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Abstract

Introduction: Advances in diagnosis and screening of preimplantation embryos or 

oocytes for chromosomal abnormalities have helped many couples achieve a normal 

pregnancy. They also pointed to the fact that numerical and structural chromosomal 

abnormalities are frequent in human preimplantation embryos and can arise at any point 

during gametogenesis and meiosis through to early embryonic development and mitotic 

division. However, information coming from studies in this area is far from complete and 

uniform.

Aim: To investigate aneuploidy and its mechanisms in human preimplantation 

embryos and oocytes. To develop protocols and improve on existing molecular 

cytogenetic techniques for the advance of preimplantation genetic diagnosis or screening 

(PGD/PGS) in routine clinical analysis. To evaluate the impact of PGD and PGS on the 

treatment of various types of infertility.

Methods: Fluorescent In situ Hybridisation (FISH) and Comparative genomic 

hybridisation (CGH) were the main methods used. I) Protocols were developed and 

implemented for the clinical PGD and PGS program. The PGD protocols included 2 couples 

with rare structural chromosomal abnormalities II) All untransferred embryos were 

studied and information was obtained for 101 PGS cycles (77 couples-935 embryos) and 

18 PGD cycles for structural chromosomal abnormalities. Ill) Immature and undivided 

oocytes were studied using CGH from PGS, PGD and routine IVF couples.

Results and discussion: Specific and highly efficient methods and their clinical 

application to detect a variety of rare and common chromosomal abnormalities in PGD 

and PGS embryos were achieved. This study adds to the accumulating evidence showing 

the extent and mechanisms of genetic abnormalities in human oocytes and 

preimplantation embryos. It is one of the first studies to identify significant differences in 

the types of chromosomal abnormalities in embryos from couples with different
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reproductive history suggesting susceptibility to particular types of aneuploidy in these 

couples. The problems and effectiveness of PGS and PGD are also discussed.
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Introduction

Chapter 1. Introduction

Section 1.1 Studying human chromosomes.

The origins of human cytogenetics, the study of chromosomes, can be traced back to 

the 19th century in Austria. In 1923, the definitive diploid number of human chromosomes 

was determined to be 48 but it was not until 1956 that the human chromosome number 

was correctly identified as 2n=46 by Tjio and Levan (Tjio & Levan, 1956). Once the correct 

number of human chromosomes was determined various chromosomal abnormalities 

could be identified by finding the karyotype of affected individuals. In 1959 Down's 

syndrome was attributed to an extra chromosome 21 by Lejeune, Gautier and Turpin and 

almost immediately other autosomal trisomies and sex chromosome abnormalities were 

identified (reviewed in Harper, 2006).

Chromosomes or "coloured bodies" as their name suggests are now widely studied 

with a variety of methods. Karyotyping is done on chromosomes from cells that have 

entered the metaphase stage of cell division. Each individual chromosome can be 

identified as well as various structural chromosomal abnormalities. Following pre­

treatment, Giemsa stain is widely used in routine cytogenetics to darkly stain the AT-rich 

areas of chromosomes producing an individual banding pattern for each chromosome. 

With this type of banding, called G-banding, on average 300 chromosome bands can be 

seen on metaphases with normal resolution while high resolution banding can provide 

1000 to 2000 bands. It can also provide information about structural chromosomal 

abnormalities as small as 5Mb in length. There are other types of banding techniques 

depending on the areas of chromosomes one would like to study and a number of dyes 

which can be fluorescent or non-fluorescent. These techniques were vital in deciphering 

the structure of human chromosomes (some examples of this can be found in Schweizer, 

1981). Figure 1.1 shows the some examples of Giemsa karyotyping on normal and 

abnormal samples.
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Figure 1.1. Giemsa stain on chromosomes. Left: Karyotype of a normal male. Right: the 

first karyotype of a male trisomy 21 individual in 1959 (from Smeets 2004).
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Currently, there are numerous methods of studying human chromosomes in a 

variety of cell types ranging from traditional cytogenetic staining of chromosomes to 

molecular cytogenetic techniques like Fluorescent In Situ Hybridisation (FISH) and 

Comparative Genomic Hybridisation (CGH). In this section a brief introduction to some of 

those methods and their applications will be provided.
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1.1.1. Fluorescent In Situ Hybridisation (FISH).

One major disadvantage of the above cytogenetic banding methods is that they 

require metaphase chromosomes. In order to have these, the cells that the chromosomes 

are derived from have to be mitotically or meiotically active or to be stimulated to enter 

cell division through cell culturing or cell fusion procedures. As a result cell populations 

that were not able to provide metaphase spreads could not be examined. Another 

disadvantage was found in the relatively low resolution such banding techniques provided 

which eliminated to possibility of detecting smaller changes in the genome. These 

problems were mostly addressed by the evolution of Fluorescent In Situ Hybridisation or 

FISH techniques.

Fluorescent in situ hybridisation (FISH) utilizes the complementarily of DNA or RNA 

strands and the tagging of target DNA with fluorescent probes. The basis of the FISH 

technique is the detection of specific nucleic acid sequences in cells fixed on a microscope 

slide. In Situ Hybridisation was mainly developed during the 70's and 80's with the use of 

radioactive RNA and DNA probes. With the utilisation of fluorescent probes it evolved 

into a powerful technique for studying chromosomes and how they change under certain 

conditions.

The availability of new fluorochromes and sensitive detection systems have led to 

the wider use of FISH in order to analyse metaphase or interphase cells and with the 

advances of molecular techniques and the completion of the human genome project, FISH 

probes can be made for almost all human DNA sequences. There are mainly three types of 

DNA probes used for FISH (i) whole chromosome paints that can be used to analyse 

metaphase chromosomes (ii) repetitive DNA sequences and (iii) locus specific probes that 

are unique to particular sequences in a chromosome (Kearney & Buckle, 2001). The 

resolution of FISH based techniques is also much greater since DNA targets from lkb of 

DNA in size can be detected. Figure 1.2 illustrates the basic principles of FISH.
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Figure 1.2. Basic principle of interphase and metaphase FISH
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The creation of whole chromosome probes also lead to the introduction of two 

fluorescent based karyotyping methods (i) fluorochrome-specific optical filters used for M- 

FISH; and (ii) interferometer-based spectral imaging (spectral karyotyping or SKY). They 

are useful for detecting small translocations which are cytogenetically similar in 

appearance, to classify marker chromosomes and complex chromosomal aberrations 

(Ried et al, 1998). However, these techniques are not very sensitive in detecting 

intrachromosomal effects such as deletions and inversions so they are usually combined 

with standard banding methods.

The remaining two FISH probe types can be used in both interphase and 

metaphase chromosomes thus allowing analysis of cells that could not be studied in the 

past. For human cells there are specific FISH probes for each centromere and telomere of 

each chromosome as well as various locus specific probes commercially available. This 

availability has lead to the wide use of FISH and FISH based techniques in clinical and
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research settings like prenatal diagnosis, cancer genetics, gene mapping and genome 

structure studies (Reviewed in Heng eta l, 1997, Lehr & Claussen, 2002).

Of greater relevance for this study is the use of FISH in the detection of numerical 

and structural abnormalities in human tissues. In particular, their detection in prenatal 

diagnosis samples, gametes and human pre-implantation embryos. The use of FISH for 

prenatal diagnosis was first applied for the detection of Trisomy 21 (Romana et al, 1993) 

and later trisomy 18 (Morris et al 1999). At present a wide number of FISH probes are 

used in prenatal diagnosis samples for detecting numerical chromosomal abnormalities 

and some structural rearrangements (Lewin et al, 2000, Pettenati et al, 2002).

l . l . l . l  The use of FISH in preimplantation genetics

FISH is used in preimplantation genetic diagnosis (PGD) to detect various 

chromosomal abnormalities and allows analysis of a single embryonic cell in a limited 

amount of time (Griffin et al, 1991, Harper et al, 1994). FISH was initially used for 

selecting the sex of embryos, to avoid severe X-linked disease (Griffin et al, 1994). FISH is 

also used to detect structural chromosomal abnormalities such as translocations and 

deletions in preimplantation embryos and for aneuploidy screening of embryos (PGS) 

from individuals undergoing IVF with poor reproductive history (reviewed in Wells & 

Delhanty, 2001).

However, there are various limitations for FISH in these clinical settings. The 

limiting factor for FISH is that at least in interphase cells 3 to 5 chromosomes only can be 

analysed in each experiment depending on the availability of fluorochromes. Since all the 

chromosomes cannot be screened with one or two FISH experiments, only those that 

present an elevated risk in the population are targeted. Rare types of aneuploidy will be
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missed if FISH alone is used. Additionally, de novo structural chromosomal abnormalities 

cannot be detected with FISH only.

Chromosomal polymorphisms can present another source of error. The 

polymorphisms in various sites of chromosomes can result in a decrease or complete 

absence of the FISH signal while the chromosome is in fact present, giving false positive 

results especially when interphase cells are investigated (Tsuchiya et al, 2001, Liehr et al, 

2002a). In a review by Stumm et al 2006, 20 false positive and false negative results were 

examined since 1998 in prenatal diagnosis samples. Twelve out of the twenty errors were 

due to heteromorphisms mainly of chromosome X and 18 and three due to mosaicism. 

The solution in prenatal diagnosis is to combine FISH with G-banding where possible. At 

the preimplantation stage though where only one or two cells can be tested this is not 

possible so good preliminary research is needed before the onset of a PGD/PGS cycle 

(discussed in 1.3).

There are other limitations for FISH diagnosis on single cells. Errors can occur due 

to the increased levels of chromosomal mosaicism detected in preimplantation embryos 

(Delhanty et al, 1997, Munne, 2002). This means that because only 1 or 2 cells are 

analysed from each embryo and are diagnosed as normal, if the embryo is mosaic, with 

chromosomally different cell lines, the diagnosis will not be accurate. Overlapping signals 

of DNA probes in interphase cells might also lead to similar errors. The probability of 

misdiagnosis however can be reduced by using 2 cells per embryo for the diagnosis (Kuo 

et al, 1998, Simopoulou et al, 2003).

Mosaicism presents a major problem for PGD. A misdiagnosis after FISH PGD for 

trisomy 21 was attributed to mosaicism following in a trisomy 21 conception (Munne et al, 

1999). In some cases, the misdiagnosis rate was estimated to be 7.2% of which 5.6% was 

attributed to mosaicism (Munne, 2002). PGD for translocation carriers is also complicated 

by mosaicism since it has been observed that chaotic and mosaic embryos are very 

frequent in the carriers of translocations that present for PGD (Conn et al, 1998, 1999, 

Iwarsson et al, 2000, Simopoulou et al, 2000).
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Another problem is that the efficiency of hybridisation of probes in interphase FISH 

is reduced in comparison to that of metaphase FISH (Ruangvutilert et al, 2000). 

Additionally, the hybridisation efficiency is also reduced with each additional probe added 

to the diagnostic procedure (Harper & Wells, 1999). For these reasons the efficiency of 

each probe, alone and in combinations, used in each PGD cycle must be calculated on 

patient and control lymphocyte metaphases and interphases and the stringency 

conditions of the FISH protocols are adjusted to obtain the best possible results. 

Informative and efficient probes and probe combinations are then used in embryos.

I . I . I .2 .  The use of FISH in basic research

Apart from its clinical use, FISH is also a very useful in research. Cancer cells were 

being studied with FISH from the late 80's (Hopman et al, 1988). At present, cancer cells 

are studied on tissue micro-arrays (TMA) using FISH with computerized signal scoring 

(Brown & Huntsman, 2007). More relevantly, human gametes and the processes of 

meiosis (Eckel et al, 2003, Oliver-Bonet et al, 2006) were studied with FISH being the 

preferred method. Untransferred embryos after IVF or PGD have been extensively 

analysed using various protocols for FISH (Delhanty et al, 1997, Daphnis et al, 2005, 

Mantzouratou et al, 2007) as well as samples from spontaneous abortions (Jobanputra et 

al, 2002, Lescoat etal, 2005).

Interestingly, three dimensional maps of all chromosomes in prometaphase human 

nuclei have been studied using 3D-FISH (Bolzer et al, 2005). This involved making
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chromosome specific paints for all chromosomes by combining different fluorochromes, 

hybridizing them to prometaphase nuclei and analyzing the results with the help of 

appropriate computer software. This FISH application has help identify non-random 

arrangements of gene-dense chromosome territories towards the centre of the nucleus. 

Three dimensional FISH can possibly allow the identification of all chromosomes in 

interphase nuclei (Walter et al, 2006) thus allowing maximum information to be obtained 

even from a single interphase nucleus. Figure 1.3 shows an example of 3D FISH on human 

fibroblast nuclei.

Figure 1.3. Images generated from 3D-FISH on fibroblast prometaphase nuclei (From 

Bolzer et al, 2005)

With the view that each chromosome occupies a distinct chromosome territory in 

an interphase nucleus, methods were developed to visualize whole chromosome arms or 

bands in interphase nuclei as well as metaphase ones in combination with telomeric and 

centromeric probes in human cells (Dietzel et al, 1998, lourov et al, 2006). Figure 1.4 

shows an example on such experiments in human fibroblast interphase nuclei with 

localization of the p- and q-arm of the X-chromosome. These techniques provide insight 

into genome architecture and organization as well as providing information about the 

mechanisms that produce structural chromosomal abnormalities (reviewed in Cremer & 

Cremer, 2001). More in the context of this study, in the future, these techniques can be 

used in embryonic nuclei from preimplantation embryos to allow maximum information

i l  l  19 H R  X D
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to be drawn about the genetic content of the embryos and the identification of genome 

organization in this early stage of development.

Figure 1.4. FISH with whole chromosome arm microdissection probes in human 

female fibroblast interphase nuclei identifying the X chromosomes territories and differentiating 

the inactive from the active X (From Cremer & Cremer, 2001).

Eg™]

1.1.2. Comparative Genomic Hybridisation (CGH)

CGH is a technique that allows an overview of the whole genome in a single hybridisation 

step. It was developed originally for the analysis of solid tumours by Kalioniemi et al (1992). It 

involves differentially labelled test and normal reference DNA which are hybridised simultaneously 

to normal metaphase spreads. Changes in ratio between the test and reference DNA along a 

specific chromosome site would be interpreted as deletions or duplications which could represent 

a monosomy or a trisomy in the tested DNA sample. An overview of the CGH techniques is 

illustrated in figure 1.5.
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Figure 1.5. Basic principles o f CGH (adaptedfrom Mantripragada etal, 2004) 
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The advantage of CGH is that it is a DNA based method that can be used in any 

type of cell whether it is dividing or not, so there is no need for culturing. Its resolution is 

also greater than standard banding techniques at around 3Mbp (Kirchhoff et al, 2000). 

Also it can all be achieved in a single hybridisation. CGH has been applied to various 

tissues apart from cancer cells; it was used in cytogenetic analysis to detect unfamiliar or 

very small chromosomal imbalances (Kirchhoff et al, 2000); in spontaneous abortions and 

prenatal diagnosis samples that could not be analysed with standard cytogenetic methods 

(Lestou et al, 2000, Tabet et al 2001). It has also been applied to single cells (Wells et al 

1999, Klein et al, 1999), to single blastomeres from preimplantation human embryos for 

numerical and structural chromosomal abnormalities (Wells & Delhanty 2001, Voulaire et 

al, 2002, Wells et al, 2002, Malmgren et al, 2002, Wilton et al, 2003) as well as single 

human oocytes and polar bodies (Guitierrez-Mateo et al, 2004, Fragouli et al, 2006a).
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1.1.2.1 CGH analysis of single cells

Single cell CGH presents more of a challenge since the amount of DNA in a single 

cell is considerably smaller (around 6pg) (Morton et al, 1991) than that required for a 

successful experiment (around 200ng). So for single cells the additional step of genome 

amplification is required. Various techniques for whole genome amplification (WGA) have 

been developed and some are summarised in table 1.1. The problem that these 

techniques have to overcome is to achieve a significant representation of the whole 

genome while amplifying it sufficiently for CGH to work. Otherwise, if a bias in a specific 

DNA sequence occurs or not enough copies are produced then the CGH result will not be 

valid.

Table 1.1. Techniques for WGA

Method PEP
(Zhang et al, 1992)

DOP-PCR 
(Telenius et al, 1992)

Linker Adaptor PCR 
(Klein et al, 1999 for 

CGH)

MDA 
(Dean et al, 2002)

General principles PCR based 15bp 
random primers 
Taq polymerase

PCR based 
Primers partially 

degenerate and taq 
polymerase

PCR based 
Restriction 

endonuclease, 
adapter 

oligonucleotide and 
ligation to 

restriction sites. 
Primer 

complementary to 
the adapter.

Isothermal reaction 
with <|>29 DNA 

polymerase, random 
exonuclease 

resistant primers at 
30#C.

Fragment size 
produced

450bp 500bp-2kb (Av. 
1300bp)

100-1500bp (with 
Msel)

>10Kb up to 70kb

Amount of DNA 200pg Around lpg Ipg 20-30pg
produced from a 

single cell
Single cell genome 78-91% 90% *92% 80-225%

representation
Applications PGD, PD for single 

gene disorders
PGD and PD. CGH 

and genetic studies 
on cancer, polar 

bodies, blastomeres

On single cell 
analysis and paraffin 

embedded tissues

PGD for fragile X 
syndrome, Marfan 

syndrome. 
Haplotyping of 

single cells.
Drawbacks Amplification bias, 

ADO, low yield 
cannot be used for 

CGH based 
methods.

Repeat sequences 
amplification bias

Average fragment 
size may be too 

small

Sequence bias, 
primer dimers are 
indistinguishable 

from true product, 
representation not 

ideal.
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DOP-PCR is the method of choice for CGH since it produces a relatively high 

amount of DNA from a single cell and offers a good representation of the whole genome. 

However, amplification bias due to the polymerase slippage in repetitive sequences is 

observed with DOP-PCR (Wells et al, 1999). This produces various artefacts in the 

heterochromatic and telomeric regions of the amplification products. Multiple 

Displacement Amplification or MDA is more recently developed and was tried for single 

cell analysis (Handyside et al, 2004). MDA offers a much higher DNA yield and the 

proofreading properties of the preferred enzyme, <t>29 polymerase. Additionally, repeat 

sequences are not prone to biased amplification so MDA can be used in DNA 

fingerprinting and haplotyping.

However, various problems have been reported with this method (Spits et al, 

2006). Primer artefacts produced in samples as well as in the negative controls denote 

that the high yield of MDA is not all true amplified DNA but primer dimers. Allele dropout 

(ADO), the preferential amplification of one allele over the other and underrepresentation 

of certain loci are also frequent. Additionally, MDA products are too big to be used for 

CGH and require digestion prior to DNA labelling. A study comparing MDA and DOP for 

CGH concluded that DOP-PCR was the most appropriate method for CGH analysis of single 

cells (Nq et al, 2005).

As single cell CGH protocol is time consuming and the hybridisation time is very 

long (around 72hrs). In a clinical PGD context, with day 3 embryonic nuclei as the starting 

cells, freezing of the embryo would be needed until the results are obtained. Some PGD 

groups tried to overcome this obstacle by optimising protocols to work in 30 hours (Wells 

et al, 2002). However, this is not possible in most cases. Testing of the polar bodies would 

give enough time to avoid the embryo freezing process but polar bodies can only give 

information on the maternal DNA and any paternal or postzygotic errors would not be 

detected. Additionally, contamination could be a source of error since only one cell is 

examined at a time.
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However, CGH in a research context is very useful as it can give information on all 

the chromosomes of certain cells. It has provided a valuable source of information from 

preimplantation embryos and oocytes by detecting various numerical and structural 

abnormalities in these cells. One drawback is that it cannot detect balanced chromosomal 

rearrangements or the ploidy status of the test sample as it is a DNA based method relying on 

fluorescent ratios.

Another recent advance that is based on CGH is called array-CGH. It is derived from CGH, 

but instead of metaphase spreads is using human DNA targets constructed on a microarray slide. 

The resolution of array-CGH is higher at the l-2Mbp level. This will gradually enable fine 

chromosomal mapping and identification of new genes as arrays are constructed to provide full 

genome coverage (Ishkanian et al, 2004). Array-CGH has been used to detect minor chromosomal 

changes in lymphocytes (Veltman et al, 2004, Schoumans et al, 2005). Also recently, array CGH 

was used for aneuploidy detection in single cells, like lymphocytes (Gui Hu et al, 2004), single 

fibroblasts and blastomeres (Le Caignec et al, 2006).

Section 1.2 Mechanisms of aneuploidy and numerical chromosomal abnormalities

1.2.1. The cell cycle and embryo development

Abnormality in the chromosome number of a cell or aneuploidy can be found in all 

stages of the human life cycle from gametogenesis and early embryonic development to 

cancer. Hassold et al (1996) estimated that 5% of all human conceptions are aneuploid. 

This figure is probably an underestimate since data obtained from human oocytes show 

that the aneuploidy rate at conception can be as high as 20% (Pellestor et al, 2002). In 

addition Hassold et al (1996) found that aneuploidy can occur in 0.3% of livebirths and 

35% of spontaneous abortions. The specific chromosomes affected were also different in 

the various stages of development while in liveborns trisomy 21 was most commonly 

found; in spontaneous abortions (6-20weeks) trisomies of most chromosomes were found 

with most frequently trisomy 16 to account for one third abnormalities seen. In 

preimplantation embryos the aneuploidy rates reported are much higher compared to any
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other stage of embryonic development and are usually in the range of 50 to 85% 

(reviewed in, Donoso et al 2007). The mechanisms of formation of this level of aneuploidy 

in humans are being thoroughly investigated and most of the causes of aneuploidy can be 

located in cell division processes, mitosis and meiosis.

1.2.1.1 Cell division

From any stage in a progenitor cell to the same stage in a daughter cell is called 

one cell division cycle. It has four stages: S-phase, where DNA synthesis takes place, M- 

phase, where cell division occurs and in between S and M there are two gaps or 

intermediate stages called G1 and G2. There are two kinds of cell division: mitosis, which 

takes place in all dividing cells and meiosis which takes place during gametogenesis.

In normal mitosis the genetic material of a cell is divided equally between two 

daughter cells. There are five stages for a mitotic cycle to be completed; these are 

interphase, prophase, metaphase, anaphase and telophase. In interphase the 

chromosomes are decondenced and form domains. During DNA replication sister 

chromatid cohesion is established so that the old and new sister chromatids are held 

together for the onset of mitosis. A multi-subunit complex containing cohesin and 

numerous other proteins are thought to be involved in this process (examined in detail in 

Lee & Orr-Weaver, 2001).

During prophase the chromosomes become condensed leading to the 

prometaphase stage where the nuclear membrane dissolves and the chromosomes start 

to collect on the equator of the spindle (the metaphase plate).This process was thought to 

be random but evidence from experiments on mice point to a non-random distribution of 

newly synthesised and older chromatids at least for some chromosomes in some tissues 

(Armakolas and Klar, 2006). Before the onset of metaphase, the centrosome, an organelle 

outside the nucleus, divides and moves to each of the poles of the nucleus. The mitotic 

spindle forms, sister chromatid cohesion breaks down and the cell enters anaphase where 

the centromeres via the kinetochores of each chromosome divide and the spindle fibres 

"drag" the chromatids to opposite poles. Just before sister chromatids separate, the
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spindle checkpoint proteins monitor attachment and anaphase does not progress if any of 

the kinetochores are misaligned (detailed in Craig & Choo, 2005). In telophase, nuclear 

membranes start to appear around each pole and this is followed by cytoplasmic division 

to result in two daughter cells.

In normal meiosis, a reduction division takes place that gives rise to haploid 

daughter nuclei and is restricted to one cell type, the gametes. Meiosis consists of two 

nuclear divisions meiosis I and meiosis II. Each meiotic division is divided into prophase, 

metaphase, anaphase and telophase of which the lengthiest is prophase I. Prophase I in 

also divided into five stages: leptotene, zygotene, pachytene, diplotene and diakinesis.

During zygotene the homologous chromosomes pair through the formation of the 

synaptonemal complex, a protein structure formed along the length of the pairing region 

similar to that of the cohesin molecules and can also be found between sister chromatids. 

In yeast, a molecule called Sgol protects the cohesin molecules formed between the 

centromeres of sister chromatids throughout meiosis I thus keeping them together after 

the cohesin along the chromosome arms has broken down (Kitajima et al, 2004). Deleting 

this gene in mice results in normal chromosome segregation in meiosis I but random 

segregation of sister chromatids in meiosis II due to premature loss of cohesion at 

anaphase I. Whether this is true for human meiosis is not yet known.

In pachytene the pairs condense and thicken. In diplotene the synaptonemal 

complex disappears and the homologs are now kept together by their crossovers. The 

crossovers, which occurred during zygotene, are formed from breakage, exchange and 

reunion between two non-sister chromatids and form structures called chiasmata via a 

process called recombination. Finally the cells enter metaphase I where each bivalent (pair 

of chromosomes) takes a position on the equatorial plane like a mitotic division. By the 

end of meiosis the result is from one diploid parental cell, up to four haploid daughter 

nuclei are produced.

A checkpoint system is believed to be in place during meiosis in order to avoid 

genome and chromosomal errors. These molecules guard against abnormal
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recombination, DNA damage and chromosomal misalignment on the meiotic spindle 

(detailed in Borner, 2006). Although checkpoint genes have been found in oocytes (Zhang 

et al, 2005), the observation that most of the autosomal trisomies originate from maternal 

meiosis has led to the theory that mutations in checkpoint genes may lead to meiotic 

arrest and infertility in males, whereas in females, the outcome may be a chromosomally 

abnormal gamete after completing the meiotic divisions (Hassold and Hunt, 2002).

In humans, the germ cells, the precursors of gametes, arise outside the gonads and 

migrate there during early embryonic development. They start to increase in number by 

mitosis and they finally become haploid via meiosis. The production of oocytes in the 

female is called oogenesis and the production of sperm in the male is called 

spermatogenesis. The female is born with a finite number of oocytes which undergo 

meiosis very slowly. They first arrest during prophase I were the necessary preparations 

occur for the potential future embryo. The primary oocytes as these are called remain 

arrested until puberty where small numbers of them start to progress further with each 

menstrual cycle. The other oocytes can remain arrested for as long as 50 years. The 

completion of the first meiotic division happens just before ovulation which results in two 

unequal daughter cells, the secondary oocyte and the first polar body which degenerates. 

It is thought that a heterodimer protein called maturation (M-phase) promoting factor 

(MPF) plays a pivotal role in oocyte maturation and in their exit from prophase I (Jones, 

2004). The secondary oocyte enters the second meiotic division and is arrested again at 

metaphase II. Upon fertilisation the oocyte resumes meiosis and the second meiotic 

division is completed with the extrusion of the second polar body.

In contrast, meiosis in the males does not begin until puberty and the production 

of sperm is infinite. When sperm complete meiosis I the result is two equal sized 

secondary spermatocytes which enter meiosis II immediately and result in 4 haploid 

spermatids. The total length of human spermatogenesis is 64 days (Carlson, 1999).
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I.2 .I.2 . Fertilisation and embryogenesis

Once the spermatozoon has fused with the oocyte, the entry of other sperm is 

prevented through a rapid electrical depolarisation of the plasma membrane of the egg 

and through "hardening" of the zona pellucida caused by a wave of Ca++ that prevents 

other sperm adhering (Wilding M., 1996). Then the oocyte resumes meiosis and the sperm 

nucleus starts to decondensate and the female and male haploid pronuclei are formed. 

DNA replication occurs at this point as the pronuclei move closer to each other and finally 

come together. The zygote is formed and the first mitotic divisions occur as it travels 

through the fallopian tube.

Blastomeres, the embryonic cells, following the third cleavage division start to 

compact and become tightly connected during a process called compaction. Three to 4 

days after fertilisation the embryo reaches the 8-16 cell stage, and it is called a morula. By 

day 5 it reaches the blastocyst stage where the embryo is composed of an inner cavity 

called the blastocele, an inner cell mass and an outer cell mass called the trophectderm.

Paternal imprinting, the selective activation and silencing of genes according to the 

parent of origin, is thought to occur during gametogenesis through to the pronuclear 

stage (Balrlow, 1995). However, it has been found at least for the mouse embryos that the 

two parental genomes demonstrate a topological separation which was preserved up to 

the 4 cell stage (Mayer et al, 2000). The authors suggest that this may be associated with 

epigenetic programming during the early preimplantation stages. Additionally, it has been 

found that all chromosomes in diploid, triploid and trisomy 21 human cells are 

incorporated into a single rosette (radial array) throughout mitosis and arranged into 

tandemly positioned haploid sets in which chromosome spatial order was preserved 

(Nagele et al, 1998). The authors suggest that this arrangement is a remnant of 

fertilisation and separates the maternal and paternal genomes during mitosis.
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Normal development however is not always possible and errors have been found 

in all stages during the cell cycle, fertilisation, gametogenesis and embryonic 

development. In the following paragraphs the nature and the mechanisms of these errors 

will be discussed.

1.2.2. Mechanisms of aneuploidy

I.2 .2 .I. Errors in fertilisation

Errors in fertilisation (reviewed in Malan et al, 2006) can arise from i) fusion of two 

different zygotes in a single embryo producing a tetragametic chimera, ii) formation of 

triploid zygote by dispermy or digyny ether because two sperm fertilised one oocyte, or 

was fertilised by a diploid sperm or the polar body had not been extruded from the egg, 

iii) fertilisation of the second polar body and fusion with the oocyte iv) 

parthenogenetically activated zygotes containing only the maternal genome mitotically 

divide producing haploid cells. If the sperm pronucleus is also present after the activation 

of the oocyte, one of the haploid maternal cells can fuse with it producing a diploid cell 

line while the other maternal cell can undergo endoreduplication and become diploid 

producing a maternal isodisomic cell line. This mechanism has been proposed to explain 

the finding of isodisomy in a child with such mosaicism (Strain et al, 1995). Androgenetic 

chimeras have also been reported. Studies from pregnancies with mesenchymal dysplasia 

of the placenta showed the coexistence of cell lines with complete paternal isodisomy and 

biparental cells in the placenta (Kaiser-Rogers et al, 2006). The authors suggest that the 

androgenetic cell line arose after failure of division of the female pronucleus followed by 

endoreduplication and division of the male pronucleus.

1.2.2.2 Errors in meiosis

Errors in meiotic chromosome segregation, generally called non-disjunction, can 

be formed by a number of mechanisms. The failure to resolve chiasmata or the aberrant 

or altered recombination between homologous chromosomes during meiosis I will result
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in aneuploid gametes (Hassold & Hunt 2001). Additionally, premature division of bivalents 

during metaphase I will lead to the formation of univalents that can randomly segregate in 

each pole (Angell et al, 1997) and can lead to cells with numerical chromosome 

abnormalities. Univalents are also predisposed to premature separation of their 

chromatids, leading to chromatid errors at anaphase I, that may result in aneuploidy 

gametes after anaphase II. Some examples of the aneuploidy mechanisms in the female 

meiosis are illustrated in figure 1.6. Anaphase lag is also responsible for the production of 

abnormalities (Delhanty, 2005). Such errors have usually a devastating effect on the 

resulting gametes and embryonic development.

Meiosis I

Meiosis

Oocyte

Figure 1.6. Female meiosis and mechanisms of aneuploidy via w hole chrom osom e non­

disjunction and prem ature separation of chromatids. Normal gametes can be produced from  

prem ature separation of chromatids if the surplus chromatids segregate in the polar body during 

meiosis II.

Normal meiosis Non-disjunction (whole Premature separation of chromatids
chromosomes). Can be due w in Meiosis i
aberrant re combi nab on or failure to 
disjoin the chiasmata

Normal Abnormal Normal Abnormal
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Warren et al (1987) first noticed reduced levels of recombination in chromosome 

21 in trisomy 21 meioses. Further studies in conceptuses with trisomy 21 and other 

chromosomes showed that absent, reduced or aberrant recombination is involved in non­

disjunction of chromosomes by creating univalents susceptible to random segregation 

(Lamb et al, 1997, Savage et al, 1998). Altogether, it was found that altered recombination 

patterns are a key feature of most Ml division trisomies. More specifically, within 

homologous chromosomes the susceptibility to abnormal division is associated with the 

distance between the centromere and the closest exchange (Lamb et al, 1997). So the 

location of certain chiasmata (either proximal or distal to the centromere) makes the 

bivalent susceptible to non-disjunction. The effect of reduced recombination has also 

been found in males with abnormal sperm parameters (Rives et al, 1999).

Most numerical autosomal anomalies have been found to originate from errors 

during maternal meiosis I and II although there is a small fraction of trisomies that are 

attributed to paternal meiotic errors (Nicolaidis & Petersen, 1998). For the sex 

chromosomes both male and female meiosis errors appear to play part in aneuploidy. For 

example, in Turner's syndrome for 80% of the cases the paternal sex chromosome is 

missing which indicates an error in paternal meiosis (Hassold et al, 1988), while in 

Klinefelter* s syndrome (47, XXY) the error lies equally in male and female meiosis (Jacobs 

eta /, 1988).

In studies that investigated the origin of aneuploidy from miscarriages (Jacobs & 

Hassold, 1995, Hassold et al, 1996, Nicolaidis & Petersen, 1998, Stephenson et al, 2002, 

Rubio et al, 2003, Hassold et al, 2007) there are a number of patterns that can be seen. 

For the acrocentric chromosomes 15 and 21, meiosis I errors predominate among the 

maternal errors, whereas, for trisomy 18, meiosis II errors predominate. For trisomy 16, all 

of the cases appear to be from maternal meiosis I non-disjunction. Mitotic non-disjunction 

constitutes 15% of cases of trisomies 15, 18, and 21. For paternal non-disjunction of 

chromosomes 18 and 21, meiosis II errors are more frequent. Table 1.2 shows the current 

knowledge of the origin of errors of individual chromosomes.
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Table 1.2. Meiotic origin of human trisomy 
! Origin (%)

Trisomy , Paternal Paternal Maternal Maternal Postzyj
MI Mil MI Mil

2 ! 28 - 53 13 6
7 - 17 26 57
8 i

- 50 50 50
13 3 5 57 34 1
14 -

'
19 37 37 8

15 15 72 9 4
16 ! - 100 - -

18 ; - 33 59 8
21 ! 2 2 70 24 3
22 2 - 86 10 2

XXY i 50 - 25 15 9
XXX : - 63 17 20

Adapted from Hassold and Hunt, 2001 and Hassold et al, 2007.

More recently the non-disjunction patterns of chromosomes 13 and 22 have been 

studied. From trisomy 13 conceptuses it was found that the extra chromosomes was 

maternally derived in 89% of the cases with an equal number of maternal meiosis I and II 

errors (Bugge et al, 2007). The study found that all of the paternal errors originated from 

meiosis II. They also observed reduced or aberrant (33% of cases) recombination in all 

cases of chromosome 13 errors. Trisomy 22 was examined in 120 spontaneous abortions 

by Hall et al (2007). In 96% of the cases the extra 22 originated from maternal meiosis and 

mostly from meiosis I (90%). Reduced recombination was also observed for chromosome 

22. They also observed similar patterns in the errors of all acrocentric chromosomes; 

these are i) over 80% of errors arise during oogenesis, ii) mostly from Ml errors. They 

suggest that there might be chromosome specific factors predisposing to non-disjunction 

that can affect all chromosomes, groups of chromosomes or individual chromosomes 

which are directly linked to recombination during meiosis.

The underlying causes of chromosomal non-disjunction in relation to 

recombination and aneuploidy are not yet fully understood, but certain correlations have 

been made, for example with advanced maternal age (Eichenlaub-Ritter, 1998). However, 

the aetiological factors and mechanisms responsible for increases in errors in
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chromosome distribution during germ cell formation are still not well understood. In 

oocytes it is estimated that 20% of all human oocytes, produced by IVF, carry a numerical 

abnormality (Eichenlaub-Ritter, 1998, Pellestor et al, 2005, Fragouli et al, 2006a). 

Additionally, instead of whole chromosome abnormalities in metaphase II oocytes there 

are also single chromatids, whose presence was elevated with maternal age and which 

can then segregate randomly in anaphase I (Angell, 1997). This lead to the hypothesis for 

predisposition to maternal age related aneuploidy via precocious separation of 

chromosomes during meiosis I. This model requires a susceptible bivalent formed during 

gametogenesis, a process that is age independent, as gamete formation starts during 

embryonic development. It also requires another factor that deteriorates with maternal 

age in order to form aneuploid gametes (e.g. Deterioration of the spindle or of the 

synaptonemal complex).

Recent studies have found that abnormalities due to predivision of chromatids in 

the oocytes might exceed those due to non-disjunction (Pellestor et al, 2005) and both 

types of aneuploidy are highly correlated with advanced maternal age. A study using CGH 

on immature oocytes has shown the same correlation (Guitierrez-Mateo et al, 2004). 

However, other studies on human oocytes using FISH and CGH (Pujol et al, 2003, Cupisti et 

al, 2003, Fragouli et al 2006a, 2006b) have shown no correlation of aneuploidy with 

maternal age due to the operation of age independent factors in some younger women in 

the study group. Additionally, the relationship between recombination and maternal age 

appears to be a complex one, since it was reported that for chromosome 21, reduced 

recombination and susceptible chiasmata are observed in trisomy 21 pregnancies from 

younger women in significantly higher frequency than older ones in meiosis Ml non­

disjunction while the opposite was seen for meiosis II non-disjunction (Sherman et al,

2006). The authors suggest that multiple mechanisms lead to non-disjunction, some age- 

dependent and some age-independent.

In Fragouli et al (2006a) CGH was used to detect anomalies in 100 polar bodies and 

oocytes and found 22% aneuploidy rate. They also found abnormalities were due to whole
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chromosome non-disjunction, unbalanced chromatid predivision and chromosome 

breakage. However, chromatid abnormalities were limited to the smaller chromosomes 

suggesting either the effect of reduced recombination or that in larger chromosomes 

increased amounts of cohesions play a role. Steuerwald et al (2007) studied expression 

profiles of human oocytes and found different expression profiles correlating to changes 

in maternal age. Mouse studies suggest that failure of histone (DNA binding proteins) 

deacetylation in older females during meiosis might increase the incidence of errors 

leading to the maternal age effect of aneuploidy (Akiyama et al, 2006). However, the 

question as to what predisposes older mothers to aneuploidy is still open. Reduced or 

altered meiotic recombination appears to be involved in aneuploidy but its link to 

maternal age requires more investigation.

1.2.2.3 Predisposition to aneuploidy

Increasing maternal age has an undisputed link with constitutional embryonic 

aneuploidy and the risk of various trisomies. This increased aneuploidy is also observed in 

the preimplantation embryos from couples undergoing IVF but to a much more severe 

degree than in prenatal studies (Delhanty et al, 1997, Munne, 2003, Munne et al, 2002,). 

Although the impact of maternal age is seen in the pregnancy rate in various studies, 

maternal age is not a major factor affecting the overall frequency of abnormalities seen in 

preimplantation embryos and oocytes (Bielanska et al, 2002, Baart et al, 2006 ,, Fragouli et 

al, 2006a, 2006c, Mantzouratou et al, 2007). Meiotic abnormalities in IVF embryos from 

older women are not significantly different from those in some of the predisposed 

younger age groups.

Although older females show higher rates of meiotic aneuploidy in prenatal 

studies, some younger females going through IVF programs have an almost equally 

increased chance of chromosomal abnormalities. Conclusively, there might be other 

parameters either related to IVF processes and/or in these couples genetic makeup that 

predisposes them to an increased risk of aneuploidy in their gametes or embryos (Warren
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& Gorringe, 2006). One factor that increases the risk of aneuploidy in preimplantation 

embryos and gametes is the existence of gonadal or germinal mosaicism in the parents 

(Mahmood et al, 2000, Somprasit et al, 2004).

In preimplantation embryos a wide range of errors has been reported 

(Ruangvutilert et al, 2000, Magli et al, 2001, Clouston et al, 2002, Mantzouratou et al, 

2007) where the incidence of chromosomal aneuploidy is thought to be around 50- 80%. 

Additionally, these studies have shown that a very high proportion of these errors are due 

to postzygotic events possibly during mitosis in the embryonic cells and to a much lesser 

degree during meiosis in the gametes. They show that in the preimplantation stage a 

greater variety of chromosomal abnormalities exist that were not detectable from studies 

that were done post implantation since most of the abnormal conspectuses would be lost 

either before the implantation stage or before the stage of recognized pregnancy.

Mantzouratou et al (2007 (This study) also found evidence of a genetic 

predisposition to various aneuploidy mechanisms in couples undergoing PGS that 

presented with recurrent miscarriage or recurrent implantation failure. Namely, couples 

with repeated miscarriage (RM) presented with increased meiotic errors in their embryos 

irrespective of maternal age. Couples presenting with repeated implantation failure (RIF) 

on the other hand seem to be predisposed to increased postzygotic abnormalities. This is 

also suggested by another study by Voulairre et al (2007) where more complex 

abnormalities in RIF couples were observed. Another study also found 56.5% aneuploidy 

rate in preimplantation embryos from RM couples compared with 40% in the control 

group (X-linked disorders) irrespective of maternal age (Rubio et al, 2003). However, this 

study was without follow up on the untransferred embryos and mosaicism was assessed 

only after two blastomeres were biopsied. Similarly, meiotic and mitotic errors could not 

be established. Clearly more detailed studies are needed since it appears that there are 

some molecular factors that predispose cells to various types of aneuploidy at different 

stages of development. Although, such factors are not yet elucidated in humans there
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many candidate genes that have been found in other organisms which are discussed in the 

following paragraphs.

Mutations in genes involved in all aspects of cell division can theoretically 

predispose cells to aneuploidy. Ideal candidates will be the cycle checkpoint genes. In 

studies looking at male infertility, reduced sperm numbers have been linked to increased 

chromosomal abnormalities. This might suggest that cell cycle check point proteins might 

be involved to reduce the number of chromosomally abnormal sperm (Lewis-Jones et al, 

2003, Mateizel et al, 2002). If mutations occur that render these genes inactive, an 

increase in chromosomally unbalanced sperm will follow.

However, it appears that mammalian female meiosis lacks the

metaphase/anaphase checkpoint in experiments done with mice abnormal for 

chromosome X (LeMaire-Adkins et al, 1997). This may explain the high incidence of 

maternally derived errors in human meiosis but cannot explain the maternal age effect 

and how normal female meiosis actually works without any fully functioning checkpoints. 

There is some evidence to suggest that meiotic silencing of unpaired homologues might 

exist in mammals involving the BRCA1 gene (Turner et al, 2005). Additionally, apoptosis 

analysis of Turner's syndrome ovaries revealed massive apoptosis of oocytes (up to 70% of 

oocytes) (Modi et al, 2003). This means that there is some kind of check in order to detect 

this abnormality in the gametes, however the study did not include a cytogenetic analysis 

of the oocytes which would be useful in order to see if the apoptotic oocytes were also 

chromosomally abnormal.

Additionally, some genes have been identified in mice that interfere with the 

synaptonemal complex or the meiotic spindle assembly and their loss of function led to 

aneuploidy. Specifically, in mice lacking the protein SPC3 (synaptonemal complex protein 

3) defective meiotic chromosome segregation was observed (Yuan et al, 2002). In, female 

mice mutant for MLH1 (a DNA mismatch repair gene) meiotic recombination was 

significantly reduced which resulted in unpaired univalents entering anaphase I (Woods et 

al, 1999). Interestingly, mutations in meiosis-specific cohesin protein SMClp has been
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found to exhibit age-dependent defects in mouse meiosis (Hodges et al, 2005). If this is 

true for human oocytes, it would explain some aspects of the maternal age effect. It 

would provide a good candidate gene to screen for mutations in younger women that 

produce highly aneuploid gametes and embryos.

Other studies have indicated additional factors that influence gamete formation. 

Mutations that affect oocyte growth were found to increase the frequency of 

chromosome misalignment on the meiotic spindle during meiosis II (Hodges et al, 2002). 

