
University o f London
University College London

Department of Electronic and Electrical Engineering

D o c to r o f P h ilosophy Dissertation

Autonomous Grid Scheduling
Using Probabilistic Job Runtime

Forecasting

Thesis Submitted for the Degree of
Doctor of Philosophy o f the University o f London

Aleksandar Lazarevic

Supervisor: Dr. Miguel Rio

London, 2 0 0 8

UMI Number: U591597

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U591597
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Declaration of Authorship and Originality

I confirm that the work presented in this thesis is my own. Where information has
been derived from other sources, I confirm that this has been indicated in the thesis.

Date:

2Z/ô /2a=-g

AleKsandar/Lazarevic

Abstract

Computational Grids are evolving into a global, service-oriented architecture
a universal platform for delivering future computational services to a range of
applications of varying complexity and resource requirements. The thesis focuses
011 developing a new scheduling model for general-purpose, utility clusters
based 011 the concept of user requested job completion deadlines. I11 such a
system, a user would be able to request each job to finish by a certain deadline,
and possibly to a certain monetary cost. Implementing deadline scheduling is
dependent on the ability to predict the execution time of each queued job. and
011 an adaptive scheduling algorithm able to use those predictions to maximise
deadline adherence. The thesis proposes novel solutions to these two problems
and documents their implementation in a largely autonomous and self-managing
way.

The starting point of the work is an extensive analysis of a representative
Grid workload revealing consistent workflow patterns, usage cycles and correla­
tions between the execution times of jobs and its properties commonly collected
by the Grid middleware for accounting purposes. A11 autom ated approach is
proposed to identify these dependencies and use them to partition the highly
variable workload into subsets of more consistent and predictable behaviour.
A range of time-series forecasting models, applied in this context for the first
time, were used to model the job execution times as a function of their historical
behaviour and associated properties. Based 011 the resulting predictions of job
runtimes a novel scheduling algorithm is able to estimate the latest job start
time necessary to meet the requested deadline and sort the queue accordingly to
minimise the amount of deadline overrun.

The testing of the proposed approach was done using the actual job trace
collected from a production Grid facility. The best performing execution time
predictor (the auto-regressive moving average method) coupled to workload
partitioning based 011 three simultaneous job properties returned the median
absolute percentage error centroid of only 4.75CX. This level of prediction
accuracy enabled the proposed deadline scheduling method to reduce the av­
erage deadline overrun time ten-fold compared to the benchmark batch scheduler.

Overall, the thesis dem onstrates that deadline scheduling of computational
jobs 011 the Grid is achievable using statistical forecasting of job execution times
based 011 historical information. The proposed approach is easily implementable.
substantially self-managing and better matched to the human workflow making
it well suited for implementation in the utility Grids of the future.

3

To the one who made it all possible

Contents

C ontents 5

List o f F igures 9

List o f T ables 12

1 In trodu ction 13
1.1 Motivation ... 14
1.2 O b je c t iv e .. 14
1.3 Inspiration ... 15
1.4 Thesis Outline .. 16

1.4.1 C o n trib u tio n s .. 16
1.4.2 P ub lications... 17

1.5 Thesis Organisation .. 18

2 Background 20
2.1 D istributed Computing and the G r id ..20

2.1.1 Historical Perspective of D istributed C o m p u t in g20
2.1.2 Grid C o m p u t in g ..21
2.1.3 Open Issues and P rob lem s... 22

2.2 General Research and Implementation M e th o d o lo g y 24
2.2.1 Workload Characterisation ..25
2.2.2 Job Execution Time P re d ic ta b ility ...27
2.2.3 Deadline Scheduling M e th o d s ...28

2.3 Thesis Scope, Assumptions and L im ita tio n s ...29
2.3.1 The P la t fo rm ...29
2.3.2 The S e rv ic e ..29
2.3.3 L im ita tio n s ..30

2.4 Project Context: Self-Organising Grid Resource Management . . . 31

3 T he Grid and R ela ted T echnologies 33
3.1 Cluster and Grid Schedulers... 33

3.1.1 Grid Scheduling P r o b le m ... 34
3.1.2 Grid Scheduling A lgo rithm s..37
3.1.3 Grid Scheduling Im plem entations..43
3.1.4 S u m m a ry ... 48

3.2 Performance P re d ic tio n s ... 48
3.2.1 Problem S ta te m e n t.. 49

CONTENTS 6

3.2.2 Prediction A pproaches..50
3.2.3 Special Events Detection ... 53
3.2.4 S u m m a ry ... 53

3.3 Workload Characterisation ...54
3.3.1 Historical Overview ... 54
3.3.2 Modelling S c o p e .. 55
3.3.3 Workload P ro p e r tie s ... 55
3.3.4 S u m m a ry ..57

3.4 Grid Monitoring T o o ls ...57
3.4.1 G a n g l i a ...58
3.4.2 Relational Grid Monitoring A rch itec tu re 58
3.4.3 Network W eather S e r v ic e ... 59
3.4.4 O ther Monitoring System s..59

3.5 Grid Simulation S u ite s ...60
3.5.1 S im G rid ...60
3.5.2 G rid S im ...61
3.5.3 M icroG rid ... 61

4 W orkload C haracterisation 62
4.1 Introduction. Scope and Motivation .. 62

4.1.1 Goals .. 63
4.1.2 The UCL Central Computing Cluster (C C C) 64
4.1.3 Data A cq u is itio n .. 64

4.2 Specific M ethodology.. 65
4.2.1 Exploratory D ata Analysis .. 66
4.2.2 Value D is tr ib u t io n ...67
4.2.3 Measures of Location and D ispersion ... 67
4.2.4 Cyclic B e h a v io u r .. 69
4.2.5 Scale Invariance and Self-sim ilarity ...70
4.2.6 Metric Dependency and C o rre la tio n s... 71
4.2.7 Locality of S am p lin g ..73

4.3 General Workload P r o p e r t i e s .. 74
4.3.1 Workload S u m m a r y ..75
4.3.2 Arrival P ro c e s s ..76
4.3.3 Queue Wait Time ... 79
4.3.4 Wallclock Execution T im e ..82
4.3.5 Memory U tilisa tion ... 87

4.4 Workload D iv ers ity .. 88
4.4.1 User Differentiation ..89
4.4.2 Virtual Organisation D iffe ren tia tio n ..92
4.4.3 Job Name D iffe re n tia tio n .. 94

4.5 Correlations with Job Execution T i m e ..95
4.5.1 Job M e ta - d a ta ..96
4.5.2 Job Temporal Properties .. 97
4.5.3 Memory U s a g e .. 99

4.6 Locality of S a m p lin g ... 101
4.6.1 Job C o u n t.. 101
4.6.2 Inter-arrival Time ..103
4.6.3 Queue T im e ...104
4.6.4 Wallclock Execution T im e ..106

4.7 Chapter S u m m a ry .. 107

CONTENTS 7

5 Job E xecution T im e F orecasting 113
5.1 Purpose and M o tiv a tio n ... 113
5.2 Specific M ethodology..114

5.2.1 Job P a r t i t io n in g .. 114
5.2.2 Forecasting M e th o d s ... 121
5.2.3 Prediction Accuracy A sse ssm e n t.. 124
5.2.4 Experimental S e t- u p ... 128

5.3 Comparison of Forecasting M ethodsand Job Partitioning Metrics . 128
5.3.1 Prediction Errors: VO s e t ... 129
5.3.2 Prediction Errors: Job name set .. 130
5.3.3 Prediction Errors: Week number s e t ... 130
5.3.4 Prediction Errors: VO - Job name s e t 132
5.3.5 Prediction Errors: VO - Week number s e t 133
5.3.6 Prediction Errors: VO - Week number - Job name set . . . 134

5.4 C hapter S u m m a r y ...135
5.4.1 The value of prediction m e th o d s .. 135
5.4.2 The value of job p a r t i t io n in g ...136

6 D ead lin e Scheduling E valuation 138
6.1 Motivation and S c o p e ..138
6.2 Specific M ethodology... 139

6.2.1 Scheduling M e th o d s ... 140
6.2.2 Scheduling S im ula to r... 141
6.2.3 Workload T ra c e ... 143
6.2.4 Job Deadline Generation ... 143
6.2.5 Performance M e tr ic s ... 145

6.3 Deadline Scheduling P erfo rm ance .. 147
6.3.1 Fraction of Deadlines M a d e ..147
6.3.2 Deadlines Breakage S ta t is t ic s .. 147
6.3.3 Distribution Functions of Deadline A dherence.......................... 150

6.4 Chapter S u m m a ry ... 152

7 R elated W ork 154
7.1 Workload Characterisation .. 154
7.2 Job Execution Time Forecasting ... 159
7.3 Deadline Scheduling on the G r i d ... 165

8 O pen Q uestions 168
8.1 Workload Characterisation .. 168
8.2 Job Execution Time Forecasting ... 170
8.3 Deadline Scheduling A lg o r ith m .. 171
8.4 Chapter S u m m a ry ... 172

9 C onclusions 173

A SO -G R M P roject R ela ted W ork 176
A.l GridLoader - Grid Load G e n e ra to r ... 176

A. 1.1 Motivation .. 176
A. 1.2 R equ irem en ts ...177
A. 1.3 Im plem entation ... 178
A. 1.4 Self-Test R e s u l t s ..181

CONTENTS 8

A. 1.5 C onclusions..183
A.2 Monitoring F ram ew ork ... 185

A.2.1 Motivation ..185
A.2.2 R equ irem en ts ...186
A. 2.3 Im plem entation ... 186
A.2.4 Test r e s u l t s ..189
A. 2.5 C onclusions..191

B A dd ition a l W orkload C haracterisation 192
B .l The W orkload ..192
B.2 General Workload P r o p e r t i e s ..193

B.2.1 Job Inter-arrival time .. 193
B.2.2 Wallclock Execution T im e ... 196

B.3 M eta Differentiation and Workload Diversity ..199
B.3.1 Job runtime v. job m e ta -d a ta ...199
B.3.2 Job runtime v. job submission time ... 201

B.4 C o n c lu sio n s ...202

C C om m ercial A sp ects 204
C .l Grid Computing Technology...204
C.2 Business Potential of Grid C o m p u tin g ...205
C.3 Grid Computing Value C h a i n ..205

C.3.1 Hardware M anufacturers and Suppliers 206
C.3.2 Middleware and Software V e n d o r s .. 206
C.3.3 System Integrators and C o n s u lta n ts ...207

C.4 Probabilistic Deadline S cheduling ...207
C.4.1 The Need for Better Scheduling...207
C.4.2 Probabilistic Deadline Scheduling P ro p o sitio n208

C.5 Possible Exploitation Routes ... 209
C.5.1 P a te n t in g ... 210
C.5.2 Third-party Scheduler Add-on ...210
C.5.3 Standalone Probabilistic S c h e d u le r .. 211
C.5.4 Professional Services - Consulting B u s in e s s 212
C.5.5 O v e rv ie w ... 213

C.6 Selected Approach - Scheduler A d d -o n ...213
C.6.1 Strategic Analysis .. 214
C.6.2 Financial A n a ly s is .. 218
C.6.3 Cash Flow Analysis ... 219
C.6.4 Sources of F u n d in g ...221

C.7 Further Research P ro p o sa l.. 223
C.8 Summary and C onclusions.. 226

List o f A bbreviations 227

B ib liography 229

List of Figures

2.1 Overall Methodology Diagram ...24

3.1 Scheduling components: high level d ia g ra m ..34
3.2 Scheduling: a hierarchical ta x o n o m y ... 38

4.1 Complementary cumulative distribution plot: an e x a m p le67
4.2 Location and dispersion of samples: Box plot e x a m p le 69
4.3 Rescaled range analysis: an e x a m p le ... 72
4.4 Temporal variance plot: an e x a m p le ... 74
4.5 Job inter-arrival times: run sequence and value d is tr ib u tio n 76
4.6 Job inter-arrival times: normal probability p l o t ... 77
4.7 Job submissions: seasonality patterns ..78
4.8 Job inter-arrival times: long-tail m odelling... 79
4.9 Job inter-arrival times: self-similarity and Hurst value estimation . . . 79
4.10 Job queueing times: run sequence and value d is tr ib u tio n 80
4.11 Job queueing times: normal probability p lo t ..80
4.12 Job queueing times: seasonality p a t te rn s .. 81
4.13 Job queueing times: long-tail m o d e ll in g .. 82
4.14 Job queueing times: self-similarity and Hurst value estimation 83
4.15 Job wallclock runtimes: run sequence and value d is tr ib u tio n83
4.16 Job wallclock runtimes: normal probability p lo t ...84
4.17 Job wallclock runtimes: seasonality p a t te rn s ..85
4.18 Job wallclock runtimes: long-tail m o d e llin g ..86
4.19 Job wallclock runtimes: self-similarity and Hurst value estimation . . 86
4.20 Job memory utilisation: run sequence and value distribution87
4.21 Job memory utilisation: long-tail m o d e llin g ..88
4.22 User differentiation: job count and total r u n t im e .. 90
4.23 User differentiation: unique job names and CPU u t i l i s a t io n 91
4.24 User differentiation: jobs runtime d is tr ib u tio n ...91
4.25 VO differentiation: user count and CPU u tilis a tio n92
4.26 VO differentiation: job count and total ru n tim e ... 93
4.27 VO differentiation: inter-VO runtime d is trib u tio n ..93
4.28 Job name differentiation: job count and total r u n t i m e94
4.29 Job name differentiation: intra-VO runtime d is tr ib u tio n95
4.30 Correlations: Wallclock runtime - VO ..96
4.31 Correlations: Wallclock runtime - Job n a m e ..97
4.32 Correlations: Job runtime - Month V Date of submission 98

9

LIST OF FIGURES 10

4.33 Correlations: Job runtime - weekday of su b m iss io n 98
4.34 Correlations: Job runtime - hour of su b m iss io n ... 99
4.35 Correlations: Wallclock runtime - Memory U s e ... 100
4.36 Locality of sampling: job submissions - job submission t i m e102
4.37 Locality of sampling: job submissions - job p r o p e r t i e s103
4.38 Locality of sampling: job inter-arrival time - job submission time . . . 104
4.39 Locality of sampling: job inter-arrival time - job p r o p e r t i e s105
4.40 Locality of sampling: job queueing time - job submission t im e106
4.41 Locality of sampling: job queueing time - job p ro p e r t ie s 107
4.42 Locality of sampling: job wallclock runtime - job submission time . . . 108
4.43 Locality of sampling: job wallclock runtime - job p ro p e r t ie s109

5.1 Coefficient of Variation reduction: VO vs. VO-Job n a m e118
5.2 Coefficient of Variation reduction: VO vs. VO-Week n u m b e r119
5.3 Coefficient of Variation reduction: VO vs. VO-Week num-Job name . 120
5.4 Predictor performance & error analysis: VO s e t129
5.5 Predictor performance & error analysis: Job name s e t130
5.6 Predictor performance V error analysis: Week number s e t131
5.7 Predictor performance V error analysis: VO-Job name s e t132
5.8 Predictor performance & error analysis: VO-Week number s e t133
5.9 Predictor performance &: error analysis: VO-Week no-Job name set . . 134
5.10 Value of prediction methods: MAE based c o m p a r is o n 135
5.11 Value of job partitioning: MdAPE based location and dispersion . . . 137

6.1 Scheduling simulation: f lo w c h a r t..142
6.2 Uniform deadline statistics: histogram and C D F145
6.3 Modal deadline statistics: CDF and scatter plot146
6.4 Deadline adherence comparison: uniform and modal deadlines.............. 148
6.5 Central tendency of deadline overruns: absolute t e r m s149
6.6 Central tendency of deadline overruns: relative te rm s149
6.7 Dispersion of deadline overruns: uniform d e a d lin e s 150
6.8 Dispersion of deadline overruns: modal deadline’s ..151
6.9 Distribution function of deadline spare time: C D F 152
6.10 Distribution function of deadline overruns: C D F152

A.l GridLoader implementation: logical flow d ia g ra m178
A.2 Distribution of param eter values for a sample GridLoader experiment 184
A.3 GridLoader reliability tests: job execution t i m e ... 184
A.4 GridLoader reliability tests: memory u tilisa tio n ... 185
A.5 Ganglia monitoring architecture: block d ia g ra m ... 187
A.6 Ganglia cluster level monitoring: sc reen sh o t..189
A.7 Ganglia node level monitoring: sc reen sh o t... 190
A.8 Ganglia process level monitoring: screenshot ...190

B .l Run-sequence and CDF plots of Job Inter-arrival times............................. 194
B.2 Job inter-arrival times normal probability plot195
B.3 Job submission count: cyclic behaviour ..196
B.4 Job inter-arrival times: long-tailedness and representative functions . . 197
B.5 Job inter-arrival times: self-similarity and Hurst value estimation . . . 197
B.6 Run-sequence and CDF plots of job wallclock execution t i m e 198
B.7 Job wallclock execution time normal probability p l o t198
B.8 Job wallclock runtime: cyclic b e h a v io u r .. 199

LIST OF FIGURES 11

B.9 Job execution times: long-tailedness and representative functions . . . 200
B.10 Job execution times: self-similarity and Hurst value estimation 200
B .ll Job wallclock runtime correlation: m e ta - d a ta ..201

List of Tables

4.1 The CCC hardware and software c o n fig u ra tio n ... 64
4.2 The CCC accounting file f i e l d s ... 65
4.3 The summary of the CCC workload a n a ly s e d .. 75
4.4 Workload characterisation: general properties s u m m a r y109
4.5 Workload characterisation: runtime correlation summary110

5.1 Job partitions: overview of CV v a l u e s ..120
5.2 Overview of experimental subsets and their p ro p e r t ie s 121
5.3 Prediction error location and dispersion: VO s e t129
5.4 Prediction error location and dispersion: Job name s e t131
5.5 Prediction error location and dispersion: Week number set 132
5.6 Prediction error location and dispersion: VO-Job name set 133
5.7 Prediction error location and dispersion: VO-Week number set 134
5.8 Prediction error location and dispersion: VO-Week num.-Job name set 135
5.9 Prediction error and location: non-partitioned w o rk lo a d 136

7.1 Workload characterisation: related work comparison (1) 157
7.2 Workload characterisation: related work comparison (2) 158
7.3 Job runtime forecasting: related work comparison (1) 164
7.4 Job runtime forecasting: related work comparison (2) 164

A .l GridLoader command line p a r a m e te r s ..181
A.2 GridLoader deployment script: global p a ram ete rs182
A.3 GridLoader deployment script: local param eters183

B .l The summary of the workload a n a ly s e d .. 194

C .l Overview of commercialisation options available...213
C.2 Porter's generic s t r a te g ie s ...215
C.3 Profitability scenario: Years 1 -3 ...220
C.4 Four year financial outlook ... 222

12

Chapter 1

Introduction

Today, an increasing number of scientific disciplines are faced with problems re­
quiring unprecedented amount of computational power and data storage. Long
standing consumers of the CPU cycles, such as high energy physicists and weather
forecasters, are now joined by bio-tech entrepreneurs and ground breaking re­
searchers in the arts and humanities fields competing for scarce high-performance
computer installations. Equally strong is the need of global commercial enter­
prises, large corporations and the financial industry for a supply of reliable and
resilient computing power coupled to the vast amounts of data storage and high
capacity communication links.

The discrepancy between the ability of a single entity to supply the necessary
computational resources, and the collective need for tackling the complex prob­
lems at hand was the prim ary motivation for the development of collaborative
distributed computing efforts in the last decade. Linking the resources spread
out at different academic centres was seen as the best way to capitalise 011 an
investment already made, and as a way of enabling wider access to specialised
instruments and valuable scientific data. This concept became known as Grid
computing. But the monetary and strategic value of those resources meant that
inclusion in the federated pool was acceptable to their owners only if they can
maintain a high level of control over their usage and availability.

The loosely coupled distributed environments emerging from these collab­
orative efforts were, and still remain, hard to manage and support. Crossing
administrative boundaries, connecting heterogeneous hardware and using a
plethora of technologies, these distributed systems generate an adm inistrative
burden severely limiting their adoption. The legacy management approaches
inherited from centralised, or rigidly distributed, computing clusters are not
suitable for the new dynamic federations of independent resources. As a result,
a clear need for an autonomous and intelligent resource management platform
has emerged.

13

CHAPTER 1. INTRODUCTION 14

1.1 Motivation

In a distributed computing system the scheduling system is the core resource
management component responsible for the prioritisation of subm itted jobs and
their assignment to the available execution nodes. The scheduling principles
in the current Grid installations are predominantly based on legacy batch ap­
proaches queuing jobs on a first-come-first-served principle, possibly requiring
users to explicitly state the maximum allowed execution time of each job. The
end effect is under-utilisation due to idle periods, or lower than expected qual­
ity of service experienced by the users whose jobs fail to capture the required
share of resources. These methods are rigid and poorly suited to a dynamic,
service-oriented platform such as the Grid.

The work in this thesis is motivated by a need for a more effective and flexible
scheduling system, one that is more closely matched to the users' workflow and
able to deliver better exploitation of the future Grid services. The author's view,
and the key proposition of this work, is that such added value can be achieved
through the use of a deadline and economy based scheduling approach enabling
the user to specify the completion deadline and the available “budget" for the
execution of submitted com putational jobs. These metrics are embedded in the
way services are commissioned in the real world in which users require them to
be delivered in certain time and at a defined cost.

From the end-user perspective, this novel scheduling method would enable
more flexible working practices and the ability to specify the relative urgency
of each job in terms of the deadline “tightness". From the perspective of com­
mercial Grid operators, deadline scheduling could increase the utilisation of their
resources, and therefore their return on the investment made, by balancing the
peak and off-peak demand. A Grid market could also be supported by the ability
to package computational power as a service of a certain quality and deadline
adherence levels.

1.2 Objective

Scheduling jobs to a user requested deadline is dependent on the ability to predict
the execution time of each queued job, and on an adaptive scheduling policy able
to use those predictions to maximise deadline adherence. The objective of the
work presented in this thesis was to deliver these abilities in an autonomous and
self-managing way. with the least possible impact on the users' workflow and the
lowest administrative burden.

CHAPTER 1. INTRODUCTION 15

1.3 Inspiration

The main role of any scheduling system, computing or otherwise, is in balancing
conflicting requirements of consumers and providers of the contended resource
being managed. The scheduling process must therefore satisfy resource owners
while providing users with sufficiently high quality of service for them to con­
tinue using the resource. Proposed probabilistic deadline scheduling was inspired
by existing concepts from service-orientated industries, applying them in novel
ways to deliver the balance between suppliers and consumers in the context of
distributed job scheduling.

Many examples exist of users’ willingness to accept services with fuzzy, proba­
bilistic guarantees - whether this is explicitly stated to the user or simply implied
in the service offering. Plain old telephone system (POTS) is a prominent ex­
ample, with low but measurable possibility of call blocking. Chargeable resident
parking schemes often used in big cities are an all too familiar example of an
oversubscribed resource for which availability is only probabilistically guaran­
teed. Even in the world of business transactions, commonly associated with very
well defined contracts, goods with probabilistic properties can be traded. For ex­
ample random length timber contracts [1], which are standardised shipments of
lumber pieces of various lengths, are listed on the Chicago Mercantile Exchange.
The buyer does not know the exact number or length of timber pieces but is buy­
ing a shipment which, within some agreed bounds, fits a predefined distribution
of lengths. These, and many other examples, show that users are not averse to
paying for a probabilistic service as long as it is properly defined and deemed of
acceptable value according to the consumers' own judgement.

The concept of deadlines is also well established in the human workflow, and
is often the basis of service industry pricing models. The price of many common
services, from photo development labs to dry cleaners, is affected by the requested
turnaround times. Such pricing structures enable users with flexible deadlines
to reduce their costs, while the service providers benefit from a more balanced
workload and more efficient use of resources.

Assuming an economically driven view, the service suppliers are predomi­
nantly interested in maximising their profit through increased utilisation of their
resources. Generally, some degree of over-selling, under-provisioning, or statis­
tical multiplexing is used to boost utilisation past the point possible with hard
partitioning and reservations. Since the mid-1990s, the optimisation of resource
usage has taken a more pro-active approach through yield management [2] ap­
proaches. This concept, greatly facilitated by the use of computers and the Inter­
net. is based on analysing, understating and anticipating consumers' behaviour
in order to maximise profits through price or service level differentiation. Yield
management was popularised by the airline industry as they manage access to an
expensive and contended service whose use should be maximised. Since this is

CHAPTER 1. INTRODUCTION 16

very similar to a computational utility business model, both of which have an in­
elastic installed capacity and a seasonal, bursty demand [3], the yield management
could similarly be applied to an economy driven utility computing environment*.

The effectiveness of such revenue optimisation approach highly depends on
the ability to predict user demand for the services or resources. In tha t respect,
studying past behaviour of consumers has been very effective in obtaining reliable
predictions and usable models of their future demand. Among many examples
is the use of “loyalty cards" by most large retailers. In return for very detailed
statistics of their shopping habits, clients are rewarded with discount points.
Although a similar approach could be used to manage the demand for a compu­
tational resource, no such effort has yet been made. While the usage statistics of
compute clusters are collected and analysed, this is mostly done off-line and in a
way tha t does not sufficiently capitalise on the potential to use this information
as a control element of the resource management and job scheduling process.

1.4 Thesis Outline

1.4.1 Contributions

The author’s research efforts were concentrated in three main aspects of the work:
the analysis of Grid workload, development of a job execution time prediction
method and the research into a suitable deadline scheduling algorithm. Corre­
spondingly, the major contributions in these fields can be summarised as follows:

• An extensive characterisation of a year long, multi-purpose, production
Grid workload documenting a number of job properties with long-tail be­
haviour. scale invariance and long range dependency factors which signifi­
cantly alter the way such data can be modelled and analysed, consequently
invalidating some of the assumptions previously made by other researchers.

• An autom ated algorithm for identifying job properties available at the time
of job submission that can be used to partition the highly variable work­
load into subsets of “similar" behaviour, thus reducing the variance of job
execution times and increasing their predictability.

• A study of the long-term changes of the Grid workload properties through
the locality of sampling analysis, and the resulting integration of the job
temporal properties into the workload partitioning and the job execution
time forecasting work.

• A prediction system, using automatically parametrised time-series forecast­
ing methods, to estimate the execution time of queued jobs based on their
historical performance and associated job properties.

*A research proposal s tu d y in g the app licat ion o f yield m anagem en t in c o m p u te util it ies
based on the m eth o d s d o cu m en ted in th is thesis has been su b m itted to B T , see A p p e n d ix (’.7

CHAPTER 1. INTRODUCTION 17

• A novel Grid scheduling approach, previously applied in the context of
real-time systems, which uses the estimates of job runtimes to calculate the
latest start time necessary to meet the requested completion deadline.

• A study of the commercialisation potential of predictive, probabilistic and
deadline based Grid scheduling as applied to commercial utility com put­
ing service providers analysing the Grid value chain, possible exploitation
routes and offering an in-depth argument for developing a scheduler add-on
com ponent.

1.4.2 Publications

The research contributions in this thesis led to the following publications:

1. A. Lazarevic and L. Sacks, “M anaging U ncerta in ty - A C ase for P rob ­
ab ilistic Grid Scheduling” , Proceedings of The Seventh International
Meeting on High Performance for Computational Science - VECPAR 2006.
Rio de Janeiro. Brazil, July 2006.

2. A. Lazarevic. L. Sacks and O. P rnjat. “Enabling A daptive Grid
Scheduling and R esource M anagem ent” , Proceedings of The Ninth
IF IP /IE E E International Symposium on Integrated Network Management
- IM2005 - Application Session. Nice. France, May 2005.

3. A. Lazarevic and L. Sacks. “A S tu dy o f Grid A pplications: Schedul­
ing P ersp ective” . Proceedings of The 2005 London Communications Sym ­
posium. London. UK. September 2005.

4. A. Lazarevic and L. Sacks. “L ightw eight Scheduling for Grid A pp li­
ca tion s” , Next Generation Networking: Multi-Service Networks Workshop.
Abingdon. Oxfordshire. UK, July 2005.

5. A. Lazarevic and L. Sacks. “M easuring and M onitoring Grid R e­
source U tilisa tion ” , Proceedings of The 2004 London Communications
Symposium. London, UK. September 2004.

6. A. Lazarevic and L. Sacks, “A dap tive Grid Scheduling and R esource
M anagem ent” . Next Generation Networking: Multi-Service Networks
Workshop, Abingdon. Oxfordshire, UK. July 2004.

7. I. Liabotis. O. Prnjat. T. Olukemi. A. Lazarevic. A.L.M. Ching, L. Sacks,
M. Fisher and P. McKee. “Self-O rganising M anagem ent o f Grid R e­
sources” . Proceedings of The International Conference on Telecommuni­
cations - IST2003. Isfahan, Iran, August 2003.

CHAPTER 1. INTRODUCTION 18

8. A. Lazarevic and L. Sacks, “R esource and A pplication M odels for
A dvanced Grid Schedulers” , Proceedings of The 2003 London Commu­
nications Symposium , London, UK, September 2003.

1.5 Thesis Organisation

This introductory chapter laid out the primary motivation for the thesis, defined
its objective and offered some real-world inspiration for the proposed approach.
An outline of the primary research contributions and the resulting publications
were also given. The rest of the thesis is structured as follows.

Chapter 2 offers a general background to distributed computing and the Grid.
This chapter also introduces the overall, high-level, methodology of the work and
presents the thesis' scope, limitations and assumptions made. The work also
briefly discusses in the context of the sponsoring research projected.

Chapter 3 gives an overview of the previous research work in the fields of
cluster and Grid scheduling, workload characterisation and performance predic­
tions. By defining the problem space for each of these topics, and by outlining
previously proposed solutions and their implementations, the chapter points to
the inability of the current scheduling implementations to successfully fulfil users'
expectations, and to the pitfalls of current methods for predicting job execution
times. The workload characterisation section will survey previous work on the
topic, which was based on older. pre-Grid job traces, and will serve as a com­
parison to the properties of the Grid workload analysed later in the thesis. This
chapter concludes with the survey of past work on Grid monitoring and simula­
tion tools, two im portant aspects of Grid usage data acquisition and scheduler
testing.

Chapter 4 presents the findings of the characterisation study done on a 12
month workload trace collected from a multi-purpose production Grid facility
at University College London. Motivated by the need to better understand the
behaviour of the workload and its long-term evolution, the study looks not only
at the common analysed metrics (such as the arrival process, queue wait times
etc.) but also at the correlation of different job properties and their execution
times. By investigating those functional dependencies, the study indicates the
candidate properties for job partitioning that would lead to a reduction in data
variability and an increase in job execution time predictability. The analysis also
considers changes of job properties through time and their variation caused by
differently sized sampling window's as presence of any such temporal locality is
an im portant factor in the selection of the appropriate forecasting model.

Chapter 5 considers the prediction of the length of job execution based on
the job properties available at the time of submission and the historical model
for ‘"similar" jobs. An autom ated method for job partitioning based on the
exhaustive search for the combination of job properties leading to the greatest

CHAPTER 1. INTRODUCTION 19

reduction in the coefficient of variation is proposed. The chapter presents a
comparison of five time-series based, and automatically parametrised, predictors
and discusses their forecasting accuracy by using appropriate error metrics of
different robustness and sensitivity.

Chapter 6 introduces a novel deadline scheduling algorithm for com putational
Grids based on the earliest deadline first method previously used in the context
of real-time systems. The performance of the scheduler is evaluated through a
simulation using the trace of actual Grid jobs, two deadline generation methods
and two job execution time predictors. The chapter demonstrates that effective
deadline scheduling is achievable using the proposed scheduling algorithm and
job execution time estimation methods.

C hapter 7 discusses specific previous work most closely related to the ap­
proaches presented in this thesis. It offers im portant distinguishing aspects be­
tween them and compares the findings and results obtained. This chapter also
motivates the discussion on the outstanding issues related to the thesis work and
the direction of further improvements which are given in Chapter 8. Finally, the
thesis concludes with the summary of findings in Chapter 9.

The thesis contains several appendices offering additional support to the ar­
guments put forward, or providing further information on the work undertaken.
The author’s contributions to the sponsoring research project are summarised
in Appendix A. The effects and behaviours observed in characterising the Grid
workload are further supported through the analysis of an additional Grid usage
trace presented in Appendix B. Appendix C. sponsored by the London Business
School and the Centre for Scientific Excellence, examines the business potential
of this research thesis and proposes a possible commercialisation route.

Chapter 2

Background

This chapter opens with an introduction to distributed computing and the Grid,
followed by the high level research and implementation methodology, the defini­
tion of the scope of the thesis and an explanation of the assumptions made and
limitations set. The chapter concludes by placing the work in the context of the
EPSRC* funded research project to which the author has contributed.

2.1 Distributed Computing and the Grid

Despite being actively considered since the 1980’s, distributed computing is still a
very dynamic field of research and development. Grid computing, the latest dis­
tributed platform, offers exciting new opportunities, but some unique challenges
as well.

2.1.1 Historical Perspective of Distributed Computing

In 1997. advancers in computer networking technologies led the Legion Project
[4] team to propose a model for unifying geographically distributed compute
resources into a common platform. Several similar ideas were considered in the
research community for years, and have been sporadically used in the academic
circles, but the first project to popularise wide area distributed computing was the
screen-saver based search for extraterrestrial intelligence running on idle Internet
connected PCs (SETIdHome [5] started in 1999).

Today, distributed computing is increasingly being used not only for its per­
formance benefits, but also due to good scalability and resilience it can provide.
Legacy high performance distributed installations used specialised parallel pro­
cessing hardware and proprietary low latency networks to run highly optimised
applications. While such systems do still serve a specific niche, the majority of

‘ Engineering and Physics Sc iences Research Council

20

CHAPTER 2. BACKGROUND 21

the contemporary compute workload is now done by the increasing number of
high throughput clusters, made using widely available components, connected
via ubiquitous IP networking [6], From web servers to financial risk analysis,
these distributed systems are often based on the open-source software and use
either a “cycle scavenging” method (such as Condor, see Section 3.1.3), or some
implementation of the distributed master-worker middleware (like the Sun Grid
Engine, Section 3.1.3).

Recent interest in distributed computing is being driven by both commercial
and educational sectors. In the academic institutions, a shift into extremely com­
putationally demanding “Big Science” [7] requires investment in infrastructure
often beyond reach of even the most developed nations, thus fuelling cross-border
collaboration efforts. Businesses are eager to deploy distributed solutions tha t
will enable them to better use their installed capacity and increase resilience
and agility by unifying their compute platforms. The distributed computing ap­
proach, while having potential to fulfil most of these requirements in the long
term, has often been a victim of its own success, oversold by its enthusiast and
hampered by the lack of adequate enabling technologies[8].

2.1.2 Grid Computing

W ith the proliferation of high bandwidth networks, their almost universal inter­
operability, the reduction in the cost of data storage and an increased portability
of applications between the platforms, the technological gap inhibiting truly glob­
ally distributed computers was being closed.

By using these enabling technologies. Grid computing [9, 10] was based on
a primary objective to develop a transparent and portable middleware able to
integrate heterogeneous resources into a distributed computing platform. The
Grid was developed as a much more dynamic environment than its predecessors,
able to form transient, on-demand Virtual Organisations (VO) [9] spawning ge­
ographical. networking and adm inistrative boundaries. This middleware would
link distributed computational, storage and visualisation resources into persis­
tent environments, provide a strong security layer, and a standardised methods
for discovering available resources and their capabilities.

The novelty of the computational Grids was in their aim to offer compute
power as a utility, a service to the consumer paid on a per use basis. In this
aspect they drew significant inspiration from the electricity power grids, trying
to decouple resource generation from the transmission network. Migration to the
service orientated approach would have some im portant implications for the end
user. Compute capacity would be available as and when required, reducing the
need to dimension local resources for peak usage and thus lowering capital expen­
diture. Users would be more agile and able to react more quickly to the changing
computational priorities. The standardisation would lead to a development of a

CHAPTER 2. BACKGROUND 22

Grid services market, boosting the competition and producing economies of scale
that drive the reduction in cost. But these benefits would come at the expense of
relinquishing direct control over the hardware and software, fully relying 011 the
security provided by the middleware and the service functionality offered by the
supplier. It is then no wonder that primary obstacles in embracing the Grid are
not technological but social [8].

A future computer usage scenario, supported by distributed computing ser­
vices, would see a broad mix of consumers, from the casual users to the large
institutional entities each with its own computing requirements and Quality of
Service expectations, connect through a broadband network to a computing plat­
form 011 which they could execute their compute jobs. The cost of the service
woidd be dictated by the supply and demand in the Grid market economy, and
the price influenced by the requested level of service, urgency of the job, its com­
plexity, and other factors. However, a number of open issues and problems would
have to be solved before such transparent use of the compute resources becomes
feasible.

2.1.3 Open Issues and Problems

Extensive research of distributed computing approaches undertaken in the 1980s
and 90s has yielded proven solutions for many of its implementation and pro­
gramming problems. Despite the similarities and common roots to the legacy
distributed computing, the Grid poses radical new challenges and requires novel
approaches for solving them. The primary added value of the Grid, its ability
to supply computing power as an 011-demand service through a semi-persistent
environment created for solving a specific task (VO), is in stark contrast with the
legacy cluster systems and their strict “plan-deploy-use" cycle. Therefore, legacy
approaches and solutions cannot simply be migrated onto the Grid middleware,
as they would diminish the core benefit that this new technology has to offer.

The Grid's envisaged flexibility to operate 011 the time and/or space shared
hardware, interconnected by dedicated or contended networks, and across admin­
istrative boundaries adds a whole new layer of complexity to its management. It
follows that in developing the core Grid middleware components, one should as­
sume little of the operational environment, and require even less, aiming for an
adaptable system able to operate in a wide range of conditions.

Resource Management Problem

After the initial research effort to develop and deploy the first Grid services, the
problem of managing systems of such global scale became apparent [11]. This
large administrative burden is caused by the scale and heterogeneity of the plat­
form. outdated management tools, and the reluctance to radically change man­
agement practices. Desirable properties of any new Grid middleware components

CHAPTER 2. BACKGROUND 23

would therefore be a high degree of autonomy and self-management, and a low
impact on the end users and their workflow.

Grid Workload Properties and Scheduling Process

Future development of the Grid middleware will be greatly influenced by the na­
ture of the applications that run on it. The Grid has already enabled scientific
simulations and experiments to be performed at the previously impossible scale,
but as it becomes a widely accepted collaborative computing platform the appli­
cation set is likely to change. W ith the development of computational markets
[12], users could find it cheaper and more convenient to use the Grid for an in­
creasing variety of jobs. The grid may emerge as a generalised service delivery
platform with a very diverse application set, executing large numbers of medium
and low complexity jobs mixed in with few high demand ones.

Any such changes in the usage profiles would change a number of im portant
job statistics which current management components rely on. As the applications
execution times fall, job arrival rates will increase, and so will the resource discov­
ery and scheduling overheads. Current Grid resource discovery and scheduling
components are built on assumptions of a very long execution times and the
resource pools of modest size. Overheads and job submission delays now intro­
duced by the Grid middleware may be considered insignificant, but in the future
may represent the greatest part of the job execution time. In a general use case,
schedulers will have to make an intelligent decision and adjust the complexity of
the resource discovery and scheduling to the likely complexity of the job at hand.

Resource Monitoring

Scalable monitoring of the Grid is difficult due to its heterogeneous nature and a
large number of resources that need to be observed. Monitoring systems with pre­
defined sampling points and frequencies will inevitably end up with poor informa­
tion capture, high volumes of irrelevant measurements in which a truly im portant
observation, and its cause, may be lost. Operating in a geographically distributed
environment, transferring monitoring information indiscriminately leads to an in­
efficient use of bandwidth. The next generation of truly effective Grid monitoring
systems would have to be more intelligent, flexible and agile, adapting the gran­
ularity, frequency and the communication methods to the state of the operating
environment and the importance of the measurements. These systems would not
be unlike virtual sensor networks, permeating the Grid fabric and self-organising
in monitoring constellations according to the current requirements.

CHAPTER 2. BACKGROUND 24

Raw Historical Data
(Accounting, Resource Monitoring) j

JMeta-Data Clustering
(User/Group/Executable/Time of Day/Day of Week...)

1 (2 (3 (4 (n l...n
Classes of Jobs

a
Statistical Models:

Median/SES/AR/MA/ARMA

i 1-------1-------i r

)
l...n

Classes of Models

Job Execution Time Forecasts
j

a
Quality Control:

Prediction Errors - Deadline Overrun and Underrun J
JDeadline Based Scheduler

(Out-of-order Execution, Probabilistic Deadline Adherence)

Figure 2.1: Overall Methodology Diagram

2.2 General Research and Implementation Methodology

The overall proposed methodology for delivering deadline scheduling is shown in
Figure 2.1. The basis is the on-line use of the historical job resource usage data
collected by the monitoring and accounting elements of the Grid middleware.
This data is analysed and mined for patterns, correlations and functional depen­
dencies between the past job execution times and the job properties (also referred
to as the job meta-data) which are available to the scheduler at the time of the
job submission or while the job queues for resources. These properties include,
but are not limited to. the identity of the user submitting the job. the Virtual
Organisation to which the job belongs, the name of the job executable and its
parameters, the time of the day or day of the week of job submission etc.

A workload analysis and similarity-based partitioning method, developed as
part of this thesis, identifies a combination of one or more job properties that are
used to separate the workload into a number of classes with a lower variability
of job execution times than the entire workload had. An example could be a

CHAPTER 2. BACKGROUND 25

class of jobs owned by one of three different users, with a given executable name
and mostly run on workday afternoons. A statistical model of a significantly
better fit and a much higher accuracy can then be used to forecast the future
execution times of jobs in tha t workload class than it would be possible without
such similarity grouping.

Job execution time predictions are the essential enabling element of the dead­
line scheduler implementation. By anticipating the execution time of the queued
jobs, the scheduler is able to calculate the latest job start time for a certain user
requested deadline, and can use this information to dynamically prioritise jobs
with '‘tighter" deadlines. The forecasting performance, and the deadline overrun
and underrun statistics, could be fed back to the prediction model and can be
used to increase its accuracy, or change the way the workload is partitioned in
response to a significant shift in the usage patterns.

The following sections will discuss the high level methodology of the three
main aspects of the work: workload characterisation, job execution time forecast­
ing and deadline scheduling. A more detailed discussion of the specific m ethod­
ology, implementations and approaches used for each of these three main areas
is offered in the separate sections in Chapters 4. 5 and 6.

2.2.1 Workload Characterisation

The essential first step in the pursuit of good job runtime predictions was to
thoroughly analyse and understand the properties and specific features of the data
set that will be forecasted. Parallel and distributed workload characterisation
was the subject of significant amount of previous research (which is surveyed
in Section 3.3), but was mostly based on a limited number of workload traces
collected in the 1990s and made available through the Parallel Workload Archive*.
W ith the emergence of the Grid, distributed computing has taken a more dynamic
form, adding some new features strongly differencing it from the traditional
parallel clusters. These differences, that will be discussed in more detail in Section
3.1.1. meant that a new and more representative workload should be used to judge
the changes that this new approach, user base and workflow have introduced.

In 2003 the Grid technology was just emerging from the research facilities and
into the production use. Grid installations were few and limited to the testbeds
and single, specific and limited use facilities. Several large projects were federat­
ing these Grids into larger communities, and the decision to install a Grid cluster
at the University College London opened the possibility of obtaining relevant and
representative usage data from one of the first Grid connected clusters used by a
number of different research projects from within UK and abroad.

Considering previous workload characterisation studies from the aspect of job
execution time predictions, it was evident that the variability of the data set was

"Available at http://vvvvw.c s .h u j i .a c . i l / la b s /p a r a l le l /w o r k lo a d /

http://vvvvw.cs.huji.ac.il/labs/parallel/workload/

CHAPTER 2. BACKGROUND 26

very high and that modelling this whole dynamic range would lead to very poor
results. Methods for reducing the variability of the data were required and had
to be based on the information available to the scheduler at the time the job was
submitted. For this purpose, the wealth of the m eta-data collected by the Grid
accounting and monitoring systems was used to look for links between the job
execution times and the job's name, its properties, the subm itting identity, and
for the first time, its temporal characteristics such as the day and the time the
job was submitted.

Correlation between these parameters was anticipated due to the nature of the
human work cycle which is the major contribution to the system workload. While
the Grid as a whole may be geographically distributed, individual users reside in
a certain geographical area and will have a daily and weekly work cycle specific
to their location. They will also more likely work 011 one or two scientific projects
at the time and tend to run applications relevant to those efforts. They may also
have some specific workflow habits, and with their own intuition (or expectation)
for the length of the execution of their jobs, they might be subm itting more
complex jobs to run overnight or during their lunch break. While these effects
may not be visible when looking at the aggregate load generated by a large
number of users, partitioning the data according to one or more of these criteria
would likely reveal the distinct usage patterns. Understanding these features
would prove instrum ental in devising a suitable forecasting methodology.

Contrary to the characterisation studies whose aim was to capture the prop­
erties of the trace in a model suitable for generation of other, different but statis­
tically representative models, the aim of the workload characterisation presented
in this thesis was to establish the models suitable for the ongoing prediction of
the job execution times. Such an approach cannot simply treat the workload as
a snapshot in time, but requires the analysis of its dynamic properties and its
changes through time. Therefore, Section 4.6 looks at both the low frequency,
gradual evolution, and the high frequency sudden and abrupt changes in the job
properties. The gradual changes are more characteristic of an ongoing devel­
opment of the workload, such as a growing scientific data set being analysed,
for example. The more abrupt discontinuities are indicative of a change in the
application, data set or the simulation goal, or perhaps a transient hardware or
software failure. All such events are intrinsic parts of a real world system, and
while they may justifiably be excluded from a generative model, they must be
considered in the creation of a robust prediction approach.

Engineering this robustness into the system and testing it under realistic
conditions depends 011 knowing what to expect in terms of the statistics and
distributions of the job param eter values. Some im portant previous work 011 the
predictive scheduling, discussed in more detail in Section 7.2. has used simple
approximations of the critical job properties which may not reflect the reality
of the Grid computing. The distribution functions, and their properties, of all

CHAPTER 2. BACKGROUND 27

the relevant job parameters were examined and special attention was paid to the
presence of long tails* [13] or self-similarity^ [14]. The presence of such statistical
features invalidates some of the previous approaches which did not take them
into account, while at the same time influencing the design of future, robust
scheduling systems.

2.2.2 Job Execution Time Predictability

W ith the benefit of having access to a multi-purpose production Grid, and the
ability to collect usage data on this facility, the use of this real world workload
was favoured over the synthetic traces generated using one of the several work­
load models and generative algorithms. Therefore, the aim of the job execution
time predictability study was to assess the accuracy level to which this actual,
production Grid workload could be forecasted.

The analysis and characterisation of the Grid usage data, and especially of the
workload partitions generated using the identified pivot job properties, indicated
different statistical properties of the job execution times between these job groups.
Most importantly, while the largest number of job partitions exhibited strong
autocorrelation properties, some execution times were resembling a random and
mean-reverting process. The use of a single forecasting method was therefore not
advisable, and several time-series and mean based predictors were considered.

A further reason for using multiple prediction algorithms was that in the on­
line forecasting, the prediction speed could be as important as the prediction
accuracy. In the case of probabilistic scheduling some short jobs may be assigned
a model of lower complexity and accuracy, while the longer running jobs may
warrant a highly complex but accurate model to reduce the effect of the prediction
errors.

The time series methods selected for predicting job execution times include
simple exponential smoothing (SES). auto-regressive (AR), moving average (MA)
and the auto-regressive moving-average (ARMA) methods. Sliding window me­
dian was included to predict the non-autocorrelated series and was favoured over
the mean predictor due to its robustness against outlier values. All of these
methods will be fully described in Section 5.2.2.

The important aspect in implementing all of these forecasting algorithms was
the level of self-management, adaptation and robustness that can be built in.
The system was envisaged as an autonomous entity requiring the minimum of
administrative attention and no input from the user (apart from the desired
deadline). This motivation led to the development of an automated process of

*A colloquial nam e for a feature o f so m e stat ist ica l d istr ibutions in which the h igh-frequency
population is followed by a low-frequency one that gradually "tails off" but can still m ake up
the majority o f the area under the probability dens ity curve.

b \ n object or a process which is exa ct ly or approxim ate ly similar to a part o f itself.

CHAPTER 2. BACKGROUND 28

workload analysis, selection of the job properties used for workload partitioning,
and model param etrisation further discussed in Section 5.2.

In dealing with robustness, the thesis also takes a somewhat holistic view
that no observed feature of the workload should be considered as an anomaly or
exception. Rather than removing these “misbehaving1’ jobs, as recently suggested
by some workload characterisation studies [15], the choice was made to attem pt
to proof the system against such departures from the modelled behaviour. In
real life, hardware and software does crash and user behaviour can at times seem
erratic. While a generative workload model can afford to ignore such events, a
predictive one has to deal with them in the best possible way.

Finally, the quality and the accuracy of the forecasts should be judged with
the appropriate statistical measures that enable adequate comparison with other
work in the field. Unfortunately, much of the previous job execution time predic­
tion work selected these metrics based on habits and personal preferences, rather
than on the statistical properties of the forecasted series or the measured pre­
diction accuracy. In this thesis, measures of different sensitivity, robustness and
scale dependence were employed and their use was thoroughly justified in Section
5.2.3.

2.2.3 Deadline Scheduling Methods

Once estimates of the execution times of queued jobs are known, suitable schedul­
ing algorithms can be used to order them in such a way as to maximise the ad­
herence to the requested deadlines, minimise the overrun time or optimise the
profitability of the cluster for the Grid operator. The aim of the thesis was not
to develop a software component for any specific Grid middleware, nor was it
to engage in an in depth assessment of the deadline scheduling policies. The
focus was on establishing a proof-of-concept “prediction engine1' that could be
interfaced to an existing scheduler which is able to make use of this information.
Several such schedulers (discussed in Section 3.1.3) make provisions for the job
execution time forecasts but either do not generate them internally or do so in a
trivial manner.

The thesis does propose a scheduling algorithm not previously used in the
context of Grid computing, and in Chapter 6 establishes its performance through
a trace-replay simulation using actual production workload. The results obtained
serve as a justification of the efforts to predict the job execution times, as well
as a motivation for further work on the development of better and more efficient
implementations of the Grid scheduling policies.

CHAPTER 2. BACKGROUND 29

2.3 Thesis Scope, Assumptions and Limitations

The focus of the work presented in this thesis is maintained by a well defined
scope of both the platform and the service to which the proposed job execution
time forecasting approach will apply. The work also makes some assumptions
to the way the Grid installations will be deployed and the Grid services used.
This section will present the scope, and those assumptions, together with some
necessary limitations to the considered research area.

2.3.1 The Platform

The primary motivation of the thesis, the adopted high level approach and the
stated methodology are universally applicable to distributed cluster computing.
However, some specific challenges, functionality issues and implementation prob­
lems are considered in the context of delivering deadline scheduling on the Grid,
the latest and most commonly accepted wide area distributed computing platform

[16].

The Grid platform assumed in this thesis is not seen as a highly specialised,
custom built state of the art facility, but rather as a metaphor for a broader gen­
eral purpose utility computing installation. These Grids are commonly built us­
ing commercial-of-the-shelf (COTS) components and standardised architectures
to minimise their procurement costs. The focus in these systems is on the ease of
the life-cycle management, as the reduction in the cost of the hardware is often
reflected in the increased system adm inistration and maintenance expense.

Clusters federated into the Grid environments are often heterogeneous, and
the ability of the Grid middleware to integrate these disparate entities into a
coherent platform was one of the primary driving factors for its adoption. But
within the clusters, and especially commercial and production ones, every a t­
tempt is made to keep the hardware homogeneous due to the easier resource
management and significant savings that can be made through economies of scale.

2.3.2 The Service

The assumption of the thesis is that a future commercial Grid utility operator,
such as the recently started Sun Utility Compute* or Amazon Elastic Compute
Cloud, would serve geographically distributed users from administratively and
functionally diverse communities. These consumers of compute power would
execute a mix of everyday personal and networking software, as well as some
intensive business and scientific workload. The users would thus require com­
putational power for a full range of applications from low complexity repetitive
tasks to highly demanding specialised workflows.

* ht t p://sun.com/grid/

CHAPTER 2. BACKGROUND 30

This on-demand utility computing service would have a very dynamic usage
profile consisting of both continuous streams of jobs and bursts of activity. In
this environment, the quality of service and the contractual obligations would
be governed by service level agreements (SLA). These contracts already give a
probabilistic guarantee of the service availability (such as 99.9% uptime) or the
delivered performance level (average packet delay of 20ms for example), and could
be easily extended to include a probabilistic deadline adherence guarantee as well
(for example at least 95% of made deadlines and average deadline miss time of
1000 seconds).

2.3.3 Limitations

In considering the job execution times, the influence of the past or future network
performance is not directly taken into account. This aspect has, beyond doubt,
strong influence on the runtimes of jobs dependant on the network for data
transfers, synchronisation or interaction with the user. However, modeling of the
local and wide area network performance, and its influence on the jobs running on
distributed platforms, was subject of extensive previous research [17, 18, 19. 20].
Most prominently, the Network Weather Service [21] was uses by Wfalski to judge
the execution time of jobs under different network conditions in [22].

The execution time forecasting algorithm proposed in this thesis does have
some sensitivity to the varying network performance through the influence
this has on an I/O bound job. If the runtime of such a job is predominantly
influenced by the network performance, which was previously shown to be
correlated with the daily and weekly work cycles, the resulting model will exhibit
the same behaviour and in effect predict the performance of the application
as the function of the network performance. Further work could also consider
incorporating the network performance metric as another job property taken
into the consideration alongside other meta-data.

Another performance influencing element that has been extensively researched
and that was not considered in this thesis is the influence that the number of
assigned processors, often referred to as the size or the degree of parallelism of
a job. has on its execution time. The dependence between the size of the job
and its runtime was previously modelled by Cirne and Berman [23] and others
[24. 25. 26. 27. 28],

However, as far as it is possible to tell from the available data, the Grid
workload at the cluster level tends to be composed of single CPU "bag of tasks"
jobs. Apart from the trace collected by the author, the only other publicly
available workload from the largest European production Grid (the EGEE
project [29]), contains a quarter million jobs from a ten month period all of
which requested a single processor. The lack of the multi-processor jobs visible

CHAPTER 2. BACKGROUND 31

on the cluster scheduling level certainly does not mean no parallel jobs are
run on the Grid. It rather implies that the complex workflow of parallel and
inter-dependant jobs is handled by a higher level meta-scheduler* which plans,
partitions and deploys the tasks onto the available resources. Job execution
times forecasted by the probabilistic scheduler presented in this thesis could also
help the meta-scheduler make more efficient decisions.

As previously justified, this work assumes a relatively homogeneous hardware
environment, and hence a balanced performance from all of the worker nodes
within the cluster. It is also presumed that the hardware is not time-shared with
users external to the Grid, or if it is. that this is under the control of some local
low level job scheduler. This may not be representative of some cycle-scavenging
Grid middleware (see Condor in Section 3.1.3), but is a reasonable assumption
in the view of this work's primary target platform.

Finally, the whole deadline scheduling approach relies on the user supplying
“reasonable" deadlines, and being motivated to extend these deadline as far into
the future as they possibly can. W ithout such motivation, users could simply re­
quest all jobs to complete immediately which would reduce the deadline schedul­
ing system into a batch first-come-first-served one. The diversity of deadlines
can most reasonably be effected through a charging system which would impose
higher prices on shorter deadlines and peak usage times. These Grid economy
systems have been suggested for some time by Buyya [30. 31, 32. 33]. Ernemann
[34] and others [35, 33], and fall outside the scope of this thesis. However, the
pricing policy of the Grid resources requires an in-depth knowledge of the ways
these are used, and the extensive workload characterisation given in Chapter 4
will provide a valuable input.

2.4 Project Context: Self-Organising Grid Resource Man­
agement

Research work presented in this thesis was done under the auspices of the EPSRC
funded Self-Organising Grid Resource Management (SO-GRM) project, and in
collaboration with BT Research (formerly BTExacT). SO-GRM is a base research
project aimed at developing an autonomous management infrastructure able to
support Grid job execution through its full life-cycle: from job admission through
scheduling and resource discovery to security monitoring. Components of the SO-
GRM architecture share the same objectives of removing single points of failure
through a distributed approach, reducing the administration load by using policy

*CJrid schedu lin g hierarchy is further d iscussed in Section 3 .1 .2 .

CHAPTER 2. BACKGROUND 32

based management and creating an agile, 011-demand system through the use of
self-organising principles.

The SOGRM management architecture [36, 37] is based 011 a light-weight,
adaptive, and policy-controlled XML-enabled management elements. These are
seen as an add -011 to the established Grid platforms such as the Globus [38, 39],
but are equally applicable and easily integrated into other Grid middleware.
Project work has focused on the three issues of primary concern in the Grid
management: resource discovery, security and intrusion detection and predictive
scheduling, the topic of this thesis. The author’s contributions to the project are
outlined in Appendix A.

Self-O rganising R esource D iscovery (SORD) [40] is tasked with the dis­
covery of computational resources which satisfy the conditions set forth by the
SLA management component and the scheduler. SORD is a query-response dis­
tributed protocol based 011 the node communication links in a small-world topol­
ogy [41]. These topologies have previously been considered in the problem of
routing with local information and allow distribution of the information to the
correct recipient through the use of network shortcuts. The protocol’s main de­
sign objectives were scalability and resilience to single node failures, both of which
have been successfully met. More information on the scalability and the resource
discovery success rates can be found in the previous publications by Liabotis
[37. 40].

In tegrity Inform ation In telligen ce (13) [42] is a distributed run-time in­
trusion detection system that combines the anomaly and misuse detection com­
ponents. After initial training with the features of a well behaving process, the
I 3 is subsequently able to recognise suspicious CPU utilisation patterns. The
feature set defining an anomaly is stored locally, with all other nodes in the net­
work immunised by broadcasting the anomaly’s definition as an XML antidote.
In both simulation and testbed deployment the I 3 has provided process classifi­
cation with less than 1% error rate for a suitably configured threshold detection
value. More information can be found in [43. 42].

Chapter 3

The Grid and
Related Technologies

This chapter examines the previous work, published literature and the back­
ground research done on the topic of (Grid) scheduling and the related technolo­
gies. It adopts a top-down approach by firstly treating the issue of job scheduling
before examining the past research done on predicting the resource performance
and job runtime. The chapter finishes with a systematisation of the workload
characterisation studies previously undertaken, and an overview of Grid moni­
toring tools and simulation suites currently being used.

