Parker 1982), or possibly 

from combining data from multiple respiratory cycles in sinogram space (Lu et al. 

2005b).

2.2.2.4 Cone-Beam CT

Cone-Beam CT (CBCT) uses onboard imaging equipment mounted on the RT treatment 

machine. This enables the patient to be imaged in position, just prior to treatment, 

enabling a much more accurate set-up and corresponding reduction in treatment margins 

(Sonke et al 2008). There are two types o f CBCT imaging systems: those that use the 

LINAC itself to provide the x-rays (MV CBCT), and those that use a separate kV x-ray 

source usually mounted at right angles to the LINAC (kV CBCT). Both systems operate 

in a fairly similarly way, although the quality o f the images produced and the extra dose 

required for the imaging can differ. CBCT uses large area detectors in comparison to 

standard diagnostic CT, with a field o f view o f 25cm x 25cm or larger. However CBCT 

machines have a much slower rotation time, o f the order o f 1 minute, so the projection 

data from different angles will be acquired from different respiratory states and during 

different respiratory cycles. If all the CBCT projections are used to reconstruct a 3D 

volume (as is standard practice for sites not effected by respiratory motion) then the 

anatomy effected by respiratory motion will appear blurred, similar to its appearance 

under Slow CT.
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It has been demonstrated that CBCT projections can be sorted according to a respiratory 

signal and then used to reconstruct 4D CBCT volumes at different respiratory states 

(Sonke et al. 2005). As only some o f the projections are used to reconstruct each 4D 

CBCT volume the quality o f the reconstructed volumes will be noticeably degraded. 

This can be prevented by acquiring more projection data, either by using slower or 

multiple rotations, or by trying to combine projection data ffom different respiratory 

states using non-rigid registration based methods (Li et al. 2006a, Li et al. 2007, see 

Section 2.6.1) for more details o f these methods). Zeng et al. (2007a) have recently 

proposed a method, also based on non-rigid registration, o f deducing the respiratory 

motion directly ffom the CBCT projections.

2.2.3 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is an imaging modality based on the magnetic 

properties o f protons (hydrogen nuclei) and their distribution in the different tissues 

inside the human body. It is can produce highly detailed 3D volumes o f the patient’s 

internal anatomy, and is an extremely versatile imaging modality which can acquire 

many different types o f images. A major advantage o f MRI over X-ray and CT imaging 

is that MRI does not deliver any extra radiation to the patients. This allows volunteers to 

be studied as well as patients, and means there are no (dose related) limitations on the 

number or length o f scans that a subject can undergo.

Although new and more advanced MRI techniques are constantly being developed there 

remains an inherent trade o ff between the spatial resolution, the temporal resolution, the 

field o f view, and the signal to noise ratio in MRI images. Because o f this, until very 

recently, it has only been possible to acquire 2D slices at a high enough spatial and 

temporal resolution to study respiratory motion in the lung using MRI (Koch et al.

2004, Plathow et al. 2005, Sundaram et al. 2005). Colleagues ffom our group were able 

to acquire full 3D volumes over the lungs at a high enough temporal resolution to study 

respiration, but the images were not o f sufficient quality to allow advanced analysis 

such as non-rigid registration (Blackall et al. 2006). Recent developments in MRI 

hardware and acquisition schemes have resulted in higher quality MRI images which 

should permit the detailed study o f the non-rigid 3D motion due to respiration, and its 

variation (Miguel et al. 2007).



42

Other groups have employed a similar technique to that used for 4DCT, where high 

quality 2D slices are acquired at different respiratory states and locations over several 

respiratory cycles, and then sorted according to a respiratory surrogate signal (Remmert 

et al. 2007). von Siebenthal et al. (2007) have recently reported a more advanced sorting 

strategy based on acquiring a slice at a fixed location, the navigator slice, between every 

other slice. Although this paper focuses on imaging the liver the technique can be easily 

applied to the lungs, and some example lung images are shown in the paper. Up to five 

easily identifiable structures (veins in the liver) are identified in the navigator slice and 

are used to assess the similarity between the respiratory states in different data (non

navigator) slices. Using this technique coupled with long acquisition times 

(approximately 1 hour) they claim to be able to resort the data into coherent volumes 

that accurately represent the 3D respiratory motion and its inter-cycle variation over the 

acquisition period.
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2.3 Respiratory surrogate signals and parameters

Respiratory surrogate signals are used to measure the respiratory parameters which (it is 

hoped) characterise the respiratory motion o f the internal anatomy. These signals have 

two main uses in lung RT: firstly they are used during data acquisition to sort data into 

coherent respiratory states, and secondly they are used during the delivery o f RT 

treatment to predict the internal motion when it is not possible to image it directly.

There are many different signals and parameters that have been used and reported in the 

literature.

2.3.1 Respiratory surrogate signals

Spirometers are used to measure the volume (or flow) o f air being inhaled and exhaled 

by the patient. Spirometry is a popular choice o f respiratory surrogate signal as the 

signal is physiologically related to the respiratory motion and has historically been used 

for assessing respiratory performance and patterns (Benchetrit 2000). However, it has 

been reported that some patients can have difficulty tolerating spirometry for long 

periods o f time (Hoisak et al. 2004), and that spirometry measurements can be subject to 

time dependent drifts o f the end-exhale and end-inhale values due to escaping air and 

instrumentation errors (Hoisak et al. 2004, Low et al. 2003, Zhang et al. 2003). There 

have been several methods suggested to correct for this drift, although these either 

assume that there is no 'real' physiologically drift occurring (and such drifts have been 

observed in some patients, Seppenwoolde et al. 2002), or use another ’drift-free' 

surrogate signal to correct for the drifts (Lu et al. 2005a).

Another popular choice o f respiratory surrogate signal is to measure the displacement of 

the patient's chest or abdomen. This is often done using one or more Infra-Red (IR) 

markers which are tracked optically, and there are a number o f commercial system that 

use this technology: e.g. the Real-Time Position Management (RPM) system (Varian, 

Palo Alto, California, USA), the Cyberknife (Accuray, Sunnyvale, California, USA), 

and the Polaris system (NDI, Waterloo, Ontario, Canada). Other methods o f tracking the 

displacement o f the chest or abdomen include electromagnetic tracking systems (Hoisak 

et al. 2004) and laser tracking systems (Tsunashima et al. 2004). Specialised markers 

that are visible in x-ray images (Ozhasoglu and Murphy 2002), MRI images (Khamene
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et al. 2004, Koch et al. 2004, Plathow et al. 2005), and Positron Emission Tomography 

(PET) images (Nehmeh et al. 2003) have also been used in the literature, but these are 

either for sorting image data or studying the relationship between the internal and 

external motion, and cannot be used to predict internal motion during RT treatment (but 

can easily be replaced by an IR skin marker or other type that can be measured during 

treatment).

When using any system that measures the displacement o f one or more points on the 

patient’s skin, care must be taken to ensure the reproducibility o f the location o f the 

point(s) being measured otherwise the signals obtained during different sessions may 

not be comparable. However, if  the set-up is done reproducibly, and if  a fixed reference 

such as the height o f the couch is used, it may be possible to detect changes to the base

line o f the signal between sessions, which are known to occur in the internal anatomy 

(Seppenwoolde et al. 2002, Sonke 2008), and cannot be detected by a spirometer. 

Variations and drifts in the end-exhale and end-inhale values o f displacement based 

signals have also been observed, and these variations have been shown to correspond to 

variations in the motion o f the internal anatomy (Seppenwoolde et al. 2007).

A more advanced option for measuring the displacement o f the chest and abdomen is to 

acquire the full 3D skin surface using stereo imaging techniques (Johnson et al. 2004, 

Moore and Graham 2000). Recent development at a collaborating commercial partner 

(Vision RT, London, UK) now permits the processing o f the 3D surfaces in 'real-time', 

allowing them to be used to predict internal respiratory motion during RT treatment, as 

well as for image sorting, and off-line study o f the respiratory motion (Johnson et al. 

2004). It is possible to generate a number o f different respiratory signals from the 

surfaces, including tracking the displacement o f one or more points on the surface, and 

calculating the volume underneath the surface, which it is postulated will produce a 

signal similar to that ffom a spirometer (Tarte et al. 2006).

Other methods o f acquiring respiratory signals that have been reported in the literature 

include belt based systems that go round the patient's chest and/or abdomen and stretch 

with respiration (Koch et al. 2004, Kubo and Bruce 1996, Lu et al. 2006), and 

temperature based systems that record the difference in temperature between inhaled 

and exhaled air (Kubo and Bruce 1996).
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Internal respiratory surrogate signals can also be extracted from images o f the internal 

anatomy. Implanted markers, as discussed under x-ray imaging (Section 2.2.1), can be 

considered respiratory surrogate signals in a sense, as their motion is used to predict the 

motion o f the tumour (although if they are actually implanted within the tumour this 

'prediction' should be 100% accurate). Electromagnetically tracked internal markers 

have also been developed (Parikh et al. 2005) which avoid the need for x-ray imaging 

and the associated radiation dose. Another popular choice o f internal surrogate signal is 

too measure the height o f the diaphragm, and this has been measured from x-ray 

imaging (Vedam et al. 2004), 4DCT imaging (Zhang et al. 2007), CBCT projection data 

(Sonke et al 2005, Zeng et al. 2007a), MRI (Blackall et al. 2006), and Ultra-Sound 

(US) imaging (Xu and Hamilton 2006). O f these, only x-ray and US imaging could be 

used to measure the height o f the diaphragm during treatment. As mentioned in the MRI 

section (Section 2.2.3) von Siebenthal et al. (2007) track up to five easily identifiable 

internal structures (veins in the liver) in MRI 'navigator' slices which are used to sort the 

MRI data slices. The location o f each structure could be considered as a separate 

surrogate signal (or two, as the position is measured in two dimensions).

2.3.2 Respiratory parameters

There are two main respiratory parameters that are used to characterise the respiratory 

motion: amplitude and phase. The 'amplitude' o f the respiratory signal is actually just 

the value o f the signal at the desired time point. Note, this is not the usual mathematical 

definition o f the amplitude o f a signal, but 'amplitude' is the name given to the 'value of 

the respiratory signal' parameter in most o f the literature and will be the name used 

throughout this thesis. The phase o f the respiratory cycle indicates how far through the 

cycle you are, with one point in the respiratory cycle, usually end-exhale, being 

assigned to 0% (and 100%). Both parameters have their advantages and disadvantages. 

When using phase the assumption is that the respiratory motion follows the same path 

during every respiratory cycle. Phase can model hysteresis, which is when the motion 

follows a different path during inhalation than it does during exhalation. When using 

amplitude the exact values at end-exhale and end-inhale may differ from one respiratory 

cycle to the next, allowing some degree o f inter-cycle variation to be modelled. 

However, amplitude on its own cannot model hysteresis. To overcome this problem a 

distinction is often made between values occurring during exhale and those occurring
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during inhale (Lu et al. 2006). Although distinguishing between exhale and inhale 

values allows hysteresis to be modelled, it effectively constructs two separate models so 

the overall model will no longer be continuous. Figure 2.1 demonstrates the differences 

between the motion paths that can be represented using the different parameters.

Phase is sometimes preferred for image sorting (e.g. 4DCT) as the full range o f phase 

values are covered in each respiratory cycle (by definition) so will be acquired at every 

physical location. If there are large variations between some o f the respiratory cycles, 

there may only be a small range o f amplitude values (or even none) that are acquired at 

all locations, and complete volumes can only be formed for these values. However, if 

there is a lot o f inter-cycle variation then it is highly likely that there will be errors and 

artefacts in the images reconstructed using phase, that may be reduced in the amplitude 

based images (Lu et al. 2006, Rietzel et al. 2005a). Another problem with phase is that it 

can be difficult to calculate accurately in real-time. Algorithms for calculating phase in 

real-time exist and are used in commercial systems (e.g. the Varian RPM system), but 

irregular respiration can cause problems for these algorithms. In such cases it has been 

shown that re-calculating the phase after acquisition using a more accurate (but not real

time) semi-automatic method produces images with less artefacts (Rietzel and Chen

2006).

2.3.3 Acquiring multiple respiratory signals and parameters

It should be noted that if  both hysteresis and inter-cycle variation occur (which they do 

to some degree in many patients, Seppenwoolde et al. 2002) then neither phase or 

amplitude or any other single respiratory parameter will be able to accurately 

characterise the motion on its own. Distinguishing between inhalation and exhalation 

can be thought o f as introducing another respiratory parameter, but this is a binary 

parameter, not a continuous parameter like phase or amplitude, and so produces two 

distinct models and not one continuous model (Figure 2.2). To overcome this problem 

some groups have suggested acquiring two or more continuous parameters to 

characterise the respiratory motion. Low et al. (2005) use tidal volume and flow as their 

respiratory parameters (equivalent to amplitude, and its time derivative, gradient).

Zhang et al. (2007) use the amplitude and gradient o f the diaphragm motion as their
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Figure 2.1 - a) An example trace from a respiratory surrogate signal, b-d) Possible internal motion paths 

that can be modelled using different respiratory parameters: phase (b), amplitude (c), and amplitude + 

direction (d). b) Phase models the internal motion as a 'loop'. It can model hysteresis so can distinguish 

between Mid-Inhale (MI) and Mid-Exhale (ME). It cannot model any inter-cycle variation so the End- 

Exhale (EE) and End-Inhale (El) points are always at the same location for every respiratory cycle, even 

if  the values of the respiratory signal are different (as for EE1 and EE2, and Ell and EI2). c) Amplitude 

models the motion as a line. The motion does not necessarily proceed the same distance along the line 

during each respiratory cycle, so it can distinguish between different values at EE and El, and hence can 

model a limited amount of inter-cycle variation. It cannot model hysteresis so cannot distinguish between 

MI and ME. d) Amplitude + direction (inhaling or exhaling) effectively creates two separate models, 

although they may be 'joined-up' at the ends (as in the figure). Using amplitude + direction it is possible 

to distinguish between different EE and El values, and between ME and MI. However, if  one of the El (or 

EE) values occurs in the region where the models are not joined up then the motion will 'jump' from one 

model to the other and will not be continuous (as at El 2).
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respiratory parameters. Khamene et al. (2004) use the amplitude and gradient o f the full 

3D signals ffom 3 different markers (although these markers are rigidly attached to each 

other so there motion will be highly correlated) to generate a total o f 18 respiratory 

parameters. They then perform Principal Components Analysis (PCA) and use the first 

two principle components as their respiratory parameters (see Section 2.5.1). As already 

noted, von Siebenthal et al. (2007) track up to 5 internal structures in two dimensions so 

have up to 10 respiratory parameters. Note, the similarity measure calculated using 

these structures is not itself a respiratory parameter as it does not characterise the 

respiratory motion, it just described the similarity between two different respiratory 

states.

Other groups have acquired multiple signals and parameters by measuring 

chest/abdomen displacement in multiple directions and/or at multiple-locations. 

However, these are either combined into a single signal before being related to the 

internal motion (Schweikard et al. 2000), or their relationships to the internal motion are 

studied individually (Koch et al. 2004, Liu et al. 2004, Plathow et al. 2005).

2.3.4 Comparing respiratory signals and parameters

There have been several studies to evaluate and compare the different respiratory 

signals and parameters. Some o f these have assessed the signals by calculating their 

linear correlation with the tumour motion (Hoisak et al. 2004), the motion o f another 

internal structure (Koch et al. 2004, Plathow et al. 2005), or the internal air content 

calculated ffom CT images (Lu et al. 2005a, Lu et al. 2006). Although this is an obvious 

way to assess the surrogate signals it assumes that there is a simple linear relationship 

between the signal and the tumour motion. This will not be true if  there is hysteresis in 

the internal motion (Seppenwoolde et al. 2007), or 'phase offsets' between the surrogate 

signals and internal motion (Hoisak et al. 2004). Another way that the respiratory 

signals and parameters have been assessed is by calculating the residual motion o f the 

tumour or internal structures occurring at a particular value (or range o f values) o f the 

respiratory parameter (Berbeco et al. 2005, Liu et al. 2004). This method is often used 

when the surrogate signal is intended for use in gated RT (see Section 2.1.5).

Spirometry has been compared with skin surface displacements. Spirometry correlated 

better with the internal air content as measured in Cine CT volumes (Lu et al. 2005a),
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but this is not surprising (especially as the spirometry signal is 'drift-corrected' using the 

internal air content!) and does not necessarily mean that it is better for modelling the 

internal motion (although this is what they claim). More meaningfully, spirometry also 

correlated better with Superior-Inferior tumour motion than surface displacement, 

although for most patients neither had consistent linear relationships with the tumour 

motion over multiple days (Hoisak et al. 2004).

Different skin marker locations have been compared under different types o f breathing 

(deep, shallow, abdom inal, thoracic, etc.) and for predicting the internal motion o f 

different structures and in different directions. The marker location that correlates best 

with the internal motion depended on the location and direction o f the internal motion, 

and the type o f breathing that the patient was performing (Koch et al. 2004, Liu et al. 

2004, Plathow et al. 2005).

Three different methods have been used to compare amplitude and phase as respiratory 

parameters. Amplitude correlates better with internal air content (Lu et al. 2006), but 

again this is not surprising and not that meaningful. Amplitude based gating usually, but 

not always, results in less residual tumour motion (Berbeco et al. 2005). 4DCT volumes 

sorted using amplitude contain less artefacts than those sorted using phase, particularly 

if  there is a lot o f inter-cycle variation during the data acquisition (Lu et al. 2006,

Rietzel et al. 2005a).

Overall, the ability o f respiratory surrogate signals and parameters to characterise the 

respiratory motion is inconclusive. Most authors agree that there is some relationship 

between the external surrogate signals and the internal motion. However, this 

relationship can be more complex than the simple linear relationships assumed by 

correlation studies, and this relationship may not be stable for long periods o f time. The 

strength o f the relationship may depend on where in the lung the motion is being studied 

as well as which signal/parameter is used. See Section 2.5 for a description o f the 

different models used to relate the internal motion to the respiratory parameters.
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2.4 Registration

The aim o f registration is to find correspondence between different images and/or 

physical objects. It may be desirable to find correspondence between two different 

images for many reasons: to compare images o f a patient acquired at different times 

(e.g. to assess progress o f disease), to combine information acquired using different 

imaging modalities, or to compare images from different patients to assess differences 

in the population. High quality diagnostic images may be registered to physical objects, 

usually the patient or the treatment room, so that the information in the images can be 

used to guide interventions (image guided interventions). Physical objects such as 

scanners or hand held tools may be registered to each other so that the objects (and any 

images produced by the scanner) share a common co-ordinate system. All the 

registrations used for constructing the motion models are image to image registrations, 

although image (or model) to treatment room registrations would also be required if the 

models were ever used to guide treatment.

Mathematically, registration is the process o f establishing a transformation that maps 

corresponding anatomical points from one co-ordinate space to another. I will adopt the 

terminology used in our lab and most others for image registration, where the 

registration result maps from the Target co-ordinate space into the Source co-ordinate 

space. At first this may seem counter-intuitive, but the transformation is required in this 

direction in order to form an image in the Target space using the intensity values o f the 

Source image, i.e. to view the transformed Source image aligned with the Target image, 

which is usually the aim o f image registration.

All registration algorithms essentially consist o f three components: a transformation 

model, a similarity measure, and an optimisation method (for more detail on all aspects 

o f medical image registration see Hajnal et al. 2001)

2.4.1 Transformation models

The transformation model defines what types o f transforms are permitted and how they 

are parameterised. The number o f parameters used to define a transformation is referred 

to as the number o f degrees o f freedom, and generally the more degrees o f freedom a 

transformation has the more complex the transformation it can represent. Some popular
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transformation models, and their applicability to registering lung images, will now be 

considered.

2.4.1.1 Rigid transformations

A rigid transformation consists o f a rotation and a translation, so a 3D rigid 

transformation will have six degrees o f freedom. Rigid transformations maintain 

distances between points, straight lines, and parallel lines. Rigid transformations are 

typically used to map between different co-ordinate systems or to align anatomy that is 

assumed to remain rigid, e.g. bones. Rigid transformations are a subclass o f affine 

transformations.

2.4.1.2 Affine transformations

Affine transformations expand on rigid transformations by also including anisotropic 

scaling, shearing, and reflection, although the reflection is not normally used for 

registering medical images. 3D affine transformations are often described using fifteen 

parameters, three each for rotation, translation, and scaling, and six for shearing, 

although three o f the shearing parameters are redundant, and affine transforms only 

have twelve degrees o f freedom. Affine transformations can also be represented in 

matrix form with twelve parameters. Affine transformations do not preserve distances 

between points but do preserve straight and parallel lines.

Affine transformations can be useful for registering images that have been subject to 

scaling and shearing geometric distortions which are sometimes introduced in the 

imaging process. Although they are generally not adequate to describe the deformation 

that can occur in soft tissue due to respiration (Coselmon et al. 2004), they can be useful 

for recovering some o f the global motion and deformation, and as a starting estimate to 

the more complex but less well constrained non-rigid registrations described next.
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Transformation models that are able to represent more complex deformations, and 

hence have more degrees o f freedom than an affine transform (usually many more, for 

some as many as three per voxel in the Target image), are usually referred to as non- 

rigid transformations. There are many different non-rigid transformation models, and 

many o f them have been used for registering lung CT images. The three main types of 

non-rigid transformation and their application to lung motion modelling will be 

discussed next.

2.4.1.3.1 Global basis functions transformation models

There are many non-rigid transformation models based on global basis functions, 

although only thin plate splines have had much use in lung CT registration (Coselmon 

2004). Global basis function transformation models are used to interpolate between 

displaced points. This means that these registrations require a set o f approximately 

corresponding points to be located in each image prior to registration, although this can 

sometimes be achieved automatically (Berlinger et al. 2006). Also, as the name 

suggests, global basis functions have a global effect on the image which means they can 

be computationally expensive to optimise.

2.4.1.3.2 Parametric transformations models

Parametric transformation models use a set o f parameters that have a local effect on the 

image, and hence optimising any one parameter is less computationally expensive than 

functions with global effect. Although many different functions could be used for 

parametric transformation models, the ones that have had the most extensive use in 

image registration are the cubic B-splines. Registrations that use a cubic B-spline 

transformation model parameterise the transformation using the displacements o f 

regularly spaced Control Points (CPs), which are typically separated by several voxels. 

Approximating B-splines are used to calculate the deformation field at any point from 

the displacements o f the four control points (in each dimension) that surround that point.
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For a 3D cubic b-spline transformation defined by a nx x n y x n z grid o f CPs <j>i jk with 

uniform spacing o f 8 X, 8 y, 5Z in each dimension:

T B -spl,n e (X ’ y ’ Z) = S  Z  Z  B l ( U )B 'n (VK
1=0 m =0 n =0

[2 .1]

where / = |* M ,J - 1 ,  j  = \ j ' /By \ - U  * = “ = Xl s x - [ x / S , J ,

v = y / s ,  -LkM J. w = z j 8 z -  [_z/8z J, and Bt represents the /-th basis function o f the 

B-spline, given by:

B t> (u ) = ( i - » ) V 6
B,(u) =  (3ui - 6m2 +4)/6 

B2(u) = ( - 3 u i +3  u 2 +3u + l)/6

Bl (u) = u l/6

[2 .2]

Registrations using a B-spline transformation model were originally proposed for 

registration o f MRI breast images (Rueckert et al. 1999), but have since been used for 

registering images from a wide range o f anatomical sites and different modalities, 

including CT images o f the lung (Flampouri et al. 2006, Schreibmann et al. 2006,

Rietzel et al. 2005b, Zeng et al. 2007a).

2.4.1.3.3 Non-parametric transformation models

Non-parametric transformation models are not defined by a set o f parameters but are 

usually defined by a displacement vector for each voxel in the Target image, giving 

them a very large number o f degrees o f freedom. To constrain the registrations a 

regularisation term is added that penalises transformations that deviate from the desired 

form. Non-parametric transformations may sometimes be expressed and solved using
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partial differential equations, and these are often used in fast efficient implementations 

o f these registration algorithms. There are several non-parametric transformation 

models that have been used for registering lung images, including the linear elastic 

model (Christensen et al. 2007, Heath et al. 2007, Sarrut et al. 2006), the optical flow 

model (Guerrero et al. 2006) and the viscous fluid model (Keall et al. 2005, Pevsner et 

al. 2006, Sundaram et al. 2004).

2.4.1.4 Dimensionality of transformation models

Most o f the transformation models in the literature used for registering lung images (and 

all the ones used in this thesis) are 3D transformation models, that is they map from a 

3D space to a 3D space. 2D transformation models have been used to register 2D 

sagittal MR images o f the lung, although this assumes there is negligible through-slice 

motion (Sundaram et al. 2004). Chandrashekara et al. (2004) proposed a 4D 

transformation model (used to register cardiac MR images) which is used to map 

between a static 3D volume (represented as a 4D dataset with no variation along the 4th 

dimension) and a 4D time series sampled as 3D volumes. Zeng et al. (2007a) also use a 

4D transformation model to map between a static 3D volume and a 4D time series, but 

their 4D time series is sampled using 2D projections from orbiting views. This means 

that an additional transformation is required from 4D space to 2D space. This 

transformation represents the imaging process, and its parameters depend on the time 

and angle that the 2D projection is acquired from. In theory any o f the transformation 

models could be applied in 4D (or 2D), although Chandrashekara et al. (2004) and Zeng 

et al. (2007a) have both used a B-spline transformation model.

2.4.2 Similarity Measures

Similarity measures fall into two main categories, feature based and voxel based.

Feature based methods rely on detecting corresponding features in the images to be 

aligned. These features can be actual corresponding points or corresponding surfaces 

(where typically the points that define one surface do not directly correspond to the 

points that define the other surface). Feature based registrations have two main 

disadvantages: the features need to be detected, and the registrations are only assessed at
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the location o f the features, so the accuracy o f the registration in other regions, 

particularly those distant from any features, cannot be guaranteed.

Voxel based similarity measures have been developed to overcome the above problems 

by assessing the similarity between the two images at every voxel. However, voxel 

based registrations can run very slowly in comparison to feature based registrations, as 

typically the number o f features to be compared (up to several thousand for surface 

points) is a lot smaller than the number o f voxels to compare (can be several million). 

Many different voxel similarity measures have been developed for many different 

applications. The choice o f similarity measure should take into account the expected 

differences between the images including whether the images are acquired using 

different modalities and/or different imaging parameters.

Two voxel similarity measures frequently used for registering lung images are Sum of 

Squared Differences, SSD, and Cross Correlation, CC. SSD assumes that the images are 

identical once registered, and so is most applicable when the only differences between 

the images are due to motion, as is the case (neglecting density change effects) when 

registering volumes from a 4DCT dataset. CC assumes there is a linear relationship 

between the intensities in the two volumes being registered, and can be useful when 

some o f the imaging parameters (such as image intensity scaling) have been altered. 

Mutual Information, MI, and Normalised Mutual Information, NMI, are similarity 

measures based on information theory which have proved very useful in a variety o f 

applications, particularly for inter-modality registrations (Mattes et al. 2003), and have 

also been successfully used for registering images o f the lung in different respiratory 

states (Coselmon et al. 2004, Sundaram Cook et al. 2007). It is possible that registration 

based on voxel similarity measures may not be well constrained enough in regions 

where there is little variation in intensity to ensure an accurate result is achieved. West 

et al (2005) have developed a registration method that uses a weighted combination o f a 

point based similarity measure and a voxel similarity measure. This enables the 

registration to be driven by the intensity values in all o f the voxels, but allows a few 

carefully selected points to be used in regions where the purely voxel based registration 

does not produce satisfactory results.
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2.4.3 Optimisation methods

The optimisation method tries to find the parameters o f the transformation model that 

give the best value o f the similarity measure. The choice o f optimisation method (and 

implementation) will depend upon the transformation model, and sometimes the 

similarity measure, being used. Some transformation models will have a standard 

optimisation scheme, and some can be optimised using a choice o f different methods. 

For some point based registrations it may be possible to find the optimal parameters 

using a closed form solution (e.g. using least squares) but for all registrations that use a 

voxel based similarity measure it is necessary to employ iterative optimisation 

techniques. Different optimisation schemes have different performance characteristics 

(e.g. speed, robustness) and the development o f improved optimisation schemes is an 

ongoing area o f research (Mattes et al. 2003, Schnabel 2001, Shekhar et al. 2007).

Gradient descent optimisation is often used with the B-spline (and other non-rigid) 

transformation models. This is an iterative technique. At each iteration the gradient o f 

the transformation with respect to the similarity measure needs to be estimated. This can 

be estimated easily using the finite differences method (Rueckert et al. 1999), although 

there is evidence that using more complex analytical techniques (Mattes et al. 2003) can 

greatly reduce the computational time (Klein et al. 2005).

Non-rigid registrations often employ multi-resolution techniques to improve robustness 

and prevent finding local minima. Multi-resolution techniques can be applied to the 

images, first registering coarse (down sampled) images, and using the result as input to 

the registration o f the finer resolution images. When using a B-spline transformation 

model, a multi-resolution technique can also be used with the control point grid, using a 

progressively smaller control point spacing for each resolution level (Rietzel et al. 

2005b).

2.4.4 Bio-mechanical models

Bio-mechanical models (often implemented as finite element models) have also been 

used to perform image registration. This involves first defining regions within the 

images (such as the different organs) and assigning physical properties to them (e.g. 

elasticity). Then, corresponding features (e.g. surfaces or landmarks) are detected within
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the images, and these are used to calculate the forces that are applied to the bio

mechanical models. The bio-mechanical models are then used to find the displacement 

o f the whole anatomy based on the forces that are applied and the physical properties 

assigned to the different regions. It has recently been proposed that voxel based image 

similarity measures can be used to generate the forces that are applied to the bio

mechanical models (Sundaram and Gee 2005). To date there has been relatively little 

work published on using bio-mechanical models for lung registrations, although they 

were used by Sundaram and Gee (2005) for 2D lung registrations, and by Brock et al 

(2005) for a multi-organ registration study which included the lungs.

