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Abstract

Computational Grids are evolving into a global, service-oriented architecture 
a universal platform for delivering future computational services to a range of 
applications of varying complexity and resource requirements. The thesis focuses 
011 developing a new scheduling model for general-purpose, utility clusters 
based 011 the concept of user requested job completion deadlines. I11 such a 
system, a user would be able to request each job to finish by a certain deadline, 
and possibly to a certain monetary cost. Implementing deadline scheduling is 
dependent on the ability to predict the execution time of each queued job. and 
011 an adaptive scheduling algorithm able to use those predictions to maximise 
deadline adherence. The thesis proposes novel solutions to these two problems 
and documents their implementation in a largely autonomous and self-managing 
way.

The starting point of the work is an extensive analysis of a representative 
Grid workload revealing consistent workflow patterns, usage cycles and correla­
tions between the execution times of jobs and its properties commonly collected 
by the Grid middleware for accounting purposes. A11 autom ated approach is 
proposed to identify these dependencies and use them to partition the highly 
variable workload into subsets of more consistent and predictable behaviour. 
A range of time-series forecasting models, applied in this context for the first 
time, were used to model the job execution times as a function of their historical 
behaviour and associated properties. Based 011 the resulting predictions of job 
runtimes a novel scheduling algorithm is able to estimate the latest job start 
time necessary to meet the requested deadline and sort the queue accordingly to 
minimise the amount of deadline overrun.

The testing of the proposed approach was done using the actual job trace 
collected from a production Grid facility. The best performing execution time 
predictor (the auto-regressive moving average method) coupled to workload 
partitioning based 011 three simultaneous job properties returned the median 
absolute percentage error centroid of only 4.75CX. This level of prediction 
accuracy enabled the proposed deadline scheduling method to reduce the av­
erage deadline overrun time ten-fold compared to the benchmark batch scheduler.

Overall, the thesis dem onstrates that deadline scheduling of computational 
jobs 011 the Grid is achievable using statistical forecasting of job execution times 
based 011 historical information. The proposed approach is easily implementable. 
substantially self-managing and better matched to the human workflow making 
it well suited for implementation in the utility Grids of the future.
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Chapter 1

Introduction

Today, an increasing number of scientific disciplines are faced with problems re­
quiring unprecedented amount of computational power and data storage. Long 
standing consumers of the CPU cycles, such as high energy physicists and weather 
forecasters, are now joined by bio-tech entrepreneurs and ground breaking re­
searchers in the arts and humanities fields competing for scarce high-performance 
computer installations. Equally strong is the need of global commercial enter­
prises, large corporations and the financial industry for a supply of reliable and 
resilient computing power coupled to the vast amounts of data storage and high 
capacity communication links.

The discrepancy between the ability of a single entity to supply the necessary 
computational resources, and the collective need for tackling the complex prob­
lems at hand was the prim ary motivation for the development of collaborative 
distributed computing efforts in the last decade. Linking the resources spread 
out at different academic centres was seen as the best way to capitalise 011 an 
investment already made, and as a way of enabling wider access to specialised 
instruments and valuable scientific data. This concept became known as Grid 
computing. But the monetary and strategic value of those resources meant that 
inclusion in the federated pool was acceptable to their owners only if they can 
maintain a high level of control over their usage and availability.

The loosely coupled distributed environments emerging from these collab­
orative efforts were, and still remain, hard to manage and support. Crossing 
administrative boundaries, connecting heterogeneous hardware and using a 
plethora of technologies, these distributed systems generate an adm inistrative 
burden severely limiting their adoption. The legacy management approaches 
inherited from centralised, or rigidly distributed, computing clusters are not 
suitable for the new dynamic federations of independent resources. As a result, 
a clear need for an autonomous and intelligent resource management platform 
has emerged.

13



CHAPTER 1. INTRODUCTION 14

1.1 Motivation

In a distributed computing system the scheduling system is the core resource 
management component responsible for the prioritisation of subm itted jobs and 
their assignment to the available execution nodes. The scheduling principles 
in the current Grid installations are predominantly based on legacy batch ap­
proaches queuing jobs on a first-come-first-served principle, possibly requiring 
users to explicitly state the maximum allowed execution time of each job. The 
end effect is under-utilisation due to idle periods, or lower than expected qual­
ity of service experienced by the users whose jobs fail to capture the required 
share of resources. These methods are rigid and poorly suited to a dynamic, 
service-oriented platform such as the Grid.

The work in this thesis is motivated by a need for a more effective and flexible 
scheduling system, one that is more closely matched to the users' workflow and 
able to deliver better exploitation of the future Grid services. The author's view, 
and the key proposition of this work, is that such added value can be achieved 
through the use of a deadline and economy based scheduling approach enabling 
the user to specify the completion deadline and the available “budget" for the 
execution of submitted com putational jobs. These metrics are embedded in the 
way services are commissioned in the real world in which users require them  to 
be delivered in certain time and at a defined cost.

From the end-user perspective, this novel scheduling method would enable 
more flexible working practices and the ability to specify the relative urgency 
of each job in terms of the deadline “tightness". From the perspective of com­
mercial Grid operators, deadline scheduling could increase the utilisation of their 
resources, and therefore their return on the investment made, by balancing the 
peak and off-peak demand. A Grid market could also be supported by the ability 
to package computational power as a service of a certain quality and deadline 
adherence levels.

1.2 Objective

Scheduling jobs to a user requested deadline is dependent on the ability to predict 
the execution time of each queued job, and on an adaptive scheduling policy able 
to use those predictions to maximise deadline adherence. The objective of the 
work presented in this thesis was to deliver these abilities in an autonomous and 
self-managing way. with the least possible impact on the users' workflow and the 
lowest administrative burden.
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1.3 Inspiration

The main role of any scheduling system, computing or otherwise, is in balancing 
conflicting requirements of consumers and providers of the contended resource 
being managed. The scheduling process must therefore satisfy resource owners 
while providing users with sufficiently high quality of service for them to con­
tinue using the resource. Proposed probabilistic deadline scheduling was inspired 
by existing concepts from service-orientated industries, applying them in novel 
ways to deliver the balance between suppliers and consumers in the context of 
distributed job scheduling.

Many examples exist of users’ willingness to accept services with fuzzy, proba­
bilistic guarantees - whether this is explicitly stated to the user or simply implied 
in the service offering. Plain old telephone system (POTS) is a prominent ex­
ample, with low but measurable possibility of call blocking. Chargeable resident 
parking schemes often used in big cities are an all too familiar example of an 
oversubscribed resource for which availability is only probabilistically guaran­
teed. Even in the world of business transactions, commonly associated with very 
well defined contracts, goods with probabilistic properties can be traded. For ex­
ample random length timber contracts [1], which are standardised shipments of 
lumber pieces of various lengths, are listed on the Chicago Mercantile Exchange. 
The buyer does not know the exact number or length of timber pieces but is buy­
ing a shipment which, within some agreed bounds, fits a predefined distribution 
of lengths. These, and many other examples, show that users are not averse to 
paying for a probabilistic service as long as it is properly defined and deemed of 
acceptable value according to the consumers' own judgement.

The concept of deadlines is also well established in the human workflow, and 
is often the basis of service industry pricing models. The price of many common 
services, from photo development labs to dry cleaners, is affected by the requested 
turnaround times. Such pricing structures enable users with flexible deadlines 
to reduce their costs, while the service providers benefit from a more balanced 
workload and more efficient use of resources.

Assuming an economically driven view, the service suppliers are predomi­
nantly interested in maximising their profit through increased utilisation of their 
resources. Generally, some degree of over-selling, under-provisioning, or statis­
tical multiplexing is used to boost utilisation past the point possible with hard 
partitioning and reservations. Since the mid-1990s, the optimisation of resource 
usage has taken a more pro-active approach through yield management [2] ap­
proaches. This concept, greatly facilitated by the use of computers and the Inter­
net. is based on analysing, understating and anticipating consumers' behaviour 
in order to maximise profits through price or service level differentiation. Yield 
management was popularised by the airline industry as they manage access to an 
expensive and contended service whose use should be maximised. Since this is
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very similar to a computational utility business model, both of which have an in­
elastic installed capacity and a seasonal, bursty demand [3], the yield management 
could similarly be applied to an economy driven utility computing environment*.

The effectiveness of such revenue optimisation approach highly depends on 
the ability to predict user demand for the services or resources. In tha t respect, 
studying past behaviour of consumers has been very effective in obtaining reliable 
predictions and usable models of their future demand. Among many examples 
is the use of “loyalty cards" by most large retailers. In return for very detailed 
statistics of their shopping habits, clients are rewarded with discount points. 
Although a similar approach could be used to manage the demand for a compu­
tational resource, no such effort has yet been made. While the usage statistics of 
compute clusters are collected and analysed, this is mostly done off-line and in a 
way tha t does not sufficiently capitalise on the potential to use this information 
as a control element of the resource management and job scheduling process.

1.4 Thesis Outline

1.4.1 Contributions

The author’s research efforts were concentrated in three main aspects of the work: 
the analysis of Grid workload, development of a job execution time prediction 
method and the research into a suitable deadline scheduling algorithm. Corre­
spondingly, the major contributions in these fields can be summarised as follows:

• An extensive characterisation of a year long, multi-purpose, production 
Grid workload documenting a number of job properties with long-tail be­
haviour. scale invariance and long range dependency factors which signifi­
cantly alter the way such data  can be modelled and analysed, consequently 
invalidating some of the assumptions previously made by other researchers.

• An autom ated algorithm for identifying job properties available at the time 
of job submission that can be used to partition the highly variable work­
load into subsets of “similar" behaviour, thus reducing the variance of job 
execution times and increasing their predictability.

• A study of the long-term changes of the Grid workload properties through 
the locality of sampling analysis, and the resulting integration of the job 
temporal properties into the workload partitioning and the job execution 
time forecasting work.

• A prediction system, using automatically parametrised time-series forecast­
ing methods, to estimate the execution time of queued jobs based on their 
historical performance and associated job properties.

*A research proposal s tu d y in g  the  app licat ion  o f  yield m anagem en t  in c o m p u te  util it ies  
based on the  m eth o d s  d o cu m en ted  in th is  thesis  has been su b m itted  to  B T ,  see A p p e n d ix  ( ’.7
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• A novel Grid scheduling approach, previously applied in the context of 
real-time systems, which uses the estimates of job runtimes to calculate the 
latest start time necessary to meet the requested completion deadline.

• A study of the commercialisation potential of predictive, probabilistic and 
deadline based Grid scheduling as applied to commercial utility com put­
ing service providers analysing the Grid value chain, possible exploitation 
routes and offering an in-depth argument for developing a scheduler add-on 
com ponent.

1.4.2 Publications

The research contributions in this thesis led to the following publications:

1. A. Lazarevic and L. Sacks, “M anaging U ncerta in ty  - A C ase for P rob ­
ab ilistic  Grid Scheduling” , Proceedings of The Seventh International 
Meeting on High Performance for Computational Science - VECPAR 2006. 
Rio de Janeiro. Brazil, July 2006.

2. A. Lazarevic. L. Sacks and O. P rnjat. “Enabling A daptive Grid  
Scheduling and R esource M anagem ent” , Proceedings of The Ninth 
IF IP /IE E E  International Symposium on Integrated Network Management 
- IM2005 - Application Session. Nice. France, May 2005.

3. A. Lazarevic and L. Sacks. “A S tu dy  o f Grid A pplications: Schedul­
ing P ersp ective” . Proceedings of The 2005 London Communications Sym ­
posium. London. UK. September 2005.

4. A. Lazarevic and L. Sacks. “L ightw eight Scheduling for Grid A pp li­
ca tion s” , Next Generation Networking: Multi-Service Networks Workshop. 
Abingdon. Oxfordshire. UK, July 2005.

5. A. Lazarevic and L. Sacks. “M easuring and M onitoring Grid R e­
source U tilisa tion ” , Proceedings of The 2004 London Communications 
Symposium. London, UK. September 2004.

6. A. Lazarevic and L. Sacks, “A dap tive Grid Scheduling and R esource  
M anagem ent” . Next Generation Networking: Multi-Service Networks
Workshop, Abingdon. Oxfordshire, UK. July 2004.

7. I. Liabotis. O. Prnjat. T. Olukemi. A. Lazarevic. A.L.M. Ching, L. Sacks, 
M. Fisher and P. McKee. “Self-O rganising M anagem ent o f Grid R e­
sources” . Proceedings of The International Conference on Telecommuni­
cations - IST2003. Isfahan, Iran, August 2003.
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8. A. Lazarevic and L. Sacks, “R esource and A pplication  M odels for 
A dvanced Grid Schedulers” , Proceedings of The 2003 London Commu­
nications Symposium , London, UK, September 2003.

1.5 Thesis Organisation

This introductory chapter laid out the primary motivation for the thesis, defined 
its objective and offered some real-world inspiration for the proposed approach. 
An outline of the primary research contributions and the resulting publications 
were also given. The rest of the thesis is structured as follows.

Chapter 2 offers a general background to distributed computing and the Grid. 
This chapter also introduces the overall, high-level, methodology of the work and 
presents the thesis' scope, limitations and assumptions made. The work also 
briefly discusses in the context of the sponsoring research projected.

Chapter 3 gives an overview of the previous research work in the fields of 
cluster and Grid scheduling, workload characterisation and performance predic­
tions. By defining the problem space for each of these topics, and by outlining 
previously proposed solutions and their implementations, the chapter points to 
the inability of the current scheduling implementations to successfully fulfil users' 
expectations, and to the pitfalls of current methods for predicting job execution 
times. The workload characterisation section will survey previous work on the 
topic, which was based on older. pre-Grid job traces, and will serve as a com­
parison to the properties of the Grid workload analysed later in the thesis. This 
chapter concludes with the survey of past work on Grid monitoring and simula­
tion tools, two im portant aspects of Grid usage data acquisition and scheduler 
testing.

Chapter 4 presents the findings of the characterisation study done on a 12 
month workload trace collected from a multi-purpose production Grid facility 
at University College London. Motivated by the need to better understand the 
behaviour of the workload and its long-term evolution, the study looks not only 
at the common analysed metrics (such as the arrival process, queue wait times 
etc.) but also at the correlation of different job properties and their execution 
times. By investigating those functional dependencies, the study indicates the 
candidate properties for job partitioning that would lead to a reduction in data 
variability and an increase in job execution time predictability. The analysis also 
considers changes of job properties through time and their variation caused by 
differently sized sampling window's as presence of any such temporal locality is 
an im portant factor in the selection of the appropriate forecasting model.

Chapter 5 considers the prediction of the length of job execution based on 
the job properties available at the time of submission and the historical model 
for ‘"similar" jobs. An autom ated method for job partitioning based on the 
exhaustive search for the combination of job properties leading to the greatest
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reduction in the coefficient of variation is proposed. The chapter presents a 
comparison of five time-series based, and automatically parametrised, predictors 
and discusses their forecasting accuracy by using appropriate error metrics of 
different robustness and sensitivity.

Chapter 6 introduces a novel deadline scheduling algorithm for com putational 
Grids based on the earliest deadline first method previously used in the context 
of real-time systems. The performance of the scheduler is evaluated through a 
simulation using the trace of actual Grid jobs, two deadline generation methods 
and two job execution time predictors. The chapter demonstrates that effective 
deadline scheduling is achievable using the proposed scheduling algorithm and 
job execution time estimation methods.

C hapter 7 discusses specific previous work most closely related to the ap­
proaches presented in this thesis. It offers im portant distinguishing aspects be­
tween them and compares the findings and results obtained. This chapter also 
motivates the discussion on the outstanding issues related to the thesis work and 
the direction of further improvements which are given in Chapter 8. Finally, the 
thesis concludes with the summary of findings in Chapter 9.

The thesis contains several appendices offering additional support to the ar­
guments put forward, or providing further information on the work undertaken. 
The author’s contributions to the sponsoring research project are summarised 
in Appendix A. The effects and behaviours observed in characterising the Grid 
workload are further supported through the analysis of an additional Grid usage 
trace presented in Appendix B. Appendix C. sponsored by the London Business 
School and the Centre for Scientific Excellence, examines the business potential 
of this research thesis and proposes a possible commercialisation route.



Chapter 2

Background

This chapter opens with an introduction to distributed computing and the Grid, 
followed by the high level research and implementation methodology, the defini­
tion of the scope of the thesis and an explanation of the assumptions made and 
limitations set. The chapter concludes by placing the work in the context of the 
EPSRC* funded research project to which the author has contributed.

2.1 Distributed Computing and the Grid

Despite being actively considered since the 1980’s, distributed computing is still a 
very dynamic field of research and development. Grid computing, the latest dis­
tributed platform, offers exciting new opportunities, but some unique challenges 
as well.

2.1.1 Historical Perspective of Distributed Computing

In 1997. advancers in computer networking technologies led the Legion Project 
[4] team to propose a model for unifying geographically distributed compute 
resources into a common platform. Several similar ideas were considered in the 
research community for years, and have been sporadically used in the academic 
circles, but the first project to popularise wide area distributed computing was the 
screen-saver based search for extraterrestrial intelligence running on idle Internet 
connected PCs (SETIdHome [5] started in 1999).

Today, distributed computing is increasingly being used not only for its per­
formance benefits, but also due to good scalability and resilience it can provide. 
Legacy high performance distributed installations used specialised parallel pro­
cessing hardware and proprietary low latency networks to run highly optimised 
applications. While such systems do still serve a specific niche, the majority of

‘ Engineering and Physics  Sc iences Research Council

20
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the contemporary compute workload is now done by the increasing number of 
high throughput clusters, made using widely available components, connected 
via ubiquitous IP networking [6], From web servers to financial risk analysis, 
these distributed systems are often based on the open-source software and use 
either a “cycle scavenging” method (such as Condor, see Section 3.1.3), or some 
implementation of the distributed master-worker middleware (like the Sun Grid 
Engine, Section 3.1.3).

Recent interest in distributed computing is being driven by both commercial 
and educational sectors. In the academic institutions, a shift into extremely com­
putationally demanding “Big Science” [7] requires investment in infrastructure 
often beyond reach of even the most developed nations, thus fuelling cross-border 
collaboration efforts. Businesses are eager to deploy distributed solutions tha t 
will enable them to better use their installed capacity and increase resilience 
and agility by unifying their compute platforms. The distributed computing ap­
proach, while having potential to fulfil most of these requirements in the long 
term, has often been a victim of its own success, oversold by its enthusiast and 
hampered by the lack of adequate enabling technologies[8].

2.1.2 Grid Computing

W ith the proliferation of high bandwidth networks, their almost universal inter­
operability, the reduction in the cost of data storage and an increased portability 
of applications between the platforms, the technological gap inhibiting truly glob­
ally distributed computers was being closed.

By using these enabling technologies. Grid computing [9, 10] was based on 
a primary objective to develop a transparent and portable middleware able to 
integrate heterogeneous resources into a distributed computing platform. The 
Grid was developed as a much more dynamic environment than its predecessors, 
able to form transient, on-demand Virtual Organisations (VO) [9] spawning ge­
ographical. networking and adm inistrative boundaries. This middleware would 
link distributed computational, storage and visualisation resources into persis­
tent environments, provide a strong security layer, and a standardised methods 
for discovering available resources and their capabilities.

The novelty of the computational Grids was in their aim to offer compute 
power as a utility, a service to the consumer paid on a per use basis. In this 
aspect they drew significant inspiration from the electricity power grids, trying 
to decouple resource generation from the transmission network. Migration to the 
service orientated approach would have some im portant implications for the end 
user. Compute capacity would be available as and when required, reducing the 
need to dimension local resources for peak usage and thus lowering capital expen­
diture. Users would be more agile and able to react more quickly to the changing 
computational priorities. The standardisation would lead to a development of a
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Grid services market, boosting the competition and producing economies of scale 
that drive the reduction in cost. But these benefits would come at the expense of 
relinquishing direct control over the hardware and software, fully relying 011 the 
security provided by the middleware and the service functionality offered by the 
supplier. It is then no wonder that primary obstacles in embracing the Grid are 
not technological but social [8].

A future computer usage scenario, supported by distributed computing ser­
vices, would see a broad mix of consumers, from the casual users to the large 
institutional entities each with its own computing requirements and Quality of 
Service expectations, connect through a broadband network to a computing plat­
form 011 which they could execute their compute jobs. The cost of the service 
woidd be dictated by the supply and demand in the Grid market economy, and 
the price influenced by the requested level of service, urgency of the job, its com­
plexity, and other factors. However, a number of open issues and problems would 
have to be solved before such transparent use of the compute resources becomes 
feasible.

2.1.3 Open Issues and Problems

Extensive research of distributed computing approaches undertaken in the 1980s 
and 90s has yielded proven solutions for many of its implementation and pro­
gramming problems. Despite the similarities and common roots to the legacy 
distributed computing, the Grid poses radical new challenges and requires novel 
approaches for solving them. The primary added value of the Grid, its ability 
to supply computing power as an 011-demand service through a semi-persistent 
environment created for solving a specific task (VO), is in stark contrast with the 
legacy cluster systems and their strict “plan-deploy-use" cycle. Therefore, legacy 
approaches and solutions cannot simply be migrated onto the Grid middleware, 
as they would diminish the core benefit that this new technology has to offer.

The Grid's envisaged flexibility to operate 011 the time and/or space shared 
hardware, interconnected by dedicated or contended networks, and across admin­
istrative boundaries adds a whole new layer of complexity to its management. It 
follows that in developing the core Grid middleware components, one should as­
sume little of the operational environment, and require even less, aiming for an 
adaptable system able to operate in a wide range of conditions.

Resource Management Problem

After the initial research effort to develop and deploy the first Grid services, the 
problem of managing systems of such global scale became apparent [11]. This 
large administrative burden is caused by the scale and heterogeneity of the plat­
form. outdated management tools, and the reluctance to radically change man­
agement practices. Desirable properties of any new Grid middleware components
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would therefore be a high degree of autonomy and self-management, and a low 
impact on the end users and their workflow.

Grid Workload Properties and Scheduling Process

Future development of the Grid middleware will be greatly influenced by the na­
ture of the applications that run on it. The Grid has already enabled scientific 
simulations and experiments to be performed at the previously impossible scale, 
but as it becomes a widely accepted collaborative computing platform the appli­
cation set is likely to change. W ith the development of computational markets 
[12], users could find it cheaper and more convenient to use the Grid for an in­
creasing variety of jobs. The grid may emerge as a generalised service delivery 
platform with a very diverse application set, executing large numbers of medium 
and low complexity jobs mixed in with few high demand ones.

Any such changes in the usage profiles would change a number of im portant 
job statistics which current management components rely on. As the applications 
execution times fall, job arrival rates will increase, and so will the resource discov­
ery and scheduling overheads. Current Grid resource discovery and scheduling 
components are built on assumptions of a very long execution times and the 
resource pools of modest size. Overheads and job submission delays now intro­
duced by the Grid middleware may be considered insignificant, but in the future 
may represent the greatest part of the job execution time. In a general use case, 
schedulers will have to make an intelligent decision and adjust the complexity of 
the resource discovery and scheduling to the likely complexity of the job at hand.

Resource Monitoring

Scalable monitoring of the Grid is difficult due to its heterogeneous nature and a 
large number of resources that need to be observed. Monitoring systems with pre­
defined sampling points and frequencies will inevitably end up with poor informa­
tion capture, high volumes of irrelevant measurements in which a truly im portant 
observation, and its cause, may be lost. Operating in a geographically distributed 
environment, transferring monitoring information indiscriminately leads to an in­
efficient use of bandwidth. The next generation of truly effective Grid monitoring 
systems would have to be more intelligent, flexible and agile, adapting the gran­
ularity, frequency and the communication methods to the state of the operating 
environment and the importance of the measurements. These systems would not 
be unlike virtual sensor networks, permeating the Grid fabric and self-organising 
in monitoring constellations according to the current requirements.



CHAPTER 2. BACKGROUND 24

Raw Historical Data 
(Accounting, Resource Monitoring) j

JMeta-Data Clustering 
(User/Group/Executable/Time of Day/Day of Week...)

1 (  2 ( 3 ( 4 ( n l...n 
Classes of Jobs

a
Statistical Models: 

Median/SES/AR/MA/ARMA

i 1-------1-------i r

)
l...n

Classes of Models

Job Execution Time Forecasts
j

a
Quality Control:

Prediction Errors -  Deadline Overrun and Underrun J
JDeadline Based Scheduler 

(Out-of-order Execution, Probabilistic Deadline Adherence)

Figure 2.1: Overall Methodology Diagram

2.2 General Research and Implementation Methodology

The overall proposed methodology for delivering deadline scheduling is shown in 
Figure 2.1. The basis is the on-line use of the historical job resource usage data 
collected by the monitoring and accounting elements of the Grid middleware. 
This data is analysed and mined for patterns, correlations and functional depen­
dencies between the past job execution times and the job properties (also referred 
to as the job meta-data) which are available to the scheduler at the time of the 
job submission or while the job queues for resources. These properties include, 
but are not limited to. the identity of the user submitting the job. the Virtual 
Organisation to which the job belongs, the name of the job executable and its 
parameters, the time of the day or day of the week of job submission etc.

A workload analysis and similarity-based partitioning method, developed as 
part of this thesis, identifies a combination of one or more job properties that are 
used to separate the workload into a number of classes with a lower variability 
of job execution times than the entire workload had. An example could be a
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class of jobs owned by one of three different users, with a given executable name 
and mostly run on workday afternoons. A statistical model of a significantly 
better fit and a much higher accuracy can then be used to forecast the future 
execution times of jobs in tha t workload class than it would be possible without 
such similarity grouping.

Job execution time predictions are the essential enabling element of the dead­
line scheduler implementation. By anticipating the execution time of the queued 
jobs, the scheduler is able to calculate the latest job start time for a certain user 
requested deadline, and can use this information to dynamically prioritise jobs 
with '‘tighter" deadlines. The forecasting performance, and the deadline overrun 
and underrun statistics, could be fed back to the prediction model and can be 
used to increase its accuracy, or change the way the workload is partitioned in 
response to a significant shift in the usage patterns.

The following sections will discuss the high level methodology of the three 
main aspects of the work: workload characterisation, job execution time forecast­
ing and deadline scheduling. A more detailed discussion of the specific m ethod­
ology, implementations and approaches used for each of these three main areas 
is offered in the separate sections in Chapters 4. 5 and 6.

2.2.1 Workload Characterisation

The essential first step in the pursuit of good job runtime predictions was to 
thoroughly analyse and understand the properties and specific features of the data 
set that will be forecasted. Parallel and distributed workload characterisation 
was the subject of significant amount of previous research (which is surveyed 
in Section 3.3), but was mostly based on a limited number of workload traces 
collected in the 1990s and made available through the Parallel Workload Archive*. 
W ith the emergence of the Grid, distributed computing has taken a more dynamic 
form, adding some new features strongly differencing it from the traditional 
parallel clusters. These differences, that will be discussed in more detail in Section 
3.1.1. meant that a new and more representative workload should be used to judge 
the changes that this new approach, user base and workflow have introduced.

In 2003 the Grid technology was just emerging from the research facilities and 
into the production use. Grid installations were few and limited to the testbeds 
and single, specific and limited use facilities. Several large projects were federat­
ing these Grids into larger communities, and the decision to install a Grid cluster 
at the University College London opened the possibility of obtaining relevant and 
representative usage data from one of the first Grid connected clusters used by a 
number of different research projects from within UK and abroad.

Considering previous workload characterisation studies from the aspect of job 
execution time predictions, it was evident that the variability of the data set was

"Available at http://vvvvw.c s .h u j i .a c . i l / la b s /p a r a l le l /w o r k lo a d /

http://vvvvw.cs.huji.ac.il/labs/parallel/workload/
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very high and that modelling this whole dynamic range would lead to very poor 
results. Methods for reducing the variability of the data  were required and had 
to be based on the information available to the scheduler at the time the job was 
submitted. For this purpose, the wealth of the m eta-data collected by the Grid 
accounting and monitoring systems was used to look for links between the job 
execution times and the job's name, its properties, the subm itting identity, and 
for the first time, its temporal characteristics such as the day and the time the 
job was submitted.

Correlation between these parameters was anticipated due to the nature of the 
human work cycle which is the major contribution to the system workload. While 
the Grid as a whole may be geographically distributed, individual users reside in 
a certain geographical area and will have a daily and weekly work cycle specific 
to their location. They will also more likely work 011 one or two scientific projects 
at the time and tend to run applications relevant to those efforts. They may also 
have some specific workflow habits, and with their own intuition (or expectation) 
for the length of the execution of their jobs, they might be subm itting more 
complex jobs to run overnight or during their lunch break. While these effects 
may not be visible when looking at the aggregate load generated by a large 
number of users, partitioning the data according to one or more of these criteria 
would likely reveal the distinct usage patterns. Understanding these features 
would prove instrum ental in devising a suitable forecasting methodology.

Contrary to the characterisation studies whose aim was to capture the prop­
erties of the trace in a model suitable for generation of other, different but statis­
tically representative models, the aim of the workload characterisation presented 
in this thesis was to establish the models suitable for the ongoing prediction of 
the job execution times. Such an approach cannot simply treat the workload as 
a snapshot in time, but requires the analysis of its dynamic properties and its 
changes through time. Therefore, Section 4.6 looks at both the low frequency, 
gradual evolution, and the high frequency sudden and abrupt changes in the job 
properties. The gradual changes are more characteristic of an ongoing devel­
opment of the workload, such as a growing scientific data set being analysed, 
for example. The more abrupt discontinuities are indicative of a change in the 
application, data set or the simulation goal, or perhaps a transient hardware or 
software failure. All such events are intrinsic parts of a real world system, and 
while they may justifiably be excluded from a generative model, they must be 
considered in the creation of a robust prediction approach.

Engineering this robustness into the system and testing it under realistic 
conditions depends 011 knowing what to expect in terms of the statistics and 
distributions of the job param eter values. Some im portant previous work 011 the 
predictive scheduling, discussed in more detail in Section 7.2. has used simple 
approximations of the critical job properties which may not reflect the reality 
of the Grid computing. The distribution functions, and their properties, of all
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the relevant job parameters were examined and special attention was paid to the 
presence of long tails* [13] or self-similarity^ [14]. The presence of such statistical 
features invalidates some of the previous approaches which did not take them 
into account, while at the same time influencing the design of future, robust 
scheduling systems.

2.2.2 Job Execution Time Predictability

W ith the benefit of having access to a multi-purpose production Grid, and the 
ability to collect usage data on this facility, the use of this real world workload 
was favoured over the synthetic traces generated using one of the several work­
load models and generative algorithms. Therefore, the aim of the job execution 
time predictability study was to assess the accuracy level to which this actual, 
production Grid workload could be forecasted.

The analysis and characterisation of the Grid usage data, and especially of the 
workload partitions generated using the identified pivot job properties, indicated 
different statistical properties of the job execution times between these job groups. 
Most importantly, while the largest number of job partitions exhibited strong 
autocorrelation properties, some execution times were resembling a random and 
mean-reverting process. The use of a single forecasting method was therefore not 
advisable, and several time-series and mean based predictors were considered.

A further reason for using multiple prediction algorithms was that in the on­
line forecasting, the prediction speed could be as important as the prediction 
accuracy. In the case of probabilistic scheduling some short jobs may be assigned 
a model of lower complexity and accuracy, while the longer running jobs may 
warrant a highly complex but accurate model to reduce the effect of the prediction 
errors.

The time series methods selected for predicting job execution times include 
simple exponential smoothing (SES). auto-regressive (AR), moving average (MA) 
and the auto-regressive moving-average (ARMA) methods. Sliding window me­
dian was included to predict the non-autocorrelated series and was favoured over 
the mean predictor due to its robustness against outlier values. All of these 
methods will be fully described in Section 5.2.2.

The important aspect in implementing all of these forecasting algorithms was 
the level of self-management, adaptation and robustness that can be built in. 
The system was envisaged as an autonomous entity requiring the minimum of 
administrative attention and no input from the user (apart from the desired 
deadline). This motivation led to the development of an automated process of

*A colloquial nam e for a feature o f  so m e  stat ist ica l  d istr ibutions  in which the  h igh-frequency  
population  is followed by a low-frequency one that gradually  "tails off" but can still m ake up 
the majority o f  the  area under the  probability  dens ity  curve.

b \ n  object or a process which is exa ct ly  or approxim ate ly  similar to  a part o f  itself.
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workload analysis, selection of the job properties used for workload partitioning, 
and model param etrisation further discussed in Section 5.2.

In dealing with robustness, the thesis also takes a somewhat holistic view 
that no observed feature of the workload should be considered as an anomaly or 
exception. Rather than removing these “misbehaving1’ jobs, as recently suggested 
by some workload characterisation studies [15], the choice was made to attem pt 
to proof the system against such departures from the modelled behaviour. In 
real life, hardware and software does crash and user behaviour can at times seem 
erratic. While a generative workload model can afford to ignore such events, a 
predictive one has to deal with them in the best possible way.

Finally, the quality and the accuracy of the forecasts should be judged with 
the appropriate statistical measures that enable adequate comparison with other 
work in the field. Unfortunately, much of the previous job execution time predic­
tion work selected these metrics based on habits and personal preferences, rather 
than on the statistical properties of the forecasted series or the measured pre­
diction accuracy. In this thesis, measures of different sensitivity, robustness and 
scale dependence were employed and their use was thoroughly justified in Section 
5.2.3.

2.2.3 Deadline Scheduling Methods

Once estimates of the execution times of queued jobs are known, suitable schedul­
ing algorithms can be used to order them in such a way as to maximise the ad­
herence to the requested deadlines, minimise the overrun time or optimise the 
profitability of the cluster for the Grid operator. The aim of the thesis was not 
to develop a software component for any specific Grid middleware, nor was it 
to engage in an in depth assessment of the deadline scheduling policies. The 
focus was on establishing a proof-of-concept “prediction engine1' that could be 
interfaced to an existing scheduler which is able to make use of this information. 
Several such schedulers (discussed in Section 3.1.3) make provisions for the job 
execution time forecasts but either do not generate them internally or do so in a 
trivial manner.

The thesis does propose a scheduling algorithm not previously used in the 
context of Grid computing, and in Chapter 6 establishes its performance through 
a trace-replay simulation using actual production workload. The results obtained 
serve as a justification of the efforts to predict the job execution times, as well 
as a motivation for further work on the development of better and more efficient 
implementations of the Grid scheduling policies.
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2.3 Thesis Scope, Assumptions and Limitations

The focus of the work presented in this thesis is maintained by a well defined 
scope of both the platform and the service to which the proposed job execution 
time forecasting approach will apply. The work also makes some assumptions 
to the way the Grid installations will be deployed and the Grid services used. 
This section will present the scope, and those assumptions, together with some 
necessary limitations to the considered research area.

2.3.1 The Platform

The primary motivation of the thesis, the adopted high level approach and the 
stated methodology are universally applicable to distributed cluster computing. 
However, some specific challenges, functionality issues and implementation prob­
lems are considered in the context of delivering deadline scheduling on the Grid, 
the latest and most commonly accepted wide area distributed computing platform 

[16].

The Grid platform assumed in this thesis is not seen as a highly specialised, 
custom built state of the art facility, but rather as a metaphor for a broader gen­
eral purpose utility computing installation. These Grids are commonly built us­
ing commercial-of-the-shelf (COTS) components and standardised architectures 
to minimise their procurement costs. The focus in these systems is on the ease of 
the life-cycle management, as the reduction in the cost of the hardware is often 
reflected in the increased system adm inistration and maintenance expense.

Clusters federated into the Grid environments are often heterogeneous, and 
the ability of the Grid middleware to integrate these disparate entities into a 
coherent platform was one of the primary driving factors for its adoption. But 
within the clusters, and especially commercial and production ones, every a t­
tempt is made to keep the hardware homogeneous due to the easier resource 
management and significant savings that can be made through economies of scale.

2.3.2 The Service

The assumption of the thesis is that a future commercial Grid utility operator, 
such as the recently started Sun Utility Compute* or Amazon Elastic Compute 
Cloud, would serve geographically distributed users from administratively and 
functionally diverse communities. These consumers of compute power would 
execute a mix of everyday personal and networking software, as well as some 
intensive business and scientific workload. The users would thus require com­
putational power for a full range of applications from low complexity repetitive 
tasks to highly demanding specialised workflows.

* ht t p://sun.com/grid/
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This on-demand utility computing service would have a very dynamic usage 
profile consisting of both continuous streams of jobs and bursts of activity. In 
this environment, the quality of service and the contractual obligations would 
be governed by service level agreements (SLA). These contracts already give a 
probabilistic guarantee of the service availability (such as 99.9% uptime) or the 
delivered performance level (average packet delay of 20ms for example), and could 
be easily extended to include a probabilistic deadline adherence guarantee as well 
(for example at least 95% of made deadlines and average deadline miss time of 
1000 seconds).

2.3.3 Limitations

In considering the job execution times, the influence of the past or future network 
performance is not directly taken into account. This aspect has, beyond doubt, 
strong influence on the runtimes of jobs dependant on the network for data 
transfers, synchronisation or interaction with the user. However, modeling of the 
local and wide area network performance, and its influence on the jobs running on 
distributed platforms, was subject of extensive previous research [17, 18, 19. 20]. 
Most prominently, the Network Weather Service [21] was uses by Wfalski to judge 
the execution time of jobs under different network conditions in [22].

The execution time forecasting algorithm proposed in this thesis does have 
some sensitivity to the varying network performance through the influence 
this has on an I/O  bound job. If the runtime of such a job is predominantly 
influenced by the network performance, which was previously shown to be 
correlated with the daily and weekly work cycles, the resulting model will exhibit 
the same behaviour and in effect predict the performance of the application 
as the function of the network performance. Further work could also consider 
incorporating the network performance metric as another job property taken 
into the consideration alongside other meta-data.

Another performance influencing element that has been extensively researched 
and that was not considered in this thesis is the influence that the number of 
assigned processors, often referred to as the size or the degree of parallelism of 
a job. has on its execution time. The dependence between the size of the job 
and its runtime was previously modelled by Cirne and Berman [23] and others 
[24. 25. 26. 27. 28],

However, as far as it is possible to tell from the available data, the Grid 
workload at the cluster level tends to be composed of single CPU "bag of tasks" 
jobs. Apart from the trace collected by the author, the only other publicly 
available workload from the largest European production Grid (the EGEE 
project [29]), contains a quarter million jobs from a ten month period all of 
which requested a single processor. The lack of the multi-processor jobs visible
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on the cluster scheduling level certainly does not mean no parallel jobs are 
run on the Grid. It rather implies that the complex workflow of parallel and 
inter-dependant jobs is handled by a higher level meta-scheduler* which plans, 
partitions and deploys the tasks onto the available resources. Job execution 
times forecasted by the probabilistic scheduler presented in this thesis could also 
help the meta-scheduler make more efficient decisions.

As previously justified, this work assumes a relatively homogeneous hardware 
environment, and hence a balanced performance from all of the worker nodes 
within the cluster. It is also presumed that the hardware is not time-shared with 
users external to the Grid, or if it is. that this is under the control of some local 
low level job scheduler. This may not be representative of some cycle-scavenging 
Grid middleware (see Condor in Section 3.1.3), but is a reasonable assumption 
in the view of this work's primary target platform.

Finally, the whole deadline scheduling approach relies on the user supplying 
“reasonable" deadlines, and being motivated to extend these deadline as far into 
the future as they possibly can. W ithout such motivation, users could simply re­
quest all jobs to complete immediately which would reduce the deadline schedul­
ing system into a batch first-come-first-served one. The diversity of deadlines 
can most reasonably be effected through a charging system which would impose 
higher prices on shorter deadlines and peak usage times. These Grid economy 
systems have been suggested for some time by Buyya [30. 31, 32. 33]. Ernemann 
[34] and others [35, 33], and fall outside the scope of this thesis. However, the 
pricing policy of the Grid resources requires an in-depth knowledge of the ways 
these are used, and the extensive workload characterisation given in Chapter 4 
will provide a valuable input.

2.4 Project Context: Self-Organising Grid Resource Man­
agement

Research work presented in this thesis was done under the auspices of the EPSRC 
funded Self-Organising Grid Resource Management (SO-GRM) project, and in 
collaboration with BT Research (formerly BTExacT). SO-GRM is a base research 
project aimed at developing an autonomous management infrastructure able to 
support Grid job execution through its full life-cycle: from job admission through 
scheduling and resource discovery to security monitoring. Components of the SO- 
GRM architecture share the same objectives of removing single points of failure 
through a distributed approach, reducing the administration load by using policy

*CJrid schedu lin g  hierarchy is further d iscussed  in Section  3 .1 .2 .
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based management and creating an agile, 011-demand system through the use of 
self-organising principles.

The SOGRM management architecture [36, 37] is based 011 a light-weight, 
adaptive, and policy-controlled XML-enabled management elements. These are 
seen as an add -011  to the established Grid platforms such as the Globus [38, 39], 
but are equally applicable and easily integrated into other Grid middleware. 
Project work has focused on the three issues of primary concern in the Grid 
management: resource discovery, security and intrusion detection and predictive 
scheduling, the topic of this thesis. The author’s contributions to the project are 
outlined in Appendix A.

Self-O rganising R esource D iscovery (SORD) [40] is tasked with the dis­
covery of computational resources which satisfy the conditions set forth by the 
SLA management component and the scheduler. SORD is a query-response dis­
tributed protocol based 011 the node communication links in a small-world topol­
ogy [41]. These topologies have previously been considered in the problem of 
routing with local information and allow distribution of the information to the 
correct recipient through the use of network shortcuts. The protocol’s main de­
sign objectives were scalability and resilience to single node failures, both of which 
have been successfully met. More information on the scalability and the resource 
discovery success rates can be found in the previous publications by Liabotis 
[37. 40].

In tegrity  Inform ation In telligen ce (13) [42] is a distributed run-time in­
trusion detection system that combines the anomaly and misuse detection com­
ponents. After initial training with the features of a well behaving process, the 
I 3 is subsequently able to recognise suspicious CPU utilisation patterns. The 
feature set defining an anomaly is stored locally, with all other nodes in the net­
work immunised by broadcasting the anomaly’s definition as an XML antidote. 
In both simulation and testbed deployment the I 3 has provided process classifi­
cation with less than 1% error rate for a suitably configured threshold detection 
value. More information can be found in [43. 42].



Chapter 3

The Grid and 
Related Technologies

This chapter examines the previous work, published literature and the back­
ground research done on the topic of (Grid) scheduling and the related technolo­
gies. It adopts a top-down approach by firstly treating the issue of job scheduling 
before examining the past research done on predicting the resource performance 
and job runtime. The chapter finishes with a systematisation of the workload 
characterisation studies previously undertaken, and an overview of Grid moni­
toring tools and simulation suites currently being used.

3.1 Cluster and Grid Schedulers

A scheduler is one of the primary elements of a resource management framework 
of any computational system. It controls the order in which requests for a 
contended resource are processed, while ensuring certain performance, reliability 
or security criteria are met. Packet scheduling 011 the communication links and 
task scheduling 011 the processing units are some of the common examples.

Scheduling is usually performed 011 several levels, each being more granu­
lar and having a tighter control of the resources than the previous one. I11 a 
distributed computing system, users submit complex jobs consisting of many, 
possibly interdependent, tasks which are to be scheduled 011 the remote clus­
ters. Local job managers schedule those tasks onto the worker nodes within the 
cluster, possibly together with the locally submitted jobs, and each node does 
further scheduling of the system and user processes 011 the kernel level. When 
the distributed systems consist of heterogeneous, lion-dedicated hardware with 
dynamic availability, and are connected via variable speed, congested links, the 
scheduling problem becomes very complex.

33
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This section will open with some formal definitions of the scheduling prob­
lem and its complexity, followed by a taxonomy of the current Grid scheduling 
algorithms and a discussion of some of the challenges of scheduling in the Grid 
context. The implementations of the Grid schedulers, and their strengths and 
weaknesses, will be presented before concluding with the current state of the Grid 
scheduling research and a summary of the open issues.

3.1.1 Grid Scheduling Problem

Scheduling in the Grid context is a process of mapping a set of subm itted jobs to 
the available resources, in such a way as to maximise a certain scheduling benefit 
function, for example the job makespan*, cluster utilisation or similar.

Scheduling Process and Components

Despite a Grid being a platform of high diversity, both in terms of the hardware 
and the applications, a common high level logical architecture of scheduling 
components can be constructed, Figure 3.1.

Global Grid Scheduler 
(Meta-scheduler) Grid Job

Local Scheduler Local JobLocal Scheduler

Job
Manager

Job
Manager

Resource Resource

Job
Manager

Job
Manager

Resource

Figure 3.1: A high level diagram of the Grid scheduling components and their 
interaction.

In this scheduling hierarchy, a Grid scheduler (or sometimes referred to as a 
meta-scheduler) accepts incoming jobs from the authenticated Grid users, selects 
a subset of nodes matching certain application requirements from the resource 
pool advertised, and generates a task-to-resource mapping which is passed to the 
launching module (or job manager). Contrary to the schedulers in traditional 
distributed systems, the Grid schedulers do not exercise total control over the

’'T im e  taken from th e  job  su b m ission  to  th e  job  com p letio n , usually  equals q u eu e wait tim e  
plus th e  jo b  w allclock ex ecu tio n  tim e
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Grid resources which are often in different administrative domains. The Grid 
schedulers must work like agents or brokers, with non-exclusive access to these 
shared resources, and subject to a range of local security and resource utilisation 
policies. Although a Grid level scheduler is not strictly required, there is little 
doubt such high level component is needed to successfully harness the potential 
of the large number of distributed resources. The following discussion assumes 
that at least one such meta-scheduler is used.

Grid schedulers communicate with a local resource manager in charge of each 
Grid node using a common protocol (such as Globus GRAM [44] for example). 
The responsibility of the local managers is to handle the job scheduling from the 
Grid and the local users alike, and to report the job status, resource utilisation 
and other accounting data back to the Grid level scheduler. These local resource 
managers are controlled by the resource owners and the Grid schedulers have no 
influence over their operation, job prioritisation or the scheduling policies. An 
overview of the Grid schedulers and job managers is given in Section 3.1.3.
The scheduling process can also be generalised into the following three stages:

• Resource Discovery acquires a list of the available resources and their static 
and dynamic properties such as the CPU clock frequency, operating system 
or the current memory usage. This is usually done through a Grid informa­
tion system, of which Globus Monitoring and Discovery System (AIDS. [45]) 
is an example. Alternatives have been proposed [46. 47. 48. 49], including 
one from our own research group [37].

•  Schedule Generation maps applications to the resources maximising a cer­
tain benefit function. This is the core of the scheduling process and will be 
discussed in more detail in the following sections.

•  Job Staging and Launching executes the job mapping supplied by the sched­
uler by staging the necessary data onto the target resource, subm itting the 
job to the local resource manager using a compatible protocol, and mon­
itoring the job execution throughout its life cycle. The Globus Resource 
Allocation Manager (GRAM [44]) is the most often used protocol with a 
number of proxies for communication to the other local resource managers 
(such as Condor ClassAds [50]).

Challenges of Grid Computing

The general scheduling problem, with its roots in the control theory and op­
timisation techniques, has been extensively studied as part of many common 
problems in technology, computing and engineering. In the context of the par­
allel and distributed systems, the scheduling algorithms have evolved together 
with the underlying hardware, from vector and massively parallel processor ma­
chines to the clusters of commodity workstations today. Although this work can
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serve as a source of inspiration, the traditional scheduling approaches create poor 
Grid schedulers. This is mainly due to the following assumptions these legacy 
schedulers make:

•  the scheduler has exclusive control of the resources.