3.1 Cluster and Grid Schedulers

A scheduler is one of the primary elements of a resource management framework
of any computational system. It controls the order in which requests for a
contended resource are processed, while ensuring certain performance, reliability
or security criteria are met. Packet scheduling 011 the communication links and
task scheduling 011 the processing units are some of the common examples.

Scheduling is usually performed 011 several levels, each being more granu­
lar and having a tighter control of the resources than the previous one. I11 a
distributed computing system, users submit complex jobs consisting of many,
possibly interdependent, tasks which are to be scheduled 011 the remote clus­
ters. Local job managers schedule those tasks onto the worker nodes within the
cluster, possibly together with the locally submitted jobs, and each node does
further scheduling of the system and user processes 011 the kernel level. When
the distributed systems consist of heterogeneous, lion-dedicated hardware with
dynamic availability, and are connected via variable speed, congested links, the
scheduling problem becomes very complex.

33

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 34

This section will open with some formal definitions of the scheduling prob­
lem and its complexity, followed by a taxonomy of the current Grid scheduling
algorithms and a discussion of some of the challenges of scheduling in the Grid
context. The implementations of the Grid schedulers, and their strengths and
weaknesses, will be presented before concluding with the current state of the Grid
scheduling research and a summary of the open issues.

3.1.1 Grid Scheduling Problem

Scheduling in the Grid context is a process of mapping a set of subm itted jobs to
the available resources, in such a way as to maximise a certain scheduling benefit
function, for example the job makespan*, cluster utilisation or similar.

Scheduling Process and Components

Despite a Grid being a platform of high diversity, both in terms of the hardware
and the applications, a common high level logical architecture of scheduling
components can be constructed, Figure 3.1.

Global Grid Scheduler
(Meta-scheduler) Grid Job

Local Scheduler Local JobLocal Scheduler

Job
Manager

Job
Manager

Resource Resource

Job
Manager

Job
Manager

Resource

Figure 3.1: A high level diagram of the Grid scheduling components and their
interaction.

In this scheduling hierarchy, a Grid scheduler (or sometimes referred to as a
meta-scheduler) accepts incoming jobs from the authenticated Grid users, selects
a subset of nodes matching certain application requirements from the resource
pool advertised, and generates a task-to-resource mapping which is passed to the
launching module (or job manager). Contrary to the schedulers in traditional
distributed systems, the Grid schedulers do not exercise total control over the

’'T im e taken from th e job su b m ission to th e job com p letio n , usually equals q u eu e wait tim e
plus th e jo b w allclock ex ecu tio n tim e

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 35

Grid resources which are often in different administrative domains. The Grid
schedulers must work like agents or brokers, with non-exclusive access to these
shared resources, and subject to a range of local security and resource utilisation
policies. Although a Grid level scheduler is not strictly required, there is little
doubt such high level component is needed to successfully harness the potential
of the large number of distributed resources. The following discussion assumes
that at least one such meta-scheduler is used.

Grid schedulers communicate with a local resource manager in charge of each
Grid node using a common protocol (such as Globus GRAM [44] for example).
The responsibility of the local managers is to handle the job scheduling from the
Grid and the local users alike, and to report the job status, resource utilisation
and other accounting data back to the Grid level scheduler. These local resource
managers are controlled by the resource owners and the Grid schedulers have no
influence over their operation, job prioritisation or the scheduling policies. An
overview of the Grid schedulers and job managers is given in Section 3.1.3.
The scheduling process can also be generalised into the following three stages:

• Resource Discovery acquires a list of the available resources and their static
and dynamic properties such as the CPU clock frequency, operating system
or the current memory usage. This is usually done through a Grid informa­
tion system, of which Globus Monitoring and Discovery System (AIDS. [45])
is an example. Alternatives have been proposed [46. 47. 48. 49], including
one from our own research group [37].

• Schedule Generation maps applications to the resources maximising a cer­
tain benefit function. This is the core of the scheduling process and will be
discussed in more detail in the following sections.

• Job Staging and Launching executes the job mapping supplied by the sched­
uler by staging the necessary data onto the target resource, subm itting the
job to the local resource manager using a compatible protocol, and mon­
itoring the job execution throughout its life cycle. The Globus Resource
Allocation Manager (GRAM [44]) is the most often used protocol with a
number of proxies for communication to the other local resource managers
(such as Condor ClassAds [50]).

Challenges of Grid Computing

The general scheduling problem, with its roots in the control theory and op­
timisation techniques, has been extensively studied as part of many common
problems in technology, computing and engineering. In the context of the par­
allel and distributed systems, the scheduling algorithms have evolved together
with the underlying hardware, from vector and massively parallel processor ma­
chines to the clusters of commodity workstations today. Although this work can

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 36

serve as a source of inspiration, the traditional scheduling approaches create poor
Grid schedulers. This is mainly due to the following assumptions these legacy
schedulers make:

• the scheduler has exclusive control of the resources.

• all resources are within a single administrative domain and subject to a
single set of policies,

• the resource pool is invariant, bar certain exceptional events such as node
crashes,

• the contention caused by the incoming application can be managed, and
performance offered by the cluster well predicted.

• data staging time is deterministic.

However, most of these assumptions do not hold in a Grid computing sce­
nario. Specific properties of the computational grids, as discussed below, create
additional challenges and require novel methods to deliver effective scheduling.

Heterogeneity of computational, storage and network resources leads to different
capabilities, different service levels and different specific scheduling policies re­
quired. Similarly, a widely varying collection of users and applications present a
heterogeneous load with a variable demand and expectations. A Grid scheduler
must be able to deal with this level of heterogeneity in a robust and scalable
manner.

Autonomy of resources, resulting from the principle that the owner maintains
control of its hardware, leads to a diversity of local resource management and
access control policies. As the Grid scheduler can exhibit little control over
these, an adaptable approach is needed to ensure a low barrier for connecting the
resources into the Grid.

Dynamic performance is manifested through constant fluctuations in the avail­
ability and service levels of all the resources connected to the Grid. Generally
autonomous and 11011-dedicated. computational, storage and network resources
are contended for by other (local) users of the system. The Grid scheduler must
monitor these dynamic properties and. if not anticipate possible problems, at
least react to the observed changes.

Data staging is increasingly complex with the separation of the data, applica­
tions and the target execution nodes. Interconnected by wide area networks,
these three points can have a significant communication cost and overhead in
between. The Grid scheduler should be aware of the time and cost required to

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 37

join these three components, and use that knowledge when selecting the most
appropriate schedule.

3.1.2 Grid Scheduling Algorithms

The scheduling problem, as applied to the parallel and distributed systems, has
been treated extensively in the seminal works by El-Rewini [51, 52] and Shirazi
[53, 54], This section will open with a discussion of some of the im portant aspects
of the scheduling problem, such as its complexity, and continue to give a taxonomy
of the present scheduling algorithms. It will also outline the current approaches
to treating the added complexity of the Grid scheduling in the fields of dynamic
resource performance and the scheduling benefit functions. The overview aims to
present a balanced and encompassing view of the current state of the art. while
focusing on the algorithms and approaches of special interest to the dynamic,
performance driven and predictive approaches.

Complexity of the Scheduling Problem

The multiprocessor scheduling problem, as a sub set of the scheduling and se­
quencing of jobs, is an NP-complete optimisation problem [55]. The problem
statement is as given in the following:

Given a set of J jobs where job j, has length /,• and a number of
processors m. what is the minimum possible time required to schedule
all jobs in J on m processors such that none overlap? [56]

The formal definition of the NP-completeness was given by Cook in 1971 [57].
In complexity theory, the NP-complete class of jobs are the most difficult prob­
lems in the non-deterministic polynomial time (NP). Potential results of these
problems are easy to verify for correctness, but no significantly faster method for
solving these problems then to try all the possible results has been found. For
non-trivial problems, all known algorithms for solving the NP-complete problems
require time that is super-polynomial in the input size.
Therefore, one of the following alternative methods are used to solve NP-complete
problems:

• Approximate: An algorithm that quickly finds a suboptimal solution within
a given range of the optimal one.

• Probabilistic: An algorithm that can be proven to yield a good average
runtime behavior for a given distribution of the problem instances.

• Heuristic: An algorithm that works “reasonably well” on many cases, but
for which there is no proof that it is both always fast and always produces
a good result.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 38

The taxonomy of scheduling further discusses the use of these methods in
parallel and distributed systems scheduling.

Taxonomy of Grid Scheduling Algorithms

Casavant proposes a hierarchical taxonomy in [58] for scheduling algorithms in
the general purpose parallel and distributed systems. Treating the Grid as a
subset of such systems, the Figure 3.2 presents the current approaches.

Figure 3.2: A hierarchical taxonomy of distributed systems scheduling ap­
proaches, adapted from [58]

The im portant aspects of Casavant's hierarchy, its applicability to the Grid
and its implementation in the current schedulers will be discussed in what follows.

Local vs. Global: Local scheduling is mainly concerned with how the processes
resident on a single CPU are allocated and executed. Global scheduling aims
to optimise the allocation of tasks among multiple processors, and the Grid
scheduling clearly falls into this category.

Static vs. Dynamic This choice indicates the distinction between the flexibility
of the schedule. In static algorithms, scheduling is done once and based on the
resource and job information available at that time. The scheduler hence requires
a “global view" of the resources and an anticipated run time behaviour of the
application on which to base its decision - information not readily available in the
highly distributed Grid environment. Regardless of the possible changes in the
state of the Grid or job queue, no re-scheduling is done. This causes problems
if a compute node or a communication link fails. To alleviate these issues,
static algorithms use job migration (for example Zhang in [59]) and rescheduling
techniques (such as the checkpointing mechanism used in Condor [GO]), which
brings them closer to the dynamic schedulers.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 39

The advantage of the dynamic scheduling algorithms is in tha t they perform
an online load balancing of the Grid resources at the cost of increased complexity
compared to the static scheduling. The following approaches have been used by
El-Rewini in [51]:

• Unconstrained First-In-First-Out (FIFO) maps the job to the shortest
queue. This opportunistic strategy is simple but often results in poor
schedules.

• Balance constrained strategy occasionally reschedules jobs in order to re­
balance the waiting queues. In the Grid, however, communication costs
can be high and the time it takes to move the job and the data to a new
execution node can cancel out any savings made.

• Cost constrained approach takes into account the communication or other
costs related to the re-balance of the queues and selects the most appropri­
ate strategy.

• Hybrid approaches use a mix of the static and dynamic algorithms. They
may perform static mapping for parts of the job with deterministic be­
haviour, or specific QoS requirements, and fall back to the dynamic schedul­
ing for others.

Apart from these more traditional approaches, some Grid schedulers imple­
ment dynamic scheduling using reservations or dynamic FIFO priorities. By ne­
gotiating resource reservations on platforms supporting them, the scheduler can
reduce the uncertainty of resource availability and performance. Dynamically
prioritising the jobs in a FIFO queue has also been examined [61].

An open question remains on which metric do these dynamic scheduling
algorithm perform the balancing. A queue job count, for example, can be very
misleading as it will be shown that the Grid job execution times can vary greatly.
Perhaps the best metric would be the estimated total execution time of the jobs
in the queue, a value which the author's work may help deliver.

Optimal vs. Suboptimal Due to the NP-Complete complexity of the scheduling
problem, all of the algorithms will generally find suboptimal solutions.

Approximate vs. Heuristic Approximate algorithms require a function to evaluate
the solution and a metric to judge its quality. As no suitable objective function
existed until recently, no approximate algorithms were developed. A new objec­
tive function (the Total Processor Cycle Consumption proposed by Fujimoto in
[62]) may help develop new approximate scheduling algorithms.

Heuristic approaches make assumptions on the state of the resources and the
job requirements, and then proceed to offer a “reasonable" solution. These al­
gorithms are based on the real world experience and simulations, and since they

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 40

are not restricted by the formal assumptions can be more flexible and adap­
tive. Another advantage of the heuristics is their ability to deliver an acceptable
scheduling solution in short time and with a limited computational complexity.

Distributed vs. Centralised High level Grid scheduling can either be done by a
single scheduler, or be distributed among several scheduler instances of the same
or different type. Centralised approaches, used in all commercially deployed Grid
schedulers presented in Section 3.1.3, are easier to implement, but may prove to
be performance bottlenecks and single points of failure [63]. D istributed Grid
schedulers, are largely still at the research stage (examples in [64. 59]) allevi­
ate these problems at the cost of the deployment complexity and an increased
communication cost.

Cooperative vs. Non-cooperative Scheduling nodes in a distributed approach
have a number of strategies available to satisfy their scheduling benefit function.
In a cooperative strategy each Grid scheduler has its own responsibility but is
working toward a system wide goal. Independent or competing strategies allow
each scheduler to pursue and maximise its own scheduling benefit function.

Apart from this hierarchical classification of Grid scheduling algorithms, other
im portant aspects and algorithm differences remain outside the scope of this
taxonomy. Some of the im portant differences in how the scheduling algorithms
deal with the specific case of the Grid computing and the unique issues it raises,
will be discussed in the following sections.

Objective Functions

The scheduler has a higher level objective than simply producing an application
to resource mapping: given two valid schedules, it will select one that maximises
a certain “■benefit” criteria of the system. W hat this benefit is. and who defines
it. varies according to the point of view. Users submitting their applications to
the Grid would like to see their jobs finished as soon as possible, or if there is
a cost associated with the job execution they might want to minimise it. The
Grid operators, on the other hand, may want to maximise the resource utilisation
or the profits from running the Grid jobs. These objective functions are often
opposing and competing, and it is down to the scheduler, or the pricing policy in
the context of the Grid economy, to make the appropriate trade-off.

The makespan optimisation is almost exclusively used in today s production
schedulers. W ith the emergence of the Grid economy models [30. 34]. the sched­
uler may be asked to minimise the cost at which the computation is done. The
problem becomes more complex with the compound functions of these two met­
rics (makespan and money) where the scheduler must normalise them to judge
the fitness of a certain schedule. Some recent research work by Das [65] explores

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 41

the use of some of the real world models, such as auctioning, in judging the
relative monetary value of a given reduction in makespan and vice-versa.

The objective functions maximising the resource utilisation or the throughput
of the jobs are favoured by Grid resource owners and operators. These are often
at odds with the application-centric objectives, and schedulers are required to
balance these opposing requirements according to some administrative policy. A
commercial Grid operator may also be interested in increasing the economic profit
extracted. Considering that the Grid offers computing on a service-based model,
the quality of service offered to the users will influence their preference toward a
certain cluster, the level of demand placed 011 it and the profit generated. Possible
ways of optimising cluster profitability based 011 the work presented in this thesis
are formulated in Appendix C.7

Scheduling Adaptivity

Schedule adaptation is a process in which the scheduling decisions are based
on the information, algorithms and the parameters which change dynamically
reflecting the past, current and future state of the Grid environment. The need
for the scheduling adaptation comes from the heterogeneity of the Grid resources
and applications, as well as from the resource performance fluctuations caused by
their non-dedicated use and probabilistic availability. The adaptive scheduling
algorithms can also be divided according to the source of fluctuations they handle
into the following three categories:

Application adaptation algorithms are usually based on the profiling and instru­
mentation of the source code of a specific application, and profiling of the target
platform on which it is to be scheduled. As a result, this tightly coupled approach
is not portable or universally usable. This limitation was addressed by Dail in [66]
by decoupling the application and resource models from the scheduling frame­
work. Application adaptation through resource reservation was presented by
Aggarwal in [67]. while Wu in [68] presents a self-adaptive scheduling algorithm
that relies on the long-term performance predictions introduced in [69, 70].

Resource adaptation algorithms are concerned with selecting a subset of the re­
sources from the available pool in order to minimise the communications costs
between them, achieve high performance, or reduce the performance variability,
for example. In a globally distributed cluster such as the Grid, intelligent and
application-specific resource selection can greatly increase its performance, espe­
cially in the case of the data intensive scenarios [71]. In [66] Dail groups the
resources in disjoint subsets according to the network delays, which are then fur­
ther ranked according to the memory size and the computational power. Subhlok
in [72] gives an algorithm to jointly analyse the computation and communication
resources for different application demands.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 42

The main challenge of the resource adaptation algorithms is in collecting up
to date monitoring data on the dynamic properties of the resources (such as the
available network bandwidth, memory, etc.) without excessive communication or
storage costs. Often, these goals are achieved by transm itting very basic, com­
pressed metrics such as the last, average or the maximum values for a relatively
large sampling period. As good monitoring information is essential for building
a representative statistical model and making good forecasts, Section 3.4 surveys
the current approaches and discusses the open issues on the topic of Grid resource
monitoring.

Performance fluctuation adaptation algorithms aim to reduce the impact of the
variable performance levels delivered by a resource and their probabilistic avail­
ability caused by their autonomy and non-dedication. Generally applicable, the
rescheduling algorithms (in GrADS [73] for example), adapt to the performance
or availability drops by re-submitting whole jobs onto a different execution node.
In the specific case of the divisible jobs their constituting tasks can be dynamically
assigned to the resources as appropriate at the time of execution [74]. Im portant
Grid application classes such as the master/worker, parameter sweep or the data
stripe processing can be scheduled in such a way. Previously mentioned appli­
cation checkpointing algorithms can also be used to reschedule even atomic jobs
by generating an occasional snapshot of their entire state and migrating them as
necessary.

Non-traditional approaches

New scheduling approaches have been inspired by the Grid's similarity with na­
ture and human society. Both environments are made up of a large number of
autonomous entities which are self-ruling but interacting, competing for scarce
resources and adapting their behaviour to current environment conditions. Cross-
disciplinary problem solving methods briefly introduced here found many appli­
cations in Grid scheduling research, depending on how their original problem
space was mapped onto the Grid.

Economy models assume a limited supply of Grid resources for which a num­
ber of consumers (users or applications) are competing for. Depending on the
approach taken, resources are available at a certain cost, may be of a defined qual­
ity, or a varying level of community trust [75]. The scheduling process is then
seen as the interaction of the resource buyers and suppliers in some mode of m ar­
ket behaviour such as bargaining, open bidding, auctioning or similar. In [30. 31]
Buvya applies these economic models to optimise the Grid scheduling, while in
[32] same author introduces a novel deadline and budget constrained algorithm
that considers the makespan and the cost of the job simultaneously. Economic
treatment of the scheduling problem raised other interesting approaches, such as
a tender model for Grid applications suggested by Ernemann in [76. 34], and a job

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 43

prioritisation model for the traditional schedulers based on the job’s committed
budget by Zhu [77]. A game theory [78] approach was considered by Young in
[79] and was able to find close to optimal solutions in many cases.

Genetic algorithms [80] have found their application as powerful heuristic
methods used to find sub-optimal solutions to large combinatorial problems of
the Grid job scheduling. They are often combined with other search techniques
based on the real-world processes, such as the simulated annealing [81], to avoid
locking into suboptimal local solutions. Examples of the genetic algorithms in
the Grid scheduling can be found in [82, 83, 84, 85].

3.1.3 Grid Scheduling Implementations

The Grid scheduler and job manager landscape is highly fragmented and utterly
confusing. Many implementations can be used as stand-alone solutions, or as
part of a layered Grid resource management. This section gives an overview
of the most commonly used schedulers on the production and research Grids.
The classification is based on their use of the predictive techniques, historical
information or the application instrumentation.

Non-predictive

The majority of the commercial schedulers do not make any independent as­
sumptions on the length of the job execution or its resource utilisation. These
approaches focus on delivering high-throughput, stable and as deterministic as
possible scheduling, often employing fixed prioritisation as means of indicating
the relative job urgency.

Condor-G [60, 50] is a high-throughput, policy controlled batch scheduler based
on a master-worker approach. It can be used as a standalone system, or as a local
job manager for the Globus toolkit with which it communicates using the GRAM
protocol. ClassAd [86] language is used to match the application requirements to
a suitable hardware. Condor supports job checkpointing, provides node security
by using the sandboxing and I/O redirection, and has an integrated monitoring
and management suite called Hawkeye [87] (see Section 3.4.4).

Condor’s strongest point is in extracting unused cycles from a highly hetero­
geneous and noil-dedicated resource pool, and the ability to migrate and resume
jobs during runtime. The scheduling however is FIFO based, with coarse grained
prioritisation, and the framework leaves little room for integration of the predie-
tive elements.

N1 (Sun) Grid Engine [88] is an enterprise focused cluster scheduler based on a
master-slave agent model that supports a wide range of operating systems and
hardware. It can function as a standalone system, or as a local job manager

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 44

in a Globus environment. The N1 Grid engine supports parallel jobs, basic
resource reservation and job prioritisation. The submission of jobs is through
a single master node and each slave runs an agent responsible for task launching,
monitoring and reporting. The resource discovery is built-in, but can be extended
(for example by using JXTA [89]), and supports the building of complex selection
queries.

Scheduling in the N1 Grid Engine is based on a policy and priority modified
FIFO model. The role based authentication system can support groups with
different priorities, resource reservations and billing options. Multi-site job sub­
mission is possible using the Globus Toolkit v3, Grid Engine and JOSH [90].
Manual scheduling to a deadline is possible if reservations are used, but only
for applications with known runtimes. The scheduling process cannot readily
support deadline scheduling or application run time predictions.

EASY scheduler [91], developed specifically for scheduling parallel jobs, was
the first FIFO system to use the “backfilling’’ method. On job submission,
users are asked to specify the number of processors requested and the maximum
wallclock execution time for the job. The queuing proceeds in a first-come-first-
served manner until a job requests more CPUs than are currently available in
the cluster, effectively blocking the remaining queuing jobs from execution. The
EASY scheduler examines the running queue and establishes the latest time at
which enough CPUs to serve the queued job will become available. It than looks
further down the queue and allows execution of jobs requiring less processors to
execute if they will not push back the start time of the blocked job - effectively
filling in the gaps created by large jobs with smaller ones.

EASY scheduler has been extended to work with other scheduling systems,
such as the LoadLeveler [92], and the backfilling method, shown to be fair and
efficient, was adapted for use in many later schedulers. However, the dependence
on the users for the job execution time estimation makes this approach unviable
for many modern applications.

Portable Batch System (P B S) [93] is a widely used batch scheduler in large insti­
tutional clusters, and is another example of a centralised master-worker model.
Used on its own, it functions as a workload management suite, while integrated
in a Globus environment, it serves as a local scheduler and job manager. PBS
supports resource reservations, cross-cluster job execution through user mappings
and job recovery through rescheduling. PBS is best suited to a well managed and
controlled environment, with (mostly) homogeneous hardware and software, and
with unified accounting and administration policies.

The scheduling component in the PBS is separated from the job submission
server, and through the use of PBS APIs can be modified to implement different
scheduling algorithms. The Scheduler communicates with the Server to obtain

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 45

submitted job information, and with the PBS resource monitor to acquire the
resource utilisation data. It can operate on single or multiple queues and create
schedules based on site policies, priorities and the utilisation state of the cluster.
Preemptive execution and backfilling are supported, but scheduling to a deadline
is not possible. Although it may be feasible to develop a custom PBS scheduler
making use of the job runtime predictions, no such effort to date is known to the
author.

Load Sharing Facility (LSF) [94] is a popular commercial scheduler geared to­
wards the high computational demand industries such as the financial services
and life sciences. Details of the underlying technologies in LSF are not widely
available, only a single published paper by the scheduler’s author Zhou from
1992 gives some early algorithms [94]. The product literature states tha t the
core of LSF is a virtualisation engine that manages the supply of resources, in­
creases their utilisation and improves the application performance. According to
the company web site “an element of self-management has been built into Plat­
form LSF to offer guaranteed zero downtime, self-adaptive dynamic allocation of
resources, and self-healing to reduce management overhead".

Platform LSF offers a comprehensive set of scheduling policies with support
for fair-share, preemptive and service level agreement based scheduling with ad­
vanced resource reservation. The implementation aspects of these have not been
disclosed, making functional comparison with other algorithms impossible.

Maui Cluster Scheduler [95] (and related Moab Grid Suite [63]) is a high level
Grid meta-scheduler compatible with the PBS, LSF, Sun Grid Engine and other
local schedulers and job managers. It supports scheduling policies, dynamic job
priorities, resource reservations and fair-share resource allocation. Maui makes a
step towards the deadline scheduling by requiring the user to supply an estim ate
of the maximum running time of a job. This value is used in constructing the
initial schedule, which is then further optimised by applying job priorities and an
(optional) out-of-order backfilling scheduling algorithm.

Maui maintains the accounting data on the previous user-predicted and actual
job execution times, but it does not make any independent forecasts. Analysis
done by Maui’s developers revealed that the users are likely to grossly overstate
the maximum running time of their applications. Even with such unreliable
runtime predictions. Maui is able to deliver improved scheduling performance,
stressing the importance of this data in creating an effective schedule.

Predictive

Predictive Grid schedulers are still mostly used for research purposes or in spe­
cialised clusters scheduling scientific software. Although each of the presented

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 46

schedulers takes a different approach, they have all been designed to schedule a
specific type of applications onto an appropriately specific set of resources.

Application LEvel Scheduling (AppLeS) [96, 97] is a primary example of the pre­
dictive Grid scheduling at the application level. It can optimise the schedule for
the user’s performance criteria, such as the turnaround time, by predicting the
execution times of queueing jobs on the target platforms. AppLeS does this by
running a modified, recompiled and instrumented version of the user application
on a performance profiled hardware (using Network Weather Service, see Sec­
tion 3.4.3) using a domain-specific scheduling algorithm. Performing best when
scheduling param eter sweep and master-slave applications [85. 71], it can deliver
increased utilisation and deadline scheduling. However, the reliance on specific,
individual, application and resource models makes this approach acceptable only
for the high-value niche applications, or clusters of specialised hardware.

AppLeS bears significant differences to the approach taken in this thesis as it
requires each application, set of resources and prediction algorithm to be adapted
to its scheduling framework and the deployment domain in question. This re­
quires significant effort on behalf of the user, cluster administrator. AppLeS de­
veloper and the software provider. A solution developed in such a way is not
portable, and may not perform sufficiently well even with minor changes in the
cluster composition, network topology or the usage patterns. Nevertheless, Ap­
pLeS has shown possible benefits of the adaptive and predictive schedulers, and
an obvious need for their development.

Nimrod/G [98] is a Grid incarnation of a scheduler developed to facilitate large
runs of parametrised simulations over a distributed set of resources [99]. Using
the Globus toolkit for resource discovery, job submission and security, N im rod/G
enables end users to request job completion by a specific deadline and specify
a certain virtual budget for the execution. By offering this ‘‘budget'’ metric.
Nimrod/G is looking to provide a framework for market based computational
economy where such services could be traded [30, 31]. During the schedule
generation stage, a sample of the subm itted parametric study application is run
on the target nodes and used to extrapolate an overall runtime prediction.

In papers published by its authors, N imrod/G showed good scheduling perfor­
mance, with good adherence to the requested deadlines [98]. The trial run predic­
tion method lends itself well to the heterogeneous nature of the Grid. However.
Nimrod/G is solely aimed at the parametric study applications, whose execution
times are very narrowly distributed, and generally independent of the input pa­
rameters. By limiting its scope, Nimrod/G is able to utilise simple prediction
methods to achieve satisfactory scheduling performance. Although these appli­
cations form an im portant group of the scientific software presently running on

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 47

the Grid, a general purpose scheduler must also be able to handle other types of
applications.

PACE/Titan toolset [100, 101] is a deadline based scheduler supporting runtim e
predictions, performance modeling, and out-of-order job executions. PACE [102]
component uses the pre-execution modelling to predict the job runtime and the re­
source utilisation based on the hardware and software characterisation templates,
and an evaluation engine estimating the application performance on different re­
sources. It requires all applications to be recompiled with the PACE libraries
and all execution hardware profiled so tha t the performance tem plates can be
made. T itan [100] is a workload management component of the toolset. Using
the performance predictions supplied by PACE, Titan uses a genetic algorithm
to optimise the execution schedule reducing idle time, makespan or scheduling
delay, while maintaining the deadline adherence. The scheduling is dynamic, and
is constantly performed on the pool of outstanding jobs, replacing the current
best schedule if a better one is found.

PA C E/Titan toolset is a good example of the power of predictive scheduling
techniques and the challenges of the job runtime predictions. Good results have
been reported [103], but despite these the main drawback of the toolset is the need
to recompile the applications, and extensively profile the target hardware. For a
large number of users running different applications on non-dedicated resources,
such as in a typical utility Grid scenario, this may be impossible. The main
strength of the PA C E/T itan scheduler remains in running the high-end scientific
applications on a relatively static pools of high performance dedicated hardware.

ICENI [104] is a predictive scheduler aiming to explore the role and the flow of
the job m eta-data in the computational Grids. It incorporates a separate schedul­
ing component, job launching framework and a performance repository holding
historical data on the job execution times on different architectures. The schedul­
ing component is extensible and supports multiple concurrent and competitive
scheduling algorithms (ICENI authors have presented four such algorithms in [79],
including the simulated annealing and the game theory methods). The prediction
engine treats the applications as a collection of simple components connected as
a directed acyclic graph (DAGs, see [105]) with varying depths and dependencies.
It introduces a user-defined benefit value, such as the target execution time or
the computing cost, which the scheduling process aims to optimise.

ICENI parts from the traditional approach of the batch schedulers and offers
predictive, out-of-order job execution and several Grid specific benefit functions.
Although the importance of the m eta-data is considered, its integration in the
overall flow of monitoring information could have been more thorough. ICENI
falls short of offering a fully fledged deadline scheduling, but optimisation of the
wallclock job execution time can be done using the benefit function. The core

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 48

scheduling work focuses on the algorithm development, recognising the need for
approaches of varying complexity, but little attention is paid to the job execution
time prediction methods, their accuracy and computational cost. Due to an open
architecture and modular design, ICENI offers a good platform for deployment
of third party components and their testing in a production-like environment.

3.1.4 Summary

This section has presented the general scheduling problem, as applied to the
parallel and distributed computing systems, and some unique aspects of the Grid
platform which pose specific challenges to the legacy scheduling approaches. This
examination of the broader scheduling process showed that efficient scheduling
depends on the good algorithms for resource discovery and efficient access to the
monitoring data. Some of these issues were addressed as part of the SO-GRM
project and will be discussed in Appendix A.

From an extensive survey of the Grid scheduling algorithms, their complex­
ity, adaptivity and objectives, it became clear that the dynamic properties of the
Grid, and its non-deterministic nature, are the hardest problems in the trad i­
tional scheduling approaches. Many techniques, which would be better suited to
overcoming these Grid specific issues, would require estimates of the execution
times of the queued jobs in advance of their start.

W ith the transition of the Grid paradigm into a service-orientated in­
frastructure, the objectives of the commercial Grid operators and end-users
diverge. Emerging new concepts, such as the Grid economy, are seen as ways of
optimising the objective functions of both the users and operators. Delivering
Grid scheduling with the deadline and budget constraints will depend on the
sound economy models, and the ability to predict job execution times.

The section has also presented numerous implementations of the Grid sched­
ulers, separated into two categories: those tha t in some way try to predict the
execution times of the subm itted jobs, and those that do not. The number of the
predictive schedulers, and the numerous ways in which they attem pt to anticipate
the job execution times strongly motivate the author’s further work.

3.2 Performance Predictions

Forecasting is a process of estimation in unknown situations [106], and is used
extensively in support of decision making. In the following, it will be used
interchangeably with a more general term "‘prediction” which is usually associated
with forecasting time-series data.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 49

This section will discuss the problem of forecasting the com putational load
and the resource performance in the context of the distributed deadline schedul­
ing. It will survey the current methods and approaches used in forecasting the
job execution time, state the particular issues and challenges of making such
predictions in the Grid environment, and briefly discuss the significance of the
outlier data points and other “anomalous” workload properties.

3.2.1 Problem Statem ent

From the survey of the scheduling algorithms and implementations in the previous
section, it is clear that significant performance and functionality improvements
could be achieved if an estimate of the job execution time on a given resource
can be made. Therefore, the problem is one of delivering runtime forecasts of
sufficient quality, and based on the available information prior to the execution
of the submitted job.

Related Forecasting Problems in Distributed Computing

Similar problems abound in the management, provisioning and planning of the
distributed computational resources. Attempts were made at modelling and
predicting many performance influencing, dynamic, properties of these systems
such as:

• Host and CPU load by Dinda [107] and Lingyun [108]

• Queue waiting time by Downey [109]

• Network available bandwidth by Wolski [22, 110, 21] and the file transfer
time by Vazhkudai [19]

• Resource discovery performance in the Grid Information Systems by Keung
[mi

Despite the diversity of the topics listed, all of these approaches rely on several
common forecasting methods that will be discussed in Section 3.2.2.

Challenges of Job Execution Time Estimation

The complexity and the quality of the runtime predictions is proportional to the
volatility of offered load and the variability of the service rate. In embedded,
robotic, or industrial control applications for example, sensor events are serviced
by processes with known execution time, usually running on real-time operating
systems and hardware [112, 113, 114, 115]. Adherence to an execution dead­
line is then guaranteed by the deterministic nature of the system and all of its
components.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 50

Grid computing is a much more probabilistic environment in which both the
computational load and the hardware service rates vary. The apparent random­
ness of the human behaviour, the primary source of the computational load in
the Grid, leads to variable service request rates. In addition, the subm itted ap­
plications vary greatly in terms of complexity and resource requirements, and
their execution time is often dependant on the parameters of the specific run (for
details see Chapter 4). At the same time, the autonomy of the Grid resources
means tha t their availability is not guaranteed, and their non-dedication implies
fluctuating service levels offered to the Grid applications. In these circumstances,
estimating the job execution times becomes a real challenge.

3.2.2 Prediction Approaches

This section will describe the approaches used in the current research work and
implementations for predicting the job execution time. These methods are not
mutually exclusive, and are often combined to yield an increased prediction accu­
racy. The focus of this discussion is on the body of related research, but references
are provided to production schedulers based on the mentioned research work.

User Provided Estimates

The simplest and the oldest approach to acquiring the job runtime predictions is
asking the user to give an estimate. The reasoning behind this method is tha t
the user submitting the job knows it best and would be able to somehow judge
the level of computational complexity requested from the application. The user
is also presumed to have the benefit of some historical hindsight and can make
an educated guess based on the previous application runs in similar conditions.

User’s estimates are communicated to the scheduler either implicitly (by sub­
mitting the job to a queue with a certain maximum execution time) or explicitly
(by stating the maximum or estimated execution time as a param eter to the
scheduler). The former was very common in the legacy batch systems and is still
widely used today (in some versions of PBS scheduler, see Section 3.1.3). while
the latter can be found in the more recent Grid schedulers (such as Maui [95]).
Whether, and under which conditions, will the job be hard limited by the given
maximum execution time, or whether it will be allowed to continue execution
past its declared maximum runtime, or the limit of the queue to which it was
submitted, is subject to the scheduler implementation and the local policies.

The simplicity of this prediction method is appealing, and has worked on the
previous generations of the time-shared, high performance systems where the re­
source had deterministic performance and the users were repetitively subm itting
specialised applications. In the Grid context however, users are not aware of the
constantly fluctuating performance levels of the execution nodes, and may not
even have an in-depth knowledge of the application they are running. This leads

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 51

to extremely inaccurate job runtime predictions documented, amongst others, by
Lee [116] and Downey [109]. Another possibility, given the conflicting interests of
the users and the Grid scheduler is the manipulation of the scheduler by the users
wishing to ‘‘jum p the queue” by intentionally giving lower runtime predictions.

Application Instrumentalisation

Application instrumentalisation enables the resource management middleware to
gain an inside look into the functional, performance influencing, components of
the application. The method augments the core problem-solving source code with
an additional functionality that can, depending on the implementation, passively
analyse the application performance, estimate the required resource utilisation,
predict time to completion, or actively adjust the speed of the execution. The
process of instrumentalisation involves significant changes and recompilation of
the user’s application, and profiling it on all of the target execution platforms.

The research in this topic has focused on the best ways to capture the internal
organisation of an application and discover its performance influencing parts. To
this end, the directed acyclic graphs (DAG) [117] have been frequently used [118.
119]. Object oriented methods have been proposed By Gergeleit in [120], while
the most notable implementation remains the AppLeS scheduler (see Section
3.1.3).

The main benefits of the application instrumentalisation method are its high
prediction accuracy, and the ability to estimate the job time-to-completion used
in deciding whether to reschedule a running job elsewhere. The need for source
code changes and recompilation is a major issue as. even if the code is publicly
available, the process is a laborious and expensive one. The approach is very
specific to the software and hardware in question and hard to adapt to a general
purpose utility Grid. Application instrumentalisation is therefore best suited to
specialised clusters running high value niche applications.

Application and Hardware Profiling

Profiling approaches use a variety of algorithms to capture the dynamic behaviour
of the applications and the hardware in a model suitable for prediction generation.
This approach is similar, and often used together, with the application instru­
mentalisation. Profiling, however, does not require alterations or re-compilation
of the source code. It rather tries to create the model non-intrusively, passively
analysing the applications and monitoring the hardware. A successful profiling
technique will generate models in an (semi-)automated way that can evaluate dif­
ferent performance scenarios and capture the system’s properties with the least
number of parameters.

The profiling of software can be done using the test runs of sample code on the
target hardware [98], creating the system logic models [121], or using the binary

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 52

code analysis [122]. Hardware platforms are most often described by their static
properties (such as the amount of installed memory, the speed of the CPU, or
the FLOPS rating), or by using a real-world application benchmark (such as the
SPECmark [123]). More detailed analytical models [121] can also be developed,
usually for more specialised systems.

Most of the cited algorithms in this category produce very accurate predic­
tions. The applicability of the approach however, still remains limited. Most of
the profiled hardware is monolithic and dedicated, the properties which do not
readily apply to utility Grid clusters. The modelled applications are highly spe­
cialised, well studied and often performance deterministic with a narrow runtime
distribution (such as the parameter sweep application scheduled using Buyya’s
N im rod/G , see Section 3.1.3). The modelling method itself, while requiring less
involvement than the full instrumentalisation, is still not fully autom ated and
usually requires the involvement of the Grid adm inistrator and the end-user.
Overall, application and hardware profiling serves as a good starting point for
the development of a more automated and generalised approach based on appli­
cation templates [96].

Statistical Methods

If the successive historical job execution times are collected by the Grid mid­
dleware, then these can be analysed using the statistical analytical methods in
an effort to predict the future job runtimes. Experience has shown tha t even
some seemingly random or very noisy series (such as the stock prices or the com­
modity demand) can be modelled and predicted to a usable error margin [124]
using statistical methods. Rather than trying to capture the cause of the ap­
plication’s achieved performance, these methods model the end effect (the job
runtime) directly. The following statistical methods are most frequently used
in the prediction of the job execution time or the closely related performance
metrics.

The mean and the median based methods [125] are often used due to their
(computational) simplicity. They are frequently used and reported [109, 126]
as they form a benchmark for other, more advanced, statistical methods. The
mean and the median based forecasts are very dependant on the distribution of
the data points and the approximation used to represent them.

Regression techniques [127] attem pt to model the relationship between the exe­
cution time and another variable, or in the case of the auto-regression between
the current and the lagged historical values of the execution time itself. These
methods are extensively used [107, 128, 126, 129] due to their predictive power,
and the ability to capture cyclic behaviour.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 53

Moving average methods [130] compute the weighted average over a number of
historical values of the modelled variable. They are often used in conjunction
with the regressive techniques [131], but require a noil-deterministic time to fit.

Stochastic values [132] are ranges of values which can be represented using dif­
ferent distributions, intervals or histograms. They are able to communicate the
dynamic properties of the system better than the spot values, and capture more
information on the variability of the modelled metric. Stochastic prediction m eth­
ods have been used by Schopf in [133, 134, 135].

Homeostatic and tendency based methods are based on a relative value of the
last historical data point. The homeostatic strategy assumes that if the current
value is grater tha t the historical mean, the next value is likely to decrease. The
basis of this approach is tha t the data will be “self-correcting” or so tha t it will
return to the series mean value. A tendency based strategy states that if the last
sample was of increasing value the next one will be too. An im portant source
of error is the inability to predict the “turning point” when the series changes
direction. These methods have been adopted by Lingyun in [108]

3.2.3 Special Events Detection

When using statistical forecasting techniques, the quality of the predictions will
greatly depend on the variability of the data and the presence of outliers, anoma­
lous data points or high-frequency components. Anomaly detection and filtering
is a large research topic on its own, with a range of applications from seismology
to medicine. In the context of the distributed systems, it is most often applied
to the network monitoring and management.

A small body of published work on analysing anomalous behaviour in the
workload traces goes as far as identifying and acknowledging the presence of
outliers both in the job execution time data and the job arrival rates. Tsafrir has
shown in [15] that these can have significant effects on the scheduling performance
and suggests ways of filtering them out of the dataset.

Further discussion of the statistical properties of the Grid workloads, together
with the merits and problems of excluding the anomalous data points is deferred
until Chapter 4.

3.2.4 Summary

W ith the increased research interest in the deadline scheduling, and other alter­
natives to batch scheduling, the ability to forecasting the execution time of the
queued jobs is seen as a necessary functionality. Delivering such predictions, in
the context of a general purpose utility Grid system, proved to be difficult.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 54

The discussion of the forecasting methods currently used reveals tha t the run­
time predictions supplied by the Grid users are unreliable, and tha t the applica­
tion instrumentalisation and modelling techniques yield good results but require
source code changes or extensive and preemptive analysis of the hardware and
software. In a dynamic environment like the Grid, these are seen as prohibitively
high costs.

Statistical forecasting methods have a potential to deliver job runtime pre­
dictions in an automated way, transparent to the user and easily manageable
by the administrators. Although the initial prediction accuracy may not be on a
par with some more complex methods, further algorithm improvements and care­
ful handling of the outlier data points could significantly increase the prediction
accuracy.

3.3 Workload Characterisation

To successfully select and apply a performance forecasting model, good under­
standing of the statistical properties of the workload are needed. The topic of
workload characterisation has been extensively researched before, but little work
is evident in the context of the Grid computing.

Since the Grid architecture is significantly different from other distributed
and parallel systems, one can expect that the workload will also be significantly
different. A close examination of its properties is therefore warranted. This
section will first give a brief historical overview of the workload characterisation,
followed by the discussion of the im portant workload metrics and their treatm ent
in the literature.

3.3.1 Historical Overview

Knowing the properties of the demand that will be presented to the system is
crucial in its planning, performance tuning and bottleneck optimisation. Previous
workload studies have dealt with workload characterisation of interactive [136,
137] and database [138, 139, 140] systems, communication networks [141, 142].
and Web services [143, 144, 145] amongst others.

Although often difficult, characterisation through proper analysis of the real-
world data is im portant in avoiding flawed system designs [146, 147]. Analysis of
the actual Internet traffic patterns by Leland [148] and Paxson [149], for example,
led to the ground breaking departure from the Poisson-based model and had
significant impact on many other workload models, such as those of the Web
server performance [150, 151, 144, 145].

Historically, the focus in the workload characterisation of the distributed and
parallel systems was on developing models able to generate representative traces
to be used in other simulation work [23]. W ith the recent interest in predictive

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 55

scheduling, some researcher have started to examine workload properties looking
for possible forecasting models [152].

3.3.2 Modelling Scope

As the computational workload consists of several layers of jobs, tasks, routines
and instructions, so can workload models be focused on capturing the properties
of one or more of these layers. One option is to model these levels explicitly,
creating a hierarchy of interlocked models for different levels, while another is to
study them as opaque boxes and model their response to input data.

Work by Calzarossa and Sarazzi [153] established the foundations for mod­
elling the processes generating the workload. Their methodology subdivides the
workload per each user, identifies similar commands using clustering techniques
and chooses several representative ones. It then describes user behaviour through
probabilistic User Behaviour Graphs [154] and Markov chains [155, 20, 156], and
uses aggregation-disaggregation techniques [153] to obtain the global model pa­
rameters. This process captures both static and dynamic properties of the intrin­
sic workload generation process in a concise form and can be used to generate
representative workload traces.

This detailed approach to workload modelling quickly becomes overcompli­
cated, and while able to generate good representative traces, it does not provide
much insight into the statistical properties of interest to the job execution time
predictions. The remainder of this section will therefore focus on past work using
statistical techniques to directly characterise workload’s general properties.

3.3.3 Workload Properties

Previous characterisation studies of parallel systems model a number of workload
properties relevant to predictive scheduling techniques. The arrival process, the
job’s requested, queueing and execution times, and the degree of parallelism are
some of the workload’s most studied aspects. The following overview of the
findings and the related work is based on the job traces from pre-Grid clusters;
only the most recent work by Li [26], Iosup [157], Medernach [27] and Dobber
[28] are based on the actual production Grids and will be treated separately in
Section 7.1.

Arrival Process

The daily fluctuation of the number of submitted jobs, and its correlation with
the human work pattern has been universally reported [23, 24, 26, 27, 152].
Most traces show a differentiation between the weekday and the weekend arrival
rates, except as reported by Cirne in [23], and some authors choose to ignore the
lunch hour dip [24]. Arrival distribution function has been modelled using 8th —

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 56

12th degree polynomials [23], log-normal [24], (hyper-)exponential and (hyper-
)Gamma [24, 26], and Weibull and Pareto [26] distributions.

Although the majority of the previous work has assumed Poisson distribution
of the inter arrival rates, Medernach has reported strong burstiness at all time
scales [27]. Cirne has studied the link between the job arrival time and other
job properties, including execution time, but could not identify any statistically
meaningful correlations [23].

Job Execution Time

In his work, Gibbons assumes normal distribution of the job execution times
[152] and approximates it with the Student’s t distribution. Cirne and Berman
derive the job runtimes from the user job requested time and the explicitly
modelled accuracy of such user predictions [23]. Weibull, log-normal and Gamma
distributions were used by Li in [26], while Lublin fits a hyper-Gamma function

[24].
All authors report a very wide range of the execution times and often remove

outliers (usually past 95th percentile) or perform logarithmic transformations.

Job Request Time

Job request time is specified to the scheduler by the submitting user, and is an
indication of the maximum expected length of execution. The relationship with
the actual execution time remains contentious: Cirne [23] has used it to derive
the job run time, Li [26] has found it strongly correlated with the actual runtimes,
but many other authors, including Medernach [27], Lee [116] and Tsafrir [158]
have found this information to be highly unreliable.

Queue Wait Time

Queue wait time, or the time that each job spends in the scheduler queue, is
an indication of the scheduler fairness and prioritisation policies. Medernach has
reported wide variation between wait times for different groups of Grid users [27],
but this metric has not been studied in greater detail.

Job Parallelism

The number of the nodes or processing units (CPUs) used by the job simultane­
ously and in parallel has been reported to have a strong preference for the power
of 2 values (2, 8, 16 etc.) [23, 24, 26]. Through direct interviews with the users,
Cirne has confirmed this to be due to behavioural inertia [23] as most legacy sys­
tems could only support power-of-2 parallelism. Job size has been modelled using
log-normal distribution [26, 23], but with limited success. Although intuitively
job execution time should be inversely proportional to the degree of parallelism,
opposite [24] or no correlation [26] has been found.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 57

Memory Usage

Overall, the memory utilisation was reported to be low and highly modal [26], a
factor attributed to the use of standard dynamic libraries. As dynamic properties
of memory allocation are lost due to the way data is collected, the value of this
metric is significantly reduced in the context of predictive scheduling despite its
strong correlation to the job runtime reported by Li [26].

Cancelled Jobs

Many workload traces contain a large proportion (up to 23%) of cancelled or
unsuccessful jobs [26, 23]. Cancellations are either due to the user actions, or
the failure of the job while setting up its working environment (missing files or
libraries, inadequate resources etc.). The cancellation rate has been modelled
using the log-normal [26, 23], hyper-exponential or Weibull distributions [26].

User Behaviour

Both Lublin [24] and Li [159] acknowledge the strong influence tha t the user’s
habits and behaviour patterns have on the characteristics of the workflow, but
do not investigate this further. These two authors also make passing remarks on
the evolution of the workload through time and propose tha t further studies of
this effect should be undertaken.

3.3.4 Summary

Many aspects of the planning, provisioning and management of computing sys­
tems are strongly influenced by the service demand that will be presented to
it, thus making the characterisation of such workload an extensively researched
area. The majority of these previous studies have used older traces collected from
parallel clusters in the 1990s which, due to some specific properties of the Grid,
are not very representative of the modern, highly dynamic, distributed clusters.

This section has provided the historical overview and the scope of the previous
workload characterisation studies. It has also outlined the studied metrics and the
reported findings on their properties. It also reiterates the im portant distinction
between the previous studies whose purpose was to capture the properties of
the workload that will enable the generation of similar, statistically valid usage
traces, and the one undertaken by this thesis which was aimed at supporting the
selection and the implementation of predictive algorithms.

3.4 Grid Monitoring Tools

The previous section has underlined the importance of the quality, timeliness,
and the accuracy of the Grid job and resource monitoring data in the workload

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 58

characterisation process. This section will briefly present the most often used
Grid monitoring tools and discuss their strengths and weaknesses. A quantitative
study of their performance can be found in [87].

Some of the issues identified in this survey have been addressed by the author
through an improved monitoring system presented in Appendix A.

3.4.1 Ganglia

Ganglia [160] is a hierarchical, distributed, monitoring system using XML for
data representation and round-robin fixed size databases* for storage. Ported to
a wide range of hardware and operating systems, and deployed on the production
clusters containing over two thousand nodes, it has proven to be a stable, robust
and scalable system with low overheads.

Ganglia monitors can track both dynamic (current CPU load, available mem­
ory) and static (machine architecture, OS version) host properties; custom met­
rics can also be added. The cluster nodes running Ganglia can either publish
their measurement data, collect data published by other nodes, or do both thus
creating a distributed da ta repository. Low overhead communication is imple­
mented through broadcast messages within the cluster, or unicast links between
the clusters. A convenient web-based visualisation package is also provided.

One of Ganglia’s prim ary strengths, the fixed sized databases, is also its main
weakness in the context of workload characterisation and job runtime predictions.
In the round robin databases, collected monitoring data is periodically consoli­
dated (using simple functions like average or min-max), leading to an irrevocable
loss of the high frequency detail and the alteration of statistical properties. A
method for solving these issues is proposed and implemented by the author in
Appendix A.

3.4.2 Relational Grid Monitoring Architecture

R-GMA [49] is a web service implementation of the GMA specification [161]
providing access to the monitoring information through a relational database
concept. GMA standard recognises that the performance monitoring information
differs from other forms of system or program-produced data: it has a short
lifetime, is frequently updated and is stochastic in nature [87].

GMA monitoring architecture consists of three components: data producers
publish their capabilities in the directory, and provide information directly to the
data consumers based on their subscription to the particular information feeds.
Such approach implies a separation of the m eta-data describing the monitored
metric and the stream of the actual measurement data. Relational GMA system
builds on this model by implementing the producer consumer communication
(and the directory functionality) through a relational database.

*see htt p:/ /oss.oet iker.ch/rrdtool/

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 59

Grid Monitoring Architecture provides a bare framework for which adequate
information providers and consumers need to be developed. Although the whole
Grid community would benefit from its wider adoption, few installations use
it. The EGEE project [29], R-GMA’s biggest proponent, and its monitoring
database may contain significant amount of data which could be of great use
in understanding the Grid applications and their statistical properties. As with
any other centralised approach, the registry and the database schema could be a
single point of failure, unless properly replicated.

3.4.3 Network W eather Service

The Network Weather Service (NWS) [22] is a resource monitoring and forecast­
ing system. Since its forecasting of resource performance levels and availability
was discussed in Section 3.2, the prim ary focus here is on its monitoring aspect.

The NWS system architecture [110, 21] is based on four separate components:
multiple distributed Sensors, Forecaster, Name Server and Persistent Storage.
Although NWS was primarily developed as a network latency and bandw idth
monitoring tool, its open interface allows for the addition of third party sensors.
A single instance of the Name Server and the Persistent Storage processes is run
in the cluster. The Name Server is the only well-known address used by the
system, allowing for both data and services to be distributed, but also creating
a single point of failure. D ata storage is implemented using circular data files.

Sensor implementation in the NWS uses an intrusive measurement approach
by running a compute intensive code, or transferring data across the network.
While this may reflect poorly on the system loading or network congestion, it
does provide the real measure of the performance as experienced by the applica­
tions. Network sensors are organised into hierarchical ‘‘cliques'’ performing mesh
measurements within these, and point to point measurements between different
cliques and hierarchical levels.

Circular storage methods used in NWS are similar to round-robin databases
used by the Ganglia Cluster Monitoring, but provide even less historical infor­
mation. From the workload characterisation point of view, data provided by
the NWS is of limited use. Today. NWS is much more known and used as a
bandwidth and CPU load forecasting tool, than as a straightforward monitoring
system.

3.4.4 Other Monitoring Systems

Several other monitoring systems are used in the Grid community, usually with
a more specific focus on one of the aspects of the system’s operation. Often,
large projects assemble toolkits of loosely coupled, best-of-breed components,
and distribute them as a part of their customised Grid middleware.

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 60

GridMon [162] is a UK e-Science project monitoring network performance be­
tween each of the regional e-Science nodes. GridMon confirms connectivity and
measures packet loss, round trip time and T C P/U D P throughput by using simple
scripts or sample data transfers. All measurements are done in a mesh between
each Grid node, which is generally intrusive and non-scalable. GridMon can pub­
lish its measurements using a Web based visualisation suite, LDAP service or an
OGSA compliant web service.

Condor Hawkeye [87] is a part of the Condor system (see Section 3.1.3) based on
the ClassAd [60, 50] messaging protocol. It configures the Condor pool m aster to
periodically run monitoring scripts and generate appropriate ClassAd messages.
Hawkeye leverages a large installed base of the Condor, and requires little ad­
ministration effort. However, due to the (in)frequency of the measurements, it is
more of a summary utilisation and problem reporting tool than a high resolution
resource utilisation monitor.

3.5 Grid Simulation Suites

Testing of novel Grid scheduling algorithms and approaches poses a significant
challenge: the importance of the hardware federated in the large production Grids
prevents running of an untested scheduler, but small Grid testbeds often do not
have all the dynamic properties and the diversity of a real system. In those cases,
the use of the Grid simulators and emulators is the only remaining option.

3.5.1 SimGrid

SimGrid [163] is an agent based scheduling simulator with support for the re­
alistic Grid topologies imported from the third-party topology generators. In
SimGrid. all low level compute and network resources can have variable back­
ground utilisation (supplied from the monitoring trace files), and be contended
for using different strategies (FIFO, FRFO *, fair share) [164]. Once the simula­
tion scenario and the hardware topology has been developed, different scheduling
techniques can easily be implemented and repeatable measurements made to as­
sess their merits.

SimGrid builds on the best approaches from more complex and specific simu­
lators, while maintaining the simplicity and good performance levels. Its use by a
number of research projects, and numerous publications of the SimGrid simulated
results have confirmed it to be scalable, configurable and extensible enough to
simulate a wide variety of scheduling problems [165]. Validation of the SimGrid
results remains a difficult question, especially in a relatively new setting tha t the

’'F irst R eady First O ut

CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 61

Grid is. The problem is alleviated to some extent by the fact tha t SimGrid is
based on the models previously accepted in the scheduling community.

3.5.2 GridSim

GridSim is primarily a scheduling economy simulator focused on supporting the
param etric applications studies [166]. It can model the geographical and the
social aspects of the Grid environment using variable background resource utili­
sation based on the time zones, busy hours, or days of the week. GridSim supports
the definition of the user’s deadline and budget constraints, but is severely lim­
ited by the need to specify both the resource performance and the application
computational costs explicitly (using MIPS*).

Although based on an already established simulation platform, GridSim is
not as methodological in simulating realistic network topologies, link congestion,
resource contention, and parallel applications as SimGrid. Poor documentation
further mars development of genuinely useful simulations. Despite this being a
general purpose Grid simulator, GridSim is targeted at the parametric research
applications and economy driven scheduling approach.

3.5.3 MicroGrid

MicroGrid [167] is an online emulator, providing a virtual Grid environment on
which real Grid middleware (such as the Globus Toolkit) and Grid applications
can be run. It relies on the operating system to provide virtualisation, and ex­
ternal applications (VINT/NSE) to simulate networking events. Computational
resources are characterised by a scaling factor to their real performance.

MicroGrid simulator has been validated by the authors in different testing
scenarios [168]. The virtual Grid approach is the most realistic one, and of
particular interest when the middleware behaviour to events such as node or
network failures is of interest. However, the need for global coordination of
resources in the virtual Grid enforces a ‘‘maximum feasible simulation rate" on
the whole environment. Although theoretically possible, large Grid simulations
with complex resource pools could be prohibitively time consuming to execute.

’'M illions o f In struction s Per Second

Chapter 4

Workload Characterisation

All models are wrong, bu t som e are useful

— G eo r g e E . P . B o x , P r o f e ss o r E m e r it u s

Having surveyed the previous research and related literature on the charac­
terisation of parallel and distributed workload, it became obvious that few have
covered computational grids. The key properties of this new kind of distributed
approach are substantially different and therefore warrant a thorough investiga­
tion. Workload characterisation reported in this chapter uses statistical analysis
to study the properties of the load presented to a Grid cluster, the patterns of user
behaviour, and the predictability of metrics of interest to the deadline scheduling.

The chapter opens by outlining the scope and the aims of the characterisation
study in Section 4.1 followed by a detailed discussion of the analysis methodology
given in Section 4.2. Sections 4.3 through 4.6 present the general workload char­
acteristics, its diversity and differentiation based on several meta and temporal
properties, correlations between the job execution time and other metrics, and
a study of the effects of temporal and sampling locality. The chapter concludes
with a summary of the observed behaviour and characteristics given in Section
4.7

4.1 Introduction, Scope and Motivation

As the primary use of our predictive scheduling methodology will be a general
use utility Grid cluster, a suitably representative workload trace was required.
Most of the early Grid installations were bespoke systems with the purpose
of running one, or very few, specialised applications. These systems are well
served by the specially focused predictive schedulers, discussed in Section 3.1.3,

62

CHAPTER 4. WORKLOAD CHARACTERISATION 63

as detailed profiling, instrumentalisation and customising is more practicable.
In a general purpose utility Grid, however, one can anticipate a wide variety
of applications with significantly varying requirements and statistical properties.
Characterisation of one such workload is here presented.

