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Abstract

ABSTRACT

The bHLH transcription factor Handl is essential for placentation and cardiac 

morphogenesis in the developing embryo. However, how the activity of Handl is 

regulated in either lineage remains largely unknown. Here we demonstrate that 

Handl is anchored in the nucleolus and negatively-regulated by the murine 

orthologue of the human I-mfa domain-containing protein (HIC). Nucleolar 

sequestration controls Handl activity during the differentiation of rat 

choriocarcinoma-1 (Rcho-1) trophoblast cells. Handl is sequestered in the nucleoli of 

Rcho-1 stem cells but is released into the nucleoplasm at the onset of their 

differentiation into trophoblast giant cells.

Site-specific phosphorylation of Handl was previously shown to modulate the 

affinity of Handl for its nucleoplasmic E-factor binding partners. We demonstrate 

that Handl phosphorylation is required for its nucleolar release, as a pre-requisite for 

dimerisation and biological function. Moreover, the polo-like kinase Plk4 (Sak) is 

responsible for this phosphorylation event. Plk4 localises to the nucleolus of Rcho-1 

stem cells at phase G2 and interacts with Handl in vitro and in vivo to promote 

mitotic cell cycle exit and entry into the endocycle. We also demonstrate that the 

B568 subunit of the PP2A phosphatase, shown previously to target Handl for 

dephosphorylation, is exported from the nucleus during Rcho-1 differentiation.

In this thesis we present findings that describe a novel mode of Handl 

regulation that is a crucial step in trophoblast stem cell differentiation and 

placentation and support previous studies that implicate the nucleolus as a molecular 

‘sink’. We suggest that nucleolar sequestration is an important mode of protein 

regulation and this may impact on a broad range of transcription factors.
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Glossary of abbreviations

GLOSSARY OF ABBREVIATIONS

o P -G al..............beta-galactosidase

o A ct-D ----------actinomycin-D

o S H F ............. secondary heart field

o A m ps-----------ammonium persulphate

o ANF/ A N P  Atrial natriuretic factor/ atrial natriuretic peptide
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o A p-2y---------Activating protein 2 gamma
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o A T P ---------- adenosine 5’ triphosphate
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o A V C ----------atrioventricular canal

o B A C  bacterial artificial chromosome

o b H L H ---------- basic helix-loop-helix

o B M P ----------Bone morphogenetic protein

o bp —  ■— base pair

o B SA ----------bovine serum albumin

o C B F ----------CREB-binding factor

o C d c l4 -------- Cell division cycle homologue 14

o C d c5 ----------Cell division cycle homologue 5

o C D K ----------Cyclin-dependent kinase

o cDNA---------complimentary deoxyribonucleic acid

o C H D ----------congenital heart disease

o C M --------- conditioned medium

o C M V --------- cytomegalovirus

o C N S ----------central nervous system

o C 0 CI2 ---------cobalt chloride

o C P C --------- cardiac precursor cell

o D a ---------- Daughterless

o D A P I---------4',6-diamidino-2-phenylindole

o D E P C  diethyl pyrocarbonate

o D E S ----------diethylstilbestrol
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Glossary of abbreviations

o D F C ---------- dense fibrillar component

o (IH2O---------- distilled water

o D M E M -----------Dulbecco’s modified eagle medium

o D M SO ----------dimethyl sulphoxide

o D N A --------- deoxyribonucleic acid

o D O R V ----------- double outlet right ventricle

o d N T P  deoxyribonucleoside triphosphate

o D P X ----------dibutyl phthalate xylene

o D T T ------------dithiothreitol

o D V ----------- dorsal-to-ventral

o E  embryonic day

o E (Spl)-----------Enhancer of split

o E B ---------- embryoid body

o E C ----------embryonic carcinoma

o E C M  extracellular matrix

o E D T A ---------- ethylene diamine tetra-acetate

o E G F P -----------Enhanced green fluorescent protein

o EGTA -----------  ethyleneglycol-bis(p-aminoethyl ether)-N,N,N’,N’-tetra-acetic

acid

o E M SA  electrophoretic mobility shift assay

o E P C ----------ectoplacental cone

o ES (cells)...............embryonic stem (cells)

o E T -1----------- Endothelin-1

o E V T ----------extravillous trophoblast

o F A C S  fluorescence-activated cell sorting

o F A K ----------Focal adhesion kinase

o F B S -----------fetal bovine serum

o F C ---------- fibrillar component

o FEAR (network) Cdc fourteen early anaphase release (network)

o F G F  fibroblast growth factor

o F IT C ---------fluorescein isothiocyanate

o F L IP --------- fluorescence loss in photobleaching

o F R A P ..............fluorescence recovery after photobleaching
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Glossary of abbreviations

o F zr ----------- Fizzy-related

o GO--------- quiescent phase (of cell cycle)

o G 1 ----------- first gap phase (of cell cycle)

o G 2 --------- second gap phase (of cell cycle)

o GAPDH ----------- Glucose-6-phosphate dehydrogenase

o G C ---------granular compartment

o G FP ----------- Green fluorescent protein

o G lyT ---------- glycogen trophoblast

o G ST ----------- glutathione-S-transferase

o H ---------- hairy

o H a n d l----------- Heart and neural crest-derived 1

o H and2----------- Heart and neural crest-derived 2

o H A T -----------histone acetyltransferase

o HH (stage)----------- Hamburger and Hamilton (stage)