•  all resources are within a single administrative domain and subject to a 
single set of policies,

•  the resource pool is invariant, bar certain exceptional events such as node 
crashes,

• the contention caused by the incoming application can be managed, and 
performance offered by the cluster well predicted.

•  data  staging time is deterministic.

However, most of these assumptions do not hold in a Grid computing sce­
nario. Specific properties of the computational grids, as discussed below, create 
additional challenges and require novel methods to deliver effective scheduling.

Heterogeneity of computational, storage and network resources leads to different 
capabilities, different service levels and different specific scheduling policies re­
quired. Similarly, a widely varying collection of users and applications present a 
heterogeneous load with a variable demand and expectations. A Grid scheduler 
must be able to deal with this level of heterogeneity in a robust and scalable 
manner.

Autonomy of resources, resulting from the principle that the owner maintains 
control of its hardware, leads to a diversity of local resource management and 
access control policies. As the Grid scheduler can exhibit little control over 
these, an adaptable approach is needed to ensure a low barrier for connecting the 
resources into the Grid.

Dynamic performance is manifested through constant fluctuations in the avail­
ability and service levels of all the resources connected to the Grid. Generally 
autonomous and 11011-dedicated. computational, storage and network resources 
are contended for by other (local) users of the system. The Grid scheduler must 
monitor these dynamic properties and. if not anticipate possible problems, at 
least react to the observed changes.

Data staging is increasingly complex with the separation of the data, applica­
tions and the target execution nodes. Interconnected by wide area networks, 
these three points can have a significant communication cost and overhead in 
between. The Grid scheduler should be aware of the time and cost required to
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join these three components, and use that knowledge when selecting the most 
appropriate schedule.

3.1.2 Grid Scheduling Algorithms

The scheduling problem, as applied to the parallel and distributed systems, has 
been treated extensively in the seminal works by El-Rewini [51, 52] and Shirazi 
[53, 54], This section will open with a discussion of some of the im portant aspects 
of the scheduling problem, such as its complexity, and continue to give a taxonomy 
of the present scheduling algorithms. It will also outline the current approaches 
to treating the added complexity of the Grid scheduling in the fields of dynamic 
resource performance and the scheduling benefit functions. The overview aims to 
present a balanced and encompassing view of the current state of the art. while 
focusing on the algorithms and approaches of special interest to the dynamic, 
performance driven and predictive approaches.

Complexity of the Scheduling Problem

The multiprocessor scheduling problem, as a sub set of the scheduling and se­
quencing of jobs, is an NP-complete optimisation problem [55]. The problem 
statement is as given in the following:

Given a set of J  jobs where job j, has length /,• and a number of 
processors m. what is the minimum possible time required to schedule 
all jobs in J  on m processors such that none overlap? [56]

The formal definition of the NP-completeness was given by Cook in 1971 [57]. 
In complexity theory, the NP-complete class of jobs are the most difficult prob­
lems in the non-deterministic polynomial time (NP). Potential results of these 
problems are easy to verify for correctness, but no significantly faster method for 
solving these problems then to try all the possible results has been found. For 
non-trivial problems, all known algorithms for solving the NP-complete problems 
require time that is super-polynomial in the input size.
Therefore, one of the following alternative methods are used to solve NP-complete 
problems:

• Approximate: An algorithm that quickly finds a suboptimal solution within 
a given range of the optimal one.

• Probabilistic: An algorithm that can be proven to yield a good average 
runtime behavior for a given distribution of the problem instances.

• Heuristic: An algorithm that works “reasonably well” on many cases, but 
for which there is no proof that it is both always fast and always produces 
a good result.
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The taxonomy of scheduling further discusses the use of these methods in 
parallel and distributed systems scheduling.

Taxonomy of Grid Scheduling Algorithms

Casavant proposes a hierarchical taxonomy in [58] for scheduling algorithms in 
the general purpose parallel and distributed systems. Treating the Grid as a 
subset of such systems, the Figure 3.2 presents the current approaches.

Figure 3.2: A hierarchical taxonomy of distributed systems scheduling ap­
proaches, adapted from [58]

The im portant aspects of Casavant's hierarchy, its applicability to the Grid 
and its implementation in the current schedulers will be discussed in what follows.

Local vs. Global: Local scheduling is mainly concerned with how the processes
resident on a single CPU are allocated and executed. Global scheduling aims 
to optimise the allocation of tasks among multiple processors, and the Grid 
scheduling clearly falls into this category.

Static vs. Dynamic This choice indicates the distinction between the flexibility 
of the schedule. In static algorithms, scheduling is done once and based on the 
resource and job information available at that time. The scheduler hence requires 
a “global view" of the resources and an anticipated run time behaviour of the 
application on which to base its decision - information not readily available in the 
highly distributed Grid environment. Regardless of the possible changes in the 
state of the Grid or job queue, no re-scheduling is done. This causes problems 
if a compute node or a communication link fails. To alleviate these issues, 
static algorithms use job migration (for example Zhang in [59]) and rescheduling 
techniques (such as the checkpointing mechanism used in Condor [GO]), which 
brings them closer to the dynamic schedulers.
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The advantage of the dynamic scheduling algorithms is in tha t they perform 
an online load balancing of the Grid resources at the cost of increased complexity 
compared to the static scheduling. The following approaches have been used by 
El-Rewini in [51]:

•  Unconstrained First-In-First-Out (FIFO) maps the job to the shortest 
queue. This opportunistic strategy is simple but often results in poor 
schedules.

• Balance constrained strategy occasionally reschedules jobs in order to re­
balance the waiting queues. In the Grid, however, communication costs 
can be high and the time it takes to move the job and the data  to a new 
execution node can cancel out any savings made.

•  Cost constrained approach takes into account the communication or other 
costs related to the re-balance of the queues and selects the most appropri­
ate strategy.

• Hybrid approaches use a mix of the static and dynamic algorithms. They 
may perform static mapping for parts of the job with deterministic be­
haviour, or specific QoS requirements, and fall back to the dynamic schedul­
ing for others.

Apart from these more traditional approaches, some Grid schedulers imple­
ment dynamic scheduling using reservations or dynamic FIFO priorities. By ne­
gotiating resource reservations on platforms supporting them, the scheduler can 
reduce the uncertainty of resource availability and performance. Dynamically 
prioritising the jobs in a FIFO queue has also been examined [61].

An open question remains on which metric do these dynamic scheduling 
algorithm perform the balancing. A queue job count, for example, can be very 
misleading as it will be shown that the Grid job execution times can vary greatly. 
Perhaps the best metric would be the estimated total execution time of the jobs 
in the queue, a value which the author's work may help deliver.

Optimal vs. Suboptimal Due to the NP-Complete complexity of the scheduling 
problem, all of the algorithms will generally find suboptimal solutions.

Approximate vs. Heuristic Approximate algorithms require a function to evaluate 
the solution and a metric to judge its quality. As no suitable objective function 
existed until recently, no approximate algorithms were developed. A new objec­
tive function (the Total Processor Cycle Consumption proposed by Fujimoto in 
[62]) may help develop new approximate scheduling algorithms.

Heuristic approaches make assumptions on the state of the resources and the 
job requirements, and then proceed to offer a “reasonable" solution. These al­
gorithms are based on the real world experience and simulations, and since they
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are not restricted by the formal assumptions can be more flexible and adap­
tive. Another advantage of the heuristics is their ability to deliver an acceptable 
scheduling solution in short time and with a limited computational complexity.

Distributed vs. Centralised High level Grid scheduling can either be done by a 
single scheduler, or be distributed among several scheduler instances of the same 
or different type. Centralised approaches, used in all commercially deployed Grid 
schedulers presented in Section 3.1.3, are easier to implement, but may prove to 
be performance bottlenecks and single points of failure [63]. D istributed Grid 
schedulers, are largely still at the research stage (examples in [64. 59]) allevi­
ate these problems at the cost of the deployment complexity and an increased 
communication cost.

Cooperative vs. Non-cooperative Scheduling nodes in a distributed approach 
have a number of strategies available to satisfy their scheduling benefit function. 
In a cooperative strategy each Grid scheduler has its own responsibility but is 
working toward a system wide goal. Independent or competing strategies allow 
each scheduler to pursue and maximise its own scheduling benefit function.

Apart from this hierarchical classification of Grid scheduling algorithms, other 
im portant aspects and algorithm differences remain outside the scope of this 
taxonomy. Some of the im portant differences in how the scheduling algorithms 
deal with the specific case of the Grid computing and the unique issues it raises, 
will be discussed in the following sections.

Objective Functions

The scheduler has a higher level objective than simply producing an application 
to resource mapping: given two valid schedules, it will select one that maximises 
a certain “■benefit” criteria of the system. W hat this benefit is. and who defines 
it. varies according to the point of view. Users submitting their applications to 
the Grid would like to see their jobs finished as soon as possible, or if there is 
a cost associated with the job execution they might want to minimise it. The 
Grid operators, on the other hand, may want to maximise the resource utilisation 
or the profits from running the Grid jobs. These objective functions are often 
opposing and competing, and it is down to the scheduler, or the pricing policy in 
the context of the Grid economy, to make the appropriate trade-off.

The makespan optimisation is almost exclusively used in today s production 
schedulers. W ith the emergence of the Grid economy models [30. 34]. the sched­
uler may be asked to minimise the cost at which the computation is done. The 
problem becomes more complex with the compound functions of these two met­
rics (makespan and money) where the scheduler must normalise them to judge 
the fitness of a certain schedule. Some recent research work by Das [65] explores
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the use of some of the real world models, such as auctioning, in judging the 
relative monetary value of a given reduction in makespan and vice-versa.

The objective functions maximising the resource utilisation or the throughput 
of the jobs are favoured by Grid resource owners and operators. These are often 
at odds with the application-centric objectives, and schedulers are required to 
balance these opposing requirements according to some administrative policy. A 
commercial Grid operator may also be interested in increasing the economic profit 
extracted. Considering that the Grid offers computing on a service-based model, 
the quality of service offered to the users will influence their preference toward a 
certain cluster, the level of demand placed 011 it and the profit generated. Possible 
ways of optimising cluster profitability based 011 the work presented in this thesis 
are formulated in Appendix C.7

Scheduling Adaptivity

Schedule adaptation is a process in which the scheduling decisions are based 
on the information, algorithms and the parameters which change dynamically 
reflecting the past, current and future state of the Grid environment. The need 
for the scheduling adaptation comes from the heterogeneity of the Grid resources 
and applications, as well as from the resource performance fluctuations caused by 
their non-dedicated use and probabilistic availability. The adaptive scheduling 
algorithms can also be divided according to the source of fluctuations they handle 
into the following three categories:

Application adaptation algorithms are usually based on the profiling and instru­
mentation of the source code of a specific application, and profiling of the target 
platform on which it is to be scheduled. As a result, this tightly coupled approach 
is not portable or universally usable. This limitation was addressed by Dail in [66] 
by decoupling the application and resource models from the scheduling frame­
work. Application adaptation through resource reservation was presented by 
Aggarwal in [67]. while Wu in [68] presents a self-adaptive scheduling algorithm 
that relies on the long-term performance predictions introduced in [69, 70].

Resource adaptation algorithms are concerned with selecting a subset of the re­
sources from the available pool in order to minimise the communications costs 
between them, achieve high performance, or reduce the performance variability, 
for example. In a globally distributed cluster such as the Grid, intelligent and 
application-specific resource selection can greatly increase its performance, espe­
cially in the case of the data intensive scenarios [71]. In [66] Dail groups the 
resources in disjoint subsets according to the network delays, which are then fur­
ther ranked according to the memory size and the computational power. Subhlok 
in [72] gives an algorithm to jointly analyse the computation and communication 
resources for different application demands.
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The main challenge of the resource adaptation algorithms is in collecting up 
to date monitoring data on the dynamic properties of the resources (such as the 
available network bandwidth, memory, etc.) without excessive communication or 
storage costs. Often, these goals are achieved by transm itting very basic, com­
pressed metrics such as the last, average or the maximum values for a relatively 
large sampling period. As good monitoring information is essential for building 
a representative statistical model and making good forecasts, Section 3.4 surveys 
the current approaches and discusses the open issues on the topic of Grid resource 
monitoring.

Performance fluctuation adaptation algorithms aim to reduce the impact of the 
variable performance levels delivered by a resource and their probabilistic avail­
ability caused by their autonomy and non-dedication. Generally applicable, the 
rescheduling algorithms (in GrADS [73] for example), adapt to the performance 
or availability drops by re-submitting whole jobs onto a different execution node. 
In the specific case of the divisible jobs their constituting tasks can be dynamically 
assigned to the resources as appropriate at the time of execution [74]. Im portant 
Grid application classes such as the master/worker, parameter sweep or the data  
stripe processing can be scheduled in such a way. Previously mentioned appli­
cation checkpointing algorithms can also be used to reschedule even atomic jobs 
by generating an occasional snapshot of their entire state and migrating them  as 
necessary.

Non-traditional approaches

New scheduling approaches have been inspired by the Grid's similarity with na­
ture and human society. Both environments are made up of a large number of 
autonomous entities which are self-ruling but interacting, competing for scarce 
resources and adapting their behaviour to current environment conditions. Cross- 
disciplinary problem solving methods briefly introduced here found many appli­
cations in Grid scheduling research, depending on how their original problem 
space was mapped onto the Grid.

Economy models assume a limited supply of Grid resources for which a num­
ber of consumers (users or applications) are competing for. Depending on the 
approach taken, resources are available at a certain cost, may be of a defined qual­
ity, or a varying level of community trust [75]. The scheduling process is then 
seen as the interaction of the resource buyers and suppliers in some mode of m ar­
ket behaviour such as bargaining, open bidding, auctioning or similar. In [30. 31] 
Buvya applies these economic models to optimise the Grid scheduling, while in 
[32] same author introduces a novel deadline and budget constrained algorithm 
that considers the makespan and the cost of the job simultaneously. Economic 
treatment of the scheduling problem raised other interesting approaches, such as 
a tender model for Grid applications suggested by Ernemann in [76. 34], and a job
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prioritisation model for the traditional schedulers based on the job’s committed 
budget by Zhu [77]. A game theory [78] approach was considered by Young in 
[79] and was able to find close to optimal solutions in many cases.

Genetic algorithms [80] have found their application as powerful heuristic 
methods used to find sub-optimal solutions to large combinatorial problems of 
the Grid job scheduling. They are often combined with other search techniques 
based on the real-world processes, such as the simulated annealing [81], to avoid 
locking into suboptimal local solutions. Examples of the genetic algorithms in 
the Grid scheduling can be found in [82, 83, 84, 85].

3.1.3 Grid Scheduling Implementations

The Grid scheduler and job manager landscape is highly fragmented and utterly 
confusing. Many implementations can be used as stand-alone solutions, or as 
part of a layered Grid resource management. This section gives an overview 
of the most commonly used schedulers on the production and research Grids. 
The classification is based on their use of the predictive techniques, historical 
information or the application instrumentation.

Non-predictive

The majority of the commercial schedulers do not make any independent as­
sumptions on the length of the job execution or its resource utilisation. These 
approaches focus on delivering high-throughput, stable and as deterministic as 
possible scheduling, often employing fixed prioritisation as means of indicating 
the relative job urgency.

Condor-G [60, 50] is a high-throughput, policy controlled batch scheduler based 
on a master-worker approach. It can be used as a standalone system, or as a local 
job manager for the Globus toolkit with which it communicates using the GRAM 
protocol. ClassAd [86] language is used to match the application requirements to 
a suitable hardware. Condor supports job checkpointing, provides node security 
by using the sandboxing and I/O  redirection, and has an integrated monitoring 
and management suite called Hawkeye [87] (see Section 3.4.4).

Condor’s strongest point is in extracting unused cycles from a highly hetero­
geneous and noil-dedicated resource pool, and the ability to migrate and resume 
jobs during runtime. The scheduling however is FIFO based, with coarse grained 
prioritisation, and the framework leaves little room for integration of the predie- 
tive elements.

N1 (Sun) Grid Engine [88] is an enterprise focused cluster scheduler based on a 
master-slave agent model that supports a wide range of operating systems and 
hardware. It can function as a standalone system, or as a local job manager
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in a Globus environment. The N1 Grid engine supports parallel jobs, basic 
resource reservation and job prioritisation. The submission of jobs is through 
a single master node and each slave runs an agent responsible for task launching, 
monitoring and reporting. The resource discovery is built-in, but can be extended 
(for example by using JXTA [89]), and supports the building of complex selection 
queries.

Scheduling in the N1 Grid Engine is based on a policy and priority modified 
FIFO model. The role based authentication system can support groups with 
different priorities, resource reservations and billing options. Multi-site job sub­
mission is possible using the Globus Toolkit v3, Grid Engine and JOSH [90]. 
Manual scheduling to a deadline is possible if reservations are used, but only 
for applications with known runtimes. The scheduling process cannot readily 
support deadline scheduling or application run time predictions.

EASY scheduler [91], developed specifically for scheduling parallel jobs, was 
the first FIFO system to use the “backfilling’’ method. On job submission, 
users are asked to specify the number of processors requested and the maximum 
wallclock execution time for the job. The queuing proceeds in a first-come-first- 
served manner until a job requests more CPUs than are currently available in 
the cluster, effectively blocking the remaining queuing jobs from execution. The 
EASY scheduler examines the running queue and establishes the latest time at 
which enough CPUs to serve the queued job will become available. It than looks 
further down the queue and allows execution of jobs requiring less processors to 
execute if they will not push back the start time of the blocked job - effectively 
filling in the gaps created by large jobs with smaller ones.

EASY scheduler has been extended to work with other scheduling systems, 
such as the LoadLeveler [92], and the backfilling method, shown to be fair and 
efficient, was adapted for use in many later schedulers. However, the dependence 
on the users for the job execution time estimation makes this approach unviable 
for many modern applications.

Portable Batch System (P B S )  [93] is a widely used batch scheduler in large insti­
tutional clusters, and is another example of a centralised master-worker model. 
Used on its own, it functions as a workload management suite, while integrated 
in a Globus environment, it serves as a local scheduler and job manager. PBS 
supports resource reservations, cross-cluster job execution through user mappings 
and job recovery through rescheduling. PBS is best suited to a well managed and 
controlled environment, with (mostly) homogeneous hardware and software, and 
with unified accounting and administration policies.

The scheduling component in the PBS is separated from the job submission 
server, and through the use of PBS APIs can be modified to implement different 
scheduling algorithms. The Scheduler communicates with the Server to obtain
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submitted job information, and with the PBS resource monitor to acquire the 
resource utilisation data. It can operate on single or multiple queues and create 
schedules based on site policies, priorities and the utilisation state of the cluster. 
Preemptive execution and backfilling are supported, but scheduling to a deadline 
is not possible. Although it may be feasible to develop a custom PBS scheduler 
making use of the job runtime predictions, no such effort to date is known to the 
author.

Load Sharing Facility (LSF) [94] is a popular commercial scheduler geared to­
wards the high computational demand industries such as the financial services 
and life sciences. Details of the underlying technologies in LSF are not widely 
available, only a single published paper by the scheduler’s author Zhou from 
1992 gives some early algorithms [94]. The product literature states tha t the 
core of LSF is a virtualisation engine that manages the supply of resources, in­
creases their utilisation and improves the application performance. According to 
the company web site “an element of self-management has been built into Plat­
form LSF to offer guaranteed zero downtime, self-adaptive dynamic allocation of 
resources, and self-healing to reduce management overhead".

Platform LSF offers a comprehensive set of scheduling policies with support 
for fair-share, preemptive and service level agreement based scheduling with ad­
vanced resource reservation. The implementation aspects of these have not been 
disclosed, making functional comparison with other algorithms impossible.

Maui Cluster Scheduler [95] (and related Moab Grid Suite [63]) is a high level 
Grid meta-scheduler compatible with the PBS, LSF, Sun Grid Engine and other 
local schedulers and job managers. It supports scheduling policies, dynamic job 
priorities, resource reservations and fair-share resource allocation. Maui makes a 
step towards the deadline scheduling by requiring the user to supply an estim ate 
of the maximum running time of a job. This value is used in constructing the 
initial schedule, which is then further optimised by applying job priorities and an 
(optional) out-of-order backfilling scheduling algorithm.

Maui maintains the accounting data on the previous user-predicted and actual 
job execution times, but it does not make any independent forecasts. Analysis 
done by Maui’s developers revealed that the users are likely to grossly overstate 
the maximum running time of their applications. Even with such unreliable 
runtime predictions. Maui is able to deliver improved scheduling performance, 
stressing the importance of this data  in creating an effective schedule.

Predictive

Predictive Grid schedulers are still mostly used for research purposes or in spe­
cialised clusters scheduling scientific software. Although each of the presented
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schedulers takes a different approach, they have all been designed to schedule a 
specific type of applications onto an appropriately specific set of resources.

Application LEvel Scheduling (AppLeS) [96, 97] is a primary example of the pre­
dictive Grid scheduling at the application level. It can optimise the schedule for 
the user’s performance criteria, such as the turnaround time, by predicting the 
execution times of queueing jobs on the target platforms. AppLeS does this by 
running a modified, recompiled and instrumented version of the user application 
on a performance profiled hardware (using Network Weather Service, see Sec­
tion 3.4.3) using a domain-specific scheduling algorithm. Performing best when 
scheduling param eter sweep and master-slave applications [85. 71], it can deliver 
increased utilisation and deadline scheduling. However, the reliance on specific, 
individual, application and resource models makes this approach acceptable only 
for the high-value niche applications, or clusters of specialised hardware.

AppLeS bears significant differences to the approach taken in this thesis as it 
requires each application, set of resources and prediction algorithm to be adapted 
to its scheduling framework and the deployment domain in question. This re­
quires significant effort on behalf of the user, cluster administrator. AppLeS de­
veloper and the software provider. A solution developed in such a way is not 
portable, and may not perform sufficiently well even with minor changes in the 
cluster composition, network topology or the usage patterns. Nevertheless, Ap­
pLeS has shown possible benefits of the adaptive and predictive schedulers, and 
an obvious need for their development.

Nimrod/G [98] is a Grid incarnation of a scheduler developed to facilitate large 
runs of parametrised simulations over a distributed set of resources [99]. Using 
the Globus toolkit for resource discovery, job submission and security, N im rod/G  
enables end users to request job completion by a specific deadline and specify 
a certain virtual budget for the execution. By offering this ‘‘budget'’ metric. 
Nimrod/G is looking to provide a framework for market based computational 
economy where such services could be traded [30, 31]. During the schedule 
generation stage, a sample of the subm itted parametric study application is run 
on the target nodes and used to extrapolate an overall runtime prediction.

In papers published by its authors, N imrod/G  showed good scheduling perfor­
mance, with good adherence to the requested deadlines [98]. The trial run predic­
tion method lends itself well to the heterogeneous nature of the Grid. However. 
Nimrod/G is solely aimed at the parametric study applications, whose execution 
times are very narrowly distributed, and generally independent of the input pa­
rameters. By limiting its scope, Nimrod/G is able to utilise simple prediction 
methods to achieve satisfactory scheduling performance. Although these appli­
cations form an im portant group of the scientific software presently running on
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the Grid, a general purpose scheduler must also be able to handle other types of 
applications.

PACE/Titan toolset [100, 101] is a deadline based scheduler supporting runtim e 
predictions, performance modeling, and out-of-order job executions. PACE [102] 
component uses the pre-execution modelling to predict the job runtime and the re­
source utilisation based on the hardware and software characterisation templates, 
and an evaluation engine estimating the application performance on different re­
sources. It requires all applications to be recompiled with the PACE libraries 
and all execution hardware profiled so tha t the performance tem plates can be 
made. T itan [100] is a workload management component of the toolset. Using 
the performance predictions supplied by PACE, Titan uses a genetic algorithm 
to optimise the execution schedule reducing idle time, makespan or scheduling 
delay, while maintaining the deadline adherence. The scheduling is dynamic, and 
is constantly performed on the pool of outstanding jobs, replacing the current 
best schedule if a better one is found.

PA C E/Titan toolset is a good example of the power of predictive scheduling 
techniques and the challenges of the job runtime predictions. Good results have 
been reported [103], but despite these the main drawback of the toolset is the need 
to recompile the applications, and extensively profile the target hardware. For a 
large number of users running different applications on non-dedicated resources, 
such as in a typical utility Grid scenario, this may be impossible. The main 
strength of the PA C E/T itan scheduler remains in running the high-end scientific 
applications on a relatively static pools of high performance dedicated hardware.

ICENI [104] is a predictive scheduler aiming to explore the role and the flow of 
the job m eta-data in the computational Grids. It incorporates a separate schedul­
ing component, job launching framework and a performance repository holding 
historical data on the job execution times on different architectures. The schedul­
ing component is extensible and supports multiple concurrent and competitive 
scheduling algorithms (ICENI authors have presented four such algorithms in [79], 
including the simulated annealing and the game theory methods). The prediction 
engine treats the applications as a collection of simple components connected as 
a directed acyclic graph (DAGs, see [105]) with varying depths and dependencies. 
It introduces a user-defined benefit value, such as the target execution time or 
the computing cost, which the scheduling process aims to optimise.

ICENI parts from the traditional approach of the batch schedulers and offers 
predictive, out-of-order job execution and several Grid specific benefit functions. 
Although the importance of the m eta-data is considered, its integration in the 
overall flow of monitoring information could have been more thorough. ICENI 
falls short of offering a fully fledged deadline scheduling, but optimisation of the 
wallclock job execution time can be done using the benefit function. The core
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scheduling work focuses on the algorithm development, recognising the need for 
approaches of varying complexity, but little attention is paid to the job execution 
time prediction methods, their accuracy and computational cost. Due to an open 
architecture and modular design, ICENI offers a good platform for deployment 
of third party components and their testing in a production-like environment.

3.1.4 Summary

This section has presented the general scheduling problem, as applied to the 
parallel and distributed computing systems, and some unique aspects of the Grid 
platform which pose specific challenges to the legacy scheduling approaches. This 
examination of the broader scheduling process showed that efficient scheduling 
depends on the good algorithms for resource discovery and efficient access to the 
monitoring data. Some of these issues were addressed as part of the SO-GRM 
project and will be discussed in Appendix A.

From an extensive survey of the Grid scheduling algorithms, their complex­
ity, adaptivity and objectives, it became clear that the dynamic properties of the 
Grid, and its non-deterministic nature, are the hardest problems in the trad i­
tional scheduling approaches. Many techniques, which would be better suited to 
overcoming these Grid specific issues, would require estimates of the execution 
times of the queued jobs in advance of their start.

W ith the transition of the Grid paradigm into a service-orientated in­
frastructure, the objectives of the commercial Grid operators and end-users 
diverge. Emerging new concepts, such as the Grid economy, are seen as ways of 
optimising the objective functions of both the users and operators. Delivering 
Grid scheduling with the deadline and budget constraints will depend on the 
sound economy models, and the ability to predict job execution times.

The section has also presented numerous implementations of the Grid sched­
ulers, separated into two categories: those tha t in some way try to predict the 
execution times of the subm itted jobs, and those that do not. The number of the 
predictive schedulers, and the numerous ways in which they attem pt to anticipate 
the job execution times strongly motivate the author’s further work.

3.2 Performance Predictions

Forecasting is a process of estimation in unknown situations [106], and is used 
extensively in support of decision making. In the following, it will be used 
interchangeably with a more general term "‘prediction” which is usually associated 
with forecasting time-series data.
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This section will discuss the problem of forecasting the com putational load 
and the resource performance in the context of the distributed deadline schedul­
ing. It will survey the current methods and approaches used in forecasting the 
job execution time, state the particular issues and challenges of making such 
predictions in the Grid environment, and briefly discuss the significance of the 
outlier data  points and other “anomalous” workload properties.

3.2.1 Problem Statem ent

From the survey of the scheduling algorithms and implementations in the previous 
section, it is clear that significant performance and functionality improvements 
could be achieved if an estimate of the job execution time on a given resource 
can be made. Therefore, the problem is one of delivering runtime forecasts of 
sufficient quality, and based on the available information prior to the execution 
of the submitted job.

Related Forecasting Problems in Distributed Computing

Similar problems abound in the management, provisioning and planning of the 
distributed computational resources. Attempts were made at modelling and 
predicting many performance influencing, dynamic, properties of these systems 
such as:

•  Host and CPU load by Dinda [107] and Lingyun [108]

• Queue waiting time by Downey [109]

• Network available bandwidth by Wolski [22, 110, 21] and the file transfer 
time by Vazhkudai [19]

• Resource discovery performance in the Grid Information Systems by Keung
[mi

Despite the diversity of the topics listed, all of these approaches rely on several 
common forecasting methods that will be discussed in Section 3.2.2.

Challenges of Job Execution Time Estimation

The complexity and the quality of the runtime predictions is proportional to the 
volatility of offered load and the variability of the service rate. In embedded, 
robotic, or industrial control applications for example, sensor events are serviced 
by processes with known execution time, usually running on real-time operating 
systems and hardware [112, 113, 114, 115]. Adherence to an execution dead­
line is then guaranteed by the deterministic nature of the system and all of its 
components.
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Grid computing is a much more probabilistic environment in which both the 
computational load and the hardware service rates vary. The apparent random­
ness of the human behaviour, the primary source of the computational load in 
the Grid, leads to variable service request rates. In addition, the subm itted ap­
plications vary greatly in terms of complexity and resource requirements, and 
their execution time is often dependant on the parameters of the specific run (for 
details see Chapter 4). At the same time, the autonomy of the Grid resources 
means tha t their availability is not guaranteed, and their non-dedication implies 
fluctuating service levels offered to the Grid applications. In these circumstances, 
estimating the job execution times becomes a real challenge.

3.2.2 Prediction Approaches

This section will describe the approaches used in the current research work and 
implementations for predicting the job execution time. These methods are not 
mutually exclusive, and are often combined to yield an increased prediction accu­
racy. The focus of this discussion is on the body of related research, but references 
are provided to production schedulers based on the mentioned research work.

User Provided Estimates

The simplest and the oldest approach to acquiring the job runtime predictions is 
asking the user to give an estimate. The reasoning behind this method is tha t 
the user submitting the job knows it best and would be able to somehow judge 
the level of computational complexity requested from the application. The user 
is also presumed to have the benefit of some historical hindsight and can make 
an educated guess based on the previous application runs in similar conditions.

User’s estimates are communicated to the scheduler either implicitly (by sub­
mitting the job to a queue with a certain maximum execution time) or explicitly 
(by stating the maximum or estimated execution time as a param eter to the 
scheduler). The former was very common in the legacy batch systems and is still 
widely used today (in some versions of PBS scheduler, see Section 3.1.3). while 
the latter can be found in the more recent Grid schedulers (such as Maui [95]). 
Whether, and under which conditions, will the job be hard limited by the given 
maximum execution time, or whether it will be allowed to continue execution 
past its declared maximum runtime, or the limit of the queue to which it was 
submitted, is subject to the scheduler implementation and the local policies.

The simplicity of this prediction method is appealing, and has worked on the 
previous generations of the time-shared, high performance systems where the re­
source had deterministic performance and the users were repetitively subm itting 
specialised applications. In the Grid context however, users are not aware of the 
constantly fluctuating performance levels of the execution nodes, and may not 
even have an in-depth knowledge of the application they are running. This leads
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to extremely inaccurate job runtime predictions documented, amongst others, by 
Lee [116] and Downey [109]. Another possibility, given the conflicting interests of 
the users and the Grid scheduler is the manipulation of the scheduler by the users 
wishing to ‘‘jum p the queue” by intentionally giving lower runtime predictions.

Application Instrumentalisation

Application instrumentalisation enables the resource management middleware to 
gain an inside look into the functional, performance influencing, components of 
the application. The method augments the core problem-solving source code with 
an additional functionality that can, depending on the implementation, passively 
analyse the application performance, estimate the required resource utilisation, 
predict time to completion, or actively adjust the speed of the execution. The 
process of instrumentalisation involves significant changes and recompilation of 
the user’s application, and profiling it on all of the target execution platforms.

The research in this topic has focused on the best ways to capture the internal 
organisation of an application and discover its performance influencing parts. To 
this end, the directed acyclic graphs (DAG) [117] have been frequently used [118. 
119]. Object oriented methods have been proposed By Gergeleit in [120], while 
the most notable implementation remains the AppLeS scheduler (see Section 
3.1.3).

The main benefits of the application instrumentalisation method are its high 
prediction accuracy, and the ability to estimate the job time-to-completion used 
in deciding whether to reschedule a running job elsewhere. The need for source 
code changes and recompilation is a major issue as. even if the code is publicly 
available, the process is a laborious and expensive one. The approach is very 
specific to the software and hardware in question and hard to adapt to a general 
purpose utility Grid. Application instrumentalisation is therefore best suited to 
specialised clusters running high value niche applications.

Application and Hardware Profiling

Profiling approaches use a variety of algorithms to capture the dynamic behaviour 
of the applications and the hardware in a model suitable for prediction generation. 
This approach is similar, and often used together, with the application instru­
mentalisation. Profiling, however, does not require alterations or re-compilation 
of the source code. It rather tries to create the model non-intrusively, passively 
analysing the applications and monitoring the hardware. A successful profiling 
technique will generate models in an (semi-)automated way that can evaluate dif­
ferent performance scenarios and capture the system’s properties with the least 
number of parameters.

The profiling of software can be done using the test runs of sample code on the 
target hardware [98], creating the system logic models [121], or using the binary
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code analysis [122]. Hardware platforms are most often described by their static 
properties (such as the amount of installed memory, the speed of the CPU, or 
the FLOPS rating), or by using a real-world application benchmark (such as the 
SPECmark [123]). More detailed analytical models [121] can also be developed, 
usually for more specialised systems.

Most of the cited algorithms in this category produce very accurate predic­
tions. The applicability of the approach however, still remains limited. Most of 
the profiled hardware is monolithic and dedicated, the properties which do not 
readily apply to utility Grid clusters. The modelled applications are highly spe­
cialised, well studied and often performance deterministic with a narrow runtime 
distribution (such as the parameter sweep application scheduled using Buyya’s 
N im rod/G , see Section 3.1.3). The modelling method itself, while requiring less 
involvement than the full instrumentalisation, is still not fully autom ated and 
usually requires the involvement of the Grid adm inistrator and the end-user. 
Overall, application and hardware profiling serves as a good starting point for 
the development of a more automated and generalised approach based on appli­
cation templates [96].

Statistical Methods

If the successive historical job execution times are collected by the Grid mid­
dleware, then these can be analysed using the statistical analytical methods in 
an effort to predict the future job runtimes. Experience has shown tha t even 
some seemingly random or very noisy series (such as the stock prices or the com­
modity demand) can be modelled and predicted to a usable error margin [124] 
using statistical methods. Rather than trying to capture the cause of the ap­
plication’s achieved performance, these methods model the end effect (the job 
runtime) directly. The following statistical methods are most frequently used 
in the prediction of the job execution time or the closely related performance 
metrics.

The mean and the median based methods [125] are often used due to their 
(computational) simplicity. They are frequently used and reported [109, 126] 
as they form a benchmark for other, more advanced, statistical methods. The 
mean and the median based forecasts are very dependant on the distribution of 
the data points and the approximation used to represent them.

Regression techniques [127] attem pt to model the relationship between the exe­
cution time and another variable, or in the case of the auto-regression between 
the current and the lagged historical values of the execution time itself. These 
methods are extensively used [107, 128, 126, 129] due to their predictive power, 
and the ability to capture cyclic behaviour.
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Moving average methods [130] compute the weighted average over a number of 
historical values of the modelled variable. They are often used in conjunction 
with the regressive techniques [131], but require a noil-deterministic time to fit.

Stochastic values [132] are ranges of values which can be represented using dif­
ferent distributions, intervals or histograms. They are able to communicate the 
dynamic properties of the system better than the spot values, and capture more 
information on the variability of the modelled metric. Stochastic prediction m eth­
ods have been used by Schopf in [133, 134, 135].

Homeostatic and tendency based methods are based on a relative value of the 
last historical data point. The homeostatic strategy assumes that if the current 
value is grater tha t the historical mean, the next value is likely to decrease. The 
basis of this approach is tha t the data will be “self-correcting” or so tha t it will 
return to the series mean value. A tendency based strategy states that if the last 
sample was of increasing value the next one will be too. An im portant source 
of error is the inability to predict the “turning point” when the series changes 
direction. These methods have been adopted by Lingyun in [108]

3.2.3 Special Events Detection

When using statistical forecasting techniques, the quality of the predictions will 
greatly depend on the variability of the data and the presence of outliers, anoma­
lous data points or high-frequency components. Anomaly detection and filtering 
is a large research topic on its own, with a range of applications from seismology 
to medicine. In the context of the distributed systems, it is most often applied 
to the network monitoring and management.

A small body of published work on analysing anomalous behaviour in the 
workload traces goes as far as identifying and acknowledging the presence of 
outliers both in the job execution time data and the job arrival rates. Tsafrir has 
shown in [15] that these can have significant effects on the scheduling performance 
and suggests ways of filtering them out of the dataset.

Further discussion of the statistical properties of the Grid workloads, together 
with the merits and problems of excluding the anomalous data points is deferred 
until Chapter 4.

3.2.4 Summary

W ith the increased research interest in the deadline scheduling, and other alter­
natives to batch scheduling, the ability to forecasting the execution time of the 
queued jobs is seen as a necessary functionality. Delivering such predictions, in 
the context of a general purpose utility Grid system, proved to be difficult.
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The discussion of the forecasting methods currently used reveals tha t the run­
time predictions supplied by the Grid users are unreliable, and tha t the applica­
tion instrumentalisation and modelling techniques yield good results but require 
source code changes or extensive and preemptive analysis of the hardware and 
software. In a dynamic environment like the Grid, these are seen as prohibitively 
high costs.

Statistical forecasting methods have a potential to deliver job runtime pre­
dictions in an automated way, transparent to the user and easily manageable 
by the administrators. Although the initial prediction accuracy may not be on a 
par with some more complex methods, further algorithm improvements and care­
ful handling of the outlier data points could significantly increase the prediction 
accuracy.

3.3 Workload Characterisation

To successfully select and apply a performance forecasting model, good under­
standing of the statistical properties of the workload are needed. The topic of 
workload characterisation has been extensively researched before, but little work 
is evident in the context of the Grid computing.

Since the Grid architecture is significantly different from other distributed 
and parallel systems, one can expect that the workload will also be significantly 
different. A close examination of its properties is therefore warranted. This 
section will first give a brief historical overview of the workload characterisation, 
followed by the discussion of the im portant workload metrics and their treatm ent 
in the literature.

3.3.1 Historical Overview

Knowing the properties of the demand that will be presented to the system is 
crucial in its planning, performance tuning and bottleneck optimisation. Previous 
workload studies have dealt with workload characterisation of interactive [136, 
137] and database [138, 139, 140] systems, communication networks [141, 142]. 
and Web services [143, 144, 145] amongst others.

Although often difficult, characterisation through proper analysis of the real- 
world data is im portant in avoiding flawed system designs [146, 147]. Analysis of 
the actual Internet traffic patterns by Leland [148] and Paxson [149], for example, 
led to the ground breaking departure from the Poisson-based model and had 
significant impact on many other workload models, such as those of the Web 
server performance [150, 151, 144, 145].

Historically, the focus in the workload characterisation of the distributed and 
parallel systems was on developing models able to generate representative traces 
to be used in other simulation work [23]. W ith the recent interest in predictive
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scheduling, some researcher have started to examine workload properties looking 
for possible forecasting models [152].

3.3.2 Modelling Scope

As the computational workload consists of several layers of jobs, tasks, routines 
and instructions, so can workload models be focused on capturing the properties 
of one or more of these layers. One option is to model these levels explicitly, 
creating a hierarchy of interlocked models for different levels, while another is to 
study them as opaque boxes and model their response to input data.

Work by Calzarossa and Sarazzi [153] established the foundations for mod­
elling the processes generating the workload. Their methodology subdivides the 
workload per each user, identifies similar commands using clustering techniques 
and chooses several representative ones. It then describes user behaviour through 
probabilistic User Behaviour Graphs [154] and Markov chains [155, 20, 156], and 
uses aggregation-disaggregation techniques [153] to obtain the global model pa­
rameters. This process captures both static and dynamic properties of the intrin­
sic workload generation process in a concise form and can be used to generate 
representative workload traces.

This detailed approach to workload modelling quickly becomes overcompli­
cated, and while able to generate good representative traces, it does not provide 
much insight into the statistical properties of interest to the job execution time 
predictions. The remainder of this section will therefore focus on past work using 
statistical techniques to directly characterise workload’s general properties.

3.3.3 Workload Properties

Previous characterisation studies of parallel systems model a number of workload 
properties relevant to predictive scheduling techniques. The arrival process, the 
job’s requested, queueing and execution times, and the degree of parallelism are 
some of the workload’s most studied aspects. The following overview of the 
findings and the related work is based on the job traces from pre-Grid clusters; 
only the most recent work by Li [26], Iosup [157], Medernach [27] and Dobber 
[28] are based on the actual production Grids and will be treated separately in 
Section 7.1.

Arrival Process

The daily fluctuation of the number of submitted jobs, and its correlation with 
the human work pattern has been universally reported [23, 24, 26, 27, 152]. 
Most traces show a differentiation between the weekday and the weekend arrival 
rates, except as reported by Cirne in [23], and some authors choose to ignore the 
lunch hour dip [24]. Arrival distribution function has been modelled using 8th —
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12th degree polynomials [23], log-normal [24], (hyper-)exponential and (hyper- 
)Gamma [24, 26], and Weibull and Pareto [26] distributions.

Although the majority of the previous work has assumed Poisson distribution 
of the inter arrival rates, Medernach has reported strong burstiness at all time 
scales [27]. Cirne has studied the link between the job arrival time and other 
job properties, including execution time, but could not identify any statistically 
meaningful correlations [23].

Job Execution Time

In his work, Gibbons assumes normal distribution of the job execution times 
[152] and approximates it with the Student’s t distribution. Cirne and Berman 
derive the job runtimes from the user job requested time and the explicitly 
modelled accuracy of such user predictions [23]. Weibull, log-normal and Gamma 
distributions were used by Li in [26], while Lublin fits a hyper-Gamma function

[24].
All authors report a very wide range of the execution times and often remove 

outliers (usually past 95th percentile) or perform logarithmic transformations.

Job Request Time

Job request time is specified to the scheduler by the submitting user, and is an 
indication of the maximum expected length of execution. The relationship with 
the actual execution time remains contentious: Cirne [23] has used it to derive 
the job run time, Li [26] has found it strongly correlated with the actual runtimes, 
but many other authors, including Medernach [27], Lee [116] and Tsafrir [158] 
have found this information to be highly unreliable.

Queue Wait Time

Queue wait time, or the time that each job spends in the scheduler queue, is 
an indication of the scheduler fairness and prioritisation policies. Medernach has 
reported wide variation between wait times for different groups of Grid users [27], 
but this metric has not been studied in greater detail.

Job Parallelism

The number of the nodes or processing units (CPUs) used by the job simultane­
ously and in parallel has been reported to have a strong preference for the power 
of 2 values (2, 8, 16 etc.) [23, 24, 26]. Through direct interviews with the users, 
Cirne has confirmed this to be due to behavioural inertia [23] as most legacy sys­
tems could only support power-of-2 parallelism. Job size has been modelled using 
log-normal distribution [26, 23], but with limited success. Although intuitively 
job execution time should be inversely proportional to the degree of parallelism, 
opposite [24] or no correlation [26] has been found.



CHAPTER 3. THE GRID AND RELATED TECHNOLOGIES 57

Memory Usage

Overall, the memory utilisation was reported to be low and highly modal [26], a 
factor attributed to the use of standard dynamic libraries. As dynamic properties 
of memory allocation are lost due to the way data is collected, the value of this 
metric is significantly reduced in the context of predictive scheduling despite its 
strong correlation to the job runtime reported by Li [26].

Cancelled Jobs

Many workload traces contain a large proportion (up to 23%) of cancelled or 
unsuccessful jobs [26, 23]. Cancellations are either due to the user actions, or 
the failure of the job while setting up its working environment (missing files or 
libraries, inadequate resources etc.). The cancellation rate has been modelled 
using the log-normal [26, 23], hyper-exponential or Weibull distributions [26].

User Behaviour

Both Lublin [24] and Li [159] acknowledge the strong influence tha t the user’s 
habits and behaviour patterns have on the characteristics of the workflow, but 
do not investigate this further. These two authors also make passing remarks on 
the evolution of the workload through time and propose tha t further studies of 
this effect should be undertaken.

3.3.4 Summary

Many aspects of the planning, provisioning and management of computing sys­
tems are strongly influenced by the service demand that will be presented to 
it, thus making the characterisation of such workload an extensively researched 
area. The majority of these previous studies have used older traces collected from 
parallel clusters in the 1990s which, due to some specific properties of the Grid, 
are not very representative of the modern, highly dynamic, distributed clusters.

This section has provided the historical overview and the scope of the previous 
workload characterisation studies. It has also outlined the studied metrics and the 
reported findings on their properties. It also reiterates the im portant distinction 
between the previous studies whose purpose was to capture the properties of 
the workload that will enable the generation of similar, statistically valid usage 
traces, and the one undertaken by this thesis which was aimed at supporting the 
selection and the implementation of predictive algorithms.

3.4 Grid Monitoring Tools

The previous section has underlined the importance of the quality, timeliness, 
and the accuracy of the Grid job and resource monitoring data in the workload
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characterisation process. This section will briefly present the most often used 
Grid monitoring tools and discuss their strengths and weaknesses. A quantitative 
study of their performance can be found in [87].

Some of the issues identified in this survey have been addressed by the author 
through an improved monitoring system presented in Appendix A.

3.4.1 Ganglia

Ganglia [160] is a hierarchical, distributed, monitoring system using XML for 
data representation and round-robin fixed size databases* for storage. Ported to 
a wide range of hardware and operating systems, and deployed on the production 
clusters containing over two thousand nodes, it has proven to be a stable, robust 
and scalable system with low overheads.

Ganglia monitors can track both dynamic (current CPU load, available mem­
ory) and static (machine architecture, OS version) host properties; custom met­
rics can also be added. The cluster nodes running Ganglia can either publish 
their measurement data, collect data  published by other nodes, or do both thus 
creating a distributed da ta  repository. Low overhead communication is imple­
mented through broadcast messages within the cluster, or unicast links between 
the clusters. A convenient web-based visualisation package is also provided.

One of Ganglia’s prim ary strengths, the fixed sized databases, is also its main 
weakness in the context of workload characterisation and job runtime predictions. 
In the round robin databases, collected monitoring data is periodically consoli­
dated (using simple functions like average or min-max), leading to an irrevocable 
loss of the high frequency detail and the alteration of statistical properties. A 
method for solving these issues is proposed and implemented by the author in 
Appendix A.

3.4.2 Relational Grid Monitoring Architecture

R-GMA [49] is a web service implementation of the GMA specification [161] 
providing access to the monitoring information through a relational database 
concept. GMA standard recognises that the performance monitoring information 
differs from other forms of system or program-produced data: it has a short 
lifetime, is frequently updated and is stochastic in nature [87].

GMA monitoring architecture consists of three components: data  producers 
publish their capabilities in the directory, and provide information directly to the 
data consumers based on their subscription to the particular information feeds. 
Such approach implies a separation of the m eta-data describing the monitored 
metric and the stream of the actual measurement data. Relational GMA system 
builds on this model by implementing the producer consumer communication 
(and the directory functionality) through a relational database.