4.1.1 Goals

Unlike many similar workload studies [150, 154, 137, 136, 142, 144, 155, 153,
24] whose aim was the generation of new traces with realistic properties, the
primary motivation for this work was a deeper understanding of the workload
behaviour in order to develop a sound predictive model. In this respect, the
question which statistical model describes the workload best was second to the
understanding why it behaves in such a way, and what the effect of such behaviour
or statistical property will have on the workload predictability and the selection
of the forecasting method.

The analysis paid specific attention to the investigation of the following work­
load characteristics:

• Statistical properties which may influence the selection of the forecasting
methods or the analytical approach (autocorrelation, normality of the dis­
tribution, presence of long-tails, self similarity, etc.).

• Cyclic behaviour and seasonal variations which can help anticipate future
resource demand levels.

• Correlations between the different metrics and between the metrics and
the job m eta-data that can reduce data variability and increase prediction
accuracy.

• Evolution and longer-term changes in the workload which would require
dynamic tuning of the forecasting algorithm.

• Presence of anomalies, drastic or sudden changes in the workload behaviour,
their impact on the predictability and methods for handling them.

In-depth knowledge of the workload was essential in answering the two key
questions supporting the entire predictive approach of the thesis. Firstly, estab­
lish the possibility of using the job m eta-data to reduce the variability of the
observed execution times and thus increase the forecasting accuracy. Secondly,
by using the appropriate statistical analysis tools, assess the predictability of the
job execution times and indicate the candidate models or distributions suitable
for making forecasts.

CHAPTER 4. WORKLOAD CHARACTERISATION 64

4.1.2 The UCL Central Computing Cluster (CCC)

The characterisation was done on the data collected from the Central Computing
Cluster (CCC) of the University College London’s Research Computing facility.
The installation went live in September 2004, and with most deployment problems
solved by January 2005 the number of users grew quickly (see Table 4.3 on page
75). Table 4.1 gives more information on the installed hardware and software
environment.

Hardware Properties

Number of Nodes 100
CPUs per node 2
CPU Type AMD Athlon @ 1200Mhz
Memory per CPU 4096MB
Network Interface Switched Ethernet o lOOMBps

Software Properties

Operating System Linux 2.4
Grid middleware Sun Grid Engine 6.1

Table 4.1: The CCC hardware and software configuration

The user base at the facility was very varied and comprised research groups
from within the UCL and from academic and research institutions elsewhere in
Europe. The submitted workload presented a mix of research applications from
the high energy physics, biomedical, engineering, and other fields.

4.1.3 Data Acquisition

The fact that the CCC facility is in production use and servicing a large portion
of UCL’s research community meant that only reliable middleware and resource
efficient system monitoring tools could be used. Data analysed in this thesis
was obtained by parsing the Sun Grid Engine’s job accounting file [88] which
records an entry for each job executed on the Grid containing around 50 essential
job metrics. The benefit of this approach was that it is based on a passive
monitoring technique and requires no additional software to be installed. It is.
however, inflexible in the number of the job properties recorded and the way they
are collected.

The accounting file does not contain any auxiliary system data, and due
to administrative practices at the site, it would be very difficult to correlate
the workload features with the external events such as power failures, cluster
downtime, or system maintenance.

The job accounting data was parsed to produce a comma separated file con­
taining a single line for each submitted job. The fields collected are described in
Table 4.2.

CHAPTER 4. WORKLOAD CHARACTERISATION 65

Metric Description

JobJD Unique, serial integer number assigned to each
job by SGE. Non-continuous due to the jobs re­
moved from the queue before execution

Owner Anonimised, numerical integer identifier of the
UNIX username submitting the job

VO Anonimised, numerical integer identifier of the
Grid Virtual Organisation subm itting the job

Hostname Anonimised, numerical integer identifier of the
worker node executing the job

Job_Name Anonimised, numerical integer identifier of the
executable run or the shell script invoked

Sub_Time UNIX epoch time of the job submission
Start-Tim e UNIX epoch time of the job starting execution
End_Time UNIX epoch time of the job ending execution

WClock Wallclock, or real time, the job has been execut­
ing. Also equals End_Time - Start-Tim e

CPU CPU time used by the job, as reported by UNIX
/proc file system

Mem Total amount of memory allocated by the job. as
reported by the UNIX /proc file system

Table 4.2: The CCC accounting file fields and their description used in the
workload characterisation study

The characterisation also looks at another, derived, metric which is helpful
in understanding the workload. Wait time, the time spent by the job in the
scheduling queue, is calculated as the difference between the Start_Time and the
Sub_Time.

Although the Sun Grid Engine supports parallel environments, the properties
of the environment requested by the user were not recorded in the accounting
file. This meant that while it was possible to establish that about 19c of the jobs
requested multiple CPUs no further analysis of the effect of the parallelism on
their execution was possible.

The data analysis and plotting was primarily done using MathWorks M atlab
R14* with the Statistics Toolbox. Where non-standard, or custom built, M atlab
functions were used, appropriate references will be given.

4.2 Specific Methodology

The need to analyse the extensive sampled data, concisely report the findings
of the characterisation study, and formulate meaningful and statistically valid
hypotheses as the basis for further work on predicting the job execution times
required a substantial methodological preparation. This section will begin by

*see h ttp ://w vvw .n ia th w ork s.con i

http://wvvw.niathworks.coni

CHAPTER 4. WORKLOAD CHARACTERISATION 66

outlining the higher-level approach of the exploratory data analysis, and continue
with the presentation of the methods used for describing the value distributions
and measuring their location and dispersion. The notions of scale invariance
and self-similarity will be introduced and the tools used for establishing the
cyclic behaviour, correlation and temporal locality of the job properties will be
presented.

4.2.1 Exploratory Data Analysis

Exploratory data analysis (EDA) is an approach to data analysis, first suggested
by John Tukey in 1977 [169], that employes a variety of, mostly graphical, tech­
niques to maximise insight into a data set. uncover its underlying structure,
extract important variables, detect outliers and anomalies, and test underlying
assumptions [170]. The distinguishable feature of this method is tha t it post­
pones the usual assumptions about the model that can be used to fit the data,
thus allowing the data itself to reveal its underlying structure. EDA has estab­
lished itself more as a '‘philosophy” of how to dissect a data set. what to look
for, how to look and how to interpret the findings.

Exploratory data analysis techniques are graphical, with only a few numerical
methods. The reason is tha t by its very nature, the role of the EDA is to serve
as a tool for an open-minded exploration of the data. In combination with the
pattern-recognition humans possess, these graphical tools are the best way to
reveal new, often unexpected, insights into the data. Typically, EDA makes no
assumptions of the nature or properties of the data being analysed, but uses it as
a ‘‘window” for looking into the core process that has generated it and will most
likely continue to generate it in the future.

The ultimate goal of the exploratory data analysis is therefore to gain a real
insight into the properties of the data set and its underlying structure, while at
the same time providing all the specific items needed to properly handle the data.
These items include a good-fitting model, estimates of the model parameters, a
sense of the robustness and variability of the data, a list of factors influencing
the process and conclusions whether the influence of those factors is correlated
and statistically significant.

EDA has established itself through several seminal publications [171, 172]
as one of the major data mining and analysis approaches. However, it can be
misused leading to a systematic bias problem if the same data is used to suggest
and test the same hypotheses. Appendix B presents the author’s attem pt to
avoid such mistakes by undertaking a characterisation study of an additional
Grid workload.

The following will introduce the tools commonly used in the exploratory data
analysis such as the scatter and box plots, normal probability plots and other
EDA techniques.

CHAPTER 4. WORKLOAD CHARACTERISATION 67

4.2.2 Value Distribution

Based on the EDA principles, the statistical graphics will be used extensively
throughout this chapter. Their advantage is in the lack of any underlying assump­
tion about the sample statistics, ability to summarise a very large and diverse
data sets, and in assisting the process of model selection.

During the analysis of the CCC metrics which are highly skewed and dispersed
over a large range, the use of logarithmic transformation was necessary.

C om plem entary C um ulative Distribution Function

In studying the tail of a distribution, it is more convenient to plot the probability
with which a variable that is grater than or equal to some value appears. The
complementary cumulative distribution function (CCDF) plot, defined in the
following equation, plots the probability Dcomp(x) of observing values greater
that x.

D camp(x) = P (X > X) = 1 - D{X) (4.1)

When plotted in log-log axis, the linearity of the complementary CDF plot
indicates the presence of a long-tail behaviour. A sample plot of a Gamma,
Weibull and Pareto probability distributions is given in Figure 4.1. Clearly, the
only linear function is the Pareto one, confirming the presence of a long-tail.

4.2.3 Measures of Location and Dispersion

One of the first tasks in describing a sample population is to measure its central
tendency (or location on the number line), and estimate its dispersion (or how
spread the values are on the number line). Even if measurements of a process
with well defined statistical sample distributions are taken, some outlier data

Complementary CDF plot
10°

H 10-S
Al
t io-<
1
a> io-

io~8
’io-10

io-12
10-14
10-w i

10°

Pareto C-CDF
Weibull C-CDF
Gamma C-CDF

101 102 103 10 ̂ 10s 10®
Sample Data

Figure 4.1: Sample complementary cumulative distribution plot (CCDF) of a
Gamma, Weibull and Pareto distributions. The linearity of the plot indicates
strong long-tail behaviour.

CHAPTER 4. WORKLOAD CHARACTERISATION 68

values are likely to occur. In the case of an empirical data set produced by sam­
pling a process that has not been fully understood or statistically characterised,
establishing its location and dispersion becomes challenging.

Intuitively, one would expect metrics collected from the CCC to have a very
wide distribution of values. Reporting common single value statistics of those
distributions is unlikely to offer much insight, could possibly confuse the reader,
or misrepresent the real features of the data, but may still need to be reported
for comparison purposes with other historical usage trace's.

Mean and Standard Deviation

Both the mean and the standard deviation are susceptible' to. anel highly infiu-
ene'eel by outlier values. They are most useful when eernsielering sample's with a
normal probability elistributiern. or erne that can be' approximates! by it.

Median, Inter-quartile Mean and Inter-quartile Range

For a probability function P. a median m satisfies the ferllowing ineepiality:

P { X < m) > 1/2 < P { X > m) (4.2)

Medians will not change significantly in a presence of a small number of
outliers, thus making it a more robust measure of the central tendency than
the mean. Medians are primarily useei for skeweel elistributions. as some of the
workload elistributions are anticipates:! to be.

To hanelle a large number of outliers, an inter-quartile me'aii can Ire taken
by discareling the loweest 25(/c and the highest 25c/c erf values anel calculating the'
mean erf the remaining samples accoreling ter the following equation:

2
L ' i q m = - -1' 1

i ' . n i - i

When the median is useei to report on the location of the eiistribution. the'
inter-ejuartile range is often useei to elescribe its dispersion. It is calculates! as a
elifference betwe'en the tliirel anel the first cpiartiles erf a elistributicrn. anel is robust
to outliers.

rIQR = Q;i - Q\ (4-4)

As an aiel in visualising the evntral temdenew and the' elispersion of a sample
populatiem de'scribe'el using the mc'dian value1 anel the' inter-epiartile' range1, box-
plots similar to the1 erne1 shown in Figure1 4.2 will e'xte'iisive'ly be use'd. Introelue'C'el
in the1 1980s by .Trim Tukew [169]. tliew graphie'ally ele'piet the1 robust measure's
of variance1 (the berx top anel berttemi exlge's re'irre'se'iit the upper anel lerwer ejiiar-
tilc1). anel lere'ation (the1 reel line in each lre)x is the me'elian value erf the1 sample).

CHAPTER 4. WORKLOAD CHARACTERISATION 69

Box plot of three different sample distributions

+
100 +

+

80

1

A

20

Norm : 10,5 Norm : 30,10 Exp : 10

Figure 4.2: A sample Boxplot showing the central tendency (location) using
median and dispersion using upper and lower quartiles and outlier values of an
exponential and two normal distributions.

Sample values which are more than one and a half times the inter-quartile range
away from the top or the bottom quartile are, by agreed notation, considered
as outliers. The boxplot “whiskers” connect the highest and the lowest non­
outlier values, while the red crosses are shown for each such outlier in the sample
population. This definition of the outlier values applies throughout this thesis.

The sample graph shown in Figure 4.2 plots a boxplot for: (a) normal distri­
bution with n = 10, cr = 5 (b) normal distribution with \± = 30 and a = 10 and
(c) an exponential distribution with e = 10.

Coefficient of Variation

Defined as a ratio of the standard deviation and the mean, the coefficient of
variation (CV) is used as a measure of the dispersion of a probability distribution:

Distributions with CV< 1 are considered of low variance, while those with
CV> 1 are considered of high variance. The coefficient of variation is mostly
frequently calculated for the distributions whose standard deviations are sig­
nificantly smaller then the mean. The violation of this assumption for many
empirical distributions, and the CV’s sensitivity to the changes in the standard
deviation when the mean value is close to zero limits its usefulness. Nevertheless,
it will be reported to facilitate comparison with other workload characterisation
studies that have made extensive use of this metric [26, 173, 28].

4.2.4 Cyclic Behaviour

The existence of seasonal variations or cyclic behaviour is an important consider­
ation in the time series analysis. The presence of such features indicates that the
underlying process is not purely random, that certain correlation exists between

(4.5)

CHAPTER 4. WORKLOAD CHARACTERISATION 70

the time domain and the metric being analysed, and that the predictability of
that metric would be increased if the relationship could be established.

The cyclic behavior in the computational workload was considered before, and
was most notably modelled using Markov chains, for example by Song [155] and
Thomas [156]. However, these studies were done on the traces of smaller, more
dedicated and more specialised compute platforms. It would be of great interest
to confirm such cyclic patterns exist on a large scale, multi-purpose production

The analysis of cyclic behaviour was considered with respect to variations of
the observed metrics on the yearly, monthly, weekly and daily level. These sea­
sonal periods were selected based on the assumption that the underlying workload
is human submitted, research computing work. Graphical representation of the
result was used throughout to aid in visualising the presence (or lack) of the cyclic
patterns.

4.2.5 Scale Invariance and Self-similarity

Self-similarity, and the closely related concept of scale invariance1, are properties
of an object, function or a curve whose parts are similar to its whole. In other
words, a self-similar curve or function looks "the same" when viewed at different
scale's. Mandelbrot, with his early work on fractals [174]. introduced the notion
of self-similarity which was later found in other processes, most notably local and
wide area network traffic [148. 145]. and the distribution of computer file size's
[141. 142. 144],

The concept of self-similarity is closely relatexl to the long-range1 depemdence1
and the power law relationships. A random variable X is said to have a heavy­
tailed distribution if it satisfies the following eepiation [175]:

for some C > 0 and some o £ (0.2).
The time serie's {ATi. AT.. . . } is said te) be weakly-stationary if it has a constant

and finite mevm (E [Xj] = // for all i. where E mevms e'xpe'ctation) and the
covariance between A”,- and Xj (ie E [(A”,- — //)(Aj — //)]) depends only on |j — /j.
For such time serie's. the autoc'orrelation function (ACF) p(k) is given by:

This definition allenvs the ek'finition of Ion y-ran ye dependence [176] if the sum:

Grid.

P [X > .v] ~ C.r (4.6)

(4 .8)

dive'rgc's.

CHAPTER 4. WORKLOAD CHARACTERISATION 71

The commonly used measure of long-range dependency and self-similarity
is the Hurst parameter, which makes the assumption that the autocorrelation
function follows the following, specific functional form:

where Cp > 0 and o G (0.1) and H G (0.1) is the Hurst parameter.
For H > 1/2 the process is considered self-similar with higher H value's

indicating stronger level of long-range dependence'. Further discussion on the'
c’oiinections betwe'en the self-similar and long-range' eFpenelent proe'ess e-an be'
femnel in [177].

Due te> its nature, the Hurst parameter is e'stimate'el. rather than calemlate'el.
using me'thexls sue4i as re'scale'el range (R/S) [178. 179. 175]. variaiwe' analysis
[175. 180] e>r wavelet spe'ctral elensity approae'h [181. 182].

Using the re'scale'el range methoel [183]. the Hurst parame'ter of an e'in])irical
series is estimateel by calculating the average re'scale'el range' ewer multiple re'gions
of the elata. For each re'gion. the rescaleel range is give'ii by:

A line'ar regre'ssion line thre)ugh a set of pe)ints. e'ennpeise'el of log(n). where n
is the size of the areas em which the average re'scale'el range is calculate'el. anel the
log of the average rescale'el range over a set e)f re'giems eif size' //. is e'alculate'el. The'
sle>pe of the regre'ssion line is the c'stimate e)f the1 Hurst e'xponent [174],

Figure 4.3 slienvs a sample plot estimating the self-similarity of sample's elrawn
from a normal elistributiem using a re'scak'd range methoel. The re'gre'ssiem line is
of ge)oel fit. whose slope estimates the Hurst parameter at H = 0.27 which rightly
sugge'st that this is ne)t a self-similar anel long-range ele'pe'iiele'iit peculation.

When elevek>ping a])re'elictive system to which a time serie's will be pre'semteel
as an input, the e'ffeets e)f lemg-range elepenelenew anel se'lf-similarity must be'
takem inte) accemnt. The fact that the system will appear bursty ne> matte'r liewv
aggre'gate'el it is reejuire's a reibust ck'sign that will not simply igneire' or filte'r eiut
the "spike's", but treat tlie'in as an intrinsie1 part of the' proee'ss.

4.2.6 Metric Dependency and Correlations

The' stre'iigth anel eiirertion of the line'ar relationship be'twe'em two ranelom vari­
able's is indicate'el by the'ir exirrelation e'oeffie-ient. It is genc'rally ae‘e‘epte'el that

P(k) ~ c pk~a = c pk 2~'2" (4.9)

i?(r) — niax[.Y(f. r)j — min[Ar(/. r)] for 1 < t > r (4.10)

(4.11)

(4.12)

CHAPTER 4. WORKLOAD CHARACTERISATION 72

Hurst estimation for norinaly distributed sample data
0.6

0.4

0.2

% °
J-0.2

-0.4

- 0.6

- 0.8

Figure 4.3: Sample plot of rescaled range (R/S) analysis used to estimate the self­
similarity of samples and the Hurst parameter value. The normal distribution
has the Hurst value of less than 0.50 an hence does not exhibit self-similarity.

correlation refers to the departure of the two variables from independence, and
is commonly expressed in terms of their covariance:

(4.13)

(4.14)

where crxy is the covariance between the variables X and Y :

cov(X,Y)
p x y = -------------

o x o y
(7XY

GxOY

y = 0.27 *x — 0.7S

1.50 0.5 1 2.5 3 3.5
k>gio(")

cjx y = E[{X - n x) (Y - iiY)\ (4.15)

= E { X Y) - fixPY (4.16)

and E is the expected value of the variable.
The correlation coefficient effectively scales the covariance by the standard

deviation of each variable, and is thus a dimensionless quantity that describes
the linear relationship between a pair of variables of different units. Crucially,
the parametric correlation methods, such as the often used Pearson’s product-
moment coefficient [125], rely on the distribution means and standard deviations
and the assumption of the normality of the sample distribution, and are less
useful if such assumptions are violated.

Non-parainteric correlation coefficients, such as the Spearman’s p and
Kendall’s r [125], assesses how well an arbitrary monotonic function could de­
scribe the relationship between two variables, without making any assumptions
about the frequency distribution of the variables. Spearman’s rank correlation
coefficient will be reported for applicable workload metric correlations, and is
defined by the following equation:

CHAPTER 4. WORKLOAD CHARACTERISATION 73

„ = (4-i7)n(n- - 1)

where e/, is the difference between each rank of corresponding values of the two
variable's, and n is the number of pairs of values.

Random variables can often have non-linear correlations, such as in seasonal
variation patterns or daily peak periods. The correlation coefficient is unable
to detect these relationships, and a more general approach using correlation
ratios is then warranted. This method is able to detect almost any functional
dependency between random variables by comparing the statistical dispersion
within individual categories to the dispersion across the whole sample population.
If a reduction in dispersion is observed, the variables are correlated [184].

This approach will be used extensively in establishing the relationship between
the job meta-data and its wallelock execution time. Sample dispersion metric
(usually coefficient of variation) for jobs grouped by certain m eta-data will be
compared to the overall trace dispersion and reported using bar charts.

4.2.7 Locality of Sampling

The purpose of the majority of research work in the area of the Grid workload
characterisation was that of generative modeling - trying to model the workload
so that new. representative, workloads can be generated for Grid middleware
testing. The traces used were of varying lengths, from a few days to several
months. These periods arc' not sufficient to capture' the high degree' of workload
variability both within a certain time period, anel betwc'en different periods of
time.

Corrc'spondingly. the effect of large variations in the Grid workload obse'rvc'd
over longer time scale's was mostly ne'glecte'd by the prewious re'search in the' this
area. While this may be acceptable in terms of the generative trace modelling,
from the aspect of the predictive scheduling, high variance of the job c'xc'cution
time anel other relewant metrics pose's a big challenge.

In this thesis, a novel approach in reducing this variance will be considered.
By using a specially constructed plot, the variability of the1 im portant metrics
will be compared on a sampling scale considerably smaller than the whole trace.
The rationale behind this is that the workload is evolving in epochs characterised
by larger variance between them and a more' deterministic behaviour within each
one.

An example of the plots used to study this trace feature' is shown in Figure'
4.4. It represents value's (given by the colour intensity of each patch) of ton
periodic1 observations (,r axis) of ton sample variable's (y axis). By reading the1
plot column by column (keeping ,r value' constant and observing the1 difference'
along the y axis), the intra-period variations between the variable' value's can
easily be seen. Equally clear arc' the variations of one variable' between different

CHAPTER 4. WORKLOAD CHARACTERISATION 74

Temporal variation plot

25

20

15

10

3 4 5 6 7 1
Time (Sampling Instant)

9 10

Figure 4.4: An example of a temporal variance plot showing the sample value
fluctuation, shown as colour intensity, over short and long time scale.

time periods observed by reading the plot row by row (keeping y value constant
and observing the difference along the x axis).

Characterising the CCC workload, the variance was so large it was often nec­
essary to colour the patches by using the natural logarithm of the observed value.
Nevertheless, these plots are very valuable in understanding the level of fluctu­
ations both within and between workload epochs, and one of the motivations
for including the temporal job properties into the forecasting models detailed in
Chapter 5.

4.3 General Workload Properties

The workload analysis was done on the trace spanning the twelve months of 2005
and compromising more than six hundred thousand jobs. During this period, a
total of 37 users were active, and have submitted a varied and highly dynamic
workload.

Considering the length of the workload trace, large number of data points,
and the complexity and interdependency of metrics, the analysis will begin by
introducing general properties of the workload. The purpose of this section is to:

• Present the important workload metrics using the run-sequence and cumu­
lative distribution function plots.

• Investigate the presence of cyclic behaviour.

• Establish the statistical properties of the metrics, including normality, long-
tailedness and self-similarity

Four primary metrics will be discussed: the arrival rate and the inter-arrival
time, queue time, wallclock execution time, and memory utilisation. For each, a

CHAPTER 4. WORKLOAD CHARACTERISATION 75

run-sequence plot will give an overall picture while the CDF graph will show the
distribution of the observed values and indicate candidate model distributions.
Probability plots will test the normality of the value distribution and the com­
plementary CDF plots will assess the length of the distribution tail and its fit to
one of the frequently used distributions. Finally, a rescaled range analysis will
be used to estimate the Hurst param eter and the degree of self-similarity of the
data.

4.3.1 Workload Summary

The summary of the CCC trace is given in Table 4.3.

First job time
Last job time
Number of days
Number of recorded jobs
Number of valid jobs
Unique users
Unique Virtual Organisations
Unique job names
Total job wallclock time
Total job CPU time
Mean Cluster Utilisation
Mean Application Efficiency
Deleted (missing jobs)
Failed (0 sec) jobs

Table 4.3: The summary of

01.01.2005 13:45
20.12.2005 12:28

353
646,045
632.027

37
27

2.268
2.721.157.784s (31,495 days)
2.212,915,331s (25,612 days)

89%
81%

5,792
15.625

CCC workload analysed

The quality of the accounting file was acceptable, with about 2% of invalid
entries (missing or corrupted fields). By comparing the range of unique Job_IDs
and the total number of recorded jobs, it was found that less than 1%> are missing.
The cause of this could be the removal of jobs from the queue before they were
executed, or some other systematical problem with the accounting system.

Another 2.5% of the jobs have executed for less than one second, the sampling
accuracy of the accounting file. While it is possible that these jobs were meant
to run for such short time, it is not likely that the users would submit such short
jobs to a Grid facility. They are therefore considered as failed, most probably due
to an error in the initial setup of the executable environment. This failure rate is
considerably less than previously reported by Cirne [23] or Li [26] for example.

Overall cluster utilisation during the period in question was 89% , calculated
as a ratio of the real time and the total used wallclock time multiplied by the
number of worker nodes, was higher then anticipated or previously observed on
other Grid clusters [23, 26]. Mean application efficiency, the ratio between the
wallclock time and the CPU time the job has used, was also very high indicating

CHAPTER 4. WORKLOAD CHARACTERISATION 76

Jo t) in ter-iirriv .il t im e s (ru n seq u e n ce)
Jot) in te r-a rr iv a l tim e s (C D F)

tot) In te ra r r iv a l T in a

3 4

J o b ID [1(1

(a) Run sequence plot (b) D istr ib u tion fun ction

Figure 4.5: Job inter-arrival times: (a) run sequence plot and (b) distribution
function showing 75% of job inter-arrival times are less than one second.

that the applications submitted to the CCC were highly optimised, and tha t the
workload was predominately compute bound.

4.3.2 Arrival Process

The job inter-arrival time is defined as a difference between the submission times
(Sub_Time) of two consecutive jobs. Since these times are recorded as UNIX
epoch times, the resolution of the measurement is one second. Figure 4.5 shows
the run-sequence plot of the job inter-arrival times for the whole year, and dis­
tribution of values in a CDF plot.

The arrival pattern is clearly very bursty: more than 75% of jobs arrive less
than one second apart, and less than 1% of jobs arrive more than three minutes
apart. Considering that the cluster was open for job submissions continuously,
it is not unreasonable to expect a steady stream of jobs arriving throughout the
year. The dynamics of this process will be discussed in more detail in Section
4.6.

The implication of this arrival pattern on the scheduling process is that the
jobs are very likely to be submitted in large batches, followed by a “quiet” period.
As it will be shown later, the peak and off-peak submission periods can, to a great
extent, be forecasted and scheduling actions taken to brace for the high volumes
of job submissions.

A normal probability plot was constructed in order to test the normality of
the job inter-arrival distribution. Figure 4.6(a) shows a significant skew towards
smaller values of the inter-arrival times. This plot is clearly non-linear, and the
assumption of normality cannot be made. The second plot, Figure 4.6(b), shows
the normality of logarithmically transformed job inter-arrival times. Apart from
the highly probable values between zero and three seconds, the remainder of the

CHAPTER 4. WORKLOAD CHARACTERISATION 77

J o b in te r-a rr iv a l tim es (p ro b a b il ity p lo t) ,]0 b in te r-a rr iv a l tim e s (p ro b a b il ity p lo t)

T

0.999 0.999

5 0.99 3 0.99

0.90
0.75

0.50

0.25
0.10

0.90
0.75

0.01 0.01
0.001 0.001

.5 3 3.5 4 4.50.5 1.50 1 10 ' 1 0 '10*
•lub in te r- iirr iv a l tim e s |s • l(V'i

Id"

(a) Linear scale (b) L ogarithm ic sca le

Figure 4.6: Job inter-arrival times: normal probability plots in (a) linear and (b)
logarithmic scale. Apart from the evident skew between 0 and 3 seconds, the
plots indicate inter-arrival times are otherwise log-normal.

plot shows very good linearity. The job inter-arrival times are thus log-normal
for values greater than 3 seconds.

The cyclic behaviour of the total number of submitted jobs is plotted in
Figure 4.7. The observable daily cycle is representative of the usual human work
flow: job submissions increase at the beginning of the day (8am) then dip slightly
around lunch hour (1pm), followed by another strong peak at the end of the work
day (6pm to 8pm), and a steady fall off during the evening and night hours. Such
fluctuation indicates a user tendency to submit jobs as they arrive to work and
just before they leave, anticipating their execution overnight. A sharp rise in job
submissions between Sam and 10am, and a more gradual fall-off in late evening
and night hours can indicate different work practices among users (some people
prefer to work until late, but most come in until 10am).

The weekly pattern shows almost anecdotal features with a steady rise in
job submissions from Monday to Wednesday followed by a decrease until Friday.
Both weekend days show a significant number of job submissions, with Satur­
days comparable with Fridays and Sundays with Mondays. Here, users may be
unintentionally load balancing the system, anticipating better turnaround times
for the jobs submitted in what they perceive as the off-peak periods. The week­
end submission count is certainly further increased by the ability to log into the
CCC facility remotely, although this could not be fully established from the data
collected.

The monthly cycle seems to be dominated by the weekly pattern with a
strong peak at around the middle of the month. Fluctuations between different
months of the year 2005. and a sudden jum p of job submission in August are
most probably influenced by the research timetables of the CCC users.

The shape of the tail of the inter-arrival times distribution, and its fit to

CHAPTER 4. WORKLOAD CHARACTERISATION 78

C oun t o f jo b s s u b m it te d p e r m o n th o f th e y ea r
C o u n t o f jo b s s u b m it te d p e r d ay o f th e m o n th

(a) Yearly

C o u n t o f jo b s su b m itte d p e r d a y of tlie w eek

m iMon Tut W'nl Thu f ' r i Sat Sun
D avs o f th e w eek

(c) W eekly

.5

1

.Jan b' th M a r Apr M a t j J u n Ju l A n y St p 0<i X o r Dt <•
M onth o f th e y e a r [2005]

(b) M onth ly

C o u n t o f jo b s s u b m it te d p e r h o u r o f th e d ay

8 12 10 20
H o u r o f th e d a v 01 - 24

(d) D a ily

Figure 4.7: Job submission: the number of jobs subm itted in each time period
within 2005 - (a) yearly cycle is not representative as only one year's data has
been collected, (b) monthly cycle shows tendency to submit more jobs toward
the end of the month, (c) weekly cycle shows mid-week surge and weekend dip.
while (d) daily cycle shows strong human working patter with 8am-8pm peak.

some commonly used distributions is given in Figure 4.8. Shown are the inter­
arrival times greater than 3 seconds (approx. 7% of all values). The Pareto
distribution gives the best fit to the empirical data which contains few very large
values (largest one 534511 or more than 6 days). These extreme values are most
probably caused by a failure of the external network connectivity or the cluster
downtime, but are nevertheless a reality in a production environment.

Rescaled range analysis of the job inter-arrival times is shown in Figure 4.9.
The plot shows good linearity, with the Hurst exponents estimated at H = 0.85.
This high level of self-similar behaviour indicated that the arrival process is bursty
on all time scales. Certainly one of the main reasons for such behaviour is the
on/off pattern of the job submissions, and a very skewed, long-tailed distribution
of the job inter-arrival times.

59

CHAPTER 4. WORKLOAD CHARACTERISATION 79

Job inter-arrival time: Empirical and Fitted CDF Job inter-arrival time: Empirical and Fitted C-CDF
10°

0.9

0.8

J 05o
•S . 0.4

10“ '

.10-

Empirical C-CDF
Pareto C-CDF
VVeibull C-CDF
Gamma C-CDF

—— Empirical CDF
 Pareto CDF

Weibull CDF
Gamma CDF

10°106 102 103 10-'
Job inter-arrival time [s]

10°
Job inter-arrival time [s]

(a) C D F (b) C om plem entary C D F

Figure 4.8: Job inter-arrival times > 3 seconds: CDF and complementary CDF
are used to judge the presence of long-tail behaviour and estimate the best fitting
model. Pareto function describes the empirical data well over more than five
orders of magnitude.

4.3.3 Queue Wait Time

Queue wait time is the delay the job experiences from its submission into the
Grid to the actual start of the execution on one of the worker nodes. Assuming
sequential jobs which are being executed in a FIFO order, the job queue time is
the sum of the wallclock execution times of all jobs preceding it in the queue. Job
queue wait times are hence directly related to the job submission process and the
job execution times.

The plot in Figure 4.10 shows the queue wait times for each job submitted to
the CCC cluster, and the corresponding cumulative distribution function. The
values have been derived from the trace by subtracting the recorded job start
time (Start_Time) from the job submission time (Sub.Time). The resolution of
the measurements is one second.

Job inter-arrival times (self-similarity)

y = 0.85 * x - 1.3
2.5

p

0.5

2.5 4.5

Figure 4.9: Job inter-arrival times: Hurst parameter, as the measure of self­
similarity, was estimated using rescaled range (R/S) method to H = 0.85.

CHAPTER 4. WORKLOAD CHARACTERISATION 80

J o b q u e u e w ait t im e (r u n seq u e n ce)
J o b q u e u e w ait t im e (C D F)

3 4

J o b ID (HDi

(a) Run sequence plot

0.9

v
0.7

A 0.G
3 0.5
3

0.4

0.3

0.2
0.

10° 1 0 ' 10"

Jo l) q u e u e w ait t im e [sj

(b) D istr ib u tio n fun ction

Figure 4.10: Job queueing times: (a) run sequence plot and (b) distribution
function revealing that 45% of submitted jobs execute immediately and without
any queueing delay.

Despite the high level of overall cluster utilisation, the measurements indicate
that approximately 45% of the jobs have been started as soon as they were
submitted (queue wait time of less than one second), and approximately 95%
have begun executing less than 12 hours from the submission. However, some
very long queue wait times have been observed, and can not be attributed to the
scheduled system down time, as queues have been purged in advance of these
events.

The normality of the job queue wait times is significantly influenced by the
already mentioned high proportion of jobs starting their execution immediately.
The probability plot, shown in Figure 4.11(a), exhibits very poor linearity up to
the queueing time of 2 • 105. and only moderate linear behaviour afterwards. The

J o b q u eu e w ait tim e (p ro b a b ility p lo t) J 0 1> q u e u e w ait t im e (p ro b a b il ity p lo t)

I

0.999 0.999

.1 0.99

0.90
0.75

0.90
0.75

0.50,
0.25

0.10

I (l()1
0.001

- 0.01
0.001

0 0.2 0.4 0.C 0.8 1.2 1.4 l.G 1.8 10"r 10:1 101
Q u e u e w ait tim e s jsj

1 0 ' 10:10l 10 -

(a) Linear (b) L ogarithm ic

Figure 4.11: Job queueing times: normal probability plots in (a) linear and (b)
logarithmic scale. Poor linearity in both plots indicates queuing times distribu­
tion could not be considered neither normal nor log-normal.

CHAPTER 4. WORKLOAD CHARACTERISATION 81

5

M oan jo b ([none w a it t im e p o r su b m iss io n m o n th

8

7

6

3

1

M oan jo b qu o u e w ait tim o p o r su b m iss io n d a y o f m o n th

J a n h ' c h M a r A p r M a y J m i J u l A u y S<p O t i N o r D t <

M o n th o n th o w ;i r ('200b]

(a) Yearly

M oan jo l) quono w ait tim o p o r su b m issio n d ay

M o i l T u t W i t l T h u F r i S a t S u n

D ays o f th o wook

(c) W eekly

5 10 15 20

D ays o f th o m o n th [1 - 31]

(b) M onth ly

M oan jo b quono w ait tim o p o r su b m iss io n h o u r

I
H o u r o f th o d a y [01 - 24]

(d) D aily

Figure 4.12: Job queueing times: the average amount of time a job has queued
based on its submission time on (a) yearly, (b) monthly, (c) weekly and (d) daily
level. The plots reveal positive correlation between job submission process and
queueing time.

queueing times are not log-normal either, as demonstrated by the plot in Figure
4.11(b).

Figure 4.12 shows the variation of queue wait times a job experiences depend­
ing 011 the time of its submission. Again, the daily cycle is strongly influenced
by the user work habits, and directly complements the job submission count cy­
cle plot given previously (Figure 4.7). Jobs submitted at morning and evening
peak hours experience significantly longer queuing times then those subm itted
at other times of the day. Interestingly, jobs submitted at lunch hour have the
shortest waiting time, despite being preceded by a large number of morning job
submissions.

The weekly cycle may seem at odds with the job submission cycle, since the
day with the most job submissions (Wednesday) has one of the lowest queue
wait times, while Sunday has the largest. However, the job queue wait time is
dependant on the number of jobs already queueing and the sum of their execution

CHAPTER 4. WORKLOAD CHARACTERISATION 82

Job queue wait times: Empirical and Fitted CDF Job queue wait times: Empirical and Fitted C-CDF
10°

0.9H
VI

§ 10-4
0.7

9 0.6I
0.5 ■o

\ 0.4

0.3
•3 Empirical CDF

— - Pareto CDF
- Weibull CDF

Gamma CDF

 Empirical C-CDF
 Pareto C-CDF

- Weibull C-CDF
Gamma C-CDF

•g 0.2Ou
0.1

106105
Job queue wait time [s] >]Job queue wait time [s]

(a) C D F (b) C om plem entary C D F

Figure 4.13: Job queuing times > 1000 seconds: CDF and complementary CDF
are used to judge the presence of long-tail behaviour and estimate the best fitting
model. Pareto function provides the best fit to the empirical data.

time which produce a lag between the peak of job submission and the peak of
queueing times.

This effect is clearly seen in the yearly plot, where a large number of jobs
submitted in January and August (shown in Figure 4.7) lead to a gradual increase
in the queue wait times up to two months later. The monthly plot of the queue
wait time cycle is again of little value, its features dominated by the weekly cycle
and showing no other clear seasonal effects.

Plots of the tail of the queue wait time distribution are given in Figure 4.13.
For the queue wait time values greater than 1000 seconds, the Pareto distribution
provides the closest fit, and the linearity of the complementary CDF of empirical
distribution indicates the presence of the long-tails.

The rescaled range method for estimating the self-similarity of the job queue
wait time, Figure 4.14, estimates the Hurst exponent value at 1. This is the high­
est theoretically possible value, and while the method is not an exact calculation,
it certainly indicates an extremely mean-averting and self-similar process. But
since the job queue wait times are a function of the arrival process and the job
wallclock execution times, both of which are heavily self-similar themselves, such
result is not unexpected.

4.3.4 Wallclock Execution Time

From the scheduling aspect, the wallclock execution time is the most im portant
metric, and one from which queue wait time and the job makespan* can be
calculated.

*Tim e taken from th e job su bm ission to th e job com pletion , usually equals queue w ait tim e
plus th e job wallclock execu tion tim e

CHAPTER 4. WORKLOAD CHARACTERISATION 83

Job queue wait time (self-similarity)

2.5

0.5

-0.5
2.5 4.5

Figure 4.14: Job queueing times: The Hurst parameter, as the measure of self­
similarity, was estimated using rescaled range (R/S) method to H = 1. This
highest theoretically possible value indicates a very strongly self-similar process
due to its dependence of job arrivals and runtimes, both of which are strongly
self-similar.

The run-sequence plot of the job wallclock execution times, and their cumula­
tive distribution function are given in Figure 4.15. The run-sequence plot reveals
a very large range of job execution times, from one second to more than three
months, periods of relatively low activity and periods of high execution time vari­
ability. The features of the CDF plot indicate a low occurrence of jobs taking
less than 25 seconds (around 0.07%), and an equally low number of jobs taking
more than about a day to run (approximately 1% of jobs run for more than 105
seconds).

Such a distribution of the job execution times is likely caused by the user’s
selection of the jobs they are to submit to the Grid facility. As submitting each

Job wallclock execution time (run sequence)

Job ID

Job wallclock execution time (CDF)

(a) Run sequence plot

0.9
H
Vl 0.8

I 0.7

j f 0.6

I 0.5 o
0 0.4
>>
3 03
1 02
CL.

0.1

102 103 104
Job wallclock execution time [s]

(b) D istr ibution function

Figure 4.15: Job wallclock execution times: (a) run sequence plot and (b) distri­
bution function demonstrating that apart from a small number of very short or
very long jobs, each runtime is as likely as any other.

CHAPTER 4. WORKLOAD CHARACTERISATION 84

Jo b w allc lock e x e cu tio n tim e (p ro b a b il ity p lo t) J o b w allc lock e x e cu tio n t im e (p ro b a b il ity p lo t)

T

0.999

.2 0-99

0.999

3 0.99

0.90 0.90
0.75

0.50

0.95

0.50

0.95
0.10

0.01

9 3 4 5 0

•lob witllclock ex e cu tio n tim e s |.s ■ 10'

10 s 10" 1 0 ' 10(i

(a) Linear scale (b) L ogarithm ic sca le

Figure 4.16: Job wallclock execution times: normal probability plots in (a) linear
and (b) logarithmic scale. The latter demonstrates good linearity with significant
departure only at the low end supporting the suggested log-normality of job
runtimes.

job to the CCC presents an administrative overhead to the user, they are likely to
choose to run shorter jobs on their local workstations. Equally, as most users are
to some extent aware of the performance of their applications, and the hardware
on which it will be run on the CCC, they are unlikely to submit regular jobs which
will take an amount of time much larger then what a normal human workflow
would consider acceptable (for example a day or a weekend). Understandably, in
some circumstances users would have no other options and would rather wait a
very long time for a job to complete then not to run it at all.

The remainder of the execution times form a continuous distribution with no
steps or observable modes, indicating that every execution time from 2 • 101 to
104 is almost as likely to occur as any other from the same range. The Grid
resource management and scheduling systems should be developed in accordance
with such expected load, avoiding the assumption of any ‘‘preferred1* values of
the job execution times.

The normal probability plot of job wallclock execution times is shown in
Figure 4.16. The normality can certainly be assumed on the linear scale of values,
as very strong skew exists towards smaller values. However, logarithmically
transformed values do show a very strong linear tendency throughout the whole
range, with some significant departures only at the very short running jobs. This
property of job execution times has been noted by other researcher analysing
distributed machine traces [147, 25, 185], and can now be confirmed in the case
of a multi-purpose production Grid as well.

Figure 4.17 shows the cyclic variation of the mean job wrallcloek execution
times according to the time of their submission. Again, the daily variation shows
strong peaks at the beginning, middle and the end of the work day. The most

CHAPTER 4. WORKLOAD CHARACTERISATION 85

M ean jo b w allc lock t im e p e r su b m iss io n m o u th
M ean jo b w allc lock t im e p e r su b m iss io n d a y o f m o n th

I ■III
J a n b e b M a r A p r M u g J un J ttl A u g S e p O d A o v D e v

M o n th on th e ve;ir [2005]

10 15 20 30 35

(a) Yearly

M ean jo b w allclock tim e p e r su b m iss io n day

D ays o f th e m o n th [1 - 31]

(b) Monthly

M ea n jo b w allc lock t im e p e r su b m iss io n h o u r

i L l m
M o n I it< 11 i d l h « t r i S a t S u n

i 10000

D avs o f th e w eek

10 15 20

H o u r o f th e d a v 101 - 24]

(c) W eekly (d) D aily

Figure 4.17: Job wallclock execution times: the average job runtime based 011

its submission time on (a) yearly, (b) monthly, (c) weekly and (d) daily level.
Weekly and daily plots reveal strong tendency to submit longer running jobs on
Fridays, mornings, just before lunchtime and at day’s end.

prominent execution time peak at around 4pm (« 3^ hours) is almost 3 times
larger than the mean job execution time at the beginning of the day (~ 1^ hours).
Intuitively or purposely, users rely on their limited insight into the complexity
of their jobs to submit shorter ones for execution during their work day, leaving
longer running jobs for overnight runs.

A very similar picture emerges from studying the weekly cycle. The shortest
running jobs are submitted on Wednesday, the day with the highest count of job
arrivals, while the jobs submitted 011 Fridays are by far the longest running ones.
Again, users are trying to adapt the workload to their work cycle by running
shorter, perhaps test or tuning, jobs during the week and longer ones over the
weekend.

The yearly plot, to some extent, indicates the fluctuations during the academic
year, but as it is based on only one year’s worth of data, and as its scale is very
long compared to most of the scientific tasks, it is only suitable for informational

CHAPTER 4. WORKLOAD CHARACTERISATION 86

Job execution time: Empirical and Fitted CDF Job execution time: Empirical and Fitted C-CDF

0.9H
Vl 0.8
£
■f 0 7
j? 0.6

10'4

0.5

0.4 io-
0.3

|io -12- Empirical CDF
- Pareto CDF
- Weibull CDF

Gamma CDF

 Empirical C-CDF
 Pareto C-CDF

- Weibull C-CDF
Gamma CCDF

0.2

0.1

104 10s
Job wallclock execution time [s]

10® 104 105
Job wallclock execution time

106

(a) CDF (b) Com plem entary CDF

Figure 4.18: Job wallclock execution times > 100 seconds: CDF and comple­
mentary CDF are used to judge the presence of long-tail behaviour and estimate
the best fitting model. Pareto function provides the best fit, especially for values
greater than 1000 seconds.

use. Looking at the month of August however, it is clear that a high arrival rate
may not lead to high contention on the cluster. Again, monthly variations do not
yield significant insight as they seem to be dominated by the weekly cycle.

The behaviour of the execution time tails is examined in Figure 4.18. Tail
cut-off points of 100 seconds, compromising around 40% of the total number of
jobs, has been used, with the Pareto, Weibull and Gamma distribution functions
fitted to the empirical data. The Pareto distribution exhibits a very good fit over
almost five orders of magnitude, with only a small overestimate of the probability
of the longest running jobs (> 2 • 104).

The estimation of the self-similar nature of the job wallclock execution times
using the rescaled range methods is shown in Figure 4.19. A well fitting regres-

Job wallclock execution time (self-similarity)

y = 0.87 * x — 1.5
2.5

2 1.5
if

0.5

2.5 3.5 4.5

Figure 4.19: Job wallclock execution time: Hurst parameter, as the measure of
self-similarity, was estimated using rescaled range (R/S) method to H = 0.87
indicating a strongly self-similar process.

CHAPTER 4. WORKLOAD CHARACTERISATION 87

J o b m e m o ry u sa g e (ru n seq u e n ce)

f 2500

KMX)

Job ID [10 ’

•lull lu en io iv usage (C D F)

(a) R un sequence plot (b) D istr ib u tio n fun ction

0.9

Vl 0.8

0.7

0.0

i 0.5

0.4

0.3

p 0.2t£

.Job m em o ry use [MB]

Figure 4.20: Job memory utilisation: (a) run sequence plot and (b) distribution
function showing no obvious modality and a memory usage of less than 10MB by
40% of submitted jobs.

sion line estimates the Hurst exponent value of H = 0.87. indicative of a very
scale invariant and self-similar process. Considered together with the previous
analysis of the value distribution, the results confirm the strong non-linearity of
the wallclock execution times and invalidate its approximation with the Poisson
distribution used in the previous cluster scheduling research [152].

4.3.5 Memory Utilisation

Since memory allocation by an application is dynamic, a number of approaches
can be taken in recording it. Memory use of a specific process can be recorded
as a time series (such as in the Ganglia Monitoring System described in Section
3.4.1), or as a mean or maximum amount of memory allocated over a period
of time. The value recorded by the Sun Grind Engine accounting file is the
product of the job execution time and its average memory consumption yielding
a metric in GBytes seconds. For the analysis presented here, this recorded value
was divided by the job execution time to yield the average memory footprint of
each application. The run-sequence plot and the distribution of values are give
in Figure 4.20.

The time plot shows a significant variation of the memory use between jobs
throughout the trace duration. The distribution function plot reveals tha t around
40% of jobs use less than 10 MBytes of host memory, after which the distribution
continues in a log-normal fashion up to the maximum value of 4096 MBytes which
is set by the physical amount of memory installed in the Grid nodes.

Contrary to some published analysis of the cluster job memory utilisation
[186, 26], no prominent modality of the allocated memory has been observed.
Previous work explained their existence by the frequent use of common shared
libraries which require a fixed amount of memory, but without a more granular

CHAPTER 4. WORKLOAD CHARACTERISATION 88

Job memory usage: Empirical and Fitted CDF Job memory usage: Empirical and Fitted C-CDF
10°

0.9H
Vl 0.8

0.5

o 0.4

3 0.3
— Empirical CDF
- Pareto CDF

Weibull CDF
Gamma CDF

 Empirical C-CDF
 Pareto C-CDF

- Weibull C-CDF
Gamma C-CDF

| 02
0.1

10s 10s
Job memory usage [KB]

102 10s
Job memory usage [KB]

(a) C D F (b) C om plem entary C D F

Figure 4.21: Job memory utilisation > 100KB: CDF and complementary CDF
axe used to judge the presence of long-tail behaviour and estimate the best fitting
model. None of the proposed functions offer an adequate fit over the whole range,
although Pareto model does describe the general shape of memory utilisation
distribution.

monitoring data this could not be established for the case of the CCC.
Figure 4.21 analyses the tails of the memory utilisation distribution with a

cut-off point of 10 MBytes. While the Pareto function does describe the general
shape of the tail, the fit is significantly poorer then for previous metrics, and the
abrupt limit on the maximum value imposed by the hardware is obvious. Should
modelling the memory use be of special interest, alternative distributions, or piece
wise approximations using one of the distributions shown here should be used.

4.4 Workload Diversity

To this point, the workload was analysed as a monolithic set, treating each sub­
mitted job the same regardless of its associated properties (meta-data). While
this approach gives an overview of the whole trace, it does not reveal the be­
haviour of its constituent parts, nor does it addresses the differences between
them. As previously stated, one of the main premises of this work is the as­
sumption that the highly variable and seemingly random behaviour of the whole
workload is in fact a superposition of a number of different, and more predictable,
patterns of job arrivals and execution times.

The purpose of this section is to analyse the job properties which are recorded
in the accounting file and try to decompose the whole trace into a number of less
variable, more predictive groups. It will demonstrate that in a general purpose,
production Grid facility, a wide range of users submit jobs with widely varying
resource requirements resulting in a highly dynamic workload. Modelling, or
trying to predict, this compound load would therefore be much more difficult,

CHAPTER 4. WORKLOAD CHARACTERISATION 89

and less accurate, than partitioning it into smaller, and more consistent, clusters
of similar “behaviour” and forecasting these constituting parts.

The previous section has already used the basic job m eta-data such as the
submission, start and end time stamps to show the cyclic nature of the user
behaviour. In the following section the analysis of the other three job properties
recorded in the accounting file will be used:

1. User - identifies the user whose credentials were used to submit the job.

2. VO - records the Grid Virtual Organisation to which the subm itting user
belongs.

3. Job name - contains the name of the job or application that has been
submitted to the Grid.

For each of these job properties, the aim was in establishing the following:

• The relationship between the above three items of the job m eta-data, such
as the number of users in each Grid VOs, or the number of different job
names run by each user.

• The share of the total job count, or total wallclock time, for different users,
VOs or job names.

• The level of the application efficiency for the jobs subm itted by different
users and VOs, or most frequently submitted job names.

• The distribution of the job wallclock execution times both between the
users, VOs and job names, as well as within those categories.

4.4.1 User Differentiation

Considering a large number of different users of the CCC facility, the way in
which each of them would use the facility was the first to be studied. The pie
plot in Figure 4.22(a) shows a substantial domination of three users in the total
number of jobs submitted to the system. Just User2 accounts for almost 75%
of all job submissions, and together the three most active users account for over
95% of all jobs submitted to the system. W ith such an imbalance, a question
may arise whether some of the users are monopolising the CCC facility for their
exclusive benefit.

The plot of the proportion of the total wallclock execution time used by the
jobs belonging to the most active users, shown in Figure 4.22(b), shows a very
different picture, ft is clear that the users with the overwhelming number of job
submissions tend to run very short jobs, and the total execution time is almost,
equally divided between the top 10 users. All other users amount for a significant
proportion of the compute time as well.

CHAPTER 4. WORKLOAD CHARACTERISATION 90

D is t r i b u t i o n o f s u b m i t t e d j o b s b e tw e e n u s e r s

O th e r s

U s e r3

t'serl

(a) Job count (b) T otal wallclock runtim e

Figure 4.22: User differentiation: by (a) submitted job count, and (b) total
wallclock execution time reveal that few users submit a large proportion of jobs,
while the distribution of total consumed compute time is more balanced. The
high average CPU utilisation factor indicates jobs are mostly compute bound.

From the Figure 4.23(a), which plots the number of unique job names submit­
ted by each user, it is clear that the distribution is modal and characterised by
the majority of users mostly submitting jobs with the same name, ten or so users
submitting between 50 and 100 different job names, and few users submitting
jobs with several hundred different names. This wide gap is the testimony to the
different workflowr management between the users, with some preferring generic
names while other tend to make their job names unique for each run. Introduc­
tion of a standardised workflow management system, able to uniquely identify
different applications making up the workflow would in many ways alleviate these
issues and enable much more insight into application behaviour.

Figure 4.23(b) shows that the CPU utilisation levels are very high, with the
average at 74%, indicating that the majority of the submitted jobs are compute
bound. If a few users that have submitted no jobs, and a few that had a very low
CPU efficiency barely registering on the plot, were excluded, the actual average
CPU utilisation would have been even higher. Considering that the workload
almost exclusively consisted of sequential jobs, these results indicate that any
data staging that was required was executed prior to the submission of the job
into the Grid. This greatly reduces the effect that network performance has on
the length of the job execution.

The distribution of the wallclock execution times also differs significantly both
within the jobs submitted by a single user, and between different users. Figure
4.24 shows cumulative distribution function for the four most frequently run jobs
by the user submitting the highest number of jobs (User2). Steep slopes of the

D is t r ib u t i o n o f t o t a l u s e d w a llc lo c k t im e b e tw e e n u s e r s

O th e r s

l'»er25

I 's e r l o

ltser23

I ’s e r f

l ' s e r 7

CHAPTER 4. WORKLOAD CHARACTERISATION 91

Distribution of unique job names run by each user CPU utilisation factors per active users

500 ■ Unique job names
- Mean value450

400

8 350

300

250Sj
f 200

'S 150

100

User ID

(a) Unique job nam es per user

Mean utilisation: 0.74

r, r ID
(b) C P U utilisa tion factor

Figure 4.23: User differentiation: by (a) unique job names count and (b) CPU
utilisation factor. Users tend to either submit job with generic names or user
a unique name for each job run. The very high CPU utilisation factor suggests
most jobs are compute bound with the network performance having a limited
influence on their execution times.

CDF plot for executables 7, 9 and 13 indicate a very narrow distribution of the
job runtimes, with a small variance ideally suited for forecasting. Executable 38
also exhibits similar behaviour, but with certain modality and preference to the
execution time of either less than 10 seconds, or between 30 and 100 seconds.

From the presented plots and analysis, it is clear tha t the user “behaviour” ,
including the number, the type and the distribution of the runtimes of the jobs
they submit, vary significantly between them. It has also been demonstrated
that even further differentiation is possible by looking at the properties of the
different job names a single user submits. This presents a valuable insight in the

I
| 0.7

f °‘6
£ 0.5s
•3 0.4
■£*
a 0.3

o
10° 101 102 103 104 10s

Job wallclock execution! time [s]

Figure 4.24: User differentiation: comparison of distribution functions of the
job wallclock execution times for the four most active job names belonging to
the same user. Runtimes clearly exhibit different statistical properties, central
tendencies and levels of dispersion (which can be judged by the slope of the line).

Wallclock execution time CDF, top 4 job names of User2

 Exec7
 Exec9
 Exec 13

Exec38

CHAPTER 4. WORKLOAD CHARACTERISATION 92

C o u n t o f u n iq u e u se rs p e r V O C P U u ti lis a t io n fa c to rs p e r ac tiv e V O

1 3 5 7 D 11 13 15 17 19 31 33

V irtu a l O rn an isa tio ii ID

(a) N um ber o f users in each VO

M ean u tilisa tio n : 0 ./9

10 15 20

V ir tu a l O rg a n is a tio n ID

(b) C P U u tilisa tion factor

Figure 4.25: VO differentiation: by (a) user count and (b) CPU utilisation factor.
VOs mostly contain just one, generic, active user which hampers lower grain
monitoring of an individual’s work pattern.

context of the job execution time predictions, and motivates the use of this job
property as the basis for workload partitioning.

4.4.2 Virtual Organisation Differentiation

The value of the Grid VO m eta-data is in unifying all the users from the same
research project in one group. The notion of Virtual Organisations is one of the
defining characteristics of the Grid, and can be of great value in workload analysis
as it is likely that computing demands within a research project will be similar
and distinguishable from those of projects in other fields.

However, from the bar plot of the number of users in each Grid VO, shown in
Figure 4.25, it became clear that in the case of the CCC there is an almost one-
to-one mapping between the users and the VOs. Although data was anonimised,
after consultation with the site administrators it became clear that the VO with
the highest number of member users (V 05 containing 8 users) is actually a generic
VO whose members are also included in other VOs, and that V 06 with 3 users
is in fact the system adm inistrator VO running occasional maintenance jobs. In
remaining VOs with more than one member user, a common observed practice is
for only one user to submit jobs. This generic approach, whether caused by the
administrative difficulty in obtaining access to the CCC facility, or by some other
external factors has a detrimental effect on the ability to analyse the workload in
more detail, but should not be common practice in commercial utility Grids.

The same Figure re-examines the CPU utilisation statistics by grouping the
jobs according to the owning VO. The same high level of overall application
efficiency is confirmed, with the small difference to the average value reported in
Figure 4.23(b) due to the mentioned membership of some users in multiple VOs.

CHAPTER 4. WORKLOAD CHARACTERISATION 93

Distribution of subm itted jobs between VOs D istribution of total used wallclock tim e between VOs

V018

V013

V014

V 03
VOl

(a) Job count (b) T otal wallclock runtim e

Figure 4.26: VO differentiation: by (a) submitted job count and (b) total wall­
clock execution time. Due to the one-on-one mapping between VOs and users,
the plots reveal no additional information over user differentiation ones.

The imbalance between the number of jobs submitted by a VO and the actual
execution time of these jobs, shown in Figure 4.26, is very similar to the user plot
given earlier. Since it was established that the User and VO job properties convey
the same information, it became redundant to separate the workload with respect
to both of them. All subsequent analyses will only include the reference to the
Grid VO.

The differentiation of the job execution time profiles between the different
VOs is evident from the comparison of the distribution functions of the top four
VOs by job count given in Figure 4.27. The runtimes exhibit different statistical

Wallclock execution time CDF, top 4 VOs by job count
y r r

0.9
VI

| 0.7| 0.6

J 0.5
o
*8 0.4

= 0.3
"5| 0.2
Pu

0.1

V03
V04
V02
V08

102 103 104 10
Job wallclock executioni time

10°

M
Figure 4.27: VO differentiation: comparison of distribution functions of job
wallclock execution times for four most active VOs. Runtimes clearly exhibit
different statistical properties, central tendencies and level of dispersion (which
can be judged by the slope of the line).