2.4.5 Registration of lung CT images

This section will first describe two problems that can affect the registration o f lung CT 

images: the density change effect, and the sliding problem. It will then review some o f 

the studies that have assessed and compared non-rigid registration algorithms on lung 

CT images.

2.4.5.1 The density change effect

When the lungs fill with air during respiration they will increase in volume (by up to 

65% in some regions, Alasti et al. 2006) and will undergo a corresponding change in 

density as their mass stays approximately constant (there can be a slight variation due to 

extra blood mass entering and leaving the lungs, Guerrero et al. 2006). A change in the 

density o f the lungs will produce a corresponding change in the intensity o f the lung 

voxels in CT data.

The density change effect may cause problems when registering CT images from 

different respiratory states as some corresponding voxels will have different intensities 

in the different images. However, it can be argued that while the density change effect 

will certainly affect the value o f intensity based similarity measures, it is unlikely to 

have much effect on the final result o f the registrations. This is because the lungs 

contain a lot o f high intensity structures, and it is likely that the alignment o f these 

structures will have more o f an effect on the similarity measure than comparatively
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small changes to the voxel intensities due to density changes. However, if  the 

transformation model used does not produce smooth transformations, or if  there are 

some regions o f the lung with little visible structure, the density change effect may have 

an adverse effect on the registration results (Sarrut et al. 2006).

The Jacobian o f a non-rigid transformation can be used to measure the local change in 

volume due to the transformation. A Jacobian less than 1 corresponds to a decrease in 

volume (with a value less than 0 indicating that folding occurs) and a value greater than 

1 corresponds to an increase in volume. The Jacobian could in theory be used to correct 

the intensities o f the deformed image at each iteration o f the non-rigid registration 

algorithm, but this would be extremely computationally demanding (Keall et al. 2005). 

Another approach is to try and estimate and correct for the density change prior to 

registration. Sarrut et al (2006) describe a simple method for this called A Priori Lung 

Density Modification (APLDM) which finds corresponding slices in the images and 

then modifies the lung intensities so that the average intensity is the same in 

corresponding slices. While they acknowledge that this is a simplification, they claim 

that the registration results are improved when APLDM is used. Note, this may be 

because they do not use a very smooth transformation model; even when APLDM is 

applied there are still some regions o f the deformation field that have a negative 

Jacobian.

If dose calculations are performed on a deformed volume there may be errors in those 

calculations if  density changes have not been accounted for correctly when deforming 

the volume (Heath et al. 2007), although there is evidence that these errors will be 

minimal (Webb et al. 2006). The Jacobian o f the transformation can again be used to 

account for the changes in density (although there will be problems if there are any 

negative Jacobian values), or if  the deformed volume is generated by 'interpolating' 

between the two registered volumes (see Section 2.5.2) the intensity value can be 

interpolated from the two images (Sarrut et al. 2006).

2.4.5.2 The sliding problem

The sliding problem is caused when two parts of the anatomy slide past each other, e.g. 

the lung and the chest wall during respiration. Almost all transformation models try to 

produce a smooth and continuous deformation field. For most applications this is a
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desired constraint, as the deformation within organs, and even between most, will 

indeed be continuous. Registration algorithms have even been modified to try and 

ensure a smooth and continuous transformation for lung CT registrations (Heath et al. 

2007, Shekhar et al. 2007). However, when sliding motion occurs the deformation is not 

continuous, and so any continuous deformation will inevitably include errors.

It has been proposed that the sliding problem can be overcome by segmenting the image 

into a region that moves with the lungs during respiration and region that does not, and 

then registering the two regions separately (Flampouri et al. 2006, Rietzel et al 2005b). 

This technique may produce problems at the boundary between the two regions, as it is 

likely that this boundary will be transformed to a slightly different location by each 

registration, creating gaps and areas o f overlap between the two regions. This potential 

problem at the boundary o f the two regions has not been addressed in the literature, 

although it seems likely that the magnitude o f the problem and its impact on RT would 

be minimal in comparison to the sliding problem.

2.4.5.3 Assessing lung CT registrations

Most (but not all) studies that have used non-rigid registration have attempted to assess 

the accuracy o f their registrations. This is either done through visual inspection with the 

aid o f colour overlays or difference images, or by using delineated structures (such as 

the tumour or the lung) and/or manually identified landmarks (such as bifurcations in 

the lung). In the later case the structures or landmarks are delineated in both volumes, 

the registration result is used to deform them from one image to the other, and the 

accuracy can be assessed by the misalignment between the deformed and manually 

delineated structures and landmarks.

Recently there have been two multi-institution studies conducted to assess and compare 

the accuracy o f a number o f non-rigid registration algorithms and implementations 

(Brock et al. 2007, Kashani et al. 2007b). Note, I participated in both o f these studies, as 

did other members o f our lab.

Brock et al. (2007) asked participants to register clinically obtained 4DCT images o f the 

lung at end-inhale and end-exhale (as well as other images from other organs). The 

images contained noticeable artefacts at the boundaries o f different couch positions,
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especially in the inhale image, but these were deemed representative o f most clinically 

acquired 4DCT images. They assessed the results using 17 bifurcations in each lung as 

well as 2 calcifications in the Heart and 2 in the Aorta, manually identified in each 

image. 18 different implementations o f various non-rigid registration algorithms were 

assessed. All participants had an absolute mean error o f less than the voxel size (2.5 

mm) in each direction. It was also noted that some o f the implementations that had the 

highest accuracies also had relatively fast runtimes (10 minutes or less), showing that a 

long runtime is not necessary for accurate registration results.

Kashani et al. (2007b) used a specially designed "breathing" lung phantom (Kashani et 

al. 2007a). This had 48 small plastic markers embedded in it distributed across all parts 

o f the phantom. These markers could be easily and accurately detected in the images 

and used to assess the registration results. Once the markers had been located the 

images were edited to remove the markers before the images were distributed to the 

participants for registration. The phantom was CT scanned in two different deformation 

states, corresponding to end-inhale and end-exhale. A total o f 8 different registration 

implementations were assessed. The average errors ranged from 1.5 - 3.9 mm.

However, no algorithm was accurate over all regions o f the image with maximum errors 

ranging from 5.1 - 15.4 mm.

The multi-institution studies above have shown that lung CT images can generally be 

registered accurately using current non-rigid registration algorithms. None o f the 

underlying transformation models consistently performed better than the others. 

Different implementations o f similar registration algorithms from different groups had 

markedly different results, showing that the implementation and the parameters used for 

the registrations can affect the result as much as which transformation model is used.
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2.5 Modelling respiratory motion

A respiratory motion model describes the motion o f the tumour (and sometimes the rest 

o f the anatomy) due to respiration. The model usually, but not always, relates the 

internal motion to one or more respiratory parameters measured from a respiratory 

surrogate signal.

2.5.1 Point based respiratory motion models

Point based respiratory motion models only describe the motion o f one internal point o f 

interest, normally a point in the tumour. Point based motion models are often used for 

gated and tracked treatment (see Section 2.1.5) when internal markers are not used or 

are only imaged intermittently. Linear correlation is often used to assess different 

respiratory signals and parameters, and the linear models produced can be considered 

respiratory motion models, although as noted in Section 2.3.4 such linear models do not 

always model the internal motion very accurately.

The Synchrony Respiratory Tracking System used with the Cyberknife (Accuray, 

Sunnyvale, California, USA) extends the simple linear model by relating the internal 

motion to the external signal with two 2nd order polynomials, one for inhaling and one 

for exhaling (Seppenwoolde et al. 2007). The system acquires both internal motion data 

(x-ray imaging o f an implanted marker) and an external surrogate signal (skin markers) 

during a training period prior to treatment. Although 6 skin markers are tracked, their 

collective centre o f mass is found and used to generate a single respiratory signal 

(Schweikard et al. 2000). This data is used to fit the parameters o f the motion model. 

Once the motion model has been established the external surrogate signal can be used to 

predict the internal motion. Internal data can be acquired intermittently throughout 

treatment and used to verify and update the motion model. The model reverts to a 

simple linear model if  the value o f the respiratory surrogate exceeds the range o f values 

observed during training so as to prevent large extrapolation errors. It has been shown 

that the polynomial model can predict the internal motion more accurately than a simple 

linear model when there is hysteresis or a phase offset between the internal and external 

motion. As the model is based on a single continuous parameter (and one binary
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parameter), it will not be able to accurately characterise inter-cycle variation. However, 

the results show that the model can predict the internal motion well, even in the 

presence o f irregular breathing. Fig. 4 in Seppenwoolde et al. (2007) gives a good 

illustration o f the situation: the shape o f the model does not resemble the actual motion 

trajectories very closely, but the prediction errors are still relatively small.

Low et al. (2005) propose a 'Five Dimensional' (5D) motion model based on two 

continuous respiratory parameters, the volume and flow measured by spirometry 

(equivalent to amplitude and gradient). The location o f an internal point will depend on 

its location in the reference volume (3 dimensions) and the current values o f the volume 

and flow (the other 2 dimensions). The internal motion is related to the volume and flow 

using a simple linear model. The model assumes that the motion lies on a plane. The 

points used in this study all had negligible L-R motion, so the plane was always fit in 

the sagittal orientation, although the model could easily be extended to a plane with any 

orientation. The motion in one direction on the plane will be caused by changes to the 

tidal volume, whilst motion in another direction on the plane is caused by the value o f 

the airflow. The airflow component o f the model can account for hysteresis, while 

different combinations o f tidal volume and airflow can account for inter-cycle variation.

To construct the models Cine CT data was acquired with simultaneous spirometry for 

11 seconds (15 volumes) at each couch position. Points o f interest were then 

automatically tracked over the 15 volumes, giving the location o f the points and 

corresponding volume and flow values over two to three respiratory cycles. The 

implementation used in the paper was unable to track points across different couch 

positions, but they claim this should be possible in the future. A model was then fit to 

each point o f interest by minimising the root-mean least-squares average distance 

between the fits and measurements.

Seventy-six points were tracked in 4 patients. The models showed a very good fit to the 

data, even when there were large inter-cycle variations. The mean discrepancies 

between the fit and the actual locations ranged between 0.28mm and 1.71mm for the 

four patients (average 0.75mm), and the maximal discrepancies ranged between 

0.64mm and 3.31mm. It should be noted that these errors are the errors in fitting the 

model to the data. Leave-one-out experiments were not performed so the ability o f the
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models to predict unseen data and the possibility o f over-fitting the data were not 

evaluated.

Khamene et al. (2004) also built a model based on two continuous respiratory 

parameters, but these parameters are found by applying PCA (Principal Components 

Analysis) to a larger number o f respiratory parameters. They track the full 3D motion of 

three skin markers, although these markers are rigidly attached to each other so their 

motion will be highly correlated. So that the model can account for hysteresis they also 

use the gradient o f each 3D signal, giving a total o f 18 external respiratory parameters. 

PCA is then performed on these 18 parameters, and the first two principal components 

used as the respiratory parameters. The 3D location o f a point o f interest (the portal vein 

in the liver) and its velocity in each direction (the gradient) are used as internal 

parameters. PCA is again performed on the internal parameters, and the first two 

principal components are used. For both the internal and the external data the first two 

principal components account for 98% of the variation.

Note, in this paper PCA is being used as a dimensionality reduction tool and not to 

establish a relationship between the internal and external data. This relationship is 

established by specifying some other (non-linear) functions that relate the values o f the 

external principle components to the internal principle components. They give b-splines 

as example functions, and say the function are fit to the data using the standard least 

squares method, but give very little detail on how this part o f their method is performed 

(although the paper is a short conference paper, so space may have been limited). As 

only two functions are used to map the two external principle components to the two 

internal principle components, this would imply that mapping from external to internal 

principle components is one to one, although this is not clearly stated. They use leave 

one out experiments, where the model is constructed using all but one o f the data points 

(approximately 100 per study), and the model is then used to predict this data point. 

Using this method they find the mean error in predicting the location o f the internal 

point o f interest to be 1.8mm, which they state is about 15% o f the average target 

motion.
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2.5.2 Deformation field based motion models

Several different motion models have been proposed that model the internal motion 

using a dense deformation field. This means that the models describe the motion o f all 

o f the anatomy covered by the deformation field, not just at some specific points as for 

the models above. The deformation fields are often obtained as the result o f non-rigidly 

registering images acquired at different respiratory states. Some o f the deformation field 

based models o f the lungs reported in the literature are described in more detail below. 

Deformation field based models o f the respiratory motion o f other organs, including the 

liver (Blackall et al. 2005, Rohlfing et al. 2004) and the heart (Ablitt et al. 2004), have 

also been reported in the literature.

Some authors have proposed non-rigidly registering CT (or MR) volumes acquired at 

inhale and exhale breath hold, and then linearly interpolating the results to predict the 

intermediate deformations, and from these the intermediate volumes (Sarrut et al. 2006, 

Schweikard et al. 2004, Zeng et al. 2007b). Schreibmann et al. (2006) have proposed a 

similar model, but use volumes acquired while the patient is freely breathing to 

overcome the potential differences between the anatomy at breath hold and the anatomy 

during free breathing (Blackall et al. 2006, Rietzel 2005a, and Section 7.3 o f this thesis). 

There are a number o f problems with the linear interpolation based models. The 

predicted volumes will be affected by the density change effect (see Section 2.4.5.1). 

Sarrut et al. (2006) is the only author that acknowledges and accounts for the density 

change effect. The models are based on the assumption o f linear motion over the 

respiratory cycle, so cannot model hysteresis (or any other non-linear motion). 

Schreibmann et al. (2006) suggest including an intermediate volume between inhale and 

exhale in the model. If two such volumes are used, one from mid-inhale and one from 

mid-exhale, then hysteresis can potentially be accounted for, although this is not 

mentioned in the paper (only inhale volumes are used and predicted, so the effects of 

hysteresis are not assessed). There is a further problem that does not appear to have 

been identified in any o f the papers referenced above: the inverse o f the interpolated 

transformation is required to form a new image. It may be possible to estimate the 

inverse o f the interpolated transform (see Appendix A), but none o f the authors mention 

doing this. If the transformations contain regions where folding occurs, as those used by
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Sarrut et al. (2006) do, then the inverse does not exist in these regions and it cannot be 

estimated.

The intermediate volumes are related to an external respiratory surrogate signal in 

different ways. Schreibmann et al (2006) find the location o f a skin marker in their 

intermediate volumes. Sarrut et al. (2006) use the air content o f the lungs in the 

intermediate and reference images to calculate the tidal volume as would be read by a 

spirometer. Schweikard et al. (2004) and Zeng et al. (2007b) both propose a similar 

idea, although Schweikard et al. (2004) had not implemented the idea, where the 

intermediate volumes are compared directly to x-ray images either acquired during RT 

treatment (Schweikard et al. 2004) or as part o f a Cone-Beam CT acquisition (Zeng et 

al. 2007b). The x-ray images can be thought o f as the respiratory surrogate signal, and 

values are assigned to the intermediate volumes by creating simulated x-ray projections 

(digitally reconstructed radiographs) through these volumes.

Many authors have proposed non-rigidly registering the volumes from a 4DCT dataset 

for a variety o f different applications including RT planning, image acquisition, and 

assessment o f lung physiology (see Section 2.1.5, Section 2.6.1, and Section 2.6.2 

respectively). The results o f these registrations can be considered a motion (or 

deformation) model, and they are sometimes referred to as such. As a respiratory 

parameter is required for sorting the 4DCT data, the internal motion and deformation is 

implicitly related to this parameter. The deformation is only known for a few values o f 

the respiratory parameter, those which correspond to the 4DCT volumes. Therefore 

these models are discrete rather than continuous models.

Blackall et al. (2006) propose a continuous model built using the results o f registering 

4D MR volumes. Due to restrictions with the data only affine registrations were 

possible. The affine registrations are used to propagate a triangulated lung and tumour 

surfaces from the reference image (end-exhale) to all o f the other images. For each point 

on the surfaces, a 3rd order polynomial is fit that relates the motion o f the point to the 

height o f the diaphragm (the respiratory signal). As a 3rd order polynomial is used non

linear motion can be modelled. Separate models are built for inhalation and exhalation 

allowing hysteresis to be studied and modelled (but not with one continuous model).
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Note, this model is technically lots o f point based models rather than a deformation field 

based model. However, if  non-rigid registration had been possible then registration 

control points could have been modelled instead o f the surface points using exactly the 

same method (as done for the liver in Blackall et al. 2005). In addition, most 

deformation field based models can be thought o f as a multiple-point-based model. 

Hence this paper has been covered in this section and not the previous section on point 

based models.

Zhang et al. (2007) propose a deformation field based motion model that uses two 

continuous respiratory parameters, the current height o f the diaphragm and its height 1.5 

seconds earlier (which is similar to using the gradient). The deformation fields are 

generated by non-rigidly registering the volumes from a 4DCT dataset to a reference 

volume (the end-exhale volume o f the 4DCT dataset). The dense deformation fields are 

then related to the respiratory parameters using Principal Components Analysis (PCA). 

Note, unlike in Khamene et al. (2004 - discussed in the previous section), here PCA is 

not just being used to reduce the dimensionality, but also to find the relationship 

between the internal motion and respiratory parameters. Once PCA has been performed 

the two respiratory parameters can be used to calculate the value o f the first two 

principal components, and from these the values for the entire deformation field can be 

calculated. Only two principal components can be used as there are only two respiratory 

parameters, but the authors show that these account for between 83%-90% o f the 

variation for the four patients studied.

As the model uses two continuous parameters it can potentially model hysteresis and 

inter-cycle variation. However, only one 4DCT dataset is used as training data to build 

the model, so the training data does not actually sample any inter-cycle variation. The 

results show that the model can predict the centre o f the tumour to within 2mm in each 

direction in the training data (i.e. fitting error). Errors at the lung and tumour surfaces 

are mostly within 5mm, and it is shown that these are comparable to inter-observer error 

for the tumour delineations. The authors state that the errors are mostly due to the PCA 

removing "noise" from the deformations. In support o f this three examples are shown 

where the model predictions have greatly reduced artefacts in comparison to the original 

4DCT images. This implies that the models are actually more representative o f the true 

respiratory motion than the original data.
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The models are also used to predict 4DCT data acquired in a different session, 

approximately a week after the first (both before RT treatment has commenced). The 

results show that the models can predict the data from the second session relatively well 

(mean error < 2mm in all directions for centre o f tumour), even when there is a 

considerable base-line shift in the breathing between the two sessions for one patient. 

However, the data acquired for the second session is lower quality (5mm slices, 1 

second gantry rotation, data sorted into four respiratory states) making it difficult to 

accurately assess the errors, and the overlay images indicate that the prediction errors 

are clearly larger than for the training data (as would be expected). The authors also 

acknowledge that the tumours studied are all located in the vicinity o f the diaphragm, 

and that the models may not perform so well at predicting other sites in the lung.

Zeng et al. (2007a) use a 4D transformation model for their non-rigid registrations (to 

Cone-Beam projection data). Therefore the registration result is a continuous motion 

model, although the motion is modelled over the acquisition time and is not related to a 

respiratory parameter. The height o f the diaphragm (detected in the cone-beam 

projections) is utilised in their method, but only to help regularise the registration which 

is not well constrained by the data. The deformation o f the anatomy can vary from one 

respiratory cycle to the next, even when the diaphragm is at the same height. While this 

will be very useful for studying the inter-cycle variation o f the internal anatomy, it 

means that this model cannot be used to predict the deformation in the future from a 

respiratory surrogate signal. O f course, a further model could be constructed that relates 

the internal motion modelled by the 4D transformation to one or more respiratory 

signals (but that was not the aim o f this paper).

In a later paper, Zeng et al. (2007b) also propose another method to help regularise the 

registration. They use a simple linear motion model (based on interpolating the result o f 

non-rigidly registering breath hold images, see above) to provide a good starting 

estimate to the non-rigid registration. Although the use o f the starting estimate increased 

the accuracy and reduced the time to convergence for the non-rigid registration, when 

testing the method on phantom data they found that the linear model was actually more 

accurate than the result o f the non-rigid registration (i.e. the non-rigid registration made 

the result worse!). They said this was due to noise and artefacts present in the Cone- 

Beam projection images, and possibly because the phantom motion can be well
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approximated by the linear model. This reveals that while the non-rigid registration o f 

Cone-Beam projection data is a very promising technique, particularly for studying 

inter-cycle variation, the robustness and accuracy needs to be improved before the 

results can be considered reliable.

Sundaram et al. (2004) propose a method o f modelling the average deformation and 

appearance o f the lungs from two separate individuals. The paper appears to only be a 

proof o f concept paper, but a follow up paper could not be found. 2D MR coronal slices 

are used to study the respiratory motion, so there is a high chance o f non-negligible 

through slice motion (in the A-P direction) which will cause errors. The images from 

each individual are registered to the next image for that individual (using 2D non-rigid 

registration), forming a motion model for each individual. These models are 

parameterised according to the normalised lung area, with the lung area at exhale given 

a value o f 0 and the lung area at inhale a value o f 1. New images can be generated by 

linearly interpolating the registration results, effectively modelling the motion as a 

series o f connected line segments. For each patient images are generated corresponding 

to normalised lung areas o f 0, 0.25, 0.5, 0.75, and 1. Only data from exhalation is used 

and modelled so hysteresis effects can be ignored, but a separate model and images 

could be created for inhalation as well in an identical manner. The inter-subject average 

images are then calculated by performing a simultaneous, symmetric registration o f the 

two images from different subjects, and averaging the intensity values. The inter-subject 

average deformations are calculated by composing the subject specific deformation 

fields between different lung areas with the deformation fields resulting from the 

simultaneous registrations described above, and averaging them.

Due to the large variability in respiratory motion between individuals (see Section 2.4) 

it is unlikely that cross population models will ever be able predict the respiratory 

motion for a particular individual to the accuracy required for RT planning and 

treatment. However, cross population models potentially have many other uses 

including learning about lung physiology, assessing and diagnosing individuals, and to 

provide good starting points and constraints for patient specific analysis (e.g. non-rigid 

registration).
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2.6 Other uses for respiratory motion models

Although this project is primarily focussed on constructing motion models for use in 

lung cancer RT there are several other potential uses for respiratory models, including 

image acquisition and assessing local lung function. See Section 2.1.5 for details o f how 

respiratory motion models may be utilised in RT.

2.6.1 Image acquisition

Respiratory deformation motion models can be o f use when reconstructing any data that 

may be subject to respiratory motion during acquisition. Respiratory models have been 

used in 4DCT reconstructions to remove artefacts (Zhang et al. 2007) and to permit a 

reduction in the imaging dose without degrading the image quality (Li et al. 2005). 

Respiratory models have been used in 4D Cone-Beam CT reconstruction to improve the 

image quality without acquiring extra projections, reducing the time and imaging dose 

required for 4D Cone-Beam CT (Li et al. 2006a, Li et al. 2007). The motion models can 

be constructed from standard 4DCT data acquired prior to the Cone-Beam acquisition 

(Li et al. 2006a), or directly from the 4D Cone-Beam (Li et al. 2007, Zeng et al. 2007a). 

Respiratory motion models constructed from 4DCT can be used in a similar way to 

reconstruct 4D PET (Positron Emission Tomography) volumes (Li et al. 200b). 

Respiratory motion models could also be used in MR image reconstruction to remove 

motion artefacts (Batchelor et al. 2005).

2.6.2 Assessing local lung function

Deformation models o f the lung can be used to determine the local change in density or 

volume o f the lung tissue, which will be indicative o f the local lung function. The 

change in density can be calculated from the CT intensities in the 4DCT images (the 

deformation fields are used to find corresponding voxels in the different images, 

Guerrero et al. 2006) or the change in volume can be calculated directly from the 

Jacobian o f the deformation field (Christensen et al. 2007). The Jacobian based 

technique has been shown to produce good agreement with Xenon CT based 

measurements in one animal (Reinhardt et al. 2007).
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2.7 Conclusions to literature review

This literature review has shown that the study and modelling o f respiratory motion has 

recently been, and remains, a very active area o f research. Although many o f the 'quick- 

wins' made possible by imaging and modelling respiratory motion have already been 

realised, and some have entered clinical practice, there is still much to do in order to 

fully address the issue o f respiratory motion in RT and in other applications.

Developments in imaging technologies over the last five years have permitted the 

detailed study o f respiratory motion in the lungs and other anatomy that was not 

previously possible. Continued developments are allowing ever more detailed data to be 

acquired. Initial studies into the effects o f long and short term inter-cycle variations 

have been reported in the last year. Non-rigid registration is regarded by many as a vital 

tool for the detailed study o f the effects o f respiratory motion, but most would not yet 

consider the methods robust or fast enough for routine clinical use. It is widely agreed 

that being able to predict the internal motion from external surrogate signals would be 

extremely useful, and there have been many studies on the relationship between internal 

and external data. However, there is as yet no consensus as to which signals and 

parameters are best for predicting the internal motion, how they should be related to the 

motion, how stable the relationships are, or even if it is possible to accurately predict the 

internal motion from any external surrogate signals.
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Chapter 3

Data acquisition

This chapter describes the data that has been acquired for the motion models and the 

methods and protocols that have been used in acquiring this data.

3.1 Introduction

In order to construct the motion models it is necessary to acquire data that describes the 

internal motion o f the lungs and surrounding anatomy over the respiratory cycle. It is 

also necessary to acquire a respiratory surrogate signal to calculate the respiratory 

parameters, such as the respiratory phase, that correspond to the internal data. 

Additionally, a reference volume that contains all o f the anatomy being modelled is 

required.
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Section 2.2 in the literature review describes and critiques some o f the popular methods 

o f acquiring data on the internal respiratory motion, and Section 2.3 covers the different 

external respiratory surrogate signals. The following sections detail the modalities and 

protocols adopted for acquiring the internal and surrogate data used throughout the 

course o f this research. The processing required to calculate the respiratory parameters 

from the external surrogate signals is also described.

3.2 Patients studied

Data from a total o f 11 patients has been acquired (although not all o f the data was used 

for all experiments, see later chapters for details o f which patients have been used for 

which experiments). Most patients had upper-lobe tumours but one patient had a hilar 

tumour and one a lower-lobe tumour (Table 3.1). The datasets from different patients 

were acquired throughout the course o f the PhD research, with the data from the initial 

four patients being acquired prior to the PhD being started, and the different protocols 

and methods used for acquiring the internal motion data and the respiratory surrogate 

signals are described in the following sections.

3.3 Cine CT data

Cine CT has been used throughout the course o f this research to acquire data that 

describes the internal respiratory motion. Cine CT data is acquired with the CT scanner 

in Cine mode, which means that the couch is stationary when data is being acquired. 

Data is acquired for a period o f time at one couch position, and then the scanner stops 

acquiring data and moves to another couch position, where it resumes acquiring data. At 

each couch position a series o f 3D volumes is acquired while the patient is freely 

breathing. As the data is acquired with the couch stationary, the number o f slices and 

Superior-Inferior (S-I) coverage o f the reconstructed volumes is limited by the number 

and size o f the slices that the CT detector can acquire simultaneously. Most CT 

scanners, including the ones used for this research, acquire relatively few slices (12-16) 

which only cover a thin slab o f the patient’s anatomy (approximately 2-3cm). Therefore 

the couch positions are usually acquired contiguously (or slightly overlapping), so that
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Patient Tumour
Location

Cine CT 
Protocol

Couch
Positions
Acquired

Cine CT 
Volumes per 

Couch Position

Respiratory
Signal

1 LUL P 3 20 Cine CT

2 RUL P 3 20 Cine CT

3 LUL P 4 20 Cine CT

4 LUL P 4 20 Cine CT

5 LUL P 4 20 Polaris

6 RUL P 3 30 Polaris

7 RUL S 7 40 Vision RT

8 RH S 7 40 Vision RT

9 RLL s 7 40 Vision RT

10 LUL s 7 40 Vision RT

11 RUL s 7 40 Vision RT

Table 3.1. Details o f  the data acquired for each patient, including the tumour location (LUL - left upper 

lobe, RUL - right upper lobe, RH - right hilum, RLL - right lower lobe), the Cine CT protocol used (P for 

the protocol developed for the Philips M X 8000 CT scanner, and S for the protocol developed for the 

Siemens Somaton Sensation CT scanner), the number o f  couch positions acquired, the number o f  Cine 

CT volumes acquired per couch position, and the respiratory signal used to derive the respiratory 

parameters.

data from the different couch positions can be combined to produce predicted volumes 

over a larger area.

Cine CT was originally acquired, by other groups, for sorting into 4DCT volumes 

(although 4DCT volumes can also be formed from helical CT data and Cone Beam CT 

data, see Section 2.2.2.3 and Section 2.2.2.4). Many research groups and clinical 

institutions use 4DCT data for studying respiratory motion. However, the main 

drawback with using current 4DCT data is that it assumes that all respiratory cycles are 

identical and that no inter-cycle variation occurs. Therefore the 4DCT volumes do not 

contain any useable information on how the respiratory motion can vary, and will 

contain artefacts when inter-cycle variation does occur. As it is well known that inter

cycle variation does occur (see Section 2.1.4.1) it was decided to use the unsorted Cine 

CT data (acquired over a few respiratory cycles per couch position) to try and sample 

some o f the inter-cycle variation, so that it could be addressed by the motion models.
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A CT scanner will acquire cine CT data at each couch position in one o f two different 

ways, referred to in this thesis as the “stop-and-go” method and the “continuous” 

method. When using the stop-and-go method the CT gantry will perform a complete 

rotation (360°) acquiring enough data to reconstruct a volume. There will then be a brief 

period o f 'dead-time', with the x-ray switched off and the gantry still, before the gantry 

performs another complete rotation (with the x-ray switched on) to acquire another 

volume (Figure 3.1a). This is repeated until the desired number of volumes have been 

acquired. When using the continuous method the CT gantry is continuously rotating and 

acquiring data during the acquisition time for each couch position. The desired number 

o f volumes can then be reconstructed from this data. This number can be greater than 

the number o f gantry rotations by using the ‘sliding-window’ technique, where the data 

used to reconstruct one volume overlaps with the data used to reconstruct the 

previous/next volume (Figure 3.1b).