o HICp40/ 32 ---------  Human inhibitor of Myo-D domain-containing protein

(40kDa/ 32kDa)

o H IC sh R N A il---------- HIC short-hairpin RNA-interference construct 1

o H IC shRN Ai2---------- HIC short-hairpin RNA-interference construct 2

o H IF ----------Hypoxia inducible factor

o H IV ------------ human immunodeficiency virus

o H R P -----------horseradish peroxidase

o H R T  hairy-related transcription factor

o H S --------- horse serum

o H TLV ------------human T-cell leukemia virus

o IC M   —  inner cell mass

o I F ----------- immunofluorescence

o I-m fa---------- Inhibitor of Myo-D family A

o IS H   —  in situ hybridisation

o IU G R -----------intra-uterine growth retardation

o IV G -----------interventricular groove

o I V S ----------interventricular septum

o kb - kilobase

o kD a ----------kilo-Dalton

o L IF ----------Leukemia inhibitory factor
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Glossary of abbreviations

o L V ---------- left ventricle

o M   —  mitosis (of cell cycle)

o M ash-2-----------Mammalian achaete-scute homologue 2

o M C S -----------multi-cloning site

o M E M a   —  minimum essential medium a

o M E N ---------- mitotic exit network

o M lc2v ...............Myosin light chain 2 ventricular isoform

o M M P9-----------Matrix metalloproteinase-9

o M PF -----------mitosis-promoting factor

o m RNA ----------- messenger RNA

o N B ---------- nuclear body

o N D F .............. nucleolus-derived focus

o NFkB ---------- Nuclear factor-icB

o N L S ----------nuclear localisation signal

o N oLS  nucleolar localisation signal

o NO Pdb---------- nucleolar proteome database

o N O R -----------nucleolar organiser region

o N P-40----------nonidet P-40

o OD„---------- optical density (at n nm)

o O FT ---------- outflow tract

o O R F ---------- open reading frame

o O R C -----------origin recognition complex

o P B S ----------- phosphate buffered saline

o N C BI---------National Centre for Biotechnology Information

o PC A F----------p300/CBP-associated factor

o P C R ----------polymerase chain reaction

o PECAM ---------platelet endothelial cell adhesion molecule

o P H F ---------- primary heart field

o PI3K ---------- Phosphatidylinositol 3-kinase

o PK A --------- Protein kinase A

o PK C --------- Protein kinase C

o PL -1---------- Placental lactogen-1

o PL -2---------- Placental lactogen-2
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Glossary of abbreviations

o P lk4  Polo-like kinase 4

o P lk4shR N A il---------Plk4 short-hairpin RNA-interference construct 1

o Plk4shRNAi2---------Plk4 short-hairpin RNA-interference construct 2

o PLP-A  Prolactin-like protein A

o PML (bodies)-------- promyelocytic leukemia (bodies)

o PM SF  phenylmethylsulphonyl fluoride

o PN B -----------pre-nucleolar body

o P o ll------------RNA polymerase I

o PolII---------- RNA polymerase II

o snoRNP--------------- small nucleolar ribonucleoprotein

o SR P ---------- signal recognition particle

o PP2A  Protein phosphatase 2A

o P R L  Pituitary hormone prolactin

o R A ............. retinoic acid

o Rcho-1--------- rat choriocarcinoma-1

o R D A ---------- representational differential analysis

o rDNA ---------- ribosomal DNA

o RENT (complex) ----------  regulator of nucleolar silencing and telophase

(complex)

o R ISC -----------RNA-induced silencing complex

o R L U ---------- relative light units

o R N A ---------- ribonucleic acid

o R N A i---------- RNA-interference

o R N P -----------ribonucleoprotein

o rpm ---------- revolutions per minute

o rRNA ---------- ribosomal RNA

o RT-PCR   —  reverse transcriptase PCR

o R V ----------- right ventricle

o  S ----------- DNA synthesis phase (of cell cycle)

o  S109------ —  serine-109

o S ak ...........Snk/ Plk-akin kinase

o SDS(-PAGE) ------  sodium dodecyl sulphate(-polyacrylamide gel

electrophoresis) 

o SER 5---------- shared enhancer region 5
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Glossary of abbreviations

o shRNA ------- short hairpin RNA

o siR NA --------small interfering RNA

o SM C ---------- smooth muscle cell

o SpT --------- spongiotrophoblast (layer)

o S tra l3 -----------stimulated-by-retinoic-acid 13

o SynT ----------- syncytiotrophoblast (layer)

o T 107---------- threonine-107

o  T B S -----  —  tris-buffered saline

o TBST -----------TBS with Tween-20

o T E ---------- trophectoderm

o TEM ED  N, N, N ’, N ’-tetramethy 1-ethylene diamine

o T et----------tetracycline

o TG (cells)----------- trophoblast giant (cells)

o TG Fp-----------Transforming growth factor beta

o TRITC ----------- tetramethylrhodamine isothiocyanate

o tR N A ----------- transfer RNA

o TS (cells)------- trophoblast stem (cells)

o Tween-20 polyoxyethylenesorbitan monolaurate

o U V ----------ultraviolet light

o V H L ----  — von Hippel-Lindau

o V SD -----------ventricular septal defect

o X-G al-----------5-bromo-4-chloro-3-indoyl-p-D-galactopyranoside

o Y 2H -------- yeast two-hybrid

o Z PA ----- —  zone of polarizing activity
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1.1. Overview of the bHLH transcription factor, 