*see htt p:/ /oss.oet iker.ch/rrdtool/
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Grid Monitoring Architecture provides a bare framework for which adequate 
information providers and consumers need to be developed. Although the whole 
Grid community would benefit from its wider adoption, few installations use 
it. The EGEE project [29], R-GMA’s biggest proponent, and its monitoring 
database may contain significant amount of data  which could be of great use 
in understanding the Grid applications and their statistical properties. As with 
any other centralised approach, the registry and the database schema could be a 
single point of failure, unless properly replicated.

3.4.3 Network W eather Service

The Network Weather Service (NWS) [22] is a resource monitoring and forecast­
ing system. Since its forecasting of resource performance levels and availability 
was discussed in Section 3.2, the prim ary focus here is on its monitoring aspect.

The NWS system architecture [110, 21] is based on four separate components: 
multiple distributed Sensors, Forecaster, Name Server and Persistent Storage. 
Although NWS was primarily developed as a network latency and bandw idth 
monitoring tool, its open interface allows for the addition of third party sensors. 
A single instance of the Name Server and the Persistent Storage processes is run 
in the cluster. The Name Server is the only well-known address used by the 
system, allowing for both data  and services to be distributed, but also creating 
a single point of failure. D ata storage is implemented using circular data  files.

Sensor implementation in the NWS uses an intrusive measurement approach 
by running a compute intensive code, or transferring data  across the network. 
While this may reflect poorly on the system loading or network congestion, it 
does provide the real measure of the performance as experienced by the applica­
tions. Network sensors are organised into hierarchical ‘‘cliques'’ performing mesh 
measurements within these, and point to point measurements between different 
cliques and hierarchical levels.

Circular storage methods used in NWS are similar to round-robin databases 
used by the Ganglia Cluster Monitoring, but provide even less historical infor­
mation. From the workload characterisation point of view, data  provided by 
the NWS is of limited use. Today. NWS is much more known and used as a 
bandwidth and CPU load forecasting tool, than as a straightforward monitoring 
system.

3.4.4 Other Monitoring Systems

Several other monitoring systems are used in the Grid community, usually with 
a more specific focus on one of the aspects of the system’s operation. Often, 
large projects assemble toolkits of loosely coupled, best-of-breed components, 
and distribute them as a part of their customised Grid middleware.
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GridMon [162] is a UK e-Science project monitoring network performance be­
tween each of the regional e-Science nodes. GridMon confirms connectivity and 
measures packet loss, round trip time and T C P/U D P throughput by using simple 
scripts or sample data transfers. All measurements are done in a mesh between 
each Grid node, which is generally intrusive and non-scalable. GridMon can pub­
lish its measurements using a Web based visualisation suite, LDAP service or an 
OGSA compliant web service.

Condor Hawkeye [87] is a part of the Condor system (see Section 3.1.3) based on 
the ClassAd [60, 50] messaging protocol. It configures the Condor pool m aster to 
periodically run monitoring scripts and generate appropriate ClassAd messages. 
Hawkeye leverages a large installed base of the Condor, and requires little ad­
ministration effort. However, due to the (in)frequency of the measurements, it is 
more of a summary utilisation and problem reporting tool than a high resolution 
resource utilisation monitor.

3.5 Grid Simulation Suites

Testing of novel Grid scheduling algorithms and approaches poses a significant 
challenge: the importance of the hardware federated in the large production Grids 
prevents running of an untested scheduler, but small Grid testbeds often do not 
have all the dynamic properties and the diversity of a real system. In those cases, 
the use of the Grid simulators and emulators is the only remaining option.

3.5.1 SimGrid

SimGrid [163] is an agent based scheduling simulator with support for the re­
alistic Grid topologies imported from the third-party topology generators. In 
SimGrid. all low level compute and network resources can have variable back­
ground utilisation (supplied from the monitoring trace files), and be contended 
for using different strategies (FIFO, FRFO *, fair share) [164]. Once the simula­
tion scenario and the hardware topology has been developed, different scheduling 
techniques can easily be implemented and repeatable measurements made to as­
sess their merits.

SimGrid builds on the best approaches from more complex and specific simu­
lators, while maintaining the simplicity and good performance levels. Its use by a 
number of research projects, and numerous publications of the SimGrid simulated 
results have confirmed it to be scalable, configurable and extensible enough to 
simulate a wide variety of scheduling problems [165]. Validation of the SimGrid 
results remains a difficult question, especially in a relatively new setting tha t the

’'F irst R eady First O ut
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Grid is. The problem is alleviated to some extent by the fact tha t SimGrid is 
based on the models previously accepted in the scheduling community.

3.5.2 GridSim

GridSim is primarily a scheduling economy simulator focused on supporting the 
param etric applications studies [166]. It can model the geographical and the 
social aspects of the Grid environment using variable background resource utili­
sation based on the time zones, busy hours, or days of the week. GridSim supports 
the definition of the user’s deadline and budget constraints, but is severely lim­
ited by the need to specify both the resource performance and the application 
computational costs explicitly (using MIPS*).

Although based on an already established simulation platform, GridSim is 
not as methodological in simulating realistic network topologies, link congestion, 
resource contention, and parallel applications as SimGrid. Poor documentation 
further mars development of genuinely useful simulations. Despite this being a 
general purpose Grid simulator, GridSim is targeted at the parametric research 
applications and economy driven scheduling approach.

3.5.3 MicroGrid

MicroGrid [167] is an online emulator, providing a virtual Grid environment on 
which real Grid middleware (such as the Globus Toolkit) and Grid applications 
can be run. It relies on the operating system to provide virtualisation, and ex­
ternal applications (VINT/NSE) to simulate networking events. Computational 
resources are characterised by a scaling factor to their real performance.

MicroGrid simulator has been validated by the authors in different testing 
scenarios [168]. The virtual Grid approach is the most realistic one, and of 
particular interest when the middleware behaviour to events such as node or 
network failures is of interest. However, the need for global coordination of 
resources in the virtual Grid enforces a ‘‘maximum feasible simulation rate" on 
the whole environment. Although theoretically possible, large Grid simulations 
with complex resource pools could be prohibitively time consuming to execute.

’'M illions o f  In struction s Per Second



Chapter 4

Workload Characterisation

All models are wrong, bu t som e are useful 

—  G eo r g e  E . P .  B o x , P r o f e ss o r  E m e r it u s

Having surveyed the previous research and related literature on the charac­
terisation of parallel and distributed workload, it became obvious that few have 
covered computational grids. The key properties of this new kind of distributed 
approach are substantially different and therefore warrant a thorough investiga­
tion. Workload characterisation reported in this chapter uses statistical analysis 
to study the properties of the load presented to a Grid cluster, the patterns of user 
behaviour, and the predictability of metrics of interest to the deadline scheduling.

The chapter opens by outlining the scope and the aims of the characterisation 
study in Section 4.1 followed by a detailed discussion of the analysis methodology 
given in Section 4.2. Sections 4.3 through 4.6 present the general workload char­
acteristics, its diversity and differentiation based on several meta and temporal 
properties, correlations between the job execution time and other metrics, and 
a study of the effects of temporal and sampling locality. The chapter concludes 
with a summary of the observed behaviour and characteristics given in Section 
4.7

4.1 Introduction, Scope and Motivation

As the primary use of our predictive scheduling methodology will be a general 
use utility Grid cluster, a suitably representative workload trace was required. 
Most of the early Grid installations were bespoke systems with the purpose 
of running one, or very few, specialised applications. These systems are well 
served by the specially focused predictive schedulers, discussed in Section 3.1.3,

62
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as detailed profiling, instrumentalisation and customising is more practicable. 
In a general purpose utility Grid, however, one can anticipate a wide variety 
of applications with significantly varying requirements and statistical properties. 
Characterisation of one such workload is here presented.

4.1.1 Goals

Unlike many similar workload studies [150, 154, 137, 136, 142, 144, 155, 153, 
24] whose aim was the generation of new traces with realistic properties, the 
primary motivation for this work was a deeper understanding of the workload 
behaviour in order to develop a sound predictive model. In this respect, the 
question which statistical model describes the workload best was second to the 
understanding why it behaves in such a way, and what the effect of such behaviour 
or statistical property will have on the workload predictability and the selection 
of the forecasting method.

The analysis paid specific attention to the investigation of the following work­
load characteristics:

• Statistical properties which may influence the selection of the forecasting 
methods or the analytical approach (autocorrelation, normality of the dis­
tribution, presence of long-tails, self similarity, etc.).

•  Cyclic behaviour and seasonal variations which can help anticipate future 
resource demand levels.

• Correlations between the different metrics and between the metrics and 
the job m eta-data that can reduce data variability and increase prediction 
accuracy.

• Evolution and longer-term changes in the workload which would require 
dynamic tuning of the forecasting algorithm.

• Presence of anomalies, drastic or sudden changes in the workload behaviour, 
their impact on the predictability and methods for handling them.

In-depth knowledge of the workload was essential in answering the two key 
questions supporting the entire predictive approach of the thesis. Firstly, estab­
lish the possibility of using the job m eta-data to reduce the variability of the 
observed execution times and thus increase the forecasting accuracy. Secondly, 
by using the appropriate statistical analysis tools, assess the predictability of the 
job execution times and indicate the candidate models or distributions suitable 
for making forecasts.
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4.1.2 The UCL Central Computing Cluster (CCC)

The characterisation was done on the data collected from the Central Computing 
Cluster (CCC) of the University College London’s Research Computing facility. 
The installation went live in September 2004, and with most deployment problems 
solved by January 2005 the number of users grew quickly (see Table 4.3 on page 
75). Table 4.1 gives more information on the installed hardware and software 
environment.

Hardware Properties

Number of Nodes 100
CPUs per node 2
CPU Type AMD Athlon @ 1200Mhz
Memory per CPU 4096MB
Network Interface Switched Ethernet o lOOMBps

Software Properties

Operating System Linux 2.4
Grid middleware Sun Grid Engine 6.1

Table 4.1: The CCC hardware and software configuration

The user base at the facility was very varied and comprised research groups 
from within the UCL and from academic and research institutions elsewhere in 
Europe. The submitted workload presented a mix of research applications from 
the high energy physics, biomedical, engineering, and other fields.

4.1.3 Data Acquisition

The fact that the CCC facility is in production use and servicing a large portion 
of UCL’s research community meant that only reliable middleware and resource 
efficient system monitoring tools could be used. Data analysed in this thesis 
was obtained by parsing the Sun Grid Engine’s job accounting file [88] which 
records an entry for each job executed on the Grid containing around 50 essential 
job metrics. The benefit of this approach was that it is based on a passive 
monitoring technique and requires no additional software to be installed. It is. 
however, inflexible in the number of the job properties recorded and the way they 
are collected.

The accounting file does not contain any auxiliary system data, and due 
to administrative practices at the site, it would be very difficult to correlate 
the workload features with the external events such as power failures, cluster 
downtime, or system maintenance.

The job accounting data was parsed to produce a comma separated file con­
taining a single line for each submitted job. The fields collected are described in 
Table 4.2.
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Metric Description

JobJD  Unique, serial integer number assigned to each
job by SGE. Non-continuous due to the jobs re­
moved from the queue before execution 

Owner Anonimised, numerical integer identifier of the
UNIX username submitting the job 

VO Anonimised, numerical integer identifier of the
Grid Virtual Organisation subm itting the job 

Hostname Anonimised, numerical integer identifier of the
worker node executing the job 

Job_Name Anonimised, numerical integer identifier of the
executable run or the shell script invoked 

Sub_Time UNIX epoch time of the job submission
Start-Tim e UNIX epoch time of the job starting execution
End_Time UNIX epoch time of the job ending execution

WClock Wallclock, or real time, the job has been execut­
ing. Also equals End_Time - Start-Tim e 

CPU CPU time used by the job, as reported by UNIX
/proc file system 

Mem Total amount of memory allocated by the job. as
reported by the UNIX /proc file system

Table 4.2: The CCC accounting file fields and their description used in the 
workload characterisation study

The characterisation also looks at another, derived, metric which is helpful 
in understanding the workload. Wait time, the time spent by the job in the 
scheduling queue, is calculated as the difference between the Start_Time and the 
Sub_Time.

Although the Sun Grid Engine supports parallel environments, the properties 
of the environment requested by the user were not recorded in the accounting 
file. This meant that while it was possible to establish that about 19c of the jobs 
requested multiple CPUs no further analysis of the effect of the parallelism on 
their execution was possible.

The data analysis and plotting was primarily done using MathWorks M atlab 
R14* with the Statistics Toolbox. Where non-standard, or custom built, M atlab 
functions were used, appropriate references will be given.

4.2 Specific Methodology

The need to analyse the extensive sampled data, concisely report the findings 
of the characterisation study, and formulate meaningful and statistically valid 
hypotheses as the basis for further work on predicting the job execution times 
required a substantial methodological preparation. This section will begin by

*see h ttp ://w vvw .n ia th w ork s.con i

http://wvvw.niathworks.coni
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outlining the higher-level approach of the exploratory data analysis, and continue 
with the presentation of the methods used for describing the value distributions 
and measuring their location and dispersion. The notions of scale invariance 
and self-similarity will be introduced and the tools used for establishing the 
cyclic behaviour, correlation and temporal locality of the job properties will be 
presented.

4.2.1 Exploratory Data Analysis

Exploratory data analysis (EDA) is an approach to data analysis, first suggested 
by John Tukey in 1977 [169], that employes a variety of, mostly graphical, tech­
niques to maximise insight into a data set. uncover its underlying structure, 
extract important variables, detect outliers and anomalies, and test underlying 
assumptions [170]. The distinguishable feature of this method is tha t it post­
pones the usual assumptions about the model that can be used to fit the data, 
thus allowing the data itself to reveal its underlying structure. EDA has estab­
lished itself more as a '‘philosophy” of how to dissect a data set. what to look 
for, how to look and how to interpret the findings.

Exploratory data analysis techniques are graphical, with only a few numerical 
methods. The reason is tha t by its very nature, the role of the EDA is to serve 
as a tool for an open-minded exploration of the data. In combination with the 
pattern-recognition humans possess, these graphical tools are the best way to 
reveal new, often unexpected, insights into the data. Typically, EDA makes no 
assumptions of the nature or properties of the data being analysed, but uses it as 
a ‘‘window” for looking into the core process that has generated it and will most 
likely continue to generate it in the future.

The ultimate goal of the exploratory data analysis is therefore to gain a real 
insight into the properties of the data set and its underlying structure, while at 
the same time providing all the specific items needed to properly handle the data. 
These items include a good-fitting model, estimates of the model parameters, a 
sense of the robustness and variability of the data, a list of factors influencing 
the process and conclusions whether the influence of those factors is correlated 
and statistically significant.

EDA has established itself through several seminal publications [171, 172] 
as one of the major data mining and analysis approaches. However, it can be 
misused leading to a systematic bias problem if the same data is used to suggest 
and test the same hypotheses. Appendix B presents the author’s attem pt to 
avoid such mistakes by undertaking a characterisation study of an additional 
Grid workload.

The following will introduce the tools commonly used in the exploratory data 
analysis such as the scatter and box plots, normal probability plots and other 
EDA techniques.
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4.2.2 Value Distribution

Based on the EDA principles, the statistical graphics will be used extensively 
throughout this chapter. Their advantage is in the lack of any underlying assump­
tion about the sample statistics, ability to summarise a very large and diverse 
data sets, and in assisting the process of model selection.

During the analysis of the CCC metrics which are highly skewed and dispersed 
over a large range, the use of logarithmic transformation was necessary.

C om plem entary  C um ulative Distribution Function

In studying the tail of a distribution, it is more convenient to plot the probability 
with which a variable that is grater than or equal to some value appears. The 
complementary cumulative distribution function (CCDF) plot, defined in the 
following equation, plots the probability Dcomp(x) of observing values greater 
that x.

D camp(x) = P ( X > X )  =  1 -  D{X)  (4.1)

When plotted in log-log axis, the linearity of the complementary CDF plot 
indicates the presence of a long-tail behaviour. A sample plot of a Gamma, 
Weibull and Pareto probability distributions is given in Figure 4.1. Clearly, the 
only linear function is the Pareto one, confirming the presence of a long-tail.

4.2.3 Measures of Location and Dispersion

One of the first tasks in describing a sample population is to measure its central 
tendency (or location on the number line), and estimate its dispersion (or how 
spread the values are on the number line). Even if measurements of a process 
with well defined statistical sample distributions are taken, some outlier data
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Figure 4.1: Sample complementary cumulative distribution plot (CCDF) of a 
Gamma, Weibull and Pareto distributions. The linearity of the plot indicates 
strong long-tail behaviour.
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values are likely to occur. In the case of an empirical data set produced by sam­
pling a process that has not been fully understood or statistically characterised, 
establishing its location and dispersion becomes challenging.

Intuitively, one would expect metrics collected from the CCC to have a very 
wide distribution of values. Reporting common single value statistics of those 
distributions is unlikely to offer much insight, could possibly confuse the reader, 
or misrepresent the real features of the data, but may still need to be reported 
for comparison purposes with other historical usage trace's.

Mean and Standard Deviation

Both the mean and the standard deviation are susceptible' to. anel highly infiu- 
ene'eel by outlier values. They are most useful when eernsielering sample's with a 
normal probability elistributiern. or erne that can be' approximates! by it.

Median, Inter-quartile Mean and Inter-quartile Range

For a probability function P. a median m satisfies the ferllowing ineepiality:

P { X  < m) > 1/2 < P { X  > m) (4.2)

Medians will not change significantly in a presence of a small number of 
outliers, thus making it a more robust measure of the central tendency than 
the mean. Medians are primarily useei for skeweel elistributions. as some of the 
workload elistributions are anticipates:! to be.

To hanelle a large number of outliers, an inter-quartile me'aii can Ire taken 
by discareling the loweest 25(/c and the highest 25c/c erf values anel calculating the' 
mean erf the remaining samples accoreling ter the following equation:

2
L ' i q m  =  -  -1' 1

i ' . n  i - i

When the median is useei to report on the location of the eiistribution. the' 
inter-ejuartile range is often useei to elescribe its dispersion. It is calculates! as a 
elifference betwe'en the tliirel anel the first cpiartiles erf a elistributicrn. anel is robust 
to outliers.

rIQR =  Q;i -  Q\ (4-4)

As an aiel in visualising the evntral temdenew and the' elispersion of a sample 
populatiem de'scribe'el using the mc'dian value1 anel the' inter-epiartile' range1, box- 
plots similar to the1 erne1 shown in Figure1 4.2 will e'xte'iisive'ly be use'd. Introelue'C'el 
in the1 1980s by .Trim Tukew [169]. tliew graphie'ally ele'piet the1 robust measure's 
of variance1 (the berx top anel berttemi exlge's re'irre'se'iit the upper anel lerwer ejiiar- 
tilc1). anel lere'ation (the1 reel line in each lre)x is the me'elian value erf the1 sample).
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Box plot of three different sample distributions
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Figure 4.2: A sample Boxplot showing the central tendency (location) using 
median and dispersion using upper and lower quartiles and outlier values of an 
exponential and two normal distributions.

Sample values which are more than one and a half times the inter-quartile range 
away from the top or the bottom quartile are, by agreed notation, considered 
as outliers. The boxplot “whiskers” connect the highest and the lowest non­
outlier values, while the red crosses are shown for each such outlier in the sample 
population. This definition of the outlier values applies throughout this thesis.

The sample graph shown in Figure 4.2 plots a boxplot for: (a) normal distri­
bution with n = 10, cr = 5 (b) normal distribution with \± = 30 and a = 10 and 
(c) an exponential distribution with e =  10.

Coefficient of Variation

Defined as a ratio of the standard deviation and the mean, the coefficient of 
variation (CV) is used as a measure of the dispersion of a probability distribution:

Distributions with CV< 1 are considered of low variance, while those with 
CV> 1 are considered of high variance. The coefficient of variation is mostly 
frequently calculated for the distributions whose standard deviations are sig­
nificantly smaller then the mean. The violation of this assumption for many 
empirical distributions, and the CV’s sensitivity to the changes in the standard 
deviation when the mean value is close to zero limits its usefulness. Nevertheless, 
it will be reported to facilitate comparison with other workload characterisation 
studies that have made extensive use of this metric [26, 173, 28].

4.2.4 Cyclic Behaviour

The existence of seasonal variations or cyclic behaviour is an important consider­
ation in the time series analysis. The presence of such features indicates that the 
underlying process is not purely random, that certain correlation exists between

(4.5)
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the time domain and the metric being analysed, and that the predictability of 
that metric would be increased if the relationship could be established.

The cyclic behavior in the computational workload was considered before, and 
was most notably modelled using Markov chains, for example by Song [155] and 
Thomas [156]. However, these studies were done on the traces of smaller, more 
dedicated and more specialised compute platforms. It would be of great interest 
to confirm such cyclic patterns exist on a large scale, multi-purpose production

The analysis of cyclic behaviour was considered with respect to variations of 
the observed metrics on the yearly, monthly, weekly and daily level. These sea­
sonal periods were selected based on the assumption that the underlying workload 
is human submitted, research computing work. Graphical representation of the 
result was used throughout to aid in visualising the presence (or lack) of the cyclic 
patterns.

4.2.5 Scale Invariance and Self-similarity

Self-similarity, and the closely related concept of scale invariance1, are properties 
of an object, function or a curve whose parts are similar to its whole. In other 
words, a self-similar curve or function looks "the same" when viewed at different 
scale's. Mandelbrot, with his early work on fractals [174]. introduced the notion 
of self-similarity which was later found in other processes, most notably local and 
wide area network traffic [148. 145]. and the distribution of computer file size's 
[141. 142. 144],

The concept of self-similarity is closely relatexl to the long-range1 depemdence1 
and the power law relationships. A random variable X is said to have a heavy­
tailed distribution if it satisfies the following eepiation [175]:

for some C > 0 and some o £ (0.2).
The time serie's {ATi. AT.. . .  } is said te) be weakly-stationary if it has a constant 

and finite mevm (E [Xj] =  // for all i. where E mevms e'xpe'ctation) and the 
covariance between A”,- and Xj  (ie E [(A”,- — //)(Aj  — //)]) depends only on |j  — /j. 
For such time serie's. the autoc'orrelation function (ACF) p(k) is given by:

This definition allenvs the ek'finition of Ion y-ran ye dependence [176] if the sum:

Grid.

P [X > .v] ~  C.r (4.6)

(4 .8 )

dive'rgc's.
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The commonly used measure of long-range dependency and self-similarity 
is the Hurst parameter, which makes the assumption that the autocorrelation 
function follows the following, specific functional form:

where Cp > 0 and o G (0.1) and H  G (0.1) is the Hurst parameter.
For H  > 1/2 the process is considered self-similar with higher H  value's

indicating stronger level of long-range dependence'. Further discussion on the' 
c’oiinections betwe'en the self-similar and long-range' eFpenelent proe'ess e-an be' 
femnel in [177].

Due te> its nature, the Hurst parameter is e'stimate'el. rather than calemlate'el. 
using me'thexls sue4i as re'scale'el range (R/S) [178. 179. 175]. variaiwe' analysis 
[175. 180] e>r wavelet spe'ctral elensity approae'h [181. 182].

Using the re'scale'el range methoel [183]. the Hurst parame'ter of an e'in])irical
series is estimateel by calculating the average re'scale'el range' ewer multiple re'gions 
of the elata. For each re'gion. the rescaleel range is give'ii by:

A line'ar regre'ssion line thre)ugh a set of pe)ints. e'ennpeise'el of log(n). where n 
is the size of the areas em which the average re'scale'el range is calculate'el. anel the 
log of the average rescale'el range over a set e)f re'giems eif size' //. is e'alculate'el. The' 
sle>pe of the regre'ssion line is the c'stimate e)f the1 Hurst e'xponent [174],

Figure 4.3 slienvs a sample plot estimating the self-similarity of sample's elrawn 
from a normal elistributiem using a re'scak'd range methoel. The re'gre'ssiem line is 
of ge)oel fit. whose slope estimates the Hurst parameter at H  =  0.27 which rightly 
sugge'st that this is ne)t a self-similar anel long-range ele'pe'iiele'iit peculation.

When elevek>ping a ])re'elictive system to which a time serie's will be pre'semteel 
as an input, the e'ffeets e)f lemg-range elepenelenew anel se'lf-similarity must be' 
takem inte) accemnt. The fact that the system will appear bursty ne> matte'r liewv 
aggre'gate'el it is reejuire's a reibust ck'sign that will not simply igneire' or filte'r eiut 
the "spike's", but treat tlie'in as an intrinsie1 part of the' proee'ss.

4.2.6 Metric Dependency and Correlations

The' stre'iigth anel eiirertion of the line'ar relationship be'twe'em two ranelom vari­
able's is indicate'el by the'ir exirrelation e'oeffie-ient. It is genc'rally ae‘e‘epte'el that

P(k) ~  c pk~a = c pk 2~'2" (4.9)

i?(r) — niax[.Y(f. r)j — min[Ar(/. r)] for 1 < t > r (4.10)

(4.11)

(4.12)
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Hurst estimation for norinaly distributed sample data
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Figure 4.3: Sample plot of rescaled range (R/S) analysis used to estimate the self­
similarity of samples and the Hurst parameter value. The normal distribution 
has the Hurst value of less than 0.50 an hence does not exhibit self-similarity.

correlation refers to the departure of the two variables from independence, and 
is commonly expressed in terms of their covariance:

(4.13)

(4.14)

where crxy is the covariance between the variables X  and Y :

cov(X,Y)
p x y  = -------------

o x o y
(7XY

GxOY

y = 0.27 *x — 0.7S

1.50 0.5 1 2.5 3 3.5
k>gio(")

cjx y  = E[{X -  n x ) ( Y  -  iiY )\ (4.15)

=  E { X Y )  -  fixPY (4.16)

and E  is the expected value of the variable.
The correlation coefficient effectively scales the covariance by the standard 

deviation of each variable, and is thus a dimensionless quantity that describes 
the linear relationship between a pair of variables of different units. Crucially, 
the parametric correlation methods, such as the often used Pearson’s product- 
moment coefficient [125], rely on the distribution means and standard deviations 
and the assumption of the normality of the sample distribution, and are less 
useful if such assumptions are violated.

Non-parainteric correlation coefficients, such as the Spearman’s p and 
Kendall’s r  [125], assesses how well an arbitrary monotonic function could de­
scribe the relationship between two variables, without making any assumptions 
about the frequency distribution of the variables. Spearman’s rank correlation 
coefficient will be reported for applicable workload metric correlations, and is 
defined by the following equation:
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„ = (4-i7)n(n-  -  1)

where e/, is the difference between each rank of corresponding values of the two 
variable's, and n is the number of pairs of values.

Random variables can often have non-linear correlations, such as in seasonal 
variation patterns or daily peak periods. The correlation coefficient is unable 
to detect these relationships, and a more general approach using correlation 
ratios is then warranted. This method is able to detect almost any functional 
dependency between random variables by comparing the statistical dispersion 
within individual categories to the dispersion across the whole sample population. 
If a reduction in dispersion is observed, the variables are correlated [184].

This approach will be used extensively in establishing the relationship between 
the job meta-data and its wallelock execution time. Sample dispersion metric 
(usually coefficient of variation) for jobs grouped by certain m eta-data will be 
compared to the overall trace dispersion and reported using bar charts.

4.2.7 Locality of Sampling

The purpose of the majority of research work in the area of the Grid workload 
characterisation was that of generative modeling - trying to model the workload 
so that new. representative, workloads can be generated for Grid middleware 
testing. The traces used were of varying lengths, from a few days to several 
months. These periods arc' not sufficient to capture' the high degree' of workload 
variability both within a certain time period, anel betwc'en different periods of 
time.

Corrc'spondingly. the effect of large variations in the Grid workload obse'rvc'd 
over longer time scale's was mostly ne'glecte'd by the prewious re'search in the' this 
area. While this may be acceptable in terms of the generative trace modelling, 
from the aspect of the predictive scheduling, high variance of the job c'xc'cution 
time anel other relewant metrics pose's a big challenge.

In this thesis, a novel approach in reducing this variance will be considered. 
By using a specially constructed plot, the variability of the1 im portant metrics 
will be compared on a sampling scale considerably smaller than the whole trace. 
The rationale behind this is that the workload is evolving in epochs characterised 
by larger variance between them and a more' deterministic behaviour within each 
one.

An example of the plots used to study this trace feature' is shown in Figure' 
4.4. It represents value's (given by the colour intensity of each patch) of ton 
periodic1 observations (,r axis) of ton sample variable's (y axis). By reading the1 
plot column by column (keeping ,r value' constant and observing the1 difference' 
along the y axis), the intra-period variations between the variable' value's can 
easily be seen. Equally clear arc' the variations of one variable' between different
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Temporal variation plot
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Figure 4.4: An example of a temporal variance plot showing the sample value 
fluctuation, shown as colour intensity, over short and long time scale.

time periods observed by reading the plot row by row (keeping y value constant 
and observing the difference along the x  axis).

Characterising the CCC workload, the variance was so large it was often nec­
essary to colour the patches by using the natural logarithm of the observed value. 
Nevertheless, these plots are very valuable in understanding the level of fluctu­
ations both within and between workload epochs, and one of the motivations 
for including the temporal job properties into the forecasting models detailed in 
Chapter 5.

4.3 General Workload Properties

The workload analysis was done on the trace spanning the twelve months of 2005 
and compromising more than six hundred thousand jobs. During this period, a 
total of 37 users were active, and have submitted a varied and highly dynamic 
workload.

Considering the length of the workload trace, large number of data points, 
and the complexity and interdependency of metrics, the analysis will begin by 
introducing general properties of the workload. The purpose of this section is to:

• Present the important workload metrics using the run-sequence and cumu­
lative distribution function plots.

• Investigate the presence of cyclic behaviour.

• Establish the statistical properties of the metrics, including normality, long- 
tailedness and self-similarity

Four primary metrics will be discussed: the arrival rate and the inter-arrival 
time, queue time, wallclock execution time, and memory utilisation. For each, a
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run-sequence plot will give an overall picture while the CDF graph will show the 
distribution of the observed values and indicate candidate model distributions. 
Probability plots will test the normality of the value distribution and the com­
plementary CDF plots will assess the length of the distribution tail and its fit to 
one of the frequently used distributions. Finally, a rescaled range analysis will 
be used to estimate the Hurst param eter and the degree of self-similarity of the 
data.

4.3.1 Workload Summary

The summary of the CCC trace is given in Table 4.3.

First job time 
Last job time 
Number of days 
Number of recorded jobs 
Number of valid jobs 
Unique users
Unique Virtual Organisations 
Unique job names 
Total job wallclock time 
Total job CPU time 
Mean Cluster Utilisation 
Mean Application Efficiency 
Deleted (missing jobs)
Failed (0 sec) jobs

Table 4.3: The summary of

01.01.2005 13:45
20.12.2005 12:28

353
646,045
632.027

37
27

2.268
2.721.157.784s (31,495 days) 
2.212,915,331s (25,612 days)

89%
81%

5,792
15.625

CCC workload analysed

The quality of the accounting file was acceptable, with about 2% of invalid 
entries (missing or corrupted fields). By comparing the range of unique Job_IDs 
and the total number of recorded jobs, it was found that less than 1%> are missing. 
The cause of this could be the removal of jobs from the queue before they were 
executed, or some other systematical problem with the accounting system.

Another 2.5% of the jobs have executed for less than one second, the sampling 
accuracy of the accounting file. While it is possible that these jobs were meant 
to run for such short time, it is not likely that the users would submit such short 
jobs to a Grid facility. They are therefore considered as failed, most probably due 
to an error in the initial setup of the executable environment. This failure rate is 
considerably less than previously reported by Cirne [23] or Li [26] for example.

Overall cluster utilisation during the period in question was 89% , calculated 
as a ratio of the real time and the total used wallclock time multiplied by the 
number of worker nodes, was higher then anticipated or previously observed on 
other Grid clusters [23, 26]. Mean application efficiency, the ratio between the 
wallclock time and the CPU time the job has used, was also very high indicating
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Figure 4.5: Job inter-arrival times: (a) run sequence plot and (b) distribution 
function showing 75% of job inter-arrival times are less than one second.

that the applications submitted to the CCC were highly optimised, and tha t the 
workload was predominately compute bound.

4.3.2 Arrival Process

The job inter-arrival time is defined as a difference between the submission times 
(Sub_Time) of two consecutive jobs. Since these times are recorded as UNIX 
epoch times, the resolution of the measurement is one second. Figure 4.5 shows 
the run-sequence plot of the job inter-arrival times for the whole year, and dis­
tribution of values in a CDF plot.

The arrival pattern is clearly very bursty: more than 75% of jobs arrive less 
than one second apart, and less than 1% of jobs arrive more than three minutes 
apart. Considering that the cluster was open for job submissions continuously, 
it is not unreasonable to expect a steady stream of jobs arriving throughout the 
year. The dynamics of this process will be discussed in more detail in Section 
4.6.

The implication of this arrival pattern on the scheduling process is that the 
jobs are very likely to be submitted in large batches, followed by a “quiet” period. 
As it will be shown later, the peak and off-peak submission periods can, to a great 
extent, be forecasted and scheduling actions taken to brace for the high volumes 
of job submissions.

A normal probability plot was constructed in order to test the normality of 
the job inter-arrival distribution. Figure 4.6(a) shows a significant skew towards 
smaller values of the inter-arrival times. This plot is clearly non-linear, and the 
assumption of normality cannot be made. The second plot, Figure 4.6(b), shows 
the normality of logarithmically transformed job inter-arrival times. Apart from 
the highly probable values between zero and three seconds, the remainder of the
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Figure 4.6: Job inter-arrival times: normal probability plots in (a) linear and (b) 
logarithmic scale. Apart from the evident skew between 0 and 3 seconds, the 
plots indicate inter-arrival times are otherwise log-normal.

plot shows very good linearity. The job inter-arrival times are thus log-normal 
for values greater than 3 seconds.

The cyclic behaviour of the total number of submitted jobs is plotted in 
Figure 4.7. The observable daily cycle is representative of the usual human work 
flow: job submissions increase at the beginning of the day (8am) then dip slightly 
around lunch hour (1pm), followed by another strong peak at the end of the work 
day (6pm to 8pm), and a steady fall off during the evening and night hours. Such 
fluctuation indicates a user tendency to submit jobs as they arrive to work and 
just before they leave, anticipating their execution overnight. A sharp rise in job 
submissions between Sam and 10am, and a more gradual fall-off in late evening 
and night hours can indicate different work practices among users (some people 
prefer to work until late, but most come in until 10am).

The weekly pattern shows almost anecdotal features with a steady rise in 
job submissions from Monday to Wednesday followed by a decrease until Friday. 
Both weekend days show a significant number of job submissions, with Satur­
days comparable with Fridays and Sundays with Mondays. Here, users may be 
unintentionally load balancing the system, anticipating better turnaround times 
for the jobs submitted in what they perceive as the off-peak periods. The week­
end submission count is certainly further increased by the ability to log into the 
CCC facility remotely, although this could not be fully established from the data 
collected.

The monthly cycle seems to be dominated by the weekly pattern with a 
strong peak at around the middle of the month. Fluctuations between different 
months of the year 2005. and a sudden jum p of job submission in August are 
most probably influenced by the research timetables of the CCC users.

The shape of the tail of the inter-arrival times distribution, and its fit to
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Figure 4.7: Job submission: the number of jobs subm itted in each time period 
within 2005 - (a) yearly cycle is not representative as only one year's data  has 
been collected, (b) monthly cycle shows tendency to submit more jobs toward 
the end of the month, (c) weekly cycle shows mid-week surge and weekend dip. 
while (d) daily cycle shows strong human working patter with 8am-8pm peak.

some commonly used distributions is given in Figure 4.8. Shown are the inter­
arrival times greater than 3 seconds (approx. 7% of all values). The Pareto 
distribution gives the best fit to the empirical data which contains few very large 
values (largest one 534511 or more than 6 days). These extreme values are most 
probably caused by a failure of the external network connectivity or the cluster 
downtime, but are nevertheless a reality in a production environment.

Rescaled range analysis of the job inter-arrival times is shown in Figure 4.9. 
The plot shows good linearity, with the Hurst exponents estimated at H  = 0.85. 
This high level of self-similar behaviour indicated that the arrival process is bursty 
on all time scales. Certainly one of the main reasons for such behaviour is the 
on/off pattern of the job submissions, and a very skewed, long-tailed distribution 
of the job inter-arrival times.

59
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Figure 4.8: Job inter-arrival times > 3 seconds: CDF and complementary CDF 
are used to judge the presence of long-tail behaviour and estimate the best fitting 
model. Pareto function describes the empirical data well over more than five 
orders of magnitude.

4.3.3 Queue Wait Time

Queue wait time is the delay the job experiences from its submission into the 
Grid to the actual start of the execution on one of the worker nodes. Assuming 
sequential jobs which are being executed in a FIFO order, the job queue time is 
the sum of the wallclock execution times of all jobs preceding it in the queue. Job 
queue wait times are hence directly related to the job submission process and the 
job execution times.

The plot in Figure 4.10 shows the queue wait times for each job submitted to 
the CCC cluster, and the corresponding cumulative distribution function. The 
values have been derived from the trace by subtracting the recorded job start 
time (Start_Time) from the job submission time (Sub.Time). The resolution of 
the measurements is one second.

Job inter-arrival times (self-similarity)

y = 0.85 * x  -  1.3
2.5

p

0.5

2.5 4.5

Figure 4.9: Job inter-arrival times: Hurst parameter, as the measure of self­
similarity, was estimated using rescaled range (R/S) method to H = 0.85.
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Figure 4.10: Job queueing times: (a) run sequence plot and (b) distribution 
function revealing that 45% of submitted jobs execute immediately and without 
any queueing delay.

Despite the high level of overall cluster utilisation, the measurements indicate 
that approximately 45% of the jobs have been started as soon as they were 
submitted (queue wait time of less than one second), and approximately 95% 
have begun executing less than 12 hours from the submission. However, some 
very long queue wait times have been observed, and can not be attributed  to the 
scheduled system down time, as queues have been purged in advance of these 
events.

The normality of the job queue wait times is significantly influenced by the 
already mentioned high proportion of jobs starting their execution immediately. 
The probability plot, shown in Figure 4.11(a), exhibits very poor linearity up to 
the queueing time of 2 • 105. and only moderate linear behaviour afterwards. The
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Figure 4.11: Job queueing times: normal probability plots in (a) linear and (b) 
logarithmic scale. Poor linearity in both plots indicates queuing times distribu­
tion could not be considered neither normal nor log-normal.
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Figure 4.12: Job queueing times: the average amount of time a job has queued 
based on its submission time on (a) yearly, (b) monthly, (c) weekly and (d) daily 
level. The plots reveal positive correlation between job submission process and 
queueing time.

queueing times are not log-normal either, as demonstrated by the plot in Figure 
4.11(b).

Figure 4.12 shows the variation of queue wait times a job experiences depend­
ing 011 the time of its submission. Again, the daily cycle is strongly influenced 
by the user work habits, and directly complements the job submission count cy­
cle plot given previously (Figure 4.7). Jobs submitted at morning and evening 
peak hours experience significantly longer queuing times then those subm itted 
at other times of the day. Interestingly, jobs submitted at lunch hour have the 
shortest waiting time, despite being preceded by a large number of morning job 
submissions.

The weekly cycle may seem at odds with the job submission cycle, since the 
day with the most job submissions (Wednesday) has one of the lowest queue 
wait times, while Sunday has the largest. However, the job queue wait time is 
dependant on the number of jobs already queueing and the sum of their execution
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Figure 4.13: Job queuing times >  1000 seconds: CDF and complementary CDF 
are used to judge the presence of long-tail behaviour and estimate the best fitting 
model. Pareto function provides the best fit to the empirical data.

time which produce a lag between the peak of job submission and the peak of 
queueing times.

This effect is clearly seen in the yearly plot, where a large number of jobs 
submitted in January and August (shown in Figure 4.7) lead to a gradual increase 
in the queue wait times up to two months later. The monthly plot of the queue 
wait time cycle is again of little value, its features dominated by the weekly cycle 
and showing no other clear seasonal effects.

Plots of the tail of the queue wait time distribution are given in Figure 4.13. 
For the queue wait time values greater than 1000 seconds, the Pareto distribution 
provides the closest fit, and the linearity of the complementary CDF of empirical 
distribution indicates the presence of the long-tails.

The rescaled range method for estimating the self-similarity of the job queue 
wait time, Figure 4.14, estimates the Hurst exponent value at 1. This is the high­
est theoretically possible value, and while the method is not an exact calculation, 
it certainly indicates an extremely mean-averting and self-similar process. But 
since the job queue wait times are a function of the arrival process and the job 
wallclock execution times, both of which are heavily self-similar themselves, such 
result is not unexpected.

4.3.4 Wallclock Execution Time

From the scheduling aspect, the wallclock execution time is the most im portant 
metric, and one from which queue wait time and the job makespan* can be 
calculated.

*Tim e taken from th e  job  su bm ission  to  th e  job  com pletion , usually  equals queue w ait tim e  
plus th e  job  wallclock execu tion  tim e
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Figure 4.14: Job queueing times: The Hurst parameter, as the measure of self­
similarity, was estimated using rescaled range (R/S) method to H  = 1. This 
highest theoretically possible value indicates a very strongly self-similar process 
due to its dependence of job arrivals and runtimes, both of which are strongly 
self-similar.

The run-sequence plot of the job wallclock execution times, and their cumula­
tive distribution function are given in Figure 4.15. The run-sequence plot reveals 
a very large range of job execution times, from one second to more than three 
months, periods of relatively low activity and periods of high execution time vari­
ability. The features of the CDF plot indicate a low occurrence of jobs taking 
less than 25 seconds (around 0.07%), and an equally low number of jobs taking 
more than about a day to run (approximately 1% of jobs run for more than 105 
seconds).

Such a distribution of the job execution times is likely caused by the user’s 
selection of the jobs they are to submit to the Grid facility. As submitting each

Job wallclock execution time (run sequence)

Job ID

Job wallclock execution time (CDF)

(a) Run sequence plot
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Figure 4.15: Job wallclock execution times: (a) run sequence plot and (b) distri­
bution function demonstrating that apart from a small number of very short or 
very long jobs, each runtime is as likely as any other.
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Figure 4.16: Job wallclock execution times: normal probability plots in (a) linear 
and (b) logarithmic scale. The latter demonstrates good linearity with significant 
departure only at the low end supporting the suggested log-normality of job 
runtimes.

job to the CCC presents an administrative overhead to the user, they are likely to 
choose to run shorter jobs on their local workstations. Equally, as most users are 
to some extent aware of the performance of their applications, and the hardware 
on which it will be run on the CCC, they are unlikely to submit regular jobs which 
will take an amount of time much larger then what a normal human workflow 
would consider acceptable (for example a day or a weekend). Understandably, in 
some circumstances users would have no other options and would rather wait a 
very long time for a job to complete then not to run it at all.

The remainder of the execution times form a continuous distribution with no 
steps or observable modes, indicating that every execution time from 2 • 101 to 
104 is almost as likely to occur as any other from the same range. The Grid 
resource management and scheduling systems should be developed in accordance 
with such expected load, avoiding the assumption of any ‘‘preferred1* values of 
the job execution times.

The normal probability plot of job wallclock execution times is shown in 
Figure 4.16. The normality can certainly be assumed on the linear scale of values, 
as very strong skew exists towards smaller values. However, logarithmically 
transformed values do show a very strong linear tendency throughout the whole 
range, with some significant departures only at the very short running jobs. This 
property of job execution times has been noted by other researcher analysing 
distributed machine traces [147, 25, 185], and can now be confirmed in the case 
of a multi-purpose production Grid as well.

Figure 4.17 shows the cyclic variation of the mean job wrallcloek execution 
times according to the time of their submission. Again, the daily variation shows 
strong peaks at the beginning, middle and the end of the work day. The most
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Figure 4.17: Job wallclock execution times: the average job runtime based 011 

its submission time on (a) yearly, (b) monthly, (c) weekly and (d) daily level. 
Weekly and daily plots reveal strong tendency to submit longer running jobs on 
Fridays, mornings, just before lunchtime and at day’s end.

prominent execution time peak at around 4pm («  3^ hours) is almost 3 times 
larger than the mean job execution time at the beginning of the day (~  1^ hours). 
Intuitively or purposely, users rely on their limited insight into the complexity 
of their jobs to submit shorter ones for execution during their work day, leaving 
longer running jobs for overnight runs.

A very similar picture emerges from studying the weekly cycle. The shortest 
running jobs are submitted on Wednesday, the day with the highest count of job 
arrivals, while the jobs submitted 011 Fridays are by far the longest running ones. 
Again, users are trying to adapt the workload to their work cycle by running 
shorter, perhaps test or tuning, jobs during the week and longer ones over the 
weekend.

The yearly plot, to some extent, indicates the fluctuations during the academic 
year, but as it is based on only one year’s worth of data, and as its scale is very 
long compared to most of the scientific tasks, it is only suitable for informational
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Figure 4.18: Job wallclock execution times >  100 seconds: CDF and comple­
mentary CDF are used to judge the presence of long-tail behaviour and estimate 
the best fitting model. Pareto function provides the best fit, especially for values 
greater than 1000 seconds.

use. Looking at the month of August however, it is clear that a high arrival rate 
may not lead to high contention on the cluster. Again, monthly variations do not 
yield significant insight as they seem to be dominated by the weekly cycle.

The behaviour of the execution time tails is examined in Figure 4.18. Tail 
cut-off points of 100 seconds, compromising around 40% of the total number of 
jobs, has been used, with the Pareto, Weibull and Gamma distribution functions 
fitted to the empirical data. The Pareto distribution exhibits a very good fit over 
almost five orders of magnitude, with only a small overestimate of the probability 
of the longest running jobs (> 2 • 104).

The estimation of the self-similar nature of the job wallclock execution times 
using the rescaled range methods is shown in Figure 4.19. A well fitting regres-

Job wallclock execution time (self-similarity)

y = 0.87 * x — 1.5
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Figure 4.19: Job wallclock execution time: Hurst parameter, as the measure of 
self-similarity, was estimated using rescaled range (R/S) method to H  = 0.87 
indicating a strongly self-similar process.
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Figure 4.20: Job memory utilisation: (a) run sequence plot and (b) distribution 
function showing no obvious modality and a memory usage of less than 10MB by 
40% of submitted jobs.

sion line estimates the Hurst exponent value of H  = 0.87. indicative of a very 
scale invariant and self-similar process. Considered together with the previous 
analysis of the value distribution, the results confirm the strong non-linearity of 
the wallclock execution times and invalidate its approximation with the Poisson 
distribution used in the previous cluster scheduling research [152].

4.3.5 Memory Utilisation

Since memory allocation by an application is dynamic, a number of approaches 
can be taken in recording it. Memory use of a specific process can be recorded 
as a time series (such as in the Ganglia Monitoring System described in Section 
3.4.1), or as a mean or maximum amount of memory allocated over a period 
of time. The value recorded by the Sun Grind Engine accounting file is the 
product of the job execution time and its average memory consumption yielding 
a metric in GBytes seconds. For the analysis presented here, this recorded value 
was divided by the job execution time to yield the average memory footprint of 
each application. The run-sequence plot and the distribution of values are give 
in Figure 4.20.

The time plot shows a significant variation of the memory use between jobs 
throughout the trace duration. The distribution function plot reveals tha t around 
40% of jobs use less than 10 MBytes of host memory, after which the distribution 
continues in a log-normal fashion up to the maximum value of 4096 MBytes which 
is set by the physical amount of memory installed in the Grid nodes.