Also, in a case report by Schmiady and Neitzel, 2002, they suggest the existence of an 

autosomal recessive trait that affects the chromatin structure of the oocytes. Additionally, 

Hodges et al (2001), found sexual dimorphism in meiotic chromosome segregation. In the 

male, remnants of the synaptonemal complex remain associated with the centromeres 

until anaphase II but in females, all traces of the synaptonemal complex are lost from the 

chromosomes before the onset of the first meiotic division. This may be relevant to the 

increased error rates of maternal meiosis.

Interestingly, in an extensive study of recombination events in humans, Cheung et 

al (2007) found large scale individual variation in the number of female and male 

recombination events. The regions identified as having the largest number of 

recombination events were at ends of chromosomes but the preferred sites of meiotic 

recombination events varied greatly among individuals. More recombination events 

occurred in female than male meiosis with a ratio 1.6:1 but no correlation was found with 

maternal age. Similar results have been seen in other studies of oocytes and sperm in 

relation to recombination events (Lenzi et al, 2005, Codina-Pascual et al, 2006). Since 

meiotic recombination is so important in the prevention of aneuploid gametes (depending 

on the number and position of chiasmata) some individuals will produce more favourable 

recombination patterns while others with fewer recombination events or unfavourable 

positioning of chiasmata will be at higher risk of producing abnormal gametes.
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1.2.2.4 Environmental factors

Environmental factors seem to also affect the production of abnormal gametes 

and embryos. This was demonstrated when pregnant mice were exposed to synthetic 

oestrogen Bisphanol A (Susiarjo et al, 2007). The oocytes from the exposed female 

foetuses displayed aberrations in meiotic prophase I thus predisposing them to produce 

aneuploid gametes even before they were born. However this toxic effect would not have 

been detected in exposed human foetuses until they reached the reproductive age. 

Humans are exposed to Bisphenol A (BPA) in their daily lives as it is contained in many 

everyday products. The questions is does this exposure to BPA put human developing 

embryos at increased risk of producing abnormal gametes even before their birth. Clearly 

more research is needed in this area.

Finally, predisposition to aneuploidy in gametes and preimplantation embryos can 

also relate to IVF procedures which are not part of the natural human reproductive cycle; 

the conditions that the oocytes, sperm and embryos are subjected to do not resemble a 

natural cycle. So, IVF conditions play a vital role in this process. There are various 

problems that were reported relating IVF procedures with genetic abnormalities. 

Specifically, Intracytoplasmic sperm injection (ICSI) has risen significant concerns regarding 

the potential for transmission of abnormal genes because many of the natural barriers to 

conception have been bypassed (Rubio et al, 2001, McElreavy & Mitchell, 2002). It has 

also been suggested that an increased number of chromosomal abnormalities possibly 

result from the ICSI technique itself (Ludwig et al, 2001).

Additionally, frozen thawed embryos present an elevated level of chromosomally 

chaotic embryos after thawing and in vitro culture indicating a negative impact of 

cryopreservation of embryos (Salumets et al, 2004). These embryos were compared with 

frozen thawed but not cultured embryos. An earlier study, however, did not show such 

results (Cobo et al, 2001). It could be that the study group of embryos was too small and 

subject to distortions. Indirect and animal studies (Redding et al, 2006, Carrell et al, 2005, 

Bean et al, 2002) also provide some evidence that the IVF process can induce errors in the
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early non- human embryos at least when a predisposition to chromosomal instability 

exists.

Very recently, it was found that milder ovarian stimulation in IVF reduces 

aneuploidy in human preimplantation embryos while increased stimulation resulted in 

increased mosaic aneuploidy (Baart et al, 2007) which means that hormonal stimulation 

acting on the ovaries has some effect on the chromosomal complement of the 

preimplantation embryo and on post-zygotic cell division via a still unknown mechanism. 

However, Baart et al (2007) did not produce any follow up studies of the untransferred 

embryos and mosaicism was only scored after different results of two biopsied 

blastomeres of the same embryo were found. Consequently, this study cannot provide 

any error rates of the PGS protocol that might have contributed to the biopsy results or 

the existence of true mosaicism in the embryos. Follow up studies of oocytes and 

embryos after various stimulation protocols will provide more information about the 

origin of aneuploidy and mosaicism in relation to the IVF setup.

I.2.2.5. Errors in mitosis leading to embryonic mosaicism

Errors in mitosis can occur through mitotic non-disjunction or chromosome loss/ 

chromosome gain due to anaphase lag. In the preimplantation stage, such errors produce 

mosaic cell lines with frequency depending on how early in development this error has 

occurred (Harper et al, 1995, Delhanty 2005). In cytogenetic studies done on human 

preimplantation embryos using interphase FISH with limited probes (Delhanty et al, 1997, 

Ruangvutilert et al, 2000, Bielanska et al, 2002. Baart et al, 2004, Coonen et al, 2004) a 

high incidence of aneuploidy was detected and about 40% of embryos had mosaic cell 

lines suggesting one or more postzygotic errors had occurred. Also chaotically dividing 

embryos were observed where in each of their cells there were different chromosomal 

defects.
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The consequences of chromosomal mosaicism on the normal development of the 

human preimplantation embryo are unknown. Such a high degree of mosaicism detected 

in preimplantation embryos has led to the hypothesis that mosaicism is a normal process 

in early human embryonic development and the mosaic cells might be the precursors of 

the trophoblastic cells (Benkhalifa et al, 1993) although this is not supported by the 

current evidence. In a mouse tetraploid/diploid mosaic model, the tetraploid cells were 

segregating to extra-embryonic lineages, with no selective loss of conceptuses (James & 

West, 1994). It is not known if the tetraploid cells in this mouse model were segregating to 

the trophectoderm selectively or they were being eliminated from the embryonic 

lineages. However, in studies of human blastocysts, it appears that no preferential 

allocation of the aneuploid cells to the trophectoderm exists (Magli et al, 2000, Evsikov & 

Verlinsky, 1998) although this maybe be true for polyploid cells.

Another explanation for such high incidence of mitotic errors in preimplantation 

embryos could be due to reduced expression of certain cell cycle checkpoint genes 

(reviewed in Artus et al, 2006) that allow the proliferation of aneuploid cells (Handyside & 

Delhanty, 1995). Some evidence of this comes from cancer cells that also exhibit various 

mitotic errors due alterations to the function of the mitotic checkpoints (Kops et al, 2005). 

The mutated checkpoint gene loses its function and allows cells with abnormal 

chromosome alignment to proceed with cell division, thus starting an aneuploid cell line. 

Additionally, a link has been established between defects in the oocyte and an increased 

incidence in mitotic segregation errors in a mouse model with an inactivated protein 

subunit of the meiotic synaptonemal complex (SCP3) (Lightfoot et al, 2006). This study 

revealed an increased level of segregation errors at the first meiotic division but also a 

substantial increase in mitotic segregation errors during the first embryo cleavage 

divisions. It was also evident in this study that loss of embryo viability due to mosaicism 

was caused by the activation of a p53-independent apoptotic mechanism and not from a 

failure to progress through mitosis.
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Additionally, Shi and King (2005), have postulated that chromosome non­

disjunction produces tetraploid rather than aneuploid cells in human cancer cell lines. 

They found that non-disjunction can promote regression of cytokinesis and as a result the 

production of a tetraploid/ binucleate cell instead of two aneuploid daughter nuclei. 

Aneuploidy arises after any subsequent divisions. It is thought that cells that become 

tetraploid after prolonged arrest by the spindle assembly checkpoint but can re-enter G1 

as tetraploids, a process called mitotic slippage (Brito & Rieder 2006). In cancer cells the 

gene that is responsible for the arrest of tetraploid cells (p53) is usually non functional 

(Fujiwara et al, 2005). The resulting tetraploid cell might present extreme genome 

instability and erroneous attachments of both sister chromatids to the same poles during 

any subsequent mitotic divisions, thus producing aneuploid cells (Ganem et al, 2007).

The frequent finding of tetraploid cells and diploid binucleated cells in 

preimplantation embryos and the extreme chromosomal aberrations that are detected do 

seem to fit in with this tetraploidy first model. This was also suggested for human 

preimplantation embryos after various spindle abnormalities have been detected 

(Chatzimeletiou et al, 2005). However, definite proof of this would require studies that 

show tetraploidy as an intermediate of aneuploidy and also the aberrant function of p53 

in human preimplantation embryos. The above and also the amplification of centrosomes 

(as in cancer cells) could also explain the formation of chaotic cell lines in the embryos. 

The unstable nature of the tetraploid cells and the existence of multipolar nuclei would 

theoretically produce a highly abnormal set of mitotic divisions.

In conclusion, it is clear there is a variety of mechanisms through which aneuploidy 

can arise. These can occur at any stage of human development and can affect gametes, 

preimplantation embryos and somatic cells. The processes that govern cell division, 

meiosis and mitosis, can be error prone under certain conditions. Additionally, there are a 

variety of factors either genetic or environmental that produce predispositions to types of 

aneuploidy in human cells. However, the exact causes of aneuploidy are still not fully 

understood and clearly more research is needed in this area.
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1.2.3. Numerical chromosomal abnormalities

1.2.3.1 Incidence of numerical chromosomal abnormalities in livebirths and 

spontaneous abortions

Although aneuploidy is affecting 0.3% of livebirths, is one of the main causes of 

foetal death since around 50% of spontaneous abortions before 15 weeks of gestation are 

attributed to chromosomal abnormalities with most trisomies of chromosomes 16,18  and 

21 (Nicolaidis & Petersen, 1998). Foetuses with trisomy 13 or trisomy 18 can survive to 

birth and trisomy 21 is compatible with long term survival accompanied by severe mental 

retardation and multiple congenital anomalies (Hassold & Jacobs, 1984). Sex chromosome 

anomalies appear to have a much wider range of viable aneuploidy mostly due the 

requirement of only one X chromosome in each diploid cell in females and the fact that 

very few genes are contained on the Y chromosome.

Additionally, aneuploidy can affect all the cells of an individual or particular cell 

lines resulting in mosaicism which has been documented in various aspects of 

development. It has been found in the preimplantation stages (Delhanty & Handyside,

1995), in the embryonic stages where the placenta is aneuploid while the foetus is diploid, 

termed confined placental mosaicism (CPM) (Van Opstal, et al, 1998), as well as the adult 

stages in human development (Cozzi et al, 1999, Somprasit et al, 2004) in the cases of 

gonadal mosaicism where the germ cells only appear to be affected by aneuploidy.

Spontaneous abortions have been studied extensively for the understanding of 

their cause as well as the types and extent of aneuploidy they present. Table 1.3 

summarises the main findings of some of these studies. The rate of abnormality ranges 

from 35% to 72%. The chromosome mostly affected by aneuploidy is 16 as well as X. 

However in contrast with stillbirths and livebirths, trisomy for all chromosomes have been 

found and not just 13,18, 21 and X as complete autosomal monosomy is lethal at earlier 

stages. A maternal age effect has been observed for some trisomies but not for
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monosomy or for chromosome X (Eiben et al, 1990). Interestingly, the studies done with 

interphase FISH revealed a high incidence of mosaicism in spontaneous abortions (Table 

1.3).

This had lead to the conclusion that post-fertilisation errors and mosaicism could 

also contribute to spontaneous abortions to a higher degree than previously thought. 

Azmanov et al (2007) also found that the earliest forms of spontaneous abortions, 

blighted ovums, also appeared to have higher rates of aneuploidy (50%) compared to 

more advanced pregnancies. Therefore working backwards from live births, the 

aneuploidy rate appears to increase exponentially at each step towards the 

gametogenesis.

Table 1.3. Summary of some cytogenetic studies done on spontaneous abortions.

Study Method Results
Abnormal Types of Chromosomes Significant findings

abnormality affected
Hassold & Karyotyping 35% Trisomy 26% 16 most common Abnormalities of
Jacobs, Review of 4088 Monosomy X followed by 22 and almost all
1984 cases 9% 21 chromosome were

been identified
Eiben et al, Karyotyping of 750 50.1% Trisomy 62% 16 (21.8%) Maternal age
1990 cases before 12th Triploidy 12% 22 (17.9) effect for

week Monosomy X 21 (10%) trisomies 16,18,
11% 20, 21,22
Tetraploidy
9%

Fritz et al, CGH in 60 cases 72% Trisomy 68% 16 (32%) Suggest that
2001 with failed culture Triploidy 17% 7 & 22 (11%) aneuploidy rate

Monosomy X 4,13,15, 21 (7%) for spontaneous
10% abortions 70%

Lebedev et FISH in 60 53% Trisomy 50% No information on High frequency of
al, 2004 spontaneous Sex individual intra tissue and

abortions. Studied chromosome chromosomes. confined placental
two tissues from aneuploides Found diploid/ mosaicism
each sample. All 13% aneuploid attributed to
chromosomes Triploidy and mosaicism with mitotic errors.
tested. tetraploidy monosomies 7,15,

9% 21 & 22.

Vorsanova FISH in 148 60% Aneuploidy X- Most frequent Mitotic errors are
et al, 2005 spontaneous 83% mosaic aneuploidy. more frequent in

abortions. 11 Mosaicism spontaneous
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chromosomes 48% abortions than

Azmanov CGH of 106 
eta /,2007 spontaneous

previously
thought.

38% Trisomy 40% 16 and X were most Blighted ovums
Monosomy X frequently affected have higher

abortions from 
different 
gestational ages

25% frequency of 
aneuploidy (50%) 
compared to other 
gestational ages.

I.2.3.2. Aneuploidy in oocytes

Aneuploidy in oocytes has been found to be around 20-25% (Delhanty, 2001) 

although some diagnostic studies of polar bodies have found a rate as high as 62% (Kuliev 

et al, 2005). Table 1.4 shows a summary of some of the studies done in human oocytes. It 

appears that non-disjunction of whole chromosomes, unbalanced separation of 

chromatids and chromosome breakage are all involved in the genesis of aneuploidy during 

female meiosis I and II. Chromatid errors appear to be the most frequent cause of 

aneuploidy particularly with advancing maternal age. However, the link between maternal 

age failed to show up with in some of these studies. This can be due to smaller samples 

allowing the effects of certain younger females that were predisposed to a particular type 

of aneuploidy. However, the authors also suggest that there might be a more general age- 

independent factors that can lead to such meiotic errors. This is also demonstrated in a 

study by Fragouli et al (2006c) where aneuploidy was found in the oocytes of a 18 year old 

cancer patient. Other studies have established the link of increased aneuploidy in oocytes. 

The chromosomes most frequently involved in these abnormalities are most of the 

smaller ones from the autonomies as well as X. Interestingly, chromosome 21 has been 

found to be much more frequent in errors when oocytes from women over the age of 40 

were investigated (Vialard et al, 2006).

There are several problems with studies on IVF oocytes however that leave a lot of 

gaps in the picture of aneuploidy in meiosis. Firstly, only spectral karyotyping and CGH can 

give accurate information on the whole chromosome set since G-banding cannot be 

applied. FISH can only provide information for some abnormalities. Additionally, the
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oocytes that have matured in vitro might have been altered by the IVF process itself 

(Emery et al, 2005, Magli et al, 2006). However, fresh oocytes have been studied and 

showed similar results to other studies (Sandalinas et al, 2002) but the sample sizes are 

very small. Additionally, a lot of the oocytes studied for IVF cycles have failed to fertilized 

or progress to the next stage. This can also present deviation from the natural incidence of 

aneuploidy for the IVF oocytes. Genetic predisposition to aneuploidy e.g. by gonadal 

mosaicism or variations in recombination among IVF patients has to be further 

investigated. Some studies from natural pregnancies also suggest a predisposition to 

recurrent triploidy of maternal origin, clearly referring to recurrent errors in meiosis in the 

same individual (Brancatti et al, 2003, Huang et al, 2004) due to unknown reasons.

Table 1.4. Aneuploidy studies in human oocytes.

Study Method Results
Aneuploidy Types of aneuploidy Mechanisms of aneuplo dy and
rates main findings

Pellestor et R-banding in 22% E and G chromosome Whole chromosome non­
al, 2002 1397 IVF groups had higher disjunction and chromatid

oocytes frequency of 
aneuploidy than 
expected. A & B 
groups- lower

predivision was observed for most 
chromosomes. Predivision was 
more frequent.
No correlation between 
aneuploidy rate and type of 
infertility.

Sandalinas Spectral 22/47 22 had most Maternal age effect in all
et al, 2002 karyotyping of complexes frequently errors aneuploidy mechanisms. Increase

131 fresh followed by 21 and 19 of balanced predivision of
oocytes. chromatids with decrease in 

chromosome size.
Pujol et al, FISH in 89 1st PBs 47.5% 16 more frequently 56% whole chromosome
2003 and 54 oocytes affected followed by alterations

(In Vitro 13 and 22. 44% chromatid alterations
matured). 9 No maternal age effect.
chromosomes

Kuliev et al, FISH in 4584 IVF 62% 21 and 22 with higher 16 and 22 errors arising more
2005 polar bodies error rates. frequently in Mil. The rest in Ml.

from advanced 50% of aneuploidy Chromatid errors significantly
maternal age involved complex higher than chromosome errors.
females. 5 errors. Maternal age affect in all types of
chromosomes aneuploidy.

Fragouli et CGH in 107 IVF 22% X and 21 most All mechanisms observed. More
al, 2006b oocyte and PBs 

(Mil).
frequent errors. abnormalities in the D-G 

chromosome groups. No maternal 
age effect. Chromatid errors 
confirmed to smaller
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Vialard et FISH in 141 PBs 30.5%
al, 2006 from advanced

21 (20%) 
16 (5.6%)

chromosomes.
80% of aneuploidy was due to 
chromatid errors.

maternal age 
couples

Fragouli et CGH on 14 2/14
al, 2006c oocytes and PBs complexes

X+21 Aneuploidy due to unbalanced 
predivision of chromatids. 
Existence of age independent 
factors for aneuploidy.

from 18 year-old 
cancer patient

I.2.3.3. Aneuploidy in sperm

At least 2% of sperm from normal men have been found to have numerical 

chromosomal abnormalities (Martin, 2006). Additionally, all chromosomes appear to be 

involved in non-disjunction but some studies have indicated that chromosomes 21, 22 and 

sex chromosomes have an increased frequency of errors (Martin et al 1991, Williams et al 

1993, Sun et al, 2006). Structural chromosomal aberrations are also widely observed in 

the sperm of healthy men (Sloter et al, 2000). Interestingly, it appears that some 

karyotypically normal males present an elevated aneuploidy risk for all chromosomes in 

their sperm. This is demonstrated in Tomascik-Cheeseman et al (2006) where the male 

that fathered four consecutive trisomic pregnancies had increased aneuploidy in his 

sperm.

With the advances in assisted reproduction many infertile men managed to father 

children that naturally would be an impossible task. However, sperm from infertile men 

appears to be more prone to aneuploidy than the general population, exhibiting a 

decreased frequency of recombination (Rives et al, 1999) and particularly for 

chromosomes 13, 18, 21 and the sex chromosomes (Rubio et al, 2001, Ma et al, 2006). 

Abnormal morphology in sperm is also associated with increased aneuploidy rates (Lewis- 

Jones et al, 2003, Morel et al, 2004). These studies show that for couples seeking IVF due 

to male infertility there are a variety of factors that need to be considered. Although 

sperm is more available for study than human oocytes, there are still many mechanisms 

that produce aneuploidy in male gametes that are not fully understood.

49



Introduction

I.2.3.4. Aneuploidy in embryos

In preimplantation embryos a more complex genetic picture exists since mitotic as 

well as meiotic errors can exist. Table 1.5 summarizes some studies performed on 

preimplantation embryos. The overall aneuploidy rate reported ranges between 30% and 

80%. Although some of this variation is mostly due to patient selection, there is no 

uniformity in the data coming from these studies. This variability could be due to different 

experimental procedures. The recurrent theme in these studies is mosaicism which is 

found to be the most common abnormality in preimplantation embryos with frequency 

ranging from 30% to 70%. The most significant finding clinically, is the co-existence of 

normal and abnormal cell lines in the same embryo. This can cause various problems for 

preimplantation genetic diagnosis or screening which are discussed in section 1.4.

Maternal age effect in preimplantation embryos is less obvious, although it does 

exist (Munne et al, 2002, Munne et al, 2007). However, a high incidence of aneuploidy has 

been observed in the embryos of younger women with no indication for genetic screening 

prior to IVF (Baart et al, 2006). All chromosomes seem to be affected but aneuploidy rates 

for individual chromosomes also vary significantly in these studies. The FISH studies 

mentioned in table 1.5 mostly screen for the chromosomes that present a high aneuploidy 

rate in prenatal samples. Within these, chromosome 22, 16, 18 and 21 seem to be most 

frequently affected. The sex chromosomes do not appear to be affected as severely as in 

the prenatal studies mentioned above.

The existence of chaotic embryos, where each cell of the same embryo is showing 

a different chromosomal error, is also confirmed in these studies. Although it is thought of 

as a patient specific anomaly (Delhanty et al, 1997, Mantzouratou et al, 2007) there is still 

no correlation of chaotic embryos with any significant predisposing factor. It is also 

possible that chaotic embryos are a result of the In Vitro process but studies on this are 

nonexistent. The main problem is that the human preimplantation embryonic stage can 

only be examined through IVF and not in natural cycles.
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It is clear however that some couples are presenting with an increased risk of 

having a high rate of abnormal embryos. Evidence is beginning to emerge that couples 

that have repeated implantation failure (RIF) after IVF are showing increased postzygotic 

and complex abnormalities in their embryos (Mantzouratou et al', 2007, Voullaire et al,

2007). This would indicate a predisposing factor to postzygotic aneuploidy that exists in 

embryos from this particular group of IVF couples. Couples that experience unexplained 

recurrent miscarriage (RM) are also found to have an increased risk of overall aneuploidy 

at a rate of 71% (Rubio et al, 2003). The reasons for this are not yet fully understood since 

so few studies are designed to distinguish meiotic from mitotic errors.

Table 1.5. Preimplantation embryo studies

Study Method Results
Aneuploidy rate Types of abnormality 

and chromosome 
errors

Main conclusions

Studies in routine IVF pre-implantation embryos
Harper et FISH on 69 day 3 46% for the autosomes Frequent mosaicism in
al, 1995 embryos. 15% mosaicism for the sex morphologically normal

Chromosomes X, Y chromosomes. (Different sets of embryos. Consequences
1 and 17 were embryos). on PGD.
tested

Wells and CGH for 12 day 3 9/12 embryos 8/12 embryos were CGH accurate for single
Delhanty; embryos contained mosaic. 1/12 cell analysis. Frequent
2000 abnormal cells uniformly abnormal. 

2/12 diploid 
uniformly

mosaicism and chaotic 
cell divisions in 
preimplantation embryos.

Voullaire CGH for 12 day 3 10/12 embryos 42% embryos Extensive postzygotic
etal,2000 embryos. 63 abnormal mosaics with errors. Chromosome loss,

blastomeres tested. normal/abnormal cell 
lines

gain, breakage and 
mitotic non-disjunction 
seen. Chaotic embryos 
were also observed

Ruangvuil FISH with 5 probes 33/39 embryos All 33 embryos were High incidence of
erteta l, (13,18, 21, X,Y) in abnormal mosaic mosaicism of
2000 39 embryos (17/19

blastocysts)
normal/abnormal cells, 
persisting to the 
blastocyst stage

Blelanska FISH with 9 probes 70% 48% mosaicism, Incidence of mosaicism
et al, 2002 (2 ,7 ,13 ,16,18, 21, mostly 2N/polyploidy increased with cell stage

22, X, Y) on 216 mosaics. and reached 91% at the
embryos blastocyst stage (majority 

was diploid/polyploidy 
mosaics)

Baart et FISH with 10 Day 3- 57% Lack of correlation of Day 3 results most
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mosaic aneuploidy and reliable if two concordant
13 ,15 ,16 ,18 ,21 , Day 5- 50% morphology. results were obtained.
22, X, Y) in 17 mosaic Cytogenetic Analysis of two
embryos from day confirmation of day 3 blastomeres on day 3 for
3 and day 5 abnormality 32% due clinical diagnosis is
blastomeres to mosaicism recommended

Daphnis FISH with 6 probes 39/42 embryos Predominant type of Mitotic chromosome loss
et al, 2005 for 3 chromosomes were mosaic mosaicism was was the most common

(1,11 ,18) on 42 diploid/aneuploid finding followed by gain

Coonen et

embryos

FISH with 3 probes 28% 26% simple

and mitotic non­
disjunction. FISH artefacts 
affecting 5% of nuclei 
Anaphase lagging leading

alf 2004 for 3 chromosomes mosaicism to chromosome loss or
(X, Y, 18) on 299 31% complex gain is the major

mosaicism aneuploidy mechanism 
11% chaotic mosaics for mosaicism 

Studies from embryos on PGD/P65 patients with follow up
Delhanty FISH with 3 probes 50% 30% mosaics Frequent mosaicism
et ah 1997 (XY1) in 93 IVF Mostly ploidy observed in embryos from

embryos mosaics fertile patients.

Magli et FISH with 6 probes 51% 40% of blastocysts

Chaotic embryos were a 
patient specific finding 
High degree of mosaicism.

ah 2000 (13,16,18, 21, X, Y) were abnormal Aneuploid cells do not
on 143 embryos mosaics. One was preferentially move to
(PGS) uniformly abnormal trophectoderm.

Munne et FISH with 6 probes 60% 45% mosaicism not Chromosome 16 was
al, 2002 (13 ,16 ,18 ,21 , X, Y) affected by maternal most commonly involved

on 1235 embryos age. in mitotic non disjunction
(PGS/PGD/IVF) Chaotics most errors which increased
* Not all with follow common form of with maternal age.
up. mosaicism. Error rate was 5.6%

Munne et FISH with various Chromosome susceptibility Aneuploidy rate increased
al, 2004 probes for different Monosomy more common than trisomy. with maternal age in

embryos on 2058 Chromosomes mostly affected 22,16, 21 some autosomes but not
embryos and 15. X, Y, 1 and 14.

U e ta l

(PGS/PGD/IVF) 
*Not all with follow 
up.

FISH with 5 probes

Least common X, Y and 14

43% 60% of blastocysts False positive rate 7.8%
2005 (13,18, 21, X, Y) on aneuploid.

Baart et
660 embryos (PGS). 
FISH with 10 probes 64% 50% mosaicism Best confirmation rate

al, 2006 on 196 embryos 28% after diagnosis was based
from younger normal/abnormal on two cells biopsied on
women (no mosaics. day 3
indication for PGS). 23% meiotic errors. Mosaicism may affect

Mantzou- FISH with 6 probes 82% 58% chaotic mosaics
screening
Couples with repeated
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ratou et 
al, 2007 
(this 
study)

M agllet 
ah 2001

Munne et 
alf 2007

(13 ,15 ,16 ,18 , 21 
and 22) on 523 
embryos (PGS)

37% mosaics 
5% uniformly 
abnormal 
16% meiotic errors

Studies on PGS embryos with no follow up
FISH on 1596 day 3 
PGS embryos with 
10 different probes.

FISH on 6000 PGS 
embryos with 9 
different probes. 
*Not all with follow 
up. Results from 10 
years

66%

70%
<35:60%  
35-37.9:66%  
38-40.9: 78% 
<41:80%

Complex
abnormalities most 
common then 
monosomies.

No individual 
abnormalities were 
studied only normal 
and abnormal. False 
positive rate in 1132 
reanalysed embryos: 
9%

implantation failure are 
more prone to post 
zygotic errors.
Errors for chromosome 22 
was most common overall 
followed by 21.

Abnormal embryos 
reached blastocyst stage. 
Morphological criteria 
alone are not sufficient 
selection for poor 
prognosis patients. 
Aneuploidy increased 
with maternal age. No 
differences in normal 
abnormal ratios according 
to indication.

Not only the number but the parental origin of chromosomes is important for 

normal embryonic development. A special case of numerical abnormality is uniparental 

disomy (UPD), which is the presence of a chromosome pair derived from only one parent 

in a diploid offspring. UPD has been reported for many human chromosomes and is 

thought to have an effect due to the presence of imprinted genes the expression of which 

depends on the parental origin (Morison & Reeve, 1998). UPD is thought to arise from 

trisomic or monosomic rescue of an aneuploid foetus (Ledbetter and Engel, 1995). 

Therefore, in the presence of such imprinting, UPD can result in various abnormal 

phenotypic manifestations in foetuses, placentas and live births (Purvis-Smith et al, 1992, 

Van Opstal et al, 1998, Salafsky et al, 2001). UPD has been reported for several regions of 

the genome that have resulted in the inheritance of a recessive trait or the manifestation 

of an imprinting disorder like Prader-Willi and Angleman syndrome (reviewed in Engel, 

2006).
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Section 1.3 Structural chromosomal abnormalities

Structural chromosomal abnormalities are usually the result of chromosome 

breakage and abnormal DNA rejoining thus disrupting the normal DNA sequence in one or 

more chromosomes. They can be grouped in two categories, balanced or unbalanced 

chromosomal rearrangements. Balanced structural chromosomal abnormalities include 

rearrangements where there is no visible loss or gain of genetic material, for example 

inversions and balanced reciprocal translocations; they are found in about 1 in 500 

individuals. Unbalanced chromosome abnormalities include rearrangements such as 

deletions, duplications and translocations where there is loss and/or gain of genetic 

material and account for about 3% of all recognized chromosomes anomalies (Shaffer & 

Lupski, 2000). The frequency of some structural abnormalities in humans are shown in 

table 1.6

Table 1.6. Frequency of structural chromosomal rearrangements (From Shaffer & 
Lupski, 2000.

Rearrangement Frequency in the population
Robertsonian translocations 1 in 1000
Reciprocal translocations 1 in 625
Marker chromosomes 1 in 2000
Terminal deletions 1 in 5000
Interstitial deletions 1 in 4000
Interstitial duplications 1 in 4000

Chromosomal rearrangements can be further grouped into inter- or intra- 

chromosomal. Interchromosomal rearrangements involve different chromosomes and 

may occur between non-homologous chromosomes. These include reciprocal and 

Robertsonian translocations and interchromosomal insertions and inversions. For example 

Robertsonian translocations involve the acrocentric chromosomes and are very common. 

Although all acrocentrics have been found to be involved it appears that rob(13ql4q) and 

rob(14q21q) constitute around 85% of all Robertsonian translocations (Therman et al, 

1989).
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In reciprocal translocations all chromosomes have been reported to participate and 

are thought to occur in a unique way for each carrier. However the translocation 

t( ll;2 2 )(q 2 3 ;q ll.2 ) is a recurrent reciprocal translocation in unrelated families (Hill et al, 

2000). Additionally, once recognizable syndromes have been excluded, abnormalities that 

involved the ends of the chromosomes have been found to be the commonest cause of 

mental retardation in children with unexplained mental retardation (Knight et al, 1999, 

Menten et al, 2006). In addition, complex chromosomal rearrangements involving more 

than two chromosomes and/or more than three chromosomal breaks have been 

documented in balanced and unbalanced forms (Madan et al, 1997).

Intrachromosomal rearrangements involve a single chromosome and include 

duplications, deletions, inversions and marker chromosomes. Some may involve a single 

homologue and others both homologous chromosomes. It appears that any region of the 

genome might be subject to rearrangements but certain parts of the genome are more 

susceptible than others (Brewer et al, 1999). Interstitial duplications and deletions usually 

result from breakage within a chromosome arm and both have been associated with 

specific genetic syndromes like Di-George syndrome for deletions in chromosome 22 and 

Charcot-Marie-Tooth disease type 1A for interstitial duplication in chromosome 17 

(Shaffer et al, 2000).

Inversions have been reported for every human chromosome and the most 

commonly found is the pericentric inversion of the heterochromatin of chromosome 9 

(Shaffer & Lupski, 2000). Balanced chromosomal inversions, are the result of two breaks 

within a single chromosome and reorientation of the chromatin between the breaks and 

can be pericentric, which involve the centromere, or paracentric, where only one arm of 

the chromosome is affected (Therman & Susman, 1993). Although carriers of such 

inversions are phenotypically normal the inverted chromosome region can cause synaptic 

and recombinational problems during meiosis and the production of chromosomally 

unbalanced gametes (Jaarola et al, 1998).
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Marker chromosomes are usually structurally abnormal chromosomes. The most 

common marker chromosomes come from chromosomes X, 15 and 22 (Schwartz et al, 

1997). Isochromosomes are structurally abnormal chromosomes that result from a whole 

arm duplication within an individual chromosome and their origin is equally divided 

between paternally derived and maternally derived rearrangements (Shaffer et al, 1993). 

The most common in humans involves the long arm of chromosome X (W olff et al, 1996) 

and about 15% of individuals with Turners syndrome have an isochromosome of Xq in a 

population of their cells. Ring chromosomes constitute about 10% of the cases of marker 

chromosomes and exhibit varying degrees of mitotic instability within individuals thus 

interfering with any genotype/phenotype correlations (Anderlid et al, 2001, Starke et al, 

2003, Jeffries et al, 2005).

The mechanism that produces these structural chromosomal rearrangements is 

thought to involve i) a number of DNA double strand breaks ii) homology directed 

sequence repair and interaction of the sequence substrates for recombination iii) 

resolution of the recombination intermediate with the formation of a novel 

recombination product. Recombination substrates that are identified so far consist of 

significant lengths of sequence homology or low copy repeats (LCRs) which would enable 

abnormal recombination to occur (Stankiewicz & Lupski, 2002) within and between 

chromosomes or chromatids. Figure 1.7 illustrates the how the LCRs can produce 

abnormalities during recombination.
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Figure 1.7 Mechanisms of formation of structural chromosomal abnormalities via LCRs. The yellow arrows 

denote the position of LCRs. Abnormal recombination within these arrears can lead to inversions, 
duplications, deletions and ring chromosomes among other abnormalities (From Stankiewicz & Lupski, 2002)
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The breakpoints on the common Robertsonian translocations cluster between two 

repetitive DNA families of satellite III DNA (Page et al, 1996).The most common of the 

Robertsonian translocations have the same breakpoints and are found to arise mainly 

during oogenesis but can also arise postzygotically (Bandyopadhyay et al, 2002). The 

authors suggest that the duration and unique nature of oogenesis might predispose to the 

formation of Robertsonian translocations in the female gametes.

For the reciprocal translocations is more difficult to identify a common factor since 

most of them are unique to each carrier apart from the 11;22 translocation. Breakpoint 

studies in unrelated families have shown that this translocation is due to specific Alu 

repeats on both chromosomes 11 and 2 2q ll.2  (Hill et al, 2000, Babcock et al, 2007). In 

another study of this translocation it was detected a non-random asynchronous 

replication of the 22q ll.2  region of the paternal chromosome 22 which, the authors

57



Introduction

suggest, increases the probability of an initial mispairing of the parental alleles (Baumer et 

al, 2004).

1.3.1. Structural chromosomal rearrangements and reproductive problems

The balanced rearrangements carriers are usually phenotypically normal but 

problems arise when these carriers try to produce normal gametes that will result in 

healthy offspring. They may experience infertility, spontaneous abortions or abnormal 

pregnancies due to their genetic abnormality (Trappe et al', 2002). Infertile couples that 

require assisted reproduction have been found to be affected more frequently by 

chromosomal rearrangements than the general population (Clementini et al, 2005). 

However, it is possible for a carrier of a balanced rearrangement to have an abnormal 

phenotype, because of uniparental disomy, disruption of putative genes and mosaicism. In 

the case of mosaicism in a study by Dufke et al, 2001, the carrier had various 

malformations and his mother was a carrier of a 17;22 translocation, but while his 

lymphocytes appeared to be balanced in the skin cells there was a supernumerary 

chromosome present.

The chromosomal segregation patterns at meiosis during gametogenesis in a 

carrier of a structural chromosomal abnormality are thought to determine the formation 

of a genetically balanced or unbalanced embryo, termed the reproductive risk of the 

carrier and depends on the size of the rearrangements, the breakpoints and the 

chromosomes involved (Scriven et al, 1998). Sometimes, the sex of the carrier is also 

included in the reproductive risk since it has been observed that there is an excess in 

maternal origin abnormalities and maternal age effect (Faraut et al, 2000).

The haploid autosomal length (HAL) is a quantitative amount of a particular 

segmental imbalance and has been used in order to give a more precise risk estimate to 

carriers of translocations (Neri et al, 1983, Davis et al, 1985, Cans et al, 1993, Cohen et al, 

1994, Brewer et al, 1999). In these studies it was found that 96% of the viable imbalances
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arise for 2-3% of HAL for monosomies and up to 4-5% of HAL for trisomies. However some 

imbalances demonstrate higher viability thresholds according to their gene content and 

sometimes the parent of origin. Maternal imbalances are characterized by higher 

thresholds of viability in monosomy and trisomy (Cohen et al, 1994).

Robertsonian translocation carriers are associated with repeated spontaneous 

abortions and infertility. For the most common translocation rob(13ql4q) there is a 20- 

25% chance of having a spontaneous abortions because of the translocation (Neri et al, 

1983) and for rob(14q21q) there is a 15 % risk of a Down syndrome pregnancy and it is 

usually due to maternal transmission (Gardner & Sutherland, 1996). In carrier males 

infertility might arise due to the translocation and can result in spermatogenetic failure 

(Guichaoua et al 1990).

In the case of Robertsonian translocation, at meiosis in the heterozygote the 

translocated chromosome and the two normal acrocentrics synapse as a trivalent. A 2: 1 

segregation can produce up to 6 different types of gametes where only 2 are normal or 

balanced. Figures 1.8 and 1.9 illustrate the meiotic chromosome pairing and segregation 

patterns in the male and female carrier of a Robertsonian translocation. Unbalanced 

conceptuses are essentially trisomic or monosomic for the chromosomes involved 

referring more to numerical chromosomal abnormalities risk (Gardner & Sutherland,

1996). Sperm studies have shown that at least in males the most common mode of 

segregation is the one that produced normal or balanced gametes (alternate) and in some 

carriers other chromosomes were also affected as well as the translocation chromosomes 

(termed interchromosomal effect)(Ogur et al, 2006).
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Figure 1.8. Meiosis in the heterozygote male carrier of a Robertsonian translocation.
In the alternate segregation 50% of gametes will be normal and 50% carriers. Adjacent and 3:0 segregations 
will result in unbalanced gametes. Each meiosis will produce four sperm after meiosis II. Errors of meiosis I can 
also be corrected in meiosis II for some sperm if sister chromatids fail to disjoin (in the case of 2:1 disomy and 
3:0 double disomy).

Alternate segregation 
Would load to normal and 
balanced i  perm

Bala reed Normal

Few studies exist for the segregation patterns in the oocytes due to the difficulty of 

obtaining such samples. Most data come from preimplantation genetic diagnosis where 

polar body biopsy is used for the female carriers of Robertsonian translocations. Two such 

studies showed a variable abnormality rate of around 50% (Durban et al, 2001, Munne et 

al, 2000). Figure 1.9 illustrates possible gamete types from meiosis of a female carrier.

Alfa cent segregation 
Would load tospoim wth 
dkomy and with nulkomy

3:0 segragetion 
Would load to spoim with 
doublo dkomy and with 

daub I t  nullhony
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Figure 1.9. Meiosis in the heterozygote female carrier of a Robertsonian 
translocation.
Each meiosis generates one oocyte which can be normal, balanced or unbalanced. Theoretically, errors 
in meiosis I can be corrected in meiosis II in some cases if the extra products segregate to the polar

Alternate segregation Adjacent segregation 3:0 segragetion
Would either lead to normal Would either lead to disomy Would either lead to double

or balanced oocyte or nullisomy in the oocyte disomy or double nullisomy in
the oocyte

Double nJlisomyDisomy Nullisomy

Carriers with balanced reciprocal translocations have a higher risk of producing 

abnormal offspring due to abnormal segregation of chromosomes during meiosis (Jalbert 

et al, 1980). Reproductive risks for balanced reciprocal translocation carriers are only 

estimates, and although several risk assessment studies have been done for translocation 

carriers (Neri et al, 1983, Midro et al, 1992, Barisic et al, 1996) the conclusion is that 

individual risk estimates have to be performed as the basis of genetic counselling for 

reciprocal translocation carriers that wish to have offspring.

Carriers of balanced translocations are usually phenotypically normal and thus the 

translocations are detected when there is the presentation of abnormal offspring due to 

genetically abnormal gametes, recurrent miscarriage or IVF-implantation failure (Therapel 

et al, 1985, Stern et al, 1999). Couples where one partner is a translocation carrier and 

that need to resort to PGD maybe predisposed to failure of normal embryo development
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and in the formation of abnormal embryos (Conn et al, 1998, Iwarsson et al, 2000). 

Additionally, the translocation might be increasing the risk of having offspring with severe 

congenital malformations and mental retardation if the pregnancy continues.

The inheritance of reciprocal translocations is unpredictable and is determined by 

the mode of segregation during meiosis I. In the case of a balanced reciprocal 

translocation, at meiosis I the two pairs of homologous chromosomes containing the 

translocation are associated at pachytene to form a quadrivalent with matching of the 

homologous segments (Jalbert et al, 1980). Anaphase follows one of five modes of 

segregation: a. alternate, leading to either a normal or balanced chromosome 

complement b. adjacent-1, leading to monosomy for one translocated segment and to 

trisomy for the other, c. adjacent-2, where the homologous centromeres segregate 

together and it is considered rare d. 3:1, leading to tertiary trisomy/monosomy and e. 4:0 

leading to double trisomy or double monosomy (Scriven et al, 1998). These meiotic

Figure 1.10. Chromosome 
Segregation outcomes in a 
reciprocal translocation 
carrier during meiosis. The
dotted lines denote how the 
chromosomes can separate during 
the first meiotic division; 4:0 not 
shown here will result in all 4 
chromosomes in one daughter cell 
and none in the other, (from Braude 

et al 2002)

From studies of individuals with unbalanced chromosomes and spontaneous 

abortions it is thought that there are some factors that predispose a particular

outcomes are illustrated in Figure 1.10.
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translocation to a particular segregation pattern. For example although in most cases 

adjacent 1 is the most common unbalanced segregation that could produce viable 

pregnancies in some cases adjacent 2 is more frequent, when at least one acrocentric is 

involved and also chromosome 9 and is nearly always maternal (Jalbert & Sele, 1979). 

Usually the crucial factor is the length of the translocated fragments, the larger they are 

the less likely they are to produce viable gametes with adjacent 1 non-disjunction and 

more likely to be adjacent 2 (Jalbert et a l 1980). Chiasmata formation during meiosis I 

within the translocated or the centric fragments of the translocations can also determine 

the mode of segregation of the quadrivalent by determining its orientation and its shape 

during the end of metaphase I. Evidence for this also come from mice models carrying 

translocations (Tease, 1998).

The products of all modes of segregation may be present in gametes but only 

chromosomally balanced gametes will produce a normal embryo. Studies done on the 

segregation analysis of various translocations (Zakai & Emanuel, 1980, Estop et al, 1995, 

Van Hummelen et al, 1997) suggest that each translocation exhibits a distinct segregation 

pattern depending on the chromosomes present and the size of translocation. It has been 

found in a study done by Munne et al (2000) that the meiotic segregation patterns found 

in female carriers of Robertsonian translocations are different from those described in 

male carriers, with higher rates of unbalanced gametes in females than males, suggesting 

also a sex bias factor. However this observation has not been confirmed and later studies 

showed no differences (Munne, 2005).

However it has been found that translocation between chromosomes 11 and 22 

with the same breakpoints has occurred in many unrelated families and the majority of 

unbalanced surviving offspring from these families have an additional derivative 

chromosome 22 (der22) which is hypothesised to result from a 3:1 segregation in the 

parental gametes (Zakai & Emanuel, 1980). Although one study performed on human 

spermatozoa of a t( ll;2 2 ) carrier supported the above hypothesis for the particular carrier 

(Estop et al, 1999) another study on male meiosis for the same translocation suggested
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that preferential appearance of the extra der22 chromosome constitution is a result of 

postzygotic selection against other unbalanced karyotypes rather than the 3:1 preferential 

segregation (Armstrong et al, 2000). That is, of all the unbalanced modes of segregation 

this one produced the only viable pregnancies.