Handl

1.1.1. Handl structure and evolution

Handl, previously termed Thing7, eHand or Hxt, encodes the heart and neural 

crest-derived factor 1. The Handl gene was cloned independently more than ten 

years ago by three different groups (Cross et al., 1995; Hollenberg et al., 1995; 

Cserjesi et al., 1995). Handl is located on human chromosome 5q33 and mouse 

chromosome l ip ,  and in both mammals comprises two exons separated by a single 

1.5kb intron that generates a 1.9kb transcript (Figure 1.1a). The encoded Handl 

protein is 216 residues in length (Figure 1.1b).

Handl belongs to a large super-family of transcription factors that are 

characterised by a conserved, N-terminal basic helix-loop-helix (bHLH) DNA- 

binding/ dimerisation domain (reviewed by Massari and Murre, 2000). This domain 

consists of a basic region comprising a cluster of positively-charged amino acids, 

which precedes a HLH motif of two amphipathic a-helices linked by a loop of 

variable length. Transcription factors containing the bHLH domain play critical roles 

in cell lineage determination, for instance the founding myogenic members of the 

family, MyoD, Myogenin, Mrf4 and Myf5 (reviewed by Weintraub, 1993). Hand2 is 

the most closely-related bHLH family member to Handl and, in addition to Twist 1, 

Twist2, Dermol, Scleraxis and Tcfl5, the Hand factors belong to the Twist subfamily 

o f bHLH factors (Figure 1.2). Members of this bHLH factor subclass have roles in 

the development of tissues deriving from the mesoderm and neural crest. The latter 

cell population represents a transient and pluripotent population of migratory cells 

that emerge from the dorsal tip of the neural tube as a result of inductive interactions 

between the neural plate and the surface ectoderm.
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a.

0.9kb

Exon 1

b.

1.0kb
Handl 1.5kb

Intron
Exon 2

C od ing  region

N on -cod in g
region

bHLH d om ain

Handlm HLH

P oly-h ist id ine  stretch  

I | Alanine-rich stretch

B a s ic  dom ain  

H elix-loop-helix  dom ain

□  HAND dom ain

MNLVGSYAHHHI 

216 BUSHPPHPMLHEP  

FLFGPASRCHQER  

PYFQSWLLSPADAA  

PDFPAGGPPPTTAV  

AAAAYGPDARPSQ  

SPGRLEALGSRLPK  

RKGSGPKKERRRT  

ESINSAFAELRECIP  

NVPADTKLSKIKTL 

RLATSYIAYLMDVL 

AKDAQAGDPEAFK  

AELKKTDGGRESK  

RKRELPQQPESFPP  

ASGPGEKRIKGRT<3 

WPQQVWALELNQ

Figure 1.1. The structure of the murine H andl gene (a) and encoded protein (b).

Murine Handl comprises two exons o f 0.9kb and l.Okb in length, separated by a 1.5kb intron (see key 

for details; a). The encoded Handl protein, of 216 residues and whose sequence is listed, contains 

several motifs including the bHLH domain (shown in bold; see key for details; b).
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H d l  M N L V G S Y A B M B B s HPPHPM LHEPFLFG PA SR C -H Q ER PY FQ SW LLS-PA D A A PD FPA  5 8  
H d2  MSLVGGFPHHPVVHHEGYPFAAAAAAAAAAAASRCSHEENPYFHGWLIGHPEMSPPDYSM 6 0
T w l   MMQDVSSSPVSPADDSLSNSEEEPDRQQPASGKRGARKRRSSRRSAGGSAGPGGATG 5 7
T w 2  M E E G S S S P V S P V D -S L G T S E E E L E R Q P  KRFGRKRRYSKKSS-------------------------4 0
S e x  MSFAMLRSAPPPGRYLYPEVSPLSEDEDRGSESSGSDEKPCRVHAARCG-------------------------4 9
T 1 5  MAFALLR— PVGAHVLYPDVRLLSEDEENRSESDASDQS FGCCEG-------------------------4 3

H d l  GGP-PPTTAVAAAAYGPDARPSQ-------------------------------------S P G R - L E A L G - i
H d 2  ALSYSPEYASGAAGLDHSHYGGV---------------------------------
T w l  GGIGGGDEPGSPAQGKRGKKSAGGGGGGGAGGGGGGGGGSSSGGGSPQSYEELQT|QRVMA| 1 1 7
T w 2 ---------------- EDGSPTPGKRGKK---------------------------------------------------G S PS A Q S FE E L Q S |Q R JL a] 7 1
S e x ------------- LQGARRRAGGRRAAGS----------------------------------------------- GPGPGGRPGREPR|QRHTA] 8 3
T 1 5 ------------- LEAARRGPG— PGSGR----------------------------------------------- RASNGAGPVVVVR|QRQAA| 7 5