3.3.1 Cine CT acquisition protocol P

The first Cine CT acquisition protocol was developed for the Philips MX8000 Multi

slice CT scanner and was used to acquire data from six patients. This scanner could 

acquire 16 x 1.5 mm slices simultaneously, giving a S-I coverage o f 24 mm per couch 

position. Each Cine CT volume contained 5 1 2 x 5 1 2 x  16 voxels and the voxel 

dimensions were 0.68 mm x 0.68 mm x 1.5 mm. These were reconstructed using the 

standard in-slice field o f view o f 350 mm. The standard x-ray tube voltage o f 120 kV 

and tube current o f 100 mAs (per Cine CT volume) were used. Either three or four 

couch positions were acquired per patient, enough to fully cover the extent o f the 

tumour and its respiratory motion. Table 3.1 gives the number o f couch position, as well 

as the other details o f the data, acquired for each o f the patient.

The Philips MX8000 scanner uses the stop-and-go Cine acquisition method described 

above. A gantry rotation time o f 0.75 seconds was used for patients 1-5. The scanner 

paused for approximately 0.25 seconds between rotations, and 20 volumes were 

acquired at each couch position, so data was acquired for approximately 20 seconds at 

each couch position. For the final patient acquired on the Philips scanner, Patient 6, a
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3.1 - a) Stop-and-go Cine CT acquisition method. The gantry performs a full 360° rotation with the x-ray 

on, acquiring enough data to reconstruct a single volume. There is then a short period of'dead-time' while 

the gantry is stationary and the x-ray is switched off, before the gantry performs another full rotation with 

the x-ray on, acquiring the data for another volume. This is repeated until the desired number o f  volumes 

have been acquired.

b) Continuous Cine CT acquisition method. The gantry is continually rotating and acquiring data (i.e. the 

x-ray is on) for a predetermined period o f  time. Volum es can then be reconstructed from this continuous 

projection data. W e reconstructed a separate volume for each 360° o f  projection data (Volum e data - 

used), although it is possible to achieve a higher imaging frequency by reconstructing temporally adjacent 

volumes from overlapping projection data using the 'sliding window technique' (Volum e data - possible).
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faster gantry rotation time o f 0.42 seconds was used. The pause between rotations was 

again approximately 0.25 seconds but now 30 volumes were acquired at each couch 

position, so the total acquisition time was again approximately 20 seconds per couch 

position.

3.3.2 Cine CT acquisition protocol S

The second Cine CT acquisition protocol was developed for the Siemens Somaton 

Sensation Multi-slice CT scanner and was used to acquire data from five patients. This 

scanner could acquire 12 x 2.4 mm slices, giving a S-I coverage o f 28.8 mm per couch 

position. Each Cine CT volume contained 512 x 512 x 12 voxels with voxel dimensions 

in-slice field o f view o f 500 mm. The standard x-ray tube voltage o f 120 kV was used 

but the x-ray tube current was lowered from the standard value o f 80 mAs to 40 mAs 

(per Cine CT). Seven couch positions were acquired per patient.

The Siemens Somaton Sensation scanner uses the continuous Cine acquisition method 

described earlier. A gantry rotation time o f 0.5 seconds was used and data was acquired 

over 20 seconds. The sliding window technique was not employed so 40 volumes were 

reconstructed per couch position.

3.3.3 Discussion of Cine CT issues

Cine CT was chosen as the method o f acquiring internal respiratory data for a number 

o f reasons. 3D volumes that were o f high enough quality to permit non-rigid registration 

were required for building the motion models. This meant that either CT or MR data 

was required. In addition the data needed to be acquired while the patient was freely 

breathing, as they would be during RT treatment. It has been suggested that it may be 

possible to use volumes acquired at breath-hold, and to interpolate these to predict the 

anatomy during free breathing (see Section 2.5.2), although studies by other members o f 

our group on MR data (Blackall et al. 2006), and performed as part o f this research on 

CT data (see Section 7.3) have shown that breath-hold images are not a good predictor 

o f free breathing motion. It was decided that this research would focus on the use o f CT 

data, as CT data is currently required for RT planning, and because at the start o f this
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research MR images o f the lung were not o f high enough quality to permit non-rigid 

registration (Blackall et al. 2006). However, recent developments by other researchers 

from our group and from collaborating institutions have enabled high quality MR 

volumes, which cover the entire lungs and permit non-rigid registration, to be acquired 

at a temporal resolution comparable to cine CT while the patient is freely breathing 

(Miquel et al. 2007). These developments mean that MR could become a very useful 

modality for studying respiratory motion, and especially its variation, in the future.

It was decided that acquiring data over approximately 20 seconds (at each couch 

position), corresponding to 3-6 breath cycles in most patients, was a good balance 

between sampling some o f the inter-cycle variation and not excessively increasing the 

scan time or the radiation dose delivered to the patient from the scan. In order to fully 

study and possibly model the inter-cycle variation it is expected that it would be 

necessary to acquire data for longer periods o f time, and over multiple sessions for 

studying longer term (i.e. inter-fraction) variation. Such studies are very difficult with 

current CT technology as the radiation they deliver to the patient limits the length and 

number o f CT scans that a patient can undergo. Therefore it was decided that devising 

methods o f acquiring enough data to fully sample the inter-cycle variation was beyond 

the scope o f this PhD project.

A gantry rotation time o f 0.75 seconds was initially used as this was the default rotation 

time on the Philips scanner for Cine acquisition. This scanner was only capable o f 

acquiring Cine data using the stop-and-go method. The pause time between gantry 

rotation could not be manually set, and was approximately 0.25 seconds. During the 

course o f the research it was discovered that a faster rotation time o f 0.42 seconds could 

be used. This meant that each volume was acquired in less time and so should be less 

susceptible to motion artefacts (Figure 3.2).

The faster gantry rotation time also meant that the number o f volumes that could be 

acquired over the same 20 second period could be increased from 20 to 30, giving a 

higher temporal resolution, and hence more detailed information on the motion 

occurring during this time. However, the image quality depends on the amount o f x-ray 

radiation delivered to the patient while acquiring each volume, the less radiation the 

more noise is present in the volume. Hence acquiring more volumes either means 

increasing the noise in the volumes or increasing the dose o f radiation delivered to the 

patient. For the initial increase from 20 to 30 volumes it was decided to maintain the
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Figure 3.2 - a) a slice from a Cine CT volume acquired from patient 5 at a phase close to mid-inhalation 

(-25%) on the Philips MX8000 CT scanner, b) a slice from a Cine CT volume acquired from patient 8 at 

a phase close to mid-inhalation (-25% ) on the Siemens Somaton Sensation CT scanner. It can be seen 

that the Cine CT volume from patient 5, which was acquired with a gantry rotation time o f 0.75 seconds, 

contains much more severe motion artefacts (particularly in right lung, circled) than the Cine CT volume 

from patient 8, which was acquired with a gantry rotation time o f 0.5 seconds. A direct comparison of  

motion artefacts is not possible as the scans are of different patients. Note, not all Cine CT volumes 

acquired with a 0.75 second gantry rotation time contained severe motion artefacts, the example shown is 

one of the worst cases observed. The 'false' edges produced by using an insufficient field-of-view can be 

seen in the Cine CT volume from patient 5 (indicated by arrows).
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image quality and increase the radiation delivered to the patient, as the total radiation 

was still well within the limits for which ethical approval had been obtained (as only 

three couch positions were acquired for this patient the total number o f Cine CT 

volumes acquired over all couch positions only increased from 80 to 90).

The fastest available gantry rotation time, 0.5 seconds, was used on the Siemens 

scanner. This scanner could acquire Cine CT data using both the continuous and stop- 

and-go methods. It was decided to use the continuous method as this gave a higher 

temporal resolution. The sliding window technique could have been used to reconstruct 

more volumes from the data and so increase the temporal resolution even further. This 

was not done as there was already a considerable amount o f data to process for each 

patient, and the temporal resolution was already better than had been possible using the 

Philips scanner. Further research needs to be conducted to assess the effects o f the 

temporal resolution on the motion model's accuracy and the amount o f processing 

required to construct them.

As more volumes were acquired at each couch position (and more couch positions were 

acquired) with the Siemens scanner, it was necessary to reduce the x-ray tube current 

from the default 80 mAs per Cine CT volume to 40 mAs to prevent the x-ray tube from 

overheating and to reduce the radiation dose delivered to the patient (although the total 

dose using 80 mAs would still have just been within the limits o f our ethics approval). 

Test volumes o f a specially designed phantom acquired using 80 mAs and 40 mAs 

indicated that this reduction in the x-ray tube current caused little degradation in image 

quality, and it was not expected to affect the accuracy o f the non-rigid registrations 

performed on the Cine CT volumes. Although further reductions in the x-ray tube 

current (or x-ray tube voltage) may noticeably degrade the image quality, the motion 

models presented in this thesis only require the Cine CT images to be o f high enough 

quality to permit accurate non-rigid registration. It is thought that this will still be 

possible with images that are considerably lower than diagnostic quality. Therefore it is 

expected that the imaging dose delivered to the patient could be further reduced without 

affecting the accuracy o f the motion models built from the data. More tests would be 

required to establish how much the imaging dose could be reduced without having an 

adverse effect, but it is estimated that reductions o f one or even two orders o f magnitude 

may be possible.
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The minimum slice thickness and maximum number o f slices permitted by both 

scanners were used so as to give the best spatial resolution over the largest area. The 

Siemens scanner covered a slightly larger area at each couch position, but the Philips 

scanner acquired more slices and these were considerably thinner, giving a higher 

spatial resolution than for the Siemens scanner. The higher spatial resolution should 

permit more accurate non-rigid registrations, and hence more accurate motion models. 

However, it is not clear whether the higher temporal resolution provided by the Siemens 

scanner or the higher spatial resolution provided by the Philips scanner will result in a 

more accurate motion model, and this will need to be further investigated in the future.

For the early acquisitions (on the Philips scanner) it was decided to only acquire enough 

couch positions to fully cover the tumour and the extent o f its motion, as this is the most 

important area to validate the models on. It is acknowledged that data would be required 

over more couch positions for accurate dose calculations and clinical use, but it was 

thought that three or four couch positions per patients provided enough data to validate 

the motion models while not exposing the patients to excessive radiation dose or scan 

times. For later acquisitions (on the Siemens scanner) it was decided to increase the 

number o f couch positions acquired to seven, so as to allow dose calculations (being 

undertaken by collaborating researchers) to be performed on the motion models results.

It is again acknowledged that more couch positions may be required for some patients in 

clinical situations.

The standard (in slice) field-of-view o f 350 mm used on the Philips scanner meant that 

for most Cine CT volumes some o f the anatomy lay outside o f the field o f view and was 

not reconstructed, producing 'false' edges in the volumes (Figure 3.2). These 'false' 

edges had to be correctly accounted for when performing registrations on the data (see 

Section 4.1.2) and meant that the models could not accurately predict the anatomy in 

these regions. The Philips scanner did allow an extended field-of-view to be used, but 

the problems caused by the standard field-of-view were not fully realised until after all 

the data had been acquired on the Philips scanner. The extended field-of-view o f 500 

mm was used on the Siemens scanner as this was large enough to include all o f the 

anatomy and prevent any 'false' edges from being produced.
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3.4 Reference CT volume

A reference volume that contains all o f the anatomy being modelled is also required for 

the motion models. As it is desirable to use a high quality, artefact free, volume as the 

reference volume, it was decided to acquire the reference volume at breath-hold. The 

breath-holds were performed at tidal exhale. This was initially thought to be a fairly 

arbitrary decision, and exhale was chosen as it has been shown by others that the 

location o f the tumour is more reproducible at exhale (Seppenwoolde et al. 2002). 

However, reproducibility is only important if  the Cine CT volumes are being 

concatenating together into a 4DCT volume, and this is being used as the reference 

volume (as has been proposed by other groups, Flampouri et al. 2006). As the reference 

volume used here is acquired in a single breath-hold reproducibility is not an issue. 

However, residual motion and gradual drifts during the breath-hold become a concern, 

and may be difficult to detect in the reconstructed volumes.

It could be argued that acquiring the breath-hold at inhale may be a better choice, as it is 

easier to hold your breath at inhale, and so there is less chance o f the patient moving due 

to getting short o f breath. However, it could also be argued that the anatomy occupies 

less space at exhale, enabling a smaller volume to be acquired which will take less time, 

and hence have less chance o f patient motion. None o f the breath-hold volumes 

acquired at exhale (or at inhale) have shown any signs o f patient motion, even though 

some o f the breath-hold scans can take up to 25 seconds. One reason that this has not 

yet caused problems may be that the longer scans are required by patients with larger 

lungs, who are probably more capable o f holding their breath.

There are further advantages to both inhale and exhale breath-holds being used as the 

reference scans. The anatomy will appear larger in the inhale scan, so will be imaged in 

more detail, and that the registrations will be contracting the anatomy rather than 

expanding it. However, there is some evidence that the exhale breath hold scan is more 

similar to the free breathing anatomy (see section 7.3), so the registrations may have 

less deformation to account for when using an exhale breath hold. More detailed studies 

are required comparing the different possible reference volumes before any conclusions 

can be drawn as to which will produce the best results.

The breath-hold volumes had voxel dimensions o f 0.98 mm x 0.98 mm x 1 mm. Each 

slice had a field o f view o f 500 mm and contained 5 1 2 x5 12  voxels. Enough slices were
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used to fully cover both lungs and 5-10 mm above and below the lungs (Figure 3.3). 

The number of slices required ranged between 224 and 355. A 2D projection "scout 

scan" was acquired prior to the rest of the CT data so that the coverage of the reference 

volume and the couch positions for the Cine CT scans could be set correctly.

Figure 3.3 - A coronal slice from a reference CT volume covering the entire lungs acquired during an 

end-exhale breath-hold (from patient 7). It can be seen that the image is high quality and free o f  motion 

artefacts.
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3.5 Respiratory surrogate signal and respiratory parameters

In order to construct the motion models the respiratory parameters, such as phase, that 

correspond to each o f the Cine CT volumes need to be calculated. Although it may be 

possible to do this directly from the internal data, if  the respiration is going to be 

monitored during treatment (e.g. for gated or tracked treatment deliveries) it would be 

preferable to use the same (or a similar) respiratory surrogate signal and parameters that 

will be used to monitor the respiration during treatment.

3.5.1 Respiratory surrogate signals

3.5.1.1 Patients 1-4: extracted from the Cine CT volumes

There was no external respiratory surrogate signal acquired for the first four patients as 

this data had been acquired prior to the start o f my PhD. Therefore the respiratory signal 

had to be derived from the Cine CT volumes. The skin surface was located in each 

volume. This could be achieved accurately using a simple thresh-holding method as 

there is a clear distinction between the skin and the surrounding air in the Cine CT 

volumes. The height o f the skin surface was summed over all locations in the volumes 

so as to reduce the noise in the resulting respiratory signal.

3.5.1.2 Patients 5-6: Polaris IR tracking system

For patients 5 and 6 the respiratory signal was generated by measuring the location of 

an Infra-Red (IR) reflective marker attached to the patient’s abdomen (approximately 

midway between the Umbilicus and the Xiphistemum) using the Polaris IR tracking 

system (NDI, Waterloo, Ontario, Canada). This recorded the 3D location o f the 

reflective marker approximately 15 times per second. A ID signal was generated from 

the 3D locations by applying Principle Components Analysis (PCA) and using the first 

principle component as the respiratory signal. A stationary marker was also attached to 

the CT couch so that couch motion between different couch positions could be corrected 

for, giving a consistent signal across all couch positions.



Figure 3.4 - Example 3D skin surface acquired by Vision RT system from patient 7. You can see that 

most o f the abdomen is acquired but some of the chest is not acquired due to occlusion (amount of surface 

acquired depended on patient and couch position). The surfaces from parts of the arms and face can be 

seen in the top half of the image.

3.5.1.3 Patients 7-11: Vision RT 3D surface acquisition system

For patients 7 to 11 the respiratory signal was derived from 3D surfaces acquired using 

a prototype system developed by Vision RT (London, UK). This system can acquire a 

3D surface covering most of the patient's abdomen and part of the chest (Figure 3.4) 

between 10 and 15 times per second. The system employs stereo vision techniques to 

generate the surfaces, and consists of two video cameras and a projector which projects 

a pseudo random speckle pattern that is used to find correspondence in the stereo 

images.
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The respiratory signal was derived from the surfaces using a technique developed by a 

colleague from our laboratory, Segolene Tarte (Tarte et al. 2006). This technique 

calculates the volume between the patient's surfaces and the CT couch to produce a 

respiratory signal. The volume is only calculated within a manually defined bounding 

box to avoid problems with occlusion.

The Vision RT system can reconstruct the 3D surface (and track multiple points on the 

surface) at approximately 10 frames per second (with the exact frame-rate depending on 

the hardware used and the size and resolution o f the surface being reconstructed). 

Currently, the volume calculations are performed 'off-line' after the acquisitions, but it is 

expected that the calculations could be implemented to run in real-time for patient 

monitoring during treatment. The Vision RT system was calibrated so as to have the 

same axis as the CT scanner. This meant that the surfaces from different couch positions 

could easily be shifted to a common reference frame before calculating the volumes, 

giving a consistent signal across all couch positions.

3.5.2 Respiratory parameters

Three different respiratory parameters have been used for this research: the 'phase' o f 

the respiratory cycle, and the 'amplitude' and the 'gradient' o f the respiratory signal. The 

phase o f the respiratory cycle indicates how far through the cycle you are, with one 

point in the respiratory cycle, usually end-exhale, being assigned to 0% (and 100%).

The amplitude of the respiratory signal is just the value o f the signal at the desired time 

point. The gradient o f the respiratory signal is the time derivative o f the signal at the 

desired point in time.

3.5.2.1 Patients 1-4: using Cine CT derived signal

As the respiratory signal generated from the Cine CT volumes had a comparatively low 

temporal resolution it was not possible to accurately discern the end-inhale and end- 

exhale times. Therefore a sine wave was fitted to the respiratory signal using non-linear 

least squares, and the corresponding phase from the sine wave was assigned to each 

Cine CT volume (Figure 3.5).
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Figure 3.5 - Top - plot o f skin height calculated from the Cine CT volumes (blue) for one couch position 

from Patient 3, with the fitted sine wave shown (red). Bottom - phase o f fitted sine wave, markers indicate 

the respiratory phase assigned to the Cine CT volumes.

Although the amplitude value (the height of the skin) was known accurately for each 

Cine CT volume, the area of skin surface used to calculate this value was different for 

each couch position, so the amplitude values were not consistent across different couch 

positions. Due to the low temporal resolution of the signals it was not possible to 

accurately calculate the gradient of the signal. It is thought the phase values from the 

different couch positions should be reasonably consistent as there was only a maximum 

of four contiguous couch positions acquired. However, it is possible that there could 

have been small phase offsets between the respiratory signals generated for different 

couch positions, and having a common respiratory signal for all couch positions would 

be preferable.
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3.5.2.2 Patients 5-11: using external respiratory surrogate signal

The respiratory parameters were derived from the signals acquired with the Polaris 

system and with the Vision RT system using the same method. As the respiratory 

signals were acquired independently to the Cine CT data the respiratory signals need to 

be synchronised to the CT volumes, so that the point on the signal that corresponds to 

each CT volume can be identified.

For patient 5 this was achieved by recording the x-ray "on" light (a small light on the 

CT scanner that illuminates whenever the x-ray is on) using a video camera. However, 

due to a variable frame rate (which was sometimes as low as 5 frames per second) and a 

variable delay between acquiring and time-stamping the images, caused by using a 

relatively low quality camera and acquisition software, this method o f synchronising the 

respiratory signal and Cine CT volumes was not thought to be very accurate.

For patients 6-11 synchronisation was achieved using an external 'x-ray detector' (GM- 

10 Geiger Counter Radiation Detector, Black Cat Systems, Westminster, Maryland). 

This device is connected to the serial port o f a PC, and once initialised sends a signal to 

the computer every time it detects some radiation. The x-ray detector signal was read 

approximately 15 times per second, and had a value o f 0 (or occasionally 1) when the 

CT was not scanning and a value o f 20-50 (depending on how close the detector was 

positioned to the CT bore) when it was.

As each Cine CT volume is acquired over a period o f time the respiratory parameters 

assigned to the volume are those that correspond to the mid-time o f the acquisition 

period for that volume. As the signals sometimes appeared to contain some noise they 

were first smoothed by convolving them with a Gaussian function with a standard 

deviation o f 1 or 2 samples. The amplitude value was then calculated at the mid-time for 

each Cine CT by linearly interpolating the smoothed respiratory signal. The gradient of 

the signal was calculated by finding the difference and elapsed time between successive 

points in the signal, and then linearly interpolating these values to obtain the gradient 

value at the Cine CT mid-times.

To calculate the respiratory phase from the Polaris and Vision RT signals the end- 

exhale and end-inhale times were established. This was performed semi-automatically 

by finding the zero-crossings o f the gradient o f the signal. For a few couch positions 

from some patients extraneous zero-crossing were found that did not correspond to an
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end-inhale or end-exhale time, and these needed to be manually detected and removed 

(Figure 3.6). The end-exhale times were assigned a phase o f 0% (or 100%). The average 

position o f the end-inhale times relative to the end-exhale time was calculated (for each 

patient), and this value was assigned as the phase o f the end-inhale times (typical value 

between 40% and 60%). The phase at the Cine CT mid-times were then calculated by 

linearly interpolating between the phases assigned to the end-exhale and end-inhale 

times (Figure 3.6).

3.5.3 Discussion of respiratory signal and parameter issues

Although it was possible to produce a respiratory signal directly from the Cine CT 

volumes for patients 1-4, this signal had a number o f disadvantages compared to the 

external signals later acquired with the Polaris and Vision RT systems. The signal from 

the Cine CT volumes had a low temporal resolution (approximately 1 frame per second) 

making it difficult to accurately calculate the phase and gradient parameters. The signals 

for different couch positions were derived from different parts o f the skin surface, so it 

would not be possible to reliably combine the results o f the models from different couch 

positions built using the amplitude values. As there appeared to be no phase offsets 

between the different couch positions it should be possible to combine the results of 

models built using phase from different couch positions. All o f the Cine CT signals 

were derived from the skin surface in the chest region, which often exhibits less motion 

than the abdominal skin surface (and the internal anatomy). In addition, it is not possible 

to calculate the respiratory signal from the Cine CT volumes during treatment, although 

a signal derived from the same region o f skin surface could potentially be acquired with 

the Vision RT system.

The signal acquired by the Polaris system (after being reduced to one dimension using 

PC A) is very similar to the signal acquired by the RPM system (made by Varian), 

which is one o f the most commonly used respiratory monitoring systems. However, 

both the Polaris and the RPM system are susceptible to the problem that the signal can 

be very dependent on the location o f the marker. It was possible to track multiple 

markers with the Polaris system (e.g. one on the chest and one on the abdomen), but due 

to difficulties attaching the markers this was not successively achieved for either patient 

(the RPM system can only track the displacement at one location).
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Figure 3.6 - Top and middle - respiratory signal generated from Vision RT surfaces, before 
(black) and after (blue) smoothing. Top - automatically detected end-inhale (green) and end- 
exhale (red) times, showing how spurious end-inhale and end-exhale times can sometimes be 
detected. Middle - the spurious end-inhale and end-exhale times need to be manually removed. 
Bottom - the respiratory phase calculated from the corrected end-inhale and end-exhale times 
(the markers indicate the mid-times of the Cine CT volumes).
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It has been possible to assess the timing o f the x-ray detector and Vision RT system, as 

the images from the Vision RT camera (from which the surfaces are reconstructed) 

contain the x-ray "on" light. This means that the CT times can be calculated using two 

entirely independent methods, the x-ray detector and the x-ray "on" light in the images. 

As the Vision RT camera and acquisition software is considerably superior to that 

which was used with patient 5 for recording the x-ray "on" light, it was thought that the 

errors associated with the x-ray light times should be far smaller. The Cine CT times 

given by both systems were mostly within 0.1 second o f each other, and were always 

within 0.2 seconds o f each other. These results help to give confidence in the timing 

information provided by the x-ray detector.

There are many different ways o f generating respiratory signals from the Vision RT 

surfaces, including the tracking o f one or more 'virtual' points placed anywhere on the 

skin surface producing similar signals to those acquired with the Polaris system (but not 

requiring any physical markers). Future studies are required to compare models 

constructed using the different signals and establish which signal (or combination o f 

signals) is best for predicting the internal motion. These studies were beyond the scope 

o f this PhD, so it was decided that for this research the respiratory signal from the 

Vision RT surfaces would be generated by calculating the volume between the patient's 

surface and the CT couch. In theory the change in this volume should correspond to the 

volume o f air that has been inhaled or exhaled, so the signal derived from the surface 

volumes should be very similar to one which would be measured by a spirometer but 

without the baseline drift often observed with spirometers (Tarte et al. 2005). It is 

thought that a spirometer like signal derived from the whole surface (or as much as 

possible, as the complete surface is not acquired) will be better for modelling the 

respiratory motion than a signal derived from a single point on the surface (Lu 2005b), 

although more thorough investigations need to be conducted to confirm (or disprove) 

this hypothesis.

It is acknowledged that fitting a sine wave to the Cine CT signal is not a very accurate 

method o f calculating the phase, particularly if  the respiration is not very regular, and 

that there will be errors in the assigned phase values that may result in less accurate 

models. However, due to the low temporal resolution o f the signal a more accurate 

method o f assigning the phase could not be devised. The method o f calculating the 

phase from the Polaris and Vision RT signals was much more accurate, and could 

correctly assign phase values in the presence o f irregular breathing. There was only one
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couch position (couch position 1 from patient 7) where it was not possible to assign 

phase values to some o f the Cine CT volumes due to extremely irregular respiration. As 

this couch positions was the most Superior couch position and only contained a few 

slices o f lung, it was expected that there would be very little motion occurring at this 

couch position anyway, and it was decided to exclude the data from this couch position 

from the motion modelling (but not registration) experiments.

Neither o f the methods for calculating the phase values could be implemented to run in 

real-time, so neither could be used to monitor the patient's respiration during treatment. 

Methods o f calculating the phase in real-time exist and are available with some 

commercial products (e.g. the RPM system from Varian), so monitoring the phase 

during treatment is feasible. It would have been more meaningful to have calculated the 

phase for the models using a method that could also have been used to calculate the 

phase during treatment, but devising an accurate method o f calculating the phase in real

time is non-trivial and was beyond the scope o f this PhD, and none o f the commercial 

real-time phase detection systems were available.

3.6 Summary

This chapter has described the data that was acquired for constructing the motion 

models and the protocols used for acquiring this data, and has discussed many o f the 

issues relevant to the data acquisition. Cine CT data was acquired at several couch 

positions per patient while they were freely breathing to study the motion o f the internal 

anatomy during respiration. A respiratory signal was simultaneously acquired for 

calculating the phase, amplitude, and gradient respiratory parameters. This was derived 

directly from the Cine CT volumes for some patients (1-4), acquired using the Polaris 

system for some patients (5-6), and acquired using the Vision RT system for the others 

(7-11). Also, a reference CT volume was acquired for each patient. This was acquired at 

tidal exhale breath-hold so that the volume was high quality and artefact free.
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Chapter 4

Non-rigid registrations

This chapter describes the non-rigid registrations that have been performed and 

evaluates their results. In order to construct the motion models described in chapters 5 

and 6 it is necessary to register the reference CT volume to the Cine CT volumes. The 

registrations will then describe how the anatomy in the reference volume has moved and 

deformed, so as to appear as it does in the Cine CT volumes.

4.1 Protocols used for registering lung Cine CT volumes

All the registrations that have been performed as part o f this work have used a B-spline 

transformation model (see Section 2.4.1.3.2). The main reasons for this were that the B- 

spline transformation model was well understood and produced good results in the 

majority o f cases. Another advantage o f using the B-spline transformation model over a
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non-parametric transformation model is that the displacement o f each control point can 

be modelled rather than the displacement o f each voxel, resulting in more compact 

models. Sum of Square Differences (SSD) has been used as the similarity measure for 

all registration performed as part o f this research, as the anatomy will have the same 

intensities in both images being registered (neglecting density change effects and image 

noise). Density change effects have not been explicitly addressed when performing the 

registrations, as it was thought that the structure within the lungs combined with the 

inherent smoothness o f the B-spline transformation model will prevent the density 

change effect causing errors in the registrations. The gradient descent (estimated via 

finite differences) optimisation method has been used for these registrations as it is 

easily understood and there was a useable implementation already available within our 

laboratory.

The same transformation model and general algorithm have been used for all o f the lung 

Cine CT registrations performed throughout the course o f this research but the 

parameters used and the protocol followed for the registrations have evolved during the 

research. There are three main registration protocols that have been used at some time 

during the research. There now follows a brief description o f each, the differences 

between them, and the reasons for changing them.