Contrary to some published analysis of the cluster job memory utilisation 
[186, 26], no prominent modality of the allocated memory has been observed. 
Previous work explained their existence by the frequent use of common shared 
libraries which require a fixed amount of memory, but without a more granular
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Figure 4.21: Job memory utilisation >  100KB: CDF and complementary CDF 
axe used to judge the presence of long-tail behaviour and estimate the best fitting 
model. None of the proposed functions offer an adequate fit over the whole range, 
although Pareto model does describe the general shape of memory utilisation 
distribution.

monitoring data this could not be established for the case of the CCC.
Figure 4.21 analyses the tails of the memory utilisation distribution with a 

cut-off point of 10 MBytes. While the Pareto function does describe the general 
shape of the tail, the fit is significantly poorer then for previous metrics, and the 
abrupt limit on the maximum value imposed by the hardware is obvious. Should 
modelling the memory use be of special interest, alternative distributions, or piece 
wise approximations using one of the distributions shown here should be used.

4.4 Workload Diversity

To this point, the workload was analysed as a monolithic set, treating each sub­
mitted job the same regardless of its associated properties (meta-data). While 
this approach gives an overview of the whole trace, it does not reveal the be­
haviour of its constituent parts, nor does it addresses the differences between 
them. As previously stated, one of the main premises of this work is the as­
sumption that the highly variable and seemingly random behaviour of the whole 
workload is in fact a superposition of a number of different, and more predictable, 
patterns of job arrivals and execution times.

The purpose of this section is to analyse the job properties which are recorded 
in the accounting file and try  to decompose the whole trace into a number of less 
variable, more predictive groups. It will demonstrate that in a general purpose, 
production Grid facility, a wide range of users submit jobs with widely varying 
resource requirements resulting in a highly dynamic workload. Modelling, or 
trying to predict, this compound load would therefore be much more difficult,
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and less accurate, than partitioning it into smaller, and more consistent, clusters 
of similar “behaviour” and forecasting these constituting parts.

The previous section has already used the basic job m eta-data such as the 
submission, start and end time stamps to show the cyclic nature of the user 
behaviour. In the following section the analysis of the other three job properties 
recorded in the accounting file will be used:

1. User - identifies the user whose credentials were used to submit the job.

2. VO - records the Grid Virtual Organisation to which the subm itting user 
belongs.

3. Job name - contains the name of the job or application that has been 
submitted to the Grid.

For each of these job properties, the aim was in establishing the following:

• The relationship between the above three items of the job m eta-data, such 
as the number of users in each Grid VOs, or the number of different job 
names run by each user.

• The share of the total job count, or total wallclock time, for different users, 
VOs or job names.

• The level of the application efficiency for the jobs subm itted by different 
users and VOs, or most frequently submitted job names.

•  The distribution of the job wallclock execution times both between the 
users, VOs and job names, as well as within those categories.

4.4.1 User Differentiation

Considering a large number of different users of the CCC facility, the way in 
which each of them would use the facility was the first to be studied. The pie 
plot in Figure 4.22(a) shows a substantial domination of three users in the total 
number of jobs submitted to the system. Just User2 accounts for almost 75% 
of all job submissions, and together the three most active users account for over 
95% of all jobs submitted to the system. W ith such an imbalance, a question 
may arise whether some of the users are monopolising the CCC facility for their 
exclusive benefit.

The plot of the proportion of the total wallclock execution time used by the 
jobs belonging to the most active users, shown in Figure 4.22(b), shows a very 
different picture, ft is clear that the users with the overwhelming number of job 
submissions tend to run very short jobs, and the total execution time is almost, 
equally divided between the top 10 users. All other users amount for a significant 
proportion of the compute time as well.
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Figure 4.22: User differentiation: by (a) submitted job count, and (b) total 
wallclock execution time reveal that few users submit a large proportion of jobs, 
while the distribution of total consumed compute time is more balanced. The 
high average CPU utilisation factor indicates jobs are mostly compute bound.

From the Figure 4.23(a), which plots the number of unique job names submit­
ted by each user, it is clear that the distribution is modal and characterised by 
the majority of users mostly submitting jobs with the same name, ten or so users 
submitting between 50 and 100 different job names, and few users submitting 
jobs with several hundred different names. This wide gap is the testimony to the 
different workflowr management between the users, with some preferring generic 
names while other tend to make their job names unique for each run. Introduc­
tion of a standardised workflow management system, able to uniquely identify 
different applications making up the workflow would in many ways alleviate these 
issues and enable much more insight into application behaviour.

Figure 4.23(b) shows that the CPU utilisation levels are very high, with the 
average at 74%, indicating that the majority of the submitted jobs are compute 
bound. If a few users that have submitted no jobs, and a few that had a very low 
CPU efficiency barely registering on the plot, were excluded, the actual average 
CPU utilisation would have been even higher. Considering that the workload 
almost exclusively consisted of sequential jobs, these results indicate that any 
data staging that was required was executed prior to the submission of the job 
into the Grid. This greatly reduces the effect that network performance has on 
the length of the job execution.

The distribution of the wallclock execution times also differs significantly both 
within the jobs submitted by a single user, and between different users. Figure 
4.24 shows cumulative distribution function for the four most frequently run jobs 
by the user submitting the highest number of jobs ( User2). Steep slopes of the

D is t r ib u t i o n  o f  t o t a l  u s e d  w a llc lo c k  t im e  b e tw e e n  u s e r s  

O th e r s

l'»er25

I 's e r l o

ltser23

I ’s e r f

l ' s e r 7



CHAPTER 4. WORKLOAD CHARACTERISATION 91

Distribution of unique job names run by each user CPU utilisation factors per active users

500 ■  Unique job names 
-  Mean value450

400

8 350

300

250Sj
f  200

'S 150

100

User ID

(a) Unique job nam es per user

Mean utilisation: 0.74

r, r ID
(b ) C P U  utilisa tion  factor

Figure 4.23: User differentiation: by (a) unique job names count and (b) CPU 
utilisation factor. Users tend to either submit job with generic names or user 
a unique name for each job run. The very high CPU utilisation factor suggests 
most jobs are compute bound with the network performance having a limited 
influence on their execution times.

CDF plot for executables 7, 9 and 13 indicate a very narrow distribution of the 
job runtimes, with a small variance ideally suited for forecasting. Executable 38 
also exhibits similar behaviour, but with certain modality and preference to the 
execution time of either less than 10 seconds, or between 30 and 100 seconds.

From the presented plots and analysis, it is clear tha t the user “behaviour” , 
including the number, the type and the distribution of the runtimes of the jobs 
they submit, vary significantly between them. It has also been demonstrated 
that even further differentiation is possible by looking at the properties of the 
different job names a single user submits. This presents a valuable insight in the
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Figure 4.24: User differentiation: comparison of distribution functions of the 
job wallclock execution times for the four most active job names belonging to 
the same user. Runtimes clearly exhibit different statistical properties, central 
tendencies and levels of dispersion (which can be judged by the slope of the line).
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Figure 4.25: VO differentiation: by (a) user count and (b) CPU utilisation factor. 
VOs mostly contain just one, generic, active user which hampers lower grain 
monitoring of an individual’s work pattern.

context of the job execution time predictions, and motivates the use of this job 
property as the basis for workload partitioning.

4.4.2 Virtual Organisation Differentiation

The value of the Grid VO m eta-data is in unifying all the users from the same 
research project in one group. The notion of Virtual Organisations is one of the 
defining characteristics of the Grid, and can be of great value in workload analysis 
as it is likely that computing demands within a research project will be similar 
and distinguishable from those of projects in other fields.

However, from the bar plot of the number of users in each Grid VO, shown in 
Figure 4.25, it became clear that in the case of the CCC there is an almost one- 
to-one mapping between the users and the VOs. Although data was anonimised, 
after consultation with the site administrators it became clear that the VO with 
the highest number of member users ( V 05  containing 8 users) is actually a generic 
VO whose members are also included in other VOs, and that V 06  with 3 users 
is in fact the system adm inistrator VO running occasional maintenance jobs. In 
remaining VOs with more than one member user, a common observed practice is 
for only one user to submit jobs. This generic approach, whether caused by the 
administrative difficulty in obtaining access to the CCC facility, or by some other 
external factors has a detrimental effect on the ability to analyse the workload in 
more detail, but should not be common practice in commercial utility Grids.

The same Figure re-examines the CPU utilisation statistics by grouping the 
jobs according to the owning VO. The same high level of overall application 
efficiency is confirmed, with the small difference to the average value reported in 
Figure 4.23(b) due to the mentioned membership of some users in multiple VOs.
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Figure 4.26: VO differentiation: by (a) submitted job count and (b) total wall­
clock execution time. Due to the one-on-one mapping between VOs and users, 
the plots reveal no additional information over user differentiation ones.

The imbalance between the number of jobs submitted by a VO and the actual 
execution time of these jobs, shown in Figure 4.26, is very similar to the user plot 
given earlier. Since it was established that the User and VO job properties convey 
the same information, it became redundant to separate the workload with respect 
to both of them. All subsequent analyses will only include the reference to the 
Grid VO.

The differentiation of the job execution time profiles between the different 
VOs is evident from the comparison of the distribution functions of the top four 
VOs by job count given in Figure 4.27. The runtimes exhibit different statistical
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Figure 4.27: VO differentiation: comparison of distribution functions of job 
wallclock execution times for four most active VOs. Runtimes clearly exhibit 
different statistical properties, central tendencies and level of dispersion (which 
can be judged by the slope of the line).
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Figure 4.28: Job name differentiation: by (a) submitted job count, and (b) total 
wallclock execution time. High proportion of compute time used by a mix of 
other names is attributed to the submission of single-use job names.

properties, central tendencies and levels of dispersion depending on which VO 
they belong to. Much in the same way as the submitting user, this information 
can be exploited to partition the workload into more predictable domains.

4.4.3 Job Name Differentiation

The wider Grid community* is still debating on how to positively and globally 
identify a Grid job and all of its constituent tasks. This is an im portant issue in 
the Grid workflow creation and management, and would certainly lead to more 
granular monitoring data. As it is, the CCC simply records the name of the 
executable the user has submitted to the queue. While this data is anonimised in 
the trace, system administrators have observed user’s tendency to use generic shell 
scripts and wrappers to prepare the environment and launch their applications. 
This practice reduces the value of the job name differentiation as multiple different 
applications may be recorded having the same job name in the accounting file. 
Equally problematic is a somewhat rarer practice of assigning a unique job name 
for each application run.

Figure 4.28 shows the proportion of the total job submissions and the total 
wallclock execution time attributed to each of the job names. The job count 
distribution is dominated by only four, frequently submitted, generic job names, 
but more than 50% of the total cluster time was devoted to executing a mix of 
different job names. Clearly, most submitted jobs are not the most computation-

*O pen Grid Forum W orkflow M anagem ent R esearch G roup and U sage Research G roup
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Figure 4.29: Job name differentiation within the same VO: distribution functions 
of the job wallclock execution times for four most submitted job names from 
VOIO is shown. Runtimes clearly exhibit very different statistical properties 
which could not be fitted using a single, universal model.

ally expensive, and the use of one-off job names further spreads the distribution 
of overall runtime attributed to each job name.

An example of the significant differentiation of the job execution time distri­
butions between the job names submitted from the same VO is shown in Figure 
4.29. Although all belonging to the same VO, different job names exhibit a very 
different execution pattern: two show very well defined modal runtimes while the 
other two are characterised by an almost log-linear runtime distribution but at 
very different scales. The ability to differentiate between these jobs, increases 
the accuracy with which their future execution time can be predicted and moti­
vates the inclusion of the job name property as one of the workload partitioning 
metrics.

4.5 Correlations with Job Execution Time

The preceding section has demonstrated the diversity of the workload and the 
differentiation between its constituent groups of users, VOs and applications. It 
has also hinted at the reduction in variability achievable through partitioning 
the workload around several “pivot” job properties. The purpose of this section 
is to quantitatively and rigorously establish whether such functional dependence 
between the job execution times and some of it properties exists.

As the majority of the job properties are logical values, the usual correlation 
coefficient measures cannot be applied. The analysis will therefore be based on 
applying the correlation ratios, the measure of the statistical dispersion within 
individual categories and the dispersion across the whole population or sample, 
to establish the functional dependence between the job execution time and its 
properties.

The purpose of the following boxplots was to assist the reader in visualising
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Figure 4.30: Correlation of wallclock execution times and originating VOs: (a) 
boxplot of runtimes for each VO, and (b) coefficient of variation for jobs belonging 
to each VO. Mean CV value for jobs grouped by their originating VO is many 
times lower than the CV value of the entire workload.

the location and dispersion of the execution times for a certain category. As such, 
their extreme outlier values were removed for increased legibility. The calculation 
of the CV values for all partitioning metrics has. of course, included all relevant 
jobs.

4.5.1 Job Meta-data

The correlation effects between the submitting Grid VO and the job execution 
time are shown in Figure 4.30. The boxplot shows the robust measures of the 
central tendency and dispersion for all the jobs belonging to a certain VO. The 
bar plot compares the coefficient of variation of the entire workload with the CV 
values of the jobs belonging to the individual VOs. Clearly a very significant 
reduction in the dispersion of the execution times has been achieved by grouping 
them according to the submitting VO: the mean CV by VO is 2.06 compared to 
14.88 for the entire trace.

Additional benefit of this approach is the ability to recognise the high variabil­
ity jobs before they begin executing (through a combination of their properties 
and meta-data) and take appropriate scheduling action. Such jobs could be seg­
regated and run on dedicated best-effort nodes, or an alternative Grid economy 
policy may apply to them.

The boxplot in Figure 4.31 shows the medians and inter-quartile ranges of 
the twenty most submitted jobs in ascending ID order. Although the execution 
times of some jobs remain very widely dispersed, the variability of most of them 
is substantially decreased. The bar plot in the same figure testifies to this by 
showing the CV value of all the runs of the top twenty most subm itted jobs 
ordered by their rank. For all but one job name, the CV value is around 2
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Figure 4.31: Correlation of wallclock execution times and job names: (a) boxplot 
of runtimes, and (b) coefficient of variation of 20 most submitted jobs.

or less, with the mean CV of 1.63 compared to 14.88 of the whole workload. 
Clearly, there is significant correlation between the job names and their wallclock 
execution times.

4.5.2 Job Temporal Properties

The correlation of the time of job submission and its execution duration was 
already mentioned in the analysis of the runtime cyclic patterns. In Figure 
4.17 on page 85, the mean execution time values were used, and have shown 
significant levels of variation. As the arithmetic averages can be influenced by 
the outlier values, the correlation analysis of the execution and submission times 
was repeated on several scales (year, month, week and day) using the robust 
inter-quartile ranges and box plots.

Figure 4.32 shows the location and dispersion of the job execution times 
according to the month, and the calendar day of the month, in which they were 
submitted. The discussion of the cyclic behaviour given earlier has concluded 
that the value of these two seasonal properties is limited (the yearly cycle is too 
long and the calendar day of the month dominated by the weekly pattern), but 
the reduction of variability is still evident, especially between the months of the 
year.

The effect of grouping the jobs according to the weekday on which they were 
submitted on the reduction of the average CV value is shown in Figure 4.33. The 
boxplot shown in (a) reaffirms the previous findings that Fridays see the longest 
running jobs being submitted, while the mid-week jobs are the shortest. It also 
points to a high variability of the jobs submitted on weekends, with the inter­
quartile range for Saturday running as low 10 seconds. The modest reduction of 
the average CV value, 14.14 compared to the overall 14.88, shown in the bar plot
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Figure 4.32: Correlations of the job wallclock execution times and the job sub­
mission time on: (a) yearly and (b) monthly scales. Despite the fact that the 
dispersion of the job runtimes is reduced, the yearly and monthly cycles are not 
suitable for predicting future job execution times.

in (b), is mostly due to the high coefficient of variation of the weekend jobs. The 
natural reason for such high variability it the user’s tendency to use the weekend 
to "‘experiment” by submitting new jobs or simply running a mixed workload 
that has perhaps failed during the week or needs to be re-done. Another factor, 
as previously discussed, is the instability of the CV measure for the series with 
small means.

The correlation between the hour of the job submission and its execution time 
is evident from the reduction of the runtime variability shown in Figure 4.34. The 
boxplot in (a) shows a clear difference between the execution times of jobs sub-
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Figure 4.33: Correlations of the job wallclock execution times and the weekday of 
the job submission. A modest reduction of the CV value was mostly influenced 
by the very large variability of the jobs submitted over the weekend.
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Figure 4.34: Correlations of the job wallclock execution times and the hour of the 
job submission. Daytime CV values are around 5, while the much higher off-peak 
variability raises the average CV value to 8.95.

mitted in daytime and of those submitted during the night. The early morning, 
lunch hour, and late afternoon peaks in execution times are again prominent. 
The bar plot in (b) reveals that by grouping the jobs according to the hour of 
their submission reduces the average CV value of the daytime jobs to around 5 
and to 8.95 for the entire 24 hour period. While higher variability in the late 
afternoons is expected, as numerous users submit their jobs for the anticipated 
overnight execution, the very high CV values observed in the early morning hours 
are caused by the small mean execution time of the jobs submitted between 2am 
and 6am. As it can be seen on the boxplot, the whisker for those hours extend 
down to 1 second in duration indicating a low mean and the instability in the 
CV measurement leading to high values.

4.5.3 Memory Usage

A common assumption that the longer running jobs would require more memory 
is only partially supported by the analysis of the CCC trace. Figure 4.35(a) 
shows a run sequence plot of the execution time of all trace jobs versus their 
total allocated memory, color coded according to the Grid VO owning the job. 
Probably the only undisputed fact, supported by the lack of data points in the 
lower right part of the plot, is that short running jobs do not allocate large 
amounts of memory. This, however, only holds true for the jobs running up to 
about an hour as about 95% of all the jobs in the trace does. Jobs running for 
longer than that are allocating memory from almost 0 to the maximum 4096 
MByte value. Additionally, the plot indicates that a low memory utilisation does 
not necessarily imply short execution time: a significant number of data  points 
are present in the upper left part of the plot.

Observing this effect, a question arose whether the longer running jobs have
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Figure 4.35: Correlation of wallclock execution times and total allocated memory, 
shown in (a), indicates that jobs running for less than one hour do not allocate 
large amounts of memory. The CDF plot of memory allocation of longer running 
jobs, shown in (b), shows two differently sloped but very linear modes of memory 
usage.

a certain preference for allocating specific amounts of memory. Figure 4.35(b) 
plots the memory usage distribution function for jobs executing for more than one 
hour. Around half of these jobs allocate less than about 300 MBytes of memory, 
while the other half allocates between 300 MBytes and the maximum installed 
amount. Interestingly, both segments of the CDF plot are very linear indicating 
lack of modality or preferences for any specific value.

The correlation between the memory utilisation and the job execution time 
was established using the Spearman’s rank correlation coefficient returning the 
value p = 0.75. Such a result indicates a significant positive correlation between 
the amount of allocated memory and the wallclock execution time, a property 
which has previously been studied in the literature [186, 25, 23, 187] but on which 
no consensus was made as it seemingly differs between the workloads.

Although job memory requirements can be an important criteria in the re­
source selection part of the scheduling process, its value in the context of ex-ante* 
prediction of job execution times is limited. The amount of memory tha t the job 
will allocate at its start is not known while the job is queueing, and hence cannot 
be used to increase the accuracy of the execution time predictions. Even if the job 
can be re-scheduled during runtime, processes rarely allocate all of its required 
memory at once, so that the total amount of memory a job has used is not known 
before it finishes its execution.

* Latin for “before the even t” . In m odels where there is uncertainty  th a t is resolved during  
th e  course o f  events, the ex -a n te  pred ictions are th o se  th a t are ca lcu lated  in advance o f  th e  
resolution o f uncertainty.
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4.6 Locality of Sampling

The workload characterisation so far presented made passing remarks about the 
overall evolution of the relevant metrics through time, and the associated changes 
in their statistics. Workload properties for those Grid VOs tha t have run more 
often and over a longer time period seem to have higher dispersion and more 
variance than those whose jobs are run over a short time scale.

The purpose of this section is to establish the level of sustained changes 
and transient spikes in the workload properties so that an appropriate adaptive 
technique could be used to handle these features and increase the accuracy of the 
predictive scheduling models. The notion of the sampling locality, introduced 
in the methodology section of this chapter (see page 73) will be tested on the 
four metrics of primary interest to the job scheduling: the job arrival rate, job 
inter-arrival time, queue wait time and the wallclock execution time.

The summary analysis of these metrics was already given in the previous 
sections; the focus here will be on using novel statistical graphics methods to 
visualise the changes that the workload experiences over an extended period of 
time.

4.6.1 Job Count

The evolution of the daily job submission pattern, according to the hour (a) and 
the weekday (b) of the job submission, for each week of the year long trace is given 
in Figure 4.36. Previous conclusions that the majority of the jobs throughout the 
year are submitted during extended office hours of 8am - 8pm is clearly confirmed. 
The features of the slower job submission tail-off in the evening, the lack of post­
midnight jobs, and the abrupt morning rise in the job submissions are also clear. 
Despite this overall pattern, reading the plot along the x  axis at a constant 
y value (being the count of the jobs submitted at 10am, for example, in each 
weeks), significant variations can be observed.

The plot also shows that the usual pattern has been severely disrupted on a 
number of occasions. During the last four weeks of the trace the job arrival rate 
is almost constant throughout the day, and in weeks 2, 9 and 34 a very large 
number of jobs was submitted during the entire 24 hour period.

These features correlate with the plot of the weekday job submission counts 
shown in the adjoining plot 4.36(b). Week 2 is characterised by a high level of job 
submissions on Wednesday and Thursday, while in the week 34 a large number 
of jobs was submitted on all days except Thursday and Friday. This plot also 
explains a somewhat counter-intuitive result of the weekend job submission rate 
being on the same level as the weekday one, previously reported by Figure 4.7 on 
page 78. Week on week, Saturdays, and especially Sundays, see a low number of 
submitted jobs, but the overall count is raised by several weekends when a large 
number of jobs have been submitted.
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Figure 4.36: Locality of sampling: number of jobs submitted, shown by gray 
levels on a logarithmically scaled range from 0 to 104, as a function of their 
submission time on (a) daily and (b) weekly basis in each week of the year. 
Large variations suggest a single, static model fitted to the entire trace is not 
likely to give acceptable results.

A similar analysis could be done with respect to the evolution of the workload 
according to the submitting VO and the job name. Figure 4.37(a) shows the 
number of submitted jobs in each week by the members of each Grid VO. The 
fact that the plot has its data on one side of the imaginary y = x  line indicates 
that the VOs have been created as new users joined the CCC community, and 
that the number of the VOs has grown throughout the year.

The sporadic activity of the users is clearly visible on this plot: periods of 
high activity are followed by a complete lack of job submissions, after which 
many users return to the system and submit some more jobs. These features 
are consistent with the expected user workflow which is made up of preparatory 
periods in which the jobs are test run, followed by the “production” runs which 
can take several weeks of heavy job submissions. The subsequent lack of activity 
could indicate the user is analysing the results of submitted jobs and preparing 
for further job submissions.

Reading the plot vertically (observing all Grid VOs in one week of the year) 
shows that only a fraction of all CCC users is active at any given time, and that 
the VOs making up the workload in any give week is changing. The VOs are 
also likely to be in the different stages of their workload cycle with some being 
in a test phase, and some in a production phase characterised by the heavy job 
submissions.

The number of weekly submissions for the twenty most often run jobs is given 
in Figure 4.37(b). Some jobs axe submitted only within one or two weeks, while 
some are executed in many disjoint sessions lasting between one and ten weeks. 
The submission rate over those periods tends to be fairly constant as well. This 
insight into the submissions cycle for each application could be used in the job
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Figure 4.37: Locality of sampling: number of jobs submitted, shown by gray levels 
on a logarithmically scaled range from 0 to 105, originating from a specific VO (a), 
or having a specific job name (b)(only top 20 jobs by submission count shown). 
Both plots reveal epochal behaviour with periods of high and low activity.

admission control and potentially in some form of advanced reservation system.

4.6.2 Inter-arrival Time

The weekly fluctuations of the job inter-arrival times, as a function of the hour 
and the weekday of the job submission are given in Figure 4.38. The colouring 
scheme for the inter-arrival time plots has been inverted, with the lower mean 
values taking darker shades and thus indicating a higher rate of job arrivals 
(“hotspots”).

The hourly plot, shown in (a), is characterised by a period of almost no 
activity between midnight and Sam, as well as the already mentioned periods 
within which job submissions were present around the clock (weeks 33-34 for 
example). It is now clear that a very different job arrival pattern has taken 
place in the last four weeks of the trace, as the inter-arrival times are almost 
uniformly spread out throughout the day for an extended period of time. This 
could indicate an automated submission of jobs according to some policy, or an 
administrative arrangement that was supposed to run over the perceived off-peak 
period of college closures (the Christmas break period).

The plot also shows a number of instances of very short inter-arrival times 
which mostly occur at the beginning of the workday or at some point in the late 
afternoon or evening. When considered together with the already established 
tendency to submit more and longer running jobs at this time, it seems that the 
users are sending prepared job batches for execution in the morning and before 
leaving offices in the evening. The anticipation of such behaviour could be very 
valuable to the predictive deadline scheduler.

The weekly fluctuations of the inter-arrival times according to the weekday of
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Figure 4.38: Locality of sampling: job inter-arrival times, shown by gray levels 
on a logarithmically scaled range from 0 to 104, as a function of their submission 
time on (a) hourly and (b) daily basis in each week of the year. Apart from 
seasonality patterns previously noted, the plots show a longer term changes in 
the job inter-arrival times, as well as isolated “hotspots” of bulk job submissions.

submission are plotted in Figure 4.38(b). When present, the job submission on 
the weekends is characterised by very small inter-arrival times and could indicate 
the user’s intention to submit a set of already prepared jobs for the execution 
before the perceived Monday rush. The plot also shows a high degree of variance, 
both within each week, and between the same days in different weeks.

The pattern of the job inter-arrival times partitioned according to the Grid 
VO and the job name properties, Figure 4.39, shows much the same features as 
previously observed in the job count plot. The sporadic submission of the jobs 
by the facility’s users is evident, and the reuse of the job names is also present. 
Interestingly, the bulk submission of the jobs, leading to very short inter-arrival 
times and dark patches on the plot, are either preceded by the periods of moderate 
activity, or are followed by an extended periods of no job submissions. This 
insight, strengthened by the conversations with some of the users, again points 
to the epochal nature of the workload in which the jobs are prepared and tuned 
before a large batch is submitted for execution.

4.6.3 Queue Time

The weekly variations in the job mean queue wait times, as a function of their 
hour and weekday of submission, are shown in Figure 4.40. The attention is 
immediately drawn to the week 34 in which all of the submitted jobs exhibit 
a very long queue delay. Cross-referencing the two plots, it is clear that the 
delay was caused to all of the jobs submitted throughout the 72 hour period 
between Wednesday and Friday of the week 34. One of the likely reasons for such 
a long delay would be the blocking of the queue by several very long running
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Figure 4.39: Locality of sampling: job inter-arrival time, shown by gray levels on 
a logarithmically scaled range from 0 to 104, originating from a specific VO (a), 
or having a specific job name (b)(only top 20 jobs by submission count shown). 
Both plots reveal epochal behaviour with periods of high and low activity, as well 
as specific “hotspots” where a large number of jobs has been submitted in very 
short period of time.

jobs. Although the predictive scheduling techniques could not completely solve 
these kind of problems, the slack factor* of the user requested deadline serves as 
a dynamic prioritisation measure and could help the owners of the shorter, but 
more urgent jobs to jump the queue.

Apart from this unusually long queueing time, Figure 4.40 re-confirms that the 
majority of submitted jobs experience generally low queue wait times. Weekend, 
late night and early morning jobs are least delayed due to queueing, while the 
queueing time of the remaining workload is mostly influenced by the overall 
utilisation of the facility and the fullness of the scheduling queue.

The plot in Figure 4.41 shows the weekly variation of the queueing times 
based on the job’s owning Grid VO and the job name (only 20 most submitted 
job names are shown). From (a), it seems as all VOs experience the entire range 
of the queuing times, thus indicating the fairness of the scheduler and the lack of 
any special administrative policies prioritising jobs submitted by a certain VO. 
The level of the queue delay seems to be, at least to some extent, influenced by 
the number of active users in any given week. Low activity weeks, such as week 
number 20 when only two VOs are active, generally see shorter queue wait times.

The same conclusions can be draw from the plot of the queuing delay ex­
perienced by the top 20 most submitted job names given in Figure 4.41. No 
prioritisation seems to be taking place with the jobs experiencing longer queue­
ing times when more concurrent applications are running.

"The ratio o f  th e  actual execu tion  tim e and th e  tim e betw een th e  job  subm ission  and the  
requested deadline
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Figure 4.40: Locality of sampling: job queue wait time, shown by gray levels on 
a logarithmically scaled range from 0 to 106, as a function of their submission 
time on (a) hourly and (b) daily basis in each week of the year. The daily 
and weekly cycles are again evident as jobs submitted off-peak tend to queue 
less. Jobs submitted mid-week 34 have for some reason experienced very long 
queueing times.

4.6.4 Wallclock Execution Time

The weekly evolution of the job wallclock execution time, plotted as a function 
of its hour and weekday of submission, is given in Figure 4.42. A significant 
level of variance throughout the trace is present, with certain weeks seeing the 
submission of some very long running jobs. While it may be difficult to distinguish 
the overall features and tendencies, as given in Figure 4.17, the high and the low 
intensity phases of the workload are clearly visible. A strong job campaign took 
a break around week 20, followed by another 4 weeks of significant workload, and 
then a period of generally shorter running jobs. These features are also evident 
on the weekday plot. The last five weeks of the workload stand out again with 
continuous job submission throughout the day, but even here, the tendency to 
submit longer running jobs between 10am and midnight is present .

Throughout the day, the busiest hours are 9am to 8pm with specific execu­
tion time “hotspots” in the early morning and the late afternoon. Looking at 
the weekdays plot, the lower length of the weekend job executions is evident. 
Saturdays and Sundays generally see the submission of very short running jobs. 
On several occasions, such as between weeks 5 and 10, a specific job campaign 
execution solely on weekends seem to have taken place. Such behaviour could 
be the effort of the users to do some load balancing themselves and try  to ob­
tain better performance from the facility by submitting at the obvious off-peak 
hours. Hardly a better motivation can be had for an economy and deadline based 
approach to system balancing and yield management.

The reduction in the variability of the job execution times achievable through
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Figure 4.41: Locality of sampling: job queueing time, shown by gray levels on a 
logarithmically scaled range from 0 to 105, originating from a specific VO (a), or 
having a specific job name (b)(only top 20 jobs by submission count shown). 
Similar job queueing times for all VOs hint at the lack of specific VO-level 
prioritisation, but the number of active VOs at any given time has an influence 
on the queue waiting times.

workload partitioning based on the job’s properties is again evident from the 
plots in Figure 4.43. The mean execution times, and hence the intensity of each 
plot patch, differ substantially between the VOs, in (a), but are quite consistent 
within one VO. The value of sampling locality is demonstrated on the example 
of the V03. Jobs run by this VO clearly have two modes of the execution length 
before and after week 25. Averaging over the whole trace period would yield a 
model not representative of either of these periods, while they clearly show little 
dispersion and could be predicted quite well. These modes are indicative of the 
evolving nature of the workload which has perhaps moved onto using a different 
data set, different application or altogether a different research objective.

Similar characteristics are evident in the job name plot, Figure 4.43(b). The 
variation of the execution times between different job names is much greater 
than between the different runs of the same job. The modal characteristic of 
the execution time present when the workload is separated by using the VO job 
property is here not evident. A likely reason is that a significant change in the 
job’s application, workflow or analysed data would be most likely followed by the 
change in the job’s name by the user.

4.7 Chapter Summary

The chapter has presented and exhaustive characterisation of a year long trace 
sourced from a production Grid installation. The analysis has concluded that in a 
multi-purpose, utility style scenario, the Grid is likely to service numerous users 
with varying resource requirements, workflow characteristics and performance
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Figure 4.42: Locality of sampling: job wallclock execution time, shown by gray 
levels on a logarithmically scaled range from 0 to 106, as a function of their 
submission time on (a) hourly and (b) daily basis in each week of the year. Plots 
indicate significant and sustained changes in the length of job execution as well as
periods of high and low activity. Large variations suggest a single, static model
fitted to the entire trace is not likely to give acceptable results.

expectations. This diversity leaves an opportunity for the probabilistic resource 
management to maximise the usage of the installation while delivering required 
service levels to the users.

The workload analysis has focused on the job arrival process, queueing time, 
job wallclock execution time and the memory utilisation. Overall, all but the 
memory utilisation were found to follow a weekly and daily cycles, have a very 
high coefficient of variation and exhibit strong self-similarity and long-tail prop­
erties. The values of the job inter-arrival times and the execution times were also 
distributed in a log-normal fashion. The summary of these findings is given in 
Table 4.4.

The characterisation paid special attention to the diversity of the workload 
and the differences between the primary metrics for the jobs belonging to different 
users and VOs, or having different job names. The findings pointed to some 
important aspects of the workload and can be summarised as follows:

• Due to the administrative policies, the mapping between the VOs and their 
member users was almost one to one. Where a VO had more than one user, 
only one would submit jobs. Such practice rendered the submitting user 
job property useless as it contained no more information than supplied by 
the job’s owning VO field.

• A familiar 90-10 split was observed on the number of submitted jobs: jobs 
of the three most active VOs accounted for almost 95% of submissions. 
Same was not true for the distribution of the total wallclock time of the
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Figure 4.43: Locality of sampling: job wallclock execution time, shown by gray 
levels on a logarithmically scaled range from 0 to 106, originating from a specific 
VO (a), or having a specific job name (b)(only top 20 jobs by submission count 
shown). The plot shows jobs from the same VO to run for similar amounts of 
time, while differing significantly from those submitted by other VOs.

facility which was split much more evenly. Clearly the more frequently run 
jobs execute for much less time than the sporadically submitted ones.

•  Execution times of the different job names submitted by the same VO vary 
significantly between each other, but are very autocorrelated and similar 
to their previous runs. The distribution of the runtimes for the top 20 
most submitted jobs, grouped by their job name, has been found to be very 
narrow and deterministic.

• The number of different job names submitted by each VO seems to be 
modal: the majority of VOs submit all the jobs with the same, generic 
name; several VOs use up to a hundred different names while 4 VOs appar­
ently use a unique name for almost each submitted job. Considering the 
importance of uniquely identifying the submitted job or application, more

Cyclic period 

Weekly Daily Log-normal CV Long-tailed Hurst

Arrivals • • • 36.81 •  (> 3s) 0.85
Queue time • • 2.85 •  (> 103s) 1» 1
Runtime • • • 14.88 •  (> 102s) 0.87
Memory 3.08 €

Table 4.4: The summary of the general properties of the four primary metrics 
analysed in the workload characterisation study. The weekly and daily cycles, 
large CV values and the strong self-similarity were common. The inter-arrival 
times and execution time were also distributed in a log-normal fashion.
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granularity would significantly increase the ability to statistically predict 
the job execution times.

The correlation between the job execution time and the temporal and meta 
job properties have been studied by comparing the variability of the dataset 
grouped according to a specific “pivot” property to that of the entire trace. A 
reduction in the coefficient of variation is indicative of a functional dependence 
between the job runtime and studied property. The summary of the achieved 
results is given in Table 4.5

Grouping the jobs according to their job name and the subm itting VO has 
given very good results. The use of the temporal job properties, such as the hour 
or the weekday in which a job was submitted, has also produced a reduction in 
the variability of associated execution times. A more limited benefit of using 
these two temporal characteristics was caused by two main reasons.

Firstly, the CV measurement becomes highly sensitive to the changes of the 
standard deviation as the series mean approaches zero, as was the case for some 
off-peak, mid-night and weekend periods in which very few short running jobs 
were submitted. The overall effect of these high values was further increased by 
the use of the arithmetic mean as the measure of the central tendency. Secondly, 
the temporal characteristics were envisaged as a supplemental, highly granular, 
job differentiation metric to be used in conjunction with the other job m eta-data. 
An example of such use, and its benefits, will be presented in Chapter 5.

The correlation between the job’s total memory utilisation and its execution 
time has been calculated using the Spearman’s rank order coefficient. The indi­
cated substantial positive correlation could not be used in predicting the length 
of the job’s execution as the amount of the memory used is only available once 
the job has completed.

Coefficient of Variation (CV)

Mean % of Overall Spearm an’s

Overall 14.88 100.00

VO 2.06 13.84
Job name 1.63 10.95
Daily 14.14 95.03
Hourly 8.95 60.15

Memory 3.08 0.75

Table 4.5: The summary of the correlation of the job execution time and its meta 
and temporal properties. Higher reduction in the CV value indicates stronger 
functional dependence. The correlation of the job memory utilisation and its 
execution time was calculated using Spearman’s rank order coefficient.

The workload characterisation study has also dealt with the presently poorly
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researched topic of the locality of sampling and long term evolution of the work­
load properties. The purpose was to distinguish which properties of the workload 
are constant and which tend to change over time, and thus assist in properly en­
gineering the adaptability of the job execution time prediction model.

The four most im portant workload metrics, the submitted job count, inter- 
arrival times, queueing time and the wallclock execution time, were analysed 
using a novel plotting technique emphasising the differences between the job 
as a function of their temporal or meta properties, and the evolution of these 
properties on a weekly basis. The findings can be summarised as follows:

• The presence of daily and weekly cycles, usage patterns and seasonal varia­
tions was observed in all four metrics for the entire duration of the workload 
trace.

• Although these properties were constantly present, their long term  evolution 
and fluctuations would cause a model based on a static training set of 
‘‘older” data to dem onstrate a significant lack of fit.

• The motivation is therefore strong for a dynamic and adaptable approach, 
one that is able to use the insight of the global perspective while at the same 
time adapting to the local fluctuations and track them in the prediction 
model.

• The graphical technique used helped in confirming tha t the workload was 
characterised by the epochal nature of the job submission with only a 
limited number of users and applications active at any one time. The 
behaviour of individual users was also '‘on/off” with periods of activity 
followed by the periods of no activity.

• The analysis has also identified occasional “hotspots” of highly increased 
rates of job submissions or prolonged execution times of jobs. Such events 
occurred often enough to be represent a feature of the workload, and as 
they could not simply be filtered out a robust system for their handling is 
necessary.

• The evolution of the job execution time has revealed changes in the statis­
tical properties of the jobs submitted by a specific VO or with a specific job 
name. A statically parametrised prediction model would obviously struggle 
with such changes.

Overall, the characterisation study has answered the questions relevant to 
modelling and predicting job execution times based on historical information. Its 
purpose was not to specifically identify most suitable models for representing its 
various properties, which is the common goal of the studies supporting generative 
models, but to explore the relationship between the job properties available to
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the scheduler prior to the running of the job and their influence on its execution 
time.



Chapter 5

Job Execution Time Forecasting

Prediction is very difficult, especially if  it's abou t 

the future

—  N ils B o h r , P h ysics  N o b e l  l a u r e a t e

Following the in-depth analysis of the CCC Grid workload, the predictive 
work presented in this chapter will use those findings as a basis for delivering ex- 
ante forecasts of the execution times of queued jobs based only on their historical 
performance and associated temporal and meta-properties. A heuristic approach 
to grouping similarly behaved jobs is complemented by self-parametrised, time- 
series forecasting models to create an autonomous prediction engine. The perfor­
mance of the system was tested using a real-world Grid workload, and has clearly 
shown the value of the more advanced prediction algorithms, the proposed job 
partitioning approach and the novel use of temporal job properties.

The chapter opens with Section 5.1 by reiterating the motivation for job ex­
ecution times predictions and the scope of the work. Experimental methodology 
and details of specific techniques and approaches are discussed in Section 5.2. 
Sections 5.3 give experimental results of different scenarios, while Section 5.4 
summarises the findings and concludes this chapter.

5.1 Purpose and Motivation

Predicting the job execution times is the core enabling technology for Grid dead­
line scheduling, and presents a distinct research contribution of this thesis. The 
purpose of the job runtime prediction work was to leverage the findings of the 
workload characterisation study and develop an engine suitable for the predic­
tion of the job execution times. The fact that these were found to be highly

113
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autocorrelated, and functionally dependent on a specific set of job properties, 
strongly supported the au thor’s focus on the statistical time-series analysis as a 
forecasting model of choice.

The extent to which such a forecasting model could be made robust to the 
abrupt changes in the operating environment and to the outlier values in the 
time-series, was the subject of extensive work due to the target usage scenario 
of an on-line utility Grid scheduler. To asses the level of performance achievable 
in the production environment, a series of experiments using the actual Grid 
workload has been undertaken, all sharing the following two aims:

• Compare different time-series forecasting methods amongst each other and 
to other common prediction models and analyse their performance.

• Establish the added value, in terms of the increased prediction accuracy, 
of the job partitioning according to one or more job meta and temporal 
properties.

5.2 Specific Methodology

The primary challenges in the development, implementation and testing of the 
job execution time forecasting approaches were in choosing which specific mod­
elling techniques to use, designing an autonomous param etrisation technique for 
those models and selecting the most appropriate error measure to compare the 
results. This section will present the chosen prediction methods in detail, offer 
an extensive justification of the selected accuracy measures and document the 
software and hardware set-up used for the experiments.

The section will also introduce the heuristic used for partitioning the entire 
workload around different upiv° t '! job properties leading to a reduction in the job 
execution time variability and an increase in the prediction accuracy. This job 
clustering method was developed based on the findings of the workload charac­
terisation study presented in the thesis, but should be equally applicable to other 
Grid workloads as well.

5.2.1 Job Partitioning

One of the reasons for the extensive Grid cluster workload characterisation pre­
sented in Chapter 4 was to identify any seasonal variations, specific patterns 
and correlation of the execution time with other job properties and meta-data. 
The analysis concluded that a very variable job execution time series can be 
partitioned according to its temporal and meta-properties into subsets with sub­
stantially lower dispersion. This reduction of the coefficient of variation (CV) 
is a significant factor in enabling effective runtime predictions using automated 
statistical methods.
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As the goal was to create a substantially self-managing system, identification 
of correlations between the job execution time and other job properties for an 
arbitrary workload was implemented using an automated and non-parametric 
approach. The full pseudo-code is given in Listing 5.1, and is further described 
in the following paragraphs.

Listing 5.1

i n i t i a l i s e (  prop_set  );

for r = 1 to s iz e o f (  prop_se t  )
{

prop_perm[] += permut ( r ,  prop_set  );
}

foreach (prop.perm)

{
i f  s iz e o f (  prop_perm ) > m / / s u f f i c i e n t  number of  data po in t s  

corr  [] += compareRuntimeCV ( prop.perm );
}

s o r t - d e s c e n d i n g ( corr  ); 

initialise( prop_set );

Initially, the workload history is loaded and parsed for job execution times 
and n job properties. The number and selection of these job properties will 
depend on the information collected by the specific Grid site and on the insight 
into workflow practices provided by the site adm inistrator. The list of properties 
is stored in the prop_set array.

for r = 1 to sizeof( prop_set )
{ prop_perm[] += permut( r, prop_set ); >

One or more job properties can be simultaneously used to partition the work­
load. For example, all jobs belonging to a certain VO could be grouped and 
modelled as one partition, or could further be divided into sub-groups based on 
the submitted job name. The above loop increments the number of job properties 
that will be used for partitioning from one to the maximum number of available 
properties n. Function permut () returns all permutations of r elements from the 
property set and appends them to the prop_perm [] array.

foreach (prop_perm)
{

if sizeof( prop_perm ) > m //sufficient number of data points 
corr[] += compareRuntimeCV( prop_perm );

>
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Each entry in the prop_perm[] array represents a possible workload parti­
tioning criteria and is examined in turn. Depending on the workload, the number 
of job properties and their granularity, some highly selective partitions may not 
have sufficient number (m) of data  points and are not further considered. Function 
compareRuntimeCV() compares the mean CV of job runtimes within a certain 
partition with the CV of a less specific, parent partition. For example, the mean 
CV of the submitting VO - Job name partitions is compared to those created 
by using only the subm itting VO job property. A reduction in the coefficient of 
variation indicates a correlation between the job execution time and the property 
in question.

sort_descending( corr );

The correlation results, stored in the corr array, are sorted in descending 
order giving a ranked list of partitioning metrics with strongest correlation to the 
job execution time.

The scalability of the approach, which is essentially an exhaustive search 
of the job property space, is dependent on the total number of job property 
permutations, given by the following equation:

where N  is the number of job property permutations, n  the total number of job 
properties and r the number of selected job properties.

In the case of the CCC workload, the number of relevant job properties was 
6 leading to the maximum number of perm utations N rnax — 1856, of which 
almost 90% did not contain any data points. Other surveyed workloads had an 
equally small number of recorded job properties (fewer than 10). Considering tha t 
coefficient of variation is computationally inexpensive to calculate even for large 
time series, and that the algorithm is run ad-hoc and off-line, the performance of 
the proposed approach should not be an issue.

The application of this algorithm on the CCC workload has found tha t job 
partitioning according to the Grid VO owning the job, job unique name and 
the calendar week in which the job was subm itted is most likely to significantly 
reduce the level of runtime variability within each partition. These three metrics 
will therefore be used as the key upivoC properties for job partitioning in all of 
the following job sets.

To analyse the performance of different prediction methods, and the influence 
that job clustering based on different job properties has on the forecast accuracy, 
a number of data sets was used. Consisting entirely of the actual and unchanged 
Grid jobs present in the CCC trace, these pre-defmed job sets were needed to 
ensure enough training data points are available and that prediction methods can 
be repeatedly compared against the same benchmark. A workload set, in this

max

n n
(5.1)
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context is simply a fixed collection of real jobs partitioned using one or more of 
the job properties.

The following sections will present the effect of job partitioning on the variabil­
ity of job execution times using direct comparison of the coefficients of variation. 
All plots report mean CV reduction based on the analysis of the entire workload 
trace.

Single Metric Job Partitions

From the analysis of correlation between job properties and its execution time, 
given in the workload characterisation Section 4.5, significant reduction in the 
dispersion of the runtime values is evident even when jobs are partitioned even 
using only one of the job properties. The effect this would have on the accuracy 
of execution time predictions is tested using the following three partition sets:

Submitting VO set contains jobs separated by the identity of their subm itter. 
Virtual organisations which subm itted less than 100 jobs in the whole year were 
excluded as they may not have sufficient training data for the forecasting algo­
rithms. The representativeness of the set was not compromised by this, as those 8 
excluded VOs submitted only 363 jobs altogether accounting for 0.05% of all job 
submissions and 1.13% of overall execution time. A plot showing the reduction 
in CV compared to the overall value was given in Figure 4.30 on page 96.

Job name set is a subset of the full job name set holding execution time values 
of the top 30 most submitted jobs. Although there was more than 2200 unique 
job names in the observed period, this relatively small subset (1.32% of all of 
the unique job names) captures 97.89% of all job executions and 60.24% of the 
overall execution time. A plot showing a similar partitioning for the top 20 most 
submitted jobs was given in Figure 4.31 on page 97.

Week of Execution set reflects the temporal locality of the data and the depen­
dency of its dispersion on the sampling window size. In this set, the execution 
times are partitioned according to the week of the year in which they were sub­
mitted with no respect to their owner or any other job property. This set contains 
every job submitted during the observation period.