H d l  iK K E R R R T ESlN SA FA E L R EC IPN V PA D T K L SK IK T LR L A T SY IA Y L M D V LA K D lAQAGDP 1 5 9  
H d2  |NR K ERRR TQSINSAFAELRECIPNVPADTKLSKIKTLRLATSYIAYLM DLLAKD|DQNGEA 1 6 4  
T w l  iNVRERQR T Q S L N E A F A A L R K IIP T L P S D - K L S K I Q TLKLAARYIDFLYQVLQSDlELDSKM 1 7  6 
Tw2 jN V R ER QR TQSLN EA FAA LR K IIPTLPSD -K LSKIQTLKLAAR Y IDFLYQ VLQSD jEMDNKM 1 3 0  
S e x  jNARERDRTNSVNTAFTA LRTLIPTEPADRK LSKIETLRLASSYISHLG NVLLVG|EACGDG 1 4  3 
T 1 5  |NA R ER D RTQSVNTAFTALRTLIPTEPVDRKLSKIETLRLASSYIAHLANVLLLG[PAADDG 1 3 5  

* * ; * ; *  * * •  * *  * * _  *  *  * *  *

H d l  EAFKAELKKTDGGRESKRKR-------------------------------- E L P Q Q P E S F P P A S G P G E K R I ^ t f f |  2 0 4
H d 2  EAFKAEIKKTD-VK EEKRK K-------------------------------- ELN E I L K S T V S S N D K K T ^ ^ i  2 0 5
T w l  A S C SY  VAHERLSYAFSVWRMEGAWSMSAS 2 0 5
Tw2 T S C S Y  VAHERLSYAFSVWRMEGAWSMSAS 1 5 9
S e x  QPCHSGPA FFH SG R A G SPL PPPPPPPPL A R D G G E N T Q PK Q IC T FC L SN Q R K L SK D R D R K - 2 0 2  
T 1 5  Q P C F R  AAGGGKSAVP----------------- AADG R QPRSICTFCLSNQRKGGSRRDLGG 1 7  9

H d l   2 1 6
H d 2  p^QHVWALELKQ 2 1 7
T w l  H-------------------------------------2 0 6
Tw2 H-------------------------------------1 6 0
S e x ------------------T A I R S -------2 0 7
T 1 5  SCLKVRGVAPLRGPRR 1 9 5

Figure 1.2. H andl belongs to the Twist subfamily of bHLH transcription factors.

The mouse Handl protein sequence was aligned with Hand2 and selected members of the Twist 

subfamily o f bHLH transcription factors (Twistl, Twist2 (formerly known as Paraxis), Scleraxis (Sex) 

and Transcription Factor 15 (Tcfl5; formerly known as Dermo-1). Conservation, which is particularly 

striking in the bHLH domain (boxed), is as follows: * absolutely conserved between sequences, : 

conserved amino acid substitutions,. semi-conserved amino acid substitutions. Note the asparagine-to- 

proline substitution in the Handl basic domain (highlighted in red), the conserved serine and threonine 

residues in the bHLH domains o f all Twist subfamily members (highlighted in yellow) and that the 

closely-related Hand2 protein lacks the N-terminal poly-histidine stretch present in Handl (highlighted 

in blue). The C-terminal HAND domain, present in Handl and Hand2, is also indicated (highlighted in 

purple). These alignments were produced using the Clustal W program version 1.82 

(www.ebi.ac.uk/clustalw/L Hdl: Handl, Hd2: Hand2, Twl: Twistl, Tw2: Twist2, Sex: Scleraxis, 

T15: Tcfl5.
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The primary sequence of the Handl bHLH domain is 47% identical to that in 

Twistl and 87% identical to that in another Hand factor, Hand2 (reviewed by Firulli, 

2003). Handl has a low sequence identity outside of the bHLH domain, being most 

closely-related to the neurogenic bHLH factor Henl (Brown and Baer, 1994). Handl 

notably contains several other unique domains (Figure 1.1b), including a 7-residue 

poly-histidine stretch and regions rich in alanine and proline residues. These are in 

addition to the highly-conserved, hydrophobic ‘Hand domain’ at its C-terminus that it 

shares with Hand2. However the roles of these motifs are largely uncharacterised.

The structure of the Handl protein differs markedly between species (Figure 

1.3). The oldest definitive orthologue is in Drosophila, which possesses only a single 

Hand gene and which is equally divergent from murine Handl and Hand2. However, 

the Drosophila Hand gene differs in structure to the Hand genes of higher organisms 

in that it possesses 4 exons and has a highly-divergent N-terminus (Kolsch and 

Paululat, 2002). The N-terminus shows no amino acid identity with the equivalent 

region of vertebrate Handl or Hand2, and as such is unlikely to be crucial for 

biological function having been lost during evolution through genetic drift (reviewed 

by Firulli, 2003). Furthermore, Drosophila Hand, unlike mammalian Handl, neither 

encodes the N-terminal poly-histidine stretch nor the alanine-rich motif. This 

suggests that Handl has acquired novel function(s) since the divergence of 

invertebrates and vertebrates.