Studies of human gametes in carriers of reciprocal translocations in have found a 

varying degree of abnormalities. In sperm the proportion of abnormal gametes ranges 

widely from 23 to 81%. This figure depends mainly on the size of the imbalance and the 

individual breakpoints as well as the chiasmata position in meiosis I (Guichaoua et al, 

1992, Benet et al, 2005). Figure 1.11 illustrates various 2:2 and 3:1 segregation outcomes 

in sperm meiosis from a reciprocal translocation carrier. From this it is obvious the even if 

the alternate segregation occurs, crossing over can still produce unbalanced gametes.

Figure 1.11. Outcomes of the male meiosis from reciprocal translocation carriers (From 
Benet et al, 2005)
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In contrast, female meiosis has the added complexity of producing one oocyte 

form each meiotic division while the polar bodies produced do not play a further role in
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reproduction. Hence the random separation of the translocation chromosomes into the 

oocyte or polar body will also determine the production of a balanced or unbalanced 

gamete. Oocytes from translocation carriers are more difficult to come by but in a study 

by Pujol et al (2003) where 1st polar bodies were studied there was a high frequency of 

unbalanced polar bodies as well as generalized numerical aneuploidy in some cases. The 

problem with this study however, is that 1st PBs are not always the best indicators of 

normality or abnormality in the oocyte as meiosis II can change the final outcome. Indeed, 

chromatid abnormalities of the chromosomes involved in a translocation have been 

observed in the polar bodies of one translocation carrier as a result of meiotic 

recombination (Munne et al, 1998). This resulted in metaphase II oocytes having 

chromosomes with one normal and one derivative chromatid which after meiosis II could 

result in normal (balanced) or unbalanced oocytes. A further complication is that Escudero 

et al (2000) also found that segregation patterns in oocytes from carriers with similar 

translocations can vary between individuals even when the breakpoints are similar.

Most of the data from preimplantation embryos suggest that there is a 

chromosome bias towards a particular segregation for each translocation that obeys the 

above rules but in addition there is a large number of mosaic and chaotic embryos. That 

would suggest that a number of post-zygotic errors are taking place for the carriers of 

translocations that need to resort to preimplantation diagnosis (Conn et al, 1998, 

Malgrem et al 2002, Simopoulou et al, 2003, Emiliani et al, 2003). These studies have 

suggested a mosaicism rate of 50-100%. Clearly, post zygotic abnormalities are a major 

factor in the infertility or sub-fertility of these couples as most couples with translocation 

do not require assisted reproduction or PGD. Another study showed the alternate 

segregation to be most common in day 3 embryos (48%) followed by adjacent -1 (25%), 

3:1 (15%), adjacent-2 (10%) and 4:0 (2%) with more 3:1 segregation types arising from the 

female carriers (Ogilvie & Scriven 2002). The alternate segregation appears to most 

commonly found in human embryos irrespective of the gender of the carrier parent 

(Simopoulou et al, 2003) although the high degree of mosaicism makes segregation 

differentiation at the embryo stage more difficult.
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Another interesting suggestion about translocations was that the presence of 

reciprocal translocations may increase the aneuploidy frequency of chromosomes not 

involved in the translocation by exerting an interchromosomal effect altering their 

recombination and segregation pattern (Estop et al, 2000). In a study by Pellestor et al 

(2001), it was suggested that this interchromosomal effect appears to be real and should 

be taken into consideration. In another study by Gianaroli et al, 2002, it was concluded 

that interchromosomal effect seems to play a role in Robertsonian translocations. 

However, in other studies this interchromosomal effect could not be detected (Oliver- 

Bonet et al, 2004).

Inversions, insertions and duplications carry a reproductive risk that depends again 

on the size of the fragment and sometimes its gene content. If crossing over occurs within 

the rearranged regions then it can result in an abnormal chromosomal segment (Gardner 

& Sutherland, 2004). The reproductive risk for inversions is said to correlate with its size. 

Studies suggested that inversions of less than 40 or 50% of the chromosome length have 

significantly less chance of producing unbalanced gametes (Anton et al, 2006, Morel et al, 

2007). This might be due to a lesser chance of crossing over within the inversion.

Insertions can occur interchromosomally, termed insertional translocations and 

can result in various abnormalities in the gametes (White, 1954). For example, in a 

heterozygous individual with a small insertional translocation there are two types of 

pairing in meiosis I. The four chromosomes involved can form two bivalents were they can 

segregate at random in which case a deleted or a duplicated region may exist in the 

resulting gamete. They can also pair via the common translocated sequence where 

recombination can occur. In this case entirely new chromosomes will be produced which 

will be mostly unbalanced. The incidence of insertional translocation is estimated to be 

1:80,000 with 60% of the cases to be of maternal origin (Van Hemel & Eussen, 2000). 

Interchromosomal insertions specifically, between the chromosome arms, present a high 

reproductive risk as the recombination during meiosis in a heterozygote carrier will
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produce normal/balanced/duplication/deletion outcomes in a 1:1:1:1 ratio (Gardner & 

Sutherland, 2006).

Ring chromosomes are usually not associated with a normal phenotype due to the 

high incidence of loss or gain mosaicism that was mentioned earlier. However, some 

individuals are apparently balanced carriers of stable ring chromosomes and in almost all 

instances of parent to child transmission this is due to maternal inheritance due to 

possibly spermatogenic arrest in the male carriers (MacDermot et al 1990). A small 

derivative ring chromosome can also be found either in the balanced or unbalanced and 

mosaic form in a genome. This can randomly segregate during meiosis thus increasing the 

risk of unbalanced offspring. The risk for these carriers is very difficult to assess as these 

are extremely rare events and have to be ascertained according to the individual 

imbalance.

Finally, complex chromosomal rearrangements provide a particular problem in 

assessing the reproductive risk of a carrier. When three or more chromosomes are 

involved a multivalent is formed in meiosis. The size of the imbalance, the position of 

chiasmata will also determine the segregation mode in this arrangement but the possible 

combinations in the gametes are not easily predictable as in the simple translocations and 

very few of the gametes produced will have a balanced chromosomal complement (Siffroi 

et al, 1997). It is usually assumed that most of the unbalanced outcomes would be lethal 

to the resulting embryos.

1.3.2. Sex chromosome abnormalities

The sex chromosomes need special attention due to the fact that the two 

homologues are different and that they determine the sex of an individual since females 

have two X chromosomes, one of which is inactivated, and males have an X and a much 

smaller Y chromosome.
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In terms of numerical abnormalities for the sex chromosomes there are 4 major 

types. 45, X and 47, XXY carriers are mostly infertile while 47, XXX and 47, XYY appear to 

have normal fertility but all have variable and usually mild phenotypic effects (Hall et al, 

2006). This is because one X in the female is inactivated early in embryogenesis. It is 

initiated by the X inactivation centre (XIC) on Xql3 and spreads in both directions and 

inactivates the whole chromosome apart from a few pseudoautosomal regions that help 

pairing with the Y chromosome (Ballabio et al, 2006). In addition, the Y chromosome 

carries only a few genes for gender determination.

Turner Syndrome involves a missing X or Y chromosome and it was found that in 

around 80% of the cases the paternal sex chromosome is lost (Jacobs et al, 1997). Paternal 

meiotic errors also appear to predominate in the other sex chromosome aneuploides in 

contrast with the errors in the autosomes which mostly originate from maternal meiosis. 

This implies that male meiosis is more prone to sex chromosome errors although it is not 

clear entirely why that is. There is evidence that reduced recombination in 

spermatogenesis between the terminal regions of the X and Y chromosomes leads to sex 

chromosome abnormalities (Martin 2005).

Translocations between a sex chromosome and an autosome complicate matters 

even more than with two autosomes. This is mostly because of the spread of X 

inactivation into the autosomal segments. Additionally, translocations involving the sex 

chromosomes can be associated with variable sexual phenotype (Sharp et al, 2004). For 

example in the carrier of an X-autosome translocation the derivative X will carry a portion 

of the autosomal genes and vice versa. If the derivate chromosome is inactivated there is 

a danger that it will switch off the autosomal genes or if the X inactivation centre has been 

moved to the autosome it will inactivate genes there.

The reproductive risks for such carriers is that, even in the case that their offspring 

is a balanced carrier, if female it might suffer from abnormalities due to inactivation of 

autosomal genes (Waters et al, 2001) or if it is male, he might be infertile due to lack of 

pairing with the X during spermatogenesis (Ashley, 2002, Lee et al, 2003). Some studies
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show that the spread of inactivation in the autosomal region is not extensive therefore 

not severe or that the cell lines with the normal X inactive are usually predominant and 

most viable but cases have been reported where the derivative X was mainly inactive with 

very severe consequences (Glaser et al, 2004). On the other hand, when a carrier is 

unbalanced for an X;autosome translocation, a mild phenotype could result due to the 

inactivation of the extra chromosomal regions (Stankiewicz et al, 2006). However further 

investigation is needed in order to calculate the reproductive risks for each carrier since 

the phenotype of the offspring cannot be predicted with any certainty.

Section 1.4. Preimplantation genetic diagnosis and screening (PGD and PGS)

PGD involves the diagnosis of a known genetic condition before an embryo is 

implanted in the uterus and has been developed as an alternative to prenatal diagnosis in 

patients at high genetic risk (undergoing IVF treatment), to increase their chance in having 

a normal pregnancy and avoid termination of pregnancy (Handyside & Delhanty, 1997). 

The aim is to ensure that only genetically balanced embryos are selected for implantation. 

PGS is a more general screen of embryos for various abnormalities of the chromosomes 

most likely to be involved in aneuploidy. PGS is used for patients with normal karyotypes 

but who are at high risk of producing abnormal gametes and embryos.

The indications for PGS/PGD usually involve a poor reproductive history or affected 

children (ESHRE PGD consortium, 2000). Patients seeking PGD usually fall into three 

categories (i) objection to termination of an affected pregnancy, (ii) genetic risk coupled 

with low fertility, (iii) patients that have undergone previous terminations of pregnancy 

(Wells & Delhanty, 2001). The advantages of selecting and transferring genetically normal 

embryos are the avoidance of termination of an affected pregnancy and secondly that for 

aneuploidy PGD can increase the implantation rate and livebirth rate in routine patients
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experiencing implantation failure or recurrent miscarriages (Gianaroli et al, 1997, Munne, 

2003).

The first successful pregnancies after PGD were reported by Handyside et al, 

(1990) where PGD was used to select the sex of the preimplantation embryos in order to 

avoid X-linked inherited diseases. Since then PGD has been applied to various genetic 

conditions including single gene disorders and chromosomal abnormalities as well as 

aneuploidy screening. According to the European Society of Human Reproduction and 

Embryology (ESHRE) PGD consortium (2003) over 9000 cycles of PGD have been 

performed for various genetic conditions (Sermon et al, 2007). The success rate of PGD 

however is limited firstly by the success rate of IVF procedures, secondly by the technical 

difficulties encountered in making a diagnosis and thirdly because of the best quality 

embryos may be affected with the disorder.

However, there are ethical considerations to PGD and PGS since it involves human 

embryos and their selection. There are several groups of people who disagree with its 

application for religious reasons or the fear of a eugenic approach to reproduction. 

Attitudes towards embryo research and PGD vary across Europe (Viville & Pergament,

1998) and the ethical dimension of PGD (Beylveld, 2000) and the moral status of the 

preimplantation embryo (ESHRE Task Force on ethics and law, 2001) are at the centre of 

great debate.

1.4.1. Technical aspects of PGD/PGS

There are two main stages to the PGD procedure; embryo biopsy, where a sample 

is obtained directly from the embryo, and the diagnosis, where the embryonic material is 

subjected to genetic tests. Embryo biopsy can be undertaken at three main stages: (i) 

Polar body biopsy by sampling the first and the second polar body of the oocyte/zygote 

(Verlinsky & Kuliev, 1996), (ii) cleavage stage biopsy by removing 1 or 2 blastomeres from 

the 6-10 cell stage embryo and this is the most commonly used procedure (Handyside et
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al, 1990) and (iii) blastocyst biopsy where cells of the trophectoderm are removed (Dokras 

et al, 1990). There are problems and advantages associated with each of the above 

methods but it is not clear yet which of the above methods is the least detrimental to 

normal embryo development. Technical advances in embryo biopsy methods will make 

the procedure safer and more robust.

The diagnosis is performed by two main methods, FISH and Polymerase Chain 

Reaction (PCR) and sometimes Comparative Genomic Hybridisation (CGH) is used. FISH is 

used to detect structural and numerical chromosomal abnormalities, such as aneuploidy, 

translocations, cytogenetically visible deletions and the sex of the embryos. PCR is used to 

detect mainly single gene disorders (reviewed in Findlay, 2000). Diagnosis from single cells 

requires extreme sensitivity and both the above procedures require a great degree of 

accuracy and reliability in order to be used clinically. Time for the diagnosis is also limited 

to a maximum of 48hrs since the embryos must be transferred by day 5 /6  post fertilisation 

to allow for their successful implantation. Both FISH and PCR protocols used in PGD/PGS 

must allow for this limitation.

The diagnosis or screening of polar bodies has been applied clinically for 

aneuploidy using FISH (Munne et al, 1995a, Verlinsky and Kuliev, 1996, Magli et al, 2004, 

Montag et al,2005) or CGH (Wells et al, 2002, Sher et al, 2007) and for single gene 

disorders of maternal origin (Verlinsky and Kuliev, 1996). The removal of polar bodies does 

not seem to affect embryo viability since it is a by-product of meiosis and plays no further 

part in reproduction. The genetic information that the polar body can confer directly 

relates to the oocyte content so an accurate diagnosis can be achieved.

There are several problems however. First, only the maternal genome is being 

looked at, so paternal and postzygotic abnormalities will not be detected unless 

subsequent biopsy on the embryo is performed (Magli et al, 2004, Cieslak-Janzen et al, 

2006). Secondly, for a diagnosis to be accurate, both PB1 and PB2 have to be studied so 

errors in both meiotic divisions can be detected. Finally, the degradation of the polar body 

after meiosis I can result in loss of chromosomal material or DNA damage that will hinder
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the production of a conclusive result. Still, polar bodies provide an alternative to 

blastomere biopsy in cases were maternal origin errors are suspected e.g. maternal age 

related aneuploidy or where law restrictions do not allow embryo biopsy.

Blastocyst biopsy has the added advantage of more cells to test but limits the time 

for the production of the results unless the normal embryos are frozen and used later. 

However, it has been applied successfully in clinical PGD for all indications (McArthur et al, 

2005). The biopsy, genetic analysis and embryo transfer have to done on the same day so 

the implantation window will not be missed. This time limitation leaves no room for errors 

or reanalysis of the biopsied material. Secondly, mosaicism arising between the 

trophectoderm and the inner cell mass will not be detected. However, blastocyst biopsy 

can alleviate the problems of single gene diagnosis using PCR based methods by increasing 

the genetic material available and decreasing the error rate of mutation detection (Kokkali 

eto/, 2007).

Day 3 embryo biopsy (at the 6-8 cell stage) allows for one or two cells of the 

embryo to be tested and provides information for meiotic or postzygotic errors. Most 

centres use blastomere biopsy for their PGD or PGS as it is not as time limiting as 

blastocyst biopsy. The main arguments against day 3 biopsies involve the removal of cells 

at such an early stage of embryo development which might impair further development. 

The removal of one or two cells during biopsy is also being debated. Although two cells 

offer greater information about abnormalities and mosaicism, the removal of two cells 

may be detrimental to the embryo thus cancelling the beneficial effects of PGD (Emiliani 

et al, 2004, Michiels et al, 2006).

For PGD that requires FISH, blastomeres need to be fixed onto a microscope slide 

(Coonen et al, 1994, Harper et al, 1994) which also presents with different technical 

difficulties due to the delicate manipulations required in the movement of the single cell. 

There are three methods for blastomere fixation on slides that mostly use either Tween 

20, 3:1 methanol acetic acid or both. Studies comparing these methods (Dozortsev & 

McGinnis, 2001, Velilla et al, 2002) concluded that using a combination of Tween 20 and
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methanol acetic acid is the best option. However, such comparisons done by one person 

who might be used to a specific fixation method are not entirely objective. In addition, 

methanol /acetic acid fixation cannot be used in a room where embryo biopsy is taking 

place. Fixing single blastomeres correctly with any method is a delicate procedure and it 

requires certain amount of training. As with the biopsy, all fixation methods have their 

advantages and disadvantages.

PGD with PCR or CGH requires blastomeres to be placed into a tube and subjected 

to multiple cycles of amplification of certain DNA sequences or of the whole genome of 

the cell. There are various considerations mainly having to do with contamination. A 

completely contamination-free environment has to exist from the time of the biopsy to 

the time of DNA amplification. Since only one cell is placed in each tube a contaminant cell 

from maternal cumulus cells or sperm or from the PGD team will lead to a false result. 

These considerations and other aspects of single cell PCR are discussed in the next section

1.4.2. PGD and single gene disorders

PGD based upon PCR is a very versatile technique mainly because certain PCR 

protocols can amplify the minute quantities of DNA present in one blastomere. It is used 

to identify single gene disorders in a variety of ways. The first application for PGD using 

PCR involved sexing of preimplantation embryos by selectively amplifying a Y- 

chromosome sequence (Handyside et al, 1990). Sexing by this method however proved to 

be less accurate since it screened for the presence of Y only and failure of amplification of 

the Y marker would result in a false female result (Kontogianni et al, 1996). Most centres 

at present use FISH for the sexing of embryos (Griffin et al 1991, Griffin et al, 1994).

Since then PCR has been used to detect a variety of single gene disorders by using 

different approaches to mutation detection depending on the nature of the mutation. 

Therefore PCR based techniques have been used to identify embryos with Huntingdon's 

disease, Myotonic dystrophy, Fragile-X syndrome (Sermon et al, 1998, Sermon et al 2001, 

Jasper et al, 2006) that amplified triplet DNA repeats that are characteristic for these 

diseases. Also tested was sickle cell anaemia (Xu et al, 1999), thalassemias (Kuliev et al,
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1998) and inherited cancer predisposition like familial adenomatous polyposis coii and 

retinoblastoma (Ao et al, 1998, Xu et al, 2004, Moutou et al, 2007 ). PCR protocols include 

heteroduplex analysis (Handyside et al, 1992), analysis of size of the DNA fragment 

(Sermon et al, 1998), single strand conformational polymorphisms (SSCP) (Ao et al, 1998), 

minisequencing (Fiorentino et al, 2006) and haplotyping with MDA whole genome 

amplification (Renwick et al, 2006).

However, there are several problems with single cell PCR for PGD mainly due to 

the fact that amplification of such minute quantities of DNA present a higher probability 

of misdiagnosis due to contamination with foreign DNA, amplification failure or allele 

dropout. Contamination from cumulus cells, sperm or other DNA presents a major 

problem in single cell analysis. To decrease the probability of parental contamination 

intracytoplasmic sperm injection (ICSI) is used, and to avoid maternal contamination 

cumulus cells must be stripped from the zona pellucida before analysis (Harper & Wells,

1999). Allele dropout is another problem, referring to the preferential amplification of one 

of the two alleles in the cell and can lead to misdiagnosis (Wells & Sherlock, 1998).

Various strategies have been employed in order to avoid some of the above 

problems. These include the use of multiplex PCR which involves simultaneous 

amplification of the mutation site and an informative DNA polymorphism that is inherited 

with the disease and so there are two ways of detecting if a mutation is present (Xu et al,

1999) although this strategy is not always possible due to lack of informative polymorphic 

markers. Additionally, whole genome amplification discussed previously (Wells et al, 1999, 

Renwick et al, 2006) has been used in order to maximise the information taken from a 

single cell and to reduce the probability of a misdiagnosis. In general, diagnosis based 

upon PCR offers great potential but has been problematic. Technological advances in this 

area can increase the sensitivity and accuracy of single cell analysis.
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1.4.3. Preimplantation Genetic screening (PGS)

FISH is used to detect various chromosomal abnormalities and has the advantage 

of allowing interphase cell analysis in a limited amount of time (Harper et a I, 1994). FISH 

was initially used for selecting the sex of embryos, to avoid severe X-linked disease (Griffin 

et al, 1994). It is now also used to investigate aneuploidy in preimplantation embryos for 

patients going through routine IVF to try to improve pregnancy rates (Munne et a l 1995). 

Originally, this involved FISH probes to detect chromosomes 18, 13, 21, X and Y which 

account for 95% of all postnatal chromosome abnormalities. Autosomal probe sets to 

include chromosomes 16 and 22 have also been developed for clinical use (Munne et al,

1999).

The problem with chromosomal screening in preimplantation embryos is that 

relatively few chromosomes can be detected at any one time due to various technical 

limitations of FISH mentioned in section 1.1.1. Results are usually based on one or two 

biopsied cells and follow up of the untransferred embryos is not carried out in most 

centres. So for screening purposes in PGS only those chromosomes that are deemed at 

high risk of error are being checked, for example chromosomes 13, 16, 18, 21, 22 and X, 

Y).

There are two ways of thinking about the number of chromosome to screen for a 

PGS program. One is that the more chromosomes are screened the better the chances of 

a subsequent pregnancy since most chromosomal abnormalities will be eliminated. The 

other is that the efficient screening of the chromosomes mostly affected by aneuploidy is 

the best approach. With the first method more chromosomes are tested in a single and 

subsequent hybridizations but the efficiency of the FISH procedure drops while the error 

rate increases. With the second approach 3 or 4 probes are used in each hybridization 

which does not compromise the efficiency of FISH but of course some chromosomal 

abnormalities will be missed.

Different centres use different approaches for PGS and up to 9 chromosomes can 

being screened for routinely, using FISH; There have been reports of 10, 13 and 15
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chromosomes have been screened in single cells (Abdelhadi et al, 2003, Baart et al, 2004a, 

Baart et al, 2007a). Most centres rely on commercially available probe sets like the PB 

MultiVysion probe set developed by Vysis (Abbott) that simultaneously tests for five 

autosomes (13,16,18, 21 & 22) plus additional hybrisidisations with X and Y probes, or 

alternatively the Vysis Aneuvision probe set which includes chromosomes 13, 18, 12, X 

and Y.

As mentioned in section 1.1.1, there are problems in using multiple probes in order 

to achieve accurate diagnosis in a single blastomere, including decreased hybridisation 

efficiency and overlapping signals. The FISH error rate has also been calculated to be 

around 5% when three FISH probes are used in the same experiment (Daphnis et al,

2005), while the false positive rate for monosomy in embryonic nuclei when using FISH 

has been found to be around 4% (Cooper et al, 2006). For these reasons strict scoring 

criteria must be used in order to increase the accuracy of the FISH diagnosis (Hopman et 

al, 1988, Munne et al, 1998b). Furthermore, polymorphic chromosomal regions can 

present additional limitations in PGS as was observed in one case of a 16qh- 

polymorphism by Colls et al (2004). Their solution was to use a different probe for 

chromosome 16 in order to proceed with the PGS cycle.

Another limitation for FISH diagnosis on single cells arises from the increased levels 

of chromosomal mosaicism detected in preimplantation embryos (Delhanty et al, 1997, 

Munne et al, 2002) as discussed in section 1.2. Mosaic embryos can produce a normal 

result in the tested cell while the rest of the embryo could be abnormal and vice versa. 

Munne (2002) calculated that a misdiagnosis rate of around 6% is attributed to mosaicism 

in embryos. While this percentage is not great combined with the FISH error rate it results 

in a number of false results. It is clear that the need for highly efficient and specific FISH 

protocols for embryo aneuploidy screening is crucial to the success of any PGS cycle.

Circumventing the problems and limitations of FISH, CGH can give information for 

all the chromosomes (Wells and Delhanty, 2000, Wilton et al 2001) in one single 

hybridization. CGH however is more time consuming than FISH and for day-3 biopsy it will
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require the freezing of embryos until the results can be obtained due to the 72hrs 

hybridization time required. The limitations of CGH are also concentrated on how 

successfully the whole genome of the sample will amplify and the strict conditions needed 

to avoid contamination.

Whichever method is used for aneuploidy screening, PGS is the biggest category of 

clinical preimplantation genetics application around the world (Sermon et al, 2007). It is 

usually performed for couples that present with severe infertility due to i) Advanced 

maternal age (AMA- usually over 37 years of age), ii) Recurrent miscarriage (RM- with 

three or more miscarriages), iii) Repeated IVF failure (RIF- with three or more failed IVF 

attempts) and iv) severe male factor (SMF) that are at increased risk of chromosomal 

abnormalities. There are various studies of clinical PGS that show benefits but also 

drawbacks of this method (reviewed in Twisk et al, 2006, Donoso et al, 2007).

Aneuploidy assessment in embryos is thought to reduce trisomic pregnancies, 

reduce early pregnancy loss and improve implantation rate in women of advanced 

maternal age (Munne eta l, 2006). Thus women that are over 37 years old and undergoing 

routine IVF treatment might benefit from PGD for aneuploidy screening. It has been 

estimated PGD for aneuploidy reduces by half the risk of having a trisomic pregnancy in 

the cases of advanced maternal age (Gianaroli et al, 2001).

Furthermore, in a prospective randomised control study (Staessen et al, 2004) it 

was found that in AMA couples undergoing PGS there was no significant difference in 

implantation rate between the control group and the PGS group when there was no 

restriction in the number of embryos to be transferred. However there were significantly 

fewer embryos transferred in the PGS group with a normal embryo rate of 36.8%. In 

addition it is clear that PGS for AMA will be beneficial only when there will be an adequate 

number of good quality embryos for testing (Platteau et al, 2005).

In the RM/PGS couples up to 70% of embryos tested were found to be abnormal 

(Rubio et al, 2003) however again there are different opinions as to whether PGS is 

actually improving the prognosis of RM couples (Platteau et al, 2005a, Munne et al,
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2005a). Unexplained recurrent miscarriage involves the treatment of couples that can 

conceive naturally but are unable to sustain a pregnancy. The debate focuses as to 

whether these couples have an increased risk of aneuploidy and thus PGS can help. Or 

they present miscarriages due to other reasons such abnormal immune responses during 

pregnancy (Yokoo et al, 2006).

For the RIF group a similar picture is also emerging, where around 50% of embryos 

tested are found to be abnormal and the benefits of PGS for this group are still unclear 

(Platteau et al, 2006, Voullaire et al, 2002). Platteau et al (2006), suggested that the 

couples with RIF must have at least 6 embryos for biopsy in order to benefit from PGS. In 

addition, an increased incidence of postzygotic embryo abnormalities have been found for 

this group (Mantzouratou et al, 2007, Wilton et al, 2007). This high incidence of mosaicism 

might provide an explanation of the failure of implantation. On the other hand, mosaicism 

could hinder the detection of abnormal embryos through PGS since only a single cell is 

tested. Clearly more research is needed in order to identify which patients will benefit 

from PGS.

Results are more encouraging for PGS for SMF. Studies have suggested that 

implantation and ongoing pregnancy rates were increased after PGS for obstructive, non­

obstructive azoospermia and teratozoospermia (Rubio et al, 2005, Donoso et al, 2006).

The difficulties in assessing the benefits of PGS lie also in the great variation 

between PGD centres in terms of methodology and patient selection criteria (Shahine et 

al, 2006). Since there is no unified standard procedure in doing and accessing PGS, most 

studies will provide only part of the information. Additionally, couples referred for PGS 

have very poor reproductive histories that are difficult to be matched with any control 

group from routine IVF patients.

The pregnancy rate in the latest ESHRE data for the above PGS groups is as follows: 

•  PGS general 18% per oocyte retrieval (OR), 24% per embryo transfer (ET);
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•  AMA 12% per OR 19% per ET;
•  RM 22% per OR 29% per ET;
•  RIF 20% per OR 24% per ET;
•  SMF 28% per OR 32% per ET.

Although these figures are not very high they are comparable with reports from 

routine IVF patients. The European IVF-monitoring program (EIM-ESHRE) reported the 

outcome of 324,238 IVF/ICSI cycles done in 2002 from 25 countries (incl. 1563 PGD/PGS 

cycles) IVF/ICSI cycles (EMI-ESHRE Andersen et al, 2006) with pregnancy rates being IVF 

26% per OR 29.5% per ET; ICSI 27.2% per OR and 29.4% per ET. The world collaborative

report on IVF for the year 2000 reported on data from 49 countries and 460,157 cycles

with pregnancy rates 18.6% per OR for IVF and 20.4% per OR for ICSI (Adamson et al,

2006). Although the pregnancy rates on all these studies are not significantly different one 

has to consider that couples referred for PGS have usually poorer reproductive history 

than routine IVF and ICSI couples. The pregnancy rate in PGS cycles appear to show that 

maybe aneuploidy screening can help poor prognosis IVF patients achieve better 

pregnancy rates.

1.4.4. PGD for structural chromosomal abnormalities

Carriers of structural chromosomal abnormalities are at high risk of producing 

abnormal gametes and thus have an increased probability of producing chromosomally 

unbalanced offspring. PGD can help those individuals by selecting normal or balanced 

embryos thus avoiding or reducing recurrent miscarriage and the birth of chromosomally 

unbalanced children. FISH is the preferred method of diagnosing structural chromosomal 

abnormalities in preimplantation embryos using a combination of probes to detect 

specific abnormalities.

Each case of a structural chromosomal abnormality can require unique probe 

combinations and additional adjustments in FISH protocols, a procedure that is time- 

consuming but necessary (Harper & Wells, 1999). Pachytene diagrams are used for the 

establishment of the probe combination that can be used to help the prediction of the
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segregation pattern during meiosis (Scriven et al, 1998) and help identify the origin of 

abnormal FISH signal patterns in preimplantation embryos.

Carriers of balanced structural chromosomal abnormalities present problems due 

to pairing and separation of chromosomes in meiosis I during gametogenesis that 

increases the risk of genetically unbalanced gametes. For PGD of these abnormalities in 

embryos, the difficulty lies in distinguishing between balanced and unbalanced embryos 

using the limited available probes that must be specific to the structural abnormality. If 

the carrier is female then preconception diagnosis can be performed by analysing the 1st 

and or second polar body of the oocyte (Verlinsky et al, 1996, Munne et al, 1996), 

although chromatid errors in the oocyte can cause a false diagnosis. The FISH probes 

used for such PGD cases must be very specific to each case and highly informative in order 

to make an accurate diagnosis.

Various strategies have been developed in order to achieve an accurate diagnosis. 

One involves probes that span the breakpoints of the abnormality and has been used in 

PGD for reciprocal translocations and inversions (Cassel et al, 1997, Munne et al, 1998c, 

Weier et al, 1999). This approach required making and labelling the specific DNA probes as 

well as optimizing the FISH protocol for each individual translocation, a process that 

usually required around 3-6 months. Since structural abnormalities present a variety of 

breakpoints this approach is very time consuming and laborious and not used widely in 

clinical practice. The advantage of the spanning probe strategy is that carrier or non­

carrier as well as unbalanced embryos can be differentiated. Similarly, prior to the 

commercial availability of subtelomeric probes, the use of probes that flank either side of 

the breakpoints at close proximity have also been used in clinical PGD for reciprocal 

translocations (Munne et al, 1998c, Conn et al, 1999) but there were also laborious to 

prepare and optimize for clinical use.

Other approaches used whole chromosome paints on polar body chromosomes. In 

a study by Munne et al (1998a), it was reported that pregnancy rate was increased and 

spontaneous abortions were reduced after preconception diagnosis in female carriers of
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translocations using whole chromosome paints for the chromosomes involved in the 

translocations in order to distinguish between genetically balanced and unbalanced polar 

bodies. However, this approach cannot be used when the male is the carrier and cannot 

detected postzygotic errors that are usually high in preimplantation embryos.

With the production of a great variety of commercial FISH probes for all 

chromosomes, the strategy commonly in use now utilizes commercially available 

subtelomeric, centromeric and locus specific probes. For reciprocal translocations a three 

or four probe strategy using combinations of telomeric and centromeric are now routinely 

used in PGD (Scriven et al, 1998, Van Assche et al, 1999, Munne et al, 2000a, Simopoulou 

et al, 2003). Two of the probes are chosen to flank the breakpoints on one chromosome 

while the third can map to any position in the second chromosome. The decision as to 

which probes to use will depend on the chromosomes involved, the size and the 

breakpoints of the translocation.

Usually, three probes are used for simple reciprocal translocations, either two 

centromeric probes and one telomeric (or locus specific) or two telomeric and one 

centromeric probe. Figure 1.12 shows an example of this strategy for a reciprocal 

translocation and how it is translated into FISH signals on metaphase chromosomes and 

on interphase embryonic nuclei. This approach however cannot differentiate embryos 

that carry both the derivative chromosomes (balanced carriers) from those that carry the 

normal chromosomes. This however is not considered as a disadvantage since balanced 

carriers are phenotypically normal. The only issue concerns the future fertility of carrier 

individuals not diagnosed during PGD.
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Figure 1.12. FISH probe strategy for a carrier of 46XX, t (8 ;1 2 )(q ll.2 ;q l2 )  fo r use in PGD. Two
centromeric (green and orange) and one telomeric (red) probes are used in this instance. The 
arrows denote the breakpoints. Normal diploid cells will produce two signals for each probe on 
metaphase or interphase nuclei.
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Robertsonian translocation carriers do not present a problem in terms of PGD 

since whole chromosomes can be missing or gained according to the translocations. One 

probe can be used for each translocated chromosome which can be either subtelomeric 

or locus specific (Conn et al, 1998, Scriven et al, 2001). In addition, the use a third probe 

unrelated to the translocation would detect any ploidy errors.

A number PGD cycles for pericentric or paracentric inversions, deletions and 

duplications as well as various translocations have been reported in the ESHRE database 

(Harper et al, 2006, Sermon et al, 2007). PGD for pericentric inversions have been 

reported using one to three probes (Iwarsson et al, 1998, Escudero et al, 2001). The 

strategy for this has to include probes outside of the inversion and an optional probe
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within the inverted region because of the risk of a duplication/deletion of the non­

inverted segments if recombination occurs within the inversion. Paracentric inversions 

produce dicentric or acentric fragments if recombination occurs in meiosis, which will 

produce non-viable gametes and thus reduced risk of a viable unbalanced pregnancy. 

Alternatively, the inversion segment might be too small so the probability of 

recombination reduces within the inversion. The reproductive risk of paracentric inversion 

carrier is considered small and no PGD cases have been reported.

The first pregnancy from PGD for a microdeletion was reported by Iwarsson et al 

(1998). They used a dual probe designed for prenatal diagnosis to detect the deletion on 

chromosome 22 that causes DiGeorge syndrome. In addition, Malgrem et al (2006) 

reported FISH PGD for large deletions in the dystrophin gene for the detection of 

Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD).

PGD for an intra-chromosoma I insertion has been reported by Simopoulou et al 

(2003) where a healthy birth was accomplished. PGD for an insertional translocation has 

also been reported for chromosome 2 and 14 (Melotte et al, 2004). The authors suggest a 

minimum of 4 probes to be used in order to detect all abnormal outcomes. They used 

three probes on chromosome 2 (one within the insertion and two flanking it) and one 

telomeric probe for chromosome 14. The resulting embryos showed either 2:2 or 3:1 

segregation. PGD workup for this kind of rare abnormality is not usually easy as probes 

within the insertion regions are seldom available.

In general, visualizing a structural chromosomal abnormality in an interphase 

nucleus from an embryo is accomplished by a variety of FISH strategies. However, 

limitations with interphase FISH or mosaicism, as with numerical abnormalities, can cause 

misdiagnosis; seven have been reported for FISH in the current ESHRE data (Sermon et al,

2007). A poor PGD strategy can result in the transfer of unbalanced embryos as in the case 

of a PGD for a carrier of the 11;22 translocation (Lim et al, 2004). Additionally, the high 

levels of mosaicism in preimplantation embryos can include chromosomes not involved in

83



Introduction

the structural abnormality and aneuploidy screening with PGD for translocation carriers 

has been suggested (Pujol et al, 2006).

Several clinical studies have been reported on the outcome of PGD for structural 

chromosomal abnormalities (Munne et al, 2000a, Fridstrom et al, 2001, Pickering et al, 

2003, Simopoulou et al, 2003, Grace et al, 2006, Feyereisen et al, 2007). Higher 

implantation rates and reduced spontaneous abortions after PGD for structural 

abnormalities were reported, compared with previous history of the couples involved 

(Munne et al, 2000a, Verlinksy et al, 2005). The pregnancy rate in these studies ranged 

from 24% to 38% per ET, which is within the same range as the current ESHRE data for 

chromosomal abnormalities; 24% per ET (Sermon et al 2007). One limitation for this type 

of PGD is the number of embryos suitable for transfer and their quality. From the above 

studies the pregnancy rate per OR ranges from 16% to 29%. This means that a lot of cycles 

had too few oocytes collected or embryos to biopsy or had no normal embryos to 

transfer. For carriers of structural chromosomal abnormalities, where a high number of 

unbalanced gametes will be produced, it is essential to have adequate number of embryos 

to test for PGD.

1.5 Alms of this study

Despite the information generated from studies in preimplantation embryos 

several questions still remain to be answered in respect to the genetic processes that 

cause abnormalities at gametogenesis and preimplantation stage of development. Very 

few reports on the outcome of PGS include full follow up studies to allow the distinction 

between meiotic and mitotic errors. Additionally, PGD and PGS methods and strategies 

are diverse and their efficiency cannot be easily measured. Moreover, there is little data 

on the segregation during oogenesis in carriers of translocations and none of carriers of 

rare types such as ring chromosomes. This study will try to address some of these 

problems and deficiencies. The aims of the study are:
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Numerical chromosomal abnormalities- aneuploidy screening

&  The development and clinical implementation of an efficient PGS protocol 

<& Evaluation of the PGS protocol in terms of its efficiency and specificity 

<& The determination of full chromosomal outcome from follow up analysis of 

untransferred embryos derived from PGS. To investigate the types of 

abnormalities, their origin and the mechanisms that produce them  

<& To assess the validity of PGS in relation to pregnancy outcome

PGD and structural chromosomal abnormalities

<& To produce optimum strategies for PGD to help carriers of structural 

chromosomal abnormalities achieve a normal pregnancy 

<& To clinically implement and evaluate these strategies

<& The determination of chromosomal outcome from follow up analysis of 

untransferred embryos derived from PGD. To investigate the types of 

abnormalities and their origin, in particular the segregation patterns at oogenesis 

of the rarer types of anomalies.

CGH investigation of oocytes and polar bodies

The identification of abnormalities in female gametes derived from women 

undergoing PGS and PGD 

<&• The examination of the origin of aneuploidy in these two groups of gametes and 

the investigation of the types of abnormalities arising during female meiosis. The 

correlation of the oocyte information to subsequent embryo abnormalities
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Introduction

1.6 Outline of study

The main methods used in this study were FISH and CGH. All protocols had to be 
optimized for single cell use. The following diagram shows a basic outline of the work 
involved in the study.

Referral: PGS for AMA, RM and RIF. 
Aneuploidy screening

Parental lymphocyte check

Day 0- Egg collection and fertilisation for PGD and PGS couples 
Day 3- Biopsy of one or two cells from embryos that reached 4 cells and over

Analysis of results

CGH of individual 
polar bodies and 
oocytes

PGD results. Day 4/5 after egg 
collection

Untransferred embryos are 
examined

Untransferred embryos are 
examined

Referral: PGD for structural 
chromosomal abnormality

Strategy and optimisation of FISH 
probes for clinical PGS

PGS results day 4/5 after egg 
collection

Strategy (informative for each 
case), optimisation and 
implementation on lymphocytes 
from control and carrier individuals

- XJ?
Day 2 after fertilisation- collection of undivided, 
unfertilised and immature oocytes from consented 
couples. Immature oocytes are left to mature until 
day 3.
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Chapter 2

Materials and Methods

2.1. Outline of methods

Studies were performed on lymphocytes, blastomeres, un-transferred embryos 

and oocytes from IVF patients undergoing PGS and PGD for various reasons. FISH and 

CGH protocols were optimised for single cell diagnosis and research. The PGS FISH 

strategy was developed according to the needs of the centre. PGD FISH and CGH 

strategies for individual structural chromosomal abnormalities were developed. 

Patients that were referred for PGS or PGD had their lymphocytes cultured and 

analysed using FISH with the diagnostic probe set. This was done in order to i) confirm 

cytogenetic karyotype given at referral also confirming that the probe strategy 

selected is the appropriate one, ii) investigate any possible chromosomal 

polymorphisms that might interfere with diagnosis in embryos, iii) to exclude possible 

mosaicism and iv) optimise FISH protocols for their use in embryonic cells during PGS 

or PGD. Secondly, the blastomeres that were biopsied during PGS and PGD were 

screened for chromosome anomalies with FISH probes and after the PGS/PGD cycle 

the non-transferred embryos were also analysed. The examination of untransferred 

embryos was done mainly with FISH and some with single cell CGH analysis. Day 2 /3  

oocytes and their polar bodies from consenting couples were individually analysed by 

CGH. Treatment and research on embryos and oocytes from PGS and PGD couples was 

carried out under licence from Human Fertilisation and Embryology Authority (HFEA). 

Informed written consent was obtained from all the couples.
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2.2. Patient details, PGD/PGS cycles and sample collection

2.2.1 PGS referrals and FISH strategy for aneuploidy screening

PGS couples are divided into three major groups according to their indication 

for undergoing PGS. The first group (AMA) included those patients undergoing PGS for 

advanced maternal age only and in this study included females over 39 years of age. 

The second group (RM) included couples that had experienced three or more 

spontaneous abortions mostly from natural cycles and the third group (RIF) included 

couples that had experienced failure of implantation in routine IVF three or more 

times. Table 2.1 lists the FISH probe details for the PGS protocol followed. Figure 2.1 

illustrates the PGS strategy.

Table 2.1. FISH probe details for PGS

1st Round probes 2nd Round Probes
CEP 18 a-satellite (D18Z1) in CEP15 a-satellite (D15Z4) in orange
aqua CEP 16 satellite II (D16Z3), in aqua
LSI 13/21 dual probe, 13 in (Abbott, UK) or spectrum orange
green, 21 in orange (part of combined with spectrum green
the Aneuvysion kit) (yellow)
all from Abbott, UK LSI 22 (22qll.2, Brc gene) in green

All from Abbott, UK

The chromosomes included in the PGS FISH protocol were determined after 

study of the most commonly involved chromosomes in aneuploidy in embryos. The 

information came from various studies in prenatal and preimplantation genetic studies 

(see section 1.2). Chromosomes 13, 15, 16, 18, 21 and 22 were deemed the most 

appropriate. FISH protocols were optimised for each probe individually and in 

combinations. The final optimised protocol included two rounds of hybridisation. In 

the first instance chromosomes 13, 16 and 21 were studied in the first round and 15, 

18 and 22 were studied in the second round. After initial problems with the probe of 

chromosome 16 in spectrum aqua it was replaced by two probes for chromosome 16 

in spectrum orange and spectrum green. In simultaneous hybridisation this 

combination produced a yellow signal visible in filters that detected both these 

fluorochromomes. Chromosome 18 probe was then placed in the first round and
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chromosome 16 probe in the second in order to detect abnormalities of all viable 

trisomies first.

PGS was performed for 76 couples that undergone 101 cycles. According to 

referral reason 26 cycles for 16 couples were for AMA, 19 cycles for 16 couples were 

for RM and 56 cycles for 44 couples were for RIF.

2.2.2 PGD referrals and diagnosis strategies

Couples were referred for PGD for structural chromosomal abnormalities 

include translocations, reciprocal and Robertsonian, a carrier of a ring chromosome 22 

and a carrier for an interchromosomal insertion. Table 2.2 lists the karyotype, 

reproductive history, age and number of PGD cycles for each couple. There were 18 

cycles for reciprocal translocation carriers, 9 cycles for Robertsonian translocation 

carriers and two cycles for a ring chromosome 22 carrier. Strategies for an 

interchromosomal insertion carrier were also evaluated with FISH and CGH.