Multiple Metric Job Partitions

While partitioning the entire workload according to one of the identified job 
properties reduces the coefficient of variation for all examined sets, the level of 
reduction varies between individual groups or job names. Compound sets examine 
the superposition of multiple partitioning parameters that have previously been 
shown to reduce the variability of the data.
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Figure 5.1: Comparison of CV values for job partitions based on owner VO with 
mean values of the job name clusters within each VO. Partitioning using both 
job properties leads to a substantial reduction in average CV values.
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Submitting VO - job name set contains jobs grouped both by the subm itting VO 
and the unique job name. The plot in Figure 5.1 shows the obvious benefit of 
such clustering by comparing the CV values of the overall workload, the VO set 
and the VO - job name set. Of the twenty seven Virtual Organisations, only two 
show negligible change, while all other exhibit a substantial decrease in variability. 
Mean coefficient of variation for this subset is 0.75 compared to 2.06 for the VO 
subset and 14.88 for the overall workload.

From the above presented set, a subset of 60 clusters was selected with at 
least 50 data points in each to enable sufficient training and validation for the 
forecasting algorithms. The coverage of this subset is still very high as it includes 
98.26% of all submitted jobs and 65.71% of overall execution time.

Submitting VO - week number set groups jobs firstly by their subm itting VO, 
followed by the annual week number in which they were submitted. Workload 
characterisation indicated that the job execution times evolve and change over 
time, and this set was created with the aim of capturing such behaviour. By inde­
pendently treating workload generated at the different points in time, the model 
can develop a better fit and react faster to the fluctuations in the distribution of 
job execution times caused by a change in the user’s scientific goal, the analysed 
data set or the application being used.

Figure 5.2 shows the reduction of the mean CV values for the subm itting VO 
- week number job set compared to the submitting VO alone. The effectiveness 
of this compound clustering approach is clear, with all but one VO showing 
significant reductions in the job runtime dispersion. The mean coefficient of 
variation for this subset is 0.97 compared to 2.06 for the VO subset and 14.88 for 
the overall workload.

To ensure forecasting algorithms are only applied to clusters with a sufficient 
number of data points, a subset of 114 clusters from the submitting VO - week
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Figure 5.2: Comparison of CV values for job partitions based on owner VO with 
mean values of the week number clusters within each VO. Partitioning using both 
job properties leads to a significant reduction in average CV values.

number set with more than 100 jobs in each has been selected. The subset remains 
representative of the whole workload, as it covers 59.41% of overall execution time 
and 99.07% of all job submissions.

Submitting VO - week number - job name set is based on the successive partition­
ing of the entire workload based on the job ’s subm itting VO, the week number of 
submission and the job’s unique name. Clustering based on these three orthog­
onal properties produces superior results in reducing the mean variation of the 
data in each cluster. The purpose of this set was to test the possible increase in 
the predictability of the job execution times by exploiting the general execution 
pattern within a Virtual Organisation, the temporal locality of the job runtimes 
and the specific behaviour of a single application.

Figure 5.3 compares the CV values of VO, VO - week number and VO- week 
number - job name sets. W ith the mean CV of 0.59, this set is the most successful 
in grouping similarly behaved jobs together.

In case of this job set, its very granular partitioning of the workload created 
a high percentage of clusters with very few data points. For the experimental 
subset, only those clusters with more than 100 jobs in each week and more than 
50 runs of the same job name have been selected. Due to these constraints, the 
resulting subset has less coverage than other sets at 56.05% of the total number 
of jobs included executing for 21.49% of the total runtime of the trace.

Overview of the Job Partitions

Based on the observations and the conclusions of the workload characterisation 
work, the whole trace was partitioned into sets using one or more of the job 
properties. The purpose was to reduce the variability of the job runtinms within 
each set, making them more predictable. This has been successfully achieved, as
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Figure 5.3: Comparison of CV values for job partitions based on owner VO and 
the VO-Week number with the mean CV values for the VO-Week number-Job 
name cluster. Partitioning using all three most im portant job properties leads to 
the lowest average CV value achieved.

demonstrated by the reduction of the coefficient of variation for each of the sets 
given in Table 5.1.

Set Short Code Mean CV

Entire workload 14.88

VO V 2.06
Job name J 1.62
Week number W 6.45

VO-Job name VJ 0.75
VO-Week number VW 0.97
VO-Week-Job VWJ 0.59

Table 5.1: Overview of the mean CV values of the job partitions. By comparison 
to the overall workload CV, a significant reduction in variability was achieved by 
partitioning using one, two and three job properties.

As experimental testing of different statistical forecasting algorithms requires 
sufficient number of data points for historical inference and subsequent statis­
tically valid assessment of the prediction accuracy, some less populated subsets 
from each job partition had to be excluded. Table 5.2 summarises the coverage 
of the experimental workload partitions in terms of the number of job clusters, 
and the percentage of total job submission and total runtime those jobs attribute 
to.

Clearly, as clustering dimensions increase, the cluster numbers increase as 
well but the number of jobs within each decreases. This leads to fewer candidate 
groupings with sufficient number of data points and a lower coverage ratio. These 
subsets will be used throughout this chapter as the basis for the testing and 
comparison of the forecasting algorithms.
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Subset No. of clusters

Coverage 

Job count Run time

VO 19 99.95% 98.87%
Job name 30 97.89% 60.24%
Week number 51 100% 100%

VO-Job name 60 98.26% 65.71%
VO-Week number 114 99.07% 59.41%
VO-Week-Job 97 56.05% 21.49%

Table 5.2: Overview of experimental subsets and their properties

5.2.2 Forecasting Methods

The core assumption of this work is that, considering the properties of the 
Grid workload, job wallclock execution times can effectively be predicted using 
the time-series forecasting models. The forecasting methods chosen for the 
comparison reflect this assumption - the following will provide their statistical 
background, outline their implementation in the simulation and discuss their 
parametrisation.

Moving Average

One of the simplest, and certainly the most often used benchmark model, is the 
average or mean. While it can be applied at time t on the entire series up to t — 1, 
this predictor is more often used with a sliding window averaging only the last n 
samples. This, ‘‘moving average” operation, which is mathematically an example 
of convolution, in effect smooths out the short-term variation and reveals a longer 
term trend. Given a time series, moving average (MA) is calculated according to 
the following equation:

1 k
F(t)MA =  T T X M - n )

k 71=1 (5.2)
=  A t T A t—\ + • • • T A t—k 

k

The implementation of this predictor was based on the vectorised M atlab 
code, and its single parameter, the size of the averaging window, was set dynam­
ically though a feedback loop using a simple control strategy. The motivation 
was to reduce the time needed for the predictions to converge following an abrupt 
change of actual values. At each time step, the absolute percentage prediction 
error (see later for the definition) was compared to the accuracy of previous 
forecasts and used to adjust the size of the averaging window.
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Related work in the predictive Grid scheduling often reports the results from 
a “MEAN” method whose explanation closely matches tha t of a moving average 
method. The window size ranges from a fixed value to all previous observations 
(implying a true mean of the whole historical series). Pro-active adjustments of 
the windowing has not been reported in this context before.

Moving Median

Moving median is a robust version of the moving average method. A box sliding 
window selects n last values of the time series and a median value is calculated 
as the next forecast.

This method was selected in an attem pt to control the numerous outlier values 
present in the job execution time dataset and offer a simple, yet more robust 
model than the moving average. The window size for this model was adjusted 
using the same control procedure as for the moving average.

Simple exponential smoothing

Simple exponential smoothing (SES) could be considered as a particular type of 
the moving average technique, and is a prediction method often used with the 
financial time-series data. The forecasted value is calculated by taking a weighted 
average of the latest actual data and a fraction of the last predicted value:

F(t)ES =  a - A ( t - l )  + ( l - a ) - F ( t  -  1)

=  a  • [A(t -  1) +  (1 -  a ) - A( t  -  2) +  (1 -  a )2 ■ A(t  -  3) +  ■ ■ • ]

The last equation was derived by direct substitution of the defining equation 
into itself, and shows that as the number of past observations increases the 
weights assigned to the previous observations are proportional to the geometric 
progression 1, (1 — a), (1 — a )2, (1 — a ) 3, . . . ,  which is the discrete version of the 
exponential function after which this prediction methods was named.

The level of the smoothing is defined using the smoothing factor a; values 
close to unity result in less smoothing and give greater weight to the more recent 
observations, while values closer to zero generate more smoothed values which 
are less responsive to the recent changes. During the simulation, the value of the 
smoothing parameter was defined automatically for each job sequence through a 
short parameter sweep test on the training data.

Auto-regressive Method

Autoregressive (AR) approach is a commonly used method for modelling univari­
ate* time-series. The model is a linear regression of the series against a number

* M easurem ents m ade on on ly  one variable per observation .
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of previous values of that same series. The number of historical values used for 
regression represents the order of the autoregressive process, which is defined by 
the following equation:

p

Xt  =  c -f- i f iXt- i  +  £t (5-4)
i = 1

where <pi,. . . ,  <pp are the param eters of the model, p  is the order, e is the error 
term and c, the constant term defined by:

p

c =  (5.5)
2 =  1

where p is the process mean.
Autoregressive models are straightforward to interpret, can be fitted in de­

terministic time and using various methods (for Yule-Walker, Burg, Geometric 
Lattice and others see Chapters 17 and 19 in Pollock [188]) including the standard 
linear least squares techniques. The AR method used in the job execution time 
prediction was based on the M atlab System Identification Toolbox [189] imple­
mentation of the parameter estimation using modified covariance method. This 
method uses no windowing and a forward-backward approach to minimise the 
sum of the least squares. The requested focus of the model was set to prediction, 
leading to a weighting of the error function (the difference between actual and 
modelled values) favouring high frequencies. This minimises the one-step-ahead 
prediction, which typically favours fitting small time intervals.

The order of the AR model was determined automatically for each job se­
quence based on the partial autocorrelation (PACF) analysis of the training data. 
The partial autocorrelation at lag k is the autocorrelation between values of the 
time series at times t and t — k tha t is not accounted for by lags 1 through k — 1. 
Algorithms for computing the partial autocorrelation based on the sample au­
tocorrelations, and the discussion of the usefulness of this method in estimating 
the order of the AR process is given by Box in [130] and Hannan in [190]. The 
orders of the AR models used in this work are selected to be the last lag on the 
PACF plot whose correlation value is higher than the 95% statistical significance 
level placed at ± 2 / \ f N  where N  is the number of data points in the time series.

Auto-regressive Moving Average Method

Autoregressive moving average (ARMA) model is one of the most popular and 
effective methods for modelling time series, pioneered in the 1980s by Box and 
Jenkins [130]. By combining both the autoregressive and the moving average 
components, this model has the power to deal with random “shocks” to the
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series values which propagate and influence future data points. ARMA model of 
AR order p and MA order q is defined by the following equation:

The inclusion of the moving average component complicates the fitting process 
as the error term (s) is not observable. The estimation of the ARMA process pa­
rameters is therefore an iterative non-linear procedure taking a noil-deterministic 
amount of time. The ARMA models also have a less obvious interpretation than 
the AR models. The implementation of the ARMA model estimation used was 
the one from the Matlab System Identification Toolbox based on a search algo­
rithm minimising a robustified quadratic prediction error, with the default values 
for the number of maximum iterations and improvement tolerance. Further de­
tails of the algorithm are available in [189].

Estimation of the orders of the ARMA process presented the greatest obstacle 
in automatically applying this model. Common practice is to equate the order 
of the AR and MA components [191], and this was the initial assumption taken 
for all ARMA models used herein. The estimation of this order was the same 
as applied in the purely autoregressive technique. But for certain highly auto­
correlated series, the AR order could be very high and, if applied as both AR 
and MA orders in an ARMA model, could lead to fitting problems. If these were 
observed, a fallback second order moving average component was used.

5.2.3 Prediction Accuracy Assessment

Different forecasting methods can be compared on a number of criteria: in specific 
scenarios prediction complexity or model parametrisation may be of the highest 
importance. Most commonly however, it is the accuracy of a model’s predictions 
that is of primary interest. Strictly speaking, the positive or negative difference 
between the observed and predicted value is called a residual. The term  error 
is often used instead, although in statistics it indicates the amount by which an 
observation differs from its expected value based on the whole population from 
which the statistical unit was chosen randomly [192]. Given this distinction, the 
following discussion will use the term error as it is more frequent in the subject 
literature.

When analysing discrete time series, calculating the spot prediction error 
may not be difficult, but comparing different forecast series and judging which 
was the most accurate may prove quite challenging. The issues of cross-series and 
cross-method comparison of the prediction errors have been largely neglected by 
the non-statisticians which tend to use inappropriate accuracy measures, mostly 
due to behaviour inertia. An early 1980s survey [193] found that forecasting 
practitioners, and academics in particular, have a strong preference for the Root

p Q
(5.6)
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Mean Square Error (RMSE) although its pitfalls were, even at tha t time, already 
well documented. Later reviews found little has changes in last twenty years.

Past research work in the field of predictive (Grid) scheduling has reported 
several different accuracy measures, but few have supported their decision to use 
a specific measure, or discussed the implications of such decision. W ith no clear 
consensus amongst the Grid research authors on the reported accuracy metrics, 
direct comparison of the results of the job execution time predictions are often 
impossible.

The aim of this section is to properly analyse the time-series being forecasted, 
and select the most appropriate accuracy measure for head-to-head comparison 
of the forecasting methods on the same series, as well as comparison of their 
prediction quality amongst different job series.

The Challenges of Forecast Comparisons

The selection of an appropriate error measure depends on the nature of the data  
being predicted, the properties of the forecasting methods, and the objective 
difficulty of predicting the future series values.

Different time-series scale may cause the errors generated predicting the series 
with large numbers to dominate the comparison with errors obtained predicting 
a time-series with smaller numbers. Some of the more commonly used accuracy 
measures are scale-dependent, and while useful in comparing different methods 
on the same set of data, they should not be used when comparing the prediction 
errors of the data sets with different scales. Historically popular Mean Square 
Error (MSE), and Root MSE (RMSE), are both scale dependant and very sen­
sitive to outlier values, leading to numerous recommendation against their use 
[194, 106, 195].

Since the Grid workload characterisation in Chapter 4 revealed tha t the job 
wallclock execution times are spread across eight orders of magnitude, exhibit sig­
nificant long-tail behaviour, and differ substantially in the statistical location and 
dispersion, the use of a scale-dependant error measure for cross-series comparison 
would not be appropriate.

A simple way to control for the scale is to calculate the errors as the percentage 
of the actual predicted value. Such accuracy measures could be used to compare 
result across different series regardless of their scale, but have a disadvantage of 
being very sensitive if the actual value of the predicted data is close to zero and 
undefined if it is equal to zero (as it appears in the denominator of the percentage 
error calculation). Percentage errors also put a heavier penalty on the positive 
errors [196, 197], and some authors have noted their possibly skewed distribution 
[198],

From the aspect of the job execution time predictions, the percentage errors 
offer the important ability to compare the forecasting errors between the jobs
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in different partitions (job sets) which would usually have significantly differ­
ent scales. The execution time data also fulfils the necessary assumption of a 
meaningful zero required for the application of such percentage errors.

Sensitivity to the outliers is less of a problem when calibrating a prediction model, 
but is especially troublesome when the goal is to select the best performing 
prediction method. Unless those extreme values are of main interest, the errors 
should be trimmed to produce robust measures. To avoid an arbitrary level of 
trimming, and to aid direct comparison of the published results, median values 
are most often reported [194].

Due to the statistical properties of the job runtime sequences, and a proba­
bilistic approach embraced in this work, a significant amount of prediction error 
outliers were expected. When considering the prediction errors of a single fore­
casting method, the main objective was to establish their central tendency. The 
purpose of the cross-series analysis was to analyse the increase in predictability 
through the use of job partitioning. Therefore, robust measures such as inter­
quartile ranges and medians were used throughout for reporting the results across 
different series.

Summarising the results requires the error measure to aid in the selection of 
the most suitable forecasting model, and should therefore have a relationship 
to that decision making process. In the scenarios consisting of many different 
prediction methods and/or parameters, and with many numerical error measures 
reported, it may become increasingly hard to spot the best forecasting performer. 
Summary results, often trading some finer aspects of the error properties for the 
presentation simplicity, can be valuable in grasping the larger picture.

Direct Comparison of Forecasting Methods

The goal of the head-to-head comparison of the different prediction models was 
to select the best performing one for each of the individual job set. This was 
done by using the mean absolute error (MAE) defined as the difference between 
the actual and the forecasted time series values:

et = \At - F t \ (5.7)

(5.8)
t =  1

(5 .9)

where A t is the actual and Ft the forecasted value.
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The mean absolute error was selected as it is a highly sensitive measure, 
without outlier protection, and well suited for model calibration [194]. However 
being a scale-dependent metric, MAE is not intended for cross-series comparison 
and would be especially cumbersome to independently use on almost 400 test 
sequences and 5 prediction methods examined in this work.

To facilitate the comparison of the forecasting model performance, a two tier 
method has been used. For each job execution time sequence in each set, the 
mean absolute error of all the prediction models has been compared and the best 
one has been selected. For each of the six sets in question, a pie chart is used 
to depict the Percent Best [194] error statistic indicating the fraction of the set’s 
sequences for which each of the methods has been the best performing forecaster. 
This avoids any bias related to the objective difficulty of predicting a certain 
time series, as forecast models are only compared within the same sequence. 
Reliable and robust [195], the Percent Best method enables direct comparison of 
the relative performance of each of the compared methods to all others, and a 
clear indication of the strength of a specific method in predicting a certain type 
of time series.

Cross-series Numerical Evaluation of Forecasting Errors

The Percent Best method, although valuable in judging the best prediction model, 
is relative and does not offer any indication of the magnitude of the forecasting 
errors. To assess the central tendency and the spread of the prediction errors, 
and in order to compare them between the different forecasting and partitioning 
methods, the Median Absolute Percentage Error (MdAPE) defined as follows was 
used:

E a p e  = \— ~̂7— -| (5.10)
A t

E  M d A P E  = median(E a p e ) (5-11)

where At is the actual and Ft forecasted value.
Being a percentage measure, MdAPE can readily be used to compare the 

error magnitudes across the series with different scales. Using the median value 
of APE has several benefits. It reduces the bias in favour of overestimates 
present in the often used Mean Absolute Percentage Error (MAPE) measure. 
It also makes MdAPE robust to outliers while avoiding arbitrary trimming rules, 
thus facilitating comparison between the reported results. It was found to have
good construct validity and reliability [194], and conies well recommended for the
comparison of results across a moderate number of series [195, 194, 199].

A boxplot will be used to show the location and the dispersion of the MdAPE 
values for each of the sequences in the job set, grouped by the prediction method.
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These results are directly comparable across job sets, and indicate different accu­
racy levels between the forecasting methods and the job partitioning parameters.

5.2.4 Experimental Set-up

The results reported in this chapter are based on an emulated runtime forecasting 
system wholly implemented using the MathWorks M atlab R14 numerical analysis 
software. The scenario aims to replicate the job wallclock execution time predic­
tion, the crucial step in the deadline scheduling, by presenting to the forecasting 
module each newly submitted job, together with its m eta-data properties, and 
awaiting the execution time prediction. Errors between the predicted and actual 
values, that have occurred on the real world system, are then calculated and 
stored for further analysis.

The benefit of this trace-replay system is in its use of a genuinely representa­
tive data set, which has not been modified in any aspect and thus preserves all 
the features and peculiarities of the real world production installation. This is 
an important differentiation of this work from those of fellow researchers in the 
field [152, 28] which have studied some aspects of the Grid workload and have 
decided to generate synthetic traces with characteristics similar to those they 
have observed.

The complete twelve months of the CCC workload was used as the basis for the 
experiments, sorted by the submission time, and without any data  re-sampling, 
filtering or manipulation being done. The forecasting module was strictly ex- 
ante and was given access to the historical data only. No knowledge of the future 
was being exploited at any step in the prediction process or forecasting model 
par amet r isat ion.

For the majority of the models, System Identification [189] and Statistics [200] 
toolboxes of the Matlab software were used. All custom prediction tools built used 
established forecasting formulae and were empirically validated against a well 
known time-series. Experiment control logic, historical trace analysis and model 
parametrisation heuristics were coded in Matlab and C programming languages.

5.3 Comparison of Forecasting Methods 
and Job Partitioning Metrics

This section will present the results of the prediction accuracy survey and offer 
reasons and explanations for the observed performance of the forecasting meth­
ods. The results, grouped by the job partitioning property used, are given using 
the Percent Best pie chart, the box plot of the MdAPE metric and its median 
and inter-quartile range given in a summary table.
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Brat forecasting method (MAE based) Comparison of forecasting errors (MdAPE based)

Median (16%) ARM A (47%)

MA (37%)

(a) T h e b est forecasting m eth od

Median M A SE S  AR ARM A
Forecasting Method

(b ) C om parison  o f forecasting  errors

Figure 5.4: VO set: (a) best forecasting method (MAE based), and (b) compar­
ison of location and dispersion of percentage prediction errors for different fore­
casting methods (MdAPE based). Despite the strong performance of the ARMA 
predictor, approaches based on sliding window (median and MA) dominate.

5.3.1 Prediction Errors: VO se t

Figure 5.4 shows the performance of the different forecasting algorithms predict­
ing the workload partitioned based on the job’s submitting VO.

In almost half of the set’s sequences, the ARMA method was the best pre­
dictor, followed by the moving average and the median methods. Exponential 
smoothing and autoregressive predictors did not score a single best forecast in 
this group. The poor performance of these methods can be blamed on the evident 
short-range dependence of job runtimes in this set which suits the sliding window 
predictors better. The ARMA model excelled in predicting this job set mostly 
due to the automatic parametrisation method which has repeatedly chosen high 
orders of the moving average process.

Table 5.3 summarised the prediction errors using the M dAPE metric. The 
median values are in the 17.5% - 26.1% range, and few outliers are present. The 
dispersion of the errors is high however, mostly caused by the variability of the 
job set and its relatively high CV value.

Forecasting Method

M edian M A  SES A R A R M A

25th Percentile  
M edian
75th Percentile

7.62
21.32
82.37

7.43 12.83 6.89 
18.46 26.09 19.30 
67.20 79.04 85.07

4.82
17.54
79.44

Table 5.3: VO set: Comparison of location and dispersion of prediction errors 
(MdAPE based) for different forecasting methods
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Best forcvwiing method (M AE bam d) Comparison of forecasting errors (MdAPE based)
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ARMA (57%)

MA (30%)
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<
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Figure 5.5: Job name set: (a) best forecasting method (MAE based), and (b) 
comparison of location and dispersion of percentage prediction errors for different 
forecasting methods (MdAPE based). Strong combined success of auto-regressive 
predictors (AR and ARMA) indicate that successive runtimes of individual jobs 
are highly autocorrelated.

5.3.2 Prediction Errors: Job nam e set

The best forecasting methods, and the distribution of the prediction errors for 
the Job name set are shown in Figure 5.5. The ARMA method delivers the lowest 
error forecasts in almost 60% of the series in this set, followed by MA and AR 
methods. The boxplot reveals that the predictions for this set are much more 
accurate than those for the VO set, with median MdAPE ranging from 4.3% to 
12.3%. The dispersion of the MdAPE values is much smaller, and even with a 
few outliers the top quartile for the ARMA method is only 20%. These values 
are summarised in Table 5.4.

Good performance of the ARMA and AR methods on this set indicates that 
run time sequences of individual jobs are highly autocorrelated and can be used 
to produce good quality predictions. While tracking job names or applications 
may not be easy using the current Grid middleware, for all the reasons previ­
ously identified in Section 2.1.3, the benefit of this information to the predictive 
scheduling is certainly a strong motivation for the better integration of the appli­
cation identity into the Grid monitoring and workflow management components.

5.3.3 Prediction Errors: W eek num ber set

The results of the job runtime predictions for sequences from the Week number set 
are given in Figure 5.6. The Percent Best pie chart shows ARMA method leading 
other methods in the forecasting accuracy, followed by the Median, MA and AR 
methods. The notable performance of the Median predictor is understandable 
considering the very high coefficient of variation of this set, and the lack of 
separation of the user groups and jobs with different statistical properties within
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Forecasting Method

M edian M A SES AR A RM A

25th Percentile  
M edian
75th Percentile

1.92
6.25

19.33

2.17 4.55 
6.64 12.32 

20.94 22.71

3.26
5.54

24.48

1.83
4.28

15.56

Table 5.4: Job name set: Comparison of location and dispersion of prediction 
errors (MdAPE based) for different forecasting methods

it. As there is very little autocorrelation of the successive job runtimes in this 
set, a robust average produces competitive results. The MdAPE boxplot further 
shows that Median and Moving Average errors were less dispersed that those of 
other forecasting methods.

A summary of the MdAPE statistical properties is given in the Table 5.5. 
The Percent Best and MdAPE error statistics may seem at odds here, since the 
best performing algorithm according to the Percent Best method does not have 
the lowest MdAPE median value. However if one considers that the Median and 
ARMA methods perform at their best in predicting very dissimilar series, it is 
entirely possible for one method to be better at a large number of individual 
sequences, and perform so poorly at a number of others as to raise its median 
error considerably. Whiskers on the ARMA boxplot further confirm this was the 
case.

Bent io raaaiing  method (MAE based) Comparison of forecasting errors (MdAPE based)

(a) The best forecasting method

120

100

40

MA SES Alt ARMAMedian
Forecasting Method

(b) Comparison of forecasting errors

Figure 5.6: Week number set: (a) best forecasting method (MAE based), and (b) 
comparison of location and dispersion of percentage prediction errors for different 
forecasting methods (MdAPE based). Median predictor performs well due to the 
high CV value of this set and lack of job separation based on their statistical 
properties.
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Forecasting Method

M ed ian M A  SES A R A R M A

2 5 th  P e rcen tile  
M ed ian
75 th  P e rcen tile

6.69
10.06
17.32

6.59 12.20 10.91 
10.34 17.18 26.20 
19.76 31.75 58.47

4.95
13.68
36.65

Table 5.5: Week number set: Comparison of location and dispersion of prediction 
errors (MdAPE based) for different forecasting methods

5.3.4 Prediction Errors: VO - Job  nam e se t

Figure 5.7 shows the forecasting results of the first multiple metric set, the VO - 
Job name set. While still delivering the highest percentage of the best predictions, 
the ARMA method is less dominant, and is closely followed by the AR and MA 
methods. Evidently, job partitioning according to both the originating Virtual 
Organisation and the job name sufficiently isolates execution patterns for the 
time-series forecasting methods based on autocorrelation properties to perform 
best.

Although the boxplot, and the summary data in Table 5.6, reveals a larger 
inter-quartile range of the MdAPE values for the AR and ARMA methods, 
Median and MA methods have a significantly larger number of outliers. The lower 
quartile of the errors is very low for all prediction methods, further confirming 
that predictions of execution times for this group are of very high quality.

Best forecasting method (MAE based) 

Mediae (5%)

Comparison of forecasting errors (MdAPE based)

ARMA (41%)

MA (20%)

SES (7%) '

a .  8

(a) T he best forecasting m eth od

120

100

MA SES AR ARMA
Forecasting Method

(b) C om parison o f forecasting errors

Figure 5.7: VO-Job name set: (a) best forecasting method (MAE based), and (b) 
comparison of location and dispersion of percentage prediction errors for different 
forecasting methods (MdAPE based). Autoregressive methods perform well and 
suffer from less extreme outlier error values despite a larger interquartile range
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Forecasting Method

M ed ian M A  SES A R A R M A

2 5 th  P e rcen tile  
M ed ian
75 th  P e rcen tile

0.24
5.08

16.56

0.51 3.65 
4.76 12.07 

17.57 29.47

1.59
4.61

25.72

0.94
4.04

27.82

Table 5.6: VO-Job name set: Comparison of location and dispersion of prediction 
errors (MdAPE based) for different forecasting methods

5.3.5 Prediction Errors: VO - W eek num ber set

The performance of the job execution time prediction of the different forecast­
ing methods on the VO - Week number set is given in Figure 5.8. The ARMA 
method achieves highest Percent Best score, followed by the MA, AR and Me­
dian approaches. The boxplot indicates outliers are present with all prediction 
methods, but the inter-quartile range of the error values is small, especially so in 
the case of Median, MA and ARMA predictors.

Median and quartile values of the MdAPE metric, given in Table 5.7, show a 
significant increase in the prediction accuracy compared to the results of the VO 
set. Clearly, the addition of a temporal dimension into the workload partitioning 
has managed to better group similar job runs, and has therefore led to an increase 
in the prediction accuracy of the execution times.

Best forecast jug method (MAG based) 

Median (U%) ARMA (51%)

Boxplot comparison of forecasting errors for different methods

(a) T he best forecasting m ethod

120

100

w
CL.<
I

Median MA SES AR
Forecasting Method

(b) C om parison o f forecasting errors

Figure 5.8: VO-Week number set: (a) best forecasting method (MAE based), 
and (b) comparison of location and dispersion of percentage prediction errors for 
different forecasting methods (MdAPE based). ARMA predictor performs best 
with fewest extreme outlier error values and second smallest interquartile range.
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Forecasting Method

M ed ian M A  SES A R A R M A

25 th  P e rcen tile  
M ed ian
75 th  P e rcen tile

3.98
8.07

13.18

4.55 8.90 
8.29 12.99 

16.37 22.22

3.92
8.55

19.68

2.75
7.13

13.13

Table 5.7: VO-Week number set: Comparison of location and dispersion of 
prediction errors (MdAPE based) for different forecasting methods

5.3.6 Prediction Errors: VO - W eek num ber - Job nam e se t

The prediction results for the VO -Week number - Job name set are shown in 
Figure 5.9. Almost three quarters of the sequences in this set were best predicted 
using either the ARMA or AR methods, with the ARMA proving best in 55% 
of the cases. Again, such high success rate of these methods indicates a highly 
autocorrelated time-series with lower levels of variability. The boxplot shows 
the distribution of the MdAPE metric with some outliers, but with a very low 
dispersion of error values.

Summary data given in Table 5.8 confirms that the prediction errors achieved 
in this set are superior compared to all other job partitioning sets. The ARMA 
forecasting method managed to predict the execution times with the median 
MdAPE value of only 4.75% and the upper quartile value of only 10.61%. Such 
results confirm the added value of the multi-dimensional partitioning of the work­
load using job meta and temporal properties. The resulting job partitions lock 
onto the underlying workload patterns, thus reducing execution time variability

B e st fo re ca s tin g  m e th o d  (M A E  b a se d ) Comparison of forecasting errors (MdAPE based)

M edian  (7% )

ARMA (55%)

SES (5%)

AR (20%)

(a) T h e best forecasting m eth od

120

100

w

SES ARMAMedian MA AR
Forecasting Method

(b) C om parison o f forecasting errors

Figure 5.9: VO-Week number-Job name set: (a) best forecasting method (MAE 
based), and (b) comparison of location and dispersion of percentage prediction 
errors for different forecasting methods (MdAPE based). This multidimensional 
job partitioning is best predicted using the ARMA method which delivers lowest 
median MdAPE error of all job sets.
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Forecasting Method

M edian M A  SES A R A R M A

25th  P ercen tile  
M edian
75th  P ercen tile

1.75
6.27

10.28

2.06 5.32 
6.57 10.71 

10.29 18.02

2.24
6.46

11.49

1.80
4.75

10.61

Table 5.8: VO-Week number-Job name set: Comparison of location and disper­
sion of prediction errors (MdAPE based) for different forecasting methods

and making them more predictable.

5.4 Chapter Summary

Considering the amount of comparative data presented, the chapter will conclude 
with an overview of the experimental results. The summary will address two main 
aspects of the work separately: the performance of the forecasting algorithms and 
the benefits of job partitioning.

5.4.1 The value of prediction m ethods

Considering the computational and implementation expense of the advanced 
time-series forecasting algorithms, the natural question is to ask whether they 
indeed provide an increased prediction accuracy in the job execution time pre­
diction scenario. The Percent Best method again provides a valuable overall 
comparison between forecasting models based on the highly sensitive mean abso­
lute error (MAE) metric.

Overall Percent Best forecasting method 

Median (12%) ARMA (SOW)

MA (17%)

SES <5?(

Figure 5.10: Comparison of overall performance of prediction methods across 
all job sets for different prediction methods using Percent Best statistic (MAE 
based). The most sophisticated ARMA method has performed better in more 
sets than all other predictors put together.
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M edian M A SES A R A R M A

25th  Percentile  
M edian
75th  Percentile

13.24
41.38

117.10

15.38
47.18

140.23

19.45
63.83

206.98

36.01
68.94

169.63

13.21
49.18

158.92

Table 5.9: Comparison of prediction error (APE based) for different forecast­
ing methods applied to noil-partitioned workload. Results are considered as a 
benchmark for judging the benefits of workload partitioning using different job 
properties.

Figure 5.10 shows a summarised Percent Best statistic for every job sequence 
in every job set presented in this chapter. The exponential smoothing method 
is the overall worst performer and has been the best predictor in only 5% of 
the job sequences. The Median predictor, with 12% of the lowest mean absolute 
prediction errors, is a simple to implement, computationally inexpensive alter­
native for forecasting an occasional job execution time series with a very poor 
autocorrelation and a high degree of variability.

The combined performance of the AR, MA and the ARMA predictors returns 
lowest error forecasts in the overwhelming 83% of all job sequences. Considering 
the ability of the ARMA model to behave as a purely autoregressive or purely 
moving average predictor (by setting the order of the AR or MA component to 
zero), a generalised implementation with a suitable param etrisation technique 
would provide superior performance in predicting the job execution times char­
acterised by a wide range of statistical properties.

5.4.2 The value of job partitioning

The experiment showed a significant and sustained increase in the prediction 
accuracy of all forecast methods as jobs were partitioned into clusters with an 
increasingly more consistent behaviour. To establish a benchmark against which 
this added accuracy could be judged, all five predictors were run on the whole 
year long trace without applying any partitioning criteria. Table 5.9 gives a 
summary of the absolute percentage forecasting error location and dispersion for 
this non-partitioned workload.

To summarise the findings, Figure 5.11 gives a side by side comparison of the 
medians (a) and the inter-quartile ranges (b) for all five forecasting methods and 
all job partitioning approaches including the noil-partitioned benchmark.

The plots show an obvious reduction in the median absolute percentage error 
for all prediction models as the workload is partitioned using an increased number 
of job properties. The lowest median error in the set partitioned using three 
orthogonal job properties is almost ten times smaller than the lowest median 
error in the lion-partitioned workload. The addition of the temporal property 
based on the job’s submission time has a noted positive effect.
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Error locations between job sets and forecasting methods Error dispersion between job sets and forecasting methods
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Figure 5.11: The benefit of multidimensional job partitioning is clearly shown 
by comparing the location (a) and dispersion (b) of MdAPE error values for 
non-partitioned and clustered job sets.

Job partitioning has also decreased the dispersion of the prediction errors in 
all job sets as compared to the non-partitioned job sequence. The implication 
of this effect is that measures of the error sample central tendency, such as the 
median, are more representative of the distribution’s real statistical location. 
This is at least as important as the median accuracy, as the prediction error is 
more bounded.



Chapter 6

Deadline Scheduling Evaluation

Having thoroughly analysed a representative production Grid workflow and de­
vised methods for predicting the job execution times, the focus in this chapter 
will be on demonstrating the usability of such forecasts in delivering deadline 
scheduling on the Grid.

The following sections will present the purpose-built scheduling simulator and 
a predictive scheduling algorithm not previously used in the Grid context. The 
improvement in deadline adherence of the predictive algorithm will be compared 
to the commonly used FIFO queue. The simulation results comprise two different 
deadline generation algorithms and two job execution time forecasting methods. 
They demonstrate the value of the predictive scheduling approach and the im­
portance of prediction accuracy.

6.1 Motivation and Scope

The forecasting framework presented in the previous chapter enables the sched­
uler to independently estimate the runtime of jobs waiting in the queue - a highly 
desirable functionality which can aid in many aspects of the scheduling including 
the widely used backfilling* technique [201], and yield management approaches 
to maximising service cluster profitability (see Appendix C.7). However, the pri­
mary motivation behind the simulation effort in this chapter is in establishing 
whether, and by what amount, the forecasted job execution times can help the 
scheduler turn the workload around to a certain, user requested, deadline.

To that end, a new scheduling algorithm understanding the notion of the job 
deadline and able to make use of the predicted job runtimes was needed. A worthy 
candidate was found in the real-time systems domain, and was for the first time 
applied to a job scheduling problem in the Grid context. Most importantly, no

*T he optim isation  process qu eu ein g  sm aller and shorter jobs ahead o f th e  larger ones w hich  
are unable to  start due to  insufficient resources.
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production or experimental distributed platform collects or stores the historical 
data on the requested turnaround times or job deadlines. As the performance of 
any deadline scheduler is highly influenced on the distribution of deadline times, a 
sensible generation model rooted in the empirical observations had to be selected.

W ith these goals in mind, the simulation runs were structured to answer the 
following three questions:

1. Can a predictive scheduling method deliver better job deadline adherence 
than the currently used batch approaches?

2. Considering the lack of the data on the user requested deadlines, how 
sensitive would the performance of the predictive scheduling be to different 
deadline generation models?

3. Does the improvement in the job runtime forecasts translate into better 
deadline adherence or not?

The above questions have focused the simulation implementation and indi­
cated important limitations to its scope. Scheduling of distributed and parallel 
workloads is an extensively researched topic grounded in the statistics and op­
timisation techniques. It was not within the scope of this work to propose, or 
indeed compare, different predictive scheduling techniques, some of which were 
previously discussed in the literature survey chapter (see Section 3.1.2). Algo­
rithms making better use of the job runtime predictions may exist, or be in 
development. The main aim of this simulation was to empirically show tha t the 
job runtime forecasts, of quality attained by the methods presented in this thesis, 
coupled with a reasonable predictive scheduling technique can lead to deadline 
scheduling with better deadline adherence than it is currently possible with the 
first-come-first-served methods.

Although two very different algorithms for generation of job deadlines have 
been tested, until the actual data from the first production deadline scheduler is 
available it is not possible to be certain of the distribution deadline values will 
have, their correlation with the actual job runtimes, or with other social and 
economical aspects.

6.2 Specific Methodology

The development of the scheduling simulator was supported by a specific method­
ology in the choice of the software coding language and technique, generation of 
the job deadlines, implementation of the novel scheduling method, and the selec­
tion of the performance metrics on which the new approach will be judged.
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6.2.1 Scheduling Methods

The selection of the scheduling methods to be used was influenced by the purpose 
of the simulation: to test whether the job runtime predictions generated by 
the developed forecasting method can deliver job scheduling to a user requested 
deadline.

The benchmark scheduling method, still in very wide use in the produc­
tion Grid clusters, is the basic FIFO queue, or first-come-first-served (FCFS) 
scheduling. UCL’s CCC Grid facility, from which the original workload trace 
was sourced, also uses this scheduling method. FCFS scheduling is implemented 
in the simulation by maintaining a stack of jobs in the order in which they were 
submitted. New jobs are appended at the tail of the stack while available nodes 
are sent jobs from the stack’s head.

With the availability of job runtime predictions, a deadline scheduling method 
is able to calculate the latest possible job start time in order to still make the 
requested deadline. By delaying the execution of the job until the remaining 
deadline time is just enough to finish the job, the resources are kept available 
in case a job with a ‘‘tighter” deadline arrives. This approach is the deadline 
scheduling method of choice in this simulation, and will be referred to as latest 
time to run first (abbreviated LTTR). It was implemented in the simulator by 
calculating the latest required job start time, as a difference between the job 
requested deadline and the predicted job run time, and sorting the entire queue 
in the ascending order:

L T T R { l )  — t(i) deadline t{i) estimate (6 .1)

The inspiration for implementing the LTTR deadline scheduling was drawn 
from the extensive research in the scheduling of the real-time systems using the 
earliest deadline first (EDF) algorithm. For a system with n independent tasks, 
all ready at time t = 0, where each job J\ has a deadline di, the lateness of 
a job i is defined as = f i  — d[, where /,■ is its completion time [202]. The 
maximum lateness of all jobs, provided the schedule in non-preemptive, can then 
be minimised by an earliest deadline first algorithm which places the jobs in 
the order of non-decreasing deadlines. This algorithm was originally given by 
Jackson in 1955 and has proven to be optimal in [203]. If the scheduling problem 
is altered so that not all jobs are released (submitted) at time t = 0 the scheduling 
problem becomes NP-hard, as shown by Graham and Lenstra in [204]. Allowing 
preemption generally makes the scheduling process easier, and Liu and Layland 
have in [205] proved the optimality of the EDF algorithm for such schedules.

LTTR is in essence an earliest deadline first approach, although the deadline 
(in the real-time systems sense) which the algorithm optimises on is not the 
actual user requested deadline, but rather the computed latest time at which the 
job could begin running and still finish within the limits of the user’s requested
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turnaround time. This im portant distinction allows for the non-correlated nature 
of the actual job runtimes and user’s deadlines, enabling the system to make a 
decision on what the real deadline for starting the job is. The application of the 
EDF approach to the Grid scheduling has been possible because the execution 
time of each queued job can be predicted using the forecasting engine presented 
in this thesis.

6.2.2 Scheduling Simulator

Due to the fact that a real Grid trace was used, the scheduling simulator was 
in effect a trace replay system. Since the workload consisted of independent, 
sequential tasks, the effect a different scheduling strategy would have on deadline 
adherence could simply be observed by changing the way in which queued jobs 
are dispatched. Hence, the scheduling simulator was expected to execute the 
following tasks in an efficient way:

1. Queue the incoming jobs for execution in a specific order stipulated by the 
scheduling method being examined.

2. Obtain the runtime prediction for each submitted job from the forecasting 
subsystem.

3. Simulate the assignment of jobs to a number of work nodes in a master-slave 
fashion.

4. Following the execution period equal to the actual job runtime on the real 
cluster record whether the deadline was missed and by what amount.

The simulator was implemented in ANSI C with API calls to MATLAB in 
order to interface with the job runtime prediction engine. Figure 6.1 shows the 
programme structure of the simulator.

The first stage of the simulator is the initialisation of the data structures and 
the parsing of input parameters such as the number of worker nodes and the 
starting time of the simulation. The waiting queue and the list of free worker 
nodes are implemented as singly linked lists and these are also created at this 
stage.

The main programme loop is the simulation clock, of which each increment 
corresponds to one second - the sampling period of the accounting data  collected 
from the production cluster. The loop is entered until no more jobs are available 
in the input file, no jobs are waiting in the queue and all nodes have finished 
running jobs assigned to them. The simulator thus ensures all jobs submitted 
in a given workload trace are run to completion and their deadline statistics 
captured.

At each time increment, the incoming job queue is checked for newly submit­
ted jobs and these are placed in the queue. Depending on the scheduling method
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Figure 6.1: Flowchart diagram of the scheduling simulator implementation

being simulated, the queue is then either kept sorted by the job submission time 
(FCFS), or re-sorted by the latest time to run (LTTR). The sorting of the linked 
list entries in this step is the most time consuming part of the simulation, and 
various optimisations were applied to increase the speed of this operation.

The simulator then proceeds to check each of the worker nodes for completed 
jobs, i.e. those jobs whose end time is equal to the current clock time. The 
number of the worker nodes in a simulation run is arbitrary but constant, and 
for all the results reported in this section was set to 100 to match the number of 
nodes of the actual CCC Grid from which the workload was sourced. For each 
completed job found, the simulator records the amount of time (in seconds and 
as a percentage of the actual job runtime) the job has underrun or overrun the
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deadline, and moves the node to the free node list.
The final stage within the main programme loop is the assignment of the 

waiting jobs to the available worker nodes. All worker nodes are treated equally 
and the jobs are presumed to have no dependency between them. Finally, if 
the conditions for exiting the main time loop have all been met, the simulator 
proceeds to flushing all file streams, releasing memory and shutting down.

The simulator was compiled using GCC ver. 4.1.1 under CentOS 5 running 
on Sun hardware. Each simulation run compromising the whole year’s worth of 
the workload trace took around 12 hours to complete.

6.2.3 Workload Trace

The simulation was entirely driven in a trace-replay fashion by the real workload 
collected on the production system: at no point does any part of the simulator 
see into the future nor makes any use of the events that have not yet occurred 
within the simulated time. The advantages of using the real workload trace are 
in its authenticity and heterogeneity, which may cause some difficulty explaining 
the simulation behaviour. Synthetic traces, which can easily be param etrised 
and sized, are always dependent on the quality, and the assumption made, by 
the generation algorithm. W ith this in mind, the production trace was selected 
for this simulation as it was extensively studied and had its representativeness 
confirmed in Chapter 4.

The simulation trace spanned the full 12 months of the period in which the 
CCC Grid cluster was monitored. The job runtime forecasting subsystem used the 
three dimensional partitioning based on the owner VO, week of submission and 
the job name, as introduced in Section 5.3.6. This job partitioning set was selected 
due to its superior prediction performance and the use of both the job ’s temporal 
and meta-data. To study the effect of the quality of the runtime predictions 
on the deadline adherence, two forecasting methods were compared. The simple 
median predictor (see Section 5.2.2) was contrasted to the best performing ARMA 
predictor (see Section 5.2.2). These results will be reported as LTTR-MD and 
LTTR-ARMA respectively.

6.2.4 Job Deadline Generation

Job deadlines are a novel metric in the context of job scheduling on the Grid and 
as such have not been used in the production systems or recorded in the existing 
workload traces. However, many of the backfilling job schedulers tha t require 
some indication of the job execution time have required that users state antici­
pated runtime of their jobs, and have made this information available through the 
accounting logs. This information was extensively studied arid ways of modelling 
the user estimates have previously been suggested by M u’alem [206], Tsafrir [207], 
Feitelson [208], Cirne and Berman [23] and others [59, 116].
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The author of this thesis proposes that the user estimates of job runtimes 
can be used as the basis for the generation of the missing job requested dead­
lines. Both metrics are user submitted time values and bear some relation to the 
amount of time they estimate (or would like) their jobs to run for. In the present 
schedulers user runtime estimates are treated as maximum execution time values, 
and jobs are killed upon reaching these times. The user is therefore inclined to 
grossly overestimate: research has shown that the maximum allowed runtime is 
the most often supplied user estimate [207, 116]. This would probably not hold 
true in the case of a simplistic user requested deadline, where the tendency would 
certainly be to request the shortest possible turnaround. However, coupled with 
a Grid economy system, the users could be given a strong incentive to specify the 
latest time after which the results of the job would have no value to them, thus 
increasing the proportion of relaxed deadlines and bringing the statistics closer in 
line with that of user runtime estimates. For simulation purposes, the deadlines 
were created using two different user runtime estimate modelling algorithms that 
have been commonly used in the literature.

Uniform Job Deadlines

With the uniform distribution deadline approach, the actual runtime of each job 
is multiplied by a random number drawn from a uniform probability distribution 
and added to the job’s submission time to generate the requested deadline:

D(i)  =  t(i)3ub +  (rt(i)act * f ( i )) (6.2)

This model, proposed in [206] and used in [209, 210], is also known as the 
“/-m odel” as it assumes that the job runtime estimates are uniformly distributed 
within [rt, ( f+l )r t]  where rt  is the job runtime and /  is some non-negative factor. 
Clearly, /  values of less than one generate unfeasible deadlines and, although 
these are likely to occur in the real world, are not used in this simulation. It 
is therefore a common practice to draw the deadline multiplier values from a 
distribution between 1 and 10, 20, 50. 100 or even 300. To create a challenging 
environment, a very low multiplier of 10 was selected for the deadlines used in the 
simulation. Therefore, no deadline was longer than ten times the actual execution 
time of the submitted job.