4.1.1 Registration protocol 1

The registrations that were initially used to construct the motion models were performed 

by Adam Chandler as part o f the work for his PhD (Chandler 2005). Prior to performing 

the registrations the ipsilateral lung was segmented in each o f the Cine CT volumes, the 

Target images, to prevent problems caused by sliding tissue (see Section 2.4.5.2) and to 

speed up the registrations. Although the segmentation was performed semi- 

automatically (using the Analyze software package, Mayo Clinic, Rochester,

Minnesota) it could still take up to a few hours per patient due to the large amount of 

data. Only one image resolution, with the original voxel dimensions (0.68 mm x 0.68 

mm x 1.5 mm) was used for the registrations. The control point spacing was 

approximately 20 mm in plane but only 3.75 mm through plane. Normalise Mutual 

Information (NMI) was used as the similarity measure. The full parameters used for the 

registrations are given in chapter 7 o f Adam Chandler’s PhD thesis (Chandler 2005).
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Each registration result had an affine and a B-spline component. It was decided to 

'incorporate* the affine component into the B-spline transformation, so that only the B- 

spline control point displacements would need to be modelled. This was done by 

applying the affine transformation at the location o f each o f the B-spline control points 

to find the displacement from the affine transformation, and adding this to the control 

point displacement. The error in incorporating the affine component into the B-spline 

transformation in this way was assessed on several registrations and in all cases was 

found to be in the order o f 10'14 mm, i.e. negligible.

4.1.2 Registration protocol 2

So that the motion models could be used to perform full dosimetric calculations it was 

decided to attempt to perform the registrations on the entire anatomy and not just the 

segmented ipsilateral lung. This meant that the run time was increased considerably (as 

many more voxels are involved in the registrations) and the results were susceptible to 

problems caused by sliding tissue. All voxels outside o f the patient were set to the 

background value using a simple thresh-holding technique. A 'border' o f approximately 

10 voxels outside the patient’s skin was left with its original intensity values so that the 

skin surface would be used to guide the registrations. Care had to be taken with the 

images that had been reconstructed using the standard field o f view as they contained 

some 'false' edges due to truncation at the edge o f the field o f view (see Section 3.3.3 

and Figure 3.2). These 'false' edges had to be ignored in the registrations since a 

corresponding edge was not present in the reference images. This was achieved by only 

leaving the border of voxels at 'real' edges caused by the skin surface, and not at the 

false edges caused by the restricted field o f view.

Again, each Cine CT was registered independently and an affine registration was 

initially performed. The affine registrations were performed with the same parameters 

that had been previously used for the segmented lung registrations. As these produced 

reasonable results, achieved a relatively short run time in comparison to the non-rigid 

registrations, and were only being used to obtain a good starting estimate for the B- 

spline registrations, the affine parameters were not investigated further.

The B-spline registrations used a multi-resolution approach for the images but not for 

the CP (Control Point) grid. The registration were run with two image resolution levels,
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with voxel dimensions o f 2.72 mm x 2.72 mm x 6 mm (four times the original 

dimensions) and 1.36 mm x 1.36 mm x 3 mm (two times the original dimensions) in the 

target image. Tests were performed that proceeded to use the original images as a third 

resolution level, but these showed that the extra resolution level increased the run time 

o f the registrations by a factor o f 20 with a negligible increase to their accuracy. The B- 

spline CP spacing was approximately 20 mm in all directions.

4.1.3 Registration protocol 3

The final registration protocol employed in this research features a number o f 

improvements over the previous protocols, as well as some modifications so that the 

results from the models for the different couch positions can be combined into a single 

transformation (see Section 5.5).

The registrations for patients 1-6 (who had Cine CT volumes with 1.5 mm slices) were 

again performed using two image resolution levels. However, the images were now re

sampled using 3 mm (x 3mm x 3 mm) isotropic voxels for the first image resolution 

level, and using 1.5 mm isotropic voxels for the second. Isotropic voxels were used so 

that the images had a superior through-slice resolution to the previous protocol, but still 

contained less voxels than the original images (so the registration ran quicker). The 

registrations for patient 7-11 (who had Cine CT volumes with 2.4 mm slices) were only 

performed at a single resolution level using 2.4 mm isotropic voxels. Test registrations 

that started with a coarser image resolution were also performed for these patients, but 

were found to give no improvement over the results using a single resolution level, and 

in some cases made the results worse. The test registrations were performed using both 

4.8 mm followed by 2.4 mm isotropic voxels, and using 3 mm followed by 1.5 mm 

isotropic voxels.

The B-spline registrations were now performed sequentially in a chain, using the result 

from the previous registration as the starting estimate for the next registration. It was 

thought that the previous B-spline registration may provide a better starting estimate 

than an affine registration result, particularly if there were large non-rigid deformations 

occurring. For each couch position the Cine CT volume with a respiratory phase closest 

to end exhale was registered first, and the result o f this registration was then used as 

input to the registrations o f the Cine CT volumes acquired immediately before and after
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the first volume. The result of each registration was then used as input to the registration 

of the next volume until all the volumes from that couch position had been registered. 

This meant that only the first registration used the affine input (approximated as a B- 

spline transformation) the others all used the result from the previous registration. When 

the registrations were performed using two image resolution levels it was the result 

from the first resolution level that was used as input to the next registration.

Usually the CP grid is constructed so that it just covers the image being registered, with 

CPs placed at the edge of the image (and one outside these so that the transformation is 

defined to the edge of the image). However, the registration can be performed using an 

extended CP grid defining a transformation over a larger area (or a smaller one, but then 

the registration will not be defined over the whole image). So that the results from the 

models for the different couch positions can be combined into a single transformation 

(see Section 5.5), the registrations were now performed with an extended CP grid that 

defined a transform over the area covered by all of the couch positions, not just the one 

for the image being registered (Figure 4.1). This meant that some of the CPs had no 

effect on the image being registered and hence were not optimised as part of that 

registration. In order to assess the effects of using the extended CP grid the registrations 

were also performed using a standard CP grid that just defined the transform over the 

image being registered. A CP spacing of approximately 20 mm was again used.

Figure 4.1 - Illustration o f Control Point (CP) placement in the standard (left) and extended (right) CP 

grids. The Cine CT volume being registered (from the most Superior couch position) is shown, the dashed 

lines indicate the other three couch positions where data has been acquired, and the CP positions are 

shown in red. It can be seen that the standard CP grid only covers the image being registered (plus one CP 

outside so that the deformation is defined over the whole image), whereas the extended CP grid covers all 

of the couch positions where data has been acquired.
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4.2 Assessing the lung Cine CT registrations

Assessing non-rigid registrations is a very difficult task and several techniques have 

been employed, described in the following sections.

4.2.1 Assessing the registration performed using protocol 1

The segmented lung registrations (performed using protocol 1) were assessed by Adam 

Chandler as part o f the work for his PhD. The tumour and ipsilateral lung were 

delineated in all o f the Cine CT volumes and the reference volume by a clinical 

oncologist, and these delineations were used to assess the registrations using a number 

o f different measures. For a full explanation o f these measures see chapter 7 o f Adam 

Chandler’s PhD thesis (Chandler 2005).

After studying the results it was discovered that there were some large inconsistencies 

in the delineations, even though they were all performed by the same clinical oncologist 

in a single session. These were due to ambiguities in the images, particularly for patients 

1 and 3 where the tumour is located at the edge o f the lung, making the tumour and the 

lung boundaries very hard to identity. These inconsistencies reduced the values o f the 

accuracy measures and meant that the results were less meaningful as it was often found 

that it was the delineations rather than the registrations that were the cause o f bad 

results. For these reasons it was decided not to use delineations for assessing the 

accuracy o f the results from the other registration protocols.

4.2.2 Assessing the registration performed using protocol 2

The registration results achieved using registration protocol 2 were assessed using two 

techniques.

4.2.2.1 Expert visual assessment

The reference CT was deformed by each o f the registration results and was compared to 

the corresponding Cine CT volume to visually assess the registration results. For each
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result three orthogonal slices passing through the centre o f the tumour were selected. A 

combination o f overlays and interactive displays were then used to examine the 

differences between the deformed and the target volume, and, where necessary, direct 

measurements o f the degree o f misalignment were taken.

Each o f the results were given three scores by a clinical oncologist, firstly for the 

tumour, secondly for the ipsilateral lung, and thirdly for any other tissue. This is 

because it is more important to predict the motion o f the tumour and (to a lesser degree) 

the ipsilateral lung correctly, as most o f the dose will be distributed in these regions.

The results were scored according to the following criteria:

1. No visually detectable misalignment over 1.5 mm (one slice thickness).

2. No visually detectable misalignment over 4.5 mm (three times the slice 

thickness).

3. Visually detectable misalignment over 4.5 mm.

We specified that at least 90% o f the region o f interest must meet the criteria above for 

that region to be given the corresponding score, so that very small areas of 

misalignment would not affect the score for the whole region. Figure 4.2 shows some 

example registration results to demonstrate the visual assessment scoring. There is an 

example o f a ‘bad’ registration, which was given a score o f 2 for the tumour and 3 for 

the ipsilateral lung and the other tissue, and an example o f a ‘good’ registration, which 

was given a score o f 1 for all regions.

In order to assess the intra-user reproducibility of the visual assessment, it was repeated 

for two patients (using a total o f 170 registrations) a few weeks after the initial 

assessment by the same clinical oncologist.

4.2.2.2 Landmark tracking

A clinical oncologist was asked to select an easily identifiable anatomical point, a 

landmark, in each o f the Cine CT volumes acquired for a particular couch position, and 

then to attempt to identify the same landmark in the reference volume.



Figure 4.2 -  Example registration results (from patient 2) to demonstrate the visual assessment scoring. 

The results are displayed using a colour overlay, with the Cine CT shown in red and the reference volume 

deformed by the registration result shown in cyan. This causes voxels which have the same intensity in 

each volume to appear grey. Top -  example o f a ‘bad’ registration, which received a score of 2 for the 

tumour and 3 for the ipsilateral lung and other tissue when being visually assessed. Bottom -  example of 

a ‘good’ registration, which received a score of 1 for all regions.

This was repeated using a different landmark for each couch position, for all couch 

positions from each of the five patients that this registration protocol was assessed on. 

Although only one landmark was chosen per couch position, a variety of different 

landmarks were chosen overall, including some which exhibited negligible motion over
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the respiratory cycle, some which exhibited similar motion to the tumours over the 

respiratory cycle (including some landmarks within or on the boundary o f the tumours), 

and landmarks that exhibited different motion to the tumours over the respiratory cycle. 

For all o f the couch positions, landmarks were chosen that remained within the extent of 

the Cine CT volume for all o f the volumes acquired.

The clinical oncologist then attempted to re-identify the same landmark in the Cine CT 

volumes on a different occasion, in order to estimate the localization error for manually 

identifying the landmarks. It should be noted that this is only an estimate o f the error for 

identifying the landmark in the same volume, and not the error for identifying the same 

landmark in different volumes, which may well be larger.

The reference landmark was transformed using an estimate o f the inverse o f each o f the 

non-rigid registration results (see Appendix A). For each Cine CT volume, the 

Euclidean distance was calculated between the two locations o f the landmark identified 

on different occasions -  an estimate o f the manual Target Localisation Error (TLE), and 

the midpoint o f the two landmark locations and the reference point transformed by the 

(inverse o f the) non-rigid registration result -  an estimate o f the Target Registration 

Error (TRE). The distance between the Cine CT landmarks and the reference points 

prior to registration, the Target Error Before Registration (TEBR), was also calculated. 

To calculate meaningful TEBR values a rigid registration was used to align the 

reference and Cine CT spaces. The rigid registration was performed once per patient 

between the spine in the reference image and the spine in the model predicted end 

exhale volume (over all couch positions from the combined model, see section 5.5).

4.2.3 Assessing the registration performed using protocol 3

The results from registration protocol 3 were assessed using similar techniques to those 

used for assessing protocol 2. Visual assessment was again performed, but this was only 

done subjectively to see if  any large errors had occurred, and was not performed by a 

clinical expert or scored as before. Landmark tracking was performed in exactly the 

same way as for the previous protocol, and the same landmarks were used for the 

patients that were registered using both protocols. The registrations performed with the 

standard CP grid and the registrations performed with the extended CP grid were both 

assessed so that the effects of using the extended grid could be evaluated.
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4.3 Results of assessing the lung Cine CT registrations

4.3.1 Results of assessing the registrations performed using protocol 1

Registrations protocol 1 was assessed on data from four patients (1, 2, 4, and 5) using a 

total o f 330 registrations. The mean (standard deviation) percentage overlap was 95.4% 

(0.01%) for the lung delineations, and 86.62% (0.03%) for the tumour delineations. The 

mean error for the centre o f mass o f the tumour was 1.79 mm, and the mean error at the 

edge o f the tumour was 2.30 mm. More detailed results can be found in Chapter 7 of 

Adam Chandler’s PhD thesis (Chandler 2005). As previously mentioned the results 

were strongly affected by inconsistencies in the segmentations, but still indicated that 

the registrations had done a reasonably good job o f recovering the deformation.

4.3.2 Results of assessing the registrations performed using protocol 2

Registration protocol 2 has been assessed on data from five patients (2-6) using a total 

o f 330 registrations. The registrations were also attempted on another patient (1) but the 

registrations were judged to have failed and so were not assessed further. The reason 

that the registrations failed for this patient was because o f the sliding tissue problem 

(see Section 2.4.5.2). The tumour was located very near the back edge o f the lung in 

close proximity to the ribs, and the tumour would slide past the ribs during respiration. 

The sliding tissue problem appears to have only caused small errors, if  any, in the 

results for the other patients.

The exact run time taken for the registrations was not recorded but was between one and 

three hours (on a 2 GHz CPU) for most o f the registrations. These results were first 

published in McClelland et al. (2006a).

4.3.2.1 Expert visual assessment results

The registrations were scored in three regions, the tumour, the ipsilateral lung, and the 

rest o f the anatomy. For the tumour 64.7% of the registrations were given a score o f 1 

(no visually detectable misalignment over 1.5 mm), 33.6% a score o f 2 (no visually 

detectable misalignment over 4.5 mm), and only 1.7% a score o f 3 (visually detectable
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misalignment over 4.5 mm). These results are encouraging with the tumour very rarely 

exhibiting large errors. For the ipsilateral lung 41.3% of the registrations were given a 

score o f 1, 49.8% a score of 2, and 8.8% a score o f 3. Most o f the registrations still 

exhibited reasonable alignment for the ipsilateral, lung but there was more misalignment 

than for the tumour as it was not always possible to correctly align all o f the internal 

structure o f the lung using the 20 mm control point spacing chosen. For the rest o f the 

anatomy only 2.4% o f the registrations were given a score o f 1, 80.9% a score o f 2, and 

16.7% a score o f 3. There was more misalignment exhibited for the rest o f the anatomy 

but this was expected as all o f the remaining anatomy were considered and there were 

frequently small changes in posture or other changes such as the patient swallowing for 

which the full motion and deformation could not be recovered using the control point 

spacing chosen. However, these misalignments were mostly less than 4.5 mm, and 

restricted to small areas that would generally have a negligible effect on any 

radiotherapy plans and calculations.

Given the subjective nature o f the visual assessment, and that there was no guarantee 

that exactly the same three orthogonal slices were chosen when the experiment was 

repeated, the results demonstrated a good degree o f reproducibility. None o f the repeat 

scores differed from the original by 2, i.e. none o f the results were given a score o f 1 on 

one occasion and 3 on the other. For the tumour 70% of the repeat scores were the same 

as the original scores, for the ipsilateral lung 71.2% of the repeat scores were the same, 

and for the “other tissue” 91.2% of the repeat scores were the same.

4.3.2.2 Landmark tracking results

The mean, standard deviation, and maximum value for the Target Error Before 

Registration (TEBR), the Target Localisation Error (TLE) and the Target Registration 

Error (TRE) for each patient, and over all patients that were assessed, can be found in 

Table 4.1. It can be seen that the landmarks can be located very accurately, with a mean 

TLE o f 0.85 mm, just over half a slice thickness (0.75 mm), and a maximum TLE of 

2.76 mm, under 2 slice thicknesses (3 mm). The registrations have also performed very 

well with a mean error over all the data o f 1.26 mm, less than the slice thickness o f 1.5 

mm. The standard deviation o f the TREs is very similar to that o f the TLEs, 0.67 and 

0.64 respectively. The maximum TRE of 6.24 mm is reasonable, but when the results
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for each patient are examined, it can be seen that only one o f the five patients had a 

maximum TRE this high (patient 2), and the maximum for the other four is 3.32 mm, 

indicating that the maximum TRE is just over two slice thicknesses for most patients. 

The TEBR values show that without performing the non-rigid registrations there are 

relatively large errors, as would be expected due to the fact that (at least some of) the 

landmark points move with respiration, and because the reference volume is acquired at 

breath-hold which does not always give a good representation o f the anatomy during 

free breathing (see section 7.3).

Patient
TEBR (mm) 

Mean a Max.

TLE (mm) 

Mean a Max.

TRE (mm) 

Mean a Max.

2 4.95 2.19 11.25 0.72 0.48 2.08 1.65 0.92 6.24

3 5.48 2.70 11.65 0.76 0.58 2.18 1.14 0.53 3.28

4 4.49 2.49 10.58 0.47 0.55 2.23 1.07 0.64 3.32

5 5.08 2.44 10.51 1.35 0.54 2.76 1.39 0.68 2.99

6 4.58 1.88 10.00 0.92 0.67 2.73 1.17 0.45 2.17

All 4.87 2.35 11.65 0.85 0.64 2.76 1.26 0.67 6.24

Table 4.1 - The landmark tracking results for registration protocol 2. The mean, standard deviation (a) ,  

and maximum Target Error Before Registration (TEBR), Target Localisation Error (TLE), and Target 

Registration Error (TRE) are given for each patient and over all patients that were assessed (2-6).

4.3.3 Results of assessing the registrations performed using protocol 3

Registrations from protocol 3 have been assessed on data from seven patients (2-8) 

using a total of 930 registrations. As registration protocol 3 also used images o f the full 

anatomy it was not expected to perform any better that protocol 2 on the data from 

patient 1, so the registrations were not attempted on this patient. However, the 

registrations were attempted on data from a further three patients (9-11) and visual 

inspection revealed that the registrations failed on some o f the Cine CT volumes 

(usually from couch positions nearer the diaphragm) from all o f these patients. It was 

thought that the sliding problem (see Section 2.4.5.2) was again the cause o f some o f the 

failed registrations. The registrations had been successful for many of the Cine CT 

volumes from patients 9-11, and it may have been possible to use the successful 

registration results to construct models for some, if  not all, o f the couch positions from
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these patients. However, it was decided not to use these patients to assess the 

registrations (or construct the motion models) until the cause of the failed registrations 

could be further investigated (and unfortunately this proved to be beyond the scope of 

this PhD).

The results o f the landmark tracking results for patients 2-8 are given in table 4.2. The 

values for the TLE for patients 2-6 are the same as when assessing protocol 2, as the 

same landmark points were used. The mean TLE values for patients 7 and 8 are less 

than for patients 2-6. It is thought that this is because the larger slice thickness used for 

patients 7 and 8 meant that there was less ambiguity about which slice a landmark was 

located in. However, the larger slice thickness used for these patients means that there is 

actually likely to be more error associated with the landmark locations in these patients, 

even though the TLE values were smaller (this is a problem with estimating the TLE in 

this way).

The Target Registration Error (TREstandard) values when using the standard CP (Control 

Point) grid were similar to those from assessing protocol 2. The results for the two 

patients with the larger 2.4 mm slices (patients 7 and 8), were comparable to the results 

for the other patients with 1.5 mm slices (the mean values were slightly better than most 

o f the other patients but the maximum values were worse). The mean value o f the 

TREstandard over all patients was 1.12 mm. The exact run time for all o f the registrations 

was also recorded and the mean time was just over one hour with a maximum run time 

of just under two and a half hours (on a 2 GHz. CPU). The registrations for the patients 

7 and 8 were considerably faster than the other registration (mean time o f approximately 

45 minutes compared to 85 minutes for the other patients) as they only used one image 

resolution level.

The Target Registration Error ( T R E e x t e n d e d )  values for the extended CP grid were similar 

to those for the standard CP grid ( T R E s t a n d a r d ) ,  indicating that using the extended CP 

grid had little effect on the accuracy o f the registrations. However, the run time o f the 

registrations was increased when using the extended CP grid, with a mean run time of 

approximately one and a half hours and a maximum run time o f just over three and a 

half hours.



Patient
TEBR (mm) 

Mean o Max.

TLE (mm)

Mean a Max.

TREstandard (mm) 

Mean a  Max.

TREgxtended (mm) 

Mean o Max.

2 4.95 2.19 11.25 0.72 0.48 2.08 1.72 0.97 6.37 1.76 0.97 6.29

3 5.48 2.70 11.65 0.76 0.58 2.18 1.20 0.46 1.93 1.33 0.53 2.34

4 4.49 2.49 10.58 0.47 0.55 2.23 1.12 0.53 3.43 1.12 0.53 3.23

5 5.08 2.44 10.51 1.35 0.54 2.76 0.98 0.57 2.63 1.05 0.56 2.84

6 4.58 1.88 10.00 0.92 0.67 2.73 1.21 0.49 2.46 1.22 0.50 2.75

7 16.06 3.29 28.53 0.50 0.44 2.60 1.13 0.52 3.61 1.12 0.52 3.21

8 2.59 1.43 7.05 0.55 0.54 2.89 0.97 0.60 3.15 0.97 0.63 3.25

All 7.56 6.18 28.53 0.66 0.58 2.89 1.12 0.61 6.37 1.13 0.62 6.29

Table 4.2 - The landmark tracking results for registration protocol 3. The mean, standard deviation (a), and maximum Target Error Before Registration (TEBR), 
Target Localisation Error (TLE), and Target Registration Error for the registrations with the standard control point grid (TREstandard) and for the registrations with the 
extended control point grid (T R E Extended) are given for each patient and over all patients that protocol 3 was assessed on (2-8).
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4.4 Conclusion

The results show that the registrations used to construct the motion models were 

generally very accurate. Using an extended CP grid does not appear to have any effects 

on the accuracy o f the registrations, but it did cause an increase in their run time 

(although it is thought that was mainly due to using an inefficient implementation o f the 

registration algorithm). The TRE values would indicate that the Cine CT volumes with

2.4 mm slices can be registered just as accurately as the Cine CT volumes with 1.5 mm 

slices. However, the registrations failed for three o f the five patients with 2.4 mm slices, 

compared to only one o f the six patients with 1.5 mm slices, which indicates that the 

thicker slices may be contributing to the failed registrations.

Obviously, having some o f the registrations fail for such a large proportion o f the 

patients (particularly when 2.4 mm slices were used) is very concerning and needs to be 

addressed. Unfortunately, the majority o f these failed registrations were performed 

towards the end o f this research, and so it was deemed beyond the scope o f this PhD to 

address the failed registration. It was thought that the sliding problem (see Section 

2 .4.5.2) was the cause o f many o f the failed registrations, although there are many other 

factors that could have contributed, including: the density change problem (see section 

2.4.5.1), registering relatively thin 'slabs' o f data (only 12 or 16 slices), not having good 

enough starting estimates for the registrations, and possible 'bugs' in the code used to 

perform the registrations.

All of these issues will need to be addressed in future work. In addition, different 

protocols, different implementations o f the B-spline registration algorithm, and different 

registration algorithms all need to be investigated to see if they can improve the 

robustness o f the registrations (without degrading the accuracy). The run time o f the 

registrations also needs to be reduced considerably, although it is thought that the use o f 

more efficient optimisation schemes (Klein et al. 2005) and possibly GPUs (Graphics 

Processing Units, Sharp et al. 2007) should help to achieve this.

In conclusion there remains much work that needs to be done before registrations 

similar to those performed in this chapter are sufficiently robust and fast enough to be 

used routinely in a clinical situation. However, the considerable experience gained from 

performing and evaluating the registration in this chapter has lead me to believe that this
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is an achievable goal, and I expect that many o f the registration problems currently 

faced will be solved in the next few years. Additionally, it should be stressed that the 

main focus o f this PhD has been the construction of the motion models and not on 

performing the registrations. The results in section 4.3 show that the registrations for 

patients 2-8, that have been used for constructing the motion models in the following 

chapters, had a high level o f accuracy (given the resolution o f the data), and should be 

more than sufficient for constructing and assessing the motion models.
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Chapter 5

One parameter motion 

models

This chapter describes how to construct motion models that relate the internal motion to 

a single respiratory parameter, the phase o f the respiratory cycle. It evaluates a number 

o f different potential functions that can be used to describe the relationship between the 

phase and the internal motion. It then assesses the ability o f the motion models to 

predict the CT data. Finally it explains how the model predictions from different couch 

positions can be combined into a single continuous prediction over all o f the couch 

positions.
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5.1 Introduction

The motion models developed for this research are built from the results o f the non- 

rigid registrations described in the previous chapter. The output o f the motion model is a 

non-rigid transformation that can deform the reference CT volume to produce a 

prediction o f the Cine CT volume corresponding to the chosen respiratory parameter. 

The transformation can also be used to propagate target delineations, perform composite 

dose calculations, and to provide the deformation maps required for tracked treatment 

delivery (see Section 7.5). The motion models are continuous in space and over the 

respiratory parameter, allowing the deformation to be calculated at exactly the desired 

point in space and value o f the respiratory parameter.

As the data is acquired for each couch position separately, each couch position must be 

modelled separately. The results from each model can simply be concatenated together 

over all the couch positions. However this will produce discontinuities in the 

deformation field at the boundaries between adjacent couch positions, which can cause 

artefacts in the predicted volumes (similar to, but usually smaller than, those seen in 

4DCT volumes) and errors in planning calculations. A more advanced technique has 

been developed for combining the results from the models for different couch positions 

into a single, continuous, non-rigid transformation and this is described and evaluated in 

Section 5.5.

The motion models in this chapter relate the internal motion to a single respiratory 

parameter. This means that the motion models can model the variations in the 

registration results that correspond to changes in the respiratory parameter, but average 

out variations in the data that occur at the same value o f the respiratory parameter. The 

phase of the respiratory cycle (calculated as described in Section 3.5.2) was used as the 

respiratory parameter. Phase was chosen for a number o f reasons. It is one o f the two 

most widely used parameters in the literature. It could be calculated for the patients for 

whom there was no external respiratory signal (but much less accurately than for those 

which do). The hysteresis that can occur during respiratory motion can be modelled by a 

fully continuous model when phase is used as the respiratory parameter. Amplitude, the 

other popular choice for the respiratory parameter can only model hysteresis when a 

distinction is made between values occurring during inhalation and those occurring 

during exhalation. This effectively constructs two separate models, one for inhalation
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and one for exhalation, and the overall model is no longer continuous (see Section 2.3.2 

and Figure 2.1).

5.2 Constructing the motion models

The B-spline registration results are defined by a regular grid of Control Points (CPs), 

each of which has a 3D displacement associated with it. To construct the motion models 

a separate 1D function is fitted to the displacement of each CP in each of the three 

dimensions. This can be illustrated using a 2D plot with the CP displacement on the 

vertical axis and the phase on the horizontal axis (Figure 5.1). The function is then fitted 

to this data using least squares (implemented in Matlab, MathWorks, Natick, 

Massachusetts, USA). Once the function has been fitted it can be used to predict the 

value of the CP displacement for any desired phase. This can be done for each separate 

function, thus predicting all of the CP displacements, i.e. the full B-spline non-rigid 

transformation.
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Figure 5.1 - Plot showing a ID function (green) relating the Control Point (CP) displacement to the phase 

of the respiratory cycle. The magenta crosses show the values from the registration results for each of the 

20 Cine CT volumes from one couch position.
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5.3 The choice of function for the motion models

In theory any one dimensional function that takes one value as input (the phase) and 

gives another value as output (the value o f the CP displacement) could be used for 

motion models, but some function will obviously be better suited to modelling the 

respiratory motion than other functions. An initial feasibility study was performed for 

the motion models (McClelland et al. 2004). This study visually assessed the results 

from one patient and concluded that the proposed method was feasible. For this initial 

study 3rd order polynomial functions were used for constructing the motion models as 

these functions that had been used in previous work on respiratory motion models in our 

lab (Blackall et al. 2005). However, in the previous work, due to restrictions with the 

image acquisition only half o f the respiratory cycle, from end-exhalation to end- 

inhalation (or vice-versa), was modelled, i.e. the model did not allow for hysteresis. A 

polynomial function was appropriate for the previous models as the position o f the 

anatomy at end-inhalation was different to its position at end-exhalation. The models in 

this chapter are trying to relate the internal motion to the phase o f the respiratory cycle 

and the position o f the anatomy at 100% should be identical to its position at 0%, so a 

periodic function is required for the models. Although polynomial functions can be used 

to model the entire respiratory cycle, they are not periodic functions and without 

additional constraints there is no guarantee that the start and end values will be the 

same, so the models will not be continuous from one respiratory cycle to the next.

5.3.1 Function definitions

Two periodic functions were developed, and their performance was assessed and 

compared to that of the polynomial functions (McClelland et al. 2005a). Two different 

candidate functions were developed. They were both periodic functions, ensuring a 

smooth transition between respiratory cycles. The first function was based on a ID 

approximating cubic B-spline (the ID equivalent o f the B-spline functions used for the 

non-rigid registrations). The function is defined by a number o f control points equally 

spaced over the values o f the phase (0% -100%), and an offset defining where the first 

control point is placed in relation to phase 0%. These control points will be referred to 

as respiratory control points from here on (not to be confused with the control points 

(CPs) in the non-rigid registrations). To make the function periodic the respiratory
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control points are treated as being cyclic over the phase, i.e. a respiratory control point 

that is located at 10% can also be thought o f as being located at 110% (and -90% if  

required). This function will be referred to as the cyclic B-spline function from now on.