Table 2.2. PGD referrals for structural chromosomal abnormalities

Carrier of Balanced 
Structural abnormality

46,XX,t(8;12)(qll.2;12)

Cycles

3

Average
Maternal

Age
36

Reproductive history

5 early miscarriages. Two of them showed adjacent-2 
segregation (both 12+derl2 in the oocyte). Sperm 
parameters normal

46,XY,t(9;15)(pl2;ql3) 1 38 5 previous ICSI cycles, 1 miscarriage with imbalance
46,XX,t(ll;22)(q23.3;qll.2) 2 30 4 early miscarriages no cytogenetic data available

46,XX,t(X;4)(q26;pl6.1) 3 32 Two previous first trimester induced abortions due to 
unbalanced karyotypes. Cytogenetic analysis showed 
unbalanced karyotypes due to adjacent-1 maternal 
meiotic segregation. One had partial trisomy Xq and 
partial monosomy 4p [46X, der(X), 
t(X;4)(q26;pl6.1)mat). The other had partial trisomy 4p 
and partial monosomy Xq [46XX, der(4), 
t(X;4)(q26;pl6.1)mat].

46,XX,t(9;20)(pl3;pll.2) 2 40 Four miscarriages and an ectopic pregnancy (no other 
info provided). One normal child.

46,XY,t(l;17)(q42.1;q25.3) 2 37 The couple have experienced 2 early miscarriages 
(lOwks and 9wks) but no cytogenetic report on them 
has been given. They have one healthy girl. The carriers 
sister is also a carrier of the same translocation and she 
also had a number of early miscarriages but there is no 
live birth with an unbalanced karyotype.

46,X X ,t(10;ll)(q ll.2;p l5.3) 3 38 Two early miscarriages both in the 7*" week. No 
cytogenetic data.

46,XY,t(l;18)(p32;q23) 1 36 6 years of infertility and 2 early spontaneous abortions. 
Sperm studies showed: 65% alternate segregation, 17% 
adjacent-1,5% adjacent-2,11% 3:1,2% other.
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46,XY,t(l;21)(ql2;q22.1) 1 35 Infertility and no pregnancies, 2x failed IUI

Robertsonian translocations 45,~,t(13;14)(ql0;ql0)

Couple 1 (XY) 3 38 Many years of infertility, poor sperm count. The 
carriers sister has the same translocation with a 
number of early miscarriages.

Couple 2 (XX) 1 38 1 miscarriage and infertility
Couple 3(XX) 1 39 Infertility no previous pregnancy
Couple 4 (XY) 1 47 Two previous cycles of PGD at diff. centre. 2nd one 

miscarried at 6/40. Naturally conceived blighted ovum.
Couple 5 (XY) 1 40 1 child. Several years of infertility
Couple 6 (XY) 2 36 Infertility no previous pregnancy 

Other structural abnormalities carriers

47,XX, del(22)(plOql2), 
♦r(22)(ql0ql2)

2 37 Affected son with abnormal karyotype 47, XY, 
+r(22)(pll.2qll.2)/46,XY mosaic

46JO,
Ins(14;4)(ql3;q25q21.3)

0 37 Affected pregnancies with 46,XX, der(4), 
t(14;4)(ql3;q25q21.3) and 46,XY, der(4), 
t(14;4)(ql3;q25q21.3). Affected son with abnormal 
karyotype 46,XY, der(14), t(14;4)(ql3;q25q21.3). 
Trisomy 21 pregnancy.

For each structural abnormality FISH or CGH strategies had to be optimized for 

single cell diagnosis. Some untransferred embryos and biopsied nuclei were re­

examined for chromosomes unrelated to the original abnormality. FISH strategy for 

Robertsonian translocation usually included two locus specific probes. FISH strategies 

for reciprocal translocations varied according to the breakpoint of each translocation. 

Specific probes were determined for the ring chromosome 22 PGD case so that the 

balanced carrier embryos as well as the unbalanced ones could be identified during 

PGD. Table 2.3 lists the FISH probe details used in each PGD case.

Several strategies for PGD for the interchromosomal insertion were examined which 

were the use of commercially available probes, the use of custom made band specific 

probes and the use of single cell CGH. Additionally, immunofluoresence and FISH 

studies were performed for X-inactivation detection in lymphocytes and embryos from  

an X;autosome translocation carrier.

Table 2.3. FISH probe details for PGD for structural chromosomal abnormalities

PGD case Probes Additional investigations
46,X X ,t(8;l2)(q ll.2;l2) CEP12 a- sat. (D12Z1) in orange and green CEPX (green), CEPY(orange), CEP18

CEP8 a-sat (D8Z1) in green (aqua) three probe cocktail from
8q ter subtelomeric in red all from Abbott, UK.
Abbott, UK CGH on 3 embryos

46,XY,t(l;18)(p32;q23) i  sat.lt/lll, lab prepared in orange Lab prepared centromeric probes: 12
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46,XY,t( l;17)(q42.1;q25.3)

45,-,t(13;14HqlO;qlO)

46,XX ,t(ll;22)(q23.3;qll.2)

46,X X ,t(10;ll)(q ll.2;p l5.3)

46,XX,t(X;4)(q26;pl6.1)

46,XY,t(9;15)(pl2;ql3)

46,XX,t(9;20)(pl3;pll.2)

46,XY,t(l;21)(ql2;q22.1)

47,XX, del(22)(plOql2), 
+r(22)(ql0ql2)

46,XX,
ins(14;4)(q!3;q25q21.3)

lp ter, telomeric in green, from Abbott, UK 
CEP 18 a-satellite (D18Z1) in aqua from 
Abbott, UK
1 sat.ll/lll, lab prepared in green
CEP 17 a-sat (D17Z1) in green and orange
from Abbott, UK
lqter. Subtelomeric in orange from 
Abbott, UK
14qter, subtelomeric in orange form 
Abbott, UK
LSI13,13ql4 in green from Abbott UK

LSI "Di George" dual probe for 22 
CEP 11 a-satellite for chromosome 11

CEP 10 a-sat (D10Z1) in green 
CEP11 a-sat (D11Z1) in aqua 
lOqter, subtelomeric in orange 
All from Abbott, UK

CEP4 a-sat in green
CEPX a-sat in orange and green
CEPY sat III aqua
Xq\Yqter, subtelomeric probe for the 
telomeres of X and Y orange. All from 
Abbott, UK

CEP15 spectrum aqua, CEP9 spectrum 
orange, 9pTel spectrum green, all from 
Abbott, UK

Cep 9 spectrum aqua 
20ptel spectrum green 
20qte! spectrum orange 
all from Abbott, UK
LS!21spectrum orange, lq te l spectrum 
green, all from Abbott, UK

1st Round: DiGeorge dual band probe 
chr22 (Abbott, UK)

Band specific probe BSP4q23 (Qbiogene, 
UK) in green
Single cell CGH________________________

a-sat in green and 16 satlll in orange

LSI 13/21 dual probe, 13 in green, 21 in 
red (Abbott, UK)
CEP 18 a-satellite (D18Z1) in aqua

CEP15 a-satellite (D15Z1) in orange 
CEP 18 a-satellite (D18Z1) in aqua 
CEP4 a-sat (D4Z1) in green 
All from Abbott, UK

16 centromeric p-satellite for 
chromosome 16 ,15  centromeric 
satellite III for chromosome 15, CEP 18 
centromeric a-satellite for 
chromosome 18
Cvcle 2: CEP 18 centromeric a-satellite 
for chromosome 18

CEP 16 satellite II (D16Z3), in aqua 
(Abbott,UK)
LSI 13/21 dual probe, 13 in green, 21 in 
red (Abbott, UK)

Immunofluorescence antibody for 
inactive chromosome X.
Primary antibody: Anti-dimethyl- 
Histone H3 (Lys9) (Upstate, UK) 
Secondary antibody: Cy-3 con. 
AffinPure Donkey Anti-Rabbit IgG 
(Jackson Immunoresearch, UK)

CGH on oocytes

9ptel spectrum green 
Abbott, UK

CGH on one oocyte
CEP1 spectrum orange, Abbott, UK

CGH on two embryos

2nd Round: 14/22 centromere & 14q 
telomere (Qbiogene, UK)

CGH on DNA and single buccal cells 
from unbalanced child 

CGH on DNA and single buccal cells 
from unbalanced child
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2.2.3. CGH oocyte study patient details

Oocytes and the corresponding polar bodies (PBs) were obtained from 

15 females. 10 females were referred for PGS from whom 40 oocytes were studied, 

one routine IVF female from whom 2 oocytes were studied and 4 females that were 

referred for translocation PGD from whom 17 oocytes were studied. 104 samples, 59 

oocytes and/or corresponding first and possibly second PBs were investigated during 

this study. Those that were unexposed to sperm were immature at the time of egg 

collection. Three were Ml oocytes (left to mature but remained in Ml), 2 GVs (left to 

mature but remained immature), 3 matured in vitro (2xMI, lxGV) and had 1st polar 

body. The remaining oocytes were unfertilized after sperm exposure, 7 of which 

consisted of both first and second PBs, 28 had a 1st polar body and 17 did not show a 

PB. Table 2.4 lists the patient details and samples obtained.

Table 2.4. Oocyte study using CGH. Patient details
Case Maternal age Indication No of oocytes and PBs

0 36 PGS 2 OPN/lPBsand 2 PBs
SI 26 PGS 4- 2 0PN/1PB and 2 PBs and 2 0PN/0PB

El 36.5 PGS 10- 4 0PN/PB and 4 PBs and 4 0PN/0PB, 2 GV
w 42 PGS 5- 4 0PN/0PB and 4 PBs and 1 0PN/0PB
S2 42 PGS 5- 2 Ml and 1 GV in vitro matured and 3 PBs, 1 

0PN/2PB with 2 PBs, 1 0PN/0PB
C 42 PGS 3 -1  Ml in vitro matured and 1PB, 1 1PN/1PB with 1 

PBs, 1 0PN/1PB with 1 PB
M 26 PGS 3- 2 0PN/2PBS with 4 PBs and 1 0PN/1PB with 1 PB
E2 37 PGS 5 -1  Ml, 1 0PN/1PB with 1 PB, 3 0PN/0PB
T 37 PGS 2 - 1 0PN/2PB with 2 PBs, 1 0PN/1PB with 1 PB
E3 38 PGS 2 - 1 0PN/1PB with 1 PB and 1 0PN/0PB
A l 37 Routine IVF 2 -1  0PN/1PB with 1 PB, 1 0PN
V 33 Non- carrier 

translocation 46, XY, 
t( l;4 )(q ll.l;q 3 3 )

4- 2 0PN/2PB with 4 PBs, 1 2PN/1PB with 1 PBs, 1 
0PN/1PB with one PB

R 40 Carrier translocation 
46,XX,
t(9 ;20)(p l3 ;p ll.2 )

1- 0PN/0PB

A2 31 Carrier translocation 
46, XX,
t(8;10)(p23;q24)

2 Ml immature

S3 38 Non carrier
translocation
46,XY,t(9;15)(pl2;ql3)

9- 1 1PN/2PB with 2PBs, 1 1PN/1PB with 1 PB, 2 
0PN/2PB with 2PBs, 3 0PN/1PB with 3PBs, 2 
0PN/1PB with no PBs.
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2.3. IVF and PGS/PGD procedures, sample collection and preparation

Vaginal egg collection was performed at 37 hours post hCG injection.

IVF or IVF/ICSI was performed at 40 and 41 hours post hCG respectively and was 

dependent on semen parameters and past fertilisation rates. Fertilisation was 

evaluated at 18-20 hours post insemination. Embryos were cultured in IVF medium 

(Gill series, Vitrolife).

On day 3, embryos were biopsied in Ca2+ -M g2+ free biopsy medium (G-PGD, 

Vitrolife). One or two cells were removed from most embryos according to indication. 

For PGS one cell was usually removed unless technical difficulties or the presence of a 

binucleate cell produced the need for a second cell to be biopsied. For PGD, two cells 

were removed from embryos that had reached the 6 cell stage by day 3 post 

fertilisation. Biopsied blastomeres were spread onto microscope slides using the 

method described by Harper et al, (1994). Cells were washed in PBS and transferred to  

poly-L-lysine slides in spreading solution (0.01N HCL, 0.1% Tween 20) which was gently 

agitated until lysis occurred and the nuclei were clear of cytoplasm. The co-ordinates 

of the location of the cells were noted using an England Finder. The same technique 

was used for whole embryos. FISH was then performed.

Oocyte and polar body separation, blastomere and single cell separation and lysis fo r  

DNA amplification and CGH.

Acid Tyrode's (Sigma, UK) was used for removal of the zona pellucida and 

oocyte and corresponding PB separation. Oocytes and their PBs as well as single 

blastomeres, buccal cells and single fibroblast trisomic cells were washed in three lOpI 

droplets of PBS, 0.1% polyvinyl alcohol (PVA). They were then transferred to 

microcentrifuge tubes containing lp l of sodium dodecyl sulphate (SDS, 17pM ) (Sigma, 

UK), and 2pl of proteinase K (PK, 125pg/ml) (Roche, UK), and overlaid with light 

mineral oil. Cell lysis took place by incubation at 37 ° C for 1 h, followed by 15 min at 

95 °C.
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Genomic DNA extraction fo r  CGH use

DNA extraction from buccal cells, trisomic fibroblasts and lymphocytes were 

done with standard methods. Buccal cells DNA extraction was done for two carriers of 

unbalanced structural chromosomal rearrangements. One was from a male child with 

47, XY, + r(2 2 )(p ll.2 q ll.2 )/4 6 ,X Y  mosaic karyotype from the PGD couple referred for 

ring chromosome 22 [47,XX, de l(22)(p l0q l2 ), +r(22)(q l0q l2 )]. The other was from a 

male child trisomic for 4q21.3-q25 [46,XY, der(4), t(14;4)(ql3;q25q21.3)] as a result of 

an inverted interchromosomal insertion in the mother with karyotype 46,XX, 

ins(14;4)(ql3;q25q21.3).

Lymphocyte culture and counts

Lymphocyte cultures from both partners of PGS and PGD couples were by 

standard methods. For synchronization purposes, after the 48 hour incubation period 

200pl of thymidine (30mg/ml, Sigma, UK) were added to each of the cultures which 

were then incubated at 37°C for a further 18 hours. Following this, 200pl of 

deoxycytosine (0.277mg/ml, Sigma, UK) were added to the culture flasks and 

incubated for 4 hours at 37°C. 2.5.3

Lymphocyte fixation:

1-2 drops of fix (3:1 methanol: acetic acid) were added for several times in each 

tube. After each drop added the pellet in the tubes was resuspended by tapping each 

tube. This continued until the contents of the tubes stopped frothing and 10 ml of fix 

was added to each of the tubes. The tubes were centrifuged for 5 minutes at 1000 

rpm, most of the supernatant was discarded and the pellet was resuspended. The 

fixation was repeated until a clear supernatant was obtained for each tube and the 

tubes were centrifuged for 5 minutes at 1000 rpm. The tubes, containing lymphocyte 

suspensions, were stored at -20°C.

Prefixation method: 8ml of 0.075M  KCL pre-warmed at 37#C were added and 

the pellet was resuspended and incubated at RT for 10 minutes. 1ml of fresh 3:1
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methanol acetic acid fixative was added to each tube and inverted slowly. The tubes 

were then spun at llOOrpm for 10 minutes and the supernatant was removed. Fresh 

fix was slowly added up to 5 ml whilst mixing. The tubes were left in 4°C for 30 minutes 

then centrifuged at 1200rpm for 5 minutes and the fix was changed again as above. 

The tubes were left overnight at 4*C then checked and were transferred to -20aC the 

next day.

Lymphocyte slide preparation:

20ml of fresh fix and 10ml of 70% acetic acid were prepared. Most of the old 

fix in the lymphocyte preparations was discarded; a small amount of fresh fix was 

added, depending on the size of the pellet in the tube. The lymphocytes were 

resuspended. The glass slides were cleaned and moistened and a drop from the 

lymphocyte suspensions was dropped onto each slide. The slide was placed on the 

back of the hand to warm the nuclei and aid their spreading. The site of the nuclei was 

marked on the underside of the slide using a diamond marker. Once the slide was 

totally dry it was flooded with fix for 10-20 seconds. The fix was poured off and the 

slide was allowed to dry and flooded with 70% acetic acid for 10-20 seconds. The acetic 

acid was poured off; the slide was allowed to dry and observed under a light 

microscope using the xlO magnification lens in order to check the presence of the 

nuclei. Once good quality lymphocyte slides were obtained, they were dehydrated 

using through a 70%, 90% and 100% ethanol series for 5 minutes in each jar and air 

dried. Fresh fix was added to the initial lymphocyte suspension which was stored at - 

20°C.
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2.4 Fluorescent In Situ Hybridisation

FISH experiments were undertaken in order to test and optimise conditions for 

all the probes in this study.

FISH fo r aneuploidy screening

Hybridisation to probes for six pairs of chromosomes was undertaken in two  

separate rounds; i) probes for chromosomes 13,16 & 21 were used in the first round 

and those for 15,18 & 22 were used in the second round ii) probes for chromosomes 

13,18 & 21 were used in the first round and those for 15,16 & 22 were used in the 

second round. The slides with the fixed nuclei were incubated in 0.01N HCI and 0.5ml 

of lOmg/ml pepsin (Sigma, UK) at 37°C for 20 minutes. They were washed briefly in 

distilled water and PBS (Sigma, UK) and then fixed using 1% paraformaldehyde (Sigma, 

UK) in PBS for 10 minutes at 4°C and were washed first in PBS and then twice in water 

and were dehydrated through an ethanol series and air-dried. The first round probes, 

the LSI 13/21 dual probe, 13 labeled in Spectrum Green (SG), 21 in Spectrum Orange 

(SO and CEP 18 a-satellite (D18Z1) in aqua (all from Abbott, UK)were denatured 

separately from the slides at 75°C for 5min and were applied on to the slides and left 

to hybridise overnight at 37°C. The next day, the slides were washed in 50% 

formamide three times for 3 min each at 42°C then in 2x SSC three times for 3 min 

each at 42°C. They were then washed in 4x SSC/0.05% Tween twice for 5 min at room 

temperature. Finally, they were dehydrated through a 70, 90, and 100% ethanol series, 

dried in the dark and 6 |*l of 0.2mg/ml 4',6'-diaminidino-2-phenyolindole (DAPI) 

(Vectar Laboratories, CA, USA) was applied under a coverslip and the slides were 

stored in the dark at 4°C ready for visualisation. After the scoring of the first round 

results, the probes were removed by washing the slides in 4x SSC/0.05% Tween two  

times for 5 minutes each and then in PBS for 10 minutes. The slides were then 

dehydrated as before and the second round probe mixture was applied which included 

CEP 16 satellite II (D16Z3), in SO and, CEP15 a-satellite (D15Z1) in SO, LSI 22 in SG all 

from Abbott, UK. The slides and probes were denatured and hybridised as before.
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Hybridisation took place over the next four and half hours and in some cases 

overnight, depending on the day of transfer (day 4/5). Post hybridisation washes were 

as before but 40% formamide was used instead of 50%. The slides were examined 

under an epifluorescence Olympus microscope (Olympus BX 40) fitted with a 

photometries cooled CCD camera utilising Smartcapture software (Digital Scientific, 

UK). DAPI stained nuclei were located using the blue filter. Using different colour 

filters the scoring of signals for each of the probes to the nuclei on the slides was 

possible with a good degree of accuracy. All scoring decisions were made directly by 

viewing signals under the microscope and by two independent observers in the case of 

biopsied cells.

FISH fo r  structural abnormalities

Different FISH strategies were applied for each different structural abnormality. 

The basic principles of FISH are essentially the same as in the PGS protocol but 

different probe combinations required modifications that were applied in each PGD 

case.

Scoring and classification criteria o f embryos according to FISH results

Strict scoring criteria were applied in order to classify the studied nuclei and 

embryos correctly according to Hopman et al (1988). i.e. i) Split signals: when a 

chromosome has two chromatids in interphase they may appear as doublets, which 

are equal in size and smaller than the normal signal. The split signals must be 

separated by less than the width of a normal signal in order to be classified as one 

chromosome, ii) Stretched or diffused signals must not present any interruption in 

order to be classified as one chromosome, iii) Nuclei with uniformly diploid signals 

were classified as normal. In addition: i) Embryos with blastomeres showing the same 

abnormality in at least 90% of cells was classified as uniformly aneuploid due meiotic 

error, ii) Embryos with cell lines showing different abnormalities were classified as 

mosaic (either aneuploid mosaic if all cell lines were aneuploid or diploid/aneuploid 

mosaic if there was a diploid cell line present) indicating errors mitotic in origin; 

reciprocal errors are recorded as due to mitotic non-disjunction; non-reciprocal errors 

in more than 20% of nuclei in an embryo were classified as chromosome loss or
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chromosome gain, iii) Embryos with blastomeres showing different abnormalities in 

each nucleus, affecting at least three chromosome pairs, were classified as chaotic 

mosaics, iv) Embryos were fully chaotic if all cells were affected, otherwise they may 

be partially diploid or aneuploid and partially chaotic, v) Embryos were classified as 

diploid on follow up if they contained at least 90% diploid cells, vi) For mosaic embryos 

the existence of different cell lines was determined according to the developmental 

stage and the concordance between the biopsied cells and the follow up analysis; For 

example for 4 to 8 -cell stage embryos one abnormal cell (with an extra signal) in an 

otherwise diploid cell population constituted a postzygotic mitotic error. Loss of a 

signal in one cell could have been due to FISH error. One diploid cell in an otherwise 

uniformly aneuploid cell population was classed as a meiotic error with subsequent 

postzygotic "correction". The existence of a second diploid cell in the last case in a 8- 

cell stage embryo would be more complicated to interpret and would be subject to 

comparison of the biopsy results with the re-analysis data. In order to assess the mode 

of aneuploidy in embryos only those with definitive cell lines were included and we 

excluded those where there were doubts over the events that lead to aneuploidy.

Statistical analysis

The mean and standard deviation was calculated for the number of oocytes collected 

per cycle, embryos biopsied, and embryos with diploid result. X2 distribution test was 

used to compare follow up results between different groups of data. The two sample t- 

test was used to compare differences in the number of embryos with meiotic errors 

between different maternal age groups in section 3.2.4 (figure 3.2).

2.5. Antibody for X-inactivation detection and FISH

Primarily the aim was to produce an immunofluorescence and FISH protocol to 

be used in nuclei from lymphocytes, oocytes and blastomeres. The X-inactivation 

antibody was used in order to detect X-inactivation patterns, if any, in preimplantation 

embryos from a carrier of a X;autosome translocation, 46,XX,t(X;4)(q26;pl6.1), thus 

allowing some conclusion to be drawn about X-inactivation and the derivative X chromosome 

in this case. Fixation of samples was a crucial step in order to maintain protein 

structures in this study. Lymphocytes from normal controls (male and female) and
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carrier were separated and cultured by standard cytogenetic methods. There were 

fixed in three ways i) methanol :acetic acid as described in a previous section, ii) 

resuspended in 0.075M KCI for 10 min and 0.5ml were cytospan onto glass slides, iii) 

4% paraforlmadehyde.

Blastomere and oocytes were fixed as in Hodges and Hunt (2002) with some 

modifications. They were placed in 1% pronase (Sigma, UK) in culture media briefly to 

remove the zona pellucida. Glass slides were marked with a diamond marker to denote 

the position of the sample. A very small drop of paraformaldehyde /DTT (PF-DTT: 1% 

paraformadehyde in water, pH 9.2, 0.15% Triton-X, 3mM dithiothreitol, Sigma, UK ) 

solution was placed on the slide. The oocytes or embryos/blastomeres were placed 

onto the slide and were left to dry a humid chamber at 37°C. Once dried, they were 

washed with 0.4% llfotol wetting agent (ILFORD, UK) in distilled water and dried at 

room temperature.

Immunofluorescence and FISH.

Protocol 1. Slides were incubated in KCM (120mM KCI, 20m M NaCI, lOmM  

TrisCL pH8.0, 0.5m M EDTA, 0.1% Triton-X) for 10 mins at RT. Serial dilution of primary 

antibody were prepared in KCM with 50pl total volume and were placed on the slides 

(Dilution 1:200 was used in blastomeres) covered with parafilm and incubated for lh r  

at 37°C in a humid chamber. The slides were washed in PBS 3x5mins and were 

incubated with the secondary antibody in 1:40 dilution in KCM/1%BSA (Sigma, UK) for 

30mins at RT. The slides were then washed with KCM briefly a fixed in 

KCM/4%paraformaldehyde for 5 min. They were then washed in water for 5 mins and 

counterstained with DAPI (Vectar Laboratories, CA, USA).

Protocol 2. Slides were washed in PBS (Sigma, UK) and permealised in PBS/0.5% 

Triton-X for 4 mins on ice. After another PBS wash they were placed in PBS/0.5%BSA 

for 15 mins. They were then incubated with serial dilutions of primary antibody in 

PBS/1%BSA for 1 hr in a humid chamber at 37°C. They were then washed in PBS and 

incubated with the secondary antibody at 1:40 dilution in PBS/1%BSA for lh r  at RT. 

After another wash with PBS the cells were counterstained with DAPI (Vectar 

Laboratories, CA, USA).
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2.6. CGH for single cells

Degenerate Oligonucleotide Primed PCR (DOP-PCR)

Whole genome amplification was performed on the following: i) oocytes, ii) 

polar bodies, iii) blastomeres from day 4 /5  embryos from some carriers of structural 

chromosomal abnormalities with known FISH result for day 3 and 5 iv) clumps of 2-5 

buccal cells from karyotypically normal individuals and karyotypically abnormal 

individuals which were processed in exactly the same way as the oocytes, PBs and 

blastomeres; the normal buccal cells were used as the reference DNA sample with 

which the test sample was compared, v) diluted genomic female DNA was also used as 

reference with DOP amplification and vi) single trisomic fibroblast cell processed as 

before and used a positive control.

The Degenerate Oligonucleotide Primed PCR (DOP-PCR) was applied for the 

whole genome amplification of single cells (Wells et al, 2002, Fragouli et al, 2006b). 

Amplifications took place in a 50-pl reaction volume consisting of 10 mM dNTPs 

(Promega,UK), 2 pM DOP primer (CCGACTCGAGNNNNNNATGTGG) (Oswell, UK), 10x 

SuperTaq Plus buffer, and 2.5 U SuperTaq Plus (HT Biotechnologies, Cambridge, UK). 

Thermal cycling conditions were as follows: 94°C for 4.5 min; 10 cycles of 95°C for 30 s, 

30°C for 1 min, and 68°C for 3 min; 40 cycles of 95°C for 30 s, 56°C for 1 min, and 68°C 

for 3 min; and a final extension at 68°C for 8 min. Amplification was carried out in a 

9700 PE (Applied Biosystems, UK) thermocycler. At the end of each amplification 45 pi 

of product were further processed, whereas the remaining 5 pi were kept for agarose 

gel analysis.

Stringent precautions against contamination were taken during single cell lysis, 

and amplification (Wells and Sherlock, 1998). Negative control tubes containing 2 pi of 

the final drop of PBS/PVA into which single cells were washed, prior to their transfer 

into microcentrifuge tubes, along with the rest of the DOP-PCR reagents were included 

for each experiment.
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DNA labelling

Incorporation of fluorescent labels was carried out enzymatically with the use 

of the Nick Translation kit (Vysis/Abbott, UK). Test DNA was labelled with Spectrum 

Green-dUTP (Vysis/Abbott, UK), whereas the reference DNA was labelled with 

Spectrum Red-dUTP (Vysis/Abbott, UK). Nick translation time was adjusted according 

to desired probe size. The latter was assessed by agarose gel analysis of 5 pi of labelled 

sample. Both red and green DNAs were co-precipitated with 30 pg of human C otl DNA 

(GIBCO/BRL, UK). Pellets were dried and resuspended in 6-10 pi of hybridization buffer 

(50% formamide, 2 * saline sodium citrate SSC, 10% dextran sulphate, pH 7).

Comparative genomic hybridisation

Normal male metaphase spreads slides were used as targets (Vysis/Abbott, UK). Slides 

were dehydrated through an ethanol series (70%, 90%, 100%, 3 min in each), and were 

left to air dry. Slide denaturation took place in 70% formamide, 2x SSC in a water-bath 

set at 73°C for 5 min. Denaturation was stopped by placing the slides through ice-cold 

ethanol series. Denaturation of probes took place at 73°C for 10 min, followed by their 

cooling at room temperature. The fluorescent DNA samples were then placed on to 

slide target areas. Hybridization took place in a humidified chamber at 37°C for 48-72 

h. Post-hybridization washes were carried out in the dark, in the following order: Post­

hybridization washes were carried out in the dark, 2x SSC at 73 ° C, 4 x SSC, at 37 ° C, 4x 

SSC+ 0.1% Triton (Sigma, UK) at 37 ° C, 4x SSC at 37 ° C, and 2xSSC at room 

temperature, each of which lasted 5 min. Alternatively, once 0.4xSSC/0.3% NP-40 at 

65-73°C for 2 min, once 2xSSC/0.1%NP-40 at RT for 2 min and 2xSSC at RT for 2 min 

whilst shaking. The slides were then dehydrated, air-dried and mounted in antifade 

containing diamidinophenylindole (DAPI-II, Vysis, UK) to counterstain the 

chromosomes.

Metaphase spreads were observed with the use of an Olympus BX 40 

fluorescent microscope with a cooled charge-coupled device (CCD) system, and filters
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for the fluorochromes used. Seven to ten metaphases were captured on average per 

hybridization. Analysis and interpretation of the captured images was feasible with the 

use of Vysis Quips CGH software (Vysis/Abbott, UK) that converted fluorescent 

intensities into a red-green ratio for each chromosome. Equal sequence copy number 

between the test and reference DNAs was seen as no fluctuation of the ratio profile 

from 1:1. Test sample under-representation was seen as fluctuation of the ratio profile 

in favour of the red colouration (below 0.80), whilst test sample over-representation 

was seen as fluctuation of the ratio profile towards the green colouration (above 1.20). 

Such fluctuations were respectively scored as losses or gains in the test sample, 

compared to the reference sample.

Distinction between loss of whole chromosomes and single chromatids was 

determined as in Fragouli et al (2006b) as follows: This was achieved by comparing the 

fluorescence intensity of the green fluorochrome (Test DNA) on the chromosome 

presenting loss with that on the euchromatic region of the Y chromosome. Since the Y 

chromosome is absent from both the test and reference DNA, the fluorescence 

observed on this chromosome could be attributed to background fluorescence. This 

acted as a point of reference of the amount of fluorescence expected on a 

chromosome that had been entirely lost. When some green fluorescence was visible 

and the chromosome in question was relatively bright compared to the Y 

chromosome, but fainter when compared to the rest of the chromosomes, then the 

loss would be due to a single chromatid. Gain of a single chromatid would only be 

distinguished from whole chromosome gain in cases where the corresponding cell was 

characterized as having lost this chromatid. Heterochromatic, centromeric and 

telomeric regions were excluded from analysis, as they tend to show an artefactual 

deviation of the ratio profile.
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Chapter 3.

Results for Preimplantation Genetic Screening and numerical 

chromosomal abnormalities

The first aim for this study was to devise an efficient protocol for screening 

preimplantation embryos for aneuploidy and apply it clinically for couples at risk of 

aneuploidy. After evaluation of its efficiency, the protocol was used to screen for 

aneuploidy in blastomeres from day 3 preimplantation embryos as well as in follow up 

analysis of untransferred day 5 /6  embryos. This study provided information on the validity 

of the protocol used for PGS. It also provides significant information about the aneuploidy 

mechanisms in preimplantation embryos from couples with poor reproductive history. 

101 cycles of PGS were performed and the results are described in the following 

paragraphs. The author provided most of the biopsy and follow up information. Some of 

the follow up information was provided by Anastasia Mania, Leoni Xanthopoulou and 

Soha Taskandi. All the follow up information for each PGS cycle was checked by Prof. 

Delhanty. The author was responsible for data collection and analysis that defined the 

aneuploidy mechanisms.

3.1. Protocol for aneuploidy screening. Determination and optimization of PGS protocol.

The chromosomes which are mostly involved in aneuploidy were 

determined from a review of studies primarily in preimplantation embryos. These were 

chromosomes 13 ,15 ,16 ,18 , 21 and 22. The next step was to determine which protocol to 

use for screening for these chromosomes. The aim was to screen for the most common 

autosomal abnormalities without losing hybridization efficiency. The Aneuvision probe set 

(Abbott, UK) screened for 13, 18 21 and X and in two rounds of hybridization and it was 

one possibility since it was used in this centre for sexing of X-linked disorders and was 

highly optimized with probe efficiency of 90%. However, only 3 autosomes were screened.
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Next, the PB probe set (Abbott, UK) that screened for chromosomes 1 3 ,1 6 ,1 8 , 21 

and 22 in one hybridization round was evaluated in lymphocyte preparations. This probe 

set presented a good number of autosomes for screening and other chromosomes could 

be added in a second hybridization. However, several problems arose upon evaluation of 

its efficiency. Problems included wide variations in efficiency between different the 

probes within or between experiments, bleeding of different signals between filters and 

difficulty in locating embryonic nuclei without using blue counterstain. Individual probe 

efficiencies within the PB set were acceptable (if counted individually without the error 

rate of the other probes in the same nucleus); however the efficiency of the combination 

of probes ranged from 50-75% in normal lymphocytes. Individual probes within the PB set 

showed variation in efficiency. The best possible conditions for the PB set produced the 

following efficiencies: 70% for chromosome 18, 94% for chromosome 16, 95% for 

chromosome 22, 77% for chromosome 13 and 69% for chromosome 21. The probability of 

one of these 5 probes failing to hybridise in a single nucleus was very high so it was 

excluded from consideration. This led to the development of a custom protocol that 

screened for three chromosomes in each hybridization round thus reducing the possibility 

of hybridization failure.

Six chromosomes (1 3 ,1 5 ,16 , 18, 21 & 22), in two rounds of FISH appeared to give 

the most efficient and effective results. Details for specific probes used can be found in 

chapter 2. Hybridisation efficiency ranged from 88% to 95% for the whole probe set for 

both rounds in normal and abnormal nuclei. All FISH conditions were optimized for single 

cell work in untransferred spare IVF embryos. The sex chromosomes were omitted for 

screening since the mild phenotype that sex chromosome abnormalities produce 

compared to the autosomes made them a low priority for the couples at risk of severe 

chromosomal abnormalities in their embryos. Also, there is no raised incidence with 

maternal age overall. Additionally, the addition of two extra probes would have reduced 

the FISH efficiency and a third round of hybridization would have decreased efficiency 

since embryonic nuclei tend to degenerate in multiple rounds of FISH. The sex
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chromosomes were only screened for If there was a specific reason for an increased risk of 

sex chromosome aneuploidy such as sex chromosome mosaicism.

The final optimized PGS protocol allowed for flexibility in the probes used in each 

round. After the HFEA license was granted it was applied to clinical PGS cases. Some 

problems arose with some probes, in particular for chromosomes 16 and 18 that were 

both in Spectrum Aqua. The chromosome 18 probe when used in the second round in a 

single biopsied nucleus faded very quickly, this did not happen in whole embryo FISH. 

Chromosome 16 probe had similar problems in the second round. This problem was 

solved by placing chromosome 18 in aqua in the first round. Chromosome 16 was placed 

in the second round but with a mix of spectrum orange and spectrum green 16 producing 

a yellow colour upon hybridization which did not fade in the second round. Lower 

formamide and lower temperature in the post washes of the second round seemed to 

give even better results by reducing DNA damage to the biopsied nucleus (Detailed 

protocol in chapter 2). Figure 3.1 shows the ideogram of the chromosomes for this PGS 

protocol and the location of the probes used in this study.

Figure 3.1. Chromosomes tested in PGS cycles and their probe locations
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3.2. Numerical chromosomal abnormalities in embryos from couples undergoing PGS

3.2.1 Lymphocyte and FISH efficiency results

Couples referred for PGS first had their karyotypes checked by a routine clinical 

cytogenetics laboratory in order to exclude any existing structural chromosomal 

abnormalities. In our laboratory lymphocyte slide preparations from both partners were 

analysed after FISH with the diagnostic probe set in order to exclude mosaicism or 

polymorphic chromosomal areas that could interfere with the screening of day 3 

blastomeres. The efficiency of the PGS protocol in both partners was calculated. The 

overall efficiency (percentage of cells with diploid signals) of FISH in lymphocyte slides 

ranged from 88% to 96% and no polymorphisms were found in any of the PGS couples. 

There were however some unusual findings. The lymphocyte preparations from three 

males that were referred from recurrent miscarriage couples showed considerably 

increased aneuploidy compared with the controls for the same experiments. The 

normality rate was below 70% in all and as low as 58% in one case. All three couples had 

previous aneuploid conceptions and there were no abnormal sperm parameters. One of 

the couples proceeded to PGS and had a normal live birth with their first cycle; upon 

examination of the non-transferred embryos it was observed that 50% of these embryos 

were aneuploid with errors meiotic in origin.

3.2.2. Overall diagnostic data

Single biopsied cells from embryos generated for PGS were screened for 

chromosomal abnormalities on day 3 using FISH for six chromosomes (1 3 ,1 5 ,1 6 ,1 8 , 21 & 

22). All un-transferred embryos (apart from 8 that were cryopreserved) were spread on 

slides and studied using the same probe set after embryo transfer on day 5.

Table 3.1 summarises the diagnostic information from the PGS cycles. In total, 101 

PGS cycles were performed for 76 couples, with average maternal age of 37.8. 1281 

oocytes were collected, and 935 embryos were biopsied with an average of 9.3 (±4.1)
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embryos per cycle. 90% of the biopsied blastomeres gave results. From these, 18.6% were 

found to be diploid for the tested chromosomes and 81.5% were abnormal. The overall 

pregnancy rate was 29.7% per oocyte retrieval, 33.3% per embryo transfer and 39.5% per 

couple. Implantation rate was 24.6%. There were 26 deliveries of healthy singletons, and 5 

very early miscarriages (16% miscarriage rate). All miscarriages were detected at 7 weeks 

of gestation but no follow up karyotype analysis was done due to lack of material. There 

were 17 cycles out of 101 that had more than two normal embryos available for transfer.

Table 3.1. Overall results from PGS cycles carried out on day 3 of embryo development

No. of couples 76
Average maternal age 37.8

No. Cycles to biopsy 101
No. oocytes 1281, Average 12±4.1

No. fertilised (2pn) 906 (71%)
No. abnormally fertilised 237
No. of embryos biopsied 935*, Average 9.3± 3.4

No. of embryos with result on biopsy 846 (90%)
Normal for chromosomes tested on biopsy 157/846 (18.6%), Average 1.6± 1.1
Cycles with more than 2 normal embryos 17/101

Embryos transferred 134 (maximum 2)
Embryos cryopreserved 8

No. of embryos abnormal on biopsy 689/845 (81.5%)
Cycles with embryo transfer 89

No. pregnancies 30
Pregnancy rate 

per egg collection with biopsy 29.7%
per embryo transfer 33.3%

Miscarriages 16% (5, all before 7 weeks)
Miscarriage rate per embryo transfer 5.6% (5/89)

Deliveries 27
Ongoing 0

Twin pregnancies 3

Implantation rate

Two delivered twins 
One delivered singletons 
24.6%

*Included 74 embryos derived from abnormally fertilized oocytes, 54 of them were OPNs which are routinely 
included in the IVF procedures due to the possibility of missed pronuclear stage. There were also 9 lPNs 
included because pregnancies have been reported from IPN  embryos (explained as asynchrony in pronuclei 
formation). For the sake of completion we have included 11 3PN embryos.
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3.2.3. Overall follow up data

Table 3.2 summarises the overall results from the follow up of un-transferred 

embryos. Follow up results were obtained for 596 of the 787 embryos available for 

reanalysis (76%). Among these 596 embryos, 53.4% were fully chaotic mosaic and 40.3% 

were classified as other mosaic types. The most prevalent of the other mosaic types were 

the aneuploid mosaics (31.9%) followed by those that were diploid/chaotic (26.1%) and 

aneuploid/chaotic (17.2%). Biopsied embryos resulting from 37 OPN, 5 1PN and 8 3PN 

were also included in the follow up studies since the pronuclear classification does not 

always predict accurately the chromosomal status of subsequent embryos.

105 mosaic embryos had diploid cells on follow up and were diagnosed as 

abnormal on biopsy. In these embryos the diploid cell lines constituted a range of 10% to 

65% of the total. In all, only 5.7% of the embryos were uniformly abnormal where all the 

cells carried the same abnormalities; three quarters of these were aneuploid and the 

remainder was haploid. Parental origin errors (meiotic) were identified in 16.9% of all 

embryos. There were 9 embryos that were diploid on biopsy and were not transferred. 

Six of these were confirmed normal on follow up and three of these were abnormal. Three 

embryos that were found to be abnormal on biopsy were normal on follow up. From the 

embryos with no result on biopsy, follow up was obtained in 55 out of 89, eight had been 

transferred undiagnosed as there was no alternative but no pregnancy resulted from any 

undiagnosed transfers, and two were frozen as they reached blastocyst on day 5 and were 

of good quality. The remaining 24 could not be analysed further mostly due to being 

degenerate by day 5/6.
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Table 3.2. Overall follow up data from FISH analysis on embryos not transferred after PGS
Number of embryos with follow up 596/787 (76%)

Normal on follow up 6 (normal on biopsy- over 95% diploid on follow up)
3 (abnormal on biopsy- over 90% diploid on follow up)

Abnormal on follow up 3 (normal on biopsy)
587 (abnormal or no result on biopsy)

Uniformly abnormal incl. haploid 34/590 (5.7%)
Fully chaotic mosaic 315/590 (53.4%)
Other Mosaic (total) 238/590 (40.3%)
Other Mosaic types

Aneuploid mosaic 76/238 (31.9%)
Diploid/chaotic mosaic 62/238 (26.1%)

Aneuploid/chaotic mosaic 41/238 (17.2%)
Diploid/aneuploid mosaic 20/238 (8.4%)

Diploid /Aneuploid/chaotic 23/238 (9.7%)
Ploidy mosaics 16/238 (6.7%)

Embryos with meiotic errors 100/590 (16.9%)

The follow up results from the abnormally fertilized embryos were included in the 
overall follow up data. Table 3.3 shows the follow up results of the abnormally fertilized 
embryos separately.

Table 3.3. Follow up data from biopsied embryos classified as abnormally fertilised at the 
pronuclear stage.

Number of abnormally fertilised embryos 
Abnormally fertilized embryos with result on follow up

OPN with result on follow up

1PN with result on follow up

3PN with result on follow up

74
41
27
OPN follow u p  results
Chaotic mosaic: 19
(8 in RIF, 7 in RM, 4 in AMA)
Mosaic (no diploid cell line): 6 
(4 in RM, 1 in RIF, 1 in AMA)
Mosaic (with diploid cell line): 2 
(1 RM and 1 AMA)
6
(2 were haploid, 1 chaotic and 1 aneuploid 
mosaic for RIF, 1 was haploid/chaotic mosaic 
for RM and 1 chaotic for AMA)
8
(4 chaotic and 1 triploid/chaotic mosaic for 
RIF, 1 chaotic for RM and 2 chaotic for AMA)

Table 3.4 lists the errors detected in this study from the aneuploidy screening of 

day 3 blastomeres and day 5 embryos. Although the exact abnormalities detected on 

biopsy were not necessarily present in the embryo after follow up, in cases of reciprocal
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mitotic non-disjunction or of chaotic mosaicism for example, it was considered that only 

seven of the 596 embryos had false positive results, where an error for one of the 

chromosomes tested did not show in the follow up as expected. Three of those were 

clinically significant since the embryos were almost entirely diploid on follow while they 

were not considered for transfer due to the false abnormal result in biopsy. This gives a 

false positive rate of 1.18%. There were three false negative results which would have 

resulted in the transfer of two chaotic embryos and one embryo with trisomy 13. The false 

negative rate is 0.5%. Only one of these errors was due to a clear extra signal of 

chromosome 18. Unclear results on biopsy were the main cause of these errors due to 

split signals, poor quality of the nucleus and overlapping signals.