CHAPTER 4. WORKLOAD CHARACTERISATION 94

D is t r i b u t i o n o f s u b m i t t e d j o b s b e tw e e n j o b n a m e s D i s t r i b u t i o n o f t o t a l u s e d w a l lc lo c k t i m e b e tw e e n e x e c u ta b l e s

E x e c l l

O t h e r sE x e c l l

E x e c 9 6 9

E x e c 2 1 7

Excel

E x e c 7

(a) Job C ount (b) W allclock T im e

Figure 4.28: Job name differentiation: by (a) submitted job count, and (b) total
wallclock execution time. High proportion of compute time used by a mix of
other names is attributed to the submission of single-use job names.

properties, central tendencies and levels of dispersion depending on which VO
they belong to. Much in the same way as the submitting user, this information
can be exploited to partition the workload into more predictable domains.

4.4.3 Job Name Differentiation

The wider Grid community* is still debating on how to positively and globally
identify a Grid job and all of its constituent tasks. This is an im portant issue in
the Grid workflow creation and management, and would certainly lead to more
granular monitoring data. As it is, the CCC simply records the name of the
executable the user has submitted to the queue. While this data is anonimised in
the trace, system administrators have observed user’s tendency to use generic shell
scripts and wrappers to prepare the environment and launch their applications.
This practice reduces the value of the job name differentiation as multiple different
applications may be recorded having the same job name in the accounting file.
Equally problematic is a somewhat rarer practice of assigning a unique job name
for each application run.

Figure 4.28 shows the proportion of the total job submissions and the total
wallclock execution time attributed to each of the job names. The job count
distribution is dominated by only four, frequently submitted, generic job names,
but more than 50% of the total cluster time was devoted to executing a mix of
different job names. Clearly, most submitted jobs are not the most computation-

*O pen Grid Forum W orkflow M anagem ent R esearch G roup and U sage Research G roup

CHAPTER 4. WORKLOAD CHARACTERISATION 95

Wallclock execution time CDF, top 4 job names of VOIO

H
® 08

0.7

0.6EI 0.5O
0.4

i
0.3

Exec9
Exec21
Exec23
Excc25

g 0.2
0 .

0.1

10° 102 103 104 10s
Job wnllclock execution] time H

Figure 4.29: Job name differentiation within the same VO: distribution functions
of the job wallclock execution times for four most submitted job names from
VOIO is shown. Runtimes clearly exhibit very different statistical properties
which could not be fitted using a single, universal model.

ally expensive, and the use of one-off job names further spreads the distribution
of overall runtime attributed to each job name.

An example of the significant differentiation of the job execution time distri­
butions between the job names submitted from the same VO is shown in Figure
4.29. Although all belonging to the same VO, different job names exhibit a very
different execution pattern: two show very well defined modal runtimes while the
other two are characterised by an almost log-linear runtime distribution but at
very different scales. The ability to differentiate between these jobs, increases
the accuracy with which their future execution time can be predicted and moti­
vates the inclusion of the job name property as one of the workload partitioning
metrics.

4.5 Correlations with Job Execution Time

The preceding section has demonstrated the diversity of the workload and the
differentiation between its constituent groups of users, VOs and applications. It
has also hinted at the reduction in variability achievable through partitioning
the workload around several “pivot” job properties. The purpose of this section
is to quantitatively and rigorously establish whether such functional dependence
between the job execution times and some of it properties exists.

As the majority of the job properties are logical values, the usual correlation
coefficient measures cannot be applied. The analysis will therefore be based on
applying the correlation ratios, the measure of the statistical dispersion within
individual categories and the dispersion across the whole population or sample,
to establish the functional dependence between the job execution time and its
properties.

The purpose of the following boxplots was to assist the reader in visualising

CHAPTER 4. WORKLOAD CHARACTERISATION 96

Job wallclock time and submitting VO correlation Coefficient of Variation for each VO

10 12 14 16 18 20 22 24 26 28
Virtual Organisation ID

(a) B oxplot

I vo cv
Overall CV
VO mean CV

Mhli1i.MWt.Vtl.
•5 10 15 20 25

Virtual Organisation ID

(b) C oefficient o f variation

Figure 4.30: Correlation of wallclock execution times and originating VOs: (a)
boxplot of runtimes for each VO, and (b) coefficient of variation for jobs belonging
to each VO. Mean CV value for jobs grouped by their originating VO is many
times lower than the CV value of the entire workload.

the location and dispersion of the execution times for a certain category. As such,
their extreme outlier values were removed for increased legibility. The calculation
of the CV values for all partitioning metrics has. of course, included all relevant
jobs.

4.5.1 Job Meta-data

The correlation effects between the submitting Grid VO and the job execution
time are shown in Figure 4.30. The boxplot shows the robust measures of the
central tendency and dispersion for all the jobs belonging to a certain VO. The
bar plot compares the coefficient of variation of the entire workload with the CV
values of the jobs belonging to the individual VOs. Clearly a very significant
reduction in the dispersion of the execution times has been achieved by grouping
them according to the submitting VO: the mean CV by VO is 2.06 compared to
14.88 for the entire trace.

Additional benefit of this approach is the ability to recognise the high variabil­
ity jobs before they begin executing (through a combination of their properties
and meta-data) and take appropriate scheduling action. Such jobs could be seg­
regated and run on dedicated best-effort nodes, or an alternative Grid economy
policy may apply to them.

The boxplot in Figure 4.31 shows the medians and inter-quartile ranges of
the twenty most submitted jobs in ascending ID order. Although the execution
times of some jobs remain very widely dispersed, the variability of most of them
is substantially decreased. The bar plot in the same figure testifies to this by
showing the CV value of all the runs of the top twenty most subm itted jobs
ordered by their rank. For all but one job name, the CV value is around 2

CHAPTER 4. WORKLOAD CHARACTERISATION 97

J o b w allclock t im e am i jo b n a m e c o r re la tio n C oeffic ien t o f V a ria tio n fo r to p 20 jo b s by jo b c o u n t

(a) B oxplot

2 3 4 5 6 9 13 38 43 GO 452 774 979 1274 2158

E x e c u ta b le ID

it

Exec CV
Overall CV

■ — — • Exec Mean CV

4 6 8 10 12 14 16 18 20

E x e c u ta b le to ta l n u m b e r o f ru n s ra n k

(b) C oefficient o f variat ion

Figure 4.31: Correlation of wallclock execution times and job names: (a) boxplot
of runtimes, and (b) coefficient of variation of 20 most submitted jobs.

or less, with the mean CV of 1.63 compared to 14.88 of the whole workload.
Clearly, there is significant correlation between the job names and their wallclock
execution times.

4.5.2 Job Temporal Properties

The correlation of the time of job submission and its execution duration was
already mentioned in the analysis of the runtime cyclic patterns. In Figure
4.17 on page 85, the mean execution time values were used, and have shown
significant levels of variation. As the arithmetic averages can be influenced by
the outlier values, the correlation analysis of the execution and submission times
was repeated on several scales (year, month, week and day) using the robust
inter-quartile ranges and box plots.

Figure 4.32 shows the location and dispersion of the job execution times
according to the month, and the calendar day of the month, in which they were
submitted. The discussion of the cyclic behaviour given earlier has concluded
that the value of these two seasonal properties is limited (the yearly cycle is too
long and the calendar day of the month dominated by the weekly pattern), but
the reduction of variability is still evident, especially between the months of the
year.

The effect of grouping the jobs according to the weekday on which they were
submitted on the reduction of the average CV value is shown in Figure 4.33. The
boxplot shown in (a) reaffirms the previous findings that Fridays see the longest
running jobs being submitted, while the mid-week jobs are the shortest. It also
points to a high variability of the jobs submitted on weekends, with the inter­
quartile range for Saturday running as low 10 seconds. The modest reduction of
the average CV value, 14.14 compared to the overall 14.88, shown in the bar plot

CHAPTER 4. WORKLOAD CHARACTERISATION 98

.lob w allclock t im e an d m o n th o f su b m iss io n c o rre la tio n J o b w allc lock t im e a n d d a te o f su b m iss io n c o r re la tio n

o

J a n F e b M a r A p r M a y J u n J u l A n y S<p O r t S o r Dt c

M onth o f th e y ea r [2005]

(a) Yearly boxplot

D avs of th e m o n th 1 1 - 3 1

(b) M onth ly boxp lot

Figure 4.32: Correlations of the job wallclock execution times and the job sub­
mission time on: (a) yearly and (b) monthly scales. Despite the fact that the
dispersion of the job runtimes is reduced, the yearly and monthly cycles are not
suitable for predicting future job execution times.

in (b), is mostly due to the high coefficient of variation of the weekend jobs. The
natural reason for such high variability it the user’s tendency to use the weekend
to "‘experiment” by submitting new jobs or simply running a mixed workload
that has perhaps failed during the week or needs to be re-done. Another factor,
as previously discussed, is the instability of the CV measure for the series with
small means.

The correlation between the hour of the job submission and its execution time
is evident from the reduction of the runtime variability shown in Figure 4.34. The
boxplot in (a) shows a clear difference between the execution times of jobs sub-

•lob w allclock tim e an d dav o f su b m issio n co rre la tio n
C V a c c o rd in g to th e d a y o f jo b su b m iss io n

1 0 '

3

S »,UY</ F n S a t 'u

D ays of th e week

(a) W eekly boxp lot

I 15

■ I D ay C Y
— D a y m ea n CY

O v e ra ll C V

W e d T h u F n

D av o f th e w eek

(b) W eekly CV reduction

Figure 4.33: Correlations of the job wallclock execution times and the weekday of
the job submission. A modest reduction of the CV value was mostly influenced
by the very large variability of the jobs submitted over the weekend.

CHAPTER 4. WORKLOAD CHARACTERISATION 99

J o b w allclock t im e a n d h o u r o f su b m iss io n c o rre la tio n C V a c c o rd in g to th e h o u r o f jo b su b m iss io n

10'

o

H o u r o f th e day (01 - 24 j

H o u r C \
- — H o u r m e a n C \

O v e ra ll C \

(a) H ourly boxp lot

10 15 20

H o u r o f t h e d av

(b) H ourly C V reduction

Figure 4.34: Correlations of the job wallclock execution times and the hour of the
job submission. Daytime CV values are around 5, while the much higher off-peak
variability raises the average CV value to 8.95.

mitted in daytime and of those submitted during the night. The early morning,
lunch hour, and late afternoon peaks in execution times are again prominent.
The bar plot in (b) reveals that by grouping the jobs according to the hour of
their submission reduces the average CV value of the daytime jobs to around 5
and to 8.95 for the entire 24 hour period. While higher variability in the late
afternoons is expected, as numerous users submit their jobs for the anticipated
overnight execution, the very high CV values observed in the early morning hours
are caused by the small mean execution time of the jobs submitted between 2am
and 6am. As it can be seen on the boxplot, the whisker for those hours extend
down to 1 second in duration indicating a low mean and the instability in the
CV measurement leading to high values.

4.5.3 Memory Usage

A common assumption that the longer running jobs would require more memory
is only partially supported by the analysis of the CCC trace. Figure 4.35(a)
shows a run sequence plot of the execution time of all trace jobs versus their
total allocated memory, color coded according to the Grid VO owning the job.
Probably the only undisputed fact, supported by the lack of data points in the
lower right part of the plot, is that short running jobs do not allocate large
amounts of memory. This, however, only holds true for the jobs running up to
about an hour as about 95% of all the jobs in the trace does. Jobs running for
longer than that are allocating memory from almost 0 to the maximum 4096
MByte value. Additionally, the plot indicates that a low memory utilisation does
not necessarily imply short execution time: a significant number of data points
are present in the upper left part of the plot.

Observing this effect, a question arose whether the longer running jobs have

CHAPTER 4. WORKLOAD CHARACTERISATION 100

ioT

S 10s

i io3
•§ , io2

10'

1Qo i ■---- 1----->---- <-----1-----»---- •----->—
0 500 1000 1500 2000 2500 3000 3500 4000

Job memory utilisation [KB]

(a) R untim e - M em ory use correlation

Memory vs. wallclock time correlation (by VO) Memory usage of bug jobs (CDF)

N
VI

I
1
bC

Memory use [KB]

(b) M em ory use for job runtim e > lh r

Figure 4.35: Correlation of wallclock execution times and total allocated memory,
shown in (a), indicates that jobs running for less than one hour do not allocate
large amounts of memory. The CDF plot of memory allocation of longer running
jobs, shown in (b), shows two differently sloped but very linear modes of memory
usage.

a certain preference for allocating specific amounts of memory. Figure 4.35(b)
plots the memory usage distribution function for jobs executing for more than one
hour. Around half of these jobs allocate less than about 300 MBytes of memory,
while the other half allocates between 300 MBytes and the maximum installed
amount. Interestingly, both segments of the CDF plot are very linear indicating
lack of modality or preferences for any specific value.

The correlation between the memory utilisation and the job execution time
was established using the Spearman’s rank correlation coefficient returning the
value p = 0.75. Such a result indicates a significant positive correlation between
the amount of allocated memory and the wallclock execution time, a property
which has previously been studied in the literature [186, 25, 23, 187] but on which
no consensus was made as it seemingly differs between the workloads.

Although job memory requirements can be an important criteria in the re­
source selection part of the scheduling process, its value in the context of ex-ante*
prediction of job execution times is limited. The amount of memory tha t the job
will allocate at its start is not known while the job is queueing, and hence cannot
be used to increase the accuracy of the execution time predictions. Even if the job
can be re-scheduled during runtime, processes rarely allocate all of its required
memory at once, so that the total amount of memory a job has used is not known
before it finishes its execution.

* Latin for “before the even t” . In m odels where there is uncertainty th a t is resolved during
th e course o f events, the ex -a n te pred ictions are th o se th a t are ca lcu lated in advance o f th e
resolution o f uncertainty.

CHAPTER 4. WORKLOAD CHARACTERISATION 101

4.6 Locality of Sampling

The workload characterisation so far presented made passing remarks about the
overall evolution of the relevant metrics through time, and the associated changes
in their statistics. Workload properties for those Grid VOs tha t have run more
often and over a longer time period seem to have higher dispersion and more
variance than those whose jobs are run over a short time scale.

The purpose of this section is to establish the level of sustained changes
and transient spikes in the workload properties so that an appropriate adaptive
technique could be used to handle these features and increase the accuracy of the
predictive scheduling models. The notion of the sampling locality, introduced
in the methodology section of this chapter (see page 73) will be tested on the
four metrics of primary interest to the job scheduling: the job arrival rate, job
inter-arrival time, queue wait time and the wallclock execution time.

The summary analysis of these metrics was already given in the previous
sections; the focus here will be on using novel statistical graphics methods to
visualise the changes that the workload experiences over an extended period of
time.

4.6.1 Job Count

The evolution of the daily job submission pattern, according to the hour (a) and
the weekday (b) of the job submission, for each week of the year long trace is given
in Figure 4.36. Previous conclusions that the majority of the jobs throughout the
year are submitted during extended office hours of 8am - 8pm is clearly confirmed.
The features of the slower job submission tail-off in the evening, the lack of post­
midnight jobs, and the abrupt morning rise in the job submissions are also clear.
Despite this overall pattern, reading the plot along the x axis at a constant
y value (being the count of the jobs submitted at 10am, for example, in each
weeks), significant variations can be observed.

The plot also shows that the usual pattern has been severely disrupted on a
number of occasions. During the last four weeks of the trace the job arrival rate
is almost constant throughout the day, and in weeks 2, 9 and 34 a very large
number of jobs was submitted during the entire 24 hour period.

These features correlate with the plot of the weekday job submission counts
shown in the adjoining plot 4.36(b). Week 2 is characterised by a high level of job
submissions on Wednesday and Thursday, while in the week 34 a large number
of jobs was submitted on all days except Thursday and Friday. This plot also
explains a somewhat counter-intuitive result of the weekend job submission rate
being on the same level as the weekday one, previously reported by Figure 4.7 on
page 78. Week on week, Saturdays, and especially Sundays, see a low number of
submitted jobs, but the overall count is raised by several weekends when a large
number of jobs have been submitted.

CHAPTER 4. WORKLOAD CHARACTERISATION 102

Weekly job submission count evolution (log colored) Weekly job submission count evolution (log colored)

10 15 20 25 30 35 40 45 50
Week number (year 2005)

(a) D aily cycle

Sun

Sat

Fri

I
Wed

Tuc

Mon

I I
I f .

10 15 20 25 30 35 40 45 50
Week number (year 2005)

(b) W eekly cycle

Figure 4.36: Locality of sampling: number of jobs submitted, shown by gray
levels on a logarithmically scaled range from 0 to 104, as a function of their
submission time on (a) daily and (b) weekly basis in each week of the year.
Large variations suggest a single, static model fitted to the entire trace is not
likely to give acceptable results.

A similar analysis could be done with respect to the evolution of the workload
according to the submitting VO and the job name. Figure 4.37(a) shows the
number of submitted jobs in each week by the members of each Grid VO. The
fact that the plot has its data on one side of the imaginary y = x line indicates
that the VOs have been created as new users joined the CCC community, and
that the number of the VOs has grown throughout the year.

The sporadic activity of the users is clearly visible on this plot: periods of
high activity are followed by a complete lack of job submissions, after which
many users return to the system and submit some more jobs. These features
are consistent with the expected user workflow which is made up of preparatory
periods in which the jobs are test run, followed by the “production” runs which
can take several weeks of heavy job submissions. The subsequent lack of activity
could indicate the user is analysing the results of submitted jobs and preparing
for further job submissions.

Reading the plot vertically (observing all Grid VOs in one week of the year)
shows that only a fraction of all CCC users is active at any given time, and that
the VOs making up the workload in any give week is changing. The VOs are
also likely to be in the different stages of their workload cycle with some being
in a test phase, and some in a production phase characterised by the heavy job
submissions.

The number of weekly submissions for the twenty most often run jobs is given
in Figure 4.37(b). Some jobs axe submitted only within one or two weeks, while
some are executed in many disjoint sessions lasting between one and ten weeks.
The submission rate over those periods tends to be fairly constant as well. This
insight into the submissions cycle for each application could be used in the job

CHAPTER 4. WORKLOAD CHARACTERISATION 103

Weekly job submission count evolution (log colored)

2 20

c v x m . 1 -

: d -
5 10 15 20 >5 30 35 40 45

Week number (year 2005)

(a) V O

220
911
458
43

452
6

1014
4

979
i 2158
: 1274
; 1889

774
2

60
13
5
9

38

Weekly job submission count evolution (log colored)

 n T T -,I 7 “"— — *“

- a
- j
■

15 20 25 30 35 40 45 50
Week number (year 2005)

(b) Job nam e

Figure 4.37: Locality of sampling: number of jobs submitted, shown by gray levels
on a logarithmically scaled range from 0 to 105, originating from a specific VO (a),
or having a specific job name (b)(only top 20 jobs by submission count shown).
Both plots reveal epochal behaviour with periods of high and low activity.

admission control and potentially in some form of advanced reservation system.

4.6.2 Inter-arrival Time

The weekly fluctuations of the job inter-arrival times, as a function of the hour
and the weekday of the job submission are given in Figure 4.38. The colouring
scheme for the inter-arrival time plots has been inverted, with the lower mean
values taking darker shades and thus indicating a higher rate of job arrivals
(“hotspots”).

The hourly plot, shown in (a), is characterised by a period of almost no
activity between midnight and Sam, as well as the already mentioned periods
within which job submissions were present around the clock (weeks 33-34 for
example). It is now clear that a very different job arrival pattern has taken
place in the last four weeks of the trace, as the inter-arrival times are almost
uniformly spread out throughout the day for an extended period of time. This
could indicate an automated submission of jobs according to some policy, or an
administrative arrangement that was supposed to run over the perceived off-peak
period of college closures (the Christmas break period).

The plot also shows a number of instances of very short inter-arrival times
which mostly occur at the beginning of the workday or at some point in the late
afternoon or evening. When considered together with the already established
tendency to submit more and longer running jobs at this time, it seems that the
users are sending prepared job batches for execution in the morning and before
leaving offices in the evening. The anticipation of such behaviour could be very
valuable to the predictive deadline scheduler.

The weekly fluctuations of the inter-arrival times according to the weekday of

CHAPTER 4. WORKLOAD CHARACTERISATION 104

Weekly job inter-arrival time evolution (log colored)
W eekly jo b in te r-a rr iv a l tim e evo lu tion (log co lored)

K

10 15 20 25 30 35 40 45 50
Week number (year 2005)

(a) H ourly

5 10 15 20 25 30 35 40 45 50

W eek n u m b er (year 2005)

(b) D aily

Figure 4.38: Locality of sampling: job inter-arrival times, shown by gray levels
on a logarithmically scaled range from 0 to 104, as a function of their submission
time on (a) hourly and (b) daily basis in each week of the year. Apart from
seasonality patterns previously noted, the plots show a longer term changes in
the job inter-arrival times, as well as isolated “hotspots” of bulk job submissions.

submission are plotted in Figure 4.38(b). When present, the job submission on
the weekends is characterised by very small inter-arrival times and could indicate
the user’s intention to submit a set of already prepared jobs for the execution
before the perceived Monday rush. The plot also shows a high degree of variance,
both within each week, and between the same days in different weeks.

The pattern of the job inter-arrival times partitioned according to the Grid
VO and the job name properties, Figure 4.39, shows much the same features as
previously observed in the job count plot. The sporadic submission of the jobs
by the facility’s users is evident, and the reuse of the job names is also present.
Interestingly, the bulk submission of the jobs, leading to very short inter-arrival
times and dark patches on the plot, are either preceded by the periods of moderate
activity, or are followed by an extended periods of no job submissions. This
insight, strengthened by the conversations with some of the users, again points
to the epochal nature of the workload in which the jobs are prepared and tuned
before a large batch is submitted for execution.

4.6.3 Queue Time

The weekly variations in the job mean queue wait times, as a function of their
hour and weekday of submission, are shown in Figure 4.40. The attention is
immediately drawn to the week 34 in which all of the submitted jobs exhibit
a very long queue delay. Cross-referencing the two plots, it is clear that the
delay was caused to all of the jobs submitted throughout the 72 hour period
between Wednesday and Friday of the week 34. One of the likely reasons for such
a long delay would be the blocking of the queue by several very long running

CHAPTER 4. WORKLOAD CHARACTERISATION 105

Weekly job inter-arrival time evolution (log colored) Weekly job inter-arrival time evolution (log colored)

9 20

1 220
Ol 1 I I 1 1 1 '

J *2 i "

. .
452

. ■ ■ ■ h ■ 1 .

Job

na
me

ID

3
§

b u
is

o e
j.

^

1I I I 11

— ! -

■ mi

2
60
13
5
938

15 20 25 30 35 40 4 5 5 0
Week number (year 2005)

(a) VO

15 20 25 30 35 40 45
Week number (year 2005)

(b) Job nam e

Figure 4.39: Locality of sampling: job inter-arrival time, shown by gray levels on
a logarithmically scaled range from 0 to 104, originating from a specific VO (a),
or having a specific job name (b)(only top 20 jobs by submission count shown).
Both plots reveal epochal behaviour with periods of high and low activity, as well
as specific “hotspots” where a large number of jobs has been submitted in very
short period of time.

jobs. Although the predictive scheduling techniques could not completely solve
these kind of problems, the slack factor* of the user requested deadline serves as
a dynamic prioritisation measure and could help the owners of the shorter, but
more urgent jobs to jump the queue.

Apart from this unusually long queueing time, Figure 4.40 re-confirms that the
majority of submitted jobs experience generally low queue wait times. Weekend,
late night and early morning jobs are least delayed due to queueing, while the
queueing time of the remaining workload is mostly influenced by the overall
utilisation of the facility and the fullness of the scheduling queue.

The plot in Figure 4.41 shows the weekly variation of the queueing times
based on the job’s owning Grid VO and the job name (only 20 most submitted
job names are shown). From (a), it seems as all VOs experience the entire range
of the queuing times, thus indicating the fairness of the scheduler and the lack of
any special administrative policies prioritising jobs submitted by a certain VO.
The level of the queue delay seems to be, at least to some extent, influenced by
the number of active users in any given week. Low activity weeks, such as week
number 20 when only two VOs are active, generally see shorter queue wait times.

The same conclusions can be draw from the plot of the queuing delay ex­
perienced by the top 20 most submitted job names given in Figure 4.41. No
prioritisation seems to be taking place with the jobs experiencing longer queue­
ing times when more concurrent applications are running.

"The ratio o f th e actual execu tion tim e and th e tim e betw een th e job subm ission and the
requested deadline

CHAPTER 4. WORKLOAD CHARACTERISATION 106

Hourly mean job queue time evolution (log colored) Weekly mean job queue time evolution (log colored)

15 20 25 30 35 40 45 50
Week number (year 2005)

(a) H ourly

10 15 20 25 30 35 40 45 50
Week number (year 2005)

(b) D aily

Figure 4.40: Locality of sampling: job queue wait time, shown by gray levels on
a logarithmically scaled range from 0 to 106, as a function of their submission
time on (a) hourly and (b) daily basis in each week of the year. The daily
and weekly cycles are again evident as jobs submitted off-peak tend to queue
less. Jobs submitted mid-week 34 have for some reason experienced very long
queueing times.

4.6.4 Wallclock Execution Time

The weekly evolution of the job wallclock execution time, plotted as a function
of its hour and weekday of submission, is given in Figure 4.42. A significant
level of variance throughout the trace is present, with certain weeks seeing the
submission of some very long running jobs. While it may be difficult to distinguish
the overall features and tendencies, as given in Figure 4.17, the high and the low
intensity phases of the workload are clearly visible. A strong job campaign took
a break around week 20, followed by another 4 weeks of significant workload, and
then a period of generally shorter running jobs. These features are also evident
on the weekday plot. The last five weeks of the workload stand out again with
continuous job submission throughout the day, but even here, the tendency to
submit longer running jobs between 10am and midnight is present .

Throughout the day, the busiest hours are 9am to 8pm with specific execu­
tion time “hotspots” in the early morning and the late afternoon. Looking at
the weekdays plot, the lower length of the weekend job executions is evident.
Saturdays and Sundays generally see the submission of very short running jobs.
On several occasions, such as between weeks 5 and 10, a specific job campaign
execution solely on weekends seem to have taken place. Such behaviour could
be the effort of the users to do some load balancing themselves and try to ob­
tain better performance from the facility by submitting at the obvious off-peak
hours. Hardly a better motivation can be had for an economy and deadline based
approach to system balancing and yield management.

The reduction in the variability of the job execution times achievable through

CHAPTER 4. WORKLOAD CHARACTERISATION 107

Weekly mean job queue wait time evolution (log colored) Weekly mean job queue wait time evolution (log colored)

15 20 25 30 35 40 45
Week number (year 2005)

(a) VO

15 20 25 30 35 40 45 50
Week number (year 2005)

(b) Job nam e

Figure 4.41: Locality of sampling: job queueing time, shown by gray levels on a
logarithmically scaled range from 0 to 105, originating from a specific VO (a), or
having a specific job name (b)(only top 20 jobs by submission count shown).
Similar job queueing times for all VOs hint at the lack of specific VO-level
prioritisation, but the number of active VOs at any given time has an influence
on the queue waiting times.

workload partitioning based on the job’s properties is again evident from the
plots in Figure 4.43. The mean execution times, and hence the intensity of each
plot patch, differ substantially between the VOs, in (a), but are quite consistent
within one VO. The value of sampling locality is demonstrated on the example
of the V03. Jobs run by this VO clearly have two modes of the execution length
before and after week 25. Averaging over the whole trace period would yield a
model not representative of either of these periods, while they clearly show little
dispersion and could be predicted quite well. These modes are indicative of the
evolving nature of the workload which has perhaps moved onto using a different
data set, different application or altogether a different research objective.

Similar characteristics are evident in the job name plot, Figure 4.43(b). The
variation of the execution times between different job names is much greater
than between the different runs of the same job. The modal characteristic of
the execution time present when the workload is separated by using the VO job
property is here not evident. A likely reason is that a significant change in the
job’s application, workflow or analysed data would be most likely followed by the
change in the job’s name by the user.

4.7 Chapter Summary

The chapter has presented and exhaustive characterisation of a year long trace
sourced from a production Grid installation. The analysis has concluded that in a
multi-purpose, utility style scenario, the Grid is likely to service numerous users
with varying resource requirements, workflow characteristics and performance

CHAPTER 4. WORKLOAD CHARACTERISATION 108

Hourly mean job wallclock time evolution (log colored) ,,, , , . . „ . . ., , . „ .Weekly mean job wallclock time evolution (log colored)

Week number (year 2005) Week number (year 2005)

(a) H ourly (b) D aily

Figure 4.42: Locality of sampling: job wallclock execution time, shown by gray
levels on a logarithmically scaled range from 0 to 106, as a function of their
submission time on (a) hourly and (b) daily basis in each week of the year. Plots
indicate significant and sustained changes in the length of job execution as well as
periods of high and low activity. Large variations suggest a single, static model
fitted to the entire trace is not likely to give acceptable results.

expectations. This diversity leaves an opportunity for the probabilistic resource
management to maximise the usage of the installation while delivering required
service levels to the users.

The workload analysis has focused on the job arrival process, queueing time,
job wallclock execution time and the memory utilisation. Overall, all but the
memory utilisation were found to follow a weekly and daily cycles, have a very
high coefficient of variation and exhibit strong self-similarity and long-tail prop­
erties. The values of the job inter-arrival times and the execution times were also
distributed in a log-normal fashion. The summary of these findings is given in
Table 4.4.

The characterisation paid special attention to the diversity of the workload
and the differences between the primary metrics for the jobs belonging to different
users and VOs, or having different job names. The findings pointed to some
important aspects of the workload and can be summarised as follows:

• Due to the administrative policies, the mapping between the VOs and their
member users was almost one to one. Where a VO had more than one user,
only one would submit jobs. Such practice rendered the submitting user
job property useless as it contained no more information than supplied by
the job’s owning VO field.

• A familiar 90-10 split was observed on the number of submitted jobs: jobs
of the three most active VOs accounted for almost 95% of submissions.
Same was not true for the distribution of the total wallclock time of the

CHAPTER 4. WORKLOAD CHARACTERISATION 109

Weekly mean job wallclock time evolution (log colored) Weekly mean job wallclock time evolution (log colored)

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Week number (year 2005) Week number (year 2005)

(a) V O (b) Job nam e

Figure 4.43: Locality of sampling: job wallclock execution time, shown by gray
levels on a logarithmically scaled range from 0 to 106, originating from a specific
VO (a), or having a specific job name (b)(only top 20 jobs by submission count
shown). The plot shows jobs from the same VO to run for similar amounts of
time, while differing significantly from those submitted by other VOs.

facility which was split much more evenly. Clearly the more frequently run
jobs execute for much less time than the sporadically submitted ones.

• Execution times of the different job names submitted by the same VO vary
significantly between each other, but are very autocorrelated and similar
to their previous runs. The distribution of the runtimes for the top 20
most submitted jobs, grouped by their job name, has been found to be very
narrow and deterministic.

• The number of different job names submitted by each VO seems to be
modal: the majority of VOs submit all the jobs with the same, generic
name; several VOs use up to a hundred different names while 4 VOs appar­
ently use a unique name for almost each submitted job. Considering the
importance of uniquely identifying the submitted job or application, more

Cyclic period

Weekly Daily Log-normal CV Long-tailed Hurst

Arrivals • • • 36.81 • (> 3s) 0.85
Queue time • • 2.85 • (> 103s) 1» 1
Runtime • • • 14.88 • (> 102s) 0.87
Memory 3.08 €

Table 4.4: The summary of the general properties of the four primary metrics
analysed in the workload characterisation study. The weekly and daily cycles,
large CV values and the strong self-similarity were common. The inter-arrival
times and execution time were also distributed in a log-normal fashion.

CHAPTER 4. WORKLOAD CHARACTERISATION 110

granularity would significantly increase the ability to statistically predict
the job execution times.

The correlation between the job execution time and the temporal and meta
job properties have been studied by comparing the variability of the dataset
grouped according to a specific “pivot” property to that of the entire trace. A
reduction in the coefficient of variation is indicative of a functional dependence
between the job runtime and studied property. The summary of the achieved
results is given in Table 4.5

Grouping the jobs according to their job name and the subm itting VO has
given very good results. The use of the temporal job properties, such as the hour
or the weekday in which a job was submitted, has also produced a reduction in
the variability of associated execution times. A more limited benefit of using
these two temporal characteristics was caused by two main reasons.

Firstly, the CV measurement becomes highly sensitive to the changes of the
standard deviation as the series mean approaches zero, as was the case for some
off-peak, mid-night and weekend periods in which very few short running jobs
were submitted. The overall effect of these high values was further increased by
the use of the arithmetic mean as the measure of the central tendency. Secondly,
the temporal characteristics were envisaged as a supplemental, highly granular,
job differentiation metric to be used in conjunction with the other job m eta-data.
An example of such use, and its benefits, will be presented in Chapter 5.

The correlation between the job’s total memory utilisation and its execution
time has been calculated using the Spearman’s rank order coefficient. The indi­
cated substantial positive correlation could not be used in predicting the length
of the job’s execution as the amount of the memory used is only available once
the job has completed.

Coefficient of Variation (CV)

Mean % of Overall Spearm an’s

Overall 14.88 100.00

VO 2.06 13.84
Job name 1.63 10.95
Daily 14.14 95.03
Hourly 8.95 60.15

Memory 3.08 0.75

Table 4.5: The summary of the correlation of the job execution time and its meta
and temporal properties. Higher reduction in the CV value indicates stronger
functional dependence. The correlation of the job memory utilisation and its
execution time was calculated using Spearman’s rank order coefficient.

The workload characterisation study has also dealt with the presently poorly

CHAPTER 4. WORKLOAD CHARACTERISATION 111

researched topic of the locality of sampling and long term evolution of the work­
load properties. The purpose was to distinguish which properties of the workload
are constant and which tend to change over time, and thus assist in properly en­
gineering the adaptability of the job execution time prediction model.

The four most im portant workload metrics, the submitted job count, inter-
arrival times, queueing time and the wallclock execution time, were analysed
using a novel plotting technique emphasising the differences between the job
as a function of their temporal or meta properties, and the evolution of these
properties on a weekly basis. The findings can be summarised as follows:

• The presence of daily and weekly cycles, usage patterns and seasonal varia­
tions was observed in all four metrics for the entire duration of the workload
trace.

• Although these properties were constantly present, their long term evolution
and fluctuations would cause a model based on a static training set of
‘‘older” data to dem onstrate a significant lack of fit.

• The motivation is therefore strong for a dynamic and adaptable approach,
one that is able to use the insight of the global perspective while at the same
time adapting to the local fluctuations and track them in the prediction
model.

• The graphical technique used helped in confirming tha t the workload was
characterised by the epochal nature of the job submission with only a
limited number of users and applications active at any one time. The
behaviour of individual users was also '‘on/off” with periods of activity
followed by the periods of no activity.

• The analysis has also identified occasional “hotspots” of highly increased
rates of job submissions or prolonged execution times of jobs. Such events
occurred often enough to be represent a feature of the workload, and as
they could not simply be filtered out a robust system for their handling is
necessary.

• The evolution of the job execution time has revealed changes in the statis­
tical properties of the jobs submitted by a specific VO or with a specific job
name. A statically parametrised prediction model would obviously struggle
with such changes.

Overall, the characterisation study has answered the questions relevant to
modelling and predicting job execution times based on historical information. Its
purpose was not to specifically identify most suitable models for representing its
various properties, which is the common goal of the studies supporting generative
models, but to explore the relationship between the job properties available to

CHAPTER 4. WORKLOAD CHARACTERISATION 112

the scheduler prior to the running of the job and their influence on its execution
time.

Chapter 5

Job Execution Time Forecasting

Prediction is very difficult, especially if it's abou t

the future

— N ils B o h r , P h ysics N o b e l l a u r e a t e

Following the in-depth analysis of the CCC Grid workload, the predictive
work presented in this chapter will use those findings as a basis for delivering ex-
ante forecasts of the execution times of queued jobs based only on their historical
performance and associated temporal and meta-properties. A heuristic approach
to grouping similarly behaved jobs is complemented by self-parametrised, time-
series forecasting models to create an autonomous prediction engine. The perfor­
mance of the system was tested using a real-world Grid workload, and has clearly
shown the value of the more advanced prediction algorithms, the proposed job
partitioning approach and the novel use of temporal job properties.

The chapter opens with Section 5.1 by reiterating the motivation for job ex­
ecution times predictions and the scope of the work. Experimental methodology
and details of specific techniques and approaches are discussed in Section 5.2.
Sections 5.3 give experimental results of different scenarios, while Section 5.4
summarises the findings and concludes this chapter.

5.1 Purpose and Motivation

Predicting the job execution times is the core enabling technology for Grid dead­
line scheduling, and presents a distinct research contribution of this thesis. The
purpose of the job runtime prediction work was to leverage the findings of the
workload characterisation study and develop an engine suitable for the predic­
tion of the job execution times. The fact that these were found to be highly

113

CHAPTER 5. JOB EXECUTION TIME FORECASTING 114

autocorrelated, and functionally dependent on a specific set of job properties,
strongly supported the au thor’s focus on the statistical time-series analysis as a
forecasting model of choice.

The extent to which such a forecasting model could be made robust to the
abrupt changes in the operating environment and to the outlier values in the
time-series, was the subject of extensive work due to the target usage scenario
of an on-line utility Grid scheduler. To asses the level of performance achievable
in the production environment, a series of experiments using the actual Grid
workload has been undertaken, all sharing the following two aims:

• Compare different time-series forecasting methods amongst each other and
to other common prediction models and analyse their performance.

• Establish the added value, in terms of the increased prediction accuracy,
of the job partitioning according to one or more job meta and temporal
properties.

5.2 Specific Methodology

The primary challenges in the development, implementation and testing of the
job execution time forecasting approaches were in choosing which specific mod­
elling techniques to use, designing an autonomous param etrisation technique for
those models and selecting the most appropriate error measure to compare the
results. This section will present the chosen prediction methods in detail, offer
an extensive justification of the selected accuracy measures and document the
software and hardware set-up used for the experiments.

The section will also introduce the heuristic used for partitioning the entire
workload around different upiv° t '! job properties leading to a reduction in the job
execution time variability and an increase in the prediction accuracy. This job
clustering method was developed based on the findings of the workload charac­
terisation study presented in the thesis, but should be equally applicable to other
Grid workloads as well.

5.2.1 Job Partitioning

One of the reasons for the extensive Grid cluster workload characterisation pre­
sented in Chapter 4 was to identify any seasonal variations, specific patterns
and correlation of the execution time with other job properties and meta-data.
The analysis concluded that a very variable job execution time series can be
partitioned according to its temporal and meta-properties into subsets with sub­
stantially lower dispersion. This reduction of the coefficient of variation (CV)
is a significant factor in enabling effective runtime predictions using automated
statistical methods.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 115

As the goal was to create a substantially self-managing system, identification
of correlations between the job execution time and other job properties for an
arbitrary workload was implemented using an automated and non-parametric
approach. The full pseudo-code is given in Listing 5.1, and is further described
in the following paragraphs.

Listing 5.1

i n i t i a l i s e (prop_set);

for r = 1 to s iz e o f (prop_se t)
{

prop_perm[] += permut (r , prop_set);
}

foreach (prop.perm)

{
i f s iz e o f (prop_perm) > m / / s u f f i c i e n t number of data po in t s

corr [] += compareRuntimeCV (prop.perm);
}

s o r t - d e s c e n d i n g (corr);

initialise(prop_set);

Initially, the workload history is loaded and parsed for job execution times
and n job properties. The number and selection of these job properties will
depend on the information collected by the specific Grid site and on the insight
into workflow practices provided by the site adm inistrator. The list of properties
is stored in the prop_set array.

for r = 1 to sizeof(prop_set)
{ prop_perm[] += permut(r, prop_set); >

One or more job properties can be simultaneously used to partition the work­
load. For example, all jobs belonging to a certain VO could be grouped and
modelled as one partition, or could further be divided into sub-groups based on
the submitted job name. The above loop increments the number of job properties
that will be used for partitioning from one to the maximum number of available
properties n. Function permut () returns all permutations of r elements from the
property set and appends them to the prop_perm [] array.

foreach (prop_perm)
{

if sizeof(prop_perm) > m //sufficient number of data points
corr[] += compareRuntimeCV(prop_perm);

>

CHAPTER 5. JOB EXECUTION TIME FORECASTING 116

Each entry in the prop_perm[] array represents a possible workload parti­
tioning criteria and is examined in turn. Depending on the workload, the number
of job properties and their granularity, some highly selective partitions may not
have sufficient number (m) of data points and are not further considered. Function
compareRuntimeCV() compares the mean CV of job runtimes within a certain
partition with the CV of a less specific, parent partition. For example, the mean
CV of the submitting VO - Job name partitions is compared to those created
by using only the subm itting VO job property. A reduction in the coefficient of
variation indicates a correlation between the job execution time and the property
in question.

sort_descending(corr);

The correlation results, stored in the corr array, are sorted in descending
order giving a ranked list of partitioning metrics with strongest correlation to the
job execution time.

The scalability of the approach, which is essentially an exhaustive search
of the job property space, is dependent on the total number of job property
permutations, given by the following equation:

where N is the number of job property permutations, n the total number of job
properties and r the number of selected job properties.

In the case of the CCC workload, the number of relevant job properties was
6 leading to the maximum number of perm utations N rnax — 1856, of which
almost 90% did not contain any data points. Other surveyed workloads had an
equally small number of recorded job properties (fewer than 10). Considering tha t
coefficient of variation is computationally inexpensive to calculate even for large
time series, and that the algorithm is run ad-hoc and off-line, the performance of
the proposed approach should not be an issue.

The application of this algorithm on the CCC workload has found tha t job
partitioning according to the Grid VO owning the job, job unique name and
the calendar week in which the job was subm itted is most likely to significantly
reduce the level of runtime variability within each partition. These three metrics
will therefore be used as the key upivoC properties for job partitioning in all of
the following job sets.

To analyse the performance of different prediction methods, and the influence
that job clustering based on different job properties has on the forecast accuracy,
a number of data sets was used. Consisting entirely of the actual and unchanged
Grid jobs present in the CCC trace, these pre-defmed job sets were needed to
ensure enough training data points are available and that prediction methods can
be repeatedly compared against the same benchmark. A workload set, in this

max

n n
(5.1)

CHAPTER 5. JOB EXECUTION TIME FORECASTING 117

context is simply a fixed collection of real jobs partitioned using one or more of
the job properties.

The following sections will present the effect of job partitioning on the variabil­
ity of job execution times using direct comparison of the coefficients of variation.
All plots report mean CV reduction based on the analysis of the entire workload
trace.

Single Metric Job Partitions

From the analysis of correlation between job properties and its execution time,
given in the workload characterisation Section 4.5, significant reduction in the
dispersion of the runtime values is evident even when jobs are partitioned even
using only one of the job properties. The effect this would have on the accuracy
of execution time predictions is tested using the following three partition sets:

Submitting VO set contains jobs separated by the identity of their subm itter.
Virtual organisations which subm itted less than 100 jobs in the whole year were
excluded as they may not have sufficient training data for the forecasting algo­
rithms. The representativeness of the set was not compromised by this, as those 8
excluded VOs submitted only 363 jobs altogether accounting for 0.05% of all job
submissions and 1.13% of overall execution time. A plot showing the reduction
in CV compared to the overall value was given in Figure 4.30 on page 96.

Job name set is a subset of the full job name set holding execution time values
of the top 30 most submitted jobs. Although there was more than 2200 unique
job names in the observed period, this relatively small subset (1.32% of all of
the unique job names) captures 97.89% of all job executions and 60.24% of the
overall execution time. A plot showing a similar partitioning for the top 20 most
submitted jobs was given in Figure 4.31 on page 97.

Week of Execution set reflects the temporal locality of the data and the depen­
dency of its dispersion on the sampling window size. In this set, the execution
times are partitioned according to the week of the year in which they were sub­
mitted with no respect to their owner or any other job property. This set contains
every job submitted during the observation period.

Multiple Metric Job Partitions

While partitioning the entire workload according to one of the identified job
properties reduces the coefficient of variation for all examined sets, the level of
reduction varies between individual groups or job names. Compound sets examine
the superposition of multiple partitioning parameters that have previously been
shown to reduce the variability of the data.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 118

CV' re d u c tio n for V O - Jo t) nam e c lu s te r in g

16

14

12

0
0 5 10 15 20 25

V irtu a l O rg a n isa tio n ID

Figure 5.1: Comparison of CV values for job partitions based on owner VO with
mean values of the job name clusters within each VO. Partitioning using both
job properties leads to a substantial reduction in average CV values.

| V O C V

| VO-Job name CV
Overall CV'
M ean V O C V

• M ea n V O -Jo b n a m e CV

Submitting VO - job name set contains jobs grouped both by the subm itting VO
and the unique job name. The plot in Figure 5.1 shows the obvious benefit of
such clustering by comparing the CV values of the overall workload, the VO set
and the VO - job name set. Of the twenty seven Virtual Organisations, only two
show negligible change, while all other exhibit a substantial decrease in variability.
Mean coefficient of variation for this subset is 0.75 compared to 2.06 for the VO
subset and 14.88 for the overall workload.

From the above presented set, a subset of 60 clusters was selected with at
least 50 data points in each to enable sufficient training and validation for the
forecasting algorithms. The coverage of this subset is still very high as it includes
98.26% of all submitted jobs and 65.71% of overall execution time.

Submitting VO - week number set groups jobs firstly by their subm itting VO,
followed by the annual week number in which they were submitted. Workload
characterisation indicated that the job execution times evolve and change over
time, and this set was created with the aim of capturing such behaviour. By inde­
pendently treating workload generated at the different points in time, the model
can develop a better fit and react faster to the fluctuations in the distribution of
job execution times caused by a change in the user’s scientific goal, the analysed
data set or the application being used.

Figure 5.2 shows the reduction of the mean CV values for the subm itting VO
- week number job set compared to the submitting VO alone. The effectiveness
of this compound clustering approach is clear, with all but one VO showing
significant reductions in the job runtime dispersion. The mean coefficient of
variation for this subset is 0.97 compared to 2.06 for the VO subset and 14.88 for
the overall workload.

To ensure forecasting algorithms are only applied to clusters with a sufficient
number of data points, a subset of 114 clusters from the submitting VO - week

CHAPTER 5. JOB EXECUTION TIME FORECASTING 119

C V re d u c tio n for V O - W eek n u m b e r c lu ste r in g

It . i.l

^ ^ B vo cv
■ ^ B V O - W eek C V

O v e ra ll C V

 M ean V O C V

 M ea n V O -W eek C V

10 15 20

V irtu a l O rg a n isa tio n ID

Figure 5.2: Comparison of CV values for job partitions based on owner VO with
mean values of the week number clusters within each VO. Partitioning using both
job properties leads to a significant reduction in average CV values.

number set with more than 100 jobs in each has been selected. The subset remains
representative of the whole workload, as it covers 59.41% of overall execution time
and 99.07% of all job submissions.

Submitting VO - week number - job name set is based on the successive partition­
ing of the entire workload based on the job ’s subm itting VO, the week number of
submission and the job’s unique name. Clustering based on these three orthog­
onal properties produces superior results in reducing the mean variation of the
data in each cluster. The purpose of this set was to test the possible increase in
the predictability of the job execution times by exploiting the general execution
pattern within a Virtual Organisation, the temporal locality of the job runtimes
and the specific behaviour of a single application.

Figure 5.3 compares the CV values of VO, VO - week number and VO- week
number - job name sets. W ith the mean CV of 0.59, this set is the most successful
in grouping similarly behaved jobs together.

In case of this job set, its very granular partitioning of the workload created
a high percentage of clusters with very few data points. For the experimental
subset, only those clusters with more than 100 jobs in each week and more than
50 runs of the same job name have been selected. Due to these constraints, the
resulting subset has less coverage than other sets at 56.05% of the total number
of jobs included executing for 21.49% of the total runtime of the trace.

Overview of the Job Partitions

Based on the observations and the conclusions of the workload characterisation
work, the whole trace was partitioned into sets using one or more of the job
properties. The purpose was to reduce the variability of the job runtinms within
each set, making them more predictable. This has been successfully achieved, as

CHAPTER 5. JOB EXECUTION TIME FORECASTING 120

C V re d u c tio n for V O - W eek - Jo t) n a m e c lu ste r in g

O verall C V

V O M ean C V

V O -W eek M ean C V

V O -W eck-.Job n a m e M ean C V

V O C V

V O -W eek C V

VO-W eek-.Tob n a m e C V

10 15 20

V ir tu a l O rg a n isa tio n ID

Figure 5.3: Comparison of CV values for job partitions based on owner VO and
the VO-Week number with the mean CV values for the VO-Week number-Job
name cluster. Partitioning using all three most im portant job properties leads to
the lowest average CV value achieved.

demonstrated by the reduction of the coefficient of variation for each of the sets
given in Table 5.1.

Set Short Code Mean CV

Entire workload 14.88

VO V 2.06
Job name J 1.62
Week number W 6.45

VO-Job name VJ 0.75
VO-Week number VW 0.97
VO-Week-Job VWJ 0.59

Table 5.1: Overview of the mean CV values of the job partitions. By comparison
to the overall workload CV, a significant reduction in variability was achieved by
partitioning using one, two and three job properties.

As experimental testing of different statistical forecasting algorithms requires
sufficient number of data points for historical inference and subsequent statis­
tically valid assessment of the prediction accuracy, some less populated subsets
from each job partition had to be excluded. Table 5.2 summarises the coverage
of the experimental workload partitions in terms of the number of job clusters,
and the percentage of total job submission and total runtime those jobs attribute
to.

Clearly, as clustering dimensions increase, the cluster numbers increase as
well but the number of jobs within each decreases. This leads to fewer candidate
groupings with sufficient number of data points and a lower coverage ratio. These
subsets will be used throughout this chapter as the basis for the testing and
comparison of the forecasting algorithms.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 121

Subset No. of clusters

Coverage

Job count Run time

VO 19 99.95% 98.87%
Job name 30 97.89% 60.24%
Week number 51 100% 100%

VO-Job name 60 98.26% 65.71%
VO-Week number 114 99.07% 59.41%
VO-Week-Job 97 56.05% 21.49%

Table 5.2: Overview of experimental subsets and their properties

5.2.2 Forecasting Methods

The core assumption of this work is that, considering the properties of the
Grid workload, job wallclock execution times can effectively be predicted using
the time-series forecasting models. The forecasting methods chosen for the
comparison reflect this assumption - the following will provide their statistical
background, outline their implementation in the simulation and discuss their
parametrisation.

Moving Average

One of the simplest, and certainly the most often used benchmark model, is the
average or mean. While it can be applied at time t on the entire series up to t — 1,
this predictor is more often used with a sliding window averaging only the last n
samples. This, ‘‘moving average” operation, which is mathematically an example
of convolution, in effect smooths out the short-term variation and reveals a longer
term trend. Given a time series, moving average (MA) is calculated according to
the following equation:

1 k
F(t)MA = T T X M - n)

k 71=1 (5.2)
= A t T A t—\ + • • • T A t—k

k

The implementation of this predictor was based on the vectorised M atlab
code, and its single parameter, the size of the averaging window, was set dynam­
ically though a feedback loop using a simple control strategy. The motivation
was to reduce the time needed for the predictions to converge following an abrupt
change of actual values. At each time step, the absolute percentage prediction
error (see later for the definition) was compared to the accuracy of previous
forecasts and used to adjust the size of the averaging window.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 122

Related work in the predictive Grid scheduling often reports the results from
a “MEAN” method whose explanation closely matches tha t of a moving average
method. The window size ranges from a fixed value to all previous observations
(implying a true mean of the whole historical series). Pro-active adjustments of
the windowing has not been reported in this context before.

Moving Median

Moving median is a robust version of the moving average method. A box sliding
window selects n last values of the time series and a median value is calculated
as the next forecast.

This method was selected in an attem pt to control the numerous outlier values
present in the job execution time dataset and offer a simple, yet more robust
model than the moving average. The window size for this model was adjusted
using the same control procedure as for the moving average.

Simple exponential smoothing

Simple exponential smoothing (SES) could be considered as a particular type of
the moving average technique, and is a prediction method often used with the
financial time-series data. The forecasted value is calculated by taking a weighted
average of the latest actual data and a fraction of the last predicted value:

F(t)ES = a - A (t - l) + (l - a) - F (t - 1)

= a • [A(t - 1) + (1 - a) - A(t - 2) + (1 - a)2 ■ A(t - 3) + ■ ■ •]

The last equation was derived by direct substitution of the defining equation
into itself, and shows that as the number of past observations increases the
weights assigned to the previous observations are proportional to the geometric
progression 1, (1 — a), (1 — a)2, (1 — a) 3, . . . , which is the discrete version of the
exponential function after which this prediction methods was named.

The level of the smoothing is defined using the smoothing factor a; values
close to unity result in less smoothing and give greater weight to the more recent
observations, while values closer to zero generate more smoothed values which
are less responsive to the recent changes. During the simulation, the value of the
smoothing parameter was defined automatically for each job sequence through a
short parameter sweep test on the training data.

Auto-regressive Method

Autoregressive (AR) approach is a commonly used method for modelling univari­
ate* time-series. The model is a linear regression of the series against a number

* M easurem ents m ade on on ly one variable per observation .

CHAPTER 5. JOB EXECUTION TIME FORECASTING 123

of previous values of that same series. The number of historical values used for
regression represents the order of the autoregressive process, which is defined by
the following equation:

p

Xt = c -f- i f iXt- i + £t (5-4)
i = 1

where <pi,. . . , <pp are the param eters of the model, p is the order, e is the error
term and c, the constant term defined by:

p

c = (5.5)
2 = 1

where p is the process mean.
Autoregressive models are straightforward to interpret, can be fitted in de­

terministic time and using various methods (for Yule-Walker, Burg, Geometric
Lattice and others see Chapters 17 and 19 in Pollock [188]) including the standard
linear least squares techniques. The AR method used in the job execution time
prediction was based on the M atlab System Identification Toolbox [189] imple­
mentation of the parameter estimation using modified covariance method. This
method uses no windowing and a forward-backward approach to minimise the
sum of the least squares. The requested focus of the model was set to prediction,
leading to a weighting of the error function (the difference between actual and
modelled values) favouring high frequencies. This minimises the one-step-ahead
prediction, which typically favours fitting small time intervals.

The order of the AR model was determined automatically for each job se­
quence based on the partial autocorrelation (PACF) analysis of the training data.
The partial autocorrelation at lag k is the autocorrelation between values of the
time series at times t and t — k tha t is not accounted for by lags 1 through k — 1.
Algorithms for computing the partial autocorrelation based on the sample au­
tocorrelations, and the discussion of the usefulness of this method in estimating
the order of the AR process is given by Box in [130] and Hannan in [190]. The
orders of the AR models used in this work are selected to be the last lag on the
PACF plot whose correlation value is higher than the 95% statistical significance
level placed at ± 2 / \ f N where N is the number of data points in the time series.

Auto-regressive Moving Average Method

Autoregressive moving average (ARMA) model is one of the most popular and
effective methods for modelling time series, pioneered in the 1980s by Box and
Jenkins [130]. By combining both the autoregressive and the moving average
components, this model has the power to deal with random “shocks” to the

CHAPTER 5. JOB EXECUTION TIME FORECASTING 124

series values which propagate and influence future data points. ARMA model of
AR order p and MA order q is defined by the following equation:

The inclusion of the moving average component complicates the fitting process
as the error term (s) is not observable. The estimation of the ARMA process pa­
rameters is therefore an iterative non-linear procedure taking a noil-deterministic
amount of time. The ARMA models also have a less obvious interpretation than
the AR models. The implementation of the ARMA model estimation used was
the one from the Matlab System Identification Toolbox based on a search algo­
rithm minimising a robustified quadratic prediction error, with the default values
for the number of maximum iterations and improvement tolerance. Further de­
tails of the algorithm are available in [189].

Estimation of the orders of the ARMA process presented the greatest obstacle
in automatically applying this model. Common practice is to equate the order
of the AR and MA components [191], and this was the initial assumption taken
for all ARMA models used herein. The estimation of this order was the same
as applied in the purely autoregressive technique. But for certain highly auto­
correlated series, the AR order could be very high and, if applied as both AR
and MA orders in an ARMA model, could lead to fitting problems. If these were
observed, a fallback second order moving average component was used.

5.2.3 Prediction Accuracy Assessment

Different forecasting methods can be compared on a number of criteria: in specific
scenarios prediction complexity or model parametrisation may be of the highest
importance. Most commonly however, it is the accuracy of a model’s predictions
that is of primary interest. Strictly speaking, the positive or negative difference
between the observed and predicted value is called a residual. The term error
is often used instead, although in statistics it indicates the amount by which an
observation differs from its expected value based on the whole population from
which the statistical unit was chosen randomly [192]. Given this distinction, the
following discussion will use the term error as it is more frequent in the subject
literature.

When analysing discrete time series, calculating the spot prediction error
may not be difficult, but comparing different forecast series and judging which
was the most accurate may prove quite challenging. The issues of cross-series and
cross-method comparison of the prediction errors have been largely neglected by
the non-statisticians which tend to use inappropriate accuracy measures, mostly
due to behaviour inertia. An early 1980s survey [193] found that forecasting
practitioners, and academics in particular, have a strong preference for the Root

p Q
(5.6)

CHAPTER 5. JOB EXECUTION TIME FORECASTING 125

Mean Square Error (RMSE) although its pitfalls were, even at tha t time, already
well documented. Later reviews found little has changes in last twenty years.

Past research work in the field of predictive (Grid) scheduling has reported
several different accuracy measures, but few have supported their decision to use
a specific measure, or discussed the implications of such decision. W ith no clear
consensus amongst the Grid research authors on the reported accuracy metrics,
direct comparison of the results of the job execution time predictions are often
impossible.

The aim of this section is to properly analyse the time-series being forecasted,
and select the most appropriate accuracy measure for head-to-head comparison
of the forecasting methods on the same series, as well as comparison of their
prediction quality amongst different job series.

The Challenges of Forecast Comparisons

The selection of an appropriate error measure depends on the nature of the data
being predicted, the properties of the forecasting methods, and the objective
difficulty of predicting the future series values.