The single zebrafish Hand gene is most closely-related to mammalian Hand2 

(Angelo et al., 2000; Yelon et al., 2000). This suggests that Hand2 is the ancestral 

gene of the subclass from which Handl was derived. Indeed, Handl and Hand2 map 

to human chromosomes 5q33 and 4q33 respectively, regions that possess at least 13 

pairs of paralogous genes (reviewed by Lundin, 1993). This suggests that part of 5q 

containing Handl likely arose from the portion of 4q containing Hand2 in a 

tetraploidisation event (Knofler et al., 1998). This probably occurred some time 

between the divergence of fish and amphibians, since the latter possess two Hand 

genes. Notably, the cardiac phenotype of HandlK0IK0 (cardiac); Hand2KOIKO mice is 

less severe than that of the zebrafish hands o ff mutant (McFadden et al., 2005). This 

suggests that mammalian Hand genes have acquired further functions during the 

evolution of the four-chambered heart from the ancestral two-chambered fish heart.
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MmHdl
H s H d l
X t H d l
MmHd2
H s H d 2
D rH d 2
DmHd

MmHdl
H s H d l
X t H d l
MmHd2
H sH d 2
D rH d 2
DmHd

 MNLVGSYAHHHHHHHSHPPHPMLHEPFLFGPASRC-HQERPYFQSWLLSPADAAP-D 5 5
 MNLVGSYAHHHHHHHPHPAHPMLHEPFLFGPASRC-HQERPYFQSWLLSPADAAP-D 5 5
MQTMNLIGSYQHH------------------------ M M PD PFIFSPGSR C -H QER PYFQG W VLNPGEVSP-D 47
 MSLVGGFPHHPVVHHEGYPFAAAAAAAAAAAASRCSHEENPYFHGWLIGHPEMSPPD 57
 MSLVGGFPHHPVVHHEGYPFAAAAAAAAAAAASRCSHEENPYFHGWLIGHPEMSPPD 57
 MSLVGGFPHHPVMHHDGYSFAAA-------------------- SR C -H E E PP Y F H G W L IS H P E M SPP D  47
----------------------------------------------------------------MFKNSVALTC— EYSTMYYNSIYNTSNMFDMK 3 0

★  •

F  PAGGPPPTTAVAAAAYGPDARPSQSPGRLEALGSRLPK
F ----- PAGGPP PAAAAAATAYGPDARPGQS PGRLEALGGRLGR
F ----- PA Q PP---------------YSPEYGAVVGPSQTPGRMETLGGKLGR
YSMALSYSPEYASGAAGLDHSHYGGVPPGAGPPGLGGPRPVK 
YSMALSYSPEYASGAAGLDHSHYGGVPPGAGPPGLGGPRPVK 
YTMAPSYSPEYSTGAPGLDHSHYGGVP-GAGAVGMG-PRTVK 
H--------------------------------SESQVQQQIYNTSHLGYVPTSNTRIVK

R KG SGPKK ERRRTESINS
R KG SGPKK ER R R TESINS
R KG APPKK ER R R TESINS
RRGTANRKERRRTQSINS
RRGTANRKERRRTQSINS
RRPTAN RKERRRTQSIN S
KRNTANKKERRRTQSINN

112
112
98
1 1 7
1 1 7
1 0 5
7 6

* * * * * * . * * *

MmHdl a f a e l r e c i p n v p a d t k l s k i k t l r l a t s y i a y l m d v l a k d |̂ QAGDPEAFKAELKKTDGG 1 7 2
H s H d l a f a e l r e c i p n v p a d t k l s k i k t l r l a t s y i a y l m d v l a k d |[a q s g d p e a f k a e l k k a d g g 1 7 2
X t H d l a f a e l r e c i p n v p a d t k l s k i k t l r l a t s y i g y l m d v l a k d |s e p g g t e g f k a e l k k v d g - 1 5 7
MmHd2 a f a e l r e c i p n v p a d t k l s k i k t l r l a t s y i a y l m d l l a k d |d q n g e a e a f k a e i k k t d v k 1 7 7
H s H d 2 AFAELRECIPNVPADTKLSKIKTLRLATSYIAYLMDLLAKD|dQNGEAEAFKAEIKKTDVK 1 7 7
D rH d 2 AFAELRECIPNVPADTKLSKIKTLRLATSYIAYLMDILDKDl^QNGETEAFKAEFKKTDAK 1 6 5
DmHd AFSYLREKIPNVPTDTKLSKIKTLKLAILYINYLVNVLDGDl LDPKG— G FR A E L K PV S R - 1 3 3

* * ;  * * *  * * * * * ; * * * * * * * * * * ; * *  * *  * * : : ; * * . * ; * * ; *

MmHdl R E S K R K R E L P Q Q P E S F P P A S G P G E K R l | |U W f l M ^ H i f @ £ i i H  2 1 6
H s H d l  RESKRKREL-QQHEGFPPALGPVEKRIKGRTGWPQQVWALELNQ  2 1 5
X t H d l   KRRREP-QPTEGYWGAAPTGEKKLKGRTGWPQQVWALELNP  1 9 7
MmHd2 -E E K R K K E L -----NEILKSTVSSNDKKTKGRTGWPQHVWALELKQ  2 1 7
H s H d 2  -E E K R K K E L -----N E I L K S T V S S N D K K T M H H H B B B B B I  2 1 7
D r H d 2  -EERRKKEM-----NDVLKSSGSSNDKKIKGRTGWPQHVWALELKQ 2 0 5
DmHd  K I C S E K -----K H C L K S E I Q N V P L S T B M f f l H B B g ^ g H R E H N  1 7 4

*  * * * * * * * *  * * *  * *

Figure 1.3. Hand protein sequence is conserved between diverse species.