Table 3.4. Errors 
False positive

False negative

Other errors
(in embryos 

confirmed 
abnormal with 

other 
abnormalities)

Total 
Error rate

3/596
One trisomy 18 on biopsy (clear on biopsy)-90% diploid on follow up 
One trisomy 21 on biopsy (unclear- split signals)- 95% diploid on follow up 
One trisomy 13 on biopsy (unclear- obstruction in view of nucleus)- diploid on 
follow up 
3/596
Two normal on biopsy (one clear, one with degenerate nucleus)- fully chaotic 
on follow up
One normal on biopsy (unclear-split signal scored)- Trisomy 13 on follow up 
4/596
Two for chromosome 18- Trisomy 18 scored on biopsy (not clear- split signals, 
normal for 18 on follow up
One for chromosome 15- Monosomy 15 scored on biopsy (not clear- 
degenerate nucleus)- Normal for 15 on follow up
One for chromosome 16- Monosomy 16 on biopsy, normal for 16 on follow 
up
10/596
1.8%

110



PGS results

3.2.4. Maternal age and embryo chromosomal abnormalities

Table 3.5 shows the results of PGS cycles and chromosomal abnormalities found in 

embryos in relation to maternal age. The results are divided into three age groups 26-36, 

37-39 and 40-46 years of age. The distribution of normal and different types of abnormal 

embryos was investigated within the three age groups. This analysis was done in order to 

investigate if maternal age alone (irrespective of referral reason for PGS) was a significant 

risk factor for certain embryo abnormalities. As The normality rate of embryos was lower 

for the oldest age groups (15.1%) while it was similar for the other two age groups (20.4% 

and 22% respectively). The pregnancy rate per embryo transfer was higher in the younger 

age group (42.9%) and dropped with increasing maternal age. This trend was also 

observed for the implantation rate (32.1%, 17.9% and 16%). The follow up data showed 

that there were no significant differences between the distribution of uniformly abnormal, 

mosaic and chaotic mosaic embryos between the three age groups. Within the mosaic 

groups however there were significant differences in the distribution of the aneuploid 

mosaics (p< 0.005) which was higher in the older age groups reflecting the increase in the 

meiotic errors with increasing maternal age. The distribution of diploid chaotic mosaics 

was also significantly different with a higher rate in the younger age group (p<0.01).
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Table 3.5. Maternal age and chromosomal abnormalities in embryos
Maternal age (y) 26-36 37-39 40-46

No. of couples 32 14 30
No. of cycles. 39 19 43

Average maternal age (y) 33.4 37.7 41.8
No. of embryos biopsied 373, Average 9.5±3.4 175, Average 9.2±3.2 387, Average 9±3.6

No. of embryos with results 333 164 349
Normal on biopsy 68 (20.4%), Average 1.7±1.1 36 (22%), Average 1.9±1.3 53 (15.1%), Average 1.2±0.8

Embryos transferred 56 28 50
No. of cycles with no ET 4 1 6

Pregnancy rate per EC to biopsy 38.5% (15-3 twin pregnancies) 31.2% (6) 18.6% (8)
Pregnancy rate per ET 42.9% 33.3% 21.6%

Pregnancy rate per couple 46.9% 42.8% 27%
Miscarriages 4-early 1- early 0

Deliveries 11, One set twins, 10 single 5 8
Implantation rate 18/56 (32.1%) 5/28 (17.9%) 8/50(16%)

Result on follow up (abnormal) 219 104 264
Uniformly abnormal incl. haploid 12/219 (5.5%) 5/104 (4.8%) 17/264 (6.4%)

Fully Chaotic mosaics 125/219 (57.1%) 47/104 (45.2%) 143/264 (54.2%)
Other mosaic types 91/219 (41.6%) 46/104 (44.2%) 101/264 (38.2%)

Aneuploid mosaic 15/91 (16.5%)* 23/51 (45%)* 38/101 (37.6%)*
Aneuploid/chaotic mosaic 13/91 (14.2%) 7/51 (13.7%) 21/101 (20.8%)
diploid/aneuploid mosaic 10/91 (11%) 4/51 (7.8%) 6/101 (6%)

Diploid/Chaotic mosaic 34/91 (37.3%)b 9/51 (17.6%)b 19/101 (18.8%)b
Other 19/91 (20.8%) 3/51 (5.9% 17/101 (16.8%)

Embryos with meiotic errors 24/219 (10.1%) ‘Average 0.6±1.1 18/104, (17.3%) ‘Average 0.95±1.6 58/264, (22%) ‘ Average 1.3±2.1

ET- embryo transfer.aSignificant difference p<0.005 in the distribution of aneuploid mosaic embryos in the three age groups, bsignificant 
difference p<0.01 in the distribution of diploid/chaotic mosaic embryos in the three groups. * Average number of embryos with meiotic 
errors per cycle.
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Figure 3.2 shows the percentage of embryos with meiotic errors in relation to 

maternal age. A general trend of percentage of embryos with meiotic errors increasing 

with maternal age can be observed. The rate of embryos with meiotic errors was higher 

for the older maternal age group (22%). A significant difference was found in the number 

of embryos with meiotic errors when the youngest (26-36) and the oldest groups (40-46) 

were compared at the 5% confidence level (t=2.02 > t=1.99 at 80 degrees of freedom). No 

significant difference was found in the number of embryos with meiotic abnormalities 

between the other age groups (26-36vs37-39: t=0.25 df56, 37-39vs40-46: t= 0.76 df60).

Figure 3.2 Embryos with meiotic 
errors and maternal age (%)

25

26-36 37-39 40-46

■  Embryos with meiotic errors (%)

Although certain differences were observed when the data were analysed by 

maternal age alone these findings might also reflect a bias towards the most common PGS 

referral group and not be a true representation of the effect of maternal age on embryos. 

The predominance of the RIF group in the younger age groups in these data series can 

affect the results and affect the differences in embryo abnormalities. This limitation can
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obscure the true maternal age effect in embryo aneuploidy. Analysis of data according to 

referral reason is therefore more useful in looking at embryo abnormalities.

3.2.5 Referral groups and embryo abnormalities

Table 3.5 summarises the data from the RIF, RM and AMA referral groups. Average 

maternal ages were 36, 37.4 and 42 years respectively. The RIF group had the highest 

percentage of normal embryos on biopsy (20.3%) compared with RM (17.2%) and AMA 

(17.8%). The highest pregnancy rate per embryo transfer was achieved in the RM group 

(36.6%) which also had the highest average number of embryos biopsied per cycle (9.9 ±  

3.4). The lowest pregnancy rate per egg collection was in the AMA group (19.3%). The RIF 

group was the largest group with 32.1% pregnancy rate per egg collection (34.6% per ET). 

Four very early miscarriages occurred in the RIF group. Implantation rate was also higher 

in the RM group (30.8%) followed by RIF and AMA groups (25.6% and 16.7% respectively). 

Table 3.6 also shows the distribution of the various mosaic types and the uniformly 

abnormal and meiotic errors for each group.

No significant difference was found between the distribution of normal, fully 

chaotic and other mosaics in general among these groups. Fully chaotic embryos seem to 

occur irrespective of age and reproductive history in roughly the same proportion. The 

distribution of less severe mosaicism appears to differ. While in the AMA and RM groups 

aneuploid mosaics dominate (35.9% and 41.9% respectively) in the RIF group aneuploid/ 

diploid/chaotic mosaics were most frequent. Within the mosaic types there was no 

statistically significant difference between the distribution of aneuploid mosaics but there 

was a significant difference in the distribution of diploid/chaotic (p<0.05) embryos in the 

groups; there were more diploid/chaotics in the RIF group. There was a significant 

statistical difference between the distribution of uniformly abnormal embryos (p<0.05) 

and embryos with meiotic abnormalities (p<0.005) in these groups. An almost threefold
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increase in the percentage of embryos with meiotic errors is evident in the AMA and RM 

groups versus the RIF group.

Although the number of couples was too low to make any significant comparisons 

within the RM group, the rate of embryos with meiotic abnormalities did not seem to vary 

significantly between age groups (within the RM group). For RM women up to 37 years 

the error rate was 17% and for older women (38-42 years) it was 22%. The largest group 

overall in this study was RIF. Meiotic abnormalities within the RIF did not differ 

significantly within the age groups. For women up to 37 years the error rate was 7.9% and 

for older women it was 9.4%.
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Table 3.6. Chromosomal abnormalities in embryos according to indication for PGS
Indication for PGS RIF RM AMA

No. of couples 44 16 16
No. of cycles. 56 19 26

Average maternal age (y) 36 (range 26-44) 37.3 (29-42) 42 (range 39-46)
No. of embryos biopsied 507, Average 9±3.5 188, Average 9.9±3.4 240, Average 9.2±3.5

No. of embryos with results 462 168 215
Normal on biopsy 94 (20.3%), Average 1.6±1.1 29 (17.2%), Average 1.5±1.1 34 (15.8%), Average 1.3±0.9

Embryos transferred 78 26 30
No. of cycles with no ET 4 3 4

Pregnancy rate per EC to biopsy 32.1% (18) 36.6% (7) 19.3% (5)
Pregnancy rate per ET 34.6% 43.8% 21.7%

Pregnancy rate per couple 41% 43.8% 31%
Miscarriages 4 0 1

Deliveries 14 8, one set of twins delivered 4
Implantation rate 20/78 (25.6%)-2xTwin- single births 8/26 (30.8%) 5/30(16.7%)

Result on follow up (abnormal) 300 118 169
Uniformly abnormal incl. haploid 8/300 (2.7%)* 11/118 (9.3%)* 15/169 (9%)*

Fully Chaotic mosaics 178/300 (59.3%) 61/118 (51.7%) 76/169 (45%)
Other mosaic types 114/300 (38%) 46/118 (39%) 78/169 (46.1%)

Aneuploid mosaic 29/114 (25.4%) 19/46 (41.3%) 28/78 (35.9%)
Aneuploid/chaotic mosaic 15/114 (13.2%) 9/46 (19.6%) 17/78 (21%)
diploid/aneuploid mosaic 11/114 (9.6%) 4/46 (8.7%) 5/78 (6.4%)

Diploid/Chaotic mosaic 39/114 (34.2%)b 8/46 (17.4%)b 15/78 (19.2%)b
Other 20/114 (17.5%) 6/46 (13%) 13/78 (16.7%)

Embryos with meiotic errors 26/300 (8.7%)c, Average 0.46±0.7 27/118 (22.9%)c, Average 1.4±2 47/169 (27.8%)c, Average 1.8±2.5
EC- egg collection, ET- embryo transfer. °Significant difference p<0.05 in the distribution of uniformly abnormal embryos within the three 
groups,bsignificant difference p<0.05 in the distribution of diploid chaotic mosaic embryos within the three groups,csignificant difference 
p<0.005 in the distribution of embryos with meiotic errors within the three groups
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3.2.6. Insemination method and chromosomal abnormalities

The data were also investigated in relation to the insemination method for each 

cycle. There were 56 IVF cycles (41 couples) and 47 ICSI cycles (35 couples). For the ICSI 

group the average maternal age was 36 and for IVF it was 39. There were a slightly higher 

percentage of normal embryos found in the ICSI group (21%) than the IVF group (17%). 

There was no significant difference in the distribution of normal, mosaic & chaotic 

embryos between these two groups. Simple mosaicism was almost identical in the two 

groups at around 40%.

Embryos with meiotic errors were around 22.5% in the IVF cycles and 9.5% in the 

ICSI cycles (p<0.05), however, average maternal age was higher in the IVF group than in 

the ICSI group. Similarly, there was a significant difference in the distribution of uniformly 

abnormal embryos (p<0.005), (29/380 in the IVF group vs. 3/210 in the ICSI group), 

aneuploid mosaic (p<0.05) higher in the IVF group and diploid/chaotic mosaics (p<0.005) 

being higher in the ICSI group. However, these results may be mainly the result of the 

difference in maternal age between the two groups.

Since the ICSI group consisted mostly of RIF couples (36/47 total ICSI cycles were 

performed for RIF couples) to investigate whether insemination method had any effect 

data only for the RIF group was used to compare insemination methods. Within the RIF 

group there were 36 ICSI and 20 IVF cycles. The average maternal age was 37 for the IVF 

group and 35 for the ICSI group. The information is displayed in table 3.7.
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Table 3.7. Chromosomal abnorm alities and insemination method w ith in  the RIF group

Follow up inform ation ICSI-RIF IVF-RIF
Average m aternal age (y) 35 37

Normal (%) 23.4 15.7
Chaotic (%) 53.6 66.4

Uniform ly abnormal (%) 2.3 2.2
Mosaic excluding chaotic (%) 45.1* 27.6*

Aneuploid mosaic (%) 18.4b 33.3b
Diploid chaotic mosaic (%) 46c 8.8C

Embryos w ith  meiotic errors (%) 9.6 7.5
Pregnancy (%) per ET 32.3 (2m/s) 38.9 (2m/s)

aSignificant difference p<0.05 in the distribution of mosaic embryos within the two groups, 
bsignificant difference p<0.05 in the distribution of aneuploid mosaic embryos within the two 
groups,csignificant difference p<0.001 in the distribution of diploid/chaotic mosaic embryos within 
the two groups.

No significant difference was found in any of the follow up data between the IVF 

and ICSI cycles in the RIF group for normal, chaotic mosaic and embryos with meiotic 

errors which shows that these parameters are not affected by the insemination method. 

However, a significant difference was found in the difference in distribution of mosaic 

embryos (p<0.05), the distribution of aneuploid mosaic embryos (p<0.05) and the 

distribution of the diploid chaotic mosaic embryos (p<0.001). Aneuploid mosaics are 

found to be higher in the IVF-RIF group possibly reflecting the increased maternal age 

within this group.

In order to see which factor, age, indication or insemination method, is indicative 

for these observed differences in diploid/chaotic mosaic embryos certain variables have to 

be excluded. Since the RIF group was the largest studied, comparisons within the RIF 

group would exclude the variable of the referral reason. Within the RIF group, the 

distribution of diploid chaotic mosaic embryos differed significantly between two age 

groups with 44% occurring in the younger age group (up to 37 years) and 24.4% occurring 

in the older group (38 and older). This also relates to the age specific differences found in 

the previous section when only maternal age was considered.

Next the insemination method had to be considered within the RIF group. The ICSI- 

RIF group had significantly higher diploid/chaotic mosaic embryos than the IVF-RIF group. 

Finally, to exclude indication and insemination method the diploid chaotic mosaic
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embryos were compared between younger and older females within the ICSI-RIF group. 

There was no significant difference between the younger (up to 37 years) and the older 

age group (38 and older) age group in the distribution of diploid chaotic mosaic embryos 

within the ICSI-RIF group (41.6.% and 45.6% respectively). This is also true for general 

simple mosaicism within the ICSI-RIF group between younger and older women (47.7% 

and 35.5% respectively).

In conclusion the above observations show that the occurrence of simple mosaic 

embryos appears to be increased in the ICSI-RIF group irrespective of maternal age. 

Secondly, the diploid/chaotic mosaics are also increased in the ICSI-RIF irrespective of 

maternal age. Although the number of cycles in each age group in the ICSI-RIF group is 

relatively low these observation appear to be indicating that the insemination method 

might play a role in the formation of mosaicism and some types of mosaicism. Therefore 

paternal sperm factors that caused ICSI to be used might be responsible for certain types 

of mosaicism within the RIF group.
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3.2.7. Specific chromosomes and mechanisms of aneuploidy

The overall data for the specific chromosomal errors where a mechanism could be 

established are shown in table 3.8. Meiotic abnormalities are the largest identifiable 

group, because the errors were universal in the embryonic nuclei and the aneuploidy was 

clearly seen to be of parental origin prior to fertilisation. Errors most commonly affected 

chromosomes 21 (30%), 22 (18%), and 18 (16%), and trisomy appeared to be more 

frequent than monosomy although not by a large margin (53% vs 47%). The mechanisms 

of mitotic abnormalities were less obvious in most cases due to the high frequency of 

chaotic mosaicism but overall they seemed to affect chromosomes 13 (20%), 15 (19%) and 

22 (18%) more often. Mitotic non-disjunction was the most easily identifiable mechanism 

of post zygotic errors and hence appeared most prevalent (65%), followed by 

chromosome loss (22%) and lastly chromosome gain (13%). Overall the meiotic and 

mitotic chromosome error frequency is, in order, 21 (21%), 22 (18%), 18 (17%), 13 & 15 

(15%) and 16 (14%).
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Mitosis Meiosis Mitosis Meiosis Mitosis Meiosis Mitosis Meiosis Total

MND CL CG T M MND CL CG T M MND CL CG T M MDN CL CG All T M All

4.1 4.1 2.7 1.4 2.7 6.3 0.0 0.0 6.3 4.2 5.7 3.8 0.0 3.8 1.9 5.3 3.1 0.9 9.2 3.5 2.6 6.1 15.4

6.8 0.0 0.0 0.0 4.1 12.5 0.0 2.1 0.0 2.1 5.7 1.9 0.0 6.6 3.8 7.5 0.9 0.4 8.8 3.1 3.5 6.6 15.4

8.1 2.7 2.7 4.1 2.7 4.2 0.0 0.0 0.0 4.2 1.9 1.9 0.9 2.8 3.8 4.4 1.8 1.3 7.5 2.6 3.5 6.1 13.6

2.7 1.4 2.7 541 2.7 6.3 0.0 0.0 8.3 4.2 5.7 1.9 1.9 2.8 4.7 4.8 1.3 1.8 7.9 4.8 3.9 8.8 16.7

2.7 2.7 1.4 5.4 4.1 4.2 0.0 0.0 14.6 10.4 3.8 0.0 0.0 6.6 10.4 3.5 0.9 0.4 4.8 7.9 8.3 16.2 21.1

5.4 4.1 0.0 8.1 5.4 2.1 o o 0.0 6.3 2.1 5.7 1.9 2.8 5.7 1.9 4.8 2.2 1.3 8.3 6.6 3.1 9.6 18.0

29.7 14.9 9.5 24.3 21.6 35.4 0.0 2.1 35.4 27.1 28.3 11.3 5.7 28.3 26.4 30.3 10.1 6.1 46.5 28.5 25.0 53.5 100.0

54.1 45.9 37.5 62.5 45.3 54.7
MND- mitotic non-disjunction, CL-chromosome loss, CG- chromosome gain
*Mitotic and meiotic embryos can co-exist in the same embryos as well as errors of two or more chromosomes in a single embryo. This table presents 
errors and mechanisms of aneuploidy of individual chromosomes only and therefore the exact embryo number could not be specified without increasing 
the complexity of this analysis. This table includes: the total number of embryos with meiotic errors (100 embryos) and 129 embryos with mitotic errors 
where the mechanism of aneuploidy could be positively identified.
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For the RIF group, the most frequent mitotic errors involve chromosome 16 (25%), 13 

(20%) and 22 (17.5%) with mitotic non disjunction being the prevalent mechanism (55%). 

In meiosis, most frequent errors were observed for chromosomes 22 (29%), 21 (20%) and 

18 (18%) while trisomy is in almost equal ratio with monosomy.

Meiotic errors in the RM group involved mostly chromosomes 21 (40%), 18 (20%) 

followed by 13 (17%). Trisomy and monosomy was seen almost in a 1:1 ratio. Mitotic non­

disjunction was almost the only mechanism of mitotic aneuploidy in the RM group (94%). 

Most common mitotic abnormalities were observed for chromosome 15 (39%) and 13 

(28%).

In the AMA group, most meiotic errors involved chromosomes 21 (31%), 15 (19%) and 

18 and 22 (14%). Trisomy was in 1:1 ratio with monosomy. Mitotic non-disjunction was 

the most common mitotic abnormality (62%). Mitotic errors were most commonly 

observed for chromosomes 22 (23%), 13 and 18 (21%).

Figure 3.3 shows examples of abnormalities found their mechanisms of aneuploidy. 

The most frequent errors for individual chromosomes are as follows;

•  Chromosome 13- mitotic non-disjunction

•  Chromosome 15- mitotic non-disjunction

•  Chromosome 16- mitotic non-disjunction

•  Chromosome 18- mitotic non-disjunction and meiotic trisomy

•  Chromosome 21- meiotic monosomy and meiotic trisomy

•  Chromosome 22- meiotic trisomy and mitotic non-disjunction
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3.2.8. Embryo classification and developmental potential

Overall, 192 out of 935 non transferred embryos (20.5%) reached the blastocyst or 

morula stage by days 5 /6  (on day 5 /6  all untransferred embryos were spread irrespective 

of their developmental stage). All the untransferred embryos were scored by an 

embryologist before their spreading and analysis. Of these embryos 73 were blastocyst 

and the rest (119) were morulas or cavitating morulas; 96% of blastocysts were mosaic. 

Table 3.9 shows the chromosomal constitution of these mosaic blastocysts in relation to 

referral group. For the AMA group 9.5% of embryos reached the blastocyst stage, and 

most frequent were aneuploid mosaic (23.8%) or fully chaotic (23.8%). In the RM group 

11.7% embryos reached the blastocyst stage. Most frequent were the diploid chaotic 

(18%) and aneuploid chaotic (18%) blastocysts. In the RIF group 5.5% of embryos 

progressed to the blastocyst stage. One third of these blastocysts (33.3%) were diploid 

chaotic mosaic followed by aneuploid chaotic (18.5%).

Of the mosaic blastocysts 34/70 (49%) had a diploid cell line as well as chaotic or 

aneuploid lines and the rest were either fully chaotic or had no diploid cell lines. The 

diploid cell lines were ranging from 10%- 65% of the total cells within each embryo. There 

were only three uniformly abnormal embryos and 4 diploid/polyploidy or diploid/haploid 

mosaic blastocysts.
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RIF RM AMA Overall
: 28/507(5.5%) 22/188 (11.7%) 23/240 (9.5%) 73/935 (7.8%) 

119/935 (12.7%)
1 2(ml8, tl5), (tl3, 

tl5)
3

1 27 22 21 70

>■ 9 4 2 15
/ 30-60% 25-50% 40-50% 30-60%

5 1 2 8
35-65% 50% 33-60% 33-65%

1 1 3 0 4
40% 25- 35% 25-40%

P 3 3 5 11
* m22, mnd21,cl22 m21, ml8 mnd 15 ml5/tl5,t22, ml3,

2 pioidy mosaic

1 5 4 2 11
I  tl6 , t22, 3 multi ploid/chaotic, m21, t21

triploid/chaotic ml3,
I 1 2 4 7

20% 15-32%, 10-30% 10-32%
1 2 5 8

: 2 3 1 6
m-monosomy, t-trisomy, mnd-mitotic non-disjunction, cl-chromosome loss
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Brief summary of findings for this section

•  An efficient PGS protocol for chromosomes 13, 15, 16, 18, 21 and 22 was applied 

clinically.

•  A large number of embryos were studied with detailed follow up data where 

meiotic and mitotic abnormalities were distinguished as well as subtype of mosaic 

embryos.

•  The error rate due to technical limitations was found to be 1.8%.

•  Significant differences were found in the distribution of certain mosaic embryos in 

relation to maternal age. Aneuploid mosaic embryos were found to increase 

significantly in frequency for women over 37 years compared to women under 36 

where diploid/chaotic mosaic embryos were significantly increased. Embryos with 

meiotic errors were increasing with maternal age.

•  Significant differences were found in the distribution of uniformly abnormal 

embryos, embryos with meiotic errors and diploid/chaotic mosaic embryos in 

relation to referral group. Uniformly abnormal embryos and embryos with meiotic 

errors were significantly decreased in the RIF group compared to the RM and AMA 

groups. Diploid chaotic mosaic embryos were found in higher frequency in the RIF 

group.

•  Within the RIF group significant differences were observed in the distribution of 

diploid/chaotic mosaic embryos and aneuploid mosaic embryos in relation to 

insemination method. The RIF-ICSI group had highly significant increase in the 

diploid/chaotic mosaic embryos. While the RIF-AMA group presented with 

aneuploid mosaic embryos more frequently.

•  Specific chromosomal errors and their mechanism of aneuploidy were identified 

overall and for each referral group. Differences in specific chromosome 

susceptibilities were found in relation to the mechanism of aneuploidy overall and 

for each referral group. Overall, trisomy and monosomy were seen in 1:1 ratio. 

Mitotic non-disjunction was the most commonly identified mitotic error. The 

chromosomes most commonly affected were 21, 22 ,18  followed by 13,15  and 16.
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Chromosomes 13, 15 and 16 seem to present mitotic non-disjunction most 

frequently. Chromosomes 21 presents meiotic errors most frequently and 

chromosomes 18 and 22 can present meiotic and mitotic errors in equal 

proportions.

•  The developmental potential of the untransferred embryos was investigated 

overall and in relation to chromosomal abnormalities and referral groups. The RIF 

group had the lowest number of embryos reaching the blastocyst stage among the 

three groups while the RM group had the highest.
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Chapter 4. 

Results from studies of preimplantation embryos from carriers of structural 

chromosomal abnormalities

Twenty seven cycles of PGD for structural chromosomal abnormalities were 

investigated. 18 cycles were for balanced reciprocal chromosomal translocations, 9 for 

Robetsonian translocations and 2 for a ring/deleted 22 abnormality. A PGD strategy was 

also investigated for an inverted interchromosomal insertion. X-inactivation was 

investigated in embryos from an X;autosome translocation carrier.

4.1.1. Studies of embryos from carriers of balanced reciprocal translocations

Each reciprocal translocation PGD required a specific FISH probe strategy and 

optimization of each FISH protocol both in the control and carrier lymphocytes for 

interphase and single cell use. The FISH efficiency was determined by counting 200 

interphase nuclei for each protocol. The ideograms and the probe strategies used for each 

translocation as well as other related details are illustrated in section 2 of the Appendix. 

As a general rule three to four commercially available probes were used for each 

translocation. Table 4.1.1 shows the biopsy results from embryos of carriers of balanced 

reciprocal translocations (RCT). Overall, 18 cycles were performed for 9 couples. The 

average maternal age was 35.6 years. An average of 9.7 embryos were biopsied per cycle 

and results were obtained for 93% of embryos of which 22.8% were found to be normal 

for the chromosomes tested. In 30% of cycles more than two normal embryos were found 

on biopsy. The pregnancy rate was 33.3% per embryo transfer and the implantation rate 

was 22.2%.
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Table 4.1.1 Overall results from PGD for balanced RCT carriers. 
Cycles carriedout on day 3 of embryo development

No. of couples 9
Average maternal age 35.6

No. Cycles to biopsy 18
No. oocytes 258

No. fertilised (2pn) 158 (61.2%)
No. of embryos blopsied 174, Average 9.7±4

No. of embryos with result on biopsy 162 (93%)
Normal for chromosomes tested on biopsy 37 (22.8%), Average 2±:
Cycles with more than 2 normal embryos 6

Embryos transferred 27, Average 1.5
Embryos cryopreserved 5

No. of embryos abnormal on biopsy 125 (71.6%)
Cycles with embryo transfer 14

No. pregnancies 5
Pregnancy rate

per egg collection with biopsy 26.3%
per embryo transfer 33.3%

Miscarriages 2
Deliveries 3

Ongoing 0
Twin pregnancies 1, One singleton birth
Implantation rate 22.2%

4.1.2. Follow up Information for RCTs

Table 4.1.2 shows the follow up information from embryos of RCT carriers for each 

individual translocation. Overall, 33.9% were chaotic mosaic, 26% were simple mosaic and 

17.9% were uniformly abnormal. In some cases chromosomes not involved in the 

translocation were checked. There was one false positive result where an abnormal 

embryo on biopsy was 100% normal on follow up. Upon re-examination the error was 

attributed to signal overlap in the first cell and poor quality nucleus in the second cell. 

There were no other misdiagnoses. All of the pregnancies that delivered healthy babies 

came from cases where the female was a carrier and had experienced a number of 

miscarriages previously. Only one pregnancy was achieved when there was a carrier male 

parent and that ended in an early miscarriage.
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Carrier of Balanced Reproductive history PGD Maternal PGD Cycles follow up information
Reciprocal Translocation Cycles age PGD

pregnancy
Normal

(%)
Chaotic Mosaic Uniformly

Abnormal
Total

46,XX,t(8;12Mqll.2;12) 5 early miscarriages. Two had 
adjacent-2 segregation

3 36 Yes 
2 in 3 cycles 

one 
miscarried, 

one delivered

10(23) 17 10 5 42

46,XY,t(9;15)(pl2;ql3) 5 previous ICSI cycles, 1 
miscarriage with imbalance

1 38 No 1(33) 1 0 1 3

46,XX,t( 11 ;22)(q23.3; q 11.2) 4 early miscarriages no 
cytogenetic data available

2 30 Yes 
1 in 2 cycles 
delivered

2(18) 6 2 1 11

46,XX,t(X;4)(q26;pl6.1) Two previous first trimester 
induced abortions due to 
unbalanced karyotypes. Both 
adjacent-1

3 32 No 7(25) 6 5 5 23

46,XX ,t(9;20)(p l3;pll.2 ) Four miscarriages and an ectopic 
pregnancy. One normal child.

2 40 No 3(25) 0 5 3 11

46,XY,t(l;17)(q42.1;q25.3) The couple has experienced 2 
early miscarriages. They have one 
healthy girl.

2 37 NO 2(14) 7 2 3 14

46 ,X X ,t(10 ;ll)(q ll.2 ;p l5 .3 ) Two early miscarriages and 
infertility. No cytogenetic data.

3 38 Yes 
1 in 3 cycles 
delivered

9(24) 11 16 5 41

46,XY ,t(l;18)(p32;q23) 6 years of infertility and 2 early 
spontaneous abortions.

1 36 No 1(8) 3 1 5 10

46,XY,t(l;21)(ql2;q22.1) Infertility and no pregnancies, 2x 
failed IUI

1 35 Yes
Early

miscarriage

2(15) 6 3 2 13

Total 18 35.6 5 37(22) 57
(34%)

44
(26)

30(18%) 168*

* Includes unbiopsied embryos
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The chromosomes affected by aneuploidy were mostly the translocation chromosomes.

Specifically:

For 46,XX,t(8;12)(qll.2;12) cycle 1- Re-FISH with X, Y and 18 showed that chaotic 

embryos were abnormal for the non-translocation chromosomes as well as the 

chromosomes involved in the translocation.

>  46,XX/t(ll;2 2 )(q 2 3 .3 ;q ll.2 ) cycles 1 and 2- Re-FISH with 15, 16, 18 and X, Y 

showed that only chaotic embryos were abnormal for the non-translocation 

chromosomes.

V - 46,XX,t(X;4)(q26;pl6.1) cycle 2- Re-FISH with chromosome 11 and 17 probes 

showed that they were affected only in 1/3 chaotic embryos. Two more embryos 

were tetraploid (one tetraploid chaotic, one tetraploid) and one chaotic started as 

hexaploid. In the polyploid embryos chaotic divisions were only observed for the 

translocation chromosomes.

> •  46,XY,t(l;17)(q42.1;q25.3) cycle 1- Re-FISH with chromosome 13, 18 and 21 

probes showed that they were affected only in 1/3 of chaotic embryos.

V  46 ,X X ,t(10 ;ll)(q ll.2 ;p l5 .3 ) cycle 1- Re-FISH with chromosome 13, 16 and 21 

probes showed that they were affected in 4 /6  chaotic embryos.

>  46,XY,t(l;18)(p32;q23) cycle 1- Re-Fish with chromosomes 21 and 16 showed that 

they were affected for 2 /3  chaotic embryos.

>■ 46,XY,t(l;21)(ql2;q22.1) cycle 1- CGH was performed for two embryos - Embryo 1 

(1 cell) had monosomy lq , trisomy 21, 2, 3, monosomy 20, Trisomy 

16p/Monosomy 16q and was XO; this cell was classed as chaotic. Embryo 2 (was 

mosaic- results from 3 cells) had monosomy lq  or monosomy 1, trisomy 21 or 

trisomy 21q,2.2 and was XY indicating an adjacent-2 segregation). Figures 4.1.1 

and 4.1.2 shows examples of the CGH results in single blastomeres for this 

translocation. Overall, CGH confirmed the biopsy result and revealed other errors.
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Figure 4.1.1. Embryo 1 CGH result from 46,XY,t(l;21)(ql2;q22.1) PGD. Highly chaotic 

chromosomal constitution can be observed for many chromosomes. Reference DNA was 

46, XY. This embryo appears to be XO.
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Figure 4.1.2. Embryo 2 cell 3. CGH result from 46,XY,t(l;21)(ql2;q22.1) PGD. Reference 
DNA was 46, XY. This embryo appears to be XY. It also shows monosomy for chromosome 
1 and trisomy for chromosome 21. Other chromosomes were not affected in this embryo 
(3 cells studied by CGH).
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Figure 4.1.3 shows the percentage of embryos with meiotic errors for the 

chromosomes involved in each translocation in relation to maternal age of the 

chromosome carrier (female carriers only). The graph shows a general upward trend with 

increasing maternal age and indicates that female carriers of translocations are also 

subject to the maternal age effect of aneuploidy at least for the translocated 

chromosomes but the cycle numbers are very small so no correlations can be established.

Figure 4 .1 .3 . M aternal age and % o f embryos w ith  m eiotic errors. Errors increase with maternal 
age.

^  M ateria l age 41
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Table 4.1.3 shows the observed segregation patterns of the translocation 

chromosomes at meiosis for each PGD case. All modes of segregation can be seen. In 

total, the alternate segregation was the most frequent (44%) followed by 3:1 (22.5%), 

adjacent 1 (20%) and adjacent 2 (13.5%). Only in one case adjacent-1 segregation was 

more frequent than the alternate [46,XY,t(l;18)(p32;q23)].

Table 4.1 .3 . Segregation mode in embryos from  reciprocal translocation carriers 1

Carrier of Balanced Cycles Segregation mode during meiosis
Reciprocal

Translocation
Mat. age Alternate* adj2 adjl 3 to 1 Total

46,XX,t(8;12)(qll.2;12) 3 36 14 9 2 5 30

46,XY,t(9;15)(pl2;ql3) 1 38 1 o o 1 2
46,XX ,t(ll;22)(q23.3;q ll.2) 2 30 4 0 1 1 6
46,XX,t(X;4)(q26;pl6.1) 3 32 11 o 7 1 19
46,XX,t(9;20)(pl3;pll.2) 2 40 4 1 2 3 10
46,XY,t(l;17)(q42.1;q25.3) 37 3 0 1 5

1
9

46 ,X X ,t(10;ll)(q ll.2 ;p l5 .3) 3 i 38 11 2 6 9 28
46,XY,t(l;18)(p32;q23) 1 36 2 1 5 1 9
46,XY,t(l;21)(ql2;q22.1) 1 35 3 3 0 1 7
Total 18 35.6 53 (44%) 16

(13%)
24

(20%)
27

(23%)
120

* Assumes no crossing over occurred in interstitial region. Those with balanced signals were scored.

There was great variability in the percentage of normal, chaotic mosaic, simple 

mosaic and uniformly abnormal between each individual translocation. This variability also 

affects the segregation patterns at meiosis. This can be observed in figure 4.1.4 were the 

percentage of chromosomal abnormalities and the segregation modes can be seen for 

each translocation cycle. For some translocations chaotic embryos are very frequent while 

for others they are very much reduced. The same applies to the proportion of mosaic 

embryos. Although the alternate (balanced) segregation appears to be most frequent type 

in most RCTs in only 3/9 cases the alternate is more than 50% of the total segregation. In 

the rest, unbalanced segregation constitutes more than 50% of the total. There does not 

seem to be any relation between the type abnormalities seen in the follow up and the 

reproductive history of these couples.
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Figure 4.1.4. Chromosome abnorm alities in embryos from  PGD cycles fo r reciprocal 
translocations.
The first graph shows the % of chaotic, mosaic and uniformly abnormal embryos in relation to each 
translocation. The second graph shows the % of each segregation pattern at meiosis for each translocation

RCTs and types of abnormalities in embryos
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In order to see if there is any connection between the chromosomal abnormalities 

of the embryos and the size of the translocated segments, the % of haploid autosomal 

length (HAL) was used as a measure of each translocated and centric segment Table 4.1.4 

shows the %HAL of each segment for each translocation and the most frequent observed 

segregation patterns. It also shows the relative ratio of the sums of centric and
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translocated fragments for each translocation as well as expected frequencies of 

abnormal segregation according to Jalbert et aI  (1980).

4.1.4. HAL, relative ratio o f translocated segm ents and m ost frequent segregation m ode in 
RCTs

%HAL of translocated 
segments 

chromosome A

%HAL of translocated 
segments 

chromosome B

Relative 
ratio of 

translocated 
segments

Observed 
most freq.

0.75 1.1 1:1 2:2 alt
NA 0.25 1:1 2:2 adj-1

4.16 0.42 10:1 2:2 alt+adj-2
1.65 0.21 8 2:2 adj-1

3 1.1 3 1 2:2 alt
3.15 3.26 1 1 2:2 alt
0.62 0.3 2 1 3:1
3.04 2.28 1 1 Alt-*- 3:1

3 1.92 2 1 Alt-*- adj-2
Expected frequencies of abnormal segregation according to Jalbert eta!, 1980

Ratio of sum of 
centric /translocated fragm ents

Expected most 
frequent abnormal 

segregation pattern in 
the gametes

Observed 
most freq. 
abnormal

0.50 Adjacent-2 Adj-2

0.55 Adjacent-2 3:1

1.26 3:1 Adj-2

1.50 Adjacent-2 Adj-2

2.73 3:1 3:1

3.59 Adjacent 1/3:1 Adj-1/3:1

6.11 Adjacent 1 Adj-1

12.71 Adjacent 1 3:1

25.20 Adjacent 1 Adj-1

Grouping the translocation according to the sizes of the translocated fragments 

can reveal some patterns in the distribution of the translocated patterns of RCTs although 

the numbers are still too small to reveal any significant differences. However, certain 

trends can be observed. Figure 4.1.5 shows the different segregation patterns when the 

data are divided according to the size of the translocated and centric segments and their 

relative ratio.
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If the data are divided in three groups according to the size of the centric and 

translocation segments (sum of centric fragments/sum of translocated fragments) the 

following observations could be seen. The alternate segregation was more frequent in all 

groups and higher when the sum of centric and the translocated fragments are roughly 

the same size. Adjacdent-1 and 3:1 segregation can be found in almost equal proportions 

when the centric fragments are much larger than the translocated sum, while adjacent-2 

is more frequent when the sum of the translocated fragments is much bigger than the 

centric ones.

Another classification is shown in the second graph of figure 4.1.5 were the % of 

embryos with each segregation pattern can be seen in relation to the relative ratio of the 

translocated fragments (HAL of translocated A/HAL of translocated B) shown in table 

4.1.5. This graph shows that when very large and very small segments are translocated the 

frequency of the alternate is almost equal to that of adjacent-1 followed by adjacent-2. 

When the ratio of the translocated fragments is between 2:1 and 3:1 the alternate 

segregation is almost equal in frequency to that of the 3:1 segregation, while adjacent 2 is 

the least frequent. Finally, when the two translocated fragments are almost equal in size 

and hence in 1:1 ratio, the alternate segregation is by far the most frequent while all other 

types exist in equal proportions.
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Figure 4.1.5. Meiotic abnormalities from RCT embryos and size of imbalance.
The first graph shows the % embryos with specific segregation mode in relation to the size of the translocated segments involved. The 
second graph shows % of meiotic segregation modes in embryos according to  the relative ratio of translocated segments.
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4.2.1 Results from studies on embryos from carriers of Robertsonian translocation 

45, —, t(13;14)(ql0;q l0)

Nine cycles of PGD for carriers of 45, t(13;14)(q l0;q l0) were studied. Table

4.2.1 shows the overall information at the time of biopsy. Overall, there were 9 cycles for 

6 couples and 67 embryos were biopsied. Results were obtained for 66 embryos on biopsy 

and 34.8% of them were found to be diploid for the chromosomes tested. The pregnancy 

rate was 28.6% per embryo transfer and the implantation rate was 21.4%. The average 

maternal age was 37.8 years.

Table 4.2.1. Overall results from PGD for balanced Robertsonian 
translocation carriers. Cycles carried out on day 3 of embryo development

No. of couples 6
Average maternal age 37.8

No. Cycles to biopsy 9
No. oocytes 104

No. fertilised (2pn) 74
No. of embryos biopsied 67 (Average 7±3)

No. of embryos with result on biopsy 66 (98.5%)
Normal for chromosomes tested on biopsy 23 (34.8%), Average 2.5±2
Cycles with more than 2 normal embryos 4

Embryos transferred 14, Average 1.5
Embryos cryopreserved 0

No. of embryos abnormal on biopsy 43
Cycles with embryo transfer 7

No. pregnancies 2
Pregnancy rate 

per egg collection with biopsy 22.2%
per embryo transfer 28.6%

Miscarriages 0
Deliveries 3

Ongoing 0
Twin pregnancies 1, One boy, one girl
Implantation rate 21.4%

The overall follow up data are shown in table 4.2.2. There were 32.4% mosaic 

embryos, 26.4% chaotic embryos and 7.4% uniformly abnormal embryos. Chromosomes 

other than 13 and 14 which were involved in the translocation were investigated for 4 /9  

cycles. In couples 1, 4 and 5 other chromosomes were affected in most cells. All couples
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had several years of infertility and very few natural pregnancies. Only couple 5 had a child 

and then had infertility for several years. Most of the couples needed ICSI; even in cases 

where the female was a carrier, the male had poor sperm parameters.

Tab le  4 .2 .2 . Fo llow  up d ata  fo r PGD o f R o b e rts o n ia n  trans loca tio n  carriers

Carrier of Balanced 
Robertsonian Translocation

Cycle
s

PGD
outcome

Maternal
age

Follow up information on PGD cycles 

Normal Chaotic Mosaic Uniformly 
(%) abnormal

Total

Couple 1 
(XY)

ICSI- poor 
sperm count

3 Yes
Twins

delivere
d

38 10(33) 6 11 2 19

Couple 2 
(XX)

ICSI- poor
sperm
parameters

1 No 38 2(40) 1 0 2 3

-.. -__.
Couple 3(XX) ICSI- poor 

sperm count ! 1
NO 39 5(50) 2 3 0

Couple 4 
(XY)

IVF i No
transfer

37 0 2 1 0 3

Couple 5 
(XY)

ICSI- maturity 
arrest

i No
transfer

40 0 2 0 1 3

Couple 6 
(XY)

ICSI- poor 
sperm count

2 Yes 36 6(35) 5 7 0 12

Overall 9 37.8 23 (34%) 18
(26%)

22
(32%)

5(7%) CT
) 00 *

* includes embryos with no result on biopsy as well as unbiopsied embryos.

Table 4.2.3 shows the meiotic segregation patterns that were found in embryos. 

The most frequent was the alternate segregation (69%) followed by 2:1 (27%) and 3:0 

(4.4%).

Table 4.2.3. Meiotic Segregation mode in embryos from Robertsonian translocation carriers
Carrier of Balanced 

Robertsonian Translocation
Alternate 2: 1 3:0 Total "i

Couple 1 (XY) ICSI 12 5 0 17
Couple 2 (XX) ICSI 2 3 0 5
Couple 3(XX) ICSI 6 1 2 9
Couple 4 (XY) IVF 1 0 0 1
Couple 5 (XY) ICSI 0 1 0 1
Couple 6 (XY) ICSI 10 2 0 12

Overall 31 (69%) 12 (27%) 2 (4%) 45
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Although all the carriers have basically the same translocation (it might differ 

slightly molecularly) there are differences in the distribution of normal and abnormal 

types of embryos as well as in the distribution of meiotic segregation modes between 

individuals. Unfortunately, the number of carriers from the different sexes is too small for 

comparisons. The percentage of uniformly abnormal, chaotic and mosaic embryos varies 

significantly between individuals as shown in the first graph of figure 4.2.1. Couples 3, 4 

and 6 have no uniformly abnormal embryos while couple 2 only presents with uniformly 

abnormal and chaotic mosaic embryos. The segregation patterns vary between 

individuals. This is shown in the second graph of figure 4.6. Couples 2 and 5 only present 

unbalanced embryos from 2:1 segregation while 3:0 appears to be more frequent than 2:1 

in couple 3. These differences show that certain individual factors are also responsible for 

the production of chromosomal abnormalities in embryos from carriers of Robertsonian 

translocations undergoing PGD.
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Figure 4.2.1. Chromosomal findings in embryos from Robertsonian translocation carriers.