The value o f a cyclic B-spline function, FcBnip)> with n respiratory control points,

</>x, (f>2,...,(j>n, and an offset o f o%, at phasep%  is given by:

F CBn { P ) = Y B I ( M V . + / ( m o d  „ )
/=0

[5.1]

c 100% . 
where: o  -------- , i

p - o
— 1, u =

p - o p - o
, and B, represents the /-th

basis function o f the B-spline, given in [2.2]. Figure 5.2 shows an example o f the cyclic 

B-spline function.

The second function that was defined was based on a Fourier series representation o f a 

periodic signal using a limited number o f harmonic frequencies. It is defined by the 

amplitude and phase offset o f each frequency component used plus the zero frequency 

value. As the function is a Fourier series it is by definition periodic. This function 

defined using a Fourier series will be referred to as the Fourier series function from now 

on.

The value o f the Fourier series function, FFSn(p), defined by n frequencies components 

having amplitudes a x, a 2,..., a n and phase offsets cox, co2,..., con, and a zero frequency

value o f a 0 at phase p%  is given by:

n

(p ) = «o + Z  a i sin(2™P + " , )
(=1

[5.2]

Figure 5.3 shows an example o f the Fourier series function.
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Figure 5.2 - An example of the cyclic B-spline function with four respiratory control points, relating the 

phase of the respiratory cycle to the registration Control Point (CP) displacement. The respiratory control 

points and the value of the phase offset are shown.
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Figure 5.3 - An example of the Fourier function with two frequency components, relating the phase o f the 

respiratory cycle to the registration Control Point (CP) displacement. These individual frequency 

components are shown as dashed lines, and the zero frequency value and the phase offsets and amplitudes 

of the two frequency components are also indicated.
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5.3.2 Assessing the different functions

In order to assess the ability o f the different functions to model the data, models were 

constructed using each o f the different functions. The models were used to predict the 

non-rigid transformations at the phase values corresponding to the registration results, 

and the predictions were compared to the registration results. So as to detect when the 

models are over-fitting the data, the models should not be constructed from the same 

data they are being used to predict. Therefore the models were constructed using the 

‘leave-out-target’ (sometimes referred to as the ‘leave-one-out’) method, where the 

target registration that the model will be used to predict is not used in building the 

model. This means it is necessary to construct a separate model to predict each 

registration result.

The predicted non-rigid transformations were compared to the original registration 

results by calculating the 3D Euclidean distance between the CP (Control Point) 

displacement in the predicted transformations and the corresponding CP displacement 

in the original registrations. Only CPs that were contained within the segmented lung 

were used, as the other CPs were not constrained by the registrations. The mean, 

standard deviation, and maximum distance between corresponding CP displacements 

were calculating over all the valid CPs for each predicted transform.

5.3.3 Results for different functions

Three different types of function were investigated, the polynomial functions originally 

used and the cyclic B-spline functions and the Fourier series functions described above. 

All three types of function could use varying numbers of coefficients. Generally, the 

more coefficients that are used the better the function can fit the data, but too many 

coefficients and the function may over-fit the data and will not be well defined, causing 

large errors when predicting unseen data. Therefore several functions o f each type were 

investigated. Table 5.1 lists the different functions that were tested, and gives the 

number o f coefficients that define each function.

The models were built using the results from lung registration protocol 1 (which used 

the segmented lungs, see section 4.1.1 for details). The models were constructed for all 

patients who were registered using this protocol (1, 2, 3 and 5).



115

Functions tested Number o f coefficients

2nd order polynomial function 3

3rd order polynomial function 4
fL

4 order polynomial function 5

5th order polynomial function 6

Cyclic B-spline function with 2 respiratory control points 3

Cyclic B-spline function with 3 respiratory control points 4

Cyclic B-spline function with 4 respiratory control points 5

Cyclic B-spline function with 5 respiratory control points 6

Cyclic B-spline function with 6 respiratory control points 7

Cyclic B-spline function with 8 respiratory control points 9

Fourier series function with 1 frequency component 3

Fourier series function with 2 frequency component 5

Fourier series function with 3 frequency component 7

Fourier series function with 4 frequency component 9

Table 5.1 - List o f  different functions assessed for the single parameter (phase) models, and the number o f  

coefficients that defined each function.

Table 5.2 gives the distance between corresponding CP displacements from the original 

registration and the transformation predicted by the motion models, for each o f the 

functions assessed. The mean, standard deviation, and maximum value is given for each 

patient and over all patients. It can be seen that the cyclic B-spline function with 3 

respiratory control points performed best overall. However, several o f the functions had 

very similar performance, with the cyclic B-spline functions with 2, 4, and 5 respiratory 

control points, and the Fourier series functions with 1 and 2 frequency components all 

having average mean values within 5% of the value for the cyclic B-spline function with 

3 respiratory control points.

The two periodic functions that were developed both performed better than the 

polynomial functions that had been previously used. For each of the function types, the 

function using the most coefficients performed worse than the other functions, 

indicating that these function were over-fitting the data. This justifies not investigating 

functions with more coefficients. Examination o f the results for individual registrations 

shows that there was much more variation between the results for the different
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registrations than there was between the results for the majority o f the models. Table 5.3 

gives the results for two individual registrations (those for the 7th and 18th cine CT 

volumes from couch position 2 o f patient 1) as an example. This would indicate that 

sources o f ‘noise’ such as inter-cycle variation, registration errors, and errors in 

calculating the phase (which could be relatively large for patients 0, 1, 2, and 3 as there 

was no external respiratory signal recorded for these patients) have more o f an impact 

on the results than the exact function or number o f coefficients used.

5.3.4 Function chosen for future models

It was decided to adopt the cyclic B-spline function for constructing the motion models. 

This was because it performed slightly better than the Fourier series function, allows 

more choice on how many coefficients to use, and is very similar to the B-spline 

function used for the non-rigid registrations. In addition, if  the offset term, o, is 

removed so that the first phase control point is always places at phase 0%, the B-spline 

function can be calculated very quickly and efficiently for all o f the control point 

displacements in the non-rigid transformation. Some test models were built to predict a 

small subset o f the data used in the previous experiment and it was found that the offset 

term could be removed with little effect on the accuracy o f the models.

Although models using three respiratory control points performed slightly better than 

those using four respiratory control points it was decided to adopt four control points for 

future models. This was because it was expected that four respiratory control points 

should perform better if  the some o f the sources o f noise mentioned above can be 

reduced. It was hoped that this may be achieved by acquiring more cine CT data at each 

couch position, by always acquiring an external respiratory surrogate signal for 

calculating the phase, and by performing more accurate registrations.



Patient
Polynomial function (mm) 

order:
2nd 3rc* 4th t̂h 2

Cyclic B-spline function (mm) 
number o f phase control points:

3 4 5 6 8

Fourier series function (mm) 
number o f harmonic frequencies:

1 2  3 4

Mean 3.58 3.99 4.14 5.44 3.28 3.27 3.52 3.60 4.09 5.17 3.25 3.54 4.28 11.47

1 a 2.19 2.45 2.64 3.43 2.03 2.08 2.22 2.26 2.49 3.37 2.04 2.23 2.63 5.85

Max. 21.92 28.85 60.35 119.13 20.89 21.93 26.16 25.22 23.07 75.02 22.02 25.99 26.72 178.92

Mean 3.21 2.90 2.99 2.89 2.76 2.63 2.55 2.62 2.73 2.85 2.69 2.56 2.70 2.85

2 G 1.71 1.66 1.72 1.69 1.62 1.55 1.53 1.60 1.66 1.72 1.57 1.53 1.62 1.76

Max. 18.90 21.36 20.58 22.89 21.64 21.19 17.28 16.06 18.59 17.31 21.70 17.15 19.62 18.76

Mean 2.82 2.78 2.80 2.96 2.68 2.65 2.75 2.81 3.03 3.28 2.65 2.76 3.05 3.45

3 a 1.62 1.61 1.62 1.75 1.57 1.54 1.57 1.60 1.70 1.78 1.55 1.58 1.74 1.93

Max. 34.07 35.14 35.23 66.51 35.06 35.05 35.10 35.09 35.11 35.46 35.02 35.14 37.42 37.66

Mean 2.90 2.44 2.50 2.48 2.45 2.32 2.34 2.37 2.49 2.73 2.35 2.35 2.52 2.86
5 G 1.61 1.54 1.60 1.59 1.56 1.51 1.49 1.50 1.56 1.74 1.51 1.50 1.60 1.82

Max. 20.45 19.97 19.58 19.81 19.44 19.40 19.64 19.85 20.91 34.40 19.39 19.93 24.94 33.44

Mean 3.06 2.92 2.99 3.23 2.74 2.66 2.72 2.78 2.99 3.34 2.69 2.73 3.03 4.47

All G 1.73 1.74 1.81 1.97 1.66 1.62 1.65 1.68 1.79 2.02 1.63 1.66 1.82 2.51

Max. 34.07 35.14 60.35 119.13 35.06 35.05 35.10 35.09 35.11 75.02 35.02 35.14 37.42 178.92

Table 5.2 - The distance between corresponding Control Point (CP) displacements from the original registration and the transformation predicted by the motion models, for each o f  

the functions assessed. The mean, standard deviation, and maximum value is given for each patient and over all patients.



Cine CT 
Image:

Polynomial function (mm) 
order:

2nd r̂d t̂h t̂h 2

Cyclic B-spline function (mm) 
number o f phase control points:

3 4 5 6 8

Fourier series function (mm) 
number o f harmonic frequencies:

1 2  3 4

Mean 0.98 1.01 1.53 1.45 1.40 1.16 1.13 1.15
r 1

1.36 1.73 1.27 1.19 1.28 1.75
r̂th
1 a 0.66 0.62 0.92 0.99 0.72 0.65 0.83 0.83 0.93 1.02 0.67 0.90 0.82 0.99

Max. 5.15 4.42 4.79 6.53 3.78 3.86 7.68 5.94 6.87 8.26 3.82 7.68 5.95 7.14

Mean 4.11 3.95 4.25 5.65 4.15 4.29 5.24 5.10 4.94 5.09 4.14 5.24 5.21 5.50

18th Q 2.09 2.05 2.34 3.11 2.11 2.16 2.72 2.48 2.59 2.53 2.10 2.72 2.85 3.05

Max. 12.67 12.92 12.93 18.25 13.67 13.44 14.00 14.09 14.12 14.50 13.25 14.00 14.15 17.18

Table 5.3 - The distance between corresponding Control Point (CP) displacements from the original registration and the transformation predicted by the motion models, for each o f  

the functions assessed. The mean, standard deviation, and maximum value are given for the results from two individual Cine CT volumes from patient 1. It can be seen that the 

differences in the results for the two Cine CT volumes are greater than the differences between the different models.
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5.4 Evaluating the motion models

Using the CP displacements is the most obvious way to assess the different functions as 

it is measuring the error in the actual data that the models are directly predicting. 

However, it should be noted that the magnitude o f the error in the CP displacements 

may not be indicative o f the magnitude o f the error in the tissue displacements (as the 

tissue displacements are calculated from several CP displacements). In addition, 

comparing the model predictions to the registration results does not account for errors in 

the registrations. Therefore, while assessing the model predictions using the CP 

displacements is a valid method for comparing the relative performance o f different 

models, it does not assess the ability o f the models to predict the location o f the 

anatomy during RT treatment, which is ultimately what the models are trying to 

achieve.

In order to assess the models ability to predict the location o f the actual anatomy the 

model predictions were evaluated by comparing them to the Cine CT volumes 

(McClelland et al. 2006a, McClelland et al. 2005b). The models were again constructed 

using the ‘leave-out-target’ method, constructing the models from all o f the registration 

results except for the target registration, and then using the model to produce a predicted 

transformation at the same phase as the target registration. The models were assessed 

using the expert visual assessment and landmark tracking techniques also used for 

assessing the registrations used to construct the models.

5.4.1 Expert visual assessment

For the expert visual assessment the reference volume was deformed by each o f the 

- predicted transformations to produce a predicted CT volume, which was visually 

compared to the corresponding Cine CT volume. Each prediction was given three scores 

by a clinical oncologist, one for the tumour, one for the ipsilateral lung, and one for all 

the other anatomy, according to the following:

1. No visually detectable misalignment over 1.5 mm (one slice thickness).

2. No visually detectable misalignment over 4.5 mm (three times the slice 

thickness).
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3. Visually detectable misalignment over 4.5 mm.

It was specified that at least 90% of the region o f interest must meet the criteria above 

for that region to be given the corresponding score. The intra-user reproducibility o f the 

visual assessment was again estimated by repeating the visual assessment for two 

patients (using a total o f 170 registrations) a few weeks after the initial assessment by 

the same clinical oncologist.

5.4.2 Landmark tracking

A clinical oncologist was asked to locate an easily identifiable anatomical point, a 

landmark, in each of the Cine CT volumes acquired at a particular couch position, and 

to identify the same landmark in the reference volume. This was repeated using a 

different landmark for each couch position, for all couch positions from each patient. 

The same landmarks were used for assessing the models as were used to assess the 

registrations (see section 4.2.2.2 for more details on the landmarks used). The clinical 

oncologist attempted to re-identify the landmark in the Cine CT volumes on a different 

occasion, in order to estimate the localization error for manually identifying the 

landmarks. The reference landmark was transformed using an estimate o f the inverse 

(see Appendix A) o f the predicted transformations and the registration results. For each 

Cine CT volume, the Euclidean distance was calculated between:

i. the two locations o f the landmark identified on different occasions -  an estimate 

of the manual Target Localisation Error (TLE),

ii. the midpoint of the two landmark locations and the reference point before 

registration (rigidly aligned to Cine CT space using the spine) -  an estimate of 

the Target Error Before Registration (TEBR),

iii. the midpoint o f the two landmark locations and the reference point transformed 

by the registration result -  an estimate o f the Target Registration Error (TRE),

iv. the midpoint o f the two landmark locations and the reference point transformed 

by the transformation predicted by the model -  an estimate of the Target Model 

Error (TME),
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5.4.3 Results of evaluating the motion models

The models were built from the results o f registration protocol 2 (which used the 

complete field o f view and not just the segmented lung, see section 4.1.2 for details).

The models were built for all couch positions from patients 2-6, giving a total o f 18 

couch positions modelled. Compared to the time required for the registrations, the 

motion models could be constructed very quickly, requiring in the order of a 10 seconds 

per couch position on a 2.8 GHz CPU.

The expert visual assessment results are given in Table 5.4. The results for the 

registrations are given for comparison. It can be seen that the model prediction results 

are only slightly worse than the registrations results. The tumour can usually be 

predicted accurately with over 60% of the predictions scoring 1 (no visually detectable 

misalignment over 1.5 mm) and only 2.8% scoring 3 (visually detectable misalignment 

over 4.5 mm). The ipsilateral lung exhibited more misalignment than the tumour. Most 

of the results still exhibited reasonable alignment, with over 40% of the model 

predictions scoring a 1, and less than 12% scoring a 3. The results for the other tissue 

exhibited the most misalignment, but this was usually less than 4.5 mm with only 18.5% 

of the model predictions receiving a score o f 3, and only occurred in small regions that 

would generally have a negligible effect on any radiotherapy plans and calculations.

The repeated results again suggested a high degree o f intra-user reproducibility, with 

86% of the tumour scores, 68% o f the ipsilateral lung scores, and 96.5% of the other 

tissue scores not differing from the originals and none of the scores differing by 2 .

Score
Registrations (%)

T IL OT

Model predictions (%)

T IL OT

1 64.6 41.3 2.4 61.9 40.1 1.2

2 33.6 49.8 80.9 35.3 48.0 80.2

3 1.7 8.8 16.7 2.8 11.9 18.5

Table 5.4 - The expert visual assessment results for the registrations and the model predictions. The 

results are given as the percentages o f  the registrations/models to be awarded each score: 1, 2, and 3. A  

score o f  1 indicates there was no visually detectable misalignment over 1.5 mm, a score o f  2 indicates no 

misalignment over 4.5 mm, and a score o f  3 indicates no misalignment over 4.5 mm. Separate scores 

were given for the Tumour (T), the Ipsilateral Lung (IL), and all o f  the Other Tissue (OT).



Patient
TEBR (mm) 

Mean a Max. Mean

TLE (mm) 

o Max. Mean

TRE (mm) 

a Max.

TME (mm) 

Mean a Max.

2 4.95 2.19 11.25 0.72
\ i

0.48 2.08 1.65 0.92 6.24 2.07 1.03 5.51

3 5.48 2.70 11.65 0.76 0.58 2.18 1.14 0.53 3.28 1.87 0.91 4.53

4 4.49 2.49 10.58 0.47 0.55 2.23 1.07 0.64 3.32 1.28 0.66 3.20

5 5.08 2.44 10.51 1.35 0.54 2.76 1.39 0.68 2.99 1.46 0.67 3.79

6 4.58 1.88 10.00 0.92 0.67 2.73 1.17 0.45 2.17 1.27 0.50 3.11

All 4.87 2.35 11.65 0.85 0.64 2.76 1.26 0.67 6.24 1.56 0.81 5.51

Table 5.5 - The landmark tracking results. The mean, standard deviation (a), and maximum o f  the Target Modelling Errors (TME) are given for each patient and over all patients (2- 

6) that the models were assessed on. The values for the Target Error Before Registration (TEBR), Target Localisation Error (TLE), and Target Registration Error (TRE) are also 

given for comparison.



123

The landmark tracking results are given in Table 5.5. The results for the TEBR, TLE, 

and TRE were also presented in chapter 4 but have been repeated here for comparison 

to the model prediction results. The TME results show that the motion models perform 

very well at predicting the landmark locations. The mean TME for all patients was 1.56 

mm, only just over the slice thickness, and the maximum TME was 5.51 mm, less than 

four slice thicknesses. The mean TME was larger than the mean TRE for every patient 

as would be expected, but the differences were small, especially for patients 5 and 6 (the 

patients where the Polaris system had been used to determine the phase).

5.5 Combining the motion model predictions from different 

couch positions

As mentioned in the introduction to this chapter a separate model is built for each couch 

position. To produce a prediction o f the combined volume over all o f the couch 

positions the predictions from each individual model need to be combined.

The simplest way to do this is to use each model to predict the deformation field over 

the corresponding couch position, and to concatenate the results to produce a 

deformation field over the all the couch positions. However, this will result in 

discontinuities at the boundaries between the different couch positions. This can cause 

artefacts in the concatenated volumes, although these are noticeably smaller than the 

artefacts in corresponding 4DCT volumes (Figure 5.4).

Although simply concatenating the model predictions reduces the artefacts in 

comparison to 4DCT, small artefacts can still be present, and more importantly the 

deformation fields from the different models will not be continuous and may violate a 

cfne-to-one mapping. This means that the inverse transformation cannot be estimated in 

this region (Appendix A), as is required for some RT dose and tracking calculations. To 

overcome these problems a method has been developed to combine the individual 

transformations from each model into one continuous transformation which can produce 

'artefact free' combined volumes.

Section 5.5.1 assesses the magnitude o f the discontinuity in the deformation fields when 

simply concatenating the predictions from each model. Section 5.5.2 describes how to
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Figure 5.4 (previous page) - Coronal (top set o f  images) and sagittal (bottom set o f  images) slices 

produced by sorting the Cine CT volum es into 4DCT volumes (top image in each set), concatenating the 

predicted volumes from the individual couch position models (middle image), and combining the motion 

model results into a single continuous transformation (bottom image). The 4DCT (top) images are formed 

by concatenating the Cine CT volumes from each couch position that are closest to the desired phase, and 

so contain many 'discontinuity' artefacts at the boundaries o f  adjacent couch positions. To form the 

middle images the reference volume is deformed by the model for each couch position individually, 

producing a separate predicted volume for each couch position. These are then concatenated together to 

form a predicted volume over all the couch positions. The artefacts are reduced in these volum es as the 

models average out some o f  the inter-cycle variation and do not contain 'binning errors', but the images 

still contain some noticeable artefacts as a separate transformation is used to predict each couch position . 

The bottom images are produced by combining the transformations from each model into a single 

continuous transformation, and using that to deform the reference volume. As a single transformation is 

used the predicted volumes contain no discontinuity artefacts at the boundaries between adjacent couch 

positions. These images are from patient 5 for a phase value o f  50% (near end inhale).

produce a continuous transformation across all the couch positions, and section 5.5.3 

assesses the continuous transformations using the same landmark tracking as was used 

to assess the individual models.

5.5.1 Assessing the discontinuity

To assess the discontinuity between models for adjacent couch positions the 

deformation field was calculated at the boundary between the couch positions using 

both models (McClelland et al. 2006a). The deformation field was calculated at 100 x 

100 points evenly distributed over the majority o f the anatomy visible at each boundary. 

The continuity error was calculated as the Euclidean distance between the two 

deformation vectors at each point. The continuity error was assessed at each o f the 

couch position boundaries for patients 2-6 using the same models as were assessed 

above. For each patient the continuity error was assessed at 10 phase values equally 

spaced over the respiratory cycle.

The continuity error results are summarized in Table 5.6. It should be noted that there 

were very large continuity errors (mean 20.24 mm) at the boundary between the third 

and fourth couch position from patient 3. However, examination o f the predicted 

volumes and the original Cine CT volumes from these couch positions revealed that the
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patient had shifted between the acquisitions of these couch positions. This was the cause 

o f the large discontinuities and therefore the results from this boundary were omitted. 

The mean continuity error over the five patients was 2.15 mm, and the maximum error 

was 8.76 mm. This shows that even though the artefacts at the couch position 

boundaries appear greatly reduced in the concatenated volumes when compared to 

4DCT volumes, the discontinuities that are present are larger than the modelling errors 

for the individual couch positions.

Patient
Continuity Error 

Mean Max.

2 2.35 8.11

3 2.62 8.76

4 1.79 7.12

5 2.52 6.96

6 1.45 6.44

All 2.15 8.76

Table 5.6 - The continuity error is a measure o f  the discontinuity in the deformation field at the boundary 

between adjacent couch positions when the individual model predictions are simply concatenated 

together. The mean and maximum continuity errors are given for patients 2-6 and over all five patients.

5.5.2 Producing a continuous transformation

The first step towards producing a continuous transform is to perform the registrations 

with an extended Control Point Grid (CPG), as described in section 4.1.3 and Figure 

4.1. When an extended CPG is used the registration result defines a transformation over 

all o f the couch positions, but as data is only present at one couch position the 

transformation is only constrained in the corresponding region. The contribution that 

each CP makes to the transformation in this region will depend on the location o f the 

CP relative to the couch position being registered. CPs that are far away will make no 

contribution to the transformation and will not be optimised as part of the registration. 

CPs that are outside the couch position but are close (within two CPs) will make some 

contribution to the transformation and will be optimised during the registration, but may 

not be very well constrained. CPs that are located within the couch position will make a 

large contribution to the transformation.
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Most CPs will contribute to the registrations at multiple couch positions, but by varying 

amounts. A measure o f the contribution that a CP makes to a particular couch position 

can be found by calculating the value of the B-spline weight ( Bn(w) in equation [4.1]) 

for the CP at each row in that couch position, and summing them. The contribution will 

be the same for all CPs on the same row in the CPG.

If a separate model is built for the each couch position as before, but using the results 

with the extended CPG, then each model will produce a transformation with the same 

CPG. The results from the different modes can be combined into a single transformation 

using the contributions calculated above as weighting factors. For each CP, the 

combined CP displacement is the sum over all the models o f the CP displacement 

weighted by the contribution that the CP made to the registrations used in that model.

It should be noted that there is no guarantee when combining the transformations in this 

way that folding or other extreme and unrealistic deformations will not be produced. 

However, in such cases there would have been extreme discontinuities between adjacent 

couch positions, indicating that some other problem has occurred during data 

acquisition (e.g. patient shifts or coughs) or during the data processing (e.g. large errors 

in the registrations).

5.5.3 Assessing the continuous transformations

To assess the results o f combining the model predictions into a single continuous 

transformation the extended registrations from registration protocol 3 were used to 

construct the motion models. The landmark tracking validation (section 5.4.2) was then 

repeated twice, once for the results from the individual couch position models 

(TMEjndividuai) and once using the results combined into a single transformation as 

described above (T M E combined)- Note, the individual couch position models will give 

slightly different results to those in section 5.4.3 and Table 5.5 as the models were 

constructed from different registration results. As before, the models were constructed 

leaving out the target Cine CT volume. The models for the couch positions that did not 

contain the target Cine CT volume (used for the combined transformations) were 

constructed from all the volumes at those couch positions.
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Patient T R E e x te n d e d  (mm) 

Mean o Max.

T M E in d iv id u a i  (mm) 

Mean a Max.

T M E Com bined (mm) 

Mean o Max.

2 1.76 0.97 6.29 2.12 1.01 5.49 2.35 1.16 6.44

3 1.33 0.53 2.34 1.93 0.98 4.73 2.20 1.32 7.38

4 1.12 0.53 3.23 1.32 0.57 3.47 1.29 0.54 2.98

5 1.05 0.56 2.84 1.21 0.63 2.89 1.60 0.61 3.51

6 1.22 0.50 2.75 1.31 0.51 3.22 1.43 0.54 3.13

All 1.27 0.66 6.29 1.52 0.81 5.49 1.71 0.93 7.38

Table 5.7 - The landmark tracking results for the extended CPG registrations (TR Eextended), the individual 

m odels built from the extended registrations (T M E mdjviduai), and the motion models combined into a single 

transformation (T M E combincd)- The mean, standard deviation (a ), and maximum value are given for 

patients 2-6 and over all five patients.

Table 5.7 gives the landmark tracking results for the extended registrations (T R E extended), 

the individual models (TMEindividuai) and the models combined into a continuous 

transformation (T M E combined)- As can be seen the extended registration results and the 

individual model results are very similar to those achieved with the previous 

registrations (see Table 5.5), indicating that using an extended CPG has no adverse 

effects on the accuracy. The combined transformation results are marginally worse than 

the individual model results, but this would be expected given that the average 

respiratory motion will vary slightly between couch positions. The increase in the 

landmark tracking error for the combined models is relatively small in comparison to 

the discontinuity errors (Table 5.6), which by definition are 0 for the combined 

transformations. Although the combined transformations are slightly worse at predicting 

the data used to construct the models (as assessed by the landmark tracking), they 

produce predictions that are more physically plausible than concatenating the individual 

model predictions (Figure 5.4), and so should actually be better for predicting future 

data. The CD accompanying this thesis contains animations showing coronal and 

sagittal slices over a complete respiratory cycle from patients 2-8 for the 4DCT 

volumes, the individual model predictions concatenated together, and the prediction 

from the model results combined into a single continuous transformation.
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5.6 Conclusions

This chapter has introduced and described how to construct single parameter respiratory 

motion models from B-spline non-rigid registration results. The motion models use one 

dimensional functions to relate the CP displacements that define the B-spline 

transformations to the phase o f the respiratory cycle.

Two types o f function were developed that could be used for the motion models, the 

cyclic B-spline function and the Fourier series function. Both functions were periodic 

and could use varying numbers o f coefficients. The performance o f these two functions 

was compared to that of polynomial functions, which had previously been used for 

other motion models, but were not periodic and so not expected to perform so well for 

the phase based models. To determine how many coefficients should be used, several 

functions o f each different type, with varying number o f coefficients were used. In total, 

four polynomial functions, six cyclic B-spline functions, and four Fourier series 

functions were assessed. Overall, the cyclic B-spline function with three respiratory 

control points had the best results, although four respiratory control points were adopted 

for future models, as their performance was very close to that o f the three respiratory 

control points and they were expected to perform better on future data.

After establishing which function should be used for the motion models, the accuracy of 

the motion models was evaluated by comparing the model predictions to the original 

cine CT data. These motion models were constructed from the results o f the all anatomy 

registration protocol 2, and so modelled all o f the anatomy, as this was required for 

Radiotherapy dose calculations. Two different methods were used to evaluate the 

motion models: expert visual assessment and landmark tracking. The expert visual 

assessment evaluated the registration over the whole anatomy but only gave a subjective 

measure o f how accurate the models were. The landmark tracking results gave an 

objective estimate of the accuracy of the models in mm (the Target Modelling Error, 

TME), but were only evaluated at the landmarks.

The results suggest that the models can predict the Cine CT volumes very accurately, 

with a mean TME of just over one slice thickness (1.56mm) and a maximum TME less 

than four slice thicknesses (5.51mm). The TME error was only marginally larger than 

the Target Registration Error (TRE). It is expected that the TME would be larger than
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the TRE as the models average out the inter-cycle variation present in the registration 

results.

Finally, this chapter presented and assessed a method o f combining the model 

predictions from different couch positions into a single continuous transformation. The 

combined transformation produced a plausible prediction of the anatomy with no 

discontinuities between adjacent couch positions, with only a small decrease in the 

accuracy for predicting the individual Cine CT volumes (mean error 1.71 mm). It 

should be stressed that even though the combined predictions are less accurate at 

predicting the CT data acquired for constructing the models, they should in theory be 

better at predicting future data (i.e. during treatment) as their predictions are physically 

plausible (unlike the individual model predictions or 4DCT volumes, which can have 

discontinuities between adjacent couch positions).
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Chapter 6

Two parameter motion 

models

This chapter explains how to construct motion models that relate the internal motion to 

two respiratory parameters. It also describes several example functions that can be used 

in the two parameter models, and evaluates their performance.

6.1 Introduction

The models presented in the previous chapter related the internal respiratory motion to a 

single respiratory parameter, the phase o f the respiratory cycle. This means they cannot 

model any inter-cycle variation that may be present in the data, and the best they can
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achieve is to model the motion for an average respiratory cycle. The models presented 

in this chapter relate the internal motion to two external respiratory parameters, with the 

intention that this will allow some o f the inter-cycle variation to be included in the 

models.

