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Abstract

Fbw7 belongs to the family of F-box proteins, which function as 

substrate recognition subunits of SCF complexes. Fbw7 controls the stability of 

several proteins including cyclin E, the Notch intracellular domain and c-Myc. 

In 2004 our lab additionally identified phospho-c-Jun as an Fbw7 substrate, c- 

Jun is part of the AP-1 transcription complex, whose activity is strongly 

induced in response to numerous signals such as growth factors, cytokines and 

extracellular stresses. Furthermore elevated phospho-c-Jun levels induce 

neuronal apoptosis. To investigate the significance of c-Jun regulation by Fbw7 

in the nervous system, I generated mice harbouring a floxed fbw7 allele, fb w 7^. 

j b w f ,f mice were bred to various Cre transgenic lines that express the Cre 

recombinase under nervous system specific promoters to obtain mice with a 

tissue specific deletion of Fbw7.

I confirmed published results that ubiquitous deletion of Fbw7 mediated 

by PGK-Cre is lethal. To delete Fbw7 at the stage of neuronal precursors, 

j b w f /f mice were crossed to the Nestin-cre line (fbw?**4). These mice die 

perinatally and show an increase in apoptosis at E l6. As the lethality of the 

fb w 7 ^  mice does not allow the investigation of Fbw7 in the adult nervous 

system, further crosses, using other cre-transgenic lines, were set up. Fbw7 

deletion in postmitotic neurons {fbw7^N) causes a Parkinson's disease like 

phenotype with a severe hindlimb tremor and a reduced cortical cellularity. 

Fbw7 deletion in the cerebellar vermis (fbw7ACb) resulted in cerebella that are 

characterised by a reduced size, foliation defects accompanied by an astrocytic 

gliosis and a phospho-c-Jun dependent Purkinje cell loss. Concomitant deletion 

of c-Jun in in the cerebellum (fbw7ACb:c-junACb) partially rescues the cerebellar 

phenotype caused by Fbw7 deletion.

Thus the data in this thesis demonstrate a role for Fbw7 in cerebellar 

development and the central nervous system and identify c-Jun as an essential 

Fbw7 substrate in the nervous system.
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Chapter 1

1 INTRODUCTION

1.1 JNK signalling and the transcription factor c- 

Jun

The Mitogen Activated Protein Kinase (MAPK) pathway mediates the 

response to numerous extracellular signals by regulating the activation of 

transcription factors, which in turn control cell growth, differentiation or 

apoptosis depending on the cellular context. The MAPK cascade is initiated 

upon stimulation of various receptors such as hormone and growth factor 

receptors, cytokine receptors or in response to environmental stresses such as 

UV-irradiation or osmotic shock (reviewed in (K. J. Cowan and K. B. Storey, 

2003)). Activation of these receptors leads to the recruitment of adaptor 

molecules to the relevant receptors, which then activate small GTP-binding 

proteins. These in turn activate a cascade consisting of multiple tiers of 

serine/threonine kinases such as the MAPKinase Kinase Kinase (MAPKKK), 

MAPKinase Kinase (MAPKK) and MAPKinases (MAPKs). There are three 

subclasses of MAPKs: the extracellular signal regulated kinases (ERK), the 

stress activated MAPKs including the 38 kD protein kinases (p38), and the c- 

Jun-N-terminal kinases (JNKs) (T. S. Lewis et al., 1998).

With regards to the JNK pathway MKK4 (SEK1) and MKK7 (SEK2) 

are the two MAPKKs that activate JNKs through the dual phosphorylation of a 

Thr-Xaa-Tyr motif (Figure 1.1 A) (B. Derijard et al., 1994). MKK4 is primarily 

activated by environmental stress and can additionally activate p38 (reviewed
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in (R. J. Davis, 2000)). In contrast MKK7, is specific for JNKs and is activated 

by generic stimuli such as anisomycin and UV irradiation and additionally by 

specific stimuli like tumour necrosis factor (TNF) and interleukin-1 (IL-1) (C. 

W. Chow et al., 1997; C. Toumier et al., 2001). Studies using mice and mouse 

embryonic fibroblasts (MEFs) deficient for MKK4, MKK7 or both have 

demonstrated that the JNK signalling pathway regulates not only apoptosis but 

is also essential for survival and organogenesis. Whilst mkk4'f' and mkkTA 

MEFs are resistant to anisomycin or heat shock induced JNK activation, mkk4~f~ 

embryos exhibit severe defects in liver formation and the liver cells undergo 

massive apoptosis (D. Yang et al., 1997; H. Nishina et al., 1999; C. Toumier et 

al., 2001). This apparent ambiguity of the resistance against UV induced 

apoptosis in MEFs and an increase in apoptosis during organogenesis shows 

that the effects of MAPK signalling are strongly dependent on the cellular 

context and that MKK4 and MKK7 are important mediators of MAPK 

signalling.
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Extracellular/intracellular Stimuli

I
G-Proteins, Adaptors 

♦
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i
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Figure 1.1 The JNK signalling cascade and the transcription factor 
c-Jun. A) JNK signalling is activated upon extracellular stimuli and is 
relayed via small G-Proteins and adaptor molecules to a kinase cascade. 
Upstream kinases such as MEKK and MLKs activate their downstream 
kinase which are in case of JNK signalling MKK4 and MKK7. This causes 
activation of c-Jun N-terminal kinases (JNKs) which then phosphorylate 
various cytoplasmic and nuclear substrates as indicated. The JNK- 
interacting protein JIP acts as a scaffold for the signalling cascade. 
B) Domain structure of c-Jun. JNK binds within the 6 domain and activates 
c-Jun by phosphorylation at S63/73 and Thr91/93 in the transactivation 
domain. c-Jun dimerises with other AP-1 components via its c-terminal 
leucine zipper (L-Zip). Binding to target genes occurs via the DNA binding 
domain (DBD).
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1.1.1 The physiological role of JNKs

The JNKs JNK1, JNK2 and JNK3 are encoded by 3 different genes and 

and are also known as the Stress Activated Protein Kinases (SAPKs): SAPK-y, 

SAPK-a and SAPK-(3 respectively. They show a distinct expression pattern 

and while JNK1 and JNK2 are expressed ubiquitously, JNK3 is found 

predominantly in the brain and testis (S. Gupta et al., 1996; C. Y. Kuan et al., 

1999). Additionally, the different JNKs appear to have an at least partially 

redundant function in the organism as mice bearing a single deletion for either 

JNK1 or JNK2 are viable whereas concomitant deletion of JNK1 and JNK2 

results in embryonic lethality (C. Dong et al., 1998; C. D. Yang DD, 

Whitmarsh AJ, Barrett T, Davis RJ, Rincon M, Flavell RA., 1998; K. 

Sabapathy et al., 1999). Although JNKs were named after their major target c- 

Jun, it became apparent over the last years that JNKs can additionally 

phosphorylate and activate JunB, JunD, Elk-1 and ATF-2, (reviewed in (M. A. 

Bogoyevitch and B. Kobe, 2006)). Furthermore the Nuclear-Factor-of- 

Activated-T-cells (NFAT-4)(C. W. Chow et al., 1997), p53 (S. S. Shklyaev et 

al., 2001), c-Myc and a number of non-nuclear substrates including the 

microtubule associated protein Tau (H. Yoshida et al., 2004) and the ubiquitin 

E3 ligase Itch (M. Gao et al., 2004) have been identified as JNK substrates. 

Thus JNK signalling is not only a part of the cellular stress response and 

mediates apoptosis, it also regulates mechanisms such as cytoskeletal 

rearrangements, the immune response and protein degradation (see also 1.2.3).
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With regards to the role of JNKs in the nervous system it was shown 

that the response to apoptotic stimuli also varies in different JNK knockout 

mice. While deletion of JNK1 or JNK2 does not alter the response to kainate 

induced neuronal apoptosis, mice lacking the brain specific JNK3 are resistant 

to kainate induced excitotoxicity (D. D. Yang et al., 1997). Kainate receptors 

are found throughout the brain and are activated by the primary excitatory 

amino acid glutamate and their specific agonist kainate, which mimics the 

effect of glutamate. Administration of kainate causes an increase in the 

intracellular Ca2+ levels and the calcium dependent release of the excitatory 

neurotransmitter glutamate. This excess of glutamate leads to neuronal 

apoptosis and this mechanism is also known as excitotoxicity (J. W. Ferkany 

and J. T. Coyle, 1983; S. F. Giardina et al., 1998). Kainate receptors are located 

presynaptically where the presence of nanomolar kainate concentrations 

increases the glutamate release into the synapse and postsynaptic kainate 

receptors participate in the mediation of synaptic currents (reviewed in (J. 

Lerma, 2003)). Brain regions that are sensitive to kainate express high levels of 

the GluR6 and K2 kainate receptor genes and Savinainen et al have shown that 

after GluR6 receptor activation the PSD-95 protein anchors the JNK upstream 

kinases MLK2 and MLK3 to the glutamate receptor complex, which 

subsequently results in JNK activation (W. Wisden and P. H. Seeburg, 1993; A. 

Savinainen et al., 2001). In 1999 Behrens et al demonstrated that the excitotoxic 

effect in hippocampal neurons is dependent on c-Jun phosphorylation at the N- 

terminal S63/73 residues as junAA mice that harbour mutations of these residues 

to alanines are resistant to kainate induced excitotoxicity (A. Behrens et al., 

1999). The fact that JNK signalling is an essential mechanism in the regulation

23



Chapter 1

of survival signals in neurons is further supported by the fact that jnk3~A mice 

but also neurons are partially protected from apoptosis upon

administration of MPTP, a neurotoxic drug that induces loss of dopaminergic 

neurons (S. Hunot et al., 2004). However jnkl~l~ neurons are not protected in 

this system indicating that there are distinct roles of the different JNK isoforms 

in the brain (reviewed in (S. Brecht et al., 2005)).

1.1.2 The transcription factor c-Jun

One of the downstream targets of the JNK cascade is the transcription 

factor c-Jun, which is the cellular counterpart to the transforming protein v-Jun 

of the chicken retrovirus ASV17. To activate c-Jun, JNK first binds to the N- 

terminal 6 domain in c-Jun and phosphorylates residues Ser63/Ser73 and 

Thr91/Thr93 located within the transactivation domain of c-Jun (Figure 1.1 B) 

c-Jun forms homo- or heterodimeric complexes with proteins such as JunB, 

JunD, members of the Fos protein family or ATF-2 to generate the activator- 

protein-1 (AP-1) transcription complex. The AP-1 complex binds to a 

consensus sequence (AP-1 sites) found in promoters and enhancers of a great 

variety of genes and is involved in the regulation of cell growth, transformation 

and in the response to stress (E. Shaulian and M. Karin, 2002).

Regarding c-Jun in the nervous system, Herdegen et al. observed that 

c-Jun is upregulated in response to injury, while the other components of the 

AP-1 complex were not induced to the same extent (T. Herdegen et al., 1997) 

(T. Herdegen et al., 1998). In 2004 the role of c-Jun in the nervous system was 

further clarified in a study that used mice that lack c-Jun specifically in cells of 

the neuronal lineage (c -ju n ^  mice) (G. Raivich et al., 2004). c-juri^ mice
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develop normally but display defects in the axonal regeneration after injury 

while at the same time apoptosis in response to the injury was reduced.

The importance of c-Jun phosphorylation in neuronal apoptosis was 

underlined in a study that characterised junAA mice, where the N-terminal 

phosphorylation sites S63/S73 in the transactivation domain were mutated to 

alanines (A. Behrens et al., 1999). As the jn k3 _/' mice the ju n AA mice are 

resistant to kainate-induced apoptosis, which demonstrates a requirement for c- 

Jun phosphorylation in the initiation of neuronal cell death. Also cultured 

sympathetic neurons from junAA mice display a significant delay in apoptosis 

induced by trophic factor deprivation (C. G. Besirli et al., 2005). Other in vitro 

experiments in rat cerebellar granule cell cultures (cgcs) and rat sympathetic 

neurons demonstrated that overexpression of a dominant negative c-Jun 

construct protects these neurons from apoptosis, thereby supporting the model 

that N-terminal phosphorylation of c-Jun is a crucial event in neuronal 

apoptosis (J. Ham et al., 1995; A. Watson et al., 1998). Apart from its role in 

neuronal apoptosis after insults, an active JNK pathway and phosphorylated c- 

Jun have been observed in neurodegenerative diseases. In brains from patients 

with Alzheimer’s disease (AD) activated c-Jun was found in neurofibrillary 

tangles and was connected to amyloid depositions (A. G. Pearson et al., 2006; 

A. Thakur et al., 2007). Furthermore c-Jun phosphorylation has been linked to 

Huntington’s disease (HD) (M. Garcia et al., 2004) and the death of 

dopaminergic neurons in a mouse model for Parkinson’s disease (PD) (M. G. 

Willesen et al., 2002). In summary, while c-Jun is dispensable for brain 

development, c-Jun and c-Jun phosphorylation play an important role in axonal 

regeneration, neuronal apoptosis, and neurodegenerative diseases.
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In 2004 it was found that the F-box protein Fbw7 targets specifically 

phosphorylated c-Jun for subsequent proteasomal degradation (A. S. Nateri et 

al., 2004). Fbw7 is one component of a so-called SCF-E3 ligase complex, 

which mediates the attachment of small ubiquitin molecules to a substrate and 

thereby marks it for subsequent degradation. Since I was investigating the role 

of Fbw7 in the nervous system, I will give a short overview about 

ubiquitination, E3 ligases and c-Jun degradation in the following section. I will 

then summarise the literature on Fbw7, its substrates and regulation and give a 

short introduction into the nervous system.

1.2 Protein ubiquitination. E3 liqases and c-Jun

1.2.1 Ubiquitination targets proteins for different intracellular 

events

Ubiquitin is a 76 amino acid molecule, which can be attached to other 

proteins either as a monomer or as a chain of ubiquitin residues and thereby 

alter the fate of the modified protein. An ubiquitin chain is generated by the 

linkage of ubiquitins via lysine residues present at various positions in the 

ubiquitin molecule whereby the lysine residues that are used for the ubiquitin 

linkage determine the fate of the ubiquitinated protein (Figure 1.2A). The 

presence of a chain of multiple ubiquitin residues that are linked via their lysine 

48 (K48 linkage) marks a protein for subsequent proteasomal degradation. A 

polyubiqutin chain that is linked via lysine 63 (K63 linkage) is not targeted for 

degradation but is instead involved in other cellular processes such as 

intracellular signalling, transcription, transformation or DNA repair (reviewed
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in (A. Isaksson et al., 1996; M. Muratani and W. P. Tansey, 2003; D. 

Mukhopadhyay and H. Riezman, 2007)). In addition there is also the possibility 

that a protein can be monoubiquitinated at either one or multiple sites, which 

was shown to regulate endocytosis of receptor tyrosine kinases (Figure 1.2B) 

(K. Haglund et al., 2003). In any ubiquitination reaction the ubiquitin 

attachment is mediated by a cascade of enzymes that finally leads to the 

formation of a thioester-bond between the C-terminus of ubiquitin and the e- 

amino group of a lysine in the substrate. The enzymes involved in this 

ubiquitination process are the ubiquitin-activating enzyme (El), the ubiquitin 

conjugating enzyme (E2) and the ubiquitin ligases (E3s). E3 recognise and bind 

the substrate and finally mediate the attachment of ubiquitin moieties (see 

below) (Figure 1.2C). The initial steps of the ATP dependent ubiquitin 

activation and E2 conjugation are not described in detail in this introduction as 

my work focussed on the E3 ligase Fbw7 and for a review of the initial 

ubiquitination steps see (C. M. Pickart and M. J. Eddins, 2004).

Interestingly the number of E3 ligases is higher than the number of E2 

ligases, which in turn is higher than the number of E l enzymes identified so far 

(C. M. Pickart, 2001). The E3 ligases are the final and crucial adaptor 

molecules between the ubiquitination complex and the substrate, and are 

therefore responsible for the specificity. The high number of E3s may reflect 

the number of target proteins, however, this does not mean that any given E3 

ligase has only one substrate. Indeed one E3 ligase can have many substrates 

that all share a specific recognition sequence, for instance a so-called phospho- 

degron, where a protein is recognised for ubiquitin attachment depending on its 

phosphorylation state. Additionally one substrate can also be targeted for
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degradation by more than one E3 ligase, which has been shown to be the case 

for c-Jun (see below 1.2.3).

The result of the multi step ubiquitination cascade is always the 

attachment of an ubiquitin moiety to the substrate. Originally it was believed 

that all three enzymes are necessary for the ubiquitination of a protein and it 

was only elucidate recently that ubiquitination can also take place in the 

absence of an E3 ligase. Even more, in addition to the attachment of one 

ubiquitin molecule after the other to form a chain on the substrate also whole 

previously assembled ubiquitin chains can be attached (W. Li et al., 2007).

Ubiquitination is not a final modification and can be reversed by means 

of deubiquitinating enzymes (DUBs) and ubiquitin specific proteases (USPs) 

and an increasingly complex network of regulated ubiquitination and 

deubiquitination of proteins emerges. For instance, the Anaphase Promoting 

Complex (APC) E3-ligase activity in yeast is antagonised via USP44, which 

deubiquitinates the APC coactivator Cdc20 (F. Stegmeier et al., 2007). 

Importantly the first USP for the E3-ligase Fbw7, USP28, was recently 

identified and found to antagonise Fbw7 mediated ubiquitination (N. Popov et 

al., 2007).
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1.2.2 E3 ligases mediate the attachment of ubiquitins to 

substrates

1.2.2.1 HECT and RING E3 ligases

The two classes of HECT (homologous to E6-AP-carboxy terminus) 

and RING (really interesting new gene) E3 ligases form together with the F-box 

ligases the superfamily of E3 ligases. As also HECT and RING E3 are involved 

in the degradation of c-Jun (see 1.2.3), I will give a short introduction on them.

In contrast to the F-box ligases (discussed below) HECT and RING E3 

ligases interact directly with the E2 and mediate the ubiquitination of the 

substrate. In HECT domain proteins the N-terminus interacts with the substrate 

that will be ubiquitinated, and the C-terminal HECT domain binds to the E2 

enzyme (S. Kumar et al., 1997). The prototype of the HECT proteins is the 

E6-AP protein, which is mutated in the neurodegenerative disease Angelman 

syndrome and causes severe mental retardation in patients (T. Kishino et al., 

1997). In a knockout mouse model for this disease Jiang et al. could show that 

the protein levels of the tumour suppressor protein p53 are elevated and that 

these mice have deficits in contextual learning and memory, indicating this 

particular E3 ligase has an essential function in the nervous system (Y. H. Jiang 

et al., 1998). Another example for a HECT-E3 is Itch, which regulates the 

degradation of Notch, c-Jun and JunB and which will be described in more 

detail later (see 1.2.3) (L. Qiu et al., 2000; D. Fang and T. K. Kerppola, 2004; 

M. Gao et al., 2004).
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RING E3 ligases were named after their characteristic cross brace 

structure that coordinates two zinc ions in its core and have been divided into 

two subgroups, one group contains the RING proteins that exert their function 

as monomers, whereas the other group contains RING E3s that are part of 

multimeric complexes such as the Skpl-Cull-F-box (SCF) complex or the Von 

Hippel Lindau (VHL) complex (T. Kamura et al., 1999). In the case of single 

subunit RING E3s the RING domain facilitates the ubiquitination o f a substrate 

that is recognises by another domain of the protein. Examples for such a single 

subunit RING-E3 ligase are c-Cbl where the target protein is recognised via its 

SH2 domain (C. A. Joazeiro et al., 1999) and Mdm2, which has a crucial role in 

mediating the degradation of the tumour suppressor p53 (S. Fang et al., 2000). 

There is also emerging evidence that the interaction between these E3-ligases 

and their substrates is tightly regulated by posttranslational modifications. In 

case of Mdm2, for example, it was demonstrated that not only p53 is protected 

from Mdm2 mediated degradation when acetylated, but also that acetylation of 

Mdm2 itself impairs its function on p53 (X. Wang et al., 2004). Additionally 

specific adaptor molecules have been identified that can interact with E3 ligases 

that were originally thought to act as monomers. The adaptor molecule Numb, 

for instance, binds to the transcription factor glil thereby targeting it for Itch 

mediated degradation (L. Di Marcotullio et al., 2006).

1.2.2.2 F-box E3 ligases and the SCF complex

The SCF complex is a multi protein complex named after its 

components Skp-l:Cull:F-box (Figure 1.3 A) A further component of the SCF 

complex is the Rbxl RING protein, which in this context acts as an adaptor for
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the E2 ligase and not as a self-standing E3 ligase. An ubiquitin will be attached 

to a substrate via the E2 enzyme bound to Rbxl, which in turn is bound to the 

Cull C-terminus. The Cull N-terminus binds to Skpl, which also binds the 

conserved F-box domain of the F-box proteins (P. K. Jackson and A. G. 

Eldridge, 2002).

F-box proteins, such as Fbw7, act as a connector between the otherwise 

conserved complex and the specific substrate. There are three groups of F-box 

proteins and while the F-box domain is common to all of them, they differ in 

their C-termini, which can be composed of either a so-called WD-40 repeat 

region, a leucine rich repeat region or a variable region (J. T. Winston et al., 

1999). In all cases the C-terminus is responsible for the binding of the substrate 

that is to be ubiquitinated. Ten WD-40 repeat F-box proteins have been 

identified so far and they have various functions, expression patterns and 

substrates. Fbwl for example can be found in the nucleus as well as the 

cytoplasm and mediates the degradation of p-catenin (M. Kitagawa et al.,

1999). Fbw2 is mainly expressed in the liver but not in the brain and localises 

to the cytoplasm (M. Miura et al., 1999). Another example is Fbw8, which 

forms a complex with Cul7 and Cull and Tsunematsu et al. showed that Fbw8 

is required during the development of the placenta in mice (R. Tsunematsu et 

al., 2006). Thus, although these proteins share the same conserved domains 

such as the F-box and the WD-40 region, and bind to the same components of 

the SCF complex, their function is highly specific and diverse. Fbw8, for 

example, was found to interact with c-Myc but does not bind within the myc- 

box domain 1 as Fbw7 does (see also 1.3.3.2). Instead Fbw8 interacts with c- 

Myc via the myc-box domain 2 and the helix-loop-helix motif (H. B. Koch et
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al., 2007). Considering that with Fbw7 and Skp2 there are already two E3 

ligases involved in c-Myc degradation (see also 1.3.3.2) the interaction of Fbw8 

with c-Myc adds further complexity to this mechanism and shows again that 

one substrate can be targeted by different E3 ligases for degradation. 

Nevertheless it remains largely elusive how these interactions are orchestrated. 

The studies published so far for c-Jun and c-Myc degradation usually focus on 

one particular E3 ligase in but do not consider effects of the other known 

specific E3 ligases on the given target protein.

1.2.3 c-Jun degradation

The first reports describing that c-Jun can be ubiquitinated and degraded 

via the proteasome pathway were published in 1994 and 1996 (M. Treier et al., 

1994; A. M. Musti et al., 1996). Treier et al. demonstrated that the 6 domain of 

c-Jun is important for its degradation and Musti et al. observed that differences 

in the 6 domain of c-Jun, and JunD account for their different ubiquitination 

kinetics and thus different half live times of the proteins (A. M. Musti et al., 

1997). However, in those two publications, however, no specific E3 ligases for 

the Jun family members were identified.

In 2003 it was shown that c-Jun binds to the RING protein Copl and 

that Copl binding to c-Jun downregulates AP-1-dependent transcription (E. 

Bianchi et al., 2003). A year later in 2004 Wertz et al. described a ternary 

complex consisting of Copl, hDetl and Cul4A, which mediates the degradation 

of c-Jun independent of JNK signalling or the presence of the 6-domain (I. E. 

Wertz et al., 2004). While it is not clear whether this complex acts in a 

phosphorylation independent manner or requires the phosphorylation at other
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sites outside the 6-domain, an regulatory mechanism for the Copl-hDet-c-Jun 

interaction has recently been elucidated. Savio et al. showed that a splice 

variant of Copl, Cop ID, acts as a dominant negative regulator of Copl. Savio 

et al observed an initial decrease in the Copl /Cop ID ratio in response to UV, 

which is then followed by an increase in Copl/Cop ID ratio. Savio et al 

conclude that these alterations in the Copl isoform ratios offer a mechanism for 

the finetuning of c-Jun levels in response to UV. Immediately after UV 

irradiation c-Jun activity increases the sensitivity of cells to p53 mediated 

apoptosis and c-Jun levels can be downregulated by the Copl-hDetl-Cull 

complex. Once Cop ID is sufficiently upregulated it dimerises with Copl and 

sequesters it away from the E3 ligase complex. This leads to an increase in c- 

Jun levels, which mediate cell cycle re-entry (M. G. Savio et al., 2007).

Apart from Copl the F-box protein Fbw7 (A. S. Nateri et al., 2004; 

W. Wei et al., 2005) and the HECT-E3 ligase Itch (M. Gao et al., 2004) were 

found to mediate c-Jun ubiquitination and degradation (Figure 1.4A). Firstly, 

Gao et al. observed that the overexpression of an upstream kinase of the JNK 

signalling pathway such as MEKK1 or a dominant active JNKK2-JNK1 

construct in 293 cells caused polyubiquitination of c-Jun in an Itch dependent 

manner. However, also c-Jun constructs harbouring either single or double 

mutations of the S63 and S73 residues to alanines were ubiquitinated to the 

same degree as wt c-Jun. Gao et al. next analysed the ubiquitination of a junAla 

mutant where additionally to the S63/73 and T91/93 residues the threonine 

residues at positions 89, 90 and 95 were changed to alanines. In the presence of 

Itch this junAla construct was ubiquitinated to the same extent as wt c-Jun. 

Based on these experiments Gao et al. concluded that Itch mediates the
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ubiquitination of c-Jun independent of the phosphorylation status in the c-Jun 

transactivation domain (M. Gao et al., 2004). Interestingly, Gallagher et al. 

showed in 2006 that Itch itself is phosphorylated and thereby regulated by JNK 

signalling (E. Gallagher et al., 2006). The phosphorylation of Itch at various 

residues in its proline-rich region results in the disruption of an intramolecular 

interaction between its N- and C-terminal region, which on the one hand allows 

Itch to exert its function as an E3 ligase, but on the other hand decreases its 

stability by promoting its autoubiquitination. Additionally to Itch, the F-box E3 

ligase Fbw7 can antagonise the levels of phosphorylated c-Jun and two 

different Fbw7 binding sites were identified, whereby one lies within the 6 

domain and the other one is located more c-terminal (see also chapter 1.3.3.1) 

(A. S. Nateri et al., 2004; W. Wei et al., 2005). By using c-Jun constructs, in 

which the phosphorylated residues were mutated to alanines both groups 

established that c-Jun has to be phosphorylated to be ubiquitinated by Fbw7 (A. 

S. Nateri et al., 2004; W. Wei et al., 2005).

In summary, three different E3 ligases for c-Jun have been identified so 

far: Itch, Cop-1 and Fbw7. The analysis of the binding sites for these E3 ligases 

reveals that all three ligases recognise different motifs in the c-Jun protein 

(Figure 1.4B). Furthermore the initial characterisation of these E3:c-Jun 

interactions demonstrated that the recognition of c-Jun as a substrate is 

regulated by a variety of different mechanisms: the phosphorylation of either 

the substrate (Fbw7:c-Jun interaction) or the E3 ligase itself (Itch-c-Jun 

interaction). Furthermore the recognition of c-Jun as a ubiquitination target can 

be regulated by other factors that sequester components of the ubiquitination
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machinery as shown for the Cop-l:c-Jun interaction. The existence of different 

mechanisms that regulate c-Jun abundance suggests that dependent on the 

cellular context or extracellular stimulus different E3 ligases might be involved 

in regulating c-Jun levels. However, how the activity of the different E3s 

towards c-Jun is orchestrated still remains to be investigated.
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1.3 The Fbw7 protein

Fbw7, also known as Sel-10 in c.elegans, Cdc4 in yeast and Ago in 

drosophila, was initially named Fbxw6 in mice (S. Maruyama et al., 2001) but 

was later renamed Fbw7 when the nomenclature of F-box proteins was unified 

in 2004 (J. Jin et al., 2004). Originally Flubbard et al. (E. J. Flubbard et al., 

1997) identified Fbw7 as a negative regulator of Notch/lin-12 signalling in 

c.elegans. Since then various other substrates have been described including c- 

Jun, c-Myc, and cyclin E. I will now summarise how Fbw7 interacts with its 

substrates and as many of these substrates are known oncogenes, I will also 

focus on the role of Fbw7 as a tumour suppressor.

1.3.1 Fbw7 isoforms and localisation

Fbw7 has 3 isoforms a , p and y, which are generated using an 

alternative first exon, followed by 10 common exons (Figure 1.5A) The unique 

exon 1 of the Fbw7 isoforms plays a crucial role in determining their 

localisation and function. While the a  and y isoforms are present in the nucleus 

and nucleoli, the p isoform is found in the cytoplasm (M. Welcker et al., 

2004a). In addition the three isoforms show a tissue specific expression pattern 

with the p isoform being expressed mainly in brain, heart and testis, while the 

other isoforms are found in various tissues (C. H. Spruck et al., 2002).

A detailed study, conducted by Welcker et al. identified several 

localisation signals within the Fbw7 sequence that can explain the distinct
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localisation patterns of the different isoforms (Figure 1.5B)(M. Welcker et al., 

2004a). A nuclear localisation signal (NLS) in the a-exon of Fbw7 is 

responsible for its nuclear localisation and upon deletion of the respective 

residues this nuclear isoform localises to the cytoplasm. Additionally the N- 

terminus of the a-isoform is sufficient to translocate GFP to the nucleus, clearly 

indicating the presence of an isoform specific NLS (M. Welcker et al., 2004a). 

Furthermore, Welcker et al. could demonstrate that the N-terminus of the (3- 

isoform contains a nuclear export signal (NES). In addition to the localisation 

signals identified by Welcker et al., I identified another NLS in the common 

region in between the F-box domain and the WD40 repeat region. Mutagenesis 

of this NLS (GFP-Fbw7-AN-4A) abolishes the nuclear localisation of a GFP 

fusion construct, containing only the common region of Fbw7 

(GFP-Fbw7-AN), and distributes it back to the cytoplasm (A. Jandke, 2003).

The ability of Fbw7 to translocate between different cellular 

compartments, either upon deletion or mutagenesis of various domains, gives 

rise to the speculation that Fbw7 localisation might be regulated by yet to be 

defined mechanims. It is feasible to speculate that substrate recognition might 

be achieved or impaired via signals that bind and mask localisation signals, and 

thereby affect the localisation and subsequently access to substrates in different 

cellular compartments.

1.3.2 Fbw7 isoforms can act sequentially on a substrate and 

dimerise

Various studies have demonstrated that the different Fbw7 isoforms can 

interact and cooperate in their action towards substrates. A study by van Drogen
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et al. demonstrated that multi-ubiquitination of cyclin E, one of the Fbw7 

substrates, is achieved by the initial binding of Fbw7-a to cyclin E, which is 

followed by binding of the prolyl isomerase Pinl to this complex (F. van 

Drogen et al., 2006). This in turn facilitates the binding of the second isoform, 

Fbw7-y, to cyclin E. Their finding of a sequential interaction of both Fbw7 

isoforms is supported by the existence of a cancer mutation in Fbw7-a, which 

cannot interact with Pinl and thereby stabilises cyclin E (F. van Drogen et al., 

2006). Data from p in l7‘ mice strengthen this model, as in these animals cyclin 

E protein levels are deregulated (E. S. Yeh et al., 2006). Van Drogen and 

colleagues speculate that the sequential binding of different Fbw7 isoforms to a 

single substrate might be a general mechanism for the action of Fbw7 on its 

targets and a recent study using p in l ^.pSS ^ mice supports this model(K. 

Takahashi et al., 2007). In this study the authors observed an increase in Notch- 

1-intracellular domain (Notch 1-ICD) and Presenilin levels with both proteins 

being Fbw7 targets (see chapter 1.3.3.4). However, the authors did not relate 

the observed increase of these substrates to the role of Pinl in Fbw7-mediated 

protein degradation and did not look at the effects on other substrates of Fbw7 

such as c-Jun or c-Myc.

In line with the idea that Fbw7 isoforms can cooperate or interact, a so- 

called D-domain (dimerisation domain) directly upstream of the F-box domain 

was recently identified (W. Zhang and D. M. Koepp, 2006; M. Welcker and B.

E. Clurman, 2007). Both groups investigated the interaction of different Fbw7 

isoforms and used N- and C-terminal truncated constructs to map possible 

Fbw7 dimerisation sites. They observed that all isoforms have the ability to 

homo- and heterodimerise in various combinations in vitro (W. Zhang and D.
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M. Koepp, 2006) and in vivo (W. Zhang and D. M. Koepp, 2006; M. Welcker 

and B. E. Clurman, 2007). Co-immunoprecipitation experiments showed that 

homodimerisation is more efficient than heterodimerisation. Additionally the 

heterodimerisation of the p-isoform with the others (a  or y) was very weak, 

which is perhaps not surprising considering the different cellular compartments 

where these isoforms are expressed (M. Welcker and B. E. Clurman, 2007). 