Chromosomal abnormalities in embryos from 
Robertsonian translocation carriers

*  uniformly abnormal % w mosaic % w chaotic %
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4.2.2. Follow up of embryos from translocatlon carriers diagnosed as mosaic 

normal/abnormal on biopsy during PGD.

The frequent embryo mosaicism observed during the PGD cycles could have been 

a source of error. More specifically, embryos where two cells were studied during biopsy 

sometimes presented a balanced cell and an unbalanced one. This can be explained either 

by mosaicism or failure of a FISH probe and made any decisions about the chromosomal 

status of the embryos very difficult. Follow up data from such embryos were evaluated 

from the PGD cycles for the reciprocal and Robertsonian translocations mentioned above. 

Table 4.2.2.1 shows the biopsy and follow up results of embryos that presented with 

normal/abnormal result on biopsy.

In all cases where follow up was available, a result of balanced/unbalanced cells on 

two cell biopsy was always confirmed. This gives greater confidence in that these mosaic 

results obtained during diagnosis correspond to a true finding of mosaicism and not an 

error of the FISH protocol. Two cell biopsy for these PGD embryos in combination with 

efficient protocols should provide a good representation of the chromosomal status of the 

rest of the embryo.

As it can be observed from table 4.2.2.1 in most cases an unbalanced gamete 

resulted in the creation of a mosaic embryo. In these cases the creation of the balanced 

cell line was a random by-product of the post-zygotic errors. In two cases the gamete 

could have been balanced and post zygotic errors resulted in a balanced/unbalanced 

embryo.
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Table 4.2.2.1. Follow up of embryos with normal/abnormal result in biopsy for carriers of structural chromosomal abnormalities
Chromosomal abnormality

46,XY,t(l;17)(q42.1;q25)

Nr 11w m m

t  I
Cycle 1- embryo 6

1 1 *» - - P“

• 112 ^ -

iivj

- •

46,XY,t(13;14)(qlO;qlO)

Biopsy result

Nucleus A. Balanced 
Nucleus B. Partial
trisomy lqtel

Progression 
Day 4/5
Morula

Follow up result

Nucleus A. Trisomy 
12
Nucleus B. Balanced

10 cells 
(8 analysed 
with FISH).

Nucleus A. Balanced 
Nucleus B. Trisomy 
14

Morula

6 nuclei- Balanced
4 nuclei- Partial trisomy lqtel
2 nuclei- Partial monosomy lqtel 
1 nucleus - Monosomy 1
1 nucleus- Partial monosomy lq 
& trisomy 17
(ReFISH for 13,18 and 21- all nuclei 
normal)

5 nuclei- balanced
3 nuclei- Partial monosomy 
8centric.
(ReFISHfor X, Y and 18 - all nuclei 
normal)

15 nuclei-Trisomy 13 
4 nuclei- Balanced 
3 nuclei- Trisomy 13 and 14 
3 nuclei- Trisomy 14 
2 nuclei- Monosomy 13 
(ReFISHfor chromosome 11-all 
nuclei normal)

Comment

Biopsy result was confirmed. 
Balanced/unbalanced mosaic 
embryo. Possibly started with 
adjacent-1 segregation and 
chromosome breakage followed 
post-zygotically.
Gamete
Adjacent-1 with chromosomes 1 
and derl7
Biopsy result confirmed 
Balanced/unbalanced mosaic 
embryo. Possibly the embryo 
started with 3:1 segregation where 
12, der8 and derl2 all segregated 
together. Successive post zygotic 
chromosome loss followed.
Gamete
3:1 with chromosomes 12, der8 
and derl2
Biopsy result confirmed 
Balanced/unbalanced mosaic 
embryo. There is evidence of 
mitotic non-disjunction for 
chromosome 13. The embryo could 
have started with the alternate 
segregation and chromosome gain
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Couple 1/Cycle 3- embryo 6

46,XY,t(13;14)(qlO;qlO)

Couple 1/Cycle 3- embryo 7 
46,XX,t(10;ll)(qll.2;pl5.3)

Nucleus A. Balanced 
Nucleus B. 
Monosomy 14

Morula

Nucleus A. Balanced 
Nucleus B. Trisomy 
10 (centric fragment)

Morula

15 nuclei-Trisomy 13 
4 nuclei- Monosomy 14 
2 nuclei- Balanced 
(ReFISHfor chromosome 11- all 
nuclei normal)

10 nuclei- Trisomy 10 (centric 
fragment)
1 nucleus- Balanced
3 nuclei- chaotic
(ReFISH for chromosome 13,16 and
21- all nuclei normal apart from
chaotic in which they showed various
signals)

of chromosome 14 followed. 
Alternatively, the embryo could 
have started with trisomy 14 and 
chromosome loss followed. 
Gamete 
Balanced or
2:1 with chromosomes 14 and 
derl3/14
Biopsy result confirmed 
Balanced/unbalanced mosaic 
embryo. The embryo possibly 
started with the alternate 
segregation. Chromosome loss of 
14 and chromosome gain of 13 
followed.

Gamete
Possibly balanced
Biopsy result confirmed
Mainly unbalanced/chaotic mosaic
embryo.
The embryo possibly started with 
3:1 segregation (10,11 and derlO). 
The mitotic loss of the small derlO 
chromosome can result in a 
balanced karyotype in some cells. 
Gamete
3:1 with chromosomes 10,11 and 
derlO
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4.3. Studies for carriers of rare chromosomal abnormalities and special 

investigations.

4.3.1 Ring/deleted chromosome 22

This couple underwent two cycles of preimplantation genetic diagnosis for a rare 

ring chromosome abnormality. The female partner is a carrier of a ring chromosome 22 

and a deleted chromosome 22 with a karyotype 47, XX, del(22)(p l0ql2), + r(22)(q l0q l2 ) 

producing a balanced state overall. In both cycles there was no embryo transfer due to all 

the embryos being affected or carriers of the maternal chromosomal abnormality. When 

considering the appropriate probes for this particular type of abnormality it was decided 

that the balanced carriers of the maternal rearrangement need to be detected due to the 

high risk of mosaicism and instability that is associated with this particular abnormality. 

The size of the ring chromosomes is around 14Mb. The % of HAL for imbalance of the ring 

chromosome is 0.6% which is within the viability limits in monosomic and trisomic form.

Cytogenetic workup in parental lymphocytes with commercially available probes 

for chromosome 22 showed that the centromere of chromosome 22 was split between 

both recombinant chromosomes 22 in the female carrier. The lymphocyte workup was 

done with the help of Mariana Apergi. Consequently, two rounds of FISH were used in 

order to detect all the unbalanced and balanced carriers in the resulting embryos. The 

DiGeorge probe (Abbott, UK) was used for the first round and the centromeric probe for 

chromosome 14/22 (Cytocell, UK) with the telomere of 14q (Cytocell, UK) were used in the 

second round (Shown in Figure 4.3.1). The expected signals for a carrier and non carrier of 

the ring 22 and deleted 22 are illustrated in Figure 4.3.2.
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Figure 4.3.1. Ideogram and probe strategy of the ring 22/del22 carrier and the PGD probe 
strategy. First round: DiGeorge- dual band probes (22qll.2 orange/22ql3.3 green. Second 
round: Centromere 14/22 red and 14qtel in green (not shown).

47,XX,del(22)(p10q12),+r(22)(q10q12)

Deleted 22

Figure 4.3.2. Expected FISH signals in embryonic nuclei of balanced carriers and normal 
embryos (non carriers of the ring chromosome 22). No difference in the number of fish  signals 

can be detected in the first round. While in the second round four equal sized red signals are observed for the 

non-carrier, the carrier presents five signals three of which are of equal size and two that are smaller. The former 
combination denotes the splitting of one of the signals for chromosome 22 and thus the existence of the ring chromosome.

Balanced Carrier Balanced non carrier

1st Round DiGeorge 

probe

2nd Round
Cen 14 /22 , 14QTEL
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The combined FISH probe efficiency on control lymphocytes was 90% and on 

patient lymphocytes was 95%. Figure 4.3.2 shows the FISH results on control and patient 

lymphocytes for both metaphase and interphase nuclei. Figure 4.3.4 shows an example of 

the FISH results on embryonic nuclei from biopsied and untransferred embryos which are 

all in the interphase stage.

Figure 4.3.3. FISH with the Ring chromosome probes on control and carrier lymphocytes.

DB Prtfrnt lymphocytM

Figure 4.3.4. Results of FISH on biopsied blastomeres from cycle 1 of PGD. A  First round 
FISH result blastomere showing loss of ring chromosome 22. B. Normal FISH signals for 
chromosome 22, the embryo could be a carrier. C. Second round FISH result with Cep 14/22 shows 
balanced carrier of the ring and deleted 22.

A B

Table 4.3.1 summarises the results of the first PGD cycle. In brief, 7 oocytes were 

collected and 6 of them were fertilised by IVF. Five embryos were biopsied on day 3 and 

two cells were taken from all embryos. Unfortunately, no embryos were available for
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transfer. A balanced carrier of the ring was found but due to instability of the ring 22 

during cell division, the couple decided not to have it transferred. All embryos were 

spread on slides on day 5 for the follow up. Four out 5 embryos had reached the 

blastocyst stage by day 5.

Table 4.3.1. PGD cycle 1

No. of oocytes collected 7

No. of oocytes fertilised 6

No. of embryos biopsied 5

No. of normal or balanced embryos on biopsy 1 balanced carrier 
(not transferred)

No. of unbalanced embryos on biopsy 4

Embryos with follow up result 4

Embryo progression on day 5 4 blastocysts 
1 morula

Results were obtained on follow up for 4 out of 6 embryos (Table 4.3.2). Three 

embryos were confirmed as aneuploid mosaics. The embryo that was diagnosed as a 

balanced carrier on day 3 had become mosaic by day 5 with loss of the ring in 50% of the 

cells. The meiotic segregation of the recombinant and normal 22 chromosomes in the 

oocytes were determined according to the follow up and biopsy results. One out of the 

five oocytes started with the ring and deleted 22, two out of five started with only the 

deleted chromosome 22 present and the remaining two started with the normal 22 and 

the deleted 22 present (Table 4.3.5).
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Table 4.3.2. Follow up results for PGD cycle 1

Embryo Biopsy result 
no.

Embryo characterisation after follow up Mechanism of
mosaicism

Theoretical oocyte 
content for chromosome 
22

Partial monosomy 22:
46, del22(pl0ql2)

Balanced carrier of r(22) 
and del(22):
47, ~, del(22)(pl0ql2), 
+r(22)(qlOql2)
Partial monosomy 22:
46, ~, del(22)(plOql2)

Partial trisomy 22:
47, ~, +del(22)(pl0ql2)

Partial trisomy 22:
47, ~, +del(22)(pl0ql2)

Aneuploid/Chaotic mosaic embryo 
Aneuploid cell line 46, del(22)(pl0ql2)

Balanced/aneuploid mosaic embryo.
47, ~, del(22)(pl0ql2), 
+r(22)(ql0ql2)[7]/46, 
del(22)(pl0ql2)[7]/chaotic[3]
Aneuploid mosaic embryo
46, ~, del(22)(pl0ql2)[10]/45,-, -22 [47]

Chaotic/aneuploid mosaic embryo.
47, ~, +del(22)(pl0ql2)[5]/chaotic[9]

No result on follow up

Meiotic error 
and chaotic cell 
divisions

Loss of r(22) 
postzygotically

Meiotic error and 
loss of del(22) 
postzygotically

Meiotic error 
and chaotic ceil 
divisions

Meiotic error

Del22

Del22

22

22

*

R22

5
Del 22 

-J

Del2 2

a

Del22

Karyotypes shown assume normality fo r all other chromosomes
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Table 4.3.3 summarises the results of the second PGD cycle. During this cycle, 10 

oocytes were collected 8 of which were normally fertilised by IVF. Seven embryos were 

biopsied, two cells were taken from three embryos and one cell was taken from 4 

embryos. No normal or balanced embryos were found in this cycle. All embryos were 

arrested at the 3-10 cell stage by day 5. Follow up results were obtained for six un­

transferred embryos.

Table 4.3.3. PGD cycle 2

No. of oocytes collected 10

No. of oocytes fertilised 8

No. of embryos biopsied 7
No. of normal or balanced embryos on biopsy 0

No. of unbalanced embryos on biopsy 6
1 gave no result

Embryos with follow up result 6
Embryo progression on day 5 All under 10 cells

Table 4.3.4 shows the biopsy and follow up results for this cycle. Four embryos 

were fully chaotic. One embryo was aneuploid mosaic, one embryo appeared to be 

haploid with a single intact copy of chromosome 22 and a single copy of chromosome 14. 

One embryo was partial monosomy 22 but that was based on only one cell with results. 

The follow up results helped determine the meiotic segregation of chromosome 22 in the 

oocytes. Two out of seven oocytes had the ring and the deleted chromosome 22 present. 

Two out of seven oocytes had the deleted chromosome 22 only and another two had the 

ring chromosome 22 only leading to partial monosomy 22 after fertilisation. In one 

embryo there was insufficient information in order to determine the chromosomal 

complement of the oocyte (Table 4.3.5).
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Table 4.3.4. Follow up results for PGD cycle 2

Embryo Biopsy result 
no.

Embryo characterisation after 
follow up

Mechanism of 
mosaicism

Theoretical oocyte 
content for 
chromosome 22

Partial monosomy 22:
4 6 ,-, r(22)(qlOql2)

Mosaic partial trisomy 22/Partial 
monosomy 22
47,
+del(22)(pl0ql2)[10]/45,~, - 
22 [47]
Monosomy 22 and 14, normal 22 
is present.

Monosomy 22, ring and deleted 
22 are present in the nuclei.
46,
del(22)(pl0ql2)r(22)(ql0ql2) 
Partial monosomy 22:46, —, 
del(22)(pl0q 12)

Aneuploid/chaotic mosaic embryo. 
46, - ,  r(22)(ql0ql2)[10]/chaotic [9]

Chaotic embryo

Haploid embryo 

Chaotic embryo

Chaotic embryo

Meiotic error and 
chaotic chromosome 
divisions
Meiotic error and 
chaotic cell divisions

Possibly one parental 
genome was present.

Chaotic cell divisions

Meiotic error and 
chaotic cell divisions

R22

...
Del22

u

Unknown

Del22

o f p

U J
Del22

id

Partial monosomy 22: 
46, - ,  r(22)(ql0ql2)

Chaotic embryo Meiotic error and 
chaotic cell divisions

R22

£
J

Karyotypes shown assume normality for all other chromosomes
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In total, 12 embryos were biopsied, and follow up information was obtained for 11 

embryos. No embryos were normal or balanced for chromosome 22 by day 5. There was 

only one balanced embryo out of 12 biopsied and by day 5 postzygotic errors lead to a 

mosaic karyotype with half the cells having lost the ring chromosome by the blastocyst 

stage. In addition, according to the follow up studies, 2 oocytes possibly started with a 

balanced chromosome complement but both had the deleted and the ring 22 and not the 

intact chromosome 22. After fertilisation these oocytes accumulated postzygotic errors 

for chromosome 22 with an end result of being either mosaic or chaotic. The rest of the 

oocytes are thought to have started with unbalanced products of meiosis. Post-zygotic 

errors in the resulting embryos were wide ranging and very frequent in almost all the 

embryos. Table 4.3.5 summarises the theoretical chromosomal complement in oocytes 

that resulted in PGD embryos and natural pregnancies. Both natural ongoing pregnancies 

resulted from oocytes that had an extra ring chromosome (24, X, +r22) but none of the 

PGD embryos presented this combination. Embryo 3 in the second cycle represents the 

only possibility of an oocyte with an intact chromosome 22 but it was not possible to 

determine the origin of that single chromosome 22.

TabU 4.3.5. M ato tk  Segregation in oocyte*

Theoretical inelotlc 
tegtagatieM la eocvte

)

M b  
«jj J l

©L

M H

3
MI

0

a iw i:
4

L 0©
Cycle no. 1 0 I 2 0 2 0

Cvrle no.2 0 2 2 2 0 0

Natural pregnancies 0 0 0 0 0 2

Total 0 3 4 2 2 2

154



Results fo r structural chromosomal abnormalities

4.3.2. X;4 Translocation 46,XX,t(X;4)(q26;pl6.1) and X-inactivation

Studies of a carrier of an X;autosome translocation were undertaken. The couple 

had two previous first trimester induced abortions due to unbalanced karyotypes. 

Cytogenetic analysis of the products of conception showed unbalanced karyotypes due to 

adjacent-1 maternal meiotic segregation. One had partial trisomy Xq and partial 

monosomy 4p [46X, der(X), t(X;4)(q26;pl6.1)mat]. The other had partial trisomy 4p and 

partial monosomy Xq [46XX, der(4), t(X;4)(q26;pl6.1)mat]. The ideogram and the probe 

strategy are shown in Figure 4.3.5

Figure 4.3.5.
Ideogram and PGD probe strategy 
for 46,XX,t(X;4)(q26;pl6.1). The 
probes used were CEP4 a-sat in 
green, CEPX a-sat in orange and 
green, CEPY sat III aqua, Xq\Yqter, 
subtelomeric probe for the 
telomeres of X and Y in orange. All 
from Abbott, UK

The outcome of three cycles of PGD is detailed in section 4.2 among the cycles for 

reciprocal translocation carriers. Unfortunately, none of the PGD cycles resulted in a 

pregnancy for this couple. The added complexity for this translocation was X-inactivation 

and the extent to what this would affect the PGD outcome or any future progeny. The 

couple was counselled in respect of the PGD outcome and the role of X-inactivation. Any 

male carrier embryos might have future infertility problems while female carriers might 

have varying degrees of phenotypic abnormalities depending on X-inactivation. In these
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carriers, the normal X might be preferentially inactivated in order to allow the autosomal 

genes on the derX to function properly. The other alternative is that if random X- 

inactivation occurs then it might be incomplete so it would not affect the autosomal genes 

on the derX. X-inactivation studies in this carrier and the embryos produced were 

attempted in order to establish more information about the patterns of X-inactivation in 

the preimplantation stage.

In order to attempt to look into X-inactivation in embryos first the sex of the 

embryo needed to be established using FISH and then immunofluorescence needed to be 

performed to check if the inactive X was the derivative or the normal one in the embryos. 

At the same time the patterns of the X-inactivation in the carrier female had to be 

established. The immunofluorescence antibody for the inactive chromosome X was 

chosen to be (primary antibody): Anti-dimethyl-Histone H3 (Lys9) (Upstate, UK) and in 

order to detect it a secondary antibody was chosen to be Cy-3 conjugated AffinPure 

Donkey Anti-Rabbit IgG (Jackson Immunoresearch, UK). The primary antibody binds to 

Lys9 of histone 3 which is only found in the inactive X. The localization of histone 3 (Iys9) 

and thus the inactive X would be in the nucleus.

The sex of the embryos for these PGD cycles was checked in the biopsied 

blastomere during PGD. Immunofluorescence however could not be done after the FISH 

since the fixation and high temperatures required for FISH would cause degeneration of 

the target protein for the antibody. It was decided that immunofluorescence would be 

used in the untransferred female embryos from this couple combined with a subsequent 

round of FISH with the translocation chromosomes. For this to be achieved, a different 

spreading method had to be established for embryos other than the tween/HCL method 

or methanol acetic acid that were currently used. This would also allow antibodies and 

FISH to be used in the same samples. This method can then be used for this and any 

subsequent immunofluorescence studies with any antibody on human embryos.

Because the protocol developed for immunofluorescence use all the cells and 

nuclear structures had to be preserved in human embryos. This would allow detection of 

targets in the cytoplasm and nucleus of blastomeres. The method chosen (using a
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combination of paraformaldehyde and DTT) had been used in mouse oocytes and 

embryos (Hodges and Hunt, 2002) but not in human embryos. So optimization for human 

embryos use had to be done first. The protocol was tested in human oocytes and embryos 

donated from routine IVF patients. Initially, FISH was performed after fixation in the 

tested samples in order to establish the integrity of the nucleus until the 

immunofluorescence protocol was ready. Figure 4.3.6 shows some examples of FISH on 

oocytes and embryos after fixation.

In general the protocol produced good results especially for the oocytes. Results 

were produced even in degenerate oocytes. In embryos the results were more varied 

although FISH signals were visible the integrity of the structures was not optimum. 

However by omitting the digestion step of the FISH protocol the structures appeared less 

damaged. Table 4.3.6 shows the results of these experiments.

Figure 4.3.6. Oocyte and embryo FISH with 
paraformaldehyde /DTT fixation.
A. Embryo with 3 nuclei
B. Oocyte and two polar bodies from a 
OPN/2PB oocyte
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Table 4.3.6. Results of fixation and FISH in oocytes and embryos
Sample Fixation result 

(paraformaldehyde/DTT)
FISH result 
CEP16 (o), Cep 7 (g)

Oocytel-OPN/2PB 2 PBsseen Oocyte chromosomes not 
found
PB1- 2x16, 2x7 
PB2- 1x16, 1x7

Oocyte2- 0PN/2PB Not found
Oocyte3- 0PN/2PB Oocyte chromosomes seen 

and 2 PBs
Oocyte. 1 x l6 ,1 duplet x7 
PbA. 1 duplet x l6 , 1 duplet 

x7
PbB. 1 single x7, lx  single 
16

Oocyte4-2PN/2PB Oocyte and PBs seen Only one PB found- 1x16, 1 
duplet x7

Oocyte 5- 0PN/2PB Oocyte and PB seen Oocyte. 1 x l6 ,1x7 
PbA. 1 duplet x l6  

PbB. 1 duplet 7, 1 x 16
Oocyte 6- 0PN/0PB Oocyte seen Oocyte only- 2x16, 2x7
Embryol 3 cells found- degenerate Nucleus 1. 1x16, 1x7 

Nucleus 2. 3x16, 3x7 
Nucleus 3. 3x16, 3x7

Embryo2 2 nuclei found Degenerate with no signals

At the same time optimization of the immunofluorescence protocol was taking 

place. First the protocol had to be used in control and carrier lymphocytes in order to 

establish the optimum conditions and the X-inactivation status of the carrier. This part of 

the study was done by Vinita Shrivastava. First a fixation method had to be established 

that would allow immunofluorescence and then FISH to be used. The lymphocytes were 

either, first fixed with paraformaldehyde or methanol after culture or "cytospun" on to 

slides immediately after culture and then fixed with paraformaldehyde or methanol. The 

resulting slides were checked and those that contained adequate number of cells 

underwent FISH primarily to check if the structures were adequate. Unfortunately, the 

most of the above fixation procedures did not produce good quality cells and after FISH 

with the translocation probes up to 50% of the nuclei did not contain the correct signals.
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As the carrier blood was not easy to obtain each time a new fixing technique was 

tested this limitation lead to focus on optimizing the immunofluorescence protocol in 

lymphocytes from the carrier that had already been fixed in 3:1 methanol acetic acid. 

Although the acetic acid might damage the histone structure a literature review showed 

that this type of histone might not be damaged by this fixing method. The protocol was 

optimized and it was found that protocol 2 for immunofluorescence listed in Chapter 2 

(PBS/BSA protocol) was the most appropriate to use in lymphocytes and subsequently in 

embryos from the PGD cycle for this translocation. The lymphocyte study indicated that 

random and probably incomplete X-inactivation had taken place in the lymphocytes of the 

carrier of the translocation although the results were not very conclusive due to high 

fluorescent background artefacts that were contributed to by the fixing method. However, 

there was a tendency for the normal X to be inactivated in more cells than the derivative X 

(60%vs40%). If the above pattern was happening, this meant that the autosomal genes 

might not be switched off when the derivative X was inactivated in that tissue.

Untransferred embryos from cycle 3 of PGD for this couple were used. They were 

fixed for immunofluorescence and FISH using the protocol mentioned above. The results 

are listed in table 4.3.7. The blastomeres were mostly in interphase so co-localization of 

antibody and the X probe meant that the inactive X was present. Absence of the Xq 

telomere or the presence of the 4p telomere near the localized antibody on an interphase 

nucleus meant that the inactive X is the derivative X. There results were varied for each 

embryo and X-inactivation was not consistently detected. Additionally, although the nuclei 

after immunofluorescence were intact after FISH they were degenerating. Some nuclei 

were also lost after the FISH procedure. As a result the outcome of this study was not 

clear. Figure 4.3.7 shows some nuclei after immunofluorescence for this PGD cycle. 

Additionally, the embryos in this cycle were not of good quality and were arrested at the 

2- 6 cell stage by day 5.
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Table 4.3.7. Results of Immunofluorescence and FISH on human day 5 embryos
Embryo
number

Biopsy result 1 m m unof 1 uorescence 
result

FISH result Comment

1
Grade 2+
No. cells d3: 6 
Day 4: 6

Partial trisomy 
X&
monosomy 4

2n- + ve for antibody 9n
7n- no signals 
2n- 3x4, lxXqYq, lxX

Expected as 
trisomy X was 
seen on biopsy 
Unfortunately 
positive nuclei 
had no signals 
after FISH and no 
further
information can 
be obtained.

3
Grade 2+
No. cells d3: 7 
Day 4: 5

Pentasomy X, 
hexasomy 4

-ve for antBX 5n- 6x4, 2xXqYq, lxX, 
lxY

Expected- Male 
embryo

4 Not biopsied In - +ve for antBX 3n- no signals Degenerate nuclei 
after FISH.

5
Grade 1- 
No. cells d3: 3 
Day 4: 2

No result -ve for antBX 4n
All chaotic with no Y 
signal. Multiple X 
signals

Chaotic embryo, 
negative for X- 
inactivation.
Not expected.

6
Grade 1- 
No. cells d3: 6 
Day 4: 6

Monosomy X 
& trisomy 4

In  +ve for antBX 2n
In - 3x4, 2xXqYq, lxX 
In - 1x4, 2xXqYq, 3xX

Expected in triple 
X nucleus only.

8
Grade 2 
No. cells d3: 3 
Day 4: 2

No result -ve for antBX lOn
8n-2x4, 3xXqYq, lxX, 
lxY
2n-2x4, lxXqYq, lxX, 
lxY

Expected as male 
embryo. There 
was also 
multinudeation 
of cells

10 Not biopsied -ve for antBX In - 1x4, 2xXqYq, lxX Expected as only 
one whole X was 
present in cell.

11
Grade 1- 
No. cells d3: 4 
Day 4 :4

XXY nucleus -ve for antBX 4n- 2x4, 3xXqYq, lxX Not expected as 
one X should 
have been 
inactive.

antBX- antibody for the inactive chromosome X

160



Results for structural chromosomal abnormalities

Figure 4.3.7. Immunofluorescence with X-inactivation antibody for embryos of an X;autosome 
translocation. Arrows indicate the possible present of the inactive X and are scored as positive stained 
nuclei.
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4.3.3. PGD protocol development for an interchromosomal insertion carrier

A couple was referred for PGD after having affected pregnancies with 46,XX, 

der(4), ins(14;4)(ql3;q25q21.3) and 46,XY, der(4), ins(14;4)(ql3;q25q21.3) effectively 

monosomic for chromosome 4q21.3-q25. The mother is a carrier an interchromosomal 

insertion of 46, XX, ins(14;4)(ql3;q25q21.3). During the time taken to develop a PGD 

protocol she also had an affected son with the abnormal karyotype 46,XY, der(14), 

ins(14;4)(ql3;q25q21.3) who was trisomic for chromosome 4q21.3q25. She subsequently 

also had a trisomy 21 pregnancy. The ideogram for the carrier is illustrated in figure 4.3.8.

Figure 4.3.8. Ideogram of carrier of insertional translocation 46, XX, ins(14;4)(ql3;q25q21.3). The 
translocated segment is also inverted.
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The size of the translocated fragment is around 51.3Mb and constitutes 0.59% of 

the haploid autosomal length which means that either the deleted or the trisomic state of 

the translocated segment will produce viable unbalanced pregnancies. In order for the 

PGD strategy to be informative for all possible meiotic outcomes it had to detect copy 

changes of the chromosomal region 4q21.q25 segment. The possible meiotic outcomes of
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this translocation are illustrated in figure 4.3.9. The difficulty was that there was no 

commercially available FISH probe for that section of chromosome 4. Two alternatives 

were considered. Firstly, to construct a FISH probe especially for this segment of 

chromosome 4 and combine it with commercially available centromeric and telomeric 

probes for chromosomes 4 and 14. The second option was to use either polar body CGH 

or blastomere CGH to detect abnormalities in single cells. The abnormality constituted 

24% of chromosome 4 and theoretically could be picked up by CGH. As single cell CGH 

require 72hrs hybridization the results of polar body CGH would be available by day 5 

while blastomere CGH would require freezing of embryos until the results were obtained 

or a shortened CGH protocol.

Figure 4.3.9. Meiotic segregation patterns for the interchromosomal insertion carrier
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The first option required a specially made probe for this specific abnormality. As 

the making of a specific FISH probe would have been very time consuming to construct in- 

house it was decided the probe would be provided by a company that provides custom 

made band specific probes. Qbiogene offered this service and a band specific probe for 

the chromosomal 4q23 band was supplied. However, when this probe was used there 

were some problems. The main one was that although in metaphase chromosomes the 

probe could be seen at the correct location, in interphase the signal was very big and very 

diffuse. This did not allow for correct counting of the probe signals and thus this approach 

was deemed inappropriate for use in PGD.

The second option was to use single cell CGH. Polar body CGH was explored since it 

would avoid freezing of the embryos. However, there were concerns that CGH on first and 

second polar bodies would not reliably detect an abnormality as small as this, especially if 

the error involved a single chromatid (after crossing over) instead of a whole 

chromosome. Polar body CGH was eliminated as an option.

Blastomere biopsy was then considered. The drawback here was the freezing of 

biopsied embryos until the results were ready, a procedure that had not produced good 

embryo survival rates in this centre. In order avoid freezing biopsied embryos the 

shortening of the CGH protocol was considered. The optimization of the CGH protocol to 

detect structural and numerical abnormalities in single cells is detailed in Chapter 5. Single 

control buccal cells, diluted DNA and blastomeres from embryos with other parental 

structural abnormalities were tested.

Shortening the hybridization time of the CGH was examined. Buccal cells from the 

affected son of this couple as well as normal samples were used in order to determine if 

the shortened protocol could pick up such an abnormality. The experiments were done at 

48hrs, 60hrs and 72hrs. Several conditions were changed, including the denaturation 

temperature, the temperature of post washes and the post washes solutions. The results 

showed that only after 72hrs of hybridization could the unbalanced karyotype be picked 

up. At 60hrs a suggestion of imbalance could be detected but was not consistent in all 

metaphases from the same experiments. At 48hrs the imbalance was barely visible in each
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experiment along with various other artefacts. When more stringent post washes were 

used the imbalance was not visible at all. Figure 4.3.10 shows some examples of CGH with 

different hybridization times.

Figure 4.3.10. CGH of single buccal cells of 46,XY, der(14), ins(14;4)(ql3;q25q21.3)
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The final conclusion from this investigation was that CGH could only be used for 

PGD for this carrier in single day 3 blastomeres. The abnormality was clearly visible in 

unbalanced single cells only at 72hrs after hybridisation. This would mean that all embryos 

would have to be frozen while CGH was carried out. Fortunately, at that time freezing 

embryos by vitrification was implemented in this centre. This appeared to give good 

survival rates for frozen embryos at the blastocyst stage. So CGH with 72hrs hybridization 

and vitrification was chosen as the appropriate course of action for this PGD case. The 

couple however was fortunate to then have a natural pregnancy with a normal carrier 

baby and did not require PGD. This case however paved the way for CGH to be developed 

for clinical use in PGD for chromosomal abnormalities that were not possible by using FISH 

and a license application is currently being considered by the HFEA.

165



Results fo r structural chromosomal abnormalities

Summary of main findings for this chapter

•  Efficient probe strategies were developed and applied clinically for each PGD for 

reciprocal and Robertsonian translocation carriers.

•  Detailed follow up analysis showed extensive mosaicism (60%) in the embryos 

from reciprocal translocation carriers. Chaotic mosaic embryos constituted 34% of 

the total. This proportion is lower however compared to that of the PGS group 

overall. Uniformly abnormal embryos were also higher than the PGS group at 18%. 

Chromosomes not involved in the translocation were affected only in the chaotic 

cell lines. The most frequent mode of segregation was alternate followed by 3:1 

adjacent-1 and adjacent-2. Individual translocations showed preference for the 

expected mode of segregation in 6 out of 9 cases relating to the size of the 

translocated and the centric fragments. The predictive value of the outcome of 

meiosis relative to the size of the translocated and centric fragments was 

investigated and some predictive patterns could be seen.

•  Embryos from Robertsonian translocation carriers showed a high number of 

normal embryos produced (35%) in comparison to those of reciprocal 

translocation carriers. The level of mosaicism was the same (60%) as in the 

reciprocal group. But uniformly abnormal embryos decreased (7.4%). The most 

frequent segregation was alternate (67%) followed by 2:1 (27%) and 3:0 (4.7%). 

However, the same translocation exhibited different meiotic and mitotic cell 

division patterns in different individuals. Chromosomes not involved in the 

translocation were affected mainly in chaotic cell lines.

•  Balanced/unbalanced mosaicism in embryos could result in errors in diagnosis 

after biopsy. The biopsy of two cells reduces the probability of these errors 

occurring. Follow up analysis showed that this type of mosaicism should be taken 

as a true finding for the translocation chromosomes. Post-zygotic errors can lead 

to a balanced cell line in a originally unbalanced embryo.

•  A PGD protocol was developed for a carrier of a rare chromosomal abnormality 

ring/deleted 22. Follow up of embryos revealed for the first time the behaviour of
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a ring chromosome during preimplantation development. It revealed the highly 

unstable nature of the ring and deleted 22 in the embryos while it was very stable 

in the maternal carrier. The theoretical content of the oocytes (revealed by the 

follow up embryo studies) showed that the segregation of the normal 22 alone was 

very rare while most frequently the deleted 22 alone was found.

•  A protocol was established for fixation of human oocytes and embryos for use with 

immunofluorescence and FISH. The X-inactivation patterns in a X;autosome carrier 

were partially established to be slightly skewed in favour of the normal X being 

inactivated. To detect if any inactivation was happening in embryos and if the 

derivative X was inactivated an X-inactivation antibody of Histone 3 (Lys9) was 

used. In embryos, the X-inactivation antibody could be seen in a limited number of 

cells within some embryos. The degenerate nature of the embryos contributed to 

the failure of FISH after immunofluorescence in some nuclei. Inconclusive results 

were obtained in this study.

•  The use of PGD for an interchromosomal insertion carrier was investigated. FISH 

was not possible as there were no readily available probes for the inserted region. 

Finally, single cell CGH was optimized to detect the imbalances in blastomeres 

from day 3 embryos from this carrier. An HFEA licence application was completed.
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Chapter 5

Results from studying human oocytes and polar bodies using comparative 
genomic hybridization (CGH)

Oocytes and their corresponding polar bodies (pbs) from females going through 

PGS, PGD and routine IVF were studied using CGH in order to ascertain the level of 

abnormality in these patients and study the mechanisms of aneuploidy during meiosis. 

The CGH protocol which is detailed in chapter 2 was optimized for single cell use in diluted 

DNA, buccal cells, trisomic fibroblast single cells and blastomeres with a known 

abnormality.

5.1. Optimisation of CGH protocol for use in oocytes

The CGH protocol to detect aneuploidy in embryos was followed according to 

Fragouli et al (2006b). However, several checks had to done first to allow the author to 

confidently identify abnormalities at the single cell level. Additionally, slight modifications 

had to be done to compensate for variable reagent quality and general experimental 

conditions. CGH was first used on genomic DNA and when optimized at this level was used 

on clumps and single buccal cells; these constituted the negative controls. Positive 

controls were single trisomic fibroblasts. The results for these experiments can be seen in 

figures 5.1, 5.2 and 5.3 respectively.
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After the control experiments were established CGH was used on single 

blastomeres with a known abnormality. Two sets of blastomeres were examined. I) From 

embryos after PGD from a translocation carrier 46,XY,t(l;21)(ql2;q22.1) where FISH 

results on biopsied blastomeres confirmed the existence of an unbalanced structural 

abnormality. Two embryos were examined. One cell from embryo 1 and 3 cells from 

embryo 2. The outcome of the CGH for these blastomeres is detailed in section 4.1.2 and 

the CGH results are also illustrated in figure 4.1 and 4.2 in the previous chapter. In all 

cases CGH confirmed the biopsy result and revealed other errors.

II) Single blastomeres from embryos from a carrier of a pericentric inversion with 

karyotype 46,XY,inv(12)(pllql4). This couple presented with secondary infertility and poor 

embryo quality. The couple had one child with balanced karyotype 46,XX,inv(12)(pllql4)pat. 

Analysis of routine IVF embryos with FISH (probes 12,13 and 21) and CGH showed a high number 

of embryos were found to be chaotic and aneuploid mosaics with only 2 out of 9 embryos tested 

showing a diploid result for the chromosomes tested; additionally, one embryo showed trisomy 

for the centromere of chromosome 12. CGH in 5 single blastomeres from two embryos was 

performed (3 cells from embryo no. 8 and 2 cells from embryo no. 9). One embryo was found to 

be diploid and chaotic mosaic with XY sex chromosomes. One cell had multiple abnormalities 

including for chromosome 12 and the other two were diploid (46, XY). The abnormality for
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chromosome 12 for this embryo was partial trisomy 12ql4qtel which is near one of the 

breakpoints of the pericentric inversion. The other embryo was found to be a mosaic for 

45,XO/47,XXY. This might suggest that this embryo started as XXY and post-zygotic errors resulted 

in the XO cell. No abnormality for chromosome 12 was seen in this embryo. The CGH result for 

the chaotic cell of embryo number 8 is shown in figure 5.4 where chromosome breakage is evident 

for multiple chromosomes.

Figure 5.4. Chaotic chromosomal constitution in a single blastomere found by CGH. Single 
blastomere (green) vs Single buccal cell, 46,XY (red). Multiple errors can be seen for chromosomes 
1, 4, 5, 8, 10, 12, 14, 16 and 21. Some of the individual chromosomes with abnormalities can be 
seen the figure below the CGH interpretation.
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5.2. CGH results from oocytes and polar bodies

The aims in this section were i) the identification of abnormalities in female 

gametes derived from women undergoing PGS compared to those oocytes derived from 

routine IVF females and females undergoing PGD for structural chromosomal 

abnormalities, ii) the examination of the origin of aneuploidy in these two groups of 

gametes and the investigation of the types of abnormalities arising during female meiosis 

and iii) the correlation of the oocyte information to subsequent embryo abnormalities. 

Firstly, the degree and types of chromosomal abnormalities in the studied oocytes were 

compared between two groups, the oocytes from the PGS group and those from the 

PGD/routine IVF group. Secondly, where chromosomal abnormalities could be seen in 

oocytes from the PGS couples, this information was correlated with follow up information 

on embryos which were obtained during previous PGS treatment cycles. This could 

provide information on the relationship of primary meiotic chromosomal instability in the 

oocyte with secondary post-zygotic instability in the embryos.

Oocytes and their corresponding polar bodies (if any) were collected from 15 

females undergoing PGD, PGS and routine IVF. Of those oocyte complexes three were Ml 

oocytes (left to mature but remained in Ml), 2 GVs (left to mature but remained 

immature), 3 matured in vitro (2xMI, lxGV) and had 1st polar body. The remaining 

oocytes were unfertilized after sperm exposure, 7 of which consisted of both first and 

second PBs, 28 had a 1st polar body only and 17 did not show a PB. The details of the 

females and the types of oocytes collected from them are summarised in chapter 2 table 

2.4. Average maternal age was 36 years.

Table 5.1 lists the results obtained from CGH of oocytes and polar bodies. Overall, 104 

samples were collected, 59 oocytes and 45 polar bodies. 78 samples worked (75%). 

Results were not obtained from 6 oocyte/polar body complexes (one with 1st and second 

polar body), 6 oocytes and 7 polar bodies. Results were obtained for 27 oocyte/polar body 

complexes (1st and/or 2nd polar body), 20 single oocytes and 3 single polar bodies. Out of 

78 samples studied, 13 showed chromosomal abnormalities (18%). These included 5
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oocyte/polar body complexes where the oocyte and the polar body were abnormal and 3 

oocyte only abnormalities (3 without polar bodies and 1 where the polar body was 

normal). Out of 47 oocytes abnormalities were seen in 8 of them giving an error rate in 

this sample of 17%.

From the PGS group 53 samples from 10 patients gave results; 20 oocyte/polar body 

complexes, 13 single oocytes and one polar body. Errors observed were 5 involving both 

the oocyte and the polar body and 2 the oocyte only. With two exceptions the expected 

reciprocal results were seen in the Mil oocyte and first polar body. This gives an error rate 

of 21%. The average maternal age was 36.3 years.
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Table 5.1. Oocyte CGH study results with patient details

Cas
e

Materna 
1 age

Indication No of
oocytes and 
PBs with 
results

Normal (23, 
X)

Abnormalities seen and karyotype Oocyte outcome post-fertilisation

0 36 PGS/RIF 2 oocytes 
and 2 PBs

All No 2 oocytes- Normal

SI 26 PGS/RIF 4 oocytes 
and 2 PBs

All No 4 oocytes- Normal

El 36.5 PGS/RIF 8 oocytes 
and 2 PBs

7 oocytes 
and 1 polar 
body

One complex (0PN/1PB) 
Oocyte- 22, X,-12 
PB- 24, X, +12

7 oocytes- Normal
Abnormal oocyte showed meiotic non­
disjunction of whole chromosome 12. At risk of 
monosomy 12 post fertilisation.

w 42 PGS/AMA 3 oocytes 1 
PB

All No 3 oocytes- Normal

S2 42 PGS/AMA 4 oocytes 
and 4 PBs

2 oocytes 
and 2 polar 
bodies

Two complexes
A. (Mil- matured in vitro) 
Oocyte- 22,-

PB- 24, XX
B. (0PN/2PB)
Oocyte- 22, -

PB1- not worked 
PB2- 23, del(X)(qlOqter)

2 oocytes- Normal
Abnormal Oocytes A and B. Meiotic non­
disjunction of chromosome X. Post fertilization 
with X-bearing sperm would result in 
monosomy X. With a Y-bearing sperm would 
result in a non-viable conception.

C 42 PGS/AMA 2 oocytes 
and 3PBs

All No 2 oocytes- Normal
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M 26 PGS/RIF 2 oocytes 
and 3 PBs

All No 2 oocytes- Normal

E2 37 PGS/RIF 3 oocytes 
and 1 PB

2 oocytes 
and 1 polar 
body

One oocyte only (OPN/OPB)- 24,XX 2 oocytes- Normal
Abnormal oocyte showed disomy X. At risk of 
trisomy X or XXY post fertilisation.

T 37 PGS/RIF 2 oocytes 
and 2 PBs,

1 oocyte 
and 1 polar 
body

One complex (0PN/2PB)
Oocyte- 23, X, dup(20)(qll.2ql3.3) 
PB1- 23,X, del(20)( q l2ql3.1)
PB2- not worked

1 oocyte- Normal
Abnormal oocyte showed chromosome 
breakage seen in reciprocal form in the oocyte 
and PB. At risk of partial trisomy 20ql2-ql3.1  
post fertilization.

E3 38 PGS/RM 2 oocytes 
and 1 PB

No Two oocytes and 1 PB
A. (OPN/OPB)
Oocyte only- 23, dup(X)(q26q28)
B. (0PN/1PB)
Oocyte
23, dup(X)(p21p22.3), duplO 
(p ll.2 p l4 )
PB- 23, dup(X)(p21p22.3)(q25q28)

Abnormal oocyte A. partial duplication for 
chromosome X. At risk of partial trisomy q26- 
q28 in an XX zygote or partial disomy in an XY 
zygote.
Abnormal oocyte B. Partial duplication for 
chromosome X and 10. At risk of partial trisomy 
Xp21-p22.3 and trisomy 10p ll.4-p l4). The 
polar body shows the same duplication at 
Xp21p22.3 and an additional one at the q25q28 
as in oocyte A. This might suggest that both X 
duplications happened before the onset of 
meiosis.