The histogram of the typical values drawn for the runtime multiplier, and 
the resulting distribution of the deadline times are shown in Figure 6.2. The 
distribution of the deadlines closely resembles that of the job runtimes, shown 
previously in Figure 4.15, as these are simply related by the /  multiplier.

Modal Job Deadlines

As an alternative, Tsafrir [207] has suggested, based an extensive research, that 
a more realistic model of the user runtime estimates, and therefore requested
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Figure 6.2: Histogram of deadline multiplier values /  drawn from a uniform dis­
tribution between 1 and 10 and the corresponding requested deadline cumulative 
distribution function.

deadlines, would be highly modal. Humans have a known tendency to round up 
time to convenient values such as 5, 15, 30, 60 minutes and 1, 2, 6, 12, 24 hours. 
By analysing the available workload traces containing user runtime estimates, 
Tsafrir has developed a methodology and tools for generating realistic estimate 
values. Modal deadlines used in this scheduling simulation are based on theses 
findings and have been generated using a modelling toolbox developed by Tsafrir 
[211 ],

The notable departure from the model was is the specifying the fraction of 
the jobs that were assigned the highest deadline value, tha t equal to the longest 
running job in the trace (in the CCC example this is around 3 months or close to 
8 - 106 seconds). Tsafrir and others have found that this value often attributes to 
almost a quarter of all user runtime estimates, but for this scheduling simulation 
this fraction was reduced to just 1% creating a very demanding deadline profile.

The resulting deadline distribution is shown in Figure 6.3(a), its step-like 
shape indicating strong modality and the preference for human-favoured values. 
Following Feitelson’s findings, the scatter plot of the job actual runtimes and their 
corresponding deadlines, Figure 6.3(b), shows a very weak correlation between 
the two. This would certainly hold for the job deadlines as well: provided all 
deadlines are feasible, their duration would only be conditional on the urgency 
of the job and its value to the user, and not on its actual execution time.

6.2.5 Performance Metrics

Judging the performance of the scheduling method, and the impact different 
job runtime prediction approaches have on the deadline adherence, becomes a 
challenging task when a long, highly heterogeneous, production workload trace 
is used. The simulation results will therefore be assessed on the following three



CHAPTER 6. DEADLINE SCHEDULING EVALUATION 146

D e ad lin e  d is tr ib u tio n  fu n c tio n  C o rre la tio n  o f  a c tu a l  jo b  ru n tim e s  vs. m o d a l d e a d lin e s

0.9

V1 0.8

0.7

■x 0.0

5  0 .5

o

0.3

|  0.2 £

io:!10-’ 1 0 ' 105 10 '

9

7

6

4
3

1

2 3 4 5 G

R e q u e s te d  d e a d lin e  [seconds x 10('j

8 91

(a) D eadline d istr ib u tio n  fun ction  (b) R u n tim e vs. D ead lin e  sca tter  plot

Figure 6.3: Cumulative distribution function of deadline multiplier values /  gen­
erated using a modal algorithm and showing strong preference for human ” round” 
values. The scatter plot indicates a very weak correlation between job runtime 
and requested deadline.

metrics:

Deadline hit ratio is the first and the most obvious performance metric. The 
ultimate goal is to maximise the number of jobs finished before their deadline for 
any given workload. While this criteria is easy to relate to, it treats all missed 
deadlines equally, without respect to the amount of the deadline overrun. In a 
soft-deadline system, such as the proposed Grid deadline scheduling, a certain 
degree of leniency is implied and a small amount of deadline overrun may be 
acceptable (provided a certain virtual ‘‘monetary” credit is given back to the 
user in the Grid economy concept).

Deadline breakage statistic looks at the location and dispersion of overrun times 
and tries to explain in more detail how well the scheduler has managed the 
deadlines. Clearly, an approach with a lower average overrun, lower dispersion 
and a smaller number of outlier values is more desirable and leads to better, 
more dependable performance. In examining the amount of deadline breakage 
both absolute (seconds) and relative (percentage of the actual job runtime) values 
will be considered. Any scheduler bias, or preferential treatm ent of a certain class 
of jobs, would be made obvious by a larger disagreement of these two measures.

Underrun and overrun distributions plotted as the cumulative distribution func­
tions round up the analysis of deadline adherence for each scheduling method and 
offer a way of direct comparison. Preferably, overrun times distribution should 
be head heavy, and can be used to study the effect that ”softening” the deadlines 
would have on the fraction of completed jobs. Distribution of deadline underruns 
is equally important, as heavy tail behaviour indicates lower optimisation with
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more slack time and thus lower overall utilisation. Ideally, the scheduler would 
have all the jobs finish as close to the deadline as possible to increase the chance 
of servicing an unexpected demand of short deadline (and thus high value) jobs.

6.3 Deadline Scheduling Performance

This section will present and discuss the results of the scheduling simulation using 
different job execution time forecasting algorithms and scheduling methods. Care 
was taken to present the same input workload to the simulator on each run, and 
in cases where this was not strictly possible (for example due to different training 
requirements of the MD and ARMA prediction methods the number of jobs 
was slightly different), checks were made to ensure the overall integrity of the 
workload.

Given the importance of the deadline distributions on the scheduling perfor­
mance, results are reported separately for the two deadline generation methods.

6.3.1 Fraction of Deadlines Made

Two bar chart plots in Figure 6.4 show the percentage of jobs tha t have been run 
and completed prior to their, simulated, user requested deadline. Immediately 
obvious is the fact that at least three quarters of the jobs, whether scheduled using 
FCFS or LTTR strategies, finished before the deadline. The results also reveal 
a rather small difference between the on-time completion of the jobs scheduled 
using the FCFS and the predictive scheduling methods. For uniform deadline 
distribution, the best performing method is the LTTR-MD followed by the LTTR- 
ARMA. The difference between each of these and FCFS is around 1% - 1.5% or 
6000 to 7500 jobs. In the case of modal deadlines, LTTR-ARMA is clearly the 
best performing method leading FCFS by almost 5% (or 30,000 jobs).

The deadline hit ratio metric, although showing a measurable level of perfor­
mance improvement, suggested tha t the benefit of using the predictive scheduling 
method was less than anticipated. In depth analysis of the job arrivals and their 
durations in the input workload revealed that for the first six months the facility 
was able to service all the submitted jobs with a manageable amount of con­
tention. Around week 34 however, the cluster had suddenly become saturated 
with numerous submissions of very long running jobs (see the ‘‘hotspot” in Fig­
ure 4.40 on page 106). This causes all the jobs submitted after this time to miss 
their deadlines due to the lack of available resources, regardless of the scheduling 
methods applied.

6.3.2 Deadlines Breakage Statistics

The starvation of resources tha t the Grid was experiencing further stresses the 
need to compare the amount of deadline overrun between the scheduling methods,
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Figure 6.4: Percentage of jobs finishing on or before their requested deadline 
for uniform and modal deadline distributions. For uniform deadlines, predic­
tive methods achieve around 1.5% improvement, while for modal deadlines the 
adherence is increased by almost 5%

and use it to assess which approach has managed to best minimise the negative 
effect of the lack of resources.

Comparison of Breakage Times between Scheduling Methods

Figure 6.5 compares the mean deadline miss times (in seconds) between the 
scheduling methods for both uniform and modal deadlines. The benefit of the 
predictive approach in now clearly visible as both LTTR-MD and LTTR-ARMA 
methods have significantly lower average deadline miss times than the FCFS. In 
fact, the LTTR-ARM A has reduced the mean overrun time by almost 11 times 
compared to the first come first served scheduling.

These results show that faced by the inevitable missing of the requested 
deadline due to the lack of resources, predictive approaches are still able to 
prioritise remaining workload to reduce the amount of mean deadline overrun. 
The superior prediction capability of the ARMA model enabled the scheduler to 
prioritise the jobs more precisely and time their execution closer to the deadline. 
As a result, LTTR-ARM A has managed to deliver mean overrun times almost 
five times lower than those of LTTR-MD.

Figure 6.6 shows deadline miss times as percentages of the actual job run 
time. The plot confirms the superiority of the predictive scheduling methods, 
and in particular the LTTR-ARMA approach. The importance of these measures 
is in weighing the amount of scheduling bias placed on the long running jobs. 
The absolute value (in seconds) of the deadline overrun time could have simply 
been reduced by ensuring very long jobs do not miss their deadlines at the cost 
of penalising shorter jobs. However no such bias was detected, as shown by 
improvements in this scale insensitive metric.
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Figure 6.5: Comparison of central tendencies in absolute terms (seconds) of 
deadline overruns using mean values. Predictive methods exhibit significantly 
lower average overrun with both uniform and modal deadlines

Location and Dispersion of Deadline Breakage Times

In a data set with outlier values or skew, the mean is often a poor representation 
of the central tendency of the distribution. From the scheduling performance 
perspective, the presence of these extreme values and asymmetry in the deadline 
overrun times is a negative characteristic reducing the reliability of deadline 
adherence.

Box plots of the deadline overrun times for the uniform deadline distribution, 
given in Figure 6.7(a). show a significant reduction in the number and scale of
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Figure 6.6: Comparison of central tendencies in relative terms (percentage of 
actual job times) of deadline overruns using mean values. Predictive methods ex­
hibit significantly lower average overrun with both uniform and modal deadlines. 
Comparison with the absolute terms plot reveals no bias towards short running 
jobs.
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Figure 6.7: Comparison of location and dispersion of deadline overruns in absolute 
terms (seconds) between scheduling methods for uniform deadline distribution. 
Figure (b) shows a zoomed in view of the same data without outlier values. 
Predictive methods exhibit significantly lower median values, less extreme outliers 
and smaller interquartile range than the non-predictive FCFS method.

extreme outlier values between the FCFS and the LTTR-MD. The LTTR-ARM A 
was especially successful, with very few remaining outliers close to the upper 
quartile of the distribution.

To better judge the medians and interquartile ranges of the overrun times for 
the three scheduling methods, the box plot was redrawn in Figure 6.7(b) with 
the outliers removed. Again, LTTR-ARM A performs best with the lowest central 
tendency and the tightest value distribution. It is also the least skewed of the 
considered approaches, with its mean and median most closely matched.

A similar set of plots in Figure 6.8 examine the deadline miss times for the 
modal deadline distribution. The behaviour of the scheduling methods is very 
similar to the uniform model, with somewhere higher medians due to the more 
demanding deadline model. The combination of the predictive scheduling and 
good forecasting performance in the LTTR-ARMA approach leads to the lowest 
number of outlier values, lowest median and the lowest dispersion amongst the 
methods considered.

6.3.3 Distribution Functions of Deadline Adherence

Previous metrics have mainly dealt with the deadline misses and the overrun 
times, the most important performance aspects of the deadline scheduler. How­
ever, the amount of spare time left to the requested deadline following a job’s 
completion is another measure of the efficiency of the scheduler. While a certain 
amount of such slack is desirable to avoid over-reliance on the accuracy of pre­
dicted job execution times, large amounts of spare time could be an indication of 
either poor runtime forecasts or poor ordering of jobs by the scheduler.
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Figure 6.8: Comparison of location and dispersion of deadline overruns in absolute 
terms (seconds) between scheduling methods for modal deadline distribution. 
Figure (b) shows a zoomed in view of the same data without outlier values. Even 
for more challenging modal deadlines, predictive methods show vastly superior 
performance compared to non-predictive FCFS method.

Figure 6.9 shows the distribution function of spare time to deadline for the 
uniform and the modal deadline distributions. Analysing the uniform deadline 
plot, the distributions for the FCFS and the LTTR-MD approaches are almost 
identical. The LTTR-ARMA curve has a slightly steeper slope and a better 
tail-off characteristic indicating tha t 95% of jobs finish with less than 500 sec­
onds of spare time compared to 1450 seconds for the LTTR-MD and the FCFS 
approaches.

In the case of modal deadlines, the spare time distributions of all three 
scheduling methods are almost identical. One of the reasons is certainly the more 
demanding deadline model, and the loss of sensitivity due to the uncorrelated 
and modal nature of the deadlines.

The cumulative distribution functions of the deadline overrun times are given 
in Figure 6.10. Both predictive scheduling methods have steeper slopes than the 
FCFS indicating better adherence with lower overruns for any given probability 
percentile. In particular, the LTTR-ARMA curve does not suffer from a long tail 
behaviour which was the cause of numerous outliers in the other two scheduling 
methods.

Similar performance benefits from the use of predictive scheduling are evident 
with the modal deadline distribution. These plots are also valuable in considering 
the effect that “softening” the deadline would have on the fraction of made 
deadlines. For example, a “safety factor” of 1000 seconds applied to modal 
deadlines would, in case of the FCFS scheduling shift another 10% of the jobs 
from missing the deadline to making it. But for the predictive approaches, the 
same safety margin would have caused over 30% more jobs to make the deadline.
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Figure 6.9: Comparison of cumulative distribution functions of deadline spare 
time in absolute terms (seconds) between scheduling methods for uniform and 
modal deadlines. Compared to other considered approaches LTTR-ARMA 
method exhibits best just-in-time scheduling performance with lowest amount 
of deadline spare time.

6.4 Chapter Summary

The chapter has analysed the deadline adherence performance of a novel pre­
dictive scheduling algorithm dependent on the job runtime forecasting system 
developed by the author. The simulation methodology has looked at the influ­
ence of the accuracy of job execution time predictions on the deadline overrun 
times, and the sensitivity of those values to the deadline generation model used. 

The results have shown that, despite the resource starvation and subsequent

Distribution of deadline miss times Distribution of deadline miss times

 FCFS
-  -  LTTR-MD 

LTTR-ARMA
0.9

5P 0.6

0.5

0.4

0.3

i2 io4 i
Deadline missed by [seconds]

 FCFS
-  -  LTTR-MD 

LTTR-ARMA
H 0-9 

V 0.8

! «  

g> 0.6

0.5
o 0.4o

0.3 
■§
•S 0.21ft. 0.1

10° I2 104
Deadline missed by [seconds]

(a) Uniform  d ead lines (b) M odal dead lines

Figure 6.10: Comparison of cumulative distribution functions of deadline overruns 
in absolute terms (seconds) between scheduling methods for uniform and modal 
deadlines. Compared to other considered approaches LTTR-ARMA method ex­
hibits shortest tail-off and hence least amount of outlier values.
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mass missing of the deadlines, the latest time to run (LTTR) predictive scheduling 
method managed to greatly reduce the amount of deadline overrun compared 
to the common first-come-first-served batch scheduling method. The value of 
accurate job execution time predictions was underlined by the LTTR-ARMA 
method which delivered best overall performance the with lowest average overrun 
times (both mean and median), smallest dispersion of overrun values (very few 
extreme outlier values and smallest interquartile range), and the best queue 
optimisation with the smallest amount of slack time.



Chapter 7

Related Work

The literature survey given earlier in Chapter 3 offered an overview of the previ­
ous research work relevant to the Grid scheduling, predictions of the resource’s 
performance and job metrics, characterisation of distributed system’s workload 
and other related topics. The purpose of this chapter is to compare and discuss 
the approaches, methods and findings of this thesis to those of the most recent 
and most similar work by other scientists.

7.1 Workload Characterisation

The majority of the past distributed workload characterisation studies have been 
done based on a limited number of traces collected in the 1980-90s at the legacy 
parallel clusters and deposited in the Parallel Workload Archive*. While these 
are useful as a general starting point for research into the properties of the Grid 
workload, the specific design issues and resource management policies (already 
discussed in Section 2.1) of the Grid suggest these characterisation studies are not 
sufficiently representative of the likely load presented to a utility compute Grid. 
This section will therefore only treat the most recent attem pts to characterise 
Grid workload based on the traces collected by other researcher in the period 
2003-2005 (made publicly available in 2006) and compare them to the findings of 
this thesis.

Hui Li, David Groep and Lex Walters have in [26] studied a 2003, 12 month trace 
from the Distributed ASCI Supercomputer 2 [212] (DAS-2), a research Grid fa­
cility made up of homogeneous commodity hardware. The purpose of this study 
was to model the workload characteristics and enable the evaluation of differ­
ent scheduling approaches. Li has found the facility to be highly underutilised 
with average load between 6-22% which, compared to a production facility such
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as the CCC with load exceeding 80%, to some extent trivialises the resource 
management and scheduling process.

DAS-2 job arrivals show a pronounced weekly and daily cycle with peak 
submissions on Wednesday and between 09:00 and 19:00 hours, while the yearly 
and monthly cycles are not clear. Both of these findings agree with the arrival 
process observed at the CCC. Analysing the job parallelism, the author’s have 
found ambiguous correlation to the job runtime, and have observed the previously 
reported tendency for power-of-2 requested CPU values, although 62% of jobs 
require only one or two CPUs. This is a strong indication of the presence of 
serial jobs as the local policies on DAS-2 prevent assignment of different jobs 
onto different CPUs of the same dual-CPU machine.

The job memory usage was low and very modal (due to the use of shared 
libraries) and strongly correlated to the job runtimes. While the same was found 
to be true in the CCC trace, the nature of the memory usage monitoring generally 
prevents this information to be used for ex-ante predictions of the execution times. 
Jobs were found to run between 374 and 2427 seconds, very modest compared 
to the CCC’s span of seven orders of magnitude, and attributed to the research 
nature of the facility. Regardless of this, the reported coefficient of variation 
(CV) of job runtimes is up to 16. As a consequence, the suggested Weibull and 
log-normal distributions does not provide a very good fit when applied to the 
non-partitioned workload.

The study briefly looks at the user behaviour finding repetitive behaviour in 
the submission of jobs: a small number of applications are run very frequently 
and a much larger fraction jobs are run just once. Contrary to the numerous 
other reports previously discussed, Li finds significant correlation between the 
actual job runtime and the user’s requested time. Overall, the choice of the 
characterisation approach and studied metrics taken by Li supports and validates 
those taken by the author of this thesis. The analysed trace however seems to 
lack the diversity and dynamics of a production environment such as the CCC.

Alexandru losup, Hui Li, Lex Walters et al in [157] build on their previous work by 
examining traces extending over six or more months of the year 2005 from three 
production Grids (LCG [213], Grid3 [214] and TeraGrid [215]) and an academic 
research Grid (DAS-2 [212]). The work aims to offer a general insight into how 
today’s Grids are used and help in designing the infrastructure and services for 
future installations. Additional focus of the work is in quantifying the fairness of 
the delivered scheduling and the level of user satisfaction. The work concludes 
with a discussion of the data collection problems on the Grid and calls for a 
better integration of the Grid resource monitoring systems, much in line with 
the author’s arguments for developing an extension to the Ganglia monitoring 
system (see Appendix A.2).

The authors report high utilisation levels (60-80%) on production systems,
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and a low load of only up to 10% on the DAS-2 research Grid. Such findings 
confirm tha t the CCC, with its utilisation of over 80% is indeed a very highly 
loaded, and thus difficult to schedule system. The observed arrival process is 
strongly influenced by the weekly and daily cycles, while the inter-arrival times 
are very bursty and indicative of “bag-of-tasks” submissions. Memory use on 
these systems is also reported to be highly modal.

Analysing the job execution times, the study has found production facilities 
running much longer jobs (with the mean of «  15,000s, and the 95^ percentile 
of «  60,000s) than the academic ones (with the mean of «  350s, and the 95th 
percentile of «  600s). The CCC job runtimes are therefore similar to those 
reported for the other production Grids, as was shown in Figure 4.15 on page 83. 
Iosup also reports that an overwhelming fraction of jobs on the production Grids 
are of either serial or “embarrassingly parallel” type requesting a single CPU and 
requiring no synchronisation with the other job instances. Even on the DAS-2 
research grid, they report the number of serial jobs submitted increasing tenfold 
in two years.

Considering user behaviour, the authors of this characterisation study have 
noted the so called 10/90 phenomenon with a small number of users subm itting 
largest numbers of jobs and a small number of jobs responsible for largest fraction 
of the CPU usage. The workload was also evolving over time, and this was evident 
at the system, VO and user levels. Both of these findings are consistent with the 
behaviour observed at the CCC which was crucial in developing the approach 
presented in this thesis.

Emmanuel Medernach in [27] examines a 10 month, 2005 LPC cluster in the 
EGEE Grid [29] workload in the context of modelling (using Markov chains) and 
simulating different scheduling policies. The cluster considered is a homogeneous, 
space shared installation and a part of the EGEE infrastructure. The workload 
is analysed with respect to two partitioning metrics, VO owning the job and the 
queue to which the job was submitted. The workload consists of only two user 
applications and regular administrative jobs and therefore compares poorly to 
the diversity found in the CCC trace.

Medernach analyses the arrival process and observes a daily cycle with a spike 
of job submissions at full hours due to the repetitive and automated submission 
of the administrative test jobs. Arrivals are non-Poisson, bursty and with a high 
CV value. In examining the job queue times, Medernach observes their very 
high CV value («  22) and comments on the wide variation of waiting times 
experienced by different VOs, and the blocking of shorter jobs by the very long 
running ones. This leads to the suggestion that a measure of “relative urgency” 
would be beneficial, and further motivates the deadline approach taken in this 
thesis.

Considering the job execution times, this study finds that a general model
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spanning the entire distribution is unlikely and proposes a high order (3-6) log- 
uniform one. The author has found user predictions of the job runtimes to be 
inaccurate and generally uncorrelated to the actual execution times. Importantly, 
Medernach has found job execution times are strongly autocorrelated, thus con­
firming the CCC findings and supporting the time-series forecasting approach 
taken in this thesis.

Menno Dobber, Rob van der Mei and Ger Koole in [28] examine the execution 
times of compute-bound jobs on the PlanetLab [216] space and time shared 
heterogeneous academic research Grid. Unfortunately, the workload is synthetic, 
generated by the authors running consecutive and identical tasks and is therefore 
of very limited use in studying the usage of production Grid clusters.

Regardless, they have found that, due to the process preemption on the time 
shared hardware, the job runtime distribution is bursty and with many high 
value outliers - suggesting a long-tailed effect may be present. Dobber observed 
great variability of the runtimes indicated by a high CV value, and their strong 
autocorrelation leading to a more pronounced long-term fluctuation.

Summary

The characterisation of the Grid workload is still very scarce due to the novelty 
of the Grid technology and the limited amount of the available production Grid 
traces. Presented work supports the views taken in this thesis tha t a utility com­
pute Grid would be a space shared, non pre-emptive, homogeneous resource on 
the individual cluster level. The majority of the characterisation work investi­
gates the properties of the job arrival cycle and the job runtimes, reporting on 
their value distributions, seasonality, and variability (by using the coefficient of 
variation metric).

Job arrival cycle 

Daily Weekly Bursty

Modal Memory Use Utilisation

Li • • • • 5-10%
Iosup • • • • 60-85%
Mendernach • •
Lazarevic • • • 89%

Table 7.1: Comparison of related Grid workload characterisation research with 
respect to job arrival patterns, job memory allocation and overall system utilisa­
tion.

A summary of the findings by the reviewed work relating to the job arrival 
cycle and the overall facility utilisation is given in Table 7.1. The daily cycle was 
reported in all of the workloads, and the weekly in all but one. The utilisation
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varied significantly depending on the nature of the facility but was generally 
under 10% for academic installations and over 60% for production Grids.

The overview of the statistical properties of the job runtimes, job queueing 
times and the fraction of parallel jobs for the reviewed characterisation studies is 
given in Table 7.2. Clearly, the range of job execution times varies significantly 
between the Grid installations, and is an im portant aspect into their target use. 
A very short maximum job runtime, like those reported by Li and Dobber, imply 
tha t those Grids are mostly used as testbeds and are not representative of a more 
complex workload expected at a production facility.

The tendency of the users to almost exclusively submit sequential jobs is 
supported by all of the listed studies, which also unanimously report the log- 
normality of runtimes and their high variability. The properties of the queue wait 
times, where reported, are also characterised by a high variability. Their other 
statistical properties, including their central tendency, are highly conditional on 
the arrival process and the distribution of job runtime values.

Job execution time

Range (s) CV Distrib. Pari, jobs Queue time
log-normal

Li < 2500 5 - 1 6 gamma
weibul

38%

Iosup < 5 • 105 2 - 1 2 log-normal «  0% modal
short

high CV

Medernach < 1.7- 105 3 - 1 2 log-normal

long-tail

0% varies
between

VOs

Dobber < 120 0 .2 -  1.8 multimodal
autocorrelated

0%

Lazarevic < 106 0.6 -  15
log-normal
long-tailed

autocorrelated
0%

high CV 
long-tailed

Table 7.2: Comparison of related Grid workload characterisation research with 
respect to job execution time, degree of job parallelism and queue wait times.

Overall, the survey of the closely related Grid workload characterisation re­
search supports the findings of this thesis and highlights its distinct contributions 
in the analysis of the evolution of job properties and their temporal characteris­
tics. The need for further studies on the usage statistics of the real-world, pro­
duction Grids is clear and motivated by the importance of the load characteristic 
in all stages of Grid system planning, provisioning and management.
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7.2 Job Execution Time Forecasting

From the survey of previous work given in Chapter 3, it is evident tha t various 
predictive techniques were extensively used to forecast the dynamic properties of 
the distributed computing systems, such as the network performance, host load 
or available memory. Different approaches were also suggested for prediction 
of the execution times of distributed computing jobs and the closely dependent 
metric of queue wait times and job start times. In this section, the focus will be 
on comparing the work presented in this thesis to the most recent and relevant 
research that uses historical Grid utilisation to predict future job execution times.

In this context, it became clear from workload characterisation experiences 
that for all but the trivial workloads, jobs must in some way be grouped or 
partitioned into similarly behaving clusters before attem pting to fit them with a 
predictive model. The primary comparison between this thesis and the previous 
work will therefore be based on the two following aspects: the metrics and the 
methods by which the entire workload is partitioned, and the actual forecasting 
algorithms used to make the predictions.

Warren Smith, Ian Foster and Valerie Taylor in [126] focus on developing a search 
algorithm for job properties yielding the best similarity and predictability. The 
authors implement an autom ated discovery of partitioning metrics based on the 
greedy search and genetic algorithms. In line with the CCC results, they have 
found that the job owner and the job name are the most significant partitioning 
metrics. However. Smith does not look into the temporal job properties (such as 
the time and date of submission) but defers this for further work.

Forecasts of the job runtimes are made either as absolute values or relative 
to the user supplied execution time estimate. Contrary to commonly reported 
results, Smith has found tha t the use of user estimates improves the accuracy 
of predictions by 23-43%. These predictions were made using two prediction 
algorithms: MEAN - averaging over the entire history of similar jobs, and LR 
- linear regression over the previous job runtimes and the requested number 
of CPUs. Smith reports the accuracy in absolute terms (minutes) and as a 
percentage of mean job runtime ranging between 40-58% for genetic algorithm 
and 40-65% for greedy search.

Unfortunately. Sm ith’s work is based on 12 month long traces from four 
parallel clusters dating back to 1995-96 which are not representative of the current 
Grid usage (see Section 2.1). The choice of the accuracy measures together with 
the unknown statistical properties of the job runtimes makes direct comparison of 
results difficult. The forecasting methods are simple and largely nonparametric 
but they do have a significant prediction error. However, the better performing 
genetic algorithm is generally considered computationally expensive [217] and 
may not be suitable for online use with extensive Grid usage histories.
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Byoung-Dai Lee and Jennifer Schopf in [129] aim to predict the application run­
times on space and time shared homogeneous resources with a varying background 
load. They propose the use of '‘filters” to generate subsets of similar job runs 
and resource conditions based on the application input parameters, degree of 
job parallelism and '‘resource capacity” metrics such as the machine load, net­
work bandwidth and latency. Predictions are generated using a linear regression 
algorithm and its accuracy reported using normalised percentage error.

Presented results show a significant improvement in forecasting performance 
when a filter is applied, reducing the average error from almost 50% to between 
20% and 30%. However, the selection or the number of filter criteria does not 
reduce the error any further. From a number of offered resource status metrics, 
the measure of background load is the dominant one consistently leading to the 
best predictions.

Despite returning more accurate runtime predictions using a similarly simple 
forecasting algorithm as Smith. Lee significantly limits his scope, and thus appli­
cability of his approach, to applications with deterministic runtimes influenced 
only by their input parameters and not by the distribution of the input data  set. 
The performance of Lee’s prediction method is evaluated by using only two cus­
tom applications run separately, which is hardly representative of the real-world 
workload reported on the production Grids.

Hui Li, David Groep, Jeff Templon and Lex Wolters in [218] predict job execution 
times in the context of queue wait time forecasts. The work is based on a 3 
month 2003 trace from the NIKHEF cluster of the European D ata Grid facility 
[219]. They consider partitioning the workload using all metrics available in 
the standard accounting records such as the job's subm itting username and VO. 
the name of the job and its submission queue as well as the number of requested 
CPUs. The grouping metrics are selected using an undisclosed and undocumented 
heuristic approach which has excluded the degree of parallelism and the job 
name as parameters providing no extra categorisation information. No temporal 
metrics have been considered or used in partitioning the workload.

Li implements a windowed mean (WM) and linear regression (LR) forecasting 
algorithms and undertakes a limited quantitative analysis to choose the best order 
for these. He concludes shorter windows sizes are better and selects WM(1) and 
LR(5) as the predictors. The accuracy measures are simply reported in absolute 
terms, as the average error in seconds, and as the percentage value of the average 
job runtime. These errors were in the 14-35% range. Li has also implemented a 
simple “expert system" which selects the next forecast based on the error values 
made in the previous prediction step.

This work is a noteworthy attem pt at generating job runtime predictions 
based on the historical information, and had produced usable results. The 
NIKHEF workload is not widely used and analysed and. by the very limited
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information provided by Li (average runtime of 4672 and 11537 job entries), it 
is not possible to conclude how deterministic the workload is and whether its 
statistical properties are indeed representative of a production utility Grid. The 
heuristic used for the job partitioning has not been discussed, and it is unclear 
if this process is autom ated and adaptable to different usage patterns. The 
exclusion of the job name metric is contrary to the CCC findings where such 
information, although not always available, was shown to be of good use. Li 
has used simple prediction algorithms, and while they gave reasonable accuracy, 
the process of their param etrisation seems opaque. As with other related work, 
the offered accuracy measures are not directly comparable and should only be 
considered together with the workload used. In his most recent work [220], Li 
has looked at using the genetic algorithms at the workload partitioning stage 
and implementing instance based learning [221] runtime predictors.

David Talby, Dan Tsafrir, Zviki Goldberg and Dror Feitelson in [222] aim to replace 
the user runtime estimates in backfilling* FCFS schedulers with system-generated 
predictions. The work is an extensions of Tsafrir’s simple forecasting method 
(presented in [158]) of averaging the runtime of the last two jobs subm itted by the 
same user. For grouping of similar jobs, Talby uses the degree of job parallelism, 
the user’s runtime estimate and the executable name. But the proposed matching 
algorithm requires an explicit and ordered list of these criteria to be supplied. The 
work also proposes a novel partitioning algorithm based on the concept of ‘‘user 
sessions” : continuous temporal periods of per-user activity which were formalised 
by Zilber in [223] and found to have reduced variance between subm itted jobs. 
Talby attributes jobs to the same session if the think time^ between them  is less 
than 20 minutes, a value taken from [223].

The prediction algorithm is a simple median of the last three jobs matching 
the similarity requirements. The accuracy measures used are relative to the 
author’s previous implementations and are very difficult to interpret and compare. 
Contrary to their starting point in Tsafrir’s work [158], the authors strongly 
favour job similarity over recency.

Although this work is based on an extensive workload collection of over 
400,000 jobs from four different parallel computer sites, these are likely to 
have significantly different statistical properties than modern Grid installations. 
The interesting approach of user sessions offers strong support for considering 
the temporal characteristics and the evolution of the workload as was done 
in this thesis. Despite this. Talby’s work is dependent on too many arbitrary 
parameters to be truly applicable in the context of an automated, utility 
computing environment.

’ T h e optim isation  process qu eu ein g  sm aller and shorter jo b s ahead o f  th e  larger on es w hich  
are unable to  start due to  insufficient resources.

^Defined as tim e  betw een  th e  term in ation  o f th e  previous and th e  su bm ission  o f th e  next
job
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Peter A. Dinda has in [128] introduced a Running Time Advisor system for pre­
dicting the execution times of compute bound, moldable and interactive virtual­
isation applications on homogeneous space and time shared distributed systems. 
The basis of this work is D inda’s previous seminal research into the prediction of 
host load using time-series models [107].

Due to a very specific and narrow scope of the applications whose execution 
times it is intended to predict, Running Time Advisor does not attem pt to group 
the jobs into similarly behaving groups. Instead, the predictions of the running 
time of a task are computed from the prediction of the host load and the nominal 
execution time of a task on an unloaded host. Therefore, the Running Time 
Advisor effectively predicts the slowdown an application of a known execution 
time will experience due to the background load on the worker node.

Dinda’s work on the prediction of the host load and his use of time-series anal­
ysis and forecasting methods wTere a significant inspiration for the work presented 
in this thesis. However useful the presented approach could be within a specific 
and limited domain, the algorithm’s dependence on the nominal job execution 
time (which is either supplied explicitly or measured by running a job on an 
unloaded worker node) makes it incompatible with the utility Grid environment.

Richard Gibbons and his Historical Application Profiler [152] is often quoted as 
the first work in the context of the job runtimes predictions based on the historical 
information. Gibbons has established the basis for the use of job properties, and 
the coefficient of variation of their runtimes, to partition the workload into more 
predictable sets. For that purpose he used the job name, owner’s username, the 
degree of parallelism and the time the job has already executed for at the time 
of making the prediction (job age). These metrics were manually combined into 
six static templates used for making forecasts.

Gibbons used the mean of previous job runtimes as the primary forecasting 
algorithm, applying a liner regression over the number of requested CPUs if 
such number of nodes has not been requested before. The Historical Application 
Profiler was tested with a synthetic load consisting of 200 jobs subm itted with 
an exponential inter-arrival times with the mean of 150 seconds. Later Grid 
workload characterisation studies, including the one given in this thesis, have 
found this not to be a representative behaviour. The same data indicated that 
the mean is not a reasonable predictor due to the extensive skew present in the 
distribution of job runtimes.

Allen Downey in [109] focuses on the prediction of queue wait times based on the 
forecasts of the remaining job execution times for the jobs queued. The approach 
was tested on the 1994-96 traces from the SDSC Paragon [224] and CTC IBM 
SP2 [225] space shared homogeneous parallel clusters. Workload partitioning was 
done only on the basis of the scheduler queue to which the job was submitted.
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Downey proposed a technique tha t categorised all applications in the workload 
and modelled the cumulative distribution functions of their execution times. The 
predictions were then made either using the median lifetime model (given a 
certain age of the job) or a conditional average lifetime. These techniques perform 
best in predicting how long a job will run considering it has already executed for a 
given amount of time. Downey primarily used those forecasts to predict the time 
until n additional CPUs will become available leading to unblocking of queued 
parallel jobs.

Downey’s work was the first to report 011 the log-normal distribution of the 
job runtimes, a property, also found in the CCC workload, which he continued 
to examine in [25]. His prediction methods, although simple and effective, were 
found not to be well suited to estimating the runtime of jobs at age zero, in other 
words while they are pending in the queue [126]. A11 often raised critique of this 
work is that Downey has used the entire trace to parametrise the distributions 
subsequently used to make the forecasts of the very same workload. The reliance 
on the user’s selection of the submission queue as a single metric for defining the 
job similarity leads to a significant degradation of runtime prediction accuracy 
as the user’s estimate of the job execution time (and thus his selection of the 
submission queue) worsens.

Summary

The survey of the most closely related work treating the job execution time 
predictions based on the historical information showed all of the approaches 
attem pted to group the jobs into partitions or clusters of similar behaviour in 
order to reduce the variance of the job runtimes and facilitate the prediction using 
their selected statistical forecasting method. For this purpose, the majority of 
the work uses a few basic job properties and, with the exception of the Talby’s 
session based approach, none makes use of the temporal information associated 
with the job. Methods of workload partitioning range from trivial fixed sets to 
the computationally expensive genetic algorithms but are all too often not based 
on a rigorous examination of the relationships between the job metrics found in 
the representative Grid traces. A11 overview of the partitioning metrics used by 
the author and fellow researchers is given in Table 7.3.

The most popular forecasting algorithms are based 011 the estimation of the 
central tendency of a group of similar jobs using either mean or median predictors. 
Linear regression is another often used technique, and was combined with the job 
degree of parallelism property to exploit its relationship to the runtime found in 
some of the workloads. Despite the overwhelming evidence that the job execution 
times are auto-correlated 110 previous work has suggested or attem pted modeling 
them using any time-series methods similar to those presented in this thesis. A11 

overview of prediction methods used is given in Table 7.4.
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Workload partitioning methods

VO User Job name Par all. Queue Arg. User Est. Temp.

Smith • •  • • •
Lee • •
Li • • •  • •
Tsafrir •
Talby •  • •
Dinda
Gibbons • •  •
Downey •
Lazarevic • • • •

Table 7.3: Comparison of related job execution time forecasting research with 
respect to workload partitioning methods used to define “similar” jobs. Shown 
job properties are submitting VO and username, executable or job name, de­
gree of job parallelism, queue name to which the job was submitted, command 
line arguments passed to the job, user’s estimate of job runtime and temporal 
properties such as time of submission.

Prediction algorithms

Mean Median Min-Max LR ES AR MA AR(I,F)MA

Smith •
Lee
Li #(W ) 
Tsafrir #(W ) 
Talby 
Dinda
Gibbons •  
Downey •  
Lazarevic

•
•
•

#(W ) «(W )
•  (W)

•
•
•

•

•  •

•  •  

•  •

Table 7.4: Comparison of related job execution time forecasting research with 
respect to statistical prediction methods used. Shown predictors are mean (win-
dowed), median (windowed), minimum - maximum (windowed), linear regres­
sion, exponential smoothing, auto-regressive, moving average and a family of 
auto-regressive integrated fractional moving average methods.
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7.3 Deadline Scheduling on the Grid

Research activities in the Grid scheduling field closely reflect the popularity of 
the backfilling FCFS schedulers and mostly deal with the incremental improve­
ments of such algorithms. Although the concept of deadline scheduling is a well 
researched topic in the real-time systems, it has seldom been considered in the 
context of scheduling jobs on the distributed platforms such as the Grid. This 
section introduces previous work tha t has attem pted to deliver scheduling to a 
user requested deadline, and discussed their relevance to the methods given in 
this thesis.

Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, Francine Berman in [226] 
focus on scheduling of independent serial jobs in the multi-client multi-server 
environments such as the network-enabled servers (NES [18]) and the com puta­
tional Grids. The aim of the work is to minimise the overall occurrences of the 
deadline misses and their magnitude while enabling the users to make a tradeoff 
between the deadline adherence and the computational cost.

The proposed algorithm computes the job processing time by dividing the 
logical computational cost (in some arbitrary units) with the resource service rate, 
multiplies the time to deadline by a ‘‘tuning" factor quantifying the conservatism 
of the scheduler and looks for a suitable worker node that can either satisfy the 
deadline or, if none are found, minimise the amount of the deadline overrun. By 
using their Bricks tool [227] to simulate the deadline scheduling algorithm and 
the submission of jobs onto a virtual heterogeneous, space and time shared set 
of resources, Takefusa has confirmed that his algorithm delivers better deadline 
adherence than the reference greedy approach.

However, this simulation has used a synthetic workload and made some im­
portant simplifications to the properties of both jobs and resources. The client 
to server ratio was one to one, the network and server performance levels were 
randomly drawn from a uniform distribution with a modest range, and the back­
ground load was fixed at 10% of the node's capacity. More importantly, the job 
duration was drawn from a uniform distribution with the execution times of 5 
to 60 minutes and a Poisson arrival process with an average inter-arrival time of 
60, 90 or 120 minutes. Such distribution of the execution times and the level of 
utilisation does not create a scheduling environment as challenging as those found 
in the current production Grids. The deadlines are generated by multiplying the 
actual job runtime by a factor drawn from a uniform distribution between 1 and
3. Such deadline generation methods was found not to be representative of the 
way users are likely to specify deadlines [207] and shown in this thesis to be less 
demanding of the deadline scheduler.

Regardless, the work by Takefusa introduces the concept of the job deadlines 
to distributed computing, linking it to the notion of the Grid economy and
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supporting its use as a measure of the job urgency. The proposed scheduling 
algorithm, despite its reliance on execution time forecasting methods which can 
hardly be implemented in a general-purpose production Grid, demonstrates the 
possible benefits of the predictive deadline scheduling approach. The work was 
the basis for some incremental improvements to the runtime predictions and 
fallback methods done by Caron in [228].

David Abramson, John Giddy and Lew Kotler in [229] build on the Nimrod [99] 
and Nimrod/G [98] tools to deliver soft-deadlines to the parametric study appli­
cations. These jobs, consisting of independent tasks, can be considered moldable 
as they can be run on an arbitrary number of processing units. The goal of 
the scheduling process is then to dynamically select the size and membership 
(in terms of the computational performance and the price) of the resource pool 
to ensure the overall job completion prior to the requested deadline and at the 
requested monetary cost.

The authors have demonstrated a good deadline adherence performance of 
the Nimrod/G scheduler, and its commercial version Clustor, using a number 
of specialised applications in the field of bio-informatics, ecological modelling 
and computer aided design areas. However crucial to such success is the highly 
deterministic and predictable execution time of each independent task, and the 
ability to dynamically change the job’s degree of parallelism in order to speed the 
execution up or slow it down. While the parameter sweep application targeted 
in Abramson’s work form an im portant part of the scientific workload, they are 
not representative of a general-purpose compute load likely to be presented to a 
utility Grid.

In this work, Abramson strongly embraces the economic aspect of the deadline 
driven scheduling as the necessary lever to control the selection and utilisation 
of resources. The deadline is also strongly favoured as a way of expressing the 
user’s view of the job urgency and priority.

Peter Dinda has in [131] extended his previous work on the host load prediction 
and job runtime estimation by implementing an advisory system that recom­
mends the execution host based on the job’s soft deadline and the CPU require­
ments. The work is limited to the same scope of interactive, compute-bound, 
moldable visualisation applications and requires that the nominal execution time 
of each application on an unloaded system is known in advance.

The presented Real-time Scheduling Advisor is tested using a synthetic work­
load consisting of jobs arriving consecutively with a uniform think time distribu­
tion between 5 and 15 seconds and a nominal execution time uniformly distributed 
between 0.1 and 100 seconds. Clearly, with such arrival and runtime statistics, 
and with no queued jobs, the workload is not representative of a Grid installation 
like the UCL's CCC.
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Dinda’s extensive work on the resource performance predictions, their in­
tegration into the forecasts of job runtimes, and the deadline schedulers were 
strong motivating factors for many subsequent researchers, but is of very limited 
applicability to the defined scope and target platform of this thesis.

Summary

The limited amount of previous work on the topic of deadline scheduling for the 
distributed computing systems that was presented in this section establishes the 
feasibility of the approach and confirms its added value. The concept of the job 
deadlines is closely related to that of a computational economy: all surveyed 
work makes provisions for such systems and the inherent tradeoff between the 
cost incurred by the user and the guarantee of the deadline adherence. Finally, 
job deadline is confirmed as the most appropriate measure of the urgency of each 
job submitted by the user.

However, there are numerous opportunities for further work in this area. The 
availability of job execution time forecasts, as delivered by the work presented 
in this thesis, makes numerous advanced scheduling methods used in (near) real­
time systems portable to the Grid environment. Coupled with a barter or a 
bidding economy model, the possibility for a truly global computational market 
exists, on which compute resources will be traded and used like many of today’s 
commodities.



Chapter 8

Open Questions

In presenting the findings and results so far, the thesis has focused 011 justifying 
its approach and presenting its methods and the obtained results. This chapter 
will take a critical view and discuss the most challenging aspects of the design, 
development and testing stages of the deadline scheduling system presented. Ideas 
for improving these will be given as the basis of further work that the author, or 
other researchers, may engage in.

8.1 Workload Characterisation

Considering the necessity to analyse a large amount of Grid usage data, and the 
reliance of this process on statistical tools, the workload characterisation aspect 
will continue to benefit from the developments in the fields of exploratory data 
analysis, data mining techniques and clustering algorithms.

Representativeness of the dataset, in this case of the workload trace, is an often 
raised issue in approaches that develop models based 011 statistical analysis. 
Unfortunately, due to privacy laws, intellectual property legislation and many 
other reasons, good quality workload traces of sufficient duration are hard to 
come by. This is even more so in the case of a novel technology such as the Grid 
as it takes several years for the production grade facilities to go online and for 
a reasonable amount of data  to be collected. Scope for further work will be in 
using these new workload traces to perform additional characterisation studies 
and comparatively analyse them with legacy high performance parallel workloads.

I11 its twelve month duration, the CCC dataset analysed in this thesis eon- 
tained 37 users belonging to 27 Virtual Organisations executing a diverse set of 
over 2000 different job names. These properties, and a comparison with previ­
ously studied workloads (given in Section 7.1). strongly suggest it can be consid­
ered as a representative example of a workload likely to be presented to a utility
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Grid cluster serving a diverse population of users. To further support this, an 
additional study of the only other publicly available Grid workload at the time 
of writing was undertaken and presented in Appendix B.

Due to the way observed workload features are used later in the job execution 
time predictions, the entire approach is much less sensitive to the trace repre­
sentativeness than it may initially appear. In previous workload characterisation 
research, the focus was on creating generative models by capturing the behaviour 
of a certain workload metric with as few parameters as possible. The model is 
therefore under risk of locking onto specific features of the workload not repre­
sentative of a broader behaviour. The characterisation study in this thesis does 
not need to pre-define any models as each of the forecasting methods used trains 
on the actual historical usage data of the cluster whose workloads it is to pre­
dict. This reduces the threshold of the required representativeness to the support 
of the assumption that job temporal- and meta-properties have a sustained and 
correlated relation to the job execution times.

"Random” or uncharacteristic work tha t is not autocorrelated, or tha t could not 
be modelled with a reasonable accuracy, was present to a varying degree in the 
job partitions based on one, two and three clustering job properties. While this is 
expectable and certainly leads to a reduction in the overall forecasting accuracy, 
more problematic was the presence of few partitions containing only jobs with 
a seemingly random execution times. Unless these could somehow be further 
partitioned using as yet an unavailable metric into a more manageable set, the 
predictive scheduling approach would not yield acceptable results for those jobs.

This issue, although noticed on a very limited scale, does offer the scheduler 
the ability to differentiate the ‘‘badly” behaved jobs before they are run by the 
combination of their job properties. Therefore, jobs submitted by a certain user 
running a certain application can be segregated from the rest of the workload and 
handled differently, either by running them on a dedicated pool of ‘‘best effort” 
machines or by applying a different set of Grid economy policies.

Availability of monitored metrics and the overall transparency and compatibility 
of the accounting and usage data records poses a big challenge for the entire 
Grid community. Despite the efforts within the Open Grid Forum and the Usage 
Records Working Group *, the author has faced many problems in acquiring the 
necessary usage statistics. Clearly, a more detailed and a more granular historical 
data holds a higher potential of discovering functional dependency between the 
job properties and its resource usage, and could thus lead to much improved 
forecasts. As this thesis has shown, even the three or four basic pieces of job 
information, when used appropriately, could lead to satisfactory performance.