Different time-series scale may cause the errors generated predicting the series
with large numbers to dominate the comparison with errors obtained predicting
a time-series with smaller numbers. Some of the more commonly used accuracy
measures are scale-dependent, and while useful in comparing different methods
on the same set of data, they should not be used when comparing the prediction
errors of the data sets with different scales. Historically popular Mean Square
Error (MSE), and Root MSE (RMSE), are both scale dependant and very sen­
sitive to outlier values, leading to numerous recommendation against their use
[194, 106, 195].

Since the Grid workload characterisation in Chapter 4 revealed tha t the job
wallclock execution times are spread across eight orders of magnitude, exhibit sig­
nificant long-tail behaviour, and differ substantially in the statistical location and
dispersion, the use of a scale-dependant error measure for cross-series comparison
would not be appropriate.

A simple way to control for the scale is to calculate the errors as the percentage
of the actual predicted value. Such accuracy measures could be used to compare
result across different series regardless of their scale, but have a disadvantage of
being very sensitive if the actual value of the predicted data is close to zero and
undefined if it is equal to zero (as it appears in the denominator of the percentage
error calculation). Percentage errors also put a heavier penalty on the positive
errors [196, 197], and some authors have noted their possibly skewed distribution
[198],

From the aspect of the job execution time predictions, the percentage errors
offer the important ability to compare the forecasting errors between the jobs

CHAPTER 5. JOB EXECUTION TIME FORECASTING 126

in different partitions (job sets) which would usually have significantly differ­
ent scales. The execution time data also fulfils the necessary assumption of a
meaningful zero required for the application of such percentage errors.

Sensitivity to the outliers is less of a problem when calibrating a prediction model,
but is especially troublesome when the goal is to select the best performing
prediction method. Unless those extreme values are of main interest, the errors
should be trimmed to produce robust measures. To avoid an arbitrary level of
trimming, and to aid direct comparison of the published results, median values
are most often reported [194].

Due to the statistical properties of the job runtime sequences, and a proba­
bilistic approach embraced in this work, a significant amount of prediction error
outliers were expected. When considering the prediction errors of a single fore­
casting method, the main objective was to establish their central tendency. The
purpose of the cross-series analysis was to analyse the increase in predictability
through the use of job partitioning. Therefore, robust measures such as inter­
quartile ranges and medians were used throughout for reporting the results across
different series.

Summarising the results requires the error measure to aid in the selection of
the most suitable forecasting model, and should therefore have a relationship
to that decision making process. In the scenarios consisting of many different
prediction methods and/or parameters, and with many numerical error measures
reported, it may become increasingly hard to spot the best forecasting performer.
Summary results, often trading some finer aspects of the error properties for the
presentation simplicity, can be valuable in grasping the larger picture.

Direct Comparison of Forecasting Methods

The goal of the head-to-head comparison of the different prediction models was
to select the best performing one for each of the individual job set. This was
done by using the mean absolute error (MAE) defined as the difference between
the actual and the forecasted time series values:

et = \At - F t \ (5.7)

(5.8)
t = 1

(5 .9)

where A t is the actual and Ft the forecasted value.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 127

The mean absolute error was selected as it is a highly sensitive measure,
without outlier protection, and well suited for model calibration [194]. However
being a scale-dependent metric, MAE is not intended for cross-series comparison
and would be especially cumbersome to independently use on almost 400 test
sequences and 5 prediction methods examined in this work.

To facilitate the comparison of the forecasting model performance, a two tier
method has been used. For each job execution time sequence in each set, the
mean absolute error of all the prediction models has been compared and the best
one has been selected. For each of the six sets in question, a pie chart is used
to depict the Percent Best [194] error statistic indicating the fraction of the set’s
sequences for which each of the methods has been the best performing forecaster.
This avoids any bias related to the objective difficulty of predicting a certain
time series, as forecast models are only compared within the same sequence.
Reliable and robust [195], the Percent Best method enables direct comparison of
the relative performance of each of the compared methods to all others, and a
clear indication of the strength of a specific method in predicting a certain type
of time series.

Cross-series Numerical Evaluation of Forecasting Errors

The Percent Best method, although valuable in judging the best prediction model,
is relative and does not offer any indication of the magnitude of the forecasting
errors. To assess the central tendency and the spread of the prediction errors,
and in order to compare them between the different forecasting and partitioning
methods, the Median Absolute Percentage Error (MdAPE) defined as follows was
used:

E a p e = \— ~̂7— -| (5.10)
A t

E M d A P E = median(E a p e) (5-11)

where At is the actual and Ft forecasted value.
Being a percentage measure, MdAPE can readily be used to compare the

error magnitudes across the series with different scales. Using the median value
of APE has several benefits. It reduces the bias in favour of overestimates
present in the often used Mean Absolute Percentage Error (MAPE) measure.
It also makes MdAPE robust to outliers while avoiding arbitrary trimming rules,
thus facilitating comparison between the reported results. It was found to have
good construct validity and reliability [194], and conies well recommended for the
comparison of results across a moderate number of series [195, 194, 199].

A boxplot will be used to show the location and the dispersion of the MdAPE
values for each of the sequences in the job set, grouped by the prediction method.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 128

These results are directly comparable across job sets, and indicate different accu­
racy levels between the forecasting methods and the job partitioning parameters.

5.2.4 Experimental Set-up

The results reported in this chapter are based on an emulated runtime forecasting
system wholly implemented using the MathWorks M atlab R14 numerical analysis
software. The scenario aims to replicate the job wallclock execution time predic­
tion, the crucial step in the deadline scheduling, by presenting to the forecasting
module each newly submitted job, together with its m eta-data properties, and
awaiting the execution time prediction. Errors between the predicted and actual
values, that have occurred on the real world system, are then calculated and
stored for further analysis.

The benefit of this trace-replay system is in its use of a genuinely representa­
tive data set, which has not been modified in any aspect and thus preserves all
the features and peculiarities of the real world production installation. This is
an important differentiation of this work from those of fellow researchers in the
field [152, 28] which have studied some aspects of the Grid workload and have
decided to generate synthetic traces with characteristics similar to those they
have observed.

The complete twelve months of the CCC workload was used as the basis for the
experiments, sorted by the submission time, and without any data re-sampling,
filtering or manipulation being done. The forecasting module was strictly ex-
ante and was given access to the historical data only. No knowledge of the future
was being exploited at any step in the prediction process or forecasting model
par amet r isat ion.

For the majority of the models, System Identification [189] and Statistics [200]
toolboxes of the Matlab software were used. All custom prediction tools built used
established forecasting formulae and were empirically validated against a well
known time-series. Experiment control logic, historical trace analysis and model
parametrisation heuristics were coded in Matlab and C programming languages.

5.3 Comparison of Forecasting Methods
and Job Partitioning Metrics

This section will present the results of the prediction accuracy survey and offer
reasons and explanations for the observed performance of the forecasting meth­
ods. The results, grouped by the job partitioning property used, are given using
the Percent Best pie chart, the box plot of the MdAPE metric and its median
and inter-quartile range given in a summary table.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 129

Brat forecasting method (MAE based) Comparison of forecasting errors (MdAPE based)

Median (16%) ARM A (47%)

MA (37%)

(a) T h e b est forecasting m eth od

Median M A SE S AR ARM A
Forecasting Method

(b) C om parison o f forecasting errors

Figure 5.4: VO set: (a) best forecasting method (MAE based), and (b) compar­
ison of location and dispersion of percentage prediction errors for different fore­
casting methods (MdAPE based). Despite the strong performance of the ARMA
predictor, approaches based on sliding window (median and MA) dominate.

5.3.1 Prediction Errors: VO se t

Figure 5.4 shows the performance of the different forecasting algorithms predict­
ing the workload partitioned based on the job’s submitting VO.

In almost half of the set’s sequences, the ARMA method was the best pre­
dictor, followed by the moving average and the median methods. Exponential
smoothing and autoregressive predictors did not score a single best forecast in
this group. The poor performance of these methods can be blamed on the evident
short-range dependence of job runtimes in this set which suits the sliding window
predictors better. The ARMA model excelled in predicting this job set mostly
due to the automatic parametrisation method which has repeatedly chosen high
orders of the moving average process.

Table 5.3 summarised the prediction errors using the M dAPE metric. The
median values are in the 17.5% - 26.1% range, and few outliers are present. The
dispersion of the errors is high however, mostly caused by the variability of the
job set and its relatively high CV value.

Forecasting Method

M edian M A SES A R A R M A

25th Percentile
M edian
75th Percentile

7.62
21.32
82.37

7.43 12.83 6.89
18.46 26.09 19.30
67.20 79.04 85.07

4.82
17.54
79.44

Table 5.3: VO set: Comparison of location and dispersion of prediction errors
(MdAPE based) for different forecasting methods

CHAPTER 5. JOB EXECUTION TIME FORECASTING 130

Best forcvwiing method (M AE bam d) Comparison of forecasting errors (MdAPE based)

M edian (7%)
ARMA (57%)

MA (30%)

S E S (3%)

(a) T h e best forecasting m ethod

120

100

£ua.
<
55

Median MA SES a h ARMA
Forecasting Method

(b) C om parison o f forecasting errors

Figure 5.5: Job name set: (a) best forecasting method (MAE based), and (b)
comparison of location and dispersion of percentage prediction errors for different
forecasting methods (MdAPE based). Strong combined success of auto-regressive
predictors (AR and ARMA) indicate that successive runtimes of individual jobs
are highly autocorrelated.

5.3.2 Prediction Errors: Job nam e set

The best forecasting methods, and the distribution of the prediction errors for
the Job name set are shown in Figure 5.5. The ARMA method delivers the lowest
error forecasts in almost 60% of the series in this set, followed by MA and AR
methods. The boxplot reveals that the predictions for this set are much more
accurate than those for the VO set, with median MdAPE ranging from 4.3% to
12.3%. The dispersion of the MdAPE values is much smaller, and even with a
few outliers the top quartile for the ARMA method is only 20%. These values
are summarised in Table 5.4.

Good performance of the ARMA and AR methods on this set indicates that
run time sequences of individual jobs are highly autocorrelated and can be used
to produce good quality predictions. While tracking job names or applications
may not be easy using the current Grid middleware, for all the reasons previ­
ously identified in Section 2.1.3, the benefit of this information to the predictive
scheduling is certainly a strong motivation for the better integration of the appli­
cation identity into the Grid monitoring and workflow management components.

5.3.3 Prediction Errors: W eek num ber set

The results of the job runtime predictions for sequences from the Week number set
are given in Figure 5.6. The Percent Best pie chart shows ARMA method leading
other methods in the forecasting accuracy, followed by the Median, MA and AR
methods. The notable performance of the Median predictor is understandable
considering the very high coefficient of variation of this set, and the lack of
separation of the user groups and jobs with different statistical properties within

CHAPTER 5. JOB EXECUTION TIME FORECASTING 131

Forecasting Method

M edian M A SES AR A RM A

25th Percentile
M edian
75th Percentile

1.92
6.25

19.33

2.17 4.55
6.64 12.32

20.94 22.71

3.26
5.54

24.48

1.83
4.28

15.56

Table 5.4: Job name set: Comparison of location and dispersion of prediction
errors (MdAPE based) for different forecasting methods

it. As there is very little autocorrelation of the successive job runtimes in this
set, a robust average produces competitive results. The MdAPE boxplot further
shows that Median and Moving Average errors were less dispersed that those of
other forecasting methods.

A summary of the MdAPE statistical properties is given in the Table 5.5.
The Percent Best and MdAPE error statistics may seem at odds here, since the
best performing algorithm according to the Percent Best method does not have
the lowest MdAPE median value. However if one considers that the Median and
ARMA methods perform at their best in predicting very dissimilar series, it is
entirely possible for one method to be better at a large number of individual
sequences, and perform so poorly at a number of others as to raise its median
error considerably. Whiskers on the ARMA boxplot further confirm this was the
case.

Bent io raaaiing method (MAE based) Comparison of forecasting errors (MdAPE based)

(a) The best forecasting method

120

100

40

MA SES Alt ARMAMedian
Forecasting Method

(b) Comparison of forecasting errors

Figure 5.6: Week number set: (a) best forecasting method (MAE based), and (b)
comparison of location and dispersion of percentage prediction errors for different
forecasting methods (MdAPE based). Median predictor performs well due to the
high CV value of this set and lack of job separation based on their statistical
properties.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 132

Forecasting Method

M ed ian M A SES A R A R M A

2 5 th P e rcen tile
M ed ian
75 th P e rcen tile

6.69
10.06
17.32

6.59 12.20 10.91
10.34 17.18 26.20
19.76 31.75 58.47

4.95
13.68
36.65

Table 5.5: Week number set: Comparison of location and dispersion of prediction
errors (MdAPE based) for different forecasting methods

5.3.4 Prediction Errors: VO - Job nam e se t

Figure 5.7 shows the forecasting results of the first multiple metric set, the VO -
Job name set. While still delivering the highest percentage of the best predictions,
the ARMA method is less dominant, and is closely followed by the AR and MA
methods. Evidently, job partitioning according to both the originating Virtual
Organisation and the job name sufficiently isolates execution patterns for the
time-series forecasting methods based on autocorrelation properties to perform
best.

Although the boxplot, and the summary data in Table 5.6, reveals a larger
inter-quartile range of the MdAPE values for the AR and ARMA methods,
Median and MA methods have a significantly larger number of outliers. The lower
quartile of the errors is very low for all prediction methods, further confirming
that predictions of execution times for this group are of very high quality.

Best forecasting method (MAE based)

Mediae (5%)

Comparison of forecasting errors (MdAPE based)

ARMA (41%)

MA (20%)

SES (7%) '

a . 8

(a) T he best forecasting m eth od

120

100

MA SES AR ARMA
Forecasting Method

(b) C om parison o f forecasting errors

Figure 5.7: VO-Job name set: (a) best forecasting method (MAE based), and (b)
comparison of location and dispersion of percentage prediction errors for different
forecasting methods (MdAPE based). Autoregressive methods perform well and
suffer from less extreme outlier error values despite a larger interquartile range

CHAPTER 5. JOB EXECUTION TIME FORECASTING 133

Forecasting Method

M ed ian M A SES A R A R M A

2 5 th P e rcen tile
M ed ian
75 th P e rcen tile

0.24
5.08

16.56

0.51 3.65
4.76 12.07

17.57 29.47

1.59
4.61

25.72

0.94
4.04

27.82

Table 5.6: VO-Job name set: Comparison of location and dispersion of prediction
errors (MdAPE based) for different forecasting methods

5.3.5 Prediction Errors: VO - W eek num ber set

The performance of the job execution time prediction of the different forecast­
ing methods on the VO - Week number set is given in Figure 5.8. The ARMA
method achieves highest Percent Best score, followed by the MA, AR and Me­
dian approaches. The boxplot indicates outliers are present with all prediction
methods, but the inter-quartile range of the error values is small, especially so in
the case of Median, MA and ARMA predictors.

Median and quartile values of the MdAPE metric, given in Table 5.7, show a
significant increase in the prediction accuracy compared to the results of the VO
set. Clearly, the addition of a temporal dimension into the workload partitioning
has managed to better group similar job runs, and has therefore led to an increase
in the prediction accuracy of the execution times.

Best forecast jug method (MAG based)

Median (U%) ARMA (51%)

Boxplot comparison of forecasting errors for different methods

(a) T he best forecasting m ethod

120

100

w
CL.<
I

Median MA SES AR
Forecasting Method

(b) C om parison o f forecasting errors

Figure 5.8: VO-Week number set: (a) best forecasting method (MAE based),
and (b) comparison of location and dispersion of percentage prediction errors for
different forecasting methods (MdAPE based). ARMA predictor performs best
with fewest extreme outlier error values and second smallest interquartile range.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 134

Forecasting Method

M ed ian M A SES A R A R M A

25 th P e rcen tile
M ed ian
75 th P e rcen tile

3.98
8.07

13.18

4.55 8.90
8.29 12.99

16.37 22.22

3.92
8.55

19.68

2.75
7.13

13.13

Table 5.7: VO-Week number set: Comparison of location and dispersion of
prediction errors (MdAPE based) for different forecasting methods

5.3.6 Prediction Errors: VO - W eek num ber - Job nam e se t

The prediction results for the VO -Week number - Job name set are shown in
Figure 5.9. Almost three quarters of the sequences in this set were best predicted
using either the ARMA or AR methods, with the ARMA proving best in 55%
of the cases. Again, such high success rate of these methods indicates a highly
autocorrelated time-series with lower levels of variability. The boxplot shows
the distribution of the MdAPE metric with some outliers, but with a very low
dispersion of error values.

Summary data given in Table 5.8 confirms that the prediction errors achieved
in this set are superior compared to all other job partitioning sets. The ARMA
forecasting method managed to predict the execution times with the median
MdAPE value of only 4.75% and the upper quartile value of only 10.61%. Such
results confirm the added value of the multi-dimensional partitioning of the work­
load using job meta and temporal properties. The resulting job partitions lock
onto the underlying workload patterns, thus reducing execution time variability

B e st fo re ca s tin g m e th o d (M A E b a se d) Comparison of forecasting errors (MdAPE based)

M edian (7%)

ARMA (55%)

SES (5%)

AR (20%)

(a) T h e best forecasting m eth od

120

100

w

SES ARMAMedian MA AR
Forecasting Method

(b) C om parison o f forecasting errors

Figure 5.9: VO-Week number-Job name set: (a) best forecasting method (MAE
based), and (b) comparison of location and dispersion of percentage prediction
errors for different forecasting methods (MdAPE based). This multidimensional
job partitioning is best predicted using the ARMA method which delivers lowest
median MdAPE error of all job sets.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 135

Forecasting Method

M edian M A SES A R A R M A

25th P ercen tile
M edian
75th P ercen tile

1.75
6.27

10.28

2.06 5.32
6.57 10.71

10.29 18.02

2.24
6.46

11.49

1.80
4.75

10.61

Table 5.8: VO-Week number-Job name set: Comparison of location and disper­
sion of prediction errors (MdAPE based) for different forecasting methods

and making them more predictable.

5.4 Chapter Summary

Considering the amount of comparative data presented, the chapter will conclude
with an overview of the experimental results. The summary will address two main
aspects of the work separately: the performance of the forecasting algorithms and
the benefits of job partitioning.

5.4.1 The value of prediction m ethods

Considering the computational and implementation expense of the advanced
time-series forecasting algorithms, the natural question is to ask whether they
indeed provide an increased prediction accuracy in the job execution time pre­
diction scenario. The Percent Best method again provides a valuable overall
comparison between forecasting models based on the highly sensitive mean abso­
lute error (MAE) metric.

Overall Percent Best forecasting method

Median (12%) ARMA (SOW)

MA (17%)

SES <5?(

Figure 5.10: Comparison of overall performance of prediction methods across
all job sets for different prediction methods using Percent Best statistic (MAE
based). The most sophisticated ARMA method has performed better in more
sets than all other predictors put together.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 136

M edian M A SES A R A R M A

25th Percentile
M edian
75th Percentile

13.24
41.38

117.10

15.38
47.18

140.23

19.45
63.83

206.98

36.01
68.94

169.63

13.21
49.18

158.92

Table 5.9: Comparison of prediction error (APE based) for different forecast­
ing methods applied to noil-partitioned workload. Results are considered as a
benchmark for judging the benefits of workload partitioning using different job
properties.

Figure 5.10 shows a summarised Percent Best statistic for every job sequence
in every job set presented in this chapter. The exponential smoothing method
is the overall worst performer and has been the best predictor in only 5% of
the job sequences. The Median predictor, with 12% of the lowest mean absolute
prediction errors, is a simple to implement, computationally inexpensive alter­
native for forecasting an occasional job execution time series with a very poor
autocorrelation and a high degree of variability.

The combined performance of the AR, MA and the ARMA predictors returns
lowest error forecasts in the overwhelming 83% of all job sequences. Considering
the ability of the ARMA model to behave as a purely autoregressive or purely
moving average predictor (by setting the order of the AR or MA component to
zero), a generalised implementation with a suitable param etrisation technique
would provide superior performance in predicting the job execution times char­
acterised by a wide range of statistical properties.

5.4.2 The value of job partitioning

The experiment showed a significant and sustained increase in the prediction
accuracy of all forecast methods as jobs were partitioned into clusters with an
increasingly more consistent behaviour. To establish a benchmark against which
this added accuracy could be judged, all five predictors were run on the whole
year long trace without applying any partitioning criteria. Table 5.9 gives a
summary of the absolute percentage forecasting error location and dispersion for
this non-partitioned workload.

To summarise the findings, Figure 5.11 gives a side by side comparison of the
medians (a) and the inter-quartile ranges (b) for all five forecasting methods and
all job partitioning approaches including the noil-partitioned benchmark.

The plots show an obvious reduction in the median absolute percentage error
for all prediction models as the workload is partitioned using an increased number
of job properties. The lowest median error in the set partitioned using three
orthogonal job properties is almost ten times smaller than the lowest median
error in the lion-partitioned workload. The addition of the temporal property
based on the job’s submission time has a noted positive effect.

CHAPTER 5. JOB EXECUTION TIME FORECASTING 137

Error locations between job sets and forecasting methods Error dispersion between job sets and forecasting methods

| Median
IMA
I SES
I AR
ARMA

W J VJ
Job Set

Ntm - part V

(a) Location (M dA P E m edian)

200
180

2 160

i t 140
S 120
1& 1(»
| 80
g 60
<
I 40

20
0

Median
■ MA
— SES
I" ' - I AR
I I ARMA

(b) D ispersion (M dA P E interquartile range)

Figure 5.11: The benefit of multidimensional job partitioning is clearly shown
by comparing the location (a) and dispersion (b) of MdAPE error values for
non-partitioned and clustered job sets.

Job partitioning has also decreased the dispersion of the prediction errors in
all job sets as compared to the non-partitioned job sequence. The implication
of this effect is that measures of the error sample central tendency, such as the
median, are more representative of the distribution’s real statistical location.
This is at least as important as the median accuracy, as the prediction error is
more bounded.

Chapter 6

Deadline Scheduling Evaluation

Having thoroughly analysed a representative production Grid workflow and de­
vised methods for predicting the job execution times, the focus in this chapter
will be on demonstrating the usability of such forecasts in delivering deadline
scheduling on the Grid.

The following sections will present the purpose-built scheduling simulator and
a predictive scheduling algorithm not previously used in the Grid context. The
improvement in deadline adherence of the predictive algorithm will be compared
to the commonly used FIFO queue. The simulation results comprise two different
deadline generation algorithms and two job execution time forecasting methods.
They demonstrate the value of the predictive scheduling approach and the im­
portance of prediction accuracy.

6.1 Motivation and Scope

The forecasting framework presented in the previous chapter enables the sched­
uler to independently estimate the runtime of jobs waiting in the queue - a highly
desirable functionality which can aid in many aspects of the scheduling including
the widely used backfilling* technique [201], and yield management approaches
to maximising service cluster profitability (see Appendix C.7). However, the pri­
mary motivation behind the simulation effort in this chapter is in establishing
whether, and by what amount, the forecasted job execution times can help the
scheduler turn the workload around to a certain, user requested, deadline.

To that end, a new scheduling algorithm understanding the notion of the job
deadline and able to make use of the predicted job runtimes was needed. A worthy
candidate was found in the real-time systems domain, and was for the first time
applied to a job scheduling problem in the Grid context. Most importantly, no

*T he optim isation process qu eu ein g sm aller and shorter jobs ahead o f th e larger ones w hich
are unable to start due to insufficient resources.

138

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 139

production or experimental distributed platform collects or stores the historical
data on the requested turnaround times or job deadlines. As the performance of
any deadline scheduler is highly influenced on the distribution of deadline times, a
sensible generation model rooted in the empirical observations had to be selected.

W ith these goals in mind, the simulation runs were structured to answer the
following three questions:

1. Can a predictive scheduling method deliver better job deadline adherence
than the currently used batch approaches?

2. Considering the lack of the data on the user requested deadlines, how
sensitive would the performance of the predictive scheduling be to different
deadline generation models?

3. Does the improvement in the job runtime forecasts translate into better
deadline adherence or not?

The above questions have focused the simulation implementation and indi­
cated important limitations to its scope. Scheduling of distributed and parallel
workloads is an extensively researched topic grounded in the statistics and op­
timisation techniques. It was not within the scope of this work to propose, or
indeed compare, different predictive scheduling techniques, some of which were
previously discussed in the literature survey chapter (see Section 3.1.2). Algo­
rithms making better use of the job runtime predictions may exist, or be in
development. The main aim of this simulation was to empirically show tha t the
job runtime forecasts, of quality attained by the methods presented in this thesis,
coupled with a reasonable predictive scheduling technique can lead to deadline
scheduling with better deadline adherence than it is currently possible with the
first-come-first-served methods.

Although two very different algorithms for generation of job deadlines have
been tested, until the actual data from the first production deadline scheduler is
available it is not possible to be certain of the distribution deadline values will
have, their correlation with the actual job runtimes, or with other social and
economical aspects.

6.2 Specific Methodology

The development of the scheduling simulator was supported by a specific method­
ology in the choice of the software coding language and technique, generation of
the job deadlines, implementation of the novel scheduling method, and the selec­
tion of the performance metrics on which the new approach will be judged.

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 140

6.2.1 Scheduling Methods

The selection of the scheduling methods to be used was influenced by the purpose
of the simulation: to test whether the job runtime predictions generated by
the developed forecasting method can deliver job scheduling to a user requested
deadline.

The benchmark scheduling method, still in very wide use in the produc­
tion Grid clusters, is the basic FIFO queue, or first-come-first-served (FCFS)
scheduling. UCL’s CCC Grid facility, from which the original workload trace
was sourced, also uses this scheduling method. FCFS scheduling is implemented
in the simulation by maintaining a stack of jobs in the order in which they were
submitted. New jobs are appended at the tail of the stack while available nodes
are sent jobs from the stack’s head.

With the availability of job runtime predictions, a deadline scheduling method
is able to calculate the latest possible job start time in order to still make the
requested deadline. By delaying the execution of the job until the remaining
deadline time is just enough to finish the job, the resources are kept available
in case a job with a ‘‘tighter” deadline arrives. This approach is the deadline
scheduling method of choice in this simulation, and will be referred to as latest
time to run first (abbreviated LTTR). It was implemented in the simulator by
calculating the latest required job start time, as a difference between the job
requested deadline and the predicted job run time, and sorting the entire queue
in the ascending order:

L T T R { l) — t(i) deadline t{i) estimate (6 .1)

The inspiration for implementing the LTTR deadline scheduling was drawn
from the extensive research in the scheduling of the real-time systems using the
earliest deadline first (EDF) algorithm. For a system with n independent tasks,
all ready at time t = 0, where each job J\ has a deadline di, the lateness of
a job i is defined as = f i — d[, where /,■ is its completion time [202]. The
maximum lateness of all jobs, provided the schedule in non-preemptive, can then
be minimised by an earliest deadline first algorithm which places the jobs in
the order of non-decreasing deadlines. This algorithm was originally given by
Jackson in 1955 and has proven to be optimal in [203]. If the scheduling problem
is altered so that not all jobs are released (submitted) at time t = 0 the scheduling
problem becomes NP-hard, as shown by Graham and Lenstra in [204]. Allowing
preemption generally makes the scheduling process easier, and Liu and Layland
have in [205] proved the optimality of the EDF algorithm for such schedules.

LTTR is in essence an earliest deadline first approach, although the deadline
(in the real-time systems sense) which the algorithm optimises on is not the
actual user requested deadline, but rather the computed latest time at which the
job could begin running and still finish within the limits of the user’s requested

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 141

turnaround time. This im portant distinction allows for the non-correlated nature
of the actual job runtimes and user’s deadlines, enabling the system to make a
decision on what the real deadline for starting the job is. The application of the
EDF approach to the Grid scheduling has been possible because the execution
time of each queued job can be predicted using the forecasting engine presented
in this thesis.

6.2.2 Scheduling Simulator

Due to the fact that a real Grid trace was used, the scheduling simulator was
in effect a trace replay system. Since the workload consisted of independent,
sequential tasks, the effect a different scheduling strategy would have on deadline
adherence could simply be observed by changing the way in which queued jobs
are dispatched. Hence, the scheduling simulator was expected to execute the
following tasks in an efficient way:

1. Queue the incoming jobs for execution in a specific order stipulated by the
scheduling method being examined.

2. Obtain the runtime prediction for each submitted job from the forecasting
subsystem.

3. Simulate the assignment of jobs to a number of work nodes in a master-slave
fashion.

4. Following the execution period equal to the actual job runtime on the real
cluster record whether the deadline was missed and by what amount.

The simulator was implemented in ANSI C with API calls to MATLAB in
order to interface with the job runtime prediction engine. Figure 6.1 shows the
programme structure of the simulator.

The first stage of the simulator is the initialisation of the data structures and
the parsing of input parameters such as the number of worker nodes and the
starting time of the simulation. The waiting queue and the list of free worker
nodes are implemented as singly linked lists and these are also created at this
stage.

The main programme loop is the simulation clock, of which each increment
corresponds to one second - the sampling period of the accounting data collected
from the production cluster. The loop is entered until no more jobs are available
in the input file, no jobs are waiting in the queue and all nodes have finished
running jobs assigned to them. The simulator thus ensures all jobs submitted
in a given workload trace are run to completion and their deadline statistics
captured.

At each time increment, the incoming job queue is checked for newly submit­
ted jobs and these are placed in the queue. Depending on the scheduling method

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 142

New job
submitted? Yes-

No

Job finished? Yes—►
NoNo

No

Yes

Free nodes &&
queued jobs? Yes-

No

Yes

FOR each work node

Last worker node

Parse job and
push onto queue

Mark node a s free

Pop job from queue and
assign to free node

Record deadline adherence

Sort queue: FCFS or LTTR

Flush results, shut down

Initialise, parse parameters, create linked lists

Simulated time counter, init to first job submit time

Last trace job && empty queue && all nodes free <

Figure 6.1: Flowchart diagram of the scheduling simulator implementation

being simulated, the queue is then either kept sorted by the job submission time
(FCFS), or re-sorted by the latest time to run (LTTR). The sorting of the linked
list entries in this step is the most time consuming part of the simulation, and
various optimisations were applied to increase the speed of this operation.

The simulator then proceeds to check each of the worker nodes for completed
jobs, i.e. those jobs whose end time is equal to the current clock time. The
number of the worker nodes in a simulation run is arbitrary but constant, and
for all the results reported in this section was set to 100 to match the number of
nodes of the actual CCC Grid from which the workload was sourced. For each
completed job found, the simulator records the amount of time (in seconds and
as a percentage of the actual job runtime) the job has underrun or overrun the

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 143

deadline, and moves the node to the free node list.
The final stage within the main programme loop is the assignment of the

waiting jobs to the available worker nodes. All worker nodes are treated equally
and the jobs are presumed to have no dependency between them. Finally, if
the conditions for exiting the main time loop have all been met, the simulator
proceeds to flushing all file streams, releasing memory and shutting down.

The simulator was compiled using GCC ver. 4.1.1 under CentOS 5 running
on Sun hardware. Each simulation run compromising the whole year’s worth of
the workload trace took around 12 hours to complete.

6.2.3 Workload Trace

The simulation was entirely driven in a trace-replay fashion by the real workload
collected on the production system: at no point does any part of the simulator
see into the future nor makes any use of the events that have not yet occurred
within the simulated time. The advantages of using the real workload trace are
in its authenticity and heterogeneity, which may cause some difficulty explaining
the simulation behaviour. Synthetic traces, which can easily be param etrised
and sized, are always dependent on the quality, and the assumption made, by
the generation algorithm. W ith this in mind, the production trace was selected
for this simulation as it was extensively studied and had its representativeness
confirmed in Chapter 4.

The simulation trace spanned the full 12 months of the period in which the
CCC Grid cluster was monitored. The job runtime forecasting subsystem used the
three dimensional partitioning based on the owner VO, week of submission and
the job name, as introduced in Section 5.3.6. This job partitioning set was selected
due to its superior prediction performance and the use of both the job ’s temporal
and meta-data. To study the effect of the quality of the runtime predictions
on the deadline adherence, two forecasting methods were compared. The simple
median predictor (see Section 5.2.2) was contrasted to the best performing ARMA
predictor (see Section 5.2.2). These results will be reported as LTTR-MD and
LTTR-ARMA respectively.

6.2.4 Job Deadline Generation

Job deadlines are a novel metric in the context of job scheduling on the Grid and
as such have not been used in the production systems or recorded in the existing
workload traces. However, many of the backfilling job schedulers tha t require
some indication of the job execution time have required that users state antici­
pated runtime of their jobs, and have made this information available through the
accounting logs. This information was extensively studied arid ways of modelling
the user estimates have previously been suggested by M u’alem [206], Tsafrir [207],
Feitelson [208], Cirne and Berman [23] and others [59, 116].

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 144

The author of this thesis proposes that the user estimates of job runtimes
can be used as the basis for the generation of the missing job requested dead­
lines. Both metrics are user submitted time values and bear some relation to the
amount of time they estimate (or would like) their jobs to run for. In the present
schedulers user runtime estimates are treated as maximum execution time values,
and jobs are killed upon reaching these times. The user is therefore inclined to
grossly overestimate: research has shown that the maximum allowed runtime is
the most often supplied user estimate [207, 116]. This would probably not hold
true in the case of a simplistic user requested deadline, where the tendency would
certainly be to request the shortest possible turnaround. However, coupled with
a Grid economy system, the users could be given a strong incentive to specify the
latest time after which the results of the job would have no value to them, thus
increasing the proportion of relaxed deadlines and bringing the statistics closer in
line with that of user runtime estimates. For simulation purposes, the deadlines
were created using two different user runtime estimate modelling algorithms that
have been commonly used in the literature.

Uniform Job Deadlines

With the uniform distribution deadline approach, the actual runtime of each job
is multiplied by a random number drawn from a uniform probability distribution
and added to the job’s submission time to generate the requested deadline:

D(i) = t(i)3ub + (rt(i)act * f (i)) (6.2)

This model, proposed in [206] and used in [209, 210], is also known as the
“/-m odel” as it assumes that the job runtime estimates are uniformly distributed
within [rt, (f+l)r t] where rt is the job runtime and / is some non-negative factor.
Clearly, / values of less than one generate unfeasible deadlines and, although
these are likely to occur in the real world, are not used in this simulation. It
is therefore a common practice to draw the deadline multiplier values from a
distribution between 1 and 10, 20, 50. 100 or even 300. To create a challenging
environment, a very low multiplier of 10 was selected for the deadlines used in the
simulation. Therefore, no deadline was longer than ten times the actual execution
time of the submitted job.

The histogram of the typical values drawn for the runtime multiplier, and
the resulting distribution of the deadline times are shown in Figure 6.2. The
distribution of the deadlines closely resembles that of the job runtimes, shown
previously in Figure 4.15, as these are simply related by the / multiplier.

Modal Job Deadlines

As an alternative, Tsafrir [207] has suggested, based an extensive research, that
a more realistic model of the user runtime estimates, and therefore requested

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 145

H is to g ram o f / values d ra w n from a u n ifo rm d is tr ib u tio n D e ad lin e d is tr ib u tio n fu n c tio n

1 2 3 4 5 6 7 8 9 10
R an d o m n u m b e r d ra w n from a u n ifo rm d is tr ib u tio n

(a) H istogram o f dead line m ultip lier values

i
0.9

0.8

0.7

0.6

0.5

0.4

0.1

01—
10° 10 ' 1 0 1 10r’

R eq u este d d e a d lin e [seconds]

(b) D ead lin es d istr ib u tio n fun ction

Figure 6.2: Histogram of deadline multiplier values / drawn from a uniform dis­
tribution between 1 and 10 and the corresponding requested deadline cumulative
distribution function.

deadlines, would be highly modal. Humans have a known tendency to round up
time to convenient values such as 5, 15, 30, 60 minutes and 1, 2, 6, 12, 24 hours.
By analysing the available workload traces containing user runtime estimates,
Tsafrir has developed a methodology and tools for generating realistic estimate
values. Modal deadlines used in this scheduling simulation are based on theses
findings and have been generated using a modelling toolbox developed by Tsafrir
[211],

The notable departure from the model was is the specifying the fraction of
the jobs that were assigned the highest deadline value, tha t equal to the longest
running job in the trace (in the CCC example this is around 3 months or close to
8 - 106 seconds). Tsafrir and others have found that this value often attributes to
almost a quarter of all user runtime estimates, but for this scheduling simulation
this fraction was reduced to just 1% creating a very demanding deadline profile.

The resulting deadline distribution is shown in Figure 6.3(a), its step-like
shape indicating strong modality and the preference for human-favoured values.
Following Feitelson’s findings, the scatter plot of the job actual runtimes and their
corresponding deadlines, Figure 6.3(b), shows a very weak correlation between
the two. This would certainly hold for the job deadlines as well: provided all
deadlines are feasible, their duration would only be conditional on the urgency
of the job and its value to the user, and not on its actual execution time.

6.2.5 Performance Metrics

Judging the performance of the scheduling method, and the impact different
job runtime prediction approaches have on the deadline adherence, becomes a
challenging task when a long, highly heterogeneous, production workload trace
is used. The simulation results will therefore be assessed on the following three

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 146

D e ad lin e d is tr ib u tio n fu n c tio n C o rre la tio n o f a c tu a l jo b ru n tim e s vs. m o d a l d e a d lin e s

0.9

V1 0.8

0.7

■x 0.0

5 0 .5

o

0.3

| 0.2 £

io:!10-’ 1 0 ' 105 10 '

9

7

6

4
3

1

2 3 4 5 G

R e q u e s te d d e a d lin e [seconds x 10('j

8 91

(a) D eadline d istr ib u tio n fun ction (b) R u n tim e vs. D ead lin e sca tter plot

Figure 6.3: Cumulative distribution function of deadline multiplier values / gen­
erated using a modal algorithm and showing strong preference for human ” round”
values. The scatter plot indicates a very weak correlation between job runtime
and requested deadline.

metrics:

Deadline hit ratio is the first and the most obvious performance metric. The
ultimate goal is to maximise the number of jobs finished before their deadline for
any given workload. While this criteria is easy to relate to, it treats all missed
deadlines equally, without respect to the amount of the deadline overrun. In a
soft-deadline system, such as the proposed Grid deadline scheduling, a certain
degree of leniency is implied and a small amount of deadline overrun may be
acceptable (provided a certain virtual ‘‘monetary” credit is given back to the
user in the Grid economy concept).

Deadline breakage statistic looks at the location and dispersion of overrun times
and tries to explain in more detail how well the scheduler has managed the
deadlines. Clearly, an approach with a lower average overrun, lower dispersion
and a smaller number of outlier values is more desirable and leads to better,
more dependable performance. In examining the amount of deadline breakage
both absolute (seconds) and relative (percentage of the actual job runtime) values
will be considered. Any scheduler bias, or preferential treatm ent of a certain class
of jobs, would be made obvious by a larger disagreement of these two measures.

Underrun and overrun distributions plotted as the cumulative distribution func­
tions round up the analysis of deadline adherence for each scheduling method and
offer a way of direct comparison. Preferably, overrun times distribution should
be head heavy, and can be used to study the effect that ”softening” the deadlines
would have on the fraction of completed jobs. Distribution of deadline underruns
is equally important, as heavy tail behaviour indicates lower optimisation with

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 147

more slack time and thus lower overall utilisation. Ideally, the scheduler would
have all the jobs finish as close to the deadline as possible to increase the chance
of servicing an unexpected demand of short deadline (and thus high value) jobs.

6.3 Deadline Scheduling Performance

This section will present and discuss the results of the scheduling simulation using
different job execution time forecasting algorithms and scheduling methods. Care
was taken to present the same input workload to the simulator on each run, and
in cases where this was not strictly possible (for example due to different training
requirements of the MD and ARMA prediction methods the number of jobs
was slightly different), checks were made to ensure the overall integrity of the
workload.

Given the importance of the deadline distributions on the scheduling perfor­
mance, results are reported separately for the two deadline generation methods.

6.3.1 Fraction of Deadlines Made

Two bar chart plots in Figure 6.4 show the percentage of jobs tha t have been run
and completed prior to their, simulated, user requested deadline. Immediately
obvious is the fact that at least three quarters of the jobs, whether scheduled using
FCFS or LTTR strategies, finished before the deadline. The results also reveal
a rather small difference between the on-time completion of the jobs scheduled
using the FCFS and the predictive scheduling methods. For uniform deadline
distribution, the best performing method is the LTTR-MD followed by the LTTR-
ARMA. The difference between each of these and FCFS is around 1% - 1.5% or
6000 to 7500 jobs. In the case of modal deadlines, LTTR-ARMA is clearly the
best performing method leading FCFS by almost 5% (or 30,000 jobs).

The deadline hit ratio metric, although showing a measurable level of perfor­
mance improvement, suggested tha t the benefit of using the predictive scheduling
method was less than anticipated. In depth analysis of the job arrivals and their
durations in the input workload revealed that for the first six months the facility
was able to service all the submitted jobs with a manageable amount of con­
tention. Around week 34 however, the cluster had suddenly become saturated
with numerous submissions of very long running jobs (see the ‘‘hotspot” in Fig­
ure 4.40 on page 106). This causes all the jobs submitted after this time to miss
their deadlines due to the lack of available resources, regardless of the scheduling
methods applied.

6.3.2 Deadlines Breakage Statistics

The starvation of resources tha t the Grid was experiencing further stresses the
need to compare the amount of deadline overrun between the scheduling methods,

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 148

t r a c t io n o f jo b s fin ish in g on t im e - u n ifo rm d e a d lin e s F ra c tio n o f jo b s fin ish ing o n t im e - m o d a l d ea d lin e s

0.95

0 .90

0 .70

0.95

0.90

F C F S L T T R - M D L T T R - A R M A

S ch ed u lin g M e th o d

L T T R - M D L T T R - A R M A
S ch ed u lin g M e th o d

(a) U niform d ead lin es (b) M odal d ead lin es

Figure 6.4: Percentage of jobs finishing on or before their requested deadline
for uniform and modal deadline distributions. For uniform deadlines, predic­
tive methods achieve around 1.5% improvement, while for modal deadlines the
adherence is increased by almost 5%

and use it to assess which approach has managed to best minimise the negative
effect of the lack of resources.

Comparison of Breakage Times between Scheduling Methods

Figure 6.5 compares the mean deadline miss times (in seconds) between the
scheduling methods for both uniform and modal deadlines. The benefit of the
predictive approach in now clearly visible as both LTTR-MD and LTTR-ARMA
methods have significantly lower average deadline miss times than the FCFS. In
fact, the LTTR-ARM A has reduced the mean overrun time by almost 11 times
compared to the first come first served scheduling.

These results show that faced by the inevitable missing of the requested
deadline due to the lack of resources, predictive approaches are still able to
prioritise remaining workload to reduce the amount of mean deadline overrun.
The superior prediction capability of the ARMA model enabled the scheduler to
prioritise the jobs more precisely and time their execution closer to the deadline.
As a result, LTTR-ARM A has managed to deliver mean overrun times almost
five times lower than those of LTTR-MD.

Figure 6.6 shows deadline miss times as percentages of the actual job run
time. The plot confirms the superiority of the predictive scheduling methods,
and in particular the LTTR-ARMA approach. The importance of these measures
is in weighing the amount of scheduling bias placed on the long running jobs.
The absolute value (in seconds) of the deadline overrun time could have simply
been reduced by ensuring very long jobs do not miss their deadlines at the cost
of penalising shorter jobs. However no such bias was detected, as shown by
improvements in this scale insensitive metric.

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 149

M ea n v a lu e o f d e a d lin e m iss t im e - u n ifo rm d ea d lin e s M ean valu e o f d e a d lin e m iss t im e - m o d a l dea d lin e s

F C F S L T T R - M D L T T R - A R M A

S ch ed u lin g M e th o d
L T T R - M D L T T R - A R M A

S chedu liim M eth o d

(a) U niform d ead lin es (b) M odal dead lin es

Figure 6.5: Comparison of central tendencies in absolute terms (seconds) of
deadline overruns using mean values. Predictive methods exhibit significantly
lower average overrun with both uniform and modal deadlines

Location and Dispersion of Deadline Breakage Times

In a data set with outlier values or skew, the mean is often a poor representation
of the central tendency of the distribution. From the scheduling performance
perspective, the presence of these extreme values and asymmetry in the deadline
overrun times is a negative characteristic reducing the reliability of deadline
adherence.

Box plots of the deadline overrun times for the uniform deadline distribution,
given in Figure 6.7(a). show a significant reduction in the number and scale of

D ciulline m iss ;is p e rc e n ta g e of jo b ru n t im e - u n ifo rm d ea d lin e s D e ad lin e m iss as p e rc e n ta g e o f j o b ru n t im e - m o d a l d e a d lin e s

F C F S L T T R M D L T T R - A R M A

S chcduliim M eth o d

F C F S L T T R - M D L T T R - A R M A

S ch ed u lin g M e th o d

(a) Uniform dead lines (b) M odal d ead lines

Figure 6.6: Comparison of central tendencies in relative terms (percentage of
actual job times) of deadline overruns using mean values. Predictive methods ex­
hibit significantly lower average overrun with both uniform and modal deadlines.
Comparison with the absolute terms plot reveals no bias towards short running
jobs.

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 150

Boxplot of deadline miss times - uniform deadlines Boxplot of deadline miss times - uniform deadlines w/o outliers

15

5

0
FCFS

Scheduling Method

(a) All missed deadlines

3.5

Js 2.5

'=
-

0.5

FCFS LTTR - MD LTTR - ARM A
Scheduling Method

(b) Missed deadlines w /o outliers

Figure 6.7: Comparison of location and dispersion of deadline overruns in absolute
terms (seconds) between scheduling methods for uniform deadline distribution.
Figure (b) shows a zoomed in view of the same data without outlier values.
Predictive methods exhibit significantly lower median values, less extreme outliers
and smaller interquartile range than the non-predictive FCFS method.

extreme outlier values between the FCFS and the LTTR-MD. The LTTR-ARM A
was especially successful, with very few remaining outliers close to the upper
quartile of the distribution.

To better judge the medians and interquartile ranges of the overrun times for
the three scheduling methods, the box plot was redrawn in Figure 6.7(b) with
the outliers removed. Again, LTTR-ARM A performs best with the lowest central
tendency and the tightest value distribution. It is also the least skewed of the
considered approaches, with its mean and median most closely matched.

A similar set of plots in Figure 6.8 examine the deadline miss times for the
modal deadline distribution. The behaviour of the scheduling methods is very
similar to the uniform model, with somewhere higher medians due to the more
demanding deadline model. The combination of the predictive scheduling and
good forecasting performance in the LTTR-ARMA approach leads to the lowest
number of outlier values, lowest median and the lowest dispersion amongst the
methods considered.

6.3.3 Distribution Functions of Deadline Adherence

Previous metrics have mainly dealt with the deadline misses and the overrun
times, the most important performance aspects of the deadline scheduler. How­
ever, the amount of spare time left to the requested deadline following a job’s
completion is another measure of the efficiency of the scheduler. While a certain
amount of such slack is desirable to avoid over-reliance on the accuracy of pre­
dicted job execution times, large amounts of spare time could be an indication of
either poor runtime forecasts or poor ordering of jobs by the scheduler.

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 151

Boxplot of deadline miss times - modal deadlines Boxplot of deadline miss times - modal deadlines w/o outliers

15

10

5

0
FCFS LTTR - MD LTTR - ARM A

Scheduling Method

(a) A ll m issed dead lines

3.5

3

2.5

2

1.5

1

0.5

0
FCFS LTTR - MD LTTR - ARM A

Scheduling Method

(b) M issed deadlines w /o ou tliers

Figure 6.8: Comparison of location and dispersion of deadline overruns in absolute
terms (seconds) between scheduling methods for modal deadline distribution.
Figure (b) shows a zoomed in view of the same data without outlier values. Even
for more challenging modal deadlines, predictive methods show vastly superior
performance compared to non-predictive FCFS method.

Figure 6.9 shows the distribution function of spare time to deadline for the
uniform and the modal deadline distributions. Analysing the uniform deadline
plot, the distributions for the FCFS and the LTTR-MD approaches are almost
identical. The LTTR-ARMA curve has a slightly steeper slope and a better
tail-off characteristic indicating tha t 95% of jobs finish with less than 500 sec­
onds of spare time compared to 1450 seconds for the LTTR-MD and the FCFS
approaches.

In the case of modal deadlines, the spare time distributions of all three
scheduling methods are almost identical. One of the reasons is certainly the more
demanding deadline model, and the loss of sensitivity due to the uncorrelated
and modal nature of the deadlines.

The cumulative distribution functions of the deadline overrun times are given
in Figure 6.10. Both predictive scheduling methods have steeper slopes than the
FCFS indicating better adherence with lower overruns for any given probability
percentile. In particular, the LTTR-ARMA curve does not suffer from a long tail
behaviour which was the cause of numerous outliers in the other two scheduling
methods.

Similar performance benefits from the use of predictive scheduling are evident
with the modal deadline distribution. These plots are also valuable in considering
the effect that “softening” the deadline would have on the fraction of made
deadlines. For example, a “safety factor” of 1000 seconds applied to modal
deadlines would, in case of the FCFS scheduling shift another 10% of the jobs
from missing the deadline to making it. But for the predictive approaches, the
same safety margin would have caused over 30% more jobs to make the deadline.

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 152

Spare time for jobs finishing before deadline Spare time for jobs finishing before deadline

 FCFS
- - LTTR-MD

LTTR-ARMA
0.9H

Vl 0.8

1 0 7
J? 0.6

0.5
ov3
>» '

3 0.3
3
I 02 £

0.1

10s104
Spare time to deadline [seconds]

(a) Uniform d ead lines

 FCFS
- - LTTR-MD

LTTR-ARMA
0.9

V I

| 0.7

§* 0.6 >
jj 0-5
"o'o
a 0.3

| 0.2
£

0.1

102 103
Spare time to deadline [seconds]

(b) M odal dead lines

Figure 6.9: Comparison of cumulative distribution functions of deadline spare
time in absolute terms (seconds) between scheduling methods for uniform and
modal deadlines. Compared to other considered approaches LTTR-ARMA
method exhibits best just-in-time scheduling performance with lowest amount
of deadline spare time.

6.4 Chapter Summary

The chapter has analysed the deadline adherence performance of a novel pre­
dictive scheduling algorithm dependent on the job runtime forecasting system
developed by the author. The simulation methodology has looked at the influ­
ence of the accuracy of job execution time predictions on the deadline overrun
times, and the sensitivity of those values to the deadline generation model used.

The results have shown that, despite the resource starvation and subsequent

Distribution of deadline miss times Distribution of deadline miss times

 FCFS
- - LTTR-MD

LTTR-ARMA
0.9

5P 0.6

0.5

0.4

0.3

i2 io4 i
Deadline missed by [seconds]

 FCFS
- - LTTR-MD

LTTR-ARMA
H 0-9

V 0.8

! «

g> 0.6

0.5
o 0.4o

0.3
■§
•S 0.21ft. 0.1

10° I2 104
Deadline missed by [seconds]

(a) Uniform d ead lines (b) M odal dead lines

Figure 6.10: Comparison of cumulative distribution functions of deadline overruns
in absolute terms (seconds) between scheduling methods for uniform and modal
deadlines. Compared to other considered approaches LTTR-ARMA method ex­
hibits shortest tail-off and hence least amount of outlier values.

CHAPTER 6. DEADLINE SCHEDULING EVALUATION 153

mass missing of the deadlines, the latest time to run (LTTR) predictive scheduling
method managed to greatly reduce the amount of deadline overrun compared
to the common first-come-first-served batch scheduling method. The value of
accurate job execution time predictions was underlined by the LTTR-ARMA
method which delivered best overall performance the with lowest average overrun
times (both mean and median), smallest dispersion of overrun values (very few
extreme outlier values and smallest interquartile range), and the best queue
optimisation with the smallest amount of slack time.

Chapter 7

Related Work

The literature survey given earlier in Chapter 3 offered an overview of the previ­
ous research work relevant to the Grid scheduling, predictions of the resource’s
performance and job metrics, characterisation of distributed system’s workload
and other related topics. The purpose of this chapter is to compare and discuss
the approaches, methods and findings of this thesis to those of the most recent
and most similar work by other scientists.

7.1 Workload Characterisation

The majority of the past distributed workload characterisation studies have been
done based on a limited number of traces collected in the 1980-90s at the legacy
parallel clusters and deposited in the Parallel Workload Archive*. While these
are useful as a general starting point for research into the properties of the Grid
workload, the specific design issues and resource management policies (already
discussed in Section 2.1) of the Grid suggest these characterisation studies are not
sufficiently representative of the likely load presented to a utility compute Grid.
This section will therefore only treat the most recent attem pts to characterise
Grid workload based on the traces collected by other researcher in the period
2003-2005 (made publicly available in 2006) and compare them to the findings of
this thesis.

Hui Li, David Groep and Lex Walters have in [26] studied a 2003, 12 month trace
from the Distributed ASCI Supercomputer 2 [212] (DAS-2), a research Grid fa­
cility made up of homogeneous commodity hardware. The purpose of this study
was to model the workload characteristics and enable the evaluation of differ­
ent scheduling approaches. Li has found the facility to be highly underutilised
with average load between 6-22% which, compared to a production facility such

‘ h ttp ://w w w .c s .h u ji.a c .i l/ la b s /p a r a lle l/w o r k lo a d /

154

http://www.cs.huji.ac.il/labs/parallel/workload/

CHAPTER 7. RELATED W ORK 155

as the CCC with load exceeding 80%, to some extent trivialises the resource
management and scheduling process.

DAS-2 job arrivals show a pronounced weekly and daily cycle with peak
submissions on Wednesday and between 09:00 and 19:00 hours, while the yearly
and monthly cycles are not clear. Both of these findings agree with the arrival
process observed at the CCC. Analysing the job parallelism, the author’s have
found ambiguous correlation to the job runtime, and have observed the previously
reported tendency for power-of-2 requested CPU values, although 62% of jobs
require only one or two CPUs. This is a strong indication of the presence of
serial jobs as the local policies on DAS-2 prevent assignment of different jobs
onto different CPUs of the same dual-CPU machine.

The job memory usage was low and very modal (due to the use of shared
libraries) and strongly correlated to the job runtimes. While the same was found
to be true in the CCC trace, the nature of the memory usage monitoring generally
prevents this information to be used for ex-ante predictions of the execution times.
Jobs were found to run between 374 and 2427 seconds, very modest compared
to the CCC’s span of seven orders of magnitude, and attributed to the research
nature of the facility. Regardless of this, the reported coefficient of variation
(CV) of job runtimes is up to 16. As a consequence, the suggested Weibull and
log-normal distributions does not provide a very good fit when applied to the
non-partitioned workload.

The study briefly looks at the user behaviour finding repetitive behaviour in
the submission of jobs: a small number of applications are run very frequently
and a much larger fraction jobs are run just once. Contrary to the numerous
other reports previously discussed, Li finds significant correlation between the
actual job runtime and the user’s requested time. Overall, the choice of the
characterisation approach and studied metrics taken by Li supports and validates
those taken by the author of this thesis. The analysed trace however seems to
lack the diversity and dynamics of a production environment such as the CCC.

Alexandru losup, Hui Li, Lex Walters et al in [157] build on their previous work by
examining traces extending over six or more months of the year 2005 from three
production Grids (LCG [213], Grid3 [214] and TeraGrid [215]) and an academic
research Grid (DAS-2 [212]). The work aims to offer a general insight into how
today’s Grids are used and help in designing the infrastructure and services for
future installations. Additional focus of the work is in quantifying the fairness of
the delivered scheduling and the level of user satisfaction. The work concludes
with a discussion of the data collection problems on the Grid and calls for a
better integration of the Grid resource monitoring systems, much in line with
the author’s arguments for developing an extension to the Ganglia monitoring
system (see Appendix A.2).

The authors report high utilisation levels (60-80%) on production systems,

CHAPTER 7. RELATED W ORK 156

and a low load of only up to 10% on the DAS-2 research Grid. Such findings
confirm tha t the CCC, with its utilisation of over 80% is indeed a very highly
loaded, and thus difficult to schedule system. The observed arrival process is
strongly influenced by the weekly and daily cycles, while the inter-arrival times
are very bursty and indicative of “bag-of-tasks” submissions. Memory use on
these systems is also reported to be highly modal.

Analysing the job execution times, the study has found production facilities
running much longer jobs (with the mean of « 15,000s, and the 95^ percentile
of « 60,000s) than the academic ones (with the mean of « 350s, and the 95th
percentile of « 600s). The CCC job runtimes are therefore similar to those
reported for the other production Grids, as was shown in Figure 4.15 on page 83.
Iosup also reports that an overwhelming fraction of jobs on the production Grids
are of either serial or “embarrassingly parallel” type requesting a single CPU and
requiring no synchronisation with the other job instances. Even on the DAS-2
research grid, they report the number of serial jobs submitted increasing tenfold
in two years.

Considering user behaviour, the authors of this characterisation study have
noted the so called 10/90 phenomenon with a small number of users subm itting
largest numbers of jobs and a small number of jobs responsible for largest fraction
of the CPU usage. The workload was also evolving over time, and this was evident
at the system, VO and user levels. Both of these findings are consistent with the
behaviour observed at the CCC which was crucial in developing the approach
presented in this thesis.

Emmanuel Medernach in [27] examines a 10 month, 2005 LPC cluster in the
EGEE Grid [29] workload in the context of modelling (using Markov chains) and
simulating different scheduling policies. The cluster considered is a homogeneous,
space shared installation and a part of the EGEE infrastructure. The workload
is analysed with respect to two partitioning metrics, VO owning the job and the
queue to which the job was submitted. The workload consists of only two user
applications and regular administrative jobs and therefore compares poorly to
the diversity found in the CCC trace.

Medernach analyses the arrival process and observes a daily cycle with a spike
of job submissions at full hours due to the repetitive and automated submission
of the administrative test jobs. Arrivals are non-Poisson, bursty and with a high
CV value. In examining the job queue times, Medernach observes their very
high CV value (« 22) and comments on the wide variation of waiting times
experienced by different VOs, and the blocking of shorter jobs by the very long
running ones. This leads to the suggestion that a measure of “relative urgency”
would be beneficial, and further motivates the deadline approach taken in this
thesis.