A1 37 Routine IVF 2 oocytes 
and 1 PB

2 oocytes 
and 1 polar 
body

No 2 oocytes- Normal

V 33 PGD/Non- 
carrier of 
translocation 
46, XY, 
t ( l;4 ) (q ll. l;

3 oocytes 
and 3 PBs

All No 3 oocytes- Normal
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q33)

R 40 PGD/Carrier 
translocation 
46,XX,
t(9;20)(pl3;p
11.2)

1 oocyte No Oocyte-23,X, dup(20)(pll.2pl3) Abnormal oocyte- Expected structural 
abnormality seen for the translocated 
chromosome 20. At risk of partial trisomy 
20p ll.2 -p l3 .

A2 31 PGD/Carrier 
translocation 
46, XX, 
t(8;10)(p23;q 
24)

2 2 oocytes No 2 oocytes- Normal

S3 38 PGD/Non
carrier
translocation
46,XY,t(9;15)
(Pl2;ql3)

7 oocytes 
and 6 PBs

6 oocytes 
and 6 polar 
bodies

Oocyte fertilized with unbalanced 
sperm from translocation 
46,XY,t(9;15)(pl2;ql3). The oocyte 
was probably normal. 
Corresponding PB- normal

6 oocytes- Normal
One oocyte was normal and was fertilised by 
abnormal sperm. The resulting zygote had -  
duplication 9pl2-pter, deletion 9ql2-qter and 
duplication 15ql3-pter, deletion 15ql3-qter.

RIF- repeated implantation failure, AMA- advance maternal age, RM- recurrent miscarriage, PB- polar body, PN- pronucleus
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Table 5.2 relates the oocyte results with the findings in embryos from the PGS couples in 

the cases were there was follow up information. Five out of seven abnormalities observed in the 

PGS group involved chromosome X. Four of the X-chromosome abnormalities were from the 

patients with a history of AMA and recurrent miscarriage (patients S2 and E3 respectively). There 

were two meiotic non-disjunction events visible in both the oocytes and the corresponding polar 

body; two were reciprocal. One involved non-disjunction of a whole chromosome 12 (patient El). 

The second one involved non-disjunction of a chromosome X (S2, oocyte A). Oocyte B from patient 

S2 showed nullisomy X in the oocyte and one of the polar bodies showed partial nullisomy XqlO- 

qter. The other polar body of this complex did not show any results. Theoretically, this could be 

explained if the abnormality involved non-disjunction of a chromatid X in meiosis I that could 

result in an hypohaploid oocyte and an hyperhaploid polar body. In meiosis II malsegregation of 

the remaining chromatid X in the second polar body and chromosome breakage during division 

could result in the present abnormality in the second polar body.

Table 5.2. Embryo follow up information from PGS cycles of females with oocyte information
Maternal
age

Indication Embryo follow up Abnormalities in 
oocytes

36 PGS/RIF ICSI: 88% mosaic, 12% chaotic, 25% meiotic 
abnormalities. Pregnancy-delivered

No

26 PGS/RIF ICSI: 100% chaotic No
36.5 PGS/RIF ICSI: 50%mosaic, 46% chaotic, 4% meiotic 

Pregnancy-delivered
Yes. Chromosome 
12 in one oocyte

42 PGS/AMA IVF: 60% mosaic, 20% chaotic, 60% meiotic No
42 PGS/AMA ICSI: 40% mosaic, 60% chaotic, 0% meiotic 

Pregnancy-delivered
Yes. Chromosome X 
in two oocytes

42 PGS/AMA ICSI: 100% chaotic No
26 PGS/RIF ICSI: 75% mosaic, 25% chaotic, 0% meiotic 

Pregnancy- miscarried
No

37 PGS/RIF ICSI: 67% mosaic, 33% chaotic, 0% meiotic Yes. Chromosome X 
in one oocyte.

37 PGS/RIF ICSI: 100% chaotic Yes. Partial 
chromosome 20 in 
one oocyte.

38 PGS/RM ICSI: 100% chaotic Yes- Partial 
chromosome X in 
two oocytes. 
Partial
chromosome 10.
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There were four structural chromosomal abnormalities seen. Three X structural 

chromosomal abnormalities came from two oocytes in one female undergoing PGS with a history 

of recurrent miscarriage, and involved the terminal regions of chromosome X in the p and the q 

arms. Additionally, chromosome 10 was also affected in one of these oocytes. Another structural 

abnormality involved chromosome 20 which was seen in reciprocal form in both the oocyte and 

the corresponding polar body. This suggests that chromosome breakage or abnormal 

recombination or duplication took place in the oocyte during meiosis I.

Twenty five samples of non PGS oocytes/pbs were studied from 4 PGD patients and one 

having routine IVF. These included 7 oocyte/polar body complexes, 7 single oocytes and 2 single 

polar bodies. The average maternal age was 35.8 years. There was one abnormality seen from an 

oocyte of a translocation carrier 46,XX, t(9;20)(pl3;pll.2) showing 23,X, d u p (20)(p ll.2p l3 ). 

One more abnormality was detected in an oocyte from a partner of a carrier for 

translocation 46,XY,t(9;15)(pl2;ql3) (Female S3, Table 5.1) in the oocyte and not the 

corresponding polar body. This abnormality however was due to unbalanced sperm 

fertilizing the oocyte and thus the oocyte was considered normal. No X chromosome 

aneuploidy similar to that seen in the PGS group was observed in these oocytes.

Some of the abnormalities visible with CGH in the study are shown in the figures 5.5, 5.6, 

5.7, 5.8, 5.9, 5.10 and 5.11.
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F igure  5.5. M eiotic non-disjunction o f chromosome X  visible in an oocyte/polar 
body complex A from fem ale S2. R eference DNA is 46, X X  labelled  in red in both 
cases. The oocyte lost an X  and the PB has an extra X  chromosome
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Figure  5.6. Loss o f chromosome X  visible in an oocyte/polar body com plexB  
from fem ale S2. Reference DNA is 46, X X  labelled in red in both cases. The 
oocyte shows loss o f X  while the po lar shows partial loss o f X.

raid: itcLii
•• -  •* “ •» Mn

m*

C E C E tX

t r r  I C J L ip a  ic x z s p : u i - s p n

Polar bodv

179



Results from CGH on oocytes

F ig u re  5.7. Meiotic non-disjunction o f chromosome 12 visible in an oocyte/po lar body 
complex from fem ale E1. Reference DNA is 46, X X  labelled in red in both cases. The 
oocyte lost chromosome 12 and the PB has an extra chromosome 12.
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Figure 5.8. CGH close up on the X  chromosome of the abnormal 24, X X  OPN/OPB 
oocyte from female E2 showing disomy X. Reference DNA is female in red.
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Figure  5.9. Chromosome duplication and deletion for chromosome 20 visible in the 
abnormal oocyte/polar body complex from fem ale T. Reference DNA is 46, X X  labelled in 
red in both cases. The oocyte shows partial duplication o f chromosome 20q while the 
polar body shows partial deletion for almost the same segment on chromosome 20.
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F igure  5.10. Fertilisation with an unbalanced sperm due to paternal translocation  
[46 ,X Y ,t(9 ;l5 )(p l2 ;q l3)] was picked up in an oocyte from fem ale S3. The reference  
DNA is 46,X X  in red. The polar body was normal and the oocyte is assum ed normal.
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Figure  5.11. An unbalanced oocyte identified by CGH from carrier fem ale R o f a 
translocation 46 ,X X ,t(9 ;20 )(p 13 ;p 11.2). A duplication of 20p11.2p13 can be seen. 
Reference DNA is 46,X X  in red.
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Brief summary of main findings

• Detection of imbalance in oocytes /zygote from translocation carriers proves the accuracy 
and efficiency of the CGH technique.

• Oocytes and polar bodies from patients undergoing PGS have a high frequency of X 
chromosome abnormalities that may be related to their extreme infertility.
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Chapter 6 

Discussion

Studies were performed on lymphocytes, oocytes and embryos from couples 

mainly referred for PGD and PGS. FISH and CGH strategies were developed for clinical PGS 

and PGD cycles and most were implemented. Genetic information was obtained from over 

1000 human preimplantation embryos and over 50 oocytes. Detailed follow up results 

were obtained from over 800 embryos. All the information produced in this study points 

to a variety of errors and abnormality causing mechanisms happening at the 

preimplantation stage of development that affect mitotic and meiotic divisions. In the 

next sections the results and implications of these studies will be discussed.

6.1 Studies relating to PGS

6.1.1 Development, optimization and implementation of PGS protocol

The aim of this part of this study was the development and clinical implementation of 

an efficient PGS protocol and evaluation of the PGS protocol in terms of its efficiency and 

specificity. More specifically;

■ Are a sufficient number of chromosomes being examined?

■ Are the right chromosomes being tested?

■ Is there an advantage in including chromosome 15 in the PGS 

protocol which is not screened in some commercially available 

probe sets?

■ Error rate; frequency of false positive and false negatives
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Chromosomes and efficiency of PGS protocol

Results from 101 cycles of PGS, 935 biopsied embryos and 596 embryos with full 

follow up studies were obtained using FISH to screen for chromosomes 13, 15 ,16, 18, 21 

& 22 in two rounds of hybridisation. The PGS protocol used is unique to this centre and 

was established after careful consideration of the following parameters; 1) The 

chromosomes most frequently found in aneuploid conceptions, 2) The availability and 

efficiency of FISH probes or probe sets, 3) The maximum number of FISH probes and 

sequential hybridizations that can be used for single cell analysis without a significant loss 

of efficiency.

The use of different fluorochromes for each chromosome, rather than ratio labelling, 

increased the accuracy of the protocol. The choice of chromosomes was carefully 

considered in order provide the maximum benefits for the couples undergoing PGS 

without compromising on the efficiency of the FISH technique. Preliminary studies 

showed reduced FISH efficiency when more than three probes are used in a single 

hybridisation. Given the choice to screen for more chromosomes but with higher error 

rate and to screen for six chromosomes in two hybridisation rounds with increased 

efficiency the latter was chosen. With efficient screening for six chromosomes the 

proportion of embryos diagnosed as normal in this study was low (18.6%). The addition of 

extra probes would have probably leaded to fewer normal embryos found due to the 

increased error rate.

The maximum number of sequential hybridization rounds of a biopsied cell was two. 

After two rounds of hybridizations the structures of single biopsied nuclei begin to 

degenerate thus giving variable results. The combined probe efficiency of this custom 

made protocol ranged between 88% and 95% which was optimum for single cell 

applications. A small decrease in hybridization efficiency was noted by Liu et al (1998) 

after three rounds of FISH hybridizations on surplus IVF embryos. However, from this 

study it was observed that the effects of multiple hybridization rounds on a single 

blastomere were more severe than that on whole embryos on a slide. So protocols with
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more than two hybridization rounds should also be tested on single blastomeres on a 

single slide.

There have been reports where 10-15  chromosomes have been used either in two or 

three hybridization rounds (Abdelhadi et al 2003, Baart et al 2004a, Baart et al 2007a). 

Abdelhadi et al (2003) used three hybridization rounds to screen for 13 chromosomes in 

200 embryos after follow up with an error rate of 12%. They had more errors in the LSI 

probes of 21 and 22 and the aqua probes 15 and 16. Baart et al (2004a) used two  

hybridization rounds to screen for 10 chromosomes and although individual probe 

efficiency was around 95% the combined probe efficiency for the 1st round was 86%. 

Additionally, the combined efficiency for both rounds was not calculated. Baart et al 

(2007a) screened for 15 chromosomes on surplus cryopreserved embryos and found that 

their abnormality rate went up from 67% to 81%; as before they only reported individual 

probe and hybridization round efficiencies. All three studies used ratio labelled probe 

mixtures.

The error rate in this study was 1.8% which confirms that the protocol of 6 

chromosomes screen provides highly reliable results. The very low false positive rate of 

1.15% showed that the abnormalities observed in the biopsied cell are a true 

representation of at least some of the cells found in the embryos and that the abnormality 

rate reported in the study is a true finding. For comparison, Daphnis et al (2005) found an 

average 5% FISH error rate in a careful study of human preimplantation embryos. A 

retrospective study of monosomic embryos at the biopsy stage and their follow up 

(Cooper et al, 2006), found a false positive rate of monosomy of 3.8% and concluded that 

monosomy in biopsy results should be taken as a true representation of the status of the 

embryo. False positives were mostly due unclear results on biopsy but mosaicism could 

not be ruled out.

The false negative rate is more difficult to establish since most embryos found normal 

had no follow up data because they were transferred or frozen after biopsy. There were 9 

embryos found to be normal on biopsy that were reanalyzed but which were of poor
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quality. Three of them were found to be abnormal, two were fully chaotic and one had 

meiotic trisomy 13. The latter was due to a split signal that was scored as one on biopsy 

making a total of two instead of three. The two chaotic embryos might have had one or 

more diploid cells that were removed on biopsy thus giving a false representation of the 

rest of the embryos. However, these embryos were not transferred or frozen due to poor 

morphology or to being arrested which might be indicative of disorganized cell cycles. The 

small number of embryos that were normal on biopsy that was followed up cannot 

provide a conclusive false negative rate. In addition, all 28 pregnancies after PGS in this 

study delivered chromosomally normal babies and there were few miscarriages.

However, even with embryo screening, a great number of transferred embryos fail 

to implant and this is an area that requires further investigation. It might be that screening 

for all chromosomes will lead to an improved pregnancy rate but the techniques for this to 

happen efficiently in a clinical and time limited setting at the single cell level require 

improvement. Mosaicism, as widespread as this study suggests (53% chaotic and 40% 

simple mosaics), might also contribute to the failure of implantation but since we cannot 

check the whole of the embryos that are found diploid on biopsy and transferred, this 

remains a theoretical possibility.

It appears that with an efficient FISH protocol and parental lymphocyte check to 

avoid polymorphic chromosomal errors (as discussed in section 1.1.2) mosaicism might be 

the most common source of errors in preimplantation genetic screening at least in the 

cases of normal/abnormal mosaicism. In this study 105 of the mosaic embryos (44%) had 

diploid cells (10-68% of the total cells in each embryo) and were diagnosed as abnormal 

on biopsy. This was also shown in a theoretical model where general mosaicism has been 

estimated at 70% and normal/abnormal mosaicism at around 35% (Los et al, 2004). In this 

model the biopsy of one cell and two cells from embryos with varying degrees of 

mosaicism on day 3 can produce a high rate of false positives and false negatives, with 

errors increasing in the case of single cell biopsy. The removal of an abnormal cell from an 

overall normal embryo might lead to a false positive result on follow up. Most
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significantly, the removal of a normal cell from an overall abnormal embryo might result in 

the transfer of an abnormal embryo and a false negative result. Single cell abnormalities 

have been well documented by CGH and FISH studies (Wells & Delhanty, 2000; Daphnis et 

al, 2005). Figure 6.1 illustrates the theoretical outcome of single cell biopsy in the case of 

mosaicism. The repercussions of normal/abnormal mosaicism might be found in the 

relatively low implantation rate within the PGS group where the biopsy result might be a 

true one but not representative of the rest of the embryo.

Figure 6.1. Effects of mosaicism and biopsy in PGS of normal and abnormal cells in 1-cell biopsies 
taken from 8-cell embryos with various levels of mosaicism and the compositions of the remaining 
post-biopsy embryos (From Los et a I, 2004), Normal cells- white circles Abnormal cells- black circles
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However, PGS is a general screening procedure designed to increase the 

probability of transferring a diploid embryo. Although a normal single cell is not always 

indicative of the rest of the embryo it can help screen out the entirely abnormal embryos. 

The complete randomness of selecting the nuclei during biopsy will always produce some 

errors due to mosaicism. As in prenatal diagnosis, these errors have to be 

counterbalanced with overall effectiveness of the PGS protocol, the time available to 

obtain the results and the cost effectiveness in a clinical setting.

Chromosome 15 is not routinely included in most PGS programmes. However, the 

decision to include it in this study appears to be a valid one as errors in chromosome 15 

constitute 15% of all identifiable errors of mitotic and meiotic origin. The other five 

chromosomes chosen also appear to have high levels of aneuploidy in embryos, a fact that 

gave confidence that the chromosomes this protocol was screening for were the correct
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ones, as being the most significant ones in producing abnormal pregnancies. The best 

alternative would be the look at all the chromosomes from single cells. This can be done 

effectively by CGH either on blastomeres or polar bodies, however CGH is not yet 

routinely used clinically since it is very time consuming when single cells are involved and 

requires strict safety precautions to avoid contamination. Since, in this study, so few  

cycles produced more than two embryos suitable for transfer by testing for six 

chromosomes, testing the whole set is not a high priority for such high risk couples.

In general, this PGS protocol has proved highly effective in detecting abnormalities in 

single cells with a low false positive rate. An additional benefit to this protocol was that it 

allowed for flexibility in terms of different combinations of probes to be used in each 

round with high efficiency. Additionally, the chosen chromosomes tested appear to detect 

a high proportion of the aneuploidy found in preimplantation embryos.

The limitations of this protocol are located mainly in its cost effectiveness. It is more 

expensive than commercial probe sets since most of the probes are bought separately and 

not in a mixture. However, the quality of results means that further confirmatory 

hybridisations with the same chromosomes, in case of unclear results are not needed so, 

no extra individual probes need to be purchased. In contrast, when a commercial probe 

set is being used and there are unclear results for a particular chromosome an individual 

probe is used in order to confirm the result adding to the cost of each PGS cycle.

Even when only six chromosomes were being tested in this study the great majority of 

untransferred embryos showed varying degrees of abnormalities via several mechanisms. 

These are discussed in the following paragraphs.
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6.1.2 Numerical chromosomal abnormalities and mechanisms of aneuploidy in 

preimplantation embryos

Very few reports on the outcome of PGS include full follow up studies that allow 

the identification of aneuploidy mechanisms in preimplantation embryos and relate them  

with the reproductive history. The aim here was the determination of full chromosomal 

outcome from follow up analysis of untransferred embryos derived from PGS cycles. 

Specifically, to investigate:

■ The types of abnormalities

■ The origin of errors either meiotic or mitotic

■ The mechanisms of aneuploidy involved

■ The chromosomal outcome in relation to the reproductive history 

of couples that have undergone PGS.

At 81.4% the rate of abnormality overall in preimplantation embryos (and 93% 

mosaicism rate including fully chaotic) in this study is much higher than in most previously 

published studies following PGS diagnoses in embryos where 50 to 70% of embryos 

appeared to be abnormal (Giannarolli et al 1997, Giannarolli et al, 2005, Rubio et al, 2005, 

Munne et al 2005, see also table 1.5). Bienlanska et al (2002) reported an overall 

mosaicism rate in untransferred embryos of 48.1% but found that mosaicism was 

increasing with the embryonic developmental stage and at the blastocyst stage the 

mosaicism rate reached 90.9% if polyploidy was included.

Additionally, Munne et al, (2007) found that the aneuploidy rate in embryos 

increased from 70% to 80% form women over 42 years. The high abnormality rate in this 

current study could be a reflection of the selection of the couples in this Centre where PGS 

is done as a last option and most couples chosen present with a very poor reproductive 

history. Baart et al (2006) in a study of 196 preimplantation embryos (using FISH) from 

women <38 years with no indication for PGS found an aneuploidy rate of 64% and 50% 

mosaicism. Along with other studies, these results confirm that aneuploidy and mosaicism 

is very frequent in preimplantation development but also that some groups of people may
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be more prone of producing aneuploid and/or mosaic embryos than others, again 

confirming other studies (Delhanty et al, 1997, Voulaire et al, 2002).

It may also be that mosaicism is more frequent than previously thought at other 

developmental stages in the human life cycle. In preimplantation embryos it might be 

more pronounced since all the cells of a single organism can be found in the 

preimplantation stage. In spontaneous abortions Vorsanova et al (2005) found 48% 

mosaicism and Levedev et al (2004) found diploid aneuploid mosaicism for various 

monosomies. Cancer is well linked to aneuploidy and mosaicism with chaotic mitotic 

divisions and extremely heterogeneous chromosomal anomalies in different forms of 

tumour cells (Duesberg et al, 2005). Most interestingly, mosaic aneuploidy and mosaicism 

has been found in the human brain. In the brain tissue of fetuses (8-lwks) with normal 

karyotypes, 30-35% of mosaic aneuploidy has been found (Yurov et al, 2007) as well as in 

functioning adult neurons of normal and diseased individuals at around (40%) which 

affected all autosomes. It had also been suggested that mosaic aneuploidy of the X 

chromosome in male lymphocytes might play a role in autism and its high frequency in 

male children (Yurov and Yurov, 2007). These studies suggest that mosaicism is frequent 

even in the adult stages of human development and can be related to a natural 

occurrence in certain tissues or predisposition to disease.

Another observation in this study is the presence of a high proportion of fully chaotic 

embryos in all groups of patients irrespective of maternal age or reproductive history at an 

average rate of 53%. The formation of chaotic embryos might be partly due to 

environmental factors and more specifically linked to the IVF setting. Salumets et al (2003) 

found 24% chaotic embryos that were cultured after freezing, thawing and culturing 

compared to 6.3% in frozen/thawed non cultured embryos. Culture conditions and IVF 

stimulation protocols might also interfere with cell divisions in susceptible embryos (Bean 

et al, 2002 Baart et al, 2007).

Additionally, Delhanty et al (1997), studying fertile patients undergoing PGD, found 

the extensive generation of fully chaotic embryos to be patient specific, an observation
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confirmed by Voullaire et al (2002). From this observation we can conclude that our 

cohort of couples undergoing PGS may have a predisposition to generating chaotic 

embryos which might or not be aggravated by the IVF procedures. In addition, levels of 

chaotic mosaic and mosaic embryos are lower in the embryos from carriers of reciprocal 

and Robertsonian translocations in this study (33% and 26% respectively) compared to the 

PGS cohort adding to the conclusion that for some couples genetic predisposition might 

play a role.

Predisposition to aneuploidy in the gametes has also been found to generate chaotic 

embryos in susceptible mice strains (Lightfoot et al, 2006). However, several postzygotic 

errors as in chaotic embryos hinder the identification of the original meiotic errors in the 

gamete. Thus, in this study very few chaotic embryos were deemed to have meiotic errors 

since the original, if any, meiotic errors could not be easily identified.

Maternal age has an undisputed link with embryonic aneuploidy and the risk of 

various trisomies in the foetus. Women who are older than 37 years present reduced 

fertility due to their ageing oocytes being prone to various chromosomal errors. This 

increased aneuploidy is observed in preimplantation embryos but to a much more severe 

degree than in prenatal studies (Munne, 2003, Munne et al, 2007). However, overall 

maternal age is not a major factor affecting the frequency of all abnormalities seen in 

preimplantation embryos and oocytes (Delhanty et al, 1997; Bielanska et al, 2002; Baart et 

al, 2006; Fragouli et al, 2006a-c). From this study it can be seen that uniformly abnormal, 

chaotic mosaic and simple mosaic embryos seem to occur irrespective of age and 

reproductive history in roughly the same proportion for all groups.

The frequency of meiotic abnormalities in embryos from older women was not 

significantly different from those in the younger age groups although there is an upward 

trend with increasing maternal age. This shows that although older females in general 

have higher rates of meiotic abnormalities, some younger females (25-35 years of age) 

going through this PGS programme have a high chance of a meiotic chromosomal 

abnormality. That is probably an explanation of why the younger women that have
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resorted to PGS in this study present fertility problems beyond those that are 

encountered in routine IVF. As mentioned previously, it appears that the genetic makeup 

of individuals predetermine the extent of the meiotic aneuploidy due to recombination 

and other factors as well as maternal age (Warren and Gorringe, 2006).

The distribution of aneuploid mosaic (and diploid chaotic) embryos however was 

significantly different between the three groups. The aneuploid mosaics were more 

numerous in the two older groups than the younger group of females. This may be mainly 

due to the higher abnormality rate seen in women over 40 (84.9%) compared to those in 

the younger age groups (79.6 and 78% respectively) and a greater meiotic error 

susceptibility with increasing age. Perhaps the maternal age effect is detected in this type 

of mosaicism. Meiotic errors and other abnormalities can be seen to be accumulating 

more frequently in the embryos from older females. On the other hand, significantly more 

diploid/chaotic mosaic embryos were found in the younger group. This could also be due 

to paternal as well as maternal factors.

Of course, these meiotic abnormalities may come from either parent however it 

has been noted in another recent study of ovum donors that younger women can present 

high aneuploidy rate in their oocytes (Munne et al, 2006). We can conclude that maternal 

age alone in these couples is not enough of an indicative parameter on which to base a 

prognosis for genetic abnormalities in their embryos. Rather there might be other 

parameters either related to IVF processes and/or in their genetic makeup that 

predisposes them to an increased risk of aneuploidy in their gametes or embryos.

The level of uniformly abnormal embryos was very low in this study (5.7%) due to 

wide spread mosaicism; but was significantly different in the different referral groups. The 

most striking differences are in the number of embryos with meiotic abnormalities and 

uniformly abnormal embryos found in the AMA, RM and RIF groups. Only 8 out of 300 

embryos in the RIF group were uniformly abnormal pointing to the fact that whatever the 

genetic makeup of the zygotes, in this group in particular, post-zygotic errors are a major 

factor in their subsequent demise.
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Genetic predisposition might also play a role in this. Bergh et al (2004) found that by 

adding to the IVF media a naturally occurring follicular fluid sterol (FF-MAS) the rate of 

uniformly normal human embryos was decreased. If this is valid, then genetically 

determined variations of certain hormones and their levels within the follicular fluid might 

play a role in the formation of aneuploid and mosaic embryos. Aneuploidy via alteration of 

follicular environment has been seen in mice where subtle changes in oocyte growth 

increased the risk of non-disjunction (Hodges et al 2002).

In general, couples in the RIF group appear to produce embryos that are 

genetically susceptible to mitotic aneuploidy because of their very low level of uniformly 

abnormal embryos and the low identifiable meiotic error rate. However, subtle 

differences in susceptibility may in future differentiate this group further according to the 

type of mosaic embryos they produce. In general, the combination of the genetic 

backgrounds of both parents might be responsible for the results seen in this group.

In contrast the RM and AMA groups seem to have marked similarities in almost every 

aspect of the chromosomal abnormalities found in their embryos although their 

reproductive history is different. Most RM patients were able to conceive since most of 

the previous miscarriages were from natural cycles; their problem was to achieve an 

ongoing pregnancy. The meiotic errors within the RM group were spread across all ages; 

the age group 29-37 years had an average of 17% of embryos with meiotic errors and the 

38-42 age group had 22% on average, not significantly different.

These results indicate an unidentified underlying common mechanism that links the 

infertility in these two groups (RM & AMA) and is worth investigating further. The RM 

group appears to be affected by an age independent predisposition to aneuploidy as 

detected by comprehensive studies of human oocytes (Fragouli et al., 2006b). 

Furthermore, studies in human and mouse gametes on meiotic recombination provide 

some evidence of a "genetic background" effect in the causes of aneuploidy (reviewed in 

Lynn et al, 2004, Hunt, 2006). So, it might be that earlier susceptibility of the RM group of 

patients observed in this study is the result of a genetic predisposition.
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As an example, a study by Sherman et al (2006) looked at the recombination 

patterns of chromosome 21 in human oocytes in relation to maternal age. They found that 

Ml errors from younger women had an increased proportion of susceptible recombination 

events while in older women the incidence was near to that found in non-disjoined 

chromosome 21. Although altered recombination patterns have been linked to increased 

aneuploidy the authors concluded that while in younger women all but the most 

susceptible of meiotic exchanges can be resolved, in older women even non-susceptible 

chiasmata cannot resolve properly. For Mil however the opposite was true. Oocytes with 

errors in 21 from younger women had fewer susceptible recombination patterns than 

older women. This led the authors to conclude that multiple risk factors for non­

disjunction can act at different times in the meiotic processes.

Susceptibility to chromosome malsegregation in lymphocytes has been found in 

women who had a Down syndrome child at a young age; they had significantly higher 

aneuploidy frequencies for chromosome 21 and 13 compared to a control group (Migliore 

et al, 2006). Additionally, increased aneuploidy rate in embryos was observed for young 

women that had experienced a previous trisomic conception (Munne et al, 2004a). 

Molecular factors, therefore, not yet identified or even unknown Mendelian traits may be 

responsible for the manifestation of these types of aneuploidy seen in this study. In fact, 

several severe chromosome instability syndromes have been described. Of interest is 

precocious sister chromatid separation described in Cornelia De Lange syndrome which is 

part of an array of syndromes that are due to defects of cohesin subunits, called 

cohesinopathies (Kaur et al, 2005). Although these mentioned examples are extreme 

cases, it is conceivable that some less severe traits in a genome could produce such 

abnormalities in preimplantation embryos. Of interest will be the follow up of the fertility 

of the offspring of these PGS couples in a future study.

The reduced number of identifiable meiotic abnormalities in the RIF embryos is 

another feature that distinguishes this group from the other two. This is the first time that 

such a link has been made. The results of the first 60 cycles of this study first indicated
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these differences (Mantzouratou et al, 2007). Additionally, Voullaire et al (2007) also 

found that the incidence of complex abnormality in healthy cleavage embryos is 

independent of maternal age but is increased in patients with a history of RIF. Again this 

fact points to post-fertilisation errors that are almost universal via a mechanism that may 

be independent of the outcome of parental meiosis but probably inherited by the 

embryos at a molecular level.

The distribution of normal embryos although not significantly different between 

the three groups shows that more normal embryos were found in the RIF group than in 

the RM and AMA groups (20.3% vs 17.2% and 15.8%). Coupled with the increased 

postzygotic abnormalities of normal/abnormal embryos it appears that there is a greater 

probability of errors arising during single cell PGS biopsy for this group due to mosaicism.

Most of the ICSI cycles in this study were performed for couples with RIF since it 

was our biggest referral group. Comparing the ICSI and IVF cycles within the RIF group it 

was found that there was no significant difference between the distribution of normal, 

chaotic, uniformly abnormal embryos and embryos with meiotic errors. This suggests that 

the pattern of embryonic abnormalities highlighted in this study for RIF couples was not 

solely a consequence of the insemination method or of poor sperm parameters but a 

characteristic of all couples in this group suggesting a predisposition to mitotic aneuploidy.

However, a significant difference between simple mosaic, aneuploid mosaic and 

diploid chaotic mosaic embryos was found between the ICSI-RIF and the IVF-RIF group. 

While aneuploid mosaics embryos were most frequent in the IVF-RIF group, more diploid/ 

chaotics was observed in the ICSI-RIF group compared to the IVF group (46% vs 8.8%). This 

also agrees with the theoretical assumption that genetic background (susceptibility to 

mitotic and/or meiotic errors) in combination with the error prone post-zygotic divisions 

will produce variations in aneuploidy and mosaicism.

Additionally, since poor sperm parameters indicated ICSI for this RIF subgroup, it 

might be implied that paternal factors might also be responsible for the high incidence of 

mosaicism and repeated implantation failure. In males with severe impairment of
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spermatogenesis at least 70% of sperm might be aneuploid (reviewed by Griffin & Finch, 

2005). Increased embryonic mosaicism has been reported in embryos from TESE cycles 

(52% mosaic, Silber et al, 2003). In a study by Gianaroli et al (2005) it was observed that 

the incidence of aneuploidy in embryos increased with the severity of the male factor 

conditions. Although no follow up of untransferred embryos was done, they noted that in 

RIF patients the most frequent defects were complex abnormalities like haploidy and 

polyploidy. Griffin et al (1995) found increased incidence of sex chromosome disomy in 

older males. Unfortunately, the sex chromosomes were not screened in the present study.

The elevated mosaicism and aneuploidy in embryos from ICSI-RIF group in this 

study and those mentioned indicates that the abnormal semen parameters might also 

predispose the embryos to mitotic aneuploidy. Errors on the Y chromosome like 

mutations at the molecular or the cytogenetic level have been described (Griffin and 

Finch, 2005). In the present study, all the couples were karyotyped previously to PGS and 

all the males were normal. This leaves molecular errors that could confer such embryonic 

abnormalities. Additionally, one study showed that males with 

oligosthenoteratozoospermia (OAT) and normal karyotypes showed an increased sex 

chromosome aneuploidy in their lymphocytes (FISH with X, Y and 12) compared to control 

individuals (De Palme et al, 2005), suggesting a cell division defect that can affect the germ 

cells as well as somatic cells.

One explanation would be that these errors lie with the male centrosome which 

controls the mitotic divisions after fertilization. Sperm morphological abnomalities had 

been linked to centrosome defects (Sathanathan 1998). If components of the centrosome 

are not functioning properly in some ICSI males then abnormal cell divisions in the embryo 

might occur. Additionally, a study by Palermo et al (1997) showed increased levels of 

mosaicism in embryos derived from oocytes injected with sperm fragments (head and tail) 

while not with whole sperm. This raises the possibility that the ICSI procedure might 

confer some of the abnormalities seen by physically damaging the centrosome in some 

sperm as well as genetically altered centrosomes.
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The mechanisms that lead to these levels of aneuploidy and mosaicism identified by 

this study in preimplantation embryos are still not clear. The aberrant function of cycle 

checkpoint genes might provide an explanation, as has been found in cancer cells (Kops et 

al, 2005, Delhanty and Handyside, 1995). Additionally, generalized mitotic aneuploidy 

might be explained by the formation of tetraploid intermediates via failure of cytokinesis. 

Shu and King (2005) have found that an original nondisjunction error can result in 

tetraploid cells rather than aneuploid ones in human tissues by regression of the cleavage 

furrow. Although, a checkpoint exists that arrests tetraploid cells normally in mammalian 

cells (Margolis et al, 2003) in some cases this checkpoints might not stop mitosis from 

happening (Fujiwara et al, 2005, Harrison et al, 2000). A decrease in cleavage rate was 

indeed found in the 4n preimplantation mouse embryos compared to their 2n 

counterparts (Eakin eta l, 2005) but several tetraploid cells progressed through mitosis.

Tetraploid cells that can re-enter mitosis (slippage), present an increased frequency of 

chromosomal abnormalities as has been seen in some human cell lines (review in Ganem 

et al, 2007). Additionally, Chatzimeletiou et al (2005) studied the spindle anomalies in 

preimplantation embryos and proposed that frequently seen binucleate blastomeres in 

human embryos, which present spindle abnormalities and result from failure of 

cytokinesis, can lead to the formation of tetraploid cells and widespread genome 

instability. In this study the ploidy mosaic embryos were only 6.7% of the total however 

several of the chaotic embryos could have arisen via a tetraploid or polyploid intermediate 

since gross abnormalities in the number of all chromosomes was regularly seen in the 

chaotic cell lines of diploid/chaotic, aneuploid/chaotic and fully chaotic embryos.

Nicely coupled with these conclusions is a study by Bean et al (2002), where mice with 

a mitotically but not meiotically unstable Y chromosome (WtY) were studied. The authors 

came to several interesting conclusions; i) the WtY is stable through meiosis but has a high 

frequency of non-disjunction during mitosis, ii) the non-disjunction events were 

concentrated mainly in the early mitotic divisions, thus indicating that the earlier post- 

zygotic divisions are error prone and iii) although the WtY produced errors on several
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different genetic backgrounds (achieved by cross-breeding WtY mice with other strains), 

the rate of non-disjunction of the WtY chromosome was influenced by genetic 

background. Another interesting assumption that can be made here is that if susceptibility 

for embryonic mitotic non-disjunction exists in one parent then the genetic makeup of the 

other parent might increase or decrease the rate of aneuploidy in their embryos. 

Therefore, the combination of maternal and paternal factors might influence the 

outcome.

Taking the above information into account a theoretical sequence of events can be 

established to explain the high levels of aneuploidy, mosaicism and chaotic embryos 

encountered in this study; (a) couples needing PGS with a theoretical susceptibility to 

embryonic mitotic non-disjunction or susceptibility to produce aneuploid gametes, 

produce embryos (b) error occurs in the non-disjunction prone early mitotic divisions in 

combination with the underlying susceptibility which will result in these embryos either 

producing mosaic cell lines or undergoing regression of the cleavage furrow resulting in 

tetraploid and binucleate/multinucleated cells (c) these cells can re-enter mitosis with or 

without DNA replication and produce highly aneuploid embryos or cell lines. If a variety of 

genetic background susceptibilities play a role in this then some couples might present 

with differences in aneuploidy and mosaicism rates.

Few previous studies have been sufficiently detailed to provide precise information 

on individual meiotic and mitotic error mechanisms; Munne et al (2004), found that 

monosomy may be more common than trisomy and the chromosomes most affected 

overall are 22, 16, 21 and 15. However, that study was unable to distinguish between 

errors due to meiosis and those of post-zygotic origin. In this study, meiotic errors most 

frequently affected chromosomes 21, 22 and 18 and trisomy was in 1:1 ratio with 

monosomy. Mitotic errors affected most frequently chromosomes 13, 15 and 22 and the 

most common identified mechanisms of formation were mitotic non-disjunction followed 

by chromosome loss and chromosome gain. Overall, those most frequently affected were 

chromosomes 21, 22, 18, 13, 15 and 16 in that order. Differences in chromosome
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susceptibilities could be seen in the different referral groups. Most notable was that 

chromosome 16 was most commonly involved in the mitotic errors of the RIF groups while 

not in the other two groups. Trisomy and monosomy was seen in all groups in 1:1 ratio 

which was expected since meiotic non-disjunction events will produce an equal number of 

aneuploid gametes of each type randomly.

Overall, mitotic non-disjunction was found to be the most frequent aneuploidy 

mechanism for chromosomes 13 ,15 ,16  and 18 but not for chromosome 21. Chromosome 

21 presented most frequently due to meiotic trisomy and monosomy, while for 

chromosome 22 both meiotic and mitotic abnormalities existed in equal proportions. 

These data cannot be readily compared to other studies since differences in chromosomes 

tested and sample sizes can result in inadequate conclusions. The fact that very few  

studies exist that present detailed examination of the mechanisms of aneuploidy in 

preimplantation embryos is also a factor. Chromosomal abnormalities in preimplantation 

embryos appear in general to produce differences compared with the information 

produced by spontaneous abortions due to high incidence of post-zygotic abnormalities 

and the non-viability of most of the embryos before the clinical pregnancy stage. Thus 

post-zygotic errors for the chromosomes studied here are present with a very low 

percentage in spontaneous abortions (Hassold et a l 2007). Similarly, a study by Katz-Jaffe 

et al (2004) which found that aneuploidy for chromosome 21 arising from mitotic errors 

was more frequent in preimplantation embryos than more developed fetuses where only 

meiotic aneuploidy could be detected. Additional studies should be done in order to 

investigate individual chromosome aneuploidy in preimplantation embryos and to 

recognize patterns if any in different referral groups. More studies are also needed for the 

identification of the parental origin of errors so that more detailed information about their 

occurrence can be obtained.

The developmental potential of the untransferred embryos was also assessed in this 

study and from this and previous studies it is obvious that aneuploidy or varying degrees 

of mosaicism in embryos does not prohibit blastocyst or morale development (Magli et al,

199



Discussion

2000, Ruangvutilert et al, 2000; Li et al, 2005). In this study, 3/73 blastocysts were 

uniformly abnormal and 52% of the mosaic blastocysts had a diploid cell line. 59% of the 

mosaic blastocysts in the RIF group had a diploid cell line, 45% of the RM group and 38% in 

the AMA group. Although the differences are not large they do show that a high 

proportion of blastocyst in the RIF group may be normal/abnormal mosaic and that would 

explain the non-existent implantation rate with routine IVF that these patients were 

experiencing.

Of the embryos from the RM group, 11.7% reached the blastocyst stage, a frequency 

higher than in the other two groups (5.5%-RIF and 9.5%-AMA) which fits in with the higher 

implantation potential of the embryos but the lack of progression in pregnancy due to 

inherited chromosomal abnormalities. Interestingly, only 5.5% of the embryos in the RIF 

group reached the blastocyst stage, even lower than those in the AMA group. This implies 

that embryo progression is significantly diminished in this group mainly because of the 

mitotic instability these embryos were exhibiting.

In general, this study has provided some significant evidence for the following: in a 

general background of error prone cell divisions and lax cell cycle checkpoint function, 

couples with genetic predisposition to susceptible meiotic and/or mitotic processes 

produce different types of abnormal embryos through different mechanisms. The 

mechanisms producing these errors are usually operating by a complex interplay of a 

variety of factors genetic and environmental. However, the genetic makeup of both 

parents might play a significant role in the amount of abnormality seen in preimplantation 

embryos.
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6.1.3. Examination of the usefulness of preimplantation aneuploidy screening for 

couples with poor reproductive history

<& To assess the validity of PGS in relation to pregnancy outcome 

■ Does PGS work?

Despite the low normality rate (1.6±1.1 embryos per cycle) in this study the pregnancy 

rate of 33.3% per embryo transfer is above the average of the latest ESHRE data for PGS 

(24% per embryo transfer) (Sermon et al, 2007). This suggests that efficient screening for 

6 chromosomes is sufficient to detect the few embryos that are suitable for transfer in this 

cohort of patients. All the groups presented a higher than average pregnancy rate 

compared with the ESHRE data. The highest pregnancy rate was for the RM group with 

43.8% per ET (ESHRE 29%). The RIF group had 34.6% per ET (41% per couple) almost 10% 

higher than the average ESHRE rate (24%). The AMA group had the lowest pregnancy rate 

at 21.7% per ET but still marginally higher than the ESHRE data 19%). However, the 

average maternal age in the AMA group was higher in this study vs the ESHRE data. A 

sharp decrease in the pregnancy rates per ET could be observed with increasing maternal 

age from 42.9% in the youngest group to 21.6% in the oldest group. These figures indicate 

that maternal age is a critical parameter for the success of PGS.

A direct comparison of the current outcome of PGS cycles is not possible with 

routine IVF patients at the same centre since the PGS couples presented with very poor 

histories. However, a general comparison of the main outcomes of routine IVF and ICSI 

cycles with PGS cycles in this centre is shown in table 6.1. The routine cycles group had a 

lower average maternal age since 44% of the cycles with ET were done for women under 

35 years. In the PGS group only 12% of females were under 35. Despite this, the 

pregnancy rates in the PGS group are acceptable considering the poor history and the 

increased maternal age of the PGS couples. The PGS pregnancy rate is also higher than the 

UK and the European average pregnancy rate for routine IVF & ICSI (29%) (EMI-ESHRE 

Andersen et al, 2006). Another observation from table 6.1 is the that implantation rate of 

PGS closely follows that of the routine couples. The miscarriage rate of the PGS group is
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less than half of that of the routine group and the multiple birth rate is almost 10 times 

lower suggesting that more embryos were transferred per cycle in the routine cycles. This 

shows that for couples with poor reproductive history, an efficient PGS programme can 

improve the chances of a viable pregnancy to a level of that of routine IVF patients and 

decrease their chances of a miscarriage or of multiple births.

Routine IVF and ICSI*(%) PGS (%)

34 37.8

52** 33.3

26.9 24.6

10 1.4

12.8** 5.6

*For the period January 04-December 04 (HFEA published data website:
http://auide.hfea.aov.uk/Quide/Clinic.aspx?cliniccode=0044&tab=Clinic)
**ACU website- htto J / www.conception-acu.com/subpaae.cfm ?levellId=4&le\/el2ld=0

Studies on PGS cycles and its effectiveness on are currently non consistent in their 

outcome. Published reviews on PGS have concluded that more research is needed and 

more randomized controlled studies (Twisk et al, 2006, Shahine and Cedars et al, 2006, 

Donoso et al, 2007). Observational studies have concluded that PGS can reduce the risk of 

spontaneous abortions and increase live birth rate (Gianaroli et al, 2005a, Platteau et al, 

2005, Munne et al, 2006a). For individual referral groups the effectiveness of PGS is 

questioned however since in most cases inappropriate control groups or diverse inclusion 

criteria have been used.