The same study also demonstrated that the dimerisation can alter the 

localisation of the complex. Performing co-overexpression studies in U20S 

cells the authors observe that a cytoplasmic mutant of the y-isoform, localises to 

the nucleus upon dimerisation with the a-isoform, whereas co-overexpression 

of the p and y isoform did not result in an altered localisation (M. Welcker and

B. E. Clurman, 2007). Welcker et al. further investigated whether the 

dimerisation affects the substrate ubiquitination. By using a dimerisation 

defective mutant where the four amino acids that are required for dimerisation 

are deleted, and by monitoring cyclin E levels, they observed that dimerisation 

is not strictly required for Fbw7 to exert its function. This is in contrast to the 

study of Zhang et al. who found that dimerisation is essential for cyclin E 

proteolysis. These authors used a cycloheximide protein synthesis block to 

determine the proteolysis of the cyclin E pool over time and observed a 

stabilisation when using the D-domain mutant, which contains a deletion of 

exon2, 3 and 4. Since the deletion domain mutant used by Welcker et al. spans 

only the 4 amino acids that are required for dimerisation this shows that 

dimerisation is indeed not completely required for Fbw7 function. Furthermore
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both studies concluded that the functionality of the D-domain is not dependent 

on the presence of the F-box domain or the WD-40 repeats.

In summary it has been clearly demonstrated that more than one Fbw7 

molecule can be involved in the ubiquitination of a substrate and that a ternary 

complex might be formed, either involving an Fbw7 dimer or another 

intermediate such as Pinl. Hao et al. have recently confirmed the dimerisation 

model for SCF-mediated ubiquitination by providing crystallographic data and 

additionally suggest that a model of “substrate cross-ubiquitination” is also 

feasible (B. Hao et al., 2007). This model proposes that a ubiquitin moiety can 

be attached more efficiently by a second SCF complex, present on the same 

substrate molecule, or even on a different E3 substrate molecule in close 

proximity (Figure 1.5C) Therefore, the interaction between the different Fbw7 

isoforms and between Fbw7 and its substrates appears to be highly complex 

and most likely not all mechanisms or even substrates have yet been identified. 

As all substrates are potentially affected in Fbw7 knockout animals, I will now 

recapitulate the published data on the substrates known to date.
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1.3.3 Fbw7 substrates

1.3.3.1 Fbw7 and c-Jun

Since N-terminal phosphorylation was shown to be important for many 

functions of c-Jun, Nateri et al. performed a yeast two-hybrid screen to identify 

phosphorylation dependent c-Jun interactors. They observed that the E3-ligase 

Fbw7 interacts specifically with phosphorylated c-Jun (A. S. Nateri et al., 

2004). In the yeast screen a temperature sensitive cdc25 mutant yeast strain, 

which lacks Ras activity and grows only at 25°C was used. The Ras activity can 

be rescued by introducing human oncogenic Ras, which enables the yeast to 

grow additionally at 37°C. A brain library, fused to a myristilation signal 

causing it to localise to the plasma membrane, was used to screen for c-Jun 

interactors. A truncated c-Jun construct, lacking the leucine zipper, fused to 

oncogenic RasV12 was the bait. Because of the myristilation signal, the 

interaction between proteins from the brain library with c-Jun had to take place 

at the plasma membrane and therefore activated the Ras signalling pathway and 

enabled the yeast to grow at 37°C. To make the screen c-Jun phosphorylation 

dependent, a constitutive active MKK7-JNK1 fusion construct under the 

control of the Met3 promoter, which caused reliable c-Jun phosphorylation in 

absence of Methionine, was employed. After identifying Fbw7 as an E3 ligase 

for phosphorylated c-Jun, the interaction was verified in an in vitro translation 

system where it was confirmed that Fbw7 and phosphorylated c-Jun co- 

immunoprecipitate. Using a peptide-binding assays Nateri et al. established that
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the interaction requires the phosphorylation of c-Jun at its S63/S73 and T91/93 

residues (A. S. Nateri et al., 2004). Therefore previous reports showing that 

the N-terminal region of c-Jun is involved in its degradation were confirmed 

(M. Treier et al., 1994).

More recently, another study also demonstrated the interaction between 

Fbw7 and c-Jun (W. Wei et al., 2005). However, regarding the location of the 

Fbw7 binding site on c-Jun both publications show conflicting data. Whereas in 

the study by Nateri et al. Fbw7-p binds the same residues that are also 

phosphorylated by JNK, namely Ser63 and Ser73, Wei et al. could not confirm 

this interaction but showed that all Fbw7-isoforms recognise c-Jun 

phosphorylated at Thr 239, which lies within a phospho-degron, a consensus 

sequence for Fbw7 recognition (Figure 1.6C). They further elucidated that an 

initial phosphorylation of Ser 243 is followed by GSK-3 mediated 

phosphorylation of Thr239 and this generates the recognition site for Fbw7 

(Figure 1.6A and C). Based on these data Wei et al. propose a model whereby 

the Fbw7 binding site is generated by two sequential phosphorylation steps 

whereby the second phosphorylation is mediated by GSK-3. This model is 

similar to the one previously identified for the binding of Fbw7 to c-Myc (see 

also 1.3.3.2). To support this model the authors present data for an inverse 

correlation between the GSK-3 activity and c-Jun levels in various cell lines 

and show that v-jun can escape Fbw7-mediated degradation because the 

required priming phosphorylation site at S243 is mutated to phenylalanine.
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1.3.3.2 Fbw7 and c-Mvc

The proto-oncogene c-Myc is a transcription factor whose activity is not 

only regulated by cofactors such as the Mad/Max complex (reviewed in (B. 

Luscher, 2001; S. Rottmann and B. Luscher, 2006)), but also by ubiquitination 

and degradation. In 2003 two groups independently identified Skp2 as the first 

E3 ligase that regulates c-Myc (S. Y. Kim et al., 2003; N. von der Lehr et al., 

2003b). Both studies show that Skp2 binds in a phosphorylation independent 

manner and that it is not only an E3 ligase for c-Myc, but also acts as a 

coactivator. This apparent discrepancy is explained with a model whereby the 

binding of Skp2 causes the recruitment of the proteasome to the promoter and 

thereby mediates the degradation of inhibitory factors, thus facilitating the 

activation of c-Myc. Concomitantly, the presence of the proteasome causes the 

degradation and thus clearance of c-Myc from a promoter thereby allowing 

newly synthesised c-Myc to bind and the activation cycle to begin anew (N. 

von der Lehr et al., 2003a).

In 2004 Fbw7 was identified as an additional E3 ligase for c-Myc but in 

contrast to Skp2 Fbw7 represses c-Myc function (M. Yada et al., 2004). 

Welcker et al. characterised the mechanisms of Fbw7-c-Myc interaction in 

more detail and identified a complex cascade of events leading to Fbw7 

mediated c-Myc degradation (M. Welcker et al., 2004b). Using mutagenesis 

analysis of c-Myc and different truncated cDNAs for Fbw7, they demonstrated 

that GSK-3 mediated phosphorylation of c-Myc at residue T58 is required for 

Fbw7-mediated c-Myc turnover. However, a prerequisite for the
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phosphorylation of T58 by GSK-3 is, that the S62 residue is already 

phosphorylated (Figure 1.6B). Interestingly the phosphorylation of S62 is 

mediated by the Ras/Mek/Erk pathway and was previously shown to stabilise 

c-Myc in vivo (R. Sears et al., 2000). Furthermore, S62 is also phosphorylated 

by JNK (K. Noguchi et al., 1999) and thus it appears that the initial 

phosphorylation is required for signalling pathways, whilst the second one is 

required to target c-Myc for degradation and thereby effectively switches the 

pathway off. Interestingly, Welcker et al. mention in their discussion of this 

study that the nervous system specific form of myc family members, N-myc, is 

also a substrate of Fbw7 although data for this are not shown (M. Welcker et 

al., 2004a).

1.3.3.3 Fbw7 and cvclin E

Cyclin E promotes Gl/S transition in the cell cycle by binding to and activating 

the Cyclin dependent Kinase 2 (Cdk2) and cyclin E levels are tightly regulated 

on both the transcriptional level and the protein level during the cell cycle (H. 

Matsushime et al., 1994; T. Moroy and C. Geisen, 2004). Additionally different 

ubiquitination mechanisms ensure that cyclin E is expressed at appropriate time 

points in the cell cycle. Cul3, for instance, mediates the degradation of cyclin E 

when it is not bound to Cdk2, whilst cyclin E bound to Cdk2 is targeted for 

degradation by Fbw7 (J. D. Singer et al., 1999; H. Strohmaier et al., 2001; M. 

Welcker et al., 2003; J. D. McEvoy et al., 2007). Altogether four 

phosphorylation sites are essential for cyclin E degradation by Fbw7. They are 

T62, S3 72, T380 and T384 whereby the latter 2 are located within a phospho- 

degron sequence (Figure 1.6C). Also in case of cyclin E the second
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phosphorylation step, at T380, is mediated by GSK-3 and is dependent on a 

priming phosphorylation of S384 a kinase, here Cdk-2. Activation of Cdk-2 

therefore causes increased degradation and ubiquitination of cyclin-E as part of 

a regulatory feedback loop (M. Welcker et al., 2003).

Interestingly the Ras-MAPK pathway interferes with Fbw7 mediated 

degradation of cyclin E and overexpression of oncogenic Ras in rodent cells 

stabilised cyclin E levels (A. C. Minella et al., 2005). Surprisingly this report 

showed that there is no change in the phosphorylation status of the phospho- 

degron in cyclin E. However, this could be explained by the fact that the a  and 

Y isoform can cooperate in the attachment of ubiquitins to cyclin E upon Pinl 

mediated isomerisation of the initial Fbw7-a binding site (F. van Drogen et al.,

2006). If Ras signalling would either directly or indirectly affect the function of 

Pinl, cyclin E could accumulate without alterations in its phosphorylation at the 

Fbw7 substrate recognition site. It was for example shown that Pin-1 cooperates 

with oncogenic Ras, binds to phosphorylated c-Jun and thereby increases its 

transcriptional activity towards the cyclinDl promoter (G. M. Wulf et al., 

2001). Thus the Pin-1 isomerase could act to stabilise Fbw7 substrates in the 

context of Ras signalling.

1.3.3.4 Fbw7. Notch and Presenilin

The Notch signalling pathway plays a crucial role during cell 

differentiation and development of the nervous and vascular system. Notch 

signalling and subsequent expression of Notch target genes is tightly regulated. 

Notch signalling is triggered by the binding of ligands such as 

Delta/Serrate/Lag to Notch. These ligands are present on the surface of a
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neighbouring cell and bind to the extracellular domain of the full length Notch 

protein, which then leads to the sequential cleavage of Notch by several 

proteases. The result of this cascade is the release of the Notch intracellular 

domain (Notch-ICD). The Notch-ICD then translocates to the nucleus to 

activate Notch target genes. Presenilin is part of the y-secretase complex that 

cleaves Notch to generate the Notch-ICD but is also involved in the cleavage of 

the amyloid precursor protein APP, a protein involved in AD (reviewed in (J. 

Shen and R. J. Kelleher, 3rd, 2007)). By mediating the degradation of 

Presenilin and the intracellular domains of Notch 1 and Notch4, Fbw7 regulates 

the Notch pathway on two levels (G. Wu et al., 1998),(C. Oberg et al., 2001; J. 

Li et al., 2002). Firstly, it determines the abundance of an enzyme required for 

Notch cleavage. Secondly, Fbw7 mediates the degradation of the nuclear 

Notch-ICD and thereby antagonises the active signalling pathway.

Notch signalling is also a major determinant for cell fate decisions in the 

nervous system. It is involved in maintaining neuronal progenitor cells at the 

precursor stage and promotes an astrocytic cell fate in glial progenitor cells 

(reviewed in (A. Louvi and S. Artavanis-Tsakonas, 2006)). Thus deletion of 

Fbw7 could have severe effects on cell fate decisions and development. Since 

deletion of Fbw7 should lead to an accumulation of Presenilin, this would cause 

an increase in the Notch-ICD and increased target gene activation. Furthermore 

the ubiquitination of the Notch-ICD would be impaired. Therefore one would 

expect an upregulation of Notch signalling in Fbw7 knockout animals leading 

to a differentiation defect. Interestingly Notch4 was found to be upregulated in 

a tumour study using Jbw7+/~ mice in a p53~A background, demonstrating that 

Fbw7 deletion causes an increase in the Notch-ICD (J. H. Mao et al., 2004).
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Moreover the early embryonic lethality at E l0.5 and vascularisation defects of 

JbwTf embryos were attributed to elevated Notch 1 and Notch 4 levels (see also 

1.3.6) as Notch signalling is also a major pathway in vascularisation processes 

(A. Karsan, 2005).

In addition to Fbw7, Notch can also be degraded by the RING E3 ligase 

Itch which recognises the N-terminal region of the Notch-ICD (L. Qiu et al.,

2000). So far one model proposes that Itch mediates the degradation of the 

Notch-ICD in the cytoplasm whilst Fbw7 exerts its function in the nucleus (E.

C. Lai, 2002). However, the detailed mechanisms of how these two E3s are 

orchestrated, have not been investigated.

1.3.3.5 Fbw7 and SREBP

The sterol regulatory element binding protein (SREBP) family of 

transcription factors is involved in regulating cholesterol and lipid metabolism. 

SREBPs have to be cleaved in a similar manner to Notch to become active and 

these active fragments can then exert their function on target genes before 

subsequently being degraded (M. T. Bengoechea-Alonso and J. Ericsson,

2007). In 2005 Sundqvist et al. demonstrated that SREBP la, SREBP lc and 

SREBP2 are degraded by the Fbw7-a and Fbw7-y isoforms (A. Sundqvist et 

al., 2005). As with the other Fbw7 substrates including c-Jun, c-Myc and cyclin 

E, the recognition of SREBP’s by Fbw7 depends on GSK-3 mediate 

phosphorylation. Inhibition of SREBP phosphorylation prevents Fbw7 

mediated degradation and siRNA mediated depletion of Fbw7 enhanced 

SREBP levels in U20S cells. Thus these data add another substrate to the list of 

Fbw7-targets.
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1.3.4 Fbw7 and Parkin

Parkin is a 52 kD RING E3, which is frequently mutated in autosomal- 

recessive juvenile Parkinsonism (AR-JP). Mutations in Parkin were found in all 

domains of the protein including the N-terminal Ubiquitin like domain (UBL), 

the C-terminal RING1 and RING2 domains and the In-Between-Ring domain 

(IBR) (reviewed in (I. F. Mata et al., 2004)). Parkin-substrates include a- 

synuclein, synphilin-1 (K. K. Chung et al., 2001) and PAEL-R (Y. Imai et al.,

2001). a-synuclein is a protein found in Lewy-bodies, one hallmark of 

Parkinson’s disease (PD) (M. G. Spillantini et al., 1997). Furthermore, 

mutations in a-synuclein are found in an autosomal-dominant form of PD (M. 

H. Polymeropoulos et al., 1997). In 2003 Staropoli and colleagues reported that 

Fbw7 interacts with Parkin and thereby enhances ubiquitination of cyclin E (J.

F. Staropoli et al., 2003). They mapped the interaction between Parkin and 

Fbw7 to the Fbox domain of Fbw7 and the two RING domains of Parkin. An 

additional weaker interaction takes place between the UBL domain of Parkin 

and the WD-40 repeat region of Fbw7. Considering the binding domains 

identified, one would expect that Fbw7 and Parkin might degrade each other. 

However, even though Fbw7 mediates some ubiquitination of Parkin, the 

majority of the Fbw7-Parkin-complex regulates the degradation of cyclin E. 

The authors went on to investigate the function of Parkin in a neuronal model 

system and observed that Parkin protects postmitotic neurons (cerebellar 

granule cells as well as dopaminergic midbrain neurons) from kainate induced 

excitotoxicity. At the time of publication c-Jun and c-Myc had not been 

identified as a substrate for Fbw7, however, it would be interesting to test what
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other substrates Fbw7-Parkin complex targets for ubiquitination. Given that c- 

Jun is upregulated in response to kainate administration it would be interesting 

to examine whether a Parkin-Fbw7 complex is able to antagonise the 

accumulation of phospho-c-Jun as well (A. Behrens et al., 1999).

1.3.5 Fbw7 in tumoriaenesis

Since many substrates of Fbw7 are involved in cell cycle progression as 

well as tumorigenesis, it is not suprising that mutations of Fbw7 have been 

found in various cancers. In 2004 Reed et al. studied several cancer cell lines 

and tumours and found a correlation of loss of function mutations of Fbw7 and 

elevated cyclin E level (S. Ekholm-Reed et al., 2004). In this study 20% of the 

investigated endometrial tumours showed Fbw7 mutations and an 

accompanying loss of heterozygocity. Mutations in the a-isoform of Fbw7 

correlated strongly with a misregulation of cyclin E whereas the Fbw7-p- 

isoform specific mutations did not. Misregulation in the context of this study 

meant not only elevated expression levels but also expression of cyclin E at 

non-appropriate timepoints during the cell cycle.

Another role of Fbw7 in tumorigenesis was elucidated in 2003 in a 

study by Kimura et al. (T. Kimura et al., 2003), who identified Fbw7-(3 as a 

transcriptional target gene of the tumour suppressor p53. In this study a 

microarray on a p53-mutated gliobastoma cell line was performed after 

wild-type (wt) p53 was transferred back into the cells. Here Fbw7 was found to 

be upregulated after p53 transfer. Furthermore electro-mobility shift assays 

identified a p53-binding site in exon 1 of the p-isoform. Accordingly, Fbw7-p 

expression is upregulated in a p53 dependent manner after UV and genotoxic
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stress, whereas the induction of the Fbw7-a isoform is not dependent on p53 

proficiency. Additional luciferase assays demonstrated that p53 could bind to 

the identified site and induce Fbw7-(3 expression. Based on these data a model 

was proposed, wherein the p-isoform is needed to maintain cells in a permanent 

cell cycle arrest and this would correlate with the observed high Fbw7-P 

expression levels in the brain.

In line with the above study a role for Fbw7 as a p53-dependent haplo- 

insufflcient tumour suppressor was elucidated in 2004 (J. H. Mao et al., 2004). 

This study is based on the multiple-hit-theory for cancer. Using mice 

heterozygous for p53 (p53+A), which form tumours after a longer latency than 

p53'A mice, the question arose whether there are any differences in the tumours 

of those two mouse strains. Using microsatellite markers to detect loss of 

heterozygocity (LOH) in these two groups of mice the authors found an 

extensive LOH on chromosome 3 in tumours from p53+A mice. LOH on 

chromosome 3, which also harbours the fbw7 gene, was apparent in almost 

100% of p53 heterozygous mice and this loss of one Fbw7 allele was sufficient 

to accelerate tumour development in the p53+/~ background, but not in the p53‘/‘ 

mice. Therefore these data suggest that loss of Fbw7 and/or other genes 

precedes the loss of wt p53 allele (J. Perez-Losada et al., 2005). In addition to 

the previously identified p53-binding site, this study identified further nine 

putative response elements in the Fbw7-a, four in the Fbw7-P and five in the 

Fbw7-y promoter. However, the extent to which these putative response 

elements are indeed targets of p53-mediated regulation remains elusive.
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The finding that Fbw7 expression can be used as a prognostic marker in 

tumour analysis and that expression of the |3 isoform is suppressed in gliomas 

further supported the role of Fbw7 as a tumour suppressor, (Z. Gu et al., 2007; 

M. Hagedom et al., 2007).

1.3.6 The Fbw7 knockout mice

Based on the diverse nature of the Fbw7 substrates such as the 

oncogenes c-Jun and c-Myc, the cell cycle regulator cyclin E, and cell fate 

determining factor Notch, it was expected that a knockout of Fbw7 has 

detrimental effects on cell growth and differentiation and is incompatible with 

viability in a mouse model. In November 2004 Tetzlaff and colleagues 

demonstrated that deletion of Fbw7 causes embryonic lethality at E l0.5 (M. T. 

Tetzlaff et al., 2004). A month later Tsunematsu et al. (R. Tsunematsu et al.,

2004) came to the same conclusion. Both studies generated a germline 

knockout of Fbw7 but used different targeting strategies.

Tetzlaff et al. aimed to conditionally delete exon 5 and 6 by flanking 

them with two loxP sites and flank the neomycin cassette with Flp sites, 

altogether a very similar approach to the one presented in this thesis. However, 

the authors did not observe any Flp mediated deletion of the selection marker at 

ES cell level after electroporation of a Flp expression vector. As the Cre 

electroporation was more successful, they generated fbw 7+/~ mice, which 

developed normally and did not show any tumours for up to one year. 

Intercrosses of those animals were subsequently used to generate the fb w T f~ 

mice. However, the intercrosses did not produce any knockout offsprings and 

the time of embryonic lethality was determined to be E l0.5. At E8.5 mutant
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animals were indistinguishable from wt animals whereas at E9.5 mutants were 

smaller, developmentally delayed and neural tube closure was incomplete.

On the other hand, Tsunematsu et al. decided to generate Fbw7 

knockout animals by replacing the first five exons with a neomycin cassette. 

Like Tetzlaff they found that knockout of Fbw7 is lethal at E l0.5 and resulted 

in an incomplete closure of the neural tube. Interestingly the Fbw7 knockouts 

generated by both groups demonstrate similar, but not identical abnormalities in 

heart and vascular development.

Tetzlaff found that there were subtle delays in heart chamber maturation 

as well as defects in yolk sack vascularisation. Furthermore the embryos 

showed defects in vessel formation and had nucleated blood cells. Western 

blotting for the Notch intracellular domain and for Notch target genes showed 

that the Notch dependent transcripts of Hesl, Herpl and Herp2 are more 

abundant in knockout animals. In addition the protein levels of the Notch 1 and 

Notch4 ICDs were increased, which was also the case for cyclin E protein 

levels relative to the amount of mRNA. Therefore Tetzlaff et al. came to the 

conclusion that the defects in haematopoietic and vascular development cause 

the observed lethality.

Tsunematsu et al. performed a similar analysis of the fb w T A embryos, 

did not find any accumulation of the ICD of Notch 1 or Notch3 but also 

observed accumulation of Notch4. The expression of the Notch target gene 

Heyl, was also enhanced. This led to the conclusion that elevated Notch4-ICD 

levels are responsible for the observed phenotype, which is supported by data 

on Notch4 transgenic mice, which show similar vascularisation defects (H. 

Uyttendaele et al., 2001). With regards to cyclin E as an Fbw7 substrate,
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Tsunematsu et al. did not find changes in cyclin E protein levels or in its 

associated kinase Cdk2. However, in contrast to Tetzlaff et al., the relative 

protein levels in relation to mRNA amounts were not assessed.

Given that other targets of Fbw7, such as c-Jun and c-Myc, were 

identified in the same year as the Fbw7 knockout was published, neither of the 

groups investigated the effects of Fbw7 deletion in relation towards these 

substrates.

1.3.7 Summary

The studies on Fbw7, its substrates and interaction partners 

demonstrated that Fbw7 is involved in a great variety of cellular processes such 

as transcriptional regulation, cell cycle, neurodegeneration and tumourigenesis. 

Furthermore it became apparent that in many cases more than one E3 ligase is 

involved in targeting a substrate for degradation. However, it is still an open 

question how the interaction of the different E3s is orchestrated in the cell and 

to date no regulatory mechanism for Fbw7 or the orchestration of different E3s 

on c-Jun have been published.

Interestingly, Fbw7 only targets phosphorylated proteins for 

degradation and thus often mediates the termination of an active signalling 

cascade. A prerequisite for the recognition by Fbw7 is a GSK-3 

phosphorylation of a serine residue often located in a so-called phospho-degron. 

This in turn requires an initial priming phosphorylation by another kinase such 

as JNK, ERK or Cdk2. Furthermore the involvement of Pinl-mediated 

isomerisation appears to be a common denominator in creating the recognition 

sites for Fbw7 binding and subsequent degradation.
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It is also obvious from the literature that the a  and y isoform are similar 

in their nuclear localisation and have, at least a partially redundant function. 

Both are involved in the degradation of c-Myc, cyclin E and SREBP. Fbw7-p is 

not only localised differently and is less stable than the other isoforms, but is 

also the isoform that was found to act as a p53-dependent tumour suppressor (S. 

Ekholm-Reed et al., 2004) (J. H. Mao et al., 2004). Moreover the P-isoform is 

brain specific and its substrate, c-Jun, was shown to regulate neuronal apoptosis 

and axonal regeneration. Therefore to elucidate the role of Fbw7 and 

particularly Fbw7-P towards c-Jun, I generated various conditional Fbw7 

knockout lines. As the conditional knockouts were directed to the nervous 

system, I will now give a brief introduction into neuronal development and the 

nervous system.

1.4 The m ouse nervous system

1.4.1 Development of the nervous system

During the initial gastrulation the different germinal layers known as 

endoderm, mesoderm, and ectoderm are established. Neurulation is the next 

step in embryonic development and occurs around E8.5 in the mouse. Out of 

the three germinal layers, the ectoderm, and more precisely the neural plate, 

gives rise to the nervous system which is initiated by the formation of the 

neural tube (reviewed in (A. J. Copp et al., 2003)) Subsequently the three 

primary brain vesicles, the prosencephalon (forebrain), mesencephalon 

(midbrain) and rhombencephalon (hindbrain) are formed at the rostral end of 

the neural tube and subsequently give rise to all parts of the brain.
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During the development of the brain, cells proliferate, differentiate and 

migrate, sometimes over long distances, to reach their final position. Over the 

last decades neuronal development and cell migration have been extensively 

studied. One of the most investigated brain regions with regards to neuronal 

development is the cerebral cortex. I will summarise some of the data 

concerning the cortical development in the following section, as this brain 

region is also affected in the Fbw7 conditional knockout lines presented in this 

thesis.

1.4.2 Neuronal differentiation in the cerebral cortex

After the primary brain vesicles have formed, the secondary vesicles of 

the forebrain, the telencephalon and the diencephalon, are generated (Figure 

1.7A). The pallium gives rise to the cerebral cortex and the hippocampus and 

the formation of all brain regions relies on an orchestrated interaction of 

morphogenic clues, differentiation steps and migratory events. As a first step 

distinct anterior-posterior and dorsal-ventral domains are defined as the result 

of the coordinated expression of different morphogenic factors (reviewed in (S. 

W. Wilson and J. L. Rubenstein, 2000)). Finally, two different modes of cell 

migration lead to the cortical layering that is observed in the adult. One form of 

migration is the radial migration of cells from the inside towards the brain 

surface. The other mode of migration is the tangential migration, whereby cells 

migrate orthogonal to the radial direction (Figure 1.7B, green arrow). Both 

pathways are important during cortical development and were reviewed 

extensively (O. Marin and J. L. Rubenstein, 2001, 2003). Most of the cortical 

neurons that use y-aminobutyric acid (GABA) as a neurotransmitter originate in
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the telencephalon and reach the cortex via tangential migration where they then 

switch to a radial migration pattern. In contrast, cortical pyramidal neurons and 

some inhibitory neurons originate in the ventricular zone (VZ) and the 

subventricular zone (SVZ) of the cortex and move radially outwards (Figure 

1.7B). Radial migration is largely, but not solely, dependent on glia cells (radial 

glia) that form a scaffold along which neurons are able to migrate during 

development. After the migration is finished radial glia cells become astrocytes. 

As corticogenesis takes place between E ll  and E18 in the mouse embryo, the 

initial cortical structure, the so-called preplate, is split into the marginal zone, 

and subplate. The cortical layering then takes place in an inside out pattern 

(Figure 1.7C), whereby earlier bom neurons lie deeper within the cortex and 

mainly originate from the VZ. The SVZ is involved in the generation of the 

outer cortical layers.

The importance of correct cortical layering is revealed in a number of 

mouse mutants but also in human diseases. In humans defects in the lisl and 

doublecortin genes result in a severely impaired cortical lamination and a 

disease called lissencephaly where patients are often mentally retarded 

(reviewed in (C. Lambert de Rouvroit and A. M. Goffmet, 2001)) Doublecortin 

interacts with the ubiquitin protease DFFRX which ubiquitinates it and is 

involved in regulating the localisation of doublecortin (G. Friocourt et al., 

2005). One of the earliest models for cortical dysplasias in animals was the 

reeler mouse, which displays severe cortical and cerebellar lamination defects, 

resulting in an ataxic phenotype (G. D*Arcangelo et al., 1995). Polleux et al. 

later demonstrated that the rate of neurogenesis at early developmental stages is 

slower with a lower frequency of differentiating cell divisions in reeler mice.
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However, at the end of corticogenesis neurons are generated at a higher rate and 

together these alterations ultimately lead to the observed aberrant cortical 

lamination (F. Polleux et al., 1998). Another molecule involved in neuronal 

migration is Cdk5 and in animals that lack Cdk5 the cortical inside out 

lamination is inverted and earlier bom neurons are found superficial to later 

bom neurons (E. C. Gilmore et al., 1998). One activator of Cdk5 is p35 and it 

was demonstrated that mice lacking p35 also display cortical lamination defects 

(T. Chae et al., 1997). Interestingly, p35 is regulated via the ubiquitin- 

proteasome-pathway and although the responsible E3 ligase has not been 

identified to date, it was shown that phosphorylated, activated p35 is 

ubiquitinated and degraded (G. N. Patrick et al., 1998). The cytoplasmic 

adaptor protein Dabl which is involved in regulation of neuronal migration, is 

phosphorylated and degraded in response to reelin signalling and is then 

recognise by the E3 ligase component Cullin5 (L. Feng et al., 2007; G. Kerjan 

and J. G. Gleeson, 2007).

Together these studies demonstrate that defects in cortical lamination 

can arise at different stages of cortical development during the initiation or stop 

of migration but also during migration itself. A number of cytoskeletal 

associated proteins and signalling molecules are involved in neuronal migration 

and also the ubiquitin/proteasome system has recently emerged as a potential 

regulator of this process.
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Figure 1.7 Anatomical organisation of the developing forebrain and 
cerebral cortex A) Anatomical organisation of the developing forebrain. 
Scheme of a sagittal section through the brain of an E12.5 mouse showing 
the main subdivisions of the forebrain, the diencephalon and the 
telencephalon. In the telencephalon, the pallium is depicted in lighter gray 
than the subpallium.Figure from Marin and Rubenstein, 2003. (B) Scheme 
of a transverse section through the telencephalon of an E12.5 mouse 
indicating the two migation modes, radial migration and tangential migration. 
Neurons that use different neurotransmitter originate in distinct brain regions 
and migrate over long distances.Depending on the neurotransmitter and 
other morphogenic clues they bypass brain regions (green arrow)or switch 
migration modes from tangential to radial (green askterisk) Figure from 
Marin and Rubenstein, 2001 C) Corticogenesis lasts from E11 to E18 in 
the mouse embryo. The early formed preplate (PP) is split by later generated 
neurons into the Marginal zone (MZ) and the subplate (SP). Neurons in 
the Cortical Plate (CP) are generated in an “inside-out” pattern whereby 
later generated neurons have to pass previously generated ones. In the 
adult cortex the different neurons are visible as layers 1 to 6. Figure from 
Gupta et al, 2002.
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1.4.3 Cerebeilar development

As part of my work I have generated and analysed a cerebellar specific 

knockout of Fbw7. Therefore I will give a short introduction into mouse 

cerebellar development in the following section.

The function of the cerebellum is to coordinate movement by 

integrating the input from the cortical brain regions into a fine tuned motor 

output. During embryonic and early postnatal development the cerebellum 

undergoes major morphological changes from a planar structure at E l l  to a 

highly foliated and compartmentalised structure in the adult (Figure 1.8). 

Almost 100 years ago Cajal already described 6 of the 8 different cell types 

present in the adult cerebellum namely Golgi cells, Lugaro cells, granule cells, 

basket cells, stellate cells and Purkinje cells (Figure 1.9A) The other two 

cerebellar cell types, unipolar brush cells and candelabrum cells, were 

identified only within the last 20 years (J. Laine and H. Axelrad, 1994; E. 

Mugnaini and A. Floris, 1994). I will now focus on Purkinje cells and granule 

cells and the way information is relayed within the cerebellum.
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Figure 1.8 Structure and development of the cerebellum Sagittal 
sections of a mouse cerebellum from embryonic days E11, E13 and E15, 
PO (day of birth),P7 and adulthood, are shown from left to right in the 
center of the figure to highlight the changes in size and complexity during 
development. In the photomicrographs, asterisks denote the primary 
fissure, P (with accompanying small arrows) points to the Purkinje cell 
layer, IGL: internal granule cell layer and EGL: external granular layer. 
In the three embryonic pictures, the filled arrowheads point to the 
ventricular neuroepithelium, and the unfilled arrowheads point to the 
germinal trigone. The scale bar for all photomicrographs is the same. 
The graph in the lower inset emphasizes the change in cerebellar size. 
The axis on the left shows the area of the sections that are pictured, the 
axis on the right provides estimates of the total cerebellar volume at 
these ages. The timeline in the upper right inset illustrates genes/loci, 
known to have relatively specific effects on cerebellar development when 
mutated. The position of genes along the timeline denotes the most likely 
point at which the effects of the mutant gene are manifested. Genes 
critical to the earliest stages of cerebellar development are shown in 
green. Those genes that are specific to granule cell, Purkinje cell, or 
radial glial cell development are shown in blue, red, or black, respectively, 
with genes in parentheses of presumed cellular localisation. Figure and 
legend from D. Goldowitz et al.,1998.
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Figure 1.9 Cells, synaptic connections and migration in the cerebellum
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B) Synaptic circuits in the cerebellum. There are two main afferents to 
the cerebellar cortex: climbing fibres and mossy fibres.The ascending 
axons of the granule cells branch in the Molecular Layer (ML) to form 
the parallel fibres, which make excitatory synaptic contacts with Purkinje 
cells and ML interneurons i.e. stellate and basket cells. Figures A and 
B from Apps and Garwicz, 2005 C) Migration in the cerebellum. At E13 
(left), both of the principal neuron classes are specified. While Purkinje 
cells (PCs) become postmitotic (filled circles) and migrate through the 
wall of the cerebellar anlage, Granule cell precursors (unfilled circles) 
migrate along the roof. In the perinatal period,P6, granule cells become 
postmitotic and migrate inwards, along the Bergmann glia, to take their 
position below the PCs. In the adult (right), the connections of the granule 
neurons and thePCs are established. Granule cells extend parallel fibers, 
which synapse on dendrites of the PCs. EGL, External germinal layer; 
VZ,ventricular zone; WM, white matter; IZ, intermediate zone: IGL, internal 
germinal layer. Figure from Hatten et al., 1999.
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1.4.3.1 Purkinie and granule cell development and neuronal 

connectivity

Besides the neurons of the deep cerebellar nuclei, Purkinje cells are the 

first cerebellar neurons that are generated from the ventricular zone between 

E ll  and E13 (Figure 1.9C) (I. L. Miale and R. L. Sidman, 1961; E. T. Pierce, 

1975). Once Purkinje cells have migrated to the cerebellar plate they remain 

there until the final positioning and layering takes place shortly after birth. 