Handl, Hand2 or Hand protein sequences from mouse, human, frog, zebrafish and fruit fly were 

aligned as in Figure 1.2. Conservation, which is particularly striking in the bHLH domain (boxed) as 

well as in the so-called C-terminal Hand domain (highlighted in purple), is as follows: * absolutely 

conserved between sequences, : conserved amino acid substitutions, . semi-conserved amino acid 

substitutions. The conserved serine and threonine residues in the bHLH domains o f all Hand factors 

are also highlighted, in yellow. Mm: Mas musculus, Hs: Homo sapiens, Xt: Xenopus tropicalis, Dr: 

Danio rerio, Dm: Drosophila melanogaster; Hdl: Handl, Hd2: Hand2; Hd: Hand.

1.1.2. Overview of H andl function

The first insights into Handl function were gained by over-expressing Handl 

in mouse blastomeres (Cross et al., 1995) and via antisense experiments in chicks
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(Srivastava et al., 1995). These respectively suggested an involvement of Handl in 

placentation (this chapter, section 1.2) and cardiac morphogenesis (section 1.3). More 

recent studies have also implicated a role for Handl in the adult heart (section 1.3.3) 

and in the development of other tissues, particularly those with a neural crest 

contribution (section 1.4).

1.1.3. Handl regulation

Despite the cloning of the Handl gene over a decade ago, the mechanisms 

that regulate its activity during embryogenesis remain largely unknown. Investigating 

how the developmental activity of Handl is regulated has proven difficult in vivo due 

to early embryonic lethality following loss-of-function (Riley et al., 1998; Firulli et 

al., 1998). In vitro analyses using cell lines in which Handl is endogenously 

expressed has also been difficult. Few cardiac cell lines exist and trophoblast stem 

(TS) cells are difficult to maintain and manipulate in culture (S. Tanaka, personal 

communication). A better understanding of the mechanisms of Handl regulation 

could nevertheless provide valuable insight into the underlying cellular causes of 

defective placentation and idiopathic congenital heart disease (CHD). Moreover, 

neither mutations in human Handl, nor chromosomal rearrangements involving the 

Handl gene, have been identified in a disease setting. This implicates Handl as an 

excellent candidate for mutations in cis-acting sequences or defects in its upstream 

regulation that could lead to placental failure or CHD in humans.

1.1.3.1. Transcriptional regulation of Handl

A region of the human HAND1 promoter, spanning 274bp of sequence 

upstream of the transcriptional start site, has been defined (Vasicek et al., 2003). This 

contains several cis-acting elements that convey both positive and negative 

transcriptional effects on the downstream gene. These include four GC-rich 

sequences, which are bound by members of the specificity protein (Sp) transcription 

factor family, a CCAAT box, bound by the alpha-CAAT binding factor (a-Cbf), and 

several CG-rich recognition sequences for Egr transcription factors. Interestingly, Sp 

family transcription factors have recently been implicated in controlling Handl
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expression in rodent trophoblast (Takeda et al., 2007). Alignment studies performed 

by another group have identified a highly-conserved 119bp enhancer element 63.7kb 

upstream of the HAND] start codon, termed the shared enhancer region 5 (SER5) (P. 

Riley, unpublished data). SER5 fused to GFP directed reporter gene expression 

predominantly in the zebrafish heart. This suggested that this enhancer may be bound 

by as-yet unidentified proteins to regulate the HAND1 gene during cardiac 

morphogenesis. This is reminiscent of a right ventricle- (RV-) specific enhancer 

upstream of Hand2, shown to be bound by Gata factors (McFadden et al., 2000), and 

of a branchial arch-specific Hand2 enhancer, which is responsive to Endothelin-1- 

dependent signalling (Charite et al., 2001).

Notably, unlike some other bHLH factors such as MyoD, HAND1 expression 

is thought to not be subject to auto-regulation, as HAND 1-binding sites are not 

present within the HAND1 promoter (Vasicek et al., 2003). As further confirmation 

of this, Handl promoter activity is not affected by disruption of the murine Handl 

coding region (Firulli et al., 1998; Riley et al., 2000). Namely, the expression of a 

lacZ or luciferase reporter gene, knocked into the Handl locus in a targeted ES cell 

line, recapitulates that of endogenous Handl.

Several studies suggest that signalling molecules modulate Handl expression 

in vivo. This presumably occurs via their ultimate activation of transcription factors 

whose target genes include Handl. One study used animal cap explants to show that 

the bone morphogenetic proteins 2 and 4 (Bmp2 and Bmp4) can induce Handl 

expression in the developing Xenopus heart (Sparrow et al., 1998). Importantly, this 

effect was blocked by the co-expression of a dominant-negative Bmp receptor. 