6.2 Constructing the motion models

The two parameter models are constructed in an identical manner to the single 

parameter models. A separate 2D function is fitted using least squares for each Control 

Point (CP) displacement (in each direction) in the registration. This function relates the 

value of the CP displacement to the values o f the two respiratory parameters. This can 

be illustrated using a 3D plot with the value o f the CP displacement on the vertical axis 

and the values o f each surrogate respiratory parameter along the two horizontal axes 

(Figure 6.1c-f and Animations 6.1c-f on the accompanying CD). The function then 

defines a surface in this plot (Figures 6.3 - 6.4 and Animations 6.3 - 6.4 on the 

accompanying CD). As with the single parameter models, once the function has been 

fitted it can be used to predict the value o f the CP displacement for any pairs o f values 

o f the respiratory parameters. When this is repeated for all the CP displacements the 

entire transformation can be predicted. As with the single parameter models, it is still 

necessary to construct a separate model for each couch position, but the predicted 

transformations from each model can be combined into a single transformation using 

the method described in section 5.5.

6.3 The choice of function for the motion models

There ar£ a great many different functions that could be used for the 2 parameter 

models. In theory any function that takes two input values and gives one output value 

could be used, although there are a number of factors that will influence the 

appropriateness o f the function.

One factor that needs to be considered when choosing the function is the respiratory 

parameters that are being used. Three different respiratory parameters were acquired 

that could be used for the two parameters models: the phase o f the respiratory cycle
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Figure 6.1 - plots for an example Control Point (CP) from the registration results for patients 5 (a, c, e, g) 

and 8 (b, d, f, h). All plots for each patient show the displacement of the same CP (in one direction) 

plotted against: (a, b) - the phase of respiratory cycle, (c, d) - amplitude of respiratory signal (CP 

displacements from inhalation are blue and those from exhalation are red), (e, f) - the amplitude and
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gradient o f  respiratory signal, (g, h) - the phase and amplitude o f  the respiratory signal. The 

accompanying CD contains animations showing the 3D plots in e-h from rotating views so that the 3D  

distribution o f  the data can be better appreciated.

derived from the surrogate respiratory signal, the amplitude (current value) o f the 

respiratory signal, and the gradient (rate-of-change with time) of the respiratory signal 

(see section 3.5.2). For phase a periodic function is required (as discussed in the 

previous chapter), while for amplitude and gradient the function is non-periodic. If 

phase and amplitude/gradient are used in combination then the function will need to be 

periodic in the phase direction but non-periodic in the other direction.

Another factor that needs to be considered is how many degrees o f freedom 

(coefficients) the function should have. The more degrees o f freedom the function has 

the closer it will be able to model the data. However, if  the function has too many 

degrees o f freedom it will not be well constrained and may over-fit the data, causing 

large errors when predicting unseen data.

Due to the extremely large number o f functions that could potentially be used for the 

motion models it was decided to assess the performance of a small number o f example 

functions. These demonstrate the types o f function that are appropriate for the different 

respiratory parameters, and the effects o f varying the degrees o f freedom o f the 

functions. Models were constructed based on two o f the respiratory parameter 

combinations: amplitude & gradient, and phase & amplitude. Three functions have been 

studied for each combination o f parameters. In addition, three single parameter function 

were assessed for comparison, one using phase and two using amplitude. For the models 

based (only) on amplitude, separate functions were fitted to the data points from 

inhalation and to the data points from exhalation. This may allow some hysteresis to be 

modelled, .but means that two separate models are constructed and the overall model is 

not continuous (this is explained and illustrated in Figure 2.2 in Chapter 2, and can be 

seen in Figure 6.2 in this chapter).

The purpose o f studying these different functions was to establish a framework for 

constructing and assessing motion models based on one or two respiratory parameters, 

and to gain an understanding as to how different functions may perform. The next 

section describes each of the example functions that have been studied.
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6.3.1 Function definitions

6.3.1.1 Single parameter functions

The function used for the single parameter models based on phase was the cyclic B- 

spline function with four control points that was adopted and assessed in the previous 

chapter (Figure 6.2a, b). The equation for the general cyclic B-spline with n control 

points is given in [5.1]. When n = 4 (and o = 0) this becomes:

F c b 4 G O  -  ^  ( W M + / ( m o d  4 )
/=0

[6.1]

wherep  is the phase (between 0-100 %), ^0,...,^3 are the 4 control points,

i =
25% 

given in [2 .2].

- 1, u =
25% 25%

, and B1 represents the /-th B-spline basis function,

The first function used for the amplitude based single parameter models was a 3rd order 

polynomial (cubic) function (Figure 6.2c, d):

FPi(a) = c^a3 + c2a 2 + c}a + c0

[6 .2]

where a is the amplitude of the respiratory signal, and cn is the n coefficient o f the 

polynomial function.

The second function used for the amplitude based single parameter models was a 1D 

(non-cyclic) B-spline with four control points (Figure 6.2e, f). This is the minimum 

number o f control points required to define a B-spline function and the function is only 

defined between the central two control points. Therefore, these control points are 

located at the maximum and minimum values of the surrogate signal observed (over all
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Figure 6.2 - Examples of the one parameter functions for Patient 5 (a, c, e) and Patient 8 (b, d, f). (a, b) - 

Cyclic B-spline function (F Cba{p )) relating the CP displacement to the phase of the respiratory cycle, (c, 

d) - 3rd orddr polynomial functions (F n (a )) relating the CP displacement to the amplitude o f the 

respiratory signal, (e, f) - B-spline function (F BA(a)) relating the CP displacement to the amplitude o f the 

respiratory signal. A separate function is fit to the values occurring during inhalation (blue) and during 

exhalation (red).
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couch positions), and it is not possible to use the B-spline model to predict a value 

outside o f this range.

f b4 (a) = XS'(“V/
1=0

[6.3]

where a is the amplitude o f the surrogate signal, ^0,...,^3 are the 4 control points,

u = — a ( ™ n(g) ? min(fl) and max(a) are the minimum and maximum values of the
max(<z)-min(u)

amplitude, and Bt represents the /-th B-spline basis function, given in [2.2].

6.3.1.2 Amplitude and gradient functions

The first function used for the amplitude and gradient based models was a simple 2D 1st 

order polynomial (i.e. linear) function (Figure 6.3a, b):

F pi , pi (a > g )  = c 2 a + c i g  + c o

[6.4]

The second function used for the amplitude and gradient based models was a 2D 3 rd 

order polynomial function with no cross terms (Figure 6.3c, d):

Fn .n { a ,g )  = cba ' + c5«2 + c4a + ci g 1 + C2S 2 + c i£ + co

[6.5]

where a is the amplitude of the respiratory signal, g  is the gradient of the respiratory 

signal, and cn is the nth coefficient of the polynomial function in both equations [6.4] 

and [6.5].
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Figure 6.3 - Examples of the two parameter functions relating the CP displacement to the amplitude and 

gradient of th*e respiratory signal for Patient 5 (a, c, e) and Patient 8 (b, d, f). (a, b) - 2D 1st order 

polynomial function (FPXp\(a,g)). (c, d) - 2D 3rd order polynomial function (Fpipi(a,g)). (e, f) - 2D B- 

spline function (/'W 4(a,g)). The accompanying CD contains animations showing these 3D plots from 

rotating views so that the 3D distribution o f the data and the fitted function can be better appreciated.
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The third function used for the amplitude and gradient based models was a 2D B-spline 

function with four control points in each direction (Figure 6.3e, f):

F 8 A .B 4  («> g) = X  X  3 1 (“ )S» (VK "
/=0  m=0

[6 .6]

where a is the amplitude, g  is the gradient, ^0,o>̂ o,i >— are ^  control points that

, „ , ■, a -m in (a )  g -m in (g )
constitute the 4 x 4  control point grid, u =  t - t  » v =

m ax (a )- min(a) ’ m ax (g )-m in  ( ? ) ’

min(a), max(fl), min(g), max(g) are the minimum and maximum values o f the amplitude 

and gradient for which the function is valid, and B, represents the /-th B-spline basis 

function, given in [2.2].

6.3.1.3 Phase and amplitude functions

The functions for the phase and amplitude based models needed to be periodic in the 

phase direction and non-periodic in the amplitude direction. It was decided to use the 

cyclic B-spline function with four control points to model the phase direction in all 

cases as this was found to be an appropriate function in the previous chapter, but three 

different functions were used to model the amplitude direction.

For the first two phase and amplitude based functions, the phase and the amplitude parts 

of the function were separable, meaning the equation can be written as:

F { p ,a ) = F ( p )  + F(a)

[6.7]

where F ( p )  is F c b a (p )  from equation [6 .1]. Note, the first two amplitude and gradient 

functions were also separable as no cross terms were used.
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The first function used to model the amplitude direction for the phase and amplitude 

based models was a 1st order polynomial function (Figure 6.4a, b):

^ C B 4 ,P \  (P’ a ) ~ FcB4 (p ) + Fp\ (fl)

Fn (a) = c]a + c0

[6 .8]

where p  is the phase o f the respiratory signal, a is the amplitude of the respiratory 

signal, and cn is the n coefficient of the polynomial function.

The second function used to model the amplitude direction was a 3rd order polynomial 

function (Figure 6.4c, d):

FcB4,P1 {P’a ) ~  Fc.B4 (P ) +  -̂ P3 (fl)

[6.9]

where Fpi(a) is given in [6.2].

The third function used for the phase and amplitude based models was a 2D 'semi- 

cyclic' B-spline, which was made cyclic in the phase direction but remained non-cyclic 

in the amplitude direction (Figure 6.4e, f). Four control points were used in each 

direction.

3 3

F c B 4 , B 4  {P’a) { u)Bm (v]̂ f+/(mod4)>/|
/=0 m =0

[6.10]

where p  is the phase o f the respiratory signal, a is the amplitude o f the respiratory 

signal, ^o.o’<̂0,1 >—»^3.3 are the 16 control points that constitute the 4 x 4  control point

a -m in (a )grid, i
25%

— 1, u =
25% 25%

v =
m ax(tf)-m in(a)

, and Bt represents the

/-th B-spline basis function, given in [2.2].
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Figure 6.4 - Examples of the two parameter functions relating the CP displacement to the phase and 

amplitude o f the respiratory signal for Patient 5 (a, c, e) and Patient 8 (b, d, f). (a, b) - 2D function 

(FcBAP\(p.<-*)) wi£h cyclic B-spline (F Cba(p)) and 1st order polynomial (F Pi(a)) components, (c, d) - 2D 

function (F CB \n{p ,a )) with cyclic B-spline (F Cm (p )) and 3rd order polynomial (F n (a)) components, (e, f) - 

2D 'semi-cyclic' B-spline function (Fcb4 B4 {p,o)). The accompanying CD contains animations showing 

these 3D plots from rotating views so that the 3D distribution of the data and the fitted function can be 

better appreciated.
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6.4 Evaluating the different functions

To evaluate the ability of the different parameters and functions to model the data, 

models were constructed using each of the nine different functions described in the 

previous section. As before, the models were constructed using the ’leave-out-target' 

method, to assess the models ability to predict unseen data and to detect over-fitting.

The models were constructed using all but one o f the registration results. The models 

were then used to predict the transformation with the parameter values corresponding to 

each o f the (left out) registration results. The predicted transformations were assessed 

against the Cine CT data by calculating the Target Modelling Error (TME) using the 

landmark tracking method described in 5.4.2.

The predicted transforms were also assessed against the original registration results by 

comparing the deformation fields generated. The deformation fields were sampled at 

approximately 600 points, spaced 20 mm apart and covering all o f the anatomy. Sample 

points outside o f the patient were excluded. At each sample point the displacement 

vector was calculated from each transformation, and the 3D Euclidean distance between 

the two displacement vectors, the Deformation Field Error (DFE), was calculated. The 

DFE assesses the model over the whole region being modelled and not just at specific 

points (as for the landmark tracking error). However, it is based on the assumption that 

the registrations are themselves correct, and errors in the registrations cannot be 

measured or accounted for by the DFE. In the previous chapter the different (single 

parameter, phase based) models were assessed by comparing the B-spline control point 

displacements (section 5.3.2). The DFE is more informative than assessing the control 

point displacements directly, as the value of the DFE is indicative o f the actual tissue 

displacements, which is not necessarily true of the control point displacements.

Both the TME and the DFE where calculated using the predictions from the individual 

couch position models, TMEindividuai and DFEindividuai, and the combined predictions from 

all couch positions using the method described in section 5.5, TMEcombined and
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6.5 Results of evaluating the different functions

The models were constructed using the results o f registration protocol 3 (see section

4.1.3 for details), which uses an extended Control Point Grid so that the model results 

from the individual couch positions can be combined into a single transformation (see 

section 5.5 for details). The models were only constructed for those patients from whom 

an external respiratory surrogate signals had been acquired, as an external signal was 

required to calculate consistent amplitude and gradient parameters across different 

couch positions (see section 3.5.2.2 for details). Models were constructed for all couch 

positions from patients 5-8, for a total o f 20 couch positions modelled. The models were 

assessed against a total o f 690 Cine CT volumes (20-40 per couch position). As the 

leave-out-target method was used a separate model was constructed for each Cine CT 

volume, giving a total of 690 x 9 (number of functions assessed) = 6210 models 

constructed. The computation time required to fit each model to the registration results 

was in the order o f 10 seconds (implemented in Matlab (Mathworks) on a 2.4 GHz.

Intel CPU). This is very fast in comparison to the computation time required for the 

non-rigid registrations.

The TMEindividuai and DFEindividuai results are given in tables 6.1 and 6.2. Both sets o f 

results support the same conclusions regarding the comparative performance o f the 

different functions used for the models. Overall, the differences in the mean results for 

the different models are negligible, except for the two functions with the most degrees 

of freedom (FcB4 jB4(p,a) and Fb4 jb4 (o^))- The differences in the maximum and standard 

deviation are more noticeable for some functions.

The phase based models using the cyclic B-spline function, Fcb4(p), evaluated in the 

previous chapter, again performed very well for all patients. The amplitude based 

models using the 3rd order polynomial function, Fpi(a), performed very well for patients 

7 and 8, slightly outperforming the Fcb4(p) models by some measures, and performed 

reasonably well for patient 6, although the results were noticeably worse than for the 

Fcb4(p) models. The results for the Fp^(a) models were not so good for patient 5. Only 

20 Cine CT volumes had been acquired per couch position for this patient (30 were 

acquired for patient 6 and 40 for patients 7 and 8). As separate models were constructed 

for inhalation and exhalation it was possible that very few volumes were used as 

training data for some o f the models. This would have meant that the functions were not 

very well constrained by the data, and may have given large errors when predicting the
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Patient Single parameter models 

Fcb4(p ) FpT,(a) F54(0)

TMEindjViduai (mm)

Amplitude and Gradient based 
models

F p \ , pi Fn, pt> Fb4, B4
(<*&) (a,g) (a,g)

Phase and Amplitude based 
models

FcB4, pi FcB4, P3 FcB4, B4 
(p,a) {p,a) (p,a)

Mean 1.21 1.50 1.50 1.37 1.69 2.76 1.22 1.17 2.94

5 o 0.63 1.10 1.10 0.72 3.20 3.44 0.65 0.63 4.87

Max. 2.89 6.16 6.16 4.16 29.13 18.74 3.03 2.88 34.88

Mean 1.55 1.56 1.56 1.67 1.60 2.00 1.55 1.54 1.66
6 o 0.56 0.61 0.61 0.62 0.62 1.62 0.56 0.58 0.84

Max. 3.22 3.82 3.82 3.77 3.11 13.77 3.23 2.95 6.36

Mean 1.23 1.17 1.21 1.17 1.20 1.49 1.25 1.25 1.26
7 o 0.62 0.54 0.65 0.54 0.58 1.65 0.65 0.65 0.80

Max. 3.44 3.95 6.37 3.76 3.66 16.35 3.68 3.68 7.83

Mean 1.25 1.17 1.24 1.17 1.20 2.20 1.24 1.24 1.24
8 a 0.77 0.72 1.04 0.75 0.80 12.01 0.78 0.78 0.88

Max. 4.59 3.90 10.52 3.71 4.04 199.15 4.55 4.55 7.06
Mean 1.28 1.26 1.30 1.26 1.31 1.99 1.28 1.27 1.50

All o 0.69 0.72 0.89 0.68 1.28 7.85 0.70 0.70 1.90
Max. 4.59 6.16 10.52 4.16 29.13 199.15 4.55 4.55 34.88

Table 6.1 - The mean, standard deviation, and maximum Target M odelling Error for the individual model predictions, T M E ^ ^ ,  for each patient and over all patients. The results 

are given for each o f  the 9 functions assessed, and are grouped according to the respiratory parameters used.
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Patient Single parameter models 

Fcba(p ) Fn(a) Fba{o)

DFEjndjviduai (mm)

Amplitude and Gradient based 
models

Fpi, PI Fp35 P3 Fba, BA

(a&) (a,g) (a,g)

Phase and Amplitude based 
models

F cBA, PI FcbA, P3 F cBA, BA 
(p,a) (p,a) {p,a)

Mean 0.87 1.30 1.30 0.86 1.16 15.43 0.86 0.93 4.12
5 o 0.79 2.59 2.59 0.77 2.05 74.46 0.77 0.96 15.19

Max. 9.37 73.65 73.65 10.02 43.46 1923.95 9.96 20.96 466.77

Mean 0.62 0.71 0.71 0.64 0.69 1.39 0.62 0.63 0.90
6 o 0.55 0.63 0.63 0.56 0.61 3.23 0.54 0.55 0.88

Max. 8.56 10.22 10.22 8.59 8.52 111.53 8.51 8.31 21.04

Mean 0.57 0.57 0.66 0.59 0.65 1.06 0.57 0.57 0.78
7 a 0.53 0.55 0.92 0.56 0.60 2.18 0.52 0.52 1.38

Max. 11.75 11.33 35.36 12.07 11.66 87.16 11.83 11.83 65.76

Mean 0.68 0.64 0.73 0.64 0.67 1.35 0.67 0.67 0.80
8 a 0.66 0.61 0.91 0.61 0.65 6.96 0.63 0.63 1.01

Max. 10.86 11.41 33.73 11.96 14.09 442.76 10.87 10.86 40.74

Mean 0.66 0.70 0.77 0.65 0.72 2.89 0.65 0.66 1.19
All a 0.63 1.06 1.23 0.62 0.93 26.21 0.61 0.65 5.39

Max. 11.75 73.65 73.65 12.07 43.46 1923.95 11.83 20.96 466.77

Table 6.2 - The mean, standard deviation, and maximum Deformation Field Error for the individual model predictions, DFEindividuai, for each patient and over all patients. The results

are given for each o f the 9 functions assessed, and are grouped according to the respiratory parameters used.
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transformations for amplitude values not observed in the training data (Figure 6.2c, e), 

i.e. the function was over-fitting the data. The amplitude based models using the B- 

spline function, Fb4{o), had very similar results to the Fp^a) models for patients 5 and 

6, but were noticeably worse than the Fp^a) models for patients 7 and 8. The results for 

the FB4(a) models were worse than for the Fcb4(p) models for all patients. This indicates 

that the FB4(a) models had started to over-fit the data in some circumstances.

The overall performance of the amplitude and gradient based models using the 2D 1st 

order polynomial function, Fpip\(ag), was very similar to that o f the Fcb4(p) models.

There were marginal differences in TMEindividuai results for the Fp\j>\(ag) and Fcb4(p) 

models, with the Fp\p\(ag) performing worse for patients 5 and 6 but slightly better for 

patients 7 and 8. The differences in the mean and standard deviation of the DFEindividuai 

results between the Fp\j>\(ag) models and the Fcb4(p) models were negligible, but the 

maximum DFEindividuai was larger for the Fp\j>\(ag) models for all patients. The 

amplitude and gradient based models using the 2D 3rd order polynomial function, 

Fp3j>i(ag), had similar, but generally slightly worse results to the Fp\j>i(ag) models for 

patients 6-8. The Fp3j>3(ag)  models were considerably worse for patient 5, indicating 

that for this patient (for whom only 20 Cine CT volumes had been acquired per couch 

position) the function was over-fitting the data. The amplitude and gradient based 

models using the 2D B-spline function, FB4 ,B4{ag), clearly over-fit the data for all 

patients, resulting in very large maximum errors (both TMEindividuai and DFEindividuai), 

and relatively large mean errors in comparison to the other functions used for the 

models.

The results for the phase and amplitude based models using the cyclic B-spline and 1st 

order polynomial function, FcB4j>\(p,a), were very similar to the results of the Fcb4(p) 

models. The results for the phase and amplitude based models using the cyclic B-spline 

and 3rd order polynomial function, FcB4 j>i(p,a), were also very similar to the results o f 

the Fcb4(p) models for patient 6-8. The TMEindividuai results for the FcB4 j3i>{p,ci) models 

for patient 5 are better than the Fcb4(p) models, but the DFEindividuai results are worse. 

These results indicate that extending the phase based cyclic B-spline models with a (1st 

or 3rd order) polynomial function to model the variation in the amplitude parameter has 

little effect on the models if  sufficient data is acquired. The results for the phase and 

amplitude based models using the 2D semi-cyclic B-spline, FcB4 ,B4(p,a), are noticeably
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worse than the results for the other models, except for the Fb4 ,b4{ f ^ )  models. This 

indicates that the FcB4 ,B4(p,a) models are over-fitting the data, but are better constrained 

than the Fb4 ,b4{ci^) models. It should be noted that the actual values o f the mean errors 

for the Fcb4m(P’g) an(* the FB4yB4(ag)  models are still quite small for patients 6-8, even 

though they are noticeably larger than the mean errors for the other models.

The results for the combined predictions from all models, T M E combined and D F E COmbined, 

are given in tables 6.3 and 6.4. It can be seen that the combined prediction results are 

generally worse than the individual model results, as would be expected. Although the 

mean D F E combined results are noticeably larger than the DFEindividuai result, there is less o f 

an effect on the maximum D F E  values, and for some patients and functions the 

maximum D F E combined is actually smaller than the maximum DFEindividuai- The 

differences between the T M E combined and the TMEindividuai results are negligible for 

patients 6-8, with some functions actually having better T M E combined results for some 

patients. It should be noted that the process o f combining the predictions improves the 

results for the functions with the worst performance (FcB4,B4(P>a ) an<̂  FB4,B4(ag)), 

although the combined results still contain unacceptably large errors.

The mean T M E combined over all patients was less than 1.4 mm for all except the worst 

two models, and the maximum T M E combined was less than 5 mm for the best four models 

(and was less than 5 mm for three o f the four patients for another two models). These 

results indicate that the models that perform well can predict the Cine CT data with a 

high degree of accuracy.

The mean D F E combined over all patients was less than 1.1 mm for all except the worst two 

models, and the maximum D F E combined was less than 15 mm for the best three models 

(and was less than 15 mm for three of the four patients for another three models). The 

DFEindividuai results were even better, with a mean value over all patients o f less than 0.8 

mm for all but the worst two models. As can be seen from these values, the D F E  results 

have a smaller mean value, but a larger maximum value than the TME results. This 

implies that the models can reproduce most o f the deformation field from the non-rigid 

registration very accurately, but there are some small regions and/or some particular 

values of the respiratory parameters where the predictions are less accurate.

Figure 6.5 and 6.6 show error-maps of the DFEindividuai and the D F E combined for the 

Fcb4(p) model and the FP\,pi(«,g) model, with iso-intensity lines from the Cine CT
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Patient Single parameter models 

F cba(p )  F p i i a )  F ba{ o)

TMHcombine<j (mm)

Amplitude and Gradient based 
models

F p \ , Pl F/>3; P3 F ba, BA 

(a,g) (a,g) (a,g)

Phase and Amplitude based 
models

F cba, p i  F cba, p i  F cba, BA 
{p,a) (p,a) (p,a)

Mean 1.60 1.88 1.88 1.72 1.90 3.07 1.61 1.58 2.52

5 o 0.61 1.19 1.19 0.70 2.03 3.91 0.60 0.64 2.96

Max. 3.51 7.82 7.82 4.75 18.85 24.46 3.33 3.60 21.81

Mean 1.60 1.62 1.62 1.73 1.66 1.91 1.60 1.60 1.69

6 o 0.65 0.69 0.69 0.65 0.65 1.06 0.65 0.65 0.83

Max. 3.12 3.59 3.59 3.58 3.04 6.39 3.14 3.07 5.86

Mean 1.18 1.14 1.17 1.13 1.17 1.32 1.19 1.19 1.19
7 a 0.62 0.62 0.65 0.61 0.63 1.05 0.60 0.60 0.82

Max. 3.55 A l l 4.93 3.93 4.01 9.42 2.81 2.79 8.86
Mean 1.31 1.27 1.30 M l 1.30 1.76 1.30 1.30 1.49

8 a 0.67 0.67 0.76 0.70 0.75 2.88 0.68 0.68 1.59
Max. A l l 4.00 6.60 4.12 4.42 27.59 4.46 4.47 16.37
Mean 1.34 1.34 1.36 1.33 1.37 1.77 1.34 1.33 1.53

All o 0.66 0.77 0.81 0.70 0.98 2.42 0.66 0.66 1.58

Max. A l l 7.82 7.82 4.75 18.85 27.59 4.46 4.47 21.81

Table 6.3 - The mean, standard deviation, and maximum Target Modelling Error for the combined model predictions, TMEcombined, for each patient and over all patients. The results

are given for each of the 9 functions assessed, and are grouped according to the respiratory parameters used.
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Patient Single parameter models 

F Cb 4 (p )  F p i { a )  F b a {o )

D F E combined (mm)

Amplitude and Gradient based 
models

F p \ , p \  F p s ,  PS F BA, BA

( a ,g )  ( a ,g )  ( a ,g )

Phase and Amplitude based 
models

F cba, p i F cba, pt> F cba, ba 
(p , a )  ( p , a )  { p ,a )

Mean 1.42 1.67 1.67 1.43 1.57 9.21 1.41 1.44 3.47

5 o 0.96 1.90 1.90 0.96 1.40 39.46 0.96 1.02 8.96

Max. 10.19 67.48 67.48 10.30 28.58 1160.40 10.22 17.49 333.51

Mean 0.95 0.99 0.99 0.97 0.99 1.51 0.95 0.95 1.10
6 a 0.69 0.71 0.71 0.70 0.71 2.63 0.69 0.69 0.86

Max. 8.91 9.54 9.54 8.97 8.65 93.74 8.86 8.66 19.88

Mean 0.88 0.89 0.94 0.90 0.93 1.27 0.88 0.88 1.10
7 a 0.65 0.66 0.80 0.67 0.69 2.45 0.65 0.65 1.16

Max. 12.00 11.68 25.31 12.28 12.18 136.95 12.05 12.05 43.72

Mean 1.05 1.03 1.07 1.03 1.04 1.62 1.04 1:04 1.30
8 o 0.75 0.72 0.86 0.73 0.74 4.75 0.74 0.74 2.19

Max. 14.24 13.66 23.57 13.91 13.88 313.01 14.26 14.26 208.31
Mean 1.03 1.05 1.09 1.02 1.06 2.37 1.02 1.02 1.46

All a 0.76 0.95 1.03 0.76 0.85 14.11 0.75 0.76 3.53
Max. 14.24 67.48 67.48 13.91 28.58 1160.40 14.26 17.49 333.51

Table 6.4 - The mean, standard deviation, and maximum Deformation Field Error for the combined model predictions, DFEcombined, for each patient and over all patients. The results

are given for each o f the 9 functions assessed, and are grouped according to the respiratory parameters used.



150

volume overlaid to show the outline o f the patient and their lungs (and the tumour 

Figure 6.5). Figure 6.5 shows the error-maps for a slice at the edge o f a Cine CT volume 

from patient 5. Figure 6.6 shows the error-maps for a slice in the middle o f the Cine CT 

volume from patient 8. For both patients, a Cine CT volume close to the tumour with 

large D F E  values is shown (for patient 8  all the Cine CT volumes that contained the 

tumour had very small D F E  values, < 2mm, so a Cine CT volume from the couch 

position below the tumour was chosen to illustrate where the larger D F E  values are 

occurring). It can be seen in Figure 6.5 that the results for both models are very similar, 

even though the models use different respiratory parameters and modelling functions. In 

Figure 6.6 there is a more noticeable difference in the magnitude o f the D F E  values for 

the two models. The Fp\j>\(ag) model clearly has lower D F E  values than the Fcb*(p) 

model, although the distribution of the D F E  values is similar for the two models. Both 

figures also show that the largest D F E j ndividuai values are occurring outside o f the lungs.

In both Figures 6.5 and 6.6 the largest DFEindiViduai value inside the lung for the F cba(p ) 

model is approximately 3.5 mm. In Figure 6.5 the largest DFEjndividuai value inside the 

lung for the Fp\j>](ag) model is also approximately 3.5 mm, but is down to 

approximately 2.75 mm in Figure 6.6

There was a relatively large difference between the DFEjndividuai values and the 

D F E Combined values for slice shown in Figure 6.5. The D F E combined values inside the lungs 

are larger than the DFEjndividuai (all are still under 5 mm), although the values in the 

tumour are still very small (< 2mm), and the maximum D F E combined values (which occur 

outside the lung) are actually smaller than the corresponding DFEjndividuai values. The 

difference between the DFEjndividuai and the D F E combined values was much smaller for the 

slice shown in Figure 6 .6, with the D F E combined values inside the lungs all being within 

0.5 mm of the DFEjndividuai values. The main reason that the difference is so much 

greater in Figure 6.5 is because that slice was located near the edge o f the Cine CT 

volume, whereas the slice in 6.6 was located in the middle of the Cine CT volumes 

(although variations in the respiratory motion modelled for each couch position will 

also have affected the results).
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Figure 6.5 - Error-maps showing the Deformation Field Error (DFE) in mm, for a slice from the edge o f a 

Cine CT volume from patient 5. The iso-intensity lines from the Cine CT volume are overlaid to show the 

outline o f the patient, their lungs, and the tumour, a) DFEindividuai for the FCB4(p) model, b) DFEindividual for 

the F PhPl ( a g )  model, c) DFEcombined for the FCBa(p ) model, and d) DFEcombined for the F Ph Pl ( a g )  model.