Granule cells on the other hand are generated from rhombic lip progenitor cells, 

which also give rise to other neurons in the hindbrain (Figure 1.9C) During 

embryonic development granule cell precursors first migrate tangentially in the 

cerebellum to form the External Granule Layer (EGL). This is completed by 

E l5 and is followed by a clonal expansion of granule cell precursors within the 

EGL. Only after birth the granule cells become postmitotic and migrate radially 

inwards along Bergman glia to finally generate the granule cell layer. Various 

factors have been identified to regulate cerebellar development, some of which 

are depicted in the graph in Figure 1.8. Of these factors Sonic hedgehog (Shh) 

is secreted by Purkinje cells during cerebellar development and was shown to 

be required for granule cell precursor proliferation and Bergman glia 

differentiation (V. A. Wallace, 1999; P. M. Lewis et al., 2004). In line with 

these findings are the observations that loss of Purkinje cells results in a 

reduction of granule cells, which is for example the case in the lurcher mice (N. 

Dumesnil-Bousez and C. Sotelo, 1992). Also in the staggerer mice, Purkinje
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cells degenerate, and this leads to an ataxic phenotype (R. L. Sidman et al., 

1962; K. Herrup and R. J. Mullen, 1979).

One crucial step in relaying information in the cerebellum, as well as in 

other parts of the brain, is the formation of synaptic connections (Figure 1.9B) 

There are two major input pathways in the cerebellum known as the climbing 

fibres and the mossy fibres. Of those two only the climbing fibres make direct 

contact with the Purkinje cells with a 1:1 match, meaning one climbing fibre 

contacts only dendrites from one Purkinje cell. On the other hand the input of 

mossy fibres is relayed to Purkinje cells via granule cells by means of the so- 

called parallel fibres. As parallel fibres extend perpendicular to the plane of 

Purkinje cell dendrites and can extend over several millimetres of respective 

cerebellar folia, the input from one mossy fibre has an effect on multiple 

Purkinje cells (Figure 1.9B). Additionally other cells of the cerebellum such as 

stellate and basket cells synapse on parallel fibres to participate in the 

integration of input signals. Therefore all information is relayed onto Purkinje 

cells. Interestingly it was found that, with exception of the granule cells, all 

other cerebellar cortical neurons form inhibitory synapses with their targets, 

which in many cases are Purkinje cells. Furthermore, Purkinje cells are the sole 

cerebellar output neurons of this signalling cascade and project to the deep 

cerebellar nuclei. Therefore they are key players in cerebellar information 

processing and it is perhaps not surprising that mutant mice with Purkinje cell 

defects display the above-described severe phenotypes.
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1.4.3.2 c-Jun in the cerebellum

S. Estus and J.Ham were the first to suggest that c-Jun is important in neuronal 

apoptosis based on in vitro experiments in which they used cultured 

sympathetic neurons (S. Estus et al., 1994) (J. Ham et al., 1995). They found 

that withdrawal of the trophic factor NGF from cultured rat superior cervical 

ganglia triggers the initiation of a cell death program, which includes the 

induction and phosphorylation of c-Jun. To assess whether c-Jun and other Jun 

family members are essential in mediating neuronal apoptosis Estus et al. 

microinjected purified antibodies against c-Jun, allowed the cells to recover and 

then either cultured them in the presence or absence of NGF for 40 hours. 

Subsequent fluorescent staining against rabbit IgG identified injected neurons 

and a Hoechst staining was used to score for chromatin integrity as either 

uniform, condensed or undetectable. Neurons deprived of NGF that were 

injected with antibodies against c-Jun but not JunB or JunD were largely 

protected from apoptosis and displayed normal chromatin whilst neurons in the 

presence of Control non-immune IgG underwent apoptosis and displayed a 

condensed or non-existent chromatin (S. Estus et al., 1994). At the same time 

Ham et al. demonstrated that the NGF withdrawal induced cell death in 

sympathetic neurons can be blocked by the microinjection of a dominant 

negative c-Jun expression vector, which lacks the N-terminal transactivation 

domain but is still able to dimerise and bind to DNA. Furthermore 

overexpression of c-Jun in this system is sufficient to induce cell death even in 

the presence of NGF (J. Ham et al., 1995).
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In 1998 the role of c-Jun phosphorylation was confirmed in an in vitro culture 

model of rat cerebellar granule cells (cgc). Cultured cgcs are maintained under 

depolarising conditions (i.e. high K+ levels) and lowering the potassium levels 

in the culture medium or serum withdrawal induces apoptosis (S. R. D'Mello et 

al., 1993). By using a phospho specific antibody for the c-Jun S63 residue 

Watson et al. observed in cgcs that phospho-c-Jun levels are elevated shortly 

after the reduction of K+ levels in the culture medium and occur before c-Jun 

protein levels are increased and apoptotic alterations in the chromatin appear 

(A. Watson et al., 1998). Experiments using either a phosphorylation 

mimicking construct (junAsp) or phopshorylation deficient construct (junAla) 

where the transactivation domain phosphorylation sites are mutated, confirmed 

that the death of cgcs upon either serum deprivation or low K+ level is phospho- 

c-Jun dependent and that overexpression of the junAsp construct is sufficient to 

induce apoptosis under normal growth conditions (A. Watson et al., 1998).

At the same time the role of c-Jun in the cerebellum was elucidated in vivo in a 

detailed analysis of naturally occurring mouse mutants that display cerebellar 

defects such as the weaver and Purkinje cell death (pcd) mice (F. Gillardon et 

al., 1995; A. Migheli et al., 1997). In both mouse lines either granule cell 

precursors or Purkinje cells die during early postnatal development. Migheli 

and Gillardon observed that in both cases the dying cells express high levels of 

c-Jun, thus indicating that c-Jun also plays a role in vivo in the regulation of 

neuronal apoptosis in the cerebellum.

In addition to the role for c-Jun in neuronal apoptosis, it has also been 

reported that c-Jun is upregulated in regenerating neurons after injury (J. D. 

Leah et al., 1991). It was shown that deletion of c-Jun in the nervous system
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leads to defects in axonal regeneration (G. Raivich et al., 2004). As Purkinje 

cells in the cerebellum were known not to possess regenerative capacities, 

Carulli et al. wanted to address the question whether overexpression of c-Jun in 

vivo under the Purkinje cell specific L7 promoter can induce Purkinje cell 

regeneration (D. Carulli et al., 2002). Overexpression of c-Jun does not affect 

the normal Purkinje cell development and is also not able to provide Purkinje 

cells with the ability to regenerate after injury, demonstrating that 

overexpression of c-Jun in Purkinje cells is not sufficient to trigger a 

regenerative program. However the Purkinje cell survival was reduced in the in 

vitro culture system of cerebellar slices derived from these c-jun transgenic 

animals, indicating that the effect of c-Jun is strongly dependent on the cellular 

and experimental context and that one has to be careful to draw conclusions 

from in vitro experiments about the in vivo effects and vice versa.

1.4.4 The niqrostriatal system

Since one of the mouse lines investigated in this thesis displayed 

behavioural defects that have been observed in neurodegenerative diseases such 

as Parkinson’s disease (PD) and Huntington’s disease (HD), I will give a short 

introduction into the nigrostriatal pathway and mouse models for both 

pathologies.

The nigrostriatal system is one of the different dopaminergic circuits in 

the brain (Figure 1.10A) and is involved in the regulation of voluntary 

movements. The loss of neurons in this particular pathway is the cause of PD 

and HD. The striatum is the crucial mediator of incoming cortical information 

and relays this information to neurons in the substantia nigra. Two different
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pathways are used to achieve this relay and to subsequently generate a 

controlled motor movement (Figure 1.1 OB). The first pathway is the direct 

pathway from the cortex via the striatum to the medial globus pallidus and 

substantia nigra (blue arrow Figure 1.1 OB). The second pathway is the indirect 

pathway (Figure 1.1 OB red arrows) that links the striatum with the globus 

pallidus from which neurons extend to the subthalamic nucleus and finally 

subthalamic neurons connect to the substantia nigra and the medial globus 

pallidus (the same target areas as in the direct pathway) (reviewed in (C. J. 

Zeiss, 2005)).

Neurons from the ventral tegmental area (VTA), which lies medial to 

the substantia nigra (Figure 1.10A, right), also project to the striatum and 

pallidum. The VTA is part of the so-called ventral mesostriatal system, which is 

involved in the regulation of motivated reward related behaviour (reviewed in 

(S. J. Cragg, 2006)).

All neurons of the striatal system use a variety of neurotransmitters such 

as GABA, glutamate but some of them additionally use dopamine. Dopamine is 

synthesised from the amino acid tyrosine (Figure 1.10C) and in histological 

sections the presence of the enzyme tyrosine hydroxylase (TH) is used to 

identify dopaminergic neurons. Additionally, stainings for the glutamate 

decarboxylase 67kD isoform (GAD-67), an enzyme needed for the generation 

of the inhibitory neurotransmitter GABA, can be used to characterise neurons 

and projections in the striatum. Administration of the neurotoxic drug MPTP, 

for instance, causes an increase in GAD-67 levels in the striatum whilst L-Dopa 

treated PD patients display normal GAD-67 levels (M. T. Herrero et al., 1996).
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Thus the analysis of TH and GAD-67 can give indications of whether the 

nigrostriatal pathway is lesioned or if neurons are degenerated or lost.

Degeneration and the subsequent loss of TH positive neurons in the 

substantia nigra pars compacta, which is part of the direct pathway, is the cause 

of PD. This loss leads to a decrease in dopamine levels and can be treated by 

the administration of the dopamine precursor L-Dopa. L-Dopa, in contrast to 

dopamine, is able to cross the blood-brain barrier and is converted into 

dopamine in the CNS (Figure 1.10C)(P. Huot and A. Parent, 2007). Concerning 

the genetic origin of PD, mutations in the Parkin RING E3 ligases itself as well 

as mutations in UCH-L1, an ubiquitin hydrolase associated with Parkin, and 

other genes have been identified (H. C. Ardley et al., 2004; I. F. Mata et al.,

2004). To date there are four studies in which the authors have deleted Parkin 

with the aim to elucidate the role of Parkin in the pathogenesis of PD (for an 

extensive review see (S. M. Fleming et al., 2005)). Interestingly, no 

degeneration of dopaminergic neurons could be observed in the substantia nigra 

or striatum in all four of these mouse models (M. S. Goldberg et al., 2003; J. M. 

Itier et al., 2003; R. Von Coelln et al., 2004; F. A. Perez and R. D. Palmiter,

2005). Only one study reported a loss of TH positive neurons in the locus 

coeruleus (R. Von Coelln et al., 2004). Although some of the Parkin deficient 

mice display behavioural defects in form of a reduced startle response, 

alterations in their exploratory behaviour or in learning (J. M. Itier et al., 2003) 

(R. Von Coelln et al., 2004), no striking phenotype such as a tremor or 

ubiquitin positive inclusions, which are hallmarks of PD, were found in any of 

these studies. Although the loss of the Parkin E3 ligase alone was not sufficient 

to cause PD symptoms, it lead to alterations in dopamine and norepinephrine
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levels. In all of these Parkin-knockout mouse studies the neurotransmitter 

levels, as determined by high performance liquid chromatography (HPLC), 

were changed. Itier et al. and Goldberg et al. observed that the levels of 

dopamine are increased in brains of Parkin deficient mice and von Coelln 

reported a reduction in norepinephrine levels due to the loss of TH positive 

neurons in the locus coeruleus. Norepinephrine as well as epinephrine are 

produced in chatecholaminergic neurons via the sequential action of different 

enzymes and can thus be also used as readout for the functionality of these 

neurons (Figure 1.1 OB).

Whilst dopaminergic neurons die in PD, the first neurons affected in HD 

are the medium spiny neurons in the striatum. In the striatum 95% of neurons 

are GABA-ergic medium spiny neurons and it appears that they are particularly 

sensitive to the presence of a polyglutamine segment. This polyglutamine 

segment is the result of a mutation of the Huntington gene. In normal conditions 

6-37 CAG repeats, which are translated into glutamines, are present near the 5’ 

end of the gene. In case of HD this glutamine repeats are expanded to around 

50 repeats and in severe cases to more that this (reviewed in (J. F. Gusella and 

M. E. MacDonald, 2000)). The overexpression of CAG repeats in mice results 

in a hindlimb clasping phenotype; a resting tremor and handling associated 

seizures and can therefore be used as a mouse model for HD (L. Mangiarini et 

al., 1996). Also in HD inclusions are formed. They are immunopositive for 

polyglutamine but also for ubiquitin, suggesting that the ubiquitin-proteasome 

system is important in this neurodegenerative disease as well (M. L. Maat- 

Schieman et al., 1999).
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1.5 Aim of this Thesis

Given that Fbw7-|3 mediates the degradation of phosphorylated c-Jun 

and that previous publications demonstrated a role for phospho-c-Jun in 

neuronal apoptosis and axonal regeneration, we hypothesised that Fbw7 might 

act as a key regulator of phospho-c-Jun levels in the brain (A. Behrens et al., 

1999; A. S. Nateri et al., 2004; G. Raivich et al., 2004). Additionally in vitro 

experiments using siRNAs against Fbw7 in cgcs had demonstrated that 

depletion of Fbw7 induces apoptosis (A. S. Nateri et al., 2004). The idea that 

Fbw7 is involved in regulating phospho-c-Jun levels in the nervous system was 

further supported by the fact that among the three different Fbw7 isoforms, the 

(3 isoform, which interacts with c-Jun, is highly expressed in brain whilst the 

other isoforms are not (C. H. Spruck et al., 2002).

It was therefore feasible to assume that under basal conditions phospho- 

c-Jun levels are kept below a certain threshold by constitutive, Fbw7 mediated, 

phospho-c-Jun degradation. We further hypothesised that upon an insult, such 

as stress or injury, phospho-c-Jun levels rise above this threshold and thereby 

trigger apoptosis in neurons. According to this model, Fbw7 would be a crucial 

regulator of JNK signalling during neuronal development and differentiation.

To test the threshold model that Fbw7 targets phospho-c-Jun for 

degradation in the nervous system, we decided to conditionally delete Fbw7 in 

the nervous system. If Fbw7 would indeed be a key regulator of phospho-c-Jun 

levels in the brain, a lack of Fbw7 should result in elevated levels of
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phospho-c-Jun and possibly other Fbw7 substrates, as well as an increase in 

neuronal apoptosis.

To allow a temporal and spatial analysis of the role of Fbw7 in the 

nervous system we decided to generate various conditional knockout lines 

where Fbw7 is deleted in either different neuronal populations or at different 

timepoints during development. The obtained results should be further 

validated with regards to whether elevated c-Jun or phospho-c-Jun levels could 

be the cause of the phenotype. Therefore fbw7 conditional knockout mice 

should be crossed to floxed -c-jun mice (c-jur/^) that are available in the lab to 

obtain conditional double knockout animals. If the phenotype were c-Jun 

dependend, further crosses to mice homozygous for junAA allele, where N- 

terminal phosphorylation of c-Jun is no longer possible, would allow asking the 

question whether this effect is mediated via the phosphorylated form of c-Jun.

Taken together the overall aim of my thesis was to investigate the role 

of Fbw7 in the nervous system by generating condition Fbw7-knockout mice, 

with the focus on the role of Fbw7 in regulating phospho-c-Jun.
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2 MATERIALS AND METHODS

2.1 Reagents

2.1.1 Chemicals and enzymes

Reagents were obtained from Amersham, BDH, BioRad, Calbiochem, 

Cell Signalling Technologies, Clontech, Fisher Scientific, Gibco, Invitrogen, 

Merck, Molecular Probes, New England Biolabs, Qiagen, Sigma Aldrich, 

Stratagene and GE-Healthcare. Distilled H2O, PBS, 5M NaOH, 0.5M EDTA, 

LB medium, sterile glycerol were provided by Cancer Research UK Central 

Services.

2.1.2 Antibodies

All HRP-conjugated secondary antibodies used for western blotting 

were from Jackson laboratories. The secondary antibodies for 

immunohistochemistry were all from Vector laboratories: biotinylated goat and 

rabbit, biotinylated rabbit and rat, biotinylated horse and mouse. For 

immunofluorescence vector goat anti rabbit alexa 555 or 488 antibodies were 

used. The following primary antibodies were used. Dilutions are given for 

either use in Western blotting (WB) or immunohistochemistry (IHC). If 

antibodies were used for immunohistochemistry the antigen retrieval method is 

also indicated:

MW: microwaving, C: Citrate Buffer pH 6 

T: trypsin
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Table 2.1: Primary antibodies

Antigen Antibody

name

Source Dilution & 

application

Actin a-actin Sigma Aldrich 1:2000 WB

Calbindin a-Calbindin Chemicon 1:400 IHC 

MW/C

c-Jun c-Jun H79 Santa Cruz 1:500 WB 

1:120 IHC 

MW/C

Fbw7 F7-3B7 Cancer Research UK 1:500 WB

GAD67 a-G A D  67 Sigma Aldrich 1:1000 IHC 

MW/C, 12’

GFAP a-G FA P Dako Cytomation 1:400 IHC 

MW/C

NeuN a-N euN Chemicon 1:1000 IHC 

MW/C

Parvalbumin a-Parvalbumin Swant 1:1000 IHC 

MW/C

Tyrosin

Hydroxylase

a-T H Chemicon 1:500 IHC 

T

Vesicular 

glutamate 

transporter 1

a-V glutl Chemicon 1:1000 IHC 

MW/C

79



Chapter 2

Antigen Antibody

name

Source Dilution & 

application

Vesicular 

glutamate 

transporter 2

a-Vglut2 Chemicon 1:1000 IHC 

MW/C

2.1.3 Oligonucleotides

Oligonucleotides were obtained from Sigma Aldrich. The following 

primers were used.

Table 2.2 Primers for generation of conditional Fbw7 targeting construct.

Primer Sequence

Fbx7Fl(nt437) 5’-ctg cga ttg agg cat ttg agg gtg-3’

Fbx7F2(nt536) 5’-tac age act tgg tcc age etc ctc-3’

Fbx7F3(nt 5935) 5’-cac tgc ttc ate eta gtc tcc ctg -3’

Fbx7Rl(nt 4639) 5’-gca tat tct aga gga ggg tat egg -3’

Fbx7R2 (nt 4751) 5’-tea ctg gac age tgc cac tct agc-3’

Fbx7R3 (nt 8908) 5’-tgg tea tea tgc cct ttc age acc -3’

Fbx7F4Bcll(nt4428) 5’-actg tgatca ctt ttt aaa aat gac att gtc cca gaa g-3’

Fbx7R4Bcll(nt6032) 5’-agtc tgatca tac ctg ttt aca aaa cag aag att etc c-3’

Fbx7F5 (nt 4212) 5’-cat cat tea tac aat gat cct gaa ccc tc-3’

Fbx7R5 (nt 6169) 5’-cct cac teg tea gtg etc tct acc-3’

ScrFlrtl 5’- eg gtt gtt agt gaa gta ggt etc -3’
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Primer Sequence

ScrFlrt2 5’- tg eta ctt cca ttt gtc acg tcc -3’

ScrFbx7-l (nt 7635) 5’- at aca ggg act aca age atg tgg -3’

ScrFbx7-2 (nt 7778) 5’- at cac aca ctg tct caa etc acc-3’

Table 2.3 Primers for sequencing of knockout targeting construct

Primer Sequence

SeqFe4(nt3247) 5’- ctg tcc atg gtt cca ctg etc -3’

SeqRe4-l(nt 3530) 5’- gtt atg cac cca taa cca c -3’

SeqRe4-2(nt 3571) 5’- gtg tea acc ata atg age agg -3’

SeqFe4(nt 3247) 5’- ctg tcc atg gtt cca ctg etc -3’

SeqFe5 (nt 5426) 5’- gtc eta gca aga tgc tea gcc -3’

SeqRe5 (nt 5735) 5’- cat eta etc tea etc aca gcc -3’

SeqFe6 (nt7138) 5’- gtt cag tgc tgc aca gcc c -3’

SeqRe6 (nt 7475) 5’- gag tta cac tgc age caa cac -3’

Table 2.4 Primers for genotyping of used mouse strains

Target site Primer Sequence

Cre Cre 1 5’-egg teg atg caa cga gtg atg agg-3’

Cre 2 5’-cca gag acg gaa ate cat ege tcg-3’

Flp Flpl 5’-cac tga tat tgt aag tag ttt gc-3’

Flp2 5 ’-ctagtgcgaagtagtgatcagg-3 ’

81



Chapter 2

Target site Primer Sequence

fbw7-loxPl F7-PCR1 5’-cag tgg agt gaa gta caa etc tgg-3’

F7-R1 5’-gca tat tct aga gga ggg tat egg -3’

F7-Delta 2 5'-g gcc age ctg gtc tgt ata gag -3'

NeoS 5 ’-cctcgtgctttacggtatcgc-3 ’

fbw7-loxP2 Fbx7F3 (nt 5935) 5’-cac tgc ttc ate eta gtc tcc ctg -3’

Fbx7R5 (nt 6169) 5’-cct cac teg tea gtg etc tct acc-3’

Floxed c-jun LoxPCR5 5 ’ -ctcataccagttcgcacaggcggc-3 ’

LoxPCR6 5 ’-ccgctagcactcacgttggtaggc-3 ’

Table 2.5 Primers for RT-PCR

Target site Primer name Sequence

Fbw7-E2 F7-Fw 367 5’-cca tgt tea gca aca cca ac-3’

Fbw7-E7 Rev 925 5 ’-cggttgccaacaaaactgtag-3 ’

c-Jun Jun Ol 14 5 ’ -gccagcaactttcctgacc-3 ’

Jun O l 15 5 ’-ggttagcctgggctgtgcg-3 ’

GAPDH GAPDH 5'-gcc cat cac cat ctt cc-3'

GAPDH 5'-ggg atga tgt tct ggg cag c-3'

Table 2.6 Primers used for generation of in situ hybridisation probe

Probe Primer Sequence

Exon 2/5 F7-E2-BamH 1 -fw 5’-gga tcc gga cca tgg ttc tga agt tcg-3’

F7-E5-EcoRl rev 5’-gaa ttc tac att tct etc tcc aga gaa ggt t-3’
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Probe Primer Sequence

Exon4/5 F7-E5-BamHl fw 5’-gga tcc cac tct atg tgc ttt cat tcc tg-3’

F7-E5/2-EcoRl rev 5’-gaa ttc cct ctt ctt tac att tct etc tcc ag-3’

2.1.4 Bacterial strains

E. coli strain: Application:

DH5a cloning

XL 1 -blue cloning

Bacterial cultures were stored as 30 % glycerol stocks at -80 °C.

2.1.5 Plasmids

Plasmid Source Use

pcDNA 3.1 + Invitrogen knockout construct

pDTA (Asp) in house knockout construct

pFlrtl in house knockout construct

pgem3Z Invitrogen In situ probe

2.1.6 Mouse Strains

Mouse line Reference

Nestin-Cre (F. Tronche et al., 1999)

Engrailed2-cre (D. L. Zinyk et al., 1998)

Synapsin-cre (C. Hoesche et al., 1993; 

Y. Zhu et al., 2001)

TH-cre (D. M. Gelman et al.,
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Mouse line Reference

2003)

2.2 Methods

2.2.1 DNA techniques

2.2.1.1 Long template PCR for amplification of the fbw 7  locus 

fragments

The PCR for the amplification of the genomic sequences for the Fbw7 

knockout construct from isolated genomic DNA were performed using the 

Long-template-Expand-PCR kit (Amersham). The Polymerase therein is a 

mixture of the fast Taq polymerase and a slow proofreading Tgo-polymerase. 

Taq, which has no proofreading ability, tends to fall off the PCR template when 

it incorporates an incorrect base. In this case the proofreading Tgo polymerase 

can reinitiate at this position and correct the error (W. M. Barnes, 1994; S. 

Cheng et al., 1994). Therefore, by combining these two enzymes one gets quick 

amplification of long templates with the benefit of proofreading (B. Frey, 

Suppmann, B., 1995). For all PCRs Buffer 3, provided with the kit, was used. 

Final concentrations of reagents are listed in (Table 2.7). The two programs 

used for amplification of the long and short homology arm are listed below 

(Table 2.8,Table 2.9).
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Table 2.7 PCR composition for long template amplification of genomic 

DNA

Reagent Concentration o f  Stock Final concentration

Buffer 3 lOx lx

dNTP 2.5mM 0.35mM

Primer 1 25mM 0.5mM

Primer 2 25mM 0.5mM

Polymerase 5 U/pl 1.5 U/pl

Template 50ng/pl 2.5ng/pl

h 2o ad 20pl

Table 2.8 PCR program for amplification of genomic DNA between 0.5 

and 3 kb

Temperature Time Additional number of cycles

94°C 2:00

94°C 0:10

57°C 0:30 30 cycles

68°C 2:00

68°C 7:00

4°C for ever
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Table 2.9 PCR program for amplification of genomic templates between 3 

and 6 kb

Temperature Time Additional number of cycles

94°C 2:00

94°C 0:10

30 cycles63°C 0:30

68°C 4:00

68°C 7:00

4°C for ever

2.2.1.2 PCR for screening of ES cell clones for targeting

To screen the DNA from ES-cell clones for insertions of the knockout 

construct a nested PCR was performed using the Qiagen Taq polymerase. The 

primer pair ScrFbx7.2/ScrFlrt7.2 was used for the initial PCR from the isolated 

ES-cell clones with 2pl of DNA. For the nested PCR the primer pair 

ScrFbx7.1/ScrFlrt7.1. and 2pl of the initial PCR reaction were used (Table 

2 . 11).
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Table 2.10 PCR reaction for screening ES cell clones for gene target 

insertion

Reagent Concentration o f  Stock Final concentration

1 Ox Buffer lOx lx

dNTP 25mM ImM

Primer 1 lOOpM 0.12pM

Primer 2 lOOpM 0.12pM

Polymerase 5 U/pl 0.5 U/pl

Template 50ng/pl 2.5ng/pl

h 2o ad 20pl

Table 2.11 PCR program for screening ES cell clones and genotyping

Temperature Time Additional number o f  cycles

94°C 1:00

94°C 1:00

40 cycles52°C 1:00

72°C 3:00

72°C 10:00

4°C for ever
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2.2.1.3 Isolation of genomic DNA

Solutions: Proteinase K, Melford

lx Tail Buffer : 50mM Tris HC1, pH 8.0

lOOmM EDTA, pH 8.0 

lOOmM NaCl 

1% SDS (w/v)

0.5 mg/ml ProK (added fresh)

5M NaOH 

Isopropanol

Genomic DNA for genotyping of stock mice was either obtained from 

Ear- or tail biopsy samples. To detect Fbw7 deletion, samples of the respective 

organ were taken and processed in the same way. Samples were incubated 

overnight in 500pl tail buffer containing proteinase K at 56°C. The next day 

200pl 5M NaOH was added and mixed thoroughly. The sample was spun down 

at 16000g for 10 min and the supernatant transferred to a new tube. To this 

500pl isopropanol was added and mixed again. After 5 minutes of 

centrifugation at 16000g at room temperature the supernatant was discarded 

and the precipitated DNA left to dry. Finally the DNA was taken up in 300pl 

H2O and left to dissolve for at least 1 hour on a shaker. 2pi were subsequently 

taken for the PCR reaction.

2.2.1.4 Genotvpinq

Genotyping was performed using primers flanking the loxP sites and at 

intermediate steps screening for insertion and deletion of the Neomycin cassette
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(Figure 3.4). The PCR was carried out using the Qiagen Taq polymerase and 

PCR composition as described in Table 2.11. and primers as in Table 2.4.

2.2.1.5 Preparation of plasmid DNA

Plasmid purification on a small or large scale was performed with the 

Qiagen Mini or Maxi Prep kits, respectively. Bacteria were grown in 5 ml 

(Mini prep) or 250 ml (Maxi prep) cultures containing the appropriate selection 

antibiotic. Plasmid concentrations were determined as described in Chapter 

2.2.1.6. In the case of cloning experiments, the plasmid insert was sequenced 

using insert or plasmid specific primers (2.2.1.8).

2.2.1.6 Quantification of DNA

DNA concentrations were quantified in a spectrophotometer at a 

wavelength of 260 nm after dilution in H2O. An OD26o of 1 corresponds to 50 

pg DNA/ml double stranded DNA. To assess the purity the absorbance ratio 

OD26o/28o was recorded additionally. It was usually between 1.6 and 1.8.

2.2.1.7 Restriction digest

Restriction digests were carried out in 20 pi reaction volumes 

containing 1 pg DNA, 5 units restriction enzyme (New England Biolabs), 2 pi 

lOx restriction buffer supplied with the enzyme and lx  BSA if required. 

Samples were incubated according to the manufacturers instructions for 1 hour 

to overnight, before the reaction was stopped by adding 5x sample buffer 

(Bromphenol blue in 50% glycerol, ImM EDTA pH 8.0).
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2.2.1.8 DNA sequencing

Fluorescent cycle sequencing was performed with the AB1 dye 

terminator kit (Perkin Elmer). 3.2 pmol gene or vector specific primer were 

mixed with 500ng double stranded DNA, 8 pi ABI reaction mix and H2O to a 

final volume of 20pl. Cycle sequencing conditions were as below (Table 2.12).

Table 2.12 PCR program for DNA sequencing

Temperature Time Additional number of cycles

96°C 2:00

96°C 0:10

50°C 0:05 25 cycles

60°C 4:00

4°C for ever

To remove primers and dye terminators, samples were purified using 

ethanol precipitation of DNA. Capillary sequencing was performed on an 

Applied Biosystems 3730 DNA Analyser. Sequences were aligned with 

Sequence Navigator (ABI) using DNA strider software.

2.2.1.9 DNA aaarose ael electrophoresis

Depending on the size of the DNA, 0.8 -  2% (w/v) agarose was 

dissolved in TAE buffer (Tris-HCl pH 8.0, 20 mM acetic acid, 1 mM EDTA). 

Ethidium bromide was added to a final concentration of 0.5 pg/ml. Samples 

were mixed with 5x sample buffer (Bromphenol blue in 50% glycerol, ImM
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EDTA pH 8.0) and separated in TAE depending on the gel size between 50 and 

140 Volts constant.

2.2.1.10 Gel purification of DNA fragments

The desired DNA fragment was cut out from an agarose gel and the 

DNA was isolated and purified from the gel slice with the GFX PCR DNA and 

Gel Band Purification Kit (GE-Healthcare).

2.2.1.11 Liaation

Gel purified DNA fragments and vectors were mixed at a molar ratio of 

approximately 5:1 and ligated with 400 Units of T4 DNA-ligase (New England 

Biolabs) in a 20 pi reaction volume for either 1 hour at room temperature or 

overnight at 16 °C. 5 pi of the ligation was then transformed using competent 

bacteria (see also Chapter 2.2.1.12).

2.2.1.12 Bacterial transformation

A 50 pi aliquot of competent XL 1-Blue cells was mixed with 5 pi 

ligated DNA or 100 ng plasmid and incubated on ice for 30 minutes before 

being heat shocked at 42°C for 45 seconds and left on ice for further 5 minutes. 

450 pi LB medium was added and the reaction was incubated at 37°C for 

lhour. 150- 200pl were spread on a LB plate containing the appropriate 

antibiotic and incubated overnight at 37°C.
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2.2.1.13 Southern blotting

For southern blotting the digested DNA was run on an agarose gel as 

described in 2.2.1.9. The DNA was depurinated by soaking the gel in 0.25N 

HC1 for 15 minutes and the depurination was completed by rinsing the gel in 

dt^O. The DNA was subsequently denatured by immersion of the gel in a 

solution of 1.5M NaCl and 0.5M NaOH for 25 minutes. For further 

neutralisation the gel was soaked in a solution containing 1.5M NaCl and 0.5M 

Tris-HCl (pH8.0) for 30 minutes. The DNA was transferred onto a 

Nitrocellulose membrane by capillary blotting over night using SSC (3M NaCl, 

0.3M sodium citrate) as the transfer buffer and UV crosslinked using a 

Stratlink-crosslinker (Stratagene) onto the membrane at 700 for 30 seconds. To 

confirm the transfer from the agarose gel onto the membrane, the gel was 

stained with Ethidiumbromide after the transfer. The southern probe was 

radioactively labelled using the Stratagene Push column beta shield device and 

NucTrap probe purification column (Stratagene) according to the manufacturers 

instructions. For the probe hybridisation the Qick Hyb Hybridisation solution 

(Stratagene) was used to prehybridise the membrane for 15 minutes at 68°C. 