Related to this finding, ectopic Bmp4 signalling induced the expression of Handl in 

non-neural crest-derived cells in the chick oesophagus and gizzard (Wu and Howard,

2002). Furthermore, implantation of beads soaked in Bmp2 into the chick limb 

mesoderm up-regulated Handl (Fernandez-Teran et al., 2003). Thus Bmps, which 

generally act to ventralise tissue, may be general regulators of Handl expression.

In Xenopus embryos treated with a retinoic acid (RA) antagonist the domain 

of Handl expression is restricted, and may in part underlie the defective cardiac 

development of these embryos (Collop et al., 2006). Additionally, Et-1- (endothelin-
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7)-null embryos have fewer Handl transcripts in the neural crest-derived pharyngeal 

arch mesenchyme than wild-type embryos (Thomas et al., 1998a). Related to this, 

Ga.c/Gan-null embryos, which lack a pair of G-protein coupled receptors that 

transduce Endothelin-1 signalling, are similarly down-regulated for Handl in the 

pharyngeal arches (Ivey et al., 2003). Additionally, signalling cascades downstream 

of leukemia inhibitory factor (Lif) have been suggested to up-regulate genes whose 

products promote rodent trophoblast giant cell differentiation, including I-mfa and 

Handl (Takahashi et al., 2003). Finally, the study by Sparrow and colleagues also 

showed that high levels of Handl expression were detected in animal cap explants 

treated with high doses of the TGF-P family member, Activin A (Sparrow et al., 

1998).

It is also possible that Handl is regulated by Notch signalling. The expression 

of the three hairy-related bHLH transcription (Hrt) factors, also known as hairy and 

enhancer-of-split related with YRPW motif (Hey) factors, is dependent on Notch 

signalling (Steidl et al., 2000). Interestingly Hrtl, Hrt2 and Hrt3 share with Handl 

several structural and functional features, can interact with Handl and are co

expressed with Handl in the developing heart (Firulli et al., 2000). Related to this, 

Handl interacts with the factor Mastermind-like 2 (Maml2), a trans-activator of the 

Notch signalling pathway (P. Riley, unpublished data). Maml2 associates with Notch 

ligands and functions to activate transcription of the genes encoding the Handl- 

related Hrt bHLH factors including Hrtl (Wu et al., 2002). However, the functional 

significance of Handl involvement in Notch signalling to date remains unknown.

No transcription factor has yet been shown to directly activate vertebrate 

Handl transcription, either in the heart or the other tissues in which it is expressed. 

The expression of the Drosophila Hand gene is regulated by three major transcription 

factors that control cardiogenesis and haematopoiesis, namely the Nkx-like factor 

Tinman and the Gata factors Pannier and Serpent (Han and Olson, 2005). 

Interestingly these act through a cardiac- and haematopoietic-specific enhancer 

upstream of the gene. The regulation of Drosophila Hand by Gata factors is 

reminiscent of the regulation of murine Hand2 in the developing mouse heart from a 

right ventricle-specific enhancer (McFadden et al., 2000). However, to date, Gata 

factors have not been implicated in the regulation of Handl.
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Circumstantial evidence suggests that the transcription factors Nkx2.5 and 

Mashl, and the co-activators Fog-2 and Clp-1, may directly or indirectly regulate the 

cardiac expression of Handl in vertebrates. In several cases Handl is down-regulated 

in its native tissues in mice lacking these factors and/ or these animals exhibit cardiac 

phenotypes and modified gene expression profiles reminiscent of those in tetraploid- 

rescued Handl-null mouse hearts (Biben and Harvey, 1997; Ma et al., 1997; Riley et 

al., 1998; Tanaka et al., 1999; Tevosian et al., 2000; Bruneau et al., 2001; Huang et 

al., 2004). Other transcription factors have also been inferred to regulate Handl 

expression. For example, ectopic expression of normally left ventricular-restricted 

Tbx5 in the right ventricle induces ectopic Handl expression in the right ventricle 

(Takeuchi et al., 2003).

The Nkx2.5-null mouse is a good example of a mutant whose cardiac 

phenotype and gene expression pattern bears similarity to those of the tetraploid- 

rescued Handl-nv\\ mouse (Lyons et al., 1995; Biben and Harvey, 1997; Tanaka et 

al., 1999). Mice lacking Nkx2.5 exhibit defective heart tube looping, impaired 

ventricular myocardial trabeculation and are down-regulated for Mlc2v expression in 

their hypoplastic left ventricle. Importantly, Handl transcripts are lacking on the left 

side of the primitive heart tube in these embryos, implicating Nkx2.5 in the regulation 

of Handl expression. As further evidence for a functional link between Nkx2.5 and 

Handl, mice lacking cardiac expression of both Handl and Hand2 exhibit severe 

cardiac deformities reminiscent of an Nkx2.5-/ Hand2-double knockout mouse 

(Yamagishi et al., 2001; McFadden et al., 2005). Interestingly, the expression of 

Nhc2.5 is repressed in response to Handl over-expression in vivo (McFadden et al., 

2005). In contrast, Handl-null embryoid bodies (EBs), three-dimensional aggregates 

of cardiomyocytes generated by differentiating embryonic stem (ES) cells in culture, 

have a significantly elevated level of Nkx2.5 transcripts (Riley et al., 2000). These 

observations suggest that, although Nkx2.5 expression precedes that of Handl in vivo 

and in differentiating EBs, Handl may regulate Nkx2.5 transcription in a feedback 

loop.
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1.1.3.2. Interaction of Handl with other factors