It can be seen that the two different models produce very similar results (a and c compared to b and d), 

and that combining the model predictions from all the couch positions has a lot o f effect on this slice (a 

and b compared to c and d).
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Figure 6.6 - Error-maps showing the Deformation Field Error (DFE) in mm, for a slice from the middle of 

a Cine CT volume from patient 8. The iso-intensity lines from the Cine CT volume are overlaid to show 

the outline of the patient, and their lungs, a) DFEindividuai for the F Cba,(p )  model, b) DFEindividuai for the F PU 

/>, (a ,g) model, c) DFEcombmed for the F CB\ip) model, and d) DFEcombined for the F PhPl (a ,g) model. It can be 

seen that for this slice there is a more noticeable difference between the two different models (a and c 

compared to b and d), but that combining the model predictions from all the couch positions has little 

effect on this slice (a and b compared to c and d).
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6.6 Discussion and conclusions

This chapter has presented a framework for constructing and assessing motion models 

based on two respiratory parameters. It has also presented a number of example 

functions that might be used for the motion models, and evaluated their performance on 

data from four patients.

It is acknowledged that the functions used in this chapter may not have been ideal 

functions for modelling the data. Simple modifications and/or constraints may have 

improved the results of some o f the functions (e.g. applying smoothness constraints to 

the B-spline functions), and there may be other functions that were not investigated here 

that may be more suited to modelling the data. The intention o f evaluating the example 

function was not to try and determine the "best" function(s) for the motion models, but 

to demonstrate the different types o f function required for different respiratory 

parameters and the effects of using functions with too many degrees o f freedom.

Despite this, most o f the functions performed remarkably well at predicting both the 

Cine CT data and the registration results. However, it is also acknowledged that to truly 

evaluate the model's performance they should be assessed using an entirely different set 

o f data to that used to construct the model. This data may be acquired during the same 

session to test the model's ability to account for short term inter-cycle variation, or 

during a different session hours or days later to test the model's ability to account for 

longer term variation. In addition, the models would need to be assessed on many more 

patients before they could be relied on for clinical use.

The results for the functions with high degrees of freedom, Fb4 ,b4(« and Fcb4 ,b4(p,o), 

confirm the need for performing the experiments using the leave-out-target method. 

When the target registration result is also used to construct the models the Fs4 yB4(^,g) 

and F CB4 ,B4 ( p ,a )  functions perform better than the other functions. It is only when the 

target result is left out that it becomes clear that the functions are over-fitting the data.

Although the two parameter models presented in this chapter perform no better than the 

single parameter models, this does not necessarily mean that the principle o f using two 

respiratory parameters to model the inter-cycle variation is flawed. The single parameter 

models generally perform very well, and limitations with the data or the pre-modelling 

processing steps may be preventing the two parameter models from performing any 

better. There may have been very little inter-cycle variation in the data (although the
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respiratory traces indicate that there was considerable variation for some couch 

positions, see Figure 3.6). There may not be sufficient data from each couch position to 

fully sample the inter-cycle variation; more samples per respiratory cycle and/or 

samples from more respiratory cycles may be required. Errors in the registrations and/or 

the respiratory parameters may be preventing the inter-cycle variation from being 

measured accurately enough to be modelled. Also, the function used in this chapter for 

the two parameter models may have been unable to accurately model the relationship 

between the respiratory parameters and the inter-cycle variations without over-fitting 

the data.

The two parameter motion models presented here are based on the assumption that there 

is a strong relationship between the respiratory parameters and the inter-cycle variations 

in the respiratory motion. It is intuitively thought that the respiratory parameters used in 

this chapter should have some relationship to some of the variations in the respiratory 

motion. However, there is no guarantee that this relationship is particularly strong for 

the parameters/signals used here. Much more work is required to investigate the 

strength, robustness, and nature o f the relationships between the internal respiratory 

motion (including its variation) and the many different possible respiratory parameters 

(and the external signals they are derived from), and in particular how stable these 

relationships are over different time frames. The study and comparison o f the 

relationships to the internal motion for different respiratory signals and parameters was 

beyond the scope o f this thesis, although such studies are essential to the development 

of accurate models, and are currently underway in our own lab and many others.

The motion modelling method presented in this chapter could be directly applied to 

respiratory parameters from two different respiratory signals, rather than two parameters 

from the same signal as used here. They could also easily be extended to three (or more) 

respiratory parameters, by simply fitting 3D functions that relate the parameters to the 

B-spline Control Point displacements. However, this would almost certainly require 

more data to be acquired at each couch position, so that the relationship between the 

respiratory parameters and the internal motion was sufficiently sampled and to prevent 

the functions over-fitting the data.
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Chapter 7

Using the motion models

This chapter describes some o f the ways the motion models can be used for lung RT, 

and details two experiments performed as part o f this research that demonstrate the use 

o f the motion models: the comparison o f breath-hold and free-breathing motion models, 

and the delivery of tracked IMRT (Intensity-Modulated Radiation Therapy) treatment.

7.1 Introduction

There are many potential uses for the motion models described in the previous two 

chapters. Section 2.6 describes some of the possible uses for the motion models in 

applications other than RT treatment o f lung cancers, but these were not the focus of 

this research. Section 2.1.5 describes some o f the ways o f accounting for respiratory 

motion when delivering RT to lung tumours and all o f these (except for those based on



156

treating at breath-hold) may benefit from utilising the models. This chapter will give 

more specific descriptions o f how the models presented in this thesis can be used for 

lung RT. The motion models can be used for 'medical research applications', where the 

aim is to learn something about the nature o f the internal respiratory motion and/or its 

relationship to external surrogate signals. The idea is that the knowledge gained will be 

in some way beneficial to lung RT and may well affect clinical practice, but the 

methodology used is not itself intended for clinical practice. The motion models can 

also be utilised in methods that are (ultimately) intended to translate to clinical practice, 

although it is acknowledged that the accuracy and robustness o f the motion models (and 

the rest o f the methodology) would first need to be demonstrated to a much higher level 

before they could be clinically relied on.

7.2 Using the motion models for 'medical research 

applications'

The framework presented in the previous chapters for constructing and evaluating 

respiratory motion models can be used to try and answer many questions regarding the 

nature o f the internal respiratory motion and its relationship to external surrogate 

signals. The models can be used to assess the strength and validity o f proposed 

relationships (functions) between external respiratory parameters derived from surrogate 

signals and the internal respiratory motion and its variation. These relationships can be 

assessed over the whole region o f interest, or at any specific points within the region. 

Different relationships, respiratory parameters, and surrogate signals can be evaluated 

and compared to each other, as was demonstrated for a number o f example relationships 

and parameters in chapter 6. If data can be acquired for longer periods o f time and/or 

over multiple sessions then the models can be used for a detailed analysis o f the effects 

o f inter-cycle variation on the internal motion and its relationship to the external 

respiratory parameters. The models can also be used to determine how much data is 

required to sample the variation over different time frames. The effects o f audio and 

visual feedback and other breath training techniques can be studied with the models. As 

an example o f a 'medical research application', the motion models have been used to 

compare the motion that occurs between inhalation and exhalation breath-holds and that 

which occurs during free-breathing (McClelland et al. 2006b).
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7.3 Comparing models derived from breath-hold and free- 

breathing data

7.3.1 Introduction

Several authors have proposed that motion models can be constructed from CT volumes 

acquired (exclusively) at inhalation and exhalation breath-holds, and that these models 

could be used to predict the motion that occurs during free-breathing (Sarrut et al. 2006, 

Schweikard et al. 2004, Zeng et al. 2007b, see Section 2.5.2). Others in our lab 

(Blackall et al. 2006) and elsewhere (Rietzel et al. 2005a) have shown that volumes 

acquired at breath-hold do not always give a good representation o f the motion that 

occurs during free-breathing, and it was decided to see if  the motion models supported 

this finding. As this experiment was performed before the two parameter models had 

been developed only the phase based cyclic B-spline models were used, although it 

could easily be modified to use any of the models presented in the previous chapter.

7.3.2 Method and materials

Breath-hold volumes were acquired at both tidal inhalation and tidal exhalation for 

patients 2, 3, 5, and 6. The exhalation scan was non-rigidly registered to the inhalation 

scan using registration protocol 2 (see Section 4.1.2 for details). The non-rigid 

registration result was used to determine the motion between the two breath-hold scans. 

The motion models that were evaluated in Section 5.4 were used to determine the 

respiratory motion during free-breathing.

A clinician identified the centre o f the tumour and each nodal area that was included in 

the models. A total of 14 points of interest were studied over the four patients (4 tumour 

points, 10 nodal points). The clinician manually located these points in the exhalation 

breath-hold scans. The breath-hold registrations were used to identify the location o f the 

points o f the interest in the inhalation breath-hold scans. The motion models were used 

to identify the location o f the points of interest during free-breathing at end-exhalation, 

end-inhalation, and 18 intermediate phases. Note, in order to do this it was necessary to 

estimate the inverse o f the non-rigid transformations predicted by the motion models.
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See Appendix A for a description o f how to estimate the inverse o f a non-rigid 

transformation.

7.3.3 Results

For each point of interest, the motion between the breath-hold scans was compared to 

the free-breathing motion in a number o f ways. The distance between the location o f the 

point in the exhalation breath-hold scan and at end-exhalation during free-breathing was 

measured (Figure 7.1a). The mean distance over the 14 points was 2.2 mm and the 

maximum distance was 3.9 mm. The distance between the location o f the point in the 

inhalation breath-hold scan and at end-inhalation during free-breathing was also 

measured (Figure 7.1a). The mean distance was 4.9 mm and the maximum distance was 

7.8 mm. The magnitude of the breath-hold motion, the distance between the locations of 

the point in the two breath-hold scans, was compared to the magnitude o f the free- 

breathing motion, the distance between the end-exhalation and end-inhalation locations 

during free breathing (Figure 7.1b). The magnitude o f the breath-hold motion was 

between 0.6 and 3.3 times that o f the free-breathing motion, although the mean 

difference between the free-breathing magnitude and the breath-hold magnitude was 

only 1.6mm, and the maximum difference was 3.4 mm. The angle between the direction 

of the breath-hold motion and the primary direction o f the free-breathing motion 

(defined as the direction of a straight line drawn between the end-exhalation and end- 

inhalation locations) was also measured (Figure 7.1c). This angle was over 45° for half 

the points and was over 90° in one case. Finally, to assess the extent that the free- 

breathing motion deviated from a straight line, the distance was measured between the 

intermediate free-breathing locations and the corresponding points on a straight line 

drawn between the end-exhalation and end-inhalation locations (Figure 7 .Id). For three 

of the four patients at least one point o f interest had a mean distance to the straight line 

greater than 2 mm, and two patients had at least one point with a maximum distance 

greater than 5 mm.
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x BH exhalation 
O BH inhalation

x FB end-exhalation 
O FB end-inhalation
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Figure 7.1 - The difference between the Breath-Hold (BH) and Free Breathing (FB) motion was assessed 

for each point by comparing: a) the location at FB end-exhalation/end-inhalation with the location at BH 

exhalation inhalation, b) the magnitude of the BH motion with the magnitude of the FB motion, c) the 

direction of the BH motion with the direction of the FB motion, d) To assess the extent that the free- 

breathing motion deviated from a straight line, the distance was measured between the intermediate free- 

breathing locations and the corresponding points on a straight line drawn between the end-exhalation and 

end-inhalation locations

7.3.4 Conclusion

The results above show that the motion between breath-hold volumes and the motion 
that occurs during free-breathing are not always the same, and therefore breath-hold 
scans cannot be used to model the motion that occurs during free-breathing. The breath-
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hold scans were able to predict the end-exhale locations and the overall magnitude of 

the motion relatively well. However, it was found that the direction o f motion and the 

end-inhalation location during free-breathing could not be predicted very well from the 

breath-hold scans.

7.4 Using the motion models in clinical practice

There are several ways that the motion models developed in the previous two chapters 

could be utilised in clinical practice. The models could be used to aid in creating target 

and organs at risk delineations that account for respiration. The tumour and organs at 

risk only need to be delineated in the reference volume and the motion models can then 

predict the delineations for any valid values of the respiratory parameters. This enables 

a target to be formed that covers the tumour for all observed values o f the respiratory 

parameters. The models could also be used to predict the 'average' location o f the 

tumour, and the 'average' appearance of the rest o f the anatomy (for using in dose 

calculations, see below). The models could also be used to generate probability based 

targets, i.e. a voxel is included in the delineation if  it contains the tumour (or organ at 

risk) for e.g. over 75% of the observed respiratory parameters.

The motion models can also be used to perform accurate dose calculations that account 

for the respiratory motion. The dose delivered to the reference anatomy at any values of 

the respiratory parameters can be calculated. The dose can be accumulated over all the 

values of the respiratory parameters observed during planning to generate the planned 

dose distribution. If the respiratory parameters are also measured during treatment the 

actual dose distribution delivered to the patient can be estimated using the model, and 

evaluated against the planned dose distribution. The models could also be used to 

perform probabilistic based dose calculations.

The motion models can be used in the ways described above to aid in the planning of 

standard 'static' treatments, where the beam is always switched on and motionless 

during treatment delivery. However, they are potentially even more useful in the 

planning and delivery of 'active' respiratory treatments, such as gating and tracking (see 

Section 2.1.5). The motion models relate the internal motion to external respiratory 

parameters that can be measured during treatment, and hence used to guide the gated or
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tracked treatment. For gated treatments, targets and dose distributions can be calculated 

for various ranges o f the respiratory parameters in order to determine the optimum 

gating parameters. A detailed example o f how the motion models can be used to plan 

tracked IMRT treatment is given in the next section, and the motion models could be 

used in a similar way for tracked treatment using a robotically mounted LINAC.

Several authors have proposed using the results o f non-rigidly registering 4DCT 

datasets for one or more of the uses o f the motion models described above (see Section 

2.1.5). However, using the motion model predictions has a number o f advantages over 

using 4DCT registration results. The motion models are potentially better at predicting 

the motion that occurs during treatment as they are able to average out or model some of 

the (short term) inter-cycle variation. 4DCT registrations will attempt to recreate any 

artefacts that occur between couch positions in Cine 4DCT volumes, whereas the 

motion models (combined using the method in Section 5.5) produce a smooth and 

continuous deformation that predicts an artefact free volume.

The motion models are continuous over the respiratory parameters and can predict the 

deformation for any values o f the respiratory parameters, whereas 4DCT registrations 

are discrete and only sample the deformation at particular values o f the respiratory 

parameters. This could be particularly useful for gated and tracked treatments where it 

may be desirable to estimate the deformation o f the anatomy at a higher temporal 

resolution than can be provided by 4DCT.

Some of the target definition and dose distribution applications described above are 

currently being investigated by collaborators at the Institute o f Cancer Research and 

Royal Marsden Hospital, using the models developed and evaluated in chapter 5 (the 

results o f these are to be submitted for publications soon). The next section describes 

how the motion models can be used to plan tracked IMRT treatment. This work was 

conducted in collaboration with Prof. Steve Webb from the Institute o f Cancer Research 

and Royal Marsden Hospital, and was originally presented as two oral presentations at 

XVth International Conference on the Use of Computers in Radiation Therapy, ICCR 

2007 (McClelland et al. 2007a, Webb et al. 2007), and written up as a paper published 

in Physics in Medicine and Biology with myself as first author (McClelland et al.

2007b).
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7.5 Using the models for tracked IMRT treatment

7.5.1 Introduction

IMRT, delivered via the Dynamic M ultileaf Collimator (DMLC) technique (see Section 

2 .1.2), can accommodate intra-fraction motion, in particular respiratory motion, if  the 

corresponding motion is applied to the travelling leaves. If  this is achieved correctly the 

target will appear stationary in the “breathing leaves” frame o f reference, and a 

treatment plan made on the static 3D anatomy can be correctly delivered to the 

breathing anatomy. This was first demonstrated for ID  rigid body translation (Keall et 

al. 2001), and it has been shown that exact tracking solutions exist for cases o f rigid- 

body translation and deformations in the direction o f leaf travel (Papiez et al. 2005), 

and, with some experimental limitations, for 2D rigid body translations (McQuaid and 

Webb 2006). However, if  non-rigid deformations occur in 2D or 3D, as is generally the 

case for real patients, then it is no longer possible to produce an exact tracking solution. 

This is because the anatomical points which are in line with a particular beam element 

(bixel) at the planning phase of the respiratory cycle will undergo “differential motion” 

and will no longer lie in a straight line at other phases o f the respiratory cycle.

7.5.2 The 2D differential motion tracking strategy

A strategy that minimises the geometrical tracking error in a least-squares sense was 

proposed by Webb and Binnie (2006). Motion along the direction o f the beam cannot be 

accounted for by moving the leaves, and it has been shown that it produces a 2nd order 

effects in comparison to motion perpendicular to the beam (Webb 2006). Therefore the 

strategy proposed by Webb and Binnie (2006) only tracks the motion in the beams-eye- 

view, but samples the motion at many points along the beam, and the motion may be 

different at each point (differential motion). The original method only tracked motion in 

the direction o f leaf motion, but the method was extended to track full 2D motion in the 

beams-eye-view in Webb et al. (2007). The 2D differential motion tracking strategy is 

described by the following equation:
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Equation [7.1] was re-written as equation [7.2] so that it is easier to relate to the 

computational algorithm used to implement the tracking strategy:

r, (0=

[7.2]

Equation [7.1], and the tracking strategy itself, were devised by Steve Webb, and are 

explained in full detail in Webb et al. (2007) and McClelland et al. (2007b). The 

differences between equation [7.1] and [7.2] are explained in Appendix B o f 

McClelland et al. (2007b). Note, there are some minor notational differences between 

equation [7.2] presented here and how the equation was presented in Appendix B of 

McClelland et al. (2007b). Equation [7.2], the computational implementation o f the 

tracking strategy, and its subsequent evaluation using one o f the patient motion models 

from Section 5.5 of this thesis, were performed by me as part o f my PhD research.

There are Q leaf-pairs in the MLC which independently determine the fluence delivered 

to each channel q=\,2,...,Q. Each channel, q, is sampled at the points j= jstart(q),---jfin(q), 

equally spaced (jspacing mm apart) along the leaf-end. For each leaf sample point, j ,  the 

motion is sampled at points i=istart,---,ifin, equally spaced (facingmm apart) along the 

beam (parallel beams are assumed) such that all o f the anatomy to be tracked is 

sampled.

I(p,j,i) is the Importance factor (weighting value) given to point p,j,i in the planning 

volume.

x(p,j,i,t) is the position in the x-direction (the direction o f leaf-travel) that the point 

originating at p,j,i in the planning volume had displaced to at time t.
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y(p,j,i,t) is the position in the y-direction (across leaf direction) that the point originating 

at p,j,i in the planning volume had displaced to at time t.

d(q,y) is a function that is 1 if  position y  lies within channel q , and is 0 otherwise.

P k , q ( t )  is the planned position o f the (P lead ing  or &=trailing) leaf-end in channel q at 

time t.

r/c,q(t) is the respiratory tracking position o f the (P lead in g  or t r a i l i n g )  leaf-end in 

channel q at time t, that is the where the leaf should be positioned so as to optimally 

track the respiratory motion, according to this strategy. This is the weighted average of 

the positions of the sample points that lie within channel q at time t.

7.5.3 Computational implementation of the motion tracking strategy

To apply the motion tracking strategy it is necessary to know where any point in the 

planning anatomy has moved to at any time, i.e. it must be possible to calculate x(p,j,i,t) 

and y{p,j,i,t) in equation [7.2]. This information can be provided by the motion models 

developed in this thesis. The single parameter models developed in chapter 5 were used 

for this work. This experiment also assumed that the respiratory cycle had a fixed period 

and that the treatment started at a known phase. While it is acknowledged that these 

assumptions are clearly not realistic, this was an initial study into tracking differential 

motion from real patient data and accounting for inter-cycle variation was not the focus 

of this work. Also, in this initial implementation, tissue moving in and out o f the beam 

was ignored.

The computational algorithm used to implement the differential motion tracking 

strategy specified in equation [7.1] and [7.2] is:

For every time point:

For each set o f leaves (leading and trailing):

• In the beam’s-eye view place leaf sample points along each leaf-end spaced 

j  s p a c in g  mm apart,
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• Project the leaf sample points into 3D by placing motion sample points along the 

beam from istart to ifin equally spaced ispacing mm apart, such that all o f the 

anatomy being tracked is sampled,

• Calculate the respiratory parameter(s) corresponding to this time point,

• Using the motion model, find the 3D location o f each motion sample point for 

these respiratory parameter(s) -  the tracked sample points,

• Project the tracked 3D sample points back into the beam ’s-eye view,

• For each leaf find the tracked sample points that are aligned with that leaf:

■ Find the mean of those tracked sample points (weighted by their 

importance factors) -  this is the optimal leaf-end position,

■ Find the standard deviation o f these points (weighted by their 

importance factors) -  this is a measure o f how well the leaves can 

track the motion, referred to as the tracking error.

This algorithm is illustrated in Figure 7.2.

Note, when using the motion models to find the displacement o f the motion sample 

points from the planning volume to the current respiratory state, the first task is to 

transform the sample points from the planning volume to the model's reference volume. 

This can be done using the forward transform used to form the planning volume. In 

theory the reference volume could be used as the planning volume, but due to the 

differences between breath-hold and free breathing motion demonstrated in Section 7.3, 

it was decided to plan on one o f the free-breathing volumes predicted by the model. The 

second task is to find the position of the sample points in the current respiratory state 

using the transformation predicted by the model for the current respiratory parameter(s). 

This requires the inverse of the transformation to be estimated using the method 

described in Appendix A.

Applying this algorithm will calculate the leaf-end trajectories modified so that they 

track the respiratory motion. However, these modifications will have caused an increase 

to the leaf speed during some parts o f the respiratory cycle. If the original leaf speeds
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Figure 7.2 - Illustration of the computational algorithm used to implement the differential motion tracking 

strategy. In all of the above plots the x-axis is the direction of leaf motion, the y-axis is the across-leaf 

direction, and the z-axis (when shown) is beam direction.

The planned (trailing) leaf positions are shown in green, the sample points are shown in red, and the 

tracked sample points are shown in blue.

a) "In the beam’s-eye view place leaf sample points along each leaf-end spaced j  spacing mm apart."ys/Mcmg =  

2 mm in example shown.

b) "Project the leaf sample points into 3D by placing motion sample points along the beam from ismn  to ifin 

equally spaced ispacmg mm apart, such that all of the anatomy being tracked is sampled." istart = +100 mm, 

ifm = -100 mm, ispacing = 2 mm in example shown. Only 1 sample per leaf-end {jspacing = 10 mm) is shown 

so that the plot is not over-crowded.
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c) "Using the motion model, find the 3D location o f  each motion sample point for these respiratory 

parameter(s) -  the tracked sample points." Only points with a non-zero importance factor are shown.

d) "Project the tracked 3D sample points back into the beam ’s-eye view." The plot is zoomed in on leaves 

2-4 and j  spacing -  2 mm has again used to illustrate the across leaf motion.

e) "For each leaf find the tracked sample points that are aligned with that leaf." The tracked sample points 

that are aligned with leaf 3 are shown. It can be seen that som e sample points that have m oved down from 

leaf 4 and up from leaf 2 and are now aligned with leaf 3.

f) "Find the mean o f  those tracked sample points - this is the optimal leaf-end position." The optimal leaf- 

end position has been plotted as a blue line. Note how the sample points that originated under leaves 2 

and 4 are affecting the mean and causing the optimal leaf-end position to be shifted to the left

were set to be the maximum physical leaf speed then that maximum speed will be 

exceeded during these parts of the respiratory cycle. Therefore, it may be necessary to 

iterate around this whole procedure a number of times, using different initial leaf 

speeds, to produce a modified leaf speed that does not exceed the maximum leaf speed. 

The maximum physical acceleration o f the leaves may also be exceeded by the 

respiratory tracking, but this can be corrected in exactly the same manner. It is possible 

that the respiratory tracking may cause the maximum speed or acceleration to be 

exceeded whatever initial speed and acceleration values are used, in which case this 

strategy (and any other) will fail to track the respiratory motion. The acceleration o f the 

leaves was not studied as part of this experiment, but their velocity was.

7.5.4 Applying the motion tracking strategy to patient data

The combined results from the phase based cyclic B-spline models (see Section 5.5) 

were used for this experiment. As this experiment was intended to investigate the 

feasibility o f the tracking strategy it only used data from one patient, patient 5. A 3-field 

IMRT plan was produced (by collaborators at the Institute of Cancer Research and 

Royal Marsden Hospital) with beams at 0° (A-P), 145°, and 210° (Figure 7.3a). The 

plan was made on the end-exhale volume predicted by the model. The 210° beam was 

used for this experiment, as the respiratory motion in the beams-eye-view was greatest 

for this beam.
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Direction o f  lea f motion

Figure 7.3 - a) Three field IMRT plan - the 210° beam (shown in blue) was used for this study, b) The 2D 

Intensity Modulated Beam (I MB) for the 210° beam - the scale shows the number o f seconds each bixel 

should be irradiated for.

The 2D Intensity Modulated Beam (IMB) produced by the plan covered 70 mm in the 

SI direction (Figure 7.3b). The Multi-Leaf Collimators (MLCs) were set to move 

horizontally (most of the respiratory motion is in the horizontal direction for the patient 

used) and the IMB was formed using 7x10  mm wide leaves. The trajectories of the 

leading and trailing ends needed to form the IMB were calculated for each of the seven 

sets of leaves using the equations in Stein et al. (1994). A constant delivery rate for the 

LINAC of 400 MU/min and a maximum leaf speed of 25 mm/s were assumed. The leaf- 

edge positions were calculated every 0.1 s over the total treatment time.
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Initially the leaf trajectories were calculated to reproduce "blocky" appearance of the 

IMB that would be produced if  the same plan was delivered via the step-and-shoot 

method. This can be seen as using nearest neighbour interpolation to interpolate 

between the bixel values in each ID  IMB. To achieve this either the leading or trailing 

leaf-end will remain stationary at the edge o f each bixel for a period o f time (the 

difference in the fluence values o f the adjacent bixels will determine which leaf-end is 

stationary and for how long). Figure 7.4a shows a plot o f the leaf-end positions against 

time that will deliver the "blocky" ID IMB to the planning volume for the first leaf 

(most inferior).

It was later found that the leaf trajectories needed to be synchronised using the method 

described in McQuaid and Webb (2006) to prevent the distance between adjacent leaves 

becoming too large (the reason for this will be explained in Section 7.5.5) . The 

synchronisation algorithm is designed to produce trajectories with constant velocity leaf 

motion between bixel centres and although it can reproduce the ‘blocky’ IMBs the 

delivery time was greatly extended to the point where it was no longer feasible. 

Therefore, it was decided to linearly interpolate between the values in each 1D IMB, 

producing continuously varying 1D IMBs as opposed to the ‘blocky’ IMBs used 

previously. This meant that the leaves are constantly moving, sometimes at the specified 

maximum leaf speed and sometimes slower. Figure 7.4c shows the synchronised leaf 

trajectories for the first leaf before tracking is applied. Note that different axis are used 

to the previous plot as the synchronisation causes the leaves to start further to the left 

and the delivery to take longer.

The respiratory period was set to 3 seconds (approximately the average respiratory 

period observed during data acquisition for this patient) and the starting phase was set to 

end-exhale. For this initial experiment, only tissue within the lungs (including the 

tumour) was tracked, so all voxels within the lungs in the planning volume (end-exhale) 

were given an importance factor o f 1, and all voxels outside the lungs were given an 

importance factor o f 0. Nearest neighbour interpolation was used to calculate the 

importance factor at arbitrary points in the planning volume.
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Figure 7.4 - Plots showing the leading and trailing leaf-end trajectories for leaf 1. The position o f the leaf- 

end (relative to the iso-centre) is plotted on the horizontal axis and the time (relative to the starting the 

delivery of treatment) is plotted on the vertical axis, a) The planned leaf-end trajectories required to 

deliver the "blocky" ID IMB to the static planning anatomy, b) The modified leaf-end trajectories that 

attempt to deliver the "blocky" ID IMB in the presence of differential motion, c) The planned 

synchronised leaf-end trajectories required to deliver the "continuous" ID IMB to the static planning 

anatomy, b) The modified synchronised leaf-end trajectories that attempt to deliver the "continuous" 1D 

IMB in the presence of differential motion.

7.5.5 Results of applying the motion tracking strategy to patient data

The algorithm presented in Section 7.5.3 was first applied to the leaf trajectories for the 

"blocky" IMBs with j s p a c in g  = 2 mm and i sp a c in g  = 2 mm. Figure 7.4b shows the leaf 

trajectories from Figure 7.4a modified to track the respiratory motion. An initial leaf 

speed of 25 ram/s (the maximum leaf speed) resulted in a leaf speed of 52 mm/s when 

tracking the respiratory motion. Initial leaf speeds as low as 5 mm/s still resulted in leaf 

speeds greater than 25 mm/s when tracking the respiratory motion, meaning that the 

modified trajectories could not be physically delivered. In addition the mean tracking 

errors over all leaves and time points were relatively large, with a value of 1.71 mm for
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the leading leaf-end and 1.20 mm for the trailing leaf-end. The tracking error was 

exceptionally large for some leaves at particular time points. The maximum tracking 

error for the leading leaf-ends was 17.7 mm and the maximum value for the trailing 

leaf-ends was 9.02 mm.