Boiling for 5 minutes denatured the labelled probe and it was left on ice for 3 

minutes before it was added to the prehybridised blot. The hybridisation 

reactions was left for 1 hour at 68°C. After the hybridisation the membrane was 

washed twice for 15 minutes at room temperature with 2x SSC buffer 

containing 0.1% (w/v) SDS. A further wash was performed at 60°C with a O.lx 

SSC buffer containing 0.1% (w/v) SDS. The signal was detected by exposing 

the membrane over the weekend at -80°C.
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2.2.2 RNA techniques

2.2.2.1 RNA extraction using TRIzol

Solutions: TRI-Reagent (Sigma)

Chloroform

Ethanol

Tissue samples were extracted and immediately snap frozen in liquid 

nitrogen. For RNA extraction the sample was homogenized in an appropriate 

amount of TRI reagent usinge a 25G needle. The mixture was incubated at RT 

for 15-30 minutes to allow complete homogenization. 0.2ml Chloroform was 

added per ml of TRI reagent used. The mix was shaken vigorously and 

incubated for further 2-3 minutes at RT to allow separation of phases. Samples 

were then centrifuged for 15minutes at 4°C and the aqueous phase transferred 

to a new tube. To this 0.5ml isopropanol was added per ml of TRI reagent used 

and the mix was shaken vigorously incubated at 15 to 30 minutes at RT 

followed by a further centrifugation step at 4°C for 15minutes. Finally the RNA 

was washed twice with 70% (v/v)Ethanol, dissolved in H2O and stored at -80°C 

for further use.

2.2.2.2 First Strand synthesis from RNA using Superscript! 11

Reagents: SuperscriptHI Kit (Invitrogen)

RNA was isolated as described above (2.2.2.1) and used as a template 

for first strand synthesis. The composition of the RT mix is given in Table 2.11 

and Table 2.14.
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Table 2.13 Composition of Superscript III first strand synthesis RT-PCR 

reaction initial mix

Reagent Final Concentration

RNA 5gg

Oligo dT primer 5pM

dNTP Mix 1 mM

DEPC treated H2O to 1 OjLtl

The initial mix (Table 2.13) was incubated at 65°C for 5 minutes and 

placed on ice for one minute. Subsequently the final reagents were added as 

listed in Table (Table 2.14) and the PCR done according to table 2.15. After the 

final incubation on ice samples were spun down, lp l Rnase H added and the 

samples incubated for further 20 minutes at 37°C to allow degradation of the 

initial mRNA template. The newly generated cDNA was stored at -20°C.

Table 2.14 Superscript RT PCR reaction mix

Reagent Amount

lOx RT buffer 2pl

25mM MgCl2 4pl

0.1MDTT 2pl

RNAse OUT (40U/pl) lp l

Superscript III RT (200U/ml) lp l
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Table 2.15: PCR program for first strand synthesis using Superscript!!!

Temperature Time/minutes

50°C 50:00

85°C 5:00

4°C for ever

2.2.2.3 In situ hybridisation

Probes for in situ hybridisation were generated using common DNA techniques 

described (2.2.1). The DNA for the probe was amplified from mouse-Fbw7-p 

cDNA using primers as in Table 2.6. The DNA was linearised and given to the 

Cancer Research UK in situ hybridisation service for labelling and incubation. 

Images were acquired using a darkfield microscope, Adobe Photoshop and the 

Q Capture imaging software plugin for photoshop.

2.2.3 Tissue culture techniques

2.2.3.1 Maintenance of mammalian cells

HEK293T cells (Invitrogen) were maintained in growth medium 

(DMEM supplemented with 10% foetal calf serum, 4.8 mM glutamine and 

antibiotics (penicillin/streptomycin, Gibco). For the passaging the cells were 

washed once with PBS (137 mM NaCl, 3.35 mM KC1, 10 mM Na2HP0 4 , 1.84 

mM KH2PO4, pH 7.2) and then incubated in lx trypsin (Gibco) until the cells 

detached from the plate. Cells were then either seeded into a new flask (1:5 for 

maintenance) or seeded into dishes or plates at the desired cell density for the 

experimental procedure.
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2.2.3.2 Transient transfection

Transient transfections in HEK293T cells were carried out with 

Lipofectamine 2000 (Invitrogen) according to the manufacturers instructions. 

Cells were then incubated in optimem in the presence of the reaction mix, 

containing plasmid DNA and Lipofectamine 2000. The reaction mix was 

prepared in polypropylene tubes. After 4 hours cells were washed with PBS and 

normal growth medium (DMEM with 10% fetal calf serum) was added back. 

The transfection efficiency was between 70 to 95% as judged by visual 

examination of GFP transfected cells under a tissue culture microscope 

equipped with a fluorescent unit (GFP filter set and a mercury lamp).

2.2.3.3 Storage and recovery of mammalian cells

For storage in liquid nitrogen HEK293A cells were trypsinised and spun 

at 200g for 5 minutes in swing bucket centrifuge (Heraeus). The cell pellet of 

one confluent T75 flask was resuspended in 3 ml growth medium, containing 

20 % foetal calf serum and 10 % sterile DMSO. Cells were frozen at -80 °C in 

1 ml aliquots in a Cryo-l°C-Freezing Container (Nalgene) filled with 

isopropanol to allow slow freezing (l°C/min). After a week, cells were 

transferred to liquid nitrogen for long-term storage. To recover cells, aliquots 

were rapidly thawed at 37 °C in a water bath and added to one T75 flask, 

containing 25 ml of growth medium. The medium was replaced the following 

day, after the cells had attached to the plastic.
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2.2.4 Protein techniques

2.2.4.1 Protein quantification

Protein concentrations of samples were measured using the BioRad 

protein assay reagent. BSA standards and samples were diluted in 800 pi H2O 

and incubated with 200pl protein assay reagent. The absorbance at OD595nm 

was measured and compared to the standard curve to calculate protein 

concentrations.

2.2.4.2 Preparation of cell Ivsates and SDS-PAGE

HEK293T cells were washed once with ice cold PBS, and then detached 

using a cell scraper. Cells were spun down for 3 min at 200g, and lysed on ice 

for 15 min in Cell Lysis Buffer (Cell Signalling) plus protease inhibitors (250 

pM PMSF, 50 pg/ml chymostatin, 0.5 pg/ml leupeptin, 50 pg/ml antipain, 0.5 

pg/ml pepstatin A, 0.1 mg/ml pefabloc). Nuclei and insoluble debris was 

removed from lysates by centrifugation in a microcentrifuge (10 min, 16000g, 

4°C). Protein concentrations were determined (Chapter 2.2.4.1) and samples 

were mixed with 4x sample buffer and loaded onto an SDS gel.

2.2.4.3 Preparation of tissue Ivsates and SDS-PAGE

Organs were removed and stored in ice-cold PBS containing protease 

inhibitors. They were passed through a 70pm cell strainer using a plunger of a 

syringe and taken up in lx Lysis buffer (Cell Signalling) and sonicated for 5 

intervals of 10 seconds at 10 microns amplitude. After further 10 minutes on 

ice, cells were spun for 10 min at 4°C to remove the insoluble fraction. The
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supernatant was transferred to a new tube, and the protein concentration 

determined (2.2.4.1)

2.2.4.4 SDS-polvacrvlamide gel electrophoresis

Solutions:

APS (Ammoniumpersulphate) 10% (w/v) in water 

TEMED (Sigma)

Acrylamide-Bisacrylamide Solution (Protran) 37.5: 1 

Running Buffer: 50x, for 10 litre

Glycine 1400g

Tris 300g

SDS 50g

Laemmli sample- buffer: 4x :

4ml 10% SDS (w/v)

1.6ml 1M Tris (pH 6.8)

20% Glycerol (v/v)

5% p-Mercaptoethanol (v/v) 

ad 10ml H20 

Bromphenol Blue 

The stock solution is stored at -20°C without (3-mercaptoethanol

Before loading, samples were boiled for 3 minutes. Equal amounts of 

protein were loaded per lane, and separated on either 8 % SDS-PAGE gels or 

10 % SDS-PAGE gels using a 45mA current until the dye front reached the 

bottom of the gel. See below for composition of gels. Gel systems used were
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either 1.5mm Cambridge electrophoresis mini gels or if stated NuPage-4%-12% 

Bis-Tris pre-cast gels.

Table 2.16 Composition of SDS-PAGE running gel

Component 8% Gel 10% Gel

h 2o 18.5 ml 15.9 ml

30% acrylamide mix 10.7 ml 13.3 ml

1.5M Tris (pH 8.8) 10 ml 10 ml

10% SDS 0.4 ml 0.4 ml

10% APS 0.4 ml 0.4 ml

TEMED 0.024 ml 0.016 ml

Table 2.17 Composition of SDS PAGE stacking gel

Component Volume

h 2o 6.8 ml

30% acrylamide mix 1.7 ml

1.5M Tris (pH 8.8) 1.25 ml

10% SDS 0.1 ml

10% APS 0.1 ml

TEMED 0.01 ml
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2.2.4.5 Western blotting

Solutions:

Transfer buffer:

Dilution to lx in:

lOx Stock 

390mM Tris 

480nM Glycine 

0.37% SDS 

ad 1 litre 

200ml Methanol 

100ml lOx Stock

700ml H20

Blocking Buffer: 5% (w/v) Milk in TBST

TBST: 137mM NaCl

lOmM Tris,pH 7.4 

0.1% (v/v) Tween

For transfer of the separated proteins from the SDS-Page a semi-dry 

blotting chamber was used. Whatmann 3 mm filter paper and the nitrocellulose 

membrane were cut to the size of the running gel. Both were equilibrated in 

transfer buffer prior to use. The transfer-sandwich is built from the anode to the 

cathode as follows: 3 slices of filter paper, nitrocellulose membrane, gel and 

three slices of filter paper. Possible air bubbles in the blotting sandwich were 

removed by rolling a pipette over the sandwich. The proteins were transferred 

at 0.8 mA/cm2 for lhr. Transfer and equal protein loading was tested with 

Ponceau S (Sigma-Aldrich) staining. Blots were blocked by incubating the
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membrane in blocking buffer for 1 hour at room temperature or overnight at 

4°C. Membranes were then incubated with the primary antibody in blocking 

buffer for at least 1 hour at room temperature, after which they were washed 3x 

in TBST and incubated with the secondary HRP-conjugated antibody (Jackson) 

diluted 1:10000 in blocking buffer. Membranes were washed 3 x 10 minutes in 

TBST incubated in enhanced chemiluminescence substrate (ECL, GE 

Healthcare) and developed.

2.2.4.6 Immunohistochemistrv on paraffin embedded tissues

Solution: 10%NBF:

10% Formalin 

4g NaH2P 0 4 

6.5g Na2H P04 

ad 1 litre

Tissues were dissected and fixed overnight at room temperature in 10% 

NBF. On the following day the NBF was replaced with 70% (v/v) Ethanol. The 

processing, embedding and antibody stainings were performed by the Cancer 

Research UK Experimental Histopathology laboratory. Briefly, formalin fixed 

paraffin embedded sections were de-waxed in xylene and dehydrated by 

passage through a graded series of IMS washes ultimately into water. Sections 

were microwaved in citrate buffer for 15 minutes and then transferred to PBS. 

Slides were incubated in 1.6% hydrogen peroxide for 10 minutes. Normal goat 

serum diluted to 10% in 1% BSA was used as a blocking step for 30 minutes. 

Primary antibodies diluted in 1% BSA was added for 1-2 hours. Sections were 

washed in PBS prior to applying secondary antibody for 45 minutes at room
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temperature. Sections were washed in PBS and then incubated in ABC for 30 

minutes prior to washing. DAB solution was applied for 2-5 minutes and 

development of the colour reaction was monitored microscopically. Slides were 

washed in PBS, stained with a light haematoxylin, dehydrated, cleared and then 

mounted. The antibody dilutions and antigen retrieval method is given in Table 

2.1. Pictures were taken using an Axiovert upright microscope (Zeiss) with 

2.5x, 20x, 40x and lOOx objective. For the image acquisition and quantification 

of events and area measurements the axiovision software (Zeiss) was used.

The Experimental Histopathology Laboratory, CRUK, performed 

fluorescent staining of brain sections. For the imaging I used a Zeiss LSM 510 

confocal microscope equipped with a Zeiss 40x, 1.4NA Differential 

Interference Contrast (DIC) Plan-Apochromat or Phase Contrast oil-immersion 

objective, controlled by Zeiss LSM 510 software. Images were collected using 

the 493nm line of an argon laser and the 543nm and 633nm lines of a helium- 

neon laser with 4x or 8x averaging.

2.3 Animal Techniques

2.3.1 Animal housing and husbandry

Animals were housed according to the UK guidlines for the animal 

health and welfare in the animal facilities of Cancer Research UK either in 44 

Lincoln's Inn fields or Clare Hall facilities.
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2.3.2 Animal culling

Unless stated otherwise animals were culled according to Schedule 1 of 

the Animal Scientific Procedures Act 1986 either by lethal injection with 

Euthanal, placement in a CO2 chamber, or cervical dislocation. For preparation 

of cerebellar granule cells pups of 6-7 days of age were decapitated if needed.

2.3.3 BrdU injection

Solutions: 200mg/ml BrdU (Sigma Aldrich) in PBS

To investigate proliferation in the cerebellum, either the pups or the 

time mated pregnant females were injected intraperitoneal with BrdU at 

lOOpg/g bodyweight and housed for 2 hours after injection. At the end of the 2 

hour period animals were culled according to the home office guidelines (2.3.2) 

and brains were extracted. For birthdating experiments time mated pregnant 

females were BrdU injected at the indicated day of pregnancy with lOOpg/g 

bodyweight. At indicated timepoints, pups were extracted culled and subject to 

immunohistochemistry studies.

2.3.4 Behavioural Tests

2.3.4.1 Pole Test

The pole test was performed according to Matsuura et al with slight 

modifications (K. Matsuura et al., 1997). Animals of two month of age were 

acclimatised to the pole one day before the test and tested on day two. The pole 

consists of a retort stand wrapped in duct tape to generate a rough surface. The 

half and bottom of the pole are marked for time measurements. The pole was
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wiped with 70% (v/v) ethanol between animals. On acclimatisation day the 

animals were placed on top of the pole and allowed to walk down the pole 3 

times without taking the time. At the bottom of the pole a thick layer of nesting 

material ensured that no mice were hurt in case they fall. On the test day 

animals were placed on top and the walk down the pole was monitored with a 

Digital camcorder (Sony). This was carried out in 3 consecutive runs. The time 

needed to walk down was subsequently stopped on the video recording. 

Behavioural abnormalities such as stopping and letting go of the pole were 

noted as well. The two best times (judges as continuous runs, no falls) were 

taken and averaged per animal.

2.3.4.2 Hanging wire test

2 month old animals were used for the hanging wire test. The experiment was 

performed over a two-day period leaving one day for acclimatising the animals 

to the experimental set-up and using day two for testing. Animals were placed 

on top of a wired cage lid and the lid was raised up and down 3 times to 

promote the animal to grip. Afterwards the cage lid was turned resulting in the 

animal hanging below the cage lid. The time until the animal either falls or 

climbs on top was measured. A cut off time of 30 seconds was chosen after 

which the cage was turned back to starting position if the animal did not let go 

or climb on top. A thick layer of nesting material was placed at the bottom to 

ensure no animal was hurt if it fell. After 3 times the animal was either valued 

“Hang” if the animal kept hanging over the 30 seconds or climbed on top 2 out 

of 3 times. Animals were counted as “Fall” if they let go 2 out of 3 times.

104



Chapter 2

2.3.4.3 Gait analysis

To assess whether animals are ataxic a gait analysis was performed. Briefly, the 

animals’ front paws were marked with orange non toxic ink and the back paws 

with purple non toxic ink. Animals were placed in a U-chanel layered with 

filter paper. As the mouse walks along, one can trace the footprints and measure 

stride length, distance of front paws and back paws thereby seeing whether the 

mouse is ataxic.

2.3.5 Statistical Analysis

The statistical analysis of data was performed using the Graphpad Prism 

software. If two groups of mice were compared, an unpaired two-tailed T-test 

was performed. When more than one group were compared, analysis of 

variance (Anova) was used with a Kruskal Wallis Post test. Unless otherwise 

stated the Data are presented as Mean+/-SD and p values are indicated as 

follows: p<0.05: * , p < 0.01: **.

2.3.6 Quantification of neurons:

All neurons quantified were counted manually and comparable brain 

regions for each experiment were chosen. Do to the chosen brain regions and 

different stainings (HE, NeuN in different experiments different counting 

methods were used for the analysis. At least 3 animals were quantified per 

genotype, the numbers of animals are indicated as n in the respective chapters.
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2.3.6.1 Purkinie cell quantification

The number of Purkinje cells was counted in mid-sagittal sections. The 

length of the Purkinje cell layer in the whole cerebellar section was measured 

using the Axiovision software (Carl Zeiss). The Purkinje cell density was 

obtained by dividing the number of Purkinje cells counted devided by the 

Purkinje cell layer length.

2.3.6.2 Quantification of neurons in E 18.5 brains

Comparable regions of interest (ROIs) with a fixed size in the cortical 

plate, intermediate zone and midbrain were chosen in sagittal sections as 

indicated in Fig 4.3. The neurons were counted manually in H&E stained 

sections taken at 20x and lOx magnification using the event count tool in the 

metamorph software (Molecular devices). To obtain comparable datasets, the 

neuron number counted was normalised to the fixed sized area as cells/mm2.

2.3.6.3 Quantification of neurons in adult cortices of fbw7^ Nanimals

Comparable Regions of interest (ROIs) of the different cortical layers 

were chosen in coronal sections of comparable regions as indicated in Fig 6.8. 

The neurons were quantified manually in NeuN stained sections taken at 20x 

magnification using the event count tool in the metamorph software (company). 

To obtain comparable datasets, the neuron number was normalised as 

cells/mm .
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2.4 Supplementary material on DVD

2.4.1 Description of movies M1 and M2

f b w 7 ^  animals display a strong hindlimb tremor when allowed to grip 

a cage lid with their front paws. M l: control M2: Jbw7ApN

2.4.2 Description of movies M3 and M4

fbw7*pN animals display a caterpillar like walking pattern in the pole 

test and need longer to climb down the pole. M3: control M4: Jbw7*pN
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3 GENERATION OF THE FBW7 

CONDITIONAL KNOCKOUT MICE

3.1 Generation of the targeting construct for Fbw7 

deletion

The Cre-loxP system is a widely used system to generate conditional 

knockout mice and it is based on the activity of the Cre recombinase towards so 

called loxP sites, which are partially palindromic 34bp sequences (reviewed in 

(U. Muller, 1999)). The recombinase will excise the region in between two loxP 

sites if they have the same orientation, or will invert the region between them if 

they are orientated opposite to each other. If the Cre expression is driven by a 

tissue specific promoter, a selective deletion can be achieve in the respective 

tissue and the severe defects of a germline knockout can be avoided (reviewed 

(C. Gaveriaux-Ruff and B. L. Kieffer, 2007)). To obtain mice that harbour an 

allele where a specific sequence, such as an exon, is flanked by two loxP sites 

(“floxed”), a targeting vector has to be cloned first. In general, this vector 

contains the genomic target sequence and two loxP sites, one 5’ and one 3’ of 

the targeting sequence. Additionally, two homology regions to the genomic 

sequence that surround the targeting sequence have to be present so that the 

construct can insert into the genome by homologous recombination. The floxed 

targeting construct will be transfected into ES cells where it should integrate 

into the genome. Therefore to select for the stable insertion and against random
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integrants, a positive and negative selection marker have to be present in the 

targeting vector (reviewed (C. Gaveriaux-Ruff and B. L. Kieffer, 2007)).

For the fbw7  targeting construct I flanked exon 5 by two loxP sites in 

the same orientation and inserted the homology arms on either side of it. Exon 

5 was chosen because it encodes the major part of the F-box domain and is 

common to all isoforms (Figure 3.1 A). As exon 5 spans 125 bases, the deletion 

causes a frameshift mutation and thus the resulting message should be be 

subjected to nonsense mediated decay and subsequently lead to the loss of the 

Fbw7 protein (reviewed in (M. W. Hentze and A. E. Kulozik, 1999)). A 

neomycin cassette was used as a positive selection marker and Frt sites that 

flanked the neomycine cassette allowed that it could be excised after the 

successful targeting. The negative selection marker was a Diphteria-toxin-a 

(DT-a) cassette, located outside of the homology arm. Therefore cells that have 

randomly integrated the whole targeting vector die due to the toxin expression, 

whereas cells that integrated the vector by homologous recombination will have 

lost the DT-a cassette and are viable (Figure 3. IB). The presence of loxP sites 

around the targeting region and Frt sites around selection marker allows the 

sequential crossing of mice to firstly obtain the floxed f b w animals and 

subsequently to generate the tissue specific knockout of Fbw7 (Figure3.1 C).

The targeting construct for the floxed fbw7  allele was generated using a 

four step cloning strategy (Figure 3.2). The single cloning steps are described 

below. For all cloning techniques such as digest, PCR and sequencing the 

methods described in Chapter 2.2.1 were used.
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3.1.1 Long arm of homology

The sequence for the long arm of homology, covering exon 4 and parts 

of the surrounding introns, was cloned from mouse genomic DNA using primer 

pairs Fbx7Fl/Fbx7Rl in a long template PCR reaction (chapter 2.2.1.1). The 

purified PCR product was digested with Seal and the resulting fragment cloned 

into the EcoRV site of the pDTa-vector. The relative orientation of the 

fragment (see arrows in Figure 3.2) was confirmed by restriction digest and 

sequencing using the primers SeqFe4 and SeqRe4-l and SeqRe4-2 (Figure 3.2 

A).

3.1.2 Short arm of homology

The short arm of homology, spanning exon 6 and parts of the 

surrounding introns, was generated using the primers Fbx7F3 and Fbx7R3. The 

amplified fragment was digested with Xbal/Nhel and inserted into Xbal cut 

pcDNA 3.1+ whereby the Nhel site was destroyed. The resulting fusion 

construct was test digested and sequenced with SeqFeb and SeqRe6 primers 

(Figure 3.2B).

3.1.3 Insertion of two lox P sites around exon 5 of Fbw7

To flank exon 5 of fbw7  with two lox P sites, two Bell sites were 

introduced by PCR on genomic wt DNA. For this purpose the primers 

Fbx7F4BclI and Fbx7R4BclI contained a Bell site each. The amplified 

fragment was cut with Bell and cloned into the pFlrt vector, which contains a
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BamHI site in between two loxP sites that can be ligated to Bell cut ends. This 

ligation additionally destroys the BamHI site. The sequence was confirmed 

using primers SeqFe5 and SeqRe5 (Figure 3.2C).

3.1.4 Construction of the final targeting vector

The short arm of homology was excised from the initial pcDNA3.1 

vector using a Xhol/Kpnl digest and inserted into the pFlrt vector which 

already contained the region spanning exon 5 flanked by two loxP sites (3 .1.3). 

The long arm of homology including the negative selection marker DTA was 

cloned via Notl/Sall into the pFlrt vector. The final outcome is a targeting 

vector that contains the positive and negative selection marker in one 

orientation and the region of interest, here exon5 flanked by loxP sites, in the 

other orientation (Figure 3.2D).

3.1.4.1 Linearisation of the final targeting vector

The targeting construct was linearised using Notl and purified using 

common DNA methods (chapter 2.2.1) and given to the Cancer Research UK 

transgenic services for the ES cell transfection.
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3.2 Confirmation of targeting by PCR and 

southern blotting

3.2.1 Screening PCR for target insertion in ES cells

The transfected ES cells were sent back to me in 96 well plates. I 

extracted the DNA and screened for the insertion of the targeting construct into 

the genome by nested PCR. The initial PCR used the primers 

ScrFlrt-2/ScrFbx7-2 and the second PCR was performed with the primers 

ScrFlrt-l/ScrFbx7-l (Figure 3.3A). These primers bound either inside the PGK 

promoter of the positive selection cassette or in the genomic region outside of 

the targeting construct, therefore ensuring the screen recognises only the 

construct inserted by homologous recombination. Out of 864 transfections 

seven clones were initially positive for the targeting PCR. These clones were 

expanded by the transgenic service and I re-tested them using the above 

described nested PCRs. From the seven initially positive clones one clone 

remained positive after the expansion phase.

The insertion of the targeting construct was additionally confirmed by 

southern blotting. To do this, I designed a probe that binds in the genomic 

region after the end of the short homology arm. A Stul digest was performed to 

determine whether the targeting was successful (Figure 3.3A). In the genomic 

fbw7  locus there is a Stul site before exon 4 and after exon 6, resulting in a 

5735 bp fragment that is recognised by the probe upon digestion with Stul. Due 

to a Stul site present in the neomycin cassette, the probe detects a 2560 bp
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fragment in the targeted fbw7  locus. The southern blotting confirmed that the 

insertion of the targeting construct was successful (Figure 3.3B). The targeted 

ES cell clone was also used to establish the genotyping PCR. Using the primers 

F7-PCR1/F7R1 the amplification of the wt allele generates as expected a 287bp 

fragment whilst amplification of the floxed allele produces a 394 bp fragment 

(Figure 3.3C).This targeted ES cell clone was expanded and used for the 

injection into C57B1/6 blastocyst (performed by the CRUK Transgenic 

services). A high level of coat colour contribution together with a bias to male 

chimeras (as the ES cell line is male) was indicative of an ES cell clone that 

contributes to the germline. After the expansion of the targeted mice by 

crossing them to B16, and removing the selection marker by breeding them with 

Flp-transgenic animals, f b w mice were obtained.

3.2.2 Genotvpinq

The genotyping of the fbw7  targeted and conditional knockout animals 

was performed using various primer combinations. For the genotyping of the 

targeted allele together with a deleted allele where the neomycine cassette was 

still present, a three primer PCR with primers F7-PCR1, F7-R1 and NeoS was 

(Figure 3.4A and C lane 1 and 3). The genotyping for mice derived from fb w 7^ 

animals where the selection marker was excised, was performed using the 

primer combinations F7-PCR1, F7-R1 and A2 (red askterisks, Figure 3.4C). 

These three primers are able to detect the wildtype, floxed and deleted fbw7  

allele. An alternative genotyping PCR for the second loxP site was also 

established (Figure 3.4B). The size of the PCR fragments for the various 

possible alleles is given in Figure 3.4C.
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3.3 Verification of Fbw7 deletion in conditional 

knockout animals

The first step in the analysis of the conditional fbw7  knockout mice, was 

to confirm the knockout. To do this, I used various approaches and samples 

from the different knockout lines. Therefore table 3.1 summarises where the 

deletion in these mouse lines takes place. For the detailed analysis of the Fbw7 

conditional knockout lines, the reader is referred to chapters 4 to 6.

Table 3.1 Deletion pattern of the used mouse lines

Cre line Deletion Reference Chapter

Nestin Cre Neural lineage (F. Tronche et al., 

1999)

4

Engrailed-2 Cre Cerebellar vermis (D. L. Zinyk et al., 

1998)

5

Synapsin Cre Postmitotic

neurons

(Y. Zhu et al., 

2001)

6

3.3.1 Confirmation of Fbw7 deletion by RT-PCR

To investigate to what degree deletion can be obtained on the message 

level, I used fbw7ACb :c-junACb animals where fbw7  and c-jun should be deleted 

in the cerebellar vermis but not the lateral sides (for a detailed description of 

this mouse line see chapter 5.). I extracted RNA from both parts of the
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cerebellum and performed a reverse transcriptase PCR reaction using primers 

binding in exon 2 and 7 of Jbw7, primers for c-jun, which is only transcribed 

from a single exon, gapd was used as a control (Primers are listed in Table 2.5).

The RT-PCR on wt fbw7 message should yield a 558 bp fragment. As I 

anticipated that the exon 5-deleted message is subjected to nonsense-mediated 

decay, I did not expect to detect an exon 5 deleted PCR product of 433bp. For 

the lateral side I obtained the wt 558bp PCR fragment, however, I could also 

detect a 433bp fragment in the vermis of the fbw7ACb:c-junACb knockout 

animals, suggesting that the deleted fbw7 message at least partially escapes 

nonsense mediated decay. To verify that this smaller band is indeed fbw7  

message, I purified the PCR band from the gel and sequenced it with the same 

primers that I used to amplify it. The alignment to the wt sequence shows that 

upon Cre expression exon 5 is deleted as expected (Figure 3.5B). Therefore the 

message continues into exon 6, where two stop codons are present in a row 

(green circle in Figure 3.5C). Thus the remaining message cannot be translated 

into a functional protein since the F-box domain is missing and the WD-40 

repeat region not present. If this truncated message would be stable and 

translated, one could expect that three truncated proteins are generated, all 

consisting of the first exon for each isoform and the common sequence up to 

the stop codon. The predicted size for those proteins would be 20 kD (y), 25 kD 

(P) and 33 kD (a). However, this could not be verified as none of the available 

antibodies are able to detect the endogenous protein (see 3.3.4 and discussion).

In case of the c-jun RT-PCR, I could detect a strong band in the lateral 

part of the cerebellum and only a very weak band in the medial part, indicating 

that c-jun was efficiently deleted (Figure 3.5A). The residual signal can
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potentially be caused by contamination of the tissue preparation with non­

deleted cells or by contamination of the RNA preparation with DNA. Since the 

c-jun genomic organisation does not contain introns, even small DNA 

contaminations are likely to be amplified.
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Fig 3.5 RT-PCR to confirm deletion of exon 5 of Fbw7 in the vermis
of fbw7*CbcjunACb mice. A) Medial (M) and Lateral (L) samples of the 
cerebellar cortex were taken. RNA was extracted and RT-PCRs were 
performed for fbw7, c-jun, gapdh  was used as control. The lower fbw7  
band in the medial sample and the band from the lateral part were excised 
and sequenced with the same PCR primers as used for amplification. B) 
Sequence alignment of the deletion PCR product to wt cDNA. Exon 5, 
which encodes for the major part of the F-box domain (red underlined) 
is deleted. C) Translation of obtained sequencing of the A band. The 
deletion of exon 5 causes a frameshift upon transition to exon 6 and a 
stop codon (green circle).
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3.3.2 Fbw7 expression in the wt brain

To characterise the expression pattern of Fbw7 in wt brain and to verify 

the various knockout lines, I cloned in situ hybridisation probes for the fbw7  

message. One probe was designed to cover the sequence from exon 2 to 5, and 

named “generic probe”. The other probe was designed to span only a small part 

of exon 4 and exon 5 and therefore called “exon5 specific probe” (Figure 3.6A). 

These probes were given to the in house in situ hybridisation service and brain 

sections from different conditional knockout lines and controls were hybridised. 

I then evaluated the slides using a dark-fleld microscope. A sense construct 

spanning the bases as the generic probe was used on a wt cortical sample to test 

the specificity of the probe (Figure 3.6B). No staining could be detected using 

the sense probe, confirming the specificity of the signal obtained antisense- 

signal. Having established the specificity of the in situ hybridisation, I first 

wanted to analyse the expression of Fbw7 in the adult wt brain. Therefore a 

midline sagittal section from a wt mouse was probed with the generic probe and 

analysed. I observed that the Jbw7 message is widely present in the adult mouse 

brain with particular high expression in the cerebral cortex, hippocampus, 

dentate gyrus and in some nuclei such as the pons and the inferior olive whilst 

in other regions such as the thalamus hardly any signal can be detected (Figure 

3.7, Figure 3.10). Fbw7 is also expressed in the cerebellar granule cell layer, 

which is discussed below in more detail. The exon 5 specific probe gave a 

slightly weaker but otherwise identical signal as the generic probe on wt brains 

(data not shown).
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Figure 3.6 Design and validation of Fbw7 in situ hybridisation probes.
A) Partial cDNA sequence of the mouse Fbw7-p isoform with annotated 
exon boundaries. The sequence of the generic fbw7  in situ hybridisation 
probe covers exons 2 to 5 and the exon 5 specific probe extends from 
exon 4 to 5. All exons from exon 2 onwards are common to all three Fbw7 
isoforms (see also Fig 1.5) B) A wt mouse cerebral cortex probed either 
with the sense negative control or the antisense probe. No signal was 
detected in the sense sample (which covers the same sequence as the 
generic probe) whereas the antisense sample gave a signal in the cortex 
indicating that probe binds specifically.
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Figure 3.7 Detection of Fbw7 message in the wt brain A) scheme of 
a midline sagittal cut mouse brain.(from, Paxinos, 2002) Red numbered 
rectangles indicated areas of Fbw7 expression that are magnified in B. B) 
Areas of Fbw7 expression detected with the generic Fbw7 probe. Shown 
are brightfield and darkfield images of the resprective regions.
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3.3.3 In  s i t u  hybridisation on Fbw7 conditional knockout brains

To verify the knockout of Fbw7 in the generated conditional knockout 

lines, sections of control and mutant animals were hybridised. In brains of E l8 

embryos where fbw7  is deleted in cells of the neuronal lineage, fbw7AN\ the 

strong signal in the embryonic cortex disappears in the knockout (Figure 3.8, 

panels 2, 2’). The message is also strongly reduced in the embryonic eye 

(Figure 3.8, panels 4, 4’), confirming previously published data that Nestin-cre 

mediated deletion also affects the eye (Y. Cang et al., 2006). A loss of the 

cortical fbw7  hybridisation signal could also be observed in the adult jbw7ApN 

animals where Fbw7 is deleted in postmitotic neurons (Figure 3.9 and Figure 

3.10). In a montage image using the generic probe distinct areas of high Fbw7 

expression such as the cortex, hippocampus, olfactory bulb are visible and in 

the fbw7ApN animal this signal is strongly reduced (Figure 3.9). The residual 

signal in the fbw7/SpN cortex compared to the fbw7AN brain that is present in 

brains probed with the generic (Figure 3.10 top panel) and the the exon 5 

specific probe (Figure 3.10, bottom), can be attributed to cells still expressing 

Fbw7 since Synapsin-cre mediated deletion selective affects postmitotic 

neurons while Nestin-cre mediated deletion also causes deletion in glial cells. 

Additionally the signal in the dentate gyrus is strongly reduced in fbw7*pN 

animals (Figure 3.10), confirming previously published results for the efficient 

cre-recombinase expression of the Synapsin-cre line in neurons and particularly 

the dentage gyrus (C. Hoesche et al., 1993). The Jbw7 message is also detected
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in the cerebellar granule cell layer and this signal is reduced upon Engrailed-2

AChmediated deletion in the fbw7  brain (Figure 3.11).