Considering the job execution times, this study finds that a general model

CHAPTER 7. RELATED W ORK 157

spanning the entire distribution is unlikely and proposes a high order (3-6) log-
uniform one. The author has found user predictions of the job runtimes to be
inaccurate and generally uncorrelated to the actual execution times. Importantly,
Medernach has found job execution times are strongly autocorrelated, thus con­
firming the CCC findings and supporting the time-series forecasting approach
taken in this thesis.

Menno Dobber, Rob van der Mei and Ger Koole in [28] examine the execution
times of compute-bound jobs on the PlanetLab [216] space and time shared
heterogeneous academic research Grid. Unfortunately, the workload is synthetic,
generated by the authors running consecutive and identical tasks and is therefore
of very limited use in studying the usage of production Grid clusters.

Regardless, they have found that, due to the process preemption on the time
shared hardware, the job runtime distribution is bursty and with many high
value outliers - suggesting a long-tailed effect may be present. Dobber observed
great variability of the runtimes indicated by a high CV value, and their strong
autocorrelation leading to a more pronounced long-term fluctuation.

Summary

The characterisation of the Grid workload is still very scarce due to the novelty
of the Grid technology and the limited amount of the available production Grid
traces. Presented work supports the views taken in this thesis tha t a utility com­
pute Grid would be a space shared, non pre-emptive, homogeneous resource on
the individual cluster level. The majority of the characterisation work investi­
gates the properties of the job arrival cycle and the job runtimes, reporting on
their value distributions, seasonality, and variability (by using the coefficient of
variation metric).

Job arrival cycle

Daily Weekly Bursty

Modal Memory Use Utilisation

Li • • • • 5-10%
Iosup • • • • 60-85%
Mendernach • •
Lazarevic • • • 89%

Table 7.1: Comparison of related Grid workload characterisation research with
respect to job arrival patterns, job memory allocation and overall system utilisa­
tion.

A summary of the findings by the reviewed work relating to the job arrival
cycle and the overall facility utilisation is given in Table 7.1. The daily cycle was
reported in all of the workloads, and the weekly in all but one. The utilisation

CHAPTER 7. RELATED W ORK 158

varied significantly depending on the nature of the facility but was generally
under 10% for academic installations and over 60% for production Grids.

The overview of the statistical properties of the job runtimes, job queueing
times and the fraction of parallel jobs for the reviewed characterisation studies is
given in Table 7.2. Clearly, the range of job execution times varies significantly
between the Grid installations, and is an im portant aspect into their target use.
A very short maximum job runtime, like those reported by Li and Dobber, imply
tha t those Grids are mostly used as testbeds and are not representative of a more
complex workload expected at a production facility.

The tendency of the users to almost exclusively submit sequential jobs is
supported by all of the listed studies, which also unanimously report the log-
normality of runtimes and their high variability. The properties of the queue wait
times, where reported, are also characterised by a high variability. Their other
statistical properties, including their central tendency, are highly conditional on
the arrival process and the distribution of job runtime values.

Job execution time

Range (s) CV Distrib. Pari, jobs Queue time
log-normal

Li < 2500 5 - 1 6 gamma
weibul

38%

Iosup < 5 • 105 2 - 1 2 log-normal « 0% modal
short

high CV

Medernach < 1.7- 105 3 - 1 2 log-normal

long-tail

0% varies
between

VOs

Dobber < 120 0 .2 - 1.8 multimodal
autocorrelated

0%

Lazarevic < 106 0.6 - 15
log-normal
long-tailed

autocorrelated
0%

high CV
long-tailed

Table 7.2: Comparison of related Grid workload characterisation research with
respect to job execution time, degree of job parallelism and queue wait times.

Overall, the survey of the closely related Grid workload characterisation re­
search supports the findings of this thesis and highlights its distinct contributions
in the analysis of the evolution of job properties and their temporal characteris­
tics. The need for further studies on the usage statistics of the real-world, pro­
duction Grids is clear and motivated by the importance of the load characteristic
in all stages of Grid system planning, provisioning and management.

CHAPTER 7. RELATED W ORK 159

7.2 Job Execution Time Forecasting

From the survey of previous work given in Chapter 3, it is evident tha t various
predictive techniques were extensively used to forecast the dynamic properties of
the distributed computing systems, such as the network performance, host load
or available memory. Different approaches were also suggested for prediction
of the execution times of distributed computing jobs and the closely dependent
metric of queue wait times and job start times. In this section, the focus will be
on comparing the work presented in this thesis to the most recent and relevant
research that uses historical Grid utilisation to predict future job execution times.

In this context, it became clear from workload characterisation experiences
that for all but the trivial workloads, jobs must in some way be grouped or
partitioned into similarly behaving clusters before attem pting to fit them with a
predictive model. The primary comparison between this thesis and the previous
work will therefore be based on the two following aspects: the metrics and the
methods by which the entire workload is partitioned, and the actual forecasting
algorithms used to make the predictions.

Warren Smith, Ian Foster and Valerie Taylor in [126] focus on developing a search
algorithm for job properties yielding the best similarity and predictability. The
authors implement an autom ated discovery of partitioning metrics based on the
greedy search and genetic algorithms. In line with the CCC results, they have
found that the job owner and the job name are the most significant partitioning
metrics. However. Smith does not look into the temporal job properties (such as
the time and date of submission) but defers this for further work.

Forecasts of the job runtimes are made either as absolute values or relative
to the user supplied execution time estimate. Contrary to commonly reported
results, Smith has found tha t the use of user estimates improves the accuracy
of predictions by 23-43%. These predictions were made using two prediction
algorithms: MEAN - averaging over the entire history of similar jobs, and LR
- linear regression over the previous job runtimes and the requested number
of CPUs. Smith reports the accuracy in absolute terms (minutes) and as a
percentage of mean job runtime ranging between 40-58% for genetic algorithm
and 40-65% for greedy search.

Unfortunately. Sm ith’s work is based on 12 month long traces from four
parallel clusters dating back to 1995-96 which are not representative of the current
Grid usage (see Section 2.1). The choice of the accuracy measures together with
the unknown statistical properties of the job runtimes makes direct comparison of
results difficult. The forecasting methods are simple and largely nonparametric
but they do have a significant prediction error. However, the better performing
genetic algorithm is generally considered computationally expensive [217] and
may not be suitable for online use with extensive Grid usage histories.

CHAPTER 7. RELATED W ORK 160

Byoung-Dai Lee and Jennifer Schopf in [129] aim to predict the application run­
times on space and time shared homogeneous resources with a varying background
load. They propose the use of '‘filters” to generate subsets of similar job runs
and resource conditions based on the application input parameters, degree of
job parallelism and '‘resource capacity” metrics such as the machine load, net­
work bandwidth and latency. Predictions are generated using a linear regression
algorithm and its accuracy reported using normalised percentage error.

Presented results show a significant improvement in forecasting performance
when a filter is applied, reducing the average error from almost 50% to between
20% and 30%. However, the selection or the number of filter criteria does not
reduce the error any further. From a number of offered resource status metrics,
the measure of background load is the dominant one consistently leading to the
best predictions.

Despite returning more accurate runtime predictions using a similarly simple
forecasting algorithm as Smith. Lee significantly limits his scope, and thus appli­
cability of his approach, to applications with deterministic runtimes influenced
only by their input parameters and not by the distribution of the input data set.
The performance of Lee’s prediction method is evaluated by using only two cus­
tom applications run separately, which is hardly representative of the real-world
workload reported on the production Grids.

Hui Li, David Groep, Jeff Templon and Lex Wolters in [218] predict job execution
times in the context of queue wait time forecasts. The work is based on a 3
month 2003 trace from the NIKHEF cluster of the European D ata Grid facility
[219]. They consider partitioning the workload using all metrics available in
the standard accounting records such as the job's subm itting username and VO.
the name of the job and its submission queue as well as the number of requested
CPUs. The grouping metrics are selected using an undisclosed and undocumented
heuristic approach which has excluded the degree of parallelism and the job
name as parameters providing no extra categorisation information. No temporal
metrics have been considered or used in partitioning the workload.

Li implements a windowed mean (WM) and linear regression (LR) forecasting
algorithms and undertakes a limited quantitative analysis to choose the best order
for these. He concludes shorter windows sizes are better and selects WM(1) and
LR(5) as the predictors. The accuracy measures are simply reported in absolute
terms, as the average error in seconds, and as the percentage value of the average
job runtime. These errors were in the 14-35% range. Li has also implemented a
simple “expert system" which selects the next forecast based on the error values
made in the previous prediction step.

This work is a noteworthy attem pt at generating job runtime predictions
based on the historical information, and had produced usable results. The
NIKHEF workload is not widely used and analysed and. by the very limited

CHAPTER 7. RELATED W ORK 161

information provided by Li (average runtime of 4672 and 11537 job entries), it
is not possible to conclude how deterministic the workload is and whether its
statistical properties are indeed representative of a production utility Grid. The
heuristic used for the job partitioning has not been discussed, and it is unclear
if this process is autom ated and adaptable to different usage patterns. The
exclusion of the job name metric is contrary to the CCC findings where such
information, although not always available, was shown to be of good use. Li
has used simple prediction algorithms, and while they gave reasonable accuracy,
the process of their param etrisation seems opaque. As with other related work,
the offered accuracy measures are not directly comparable and should only be
considered together with the workload used. In his most recent work [220], Li
has looked at using the genetic algorithms at the workload partitioning stage
and implementing instance based learning [221] runtime predictors.

David Talby, Dan Tsafrir, Zviki Goldberg and Dror Feitelson in [222] aim to replace
the user runtime estimates in backfilling* FCFS schedulers with system-generated
predictions. The work is an extensions of Tsafrir’s simple forecasting method
(presented in [158]) of averaging the runtime of the last two jobs subm itted by the
same user. For grouping of similar jobs, Talby uses the degree of job parallelism,
the user’s runtime estimate and the executable name. But the proposed matching
algorithm requires an explicit and ordered list of these criteria to be supplied. The
work also proposes a novel partitioning algorithm based on the concept of ‘‘user
sessions” : continuous temporal periods of per-user activity which were formalised
by Zilber in [223] and found to have reduced variance between subm itted jobs.
Talby attributes jobs to the same session if the think time^ between them is less
than 20 minutes, a value taken from [223].

The prediction algorithm is a simple median of the last three jobs matching
the similarity requirements. The accuracy measures used are relative to the
author’s previous implementations and are very difficult to interpret and compare.
Contrary to their starting point in Tsafrir’s work [158], the authors strongly
favour job similarity over recency.

Although this work is based on an extensive workload collection of over
400,000 jobs from four different parallel computer sites, these are likely to
have significantly different statistical properties than modern Grid installations.
The interesting approach of user sessions offers strong support for considering
the temporal characteristics and the evolution of the workload as was done
in this thesis. Despite this. Talby’s work is dependent on too many arbitrary
parameters to be truly applicable in the context of an automated, utility
computing environment.

’ T h e optim isation process qu eu ein g sm aller and shorter jo b s ahead o f th e larger on es w hich
are unable to start due to insufficient resources.

^Defined as tim e betw een th e term in ation o f th e previous and th e su bm ission o f th e next
job

CHAPTER 7. RELATED W ORK 162

Peter A. Dinda has in [128] introduced a Running Time Advisor system for pre­
dicting the execution times of compute bound, moldable and interactive virtual­
isation applications on homogeneous space and time shared distributed systems.
The basis of this work is D inda’s previous seminal research into the prediction of
host load using time-series models [107].

Due to a very specific and narrow scope of the applications whose execution
times it is intended to predict, Running Time Advisor does not attem pt to group
the jobs into similarly behaving groups. Instead, the predictions of the running
time of a task are computed from the prediction of the host load and the nominal
execution time of a task on an unloaded host. Therefore, the Running Time
Advisor effectively predicts the slowdown an application of a known execution
time will experience due to the background load on the worker node.

Dinda’s work on the prediction of the host load and his use of time-series anal­
ysis and forecasting methods wTere a significant inspiration for the work presented
in this thesis. However useful the presented approach could be within a specific
and limited domain, the algorithm’s dependence on the nominal job execution
time (which is either supplied explicitly or measured by running a job on an
unloaded worker node) makes it incompatible with the utility Grid environment.

Richard Gibbons and his Historical Application Profiler [152] is often quoted as
the first work in the context of the job runtimes predictions based on the historical
information. Gibbons has established the basis for the use of job properties, and
the coefficient of variation of their runtimes, to partition the workload into more
predictable sets. For that purpose he used the job name, owner’s username, the
degree of parallelism and the time the job has already executed for at the time
of making the prediction (job age). These metrics were manually combined into
six static templates used for making forecasts.

Gibbons used the mean of previous job runtimes as the primary forecasting
algorithm, applying a liner regression over the number of requested CPUs if
such number of nodes has not been requested before. The Historical Application
Profiler was tested with a synthetic load consisting of 200 jobs subm itted with
an exponential inter-arrival times with the mean of 150 seconds. Later Grid
workload characterisation studies, including the one given in this thesis, have
found this not to be a representative behaviour. The same data indicated that
the mean is not a reasonable predictor due to the extensive skew present in the
distribution of job runtimes.

Allen Downey in [109] focuses on the prediction of queue wait times based on the
forecasts of the remaining job execution times for the jobs queued. The approach
was tested on the 1994-96 traces from the SDSC Paragon [224] and CTC IBM
SP2 [225] space shared homogeneous parallel clusters. Workload partitioning was
done only on the basis of the scheduler queue to which the job was submitted.

CHAPTER 7. RELATED W ORK 163

Downey proposed a technique tha t categorised all applications in the workload
and modelled the cumulative distribution functions of their execution times. The
predictions were then made either using the median lifetime model (given a
certain age of the job) or a conditional average lifetime. These techniques perform
best in predicting how long a job will run considering it has already executed for a
given amount of time. Downey primarily used those forecasts to predict the time
until n additional CPUs will become available leading to unblocking of queued
parallel jobs.

Downey’s work was the first to report 011 the log-normal distribution of the
job runtimes, a property, also found in the CCC workload, which he continued
to examine in [25]. His prediction methods, although simple and effective, were
found not to be well suited to estimating the runtime of jobs at age zero, in other
words while they are pending in the queue [126]. A11 often raised critique of this
work is that Downey has used the entire trace to parametrise the distributions
subsequently used to make the forecasts of the very same workload. The reliance
on the user’s selection of the submission queue as a single metric for defining the
job similarity leads to a significant degradation of runtime prediction accuracy
as the user’s estimate of the job execution time (and thus his selection of the
submission queue) worsens.

Summary

The survey of the most closely related work treating the job execution time
predictions based on the historical information showed all of the approaches
attem pted to group the jobs into partitions or clusters of similar behaviour in
order to reduce the variance of the job runtimes and facilitate the prediction using
their selected statistical forecasting method. For this purpose, the majority of
the work uses a few basic job properties and, with the exception of the Talby’s
session based approach, none makes use of the temporal information associated
with the job. Methods of workload partitioning range from trivial fixed sets to
the computationally expensive genetic algorithms but are all too often not based
on a rigorous examination of the relationships between the job metrics found in
the representative Grid traces. A11 overview of the partitioning metrics used by
the author and fellow researchers is given in Table 7.3.

The most popular forecasting algorithms are based 011 the estimation of the
central tendency of a group of similar jobs using either mean or median predictors.
Linear regression is another often used technique, and was combined with the job
degree of parallelism property to exploit its relationship to the runtime found in
some of the workloads. Despite the overwhelming evidence that the job execution
times are auto-correlated 110 previous work has suggested or attem pted modeling
them using any time-series methods similar to those presented in this thesis. A11

overview of prediction methods used is given in Table 7.4.

CHAPTER 7. RELATED W ORK 164

Workload partitioning methods

VO User Job name Par all. Queue Arg. User Est. Temp.

Smith • • • • •
Lee • •
Li • • • • •
Tsafrir •
Talby • • •
Dinda
Gibbons • • •
Downey •
Lazarevic • • • •

Table 7.3: Comparison of related job execution time forecasting research with
respect to workload partitioning methods used to define “similar” jobs. Shown
job properties are submitting VO and username, executable or job name, de­
gree of job parallelism, queue name to which the job was submitted, command
line arguments passed to the job, user’s estimate of job runtime and temporal
properties such as time of submission.

Prediction algorithms

Mean Median Min-Max LR ES AR MA AR(I,F)MA

Smith •
Lee
Li #(W)
Tsafrir #(W)
Talby
Dinda
Gibbons •
Downey •
Lazarevic

•
•
•

#(W) «(W)
• (W)

•
•
•

•

• •

• •

• •

Table 7.4: Comparison of related job execution time forecasting research with
respect to statistical prediction methods used. Shown predictors are mean (win-
dowed), median (windowed), minimum - maximum (windowed), linear regres­
sion, exponential smoothing, auto-regressive, moving average and a family of
auto-regressive integrated fractional moving average methods.

CHAPTER 7. RELATED W ORK 165

7.3 Deadline Scheduling on the Grid

Research activities in the Grid scheduling field closely reflect the popularity of
the backfilling FCFS schedulers and mostly deal with the incremental improve­
ments of such algorithms. Although the concept of deadline scheduling is a well
researched topic in the real-time systems, it has seldom been considered in the
context of scheduling jobs on the distributed platforms such as the Grid. This
section introduces previous work tha t has attem pted to deliver scheduling to a
user requested deadline, and discussed their relevance to the methods given in
this thesis.

Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, Francine Berman in [226]
focus on scheduling of independent serial jobs in the multi-client multi-server
environments such as the network-enabled servers (NES [18]) and the com puta­
tional Grids. The aim of the work is to minimise the overall occurrences of the
deadline misses and their magnitude while enabling the users to make a tradeoff
between the deadline adherence and the computational cost.

The proposed algorithm computes the job processing time by dividing the
logical computational cost (in some arbitrary units) with the resource service rate,
multiplies the time to deadline by a ‘‘tuning" factor quantifying the conservatism
of the scheduler and looks for a suitable worker node that can either satisfy the
deadline or, if none are found, minimise the amount of the deadline overrun. By
using their Bricks tool [227] to simulate the deadline scheduling algorithm and
the submission of jobs onto a virtual heterogeneous, space and time shared set
of resources, Takefusa has confirmed that his algorithm delivers better deadline
adherence than the reference greedy approach.

However, this simulation has used a synthetic workload and made some im­
portant simplifications to the properties of both jobs and resources. The client
to server ratio was one to one, the network and server performance levels were
randomly drawn from a uniform distribution with a modest range, and the back­
ground load was fixed at 10% of the node's capacity. More importantly, the job
duration was drawn from a uniform distribution with the execution times of 5
to 60 minutes and a Poisson arrival process with an average inter-arrival time of
60, 90 or 120 minutes. Such distribution of the execution times and the level of
utilisation does not create a scheduling environment as challenging as those found
in the current production Grids. The deadlines are generated by multiplying the
actual job runtime by a factor drawn from a uniform distribution between 1 and
3. Such deadline generation methods was found not to be representative of the
way users are likely to specify deadlines [207] and shown in this thesis to be less
demanding of the deadline scheduler.

Regardless, the work by Takefusa introduces the concept of the job deadlines
to distributed computing, linking it to the notion of the Grid economy and

CHAPTER 7. RELATED W ORK 166

supporting its use as a measure of the job urgency. The proposed scheduling
algorithm, despite its reliance on execution time forecasting methods which can
hardly be implemented in a general-purpose production Grid, demonstrates the
possible benefits of the predictive deadline scheduling approach. The work was
the basis for some incremental improvements to the runtime predictions and
fallback methods done by Caron in [228].

David Abramson, John Giddy and Lew Kotler in [229] build on the Nimrod [99]
and Nimrod/G [98] tools to deliver soft-deadlines to the parametric study appli­
cations. These jobs, consisting of independent tasks, can be considered moldable
as they can be run on an arbitrary number of processing units. The goal of
the scheduling process is then to dynamically select the size and membership
(in terms of the computational performance and the price) of the resource pool
to ensure the overall job completion prior to the requested deadline and at the
requested monetary cost.

The authors have demonstrated a good deadline adherence performance of
the Nimrod/G scheduler, and its commercial version Clustor, using a number
of specialised applications in the field of bio-informatics, ecological modelling
and computer aided design areas. However crucial to such success is the highly
deterministic and predictable execution time of each independent task, and the
ability to dynamically change the job’s degree of parallelism in order to speed the
execution up or slow it down. While the parameter sweep application targeted
in Abramson’s work form an im portant part of the scientific workload, they are
not representative of a general-purpose compute load likely to be presented to a
utility Grid.

In this work, Abramson strongly embraces the economic aspect of the deadline
driven scheduling as the necessary lever to control the selection and utilisation
of resources. The deadline is also strongly favoured as a way of expressing the
user’s view of the job urgency and priority.

Peter Dinda has in [131] extended his previous work on the host load prediction
and job runtime estimation by implementing an advisory system that recom­
mends the execution host based on the job’s soft deadline and the CPU require­
ments. The work is limited to the same scope of interactive, compute-bound,
moldable visualisation applications and requires that the nominal execution time
of each application on an unloaded system is known in advance.

The presented Real-time Scheduling Advisor is tested using a synthetic work­
load consisting of jobs arriving consecutively with a uniform think time distribu­
tion between 5 and 15 seconds and a nominal execution time uniformly distributed
between 0.1 and 100 seconds. Clearly, with such arrival and runtime statistics,
and with no queued jobs, the workload is not representative of a Grid installation
like the UCL's CCC.

CHAPTER 7. RELATED W ORK 167

Dinda’s extensive work on the resource performance predictions, their in­
tegration into the forecasts of job runtimes, and the deadline schedulers were
strong motivating factors for many subsequent researchers, but is of very limited
applicability to the defined scope and target platform of this thesis.

Summary

The limited amount of previous work on the topic of deadline scheduling for the
distributed computing systems that was presented in this section establishes the
feasibility of the approach and confirms its added value. The concept of the job
deadlines is closely related to that of a computational economy: all surveyed
work makes provisions for such systems and the inherent tradeoff between the
cost incurred by the user and the guarantee of the deadline adherence. Finally,
job deadline is confirmed as the most appropriate measure of the urgency of each
job submitted by the user.

However, there are numerous opportunities for further work in this area. The
availability of job execution time forecasts, as delivered by the work presented
in this thesis, makes numerous advanced scheduling methods used in (near) real­
time systems portable to the Grid environment. Coupled with a barter or a
bidding economy model, the possibility for a truly global computational market
exists, on which compute resources will be traded and used like many of today’s
commodities.

Chapter 8

Open Questions

In presenting the findings and results so far, the thesis has focused 011 justifying
its approach and presenting its methods and the obtained results. This chapter
will take a critical view and discuss the most challenging aspects of the design,
development and testing stages of the deadline scheduling system presented. Ideas
for improving these will be given as the basis of further work that the author, or
other researchers, may engage in.

8.1 Workload Characterisation

Considering the necessity to analyse a large amount of Grid usage data, and the
reliance of this process on statistical tools, the workload characterisation aspect
will continue to benefit from the developments in the fields of exploratory data
analysis, data mining techniques and clustering algorithms.

Representativeness of the dataset, in this case of the workload trace, is an often
raised issue in approaches that develop models based 011 statistical analysis.
Unfortunately, due to privacy laws, intellectual property legislation and many
other reasons, good quality workload traces of sufficient duration are hard to
come by. This is even more so in the case of a novel technology such as the Grid
as it takes several years for the production grade facilities to go online and for
a reasonable amount of data to be collected. Scope for further work will be in
using these new workload traces to perform additional characterisation studies
and comparatively analyse them with legacy high performance parallel workloads.

I11 its twelve month duration, the CCC dataset analysed in this thesis eon-
tained 37 users belonging to 27 Virtual Organisations executing a diverse set of
over 2000 different job names. These properties, and a comparison with previ­
ously studied workloads (given in Section 7.1). strongly suggest it can be consid­
ered as a representative example of a workload likely to be presented to a utility

168

CHAPTER 8. OPEN QUESTIONS 169

Grid cluster serving a diverse population of users. To further support this, an
additional study of the only other publicly available Grid workload at the time
of writing was undertaken and presented in Appendix B.

Due to the way observed workload features are used later in the job execution
time predictions, the entire approach is much less sensitive to the trace repre­
sentativeness than it may initially appear. In previous workload characterisation
research, the focus was on creating generative models by capturing the behaviour
of a certain workload metric with as few parameters as possible. The model is
therefore under risk of locking onto specific features of the workload not repre­
sentative of a broader behaviour. The characterisation study in this thesis does
not need to pre-define any models as each of the forecasting methods used trains
on the actual historical usage data of the cluster whose workloads it is to pre­
dict. This reduces the threshold of the required representativeness to the support
of the assumption that job temporal- and meta-properties have a sustained and
correlated relation to the job execution times.

"Random” or uncharacteristic work tha t is not autocorrelated, or tha t could not
be modelled with a reasonable accuracy, was present to a varying degree in the
job partitions based on one, two and three clustering job properties. While this is
expectable and certainly leads to a reduction in the overall forecasting accuracy,
more problematic was the presence of few partitions containing only jobs with
a seemingly random execution times. Unless these could somehow be further
partitioned using as yet an unavailable metric into a more manageable set, the
predictive scheduling approach would not yield acceptable results for those jobs.

This issue, although noticed on a very limited scale, does offer the scheduler
the ability to differentiate the ‘‘badly” behaved jobs before they are run by the
combination of their job properties. Therefore, jobs submitted by a certain user
running a certain application can be segregated from the rest of the workload and
handled differently, either by running them on a dedicated pool of ‘‘best effort”
machines or by applying a different set of Grid economy policies.

Availability of monitored metrics and the overall transparency and compatibility
of the accounting and usage data records poses a big challenge for the entire
Grid community. Despite the efforts within the Open Grid Forum and the Usage
Records Working Group *, the author has faced many problems in acquiring the
necessary usage statistics. Clearly, a more detailed and a more granular historical
data holds a higher potential of discovering functional dependency between the
job properties and its resource usage, and could thus lead to much improved
forecasts. As this thesis has shown, even the three or four basic pieces of job
information, when used appropriately, could lead to satisfactory performance.

* ht tp ://fo r g e .g r id fo ru n i.o r g /s f /p r o je c ts /u r -w g

CHAPTER 8. OPEN QUESTIONS 170

Presently, usage records lack the ability to uniquely identify the application
being run and the parameters passed to it, information which could lead to a
significant improvement in the accuracy of the job execution time predictions. In
the future, a Grid workflow manager could uniquely hash executable files, their
parameters and input data sets bringing more transparency to the presently used
generic deployment scripts, and enabling the predictive schedulers to identify
changes in the applications being run.

8.2 Job Execution Time Forecasting

Previously, predictions of job execution times have either been provided by the
submitting user, or derived through application instrumentalisation. The will­
ingness and the ability of the users to supply reasonable forecasts seems to have
been overestimated and is not likely to be pursued any longer [116]. The only
currently foreseeable competition to the historical modelling approach is likely
to come from some form of application instrumentalisation. This technique was
previously used for high-value applications or specialised hardware, but has not
been widely adopted due to the extensive human work needed to instrum ent and
recompile software on different execution platforms. However, automatic instru­
mentation tools (proposed in [230, 231] for example), and the increased adoption
of binary compatible code and native virtualisation, helped by the support from
the hardware and operating system vendors, may one day enable an efficient
and portable way for an application to communicate its progress to the Grid
middleware.

Tim e series forecasting algorithms and parametrisation techniques used in this the­
sis present only a selection of methods that are currently available to statisticians.
More complex approaches, such as that of Autoregressive Fractional Integrated
Moving Average [232] (ARFIMA) which is the generalisation of all three classes
of linear time series models, may prove to be more accurate and adaptable.
Analysis of new production workloads may require and justify the use of non­
linear, heteroscedastic* time series models such as Autoregressive Conditional
Heteroskedasticity[232] (ARCH).

The context of the work requires all these models to be in some way auto­
matically parametrised which proved to be a challenging task. During testing,
the parametrisation heuristic had to be made robust to various extreme values
and exceptions in order to produce stable models. Further work on improving
the way in which models are parametrised, by perhaps borrowing on some ap­
proaches used in modelling the financial time series, would certainly lead to a
reduced training set requirements and an increased model accuracy.

*A sequence o f random variab les w ith different variances

CHAPTER 8. OPEN QUESTIONS 171

The scope for further work also exists in creation of an “expert system” , a
technique often used in the time-series forecasts. Several prediction algorithms,
differently parametrised and suited to different types of time-series, are run in
parallel. The expert system tracks their historical performance in predicting each
of the time series and decides which of them to base a spot prediction on.

Complexity vs. Performance trade off raises the question whether it is sensible to
develop a complex model for jobs executing for only a very short period of time.
As the entire forecasting engine should run in near real-time, spending time on
analysing and modeling short or low-value jobs may be worse than just running
them in a first-come-first-served fashion. W ith this in mind, the analysis of the
forecasting methods in Chapter 5 offered algorithms of varying complexity, and
discussion of their results revealed the trade-off in the accuracy of predictions.

Considering that the forecasting engine was a proof-of-concept implementa­
tion, the comparison of computational complexity of the presented prediction
methods was deferred until production grade code is available. This further work
may be undertaken as part of the commercialisation efforts described in Ap­
pendix C. However, based on the observations made through substantial testing
and simulation, the performance of the forecasting models should not present a
significant difficulty for any modern hardware at the point of job arrival rates well
above those observed today. Comparatively, these time-series models are much
less computationally expensive than some other proposed techniques such as the
genetic algorithms [80] used by Song [84], Aggarwal [82], Kim [83] or Cao [233],
neural networks [234]. game theory [78] used by Young [79] and Beaumont [64]
and simulated annealing[81] also used by Young in [79].

Initial lack of historical data on a newly deployed system, or for newly introduced
users and applications, can be overcome by scheduling such jobs in a FIFO
batch mode until prediction models can be fitted. The availability of different
forecasting algorithms can also be exploited by initially fitting a simpler model
requiring fewer training data points. As was shown in Chapter 5, even the three
point moving average predictor yields usable results.

8.3 Deadline Scheduling Algorithm

By making the expected job execution time available to the Grid scheduler, the
framework presented in this thesis creates an opportunity for migrating numerous
scheduling algorithms and techniques from (soft and hard) real-time systems into
the domain of utility computing. Combined with the job check-pointing and
migration that some Grid middleware supports, a truly adaptable and dynamic
platform that responds to the changing load and user priorities could be created.

CHAPTER 8. OPEN QUESTIONS 172

Deadline feasibility was not considered as deadlines had to be generated artifi­
cially and have all been at least equal to the actual execution time of the job. This
would hardly be the case in an actual production system where users would have
to be in some way guided as to the costs associated with a requested deadline as
well as a probability of it being met.

Judging the feasibility of a requested deadline could be done based on the
forecasted execution time of the subm itted job. If the deadline is within some
margin of the forecast it could be deemed feasible. Being a probabilistic measure,
this should not preclude the admission of the job as the forecasted execution
time could be grossly over-estimated and a much shorter deadline could indeed
be possible. But it could be used in combination with the Grid economy pricing
policy, and perhaps a different SLA, to reduce the penalty the Grid operator
would face if an over ambitious deadline is not met.

8.4 Chapter Summary

The successful implementation of the autonomous job execution time forecast­
ing system described in this thesis has opened up the field for significant further
research into scheduling systems which can make best use of this added infor­
mation. As such, it has given rise to some challenging new problems and these,
together with the issues faced by the author in the implementation stages of this
research, have been discussed in this chapter.

Chapter 9

Conclusions

Prompted by the need for a job scheduling method that is more flexible and
better suited to the human workflow, the thesis has set off to develop the
necessary technologies needed to support an autonomous and self-managing
scheduling system based on user supplied job deadline requirements. To this
end, the thesis contributions were threefold.

To form a rigorous and factual basis on which the relevance of job prop­
erties to runtime predictions can be judged, and to gain insight in the ways
a real-world general purpose production Grid is being used, the thesis has
presented a characterisation study of a 12 month workload from the UCL’s
CCC Grid facility. As a first Grid trace of such length and such diversity,
this workload confirmed the presence of the usual cyclic patterns occurring
in human generated activities. Compared to previous studies of parallel and
distributed workloads, this characterisation study paid special attention to the
evolution of user behaviour and workload properties over different timescales
and the correlation between temporal and other job properties, and the job
execution times. This has shown tha t a significant degree of correlation exists
and can be exploited for generating more accurate predictions. It has also
shown that the user behaviour and workload are constantly evolving and that
a dynamic and adaptable system is required to ensure adequate system modeling.

Finding that job runtimes are highly autocorrelated, self-similar and long-
range dependent, the thesis has suggested applying time-series forecasting models
011 partitions containing similar historical jobs. An exhaustive search approach
has been proposed to define pivotal job properties which, when used to partition
the workload, lead to its reduced variability and increased predictability. Based
011 the comparison of runtime variance by using the coefficient of variation metric,
the method is able to autonomously discover functional dependence between

173

CHAPTER 9. CONCLUSIONS 174

different job properties and execution times.
By using the actual trace from a production Grid cluster, exponential

smoothing, auto-regressive, moving average and auto-regressive moving aver­
age forecasting methods were compared to the benchmark windowed median
predictor. The accuracy metrics were based on the best statistical practices
for comparison of series with different location and in the presence of outliers.
Reported results demonstrate the superior performance of the ARMA prediction
method coupled to the three-dimensional partitioning of similar jobs based on
the owner VO, job name and a temporal metric defining the week in which the
job has been submitted.

With the ability to predict the execution time of a queued job, the thesis
has introduced a deadline scheduling algorithm previously not applied in the
context of distributed computing. A trace reply simulation using the actual
CCC workload was used to simulate a scheduling scenario in which jobs arrive
with user supplied deadlines. The simulation explored the effect of differently
generated job deadlines, and the deadline adherence and overrun of the proposed
Latest Time To Run (LTTR) scheduling compared to the commonly used FIFO
batch scheduler. It concluded that job runtimes forecasts, of the quality delivered
by the time-series based predictions and applied to the LTTR scheduling can
improve deadline adherence and significantly reduce deadline overrun on highly
loaded systems.

Overall, the thesis has shown that a deadline scheduling system for a utility
compute Grid clusters can indeed be based 011 an autonomous and self-managing
historical statistical prediction component that does not require any user input
or any modification of user submitted application or instrum entalisation of the
Grid middleware.

A ppendices

175

Appendix A

SO-GRM Project Related Work

The following appendix presents Grid related work undertaken as part of
the Self-Organising Grid Resource Management project supported by EPSRC
(GR/S21939) and BT Research. Throughout the three year duration of this
project the author was in charge of deploying and maintaining a Grid testbed
compromising of locally networked clusters in UCL and B T ’s labs at Adastral
Park, interconnected through a WAN link. The practical experience gained
through these activities, and the involvement in the implementation of the
Grid management components described in this chapter, shaped the further
direction of the thesis research and reiterated the necessity for autonomous and
self-organising management architecture.

The author’s two primary contributions to this part of the project were a
probabilistic Grid workload generator and an extension to a popular distributed
monitoring platform that enabled a more granular measurement of compute re­
source usage by the Grid applications.

A .l GridLoader - Grid Load Generator

The following will present the work done on the Grid application simulator, called
GridLoader. The motivation for developing such a tool will be outlined in Section
A.1.1 while the requirement capture will be given in Section A .1.2. Section A.1.3
presents the implementation of the GridLoader, followed by the results of the
functional and qualitative tests given in section A. 1.4. Section A. 1.5 concludes the
GridLoader part of this chapter by summarising the findings and giving directions
for further work.

A.1.1 Motivation

The simulation tools available in the Grid research community, as surveyed in
Section 3.5, are helpful in studying various aspects of the Grid resource man­

176

APPENDIX A. SO-GRM PROJECT RELATED WORK 177

agement and scheduling components before these are actually deployed. Once a
solution is developed and installed on a testbed system, further testing is often
needed to confirm proper end to end operation and integration with other com­
ponents. At this point, a conflict exists between the need to subject the system
to the conditions most closely resembling those found in the production environ­
ment, and the necessity to tune and control those conditions in order to facilitate
system optimisation.

The motivation behind the GridLoader workload generator was to support
in-site testing of the management components by creating a controllable applica­
tion load with the job statistics similar to those experience in the production Grid
environments. Such a tool would allow testing of the scheduling algorithm, moni­
toring components, and all other aspects of the SO-GRM management framework
in a realistic usage scenario, without the problems usually associated with running
on a live production Grid system.

A.1.2 Requirements

To represent a realistic Grid application, the GridLoader was required to simulate
processor utilisation, memory allocation and network activity. The execution of
the GridLoader would have to be fully parametrised, with a suitable tool to
facilitate orchestrating large simulation runs. Such deployment tool would be
used to decouple the overall statistical properties of the jobs subm itted to a Grid
cluster from the resource utilisation statistics of a single node.

One of the approaches for simulating a realistic application load, often used by
benchmarking applications such as SPECmark [123], is executing a representative
set of application code snippets in an autom ated way. This method gives a
degree of repeatability [235], enabling comparison of hardware implementations
by maintaining an unchanging application load. However, the probabilistic and
self-organising nature of the SO-GRM components would require a more dynamic
environment with a widely fluctuating load.

Another possible route for simulating realistic workloads is through a trace-
replay system, such as the SimGrid for example (see Section 3.5.1). Although this
is the most realistic representation of a production system workload, it may not be
scalable to the desired length or utilisation fraction, it may be difficult to obtain,
or it could cause the simulation to lock into specific properties of the system from
which the trace was taken. Therefore, the aim with GridLoader was to be able
to create a distribution of statistically similar loads while maintaining a level of
ambiguity in order to challenge the self-organising and adaptive components.

An important requirement was to achieve the right balance between deter­
ministic and probabilistic modes of operation. The simulation runs should be
repeatable, and all simulation parameters should be adhered to if any incremen­
tal improvements to the management components are to be recognised. At the

APPENDIX A. SO-GRM PROJECT RELATED WORK 178

Parse parameters

State Transition
Probability

Load_Net Load_Mem Load_CPU Loadjdle

CPU
Epoch \ /
doneyN No

Yes

All state t im er s^ No
satisfied < >—

Yes

End

Figure A.l: Logical flow diagram of the GridLoader implementation showing the
transitions between CPU, network and memory loading stages.

same time, a probabilistic element in the simulated application’s behaviour is
required for a realistic and diverse environment to form, and for SO-GRM com­
ponent’s adaptability and self-organisation to be exercised. Utilisation of different
resources may also have to be simulated with a different distribution functions
and parameters - network transfers may have substantially different statistics
than the CPU utilisation.

The GridLoader application would need to be subm itted through Grid mid­
dleware on the target site just like any other Grid application. To reduce source
code compilation issues, a simple and portable code running under user privileges
would be highly desirable.

A.1.3 Implementation

Following the established requirements, the GridLoader was implemented as a
state machine, with different states representing CPU, memory and network
loading stages. A logical flow diagram showing this structure is given in Figure
A. 1.3. State transition table can either be deterministic, moving through network

APPENDIX A. SO-GRM PROJECT RELATED WORK 179

loading, memory allocation and CPU utilisation states in progression, or fully
probabilistic.

Deterministic state transitions facilitate debugging of components under test,
and creates a behaviour similar to an “embarrassingly parallel” [236] Grid ap­
plication. A parameter sweep experiment is one common example of such an
application: it stages the input data, allocates required memory and executes a
CPU intensive core calculation tha t would usually produce a small result data set.
The probabilistic state transition scenario leads to a more sophisticated model in
which all three primary states are entered into many times with changing prob­
abilities. Although this behaviour is more realistic, and representative of a more
complex Grid application, it creates a very dynamic environment for all other
components and possible faults are hard to locate and debug. This mode should
be used in advanced stages of testing.

To ensure portability between Grid systems and the ability to compile and
execute without adm inistrator’s influence, the GridLoader was written in ANSI
C without any low level function calls or custom libraries. It was compiled
successfully on Windows. Solaris and Linux platforms.

Application Simulation Stages

As previously shown on the logical flow diagram, the GridLoader has three states
used to simulate the behaviour of a Grid application: network loading, memory
allocation and intensive computation stages.

The network loading stage opens an UDP socket to an IP address specified
as a command line parameter and transm its a random message 1400 bytes long
for the duration of the requested network loading time. The inter-packet delay
is parametrised at run time and is directly proportionate to the amount of band­
width used. Once the tinier signals the required time has passed, the socket is
closed and a flag set for state transition.

Memory allocation state requests the kernel to increase the memory allocation
to the process by the amount specified through a run-time param eter by using
the malloc function call. UNIX memory management is handled very differently
depending on the system implementation and the kernel optimisation options,
and may prevent a user process from directly managing memory allocations.
GridLoader ensures that the physical memory is actually allocated to the process
by writing random data into the virtual memory space allocated by the kernel.
The memory is freed during final clean-up state of the application, once all loading
states have been completed.

Computationally intensive part of each Grid application is simulated in the
CPU loading state. This state contains two real-time nested timers, one keeping
track of the total amount of wall time spent in the CPU loading state, and one
tracking short time slices in which CPU is toggled between full throttle utilisation

APPENDIX A. SO-GRM PROJECT RELATED WORK 180

and idle. Very frequent swaps between these two stages result in a smoothed
fluctuation of the CPU utilisation when observed at the sampling frequencies of
less than 100Hz. Total wallclock duration of the CPU loading is specified at run­
time, while the duration of each run-sleep cycle is determined in a random manner
using a predefined probability distribution function. This function is randomly
seeded at runtime, and partly parametrised through a command line option. The
benefit of this approach is tha t even for equally parametrised runs, the actual
CPU load trace would not be the same. This was an essential requirement for
the testing of the I3 security engine (see Section 2.4 and [42]): GridLoader was
therefore able to simulate anomalies in the process behaviour and test the I3
malicious process detection algorithm.

Once all the timers indicate tha t the requested loading metrics have been met,
the final clean-up stage is entered in which the allocated memory is freed, network
sockets closed, and a log file with details of the execution written. GridLoader
can also operate in a debug mode which records detailed information about the
state machine and the execution timers of each stage.

Parametrisation Options

All parameters of the GridLoader’s simulation can be supplied either via the
command line, or from a configuration file. Supported run-time parameters and
their explanation is give in Table A.I.

To give the overall cluster loading a certain statistical property, and to fa­
cilitate the generation of the configuration files for larger GridLoader runs, an
auxiliary application was developed in Matlab. Two types of parameters can be
defined with either global or local scope. Global parameters influence the overall
behaviour of the whole set of GridLoader jobs in a specific simulation run. These
are used to coordinate the job set, and are detailed in Table A.2.

The variables defined in Table A.3 set the ranges for the generation of pa­
rameters influencing the behaviour of a single GridLoader instance on the node
it is executing.

Deployment Scripts

The deployment application generates a file containing appropriate parameters
for each GridLoader instance, and a configuration file for the batch scheduling
script. The probabilistic nature of the GridLoader is here evident at different
levels. At the global level, two job sets with the same parameters will not have
the same values of individual local parameters, but in both cases those values
will fit the same, requested, statistical distribution. At the level of a single
GridLoader instance, two equally parametrised runs on the same machine will
adhere to the parameters supplied, but will achieve those targets with a different
resource utilisation profile.

APPENDIX A. SO-GRM PROJECT RELATED WORK 181

Parameter Description

NET Total time for network transfer state, expressed
in seconds

CPU Total time of CPU loading state, expressed in
seconds

MEM Integer MBytes value of total physical memory
to allocate

BURST Inter-packet delay time, expressed in /iseconds
and used to control the amount of bandwidth
used by the network transfer state

IP Numerical IP address of the peer (or sink) for
the network transfer state

PARETO-B Pareto param eter B used to influence the idle
time transitions in the CPU loading state. Large
values of this param eter cause the long tail of the
Pareto probability distribution to extend, lead­
ing to spikier CPU utilisation trace and larger
average levels of CPU utilisation. Subsequent
runs with the same value of parameter B will
not produce equal traces due to different seeding
values of the random number generator.

Table A.l: Description of the GridLoader command line parameters and expla­
nation of their influence on the execution of a single GridLoader instance.

To help visualise the job set being run, deployment application produces a
plot of parameter values with the relevant histograms, as shown in Figure A.2.

A.1.4 Self-Test Results

Before using the GridLoader to test other components of the SO-GRM manage­
ment architecture, a test of its own reliability was undertaken. Primary concern
was the quality of resource utilisation models and the adherence to the specified
parameters such as the execution time and size of the allocated memory.

To test the reliability of the overall timekeeping, a set containing 120 jobs
taking around 24 hours to complete was created and run in sequence on one of the
nodes of the Grid testbed. A simple batch scheduler script was run on a “m aster”
node and used to submit jobs through either the Globus Toolkit 2.2 middleware
or the Secure Shell (SSH) to a set of dedicated “slave” nodes. Same job set
was then re-run locally on the “slave” machines in order to differentiate between
GridLoader’s systematic error and any overheads introduces by the middleware.
Figure A.3 shows a percentage difference between the expected and the actual
execution times for a sample of 50 jobs and for all three different execution
methods.

Running on the local node, actual the GridLoader execution times are less
then 2% greater than expected. This is due to the system overheads such as

APPENDIX A. SO-GRM PRO JECT RELATED WORK 182

Parameter Description

Defines the value of Pareto probability parame­
ters for generating CPU loading times across the
whole set of jobs. Any other standard proba­
bility distribution function could be used with
appropriate parameters.

The number of GridLoader jobs to create

Used in a simple batch scheduling script , defines
the range of wait times before subm itting the
next job. The values are normally distributed
within the set range.

Also used in simple batch scheduling operation,
defines the next host’s IP address to which the
job will be submitted.

Table A.2: Description of the param eters used by the MATLAB deployment
script and influencing the global behaviour of a number of GridLoader instances
run as part of one experiment.

setting up the network transfers, allocating the memory and random number
generation, which are not accounted for in the timekeeping of the program. As
this level of increase in the execution time is intrinsic to the operating system, and
would be present for all the applications, we found that a realistic and accurate
simulation of the total length of the job can be achieved using GridLoader.

As previously described, a loose control on the level and shape of the CPU
loading can be exercised by specifying different values of the Pareto param eter
B at run time. A parameter sweep test was undertaken to establish the upper
and lower bounds of these values that provide a usable result. During these tests
it was noted that a low value of the param eter will result in a longer duration
of CPU idle time, and thus a lower average load. Higher values of the shaping
parameter cause Pareto probability function to return high values for the duration
of the CPU intensive loops and thus lead to a higher average utilisation and
pronounced load spikes. GridLoader’s probabilistic routines will create a similar,
but not equal, trace for each equally parametrised run.

Reliability of the duration of the network transfers was established as part
of the overall test of the GridLoader timekeeping. The influence of inter-packet
delay parameter was examined through a param eter sweep test. By using network
monitoring package IperP. the bandwidth utilisation between the ‘‘slave” node
executing GridLoader and a designated traffic sink node was measured. The
inter-packet delay parameter provides a soft control of the amount of bandwidth
used, and not a strict upper or lower limit. This kind of probabilistic behaviour
is sufficient for the required simulation of the network traffic and, considering the

*see h t tp : //d a s t .n Ia n r .n e t/P r o je c ts /Ip e r f/

CPU-TOTAL JPARETO
[A/B]

ITERATIONS

NEXTREQ
[MIN/MAX]

NEXT-HOST
[MIN/MAX/PREFIX]

http://dast

APPENDIX A. SO-GRM PROJECT RELATED WORK 183

Parameter Description

CPU_LOAD_PARETO_B
[MIN/MAX]

IP
[LOW /HIGH/PREFIX]

MEM
[MEAN/MIN]

NET
[MEAN/MIN]

BURST
[MEAN/MIN]

Sets the upper and lower bounds on the Pareto
B parameter; range of values is generated using
normal PDF.

Defines the range of IP values for the target IP
address of the GridLoader network peer. Could
be defined as a single IP address to simulate a
master-slave Grid environment.

Sets the GridLoader’s memory allocation param ­
eter. The value is calculated by adding a random
number with the mean of MEM_MEAN to the
minimum value defined in MEM_MIN.

Sets the GridLoader’s network transfer time pa­
rameter. Calculated in the same way as the
memory value above.

Sets the GridLoader’s inter-packet delay param ­
eter. Calculated in the same way as the memory
value above.

Table A.3: Description of the parameters used by the MATLAB deployment
script and influencing the local behaviour of each of the GridLoader instances
run as part of one experiment .

aims of the simulation, its probabilistic nature is beneficial. The use of the UDP
network protocol, and its lack of bandwidth control mechanisms, could lead to
network congestion issues in large GridLoader simulation runs. It remains to be
assessed whether such conditions would impair the running of the simulation or
add another realistic aspect of the production network environment.

Sequential memory allocation and freeing has been monitored using the Gan­
glia system, as shown in Figure A.4. The tests were carried out to confirm the
actual physical memory is being allocated, and that this could lead to memory
contention as is the case in the production environments. The granularity of the
allocations is one megabyte but could easily be reduced.

A.1.5 Conclusions

GridLoader provides a way for parametrised and probabilistic simulation of appli­
cation CPU. memory and network usage. Deployment scripts facilitate creation
of run-time parameters for large simulation runs, enabling these to follow statis­
tics of jobs observed on the production Grid facilities. Testing of the GridLoader
functionally and reliability has been undertaken and reported on.

During the stand-alone testing phase of the GridLoader, a number of minor
problems and issues were discovered.

APPENDIX A. SO-GRM PROJECT RELATED WORK 184

CPU Load HistogramCPU Load

L
NET Transfer Time

o .. • I

Memory Histrogram

U u l » «
1500 2000 2500 3000 3500 4000

Memory Allocation

-

Packet Burst Delay

Figure A.2: Distribution of individual parameter values for a sample GridLoader
experiment consisting of 200 jobs.

From the implementation perspective, a better CPU loading algorithm would
prove very useful. Some cases exist where a constant, predefined level of CPU
load should be simulated, such as in visualisation applications or other applica­
tions bound not computationally but by some other factor. These could not be
precisely simulated using the currently implemented probabilistic approach.

GridLoader heavily depends on the quality of the random numbers gener­
ated within the programme, and the seeding mechanism for the random number
generator. Although better generators than the one used in GridLoader are avail­
able, these would require additional libraries which may not readily be available
on the target platforms. As no adverse effects associated with random number
generations were observed during debug runs, the current approach is considered
adequate.

Numerous problems were caused by the real-time clock resolution and the

G r i d L o a d e r E x e c u t io n T im e D e v i a t i o n b y S u b m is s io n M e th o d

 Local
SSH

 Globus10

8

6

4

2

0 5 10 15 20 25 30 38 40 45 500
J o b n u m b e r

Figure A.3: Reliability testing of GridLoader job execution time plots a discrep­
ancy between requested and achieved job runtime depending on the job submis­
sion method used.

APPENDIX A. SO-GRM PROJECT RELATED WORK 185

android-ee13.cs.ucl.ac.uk MEM la s t hour

12 :2 0 12 :40

■ Memory used ■ Memory Shored
■ Memory s u f f e r e d ■ Memory Free

1 3 :00

■ Memory Cached

Figure A.4: Reliability testing of GridLoader memory utilisation showing alloca­
tion of and de-allocation of physical memory.

lack of synchronisation between the Grid nodes. Globus X.509 certificates have an
associated validity period with a one second granularity, and in a network without
proper clock synchronisation a certificate may become valid on one machine before
it does so on another. This leads to the job being rejected due to the incorrect
credentials, an error message often associated with other issues within the Globus
Security Infrastructure and Certification Authority problems.

Overall, the parameter generator application and the GridLoader were suc­
cessful in creating a job set with given statistics, and executing it according to
the parameters required. Appropriately parametrised GridLoader will be able to
simulate a realistic Grid application workload and present a diverse and varied
load to the Grid management components on test.

Development of the GridLoader is a distinct contribution of this thesis. Apart
from its primary intended use as a Grid application simulator described above,
GridLoader can potentially be used as a testing tool for confirming end-to-end
application level operation of Grid middleware. W ith a suitable parameter set,
the GridLoader could also be used to stress Grid hardware and middleware
components to the edge of their operational envelope, thus exposing any possible
points of failure or performance bottlenecks.

A.2 Monitoring Framework

An extension of the widely used Ganglia Monitoring Suite [160] has been devel­
oped to provide an enhanced monitoring capability for jobs running on the Grid,
and support the long term collection and storage of their resource utilisation
traces. This section will present the motivation for this work, system require­
ments, implementation details and the results of the functionality and reliability
tests before concluding with some final remarks and directions for further work.

A.2.1 M otivation

Current Grid monitoring systems, as previously summarised in Section 3.4, offer
a scalable and effective monitoring of resource utilisation on a per-node basis. As
one must assume a general case where Grid nodes will be used by other (system
or user) applications, these measurements are not representative of the actual

APPENDIX A. SO-GRM PROJECT RELATED WORK 186

resources used by any single application. Even in the case of a dedicated Grid
host, the footprint of the current Grid middleware, management and security
components is such tha t the overall node resource utilisation will be very different
to tha t of a single user application.

The author’s motivation was to extend one of the current monitoring systems
to provide process-specific measurements of resource utilisation in an unobtrusive
and scalable way. Extension to an already established monitoring system would
have the benefit of an already established user base, giving access to a wider
source of data. It will also remove any switching cost from the user’s perspective
and alleviate adm inistrator’s reservations about installing an unproven piece of
software.

A.2.2 Requirements

The basic requirements for a Grid monitoring system are support for a wide range
of operating systems and hardware architectures, effective data storage methods,
and the use of efficient and standardised communication protocols. An extensible
metric sampling interface, the possibility of integration with the Globus MDS,
and the support for XML encoded messages were the additional requirements for
a successful integration with other SO-GRM management components.

The monitoring system of choice should be able to integrate per-process re­
source utilisation metrics into the standard flow of measurement data, and fully
support storing and retrieving of such additional information through its usual
data access methods.

A.2.3 Implementation

After surveying the monitoring tools available, the decision was made to base
the extended monitoring framework on the Ganglia cluster monitoring system
[160]. Ganglia was selected for its extensible data collection interface, effective
storage of data in a fixed size round-robin databases, the use of XML encoded
measurements, and customisable unicast and multicast delivery protocols. It has
previously been extensively used with Globus Toolkit and successfully integrated
with the MDS using the Glue Schema [237]. Various platform-specific information
providers have been developed, and this modular design offers a clear path for
the implementation of per-process resource utilisation monitoring.

Ganglia Functionality

The monitoring suite is implemented through a set of Ganglia applications, com­
piled code, and shell scripts developed by the author. All code was written with
portability in mind and relies on UNIX standard libraries and script commands.
Figure A.5 presents the layout of the monitoring components in a block diagram.
Ganglia Cluster Monitoring core provides two daemon modules:

APPENDIX A. SO-GRM PROJECT RELATED WORK 187

Ganglia
Web

Frontend

'sweeps(gmetad Round-robin

j } ; Persistent
Storage

LAN / WAN

(gmond

w

Compute Nodes

(custom-
^ metric

Compute Nodes

Figure A.5: Block diagram of Ganglia monitoring components integrated with
author’s custom metric providers.

• Ganglia Monitoring Daemon (gmond): collecting basic information about
each node in predefined time intervals, encoding it in XML and providing
the network transport mechanism.

• Ganglia Meta Daemon (gmetad): receiving the information broadcasted
by all or some of the monitoring daemons, and storing it in the round-robin
databases. It also answers queries about overall state of the cluster, and
provides a programmatic interface to the queries on the data contained in
the databases.

Round-robin database (RRD)* is a fixed sized database targeted at storing the
time-series data. Each database can contain several data sources (DS), and each
data source has a number of round robin archives (RRA). These archives could
be thought of as a set of differently sized and stacked gears, with each cog slot
containing one sampled value. On database creation the frequency of rotation of
each of these gears is defined, and a consolidation function (CF) is given for each
data source. Once the gear makes a full turn all of its data is passed through the
consolidation function (usually average, minimum or maximum) and the result
is written as one sample point in the cog of the higher hierarchical gear. The
size of the database is kept constant, since the high frequency data is kept for a
limited duration before being consolidated. Depending on the target application,
this behaviour may be a desirable feature or a disadvantage.

Ganglia Monitoring Daemon can use either unicast or broadcast UDP packets
to transport the XML encoded measurements. Each gmond daemon can be set
up to either listen to other daemons (mute mode), transmit its measurements
to other peers (deaf mode), or do both. By configuring certain nodes to be
muted or deafened, a resilient distributed system can be created. In our test

*see http://oss.oetiker.ch/rrdtool/

http://oss.oetiker.ch/rrdtool/

APPENDIX A. SO-GRM PROJECT RELATED WORK 188

implementation, all but one Ganglia monitoring daemons were configured in
deaf mode. One node in the network run the non-deaf daemon, as well as
gmetad daemon, and provided storage for all databases. This centralised network
configuration was appropriate provided the size of the test network (no more than
10 nodes at any time), and the goal of the tests.

Information Providers

The author has developed custom information providers to monitor the CPU
utilisation and memory footprint of each process submitted through the Grid
middleware. These were implemented either as a shell script (using a UNIX
standard ps command), or as a pre-compiled application using the libgtop library.
Functionality is similar, as both implementations run as a daemon 011 each Grid
node and periodically sample the CPU and memory utilisation. Criteria for
process selection, and the information collected, are fully customisable. The
monitored processes can be selected by their identifier (PID), executable name,
or by username under whose credentials they are running. Information reported
can include any metric available through the UNIX /proc system.

Although process selection based on the PID is the most efficient and unam ­
biguous method, current implementation of the Globus Toolkit (V3) does not
pass the PID of the remote process to the job scheduler, nor does it make this in­
formation available through AIDS or any other means. This is a widely recognised
implementation issue, impeding improvements in several areas such as grid job
workflow management and scheduling concurrency. Next versions of the Globus
Toolkit should address this problem. Once the per-process monitoring data is
collected, it is transm itted either using Ganglia’s gmetric shell command or by
using Ganglia’s API libraries, depending on the implementation.

Database Management Tools

The characterisation of the Grid workload data presented in Chapter 4 depended
on the availability of an extensive amount of high frequency monitoring data
from a representative Grid cluster. Although alternative data collection options
were subsequently made available, for workload characterisation studies the con­
solidation feature of the round-robin databases was not beneficial as the highest
resolution measurements would be quickly lost through averaging. A shell script,
sweeprrd in Figure A.5, was developed to perform an automated data extraction
from the RRD databases. The script can be configured to retrieve data 011 specific
nodes and specific metrics of those nodes, or collect all the data available.