When the results were examined in more detail it could be seen that the reason for the 

poor results was that there were large distances between adjacent leaf-ends at some 

points during the delivery. This caused a problem when there was motion across the 

leaves, as sample points that were on adjacent leaves in the planning volume moved into 

the same leaf channel but were still a large distance apart (this is the case in the example 

image used to illustrate the algorithm in Figure 7.2). Attempting to track sample points 

that were a large distance apart with the same leaf resulted in the large values for the 

tracking error and the large increases to the leaf speeds. To prevent these problems it 

was decided to synchronise the leaf trajectories as described in McQuaid and Webb 

(2006) to prevent the distance between adjacent leaves becoming too large. As noted 

above this also meant using continuously varying, rather than "blocky", ID  IMBs.

The motion tracking algorithm was then applied to the synchronised leaf trajectories, 

again with j  sp a c in g  = 2 mm and i s p acm g  = 2 mm. By iterating over the algorithm twice it 

was found that ensuring the initial leaf speed did not exceed 17 mm/s resulted in a leaf 

speed that was always under 25 mm/s when tracking the respiratory motion, i.e. the 

modified trajectories were now physically deliverable. The resulting trajectories for the 

first leaf are shown in Figure 7.4d, and a movie comparing the planned and motion 

tracking trajectories of all the leaves (animated over a projection through the lung) is 

included in the CD accompanying this thesis. The tracking error was also considerably 

improved when using the synchronised trajectories. The mean tracking error for the 

leading leaf-ends was 0.73 mm and the maximum was 3.87 mm. The mean tracking 

error for the trailing leaf-ends was 0.73 mm and the maximum was 4.12 mm.

In order to further assess the effects o f the respiratory motion and the ability o f the 

proposed strategy to correct for those effects, the unattenuated fluence delivered to a 

plane of tissue perpendicular to the beam direction can be calculated. This can be done 

using the planned leaf trajectories and the (static) planning volume to produce the 

planned fluence, the 2D IMB, or using the planned leaf trajectories and the motion 

model to produce the fluence delivered in the presence o f motion. Also, the modified
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Figure 7.5 - Difference maps showing the difference between the planned unattenuated fluence and that 

delivered in the presence of differential motion: a) using the planned leaf trajectories for a plane passing 

through the iso-centre, b) using the modified leaf trajectories for a plane passing through the iso-centre, c) 

using the planned leaf trajectories for a plane 20 mm in front of the iso-centre, and d) using the modified 

leaf trajectories for a plane 20 mm in front of the iso-centre. In all maps the difference is given as a 

percentage of the maximum planned unattenuated fluence.

leaf-end trajectories can be used instead of the planned leaf-end trajectories to calculate 

the unattenuated fluence delivered when motion compensation is applied. Difference 

maps have been produced between the planned fluence and the fluence delivered in the 

presence of motion, both with and without motion compensation applied. These results 

were generated using the synchronized leaf trajectories. Figure 7.5a shows the 

difference map for a plane passing through the isocentre without motion compensation 

applied and Figure 7.5b shows the same plane with motion compensation applied. 

Figure 7.5c shows the difference map for a plane 20 mm in front of the isocentre 

without motion compensation applied and Figure 7.5d shows the same plane with 

motion compensation applied. In all the maps the differences are expressed as a 

percentage of the maximum unattenuated fluence. The maps are from the beam’s-eye- 

view and the location (0,0) is the isocentre. The large differences present at the bottom 

of Figures 7.5a and 7.5b are caused by the tissue moving outside of the area covered by 

the initial 2D IMB. When this happens, the tissue is ignored in the current
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implementation, and this highlights the need to address this problem in the future. 

Figures 7.5a and 7.5c show that although the differences to the fluence caused by 

motion are similar for the two planes, they are not identical, confirming that differential 

motion was occurring. Figures 7.5b and 7.5d show that using motion compensation 

reduces the differences between the planned fluence and the fluence delivered in the 

presence o f motion, but does not remove them entirely, and in a few small areas even 

appears to increase them. This result is exactly what would be expected when trying to 

compensate for differential motion.

7.5.6 Conclusion and discussion

This work has demonstrated how the motion models can be used to implement a 

strategy for tracking the 2D differential motion in the beam's eye view when delivering 

IMRT via the DMLC technique. This work only applied the strategy to one example 

case, and the strategy would need to be assessed on far more data and far more 

rigorously to truly evaluate how well the strategy can account for respiratory motion. 

However, this test case still provided a useful insight into how the strategy and method 

can be further developed.

This work has demonstrated the need for using synchronised leaf trajectories when there 

is motion across the leaves, which there will almost always be in clinical practice. The 

difference maps in Figure 7.5 show that differential motion does occur as the effects of 

the respiratory motion are different on the two planes. Tracking the differential motion 

helps to compensate for the effects o f the motion on both planes. It is postulated that if 

the motion was only tracked on one plane (e.g. the one passing through the isocentre), 

then the motion compensation would be better for this plane but would be worse for the 

other.

O f course, it may be desirable to track the motion at the isocentre more accurately than 

at other points, as there will typically be more dose delivered near the isocentre than at 

other points. This is why the Importance factor, I(pJ,i), has been included in equations

[7.1] and [7.2]. In this work the Importance factor was simply set to 1 for all voxels 

within the lungs (including the tumour) and to 0 for all voxels outside, meaning all 

voxels within the lungs were tracked equally and voxels outside the lungs were ignored. 

The Importance factor could be used much more intelligently so that the tracking
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focuses on regions o f high dose or high dose gradients, or critical structures where the 

dose must be delivered accurately.

There are many parts o f the methodology that need further investigation or 

development. A few different values o fj  spacing were investigated as part o f this work, 

and it was found that using only one sample per leaf-end {jspacing = 10 mm) was 

insufficient to capture the across leaf motion. However, the effects o f sampling the 

motion at different resolutions (changing i s p a c in g  and the temporal resolution as well as 

j  s p a c i n g )  needs to be further investigated. The method can be directly applied to 2D IMBs 

of any size and resolution (providing they are not larger than the model) and for any size 

MLC leaf, and the bixel and leaf sizes do not necessarily need to be equal as they were 

here. The method can be easily extended to use diverging beams rather than parallel 

beams. The method needs to be extended so that it can account for tissue moving into 

and out of the leaves used to form the original 2D IMB. This should be relatively 

straight forward by including extra leaves above and below those currently used.

This implementation o f the strategy assumed completely reproducible breathing (i.e. no 

variation in period or deformation), which is clearly unrealistic. The strategy itself does 

not require that the breathing is reproducible, just that the full internal motion and 

deformation is known at all time points. Two parameter models can potentially model 

some o f the inter-cycle variation, and could be used to provide information on the 

internal deformation at any time point, accounting for variations in the motion. If it is 

possible to measure the respiratory parameters, obtain the model prediction, and then 

apply all the tracking calculations in "real-time", then accounting for variations in the 

respiratory motion is straight forward. However, if  it is not possible to perform all these 

calculations in "real-time" (which is likely with current hardware) then results must be 

pre-calculated. This can be done by creating a look-up table giving the leaf-end 

positions for all permitted values o f the respiratory parameters at all time points 

throughout delivery (this will require a huge number o f calculations, especially for the 

two parameter models). This can be refined, particularly if the respiration can be made 

somewhat reproducible (e.g. by using visual feedback), by restricting the permitted 

respiratory parameters at different time points during delivery and only calculating the 

leaf-end positions for these respiratory values (the implementation used here is an 

extreme example of this, with the leaf-end positions only calculated for one value o f the 

respiratory parameter). If the values o f the respiratory parameters observed at a 

particular time point during treatment are within the permitted range, the leaf-end
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positions can be found in the look-up table, if  they are not within the permitted range 

then the treatment will need to be paused until the parameters return to the permitted 

range (this is similar to the idea presented by Neicu et al. 2003, where the tracked 

delivery is paused until synchronisation between the leaf positions and the respiratory 

parameter is resumed.).

The tracking strategy presented here was based on minimising the geometrical tracking 

error, but it may be more meaningful to base the strategy on minimising the error in the 

fluence or dose delivered. However, this is still based on the idea o f planning on a 

single 3D volume and then trying to reproduce the 3D plan or moving anatomy. 

Superior results may well be achieved by trying to incorporate the motion information 

earlier and actually planning on the moving anatomy.

In conclusion, there is still a long way to go and a lot o f work that needs to be done 

before IMRT tracking will be ready for clinical use, although it is, in my opinion, a 

potentially promising method, and is an active area o f research in several labs.

As previously noted, the tracking strategy itself was developed by Steve Webb, and 

while I personally think there is some potential for the strategy, the aim o f this work 

was not to develop the tracking strategy or assess its performance, but to demonstrate 

how the motion models could be utilised in a way that may one day translate to clinical 

practice.
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Chapter 8

Conclusions and future 

work

This final chapter discusses the findings and conclusions from each chapter. It also 

suggests some of the future work that may follow on from this research.

8.1 Conclusions and discussion

This thesis has presented a methodology for constructing respiratory motion models that 

relate the complex internal motion and deformation, described by non-rigid 

registrations, to one or two respiratory parameters derived from an external respiratory 

surrogate signal. A framework for constructing and evaluating the models has been
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developed, and a number o f different possible models have been evaluated. The results 

show that some o f these models can predict the respiratory motion very accurately. One 

example application o f the models in lung RT, planning tracked IMRT treatment, has 

been demonstrated in some detail.

It is acknowledged that there still remains a lot o f work that must be done before 

respiratory motion models can be used to fulfil their full potential. However, the motion 

models presented in this thesis potentially offer substantial improvements over current 

methods of imaging and analysing the respiratory motion. Many institutions are now 

acquiring 4DCT to obtain information on the respiratory motion. Several authors have 

highlighted the benefits o f non-rigidly registering the 4DCT datasets, such as 

propagating targets delineations and performing dose calculations that account for 

respiration. As the models in this thesis are also based on non-rigid registrations they 

also provide all o f these benefits. In addition the motion models have two further 

advantages over registered 4DCT datasets.

Firstly, the motion models are fully continuous over the respiratory parameter(s) used. 

This can be very useful for tracking and gating applications were it may be desirable to 

estimate the motion at a finer temporal resolution than provided by 4DCT. This is 

demonstrated by the IMRT tracking application in Section 7.5, where the internal 

motion is sampled every 0.1 seconds, corresponding to 30 times per respiratory cycle (a 

typical 4DCT volume only sample the motion 8-10 times per respiratory cycle).

Secondly, the models are constructed by fitting a function to 'unsorted' data. This means 

that the models can account for variation in the respiratory motion which is not possible 

when using 'sorted' 4DCT, as the sorting process assumes there is no variation. As the 

models fit a function to the data any variation not explained by the respiratory 

parameter(s) is averaged out. Additionally, the models can use two respiratory 

parameters (and could be extended to more, see future work below) which may permit 

some of the variation to be modelled. It also means that the strength o f the relationship 

between the internal motion and the respiratory parameters can be assessed prior to 

combining the data from different couch positions. If the relationship is not sufficiently 

strong then different parameters and functions can be assessed to see if  a better 

relationship can be established.
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There now follows a summary o f the findings and conclusions from each chapter in this 

thesis (other than chapter 2 which contained the background and literature review).

8.1.1 Chapter 3 summary and conclusions

Chapter 3 described the data that was acquired for constructing the motion models and 

the protocols used for acquiring the data. Cine CT data was acquired at several couch 

positions to sample the internal respiratory motion. A respiratory signal was 

simultaneously acquired for calculating the phase, amplitude, and gradient respiratory 

parameters. This was derived directly from the Cine CT volumes for some patients (1- 

4), by tracking a marker attached to the abdomen for some patients (5-6), and by 

acquiring 3D surface data and using it to calculate internal volume changes for the 

others (7-11). Also, a reference CT volume was acquired for each patient. This was 

acquired at breath-hold so that the volume could be high quality and artefact free.

In conclusion, the data acquired was sufficient for developing the motion modelling 

methodology and for constructing the models in the following chapters. However, there 

are, potentially, numerous ways o f  improving the data acquisition methods to generate 

superior data for constructing the models (these are discussed below in Section 8.2 

Future work).

8.1.2 Chapter 4 summary and conclusions

Chapter 4 described the non-rigid registrations that were performed to recover the 

internal respiratory motion. It details the different protocols used to perform the 

registrations and evaluates their results. The results show that the registrations used to 

construct the motion models in the following chapters were generally very accurate 

(mean errors of 1.26 mm and 1.13 mm for the two different registration protocols 

assessed as part o f this research). However, the registrations failed for a relatively high 

proportion of the patients (one in six when 1.5 mm slices used, but three in five when 

2.4 mm slices were used). Not all registrations failed for these patients, although it was 

decided to exclude all o f their results from further study so as not to bias later results. 

The registrations that failed were usually for volumes acquired near end-inhale (the
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reference volume was acquired at exhale breath-hold). It was thought that many o f the 

failed registrations were caused by lung tissue sliding past the chest wall (the sliding 

problem - see Section 2A.5.2). However, there are many other factors that could have 

contributed, including: the density change effect (see section 2.4.5.1), registering 

relatively thin 'slabs' o f data (only 12 or 16 slices), not having good enough starting 

estimates for the registrations, and possible 'bugs' in the code used to perform the 

registrations. In addition, the current run-time for the registrations needs to be 

dramatically reduced for their use to be clinically viable, although there is evidence that 

this should be achievable using more advanced implementations o f the registration 

algorithm and dedicated hardware such as Graphics Processing Unit (GPU).

In conclusion, very good registration results were achieved for some patients, and these 

provided adequate data for constructing the models in the following chapters. However, 

the robustness and run-time o f the registrations both need addressing.

8.1.3 Chapter 5 summary and conclusions

Chapter 5 described how to construct respiratory motion models that related the internal 

motion to a single respiratory parameter. The motion models use one dimensional 

functions to relate the registration results to the phase o f the respiratory cycle. As the 

models use a single respiratory parameter they attempt to average out any inter-cycle 

variation in the data used to construct the models (20 seconds o f data, corresponding to 

2-8 respiratory cycles, were used for each model). Two functions were developed that 

could be used for the motion models, the cyclic B-spline function and the Fourier series 

function, and their performance was compared to that o f polynomial functions. Each of 

the functions was evaluated with varying degrees o f freedom. The ability o f the 

different model to predict the registration results was assessed. Many o f the functions 

performed well, and the cyclic B-spline function with four respiratory control points 

was adopted for further evaluation. All experiments in this chapter were performed 

using the leave-out-target technique so that over-fitting could be detected.

The cyclic B-spline models were evaluated in more detail by assessing their ability to 

predict the Cine CT volumes and manually identified landmark points located within 

them. The results showed that the motion models could predict the Cine CT data with a 

high degree o f accuracy (mean error 1.56 mm). A method o f combining the model
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predictions from different couch positions into a single continuous transformation was 

also described and assessed in this chapter. The combined transformation produced a 

plausible prediction o f the anatomy with no discontinuities between adjacent couch 

positions, with only a small decrease in the accuracy for predicting the individual Cine 

CT volumes (mean error 1.71 mm). It should be stressed that even though the combined 

predictions are less accurate at predicting the CT data acquired for constructing the 

models, they should in theory be better at predicting future data (i.e. during treatment) 

as their predictions are physically plausible (unlike the individual model predictions or 

4DCT, which can have discontinuities between adjacent couch positions).

In conclusion, a method has been developed for constructing and assessing respiratory 

motion models related to the phase o f the respiratory cycle. The results have shown that 

a cyclic B-spline function can be used to construct motion models that are able to 

predict the Cine CT volumes very accurately.

8.1.4 Chapter 6 summary and conclusions

Chapter 6 extended the motion models developed in chapter 5 so that the internal 

motion can be related to two respiratory parameters, with the idea that this may have 

permitted some of the inter-cycle variation to be modelled, thus producing more 

accurate models. Two parameter models were constructed based on the amplitude and 

gradient parameters and on the phase and amplitude parameters, and were compared to 

the phase based models developed in the previous chapter and single parameter models 

based on the amplitude. A number o f example function were presented that could be 

used for the one or two parameters models, and their performance was evaluated both 

using the registration results and manually located landmarks in the Cine CT data. Both 

methods o f assessing the models found similar results. Most o f the models produced 

very good results, although the models with the most degrees of freedom were clearly 

over-fitting the data.

The overall results showed that the phase based models developed in the previous 

chapter were just as accurate as any o f the two parameter models. This does not 

necessarily mean the idea o f using two respiratory parameters to model the inter-cycle 

variation is flawed; there may have been too little variation in the data (only a few 

respiratory cycles were acquired at each couch position), the variation may not have
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been sampled well enough, the respiratory parameters (and the surrogate signals they 

are derived from) chosen may not have a strong relationship with the inter-cycle 

variation, or the functions used for the two parameter models may not have been 

appropriate. The inter-cycle variation must be studied in much more detail, a far wider 

range o f respiratory parameters and surrogate signals need to investigated, and more 

appropriate functions for modelling the relationships between the parameters and the 

variation need to be developed, before firm conclusions about the ability to model the 

inter-cycle variation can be drawn. The aim o f evaluating the different models was to 

demonstrate the different types o f function required for different respiratory parameters 

and the effects o f using functions with too many degrees o f freedom, and this was 

achieved.

In conclusion, a framework has been presented for constructing and evaluating 

respiratory motion models based on one or two respiratory parameters, and this has been 

demonstrated on a number o f example models. The results show that the models can 

predict the respiratory motion very accurately, although their ability to predict variations 

in the respiratory motion is inconclusive.

8.1.5 Chapter 7 summary and conclusions

Chapter 7 described a number o f possible uses for the motion models related to lung 

RT. These included 'medical research applications', where the aim is to learn something 

about the nature o f the internal respiratory motion and/or its relationship to external 

surrogate signals, but the methodology used is not itself intended for clinical practice.

As an example o f a simple 'medical research application' the motion models were used 

to compare the motion that occurs during free breathing to the motion that occurs 

between two breath hold volumes.

Also, a number o f uses o f the motion models that are (ultimately) intended to translate 

to clinical practice were described. These included using the motion models to generate 

more accurate target delineations, using the models to perform accurate dose 

calculations that account for the respiratory motion, and using the models to plan and 

deliver 'active' treatment that responds to the respiration, such as gating and tracking. As 

an example of one o f the 'clinical' uses o f the motion models, they were used to 

implement a strategy for tracking the 2D differential motion during the delivery o f
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IMRT developed by Prof. Steve Webb, a collaborator from the Institute o f Cancer 

Research and Royal Marsden Hospital. This work demonstrated how the motion models 

could be utilised to plan IMRT treatment, and that there is some promise for tracking 

respiratory motion during the delivery o f IMRT, although there is still a lot to do before 

tracked IMRT will be clinically viable.

In conclusion, there are a wide variety o f potential uses for the motion models in lung 

RT. They can be a valuable tool for analysing the internal respiratory motion and its 

relationship to the respiratory parameters, and can also be utilised in methods that are 

intended to translate to clinical practice. Two example applications demonstrated the 

use o f the motion models in further detail: examining the difference between breath- 

hold and free breathing motion models, and planning IMRT tracking.

8.2 Future work

The models need to be assessed on much more data to truly evaluate their performance. 

Not only do they need to be evaluated on data from more patients, but the models need 

to be evaluated on entirely different data to that used to construct the motion models. 

Data needs to be acquired for longer periods o f time, and over several different sessions 

that are days and weeks apart, in order to study the short and long term variation in the 

motion. The nature o f the variation needs to be fully investigated. It needs to be 

established how much variation can occur and over what time frames. The effects that 

visual feedback and other respiratory training techniques can have on the reproducibility 

of the respiratory motion need to be studied. The amount o f data required to adequately 

sample the variation needs to be determined.

It is thought that it will be possible to relate some o f the variations, particularly the 

shorter term variations, to external surrogate signals. This may entail the development 

of more appropriate modelling functions for relating the motion and its variation to the 

respiratory parameters. This may include extending the models to use three or more 

parameters (although it is thought that substantially more data will be required to 

prevent models o f three or more parameters from over-fitting) or using statistical 

models (these are already being investigated by colleagues in our laboratory). However, 

it may not be possible to relate some o f the longer term variation to any external
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surrogate signals. In this case methods will need to be developed for updating the 

models to account for the longer term variation. The Vision RT system may prove very 

useful when it comes to studying long term variations in the respiratory motion as it 

may be able to detect base-line shifts between different sessions, which are difficult to 

detect with other surrogate signals.

Acquiring enough data to study and model the inter-cycle variation may prove very 

difficult with (current) CT technology due to dose considerations. Therefore methods of 

reducing the dose for CT and other imaging modalities that do not deliver radiation 

(such as MR) need to be investigated. Having data that covered a larger region o f the 

anatomy, ideally the entire region o f interest, would also be beneficial.

Different respiratory surrogate signals need to be acquired from the same patients so 

that their ability to predict the internal motion and its variation can be directly 

compared. The models could be used to relate the motion to two (or more) parameters 

from separate surrogate signals, which may perform better than relating the motion to 

two parameters derived from the single signal. Statistical parameters that incorporate 

information from many different surrogate signals could also be used. The Vision RT 

system may prove very useful for this as it is possible to track the motion at several 

different points or regions on the skin surface simultaneously. If phase continues to 

prove to be a useful parameter, as it did in this research, then robust methods of 

estimating the phase in real time need to be developed.

There are a number o f issues with the registrations that need addressing, the most 

important being to establish why some o f the registrations failed and how they can be 

made to succeed. The sliding problem (i.e. the failure o f the registration algorithm when 

two tissues slide against each other, see Section 2.4.5.2) needs to be formally addressed 

and transformation models that can account for the sliding motion need to be developed. 

The effect that density changes within the lung (and hence its intensity value in CT, see 

Section 2.4.5.1) has on the registration results needs to be examined. If the density 

change causes errors in the registrations then a method o f accounting for the density 

change needs to be developed. Better starting estimates for the non-rigid registrations 

may help improve their robustness, and protocols for obtaining appropriate starting 

estimates need to be developed.
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Different implementations o f the B-spline registration algorithm and different non-rigid 

registration algorithms may have superior performance, in terms if  accuracy, speed, or 

run-time, over the implementation o f the B-spline algorithm used in this research. 

Implementing the non-rigid registration algorithm on a Graphics Processing Unit (GPU) 

may facilitate considerable reductions in the run time o f the registrations. Bio

mechanical constraints and models can be utilised in the registrations to help improve 

the robustness and prevent unfeasible deformations.

The motion models can be considered 4D or 5D transformation models, as they describe 

the 3D deformation over one or two respiratory dimensions (parameters). Therefore the 

models could be used to perform 4D, or maybe even 5D, registrations, effectively 

performing the registration and modelling steps used in this thesis all one process. This 

approach was not pursued during this research for two reasons: the predicted run-time 

and problems with accounting for variation. Using the 3D registration run-time as a 

guide it was expected that a 4D registration would have a very long run-time (and even 

more so for a 5D registration). Although this may actually be shorter than the sum o f the 

run-times for all the separate 3D registrations, the different 3D registrations can easily 

be run in parallel on the large computer cluster available in our laboratory, whereas 

substantial work would be required to parallelise a 4D registration algorithm to 

efficiently use more than one processor. By fitting a function to the data, the models in 

this thesis average out variation not explained by the respiratory parameters used. 

However, it is unclear how 4D registrations would behave when there is variation in the 

data although it is unlikely they would correctly average it out without further 

development.

Despite these two potential problems, using the models developed here for 4D or 5D 

registrations certainly warrants study in the future. Another possibility that should be 

investigated is performing 4D registrations where time is the 4th dimension. This relates 

the motion to time rather than the respiratory parameters, so the registration does not 

need to do any averaging. The 4D transformation could then be used to sample the 3D 

deformation at several time-points, and the motion modelling methods from this thesis 

could then be used to establish the relationship between the deformation and the 

respiratory parameters.

Unsorted Cine CT data was used in this thesis as it provides 3D data, albeit with a 

limited coverage in the Superior-Inferior direction, that can be considered a 'snap-shot'
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o f the motion. However, this data is actually acquired over 0.5 seconds (or 0.75 seconds 

at the start o f the research), so can be subject to motion artefacts itself. Recent work by 

Zeng et al. (2007a) has proposed performing the registrations directly to Cone-Beam CT 

projection data. Each projection is acquired extremely quickly so motion effects will be 

truly negligible. This method can potentially provide 3D motion information over a 

large field o f view without needing to sort the data according to a respiratory parameter. 

The method proposed by Zeng et al. (2007a) needs further development, but if  this 

method can be made to work it could provide an invaluable source o f data on the 

variation in the respiratory motion, and for using to construct the motion models 

presented in this thesis. It may also be possible to apply similar ideas to MR data, using 

individual slices, or possibly even k-space data, for the registrations.

In addition to the work that can be done on improving the motion modelling 

methodology and registrations used to construct them, described above, the many 

potential uses for the motion models, both in lung RT and in other applications need 

further development. Chapter 7 discussed many o f the ways that the motion models can 

be utilised in lung RT, including defining targets and performing dose calculation that 

account for respiration, and for planning gated or tracked treatment. More work is 

required both to develop the RT methodologies themselves (especially the more 

adventurous ones, such as IMRT tracking), and to incorporate the models developed in 

this thesis into those methodologies.

As discussed in Section 2.6 there are a number o f uses for the motion models outside of 

lung RT. These include other image directed therapies or image guided interventions, 

e.g. RT for other sites in the thorax and abdomen, High Intensity Focused Ultrasound 

for the treatment of liver and breast cancer, Radio-Frequency Ablation o f liver tumours, 

and Cardiac EP interventions. The models could also be used to help reconstruct motion 

free images when the image data is corrupted by motion, e.g. high resolution MR, Cone- 

Beam CT, or PET. Finally, the motion models can be used to learn about the physiology 

of respiration. They could be used to study the effects o f different diseases, such as 

Chronic Obstructive Pulmonary Disease (COPD), on local lung function, and for 

assessing the response to potential treatments to these diseases.
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Appendix A
Estimating the inverse of a 

B-spline transformation

The non-rigid registrations have been performed in the direction that allows the motion 

models to predict the Cine CT volumes. This means the transformations actually map 

from the predicted volumes to the reference volume, as is required for image formation. 

The transformations effectively tell us where any point in the predicted volume 'comes 

from' in the reference volume, they do not tell us where any point in the reference 

volume 'goes to' in the predicted volume. However, there are a number of times when it 

is desirable to know where a specific point defined in the reference volume has moved 

to in the predicted volume(s), e.g. when assessing the registrations and models, or 

planning tracked treatment. As the exact inverse o f a B-spline transformation (and most 

other non-rigid transformations) cannot be calculated exactly it is necessary to estimate 

the inverse of the predicted transformation.

The following algorithm was used to estimate the inverse of a non-rigid transformation 

at a particular point. This algorithm has only been applied to the B-spline non-rigid 

transformation in this work, but it could be used for any smooth and continuous non-
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rigid transformation. The algorithm is iterative and will continue until the estimated 

inverse has been found to the desired accuracy or the maximum number o f iterations has 

been reached. The algorithm needs to be provided with a starting estimate o f the 

inverse. This can be the centre of the region the transformation is defined over if  a better 

starting estimate is not available.

Inputs to algorithm: r  - the point in the reference volume where the inverse is required,

T - the non-rigid transformation, pest - the initial estimate o f point r  transformed by the 

inverse of T, i.e. pest is an estimate of p = T_1(r)

Algorithm parameters: accuracy - the desired level of accuracy (set to 0.01 mm), 

m a xjter - the maximum number o f iterations permitted (set to 100).

• iter = 0
• r est= T(pest)

(transform the initial estimate by the forward transform),

• while r  - r est > accuracy AND iter < m a x jter

(while the estimate is not within the desired accuracy and the maximum number 

of iterations has not been reached),

O Pnew “ Pest (J(Pest)) (l* " Test)
(find the values of the Jacobian matrix, J , o f the transformation T, at 

point pest, and use this to find the new estimate of p, pnew)

O Pest - Pnew, l*est - T(Pest), iter = iter + 1 
(update estimates and iteration counter)

It was found that generally very few iterations (<10) were required, even when a high 

accuracy (0.01 mm) was specified. If the transformation is not continuous (e.g. because 

it contains folding) then the inverse may not be defined for some points, and the 

maximum number of iterations will be reached. Also, as the B-spline transformations 

are only defined over a finite region, it is possible that the inverse for the desired point 

does not lie within this region. Care had to be taken when implementing the algorithm 

that points outside of the transformation, and points inside but near the edge o f the 

transformation, were handled correctly.
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Contents of accompanying 

CD
Movie_comparing_volumes_coronal_Patient_2( to 8 ).avi, 

Movie_comparing_volumes_sagittal_Patient_2( to 8 ).avi

Animations o f coronal and sagittal slices over a complete respiratory cycle from patients 2- 

8, comparing the 4DCT volumes, the individual model predictions concatenated 

together, and the prediction from the model results combined into a single continuous 

transformation - see Chapter 5, page 123

fig6_ la ( to f  ).avi, fig6_3a( to f  ).avi, fig6_4a( to f  ).avi

Animations o f 3D plots from rotating views so that 3D data distribution and surfaces can 

be appreciated - see Chapter 6, page 127.

imrt_anim.avi

Animation o f implemented IMRT tracking strategy. The dashed lines show the planned 

leaf positions, the solid lines show the leaves modified to track the differential motion - 

see Chapter 7, page 166.