Taken together these data demonstrate that the deletion of Fbw7 results 

in a reduction offbw7  message in vivo and suggest that the message is removed 

by nonsense-mediated decay.
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Figure 3.8 Fbw7 in situ hybridisation on E18 Control and fbw7AA/ 
brains. A control and fbw7AhJ brain were hybridised with either the generic 
probe (A) or the exon 5 specific probe (B). Overview images (blue panels) 
covering the cerebellum (left), cortex (middle) and eye (right) were taken 
at 5x magnification. Numbered areas were chosed for 50x magnification 
darkfield images. The reduction in signal particularly in the cortex (2,2’) 
and eye (4,4’) is visible in both probes.



generic probe

fbw7ApN

Figure 3.9 Reduction of in situ hybridisation signal in fbw7^PN brain, I. The generic probe was used to highlight fbw7 
message levels in the brain. The montage of transmissive images (blue) shows that the signal, visible as a grey/black staining, 
is strong in areas such as the cortex, hippocampus and olfactory bulb. Images of the areas indicated were taken at 10x 
magnification as darkfield images. The hybridisation signal is weaker in in the knockout brain. Regions that give a strong 
signal such as the cerebral cortex (C, D). hippocampus (E) and olfactory bulb (G) can be distinguished from regions with 
low fbw7 message such as the superior colliculus (B), thalamus (F) or nucleus accumbens (H). Message levels in the 
cerebellum (A), pons (I) and inferior olive (J) are also high.For more detailed images on the loss of hybridisation signal in 
the knockout brain see Figure 3.10.



A Cerebellum Cortex Hippocampus Olf. bulb Pons

Cerebellum Cortex Hippocampus Olf. bulb Pons

Figure 3.10 Reduction of in situ hybridisation signal in the fbw7*PN brain, 2. Pictures of high expressing 
areas were taken at 20x magnification of sagittal cut brains hybridised with either the generic probe (A) or the 
exon 5 specific probe (B). The reduced hybridisation signal in the fb w 7 ^ N brain is visible with both probes althouqh 
a stronger reduction is detected with the exon 5 specific probe.
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Figure 3.11 Reduction of in situ hybridisation signal in the fbw7ACb 
cerebellum. A control and fbw7ACb brain were hybridised with either the 
generic probe (A) or the exon 5 specific probe (B). Overview images (blue 
panels) covering the cerebellum (left) to the Hippocampus (right) were 
taken at 5x magnification. Numbered areas were chosen for 50x 
magnification darkfield images. The reduction in signal is present in both 
probes and in both cerebellar lobes (panels 1,2) whilst the dentate gyrus 
(panel 3) is not affected.
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3.3.4 Assessment of a monoclonal Fbw7 antibody on transfected 

cells and tissue extracts

To detect the Fbw7 protein, an in-house monoclonal antibody that was 

raised against a peptide sequence within the first common exon (exon 2) of 

Fbw7 was generated by the CRUK monoclonal antibody service (in-house 

Fbw7 antibody). To test this antibody 293T cells were transfected with different 

mouse GFP-Fbw7-p fusion constructs that either contained or did not contain 

the antibody epitope (Figure 3.12A). Cells were harvested 24 hours post 

transfection and western blotting for Fbw7 or GFP was performed. Specific 

bands that correspond to the molecular weight of the Fbw7 construct fused with 

the 29 kD GFP protein were detected (Figure 3.1 OB). Upon the deletion of the 

antibody-epitope no band was recognised with the in-house Fbw7 antibody. As 

the expression of the construct could be confirmed using a GFP antibody, this 

demonstrates that the generated in-house Fbw7 antibody recognises Fbw7 

specifically (Figure 3.12B lane 3). This Fbw7 antibody also detects the 3 

different isoforms of the human Fbw7 protein as shown by transient 

transfection of human Fbw7-a, -P and -y Flag-myc-expression constructs 

(Figure 3.12C). These overexpression data suggested that this antibody could 

be a useful tool in studying the conditional knockout mice. In tissue extracts 

from wt mice run on a 10% SDS-PAGE the in-house Fbw7 antibody detects a 

band of 80 kD kidney, liver, spleen and thymus (Figure 3.13A and data not 

shown). However, this band is hardly detectable in brain extracts (Figure 

3.13A). The only strong band that is present in brain extracts of all animals
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including B16 controls is a small non-specific 35kD band. I decided to test the 

Fbw7 antibody on fbw7ACh :c-junACb protein extracts from the cerebellar vermis 

and lateral sides. In these extracts western blotting for c-Jun can act as a 

positive control as to whether the deletion is taking place as expected. With 

regards to Fbw7 I observed that in this 8% SDS-PAGE a weak duplet of 85 and 

75kD is detected. However, this duplet is still present in extracts from the 

fbw7ACb:c-junACb vermis, indicating that this band is not specific as western 

blotting for c-Jun showed an efficient deletion (Figure 3.13B). Also in protein 

extracts from fbw7AN E18 cortices or fbw7ApN brains no specific band for Fbw7 

could be detected when using the in-house antibody that was previously 

established to recognise Fbw7 in transfected cells. Ponceau staining, actin blots 

and one lane loaded with a cell lysate of GFP-Fbw7-|3 transfected cells were 

used as controls in these experiments to ensure that a) the proteins from the cell 

lysates were transferred onto the nitrocellulose membrane and b) that the 

antibody staining protocol worked. I tested different membranes (nitrocellulose, 

PVDF), blocking agents (Milk, BSA) and buffers (TBS, PBS, TBST, PBST) to 

ensure that the absence of a signal is not cause by the experimental setup. I 

furthermore tested different Fbw7 antibody concentrations as well as different 

tissue lysis protocols (data not shown).

Additionally to the in-house Fbw7 antibody there are commercial 

antibodies available. These antibodies differ in their epitopes in comparison to 

the in house antibody. A polyclonal Fbw7 antibody recognises a C-terminal 

epitope (AB 12292, abeam) and should therefore recognise all Fbw7 isoforms 

as the C-terminus is conserved. However, the provided datasheet does not
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provide convincing information regarding the specificity for Fbw7. Another 

tested polyclonal Fbw7 antibody (PAB-10565) is directed against the N- 

terminus of the Fbw7-|3-isoform. To assess these antibodies GFP-mFbw7-p was 

transfected into 293T cells and western blotting was performed with the same 

constructs as described in Fig.3.12. Whilst the in house antibody was used as a 

positive control and recognised the GFP-Fbw7-P fusion construct as described, 

the actin staining confirmed equal loading and the functionality of the used 

rabbit secondary antibody, blotting with the commercial antibodies did not 

result in any bands in any of the tested experimental conditions (as described 

for the in-house antibody on on tissue extracts), (data not shown). As these 

commercial antibodies have been unable to detect the overexpressed Fbw7 

protein, they were not further analysed with respect to the endogenous protein. 

To overcome the lack of an antibody that can detect the endogenous Fbw7 

protein, I have initiated the generation of further monoclonal and polyclonal 

Fbw7 antibodies that recognise the F-box domain of Fbw7 and these are 

currently being tested.
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Figure 3.12 The F7-3B7 antibody is specific and detects all isoforms 
in transfected cells.(A) Scheme of GFP-Fbw7 fusion constructs used 
to test the Fbw7-3B7 antibody. The epitope is not present in the GFP- 
mFbw7-AN construct. B) 293T cells were transfected with the indicated 
Fbw7 constructs, whole cell lysates were prepared and western blotting 
performed. The Fbw7 Antibody recognises GFP-mFbw7-p fusion constructs 
that have the antibody epitope. The GFP-mFbw7-AN construct, which 
lacks the epitope, is not recognised, but it can be detected by reprobing 
the blot with a GFP antibody. The GFP band is not depicted in lane 1 as 
it runs at 30kD C) 293 cells were transfected with the three different 
human, flag-myc tagged Fbw7 isoforms. The antibody recognises all 
isoforms. The GFP-mFbw7-p fusion construct (Lane 5) is also recognised 
and runs 30kD higher than the Flag-myc-tagged human p-isoform (Iane3) 
due to its fusion to GFP. The expression level of the Flag-myc tagged 
constructs is much lower than that the GFP fusion construct.
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Figure 3.13 The F7-3B7 antibody does not work on brain tissue. A)
Kidney and cortical sample of a control, fbw7ApN and BI6 animal were 
homogenises as described. The F7-3B7 antibody recognises different 
bands in kidney and cortical sample,but none is specific. C57-BI6 and 
fbw7f/f cortical samples display the same pattern as the fbw7ApN sample.
B) The Fbw7 antibody does not work in fbw7ACb:c-junACb brains where 
protein extracts were prepared from either the medial (M) or lateral (L) 
sides. c-Jun protein levels are strongly reduced in the cerebellar vermis 
in conditional double knockout animals, but no specific band for Fbw7 
can be detected, ns: non specific



Chapter 3

3.4 Discussion

I have described the generation of the targeted j b w r °  mice and the 

confirmation of the targeting by southern blotting. Using the crossing strategy 

outline in Figure 3.1. Figure 3.3 shows a genotyping PCR on targeted ES cells 

where the floxed band is stronger than the wt band. A random integration of the 

targeting construct at another site in the genome could explain the stronger 

band but the targeting construct was designed to harbour a negative selection 

cassette to prevent this. Furthermore offsprings were bom with mendelian 

frequence indicating that germline transmission had taken place and in 

subsequent genotypings of different genotypes ifbw?f/f, f b w / /A, fbw7A/+ or 

fb w / /+) I did not observe this discrepancy in band intensities anymore. I 

obtained f b w f /f animals after the removal of the selection marker and having 

bred these fb w 7 ^  mice to various Cre-expressing lines, I wanted to confirm the 

Fbw7 knockout by RT-PCR and western blotting.

Using RNA isolated from fbw7ACb:c-junACb cerebella I could clearly 

demonstrate a strong reduction of the wt Jbw7 message in the medial part of the 

cerebellum compared to the lateral non-deleted part. Unexpectedly however, I 

detected a lower molecular weight band in the RT-PCR on the medial part of

AC'h j /^L
the fbw7 :c-jun cerebellum (Figure 3.5). The sequencing confirmed that 

this band corresponds to the exon-5 deleted fbw7  message and contained a 

premature stop codon and thereby confirmed that the Cre-mediated deletion 

takes place as anticipated. However, as exon 5 is in the middle of the fbw7
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locus, I expected that the truncated message is subjected to nonsense-mediated 

decay upon successful recombination and is therefore not detectable by 

RT-PCR. The presence of the deleted band could indicate that the message is 

stable and has escaped nonsense-mediated decay. However, an alternative 

explanation may be that the observed band and especially its amount in 

comparison to the wt band in the lateral sample is the result of a saturated PCR 

amplification. Since I used 40 cycles in the PCR it is likely that amplification 

has reached saturation and therefore masks the real difference in the amounts 

between the wt Jbw7 RNA in the lateral sample and the truncated message in 

the medial sample. While this result clearly shows that exon 5 has been 

efficiently deleted from the medial part of the cerebellum it is more difficult to 

assess how much truncated message is present in relative terms, something 

which could be better addressed by quantitative PCR.

An additional approach that I used to verify the Fbw7 knockout was the 

analysis of the fbw7  message levels by in situ hybridisation. For this purpose I 

analysed brain sections of the various conditional knockout lines that I 

generated during my PhD. I observed a strong reduction in the Fbw7 signal in 

all knockout brains (Figures 3.8 to 3.10). Especially in E l8 fbw7AN brains there 

was an almost complete loss of message indicating that the Fbw7 knockout was 

successful. This confirms the result from the RT-PCR that Fbw7 can be 

efficiently deleted upon cre-mediated recombination. Furthermore the in situ 

data strongly suggests that the strong band for the exon 5-deleted RT-PCR is 

indeed the result of a saturated PCR reaction and that the truncated Fbw7 

message is indeed subjected to nonsense-mediated decay in vivo.

137



Chapter 3

The confirmation of the Fbw7 knockout on protein levels by western 

blotting did not work so far. I used an in-house monoclonal Fbw7 antibody and 

I could clearly demonstrate that it recognises overexpressed Fbw7 constructs of 

all isoforms (Figure 3.10). Depending on the organ taken for western blotting, 

the in-house Fbw7 antibody recognises a band of an apparent molecular weight 

80 kD in other organs than the brain. In brain samples there is a duplet present 

of 85kD and 75D (Figure 3.1 IB), however, when western blotting protein 

extracts from fbw7ACb:c-junACb mice, no loss of bands could be detected. In 

contrast, the deletion of c-Jun was confirmed, demonstrating that these samples 

allow the comparison of deleted (medial) and non-deleted (lateral) parts of the 

cerebellum. In combination with the results obtained from the RT-PCR, in the 

in situ hybridisation this suggests that the observed bands are unspecific. The 

lack of a band, which can be clearly identified as Fbw7, could be explained by 

the instability of the protein. It is possible that Fbw7 is rapidly degraded and 

thus the detection is very difficult. Alternatively the two non-specific bands in 

organ extracts could mask an even weaker specific band.

When using the commercial antibodies on GFP-Fbw7 transfected cells, I 

could not observe any band in western blots (Data not shown), which was the 

reason why I did not continue to use them on tissues. Interestingly however, 

none of the companies provides convincing western blots in the datasheets that 

demonstrates that their antibodies work. I have therefore initiated the generation 

of further monoclonal and polyclonal antibodies that are directed against the 

F-box domain of Fbw7, however, these antibodies are still to be tested.

In conclusion I have generated fb w /^  mice that allow a tissue-specific 

deletion of Fbw7 upon crossing them to Cre-transgenic lines. I furthermore
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confirmed by RT-PCR and in situ hybridisation and RT-PCR experiments that 

Fbw7 deletion takes place as expected in the mouse lines that I characterised 

during my PhD.
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4 UBIQUITOUS AND NESTIN-CRE 

MEDIATED FBW7 DELETION ARE 

LETHAL

4.1 PGK-cre mediated deletion of Fbw7 is lethal

When I started cloning the targeting construct for the conditional Fbw7 

knockout, the function of Fbw7 in vivo had not been investigated. However, 

during the generation of the conditional knockout mice two papers were 

published, that demonstrated that the germ line deletion of Fbw7 is lethal (M. 

T. Tetzlaff et al., 2004; R. Tsunematsu et al., 2004) (see also chapter 1.3.6). In 

both studies the authors obtained fbw7+/~ mice but intercrosses never resulted in 

any fbw T 1' offsprings. To confirm their results I decided to use the PGK-cre 

line and breed them to mice harbouring the targeted allele. The presence of the 

Cre-recombinase under the PGK promoter leads to ubiquitous deletion at early 

embryonic stages (Y. Lallemand et al., 1998). This cross leads to mice that 

harbour the deleted Fbw7 allele with the positive selection marker still present 

(Jbw7Aneo/+) (Figure 4.1 A). Intercrosses of these mice did not give any 

homozygous fbw7Aneomeo offsprings at weaning age (data not shown), thereby 

reproducing the data by Tetzlaff and Tsunematsu.

To further confirm their results that at E 9.5 fb w T f~ animals are still 

present, I set up a time mating of an fbw7Aneo/+ intercross and genotyped the 

embryos at E9.5. In a litter of seven three animals were fbw7Arteo//Aneo as seen by
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the presence of only the A band in the genotyping PCR. The genotyping PCR of 

the other animals amplified an additional wt band, demonstrating that they are 

heterozygous,fbw7Aneo/+ (Figure 4.IB). Thus PGK-cre mediated deletion results 

in a null allele and reproduces the published data for the germline knockout. 

Since the other two groups had already characterised the effect of the 

ubiquitous Fbw7 deletion (summarised in 1.3.6), I did not pursue this analysis 

further and focussed instead on the generation and analysis of the conditional 

knockout offbw7  in the nervous system.
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Figure 4.1 fbw7Aneo/Ar?eo animals are still present at E 9.5 A) Mice 
harbouring the targeted fbw7 allele were crossed with PGK-cre transgenic 
mice to obtain ubiquitious deletion of Fbw7. The neomycin cassette is 
still present in these crosses. Primers used for genotyping are indicated. 
B) Genotyping PCR on E 9.5 embryos from time mated fbw 7Aneo'+ x 
fbw7Aneo/+ crosses. fbw7Aneo homozygous mutant animals (numbers 
1,2,4), detected by a PCR band amplified with primers F7-NeoS are still 
present at this developmental stage.
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4.2 Nestin-Cre Mediated deletion of Fbw7 is lethal

Having confirmed previously published data that ubiquitous Fbw7 

deletion is lethal, I wanted to investigate the role of Fbw7 in the nervous system 

using the Nestin-cre line. Expression of the Cre recombinase under the Nestin- 

enhancer starts as early as E9.5 and causes deletion before the separation of the 

neuronal and glial lineage (F. Tronche et al., 1999; D. Graus-Porta et al., 2001) 

(reviewed in (C. Gaveriaux-Ruff and B. L. Kieffer, 2007)). Using this line, I 

generated Fbw7 conditional knockout mice (fbw7***) as well as double knockout 

animals for Fbw7 and c-Jun (fbw7AN:c-junAN) in the nervous system. This was 

based on the hypothesis that, even if fb w 7 ^  mice displayed the same severe 

defects (including lethality) as the germline knockout, one would expect that 

the phenotype is rescued in the Jbw7AN:cjunAN animals, if the phenotype was c- 

Jun dependent since c-jun^anim als are viable (G. Raivich et al., 2004).

The genotyping of 94 mice at weaning age, did not result in a single 

f b w N e s t i n - c r e  positive (Jbw7AN) animals whilst the other genotypes were ./~ 

observed with the expected mendelian frequency (Figure 4.2A). The same was 

true for the fbw7AN:c-junAN animals where out of 38 mice no double mutants 

could be found at weaning age (Figure 4.2B). The fact that concomitant 

deletion of c-Jun was not able to rescue the lethality, was a first indication that 

the observed phenotype is not solely c-Jun dependent. To check at what time of 

gestation fbw7  deletion is lethal, I set up time-matings and the embryos were 

analysed at different time points. fbw7AN animals are present throughout
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embryonic development and are slightly smaller than the wt littermates (Figure 

4.2C). As there are fb w 7 ^  animals present at E l8, this led to the conclusion 

that fb w 7 ^  animals most likely die during or shortly after birth, at least eight 

days later than the germline knockouts, which display an incomplete closure of 

the neural tube and die around E l0.5. These results clearly demonstrate that 

Fbw7 plays a role not only during very early development and neurulation but 

is essential also at later stages in the nervous system development.
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weaned 7 11 - 12

fb w 7 J*  Nes-cre x weaned 9 9 - 7
f b w r

E18 20 27 17 22

B

fb w 7 ^ +:c-jun^+ f b w ^ : c - j u n ^ + fbw7*,+ :c-jun™ fb w 7*^\c-junM

cre+ cre- cre+ cre- cre+ cre- cre+ cre-

fb w T j.t  :c-junj/+: Nes-cre 
fb w r 'c - ju r r 1'

3 2 - 1 2 9 - 6

fb w 7 J .t .c - ju n ^ :  Nes-cre 
f b w r 'c - ju n " ' 3 8 - 4

E 13.5 E 18.5

Control fbw7‘ Control fbw7

Figure 4.2 Nestin-cre mediated deletion of Fbw7 is lethal. A) Frequency 
of indicated genotypes at either weaning age and E 18.5. No fbw 7AN 
mutant are found at weaning age, whereas they were present at E18.5. 
(**: all animals are c-junf/+ as this breeding was used to generate double 
knockout animals). B) No fbw7AN:c-junAN are among animals aenotyped 
at weaning age from crosses indicated right. No fbw7AN: c-jun A" or fbw7AN 
animals were found, whereas c-junAN animals are viable, confirming 
published results. C) Photographs of control and fbw 7AN animals at 
indicated timepoints. fbw7AN animals are smaller than wt littermates and 
are present at E13.5 and E18.5.
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4.2.1 Reduced cellularitv in fb w 7 * N animals at E18

H&E staining in fb w 7 ^  E l8.5 embryos showed that the brain does not display 

gross morphological defects however the cellularity appeared reduced (Figure 

4.3B). To quantify this comparable regions were chosen in the cortical plate, 

intermediate zone and the midbrain and the cell density was quantified as 

described in 2.3.6. All three quantified regions display a significant 20-30% 

reduction in cellularity (Figure 4.3C). The reduced cellularity in the cerebellar 

primordium was not quantified due to the disruption of it in some samples and 

therefore too small sample numbers. The reduced cellularity is preceded by an 

increase in pyknotic nuclei at E l6.5, a stage at which fb w 7 ^  mutant animals 

also showed elevated phospho-c-Jun levels (Figure 4.4). This observation is 

consistent with the hypothesis that lack of Fbw7 leads to increased phospho-c- 

Jun levels since phosphorylated c-Jun is no longer targeted for degradation. 

However, as concomitant loss of Fbw7 and c-Jun did not rescue the phenotype, 

c-Jun cannot be the major mediator of the observed lethality. Therefore other 

substrates such as Notch and c-Myc are likely to play a role observed apoptosis 

and decreased cellularity, however immunohistochemistry stainings for c-Myc, 

N-myc, Notch-1 and cyclin E were inconclusive to date (data not shown). 

Additionally I performed western blotting experiments on brain lysates of 

control and knockout animals but was unable to detect any specific bands for 

these substrates (Data not shown).

Jorg Hoeck, another student in the lab, continued the analysis of the 

fbw7*** animals. He cultured neurospheres derived from E l3.5 of fbw7Ah\
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fbw7AN:c-junAN and control brains to investigate the role of Fbw7 in neuronal 

development further. By culturing the neurospheres in differentiation medium, 

Jorg could show that cell fate decisions such as differentiation into 0 4  positive 

oligodendrocytes, tujlll positive neurons is impaired and that these normally 

exclusively expressed markers can in some cases be found in the same cells 

(J.Hoeck personal communication). Additionally he observed that the number 

of Nestin positive precursor cells is reduced in undifferentiated fb w 7 ^  

neurospheres Therefore Jorgs work demonstrated that the lineage decision is 

impaired in fbw7AN animals and he continues to investigate this (see also 

discussion chapter 4.3).
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Figure 4.3 Reduced cellularity at E18 in fbw7AN brains A) H&E stain 
on sagittal sections from E18 embryos. Areas outlined in A are shown 
in B. B) The reduced cellularity is apparent throughout the brain Cx: 
Cortex with ventricular zone (VZ), intermediate Zone (IZ) and cortical 
plate (CP) , Mb: midbrain, Cbp: cerebellar primordium. Regions of the 
same size were used from the Cortical plate, Intermediate Zone and the 
midbrain as indicated and the number of cells quantified . The Mean +/- 
SEM of the number of cells in comparable regions for 3 control and 3 
fbw7AN animals is shown in C),p(MB)=0.0101, p(,z)=0.0011,p(CP)=0.0032
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Figure 4.4 Increased apoptosis and elevated phospho-c-Jun levels
at E16 in fbw 7AN animals A) H&E stainings on sagittal cut E16.5 brains 
indicates that the cellularity is still preserved at this stage but that the 
number of pyknotic nuclei (arrows) is elevated. B) Phosphorylated c-Jun 
levels in the developing mouse brain. E16 cereberal cortices of indicated 
mice were stained for phospho-c-Jun S 73 and a composite image 
taken.High phospho-c-Jun levels are present in the ventricular zone 
(Arrow) Picture in B courtesy of Gennadij Raivich, Department of Perinatal 
Brain repair, UCL, London
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4.3 Discussion

In 2004 Tetzlaff and Tsunematsu (M. T. Tetzlaff et al., 2004; R. 

Tsunematsu et al., 2004) demonstrated that deletion of Fbw7 in the organism 

has detrimental effects and is incompatible with viability as fb w T ; embryos die 

in utero at E l0.5. By using the PGK-cre line, which leads to a ubiquitous 

deletion of Fbw7, I could recapitulate these results and confirmed that deletion 

of Fbw7 results in a null allele. Furthermore these data underline that due to its 

essential function in the organism, the only feasible approach to study the role 

of Fbw7 in vivo is the use of conditional knockout mice.

I used a Nestin-cre line to obtain mice where Fbw7 is deleted in cells of 

the neural lineage. Deletion of Fbw7 causes an increase in apoptosis and 

elevated phospho-cJun levels at E l6.5, which subsequently leads to a reduced 

cellularity at E l8.5. This demonstrates that Fbw7 is crucial during embryonic 

development for the survival of cells in the neural lineage. Interestingly, Fbw7 

is highly expressed in the developing cortex as detected by in situ hybridisation 

(Figure 3.8), while phospho-c-Jun levels are high in the ventricular zone 

(Figure 4.4). The inverse correlation of Fbw7 and phospho-c-Jun expression 

patterns suggests that Fbw7 could regulate c-Jun levels during brain 

development. One could envisage that in differentiated cortical neurons high 

levels of Fbw7 antagonise phospho-c-Jun levels. As neurons differentiate 

during development they migrate radially from the ventricular zone toward the 

pial surface of the cortex. If phospho-c-Jun levels were downregulated by Fbw7
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when cells exit the proliferative VZ and migrate towards the surface, Fbw7 

deletion could impair migration and/or differentiation and this could ultimately 

lead to the increase in apoptosis at E l6 inT&wZ^mice.

The fact that the Fbw7:c-Jun double knockout did not rescue the 

phenotype strongly suggests that elevated phospho-c-Jun levels alone are not 

the reason for the observed lethality. It is feasible to assume that Fbw7 might be 

required to down regulate other substrates such as Notch or N-myc during this 

period of embryonic development. Notch signalling is involved in maintaining 

cells in a progenitor state during neuronal development and the regulation of 

Notch levels by Fbw7 during nervous system development could explain the 

differentiation defects that Jorg has observed in fb w 7 ^  neurospheres (reviewed 

in (A. Louvi and S. Artavanis-Tsakonas, 2006)). After 11 days of culture in 

differentiation medium the morphology of Jbw 7^  Tuj-1 positive neurons and 

04  positive oligodendrocytes was severely impaired while the morphology of 

GFAP positive cells (astrocytes and progenitors) was normal (Jorg Hoeck, 

personal communication). This is in line with the fact that Notch signalling 

promotes the astrocyte lineage decision and that therefore Fbw7 deficiency 

might not affect cells of this lineage (W. Ge et al., 2002). Furthermore Notch 

signalling needs to be antagonised to allow differentiation of progenitors into 

neurons and oligodendrocytes (reviewed in (A. Louvi and S. Artavanis- 

Tsakonas, 2006)). It is therefore conceivable that Fbw7 deletion impairs Notch 

downregulation, leading to the observed phenotype. To test the hypothesis that 

Notch signalling is indeed the major mediator of the observed phenotype, one 

could differentiate fbw7AN neurospheres in the presence of Notch signalling
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inhibitors to see whether the differentiation defect can be rescued. Additionally, 

a similar role as for Notch in maintaining cells in a progenitor state was 

described for N-myc, another substrate of Fbw7 (P. S. Knoepfler et al., 2002) 

(M. Welcker et al., 2004a). It is therefore important to establish whether N-myc 

or Notch cause the observed phenotype. The reduced cellularity at E l8 and the 

increase in pyknotic nuclei show that cells die in the fb w 7 ^  brain. It will be 

essential to establish whether the remaining cells are cells that have not been 

deleted or whether these cells are deleted and follow a different lineage fate that 

is not affected by Fbw7 deletion. The use of lineage markers such as tuj-1, 

NeuN, 04  on brain sections of different embryonic developmental stages will 

help to investigate this phenotype further. The set up of an Fbw7-antibody 

staining for immunohistochemistry to identify deleted cells is also essential as 

this would allow the discrimination of Fbw7 expressing and non expressing 

neurons.

Taken together the data obtained from the fb w 7 ^  embryos and 

neurospheres demonstrate that Fbw7 plays a role not only in very early 

neuronal development as shown by Tetzlaff and Tsunematsu, but also at later 

stages in brain development. The non-redundant role of Fbw7 in the brain is 

emphasised by the fact that the selective Fbw7 deletion in the neuronal lineage 

is sufficient to causes perinatal lethality. In vitro cultures of neurospheres 

showed that Fbw7 is required for proper lineage decisions as Fbw7 deletion 

impairs neuronal and oligodendrocyte differentiation. Although the lethality 

cannot be rescued by concomitant c-Jun deletion, the nature of the 

differentiation defects indicates that a major substrate of Fbw7 during neuronal 

differentiation might be Notch.
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Having observed a severe phenotype upon deletion of Fbw7 in the 

neuronal lineage, I wanted to investigate whether Fbw7 plays a role in the adult 

nervous system as well. I therefore generated two further conditional Fbw7 

knockout lines with Fbw7 being deleted either in the cerebellar vermis 

(fbw7ACh) or in postmitotic neurons {fbw7^N).

153



Chapter 5

5 FBW7 DELETION IN THE CEREBELLUM 

LEADS TO A SMALLER VERMIS AND 

LOSS OF PURKINJE CELLS

To further investigate the role of Fbw7 in the nervous system I used the 

Engrailed-2-cre line and generated mice with a tissue specific deletion of Fbw7 

in the cerebellar vermis (Jbw7ACh). The Engrailed2-cre mouse line was 

generated by Zinyk et al. with the aim to map the fate of cells in the mouse 

midbrain-hindbrain constriction (D. L. Zinyk et al., 1998). Zinyk et al. 

generated transgenic mice that express ere from the En2 enhancer and 

determined the time window of Cre-recombinase expression from E9 to E l2. 

They crossed these animals with c-|3-STOP-lacZ reporter line and obtained 

mice where Engrailed2-cre activity causes the excision of a floxed STOP and 

thus permits lacZ expression. Since the Cre mediated excision is heritable, all 

cells derived from cells where Cre was expressed between E9 and E12 remain 

lacZ positive even after the Cre expression is switched off (D. L. Zinyk et al., 

1998). The analysis of lacZ positive cells showed that Purkinje cells and 

granule cells are affected by this deletion particularly in the medial part of the 

cerebellum, the vermis. Thus cells located in the dorsal midbrain-hindbrain 

constriction during Cre expression populate the medial cerebellum and although 

Purkinje cells and granule cells are not clonally related, there is a pool of 

precursors that specificially generate the medial domain of the cerebellum. This 

conclusion by Zinyk et. al supported a previous finding by Mathis et al. who
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also identified a pool of precursors specific for the generation of the cerebellar 

vermis (L. Mathis et al., 1997). The engrailed2-cre line was subsequently used 

for the conditional knockout of the Rb protein in the cerebellum (S. Marino et 

al., 2003). Marino et al confirmed the specific deletion in the cerebellar vermis 

by a deletion PCR on En2cre:Rblox/lox cerebella. For the deletion PCR cells were 

fractionated on a percoll gradient into one fraction containing larger cells such 

as astrocytes and Purkinje cells whilst the other fraction contained smaller cells 

such as granule cells and granule cell precursors and both fractions showed 

recombination (S. Marino et al., 2003) Additionally Marino et al performed a 

wholemount (3-galactosidase staining in En2cre:ROSA26loxP cerebella and 

presented a low resolution figure showning that (3-galactosidase expression 

extends throughout the cerebellar vermis. However a high-resolution image for 

the cerebellar vermis was not presented. Marino et al also used the engrailed-2 

cre line to analyse the conditional knockout of PTEN in the cerebellum and 

observed an enlargement of the cerebellar vermis (S. Marino et al., 2002). To 

re-analyse the affected cell population in the cerebellar vermis I obtained an 

En2-cre+:pter/Iox/+p53^lox/+: Rosa2(fox/+ cerebellum and performed a p- 

galactosidase stain on a coronal cryosection (see appendix). In agreement with 

the previously described data the p-galactosidase stain was restricted to the 

cerebellar vermis. Higher magnification images confirmed that not only the 

granule cells are affected but also cells residing in the molecular layer and 

Purkinje cells are lacZ positive ie. derived from the Cre deleted precursor pool 

(see appendix bottom panel).
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5.1 f b w 7 A ° b  mice have a smaller cerebellar vermis

fbw7ACb mice were bom with mendelian frequency and mutant animals 

were indistinguishable from their wt littermates (data not shown). The 

macroscopic examination of the cerebellum showed that the cerebellar vermis 

is smaller in knockout animals, whereas the lateral sides of the cerebellum did 

not display a visible phenotype (Figure 5.1 A). Heterozygous animals did not 

display any phenotype. H&E stainings on midline sagittal sections confirmed 

the size defect in the vermis and revealed that with regards to the cerebellar 

foliation, fbw7ACh animals do display additional fissures (arrows in Figure 

5.IB). Otherwise the cerebellum was formed normally and no gross 

morphological defects in the molecular layer or granule cell layer could be 

identified in either the H&E or NeuN stain (Figure 5.1C). To analyse the

A C 'hfbw7  animals further, I used a number of histological markers for the 

different subpopulations of cells within the cerebellum (listed in Table 5.1). 

The GFAP stain demonstrated that although the morphology of the cerebellum

A C 'his preserved in fbw7  animals, they display a strong gliosis (Figure 5.2A). 

Such a gliosis can occur as a reaction to neuronal dysfunction and degeneration 

(J. L. Ridet et al., 1997). It is conceivable to assume that based on the 

phenotype which I will describe in the following sections, this is the case.
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Table 5.1 Histological Marker for cerebellar analysis

Marker Population stained

NeuN Granule cells

Calbindin Purkinje cells

Parvalbumin Stellate, Basket, Purkinje cells

GFAP Bergmann glia

Neurofilament 200 (NF200) Basket cell axons

BrdU Proliferating cells after BrdU injection

Vglut2 Climbing fibre terminals

Vglutl Parallel fibre terminals
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A Control fbw7ACb

Control

C Control fb w 7 ^ b

Figure 5.1 fbw7ACb animals have a smaller cerebellar vermis and 
foliation defects A) photographs of control and fbw7ACb brains. Arrows 
indicate the smaller cerebellar vermis and the foliation defects. B) H&E 
of midline sagittal brain sections of control and fbw7ACb animals confirming 
the smaller vermis and foliation defects. Arrows indicate the additional 
fissure observed in the mutants. High magnification pictures were taken 
from the region marked by a rectangle C) Normal morphology of the 
Molecular Layer and granule cell layer in fbw7ACb animals. ML: Molecular 
layer, PC: Purkinje cells, GC: granule cells
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5.2 Altered Neurofilament expression in f b w 7 A ° b  

mice

In order to investigate how the different cerebellar subpopulations are 

affected by the deletion of Fbw7, immunostainings were performed on midline 

sagittal and coronal sections using different histological markers (listed in table 

5.1).