Time stamped measurement values are formatted in a comma delimited for­
mat, and stored as a flat text file. The script can either run as a daemon process
or be invoked by the UNIX standard cron scheduling daemon. The frequency of
execution is customisable with the obvious lower limit of at least one sweep within

APPENDIX A. SO-GRM PROJECT RELATED WORK 189

I f ' * rpfniii * fWotd ® ? N|py/129l6 23S147/gingin-w»Dfront#ftft-in<i*xph|>7m-te»cl_or a -
UCL »I —ChOMi • N«M g

Overview of UCL

There are 4 nodes (4 CPUs) up and running.
There are no nodes down.

Current Cluster Load: 4.41.2.4.1.41

i :i an
1 a hjam.aJ t

IB: 40 4 * 5 1S: 20
1-wlMite L**« ■■Odes B I imam) rrKMHi

Snapchotof UCLI

mm

sndrafti-eell.cs.ucl.ac.Mlc

|! »{"•' A k ° aô o ialoa
K m U m Utt Mar <«•. t.a*> ■ im M«r <«*• *.m

aa4rtrttf-aaia.es.Mc1 ac.c*

■ ' i z : z z1fc4« 18:00 !«:»
11oML«M last Mur fnaw o-*»

root# antffottf aaXl. • ***

Figure A.6: Cluster level screenshot of Ganglia monitoring web interface

the duration of the shortest round robin archive in the database (to prevent any
data being lost through consolidation). Database sweeps can be invoked as often
as necessary and at any time; the script will only extract new samples from the
RRD database and append them to an already present output file.

A.2.4 Test results

First phase of the monitoring suite tests was aimed at confirming the proper in­
stallation and the basic functionality of the Ganglia suite. After modifications to
Ganglia’s default settings, it was necessary to ensure core functionality has not
been affected and stable operation was maintained. Ganglia version 2.6 was de­
ployed on both BT and UCL administrative domains of our testbed Grid. Figure
A.6 shows a typical screenshot of Ganglia web front-end displaying overview of
hosts in the UCL domain.

In the second phase of testing, per-process monitoring components were in­
troduced and observations were made on the stability of the system, quality and
reliability of the measurements, and any increase in the system resources utilisa­
tion. Screenshot in Figure A.7 shows a single monitored node in the Grid under
heavy utilisation, while screen detail in A.8 shows globus-cpu-utilisation metric,
revealing the CPU utilisation attributed to a single Globus submitted job.

The third phase of the tests was designed to establish the overall monitoring
functionality and the quality of measurements. A sample GridLoader set contain­
ing 50 jobs with Pareto distributed execution time was run on a single machine
on the Grid testbed. A full set of metrics including Globus-attributed and total
CPU load were recorded through the monitoring suite with one second resolution,
averaged and published over 15 second periods. Jobs were submitted from one
of the machines in the cluster to a different machine in the same cluster using an
appropriate Globus command. A simple master-slave scheduling was used, iterat-

APPENDIX A. SO-GRM PROJECT RELATED WORK 190

a «
___ swKiowup _

4 *0p//1?8 IS .’35 l47/g«r̂ N*-wvbftonttnA'irK)«Kphp’c•UCL&h»«rwl>oiO-Ml 1 c im lw ulu|w)|j

UCL > android -ce ll x s .u cU

I
android-eell.cs.ucl.ac.uk Overview

This node is up and running

boottlme
gewc
gtnond_started
»P
machinejype
oe_name
oe_re lease

sy»_ciocl
uptime

cpu.afcte
cpu_num
cpu_speed
memjotal
mtu
swap.total

a*

Tim e and String Metrics
Vain*
Mon 22 Mar 2004 16:03:48 *0000
OFF
Tut 23 Mar 2004 1422.34 *0000
128.16.2SS147
*86
Linux
2>«.t8-M
Tua. 23 Mar 20041*2*31 *0000
Tut. 23 Mar 2004 14:22:34 *0000
1 day. 0:25

Constant Metrics
Valae
99 9%1
2088 MHz
513952 KB
1500 B
1052248 KB

an4roid-wn.cs.uc1.ac.ok L0M> last hour

2 1

f

Q IHHNU
it.«o i t w t r ao j

IMS ■ total CTM ■ UMltf FWHtM

andm14-wn.cs.oc1.ac.uk m i last hour

i
t

l

■ „ n aa tc icw ■srstascrs ■ Mia ca»

andro1d-w11.cs.uc1.ac.uk MEN last hour

400 N j

I » .

■ ataory w
■ mrnory tafftrta ■ "eaory fr»«

s£ l33 « Docwaoni Dona (219 »ac»)
oo#

Figure A.7: Node level screenshot of Ganglia monitoring web interface

ing through the job list and allowing 45 seconds between the job completion and
next job submission for any transient machine loading to settle. These transient
loads were created by the Globus toolkit job completion procedures such as the
results stage-out, process cleanup and accounting file updates.

The measurements revealed the difference between the GridLoader generated
load and the total system load which includes various background processes
associated with the Globus middleware, kernel time servicing network transfers,
memory allocation and process scheduling. The differences were most obvious at
the start and the end times of each job, while the machine loading is high, but
the CPU time is not yet attributed to the process being submitted.

This experimental data has also exposed a peculiar behaviour of the process
monitoring component which leads to a ramp-up effect in the observed loading

Gamiaa Ciutlat toolkit Host Kaoort MuiUa . a U J A t

31 ’i i ^ ^ 1p * n'.-gw^ha-waooontoiwiondaKphp r̂.heuf&r-UCLah-anSrom-MlO c. ■. fv|l «n 2»aarch|
B»c» • Reload Si>t 1—11-------------> ■* - HiPrtm IBW

1

1

andro1d-w10.cs.ucl .ac.idi

■
■ laMLflfttm last M r raw 0.1*1

androld-wlO.cs.ucl.ac.ak androl d w io .c s .u c l.a c *

- . . j
._

■ iMCttM last M4f (aw 0.701 ■ 1M.M la»t M r tM O Pi

android w10.cs.ac1.ac.uk andro1d w 10.cs.uc1 .ac.idi

:
■ an_ta<k«* last M r (aw i**mi

wdro1d-w l0 .cs.uc1.ac.sk androldwlO.cs.ucI .ac.uk

,w k i j j : I ' i : ; ■ ' i l l1 j ,jj
,e0 * »s.oo it ao

■ a u f m last Mr Om lOSOtt)
iso* «aao■ MjtiM last Mar (aw 0)

androld-wlO.cs.ucI .ac.idc

9 (Oucumi* Don. (! IM >.t.)

android-wie.cs.ucl.ac.uk

....... 1 . J 3 H — — - 8#«

Figure A.8: Process level screenshot of Ganglia monitoring web interface

APPENDIX A. SO-GRM PROJECT RELATED WORK 191

measurements. This low-pass effect causes large variations between the total
node utilisation value and the Globus attributed CPU load at the beginning of
job execution. The software routine responsible for collecting those measure­
ments uses the UNIX standard process reporting calls, and these return CPU
usage as a decaying time average since process initiation [238]. To improve the
accuracy of measurements, a version using kernel ’’jiffies” [239] was made, but
this improvement results in the loss of portability between platforms.

Most of these issues where in the local monitoring component. Regardless,
successful overall operation of the system was confirmed, and sampled data was
correctly integrated in the Ganglia data handling flow (including Web-based
data visualisation). Data extraction tools operated effectively and reliably with
no lost or duplicated samples. D ata obtained was readily analysable, and had
immediately provided insight into the extent of difference between perceived and
actual resource usage by Grid processes.

Resource footprint of the monitoring system was acceptable (estimated at less
than 1% of CPU time): although an increase was noted as the number of processes
to be monitored grew. This is attributed to the computationally expensive pars­
ing of the processes table required to obtain process IDs of the monitored jobs,
and depends strongly on the criteria used for selecting the monitored processes.

A.2.5 Conclusions

Presented monitoring solution addresses the problem of obtaining per-application
resource usage statistics on Grid cluster nodes and provides a solution for the
whole monitoring cycle, from measurement data collection, to visualisation and
extraction for off-line analysis. The system has been developed on an open frame­
work to support programmatic access to the data by other Grid management
components. Implementation has taken into account expressed reservations of
the cluster administrators to running third party compiled daemons on their net­
works, and has developed a transparent monitoring system based on a widely
used monitoring application. The chosen approach scales well, being based on a
proven core and complemented with the maintenance scripts designed to facilitate
deployment and management. This solution seamlessly integrates measurements
specific to the needs of the advanced scheduler research within an established
monitoring framework. Off-line data analysis is facilitated with the use of the
data extraction scripts developed.

Appendix B

Additional Workload
Characterisation

The prediction of job execution times based on the historical information, one of
the distinct contributions of this thesis, used the methods rooted in the observa­
tions made in the analysis of a representable Grid workload presented in Chapter
4. This workload study applied the exploratory data analysis[169] (EDA) tech­
niques to suggest the causes of the observed phenomena and to support the selec­
tion of appropriate statistical tools and techniques that can be used to effectively
“mine” the data for previously unknown and potentially useful information.

The fallacy of the EDA approach is that a systematic bias is often present
due to the erroneous approach of using the same data set to both suggest and
verify certain hypotheses. This problem can be avoided by cross-validating the
hypotheses on a collection of independent confirmation samples.

The purpose of this chapter is to perform such validation by using an alter­
native Grid workload trace. This will offer supporting evidence to the findings
of the workload characterisation given previously in Chapter 4 and confirm, to
the extent possible, that observed phenomena are indeed universal to the Grid
workload. In doing so, this chapter will also further validate the job execution
time forecasting approach taken and ensure its applicability in a range of Grid
usage scenarios.

B.l The Workload

As the Grid technology is relatively new, few truly large-scale, multi-purpose,
production Grid environments have been deployed. Those facilities tha t are
operating do so under strict security and data protection rules making it very
difficult to obtain, analyse and publish work based on their usage statistics. This

192

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 193

is especially challenging for studies, such as this one, requiring highly granular,
job- and process-level data for which specific user permission must be granted.

Apart from the UCL’s CCC Grid cluster workload, the author has managed
to acquire another job trace from a member cluster of one of the largest European
Grid operators compromising more than 200 sites and over 30,000 CPUs. The
trace does not contain the full set of job properties, so the following analysis will
focus on the job inter-arrival process and execution time - two key aspects from
the job runtime prediction point of view.

Access to this data was given subject to the identity of the Grid project and
the site in question remaining undisclosed.

B.2 General Workload Properties

The workload compromises of almost a quarter of a million jobs subm itted in
the nine month period between August 2004 and May 2005. During this period,
about 3.5% of jobs have executed for less than one second, the resolution of the
accounting file clock, and are deemed to have failed on runtime. This failure ratio
is consistent with the CCC findings and those reported by others.

The distribution of active users, VOs and job names indicate tha t a large
number of users belonging to very few VOs have submitted almost all the jobs
using very few job names. Such scenario is an indication of the unfortunate
administrative policy at the site encouraging submission of jobs with generic
names and failing to introduce transparency in the mapping of Grid users to
local credentials.

Calculated application efficiency of 83% is very high, and in line with the CCC
findings, re-affirming the view that currently run Grid applications are compute-
bound. The overall cluster utilisation of 22% is low compared to the CCC but
on par with other academic and dedicated commercial Grids. The summary of
these workload properties is given in Table B .l.

B.2.1 Job Inter-arrival time

Figure B .l describes the job arrival process at this facility by plotting the run
sequence plot of the job inter-arrival times and their cumulative distribution
function. Around 30% of the jobs arrive in batches with less than one second apart
compared to almost 80% of such quick succession job arrivals present in the CCC.
Such difference could most likely be attributed to a significantly lower overall
utilisation of this facility and the appropriately longer periods of time without
any incoming jobs. Regardless, bursty job submissions are still an im portant
feature of the arrivals distribution.

The remainder of the inter-arrival times distribution seem almost linear on
the log scale and this is further affirmed in the normal probability plots shown

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 194

First job time
Last job time

Number of days
Worker nodes (CPUs)

Number of recorded jobs
Failed (0 sec) jobs

Unique users
Unique VOs

Unique job names

Total job wallclock time
Total job CPU time

Mean Cluster Utilisation
Mean Application Efficiency

14.08.2004 22:36
11.05.2005 14:07
270
70(140)

242,695
8,618
56
8
12

705,566,432s (8,166 days)
585,289,080s (6,774 days)
22%
83%

Table B.l: The summary of the workload analysed

in Figure B.2. The linearly scaled plot exhibits very strong skew towards smaller
values, while the logarithmically scaled one shows very good linearity for values
larger than one second. The inter-arrival times of this facility, provided batch
submissions are treated differently, could be modelled using a log-normal distri­
bution.

The cyclic pattern and the seasonal variations of the job submission process
was an important characteristic of the CCC workload and has also been found
in the usage statistics at this facility. Figure B.3 shows the total number of
submitted jobs in each month of the trace, for each date in the month, day of the
week and hour of the day.

The monthly plot, which runs from August to May of the following year,
clearly shows a ramp-up effect at the beginning of the facility production life
followed by a steady fluctuation of job submissions and a tail-off towards the end

J o b in ter-m 'riva l tim e
C u m u la tiv e D is tr ib u tio n F u n c tio n o f jo b in te r-a rr iv a l tim es

1 — —— —a— .— —— —>-------------- —

0 .9 ■ /
v o.s ■ f

|c o.c - /

~0 r*
o 0.4 ■ p

"5 0 .2 -

0 .1 -

0 — — —<——..............— ■ —
1 0 ° 1 0 ' 1 0 - 10'* 1 0 1 1 0 : ' H)1’

J o b in te r - a r r iv a l t im e s [sj

(b) Job inter-arrival tim e (C D F)

Figure B.l: Run-sequence and CDF plots of Job Inter-arrival times

J o b ID

(a) Job inter-arrival tim e (run-sequence)

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 195

N o rm a l P ro b a b il i ty P lo t o f jo b in te r-a rr iv a l tim e s N orm al P ro b a b il i ty P lo t o f jo b in te r-m 'r iv a l tim e s

0.999

0.99

0.90
0.75

0.50

0.10

£ o.oi
0.001

0.999

0.99

0.90

g 0.25 '
0.10

£ o.oi
o.ooi

1 1.5 2 2.5 3

J o b in ter-m 'riva l tim es [s]
10 ' 102 lO'* 1 0 '

Jo b in te r-a rr iv a l tim e s [s|

(a) Linear (b) L ogarithm ic

Figure B.2: Job inter-arrival times normal probability plot

of the workload trace. Again, the plot for the dates of the month does not reveal
much as it is strongly dominated by the weekly job submission pattern.

This facility exhibits a slightly different but still comparable pattern to that
of the CCC. Both Grid clusters see the lowest number of submission on Monday
and Sunday, but in this facility’s case the Wednesday peak is replaced by a more
spread out distribution between Tuesday and Friday, with Saturday also seeing
a high number of job submissions.

The hourly distribution of job arrivals is similar to the one seen at the CCC
with peaks in the late morning and early afternoon followed by a steady stream
of jobs throughout the night. The smaller peak at around 10am, presumably for
jobs which will finish before the day’s end, is followed by a larger peak at 3pm
which would probably see jobs running overnight or longer being submitted.

The presence of any long-tail behaviour in the distribution of job inter-arrival
times has been assessed by using the complementary cumulative distribution
function plot shown in Figure B.4. The plot shows that for values of inter-arrival
times larger than 10 seconds, the tail of the distribution follows the fitted Pareto
function very well over an extended range of almost five orders of magnitude.
Similarly to the behaviour observed at the CCC, the distribution of inter-arrival
times is long-tailed at this facility as well.

Finally, the self-similar nature of the job arrival process was tested by esti­
mating the value of the Hurst parameter using the rescaled range analysis on the
job inter-arrival times. Figure B.5 shows the resulting plot which exhibits good
linearity and indicates a Hurst value of 0.81. This is 0.04 lower than the value
indicated for the CCC but is still a very strong indication of a self-similar process.

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 196

T o ta l n u m b e r o f jo b s s u b m it te d in ea ch m o n th T o ta l n u m b e r o f jo b s s u b m it te d o n ea ch d a y o f th e m o n th

J a n t rb M a r A p r M a y J a n J n l A u y S<j> O r t S o v D a

M o n th o f th e yejir (log b eg in s in A u g a n d e n d s in M ay)

(a) M onth

T o tal n u m b e r o f jo b s s u b m itte d on each d a y o f th e week

It V(7 T h u b 'r i S a t S a n

D av o f th e week

(c) D ay

,2 SIMM)

D ay o f th e m o n th |1 - 31]

(b) W eek

l o t a l num be r o f jo b s s u b m it te d in ea ch h o u r o f th e d a y

H o u r o f th e d a y

(d) Hour

Figure B.3: Job submission count: cyclic behaviour

B.2.2 Wallclock Execution Time

The run-sequence plot and the cumulative distribution function of job wallclock
execution times is shown in Figure B.6. Compared to the CCC job runtime
distribution, this facility has a higher fraction of shorter running jobs and a lower
percentage of longer running ones.

Common to both Grid facilities is the absence of any prominent modes or
predominant values of job runtimes. Analysing the normal probability plot shown
in Figure B.7 it is clear that apart from some skew for runtime values of more
than 10,000 seconds, the distribution is a very good fit to a log-normal one.
Each runtime value is as probable as any other throughout this wide range, thus
making the process of fitting a sensible forecast model to such data set difficult if
not impossible. These findings further support the need to section the workload
into more predictable partitions before applying selected forecasting methods.

Figure B.8 plots the total wallclock execution time of jobs as a function of their
submission time. Due to the shortness of the workload trace, and the variability
of the job runtimes, plots showing monthly and date of the month fluctuations

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 197

Job inter-arrival times: Empirical and Fitted CDF Job inter-arrival times: Empirical and Fitted CDF

 Empirical C-CDF
 Pareto C-CDF
- - Weibull C-CDF

Gamma C-CDF
10"1

10®103
Job inter-arrival times [s]

0.9
VI
S
1

J 0.5
o •
*3 0.4
&a o.3 &
2 0,2 £

0.1

 Empirical CD
 Pareto CDF

- Weibull CDF
Gamma CDF

10610;i
Job inter-arrival times

104

(a) 10sec+ ta il C D F (b) 10 sec+ tail C C D F

Figure B.4: Job inter-arrival times: long-tailedness and representative functions

do not offer much insight into the usage pattern of the facility.
The weekly usage cycle plot reveals that by far the longest running jobs

are submitted on Fridays, with the ones submitted on Mondays, Saturdays and
Sundays having the shortest runtimes and mid-week jobs falling in between. Such
usage scenario is very similar to the one observed on the CCC Grid and an
evidence of users self-prioritising their work.

When analysed together with the job submission cycle shown in Figure B.3(d),
the hourly job runtime pattern reveals the tendency of users to submit shorter
running jobs in the morning, anticipating their completion in the afternoon, and
longer running jobs in the late afternoon and early evening hours which run
overnight. Indeed, the 10am, 3pm and 6pm peaks of job submission seen in
Figure B.3 correspond to the peaks in the job runtime lengths. This is another
example of the human perception of time and the corresponding modality and
seasonality in the expectations of job services times.

Workload characterisation of the CCC Grid cluster has indicated tha t the

Hurst exponenet estimation for job inter-arrival times
3.5

y = 0.81 * x - 0.7

2.5

■£

i

0.5

2.5 3.5 4.5

Figure B.5: Job inter-arrival times Hurst exponent estimation using the rescaled
range (R/S) method

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 198

•Job w allc lock e x e c u tio n tim e s

10' , , ,-----------

_ K)'1

J o b ID

(a) Job w allclock ex ecu tio n tim e (run-sequence)

C u m u la tiv e D is tr ib u tio n F u n c tio n of .job w allclock ex e cu tio n tim e s

1
0,9

0.8

0.7

0.G

0.5

0.4

0.3

0.2

0.1

10 ‘ 10"

J o b w allclock e x e cu tio n tim e s [sj

(b) Job w allclock execu tio n tim e (C D F)

Figure B.6: Run-sequence and CDF plots of job wallclock execution time

distribution of job runtimes exhibits a strong long-tailed behaviour. The result
of a similar test done on this facility, plotted in Figure B.9, shows a good fit
to the Pareto model up until around 10,000 seconds. The following steep and
modal decline in the probability of observing values higher than 105 is most likely
attributed to an upper bound in the running time of submitted jobs, a “kill time” ,
which is often enforces in high-performance compute facilities. Unfortunately,
the author could not establish whether such a policy applied in the case of the
analysed facility.

The self-similar properties of the job runtimes were estimated using a rescaled
range method. The fitted line in Figure B.10 estimates the Hurst parameter, with
good linearity, at 0.80 which is an indication of a strongly self-similar process.
Considering that the Hurst parameter of the CCC job runtimes was 0.87 it can
be concluded that Grid runtimes do have a self-similar nature.

N orm al P ro b a b ility P lo t of job w allclock e x e cu tio n tim es

0.999

0.99

0.90
0.75

0.10

£ 0.01

0.001

3I) 4 0 9 10S

N orm al P ro b a b il i ty P lo t o f jo b w allc lock e x e c u tio n tim e s

0.999

0.99

0.9(1
0.75

%

"5

0.10

10- 1 0 '1 0 ' 1():

(a) Linear (b) L ogarithm ic

Figure B.7: Job wallclock execution time normal probability plot

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 199

T o ta l jo b w allclock ru n t im e by m o n th o f su b m iss io n T o ta l jo b w allclock ru n tim e by d a te o f su b m iss io n

■Inn F i b M a r A/ ir M at / .J t i n J u l A iii/ Sri> O d .X o r Dt

M o n th of th e y ea r (log b eg in s in A u g an d e n d s in M ay

(a) M onth

to ta l jo b w allclock ru n tim e by d a y o f su b m issio n

D av o f th e m o n th J1 - 311

(b) W eek

M on I ' m W e d 77/

lo tn l jo b w allclock ru n tim e by h o u r of su b m iss io n

D av o f th e week H o u r o f th e d a v 101 - 24

(c) D ay (d) Hour

Figure B.8: Job wallclock runtime: cyclic behaviour

B.3 Meta Differentiation and Workload Diversity

Once the need for partitioning the workload into clusters of jobs with the similar
statistical properties, ‘‘behaviour” or greater predictability, the question arises
how could these pivot partitioning metrics be defined. This thesis has proposed
using a mix of job m eta-data and temporal properties to reduce the variability
of the job runtime distribution. The effect that such job partitioning would have
011 the location and dispersion of runtime values will be examined in this section.

B.3.1 Job runtime v. job meta-data

The usage statistics available for this facility contained the anonymised identifi­
cation of the user. VO and the job name being submitted, as well as the queue
to which the job was sent. Figure B .ll uses box-plots to show the difference in
the distribution of job runtimes with respect to the four pieces of available job
meta-data.

Plotting the distribution of each user’s job runtimes, as seen in Figure B .l 1(a),

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 200

Job wallclock execution times: Empirical and Fitted CDF Job wallclock execution times: Empirical and Fitted C-CDF

Empirical CDF
 Pareto CDF

- Weibull CDF
Gamma CDF

10* 104 10* 106
Job wallclock execution times [s]

■ Empirical C-CDF
Pareto C-CDF
Weibull C-CDF
Gamma C-CDF

103 10' ' 106 10®

Job wallclock execution times [s]

(a) 100sec+ ta il C D F (b) 100 sec+ ta il C C D F

Figure B.9: Job execution times: long-tailedness and representative functions

shows how vastly different their statistics are. Although some users do submit
jobs with a very large inter-quartile range, the majority runs jobs with a much
smaller dispersion. Since these users are assigned to very few VOs, partitioning
based on the owner VO in most cases returns unsatisfactory results. The job
names have even less resolution, as only three are commonly used.

The final plot shows the correlation between the job runtime and the queue
to which the user has submitted the job. As the CCC had only one queue, such
statistic was not available, but the findings by other researchers on the lack of
correlation between the implicit user predictions of job execution time (expressed
by queue selection) and the actual job runtime were often noted in this thesis.
In the case of this facility, it is clear that such findings are accurate. While
the Test and Short queues do have lower medians and inter-quartile ranges than
the remaining ones, the dispersion of the job runtimes in the Long, Day and
Infinite queues is almost identical and the median value is decreasing instead of
increasing. The Batch queue has seen almost no job submissions. A Spearman’s

Hurst estimation for job execution times using R/S method
3.5

y = 0.8 *x — 0.98

2.5

0.5

-0.5
4.52.5 3.5

Figure B.10: Job wallclock execution times Hurst exponent estimation using the
rescaled range (R/S) method

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 201

Boxplot: correlation of job runtime and user ID Boxplot: correlation of job runtime and group ID

101

10° 500 10 20 30 40
User ID

(a) User

Boxplot: correlation of job runtime and executable ID

10*

10° 0 2 4 6 8 10 12 14

2

•8

Group ID

(b) G roup

Boxplot: correlation of job runtime and submission queue

Executable ID

£! -

Short Long Day In fin ite Batch
Queue

Test

(c) Exec (d) Queue

Figure B .ll: Job wallclock runtime correlation: meta-data

rank correlation coefficient between the job runtime and the queue selected was
0.28 indicating a very small positive correlation. Such findings reiterate the
problem of relying on the user estimates of the job execution time and further
motivate the need for an autonomous and automated prediction system.

B.3.2 Job runtime v. job submission time

One of the novel aspects of this thesis was in using the temporal job properties
to partition the workload into more closely related groups. Such approach makes
use of the observations that Friday jobs run longer, that jobs submitted in the
late afternoon tend to execute throughout the night, or that job runs that are
closer in time tend to be more strongly autocorrelated.

Figure B.12 shows the central tendency and the distribution of job runtimes
according to the day of the week, or the hour of the day, in which they were
submitted. The plots show a steady rise in the execution lengths throughout the
week with a peak on Friday, followed by much shorter execution times at the
weekend. The hourly plot reveals a similar pattern with the longest running jobs

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 202

Boxplot: correlation of job runtime and weekday of submission Boxplot: correlation of job runtime and hour of submission
105

104

10*

10°
Mon Tue Wed Thu Fri Sat Sun

Day of the week
5 10 15 20

Hour of the day [01 - 24]

(a) D ay o f th e week (b) Hour o f th e day

Figure B.12: Job wallclock runtime correlation: temporal data

submitted at late afternoon, and a distinctly different profile of execution times
during the working day and overnight.

When applied as a sole partitioning criteria, this observed correlation between
the job’s submission time and its execution time may not yield results as good
as the application of clustering based on the job meta-data. Its real potential
however is in further differentiating these meta-data based partitions according
to workflow habits of a specific users or Virtual Organisations.

B.4 Conclusions

The purpose of this appendix was to present the workload characterisation of
an additional multi-purpose, production Grid facility, which would support the
findings of the CCC usage study presented in Chapter 4, and the subsequent
methods of predicting job execution times given in Chapter 5.

By focusing on the job arrival process and the wallclock duration of the job
execution, the analysis has found substantial similarities between the two Grid
workloads. Both of the studied properties have a log-normal distribution, long-
tails and are significantly self-similar. There were also strong cyclic patterns on
the weekly and daily scales.

The potential of the temporal- and meta-based job partitioning in reduc­
ing data variability (and thus increasing predictability) was confirmed with the
submitting user, the time and the day of job submission identified as key pivot
metrics. It was also shown that the user’s selection of the queue to which the job
will be submitted is a poor indication of how long such job will run for.

Considering the difficulties of obtaining representative Grid workloads, the
results presented in this chapter provide strong support to the conclusions drawn
from the analysis of the CCC workload, and further justify the methods and

APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 203

approaches used in the forecasting of job runtimes based on the historical infor­
mation.

Appendix C

Commercial Aspects

The following appendix will examine the commercial value of the presented PhD
work, discuss possible ways of commercialising researched approaches, methods
and techniques, and investigate feasible scenarios for monetising added value
offered by the autonomous deadline scheduling 011 the Grid.

This additional work was kindly sponsored by the joint collaboration of Uni­
versity College London and London Business School through the Centre for Sci­
entific Excellence*, established in 2000 to promote entrepreneurship within the
fields of science and technology. The author is grateful for their ongoing support .

C.l Grid Computing Technology

Among several definitions of Grid Computing, from a business perspective the
most applicable one defines it as a collection of computing and storage elements
running a layer of software (called middleware) which is presenting these resources
as a unified platform. Grid resources can be geographically distributed, within
different administrative domains and running on various supported hardware and
software, but through a Grid middleware layer these are all presented as a unified
Grid service.

Grid computing is in many ways a potentially disruptive technology. By
enabling concentration of compute power away from the end user, and by offering
it as a metered service 011 a pay-per-use basis, it opens up a new market segment
of computational power providing. It creates a new business model focused 011

competitively selling Grid services in an open market, by suppliers who are
leveraging economies of scale in hardware procurement, management cost and
operating expenses.

* h ttp :/ / w w w .cselondon .com

204

http://www.cselondon.com

APPENDIX C. COMMERCIAL ASPECTS 205

C.2 Business Potential of Grid Computing

Grid technology can potentially offer great cost savings and increased productiv­
ity to businesses in a wide range of compute intensive industries such as engineer­
ing, finance, automotive and biochemical. Deployed at the core of a company’s
computing environment the Grid can bring the following benefits:

• R educed Total C ost o f O w nership through a unified and centralised
management interface tha t reduces the running costs through economies of
scale.

• Linear capacity grow th and cap ital exp en d itu re as hardware can be
added to the Grid in smaller, more granular steps, rather than investing in
large server farm upgrades.

• Increased utilisation through resource virtualisation and formation of a
universal utility platform with 110 hard partitioning of resource.

• H ighly adaptable and agile com puting platform as a variable and dy­
namically adaptable amount of resources can be used to deliver each service
thus helping to align available resources with current business priorities.

Deployed across the company’s general computing capital, such as employee
workst ation and terminals, the Grid can be used as a ‘‘cycle scavenging” plat form
to run computational jobs 011 underutilised computers and thus extract more
value from the investments already made.

C.3 Grid Computing Value Chain

Computational grids are effectively a large and distributed computer clusters,
found in academia and industry requiring powerful, high-throughput facilities.
These large institutions have established relationship with equipment manufac­
turers and vendors, are often tied in with a long term contract, or have funding
commitments related to a specific supplier. M ajority of these high performance
clusters were made to order, using low volume or specialised hardware, and up­
graded throughout their long life-cycle.

I11 this environment, switching costs are very high and supplier lock-in is
strong. The Grid could significantly disrupt hardware supplier’s power as it en­
ables high-performance, high-availability clusters to be assembled out of commer­
cial off-the-shelf components (COTS). This has the effect of shifting significant
value extraction potential from hardware manufacturers to middleware vendors
and system integrators.

Following is a brief explanation of key links in the Grid value chain and major
companies competing in each segment.

APPENDIX C. COMMERCIAL ASPECTS 206

C.3.1 Hardware Manufacturers and Suppliers

Companies at the beginning of the chain are traditionally hardware manufacturers
and suppliers with strong focus on business IT sector, competencies in large server
deployments, and experience supporting mission critical hardware.

A major profit share of these companies comes from high value contracts to
supply their top of the range enterprise hardware to large institutions. This rev­
enue stream was disrupted 2001 to 2004 by a slowdown in corporate IT spending
and businesses focusing on getting value for money.

Grid technology is unsettling to these large hardware manufacturers as it
reduces their product differentiation: just about any hardware component can
be used to create a Grid cluster and the Grid middleware will enable jobs to be
executed quickly and reliably. As a consequence, hardware manufacturers are
trying to add more value to their enterprise level hardware and differentiate it
better from their low level kit (usually by adding management, deployment and
monitoring tools). A range of hardware is now also labeled as Grid-enabled, a
property which still has no universal meaning and is mostly used for marketing
purposes.

Major hardware manufacturers with keen interest in supporting and devel­
oping the Grid concept are IBM, Sun Microsystems, Hewlett-Packard and Dell
Computers.

C.3.2 Middleware and Software Vendors

W ith the introduction of computational clusters made of COTS components,
and with big steps in virtualisation and interoperability of heterogeneous kit, the
middleware (or software glue) that enables their interoperability and management
is becoming a more im portant components of the overall system.

Companies in this part of the value chain are based on the software developer
or retailer business model with valuable income coming from the support and
customisation contracts. The competition in this sector is limited, and most
middleware vendors are operating in their own niche market segments. Product
development cycle is long and based on a major early adopter whose custom
solution was generalised to cover their entire industry. The companies in this
part of the value chain are growing quickly and have to be learning as they
go along. Human capital and up to date skills are very im portant, leading to
expensive labour force.

Although gross extracted value at this point in the chain is less than at the
hardware manufacturing level, the profit margins are higher, the business much
less capital expenditure intensive and client lock-in still very strong. Essential at
this stage are strong links with both hardware manufacturers (to ensure compat­
ibility and as a sales channel to undecided clients who are just entering the Grid

APPENDIX C. COMMERCIAL ASPECTS 207

market) as well as high value clients (who may have specific customisation needs
and can serve as valuable references).

The largest companies at this value chain level are recent privately held s ta rt­
ups, spun off by academics involved in the Grid research, or people with the
specific knowledge of the technology who were previously with one of the big
hardware manufacturers. These include Platform Computing, Avaki, United
Devices and to some extent Sun Microsystems.

C.3.3 System Integrators and Consultants

Popularisation of Grid computing has increased the need for knowledgeable sys­
tem integrators and consultants to guide a new Grid adopter through the se­
lection of appropriate hardware, Grid middleware and Grid enabled business
applications.

As with so many new technologies, the Grid has been suffering from compat­
ibility issues, difficult and time consuming deployment scenarios, and high levels
of ongoing management and maintenance of the early systems. The experience
of people who have already been through this process is invaluable and a very
good basis for a professional services business model.

The companies in this value chain segment are mostly small start-ups or
consulting businesses with looser or tighter connections to a larger Grid hard­
ware manufacturer or middleware vendor. Some of their founders come from
academia while some are ex-project managers from hardware manufacturers or
early adopters of the Grid technology. These Grid consultants command high
profit margins, but are dependant on the number of new and repeat clients.
Good relationship with all parties in the value chain is therefore essential. Some
of the currently better known consulting firms are Globus Consulting and P lat­
form Computing.

C.4 Probabilistic Deadline Scheduling

A job scheduler is an im portant part of the Grid middleware whose task is to
order the jobs waiting to be executed in such a way that the utilisation of the
system (or some other given metric) is maximised. The waiting queue can have
thousands of jobs and there may be hundreds of machines on which these jobs can
run and the scheduling process quickly becomes a complex optimisation problem.

C.4.1 The Need for Better Scheduling

The performance of the scheduler influences the throughput of the whole Grid
cluster, user’s satisfaction with the computing service they are getting, and the
profitable use of Grid operator’s resources. Currently deployed schedulers em­
ploy a range of modified first-come-firs-served (FCFS) batch approaches. This

APPENDIX C. COMMERCIAL ASPECTS 208

means that the jobs are executed in the order in which they arrived, unless some
administrative policy explicitly favours jobs from a certain user or group. This
static prioritisation is of poor selectivity and leads to low levels of resource utili­
sation. It also does not match the human workflow often based on the notion of
job deadlines.

Job schedulers that were developed specifically for academic use usually do
not deliver in the commercial sector. Better Grid schedulers able to fit human
workflow through the use of deadlines, offer quantifiable Quality of Service (QoS),
and be more easily manageable are clearly needed.

Development of this next generation of schedulers depend on the ability of
the Grid middleware to forecast the execution time of jobs in the queue, their
future arrival rate and the presence of any cycles or patterns in the workload.
The research work undertaken as part of this PhD thesis offers a way of obtaining
those kinds of information from the statistical models based on the historical job
execution data.

C.4.2 Probabilistic Deadline Scheduling Proposition

The methodology described in this thesis enables automated forecasts of job
execution times based on the historical models of previous job runs. The approach
uses additional information associated with the job (such as subm itting user,
Virtual Organisation (VO), date and time, application name etc.) to look for
usage cycles, patterns and correlations which reduce the variability of the data
and increase the accuracy of predictions.

The technology used enables several im portant improvements in Grid schedul­
ing and Grid resource management:

• A nalyse usage p attern s and workload d istribution . A workload
model is developed by monitoring and analysing the jobs submitted to the
Grid. This model is then used to analyse usage patterns of individual users,
VOs or periods of the day or week.

• E stim ate execution tim e o f a job. By using a model of execution times
developed for a certain user, executable or execution scenario, it is possible
to predict how long a newly submitted job will run and establish a margin
of error for such predictions.

• D etect and track out-of-ordinary job characteristics. Continuous
observations of the state of the Grid and the running jobs enables the
system to spot sudden and significant changes of job characteristics. This
information is then used to ensure quality of scheduling and if necessary
bring this behaviour to the attention of system administrators.

These core abilities enable new functionality and offer added value to the pro­
cess of Grid resource monitoring, management, provisioning and job scheduling:

APPENDIX C. COMMERCIAL ASPECTS 209

• Support for deadline scheduling. A predictive, probabilistic scheduler
is able to offer users execution of their jobs to a certain deadline. Knowing
how long a job will run enables the scheduler to re-arrange the job queue out
of order and maximise the likelihood of jobs completing by their deadline.
For example a short job with a long deadline would be moved further back in
the queue to free up resources for a job whose deadline is tighter, regardless
of the order in which they were submitted.

• Increased overall sy stem usage. Together with a resource pricing sys­
tem, probabilistic scheduling would enable users to trade off their “com­
puting budget” against the urgency of their work. A job with a relaxed
deadline, or one subm itted at off-peak hours, would cost less to process
then an urgent job run at peak times. This tried and tested yield manage­
ment approach evens out usage distribution throughout the service period
and lowers peak to average resource requirement ratio.

• D ynam ically align resource use w ith corporate priorities. As dead­
line is specified on a per job basis as a measure of each job’s priority, hard
partitioning of resources can be avoided. Provided resources are available,
a relaxed deadline job from a high priority user would not block an urgent
job from a lower priority user. In this way maximum flexibility and fairness
to all users can be maintained while aligning resource use with business
priorities.

• Provides business in telligence on com puting usage patterns. User’s
workflow and habits, usage patterns and job execution scenarios are re­
vealed through detailed monitoring of resource usage and correlations be­
tween jobs and their “softer” properties such as submitting user, Virtual
Organisation, time or command line parameters. This valuable insight can
help in system planning and provisioning, spot problematic applications or
users, and reduce hotspots and congestion 011 the computing platform.

The benefits of a predictive deadline scheduling approach to an enterprise
running a large Grid cluster serving numerous users with widely varying resource
requirements can be significant. Ways of capitalising on those benefits and the
presented technology are discussed in the next chapter.

C.5 Possible Exploitation Routes

Assuming that scientific validity, practicality and fitness for scheduling purpose of
the probabilistic scheduling approach presented in this thesis is confirmed, several
exploitation routes are open. In this section a range of possible commercialisation
options will be discussed, and their benefits and problems analysed.

APPENDIX C. COMMERCIAL ASPECTS 210

C.5.1 Patenting

As with many other scientific discoveries, patenting is the first and foremost
opportunity of generating revenues. A possible commercialisation route for the
author’s research would be to patent a method of making execution time forecasts
based on the histories of previous runs, the use of time-series analysis for making
such forecasts, and the integration of pattern matching and outlier detections to
help improve the quality of predictions.

While obtaining a patent is never easy or straightforward, in this case further
complications arise from the fact tha t it is a mathematical or logical construct
implemented in software tha t needs to be patent protected. This has traditionally
been hard to do and companies have previously resorted to implementing software
in specific hardware to qualify for an “aparatus” as required by some patent
authorities. The European Union has been considering legislation on software
patenting from as early as 1999 but has always come against a very strong
opposition from software manufacturers and users alike. At the time of writing
the EU has begun third round of consultations on the software patents but it
seems unlikely swift or clear action will be taken on this issue any time soon.

Apart from evident problems and legal challenges in patenting a software
invention, the application procedure itself is a lengthy and expensive process.
Provided a patent is granted, it then must be upheld in the face of challenges
from competitors and defended from infringements. Since patent litigation can
be very costly, a large company infringing on a small firm’s patent can prolong
the process and financially weaken the competitor.

The revenue model in a patenting business is a straightforward collection of
royalties. The pricing structure depends on the strength of patent protection,
added value that the patented solutions delivers to the main product, and the
cost to the licensee of developing a similar technology while not infringing the
patent. The benefits of the intellectual property licensing model are modest
capital investment requirements and ongoing costs directly related to the level of
its research and development effort.

All things considered, intellectual property licensing approach can grow a
profitable and sound business, but must rely on very strong patent protection
and bespoke leadership in a given market segment.

C.5.2 Third-party Scheduler Add-on

Examples abound in the software marketplace of smaller companies developing
add-on solutions that significantly improve the usability, performance or function­
ality of a larger applications. This model could be used to develop a probabilistic
scheduling add-on for the scheduling systems already deployed 011 the production
computational Grids.

APPENDIX C. COMMERCIAL ASPECTS 211

By relying on an industry accepted scheduler, and developing only an execu­
tion time prediction module, the amount of initial development and coding work
would be minimised. This also means a shorter time to market and a lower seed
investment would be required. Entering the market by improving an already
existing scheduler leverages its installed user base, and significantly reduces user
switching cost as changing their middleware provider would not be necessary.
W ith low barriers for entry, this approach could lead to a high conversion factor
if the add-on becomes an accepted “standard” upgrade in the industry and may
tem pt a buy-out by the company behind the actual scheduler.

The success of the business based 011 this model depends 011 the management
of the product development cycle, prudent cash flow control and a timely hiring of
effective marketing and sales force. Once the initial product has been developed,
product margins can be high if the distribution channel and the customer support
expenses are well managed.

A major problem with this commercialisation route is that in a bid to lock
in the customers, few commercial middleware providers make their schedulers
based on open standards and published interfaces to which an independent add­
on could be attached. Since the performance of the overall scheduling system
greatly depends on the core scheduler over which we would have no control,
problems, poor overall performance or reliability issues with the system could be
brought into connection with our scheduling add-on and affect negatively on the
start-ups reputation.

Most importantly, unless patenting the predictive elements of the add-on is
possible and could offer strong IP protection, large scheduling system providers
could move to integrate similar technology in the new versions of their products.
W ith this in mind, possibly the best exit strategy with this approach would be to
position the company as a likely buy-out target by an established Grid scheduling
software developer.

C.5.3 Standalone Probabilistic Scheduler

By deciding to take full control of the job scheduling in computational Grids and
use the apparent benefits of probabilistic scheduling, a possible commercialisation
route would be to develop, sell and support a fully fledged standalone Grid
scheduler. This approach would offer the flexibility to implement all the insight
and research done for this PhD thesis but would also expose the start-up company
to a great amount of risk.

The development and testing of a mission critical component such as a sched­
uler would be very costly and time consuming. It would certainly require expert
management and a strong, knowledgeable programming team. Attracting em­
ployees of this profile would be hard for a small start-up company, and would
most probably involve equity sharing remuneration packages.

APPENDIX C. COMMERCIAL ASPECTS 212

A new entrant to the Grid middleware market would face high barriers due to
the m arket’s monolithic nature, supplier lock-in and informal supplier selection
methods based on previous references, experience and perceived reputation. The
company would have to build their own client base (whose switching costs would
be high), and help them through the migration process (involving a high volume
of expensive support time).

W ith a completely independent scheduling solution the commercialisation
venture could certainly capture more value than as an add-on provider but at the
cost of much greater capital investment, longer time to market and profitabil­
ity, and significantly greater risk. This business model would require a strong
strategic partner, a well funded company willing to move into the computational
Grid market and looking for a new technology to break ground. The level of
financial support extended to the start-up would certainly influence the equity
distribution between shareholders and may yield a relatively modest return for
the entrepreneur.

C.5.4 Professional Services - Consulting Business

W ith years spent researching the Grid scheduling, user behaviour patterns, and
Grid technology and middleware, a reasonable commercialisation of the author’s
know-how would be a consulting role in a professional services business. The
probabilistic scheduling method and its associated job runtime prediction soft­
ware could serve as a bespoke tool that, coupled with an in-depth analysis of
client’s requirements, can deliver significant added value to their computational
Grids.

This business model would offer more than a scheduling system add-on, it
would provide a customised scheduling, tuned to client’s specific requirements. It
would require sizable initial investment in order to move the predictive algorithms
from academic test bench into production environments but would not require
extensive support or sales network. The model could offer good profit margins
and a rewarding working environment for the entrepreneur. If a foothold in the
market was established, additional consulting work could be achieved through
horizontal expansion into other Grid related fields.

The most important factor for success of this business model would be client
acquisition. The very labour intensive nature of customised approaches limits the
possible client pool to large organisations with expensive or specialised equipment
whose high utilisation is essential, or organisations running mission critical ap­
plications requiring very specific scheduling. The expense of developing a custom
solution would only make financial sense in these cases.

The barriers for entry would be high: with 110 previous track record a solid
proof that the predictive technology works, and that the start-up has enough
know-how to apply it. would be required. The consultancy would have to develop

APPENDIX C. COMMERCIAL ASPECTS 213

a unique and recognisable approach to distinguish itself from competitors and
imitators. In such environment the start-up would depend strongly on finding its
first client, an early adopter willing to try out a new approach.

The ongoing success of the company would mostly be influenced by its re­
cruiting strategy and its ability to attract capable and knowledgeable consultants,
perhaps through an equity sharing plan. Structured management from as early
on as possible would be needed to help the founder delegate responsibility and
allow the company to grow.

C.5.5 Overview

Considering different commercialisation options in the context of a new business
start-up, the most im portant factors are the amount of seed capital required,
the assessment of the business’s profit potential and the amount of time it would
take to develop a marketable product or service. The overview of those im portant
aspects for proposed commercialisation routes is given in Table C .l.

CapEx Profitability Time to market

IP Licensing o €
Scheduler Add-on € € €
Standalone Scheduler • • O
Professional Services O' € •

Table C.l: Overview of commercialisation options available with respect to their
required level of capital expenditure, anticipated profitability potential and re­
quired time to market.

The balance between the risk and the reward is subject to the investor’s per­
sonal circumstances and the expectations of the industry as a whole. Given this
overview, the following section will discuss in further detail the chosen commer­
cialisation route and the justification for such decision.

C.6 Selected Approach - Scheduler Add-on

After considering all four possible commercialisation aspects given in the previ­
ous section, developing a predictive scheduling add-on for an already deployed
scheduler offers the best balance between the potential profits and the amount of
risk a start-up could commit to.

While patenting the predictive scheduling approach plays an im portant role in
all business models considered, legal obstacles and the burden of proving novelty
to the patent authorities would make a successful patent application very hard.
Software companies in similar situations usually prefer to retain the know-how
and seize the opportunities of market innovators capitalising before imitators are

APPENDIX C. COMMERCIAL ASPECTS 214

able to catch up. A start-up is unlikely to have sufficient financing available to
reach the market fast enough.

After further discussions with colleagues who have managed larger software
development project before, it became clear that developing a fully featured
scheduler, of adequate reliability to be used in the large and often mission critical
production environments would be prohibitively expensive for a small start-up.
This option remains open if a large strategic partner is found, and its expertise
used to speed up such development. Even if such opportunity arises at some later
point in time, work done on developing a scheduler add-on would not go to waste
and it would certainly serve as a proof of concept and of company’s ability.

Finally, running a professional services business based on the custom Grid
workload analysis tool may not be sufficient to sustain profitability and growth.
The question of author’s experience and that of related academics who would be
involved may also prove an issue with future clients. While there is presently
a growing need for outsourced Grid knowledge, it is likely tha t this trend will
continue, and from the aspect of offering Grid consulting services the author can
only benefit by gaining further experience.

The following sections will examine the strategic and financial aspects of
launching a new business around a scheduler add-on based on the predictive
scheduling technology.

C.6.1 Strategic Analysis

Assuming a company will be set up to commercialise on this research work, it
will certainly have very limited resources. A focused strategy and well researched
market environment in which it will operate will help it create a competitive
edge over similar new ventures. This section will outline such company’s primary
objectives, its biggest advantages over its competitors, a strategy for bringing a
new product to the market, and breaking into profitability in about three years
time.

Mission Statement

The company’s primary aim is to enable clients a more productive use of their
computational Grid infrastructure. This would be done by developing a job
scheduler supporting executions to a user specified deadline, and by offering
clients novel tools to analyse, plan and provision their Grid usage.

Core Competencies

The core competency of the company is in its in-depth research of Grid usage
scenarios, workloads, job traces, job meta-data, and user behaviour. A secondary
competency is the tool-set and the know-how to statistically analyse this data

APPENDIX C. COMMERCIAL ASPECTS 215

for a large number of patterns and correlations that can help reduce the amount
of uncertainty in the dataset.

These competencies can be applied to a wide variety of Grid related products
and services and can contribute significantly to end-product value. As they
present accumulated knowledge, it would be hard for competitors to quickly or
easily imitate them.

Competitive Advantage

The primary competitive advantage of the company is a product differentiation
one. Our product will deliver benefits to the clients (such as scheduling to a
deadline) exceeding those offered by the competitors. This will influence the
positioning of the firm in the market, both in fending off low-cost competition
and conquering the markets of other, feature-rich, scheduler.

Target Scope
Advantage

Low Cost Product Uniqueness
Broad Cost Leadership Differentiation

(Industry Wide) Strategy Strategy

Narrow Focus Strategy Focus Strategy
(Market Segment) (low cost) (differentiation)

Table C.2: Porter’s generic strategies table identifies three possible strategies
(cost leadership, differentiation and focus) depending on the firm’s application
of their main advantages (cost advantage and differentiation) in either broad or
narrow scope.

According to Porter’s generic strategies presented in Table C.2, the company
would be pursuing a focus (differentiation) strategy due to its product uniqueness
and narrow target market scope. By focusing in closely on its niche market, the
company can enjoy a high degree of customer loyalty and thus raise entry barriers
for direct competitors. As a downside, their narrow market focus increases buyer
power and makes them vulnerable to acquisition by broad-market competitors or
large customers.

SWOT Analysis

SWOT (strengths, weaknesses, opportunities, threats) analysis offers and insight
into internal and external environment in which the company will operate. It
plays an important role in formulating overall strategy and in matching the
company’s resources and capabilities to the competitive marketplace in which
it operates.

• S tren g th s: The following resources and capabilities will be the basis for
developing a competitive advantage

APPENDIX C. COMMERCIAL ASPECTS 216

— Proprietary know-how in the analysis of Grid utilisation, usage pat­
terns recognition and the use of social factors for better Grid usage
modelling

— Cost advantages from utilising work already done as part of the PhD
research

— People capital and networking with relevant contacts in the Grid in­
dustry and academia

— Ability to adapt to market conditions or specific client needs

• W eaknesses: The absence of certain strengths may weaken the ability to
deliver on company strategic goal

— No patent protection for the core predictive technology

— No established brand or reputation

— Lack of access to the key distribution channels

• O pportunities: The market environment in which the company operates
holds key opportunities which can be developed into revenues

— Large client interest in a potentially disruptive technology

— Unfulfilled customer need for a scheduling method well suited to their
workflow

— Dynamic market with large growth potential

• Threats: Critical actions or changes in the external environment which
can present threats to the company and jeopardise execution of the business
plan

— Failure to produce a reliable and efficient product

— Move by the current Grid scheduling makers to integrate similar func­
tionality into their core products

— Emergence of substitute or competing products

— Shifts in the cluster technologies, IT spending or high performance
computing strategies away from the distributed approaches and the
Grid computing

Since the company is a new start-up business, its opportunity cost is low
and risk tolerance high. W ith a new and exciting product in the development, it
should follow a strength-opportunities (S-O) strategy which would see it pursuing
opportunities that are a good fit to its strengths.

APPENDIX C. COMMERCIAL ASPECTS 217

Porter’s Five Forces Analysis

Michael Porter’s Competitive Advantage [240] provides a well known “five forces”
model for the industry analysis based on pure competition. It is helpful in
understanding the market conditions the new company will encounter and focuses
the management process on possible problems and company’s strengths tha t can
be leveraged to overcome them.

• Barriers to en try - Strong

— The patents and the proprietary know-how needed to develop the
sophisticated Grid scheduling and resource management components

— New entrants require specific assets (mostly appropriate human capi­
tal) to enter

— High brand loyalty and high switching costs.

— Restricted access to the distribution channels and clients.

• Threats o f S u b stitu tes - Medium

— Dangers of substitute technologies making effective Grid scheduling
obsolete:

* departure from distributed or utility computing concepts

* stronger affirmation of high-end workstations

* monolithic parallel computers or a significant jum p in the com­
puting power of single chips reducing the need for computational
Grids.

— Industry adopting and / or standardising on one of the other alterna­
tive Grid scheduling approaches.

• Supplier Pow er - Low

— Product mass-production is standardised (software duplication).

— Product R&D depends to an extent on the highly skilled workforce,
but with no strong labour union and with good availability on the
labour markets.

— Backward integration threat by purchasers is considerable; possible ac­
quisition by a Grid middleware developer looking to extend its schedul­
ing product portfolio.

• Buyer Power - Strong to Medium

— Concentrated buyers; few large institutions and enterprises have com­
putational Grids, even fewer require sophisticated scheduling methods.

APPENDIX C. COMMERCIAL ASPECTS 218

— Large buyers will purchases significant proportion of the company’s
software licenses.

— Significant buyer switching costs once on our scheduler lowers buyer
power.

— Scheduling is also a critical portion of Grid middleware further lower­
ing buyer power.

• D egree o f R ivalry - Low to Medium

— A small number of firms developing the Grid middleware and the
scheduling software reduces rivalry.

— Strong market growth reduces rivalry by leaving plenty of space for all
competitors.

— Low fixed costs usually experienced by the software industry reduce
rivalry.

— High switching costs lead to lower levels of rivalry.

— High levels of product differentiation (schedulers are developed to fulfil
a specific need no other scheduler on the market does) reduces rivalry.

— Since buyers are concentrated and hard to switch, strategic stakes are
high - a company can either lose market position or experience great
gains leading to intensified rivalry.

— Being a global technology trend, the Grid computing attracts a diver­
sity of rivals from different cultures and market philosophies creating
a volatile and intensive rivalry.

— Industry shakeout is possible due to the strong market Growth and a
disbalance in the capital strength of the rivals.

The above overview of the Grid middleware and the scheduling software
industry indicates a lucrative market with a strong growth potential, and a low
to medium rivalry intensity. W ith a low level of supplier power, and a threat of
substitutes mostly dependant on the long term acceptance of the Grid technology,
the risk seems to be well balanced. The high entry barrier is significantly reduced
by the work already carried out as part of the doctoral research, and offers the
author a good starting position compared to other potential market entrants.

C.6.2 Financial Analysis

Providing preliminary financial analysis of the profitability, cash requirements
and financing structure of the start-up enables the entrepreneur and potential
investors to judge the merits of the business, and whether it meets their risk
requirements and anticipated rate of return. The following takes a look at the

APPENDIX C. COMMERCIAL ASPECTS 219

financial potential of the company and analyses the cash flow anticipated in the
first three years of operation.

Financial Potential

The financial potential of the start-up business will influence its valuation, its
attractiveness to the potential investor, as well as the amount of risk he or she is
willing to take. It is influenced by the following factors:

• Cluster, utility and Grid computing market capitalisation and growth rate

• Proportion of the market attributed to the sales of the middleware and
scheduling software

• Price of those scheduling components, which would influence the retail price
of our scheduling add-on

• Market capture of our scheduling add-on

• Our overall profit margin

Table C.6.2 outlines the profitability scenario based on currently available
market data. The analysis assumes a steady grow in the market capitalisation of
the Grid IT sector and a percentage increase in the spend share of the grid mid­
dleware (due to increasingly commoditised hardware). The number of shipped
scheduler units is hard to judge based on the available data and supplier pric­
ing is usually negotiated together with a consultancy or support contract. The
stated figures are thought to be reasonable estimates and a conservative pro­
jected growth was used. Our market capture was initially estimated at around
5% climbing to 20% in year 3 with a very modest increase in the base price of
the scheduling add-on. The projected revenue in year 3 was therefore estimated
at £1.35 million.

C.6.3 Cash Flow Analysis

Currently, the product is in the proof-of-concept stage. To successfully bring the
product to the market, the company must be able to sustain itself on seed funding
until it begins to generate profits. Prudent cash management during tha t period
is essential, and good estimates of the start equity required are a basis of this.

First Year Operation

The following assumptions have been made when estimating the cost of operations
in the first year.

D evelopm ent costs: It is estimated that, a five strong software development,
team would need ten to twelve months to deliver the first stable, marketable

APPENDIX C. COMMERCIAL ASPECTS 220

Year 1 Year 2 Year 3

Grid, cluster and utility
computing market cap. £1,000,000,000 £1,200,000,000 £1,500,000,000
Grid middleware
percentage 10% 15% 20%
Grid middleware
market cap. £100,000,000 £180,000,000 £300,000,000
Schedulers shipped 3,500.00 4,000.00 4,500.00
Scheduler avg. price £8,000 £8,500 £9,000
Our market capture 5% 10% 20%:
Our scheduler
add-on cost £1,200 £1,500 £1,500
Our revenue £210,000 £600,000 £1,350,000

Table C.3: Profitability scenario for first three years of business with a mar­
ketable product. The revenue is estimated based on the Grid IT sector market
capitalisation, number and price of core scheduling units shipped and the market
capture percentage and unit price of out scheduler add-on.

release. The salary budgeted for is an industry average, but the company can
further benefit from the close links with academic institutions and perhaps gain
access to the knowledgeable staff at a reduced cost.

Sales and A dm in staff: Until the initial product development cycle is
successfully completed, only a very limited sales and admin staff support is
needed. A single salesperson can start building up a list of potential clients during
this period and engage in marketing the new approach to the scheduling problem.
A part-time adm inistration staffer can take care of the salaries, disbursements
and basic company paperwork with the help from the management.

M anagem ent: A good project manager with the experience in the software
development would help the software team stay on track and schedule. Alongside
a basic salary, an equity sharing package may be used to attract a committed
and worthy candidate.

Fixed O perating C osts: The company will require a substantial invest­
ment in the computer hardware and software equipment. This expense can be
minimised by using open-source and free software common to the University re­
search community. Office space should be rented, and furniture preferably bought
on lease to reduce the amount of cash used. As a new company, suppliers may
not be willing to offer lease or credit terms, in which case cooperation with the
University can provide basic equipment and furbished offices as part of the seed
capital investment or in exchange for an equity in the company.

C ost o f G oods Sold: Initially only a small allocation will be made for basic
marketing efforts. Software distribution and customer support costs will not be
present until the software development phase has been completed.