For RM, Platteau et al (2005a) found no beneficial effect of PGS; however, no 

comparison with a RM group without PGS was done. Werlin et al (2003) reported on a 

small number of patients (19) with RM and found that PGS increased the pregnancy rate 

for these couples, although the number of couples was very small. The same study did not 

find any beneficial effect for RIF couples and inconclusive results for AMA couples. The 

sample size was small in all couples. Platteau et al (2006), found that the number of
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embryos available for biopsy (at least 6 embryos) is a factor in the success of the RIF group 

of PGS patients.

For the AMA group, two large randomized control studies have reported no beneficial 

effect (Staessen et al 2004, Mastenbroek et al, 2007). Staessen included 400 cycles and 

found no significant difference in the pregnancy rates between the control and the PGS 

group for women over 37 years. However, significantly more embryos per cycle were 

transferred in the control group (2.8±1.2 vs 2.0±0.9) which made the results inconclusive 

since there was higher implantation rate in the PGS group but not significantly. This study 

suggested that PGS is of value where the number of embryos to be transferred is limited 

to two.

On the other hand, Masterbroek et al (2007) studied 836 cycles for AMA and found 

that PGS actually reduced the pregnancy and live birth rate. However, as with most PGS 

studies, there were some problems. First were their inclusion criteria. They included all 

women over 35 as AMA and included referral for infertility for some categories unrelated 

to a high aneuploidy risk (tubal, endometriosis and cervical reasons). For comparison 

AMA-PGS patients in our centre were only referred if they were over 39 years of age and 

had unexplained infertility. Chromosomes 15 and 22 were not screened in the 

Masterbroek study although in our study errors from these chromosomes formed 33% of 

the total. Finally, embryos undiagnosed after PGS were transferred and counted towards 

the screening group when in fact they were not screened at all. The embryos that were 

found to be normal with PGS and transferred did have a higher implantation rate than the 

control group.

In this centre the patients were highly selected due to their poor reproductive history. 

Advanced maternal age has well known increased risk of aneuploidy however the point at 

which a woman is considered to be of advanced age needs to be addressed. Additionally, 

as seen in this study some individuals might be predisposed to extensive mosaicism and 

various meiotic chromosomal abnormalities. However, PGS is an invasive procedure at an 

early developmental stage and the author's opinion is that it should not be applied to any 

couples needing assisted reproduction. In order to see the benefits of PGS its application
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has to be limited to the couples that need it and have not been helped with conventional 

IVF. This counteracts to a certain degree the damage done to the embryos by such 

invasive procedures. Additionally, if PGS is applied to couples that produce mainly 

chromosomally normal embryos, it will not confer any advantage since most of the 

embryos will produce a normal pregnancy without the need for screening.

This study shows that some couples will be helped with PGS when screening is done 

efficiently and patient selection criteria are applied. However, the very high proportion of 

mosaic embryos in this study means that not all abnormalities or normalities will be 

recognized since the single cells biopsied might not be representative of the rest of the 

embryo. However, the majority of the abnormal embryos will be screened out. Future 

studies then should probably concentrate on 1) recognizing the couples most likely to 

benefit from PGS, 2) understanding the mechanisms that relate to specific types of 

aneuploidy for infertile or subfertile couples 3) the development of less damaging biopsy 

protocols and 4) finding new and efficient ways of getting more information out of single 

cells, like the use of single cell CGH or microarrays.

As a result of this study in PGS embryos the following follow up studies were initiated: 

In depth study of the mechanisms of aneuploidy in RM couples using both CGH and FISH, 

the collection of DNA samples from all the PGS couples to screen for appropriate markers 

that would indicate genetic susceptibility, the investigation of embryos from couples that 

are not deemed at high risk of aneuploidy due to meiotic or mitotic errors in order to 

investigate the interaction and consequences of the IVF environment with the genetic 

background of individuals.
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6.2. PGD and structural chromosomal abnormalities

Structural chromosomal abnormalities carriers were referred for PGD in order to 

increase their chances of a balanced pregnancy. The aims were:

<& To produce optimum strategies for PGD to help structural chromosomal 

abnormality carriers achieve normal pregnancy, particularly those with rare 

chromosomal abnormalities that cannot be routinely investigated

<& To clinically implement and evaluate these strategies

<& To determine the chromosomal outcome from follow up analysis of untransferred 

embryos derived from PGD. To investigate the types of abnormalities and their 

origin and in particular the segregation patterns for the rarer chromosomal 

anomalies

Overall, there were 29 cycles of PGD for carriers of structural abnormalities. These 

included 18 cycles for reciprocal chromosomal translocations, 9 cycles Robertsonian 

translocations and 2 cycles for a rare ring 22 carrier. Immunofluorescence and FISH was 

applied to embryos of an X;autosome translocation carrier in order to investigate X- 

inactivation in blastomeres. A PGD strategy was developed for an interchromosomal 

insertion carrier.

6.2.1. Studies in embryos from reciprocal and Robertsonian translocation carriers

Translocation carriers have an increased risk of producing abnormal gametes and 

therefore unbalanced embryos. PGD for reciprocal translocation carriers (RCT) requires 

the determination of specific strategies for each individual carrier as breakpoints are 

usually unique. PGD for Robertsonian translocation carriers t(13;14) required a more 

uniform approach since the copy number of chromosomes 13 and 14 was essentially 

being studied in the embryos.

Strategies for translocations mainly involve the use of commercial probes 

combining locus specific, telomeric and centromeric probes. Numerous cases of PGD for 

translocations have been reported (Sermon et al, 2007). Although PGD for translocations
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is now based on routine workup procedures several parameters need to be taken into 

account while a PGD strategy is developed, 1) the correct position of the breakpoints 2) a 

probe strategy that will produce informative combinations for both normal and derivative 

chromosomes 3) the size of the translocation fragments and 4) the hybridization and error 

rate of the proposed strategy. More efficient probes (i.e. centromeric where possible) and 

probe combinations in addition to a two cell biopsy strategy provide an efficient way of 

recognizing unbalanced embryos in this study. This strategy resulted in a very low false 

positive rate (0.4%) as only one error was detected, attributed to an unclear result in one 

nucleus and degenerate DNA content in the second nucleus.

In general, compared with the PGS group a higher percentage of normal embryos 

were found in embryos from reciprocal translocation carriers (22% vs 18.6%) and also in 

the Robertsonian type (34%). Fewer mosaic and chaotic embryos were observed in these 

groups compared to the PGS group. Table 6.2 shows the follow up results of the 

translocation carriers compared to that of the PGS group. Although direct comparisons are 

not appropriate since PGD couples are already predisposed to meiotic aneuploidy, the 

table gives an idea of the chromosomal abnormalities in embryos from clearly 

predisposed PGD couples compared with those having normal karyotypes but with a high 

risk of aneuploidy.

Table 6.2. PGD for translocations and PGS outcome information

Embryos Reciprocal (%) Robertsonian (%) PGS (%)
Average maternal age 35.6 37.8 37.8

Normal 22 34 18.6
Uniformly abnormal 17.9 7.4 5.7

Mosaic 26.1 32 40.3
Chaotic 33.9 26.5 53.4

Meiotic errors 55.8 33.3 16.9
Pregnancy rate per ET 33.3 28.6 33.3

Implantation rate 22.2 21.4 24.6
Miscarriage rate per ET 14.3 0/7 5.6
ESHRE pregnancy rate 34 31 24
per ET (Sermon et al, 2007) (m/s:7)

*m/s- miscarriage rate (%)
(m/s:5.3) (m/s: 7.6)
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The pregnancy rate for both translocation groups is comparable to the ESHRE data. 

The finding that more uniformly abnormal embryos are found in reciprocal translocation 

carriers and to a lesser extent in Robertsonian translocation cycles than in PGS provides 

further evidence that the abnormalities seen in the PGS group are due to individual 

genetic susceptibilities to mosaicism. The miscarriage rate is higher in the RCT group 

however the number of cycles included in this study is still too small to allow any 

conclusions about pregnancy outcome.

An interchromosomal effect was not detected for either translocation group since 

the chromosomes not involved in the translocation were only affected in some of the 

chaotic and polyploid embryos. Of interest is the fact that some chaotic embryos were 

only exhibiting chaotic cell divisions in respect to the translocation chromosomes, in the 

RCT group. This could be due to each individual translocation breakpoint or the be related 

to acquired mitotic instability of the chromosomes after an initial meiotic error. 

Alternatively, other chromosomes might be affected since only a limited number was 

looked at. A CGH study (Mailgram et a l 2002) on individual blastomeres found 100% 

mosaicism in embryos from reciprocal translocation carriers. Future studies of more 

embryos with CGH might reveal that there is an intrechromosomal effect since all the 

chromosomes will be studied.

There does appear to be an upward trend of meiotic abnormalities with female 

maternal age in reciprocal translocation carriers however the sample size is small. Ogilvie 

and Scriven (2002) found a higher percentage of 3:1 non-disjunction (resembling 

aneuploidy non-disjunction) in females than in males although maternal age associations 

were not made. It might be possible that increased maternal age in the female 

translocation carriers will produce more meiotic errors in the older females than the 

younger carriers. Altered or reduced recombination during meiosis I for the translocation 

multivalent could particularly affect the older females as the aging oocytes would be more 

prone to non-disjunction as is the case for general aneuploidy and increased maternal age.
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Chiasmata studies in human oocytes from female translocation carriers are non­

existent since the access to oocytes is only through PGD. Sperm studies mainly involve the 

analysis of segregation patterns but some studies have mentioned the importance of the 

chiasmata frequencies and distribution in the outcome of meiosis in heterozygote male 

carriers of reciprocal translocations (Oliver-Bonet et al, 2004, Yahut et al, 2006). Oliver- 

Bonet et al (2004) studied two male reciprocal chromosomal carriers and found that the 

quadrivalents could only be found in closed ring configurations. They also found that for 

one of the carriers the frequency of chiasmata within the quadrivalent significantly 

increased and they were mainly localized in the interstitial region. This was not observed 

for the other carrier. This was also observed in a male carrier of an 11;22 translocation 

(Armstrong et al, 2000). This was also evident in an animal study with translocation 

heterozygote mice where male and female gametes were studied (Tease 1998). It appears 

that different translocations can produce different chiasmata patterns which might affect 

the outcome of meiosis I at anaphase.

There was great variability in the number of meiotic and post-zygotic outcomes in 

the embryos for each translocation carrier even when in the case of the Robertsonian 

translocations they carry the same cytogenetic abnormality. This probably is due to 

multiple factors like the genetic background, the frequency of recombination that will 

result in altered meiotic outcomes and the extent of post-zygotic errors. Variation in 

recombination sites between individuals as mentioned in the previous section will 

probably affect the recombination sites and frequency in each case. Additionally, the 

existence of a translocation might alter the recombination patterns by altering specific 

sequences at the breakpoints. The chiasmata formation will probably determine the 

orientation of the quandrivalent at meiosis I and consequently the mode of segregation. In 

the case of Robertsonian translocations, the variation in chromosome abnormalities in 

embryos might also be due to variation in the exact breakpoints in the centromeric 

sequences between chromosomes 13 and 14. A significant reduction of certain 

centromeric sequences might make the chromosomes more unstable during mitosis.
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The size of the translocated segments in the case of reciprocal translocations 

appears to play a role in the meiotic outcome. In four translocations the alternate type 

was below 50% while there were varying degrees of the other outcomes irrespective of 

the sex of the carrier. Translocations where the translocated segments are of the same 

size appear to produce more balanced gametes while the other modes of segregation 

present in equal proportions. In translocations where one segment is significantly larger 

than the other adjacent-1 and alternate may occur in 1:1 ratio. In the case of relatively 

intermediate sized segments 3:1 and alternate were most common. The results were 

analysed according to the relative sizes of the centric and translocated fragments and 

compared to the expected outcomes (Albert et al 1980). The comparison of the sums of 

centric and translocated fragments ratio showed the alternate segregation being most 

frequent overall but adjacent-2 segregation was increased in the case of bigger 

translocated fragments and smaller centric as predicted by the model. The comparison 

between expected and observed outcome for individual translocations showed that these 

two parameters were in agreement in 6 /9  cases, in 3 /9  cases a different mode of 

segregation was most frequently seen. This might be a reflection of the altered 

recombination in the carriers of these translocations. The distribution of chaotic and 

mosaic embryos appears to be related to individual translocation carriers rather than the 

size of the abnormalities.

All the Robertsonian translocation carriers in this study were carrying the same 

translocation t(13;14); this would enable the study of the same structural abnormality in 

different individuals. Most of the embryos from each translocation couple had an 

alternate chromosomal complement followed by a 2:1 segregation, 3:0 was seen in some 

cases. Similar results were obtained in another study of spermatozoa from male 

Robertsonian carriers (Ogur et al 2006). An exception was couple 3 where more frequent 

3:1 segregation could be deduced in the gametes of the female carrier. However, the 

distribution of mosaic chaotic and uniformly abnormal varied for each couple. This adds to 

the conclusion that genetic variation between individuals could be responsible for 

increased mitotic instability.
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This study and others mentioned show that that some predictions can be made 

about the likely meiotic outcome of a translocation by studying the size of the 

translocated chromosomes and the type of the translocation. However, although more 

uniformity in the meiotic outcomes exists in the Robertsonian carriers, post-zygotic 

abnormalities and mosaicism will affect the outcome of PGD cycles for every individual 

carrier to a different degree.

For reciprocal translocations individual risks have to be calculated partly in relation 

to the size of the transolcated segments. Several general trends were observed in this 

study in relation to the relative sizes of translocations. Recombination and individual 

variability however complicate any predictions that can be made for the meiotic outcome 

in preimplantation embryos. For translocations between smaller fragments, increased 

recombination in the interstitial region might produce different proportions of normal and 

unbalanced gametes. Translocations between larger segments can have varied 

consequences depending on the position of the breakpoints and the recombination 

patterns. This will also affect the proportion of balanced and unbalanced embryos 

generated.

In this study the alternate segregation was most frequent at a rate of 44%; this is 

similar to another study which showed the alternate rate to be 48% (Ogilvie & Scriven, 

2002). Additionally, several chance events can affect the proportion of balanced embryos 

according to the sex of each carrier. Male translocation carriers usually needed ICSI if they 

presented poor sperm parameters because of the translocation which is a random process 

of selecting sperm. Additionally, in male carriers all the outcomes of each meiotic division 

can be present at any one time since four daughter sperm are formed from an original 

precursor cell. Since the alternate mode is more frequent, recombination could distort or 

decrease the proportion of normal male gametes. On the other hand, in the female 

meiosis, only one oocyte is generated from each meiosis. Chromosomes or chromatids will 

segregate randomly to the oocyte or 1st and 2nd polar body. So recombination distortions 

might be corrected if unbalanced products are segregated in the polar body. These events
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might lead to an increase of unbalanced gametes in the sperm instead of the average 

proportion. Additionally, the random nature of the segregation in the oocytes and polar 

body might produce average proportions of balanced and imbalanced gametes in female 

translocation carriers.

In this study, the results fit this theoretical outcome. The proportion of embryos 

with alternate: unbalanced ratio in the female reciprocal translocations was 1:1.1 

(47.31:52.7) while for the male carriers the ratio was 1:2 (33.3:66.7). This difference was 

also observed in Ogilvie & Scriven (2002) where for male carriers the alternate segregation 

was seen in 43% of embryos and for females in 60%. It would appear that female carriers 

of translocations have an increased chance to produce more normal gametes and as a 

consequence have a higher chance of finding a balanced good quality embryo during PGD. 

In this study 3 out of 5 female carriers of RCTs had an ongoing pregnancy with PGD. 

Although the sample is still small the investigation of accumulating PGD cycles for 

translocations in this Centre will be required to confirm this trend. Furthermore, direct 

information from human oocytes from translocation carriers will enable more information 

to be obtained for the female carrier meiosis. This is partly addressed by the polar body 

analysis for translocation PGD cycles (Durban et al 2001, Gutierrez-Mateo et al 2004) 

although very few data have been generated so far.

PGD couples in this study presented very poor reproductive history and many of 

them needed IVF due to severe male factor. The pregnancy rates however were quite low. 

This was due to several factors. First each PGD case was depended on an adequate 

number of embryos being biopsied in order to ensure the finding and transfer of balanced 

embryos of good quality. Secondly, although mosaicism (60%) was lower than in the PGS 

group (>90%) it is high enough to create problems with the diagnosis and to affect the 

implantation potential of the embryos. Two cell biopsy in combination with an efficient 

FISH strategy are probably the best option to detect unbalanced embryos and mosaicim as 

observed in this study. The detection of normal/abnormal mosaicism in embryos at biopsy 

should be taken as a true finding when an efficient FISH protocol is used. Follow up of
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embryos diagnosed as balanced/unbalanced proved a significant point about the nature of 

mosaicism for translocation carriers and the ability of two ceil biopsy to detect mosaicism. 

Namely, that the probability of mosaicism is higher than that of FISH errors.

Additionally, although the incidence of a balanced translocation is quite common 

within the population, it appears that some couples present with a higher risk of infertility 

or spontaneous abortions and are in need of PGD. This might be due to the specific 

translocation and its breakpoints or an additional factor intrinsic to these couples that can 

confer such consequences. Despite some difficulties, PGD is a viable option for these 

couples as it can help them achieve a normal pregnancy by selecting balanced embryos 

with a high degree of accuracy.
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6.2.2 PGD for a ring 22 carrier 47,XX, del(22)(pl0ql2), +r(22)(ql0ql2)

A 37 year old female carrier of a rare chromosome rearrangement was referred for 

PGD. She was a balanced carrier of a deleted 22 and a ring chromosome 22. This is the 

first report of PGD for this kind of abnormality as it is extremely rare. Two cycles of PGD 

were carried out using FISH with case specific probes. Unfortunately there were no 

embryos suitable for transfer in either cycle. All untransferred embryos were also 

analysed. The aim was to provide a rare glimpse of the behaviour of the derivative 

chromosomes 22 during preimplantation development for the first time. It would also 

provide an opportunity to gain our knowledge of the segregation of ring/deletion 

chromosomes. It also provided the opportunity to study the multiple meiotic outcomes 

from the carrier and to provide information regarding genetic counselling and future 

reproductive prospects.

The strategy devised for this couple appears to have worked well since the carriers and 

unbalanced embryos were identified. The position of the breakpoint within the 

centromere of chromosome 22 meant that by using the centromeric probe for 

chromosomes 14/22 in conjunction with the subtelomere probe of 14q in the second 

round it was possible to detect the number of centromeric signals for chromosome 22.

Considering the meiotic behaviour of the ring chromosome, almost all possible meiotic 

segregation patterns were seen and there does not appear to be a preferential 

segregation mode. Although the natural pregnancies of this couple both included partial 

trisomy 22 with mosaicism, any number of their IVF embryos could have produced viable 

unbalanced pregnancies either with partial trisomy or partial monosomy due to the small 

size of the chromosome involved. A ring chromosome imbalance would be 0.6% of HAL 

and well within the limits of viability in the monosomic or in the trisomic state in the 

embryos (Cohen et al, 1994).

The only inconsistency is the fact that the only segregation mode that would have 

produced a balanced non carrier embryo was completely absent. This segregation might 

have been found in the three oocytes that there was no available follow up analysis, out
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of 13 theoretical results we would expect to see at least one oocyte with a normal 

chromosome 22. No conclusions can be drawn since the number of available embryos was 

still so small. However this pattern may also be due to the way the chromosomes pair 

during meiosis I. Any pairing between the normal 22, the deleted 22 and the ring 22 would 

be complicated and would affect the position of the chiasmata formed. The reduced size 

of the centromeric sequences that exist in both the del(22) and the r(22) might affect 

attachment to the meiotic spindle.

Postzygotic errors were also widespread in all pre-implantation embryos studied 

resulting in mosaicism. The two natural conceptions also showed mosaicism. The 

instability of ring chromosomes is well documented in other studies both in prenatal 

samples and liveborn offspring (Jeffries et al, 2005, Starke et al 2003, Anderlid et al, 2001, 

Friedman et al, 1992). The origin of this instability is mostly attributed to the nature of ring 

chromosomes and their difficulty in undergoing mitotic division, with a tendency to form 

interlocking rings, leading to anaphase lag and chromosome loss. In the preimplantation 

embryos and natural conceptions however a varying degree of instability is observed in 

100% of the cases. Multiple cell lines can be seen in preimplantation embryos due to loss 

of the smaller derivative chromosomes 22 and due to chaotic cell divisions. The initial 

meiotic error and the instability of r(22) and del(22) in addition to the frequent the 

unbalanced mitotic divisions common in the case of preimplantation embryos. It is 

unknown if the extreme chaotic mosaicism in this case is a result of the ring chromosome 

only since this type of mosaicism seem to be widespread during preimplantation 

development (Delhanty et al 1997, Mantzouratou et al 2007). Other factors may be 

operating in this case since the couple was sub fertile.

In this case the ring chromosome is very stable in the mother as she is phenotypically 

normal and has the r(22) in all metaphases and interphases studied in her lymphocytes. 

The reasons for this are not well understood. One explanation is the centromeric and 

telomeric regions required for normal cell division are still intact in the mother while in 

her embryos these regions may be missing or significantly shortened and their
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functionality reduced. Interestingly, the only well developed carrier embryo that appeared 

to have the same chromosomes as the mother lost the ring in half of the cells creating a 

mosaic with a normal and a partially monosomic cell line. This error must have happened 

very early on in development possibly during the 8 cell stage or earlier.

Although the mechanism of formation of these ring chromosomes is not yet fully 

understood, in this case there were two initial breaks in one maternal chromosome 22. 

One break within the centromere and one in the q arm creating a deleted chromosome 22 

and ring 22. This mechanism is also described in a recent study (by Ledbetter et al- 

submitted) and was termed "misdivision" of the centromere.

Small Marker Chromosomes (SMCs) may interfere with the segregation of other 

chromosomes during meiosis and mitosis giving rise to aneuploidy (Buckton 1985). 

Anderlid et al (2001) noticed that marker chromosomes may also increase the risk of UPD, 

however the sample studied was small . Anneren et al (1984) postulated that it is very 

likely that marker chromosomes in healthy mothers are of pathogenetic importance for 

non-disjunction, resulting in trisomy 21 offspring. A finding of an extra marker 

chromosome in one of the parents should therefore be taken into consideration in genetic 

counselling. In this study no interchromosomal effect was seen since chromosome 14 was 

diploid for most of the cells apart from the ones where polyploidy was suspected. 

However, other smaller chromosomes could be affected but were not investigated.

The decision not to transfer any balanced carrier embryos appears to be a valid one 

since the derivative chromosomes appear to be highly unstable during mitotic divisions 

and could produce varying abnormal phenotypes. Unfortunately, counselling couples with 

similar chromosomal problems is still not very precise. The variability of the breakpoints 

and the rare nature of these rearrangements as well as mosaicism and the variable 

phenotypes that would be produced make the task almost impossible.

Considering all the above the couple presents a poor prognosis in terms of producing a 

normal non-carrier child when all those abnormalities in embryos and previous 

pregnancies are taken into account. Although PGD did not produce a pregnancy in this
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case it has helped give the couple some answers about the nature of the reproductive 

difficulties they have encountered. PGD for this type of abnormality is a viable option as 

long as there are some embryos suitable for transfer. The study of such preimplantation 

embryos gave a rare and significant chance to study and understand these phenomena in 

the earliest stage of development.
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6.2.3 X-inactivation studies in embryos and lymphocytes from an X;autosome 

translocation

The X-autosome translocation 46XX, t(X;4)(q26;pl6.1) PGD becomes more 

complex due to the X-inactivation. If balanced female carrier embryos result in an ongoing 

pregnancy and the derivative X is inactivated it could mean that some of the autosomal 

genes are switched off and an abnormal pregnancy might occur (Glaser et al, 2004) or a 

balanced but abnormal child depending on where the breakpoints are and which X is 

inactivated (Waters et al, 2001). Male carriers might be infertile due to failed meiosis 

during spermatogenesis (Lee et al, 2003). Another problem with this translocation was 

that the fragments involved are very small for each chromosome and therefore there is a 

high risk of an abnormal viable pregnancy which can result from adjacent-1 segregation 

products as indeed has happened in two previous pregnancies for this couple.

The aim of this study was to try to study X-inactivation in the embryos of this 

carrier so the pattern of X-inactivation between the derivative and normal X could be 

elucidated. Such a study was not done before in human preimplantation embryos where 

the developmental stage when X-inactivation occurs is not yet known. The first objective 

was to develop an efficient fixation protocol that could allow immunofluorescence and 

FISH to be studied on the same sample and that could be applied with a variety of 

antibodies. The time for this investigation was limited and was dependent on the PGD 

cycles of this couple. The antibody used was for targeting histone 3 (Lys9) known to be 

involved with the inactive X chromosome (review in Lachner & Jenuwein, 2002).

Fixation results with the chosen protocol appeared to give good results for oocytes 

and some of the embryonic nuclei. The embryos that were tested in the initial step were 

surplus IVF embryo of poor quality and were degenerating but the oocytes gave 

encouraging results and thus the protocol was deemed appropriate for the antibody to be 

used. The main concern was the preservation of the histone structure which could be 

damaged with the HCL/Tween used routinely for blastomeres. In addition, a clear FISH 

resolution had to be achieved (Hodges and Hunt, 2002).
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In addition, an X-inactivation study in the maternal lymphocytes was pointing, 

again not conclusively, to a slightly skewed or almost random pattern of X-inactivation 

probably with incomplete spread of the inactivation effect along the derivative X 

chromosome when that was inactivated. The inactive X was the normal X in 60% of the 

times. Several cases have been reported of unbalanced X;autosome inactivation where 

the derX was inactivated creating variable phenotypes in the individuals via incomplete 

autosome gene inactivation (White et al 1998, Sharp et al 2002). Balanced X;autosome 

carriers appear to have skewed X-inactivation patterns where the derX stays active along 

with the autosomal genes probably due to selective growth of these cells during 

embryogenesis. In the present case, if the X-inactivation is random it could be because of 

the small size of chromosome 4 that is translocated onto chromosome X. Incomplete 

inactivation of the X could allow the autosomal genes to function. In addition, as in a study 

by Waters et al (2001) the breakpoints on derX might be just outside the critical boundary 

of Xp26 of the Xql3-Xq26 "critical region" and therefore not disrupting the any critical 

genes. In that study they found that certain disomies of X were tolerated if no critical 

genes were disrupted. However, more normal X chromosomes were inactivated which 

might mean that skewed inactivation to certain extent can be occurring. More 

investigations are needed in order to determine fully the mechanism of X-inactivation in 

this case.

The untransferred embryos from cycle three of the couple were tested. The sex 

chromosome status of the embryos was known from the biopsy, although very poor 

quality embryos were generated and most arrested at the 8-10 cell stage and were 

fragmented some with multinucleated cells. X-inactivation was detected in 2 /3  embryos 

with more two or more X signals on biopsy and in one embryo that was not biopsied. 

However, clear signals could only be seen in very few embryonic nuclei. In addition, after 

the FISH the nuclei positive for the antibody were either lost or too degenerate to produce 

any FISH signals. FISH would have identified the position of the X chromosomes and the 

position of the inactive X, if there was one.
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Although the results from this study are inconclusive, further studies into X- 

inactivation in human female embryos, and those from X-autosome translocation carriers 

would help our understanding of early gene silencing processes and imprinting. Several 

mouse embryo studies revealed a complex picture about the onset of X-inactivation 

(reviews by Ferguson-Smith 2004, Latham 2005). Although, they show an established 

pattern of X-inactivation in the blastocyst stage, the time of initiation of this process is still 

unknown. Additionally, some of these studies indicated, by using different detection 

methods, that the paternal X in female mouse embryos can be inactivated at the 4 cell 

stage. For human embryos little information exists about this topic. Two studies detected 

the X-inactive specific transcript (Xist) in early preimplantation embryos and found it 

expressed as early as the 1-cell and 4-cell stage, however, in both studies Xist expression 

in the early stages was observed in both male and female embryos unlike the mouse 

embryos and thus was not a good indicator about the inactivation of the X-chromosomes 

at that early stage (Daniels et al 1997, Ray et al 1997).

In this study, it was expected that some of the embryos tested for this couple 

would have reached various developmental stages by day 5 as in their previous cycles, so 

different stages could be screened for the X-inactivation target histone3. However, arrest 

of all the embryos in this cycle did not permit any such study to be done in this instance. 

The female embryos from this patient, if they were found to be carriers of the derivative 

chromosome for the translocation could have indicated the parental origin of the 

inactivated X. The acquired results, although they showed some positive signals in some 

nuclei, are not enough to allow any conclusions. In addition, most of the embryos seem to 

have undergone abnormal post-zygotic cell divisions which were not ideal for this study.

Overall, only one of the aims of this study was achieved which was the 

establishment of a fixation protocol for human preimplantation embryos for the combined 

use of immunofluorescence and FISH. This protocol with other modifications has been 

applied to other studies currently under way. The detection of X-inactivation patterns in 

human preimplantation embryos is an area of great interest and requires more
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investigation. It is also particularly important for the consequences of X-autosome 

translocation carriers and their reproductive risks.
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6.2.4 PGD strategy for an interchromosomal insertion carrier using CGH

A carrier of an interchromosomal insertion of 46, XX, ins(14;4)(ql3;q25q21.3) was 

referred for PGD after having affected pregnancies with 46,XX, der(4), 

t(14;4)(ql3;q25q21.3) and 46,XY, der(4), t(14;4)(ql3;q25q21.3) which were terminated. 

During the development of PGD protocols she also had an affected son with abnormal 

karyotype 46,XY, der(14), t(14;4)(ql3;q25q21.3) who was trisomic for 4q21.3q25. She also 

had a trisomy 21 pregnancy.

The aim was to develop a PGD protocol that could be applied clinically for this 

couple. The main problem was the lack of any commercially available FISH probes within 

the translocated segment. Blastomere CGH was considered the best option for this 

couple. Other alternatives are described in the results section. The size of the 

translocation fragment is around 51.3Mb and constitutes 0.59% of HAL. The deleted or 

the trisomic state of the translocated segment will produce viable unbalanced 

pregnancies. Previous natural pregnancies, livebirth and terminations also confirmed this 

risk.

CGH would allow detection of all possible copy number changes of the 4q21.q25 

segment, but would require cryopreservation of the embryos until the results are ready. 

Single cells were isolated from the unbalanced child of the carrier in order ascertain if the 

imbalance could be detected with CGH. Attempts to shorten the hybridization time of 

CGH from 72hrs to 48 or 60hrs did not produce results that could be used in clinical 

diagnosis mainly due to inconsistent results seen within and between experiments with 

the shorter hybridization times. The abnormality was clearly visible only after 72hrs 

hybridization.

CGH allows the identification of segments >10Mb long and this imbalance could be 

easily identified since it is 5 times larger than the minimum length (Wells and Delhanty, 

2000). The greatest limitation of this strategy is the cryopreservation of the embryos as 

there had been no pregnancies in this Centre from frozen thawed biopsied embryos. 

However, the Implementation of vitrification to biopsied embryos and was taking effect at
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the same time and produced better embryo survival rates in this setting. So the CGH 

approach was deemed appropriate for this couple. Blastomere CGH with embryo freezing 

has been applied clinically and the first birth was reported in 2001 by Wilton et al.

PGD for an insertional translocation carrier ins(14;2) was reported in 2004 by 

Melotte et al, using a four probe FISH strategy. They reported 5 /10  embryos to be 

unbalanced forms of the parental translocation. Reproductive risks for the 

interchromosomal insertion carriers mainly depend on the size of the translocated 

fragment and the pairing formation in meiosis I. The pair of chromosomes involved can 

either form bivalents in meiosis I or a quadrivalent. A review of five interchromosomal 

insertions in large families showed that most imbalances result from simple meiotic 

segregation of bivalents while larger segments would probably lead to quadrivalent 

formation (Van Hemel & Eussen, 2000). In the same study it was observed that the 

reproductive risks for carriers were 32-36%. The mean size of the inserted regions 

occurring only as duplications was 0.96% of HAL while for deletions it was 0.47% HAL. 

Both deletions and duplications were detected when the HAL of the translocated 

fragment was between 0.22-1.2%.

The interchromosomal insertion case in this study appears to fit in with the above 

criteria as the size of the insertion is 0.56% of HAL and is more likely to produce both 

deletions and duplications as it is evident from the reproductive history. During the course 

of this workup the couple was fortunate to have a balanced natural pregnancy so they did 

not require PGD. However, this case was used a test case to apply for an HFEA license for 

the use of CGH in clinical diagnosis for structural abnormalities and consequently to be 

used for other PGD cycles were FISH will not be appropriate.
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6.3 CGH investigation of oocytes and polar bodies

In a continuing effort to recognize the aneuploidy mechanisms in oocytes from 

couples undergoing assisted reproduction, oocytes and their corresponding polar bodies 

(pbs) from females going through PGS, PGD and routine IVF were studied using CGH. The 

aim was to ascertain the level of abnormality in these patients and study the mechanisms 

of aneuploidy during meiosis. Additionally, the oocytes in the present study were added to 

the cumulative data of previously published data from this centre as part of an overall 

investigation into aneuploidy in the female gametes.

Optimisation of the CGH protocol was essential for oocyte use in order to ensure 

results will be obtained from the maximum number of samples. Single cell CGH requires a 

lot of fine handling of samples as well sterile settings. Preliminary CGH experiments were 

done for single diploid buccal cells, single abnormal fibroblast cells and single blastomeres 

with an expected abnormality. From these, it can be shown that the CGH procedure for 

single cells (as described in Wells and Delhanty, 2000), combined with DOP whole genome 

amplification could detect an array of chromosomal abnormalities very precisely. The 

limitation is however that CGH cannot detect ploidy errors, but for the oocytes where the 

polar body was isolated and tested ploidy errors would be a rare occurrence.

Results were obtained from 47 oocytes and 30 polar bodies. Of these, 27 were 

results for both, oocyte and the corresponding polar body, 20 from single oocytes and 3 

single polar bodies. Abnormalities were seen in 8 out 47 oocytes (17%). The results were 

investigated according to the female infertility indication. Oocytes originating from the 

PGS group contained all of the abnormalities relating to general aneuploidy. The 

aneuploidy rate in this group was 21% with average maternal age 36.3 years. On the other 

hand the non-PGS group (mainly PGD for translocation carriers) did not present any 

general aneuploidy apart for the expected errors due to translocations and the general 

aneuploidy rate was effectively 0% with average maternal age 35.8 years.

The most frequent abnormality was for chromosome X was 2 out of 3 where 

chromosomal numerical abnormalities involved chromosome X and one for chromosome
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12. Whole chromosome non-disjunction was seen in two of these cases where reciprocal 

abnormalities in oocytes and their corresponding polar bodies could be seen. In one 

oocyte chromosome X material was missing while its polar body had a partially missing X. 

The other polar body from this complex did not produce results after CGH. The presence 

of single chromatids could not be verified in this sample since a gain cannot be verified in 

one of the polar bodies. Four other structural abnormalities were also detected in the PGS 

group, three of them involving the X chromosome in a single patient. Reciprocal 

chromosome breakage or abnormal recombination was also detected in an oocyte and its 

polar body for chromosome 20. In all, 5 oocytes out of 33 with results for the PGS group 

had X chromosome anomalies, an extraordinary high level.

Although, the sample size is small, these results indicate a higher abnormality rate 

in the oocytes of some women, namely in the PGS group. This will fit in with the rest of 

the results generated so far in this study that indicate that some individuals have a 

susceptibility to generalized non-disjunction. Moreover, for the PGS group of females 

there was also the additional information from their lymphocyte and the follow up 

information of the embryos produced during the PGS cycles. Therefore a complete 

investigation could be done for them. Interestingly, the women that presented with 

structural abnormalities in their oocytes had embryos which were 100% chaotic on follow 

up. The women who presented the X chromosome abnormalities had 40-60% simple 

mosaic embryos. The female that presented with a chromosome 12 meiotic error also 

presented with 4% meiotic errors in the embryos and 46% chaotic mosaics. It is possible, 

that the genetic instability seen in the PGS embryos might be inherited from the oocytes 

of these women. Additional oocyte investigations in relation to embryo development may 

reveal patterns of the fate of embryos from couples predisposed to particular types of 

chromosomal abnormalities.

Two other investigations were done in this centre by Fragouli et al (2006a). Table

6.3 summarizes the results of these studies, as well as the current one and presents the 

cumulative results.
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Table 6.3 Cum ulative oocyte results fo r this Centre

Aneuploidy rate (%)

Average m aternal age
Mechanisms

identified

Chromosomes mostly 
involved

33
Unbalanced chromatid 
Predivision (41%) and 
whole chromosome errors 
(68%). Gonadal mosaicism

X and smaller X, 12,10 and 20 
autosomes 21 and 20

Cumulative data
235
22%

This study

Whole chromosome 
errors and
chromosome breakage

47
17
PGS
36

X is most 
common followed 
by the smaller 
autosomes

34.5
Chromatid errors,
chromosome
errors,
chromosome

Overall
282
20

breakage, gonadal 
mosaicism.

An equal risk was seen for monosomy and trisomy risk at conception. Of the 

autosomes the smaller chromosomes were most frequently affected, reflecting similarities 

with embryo and prenatal studies and increased susceptibility of these chromosomes to 

be involved in chromosomal errors. Age independent factors predisposing to aneuploidy 

were evident as errors were seen in younger as well as older females that presented 

errors in equal proportions. This was also observed in Fragouli et al (2006c) and in 

embryos from young egg donors (Munne et al, 2006). Chromosome X was most frequently 

involved in aneuploidy overall. This has been attributed mostly to meiosis I errors were 

there is aberrant or altered recombination (Hall et al, 2006) but as yet there no clear 

mechanism identified for this occurrence, although it does appear that certain individuals 

have a predisposition to X chromosome aneuploidy, coupled with mitotically unstable 

embryos.

The aneuploidy rates in oocytes ranges from 22% to as high as 62% in various 

studies (Table 1.4, chapter 1). The higher rate was obtained from oocytes from advanced 

maternal age studies. A higher rate of abnormality has been observed in vitro matured 

oocytes (Magli et al, 2006) which may indicate a higher error rate in oocytes that have not 

gone through the natural maturation process. Along those lines, a study in foetal ovaries 

found errors at the diplotene stage and even in premeiotic precursor cells suggesting the
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beginning of the mechanism that produces increased rate of aneuploidy seen in this and 

other studies (Roig et al, 2005). Of interest is another suggestion by Koehler et al (2006) 

were studies of mouse oocytes showed near human levels of aneuploidy. In this study, 

parental mouse strains with 1% sequence divergence between them were crossed and 

produced normal levels of aneuploidy. However, the F I progeny crosses, where 

genetically diverse homologues pair during meiosis, were exhibiting aneuploidy an order 

of magnitude higher than that of controls. They concluded that sequence divergence 

between homologues predisposes the F I progeny to increased rates of non-disjunction. If 

this is true for humans then some of the abnormalities seen in this study could be due to 

incompatibility of the genomes of the parents of the females whose oocytes were studied 

here.

Finally, there are major gaps in our knowledge about the initiation of aneuploidy in 

human gametes and preimplantation embryos. RNA expression studies in human oocytes 

and embryos have opened another pathway of obtaining information (Dobson et al, 2004, 

Bermudez et al, 2004). These studies revealed a complex picture of various RNA 

transcripts found in oocytes and embryos, most of them unidentified as yet, which are 

down- or up regulated according to developmental stage. Another study indicated that 

maternal age might influence the expression of oocyte genes that function in cell cycle 

regulation, cytoskeletal structure, transcription control, and stress responses (Steuerwald 

et al, 2007). It is possible then that future studies might show similar differences in 

aneuploid and diploid gametes and embryos as well as indicate the causes of 

predisposition to aneuploidy that is evident in certain individuals.

Overall, this study presents some interesting results when comparing the oocytes 

and the embryo results produced from the PGS group. However, since the sample sizes 

are relatively small, continuing this investigation could provide a clearer picture of 

aneuploidy and its mechanisms in female gametes and how it may relate to the 

development of genetically unstable embryos. This study has fulfilled most of the main
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aims of the investigation and several significant findings have been established. It has also 

provided a stepping stone for further studies but has also created new questions that 

need to be answered about the genetics of preimplantation embryos.
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Appendix

Al. Appendix to Methods

A l . l  Suppliers of chemicals, reagents and nucleic acids

The chemicals used in this study were obtained from the following companies: BDH, Gibco 

BRL ,HT Biotechnologies, Oswel, Roche, Sigma, VWR unless stated differently.

Human COT-1 DNA (lm g/m l) was obtained from Gibco BRL, UK. Deoxunucleotide 

triphosphates for DOP-PCR (dNTP) were supplied from Promega, UK. For nick translation 

dNTPs and fluorescently labelled dNTPs were supplied from Abbott, UK. DOP 

oligonucleotide primer (CCGACTCGAGNNNNNNATGTGG) was supplied from Oswel, UK. 

IOxPCR buffer (0.1M Tris-HCL pH 9, 0.5M KCL, 15mM MgCI2, 1% TritonX-100, 0.1% w /v  

gelatine) was supplied from HT Biotechnology, UK). lOxNick translation buffer (0.5M Tris- 

HCI pH 7.5, 0.5M MgS04, 1M DTT) and nick translation enzyme (DNA polymerase I) was 

supplied as part of the Nick Translation Kit from Abbott, UK.

A1.2 Cell culture media

RPMI 1640 enriched with 15% FBS, 0.2M L-Glutamine, 300mg/ml Penicilin, 500mg/ml 

Streptomycin and 20pl/ml phytoheamaglutinin (PHA) was used for peripheral blood 

culture. The pH was adjusted with the addition of NaHC03.

Versene solution (0.02% w /v EDTA in l i t  Hanks medium was used for fibroblast 

preparation and DNA extraction.

A1.3 Solutions for DNA extraction

Solution for fibroblast DNA extraction: 1.21gr Tris, 0.19gr EDTA, 0.2gr SDS, 1.17gr NaCI 

added to 100ml double distilled water, autoclaved and Proteinase K (lOmg/lOOml) added. 

Solutions for lymphocyte DNA extraction: Low salt buffer (lOmM Tris-HCI, lOmMKCI, 

10mM KCI, 10mM MgCI2, 2mM EDTA). High salt buffer (lOmM Tris-HCI, lOmMKCI, lOmM  

KCI, 10mM MgCI2, 2mM EDTA and 0.4M NaCI).
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A1.4 General solutions

PBS- lOmM phosphate buffer, 2.7mM KCI, 137mM NaCI.

20xSSC- 0.15M NaCI, 15mM Sodium Citrate

TE- 10mM Tris-HCI, 0.1 mMEDTA

lOxTBE- 90mM Tris-HCI, 2mM EDTA, 90mM Boric acid

KCM- 120mM KCI, 20mM NaCI, lOmM TrisCL pH8.0, 0.5mM EDTA, 0.1% Triton-X
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A2. Illustrations of PGD strategies for couples with balanced reciprocal translocations

The FISH probe strategies for the balanced reciprocal translocations not shown in the 

main text are illustrated below with the use of ideograms for each translocation and 

lymphocyte results. The arrows denote the position of the breakpoints for each 

chromosome and the coloured shapes indicate the position and the colour of the probes 

used in each case. In some cases blastomere nuclei from embryos of translocation carriers 

are also shown.

A2.1 PGD strategy for Reciprocal translocation 46,XXt(8;12)(qll.2;ql2)
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A2.2 PGD strategy for 46,XY,t(l;21)(q21.3;q22.1)
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A2.4 PGD strategy for 46,XY,t(9;15)(pl2;ql3)
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q42.1

A2.5 PGD strategy for 46,XY,t(l;17)(q42.1;q25.3)
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A2.6 PGD for 46,X X ,t(10;ll)(qll.2;pl5.3)
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A2.7 PGD strategy for Reciprocal Translocation 46, XY, t(l;18)(p32;q23)
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A2.8 PGD strategy for 46,XX,t(9;20)(pl3;qll.2)
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