To visualise the basket cell axonal arborisation the anti NF-H antibody 

(NF-200, Sigma N4142) was employed as over the last four decades antibodies 

directed against different neurofilament proteins have been used as a tool to 

study cerebellar development. Neurofllaments are intermediate filaments and 

together with microtubules, microtubule associated proteins (MAPs) and other 

proteins they are part of the neuronal cytoskeleton (reviewed in (P. Grant and 

H. C. Pant, 2000)). Neurofllaments consist of three different subunits of ca 70 

(NF-L), 160 (NF-M) and 200kDa (NF-H), which together form the 

neurofilament-triplet protein (A. Petzold, 2005). One of the first studies on the 

expression of neurofllaments in the brain was performed by Matus et al. and 

used an antiserum that was raised against isolated neurofllaments (A. I. Matus 

et al., 1979). Matus and colleagues observed an abundant staining in basket cell 

axons and small bundles of mossy fibre terminals without any staining in the 

cell bodies of the cerebellum. Electron microscopy showed enhanced 

neurofilament immunoreactivity in close proximity to Purkinje cells in the so- 

called basket or “pinceaus” of basket cells but no staining of Purkinje cells,
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glial or granule cells (A. I. Matus et al., 1979). Julien and Mushinsky 

demonstrated in 1982 that neurofllaments can be phosphorylated (J. P. Julien 

and W. E. Mushynski, 1982) and Sternberg and Sternberg investigated whether 

phosphorylation also affects the recognition of neurofllaments in tissue sections 

and preparations (L. A. Stemberger and N. H. Stemberger, 1983). After testing 

different antibodies by western blotting on cytoskeletal preparations and 

immunohistochemistry on cerebellar sections that were either untreated or 

phosphatase treated, the authors concluded that some cell bodies and dendrites 

as well as some proximal axons contain non-phosphorylated neurofllaments 

whereas long fibres and terminal axons contain phosphorylated neurofllaments 

(L. A. Stemberger and N. H. Stemberger, 1983). Thus by 1983 it was 

established that neurofllaments are composed of distinct polypeptide subunits 

and that their phosphorylation influences the recognition of the antibody 

epitopes. This then led to a number of studies where new antibodies against 

neurofllaments were generated, characterised and compared to earlier 

publications. One of these studies which used an antibody against the NF-H 

polypeptide and studied the neurofilament expression in the rat cerebellum 

confirmed the observation of Matus et al. of a strong stain in basket cell axons 

and the absence of any immunoreactivity in cell bodies or perisomatic 

processes (N. Leclerc et al., 1985). Leclerc furthermore observed that the NF-H 

immunoreactivity becomes apparent at P12 in basket cell axons i.e. only after 

basket cells are terminally differentiated, which occurs between P6 and P10 in 

the rat (N. Leclerc et al., 1985). Another study compared antibodies against the 

different sized neurofilament subunits and also analysed them with regards to 

their phosphorylation specificity(M. Vitadello and S. Denis-Donini, 1990). This
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study showed that the basket cell axonal staining observed by Matus and 

Leclerc is present upon the use of antibodies against the phosphorylated heavy 

neurofilament polypeptide whilst antibodies against NF-M and NF-L 

polypeptides additionally label parallel fibres (M. Vitadello and S. Denis- 

Donini, 1990). NF-L and NF-M are also expressed earlier, at P6 in the mouse 

cerebellum, than NF-H where immunoreactivity was absent again confirming 

the data obtained by Leclerc et al. in the rat cerebellum. A comparative study 

on the cat cerebellum by Riederer et al. summarised the data for different 

antibodies by presenting a series of sections stained at different developmental 

timepoints with various phospho-specific antibodies against either NF-H or NF- 

M (B. M. Riederer et al., 1996). This work confirmed that a phospho-specific 

NF-H antibody stains basket cell axons and pinceaus but not Purkinje cells. The 

antibody used in this thesis (Sigma, N4142) has been previously compared to 

the phospho-specific NF-H antibody NE-14 (characterised in (B. M. Riederer et 

al., 1996)) and gave a comparable staining pattern (J. Paysan et al., 2000). It has 

also has been used to visualise basket cell axons by immunohistochemistry (J. 

M. Huard et al., 1999). Furthermore this antibody has been employed in 

cerebellar cultures to distinguish axons from dendrites by using a co-stain with 

the SMB2 antibody that does recognise the non-phosphorylated form of the 

NF-H fragment thereby also stains dendrites (H. Marzban and R. Hawkes, 

2007).

Using the anti NF-200 (Sigma, N4142) antibody on midline sagittal and 

coronal sections I observed that in wt animals the neurofilament staining is 

present in a regular, organised pattern in the lower half of the molecular layer 

where the basket cells reside (Figure 5.2B). In agreement with published data
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the basket-like structures around the Purkinje cells, pinceaus, also display a

AC'hstrong immunoreactivity. In fbw7  animals the regular staining pattern is lost 

and the Neurofilament stain extends all through the molecular layer (Figure 

5.2B). The baskets around Purkinje cells are still formed but display a stronger 

Neurofilament immunoreactivity that in wt controls and additionally a punctate 

pattern can be observed in coronal sections of fbw7ACb animals (Figure 5.2C 

arrows). To investigate whether c-Jun plays a role in the observed altered 

Neurofilament expression, fbw7ACb :c-junACb double knockout animals were

a /~*l  i i f ’A  a

generated and analysed. Like the fbw7  animals, fbw7 \c-jun mice were 

bom with mendelian frequency and did not show a behavioural phenotype (data 

not shown). Interestingly, the Normal Neurofilament expression was restored 

upon concomitant deletion of c-Jun (Figure 5.2C compare right with left panel), 

demonstrating that the alterations in the Neurofilament expression occur in a c- 

Jun dependent manner. To investigate whether the increased Neurofilament 

expression is caused by an increase in the number of cells residing in the 

molecular layer such as stellate and basket cells, I quantified those cells using 

parvalbumin as a marker (Figure 5.3). I counted the parvalbumin positive cells 

within two adjacent molecular layers in equivalent sections from wt and

AC'hfbw7 animals. Parvalbumin positive Purkinje cells, which are bigger and lie 

at the interface between the molecular layer and granule cell layer, were not 

counted. Additionally I measured the thickness of the molecular layers to 

address the question whether the reduced cerebellar size is due to a reduced 

molecular layer thickness. No significant difference in the number of 

parvalbumin positive cells or in the molecular layer thickness could be
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observed (Figure 5.3B and C). This strongly suggests that the aberrant 

Neurofilament stain is not caused by alterations in cell number in the molecular 

layer, but is rather a defect in the arborisation of basket cells.
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Figure 5.2 Aberrant Neurofilament expression and gliosis in the 
molecular layer of fbw7ACb animals . A) Sagittal sections from control 
and fbw7ACb cerebella. Knockout animals have a strong gliosis shown 
by the intensive GFAP stain in the M olecular Layer (ML). B) 
Neurofilament200 (NF200) expression in basket cell axons extends 
through the Molecular Layer and around Purkinje cells (PC) and is less 
organised and more intense in fbw7ACb animals. C) Coronal sections of 
Fbw7 single mutant and Fbw7:c-Jun double Mutant cerebella stained 
with NF200. Top panelThe misorganisation of the cerebellar vermis is 
partially rescued upon concomitant c-Jun deletion. Bottom panel: The 
NF200 stain shows a punctate pattern (arrows) and is stronger in fbw7ACb 
animals. NF200 expression is rescued upon concomitant c-Jun deletion 
(right image).
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Figure 5.3 Thickness and cell number in the molecular layer are not 
altered in fb w 7 ACb and fb w 7 ACb:c-ju n ACb animals. A) Parvalbumin 
(PA) stained Molecular Layer in control, fbw7ACb and fbw7ACb:c-junACb 
animals. PA positive (PA+) cells were counted and the area of the 
Molecular Layer (ML) measured in this section. B) Quantification of 
Parvalbumin positive cells per square micrometer of ML shows no 
difference in the number of PA+ cells C)The thickness of the Molecular 
layer in control and mutant animals is similar. Mean +/- SEM shown
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5.3 Phospho c-Jun dependent loss of Purkinje 

cells in f b w 7 AC b mice

AC'hAs described above, fbw7  animals have a normal granule cell layer 

(Figure 5.1) and there is no difference in the number of parvalbumin positive 

stellate and basket cells. However, when analysing calbindin positive Purkinje 

cells, I observed a reduction in Purkinje cell number in fbw7ACh animals. To 

quantify this reduction, I counted the Purkinje cells in midline sagittal sections

AC'hfrom 7-month-old wt and fbw7 animals and measured the length of the 

Purkinje cell layer in the same section. I obtained the Purkinje cell density by 

calculating the ratio between Purkinje cell number and length of Purkinje cell 

layer (cell number/layer length) (Figure 5.4). Statistical analysis of these data 

showed a strong reduction in Purkinje cell number and density in Fbw7 

knockout animals (Figures 5.4D and E). The loss of Purkinje cells has been 

correlated to ataxia for instance in mouse mutants such as lurcher and staggerer 

(see chapter 1.4.3.1). Furthermore mice that show a progressive loss of Purkinje 

cells, such as mice overexpressing the truncated Prp protein in Purkinje cells, 

become ataxic as the Purkinje cells degenerate (E. Flechsig et al., 2003). 

Therefore I wanted to establish whether the reduction in Purkinje cell number 

and density is the result of a progressive loss of Purkinje cells. I performed the 

same quantification in younger animals and additionally fbw7ACh:c-junACh 

double conditional knockout animals were analysed to establish whether the 

Purkinje cell reduction is c-Jun dependent. The loss of Purkinje cells in Jbw7ACh
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animals is not progressive as in 2-month-old animals the Purkinje number and 

density were reduced to the same extent as in 7-month-old animals (compare 

fbw7ACb values in Figure 5.4 and Figure 5.5) suggesting that either the Purkinje 

cells are lost before this time point, or that there are less Purkinje cells present 

to begin with.

When comparing the double conditional knockouts I observed that the 

concomitant deletion of Fbw7 and c-Jun was not able to rescue the foliation

aC'Kdefects observed in the fbw7  cerebella (Figure 5.5A, arrows) although the 

size defect observed in fbw7ACb cerebella was partially rescued (Figure 5.5B). 

Interestingly the Purkinje cell density was fully restored in Jbw7ACt>:c-junACb 

cerebella, indicating that the loss of Purkinje cells is c-Jun dependent (Figure 

5.5E). According to the working hypothesis deletion of Fbw7 causes elevated 

phospho-c-Jun levels, which could then lead to apoptosis and finally a 

reduction in Purkinje cells.

To address whether the loss of Purkinje cells is phospho-c-Jun 

dependent, I crossed jbw7ACh:c-junACb mice with fbw7f/̂ :junAA/AA animals to 

obtain fbw7ACb:c-junACb/AA mice. In addition to Fbw7, c-Jun is deleted on one 

allele and its N-terminal S63/S73 phosphorylation sites are mutated on the 

other, therefore the absence of Fbw7 can no longer lead to the accumulation of 

N-terminally phosphorylated c-Jun (A. Behrens et al., 1999). The quantification 

of Purkinje cell parameters demonstrated that the Purkinje cell density is 

rescued to the same degree as in fbw7ACb\c-junACb cerebella and thus proves the 

hypothesis that the reduction in the Purkinje cell density is phospho-c-Jun 

dependent (Figure 5.6). However, the cerebellar area and foliation were still
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altered, confirming the data from the Jbw7ACh:c-junACh cerebella which indicated 

that the cerebellar size and foliation defects are not solely c-jun dependent.

Purkinje cells are the cerebellar output neurons and receive their 

excitatory input from climbing fibres and parallel fibres and it has been 

demonstrated that Purkinje cell require synaptic input for the later stages of 

dentritogenesis ie the formation of their fine dendritic network (C. A. Baptista 

et al., 1994). Furthermore it has been shown that in the pcd mutants Purkinje 

cells degenerate during the early postnatal development presumably because 

they display disruptions in the synaptogenesis between the parallel fibres and 

the dendritic spines (S. C. Landis and R. J. Mullen, 1978). Therefore to 

investigate the Purkinje cell reduction further, the analysis was extended to the 

use of immunofluorescence of Purkinje cells and synaptic markers such as 

Vglutl and Vglut2, which can be used to visualised parallel and climbing fibre 

synapses in the Molecular layer. Additionally, cerebella from 7-day-old animals 

were analysed as this is the time when the granule cells differentiate, and the 

Purkinje cells align in their respective plane between the Molecular layer and 

the granule cell layers and the expansion and formation of the cerebellar 

fissures takes place.
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5.4 Altered Purkinje cell dendrite morphology and 

Valut 1 and Vqlut 2 expression In f b w 7 ACb  

cerebella

Af~*hSince fbw7  animals display a reduced Purkinje cell density, I was 

interested in addressing the question to what extent the loss of Fbw7 affects the 

molecular layer and the parallel and climbing fibres, which provide the synaptic 

input for Purkinje cells. I therefore analysed the climbing fibre terminals and 

parallel fibre terminals using antibodies against the vesicular glutamate 

transporter 1 (Vglutl) and vesicular glutamate transporter 2 (Vglut2). Vglutl is 

present in parallel fibres, which arise from granule cells. Vglut2 is present in 

climbing fibres, which originate from the inferior olive and by fluorescently co- 

staining calbindin positive Purkinje cells and the respective fibres, one can 

visualise the synapse formation between them (R. T. Fremeau, Jr. et al., 2001; 

R. T. Fremeau, Jr. et al., 2004). The fluorescent staining of Purkinje cells 

additionally allows a more detailed analysis of their dendritic morphology than 

the non-fluorescent immunohistochemistry.

Wt Purkinje cells extend their dendrites all through the molecular layer 

whereby the branching is increasingly refined towards the pial surface. In

aC'Kcontrast fbw7 cerebella display a reduced punctate pattern of climbing fibre

terminals and the arborisation of Purkinje cells is strongly reduced (Figure 5.7B

A{~*harrows). In fbw7  cerebella the dendrites do not branch to the same degree as 

in wt Purkinje cells and no organised increase in higher degree branches
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A C 'h  A C 'htowards the surface can be observed. In fbw7 :c-jun cerebella the Purkinje 

cell morphology is only partially rescued with Purkinje cells displaying more 

dendrites that in fbw7ACb animals but there is still an obvious lack of the 

organised refined arborisation that is observed in wt cerebella.

Vglut2 positive climbing fibre terminals are visible as green spots along 

the red calbindin stained Purkinje cell dendrites in wt cerebellar sagittal 

sections (Figure 5.7A white arrows). Parallel to the lack of fine dendrites there 

appear also less Vglut2 positive dots in the molecular layer, however a definite 

conclusion about this cannot be made as neither the arborisation or the number 

of Vglut2 positive dots/dendrite was quantified. Also in fbw7ACb :c-junACb 

cerebella (Figure 5.7B, right) the Vglut2 staining in respect to the present 

dendrites has to be quantified with regards to any possible rescue.

Within the cerebellum the parallel fibres form the only excitatory 

synapse on Purkinje cells dendrites. Originating from the granule cells, the 

parallel fibres extend along the cerebellar lobe and thus are able to make 

contact with a number of Purkinje cells. When comparing the staining pattern 

for parallel fibre terminals, using a co-stain for Vglutl and Calbindin, cerebella 

from wt animals display a punctate Vglutl staining pattern, which is apparent 

throughout the molecular layer (Figure 5.8A). The widely spread punctae 

indicate that synapses are formed on fine Purkinje cells dendrites. In fbw7ACb 

animals this staining has almost disappeared and only the stronger foci at the 

bigger Purkinje cell dendrites remained (Figure 5.8B). In Jbw7ACh:c-junACb 

cerebella, again a partial rescue of the fbw7ACh phenotype can be observed, with 

the punctate pattern being restored, but not to the full extent of the wt animal
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(Figure 5.8 compare B right panel with A). However, also for this staining 

quantification is needed to allow for a definite conclusion regarding the 

phenotype and the partial rescue of the phenotype (see also discussion).

Taken together the immunofluorescence has demonstrated that there are 

not only fewer Purkinje cells in jbw7ACb animals, but that their arborisation is 

also reduced and the dendrites appear to be less directional towards the surface. 

Furthermore the number of synapses of parallel and climbing fibres in the 

molecular layer could be reduced, although quantification is still missing. The 

above experiments do not clarify whether the observed Purkinje cell phenotype 

is due to the loss of Fbw7 in Purkinje cell or a secondary effect from Fbw7 

depletion in other cells such as granule cells (see also discussion chapter 5.7). 

However, the morphological defects of Purkinje cells as well as the Vglutl and 

Vglut2 staining appear to be partially rescued by concomitant c-Jun deletion, 

which would be consistent with the hypothesis that c-Jun is a substrate for 

Fbw7 in the nervous system.
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Calbindin/Vgiut2/Dapi

Figure 5.7 Impaired climbing fibre synapses in fbw7ACb animals. In
wt cerebella the climbing fibres, shown in green, synapse on shafts of 
Purkinje Cell dendrites (white arrows). Purkinje cell dendrites extend 
through the molecular layer and the fine arborisation increases towards 
the pial surface. B) As Purkinje cells are missing in fbw7ACb animals, the 
number of climbing fibre-Purkinje dendrite synapses is reduced. Purkinje 
cell dendrite arborisation is impaired in fbw 7ACbcerebella and no fine 
branching as in the wt is observed. In fbw7ACbc-junACb animals synapse 
formation is partially rescued. The Purkinje cell arborisation does not 
reach the same degree as in wt cerebella fbw 7ACbc-junACb cerebella.
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Figure 5.8 Impaired parallel fibre synapses in fbw7ACb animals. A)
In wt cerebelli parallele fibres run along the folia and synapse on Purkinje 
cell dendrites which is visible as green dots which extend through the 
molecular layer (white arrows). B) The number of parallele fibres in the 
Molecular Layer as indicated by a green staining in the Molecular Layer 
is reduced in fbw7ACb animals. Again the impaired Purkinje cell morphology 
can be observed. In fbw7ACb:c-junACb animals the parallele fibre presence 
and synapse formation is partially rescued as also the Purkinje cell 
arborisation is partially rescued.
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5.5 The f b w 7 i C b  phenotype is already apparent at 

P07

To investigate the foliation and Purkinje cells defects further, I analysed

AC'hcerebella from 7-day-old fbw7  animals (P07) as this is the time where the 

cerebellar foliation is formed and cells migrate to their final position whilst at 

around PO the granule cell precursors are still present in the EGL some of these 

cells have already become postmitotic at P07 and some started their inwards 

migration, passing by the Purkinje cells, to finally form the granule cell layer 

(reviewed in (M. E. Hatten and N. Heintz, 1995) (M. E. Hatten et al., 1997)). At 

the end of this differentiation process, around P14-P21, the EGL has 

disappeared and the cerebellar foliation is established with the molecular layer 

and granule cell layer separated by a monolayer of Purkinje cells reviewed in 

(D. Goldowitz and K. Hamre, 1998) (R. V. Sillitoe and A. L. Joyner, 2007).

Analysis of midline sagittal cut fbw7ACb brains showed that at P07 the 

foliation defect and the gliosis that were observed in the adult animal are 

already present (Figure 5.9). The expression of NeuN starts when the precursor 

cells differentiate as they migrate inwards from the inner part of the EGL to 

form the granule cell layer (A. Sudarov and A. L. Joyner, 2007). In P07 fbw7ACh 

animals as in wt animals the NeuN expression pattern begins at the inner part of 

the EGL (Figure 5.9 and Figure 5.10A). The additional fissure in Jbw7ACb 

animals could be the result of a hyper-proliferation during the postnatal 

expansion of the cerebellum. Therefore to analyse the proliferation in the
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cerebellum, I injected P07 pups with BrdU and sacrificed the animals 2 hours 

post injection. I could find no difference in the BrdU positive cells outside the 

EGL at P07 suggesting that the migration is not altered at P07 in fbw7ACb 

animals (Figure 5.1 OB). As expected, the EGL is strongly labelled with BrdU 

(Figure 5.9 bottom panel), and it appears that there are slightly more BrdU 

positive cells in the EGL of Jbw7ACb animals. Since fbw7ACb animals display an 

additional fissure, which can be due to a hyperproliferation in the EGL, the 

number of BrdU positive cells in the EGL during the first weeks of postnatal 

development needs to be quantified (Figure 5.10). However, as at P07 the 

cerebellar foliation defect is already apparent, potential differences in the EGL 

proliferation might be more efficiently addressed at earlier time-points such as 

P03 to P05 when the secondary fissures are formed, (reviewed in (A. Sudarov 

and A. L. Joyner, 2007)).

In P07 fbw7ACb animals a reduction in Purkinje cell density is already 

apparent (Figure 5.11). The Purkinje cell morphology is also altered. Purkinje

A(~*hcells offbw7 animals have less dendrites and display a reduced arborisation 

pattern at P07 (Figure 5.12). In fbw7ACb:c-junACb P07 sections it was apparent 

that although the Purkinje cell number is rescued, the morphology of Purkinje

aCU
cells is only partially restored. Compared to Jbw7 P07 Purkinje cells, 

Purkinje cells of fbw7ACb:c-junACb mice have more dendrites, but full 

arborisation as seen in the wt cerebella is not recovered. The dendrites in 

fbw7ACb:c-junACb Purkinje cells are widened and show an intensive calbindin 

stain (Figure 5.12). Thus Fbw7 deletion impairs the maturation and arborisation
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of Purkinje cell in addition to playing a role during earlier Purkinje cell 

development, as the loss of Purkinje cells is already present at P07.
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Figure 5.9 Foliation defects and gliosis are present in P07 in fbw7ACb 
animals A) Histological analysis of control and fbw7ACb animals at P07. 
The additional fissure (arrows) and the gliosis indicated by the stron 
GFAP stain are already present. The NeuN stained granule cell layer is 
normal and has already formed. BrdU labelling for two hours shows a 
comparable labelling of the still proliferative EGL and comparable number 
of BrdU positive cells inside the cerebellum (For quantification see Figure
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Figure 5.10 Normal granule cells and no difference in BrdU+ cell 
inside the fbw7ACb P07 cerebella A)Midline sagittal sections of wt and 
fbw 7ACb P07 brains. Middle: The NeuN staining confirms that granule 
cell differentiation and migration is normal in fbw 7ACb animals. As cells 
leave the EGL and become postmitotic in the inner layer of the EGL, 
they start to express NeuN. Bottom: Proliferating cells were stained with 
BrdU for 2hours. No difference in the EGL thickness can be observed. 
B) Proliferation analysis of P07 brains following 2hrs after BrdU injection. 
BrdU positive cells outside the EGL were counted. No significant difference 
was observed. Mean +/- SEM shown, p=0.497: n.s.
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Figure 5.11 The Loss of Purkinje cells in fbw7ACb animals is present 
at P07. Purkinje cell parameters were determined as described previously 
in sagittal sections of 1 week old control and fbw7ACb animals A) There 
cerebellum is significantly smaller at P07, p=0.0103 B)Length of Purkinje 
cell layer, p=0.0019 C)The number of Purkinje cells per cerebellum is 
reduced, p=0.1143 D) The Purkinje cell density in knockout animals is 
reduced but not to the same extend as in adult animals, p=0.6704. 
Control:n=4,fibw7AC£,:n=4 Mean+/-SD shown
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Figure 5.12 Concomitant c-Jun deletion partially rescues Purkinje 
cell arborisation defects in P07 fbw7ACb cerebella. The panel shows 
Calbindin stains on the indicated P07 cerebella.2 different area of the 
cerebellum were taken in A) and B) Purkinje cell arborisation in 
fbw7£Cbari\ma\s is severely impaired and partially restored in fbw7ACb:c- 
junACb animals (arrows). Purkinje cells from fbw7ACb :c-junACb do have 
more dendrites than fbw7ACb Purkinje cells, but they are less branched 
than in wt controls.The termini are wide and display a strong calbindin 
immunoreactivity.
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5.6 Proliferation defects in E18 f b w 7 ACb cerebella

To investigate whether there are any abnormalities in fbw7ACb cerebella 

before the foliation takes place, time mated pregnant females were i.p. injected 

with BrdU for two hours. Analysis of proliferating cells in E l8 fbw7ACb 

cerebella showed an aberrant migration pattern of BrdU positive cells in 

fbw7ACb cerebella (Figure 5.13). In wt animals the majority of BrdU positive 

cells are still residing in the EGL, start to migrate inwards to form the granule

aC'U
cell layer and a regular patterning is visible. The BrdU stain in fbw7  animals

in the inner part of the cerebellar primordium is more irregular (Figure 5.13, 

arrows). However, to assess the extent of the hyperproliferation, a 

quantification of BrdU positive cells in the EGL and inner part of the cerebellar 

primordium has still to be performed and further timepoints between E l8 and 

P07 have to be analysed. In E l8 cerebella the calbindin stain for Purkinje cells 

is less pronounced and appears more widely spread within the cerebellar

A(~*hprimordium offbw7  animals than in the wt control, where it is restricted to 

the future Purkinje cell layer (Figure 5.13 bottom panel). As described in the 

1.4.3.1 the fate of Purkinje cells is determined between E10 and E l3 which is 

also the time where the Cre recombinase is active (E8.5 -12.5) (D. L. Zinyk et 

al., 1998). Although expression of the Cre recombinase is switched off, cells 

derived from deleted progenitor cells, will be Fbw7 deleted at all subsequent 

developmental stages. To investigate whether the Cre activity has immediate 

effects at E l3, I analysed cerebella of E l3 fbw7ACb animals. The preliminary
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data suggest that the E13 cerebellar primordium is formed normally and no 

difference in Ki67 positive proliferating cells or c-Jun protein levels could be 

found (Figure 5.14A). The staining with a calbindin antibody for developing 

Purkinje cells is very weak in both cases, most likely due to the fact that 

Purkinje cells are just developing and does not allow conclusions about the 

number of Purkinje cells. Analysis of E16 BrdU labelled cerebella gave not 

indication of proliferation defects at this stage and in contrast to the altered 

proliferation at E l8, the number of BrdU labelled cells in E l6 cerebella 

appeared comparable (Figure 5.14B).

Taken together the data from the analysis of E13 to P07 fbw7ACb animals 

allow the conclusion that the effects of the Fbw7 knockout in the cerebellum 

appears between E l8 and P07 which is the time of extensive cell migration, 

expansion in cerebellar size and fissure formation.
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Figure 5.13 Aberrant proliferation in E18 fbw7ACb cerebella. Top: 
H&E (top), BrdU (middle) and Calbindin (bottom) stainings.The cerebellar 
foliation is not formed yet and there are no major differences in the gross 
appearence in the H&E stain of the cerebellar primordium. Middle: BrdU 
labelling (100ug/g bw. ip. 2hrs) shows a different proliferation pattern in 
fbw7AC° animals. More BrdU positive cells have migrated inwards (arrows) 
Bottom: The Calbindin stain is stronger and more evenly spread within 
the inner part below the EGL in control animals (arrows) than in mutants 
where it is weaker and more diffuse.
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Figure 5.14 No defects in the cerebellar primordium at E13 and E16
in fb w 7 ACb animals A) Cerebellar primordia of E13.5 embryos are 
comparable. Sagittal sections were stained with the antibodies indicated. 
Purkinje cell bodies cannot be detected with the Calbindin antibody at 
E13. Normal proliferation in the rhombic lip as indicated by Ki67 
immunoreactivity. c-Jun (H79) expression is ubiquitious and higher c- 
Jun levels are detected in the proliferating area of the rhombic lip B) 
E16.5 time mated females were injected with BrdU for two hours and 
pups were analysed. The cerebellar primordia are comparable in size 
and structure and no difference in BrdU labelling can be observed.
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5.7 Discussion

I have investigated the role of Fbw7 in the nervous system using a 

conditional knockout line where Fbw7 deletion is restricted to cells residing in 

the cerebellar vermis (see Appendix 1 and p. 151). The results obtained by RT- 

PCR (Figure 3.5) and in situ hybridisation (Figure 3.11) show that Fbw7 is 

expressed in the cerebellum and that Engrailed-2 cre mediated deletion of Fbw7 

takes place. Generally I observed that Fbw7 deletion caused a phenotype, which 

consisted of c-Jun dependent and c-Jun independent effects. Part of the c-Jun 

dependent phenotype is

1) The alteration in Purkinje cell density and morphology (5.7.1) and

2) The altered basket cell arborisation (5.7.2).

On the other hand there are aspects of the cerebellar phenotype in fbw7ACh mice 

that are c-Jun independent.:

3) The reduced cerebellar size (5.7.3) and

4) Additional fissures (5.7.4).

The in situ hybridisation detected fbw7  message in the granule cell 

layer, which is composed of granule cells, Golgi cells and mossy fibre 

terminals. Previous data from Nateri et al. demonstrated that in cultured cgcs 

Fbw7 message is present and that Fbw7 depletion by siRNA caused an increase 

in apoptosis suggesting that Fbw7 is indeed expressed in granule cells (A. S. 

Nateri et al., 2004). A detailed analysis regarding the Fbw7 protein levels and 

expression in different cerebellar populations has not been performed yet.
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However, this will be necessary to elucidate which cells express Fbw7 and thus 

contribute to the observed phenotype as for all points mentioned above the 

reason for the phenotype can either be direct due to the loss of Fbw7 expression 

in the respective cell type, or indirect due to secondary effects caused by Fbw7 

deletion elsewhere in the cerebellum. This is discussed in the following section.

5.7.1 Alterations in Purkinje cell density and morphology

Fbw7 deletion in the cerebellum results in a persistent 20% reduction in 

the Purkinje cell density in adult animals, which is rescued upon either 

concomitant deletion of c-Jun (Figure 5.5) or expression of a c-jun allele that 

cannot be phosphorylated (Figure 5.6). Therefore these data suggest that Fbw7 

mediated regulation of phospho-c-Jun is important for Purkinje cell 

development before P07. The Purkinje cell arborisation defect, on the other 

hand, is only partially rescued in the fbw7ACb :c-junACb and fbw7ACh:junAA 

animals which suggests that additionally other substrates of Fbw7 play a role in 

the fbw7  phenotype. Furthermore, from the experiments conducted in this 

thesis, it is not possible to conclude whether the observed reduction in Purkinje 

cells and their reduced arborisation are due to the loss of Fbw7 in them or due 

to a secondary effect from, for instance, the deletion of Fbw7 in granule cells, 

which have been shown to be important for Purkinje cell development. Both 

possibilities of a direct or indirect effect and the possible involvement of other 

substrates are discussed below (chapters 5.7.1.1 and 5.7.1.2 , chapter 5.7.4).
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5.7.1.1 Hypothesis I: The Purkinje cell defect is a secondary effect 

caused by Fbw7 deletion in other cerebellar cells

Jbw7 message was detected by in situ hybridisation in the granule cell 

layer, but no convincing hybridisation signal in the Purkinje cell monolayer at 

the outer part of the granule cells was observed (Figure 3.11). This suggests 

that Fbw7 levels might be absent or low in the adult Purkinje cells and argues 

in favour of the hypothesis that the loss of Purkinje cells is a secondary effect. 

Although Purkinje cells are generated early during cerebellar development they 

develop their dendritic tree during the first 2-3 postnatal weeks (reviewed in (J. 

P. Kapfhammer, 2004)). Briefly, Purkinje cells start to polarise shortly before 

birth and develop an axon and non-branched dendrite. During the first postnatal 

days Purkinje cells extend more processes from their cell body and assume an 

intermediate “stellate” morphology. At this time the first input that reaches 

these Purkinje cells are climbing fibres whilst parallel fibres are just starting to 

develop (reviewed in (J. P. Kapfhammer, 2004)). Following the first postnatal 

week the dendrites start to elongate and an extensive synaptogenesis between 

Purkinje cell dendrites and the parallel fibres takes place (J. Altman, 1972c, b). 

Another study by the same authors made use of X-irradiation to kill granule, 

stellate and basket cells in neonatal rats and this subsequently caused 

mislocalisation of Purkinje cells whose dendrites lost their pial orientation and 

extend in a random fashion (J. Altman and W. J. Anderson, 1972). Additionally 

Baptista et al. demonstrated that isolated Purkinje cells do develop dendritic 

arbours when co-cultured with granule cells but that in the absence of them or 

co-culture with cells that provide only inappropriate input, the arborisation is
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impaired and not as refined as under co-cultured conditions with granule cells 

(C. A. Baptista et al., 1994). Thus it has been shown that during early postnatal 

development Purkinje cells are dependent on appropriate afferent input from 

parallel fibres to form their characteristic dendritic tree. One could therefore 

envisage a model where Fbw7 deleted granule cells are not able to provide the 

required input and this subsequently leads to the observed defects in 

arborisation.

Another point supporting the hypothesis that the Purkinje cell defect is 

secondary to a granule cell phenotype is the reduced Vglutl staining in the 

fbw7ACh knockouts. Altman et al. have demonstrated in 1972 that the axons of 

granule cells, the parallel fibres, are formed before their cell bodies move 

inwards to form the IGL (J. Altman, 1972a). Furthermore Altmans studies 

describe that as Purkinje cells mature, parallel fibre-Purkinje cell synapses are 

not present on the smooth primary dendrite, but only on secondary and ternary 

dendrites and form first on dendritic spines in the lower part of the molecular 

layer and subsequently in the upper part (J. Altman, 1972c). As the number of 

secondary and ternary fine dendrites was strongly reduced in fbw 7ACb Purkinje 

cells, the reduced number of Vglutl positive dots that indicate parallel fibre- 

Purkinje cell synapses in the molecular layer could just reflect the above 

described possible defect of granule cells in providing an appropriate input for 

Purkinje cell dendrite maturation.