APPENDIX C. COMMERCIAL ASPECTS 221

Revenues: No revenue, except from a possible short contract consultancy
work by the management, is anticipated in the first year of operation, or until
the release of the first version of the software.

Second and Subsequent Years

Before the launch of the first version of the predictive scheduler add-on, the
company can start building its sales force and increase its marketing spending.
It is common to release technology preview and beta versions of the new software
to demonstrate its functionality to potential clients. In this way, their feedback
can be incorporated into the final version, their interest can be judged in advance
and estimates can be made on the initial product sales.

H um an Costs: The employee structure of the company will likely change
with an increases in the sales and administrative staff levels and a reduction in the
number of contracted R&D personnel. A Sales and Marketing Manager, and an
Operations Manager may also be recruited at this stage to help the entrepreneur
regain focus on the technology strategy aspects of the business.

Fixed O perating C osts: The rise of the number of employees will require
additional office space and equipment, but with a steady stream of revenues the
company should be eligible for trade finance or credit.

C ost of G oods Sold: A substantial part of the gross revenues will go toward
customer support and training. Due to the nature of the target hardware and
applications, this will require highly skilled staff, able to deal with complex issues
of software deployment, interoperability and fault finding on parts of client’s
critical infrastructure. Software duplication, packaging and distribution expenses
will be minimised by offering incentives for buying the software online.

The above can be summarised in the following Table C.6.3 giving the financial
outlook for the product development year and the following three years in which
the marketable product is bringing in revenues. The analysis indicates that
the firm would require around £300,000 to sustain itself until in breaks into
profitability. The following section will discuss possible sources from which such
funds could be secured.

C.6.4 Sources of Funding

It is clear from the preceding section that a significant investment is needed to
support the start-up company before it becomes profitable. This money could
come from a number of sources, and would usually be traded for equity in the
start-up company. The funds are rarely made available as a lump sum, they are
more often paid in instalments and conditional on hitting certain milestones in
the product development, product sales or revenues.

This section will not try to give the details of specific funding opportunities,
but present an overview of possible funding opportunities and institutions. A

APPENDIX C. COMMERCIAL ASPECTS 222

Year 0 Year 1 Year 2 Year 3

R&D £175,000 £75,000 £80,000 £120,000
Sales £30,000 £45,000 £45,000 £60,000
Admin £20,000 £30,000 £30,000 £45,000
Management £40,000 £60,000 £60,000 £100,000

Sub-Total HR £265,000 £210,000 £215,000 £325,000

PC Equipment £25,000 £10,000 £10,000 £25,000
Offices £18,000 £20,000 £20,000 £30,000
Furniture £5,000 £1,000 £2,000 £10,000
Rates £2,000 £2,000 £2,000 £3,000

Sub-Total Fixed £50,000 £33,000 £34,000 £68,000

Software distribution £0 £875 £2,000 £4,500
Customer support £0 £2,625 £4,000 £13,500
Marketing expenses £5,000 £10,000 £12,000 £15,000

Sub-Total COGS £5,000 £13,500 £18,000 £33,000

Total expenses £320,000 £256,500 £267,000 £426,000

Revenues (Table C.6.2) £80,000 £210,000 £600,000 £1,350,000

EBITDA -£240,000 -£46,500 £333,000 £924,000

Table C .4: Four year• financial outlook

more detailed survey is deferred until a detailed business plan is available and
possible collaborators and partners identified.

Personal or fam ily funds are often used to jum p start a company or a
product development cycle. They are usually given as a loan with few or no
guarantees, sometimes for a share of equity in the new business. The author has
a small sum of family savings which he could use to support himself and thus
avoid drawing a salary from the company.

U niversity technology transfer program m es give access to funds made
available by the University or similar institutions to commercialise research work
and create research spin-offs. These programmes can additionally provide office
space, equipment and access to skilled labour (students or academics). These
funds are relatively modest in size, but the terms are flexible and the author
would strongly pursue such funding opportunities.

Bank business or personal loans could be a source of low cost funds not
requiring the entrepreneur to give up a share of equity. However, bank’s adversity
to risk makes these loans hard to get, and often requires a personal guarantee
jeopardising owner's personal and family assets. It is unlikely that the author
would be granted a bank loan for this particular venture.

Venture capital (V C) is the most frequently used funding source in sup­
porting the technology start-ups. The VCs or individual “angels” can provide

APPENDIX C. COMMERCIAL ASPECTS 223

large sums of money and are risk tolerant. They do require a substantial part of
the equity in the firm and may impose a management structure to ensure their
interest is looked after. Good venture capital is not easy to attract and needs a
good business plan and strong marketing. The author would be very receptive
to VC funding and would actively seek to attract interest from the individual
investors.

C.7 Further Research Proposal

The author has subm itted a research proposal to BT Group pic,, as part of
their Short-term Research Fellowship scheme. The proposal uses the methods
and approaches developed in the course of this PhD research to facilitate the
management of large Grid clusters and to increase the profitability of commercial
Grid service clusters by using a yield management approach.

The research proposal is included as an example of the broader applications
of the work presented in this thesis, and as a basis for further research aimed at
the commercial use of the predictive, autonomous Grid scheduling.

APPENDIX C. COMMERCIAL ASPECTS 224

Improving Service Cluster Profitability Using
Yield Management Methods

by Aleksandar Lazarevic

Project Summary
Commercial operators o f large (Grid) clusters are increasingly offering compute, storage and
network resources as a service charged on a per-use basis. From the operator’s perspective,
maximising the profitability o f such an expensive resource usually means striking the right balance
between high utilisation levels and acceptable quality o f service offered to the consumer. This work
proposes a novel way o f improving the cluster profitability by analysing the historic workload and
inferring the characteristics o f specific user behaviour, job arrival rates and execution time patterns.
This business intelligence is used to develop a yield management system increasing the overall
cluster utilisation by introducing price differentiation. Paired with a pricing policy, the probabilistic
workload model increases cluster revenues by making autonomous decisions on job admission and
resource reservation in anticipation o f the short-term demand behaviour.

Background and Motivation
Sun, HP, Amazon and other leading IT companies are deploying a new business model for
computing in which computational and storage resources are made available to the user on an as-
needed basis. The goal is to provide a service which would minimise user costs while maximising
the efficient use o f cluster operator resources. By significantly lowering entry and exit barriers, this
utility computing concept is a potentially disruptive technology for present hardware/software
vendors and integrators alike.
Profitability o f a cap-ex intensive service business greatly depends on the optimal use o f its
resources. Yield management approach, popularised by the airline industry, is a process o f
collecting resource usage data, analysing and understanding user behaviour, and reacting to the
anticipated demand in order to maximise the profits. The overall goal is to increase revenue by
balancing the demand variance through the use o f price or service level discrimination.
The proposed research would look at ways o f enabling the use o f yield management approaches in a
utility compute cluster. Central to this effort is an in-depth understanding o f the demand presented
to the cluster and the ability to effectively forecast its short-term development.

Proposed Methodology
The proposed work is an extension o f the author’s research into workload characterisation and
predictive job scheduling in general purpose utility Grid clusters. The basis o f the analysis is the
detailed three year workload log from a Grid cluster at the University College London, a European
Grid member institution. This rare data from a production Grid, using the same middleware as the
Sun Grid Compute Utility - the world’s first true compute utility1, contains more than 3 million
jobs from 50+ users in 30 Virtual Organisations compromising academic bodies and their
commercial collaborators. The workload is highly heterogeneous, with job execution times ranging
from one to 107 seconds, and a wide range o f workload patterns. Lightly anonymised, it preserves
functional dependency between observed metrics and is strongly representative o f the demand that a
typical utility cluster may experience. The author will make this workload available for the research
proposed herein.

1 Sun Grid Compute Utility - http://\vw\v.su n .com /sen ice/sungrid/index.jsp

http:///vw/v.sun.com/sen

APPENDIX C. COMMERCIAL ASPECTS 225

Objectives
The overall objective o f the research is to investigate yield management methods for increasing
revenues from a utility compute cluster through selective job admission and price differentiation.
More specifically, the following objectives will be pursued:

1 Confirm the presence o f cyclic behaviour, temporal patterns and correlations in a re­
presentative utility cluster workload

2. Consider different statistical methods for modelling such behaviour in the context o f service
demand predictions

3. Develop a pricing methodology to support balancing o f demand and service price dif­
ferentiation

4. Develop an admission policy based on the predictive job arrival model to prioritise high-
value jobs

5. Validate the proposed approach through simulation using real-world utility cluster workload

Work Programme
The following six week work programme compromising 3 work packages is proposed.

Weekly job submission count evolution (log colored)
24 F

10 15 20 25 30 35 40 45 50
Week number (year 2005)

W'P 1: Exam ination of workload behaviour and prediction model selection (1 week)
compromises objectives 1-2 and re-examines
workload properties and models previously
identified by the author in the new context o f
demand prediction. An example o f observed
workload behaviour in the figure shows the
number o f submitted jobs (colour intensity) in
each hour o f the day over a 51 week period.
W P 2: Yield m anagem ent and admission
policy im plem entation (3 weeks) is the primary
focus o f the research in order to accomplish
objectives 3-4. Online revenue optimisation will
be based on a job control heuristic deciding
whether it is more profitable to accept a job being
currently offered or block the resources in
anticipation o f a higher-value job. The approach
will be based on a short term load prediction model whose inputs are the current state o f the cluster,
job meta properties and a historical probability distribution o f a certain class o f jobs occurring. An
offline yield management component will investigate dynamic pricing models that would lead to
increased revenues, more balanced demand and higher overall utilisation.
WP 3: Approach validation and result publication (2 weeks) will use the workload log from a
representative Grid cluster to test the developed approach using a trace-replay method. Research
results will be submitted for publication to a relevant peer-reviewed conference.

Deliverables
1 Summary o f job arrival and execution time properties, patterns and correlations o f a

representative utility cluster workload
2. A pricing methodology and admission policy for maximising service cluster revenue based

on a short term demand prediction model
3. Best practices document for cluster monitoring and historical data analysis
4. Research paper submitted to a peer-reviewed conference or journal

APPENDIX C. COMMERCIAL ASPECTS 226

C.8 Summary and Conclusions

The analysis of the research work done as part of this PhD thesis showed that
significant potential for its commercialisation exists. The opportunity to develop
a novel method for scheduling user jobs on large computational Grids unlocks a
substantial added value to commercial Grid operators looking to increase their
platform utilisation, as well as users looking for a more efficient, convenient and
cost effective way of fulfilling their computational needs.

Despite the potential, extracting this added value may prove to be difficult
mainly due to the high barriers to entry created by consolidated buyers, high
switching costs and brand loyalty. In this environment the most promising com­
mercialisation route would be to develop a predictive scheduling add-on for a
third-party Grid scheduler already widely in use. This approach leverages the pro­
prietary know-how obtained during the university research work and minimises
the risk associated with the outright competition with an established middleware
supplier that would be present if a fully fledged scheduler was developed.

In a dynamic market conditions with many rivals of unequal capitalisation,
the best exit strategy for an innovative small company and its founder could be a
client or competitor buy-out. The valuation of the business at that point would
depend strongly on the level of product development and a commitment by an
early client. The management should thus focus on achieving these two as soon
as possible.

List of Abbreviations

A b b rev iation D escrip tion

AppLeS Application Level Scheduling
ASCI Accelerated Strategic Computing Initiative
CCC UCL Central Computing Cluster
CF RRD Database Consolidation Function
CPU Central Processing Unit
DEC Digital Equipment Corporation (now part of HP)
DS RRD Database Data Source
FIFO First In First Out
FLOPS Floating Point Instructions Per Second
FRFO First Ready First Out
GASS Globus Access to Secondary Storage
GGF Global Grid Forum
GIIS Grid Information Index Service
GIS Globus Information Service
GMA Grid Monitoring Architecture
GRAM Globus Resource Allocation Manager
GRIS Grid Resource Information Service
GSI Globus Security Infrastructure
IP Internet Protocol
LDAP Lightweight Directory Access Protocol
LSF Load Sharing Facility
MDS Globus Monitoring & Discovery Service
MIPS Millions of Instructions Per Second
MPI Message Passing Interface
NWS Network Weather Service
OGSA Open Grid Services Architecture
PBS Portable Batch System
PDF Probability Distribution Function
PE GridSim Processing Elements
PID Process Identifier
PKI Private Key Infrastructure
RDBMS Relational Database Management System

... continued on next page

227

LIST OF ABBREVIATIONS 228

A b b reviation D escrip tion

R-GMA Relational Grid Monitoring Architecture
RRA Round Robin Archive
RRD Round Robin Database
SGE Sun Grid Engine
SLA Service Level Agreement
SLAM SO-GRM SLA Management Component
SMP Symmetric Multiprocessor
SOAP Simple Object Access Protocol
SORD Self-Organised Resource Discovery Protocol
SQL Simple Query Language
SSH Secure Shell
Tel Tool Command Language
TCP Transport Control Protocol
TLS Transport Layer Security
ToS Type of Service
UDP User Datagram Protocol
URI Universal Resource Identifier
VO Virtual Organisation
WSRF Web Services Resource Framework
XDR External Data Representation
XML extensible Mark-up Language

Bibliography

[1] T. Exchange, Chicago Mercantile Exchange Rulebook. CME, 2007, vol.
Chapter 95.

[2] A. Ingold, I. Yeoman, and U. McMahon, Yield Management: Strategies for
the Service Industries, 2nd ed. Int. Thomson Business Press, 2001.

[3] J. Subramanian, S. Stidham Jr, and C. Lautenbacher, “Airline yield man­
agement with overbooking, cancellations, and no-shows,” Transportation
Science, vol. 33, no. 2, pp. 147-167, 1999.

[4] A. Grimshaw and W. Wulf, “The legion vision of a worldwide virtual com­
puter,” Communications o f the AC M , vol. 40, no. 1, pp. 39-45, 1997.

[5] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “Seti@
home: an experiment in public-resource computing,” Communications of
the ACM, vol. 45, no. 11, pp. 56-61, 2002.

[6] Y. Oyanagi, “Future of supercomputing,” Journal of Computational and
Applied Mathematics, vol. 149, no. 1, pp. 147-153, 2002.

[7] P. Galison and B. Hevly, Big Science: The Growth of Large-scale Research.
Stanford University Press, 1992.

[8] Unknown, “The politics of grid: Organizational politics as a barrier to
implementing grid computing,” Platform Computing, Tech. Rep., 2004.

[9] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling
scalable virtual organizations,” International Journal of Supercopmuter A p­
plications, vol. 15(3), 2001.

[10] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The physiology of the grid:
An open grid services architecture for distributed systems integration,” in
Global Grid Forum, 2002.

[11] K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and survey of
grid resource management systems for distributed computing,” Software
Practice and Experience, vol. 32, no. 2, pp. 135-164, 2002.

[12] R. Wolski, J. Plank, J. Brevik, and T. Bryan, “Analyzing market-based
resource allocation strategies for the computational grid,” International
Journal of High Performance Computing Applications, vol. 15, no. 3, p.
258, 2001.

229

BIBLIOGRAPHY 230

[13] C. Anderson, The Long Tail: Why the Future of Business Is Selling Less
of More. Hyperion, 2006.

[14] J. Hutchinson, Fractals and Self Similarity. University of Melbourne, 1979.

[15] D. Tsafrir and D. Feitelson, “Instability in parallel job scheduling sim­
ulation: the role of workload flurries,” in 20th International Parallel &
Distributed Processing Symposium , 2006.

[16] Editorial, “10 emerging technologies tha t will change your world,” Tech­
nology Review, pp. 02-, 2004.

[17] C. Lee, J. Stepanek, R. Wolski, C. Kesselman, and I. Foster, “A net­
work performance tool for grid environments,” in Proceedings of the 1999
A C M /IE E E conference on Supercomputing, 1999.

[18] S. Matsuoka, M. Sato, H. Nakada, and S. Sekiguchi, “Design issues of
network enabled server systems for the grid,” Lecture notes in computer
science. no. 1971, pp. 4 17, 2000.

[19] S. Vazhkudai and J. Schopf, “Predicting sporadic grid data transfers,” High
Performance Distributed Computing. 2002. HPDC-11 2002. Proceedings.,
pp. 188-196, 2002.

[20] S. Akioka and Y. Muraoka, “Extended forecast of cpu and network load on
computational grid,” in 2004 IEEE International Symposium on Cluster
Computing and the Grid. 19-22 April 2004■ IEEE, 2004, pp. 765-72.

[21] R. Wolski, N. Spring, and J. Hayes, “The network weather service: a
distributed resource performance forecasting service for metacomputing,”
Future Gener. Comput. Syst., vol. 15, no. 5-6, pp. 757-768, 1999.

[22] R. Wolski, “Forecasting network performance to support dynamic schedul­
ing using the network weather service,” High Performance Distributed Com­
puting. 1997. Proceedings., pp. 316-325, 1997.

[23] W. Cirne and F. Berman, “A comprehensive model of the supercomputer
workload,” in Proceedings o f the Fourth Annual IEEE International Work­
shop on Workload Characterization, 2 Dec. 2001. IEEE, 2001, pp. 140 8.

[24] U. Lublin and D. Feitelson, “The workload on parallel supercomputers:
modeling the characteristics of rigid jobs,” Journal of Parallel and Dis­
tributed Computing T3 - J. Parallel Distrib. Comput. (USA), vol. 63, no. 11,
p p . 1105-1122, 2003.

[25] A. Downey and D. Feitelson, “The elusive goal of workload characteriza­
tion,” Performance Evaluation Review T3 - Perform. Eval. Rev. (USA),
vol. 26, no. 4. pp. 14 29, 1999.

[26] H. Li, D. Groep, and L. Wolters, “Workload characteristics of a multi-
cluster supercomputer,” in Job Scheduling Strategies for Parallel Process­
ing. 10th International Workshop. JSSPP 2004• Revised Selected Papers.
13 June 2004■ Springer-Verlag, 2004, pp. 176-93.

BIBLIOGRAPHY 231

[27] E. Medernach, “Workload analysis of a cluster in a grid environment,” in
Job Scheduling Strategies for Parallel Processing. 11th International Work­
shop, JSSPP 2005. Revised Selected Papers, 19 June 2005. Springer-
Verlag, 2005, pp. 36-61.

[28] M. Dobber, R. van der Mei, and G. Koole, “Statistical properties of task
running times in a global-scale grid environment,” in Sixth IEEE Interna­
tional Symposium on Cluster Computing and the Grid, 16-19 May 2006.
IEEE Comput. Soc, 2006.

[29] F. Gagliardi, B. Jones, F. Grey, M. Begin, and M. Heikkurinen, “Build­
ing an infrastructure for scientific grid computing: status and goals of the
egee project,” Philosophical Transactions: Mathematical. Physical and En­
gineering Sciences, vol. 363, no. 1833, pp. 1729-1742, 2005.

[30] R. Buyya, D. Abramson, and J. Giddy, “An economy driven resource man­
agement architecture for com putational power grids,” in International Con­
ference on Parallel and Distributed Processing Techniques and Applications
(PDPTA2000), 2000.

[31] R. Buyya, J. Giddy, and D. Abramson, “An evaluation of economy-based
resource trading and scheduling on com putational power grids for param ­
eter sweep applications,” in The Second Workshop on Active Middleware
Services (AM S 2000), In conjuction with Ninth IEEE International Sympo­
sium on High Performance Distributed Computing (HPDC 2000). Kluwer
Academic Press, 2000.

[32] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal, “Scheduling pa­
rameter sweep applications on global grids: a deadline and budget con­
strained cost-time optimization algorithm ,” SoftwarePractice & Experience,
vol. 35, no. 5, pp. 491-512, 2005.

[33] J. Yu, R. Buyya, and C. Tham , “Cost-based scheduling of scientific work­
flow applications on utility grids,” Proceedings of the 1st International Con­
ference on e-Science and Grid Computing (e-Science 2005), pp. 140-147,
2005.

[34] C. Ernemann, V. Hamscher, and R. Yahyapour, “Economic scheduling
in grid computing,” in Job Scheduling Strategies for Parallel Processing.
8th International Workshop. JSSP P 2002. Revised Papers. 24 July 2002.
Springer-Verlag, 2002, pp. 128-52.

[35] T. Sandholm, J. Ortiz, J. Odeberg, and K. Lai, “Market-based resource
allocation using price prediction in a high performance computing grid
for scientific applications,” High Performance Distributed Computing. 15th
IEEE International Symposium on, pp. 132-143, 2006.

[36] L. Sacks, O. P rnjat, I. Liabotis, T. Olukemi, A. Ching, M. Fisher, P. Mckee,
N. Georgalas, and H. Yoshii, “Active robust resource management in cluster
computing using policies,” Journal o f Network and Systems Management,
vol. 11, no. 3, pp. 329 350, 2003.

[37] I. Liabotis. O. Prnjat, T. Olukemi, A. Lazarevic, L. Ching, L. Sacks,
M. Fisher, and P. McKee, “Self-organising management of grid resources,”
in International Conference on Telecommunications (IST2003), 2003.

BIBLIOGRAPHY 232

[38] I. Foster and C. Kesselman, “Globus: a metacomputing infrastructure
toolkit,” International Journal of High Performance Computing Applica­
tions, vol. 11, no. 2, p. 115, 1997.

[39] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,”
Journal of Computer Science and Technology, vol. 21, no. 4, pp. 513-520,
2006.

[40] I. Liabotis, O. P rn jat, and L. Sacks, “Policy-based resource management
for application level active networks,” in 2nd Latin American Network Op­
erations and Management Symposium (LANO M S 2001), August 2001.

[41] D. Watts, Small Worlds. Princeton University Press, 1999.

[42] T. Olukemi, I. Liabotis, O. P rnjat, and L. Sacks, “Security and resource
policy-based mangagement architecture for alan servers,” in Conference on
Network Control and Engineering for QoS, Security and Mobility IFIP TC6
(Net-Con 2002), 2002, pp. 91-102.

[43] O. Prnjat. T. Olukemi, I. Liabotis, and L. Sacks, “Integrity and security of
the application level active networks,” in IFIP Workshop on IP and A TM
Traffic Management, 2001.

[44] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith,
and S. Tuecke, “A resource management architecture for metacomputing
systems,” in The f th Workshop on Job Scheduling Strategies for Parallel
Processing, vol. 82, 1998.

[45] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid informa­
tion services for distributed resource sharing,” in High Performance Dis­
tributed Computing. 2001. Proceedings. 10th IEEE International Sympo­
sium on, 2001, pp. 181-194.

[46] A. Iamnitchi and I. Foster, “On fully decentralized resource discovery in
grid environments,” in International Workshop on Grid Computing. IEEE,
2001 .

[47] C. Schmidt and M. Parashar, “Flexible information discovery in decen­
tralized distributed systems,” in High Performance Distributed Comput­
ing. 2003. Proceedings. 12th IE E E International Symposium on, 2003, pp.
226 235.

[48] M. Baker and G. Smith, “Gridrm: an extensible resource monitoring sys­
tem,” Cluster Computing. 2003. Proceedings., pp. 207-214, 2003.

[49] A. Cooke, A. Gray, W. N utt, J. Magowan, M. Oevers, P. Taylor, R. Corde-
nonsi, R. Byrom, L. Cornwall, and A. Djaoui, “The relational grid monitor­
ing architecture: Mediating information about the grid,” Journal of Grid
Computing, vol. 2, no. 4, pp. 323 339, 2004.

[50] J. Frey. T. Tannenbaum, I. Foster, and S. Tuecke, “Condor-g: a compu­
tation management agent for multi-institutional grids,” High Performance
Distributed Computing, 2001. Proceedings., pp. 55-63, 2001.

[51] H. El-Rewini, T. Lewis, and H. Ali, Task scheduling in parallel and dis­
tributed systems. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1994.

BIBLIOGRAPHY 233

[52] H. El-Rewini and T. Lewis. Distributed and parallel computing. Manning
Publications Co. Greenwich, CT, USA, 1998.

[53] B. Shirazi, M. Wang, and G. Pathak, “Analysis and evaluation of heuristic
methods for static task scheduling,” Journal of Parallel and Distributed
Computing, vol. 10, no. 3, pp. 222-2232, 1990.

[54] B. Shirazi, K. Kavi, and A. Hurson, Scheduling and Load Balancing in Par­
allel and Distributed Systems. IEEE Computer Society Press Los Alamitos,
CA, USA, 1995.

[55] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. WH Freeman & Co. New York, NY, USA,
1979.

[56] G. Ausiello, Complexity and approximation. Springer New York, 1999.

[57] S. Cook, “The complexity of theorem-proving procedures,” Proceedings of
the third annual A C M symposium on Theory of computing, pp. 151-158,
1971.

[58] T. Casavant and J. Kuhl, “A taxonomy of scheduling in general-purpose
distributed computing systems,” Software Engineering. IEEE Transactions
on, vol. 14, no. 2, pp. 141-154, 1988.

[59] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam, “An integrated
approach to parallel scheduling using gang-scheduling, backfilling, and mi­
gration,” IEEE Transactions on Parallel and Distributed Systems, vol. 14,
no. 3, pp. 236 247, 2003.

[60] M. Litzkow, M. Livny, and M. Mutka, “Condor-a hunter of idle worksta­
tions,” Distributed Computing Systems. 1988., pp. 104-111, 1988.

[61] J. Cao and F. Zimmermann, “Queue scheduling and advance reservations
with cosy,” in Parallel and Distributed Processing Symposium. 2004-Pro­
ceedings. 18th International, 2004.

[62] N. Fujimoto and K. Hagihara, “Near-optimal dynamic task scheduling of
independent coarse-grained tasks onto a computational grid,” in Parallel
Processing. Proceedings. 2003 International Conference on, 2003, pp. 391-
398.

[63] G. Sabin, S. Vishvesh, and P. Sadayappan, “Assessment and enhancement
of meta-schedulers for multi-site job sharing,” in High Performance Dis­
tributed Computing. 2005.HPDC-If-Proceedings. 14th IEEE International
Symposium on, 2005, pp. 144 153.

[64] O. Beaumont. L. Carter. J. Ferrante, A. Legrand, L. Marchal, and
Y. Robert. “Centralized versus distributed schedulers for multiple bag-
of-task applications,” in Proceedings. 20th International Parallel and Dis­
tributed Processing Symposium. 25-29 April 2006. IEEE, 2006.

[65] A. Das and D. Grosu, “Combinatorial auction-based protocols for resource
allocation in grids,” in Parallel and Distributed Processing Symposium.
2005. Proceedings. 19th IEEE International, 2005.

BIBLIOGRAPHY 234

[66] H. Dail, H. Casanova, and F. Berman, “A decoupled scheduling approach
for the grads program development environment,” in Proceedings of the
2002 A C M /IE E E conference on Supercomputing, 2002, pp. 1-14.

[67] A. Aggarwal and R. Kent, “An adaptive generalized scheduler for grid
applications,” in Proceedings of the 19th International Symposium on High
Performance Computing Systems and Applications, 2005, pp. 188-194.

[68] M. Wu and X. Sun, “A general self-adaptive task scheduling system for non­
dedicated heterogeneous computing,” in Cluster Computing, 2003. Proceed­
ings. 2003 IEEE International Conference on, 2003, pp. 354 361.

[69] L. Gong, X. Sun, and E. Watson, “Performance modeling and prediction
of nondedicated network computing,” IEEE Transactions on Computers,
vol. 51, no. 9, pp. 1041-1055, 2002.

[70] X. Sun and M. Wu, “Grid harvest service: a system for long-term,
application-level task scheduling,” in Parallel and Distributed Processing
Symposium. 2003. Proceedings. International, 2003.

[71] A. Su, F. Berman, R. Wolski, and M. Strout, “Using apples to schedule
simple sara on the com putational grid,” International Journal o f High Per­
formance Computing Applications, vol. 13. no. 3, pp. 253 262, 1999.

[72] J. Subhlok, P. Lieu, and B. Lowekamp, “Automatic node selection for high
performance applications on networks,” in Proceedings of the seventh AC M
SIG PLAN symposium on Principles and practice o f parallel programming,
1999, pp. 163-172.

[73] K. Cooper, A. Dasgupta, K. Kennedy, C. Koelbel, A. Mandal, G. Marin,
M. Mazina, J. Mellor-Crummey, F. Berman, H. Casanova, A. Chien,
H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu,
M. Patel, D. Reed, and W. Deng, “New grid scheduling and reschedul­
ing methods in the grads project,” in Parallel and Distributed Processing
Symposium. 2 0 0 4 -Proceedings. 18th International, 2004.

[74] R. van Nieuwpoort, T. Kielmann, and H. Bal, “Efficient load balancing for
wide-area divide-and-conquer applications,” in Proceedings of the eighth
ACM SIG PLAN symposium on Principles and practices of parallel pro­
gramming, 2001, pp. 34-43.

[75] A. Abdul-Rahman and S. Hailes, “A distributed trust model,” Proceedings
of the workshop on New security paradigms, pp. 48-60, 1997.

[76] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour, “Enhanced al­
gorithms for multisite scheduling,” in Grid Computing - GRID 2002. Third
International Workshop. Proceedings, 18 Nov. 2002. Springer-Verlag, 2002,
p p . 219-31.

[77] Y. Zhu, L. Xiao. L. Ni, and Z. Xu, “Incentive-based p2p scheduling in
grid computing.” in Proc. of the 3rd International Conference on Grid and
Cooperative Computing (GCC2004), 2004.

[78] G. Owen, Game theory. MIT Press, 1991.

BIBLIOGRAPHY 235

[79] L. Young, S. McGough, S. Newhouse, and J. Darlington, “Scheduling ar­
chitecture and algorithms within the iceni grid middleware,” in Proc. of the
UK e-Science A ll Hands Meeting, 2003.

[80] D. Goldberg, Genetic Algorithms in Search. Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., 1989.

[81] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, p. 671, 1983.

[82] M. Aggarwal, R. Kent, and A. Ngom, “Genetic algorithm based scheduler
for computational grids,” Proceedings of the 19th International Symposium
on High Performance Computing Systems and Applications (H P C S’05), pp.
209-215, 2005.

[83] S. Kim and J. Weissman, “A genetic algorithm based approach for schedul­
ing decomposable data grid applications,” in Proceedings of the 2004 Inter­
national Conference on Parallel Processing (IC P P ’04), 2004, pp. 406-413.

[84] S. Song, Y. Kwok, and K. Hwang, “Security-driven heuristics and a fast
genetic algorithm for trusted grid job scheduling,” in Proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS'05;, 2005.

[85] N. Spring and R. Wolski, “Application level scheduling of gene sequence
comparison on metacom puters,” in Proceedings of the 12th international
conference on Supercomputing, 1998, pp. 141-148.

[86] N. Coleman, R. Raman, M. Livny, and M. Solomon, “Distributed policy
management and comprehension with classified advertisements,” University
of Wisconsin - Madison Computer Sciences Department, Tech. Rep., 2003.

[87] Z. Xuechai, J. Freschl, and J. Schopf, “A performance study of monitor­
ing and information services for distributed systems,” High Performance
Distributed Computing. 2003. Proceedings., pp. 270-281, 2003.

[88] W. Gentzsch, “Sun grid engine: Towards creating a compute power grid,”
in Proceedings of the 1st International Symposium on Cluster Computing
and the Grid, 2001.

[89] L. Gong, “Jxta: A network programming environment,” IEEE Internet
Computing, vol. 5, no. 3, pp. 88-95, 2001.

[90] T. Sloan, “Going global with globus and grid engine,” EPCC News, vol. 48,
2003.

[91] D. A. Lifka, “The anl/ibm sp scheduling system,” in IPPS '95: Proceed­
ings of the Workshop on Job Scheduling Strategies for Parallel Processing.
London, UK: Springer-Verlag, 1995, pp. 295-303.

[92] J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The easy-loadleveler api
project,” Job Schediding Strategies for Parallel Prvcessing, pp. 41-47, 1996.

[93] R. Henderson, “Job scheduling under the portable batch system,” in IPPS
'95: Proceedings of the Workshop on Job Scheduling Strategies for Parallel
Processing. Springer-Verlag, 1995, pp. 279-294.

BIBLIOGRAPHY 236

[94] S. Zhou, “Lsf: Load sharing in large-scale heterogeneous distributed sys­
tems,” in Workshop on Cluster Computing, 1992.

[95] D. Jackson, Q. Snell, and M. Clement, “Core algorithms of the maui sched­
uler,” Lecture Notes in Computer Science, vol. 2221, p. 87, 2001.

[96] E. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-
level scheduling on distributed heterogeneous networks,” Supercomputing,
vol. ’96, 1996.

[97] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen,
N. Spring, A. Su, and D. Zagorodnov, “Adaptive computing on the grid
using apples,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 14, no. 4, pp. 369-382, 2003.

[98] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/g: an architecture for
a resource management and scheduling system in a global computational
grid,” in High Performance Computing in the Asia-Pacific Region, 2000.
Proceedings. The Fourth International Conference/Exhibition on, 2000, pp.
283-289.

[99] D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod: a tool for perform­
ing parametrised simulations using distributed workstations,” in High Per­
formance Distributed Computing. 1995.. Proceedings of the Fourth IEEE
International Symposium on, 1995, pp. 112 121.

[100] D. Spooner, S. Jarvis, J. Cao, S. Saini, and G. Nudd, “Local grid scheduling
techniques using performance prediction,” IEE Proceedings-Computers and
Digital Techniques T3 - IE E Proc., Comput. Digit. Tech. (UK), vol. 150,
no. 2, pp. 87-96, 2003.

[101] S. Jarvis, D. Spooner, H. Keung, J. Dyson, Z. Lei, and G. Nudd,
“Performance-based middleware services for grid computing,” in Auto­
nomic Computing Workshop. 2003, 2003, pp. 151 159.

[102] S. Jarvis, D. Spooner, H. Keung, and G. Nudd, “Performance prediction
and its use in parallel and distributed computing systems,” in Parallel and
Distributed Processing Symposium. 2003. Proceedings. International, 2003.

[103] C. Junwei, D. Spooner, S. Jarvis, S. Saini, and G. Nudd, “Agent-based grid
load balancing using performance-driven task scheduling,” in Parallel and
Distributed Processing Symposium. 2003. Proceedings. International, 2003.

[104] N. Furmento. W. Lee, A. Mayer, S. Newhouse, and J. Darlington, “Iceni:
An open grid service architecture implemented with jini,” in Supercomput­
ing. A C M /IEEE 2002 Conference, 2002.

[105] S. Handley, “On the use of a directed acyclic graph to represent a popu­
lation of computer programs,” The 1 st IEEE Conference on Evolutionary
Computation, pp. 154 159, 1994.

[106] J. Armstrong, Principles of Forecasting: A Handbook for Researchers and
Practitioners. Kluwer Academic Pub, 2001.

BIBLIOGRAPHY 237

[107] P. Dinda and D. O ’Hallaron, “An evaluation of linear models for host load
prediction,” in High Performance Distributed Computing, 1999.Proceed­
ings. The Eighth International Symposium on, 1999, pp. 87-96.

[108] Y. Lingyun, I. Foster, and J. Schopf, “Homeostatic and tendency-based cpu
load predictions,” Parallel and Distributed Processing Symposium, 2003.
Proceedings., p. 9, 2003.

[109] A. Downey, “Predicting queue times on space-sharing parallel computers,”
in Parallel Processing Symposium , 1997, pp. 209-218.

[110] R. Wolski, “Dynamically forecasting network performance using the net­
work weather service,” Cluster Computing, vol. 1, no. 1, pp. 119-132, 1998.

[111] H. Keung, J. Dyson, S. Jarvis, and G. Nudd, “Predicting the performance
of globus monitoring and discovery service (mds-2) queries,” in Grid Com­
puting, 2003. Proceedings. Fourth International Workshop on, 2003, pp.
176-183.

[112] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Pub, 1997.

[113] J. Peterson and A. Silberschatz, Operating system concepts. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1985.

[114] A. Burns and A. Wellings, Real-time systems and their programming lan­
guages. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
1990.

[115] G. Buttazzo, Hard real-time computing systems: predictable schediding al­
gorithms and applications. Springer, 2005.

[116] C. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user runtime
estimates inherently inaccurate?” Job Scheduling Strategies for Parallel
Processing, 2004.

[117] F. Harary, Graph Theory. Perseus Books, 1999.

[118] V. Sarkar. “Determining average program execution times and their vari­
ance,” in SIG PLAN Conference on Programming Language Design and Im ­
plementation, 1989, pp. 298-312.

[119] R. Huang, H. Casanova, and A. Chien, “Using virtual grids to simplify
application scheduling,” in Parallel and Distributed Processing Symposium.
2006. IP DPS 2006. 20th International, 2006.

[120] M. Gergeleit, E. Nett, and J. Fitzner, “On-line prediction of execution times
- a basis for adaptive scheduling,” in Object-Oriented Real-Time Dependable
Systems, 1999.Proceedings.Fourth International Workshop on, 1999, pp.
186 194.

[121] D. Kerbyson, “Predictive performance and scalability modeling of a large-
scale application,” in Conference on High Performance Networking and
Computing. ACM Press, 2001.

BIBLIOGRAPHY 238

122] G. Marin and J. Mellor-Crummey, “Cross-architecture performance predic­
tions for scientific applications using parameterized models,” in SIGM ET-
RIC S 2004• ACM Press, 2004, pp. 2-13.

123] J. Henning, “Spec cpu2000: Measuring cpu performance in the new millen­
nium,” Computer, vol. 2000, no. July, 2000.

124] J. Farmer and J. Sidorowich, “Predicting chaotic time series,” Physical
Review Letters, vol. 59, no. 8, pp. 845-848, 1987.

125] D. Montgomery and G. Runger, Applied statistics and probability for engi­
neers. John Wiley & Sons New York, 1994.

126] W. Smith, I. Foster, and V. Taylor, “Predicting application run times using
historical information,” Lecture Notes in Computer Science, vol. 1459, p.
122, 1998.

127] N. Draper and H. Smith, Applied Regression Analysis. John Wiley & Sons
New York. 1981.

128] P. Dinda, “Online prediction of the running time of tasks,” in High Perfor­
mance Distributed Computing, 2001. Proceedings. 10th IEEE International
Symposium on, 2001, pp. 383-394.

129] L. Byoung Dai and J. Schopf, “Run-time prediction of parallel applications
on shared environments,” Cluster Computing, 2003. Proceedings., pp. 487-
491, 2003.

130] G. Box and G. Jenkins, Time Series Analysis. Forecasting and Control.
Holden-Day, Incorporated, 1990.

131] P. Dinda, “A predict ion-based real-time scheduling advisor,” in Parallel
and Distributed Processing Symposium.. Proceedings International. IPDPS
2002, Abstracts and CD-ROM , 2002, pp. 10-17.

132] J. Doob, Stochastic processes. Wiley New York, 1990.

133] J. Schopf and F. Berman, “Performance prediction in production
environments,” in Parallel Processing Symposium , 1998.1998 IPP-
S/SPDP.Proceedings of the First Merged International...and Symposium
on Parallel and Distributed Processing 1998, 1998, pp. 647-653.

134] J. Schopf and F. Berman, “Stochastic scheduling,” in Proceedings of the
1999 A C M /IE E E conference on Supercomputing, 1999.

135] J. Schopf and F. Berman, “Using stochastic intervals to predict application
behavior 011 contended resources,” in Parallel Architectures, Algorithms,
and Networks. 1999. (I-SPAN '99) Proceedings. Fourth InternationalSym-
posium on, 1999, pp. 344-349.

136] G. Haring, On Stochastic Models of Interactive Workloads. North-Holland,
1983.

137] G. Serazzi, “A functional and resource-oriented procedure for workload
modeling,” Proceedings of the 8th International Symposium on Computer
Performance Modeling. Measurement and Evaluation, p. 345, 1981.

BIBLIOGRAPHY 239

[138] J. Kearns and S. DeFazio, “Diversity in database reference behavior,” Pro­
ceedings of the 1989 AC M SIG M ETRICS international conference on Mea­
surement and modeling of computer systems, pp. 11-19, 1989.

[139] P. Lewis and G. Shedler, “Statistical analysis of non-stationary series of
events in a data base system,” IBM Journal of Research and Development,
vol. 20, no. 5, p. 465, 1976.

[140] H. Artis, “Capacity planning for mvs computer systems,” AC M SIG M ET­
RIC S Performance Evaluation Review , vol. 8, no. 4, pp. 45-62, 1979.

[141] R. Gusella, “A measurement study of diskless workstation traffic on an
ethernet,” Communications, IEEE Transactions on, vol. 38, no. 9, pp.
1557-1568, 1990.

[142] R. Bodnarchuk and R. Bunt, “A synthetic workload model for a distributed
system file server,” A C M SIG M ETRIC S Performance Evaluation Review ,
vol. 19. no. 1, pp. 50-59, 1991.

[143] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of www client-
based traces,” Boston University, Tech. Rep., 1995.

[144] M. Arlitt and C. Williamson, “Web server workload characterization: the
search for invariants,” AC M SIG M ETRIC S Performance Evaluation Re­
view, vol. 24, no. 1, pp. 126-137, 1996.

[145] M. Crovella and A. Bestavros, “Self-similarity in world wide web traffic:
evidence and possible causes,” IE E E /A C M Transactions on Networking
(TON), vol. 5, no. 6, pp. 835-846, 1997.

[146] D. Feitelson, “The forgotten factor: Facts on performance evaluation and
its dependence on workloads,” Euro-Par, p. 49, 2002.

[147] D. Feitelson, “Workload modeling for performance evaluation,” Lecture
Notes in Computer Science, pp. 114 141, 2002.

[148] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of ethernet traffic (extended version),” IE E E /A C M Transactions on
Networking T3 - IE E E /A C M Trans. Netw. (USA), vol. 2, no. 1, pp. 1-15,
1994.

[149] V. Paxson and S. Floyd, “Wide area traffic: the failure of poisson model­
ing,” Networking. IE E E /A C M Transactions on, vol. 3, no. 3, pp. 226 244,
1995.

[150] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” Proceedings of the 1998
ACM SIG M ETRICS joint international conference on Measurement and
modeling of computer systems, pp. 151 160, 1998.

[151] P. Barford and M. Crovella, “Measuring web performance in the wide area,”
ACM SIG M ETRICS Performance Evaluation Review, vol. 27, no. 2, pp.
37 48, 1999.

BIBLIOGRAPHY 240

[152] R. Gibbons, “A historical application profiler for use by parallel schedulers,”
in Proceedings of 3rd Workshop on Job Scheduling Strategies for Parallel
Processing (Held in Conj. with IPPS'97), 5 April 1997. Springer-Verlag,
1997, pp. 58-77.

[153] M. Calzarossa and G. Serazzi, “Construction and use of multiclass work­
load models,” Performance Evaluation T3 - Perform. Eval. (Netherlands),
vol. 19, no. 4, pp. 341-352, 1994.

[154] D. Ferrari, “On the foundations of artificial workload design,” Proceedings
of the 1984 ACM SIG M ETRIC S conference on Measurement and modeling
of computer systems, pp. 8 14, 1984.

[155] B. Song, C. Ernemann, and R. Yahyapour, “Parallel computer workload
modeling with markov chains,” in Job Schediding Strategies for Parallel
Processing. 10th International Workshop. JSSPP 2004- Revised Selected
Papers. 13 June 2004• Springer-Verlag, 2004, pp. 47 62.

[156] N. Thomas, “Modelling job allocation where service duration is unknown,”
in Parallel and Distributed Processing Symposium. 2006. IPD PS 2006. 20th
International, 2006.

[157] A. Iosup, C. Dumitrescu. D. Epema. H. Li. and L. Wolters, “How are real
grids used? the analysis of four grid traces and its implications.” in The
7th IEEE /AC M International Conference on Grid Computing (Grid2006).
IEEE Computer Society Press. 2006.

[158] D. Tsafrir, “Backfilling using system-generated predictions rather than user
runtime estimates," IEEE transactions on parallel and distributed systems,
vol. 18. no. 6, pp. 789 803, 2007.

[159] K. Li. “Job scheduling for grid computing on metacomputers," in Paral­
lel and Distributed Processing Symposium. 2005. Proceedings. 19th IEEE
International. 2005.

[160] F. Sacerdoti, M. Katz, M. Massie, and D. Culler, "Wide area cluster moni­
toring with ganglia,” in Cluster Computing. 2003. Proceedings. 2003 IEEE
International Conference on, 2003, pp. 289 298.

[161] B. Tierney, “A grid monitoring architecture,” Global Grid Forum, Tech.
Rep., 2000.

[162] M. Leese and R. Tasker, “Gridmon and network performance monitoring
for the grid,” Networkshop. Tech. Rep., 2004.

[163] H. Casanova, “Simgrid: a toolkit for the simulation of application schedul­
ing,” Cluster Computing and the Grid. 2001. Proceedings., pp. 430 437,
2001 .

[164] A. Legrand. L. Marchal. and H. Casanova. “Scheduling distributed appli­
cations: the simgrid simulation framework.” Cluster Computing and the
Grid. 2003. Proceedings. CCGrid 2003.. pp. 138 145. 2003.

[165] H. Casanova, “Modeling large-scale platforms for the analysis and the simu­
lation of scheduling strategies,” in Parallel and Distributed Processing Sym ­
posium. 2004.Proceedings. 18th International, 2004.

BIBLIOGRAPHY 241

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

R. Buyya and M. Murshed, GridSim: a toolkit for the modeling and simula­
tion of distributed resource management and scheduling for Grid computing.
John Wiley & Sons, Ltd., 2003.

H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and
A. Chien, "‘The microgrid: a scientific tool for modeling computational
grids,” in Supercomputing, 2000.

X. Huaxia, H. Dail, H. Casanova, and A. Chien, “The microgrid: using on­
line simulation to predict application performance in diverse grid network
environments,” Challenges o f Large Applications in Distributed Environ­
ments, 2004• CLADE 2004-, pp. 52 -61, 2004.

J. Tukey, Exploratory data analysis. Addison-Wesley Menlo Park, CA,
1977.

N. Technology, N IST /SE M A TE C H e-Handbook of Statistical Methods.
NIST/SEMANTECH. 2003.

F. Mosteller and J. Tukey, Data Analysis and Regression: A Second Course
in Statistics. Addison-Wesley Reading. MA, 1977.

P. Velleman and D. Hoaglin, Applications. Basics, and Computing of Ex­
ploratory Data Analysis. Cornell Cooperative Extension, 1981.

M. Calzarossa and G. Serazzi, "‘Workload characterization: a survey,” Pro­
ceedings of the IEEE T3 - Proc. IEEE (USA), vol. 81, 110. 8. pp. 1136-1150,
1993.

B. Mandelbrot, The fractal geometry of nature. WH Freeman and Co.,
1983.

R. Clegg, “A practical guide to measuring the hurst param eter,” in Proc. of
21st, UK Performance Engineering Workshop. School of Computing Science
Technical Report Series. CS-TR-916. University of Newcastle, 2005, pp.
1368-2428.

J. Beran, Statistics for Long-Memory Processes. CRC Press. 1994.

R. Kriesten. U. Kaage. and F. Jondral, "‘A unifying view to fractional mod­
eling," in Global Telecommunications Conference. GLOBECOM'99, 1999.

A. Chamoli, A. Bansal, and V. Dimri, “Wavelet and rescaled range ap­
proach for the hurst coefficient for short and long time series,” Computers
& Geosciences, vol. 33, no. 1, pp. 83 -93, 2007.

J. Feder, Fractals. Plenum Press, 1989.

C. Turvey. "A note 011 scaled variance ratio estimation of the hurst exponent
with application to agricultural commodity prices,” Physica A: Statistical
Mechanics arid its Applications, vol. 377. 110. 1, pp. 155 165, 2007.

[181] S. Stoev, M. Taqqu, C. Park, and J. Marron, "‘On the wavelet spectrum
diagnostic for hurst parameter estimation in the analysis of internet traffic,"
Computer Networks, vol. 48, no. 3, pp. 423-445, 2005.

BIBLIOGRAPHY 242

[182] N. Cackov, Z. Lucic, M. Bogdanov, and L. Trajkovic, “Wavelet-based es­
timation of long-range dependence in mpeg video traces,” Circuits and
Systems, 2005. ISC A S 2005. IEEE International Symposium on, pp. 2068-
2071, 2005.

[183] H. Hurst, R. Black, and Y. Simaika, Long-term Storage: An Experimental
Study. Constable, 1965.

[184] J. Kenney, Mathematics of Statistics. Van Nostrand, 1954.

[185] C. Kenyon and G. Cheliotis, “Creating services with hard guarantees from
cycle-harvesting systems,” Cluster Computing and the Grid. 2003. Proceed­
ings. CCGrid 2003., pp. 224-231, 2003.

[186] D. Feitelson, “Memory usage in the lanl cm-5 workload,” Job Scheduling
Strategies for Parallel Processing, pp. 78-94, 1997.

[187] M. Calzarossa, G. Haring, G. Kotsis, A. Merlo, and D. Tessera. “A hi­
erarchical approach to workload characterization for parallel systems,” in
Proceedings of International Conference on High-Performance Computing
and Networking. HPCN ’95, 3-5 May 1995. Springer-Verlag, 1995, pp.
102-9.

[188] D. Pollock, Handbook of Time Series Analysis, Signal Processing, and Dy­
namics. Academic Press, 1999.

[189] L. Ljung, System identification: theory for the user. Prentice-Hall, Inc.,
1986.

[190] E. Hannan and B. Quinn, “The determination of the order of an autoregres­
sion." Journal of the Royal Statistical Society. Series B (Methodological),
vol. 41, no. 2. pp. 190-195, 1979.

[191] E. Parzen, "Some recent advances in time series modeling,” Automatic
Control. IEEE Transactions on, vol. 19. no. 6. pp. 723 730. 1974.

[192] R. Cook and S. Weisberg, Residuals and influence in regression. Chapman
and Hall New York, 1982.

[193] R. Carbone and J. Armstrong, “Evaluation of extrapolative forecasting
methods: Results of a survey of academicians and practitioners." Journal
of Forecasting, vol. 1, p. 215, 1982.

[194] J. Armstrong, F. Collopy, M. Dept, and W. School, Error Measures for
Generalizing about Forecasting Methods: Empirical Comparisons. W har­
ton School, University of Pennsylvania, Marketing Dept, 1990.

[195] J. Armstrong, “Evaluating forecasting methods." Principles of Forecasting.
Norwell, MA. Kluwer Academic Publishers, pp. 365 382, 2001.

[196] S. Makridakis. Accuracy measures: theoretical and practical concerns. IN-
SEAD. 1993.

[197] S. Makridakis. C. Chatfield, M. Hibon, M. Lawrence, T. Mills, K. Ord,
and L. Simmons, “The ni2-competition: A real-time judgmentally based
forecasting study." International Journal of Forecasting, vol. 9, no. 1, pp.
5 22. 1993.

BIBLIOGRAPHY 243

[198] D. Swanson, J. Tayman, and C. Barr, "A note on the measurement of
accuracy for subnational demographic estimates,” Demography, vol. 37,
no. 2, pp. 193 201, 2000.

[199] R. Hyndman and C. Koehler, “Another look at measures of forecast accu­
racy,” International Journal of Forecasting, vol. 22(4), pp. 679-688, 2005.

[200] J. Bradley, “M atlab statistics toolbox: Users guide,” The MathWorks Inc,
pp. 77-87, 1997.

[201] D. Talby and D. Feitelson, “Improving and stabilizing parallel computer
performance using adaptive backfilling,” in Parallel and Distributed Pro­
cessing Symposium, 2005. Proceedings. 19th IEEE International, 2005.

[202] J. Stankovic, Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms. Kluwer Academic Pub, 1998.

[203] J. Jackson, Scheduling a Production Line to Minimize Maximum Tardiness.
University of California, 1955.

[204] R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan, “Optimisation
and approximation in deterministic sequencing and scheduling: a survey,”
Annals of Discrete Mathematics, vol. 5, no. 236-287, p. 18, 1979.

[205] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a
hard-real-time environment,” Journal of the AC M (JACM), vol. 20, no. 1.
pp. 46-61, 1973.

[206] A. Mu’alem and D. Feitelson. “Utilization, predictability, workloads, and
user runtime estimates in scheduling the ibm sp 2 with backfilling,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 6. pp. 529-
543, 2001.

[207] D. Tsafrir. Y. Etsion, and D. Feitelson. “Modeling user runtime estimates,”
in Proceedings of 11th Job Schediding Strategies fo r Parallel Processing,
2005.

[208] D. Feitelson, "Experimental analysis of the root causes of performance
evaluation results: a backfilling case study." IEEE Transactions on Parallel
and Distributed Systems, vol. 16. no. 2, pp. 175 182, 2005.

[209] S. Chiang, A. Arpaci-Dusseau, and M. Vernon, “The impact of more ac­
curate requested runtimes on production job scheduling performance,” Job
Scheduling Strategies for Parallel Processing, p. 103, 2002.

[210] D. Zotkin and P. Keleher, "Job-length estimation and performance in back­
filling schedulers.” High Performance Distributed Computing. 1999. Pro­
ceedings. The Eighth International Symposium on, pp. 236 243. 1999.

[211] D. Tsafrir, “Estimates generator," Computer Software. 2005.

[212] J. Beiriger, H. Bivens, S. Humphreys, W. Johnson, and R. Rhea, “Con­
structing the asci computational grid.” in Ninth IEEE International Sym ­
posium on High Performance Distributed Computing. 2000.

BIBLIOGRAPHY 244

[213] M. Lamanna, ‘‘The lhc computing grid project at cern,” Nuclear Inst, and
Methods in Physics Research. A, vol. 534, no. 1-2, pp. 1-6, 2004.

[214] R. Gardner, “The grid2003 project, the grid3 production grid: Principles
and practice,” in Proceedings of the 13th IEEE International Symposium
on High-Performance Distributed Computing (HPDC 2004), 2004.

[215] C. Catlett, “Teragrid: A foundation for us cyberinfrastructure,” NPC ,
2005.

[216] B. Chun, D. Culler. T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and
M. Bowman, “Planetlab: an overlay testbed for broad-coverage services,”
AC M SIGCOM M Computer Communication Review, vol. 33, no. 3, pp.
3-12, 2003.

[217] C. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms
and complexity. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1982.

[218] H. Li, D. Groep, J. Templon, and L. Wolters, “Predicting job start times
on clusters,” in IEEE International Symposium on Cluster Computing arid
the Grid. IEEE. 2004, pp. 301 .

[219] B. Segal, “Grid computing: The european data grid project,” IEEE Nuclear
Science Symposium and Medical Imaging Conference, p. 15, 2000.

[220] H. Li, J. Chen, Y. Tao, D. Groep, and L. Wolters, “Improving a local learn­
ing technique for queue wait time predictions.” in Sixth IEEE International
Symposium on Cluster Computing and the Grid. 16-19 May 2006. IEEE
Comput. Soc. 2006.

[221] D. Aha, D. Kibler. and M. Albert, “Instance-based learning algorithms,”
Machine Learning, vol. 6, no. 1, pp. 37-66, 1991.

[222] D. Talby, D. Tsafrir, Z. Goldberg, and D. Feitelson. “Session-based,
estimation-less, and information-less runtime prediction algorithms for par­
allel and grid job scheduling,” School of Computer Science and Engineering,
the Hebrew University, Tech. Rep., 2006.

[223] J. Zilber. O. Amit. and D. Talby. “W hat is worth learning from parallel
workloads?: a user and session based analysis.” in Proceedings of the 19th
annual international conference on Supercomputing. 2005. pp. 377 386.

[224] P. Taylor, “The san diego supercomputer center,” Computational Science
and Engineering. IEEE. vol. 1, no. 3, 1995.

[225] S. Hotovy, D. Schneider, and T. O'Donnell. “Analysis of the early work­
load on the Cornell theory center ibm sp2.” Proceedings of the 1996 AC M
SIGM ETRICS international conference on Measurement and modeling of
computer systems, pp. 272 273, 1996.

[226] A. Takefusa. H. Casanova. S. Matsuoka, and F. Berman, “A study of
deadline scheduling for client-server systems on the computational grid,” in
Proceedings of 10th IEEE International Symposium on High Performance
Distributed Computing. 2001.

BIBLIOGRAPHY 245

[227] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima,
“Overview of a performance evaluation system for global computing
scheduling algorithms,” High Performance Distributed Computing. 1999.
Proceedings., pp. 97-104, 1999.

[228] E. Caron, P. Chouhan, and F. Desprez, “Deadline scheduling with priority
for client-server systems on the grid,” in Proceedings. Fifth IE E E /A C M
International Workshop on Grid Computing. 8 Nov. 2004• IEEE Comput.
Soc, 2004, pp. 410-14.

[229] D. Abramson, J. Giddy, and L. Kotler, “High performance param etric mod­
eling with nimrod/g: Killer application for the global grid,” International
Parallel and Distributed Processing Symposium (IPDPS), p. 520, 2000.

[230] M. Gergeleit, Automatic Instrumentation of Object oriented programs.
Gesellschaft fur Mathematik und Datenverarbeitung, 1994.

[231] K. Templer and C. Jeffery, “A configurable automatic instrum entation tool
for ansi c.” Automated Software Engineering. Proceedings. 13th IEEE In ­
ternational Conference on, pp. 249-258, 1998.

[232] S. Ling and W. Li, “On fractionally integrated autoregressive moving-
average time series models with conditional heteroscedasticity,” Journal
of the American Statistical Association, vol. 92, no. 439. 1997.

[233] J. Cao, D. Spooner, S. Jarvis, and G. Nudd, “Grid load balancing using in­
telligent agents,” Future Generation Computer Systems T3 - Future Gener.
Comput. Syst. (Netherlands), vol. 21, no. 1, pp. 135-149, 2005.

[234] C. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[235] D. Citron, “Misspeculation: partial and misleading use of spec cpu2000 in
computer architecture conferences,” Computer Architecture. 2003. Proceed­
ings., pp. 52 59, 2003.

[236] N. Amato and L. Dale, “Probabilistic roadmap methods are embarrassingly
parallel,” Robotics and Automation. 1999. Proceedings., vol. 1, pp. 688 694,
1999.

[237] S. Andreozzi, “Glue schema implementation for the ldap data model.”
Technical Report INFN/TC-04/16, INFN, Tech. Rep., 2004.

[238] D. Rusling, “The linux kernel,” Linux Documentation Project, vol. 1999,
1999.

[239] K. Sovani, “Kernel korner: sleeping in the kernel,” Linux Journal, pp. 137 >
2005.

[240] M. Porter. Competitive advantage. Free Press New York, 1985.