* ht tp ://fo r g e .g r id fo ru n i.o r g /s f /p r o je c ts /u r -w g
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Presently, usage records lack the ability to uniquely identify the application 
being run and the parameters passed to it, information which could lead to a 
significant improvement in the accuracy of the job execution time predictions. In 
the future, a Grid workflow manager could uniquely hash executable files, their 
parameters and input data sets bringing more transparency to the presently used 
generic deployment scripts, and enabling the predictive schedulers to identify 
changes in the applications being run.

8.2 Job Execution Time Forecasting

Previously, predictions of job execution times have either been provided by the 
submitting user, or derived through application instrumentalisation. The will­
ingness and the ability of the users to supply reasonable forecasts seems to  have 
been overestimated and is not likely to be pursued any longer [116]. The only 
currently foreseeable competition to the historical modelling approach is likely 
to come from some form of application instrumentalisation. This technique was 
previously used for high-value applications or specialised hardware, but has not 
been widely adopted due to the extensive human work needed to instrum ent and 
recompile software on different execution platforms. However, automatic instru­
mentation tools (proposed in [230, 231] for example), and the increased adoption 
of binary compatible code and native virtualisation, helped by the support from 
the hardware and operating system vendors, may one day enable an efficient 
and portable way for an application to communicate its progress to the Grid 
middleware.

Tim e series forecasting algorithms and parametrisation techniques used in this the­
sis present only a selection of methods that are currently available to statisticians. 
More complex approaches, such as that of Autoregressive Fractional Integrated 
Moving Average [232] (ARFIMA) which is the generalisation of all three classes 
of linear time series models, may prove to be more accurate and adaptable. 
Analysis of new production workloads may require and justify the use of non­
linear, heteroscedastic* time series models such as Autoregressive Conditional 
Heteroskedasticity[232] (ARCH).

The context of the work requires all these models to be in some way auto­
matically parametrised which proved to be a challenging task. During testing, 
the parametrisation heuristic had to be made robust to various extreme values 
and exceptions in order to produce stable models. Further work on improving 
the way in which models are parametrised, by perhaps borrowing on some ap­
proaches used in modelling the financial time series, would certainly lead to a 
reduced training set requirements and an increased model accuracy.

*A sequence o f random  variab les w ith  different variances
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The scope for further work also exists in creation of an “expert system” , a 
technique often used in the time-series forecasts. Several prediction algorithms, 
differently parametrised and suited to different types of time-series, are run in 
parallel. The expert system tracks their historical performance in predicting each 
of the time series and decides which of them to base a spot prediction on.

Complexity vs. Performance trade off raises the question whether it is sensible to 
develop a complex model for jobs executing for only a very short period of time. 
As the entire forecasting engine should run in near real-time, spending time on 
analysing and modeling short or low-value jobs may be worse than just running 
them in a first-come-first-served fashion. W ith this in mind, the analysis of the 
forecasting methods in Chapter 5 offered algorithms of varying complexity, and 
discussion of their results revealed the trade-off in the accuracy of predictions.

Considering that the forecasting engine was a proof-of-concept implementa­
tion, the comparison of computational complexity of the presented prediction 
methods was deferred until production grade code is available. This further work 
may be undertaken as part of the commercialisation efforts described in Ap­
pendix C. However, based on the observations made through substantial testing 
and simulation, the performance of the forecasting models should not present a 
significant difficulty for any modern hardware at the point of job arrival rates well 
above those observed today. Comparatively, these time-series models are much 
less computationally expensive than some other proposed techniques such as the 
genetic algorithms [80] used by Song [84], Aggarwal [82], Kim [83] or Cao [233], 
neural networks [234]. game theory [78] used by Young [79] and Beaumont [64] 
and simulated annealing[81] also used by Young in [79].

Initial lack of historical data on a newly deployed system, or for newly introduced 
users and applications, can be overcome by scheduling such jobs in a FIFO 
batch mode until prediction models can be fitted. The availability of different 
forecasting algorithms can also be exploited by initially fitting a simpler model 
requiring fewer training data points. As was shown in Chapter 5, even the three 
point moving average predictor yields usable results.

8.3 Deadline Scheduling Algorithm

By making the expected job execution time available to the Grid scheduler, the 
framework presented in this thesis creates an opportunity for migrating numerous 
scheduling algorithms and techniques from (soft and hard) real-time systems into 
the domain of utility computing. Combined with the job check-pointing and 
migration that some Grid middleware supports, a truly adaptable and dynamic 
platform that responds to the changing load and user priorities could be created.
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Deadline feasibility was not considered as deadlines had to be generated artifi­
cially and have all been at least equal to the actual execution time of the job. This 
would hardly be the case in an actual production system where users would have 
to be in some way guided as to the costs associated with a requested deadline as 
well as a probability of it being met.

Judging the feasibility of a requested deadline could be done based on the 
forecasted execution time of the subm itted job. If the deadline is within some 
margin of the forecast it could be deemed feasible. Being a probabilistic measure, 
this should not preclude the admission of the job as the forecasted execution 
time could be grossly over-estimated and a much shorter deadline could indeed 
be possible. But it could be used in combination with the Grid economy pricing 
policy, and perhaps a different SLA, to reduce the penalty the Grid operator 
would face if an over ambitious deadline is not met.

8.4 Chapter Summary

The successful implementation of the autonomous job execution time forecast­
ing system described in this thesis has opened up the field for significant further 
research into scheduling systems which can make best use of this added infor­
mation. As such, it has given rise to some challenging new problems and these, 
together with the issues faced by the author in the implementation stages of this 
research, have been discussed in this chapter.



Chapter 9

Conclusions

Prompted by the need for a job scheduling method that is more flexible and 
better suited to the human workflow, the thesis has set off to develop the 
necessary technologies needed to support an autonomous and self-managing 
scheduling system based on user supplied job deadline requirements. To this 
end, the thesis contributions were threefold.

To form a rigorous and factual basis on which the relevance of job prop­
erties to runtime predictions can be judged, and to gain insight in the ways 
a real-world general purpose production Grid is being used, the thesis has 
presented a characterisation study of a 12 month workload from the UCL’s 
CCC Grid facility. As a first Grid trace of such length and such diversity, 
this workload confirmed the presence of the usual cyclic patterns occurring 
in human generated activities. Compared to previous studies of parallel and 
distributed workloads, this characterisation study paid special attention to the 
evolution of user behaviour and workload properties over different timescales 
and the correlation between temporal and other job properties, and the job 
execution times. This has shown tha t a significant degree of correlation exists 
and can be exploited for generating more accurate predictions. It has also 
shown that the user behaviour and workload are constantly evolving and that 
a dynamic and adaptable system is required to ensure adequate system modeling.

Finding that job runtimes are highly autocorrelated, self-similar and long- 
range dependent, the thesis has suggested applying time-series forecasting models 
011 partitions containing similar historical jobs. An exhaustive search approach 
has been proposed to define pivotal job properties which, when used to partition 
the workload, lead to its reduced variability and increased predictability. Based 
011 the comparison of runtime variance by using the coefficient of variation metric, 
the method is able to autonomously discover functional dependence between
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different job properties and execution times.
By using the actual trace from a production Grid cluster, exponential 

smoothing, auto-regressive, moving average and auto-regressive moving aver­
age forecasting methods were compared to the benchmark windowed median 
predictor. The accuracy metrics were based on the best statistical practices 
for comparison of series with different location and in the presence of outliers. 
Reported results demonstrate the superior performance of the ARMA prediction 
method coupled to the three-dimensional partitioning of similar jobs based on 
the owner VO, job name and a temporal metric defining the week in which the 
job has been submitted.

With the ability to predict the execution time of a queued job, the thesis 
has introduced a deadline scheduling algorithm previously not applied in the 
context of distributed computing. A trace reply simulation using the actual 
CCC workload was used to simulate a scheduling scenario in which jobs arrive 
with user supplied deadlines. The simulation explored the effect of differently 
generated job deadlines, and the deadline adherence and overrun of the proposed 
Latest Time To Run (LTTR) scheduling compared to the commonly used FIFO 
batch scheduler. It concluded that job runtimes forecasts, of the quality delivered 
by the time-series based predictions and applied to the LTTR scheduling can 
improve deadline adherence and significantly reduce deadline overrun on highly 
loaded systems.

Overall, the thesis has shown that a deadline scheduling system for a utility 
compute Grid clusters can indeed be based 011 an autonomous and self-managing 
historical statistical prediction component that does not require any user input 
or any modification of user submitted application or instrum entalisation of the 
Grid middleware.
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Appendix A

SO-GRM Project Related Work

The following appendix presents Grid related work undertaken as part of 
the Self-Organising Grid Resource Management project supported by EPSRC 
(GR/S21939) and BT Research. Throughout the three year duration of this 
project the author was in charge of deploying and maintaining a Grid testbed 
compromising of locally networked clusters in UCL and B T ’s labs at Adastral 
Park, interconnected through a WAN link. The practical experience gained 
through these activities, and the involvement in the implementation of the 
Grid management components described in this chapter, shaped the further 
direction of the thesis research and reiterated the necessity for autonomous and 
self-organising management architecture.

The author’s two primary contributions to this part of the project were a 
probabilistic Grid workload generator and an extension to a popular distributed 
monitoring platform that enabled a more granular measurement of compute re­
source usage by the Grid applications.

A .l GridLoader - Grid Load Generator

The following will present the work done on the Grid application simulator, called 
GridLoader. The motivation for developing such a tool will be outlined in Section 
A.1.1 while the requirement capture will be given in Section A .1.2. Section A.1.3 
presents the implementation of the GridLoader, followed by the results of the 
functional and qualitative tests given in section A. 1.4. Section A. 1.5 concludes the 
GridLoader part of this chapter by summarising the findings and giving directions 
for further work.

A.1.1 Motivation

The simulation tools available in the Grid research community, as surveyed in 
Section 3.5, are helpful in studying various aspects of the Grid resource man­
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agement and scheduling components before these are actually deployed. Once a 
solution is developed and installed on a testbed system, further testing is often 
needed to confirm proper end to end operation and integration with other com­
ponents. At this point, a conflict exists between the need to subject the system 
to the conditions most closely resembling those found in the production environ­
ment, and the necessity to tune and control those conditions in order to facilitate 
system optimisation.

The motivation behind the GridLoader workload generator was to support 
in-site testing of the management components by creating a controllable applica­
tion load with the job statistics similar to those experience in the production Grid 
environments. Such a tool would allow testing of the scheduling algorithm, moni­
toring components, and all other aspects of the SO-GRM management framework 
in a realistic usage scenario, without the problems usually associated with running 
on a live production Grid system.

A.1.2 Requirements

To represent a realistic Grid application, the GridLoader was required to simulate 
processor utilisation, memory allocation and network activity. The execution of 
the GridLoader would have to be fully parametrised, with a suitable tool to 
facilitate orchestrating large simulation runs. Such deployment tool would be 
used to decouple the overall statistical properties of the jobs subm itted to a Grid 
cluster from the resource utilisation statistics of a single node.

One of the approaches for simulating a realistic application load, often used by 
benchmarking applications such as SPECmark [123], is executing a representative 
set of application code snippets in an autom ated way. This method gives a 
degree of repeatability [235], enabling comparison of hardware implementations 
by maintaining an unchanging application load. However, the probabilistic and 
self-organising nature of the SO-GRM components would require a more dynamic 
environment with a widely fluctuating load.

Another possible route for simulating realistic workloads is through a trace- 
replay system, such as the SimGrid for example (see Section 3.5.1). Although this 
is the most realistic representation of a production system workload, it may not be 
scalable to the desired length or utilisation fraction, it may be difficult to obtain, 
or it could cause the simulation to lock into specific properties of the system from 
which the trace was taken. Therefore, the aim with GridLoader was to be able 
to create a distribution of statistically similar loads while maintaining a level of 
ambiguity in order to challenge the self-organising and adaptive components.

An important requirement was to achieve the right balance between deter­
ministic and probabilistic modes of operation. The simulation runs should be 
repeatable, and all simulation parameters should be adhered to if any incremen­
tal improvements to the management components are to be recognised. At the
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Figure A.l: Logical flow diagram of the GridLoader implementation showing the 
transitions between CPU, network and memory loading stages.

same time, a probabilistic element in the simulated application’s behaviour is 
required for a realistic and diverse environment to form, and for SO-GRM com­
ponent’s adaptability and self-organisation to be exercised. Utilisation of different 
resources may also have to be simulated with a different distribution functions 
and parameters - network transfers may have substantially different statistics 
than the CPU utilisation.

The GridLoader application would need to be subm itted through Grid mid­
dleware on the target site just like any other Grid application. To reduce source 
code compilation issues, a simple and portable code running under user privileges 
would be highly desirable.

A.1.3 Implementation

Following the established requirements, the GridLoader was implemented as a 
state machine, with different states representing CPU, memory and network 
loading stages. A logical flow diagram showing this structure is given in Figure 
A. 1.3. State transition table can either be deterministic, moving through network



APPENDIX A. SO-GRM PROJECT RELATED WORK 179

loading, memory allocation and CPU utilisation states in progression, or fully 
probabilistic.

Deterministic state transitions facilitate debugging of components under test, 
and creates a behaviour similar to an “embarrassingly parallel” [236] Grid ap­
plication. A parameter sweep experiment is one common example of such an 
application: it stages the input data, allocates required memory and executes a 
CPU intensive core calculation tha t would usually produce a small result data set. 
The probabilistic state transition scenario leads to a more sophisticated model in 
which all three primary states are entered into many times with changing prob­
abilities. Although this behaviour is more realistic, and representative of a more 
complex Grid application, it creates a very dynamic environment for all other 
components and possible faults are hard to locate and debug. This mode should 
be used in advanced stages of testing.

To ensure portability between Grid systems and the ability to compile and 
execute without adm inistrator’s influence, the GridLoader was written in ANSI 
C without any low level function calls or custom libraries. It was compiled 
successfully on Windows. Solaris and Linux platforms.

Application Simulation Stages

As previously shown on the logical flow diagram, the GridLoader has three states 
used to simulate the behaviour of a Grid application: network loading, memory 
allocation and intensive computation stages.

The network loading stage opens an UDP socket to an IP address specified 
as a command line parameter and transm its a random message 1400 bytes long 
for the duration of the requested network loading time. The inter-packet delay 
is parametrised at run time and is directly proportionate to the amount of band­
width used. Once the tinier signals the required time has passed, the socket is 
closed and a flag set for state transition.

Memory allocation state requests the kernel to increase the memory allocation 
to the process by the amount specified through a run-time param eter by using 
the malloc function call. UNIX memory management is handled very differently 
depending on the system implementation and the kernel optimisation options, 
and may prevent a user process from directly managing memory allocations. 
GridLoader ensures that the physical memory is actually allocated to the process 
by writing random data into the virtual memory space allocated by the kernel. 
The memory is freed during final clean-up state of the application, once all loading 
states have been completed.

Computationally intensive part of each Grid application is simulated in the 
CPU loading state. This state contains two real-time nested timers, one keeping 
track of the total amount of wall time spent in the CPU loading state, and one 
tracking short time slices in which CPU is toggled between full throttle utilisation



APPENDIX A. SO-GRM PROJECT RELATED WORK 180

and idle. Very frequent swaps between these two stages result in a smoothed 
fluctuation of the CPU utilisation when observed at the sampling frequencies of 
less than 100Hz. Total wallclock duration of the CPU loading is specified at run­
time, while the duration of each run-sleep cycle is determined in a random manner 
using a predefined probability distribution function. This function is randomly 
seeded at runtime, and partly parametrised through a command line option. The 
benefit of this approach is tha t even for equally parametrised runs, the actual 
CPU load trace would not be the same. This was an essential requirement for 
the testing of the I3 security engine (see Section 2.4 and [42]): GridLoader was 
therefore able to simulate anomalies in the process behaviour and test the I3 
malicious process detection algorithm.

Once all the timers indicate tha t the requested loading metrics have been met, 
the final clean-up stage is entered in which the allocated memory is freed, network 
sockets closed, and a log file with details of the execution written. GridLoader 
can also operate in a debug mode which records detailed information about the 
state machine and the execution timers of each stage.

Parametrisation Options

All parameters of the GridLoader’s simulation can be supplied either via the 
command line, or from a configuration file. Supported run-time parameters and 
their explanation is give in Table A.I.

To give the overall cluster loading a certain statistical property, and to fa­
cilitate the generation of the configuration files for larger GridLoader runs, an 
auxiliary application was developed in Matlab. Two types of parameters can be 
defined with either global or local scope. Global parameters influence the overall 
behaviour of the whole set of GridLoader jobs in a specific simulation run. These 
are used to coordinate the job set, and are detailed in Table A.2.

The variables defined in Table A.3 set the ranges for the generation of pa­
rameters influencing the behaviour of a single GridLoader instance on the node 
it is executing.

Deployment Scripts

The deployment application generates a file containing appropriate parameters 
for each GridLoader instance, and a configuration file for the batch scheduling 
script. The probabilistic nature of the GridLoader is here evident at different 
levels. At the global level, two job sets with the same parameters will not have 
the same values of individual local parameters, but in both cases those values 
will fit the same, requested, statistical distribution. At the level of a single 
GridLoader instance, two equally parametrised runs on the same machine will 
adhere to the parameters supplied, but will achieve those targets with a different 
resource utilisation profile.
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Parameter Description

NET Total time for network transfer state, expressed
in seconds

CPU Total time of CPU loading state, expressed in
seconds

MEM Integer MBytes value of total physical memory
to allocate

BURST Inter-packet delay time, expressed in /iseconds
and used to control the amount of bandwidth
used by the network transfer state 

IP Numerical IP address of the peer (or sink) for
the network transfer state 

PARETO-B Pareto param eter B used to influence the idle 
time transitions in the CPU loading state. Large 
values of this param eter cause the long tail of the 
Pareto probability distribution to extend, lead­
ing to spikier CPU utilisation trace and larger 
average levels of CPU utilisation. Subsequent 
runs with the same value of parameter B will 
not produce equal traces due to different seeding 
values of the random number generator.

Table A.l: Description of the GridLoader command line parameters and expla­
nation of their influence on the execution of a single GridLoader instance.

To help visualise the job set being run, deployment application produces a 
plot of parameter values with the relevant histograms, as shown in Figure A.2.

A.1.4 Self-Test Results

Before using the GridLoader to test other components of the SO-GRM manage­
ment architecture, a test of its own reliability was undertaken. Primary concern 
was the quality of resource utilisation models and the adherence to the specified 
parameters such as the execution time and size of the allocated memory.

To test the reliability of the overall timekeeping, a set containing 120 jobs 
taking around 24 hours to complete was created and run in sequence on one of the 
nodes of the Grid testbed. A simple batch scheduler script was run on a “m aster” 
node and used to submit jobs through either the Globus Toolkit 2.2 middleware 
or the Secure Shell (SSH) to a set of dedicated “slave” nodes. Same job set 
was then re-run locally on the “slave” machines in order to differentiate between 
GridLoader’s systematic error and any overheads introduces by the middleware. 
Figure A.3 shows a percentage difference between the expected and the actual 
execution times for a sample of 50 jobs and for all three different execution 
methods.

Running on the local node, actual the GridLoader execution times are less 
then 2% greater than expected. This is due to the system overheads such as
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Parameter Description

Defines the value of Pareto probability parame­
ters for generating CPU loading times across the 
whole set of jobs. Any other standard proba­
bility distribution function could be used with 
appropriate parameters.

The number of GridLoader jobs to create

Used in a simple batch scheduling script , defines 
the range of wait times before subm itting the 
next job. The values are normally distributed 
within the set range.

Also used in simple batch scheduling operation, 
defines the next host’s IP address to which the 
job will be submitted.

Table A.2: Description of the param eters used by the MATLAB deployment 
script and influencing the global behaviour of a number of GridLoader instances 
run as part of one experiment.

setting up the network transfers, allocating the memory and random number 
generation, which are not accounted for in the timekeeping of the program. As 
this level of increase in the execution time is intrinsic to the operating system, and 
would be present for all the applications, we found that a realistic and accurate 
simulation of the total length of the job can be achieved using GridLoader.

As previously described, a loose control on the level and shape of the CPU 
loading can be exercised by specifying different values of the Pareto param eter 
B  at run time. A parameter sweep test was undertaken to establish the upper 
and lower bounds of these values that provide a usable result. During these tests 
it was noted that a low value of the param eter will result in a longer duration 
of CPU idle time, and thus a lower average load. Higher values of the shaping 
parameter cause Pareto probability function to return high values for the duration 
of the CPU intensive loops and thus lead to a higher average utilisation and 
pronounced load spikes. GridLoader’s probabilistic routines will create a similar, 
but not equal, trace for each equally parametrised run.

Reliability of the duration of the network transfers was established as part 
of the overall test of the GridLoader timekeeping. The influence of inter-packet 
delay parameter was examined through a param eter sweep test. By using network 
monitoring package IperP. the bandwidth utilisation between the ‘‘slave” node 
executing GridLoader and a designated traffic sink node was measured. The 
inter-packet delay parameter provides a soft control of the amount of bandwidth 
used, and not a strict upper or lower limit. This kind of probabilistic behaviour 
is sufficient for the required simulation of the network traffic and, considering the

*see h t tp : //d a s t  .n Ia n r .n e t/P r o je c ts /Ip e r f/

CPU-TOTAL JPARETO 
[A/B]

ITERATIONS

NEXTREQ
[MIN/MAX]

NEXT-HOST 
[MIN/MAX/PREFIX]

http://dast
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Parameter Description

CPU_LOAD_PARETO_B 
[MIN/MAX]

IP
[LOW /HIGH/PREFIX]

MEM
[MEAN/MIN]

NET
[MEAN/MIN]

BURST
[MEAN/MIN]

Sets the upper and lower bounds on the Pareto 
B parameter; range of values is generated using 
normal PDF.

Defines the range of IP values for the target IP 
address of the GridLoader network peer. Could 
be defined as a single IP address to simulate a 
master-slave Grid environment.

Sets the GridLoader’s memory allocation param ­
eter. The value is calculated by adding a random 
number with the mean of MEM_MEAN to the 
minimum value defined in MEM_MIN.

Sets the GridLoader’s network transfer time pa­
rameter. Calculated in the same way as the 
memory value above.

Sets the GridLoader’s inter-packet delay param ­
eter. Calculated in the same way as the memory 
value above.

Table A.3: Description of the parameters used by the MATLAB deployment 
script and influencing the local behaviour of each of the GridLoader instances 
run as part of one experiment .

aims of the simulation, its probabilistic nature is beneficial. The use of the UDP 
network protocol, and its lack of bandwidth control mechanisms, could lead to 
network congestion issues in large GridLoader simulation runs. It remains to be 
assessed whether such conditions would impair the running of the simulation or 
add another realistic aspect of the production network environment.

Sequential memory allocation and freeing has been monitored using the Gan­
glia system, as shown in Figure A.4. The tests were carried out to confirm the 
actual physical memory is being allocated, and that this could lead to memory 
contention as is the case in the production environments. The granularity of the 
allocations is one megabyte but could easily be reduced.

A.1.5 Conclusions

GridLoader provides a way for parametrised and probabilistic simulation of appli­
cation CPU. memory and network usage. Deployment scripts facilitate creation 
of run-time parameters for large simulation runs, enabling these to follow statis­
tics of jobs observed on the production Grid facilities. Testing of the GridLoader 
functionally and reliability has been undertaken and reported on.

During the stand-alone testing phase of the GridLoader, a number of minor 
problems and issues were discovered.
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Figure A.2: Distribution of individual parameter values for a sample GridLoader 
experiment consisting of 200 jobs.

From the implementation perspective, a better CPU loading algorithm would 
prove very useful. Some cases exist where a constant, predefined level of CPU 
load should be simulated, such as in visualisation applications or other applica­
tions bound not computationally but by some other factor. These could not be 
precisely simulated using the currently implemented probabilistic approach.

GridLoader heavily depends on the quality of the random numbers gener­
ated within the programme, and the seeding mechanism for the random number 
generator. Although better generators than the one used in GridLoader are avail­
able, these would require additional libraries which may not readily be available 
on the target platforms. As no adverse effects associated with random number 
generations were observed during debug runs, the current approach is considered 
adequate.

Numerous problems were caused by the real-time clock resolution and the

G r i d L o a d e r  E x e c u t io n  T im e  D e v i a t i o n  b y  S u b m is s io n  M e th o d
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Figure A.3: Reliability testing of GridLoader job execution time plots a discrep­
ancy between requested and achieved job runtime depending on the job submis­
sion method used.



APPENDIX A. SO-GRM PROJECT RELATED WORK 185

android-ee13.cs.ucl.ac.uk  MEM la s t  hour

12 :2 0  12 :40

■  Memory used ■  Memory Shored
■  Memory s u f f e r e d  ■  Memory Free

1 3 :00  

■  Memory Cached

Figure A.4: Reliability testing of GridLoader memory utilisation showing alloca­
tion of and de-allocation of physical memory.

lack of synchronisation between the Grid nodes. Globus X.509 certificates have an 
associated validity period with a one second granularity, and in a network without 
proper clock synchronisation a certificate may become valid on one machine before 
it does so on another. This leads to the job being rejected due to the incorrect 
credentials, an error message often associated with other issues within the Globus 
Security Infrastructure and Certification Authority problems.

Overall, the parameter generator application and the GridLoader were suc­
cessful in creating a job set with given statistics, and executing it according to 
the parameters required. Appropriately parametrised GridLoader will be able to 
simulate a realistic Grid application workload and present a diverse and varied 
load to the Grid management components on test.

Development of the GridLoader is a distinct contribution of this thesis. Apart 
from its primary intended use as a Grid application simulator described above, 
GridLoader can potentially be used as a testing tool for confirming end-to-end 
application level operation of Grid middleware. W ith a suitable parameter set, 
the GridLoader could also be used to stress Grid hardware and middleware 
components to the edge of their operational envelope, thus exposing any possible 
points of failure or performance bottlenecks.

A.2 Monitoring Framework

An extension of the widely used Ganglia Monitoring Suite [160] has been devel­
oped to provide an enhanced monitoring capability for jobs running on the Grid, 
and support the long term  collection and storage of their resource utilisation 
traces. This section will present the motivation for this work, system require­
ments, implementation details and the results of the functionality and reliability 
tests before concluding with some final remarks and directions for further work.

A.2.1 M otivation

Current Grid monitoring systems, as previously summarised in Section 3.4, offer 
a scalable and effective monitoring of resource utilisation on a per-node basis. As 
one must assume a general case where Grid nodes will be used by other (system 
or user) applications, these measurements are not representative of the actual
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resources used by any single application. Even in the case of a dedicated Grid 
host, the footprint of the current Grid middleware, management and security 
components is such tha t the overall node resource utilisation will be very different 
to tha t of a single user application.

The author’s motivation was to extend one of the current monitoring systems 
to provide process-specific measurements of resource utilisation in an unobtrusive 
and scalable way. Extension to an already established monitoring system would 
have the benefit of an already established user base, giving access to a wider 
source of data. It will also remove any switching cost from the user’s perspective 
and alleviate adm inistrator’s reservations about installing an unproven piece of 
software.

A.2.2 Requirements

The basic requirements for a Grid monitoring system are support for a wide range 
of operating systems and hardware architectures, effective data storage methods, 
and the use of efficient and standardised communication protocols. An extensible 
metric sampling interface, the possibility of integration with the Globus MDS, 
and the support for XML encoded messages were the additional requirements for 
a successful integration with other SO-GRM management components.

The monitoring system of choice should be able to integrate per-process re­
source utilisation metrics into the standard flow of measurement data, and fully 
support storing and retrieving of such additional information through its usual 
data access methods.

A.2.3 Implementation

After surveying the monitoring tools available, the decision was made to base 
the extended monitoring framework on the Ganglia cluster monitoring system 
[160]. Ganglia was selected for its extensible data collection interface, effective 
storage of data in a fixed size round-robin databases, the use of XML encoded 
measurements, and customisable unicast and multicast delivery protocols. It has 
previously been extensively used with Globus Toolkit and successfully integrated 
with the MDS using the Glue Schema [237]. Various platform-specific information 
providers have been developed, and this modular design offers a clear path for 
the implementation of per-process resource utilisation monitoring.

Ganglia Functionality

The monitoring suite is implemented through a set of Ganglia applications, com­
piled code, and shell scripts developed by the author. All code was written with 
portability in mind and relies on UNIX standard libraries and script commands. 
Figure A.5 presents the layout of the monitoring components in a block diagram. 
Ganglia Cluster Monitoring core provides two daemon modules:
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Figure A.5: Block diagram of Ganglia monitoring components integrated with 
author’s custom metric providers.

• Ganglia Monitoring Daemon (gmond): collecting basic information about
each node in predefined time intervals, encoding it in XML and providing 
the network transport mechanism.

• Ganglia Meta Daemon (gmetad): receiving the information broadcasted 
by all or some of the monitoring daemons, and storing it in the round-robin 
databases. It also answers queries about overall state of the cluster, and 
provides a programmatic interface to the queries on the data contained in 
the databases.

Round-robin database (RRD)* is a fixed sized database targeted at storing the 
time-series data. Each database can contain several data sources (DS), and each 
data source has a number of round robin archives (RRA). These archives could 
be thought of as a set of differently sized and stacked gears, with each cog slot 
containing one sampled value. On database creation the frequency of rotation of 
each of these gears is defined, and a consolidation function (CF) is given for each 
data source. Once the gear makes a full turn all of its data is passed through the 
consolidation function (usually average, minimum or maximum) and the result 
is written as one sample point in the cog of the higher hierarchical gear. The 
size of the database is kept constant, since the high frequency data is kept for a 
limited duration before being consolidated. Depending on the target application, 
this behaviour may be a desirable feature or a disadvantage.

Ganglia Monitoring Daemon can use either unicast or broadcast UDP packets 
to transport the XML encoded measurements. Each gmond daemon can be set 
up to either listen to other daemons (mute mode), transmit its measurements 
to other peers (deaf mode), or do both. By configuring certain nodes to be 
muted or deafened, a resilient distributed system can be created. In our test

*see http://oss.oetiker.ch/rrdtool/

http://oss.oetiker.ch/rrdtool/
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implementation, all but one Ganglia monitoring daemons were configured in 
deaf mode. One node in the network run the non-deaf daemon, as well as 
gmetad daemon, and provided storage for all databases. This centralised network 
configuration was appropriate provided the size of the test network (no more than 
10 nodes at any time), and the goal of the tests.

Information Providers

The author has developed custom information providers to monitor the CPU 
utilisation and memory footprint of each process submitted through the Grid 
middleware. These were implemented either as a shell script (using a UNIX 
standard ps command), or as a pre-compiled application using the libgtop library. 
Functionality is similar, as both implementations run as a daemon 011 each Grid 
node and periodically sample the CPU and memory utilisation. Criteria for 
process selection, and the information collected, are fully customisable. The 
monitored processes can be selected by their identifier (PID), executable name, 
or by username under whose credentials they are running. Information reported 
can include any metric available through the UNIX /proc system.

Although process selection based on the PID is the most efficient and unam ­
biguous method, current implementation of the Globus Toolkit (V3) does not 
pass the PID of the remote process to the job scheduler, nor does it make this in­
formation available through AIDS or any other means. This is a widely recognised 
implementation issue, impeding improvements in several areas such as grid job 
workflow management and scheduling concurrency. Next versions of the Globus 
Toolkit should address this problem. Once the per-process monitoring data  is 
collected, it is transm itted either using Ganglia’s gmetric shell command or by 
using Ganglia’s API libraries, depending on the implementation.

Database Management Tools

The characterisation of the Grid workload data presented in Chapter 4 depended 
on the availability of an extensive amount of high frequency monitoring data 
from a representative Grid cluster. Although alternative data collection options 
were subsequently made available, for workload characterisation studies the con­
solidation feature of the round-robin databases was not beneficial as the highest 
resolution measurements would be quickly lost through averaging. A shell script, 
sweeprrd in Figure A.5, was developed to perform an automated data extraction 
from the RRD databases. The script can be configured to retrieve data 011 specific 
nodes and specific metrics of those nodes, or collect all the data available.

Time stamped measurement values are formatted in a comma delimited for­
mat, and stored as a flat text file. The script can either run as a daemon process 
or be invoked by the UNIX standard cron scheduling daemon. The frequency of 
execution is customisable with the obvious lower limit of at least one sweep within
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Figure A.6: Cluster level screenshot of Ganglia monitoring web interface

the duration of the shortest round robin archive in the database (to prevent any 
data being lost through consolidation). Database sweeps can be invoked as often 
as necessary and at any time; the script will only extract new samples from the 
RRD database and append them to an already present output file.

A.2.4 Test results

First phase of the monitoring suite tests was aimed at confirming the proper in­
stallation and the basic functionality of the Ganglia suite. After modifications to 
Ganglia’s default settings, it was necessary to ensure core functionality has not 
been affected and stable operation was maintained. Ganglia version 2.6 was de­
ployed on both BT and UCL administrative domains of our testbed Grid. Figure 
A.6 shows a typical screenshot of Ganglia web front-end displaying overview of 
hosts in the UCL domain.

In the second phase of testing, per-process monitoring components were in­
troduced and observations were made on the stability of the system, quality and 
reliability of the measurements, and any increase in the system resources utilisa­
tion. Screenshot in Figure A.7 shows a single monitored node in the Grid under 
heavy utilisation, while screen detail in A.8 shows globus-cpu-utilisation metric, 
revealing the CPU utilisation attributed to a single Globus submitted job.

The third phase of the tests was designed to establish the overall monitoring 
functionality and the quality of measurements. A sample GridLoader set contain­
ing 50 jobs with Pareto distributed execution time was run on a single machine 
on the Grid testbed. A full set of metrics including Globus-attributed and total 
CPU load were recorded through the monitoring suite with one second resolution, 
averaged and published over 15 second periods. Jobs were submitted from one 
of the machines in the cluster to a different machine in the same cluster using an 
appropriate Globus command. A simple master-slave scheduling was used, iterat-
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Figure A.7: Node level screenshot of Ganglia monitoring web interface

ing through the job list and allowing 45 seconds between the job completion and 
next job submission for any transient machine loading to settle. These transient 
loads were created by the Globus toolkit job completion procedures such as the 
results stage-out, process cleanup and accounting file updates.

The measurements revealed the difference between the GridLoader generated 
load and the total system load which includes various background processes 
associated with the Globus middleware, kernel time servicing network transfers, 
memory allocation and process scheduling. The differences were most obvious at 
the start and the end times of each job, while the machine loading is high, but 
the CPU time is not yet attributed to the process being submitted.

This experimental data has also exposed a peculiar behaviour of the process 
monitoring component which leads to a ramp-up effect in the observed loading
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measurements. This low-pass effect causes large variations between the total 
node utilisation value and the Globus attributed CPU load at the beginning of 
job execution. The software routine responsible for collecting those measure­
ments uses the UNIX standard process reporting calls, and these return CPU 
usage as a decaying time average since process initiation [238]. To improve the 
accuracy of measurements, a version using kernel ’’jiffies” [239] was made, but 
this improvement results in the loss of portability between platforms.

Most of these issues where in the local monitoring component. Regardless, 
successful overall operation of the system was confirmed, and sampled data  was 
correctly integrated in the Ganglia data handling flow (including Web-based 
data visualisation). Data extraction tools operated effectively and reliably with 
no lost or duplicated samples. D ata obtained was readily analysable, and had 
immediately provided insight into the extent of difference between perceived and 
actual resource usage by Grid processes.

Resource footprint of the monitoring system was acceptable (estimated at less 
than 1% of CPU time): although an increase was noted as the number of processes 
to be monitored grew. This is attributed to the computationally expensive pars­
ing of the processes table required to obtain process IDs of the monitored jobs, 
and depends strongly on the criteria used for selecting the monitored processes.

A.2.5 Conclusions

Presented monitoring solution addresses the problem of obtaining per-application 
resource usage statistics on Grid cluster nodes and provides a solution for the 
whole monitoring cycle, from measurement data collection, to visualisation and 
extraction for off-line analysis. The system has been developed on an open frame­
work to support programmatic access to the data  by other Grid management 
components. Implementation has taken into account expressed reservations of 
the cluster administrators to running third party compiled daemons on their net­
works, and has developed a transparent monitoring system based on a widely 
used monitoring application. The chosen approach scales well, being based on a 
proven core and complemented with the maintenance scripts designed to facilitate 
deployment and management. This solution seamlessly integrates measurements 
specific to the needs of the advanced scheduler research within an established 
monitoring framework. Off-line data analysis is facilitated with the use of the 
data extraction scripts developed.
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Additional Workload 
Characterisation

The prediction of job execution times based on the historical information, one of 
the distinct contributions of this thesis, used the methods rooted in the observa­
tions made in the analysis of a representable Grid workload presented in Chapter 
4. This workload study applied the exploratory data analysis[169] (EDA) tech­
niques to suggest the causes of the observed phenomena and to support the selec­
tion of appropriate statistical tools and techniques that can be used to effectively 
“mine” the data for previously unknown and potentially useful information.

The fallacy of the EDA approach is that a systematic bias is often present 
due to the erroneous approach of using the same data set to both suggest and 
verify certain hypotheses. This problem can be avoided by cross-validating the 
hypotheses on a collection of independent confirmation samples.

The purpose of this chapter is to perform such validation by using an alter­
native Grid workload trace. This will offer supporting evidence to the findings 
of the workload characterisation given previously in Chapter 4 and confirm, to 
the extent possible, that observed phenomena are indeed universal to the Grid 
workload. In doing so, this chapter will also further validate the job execution 
time forecasting approach taken and ensure its applicability in a range of Grid 
usage scenarios.

B.l The Workload

As the Grid technology is relatively new, few truly large-scale, multi-purpose, 
production Grid environments have been deployed. Those facilities tha t are 
operating do so under strict security and data protection rules making it very 
difficult to obtain, analyse and publish work based on their usage statistics. This

192
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is especially challenging for studies, such as this one, requiring highly granular, 
job- and process-level data  for which specific user permission must be granted.

Apart from the UCL’s CCC Grid cluster workload, the author has managed 
to acquire another job trace from a member cluster of one of the largest European 
Grid operators compromising more than 200 sites and over 30,000 CPUs. The 
trace does not contain the full set of job properties, so the following analysis will 
focus on the job inter-arrival process and execution time - two key aspects from 
the job runtime prediction point of view.

Access to this data was given subject to the identity of the Grid project and 
the site in question remaining undisclosed.

B.2 General Workload Properties

The workload compromises of almost a quarter of a million jobs subm itted in 
the nine month period between August 2004 and May 2005. During this period, 
about 3.5% of jobs have executed for less than one second, the resolution of the 
accounting file clock, and are deemed to have failed on runtime. This failure ratio 
is consistent with the CCC findings and those reported by others.

The distribution of active users, VOs and job names indicate tha t a large 
number of users belonging to very few VOs have submitted almost all the jobs 
using very few job names. Such scenario is an indication of the unfortunate 
administrative policy at the site encouraging submission of jobs with generic 
names and failing to introduce transparency in the mapping of Grid users to 
local credentials.

Calculated application efficiency of 83% is very high, and in line with the CCC 
findings, re-affirming the view that currently run Grid applications are compute- 
bound. The overall cluster utilisation of 22% is low compared to the CCC but 
on par with other academic and dedicated commercial Grids. The summary of 
these workload properties is given in Table B .l.

B.2.1 Job Inter-arrival time

Figure B .l describes the job arrival process at this facility by plotting the run 
sequence plot of the job inter-arrival times and their cumulative distribution 
function. Around 30% of the jobs arrive in batches with less than one second apart 
compared to almost 80% of such quick succession job arrivals present in the CCC. 
Such difference could most likely be attributed to a significantly lower overall 
utilisation of this facility and the appropriately longer periods of time without 
any incoming jobs. Regardless, bursty job submissions are still an im portant 
feature of the arrivals distribution.

The remainder of the inter-arrival times distribution seem almost linear on 
the log scale and this is further affirmed in the normal probability plots shown
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First job time 
Last job time 

Number of days 
Worker nodes (CPUs)

Number of recorded jobs 
Failed (0 sec) jobs 

Unique users 
Unique VOs 

Unique job names

Total job wallclock time 
Total job CPU time 

Mean Cluster Utilisation 
Mean Application Efficiency

14.08.2004 22:36
11.05.2005 14:07 
270
70(140)

242,695
8,618
56
8
12

705,566,432s (8,166 days) 
585,289,080s (6,774 days) 
22%
83%

Table B.l: The summary of the workload analysed

in Figure B.2. The linearly scaled plot exhibits very strong skew towards smaller 
values, while the logarithmically scaled one shows very good linearity for values 
larger than one second. The inter-arrival times of this facility, provided batch 
submissions are treated differently, could be modelled using a log-normal distri­
bution.

The cyclic pattern and the seasonal variations of the job submission process 
was an important characteristic of the CCC workload and has also been found 
in the usage statistics at this facility. Figure B.3 shows the total number of 
submitted jobs in each month of the trace, for each date in the month, day of the 
week and hour of the day.

The monthly plot, which runs from August to May of the following year, 
clearly shows a ramp-up effect at the beginning of the facility production life 
followed by a steady fluctuation of job submissions and a tail-off towards the end
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Figure B.l: Run-sequence and CDF plots of Job Inter-arrival times
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Figure B.2: Job inter-arrival times normal probability plot

of the workload trace. Again, the plot for the dates of the month does not reveal 
much as it is strongly dominated by the weekly job submission pattern.

This facility exhibits a slightly different but still comparable pattern  to that 
of the CCC. Both Grid clusters see the lowest number of submission on Monday 
and Sunday, but in this facility’s case the Wednesday peak is replaced by a more 
spread out distribution between Tuesday and Friday, with Saturday also seeing 
a high number of job submissions.

The hourly distribution of job arrivals is similar to the one seen at the CCC 
with peaks in the late morning and early afternoon followed by a steady stream 
of jobs throughout the night. The smaller peak at around 10am, presumably for 
jobs which will finish before the day’s end, is followed by a larger peak at 3pm 
which would probably see jobs running overnight or longer being submitted.

The presence of any long-tail behaviour in the distribution of job inter-arrival 
times has been assessed by using the complementary cumulative distribution 
function plot shown in Figure B.4. The plot shows that for values of inter-arrival 
times larger than 10 seconds, the tail of the distribution follows the fitted Pareto 
function very well over an extended range of almost five orders of magnitude. 
Similarly to the behaviour observed at the CCC, the distribution of inter-arrival 
times is long-tailed at this facility as well.

Finally, the self-similar nature of the job arrival process was tested by esti­
mating the value of the Hurst parameter using the rescaled range analysis on the 
job inter-arrival times. Figure B.5 shows the resulting plot which exhibits good 
linearity and indicates a Hurst value of 0.81. This is 0.04 lower than the value 
indicated for the CCC but is still a very strong indication of a self-similar process.
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Figure B.3: Job submission count: cyclic behaviour

B.2.2 Wallclock Execution Time

The run-sequence plot and the cumulative distribution function of job wallclock 
execution times is shown in Figure B.6. Compared to the CCC job runtime 
distribution, this facility has a higher fraction of shorter running jobs and a lower 
percentage of longer running ones.

Common to both Grid facilities is the absence of any prominent modes or 
predominant values of job runtimes. Analysing the normal probability plot shown 
in Figure B.7 it is clear that apart from some skew for runtime values of more 
than 10,000 seconds, the distribution is a very good fit to a log-normal one. 
Each runtime value is as probable as any other throughout this wide range, thus 
making the process of fitting a sensible forecast model to such data set difficult if 
not impossible. These findings further support the need to section the workload 
into more predictable partitions before applying selected forecasting methods.

Figure B.8 plots the total wallclock execution time of jobs as a function of their 
submission time. Due to the shortness of the workload trace, and the variability 
of the job runtimes, plots showing monthly and date of the month fluctuations



APPENDIX B. ADDITIONAL WORKLOAD CHARACTERISATION 197

Job inter-arrival times: Empirical and Fitted CDF Job inter-arrival times: Empirical and Fitted CDF

 Empirical C-CDF
 Pareto C-CDF
- -  Weibull C-CDF 

Gamma C-CDF
10"1

10®103
Job inter-arrival times [s]

0.9
VI
S
1

J  0.5 
o •
*3 0.4
&a o.3 &
2 0,2 £

0.1

 Empirical CD
 Pareto CDF

-  Weibull CDF 
Gamma CDF

10610;i
Job inter-arrival times

104

(a) 10sec+  ta il C D F  (b) 10 sec+  tail C C D F

Figure B.4: Job inter-arrival times: long-tailedness and representative functions

do not offer much insight into the usage pattern of the facility.
The weekly usage cycle plot reveals that by far the longest running jobs 

are submitted on Fridays, with the ones submitted on Mondays, Saturdays and 
Sundays having the shortest runtimes and mid-week jobs falling in between. Such 
usage scenario is very similar to the one observed on the CCC Grid and an 
evidence of users self-prioritising their work.

When analysed together with the job submission cycle shown in Figure B.3(d), 
the hourly job runtime pattern reveals the tendency of users to submit shorter 
running jobs in the morning, anticipating their completion in the afternoon, and 
longer running jobs in the late afternoon and early evening hours which run 
overnight. Indeed, the 10am, 3pm and 6pm peaks of job submission seen in 
Figure B.3 correspond to the peaks in the job runtime lengths. This is another 
example of the human perception of time and the corresponding modality and 
seasonality in the expectations of job services times.

Workload characterisation of the CCC Grid cluster has indicated tha t the

Hurst exponenet estimation for job inter-arrival times
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Figure B.5: Job inter-arrival times Hurst exponent estimation using the rescaled 
range (R/S) method
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Figure B.6: Run-sequence and CDF plots of job wallclock execution time

distribution of job runtimes exhibits a strong long-tailed behaviour. The result 
of a similar test done on this facility, plotted in Figure B.9, shows a good fit 
to the Pareto model up until around 10,000 seconds. The following steep and 
modal decline in the probability of observing values higher than 105 is most likely 
attributed to an upper bound in the running time of submitted jobs, a “kill time” , 
which is often enforces in high-performance compute facilities. Unfortunately, 
the author could not establish whether such a policy applied in the case of the 
analysed facility.

The self-similar properties of the job runtimes were estimated using a rescaled 
range method. The fitted line in Figure B.10 estimates the Hurst parameter, with 
good linearity, at 0.80 which is an indication of a strongly self-similar process. 
Considering that the Hurst parameter of the CCC job runtimes was 0.87 it can 
be concluded that Grid runtimes do have a self-similar nature.
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Figure B.7: Job wallclock execution time normal probability plot
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Figure B.8: Job wallclock runtime: cyclic behaviour

B.3 Meta Differentiation and Workload Diversity

Once the need for partitioning the workload into clusters of jobs with the similar 
statistical properties, ‘‘behaviour” or greater predictability, the question arises 
how could these pivot partitioning metrics be defined. This thesis has proposed 
using a mix of job m eta-data and temporal properties to reduce the variability 
of the job runtime distribution. The effect that such job partitioning would have 
011 the location and dispersion of runtime values will be examined in this section.

B.3.1 Job runtime v. job meta-data

The usage statistics available for this facility contained the anonymised identifi­
cation of the user. VO and the job name being submitted, as well as the queue 
to which the job was sent. Figure B .ll  uses box-plots to show the difference in 
the distribution of job runtimes with respect to the four pieces of available job 
meta-data.