The observation that the Vglutl and Vglut2 stainings are only partially 

rescued upon concomitant deletion of Fbw7 and c-Jun (Figures 5.7 and 5.8) 

could be due to the fact that a potential granule cell defect is still present in 

fbw7ACb :c-junACb animals and especially the Purkinje cell dendrites are not as
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finely branched compared to wt animals at P07 (Figure 5.11). Nonetheless a 

partial rescue appears to take place with the Purkinje cell density being restored 

in the adult upon either deletion of c-Jun or expression of the junAA allele. The 

partial rescue of the phenotype where the foliation defect is not rescued in 

fbw7ACh:c-junACh animals but Purkinje cell density is rescued, furthermore 

indicates that other substrates mediate the phenotype. One particular substrate 

could be N-myc whose possible involvement is discussed in chapter 5.7.3.

The further analysis of the obtained fbw7ACb :c-junACh/AA cerebella by 

immunofluorescence with calbindin, Vglutl and Vglut2 antibodies will be 

valuable in investigating the effect of Fbw7 during the cerebellar development. 

In Drosophila, the AP-1 complex has been shown to regulate synaptic plasticity 

of neuromuscular junctions through activation of CREB (S. Sanyal et al.,

2002). Also in rats c-Jun and AP-1 have been implicated in memory formation, 

which is associated with formation of synapses (W. C. Abraham et al., 1993). 

Thus the generated cerebellar knockout lines could be a useful tool for the 

investigation of the role of c-Jun and phospho-c-Jun during synapse formation 

between parallel fibres and Purkinje cell dendrites. Purkinje cells and climbing 

and terminal fibre synapses can be labelled with the mentioned antibodies and 

one could therefore investigate the initial stages of the synapse formation in 

sections of cerebella from animals between P0 and P14 or culture cerebellar 

slices.

To test the hypothesis that granule cells are affected by the Fbw7 

deletion in the cerebellum and loose their ability to promote Purkinje cell 

maturation it is essential to analyse the expression of Fbw7 during the 

cerebellar development and to determine whether Fbw7 is expressed in the
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granule cell precursors and is required for their parallel fibre formation. The in 

situ hybridisation data obtained from the E l8 Jbw 7^  cerebellar primordium 

(Figure 3.8) do not allow a conclusion regarding the Fbw7 expression in 

distinct cerebellar populations in the cerebellar anlage. This could be either 

achieved by antibody stainings if in the future there are antibodies that can 

detect the endogenous protein, or by non-radioactive in situ hybridisation where 

cells of the cerebellar primordium can be additionally macroscopically 

characterised. A fractionation of cerebellar cells as performed by Marino et al 

could also be useful in distinguishing which cellular population is recombined 

successfully in the cerebellum and also expresses the Fbw7 protein. However, 

the latter would be dependent on a functional Fbw7 antibody (S. Marino et al.,

2003).

To address whether the observed Purkinje cell defect is secondary to a 

granule cell defect one could also employ a granule cell specific conditional 

knockout line. Two groups have generated Cre transgenic lines in which the 

transcription o f an activatable form of the Cre recombinase (CreER™ activated 

by tamoxifen and CrePR activated by antiprogestins) is either placed under the 

granule cell specific Mathl enhancer (L. M. Chow et al., 2006) or is expressed 

under the granule cell specific GluRe3 promotor (M. Tsujita et al., 1999). These 

lines could be useful to investigate to what extent granule cells cause the 

Purkinje cell defect. If the Purkinje cell defects were a consequence of Fbw7 

deletion in granule cells, one would predict that deletion of Fbw7 in granule 

cells alone causes the same Purkinje cell phenotype as observed in the Jbw7ACh 

mice.
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5.7.1.2 Hypothesis II: Purkinje cells require Fbw7 during development 

and the observed defect is the result of Fbw7 deletion in 

precursors

If the observed defect were caused directly by the loss of Fbw7 in the 

cerebellar Purkinje cell precursors one could speculate that Purkinje cells are 

particularly sensitive to elevated phospho-c-Jun levels during embryonic 

development and therefore require Fbw7 activity (see Model in Figure 5.15). 

As there is no progressive loss of Purkinje cells after birth in Jbw7ACb cerebella, 

one can further hypothesise that mature Purkinje cells do not express c-Jun and 

thus no regulation is required, possibly because they do not utilise an active 

JNK pathway. Alternatively Purkinje cells could be able to adapt and to tolerate 

increased phospho-c-Jun levels or that the JNK c-Jun pathway is controlled in 

an Fbw7 independent way.

Concerning the absence of the JNK-c-Jun pathway and c-Jun levels in 

the adult brain, a number of studies have demonstrated that in mature Purkinje 

cells c-Jun protein and message levels are below a detectable level, indicating 

that c-Jun is not employed during mature Purkinje cell function (T. Herdegen et 

al., 1995; M. Zagrebelsky et al., 1998; D. Carulli et al., 2002). Furthermore the 

JNK pathway does not appear to be active in mature Purkinje cells, as in mice 

overexpressing c-Jun under the Purkinje cell specific L7 promoter did not alter 

Purkinje cell arborisation, density or morphology. More importantly this did not 

result in elevated levels of phosphorylated c-Jun or an increase in Purkinje cell 

apoptosis (D. Carulli et al., 2002). As c-Jun phosphorylation is not induced in 

mature Purkinje cells, deletion of Fbw7 will most likely have no effect. The
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inactivity of the JNK pathway is therefore a possible explanation why there is 

no progressive loss of Purkinje cell in the adult.

The fact that proteins of the JNK signalling cascade such as MKK4, 

JIP-1 and JIP-3 are expressed in mature Purkinje cells, nevertheless indicates 

that this signalling cascade has been used at some point in their life, possibly 

during development (J. K. Lee et al., 1999; J. B. Pellet et al., 2000; E. Miura et 

al., 2006). It is therefore feasible to assume that the loss of Purkinje cells during 

development can be caused by elevated phospho-c-Jun levels. Regarding the 

analysis of c-Jun during Purkinje cell development stainings with phospho-c- 

Jun specific antibodies have to be performed. Interestingly, in cerebellar slices 

derived from P09 c-Jun transgenic cerebella, Purkinje cell survival was 

reduced, implying that the JNK cascade and subsequently phospho-c-Jun levels 

can be activated under stress conditions, such as the in vitro culture, and 

mediate Purkinje cell death (D. Carulli et al., 2002). Therefore one could 

culture cerebellar slices obtained from fbw7ACh animals and predict that 

Purkinje cells would die in a similar manner as in slices from c-Jun transgenic 

animals, since the stress implied by the culture conditions appears to be 

sufficient to activate the JNK-Jun pathway.

Purkinje cells from fbw7ACb animals display an altered morphology by 

P07 and the number of dendrites is greatly reduced (Figure 5.7). The altered 

Purkinje cell morphology could also affect the formation of synapses within the 

cerebellum such that fewer Purkinje cell-parallel fibre and Purkinje cells- 

climbing fibre synapses are present in fbw7ACb animals (Figure 5.7 and 5.8). To 

test whether this hypothesis is valid one could cross floxed fbw7 mice to 

animals that express the Cre-recombinase under the Purkinje cell specific L7
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promoter (J. Oberdick et al., 1990). If the defect were caused by loss of Fbw7 

in Purkinje cells, these animals should recapitulate the observed Purkinje cell 

phenotype.

5.7.2 Altered basket cell arborisation

In addition to the loss of Purkinje cells, the basket cell arborisation is 

altered in fbw7ACb animals and could be rescued upon concomitant deletion of 

c-Jun (Figure 5.2). Although I did not quantify apoptosis by TUNEL staining in 

the ML, I did not find any difference in the number of parvalbumin stained 

basket and stellate cells (Figure 5.3) and therefore conclude that loss of Fbw7 

does not lead to apoptosis in these cells but rather to an aberrant morphology of 

their axons. Interestingly the Neurofilament200 expressing basket cells and the 

stellate cells are derived from the same germinal layer, the ventricular zone, as 

the Purkinje cells. All three cell types belong to the class of GABA-ergic so it 

could also be possible, that loss of Fbw7 specifically affects neurons that use 

GAB A as a neurotransmitter and are derived from the ventricular zone. To 

address this hypothesis, one could for instance perform in situ hybridisation on 

E l3 and earlier cerebella. If Fbw7 were crucial in the ventricular zone, this 

would then lead to the prediction that also stellate cells should also display an 

altered morphology in the Fbw7 knockout. Whilst basket cells were 

investigated using a Neurofilament200 antibody, no detailed analysis of stellate 

cells was performed so far.

Basket cells inhibit Purkinje cells by means of their basket like synapses 

on the Purkinje cell somata but are at the same time connected to the parallel 

fibres which in the rat start to synapse on basket cells around postnatal day 8,
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(J. Altman and A. T. Winfree, 1977) (reviewed in (R. V. Sillitoe and A. L. 

Joyner, 2007)). Therefore the possibility that the altered basket cell axonal 

arborisation is due to defects in the parallel fibres or their development is also 

given. Experiments as outlined under 5.7.1.1 will help to clarify this question as 

well. Similar to the Purkinje cells one would expect a recapitulation of the 

phenotype upon a granule cell specific deletion of Fbw7 if the basket cell 

arborisation were impaired as a secondary effect.

5.7.3 Reduced cerebellar size

All Fbw7 cerebellar knockout mice investigated in this study have a 

smaller cerebellar vermis, indicating that this is a c-Jun independent effect of 

the Fbw7 deletion. This phenotype can be caused by either less cells being 

present, or by an increase in apoptosis. Nateri et al. demonstrated that in wt 

cgcs siRNA mediated Fbw7 depletion causes an increase in apoptosis and if 

this occurred in vivo in granule cells, this could explain the smaller cerebellum 

(A. S. Nateri et al., 2004). Alternatively apoptosis could also occur at the early 

progenitor was described for the Engrailed-2 mediated conditional knockout of 

Notch-1 where mice also display a smaller cerebellum and a reduction in 

Purkinje cell density due to the loss of early precursor cells (S. Lutolf et al., 

2002). The same study elucidated that in case of the Notch-1 cerebellar 

knockout the level of apoptosis in different progenitor populations peaks at 

E l2, a day earlier than the time points I have investigated in the Fbw7 

conditional knockout so far. Therefore the careful analysis of apoptosis in the 

granule cell layer by TUNEL assays at different timepoints during embryonic 

and postnatal development is mandatory to clarify whether apoptosis of granule
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cell precursors or mature granule cells causes the smaller cerebellar vermis in 

fi>w7ACb animals. Mathl, the earliest known marker for granule cells together 

with TUNEL staining on time mated embryos could provide essential insights 

of whether the defect in fbw7  animals is similar to the one observed in the 

Notch-1 cerebellar knockout and deletion of Fbw7 causes a depletion at the 

cerebellar precursor cell stage (F. Guillemot and A. L. Joyner, 1993; N. Ben- 

Arie et al., 1997).

5.7.4 Additional fissures

The fbw7ACb animals display additional fissures in the cerebellum (Fig

5.1) that is already present at P07 (Fig. 5.9), however, the overall structure of 

the cerebellar layers and shape is preserved. The formation of the cerebellar 

lobes occurs in distinct phases whereby first the so-called four cardinal lobes 

are formed at around E l7.5 in mice and the other finer fissures develop 

postnatally (reviewed in (R. V. Sillitoe and A. L. Joyner, 2007)). Work by 

Corrales et al has shown that the fissure formation depends directly on the 

levels of Shh signalling and that increased Shh signalling produces a more 

complex foliation (J. D. Corrales et al., 2006) whilst the loss of Shh activity 

causes a reduced foliation (P. M. Lewis et al., 2004). Shh is secreted by 

Purkinje cells during normal cerebellar development and induces proliferation 

in granule cell (V. A. Wallace, 1999; P. S. Knoepfler et al., 2002; A. M. 

Kenney et al., 2003). N-myc is a crucial mediator of Shh-signalling and is 

expressed in granule cell precursors where it is essential for proliferation (B. A. 

Hatton et al., 2006) (T. G. Oliver et al., 2003). Welcker and colleagues found 

that N-myc is also a substrate of Fbw7 and as the phospho-degron of c-Myc is
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conserved in N-myc, it is possible that Fbw7 also regulates N-myc (Figure 

5.16A)(M. Welcker et al., 2004a). Since the cerebellar foliation defects cannot 

be rescued by concomitant c-Jun deletion, this indicates that in addition to c- 

Jun other substrates that promote granule cell proliferation participate in the 

phenotype of the fbw7  animals. The hypothesis that granule cell precursors 

hyperproliferate is supported not only by the additional fissure but also the 

enhanced BrdU immunoreactivity at E l8 in the cerebellar primordium, which 

however still has to be quantified (Figure 5.14). If N-myc were a substrate of 

Fbw7 in the EGL, this could explain such a hyperproliferation of granule cells. 

If Fbw7 could not degrade N-myc, one would expect an increase in

, / - » L

proliferation, as observed at E l8 in fbw7  animals, which could ultimately 

lead to the generation of an additional cerebellar fissure (see model in Figure 

5.16B). The notion that there are more BrdU labelled cells in the EGL of P07 

BrdU injected Jbw7ACb animals does indicate that more proliferation takes place, 

and it is essential to quantify this in order to identify the precise timing of the 

hyperproliferation (Figure 5.10). The data from the Purkinje cell analysis also 

imply that cells of the granule cell layer proliferate more in the fbw7ACb animals 

than in wt animals. Whilst the Purkinje number is reduced to the same extent in 

P07 mice as in adult animals, the density is not. This indicates that the Purkinje 

cell layer length increases after P07 so that in the adult the Purkinje cell density 

is reduced in fbw7ACb vs. control cerebella. Since the Purkinje cell layer length 

is measured as the perimeter of the whole Purkinje cell layer, this furthermore 

predicts, that there must be more granule cells present.
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The hypothesis that N-myc is a substrate of Fbw7 in the cerebellum is 

based on the assumption that Fbw7 is not only expressed in mature granule 

cells (Figure 5.9) but also in granule cell precursors. Experiments that can be 

done to investigate this include in situ hybridisation for Fbw7 on E l8 cerebella 

when the EGL is still present as well as immunohistochemistry and western 

blotting experiments for N-myc to assess whether N-myc accumulates in the 

Jbw7ACh and Fbw7:c-Jun double mutants. The finding that Fbw7 is suppressed 

in gliomas, and that downregulation of Fbw7 inversely correlated with an 

increase in N-myc levels, further supports the hypothesis that N-myc could be 

one major substrate of Fbw7 during cerebellar development (M. Hagedom et 

al., 2007) (M. Bredel et al., 2005) In addition to the aforementioned stainings, 

another approach to investigate the Fbw7 deleted neurons in knockout mice 

would be to use GFP-reporter mice where Fbw7 deleted cells can be identified 

by their GFP expression. This cross would allow the tracing of Fbw7 depleted 

neurons in the cerebellum. This could also give insights whether Fbw7 

expression can be correlated with certain classes of neurons such as GABA- 

ergic or neurons or to what extent Fbw7 deleted neurons die during 

development.
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Figure 5.15 Model for Fbw7 mediated phospho-c-Jun regulation 
during cerebellar development Protein levels are indicated as ++ if 
present and -- if they are absent due to the knockout or successfully 
downregulated. Data obtained are summarised in this table. Left panel: 
As development from progenitor cells (purple) to mature Purkinje cells 
(red) and Basket cells (brown) proceeds, phospho-c-Jun levels need to 
be downregulated by Fbw7 to allow Purkinje cell maturation and dendritic 
arborisation.Basket cell axons (brown) surround Purkinje cells (red) and 
extend through the lower half of the Molecular layer (ML) and Purkinje 
cells receive input from basket cell axons. The Purkinje cell layer separates 
the ML from the granule cell layer (GL). In wt animals Purkinje cell 
dendrites form an elaborate network extending through the ML 2nd from 
left: If phospho-c-Jun accumulates due to the lack of Fbw7 less Purkinje 
cells are present, possibly because early precursors die, and the 
arborisation of the remaining Purkinje cells is reduces. The basket cell 
arborisation is impaired and extends through the whole Molecular layer. 
Concomitant deletion of c-Jun and Fbw7 (3rd from left) rescues the 
Purkinje cell number and basket cell arborisation. However, the number 
of dendrites is still reduced. The Purkinje cell number is also in fbw7ACb:c- 
JunACb/AA mice(right panel), indicating that phosphorylated c-Jun is the 
cause of the observed phenotype. However, a detailed analysis of Purkinje 
cell dendrites and Basket cell axon morphology has still to be carried out 
and the norm al m orpho logy are p red ic tio n s  (a sk te r isks ).
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Figure 5.16 Model for a putative role of N-myc as a Fbw7 target in 
granule cell development A) Alignment of the mouse c-myc and N-myc 
amino acid sequence. The phospho-degron is conserved (red rectangle), 
indicating that N-myc is likely to be a substrate of Fbw7. B) Granule cell 
development in the fbw7ACb cerebellum. In the normal cerebellum Sonic 
hedgehog (Shh) induces N-myc expression. N-myc is degraded by Fbw7, 
and granule cell precursors (dark blue) differentiate (light blue) and migrate 
inwards. In fbw7ACb animals N-myc induction by Shh is reduced due to 
the lack of Purkinje cells. However, as N-myc is not degraded by Fbw7, 
N-myc accumulates induces proliferation in the EGL which subsequently 
lead to more granule cells and the formation of an additional fissure in 
fbw7ACb brains.
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6 FBW7 DELETION IN POSTMITOTIC 

NEURONS CAUSES A TREMOR, 

HINDLIMB DEFECT AND REDUCED 

CORTICAL CELLULARITY

So far I have described two different approaches to investigate the role 

of Fbw7 in the nervous system. In the first approach Fbw7 was deleted in 

neuronal progenitor cells (fbw7***) while in the fbw7ACb mice the deletion was 

restricted to a specific area in the brain, the cerebellar vermis. The data obtained 

from these two lines demonstrated that Fbw7 is essential during neurogenesis 

and synapse formation. Furthermore it became apparent that the Fbw7 knockout 

phenotypes contain c-Jun dependent and c-Jun independent components. The 

deletion of Fbw7 occurred during developmental stages where precursor cells 

are affected and in both cases a reduced cellularity or smaller cerebellum was 

observed. These results lead to the hypothesis that Fbw7 deficient cells might 

die at early stages of neuronal differentiation in these mouse lines.

To investigate the role of Fbw7 in postmitotic neurons, I used a mouse 

line where the Cre-recombinase is expressed under the control of the 

Synapsin-1 promoter to generate animals that are Jbw7^:Synapsin-cre+ 

(fbw7ApN). In this mouse line the Cre mediated deletion is limited to postmitotic 

neurons in the brain and in the spinal cord (C. Hoesche et al., 1993; Y. Zhu et 

al., 2001). The histological analysis of Zhu et al. with NeuN as a neuronal 

marker in lacZ reporter mice demonstrated that Cre activity is mainly
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distributed in differentiated neurons outside the ventricular regions of the brain 

and spinal cord. Whilst neurons in the spinal cord, hippocampus and cerebral 

cortex where deleted efficiently, the lacZ immunoreactivity was low in the 

cerebellum and could only be observed in a few Purkinje cells but not in 

granule cells. Additionally the deletion does not affect glia (Y. Zhu et al.,

2001). Hoesche et al have demonstrated by placing a chloramphenicol acetyl 

transferase reporter under this promoter that the activity starts at E12 and peaks 

at P20 (C. Hoesche et al., 1993).

6.1 f b w 7 ApN mice are infertile and smaller than 

their wt littermates

In general fbw7ApN animals were smaller than their wt littermates and this 

size difference was more pronounced in animals from larger litters (Figure

6.1 A). However, fb w 7 ^N animals that have reached the weaning age did not 

loose weight, lived as long as their wt littermates, and did not develop tumours 

within 1 year of age (data not shown). To characterise the growth defect of 

fbw7ApN animals, the weight of the mice was taken once a week for the first 3 

month after birth. It became apparent that male and female fbw7ApN animals are 

smaller (Figure 6.IB). I also observed that pups disappeared during the weight- 

taking period, probably because they were eaten. Although their genotypes 

could not be confirmed, it is likely that these animals were mutants because 

additionally about 10% of fbw7ApN animals had to be culled within two month 

after birth due to severe growth retardation and a severe hindlimb tremor whilst 

heterozygous mice did not display any phenotype. As the analysis of embryos
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at different gestation levels between E15 and PO demonstrated that fb w 7 ^N 

embryos are present with mendelian frequency, I conclude that the observed 

submendelian frequency of fbw?*1*1* mutants at weaning age is caused by early 

postnatal deaths and animals that had to be culled (Figure 6.1C). Additionally 

neither male nor female fbw7*pN animals breed and therefore all further 

breedings were set up using a jb w f /f males or females with the respective 

fb w f /+:Synapsin-cre+ animal, which did not display any phenotype.
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Figure 6.1 fbw7ApN mice are present with submendelian frequency 
and are smaller than their wt littermates. A)Size comparison between 
a 1 year old fbw7APN animal and wt littermate showing that in some cases 
the weight difference persists through adulthood B) Weights from control 
and fbw7APN animals were recorded in 1 week intervals from birth onwards. 
fbw7ApN animals are significantly smaller than their littermates over the 
period measured, p-values females: p=0.0042, males p<0.001 C) Obtained 
genotypes at weaning age and embryonic stages between E15 and P0
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6.2 f b w 7 ApN  animais have a hindlimb defect and 

tremor

During the handling of the mice I noticed that Jbw7ApN animals have a 

hindlimb defect as they are unable to spread their hindpaws when suspended by 

their tail and instead keep them together or in some cases clasp them (Figure

6.2). Such defects are known to occur after treatment with neurotoxic drugs 

such as MPTP (W. Dauer and S. Przedborski, 2003) or in neurodegenerative 

diseases. For example, in a mouse model for HD, animals display a hindlimb 

defect (L. Mangiarini et al., 1996). Also, animals in which autophagy is 

impaired clasp their hindpaws (M. Komatsu et al., 2006). Additionally fb w 7 ^N 

animals have a tremor in their hindlimbs (see supplementary movie M l and 

M2) and this tremor was in general more pronounced in mutant animals that 

had to be culled. Since the tremor and hindlimb defect are indicative of 

neurodegeneration, I further analysed the fbw7ApN animals using different 

behavioural tests before proceeding with the immunohistochemical analysis of 

the brains.

To assess whether the fbw7ApN mice are ataxic, I performed a gait 

analysis using a U-shaped channel where the feet of mice were marked with ink 

and the footprints were recorded on filter paper. Whereas the front- and 

hindpaw- prints of control animals almost overlap, this was not the case in the 

mutant animals. However, fbw  7*pN animals are still able to walk straight (Figure 

6.3A), indicating that the fbw7ApN animals are only mildly ataxic and their
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hindlimb defect does not impair their gait severely. The reduced stride length of 

fbw7*pN animals is explained by the size difference between fb w 7 ^  mutants 

and controls (Figure 6.3B). While there was no difference in the width between 

the front paws of fbw 7^N and control animals (Figure 6.3C), I noticed that the 

hindpaw width is slightly bigger in fb w 7 ^N animals (Figure 6.3D). The wider 

hindlimb distance together with the hindlimb defect indicate that fbw 7ApN mice 

are either not strong enough to support their bodyweight and spread their 

hindlimbs or that they have alterations in the neuro-muscular connection.
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Figure 6.2 fbw7^p mice have a hindlimb defect. Wildtype adult animals 
of either 2 month of age (A) or 4 month of age (B) spread their hindlimbs 
when suspended by the tail whereas fbw7A*N animals are not able to do 
so.
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Figure 6.3 fbw7ApN animals are mildly ataxic. Gait analysis on fbw7ApN 
animals The front paws were painted in orange non-toxic ink and the 
back paws were painted in purple non-toxic ink. Animals were left to run 
towards housing at the end of the channel. A) Example of gait analysis. 
Distances were manually measured as indicated. B) Stride length 
measurement of control and fibw7ApA/animals C) Front paw width and D) 
Hind paw width measurements. Mean +/-SD values are shown. Control: 
n=16, fbw 7ApN:n=9.
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6.3 Reduced muscle strength and impaired pole 

test performance in f b w 7 A pN  mice

To investigate whether fl>w7‘v  animals are indeed weaker than their 

littermates, the hanging wire test was performed as described in 2.3.4.2. Mice 

are placed on top of a grid, which is subsequently turned over. At the end of the 

experiment the animals were scored “hold” if they were able to hold on or 

climbed on top of the turned grid 2 out of 3 times, and “fall” if they fell twice 

or more. As expected control mice were able to hold on or climb on top of the 

grid in 92% of cases while most of the fb w 7 ^N animals fell down into the 

nesting material and only 23% of the animals managed to hang onto the grid 

(Figure 6.4A). This demonstrates that Fbw7 deletion in postmitotic neurons 

causes a reduction in muscle strength that could also be the cause of the 

hindlimb defect.

To test mice for nigrostriatal dysfunction and degeneration, which can 

for instance be observed in Parkinson’s disease, the pole test is frequently used 

and has been proven helpful in the evaluation of striatal lesions after 

administration of the neurotoxic agents such as MPTP or 6-Hydroxydopamine 

(K. Matsuura et al., 1997). For the pole test the mice are placed on top of a 

vertical, rough surfaced pole and the latency time to climb down the pole is 

measured as described in 2.3.4.1. Control animals traverse the pole easily and 

quick (4.6 seconds on average) whereas fb w 7 ^  mutant animals are slower, 

needing 6.6 seconds on average to climb down (Figure 6.4B). Additionally the
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walking pattern of fbw 7***** animals is different. While control animals wind 

their tail around the pole and walk downwards with ease^v v /4̂  animals move 

down the pole in a caterpillar like fashion (see supplementary movies M3 and 

M4).

Taken together the results from the behavioural analysis indicate that 

the motor performance of jbw 7^N mice is impaired and that fbw7ApN animals 

display a phenotype, the hindlimb defect, which is similar to a mouse model for 

HD (L. Mangiarini et al., 1996). Interestingly the hindlimb defect was also 

observed in mice where another protein degradation pathway, autophagy, is 

impaired (M. Komatsu et al., 2006). No cellular defects, apart from a smaller 

brain and the hindlimb defect, could be observed in the HD model whilst mice 

knockout for the autophagy-involved protein ATG7 under the Nestin-cre 

promoter displayed an atrophic cerebral cortex and loss of Purkinje cells (M. 

Komatsu et al., 2006). Based on these observations and because I had already 

observed a reduction in Purkinje cells in fbw7ACh animals, I wanted to 

investigate whether there are similar abnormalities in the brains of Jbw7ApN 

animals and they were analysed by immunohistochemical stainings as described 

below.
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Fig 6.4 Impaired hanging wire and pole test perfomance in fibw7ApA/ 
animals. A) Hanging wire test performed on 2-3 month old animals. 
Animals were placed on a grid, the grid was moved up and down to 
promote the animal to grip and turned over for 30 seconds. The time 
mice were able to hold on, climb on top of the lid, or fall off was measured. 
The experiment was repeated 3 times and the outcome quantified as 
Hold if the animal held on for at least 2 times, and fall if it fell of the grid 
2 or more times. p=0.0286 Mean +/- SD B) A pole test was performed 
on 1-3 month old animals. Animals were placed on a vertical pole and 
the time to transverse the pole downwards was measured for 3 consecutive 
runs. The slowest value, falls and stops were excluded form the 
measurements, two tailed t-test, p=0.0117. To illustrate the variance of 
the data a graph with the original datapoints and the 95% Cl were 
includedFor the impaired walking patters see supplementary movies M3 
and M4.



Chapter 6

6.4 No gross abnormalities of the brain in f b w 7 ApN  

animals

When comparing fb w 7 ^  brains with wt counterparts it became 

apparent that at 3 weeks of age the fbw7**N brains are slightly smaller than wt 

brains while the overall morphology is not altered. In the adult animal on the 

other hand there are no major size differences between the brains and again no 

gross morphological defects are observed (Figure 6.5A).

As described above, I have observed that the fbw7ApN animals are mildly 

ataxic (Figure 6.3). Furthermore fbw7ACh animals show a misorganisation of the 

cerebellum, which is an important integrator for motor coordination in the brain 

(Figure 5.1) Therefore I first examined the cerebellar morphology in fbw7ApN 

animals. In agreement with the size difference of the whole brain shown above, 

the cerebella of fbw7ApN mice are slightly smaller than the cerebella of control 

littermates. However, I could not observe any foliation defects or positioning 

defects of granule cells. Also the Purkinje cell density in fbw7ApN animals is 

comparable to control littermates (Figure 6.5), suggesting that the motor defects 

of the jbw7ApN mice do not originate in the cerebellum.

Analysis of the fbw7ApN brains by in situ hybridisation demonstrated a 

strong reduction of the fbw  7 signal in the cortex and dentate gyrus (Figure 3.9). 

To investigate whether there are any abnormalities in neuronal morphology in 

these or other brain regions, fbw 7^N brains sections were stained with a NeuN 

antibody to visualise neuronal nuclei. Sagittal sections of seven month-old
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control and f b w 7 mutant animals were then compared. Whilst the 

hypothalamus, pons and dentage gyrus of Jbw7ApN animals appear normal in 

NeuN stained sections and no major morphological differences could be found, 

the cellularity of the cerebral cortex appears slightly reduced in fbw7ApN animals 

(Figure 6.6). To investigate whether there are indeed alterations in the cortical 

cellularity in fbw7ApN animals, coronal NeuN stained sections were further 

analysed.
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Figure 6.5 No gross morphological changes and no loss of Purkinje 
cells in fb w 7 p^mouse brains A) Brains of 3 week old animals and 7 
month old fbw7 p animals do not display differences compared with wt 
brains apart from a reduced size.B) H&E, NeuN and Calbindin stained 
sections of sagittal cut cerebella of a control and fbw 7 p ^animal.No 
foliation defects or granule cells defects are present.C) Purkinje cell 
parameters were determined as previously described in two to six month 
old fbw7APN animals and littermate controls. A) The number of Purkinje 
cells is reduced in fbw7APN animals but so is the Purkinje cell layer lenght 
(B) in in fbw7ApN animals. The density obtained from the ration between 
Purkinje cell number and Purkinje cell layer lenght is not altered. Mean 
+/-SD shown, Control: n=4,fbw7APN: n=3
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Figure 6.6 Reduced cortical cellularity in fbw7ApN animals but normal 
pons, hippocampus and brain stem. Sagittal sections of control and 
fbw7ApN 7 month old animals were stained with NeuN. A) The cellularity 
of the cortical layer is reduced (arrow) The hippocampus (He) and dentage 
gyrus are formed normal as is the thalamus (Tm). The pons (Pn) and 
inferior olive (lo) are normal in fb w 7 ^ N animals and no gross morphological 
defect can be observed.
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6.5 Reduced cortical cellularity in f b w 7 ApN  animals

NeuN stainings in coronal sections confirmed that the cortical cellularity 

in fbw 7*N brains is reduced in the the cerbral cortex (Figure 6.7). Interestingly 

a variety of mouse strains with cortical lamination defects also display motor- 

coordination problem and some strains are named after their walking pattern 

phenotype such as staggerer, lurcher and reeler (reviewed in (A. Gupta et al.,

2002)). An impaired cortical lamination and cellularity are often the result of 

defects in neuronal migration during development, especially during the period 

of E ll  to El 7 when the cortical layers are formed (see also 1.4.1). Therefore I 

wanted to investigate whether the reduced cellularity is a consequence of an 

impaired neuronal migration and performed BrdU labelling experiments of 

neurons. Time mated pregnant females were injected with BrdU at E14.5 and 

pups were taken at E l7.5. Any cell that incorporated BrdU and became 

postmitotic at this time point retains the BrdU and will still be BrdU positive at 

E l7.5. Sagittal sections of E l7.5 fb w 7 ^  embryos that had received BrdU at 

E l4.5 show that the numbers of BrdU positive cells in the intermediate zone, 

ventricular zone and subventricular zone is strongly reduced. In addition the 

BrdU labelling of the ganglionic eminence is much weaker in fbw  7 ^  animals 

than in the control (Figure 6.8). This suggests that the fb w 7 ^  animals indeed 

display migration defects. Whilst the reduction in BrdU positive migrating cells 

can explain the reduced cellularity of the cerebral cortex in fb w 7 ^N animals, a 

further detailed analysis of neuronal subpopulations and migration patterns is
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required to fully elucidate the role of Fbw7 in the development of the strong 

behavioural phenotype and cortical migration (see also discussion).
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Figure 6.7 Reduced cortical cellularity in fbw7^pN animals
A) Coronal sections of 6 month old control and fbw 7ApNanimal. The 
cortical cellularity is reduced particularly in the lower part of the molecular 
layer which is likely to be layer V. B) Coronal more caudal section of 4 
month old control and fbw7*pN animals. Again the cellularity is reduced 
and appears not to be progressive as the loss has a similar extend as 
in 6 month old animals. C) NeuN positive cells in coronal cortical sections 
of the indicated area 2 in A were counted as described in Methods. The 
cell density per mm2 was calculated control: n=3, mutant n=3 
Layerll/lll: p= 0.0271, Layer V: p=0.0197, Layer VI: p=0.0357,Mean +/- 
SEM shown
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Figure 6.8 Reduced number of BrdU positive cells in the fbw7ApN 
cortex at E17. A time mated pregnant female was BrdU injected at E14.5. 
Sagittal sections of E17.5 embryos were taken and stained for BrdU A) 
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and fbw7ApN animal. Indicated areas are shown in B. B) H&E and BrdU 
stained sections from the cortex and the ganglionic eminence. The 
number of BrdU positive cells in the ventricular zone (VZ) subventricular 
zone (SVZ) as well as in the intermediate zone(IZ) and the ganglionic 
eminence (C) is strongly reduced while the number of BrdU positive cells 
in the cortical plate is similar.
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6.6 No loss of dopaminergic neurons in f b w 7 ApN  

animals

The behavioural phenotyping carried out in fbw7ApN mice indicated that 

these animals might have a defect in their nigrostriatal pathway. In humans the 

loss of dopaminergic neurons in the substantia nigra, which is part of the 

nigrostriatal pathway, is the cause for Parkinson’s disease (PD). Given that 

Fbw7 can interact with Parkin (see chapter 1.3.4) and that the fb w 7 ^ N mice 

display a tremor, it was imperative to investigate whether dopaminergic 

neurons die or degenerate in fbw7**N mice.

Dopamine belongs to the class of catecholaminergic neurotransmitters 

and it is synthesised from tyrosine by means of the enzyme Tyrosine 

Hydroxylase (TH). Therefore a staining with a TH antibody can give insights 

into whether dopaminergic neurons are affected in the fb w 7 ^N animals. I 

quantified the number of TH positive neurons in the substantia nigra and the 

VTA, regions that show a reduced number of dopaminergic neurons in PD. 

However, in neither of these areas a loss of TH positive neurons could be 

observed (Figures 6.9 and 6.10), indicating that the motor defects do not 

originate from loss of dopaminergic neurons. Neurons from the VTA and the 

substantia nigra project into the striatum in which the TH stain is present as a 

diffuse stain due to its axonal localisation (Figure 6.10 left panel). Although I 

did not quantify the staining intensities, there is no indication that there are 

major alterations in striatal TH expression or in the number of TH positive
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neurons in the locus coeruleus (Figure 6.1 OB right panel). Finally, a further step 

in investigating whether the Fbw7 knockout in postmitotic neurons has any 

effect on the nigrostriatal pathway was to analyse the GAD-67 

immunoreactivity in the striatum as degeneration of GABA-ergic neurons in 

this brain region occurs in HD (see chapter 1.4.4). The quantification of GAD- 

67 levels in the striatum of fbw7*pN animals shows, that the levels of GAD-67 

immunoreactivity in the striatum of fbw7ApN animals is comparable to that of 

controls (Figure 6.11) and no differences in striatal structure could be observed.

In parallel to the above analysis, I set up breedings with a mouse line in 

which the Cre-recombinase expression is driven by the rat tyrosine hydroxylase 

promoter, leading to the selective deletion of a floxed gene in 

catecholaminergic neurons (D. M. Gelman et al., 2003). The hypothesis was 

that, if the observed phenotype in fbw 7^N animals was caused by defects in 

catecholaminergic neurons, the behavioural defects o f fbw7ApN animals should 

be reproduced in these fbw ^,T h-cre+ (fbw7ACN) animals. However, fbw7ACN 

animals appear normal and do not display any of the behavioural defects such 

as hindlimb clasping or a tremor that were observed in the fbw7ApN animals 

(data not shown). Thus, taken together with the unaltered numbers of 

dopaminergic neurons in the VTA and substantia nigra of fbw 7ApN animals, I 

conclude that the phenotype in fbw7ApN animals is not caused by a loss of 

dopaminergic neurons in the nigrostriatal system. It remains to be established 

where the observed defect in fbw7ApN animals originates, (see also discussion).
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Figure 6.9 No loss of dopaminergic neurons in the VTA in fbw7ApN 
anim als. A) Example of 2 sections per genotype tha t were 
chosen for quantification of Tyrosine Hydroxylase positve neurons in the 
Ventral tegmetal area. B) Quantification of Tyrosine hydroxylase positive 
neurons in control and fbw7^pN animals. TH positive neurons in the VTA 
in both hemishperes were quantified and the obtained cell number 
averaged per animal. Data are shown as Mean+/- SD of indicated animals. 
No significant difference could be detected.
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Figure 6.10 No loss of dopaminergic neurons in the Substantia 
Nigra. A) Coronal section of 1 month old control and fbw 7ApN animals 
stained with Tyrosine Hydroxylase (TH) antibody.The arrangement of 
TH positive neurons is comparable and no difference could be detected 
when the number of TH positive neurons was quantified in B) Mean +/- 
SD are shown. C) Sagittal sections of control and fbw7ApN animal stained 
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difference could be found in the Striatum and Locus Coeruleus.



Control fbw7ApN

B

|  50

t  40
c0
c 30

cd 20
Q
0  10

n=7 n=9

Control fbw7ApN

Figure 6.11 No alterations in GAD-67 levels in the striatum of fbw7ApN 
mice A) Sagittal sections from control and fbw7ApN animals were stained 
with a GAD-67 antibody. CPu: Caudate Putamen GP:Globus Pallidus 
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observed B) GAD67 Intensities in the striatum were quantified as arbitrary 
units and no difference could be detected. Mean +/-SD values are shown
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6.7 The phenotype of f b w 7 ApN  animals is not c-Jun 

dependent

I also wanted to determine the c-Jun dependency of the fbw7**N 

phenotype. To do this f b w 7 animals were firstly crossed with cjurf^ mice to 

obtain fbw7ApN: c - ju n ^  animals. In parallel fbw7ApN animals were bred with 

junAA mice to obtain fbw7ApN:junAA/AA animals where c-Jun cannot be 

phosphorylated (A. Behrens et al., 1999). Both the fbw7ApN:c-jun/spN and 

fbw7ApN:junAA/AA animals are viable and fbw7ApN:c-junApN animals are also 

smaller that their wt littermates. A size comparison for fbw7ApN:junAA/AA was not 

possible as the junAA animals are larger and heavier than wt mice and 

subsequently the fbw7ApN:junAA/AA mice were heavier and larger as well. Neither 

the concomitant deletion of c-Jun, nor the knockout of Fbw7 in the junAA 

background, was able to rescue the observed hindlimb defect. This suggests 

that neither c-Jun nor c-Jun phosphorylation is not the main mediator for the 

behavioural phenotype (Figure 6.12).

Although no c-Jun dependency of the behavioural phenotype could be 

observed, the staining of coronal sections of fbw7ApN animals with the c-Jun 

(H79) antibody showed an increase of c-Jun in the dentate gyrus, a brain region 

where Fbw7 is efficiently deleted (Figure 6.13). Since c-Jun and particularly 

phospho-c-Jun have been connected to the induction of neuronal apoptosis, a 

TUNEL labelling was performed. In line with the observation that in NeuN 

stained sections the Dentate gyrus appears normal, no aberrant apoptosis or loss
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of cells could be observed in the Dentate gyrus or any other part of fb w 7 ^  

brains (Figure 6.13C and data not shown). Thus elevated c-Jun levels alone are 

not sufficient to cause neuronal apoptosis. Phospho-c-Jun levels, however, 

remain to be determined by immunohistocheminal stainings using phospho- 

specific antibodies.
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Figure6.12 The hindtim b defect is not c-Jun dependent
A) c-junApN animals do not display a hindlimb defect whilst concomitant 
deletion of Fbw7 and c-Jun in fbw7ApN:c-junApN animals does not rescue 
the phenotype. B) Deletion of Fbw7 in the jurtAA background also results 
in a hindlimb defect, demonstrating that c-Jun is not the main mediator 
of this phenotypic aspect
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Figure 6.13 Elevated c-jun levels but no apoptosis in the dentate 
gyrus of fbw7ApN animals All sections were stained with a c-Jun H79 
antibody. A) Control and fbw7ApN saggital sections of 1 month (top) and 
5 month old (bottom) animals.In fbw7Ap™ animals c-Jun levels are elevated 
in the dentate gyrus. B) The c-Jun stain in the dentate gyrus disappears 
upon concomitant deletion of Fbw7 and c-Jun, demonstrating that the 
staining is specific. C) No apoptosis in fbw 7ApN animals. Neither the 
Hippocampus nor the dentate gyrus display TUNEL positive cells.
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6.8 Discussion

To investigate the role of Fbw7 in postmitotic neurons, I have generated 

mice in which Fbw7 deletion is mediated by a Cre recombinase under the 

neuron specific SynapsinI promoter and I could confirm efficient deletion in the 

cerebral cortex, the pons and the dentate gyrus (Figure 3.9). I observed that 

these fbw 7 ^  mice display a variety of behavioural abnormalities such as a 

hindlimb defect, a tremor and reduced muscle strength and some of those 

phenotypes have been associated with mouse models and drug models for for 

PD or HD (R. J. Carter et al., 1999; M. J. Zuscik et al., 2000; P. O. Femagut et 

al., 2005). However, the fbw  7 ^N phenotype is not progressive and is not caused 

by a loss of dopaminergic neurons in the substantia nigra, ventral tegmental 

area, alterations in GAD67 levels or the cellularity in the striatum.

The histological analysis demonstrated that the gross morphological 

structure of the brain is not impaired and that fb w 7 ^  animals have a normal 

cerebellum. However, cellularity in the cerebral cortex, an area with high Fbw7 

message levels, is reduced and preliminary BrdU birthdating experiments 

suggest that in fb w 7 ^  animals less proliferating neurons are present at E l7 

after labelling them at E l4.

6.8.1 The reduced cortical cellularity could cause the phenotype

The histological analysis of the fb w 7 ^N animals demonstrated a reduced 

cellularity in the adult cortex throughout the cortical layers (Figures 6.6 and
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6.7). During development the cortical layering is established in an inside out 

pattern by radial migrating neurons between E14 and E l8 and migration defects 

at this stage lead to an altered cortical lamination (see also Fig. 1.7). 

Preliminary results from the BrdU birthdating of neurons at E14 demonstrated 

that the overall number of BrdU labelled cells, particularly in the intermediate 

and ventricular zone but also in the ganglionic eminence, is reduced at E l7 

(Figure 6.8). This could indicate that at the time of the BrdU injection fewer 

cells were in S phase and incorporated the BrdU in fb w 7 ^ .

If the switch from symmetric cell division, which generates more 

precursors, to asymmetric division occurred prematurely, or cells are not able to 

differentiate properly, this could also lead to a depletion of BrdU+ cells at E l7. 

The loss of cells due to premature differentiating divisions was for instance 

observed in the cerebellar Notch 1 knockout mice. There premature 

differentiating neurons die and this ultimately leads to a smaller cerebellum due 

to the lack of progenitor cells (S. Lutolf et al., 2002) (see also chapter 5.7.3).

It is also possible that the cells that were labelled at E l4, die during the 

three-day period before the brains were extracted. Based on the data obtained 

from the fbw  7 ^  neurospheres where differentiation defects were observed, one 

can envisage that also in fb w 7*^ brains the Fbw7 deletion interferes with the 

final differentiation. Therefore further BrdU labelling experiments over 

different times will be essential to identify the reason for the reduced cell 

number in the cerebral cortex. If cells were able to undergo the initial 

asymmetric division, one would expect a comparable BrdU labelling after a 

short time such as for instance 3hours. However, one would then expect the 

inappropriate expression of neuronal markers as cells migrate to their final
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position in the cortex, which should be accompanied by an increase in 

apoptosis. A subsequent loss of cells and fewer BrdU positive cells in the 

cerebral cortex at E l7 would be the final outcome. The above-described 

experiments are planned and setup, however I could not perform them yet due 

to the lack of females that could be used for time matings. Once these 

experiments are set up, one could aim to identify whether a specific subclass of 

neurons is affected by Fbw7 deletion. The neurons in layer V of the cortex are 

mainly pyramidal projection neurons that reach distant targets outside the 

cerebral cortex (Z. Molnar and A. F. Cheung, 2006). Among them are also 

corticospinal neurons. As the name suggests, they project towards the spinal 

cord and if these neurons were affected in fb w 7 ^  animals, this could also 

explain the behavioural phenotype. A number of genes that can be used as a 

marker for layer V neurons have been identified and are summarised in a recent 

review by Molyneaux (B. J. Molyneaux et al., 2007). Among them are also 

markers whose expression changes during development such as Ctip2 and 

therefore they could also be employed to characterise the cortical migration 

during development. Furthermore Chan et al have demonstrated that Emxl is a 

marker for pyramidal neurons in the adult cortex, which are projection neurons 

that connect the cortex with other brain regions (C. H. Chan et al., 2001). The 

use of such markers could help to identify whether only a subtype of neuron, 

eg. neurons that use a certain neurotransmitter, or target a specific area, are 

particularly sensitive to the loss of Fbw7. The analysis of corticalspinal neurons 

together with the analysis of the spinal cord itself would be crucial in 

elucidating the origin of the behavioural phenotype in fbw  7 ^N animals.
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Finally, similar to the fbw7ACh and fb w 7 ^  animals, it is also possible 

that different substrates mediate the phenotype. Notch 1 for instance is 

expressed in cortical neurons and is involved in the regulation of neurite 

outgrowth (O. Berezovska et al., 1999; L. Redmond et al., 2000). It would 

therefore be one possible target of Fbw7 in the cortex. Additionally there is 

emerging evidence that cell cycle regulators, including Cyclin E, are important 

in the nervous system and that a cell cycle re-entry in postmitotic neurons does 

mediate neuronal apoptosis (E. B. Becker and A. Bonni, 2004, 2005), (A. 

Lukaszewicz et al., 2005). It is therefore mandatory to investigate the different 

Fbw7 substrates in parallel with BrdU labelling experiments and apoptosis 

assays. Immunohistochemistry, western blotting and also FACS sorting of 

neuronal subpopulation (S. Sergent-Tanguy et al., 2003) could be employed to 

characterise the fate and differentiation of neurons in fbw7ApN animals.

6.8.2 Other possible reasons for the observed phenotype

6.8.2.1 Hypothesis I: Defects in axonal and/or dendritic development in 

f b w ? ^  neurons

E3 ligases have also been implicated in the regulation of neuronal 

differentiation, which includes extension of the growth cone and 

dendritogenesis. It has been demonstrated that in culture retinal xenopus 

neurons the ubiquitin-conjugate concentration increases dramatically if a 

growth cone encounters the guidance molecule netrin and that blocking the 

proteasome blocks the netrin dependent turning of the growth cone (D. S. 

Campbell and C. E. Holt, 2001). Additionally the ubiquitin proteasome system
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has been implicated in the establishment of neuronal polarity. It has for instance 

been shown that the proteasoma turnover of Akt in dendrites is essential for the 

establishment of dendrites and axons (D. Yan et al., 2006). Suppression of the 

proteasome in hippocampal cultures led to the symmetric distribution of Akt 

and resulted in the formation of multiple axons. Furthermore proteasomes can 

be sequestered to dendritic spines in an activity dependent manner, suggesting 

that they are involved in the activity dependent remodelling of the synapse (B. 

Bingol and E. M. Schuman, 2006) and an initial study that supports this model 

based on findings with the Fbw7 homologue in c.elegans, Sel-10, is described 

below.

6.8.2.2 Hypothesis 2: the motor defects are caused bv deficits in 

synapse elimination or svnaotic transmission

The c.elegans homologue of Fbw7, Sel-10, has recently been 

implicated in the elimination of synapses (M. Ding et al., 2007; D. M. Miller, 

2007). Ding et al. observed that an SCF complex containing Sel-10 is active at 

a primary neuromuscular synapse and that the complex is inhibited in its 

function by the inhibitory protein Syg-1. Syg-1 binding to Skr-1, the c.elegans 

homologue to Skp-1 and thereby blocks the ubiquitination and degradation of 

synaptic proteins at the primary synaptic site Interestingly, this interactions 

stimulates the ubiquitination of proteins and subsequent elimination of 

secondary synapses by a yet to be identified mechanism (M. Ding et al., 2007). 

Furthermore Ding et al. show that artificial elevation of SCF activity causes the 

elimination of primary and secondary synapses. Also in mammals neuron- 

muscular synapses are eliminated during development (reviewed in (H. Colman
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and J. W. Lichtman, 1993)). If one extrapolates the finding by Ding et al. to the 

mouse this would predict that deletion of Fbw7 and subsequent impairment of 

the SCFFbw7 complex should result in an impaired synapses elimination and 

subsequently alter the transmission from the nerve to the muscle, which is 

interesting with regards to the impaired motor function of the fb w 7 ^N animals. 

To investigate this, an analysis of the spinal cord and neuromuscular junctions 

in fbw7^ n animals should be performed. One could for instance repeat the in 

situ hybridisation to determine the expression levels of Fbw7 in the 

neuromuscular junction (NMJ), and analyse the NMJ in fb w 7 ^  animals. 

Established markers for the NMJ that could be used for such an analysis are 

antibodies against the acetylcholine-receptor and labelled bungarotoxin 

(reviewed in (J. Lu and J. W. Lichtman, 2007)). Studies in Drosophila have 

further implicated E3-ligase is the development of the neuromuscular junction. 

There the disruption of the locus of the RING-E3 ligase highwire results in 

defects at the neuromuscular junctions (C. Wu et al., 2005). If the observed 

motor defects in fb w 7 ^  animals are caused by defects in the spinal cord, an 

area where Synapsin-cre mediated deletion takes place, but the TH-cre 

recombinase is not active.

It has also been demonstrated that in addition to acute lesions, changes 

in neurotransmitter levels can cause an impaired pole test performance and this 

could also be the reason for the altered behaviour in fb w 7 ^N animals. The 

DAT'7' mice, where the dopamine transporter (DAT) is deleted, are also 

impaired in their pole test performance (P. O. Femagut et al., 2003). These 

mice display persistent elevated extracellular dopamine levels due to the lack of
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DAT, which is normally responsible for the re-uptake of dopamine as part of an 

auto-regulatory loop. To test whether deletion of Fbw7 impairs the synapse 

elimination in the brain one could stain or western blot with presynaptic 

(synaptophysin) or postsynaptic markers (eg. PSD-95) or synaptic vesicle 

proteins in a complementary approach with the use of electron microscopy to 

analyse the synapses at a high resolution level. The levels of neurotransmitters 

in the brain can be investigated by HPLC on dissected brain regions. This 

method has been used in the Parkin knockout mice, where altered 

neurotransmitter levels without a concurrent loss of dopaminergic neurons was 

observed (see chapter 1.4.4). A similar bioanalytical approach in fbw7***** 

animals could clarify whether the loss of Fbw7 causes alterations in 

neurotransmitter levels in the brain. Since the resulting changes in synaptic 

transmission would be permanent, this could also explain why there is no 

progression in the phenotype. If neurotransmitter levels were altered to a 

different degree in fbw7***N animals and fbw7AcN animals, this could explain the 

phenotypic differences between those two mouse lines.

6.8.3 The observed phenotype is not c-Jun dependent

To establish whether the observed behavioural and histological 

phenotype is c-Jun dependent, crosses with either c-jun ^  or junAA mice were 

set up. By using the hindlimb defect as a first indicator of the fbw7ApN 

phenotype, I established that the hindlimb defect is not rescued in the 

fbw7ApN:c-junApN or the fbw 7 ^ :junAA/AA mice, indicating that this part of the 

phenotype is not c-Jun dependent (Figure 6.12). Furthermore I observed that 

the elevated c-Jun levels in the dentate gyrus were not sufficient to cause
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apoptosis. Interestingly, this is similar to the effect observed in c-jun transgenic 

Purkinje cells where high c-Jun levels alone also did not cause apoptosis (see 

chapter 5). However, if neurons in the dentate gyrus of fbw7ApN animals were 

more sensitive to stress, as are c-Jun transgenic Purkinje cells, one would 

predict that administration of the excitotoxic agent kainate should aggravate the 

seizures compared to wt animals as the excitotoxicity of kainate is mediated via 

the JNK signalling pathway (see also chapter 1.1.1 and references therein).

The hippocampus is implicated in learning and memory formation and it 

will be interesting to see how fbw  7^N animals perform in behavioural tests for 

learning and memory formation and whether elevated c-Jun levels play a role in 

these processes. To further investigate the effect of Fbw7 in the hippocampus I 

set up crosses where Fbw7 is deleted using CamK2-cre transgenic mice 

(fbw7AHc) (L. Minichiello et al., 1999). Preliminary data suggest that fbw7AHc 

mice do not display a hindlimb defect or tremor such as the fbw7ApN animals 

(data not shown), which further supports the notion that the hippocampal 

alterations in fbw7&pN animals are not responsible for the observed behavioural 

phenotype. However, a detailed behavioural analysis of the fbw7AHc animals has 

yet to be performed. One would predict that like in fbw7ApN animals, c-Jun 

levels in the dentate gyrus should be elevated. Although ablation of c-Jun in the 

nervous system (c - j u n was shown not to alter the performance in the Morris 

water maze test (G. Raivich et al., 2004), the presence of elevated c-Jun levels 

in either the fbw7ApN (Figure 6.13) or fbw7AHc mice, will allow to test whether 

the presence of c-Jun alone modulates the hippocampal function and to what 

extent it is involved in learning and memory formation.
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7 CONCLUDING REMARKS AND OUTLOOK

The aim of this thesis was to test the hypothesis that the E3-ligase Fbw7 

is a key regulator of phospho-c-Jun levels in the nervous system. For this 

reason I generated various brain specific conditional knockout lines for Fbw7 

(summarised in Table 7.1). Based on the finding that Fbw7 is mutated in 

cancers and that it has many substrates, an important role of Fbw7 in the 

organism was predicted and confirmed in early publications demonstrating that 

the lethal effect of a germline knockout of Fbw7 are caused by elevated Notch 

and cyclin E levels during vascular development (M. T. Tetzlaff et al., 2004; R. 

Tsunematsu et al., 2004). By means of the combinatorial use of different 

conditional Fbw7 knockout lines I could demonstrate that Fbw7 is important 

during brain development and that a nervous system specific deletion in the 

neural lineage also causes lethality whilst the regional or temporal restricted 

Fbw7 deletion in the brain does not impair viability. I obtained data that suggest 

that in addition to c-Jun Fbw7 has other substrates in the brain as some of the 

observed phenotypes are not c-Jun dependent.

7.1 Fbw7 deletion causes distinct phenotypes in 

different mouse lines

Using the Nestin-cre line I investigated the role of Fbw7 during early 

neuronal development and observed that deletion in the neural lineage results in 

a reduced cellularity and perinatal lethality (chapter 4). However, compared to 

the severe defects of the germline knockout animals, which display an
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impairment of the neural tube closure, the gross brain morphology was 

preserved in Jbw7AN animals. This demonstrates that apart from being essential 

during neurulation, Fbw7 continues to play an important role in the brain after 

E l0.5. Interestingly Nestin-cre mediated Fbw7 deletion in neurons and glia is 

lethal whilst deletion in exclusively postmitotic neurons by the Synapsin-driven 

Cre-recombinase does not. The initial studies on these mouse lines demonstated 

that the expression pattern of these different promoter elements is almost 

complementary. Whilst it was shown in Nestin-GFP mice that Nestin-promoter 

driven expression is high in the ventricular zone, no synapsin-cre mediated 

deletion can be detected within this brain region in lacZ: Synapsin-cre reporter 

mice (J. L. Mignone et al., 2004) (Y. Zhu et al., 2001). A loss of cells during 

the initial differentiation could explain why the cellularity is more strongly 

reduced in the fb w 7 ^  cortex than in the fbw7ApN cortex, where deletion takes 

place after this lineage decision has been initiated and where a major population 

of the brain cells, namely glia, are not affected. Experiments performed by Jorg 

Hoeck showed that fbw7AN neurospheres display differentiation defects (J. 

Hoeck personal communication). Taken together with the reduced cellularity in 

fbw7AN animals it is possible that Fbw7 is involved in the regulation of 

progenitor- differentiation during brain development. The fact that the fbw7ApN 

mice display also a reduced cellularity suggests however, that Fbw7 is also 

involved in additional later occurring processes. These possibilities are 

discussed below.
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7.2 Fbw7 in the cortex

Fbw7 is highly expressed in the cerebral cortex as shown by in situ 

hybridisation on E l8 fb w 7 ^  and adult fbw 7***** animals. I observed that Fbw7 

deletion in the cortex causes a reduced cortical cellularity in two different 

mouse lines (fbw7ApN and fbw7AN). Defects in cortical development can occur at 

different stages in development, early during the initial asymmetric division, 

during cell migration and when cells finish migration and assume their cortical 

position in the respective cortical layers. Although the gross structure of the 

cortical layering appears preserved infbw7ApN animals, the cellularity is reduced 

(Fig 6.7). This suggests that cells die during migration or early development. It 

will be interesting to analyse whether as part of the reduced cellularity certain 

neuronal subpopulations are more affected by the Fbw7 deletion than others. To 

do this, established markers that label distinct neuronal subpopulations such as 

for instance Ctip for layer V, which also contains corticospinal neurons, will be 

employed (B. J. Molyneaux et al., 2007).

To monitor the migration and differentiation of neurons in fbw7ACb or 

fbw7ApN animals a GFP-Fbw7 reporter line where GFP expression is induced by 

Cre-recombinase mediated deletion could be used. However, I would anticipate 

a lower number of GFP positive cells in the fbw7ApN cortex due to cell death as 

a result of Fbw7 deletion. Although TUNEL assays were not performed on the 

mouse lines described here, it is feasible to hypothesise that the analysis of 

earlier developmental stages in the fbw7ACh animals and a closer monitoring of 

migrating neurons in fbw7ApN animals will show an increase in neuronal 

apoptosis that precedes the loss of cells.
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7.3 Fbw7 in the cerebellum

Deletion of Fbw7 in the cerebellar vermis, fbw7  , caused a reduction 

in vermis size, a reduced Purkinje cell density and an additional fissure. In 

contrast mice harbouring the Fbw7 deletion in postmitotic neurons did not 

show any cerebellar phenotype. At a first glance this indicates that the observed 

cerebellar defect is due to deletion in progenitor cells as postmitotic cells 

appear unaffected. However, there exists some ambiguity regarding 

Synapsin-cre mediated deletion in the cerebellum. The initial characterisation 

of the Synapsin-cre transgenic line showed that Cre expression in the 

cerebellum is only detectable in some Purkinje cells and not the granule cell 

layer (Y. Zhu et al., 2001). Thus the absence of a cerebellar phenotype could be 

explained by the absence of cre-mediated recombination. Nonetheless, the in 

situ hybridisation in the cerebellum of /b w /^ m ic e  showed some reduction of 

signal with the generic and the exon 5 specific probe and furthermore the 

deletion PCR for Fbw7 displayed efficient deletion in the cerebellum (Figure 

3.10 and data not shown). Another study has also observed an efficient 

cerebellar deletion of their protein of interest using the synapsin-cre mouse line 

to knockout the (33-subunit of the y-aminobutyric acid type A receptor (C. 

Ferguson et al., 2007). Thus based on the in situ hybridisation data, the deletion 

PCR and the report by Ferguson et al. one can speculate that deletion of Fbw7 

in cerebellar progenitors that will form the cerebellar vermis has a more 

dramatic effect on the overall cerebellar structure than deletion in postmitotic 

cerebellar neurons. Purkinje cells become postmitotic between E l l  and E l3 

and Synapsin-cre mediated deletion can be detected from E l2.5 onwards as
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observed in some Purkinje cells by Zhu et al. in the initial characterisation of 

the synapsin-cre mouse line (J. Altman and S. A. Bayer, 1978; Y. Zhu et al., 

2001). Therefore if Purkinje cells expressed Fbw7 and the observed cerebellar 

knockout phenotype were Purkinje cell autonomous, the fb w 7 ^N cerebella 

should display the same morphological defects in arborisation as fbw7ACb 

Purkinje cells. Based on the performed quantification and macroscopic 

analysis, this is not the case. This argues in favour of hypothesis-1 that was 

proposed in chapter 5.7 and suggests that the observed Purkinje cell defect is 

due to defects in granule cells, which provide essential afferent input to 

Purkinje cells (chapter 5.7). Since there is a loss of signal in the granule cell 

layer in fb w 7 ^  animals without any cerebellar foliation defects when the 

deletion occurs at the postmitotic stage, this furthermore suggests, that Fbw7 

deletion in granule cell precursors is responsible for the observed foliation

A C 'hdefects in fbw7  animals (see also Chapter 5.7.4). However, the analysis of 

synapsin-cre reporter mice by analogous p-galactosidase staining as performed 

for the Engrailed-2 ere line (see appendix) could help to clarify this issue and 

asses the onset and the extent of deletion in the cerebellum offbw7ApNmict.

Additionally, the previously mentioned cross of different knockout 

animals with mice where Cre-expression also induces the expression of a GFP 

reporter could provide a tool to investigate the fate of Fbw7 deleted cells in the 

cerebellum as well. Based on the data that deletion of Fbw7 leads to a reduced 

cellularity and a smaller cerebellum, I would anticipate that the number of GFP 

positive granule cells is strongly reduced in fbw7ACb granule cells whilst in the 

fbw7ApN GFP-positive granule cells would be present. The analysis of the
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Purkinje cell maturation and synapse formation in cerebellar slices of 

fbw7ACh-GFP reporter mice could also give insights into how Fbw7 influences 

the differentiation and arborisation of Purkinje cells. Whilst I could 

demonstrate that in the fbw7ACb the loss of Purkinje cells is phospho-c-Jun 

dependent, an analogous analysis of fbw7ApN mice has still to be carried out. 

Although the behavioural phenotype was not rescued in fbw7ApN:c-junApN 

animals, this does not exclude a rescue of the cortical phenotype as the 

phenotype of conditional Fbw7 knockout animals is composed of c-Jun 

dependent and independent components. If the cortical cellularity were rescued 

in fbw7ACb :c-junACb animals, one could conclude that the behavioural phenotype 

is not caused by loss of these neurons. If it were not rescued, this could 

indicate, that the phenotype is caused by the cortical defects and that other 

substrates are responsible for the observed phenotype.

7.4 Fbw7 and neuronal connectivity

Deletion of Fbw7 in the cerebellum impaired the arborisation in 

Purkinje cells. Analysis of the parallel and climbing fibres indicated that the 

number of Vglutl and Vglut2 positive synapses is reduced, although this has 

still to be quantified. Furthermore, given the behavioural phenotype of the 

fbw7ApN animals together with the lack of loss of dopaminergic neurons, it is 

possible that the loss of Fbw7 in postmitotic neurons impairs the synaptic 

transmission. Interestingly, preliminary data from electron microscopy 

experiments demonstrate a pre- and post synaptic as well as cytoplasmic 

localisation of Fbw7 in wt brains (Gennadij Raivich, personal communication).
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Furthermore, a number of reports have demonstrated various roles for E3 

ligases in the regulation of synapse formation, transmission and signalling. In 

Drosophila, the disruption of the locus of the RING-E3-ligase highwire results 

in defects at the neuromuscular junctions (C. Wu et al., 2005). Presynaptic 

proteins that are components of synaptic vesicles such as syntaxin and 

synaptophysin are targeted for degradation by the E3 ligases Siahl and Siah2 

(T. C. Wheeler et al., 2002) and it has been shown that the 

post-synaptic-density protein PSD-95 is ubiquitinated by Mdm2 and thereby 

efficiently removed after synapse activation (M. Colledge et al., 2003). As, the 

above studies show that E3 ligases fulfil diverse regulatory roles at the synapse; 

Fbw7 might also participate in such processes. It remains to be established, to 

what extent a putative synaptic function would relate to already known Fbw7 

substrates such as c-Jun, c-Myc, N-myc or cyclin E. So far I could demonstrate 

that Fbw7 mediated c-Jun regulation is important for the arborisation of 

Purkinje cells by a mechanism which remains to be fully elucidated. Many of 

the known Fbw7 substrates are normally localised to the nucleus, however, it 

cannot be excluded that Fbw7 shuttles to the nucleus upon a still unknown 

stimulus, and thus exerts its E3 ligase function in a signal dependent manner.

Further investigation into the identified Fbw7 substrates and also 

possible upstream regulators is therefore mandatory for understanding the role 

of Fbw7 in the nervous system. One could for instance screen for Fbw7 

interacting proteins with a yeast-two- hybrid system using a brain library, or by 

using GST-pulldowns or Tap-tagging. These experiments could potentially 

identify novel substrates and upstream regulators of Fbw7 itself. In parallel a 

bioinformatics approach could be employed to identify putative neuronal or
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even synaptic substrates by applying criteria that appear to be common in many 

Fbw7 substrates such as the phospho-degron, interaction with GSK-3 and Pinl, 

or ERK.

In summary this thesis clearly demonstrates that Fbw7 has an important, 

non-redundant function in the nervous system. The observation that the deletion 

of Fbw7 in postmitotic neurons causes a hindlimb defect and tremor similar to 

other neurodegenerative pathologies indicates that Fbw7 could also play a role 

in diseases of the nervous system. While some o f the phenotypes were c-Jun 

dependent, others were not, indicating that on a molecular level Fbw7 is an 

important regulator of the function of potentially many substrates.

Finally, but importantly the generation of fb w /^  mice provides a 

valuable tool to extend the characterisation of Fbw7 functions to other parts of 

the organisms in addition to the brain by crossing theses fbw  /^anim als to other 

tissue specific Cre expression lines.
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Table 7.1 Summary of generated mouse lines
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Appendix : Engrailed2-mediated deletion in the cerebellar vermis

A

B

Appendix 1: Deletion under the Engrailed promoter is limited to the 
cerebellar verm is. A coronal cryosection  obta ined  from  a 
En2cre:ptenflox'+:p53flox/+:R O SA 26lacZflox/+ mouse was stained for |3- 
galactosidase to visualise areas affected by Engrailed-2 mediated deletion. 
A) Deletion is restricted to the cerebellar vermis and affects the cells in 
the vermis as demonstrated in high magnification in B: granule cells (GC), 
Purkinje cells (PC) and Molecular layer (ML)