Plotting the distribution of each user’s job runtimes, as seen in Figure B .l 1(a),
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Figure B.9: Job execution times: long-tailedness and representative functions

shows how vastly different their statistics are. Although some users do submit 
jobs with a very large inter-quartile range, the majority runs jobs with a much 
smaller dispersion. Since these users are assigned to very few VOs, partitioning 
based on the owner VO in most cases returns unsatisfactory results. The job 
names have even less resolution, as only three are commonly used.

The final plot shows the correlation between the job runtime and the queue 
to which the user has submitted the job. As the CCC had only one queue, such 
statistic was not available, but the findings by other researchers on the lack of 
correlation between the implicit user predictions of job execution time (expressed 
by queue selection) and the actual job runtime were often noted in this thesis. 
In the case of this facility, it is clear that such findings are accurate. While 
the Test and Short queues do have lower medians and inter-quartile ranges than 
the remaining ones, the dispersion of the job runtimes in the Long, Day and 
Infinite queues is almost identical and the median value is decreasing instead of 
increasing. The Batch queue has seen almost no job submissions. A Spearman’s

Hurst estimation for job execution times using R/S method
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Figure B.10: Job wallclock execution times Hurst exponent estimation using the 
rescaled range (R/S) method
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Figure B .ll: Job wallclock runtime correlation: meta-data

rank correlation coefficient between the job runtime and the queue selected was 
0.28 indicating a very small positive correlation. Such findings reiterate the 
problem of relying on the user estimates of the job execution time and further 
motivate the need for an autonomous and automated prediction system.

B.3.2 Job runtime v. job submission time

One of the novel aspects of this thesis was in using the temporal job properties 
to partition the workload into more closely related groups. Such approach makes 
use of the observations that Friday jobs run longer, that jobs submitted in the 
late afternoon tend to execute throughout the night, or that job runs that are 
closer in time tend to be more strongly autocorrelated.

Figure B.12 shows the central tendency and the distribution of job runtimes 
according to the day of the week, or the hour of the day, in which they were 
submitted. The plots show a steady rise in the execution lengths throughout the 
week with a peak on Friday, followed by much shorter execution times at the 
weekend. The hourly plot reveals a similar pattern with the longest running jobs
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Figure B.12: Job wallclock runtime correlation: temporal data

submitted at late afternoon, and a distinctly different profile of execution times 
during the working day and overnight.

When applied as a sole partitioning criteria, this observed correlation between 
the job’s submission time and its execution time may not yield results as good 
as the application of clustering based on the job meta-data. Its real potential 
however is in further differentiating these meta-data based partitions according 
to workflow habits of a specific users or Virtual Organisations.

B.4 Conclusions

The purpose of this appendix was to present the workload characterisation of 
an additional multi-purpose, production Grid facility, which would support the 
findings of the CCC usage study presented in Chapter 4, and the subsequent 
methods of predicting job execution times given in Chapter 5.

By focusing on the job arrival process and the wallclock duration of the job 
execution, the analysis has found substantial similarities between the two Grid 
workloads. Both of the studied properties have a log-normal distribution, long- 
tails and are significantly self-similar. There were also strong cyclic patterns on 
the weekly and daily scales.

The potential of the temporal- and meta-based job partitioning in reduc­
ing data variability (and thus increasing predictability) was confirmed with the 
submitting user, the time and the day of job submission identified as key pivot 
metrics. It was also shown that the user’s selection of the queue to which the job 
will be submitted is a poor indication of how long such job will run for.

Considering the difficulties of obtaining representative Grid workloads, the 
results presented in this chapter provide strong support to the conclusions drawn 
from the analysis of the CCC workload, and further justify the methods and
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approaches used in the forecasting of job runtimes based on the historical infor­
mation.



Appendix C

Commercial Aspects

The following appendix will examine the commercial value of the presented PhD 
work, discuss possible ways of commercialising researched approaches, methods 
and techniques, and investigate feasible scenarios for monetising added value 
offered by the autonomous deadline scheduling 011 the Grid.

This additional work was kindly sponsored by the joint collaboration of Uni­
versity College London and London Business School through the Centre for Sci­
entific Excellence*, established in 2000 to promote entrepreneurship within the 
fields of science and technology. The author is grateful for their ongoing support .

C.l Grid Computing Technology

Among several definitions of Grid Computing, from a business perspective the 
most applicable one defines it as a collection of computing and storage elements 
running a layer of software (called middleware) which is presenting these resources 
as a unified platform. Grid resources can be geographically distributed, within 
different administrative domains and running on various supported hardware and 
software, but through a Grid middleware layer these are all presented as a unified 
Grid service.

Grid computing is in many ways a potentially disruptive technology. By 
enabling concentration of compute power away from the end user, and by offering 
it as a metered service 011 a pay-per-use basis, it opens up a new market segment 
of computational power providing. It creates a new business model focused 011 

competitively selling Grid services in an open market, by suppliers who are 
leveraging economies of scale in hardware procurement, management cost and 
operating expenses.

* h ttp :/ / w w w .cselondon .com
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C.2 Business Potential of Grid Computing

Grid technology can potentially offer great cost savings and increased productiv­
ity to businesses in a wide range of compute intensive industries such as engineer­
ing, finance, automotive and biochemical. Deployed at the core of a company’s 
computing environment the Grid can bring the following benefits:

• R educed Total C ost o f O w nership through a unified and centralised 
management interface tha t reduces the running costs through economies of 
scale.

• Linear capacity grow th and cap ital exp en d itu re as hardware can be 
added to the Grid in smaller, more granular steps, rather than investing in 
large server farm upgrades.

• Increased utilisation  through resource virtualisation and formation of a 
universal utility platform with 110 hard partitioning of resource.

• H ighly adaptable and agile com puting platform  as a variable and dy­
namically adaptable amount of resources can be used to deliver each service 
thus helping to align available resources with current business priorities.

Deployed across the company’s general computing capital, such as employee 
workst ation and terminals, the Grid can be used as a ‘‘cycle scavenging” plat form 
to run computational jobs 011 underutilised computers and thus extract more 
value from the investments already made.

C.3 Grid Computing Value Chain

Computational grids are effectively a large and distributed computer clusters, 
found in academia and industry requiring powerful, high-throughput facilities. 
These large institutions have established relationship with equipment manufac­
turers and vendors, are often tied in with a long term contract, or have funding 
commitments related to a specific supplier. M ajority of these high performance 
clusters were made to order, using low volume or specialised hardware, and up­
graded throughout their long life-cycle.

I11 this environment, switching costs are very high and supplier lock-in is 
strong. The Grid could significantly disrupt hardware supplier’s power as it en­
ables high-performance, high-availability clusters to be assembled out of commer­
cial off-the-shelf components (COTS). This has the effect of shifting significant 
value extraction potential from hardware manufacturers to middleware vendors 
and system integrators.

Following is a brief explanation of key links in the Grid value chain and major 
companies competing in each segment.
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C.3.1 Hardware Manufacturers and Suppliers

Companies at the beginning of the chain are traditionally hardware manufacturers 
and suppliers with strong focus on business IT sector, competencies in large server 
deployments, and experience supporting mission critical hardware.

A major profit share of these companies comes from high value contracts to 
supply their top of the range enterprise hardware to large institutions. This rev­
enue stream was disrupted 2001 to 2004 by a slowdown in corporate IT spending 
and businesses focusing on getting value for money.

Grid technology is unsettling to these large hardware manufacturers as it 
reduces their product differentiation: just about any hardware component can 
be used to create a Grid cluster and the Grid middleware will enable jobs to be 
executed quickly and reliably. As a consequence, hardware manufacturers are 
trying to add more value to their enterprise level hardware and differentiate it 
better from their low level kit (usually by adding management, deployment and 
monitoring tools). A range of hardware is now also labeled as Grid-enabled, a 
property which still has no universal meaning and is mostly used for marketing 
purposes.

Major hardware manufacturers with keen interest in supporting and devel­
oping the Grid concept are IBM, Sun Microsystems, Hewlett-Packard and Dell 
Computers.

C.3.2 Middleware and Software Vendors

W ith the introduction of computational clusters made of COTS components, 
and with big steps in virtualisation and interoperability of heterogeneous kit, the 
middleware (or software glue) that enables their interoperability and management 
is becoming a more im portant components of the overall system.

Companies in this part of the value chain are based on the software developer 
or retailer business model with valuable income coming from the support and 
customisation contracts. The competition in this sector is limited, and most 
middleware vendors are operating in their own niche market segments. Product 
development cycle is long and based on a major early adopter whose custom 
solution was generalised to cover their entire industry. The companies in this 
part of the value chain are growing quickly and have to be learning as they 
go along. Human capital and up to date skills are very im portant, leading to 
expensive labour force.

Although gross extracted value at this point in the chain is less than at the 
hardware manufacturing level, the profit margins are higher, the business much 
less capital expenditure intensive and client lock-in still very strong. Essential at 
this stage are strong links with both hardware manufacturers (to ensure compat­
ibility and as a sales channel to undecided clients who are just entering the Grid
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market) as well as high value clients (who may have specific customisation needs 
and can serve as valuable references).

The largest companies at this value chain level are recent privately held s ta rt­
ups, spun off by academics involved in the Grid research, or people with the 
specific knowledge of the technology who were previously with one of the big 
hardware manufacturers. These include Platform Computing, Avaki, United 
Devices and to some extent Sun Microsystems.

C.3.3 System Integrators and Consultants

Popularisation of Grid computing has increased the need for knowledgeable sys­
tem integrators and consultants to guide a new Grid adopter through the se­
lection of appropriate hardware, Grid middleware and Grid enabled business 
applications.

As with so many new technologies, the Grid has been suffering from compat­
ibility issues, difficult and time consuming deployment scenarios, and high levels 
of ongoing management and maintenance of the early systems. The experience 
of people who have already been through this process is invaluable and a very 
good basis for a professional services business model.

The companies in this value chain segment are mostly small start-ups or 
consulting businesses with looser or tighter connections to a larger Grid hard­
ware manufacturer or middleware vendor. Some of their founders come from 
academia while some are ex-project managers from hardware manufacturers or 
early adopters of the Grid technology. These Grid consultants command high 
profit margins, but are dependant on the number of new and repeat clients. 
Good relationship with all parties in the value chain is therefore essential. Some 
of the currently better known consulting firms are Globus Consulting and P lat­
form Computing.

C.4 Probabilistic Deadline Scheduling

A job scheduler is an im portant part of the Grid middleware whose task is to 
order the jobs waiting to be executed in such a way that the utilisation of the 
system (or some other given metric) is maximised. The waiting queue can have 
thousands of jobs and there may be hundreds of machines on which these jobs can 
run and the scheduling process quickly becomes a complex optimisation problem.

C.4.1 The Need for Better Scheduling

The performance of the scheduler influences the throughput of the whole Grid 
cluster, user’s satisfaction with the computing service they are getting, and the 
profitable use of Grid operator’s resources. Currently deployed schedulers em­
ploy a range of modified first-come-firs-served (FCFS) batch approaches. This
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means that the jobs are executed in the order in which they arrived, unless some 
administrative policy explicitly favours jobs from a certain user or group. This 
static prioritisation is of poor selectivity and leads to low levels of resource utili­
sation. It also does not match the human workflow often based on the notion of 
job deadlines.

Job schedulers that were developed specifically for academic use usually do 
not deliver in the commercial sector. Better Grid schedulers able to fit human 
workflow through the use of deadlines, offer quantifiable Quality of Service (QoS), 
and be more easily manageable are clearly needed.

Development of this next generation of schedulers depend on the ability of 
the Grid middleware to forecast the execution time of jobs in the queue, their 
future arrival rate and the presence of any cycles or patterns in the workload. 
The research work undertaken as part of this PhD thesis offers a way of obtaining 
those kinds of information from the statistical models based on the historical job 
execution data.

C.4.2 Probabilistic Deadline Scheduling Proposition

The methodology described in this thesis enables automated forecasts of job 
execution times based on the historical models of previous job runs. The approach 
uses additional information associated with the job (such as subm itting user, 
Virtual Organisation (VO), date and time, application name etc.) to look for 
usage cycles, patterns and correlations which reduce the variability of the data 
and increase the accuracy of predictions.

The technology used enables several im portant improvements in Grid schedul­
ing and Grid resource management:

• A nalyse usage p attern s and workload d istribution . A workload 
model is developed by monitoring and analysing the jobs submitted to the 
Grid. This model is then used to analyse usage patterns of individual users, 
VOs or periods of the day or week.

• E stim ate execution  tim e o f a job. By using a model of execution times 
developed for a certain user, executable or execution scenario, it is possible 
to predict how long a newly submitted job will run and establish a margin 
of error for such predictions.

• D etect and track out-of-ordinary job  characteristics. Continuous 
observations of the state of the Grid and the running jobs enables the 
system to spot sudden and significant changes of job characteristics. This 
information is then used to ensure quality of scheduling and if necessary 
bring this behaviour to the attention of system administrators.

These core abilities enable new functionality and offer added value to the pro­
cess of Grid resource monitoring, management, provisioning and job scheduling:
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•  Support for deadline scheduling. A predictive, probabilistic scheduler 
is able to offer users execution of their jobs to a certain deadline. Knowing 
how long a job will run enables the scheduler to re-arrange the job queue out 
of order and maximise the likelihood of jobs completing by their deadline. 
For example a short job with a long deadline would be moved further back in 
the queue to free up resources for a job whose deadline is tighter, regardless 
of the order in which they were submitted.

• Increased overall sy stem  usage. Together with a resource pricing sys­
tem, probabilistic scheduling would enable users to trade off their “com­
puting budget” against the urgency of their work. A job with a relaxed 
deadline, or one subm itted at off-peak hours, would cost less to process 
then an urgent job run at peak times. This tried and tested yield manage­
ment approach evens out usage distribution throughout the service period 
and lowers peak to average resource requirement ratio.

• D ynam ically align resource use w ith  corporate priorities. As dead­
line is specified on a per job basis as a measure of each job’s priority, hard 
partitioning of resources can be avoided. Provided resources are available, 
a relaxed deadline job from a high priority user would not block an urgent 
job from a lower priority user. In this way maximum flexibility and fairness 
to all users can be maintained while aligning resource use with business 
priorities.

• Provides business in telligence on com puting  usage patterns. User’s 
workflow and habits, usage patterns and job execution scenarios are re­
vealed through detailed monitoring of resource usage and correlations be­
tween jobs and their “softer” properties such as submitting user, Virtual 
Organisation, time or command line parameters. This valuable insight can 
help in system planning and provisioning, spot problematic applications or 
users, and reduce hotspots and congestion 011 the computing platform.

The benefits of a predictive deadline scheduling approach to an enterprise 
running a large Grid cluster serving numerous users with widely varying resource 
requirements can be significant. Ways of capitalising on those benefits and the 
presented technology are discussed in the next chapter.

C.5 Possible Exploitation Routes

Assuming that scientific validity, practicality and fitness for scheduling purpose of 
the probabilistic scheduling approach presented in this thesis is confirmed, several 
exploitation routes are open. In this section a range of possible commercialisation 
options will be discussed, and their benefits and problems analysed.
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C.5.1 Patenting

As with many other scientific discoveries, patenting is the first and foremost 
opportunity of generating revenues. A possible commercialisation route for the 
author’s research would be to patent a method of making execution time forecasts 
based on the histories of previous runs, the use of time-series analysis for making 
such forecasts, and the integration of pattern matching and outlier detections to 
help improve the quality of predictions.

While obtaining a patent is never easy or straightforward, in this case further 
complications arise from the fact tha t it is a mathematical or logical construct 
implemented in software tha t needs to be patent protected. This has traditionally 
been hard to do and companies have previously resorted to implementing software 
in specific hardware to qualify for an “aparatus” as required by some patent 
authorities. The European Union has been considering legislation on software 
patenting from as early as 1999 but has always come against a very strong 
opposition from software manufacturers and users alike. At the time of writing 
the EU has begun third round of consultations on the software patents but it 
seems unlikely swift or clear action will be taken on this issue any time soon.

Apart from evident problems and legal challenges in patenting a software 
invention, the application procedure itself is a lengthy and expensive process. 
Provided a patent is granted, it then must be upheld in the face of challenges 
from competitors and defended from infringements. Since patent litigation can 
be very costly, a large company infringing on a small firm’s patent can prolong 
the process and financially weaken the competitor.

The revenue model in a patenting business is a straightforward collection of 
royalties. The pricing structure depends on the strength of patent protection, 
added value that the patented solutions delivers to the main product, and the 
cost to the licensee of developing a similar technology while not infringing the 
patent. The benefits of the intellectual property licensing model are modest 
capital investment requirements and ongoing costs directly related to the level of 
its research and development effort.

All things considered, intellectual property licensing approach can grow a 
profitable and sound business, but must rely on very strong patent protection 
and bespoke leadership in a given market segment.

C.5.2 Third-party Scheduler Add-on

Examples abound in the software marketplace of smaller companies developing 
add-on solutions that significantly improve the usability, performance or function­
ality of a larger applications. This model could be used to develop a probabilistic 
scheduling add-on for the scheduling systems already deployed 011 the production 
computational Grids.
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By relying on an industry accepted scheduler, and developing only an execu­
tion time prediction module, the amount of initial development and coding work 
would be minimised. This also means a shorter time to market and a lower seed 
investment would be required. Entering the market by improving an already 
existing scheduler leverages its installed user base, and significantly reduces user 
switching cost as changing their middleware provider would not be necessary. 
W ith low barriers for entry, this approach could lead to a high conversion factor 
if the add-on becomes an accepted “standard” upgrade in the industry and may 
tem pt a buy-out by the company behind the actual scheduler.

The success of the business based 011 this model depends 011 the management 
of the product development cycle, prudent cash flow control and a timely hiring of 
effective marketing and sales force. Once the initial product has been developed, 
product margins can be high if the distribution channel and the customer support 
expenses are well managed.

A major problem with this commercialisation route is that in a bid to lock 
in the customers, few commercial middleware providers make their schedulers 
based on open standards and published interfaces to which an independent add­
on could be attached. Since the performance of the overall scheduling system 
greatly depends on the core scheduler over which we would have no control, 
problems, poor overall performance or reliability issues with the system could be 
brought into connection with our scheduling add-on and affect negatively on the 
start-ups reputation.

Most importantly, unless patenting the predictive elements of the add-on is 
possible and could offer strong IP protection, large scheduling system providers 
could move to integrate similar technology in the new versions of their products. 
W ith this in mind, possibly the best exit strategy with this approach would be to 
position the company as a likely buy-out target by an established Grid scheduling 
software developer.

C.5.3 Standalone Probabilistic Scheduler

By deciding to take full control of the job scheduling in computational Grids and 
use the apparent benefits of probabilistic scheduling, a possible commercialisation 
route would be to develop, sell and support a fully fledged standalone Grid 
scheduler. This approach would offer the flexibility to implement all the insight 
and research done for this PhD thesis but would also expose the start-up company 
to a great amount of risk.

The development and testing of a mission critical component such as a sched­
uler would be very costly and time consuming. It would certainly require expert 
management and a strong, knowledgeable programming team. Attracting em­
ployees of this profile would be hard for a small start-up company, and would 
most probably involve equity sharing remuneration packages.
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A new entrant to the Grid middleware market would face high barriers due to 
the m arket’s monolithic nature, supplier lock-in and informal supplier selection 
methods based on previous references, experience and perceived reputation. The 
company would have to build their own client base (whose switching costs would 
be high), and help them through the migration process (involving a high volume 
of expensive support time).

W ith a completely independent scheduling solution the commercialisation 
venture could certainly capture more value than as an add-on provider but at the 
cost of much greater capital investment, longer time to market and profitabil­
ity, and significantly greater risk. This business model would require a strong 
strategic partner, a well funded company willing to move into the computational 
Grid market and looking for a new technology to break ground. The level of 
financial support extended to the start-up would certainly influence the equity 
distribution between shareholders and may yield a relatively modest return for 
the entrepreneur.

C.5.4 Professional Services - Consulting Business

W ith years spent researching the Grid scheduling, user behaviour patterns, and 
Grid technology and middleware, a reasonable commercialisation of the author’s 
know-how would be a consulting role in a professional services business. The 
probabilistic scheduling method and its associated job runtime prediction soft­
ware could serve as a bespoke tool that, coupled with an in-depth analysis of 
client’s requirements, can deliver significant added value to their computational 
Grids.

This business model would offer more than a scheduling system add-on, it 
would provide a customised scheduling, tuned to client’s specific requirements. It 
would require sizable initial investment in order to move the predictive algorithms 
from academic test bench into production environments but would not require 
extensive support or sales network. The model could offer good profit margins 
and a rewarding working environment for the entrepreneur. If a foothold in the 
market was established, additional consulting work could be achieved through 
horizontal expansion into other Grid related fields.

The most important factor for success of this business model would be client 
acquisition. The very labour intensive nature of customised approaches limits the 
possible client pool to large organisations with expensive or specialised equipment 
whose high utilisation is essential, or organisations running mission critical ap­
plications requiring very specific scheduling. The expense of developing a custom 
solution would only make financial sense in these cases.

The barriers for entry would be high: with 110 previous track record a solid 
proof that the predictive technology works, and that the start-up has enough 
know-how to apply it. would be required. The consultancy would have to develop
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a unique and recognisable approach to distinguish itself from competitors and 
imitators. In such environment the start-up would depend strongly on finding its 
first client, an early adopter willing to try out a new approach.

The ongoing success of the company would mostly be influenced by its re­
cruiting strategy and its ability to attract capable and knowledgeable consultants, 
perhaps through an equity sharing plan. Structured management from as early 
on as possible would be needed to help the founder delegate responsibility and 
allow the company to grow.

C.5.5 Overview

Considering different commercialisation options in the context of a new business 
start-up, the most im portant factors are the amount of seed capital required, 
the assessment of the business’s profit potential and the amount of time it would 
take to develop a marketable product or service. The overview of those im portant 
aspects for proposed commercialisation routes is given in Table C .l.

CapEx Profitability Time to market

IP Licensing o €
Scheduler Add-on € € €
Standalone Scheduler • • O
Professional Services O' € •

Table C.l: Overview of commercialisation options available with respect to their 
required level of capital expenditure, anticipated profitability potential and re­
quired time to market.

The balance between the risk and the reward is subject to the investor’s per­
sonal circumstances and the expectations of the industry as a whole. Given this 
overview, the following section will discuss in further detail the chosen commer­
cialisation route and the justification for such decision.

C.6 Selected Approach - Scheduler Add-on

After considering all four possible commercialisation aspects given in the previ­
ous section, developing a predictive scheduling add-on for an already deployed 
scheduler offers the best balance between the potential profits and the amount of 
risk a start-up could commit to.

While patenting the predictive scheduling approach plays an im portant role in 
all business models considered, legal obstacles and the burden of proving novelty 
to the patent authorities would make a successful patent application very hard. 
Software companies in similar situations usually prefer to retain the know-how 
and seize the opportunities of market innovators capitalising before imitators are
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able to catch up. A start-up is unlikely to have sufficient financing available to 
reach the market fast enough.

After further discussions with colleagues who have managed larger software 
development project before, it became clear that developing a fully featured 
scheduler, of adequate reliability to be used in the large and often mission critical 
production environments would be prohibitively expensive for a small start-up. 
This option remains open if a large strategic partner is found, and its expertise 
used to speed up such development. Even if such opportunity arises at some later 
point in time, work done on developing a scheduler add-on would not go to waste 
and it would certainly serve as a proof of concept and of company’s ability.

Finally, running a professional services business based on the custom Grid 
workload analysis tool may not be sufficient to sustain profitability and growth. 
The question of author’s experience and that of related academics who would be 
involved may also prove an issue with future clients. While there is presently 
a growing need for outsourced Grid knowledge, it is likely tha t this trend will 
continue, and from the aspect of offering Grid consulting services the author can 
only benefit by gaining further experience.

The following sections will examine the strategic and financial aspects of 
launching a new business around a scheduler add-on based on the predictive 
scheduling technology.

C.6.1 Strategic Analysis

Assuming a company will be set up to commercialise on this research work, it 
will certainly have very limited resources. A focused strategy and well researched 
market environment in which it will operate will help it create a competitive 
edge over similar new ventures. This section will outline such company’s primary 
objectives, its biggest advantages over its competitors, a strategy for bringing a 
new product to the market, and breaking into profitability in about three years 
time.

Mission Statement

The company’s primary aim is to enable clients a more productive use of their 
computational Grid infrastructure. This would be done by developing a job 
scheduler supporting executions to a user specified deadline, and by offering 
clients novel tools to analyse, plan and provision their Grid usage.

Core Competencies

The core competency of the company is in its in-depth research of Grid usage 
scenarios, workloads, job traces, job meta-data, and user behaviour. A secondary 
competency is the tool-set and the know-how to statistically analyse this data
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for a large number of patterns and correlations that can help reduce the amount 
of uncertainty in the dataset.

These competencies can be applied to a wide variety of Grid related products 
and services and can contribute significantly to end-product value. As they 
present accumulated knowledge, it would be hard for competitors to quickly or 
easily imitate them.

Competitive Advantage

The primary competitive advantage of the company is a product differentiation 
one. Our product will deliver benefits to the clients (such as scheduling to a 
deadline) exceeding those offered by the competitors. This will influence the 
positioning of the firm in the market, both in fending off low-cost competition 
and conquering the markets of other, feature-rich, scheduler.

Target Scope
Advantage

Low Cost Product Uniqueness
Broad Cost Leadership Differentiation

(Industry Wide) Strategy Strategy

Narrow Focus Strategy Focus Strategy
(Market Segment) (low cost) (differentiation)

Table C.2: Porter’s generic strategies table identifies three possible strategies 
(cost leadership, differentiation and focus) depending on the firm’s application 
of their main advantages (cost advantage and differentiation) in either broad or 
narrow scope.

According to Porter’s generic strategies presented in Table C.2, the company 
would be pursuing a focus (differentiation) strategy due to its product uniqueness 
and narrow target market scope. By focusing in closely on its niche market, the 
company can enjoy a high degree of customer loyalty and thus raise entry barriers 
for direct competitors. As a downside, their narrow market focus increases buyer 
power and makes them vulnerable to acquisition by broad-market competitors or 
large customers.

SWOT Analysis

SWOT (strengths, weaknesses, opportunities, threats) analysis offers and insight 
into internal and external environment in which the company will operate. It 
plays an important role in formulating overall strategy and in matching the 
company’s resources and capabilities to the competitive marketplace in which 
it operates.

• S tren g th s: The following resources and capabilities will be the basis for 
developing a competitive advantage
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— Proprietary know-how in the analysis of Grid utilisation, usage pat­
terns recognition and the use of social factors for better Grid usage 
modelling

— Cost advantages from utilising work already done as part of the PhD 
research

— People capital and networking with relevant contacts in the Grid in­
dustry and academia

— Ability to adapt to market conditions or specific client needs

•  W eaknesses: The absence of certain strengths may weaken the ability to 
deliver on company strategic goal

— No patent protection for the core predictive technology

— No established brand or reputation

— Lack of access to the key distribution channels

• O pportunities: The market environment in which the company operates 
holds key opportunities which can be developed into revenues

— Large client interest in a potentially disruptive technology

— Unfulfilled customer need for a scheduling method well suited to  their 
workflow

— Dynamic market with large growth potential

•  Threats: Critical actions or changes in the external environment which 
can present threats to the company and jeopardise execution of the business 
plan

— Failure to produce a reliable and efficient product

— Move by the current Grid scheduling makers to integrate similar func­
tionality into their core products

— Emergence of substitute or competing products

— Shifts in the cluster technologies, IT spending or high performance 
computing strategies away from the distributed approaches and the 
Grid computing

Since the company is a new start-up business, its opportunity cost is low 
and risk tolerance high. W ith a new and exciting product in the development, it 
should follow a strength-opportunities (S-O) strategy which would see it pursuing 
opportunities that are a good fit to its strengths.
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Porter’s Five Forces Analysis

Michael Porter’s Competitive Advantage [240] provides a well known “five forces” 
model for the industry analysis based on pure competition. It is helpful in 
understanding the market conditions the new company will encounter and focuses 
the management process on possible problems and company’s strengths tha t can 
be leveraged to overcome them.

• Barriers to  en try  - Strong

— The patents and the proprietary know-how needed to develop the 
sophisticated Grid scheduling and resource management components

— New entrants require specific assets (mostly appropriate human capi­
tal) to enter

— High brand loyalty and high switching costs.

— Restricted access to the distribution channels and clients.

• Threats o f S u b stitu tes - Medium

— Dangers of substitute technologies making effective Grid scheduling 
obsolete:

* departure from distributed or utility computing concepts

* stronger affirmation of high-end workstations

* monolithic parallel computers or a significant jum p in the com­
puting power of single chips reducing the need for computational 
Grids.

— Industry adopting and /  or standardising on one of the other alterna­
tive Grid scheduling approaches.

• Supplier Pow er - Low

— Product mass-production is standardised (software duplication).

— Product R&D depends to an extent on the highly skilled workforce, 
but with no strong labour union and with good availability on the 
labour markets.

— Backward integration threat by purchasers is considerable; possible ac­
quisition by a Grid middleware developer looking to extend its schedul­
ing product portfolio.

• Buyer Power - Strong to Medium

— Concentrated buyers; few large institutions and enterprises have com­
putational Grids, even fewer require sophisticated scheduling methods.
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— Large buyers will purchases significant proportion of the company’s 
software licenses.

— Significant buyer switching costs once on our scheduler lowers buyer 
power.

— Scheduling is also a critical portion of Grid middleware further lower­
ing buyer power.

• D egree o f R ivalry - Low to Medium

— A small number of firms developing the Grid middleware and the 
scheduling software reduces rivalry.

— Strong market growth reduces rivalry by leaving plenty of space for all 
competitors.

— Low fixed costs usually experienced by the software industry reduce 
rivalry.

— High switching costs lead to lower levels of rivalry.

— High levels of product differentiation (schedulers are developed to fulfil 
a specific need no other scheduler on the market does) reduces rivalry.

— Since buyers are concentrated and hard to switch, strategic stakes are 
high - a company can either lose market position or experience great 
gains leading to intensified rivalry.

— Being a global technology trend, the Grid computing attracts a diver­
sity of rivals from different cultures and market philosophies creating 
a volatile and intensive rivalry.

— Industry shakeout is possible due to the strong market Growth and a 
disbalance in the capital strength of the rivals.

The above overview of the Grid middleware and the scheduling software 
industry indicates a lucrative market with a strong growth potential, and a low 
to medium rivalry intensity. W ith a low level of supplier power, and a threat of 
substitutes mostly dependant on the long term acceptance of the Grid technology, 
the risk seems to be well balanced. The high entry barrier is significantly reduced 
by the work already carried out as part of the doctoral research, and offers the 
author a good starting position compared to other potential market entrants.

C.6.2 Financial Analysis

Providing preliminary financial analysis of the profitability, cash requirements 
and financing structure of the start-up enables the entrepreneur and potential 
investors to judge the merits of the business, and whether it meets their risk 
requirements and anticipated rate of return. The following takes a look at the



APPENDIX C. COMMERCIAL ASPECTS 219

financial potential of the company and analyses the cash flow anticipated in the 
first three years of operation.

Financial Potential

The financial potential of the start-up business will influence its valuation, its 
attractiveness to the potential investor, as well as the amount of risk he or she is 
willing to take. It is influenced by the following factors:

• Cluster, utility and Grid computing market capitalisation and growth rate

• Proportion of the market attributed to the sales of the middleware and 
scheduling software

• Price of those scheduling components, which would influence the retail price 
of our scheduling add-on

• Market capture of our scheduling add-on

• Our overall profit margin

Table C.6.2 outlines the profitability scenario based on currently available 
market data. The analysis assumes a steady grow in the market capitalisation of 
the Grid IT sector and a percentage increase in the spend share of the grid mid­
dleware (due to increasingly commoditised hardware). The number of shipped 
scheduler units is hard to judge based on the available data and supplier pric­
ing is usually negotiated together with a consultancy or support contract. The 
stated figures are thought to be reasonable estimates and a conservative pro­
jected growth was used. Our market capture was initially estimated at around 
5% climbing to 20% in year 3 with a very modest increase in the base price of 
the scheduling add-on. The projected revenue in year 3 was therefore estimated 
at £1.35 million.

C.6.3 Cash Flow Analysis

Currently, the product is in the proof-of-concept stage. To successfully bring the 
product to the market, the company must be able to sustain itself on seed funding 
until it begins to generate profits. Prudent cash management during tha t period 
is essential, and good estimates of the start equity required are a basis of this.

First Year Operation

The following assumptions have been made when estimating the cost of operations 
in the first year.

D evelopm ent costs: It is estimated that, a five strong software development, 
team would need ten to twelve months to deliver the first stable, marketable
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Year 1 Year 2 Year 3

Grid, cluster and utility
computing market cap. £1,000,000,000 £1,200,000,000 £1,500,000,000
Grid middleware
percentage 10% 15% 20%
Grid middleware
market cap. £100,000,000 £180,000,000 £300,000,000
Schedulers shipped 3,500.00 4,000.00 4,500.00
Scheduler avg. price £8,000 £8,500 £9,000
Our market capture 5% 10% 20%:
Our scheduler
add-on cost £1,200 £1,500 £1,500
Our revenue £210,000 £600,000 £1,350,000

Table C.3: Profitability scenario for first three years of business with a mar­
ketable product. The revenue is estimated based on the Grid IT sector market 
capitalisation, number and price of core scheduling units shipped and the market 
capture percentage and unit price of out scheduler add-on.

release. The salary budgeted for is an industry average, but the company can 
further benefit from the close links with academic institutions and perhaps gain 
access to the knowledgeable staff at a reduced cost.

Sales and A dm in staff: Until the initial product development cycle is 
successfully completed, only a very limited sales and admin staff support is 
needed. A single salesperson can start building up a list of potential clients during 
this period and engage in marketing the new approach to the scheduling problem. 
A part-time adm inistration staffer can take care of the salaries, disbursements 
and basic company paperwork with the help from the management.

M anagem ent: A good project manager with the experience in the software 
development would help the software team stay on track and schedule. Alongside 
a basic salary, an equity sharing package may be used to attract a committed 
and worthy candidate.

Fixed O perating C osts: The company will require a substantial invest­
ment in the computer hardware and software equipment. This expense can be 
minimised by using open-source and free software common to the University re­
search community. Office space should be rented, and furniture preferably bought 
on lease to reduce the amount of cash used. As a new company, suppliers may 
not be willing to offer lease or credit terms, in which case cooperation with the 
University can provide basic equipment and furbished offices as part of the seed 
capital investment or in exchange for an equity in the company.

C ost o f G oods Sold: Initially only a small allocation will be made for basic 
marketing efforts. Software distribution and customer support costs will not be 
present until the software development phase has been completed.
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Revenues: No revenue, except from a possible short contract consultancy 
work by the management, is anticipated in the first year of operation, or until 
the release of the first version of the software.

Second and Subsequent Years

Before the launch of the first version of the predictive scheduler add-on, the 
company can start building its sales force and increase its marketing spending. 
It is common to release technology preview and beta versions of the new software 
to demonstrate its functionality to potential clients. In this way, their feedback 
can be incorporated into the final version, their interest can be judged in advance 
and estimates can be made on the initial product sales.

H um an Costs: The employee structure of the company will likely change 
with an increases in the sales and administrative staff levels and a reduction in the 
number of contracted R&D personnel. A Sales and Marketing Manager, and an 
Operations Manager may also be recruited at this stage to help the entrepreneur 
regain focus on the technology strategy aspects of the business.

Fixed O perating C osts: The rise of the number of employees will require 
additional office space and equipment, but with a steady stream of revenues the 
company should be eligible for trade finance or credit.

C ost of G oods Sold: A substantial part of the gross revenues will go toward 
customer support and training. Due to the nature of the target hardware and 
applications, this will require highly skilled staff, able to deal with complex issues 
of software deployment, interoperability and fault finding on parts of client’s 
critical infrastructure. Software duplication, packaging and distribution expenses 
will be minimised by offering incentives for buying the software online.

The above can be summarised in the following Table C.6.3 giving the financial 
outlook for the product development year and the following three years in which 
the marketable product is bringing in revenues. The analysis indicates that 
the firm would require around £300,000 to sustain itself until in breaks into 
profitability. The following section will discuss possible sources from which such 
funds could be secured.

C.6.4 Sources of Funding

It is clear from the preceding section that a significant investment is needed to 
support the start-up company before it becomes profitable. This money could 
come from a number of sources, and would usually be traded for equity in the 
start-up company. The funds are rarely made available as a lump sum, they are 
more often paid in instalments and conditional on hitting certain milestones in 
the product development, product sales or revenues.

This section will not try  to give the details of specific funding opportunities, 
but present an overview of possible funding opportunities and institutions. A
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Year 0 Year 1 Year 2 Year 3

R&D £175,000 £75,000 £80,000 £120,000
Sales £30,000 £45,000 £45,000 £60,000
Admin £20,000 £30,000 £30,000 £45,000
Management £40,000 £60,000 £60,000 £100,000

Sub-Total HR £265,000 £210,000 £215,000 £325,000

PC Equipment £25,000 £10,000 £10,000 £25,000
Offices £18,000 £20,000 £20,000 £30,000
Furniture £5,000 £1,000 £2,000 £10,000
Rates £2,000 £2,000 £2,000 £3,000

Sub-Total Fixed £50,000 £33,000 £34,000 £68,000

Software distribution £0 £875 £2,000 £4,500
Customer support £0 £2,625 £4,000 £13,500
Marketing expenses £5,000 £10,000 £12,000 £15,000

Sub-Total COGS £5,000 £13,500 £18,000 £33,000

Total expenses £320,000 £256,500 £267,000 £426,000

Revenues (Table C.6.2) £80,000 £210,000 £600,000 £1,350,000

EBITDA -£240,000 -£46,500 £333,000 £924,000

Table C .4: Four year• financial outlook

more detailed survey is deferred until a detailed business plan is available and 
possible collaborators and partners identified.

Personal or fam ily funds are often used to jum p start a company or a 
product development cycle. They are usually given as a loan with few or no 
guarantees, sometimes for a share of equity in the new business. The author has 
a small sum of family savings which he could use to support himself and thus 
avoid drawing a salary from the company.

U niversity technology transfer program m es give access to funds made 
available by the University or similar institutions to commercialise research work 
and create research spin-offs. These programmes can additionally provide office 
space, equipment and access to skilled labour (students or academics). These 
funds are relatively modest in size, but the terms are flexible and the author 
would strongly pursue such funding opportunities.

Bank business or personal loans could be a source of low cost funds not 
requiring the entrepreneur to give up a share of equity. However, bank’s adversity 
to risk makes these loans hard to get, and often requires a personal guarantee 
jeopardising owner's personal and family assets. It is unlikely that the author 
would be granted a bank loan for this particular venture.

Venture capital (V C ) is the most frequently used funding source in sup­
porting the technology start-ups. The VCs or individual “angels” can provide
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large sums of money and are risk tolerant. They do require a substantial part of 
the equity in the firm and may impose a management structure to ensure their 
interest is looked after. Good venture capital is not easy to attract and needs a 
good business plan and strong marketing. The author would be very receptive 
to VC funding and would actively seek to attract interest from the individual 
investors.

C.7 Further Research Proposal

The author has subm itted a research proposal to BT Group pic,, as part of 
their Short-term  Research Fellowship scheme. The proposal uses the methods 
and approaches developed in the course of this PhD research to facilitate the 
management of large Grid clusters and to increase the profitability of commercial 
Grid service clusters by using a yield management approach.

The research proposal is included as an example of the broader applications 
of the work presented in this thesis, and as a basis for further research aimed at 
the commercial use of the predictive, autonomous Grid scheduling.
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Improving Service Cluster Profitability Using 
Yield Management Methods

by Aleksandar Lazarevic

Project Summary
Commercial operators o f  large (Grid) clusters are increasingly offering compute, storage and 
network resources as a service charged on a per-use basis. From the operator’s perspective, 
maximising the profitability o f  such an expensive resource usually means striking the right balance 
between high utilisation levels and acceptable quality o f  service offered to the consumer. This work 
proposes a novel way o f  improving the cluster profitability by analysing the historic workload and 
inferring the characteristics o f  specific user behaviour, job arrival rates and execution time patterns. 
This business intelligence is used to develop a yield management system increasing the overall 
cluster utilisation by introducing price differentiation. Paired with a pricing policy, the probabilistic 
workload model increases cluster revenues by making autonomous decisions on job admission and 
resource reservation in anticipation o f  the short-term demand behaviour.

Background and Motivation
Sun, HP, Amazon and other leading IT companies are deploying a new business model for 
computing in which computational and storage resources are made available to the user on an as- 
needed basis. The goal is to provide a service which would minimise user costs while maximising 
the efficient use o f  cluster operator resources. By significantly lowering entry and exit barriers, this 
utility computing concept is a potentially disruptive technology for present hardware/software 
vendors and integrators alike.
Profitability o f  a cap-ex intensive service business greatly depends on the optimal use o f  its 
resources. Yield management approach, popularised by the airline industry, is a process o f  
collecting resource usage data, analysing and understanding user behaviour, and reacting to the 
anticipated demand in order to maximise the profits. The overall goal is to increase revenue by 
balancing the demand variance through the use o f  price or service level discrimination.
The proposed research would look at ways o f  enabling the use o f  yield management approaches in a 
utility compute cluster. Central to this effort is an in-depth understanding o f  the demand presented 
to the cluster and the ability to effectively forecast its short-term development.

Proposed Methodology
The proposed work is an extension o f  the author’s research into workload characterisation and 
predictive job scheduling in general purpose utility Grid clusters. The basis o f  the analysis is the 
detailed three year workload log from a Grid cluster at the University College London, a European 
Grid member institution. This rare data from a production Grid, using the same middleware as the 
Sun Grid Compute Utility -  the world’s first true compute utility1, contains more than 3 million 
jobs from 50+ users in 30 Virtual Organisations compromising academic bodies and their 
commercial collaborators. The workload is highly heterogeneous, with job execution times ranging 
from one to 107 seconds, and a wide range o f  workload patterns. Lightly anonymised, it preserves 
functional dependency between observed metrics and is strongly representative o f  the demand that a 
typical utility cluster may experience. The author will make this workload available for the research 
proposed herein.

1 Sun Grid Compute Utility - http://\vw\v.su n .com /sen  ice/sungrid/index.jsp

http:///vw/v.sun.com/sen
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Objectives
The overall objective o f  the research is to investigate yield management methods for increasing
revenues from a utility compute cluster through selective job admission and price differentiation.
More specifically, the following objectives will be pursued:

1 Confirm the presence o f  cyclic behaviour, temporal patterns and correlations in a re­
presentative utility cluster workload

2. Consider different statistical methods for modelling such behaviour in the context o f  service 
demand predictions

3. Develop a pricing methodology to support balancing o f  demand and service price dif­
ferentiation

4. Develop an admission policy based on the predictive job arrival model to prioritise high- 
value jobs

5. Validate the proposed approach through simulation using real-world utility cluster workload

Work Programme
The following six week work programme compromising 3 work packages is proposed.

Weekly job submission count evolution (log colored) 
24 F

10 15 20 25 30 35 40 45 50
Week number (year 2005)

W'P 1: Exam ination of workload behaviour and prediction model selection (1 week) 
compromises objectives 1-2 and re-examines 
workload properties and models previously 
identified by the author in the new context o f  
demand prediction. An example o f  observed 
workload behaviour in the figure shows the 
number o f  submitted jobs (colour intensity) in 
each hour o f  the day over a 51 week period.
W P 2: Yield m anagem ent and admission  
policy im plem entation (3 weeks) is the primary 
focus o f  the research in order to accomplish 
objectives 3-4. Online revenue optimisation will 
be based on a job control heuristic deciding 
whether it is more profitable to accept a job being 
currently offered or block the resources in 
anticipation o f  a higher-value job. The approach 
will be based on a short term load prediction model whose inputs are the current state o f  the cluster, 
job meta properties and a historical probability distribution o f  a certain class o f  jobs occurring. An 
offline yield management component will investigate dynamic pricing models that would lead to 
increased revenues, more balanced demand and higher overall utilisation.
WP 3: Approach validation and result publication (2 weeks) will use the workload log from a 
representative Grid cluster to test the developed approach using a trace-replay method. Research 
results will be submitted for publication to a relevant peer-reviewed conference.

Deliverables
1 Summary o f  job arrival and execution time properties, patterns and correlations o f  a 

representative utility cluster workload
2. A pricing methodology and admission policy for maximising service cluster revenue based 

on a short term demand prediction model
3. Best practices document for cluster monitoring and historical data analysis
4. Research paper submitted to a peer-reviewed conference or journal
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C.8 Summary and Conclusions

The analysis of the research work done as part of this PhD thesis showed that 
significant potential for its commercialisation exists. The opportunity to develop 
a novel method for scheduling user jobs on large computational Grids unlocks a 
substantial added value to commercial Grid operators looking to increase their 
platform utilisation, as well as users looking for a more efficient, convenient and 
cost effective way of fulfilling their computational needs.

Despite the potential, extracting this added value may prove to be difficult 
mainly due to the high barriers to entry created by consolidated buyers, high 
switching costs and brand loyalty. In this environment the most promising com­
mercialisation route would be to develop a predictive scheduling add-on for a 
third-party Grid scheduler already widely in use. This approach leverages the pro­
prietary know-how obtained during the university research work and minimises 
the risk associated with the outright competition with an established middleware 
supplier that would be present if a fully fledged scheduler was developed.

In a dynamic market conditions with many rivals of unequal capitalisation, 
the best exit strategy for an innovative small company and its founder could be a 
client or competitor buy-out. The valuation of the business at that point would 
depend strongly on the level of product development and a commitment by an 
early client. The management should thus focus on achieving these two as soon 
as possible.



List of Abbreviations

A b b rev iation D escrip tion

AppLeS Application Level Scheduling
ASCI Accelerated Strategic Computing Initiative
CCC UCL Central Computing Cluster
CF RRD Database Consolidation Function
CPU Central Processing Unit
DEC Digital Equipment Corporation (now part of HP)
DS RRD Database Data Source
FIFO First In First Out
FLOPS Floating Point Instructions Per Second
FRFO First Ready First Out
GASS Globus Access to Secondary Storage
GGF Global Grid Forum
GIIS Grid Information Index Service
GIS Globus Information Service
GMA Grid Monitoring Architecture
GRAM Globus Resource Allocation Manager
GRIS Grid Resource Information Service
GSI Globus Security Infrastructure
IP Internet Protocol
LDAP Lightweight Directory Access Protocol
LSF Load Sharing Facility
MDS Globus Monitoring & Discovery Service
MIPS Millions of Instructions Per Second
MPI Message Passing Interface
NWS Network Weather Service
OGSA Open Grid Services Architecture
PBS Portable Batch System
PDF Probability Distribution Function
PE GridSim Processing Elements
PID Process Identifier
PKI Private Key Infrastructure
RDBMS Relational Database Management System

... continued on next page
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A b b reviation D escrip tion

R-GMA Relational Grid Monitoring Architecture
RRA Round Robin Archive
RRD Round Robin Database
SGE Sun Grid Engine
SLA Service Level Agreement
SLAM SO-GRM SLA Management Component
SMP Symmetric Multiprocessor
SOAP Simple Object Access Protocol
SORD Self-Organised Resource Discovery Protocol
SQL Simple Query Language
SSH Secure Shell
Tel Tool Command Language
TCP Transport Control Protocol
TLS Transport Layer Security
ToS Type of Service
UDP User Datagram Protocol
URI Universal Resource Identifier
VO Virtual Organisation
WSRF Web Services Resource Framework
XDR External Data Representation
XML extensible Mark-up Language
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