The activity of a transcription factor is commonly modulated by its interaction 

with other proteins and Handl is no exception. As a lineage-restricted (class B) 

bHLH transcription factor, Handl, at least in vitro, conforms to the classic bHLH 

transcription factor paradigm (Hollenberg et al., 1995; reviewed by Massari and 

Murre, 2000). This states that to become transcriptionally-competent, Handl must 

heterodimerise with a near-ubiquitous (class A) bHLH factor. These factors can be 

either the E-factor products of the E2A gene (E l2 and E47), or the ubiquitous 

proteins Alfl or Itf2. Indeed, Handl was originally cloned by way of a yeast two- 

hybrid (Y2H) assay in which the Drosophila Daughterless (Da) bHLH protein, the fly 

counterpart of mammalian E-proteins, was used as bait (Hollenberg et al., 1995). The 

bHLH heterodimerisation paradigm is reliant on an interaction between the HLH 

domains of Handl and its partner. This event juxtaposes the two adjacent basic 

domains to form a dimeric DNA-binding motif (Figure 1.4).

Handl does not wholly conform to the classic bHLH paradigm, however. In 

vitro a heterodimer of Handl and an E-factor can bind a so-called bipartite Thing 1- 

(Thl-) or D-box site (CGTCTG), upstream of its target genes (Hollenberg et al., 

1995; Knofler et al., 2002). Notably the Thingl-box consensus sequence is a 

degenerate version of the canonical E-box sequence (CANNTG), bound by most 

other class B-class A heterodimers and by E-factor homodimers (Chiaramello et al., 

1995; Hollenberg et al., 1995; Sigvardsson et al., 1997). The binding of Handl to a 

degenerate E-box may be due to two unusual features of the Handl DNA-binding 

domain. Firstly, the Handl basic domain is more positively-charged (contains more 

lysine (K) and arginine (R) residues) than those in other, even closely-related, bHLH 

proteins (for example in Handl, Ki0iKERRRi06, but in Twistl, V 119RERQR124). 

Secondly, the basic domain of Handl contains an atypical proline residue, which is 

an asparagine in most bHLH factors, including other members o f the Twist subfamily 

(Figure 1.2). This unusual feature has been associated with bHLH factors that 

similarly bind DNA through non-canonical E-boxes such as the N-box. For example, 

it is also present in the Drosophila bHLH factors enhancer-of-split (E(Spl)) and hairy 

(h) (Garrell and Campuzano, 1991) as well as the mammalian Scleraxis (Atchley and 

Fitch, 1997), Stral3 (Boudjelal et al., 1997), and hairy-related transcription (Hrt)
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factors (Ishibashi et al., 1993). Indeed, the substitution of a proline for the asparagine 

in the basic domain of MyoD disrupts its binding to E-boxes (Davis et al., 1990).

Most class B bHLH proteins, particularly those expressed in a single cell type 

such as the myogenic factors, are unable to homodimerise. These factors either 

heterodimerise with E-factors to enhance transcription (Massari and Murre, 2000) or 

form heterodimers with Id and Misti factors to repress transcription (Jen et al., 1997; 

Lemercier et al., 1998). However Handl is expressed in a broad range of tissues, 

with the potential for more complex, post-translational control mechanisms to 

determine its target genes in a given cell type. Consistent with this, Handl is known 

to interact with a wide range of class B bHLH factors (Table 1.1).

The interaction of Handl with partners beyond class A bHLH factors, in 

contrast to the classic bHLH factor paradigm, was first inferred over a decade ago. 

For example, whilst the Placental Lactogen-I (PL-1) promoter was activated by 

Handl over-expression in transfection assays in vitro, this effect was abolished upon 

Id-1 co-expression (Cross et al., 1995). Id-1, which encodes a HLH factor lacking the 

basic domain and which can therefore inactivate bHLH factors by forming a complex 

unable to bind DNA, is expressed at high levels in Rcho-1 stem cells but is down- 

regulated during TG cell differentiation (Cross et al., 1995; Takeda et al., 2007). 

Thus it is possible that Handl and Id-1 interact during the early stages of trophoblast 

differentiation and that this negatively-regulates Handl activity.

By conducting a yeast two-hybrid (Y2H) screen with Handl as bait, Firulli 

and colleagues confirmed that the Hand factors have ‘promiscuous’ dimerisation 

properties (Firulli et al., 2000). This and a later study by the same authors identified 

interactions between Handl and the Hrt (Hey) factors (Firulli et al., 2000) and the 

closely-related Twistl factor (Firulli et al., 2005). Handl also binds Mashl, forming 

a heterodimer that may exist in vivo as the two bHLH factors are co-expressed in the 

autonomic nervous system (Bounpheng et al., 2000). However, no functional effect 

was attributed to this interaction. Handl can also form a heterodimer with MyoD 

(Bounpheng et al., 2000; Firulli et al., 2000), although this is likely biologically- 

irrelevant as the factors are not co-expressed in vivo. The bHLH factors with which 

Handl has been shown to interact are summarised in Table 1.1a.
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Some studies suggest that Handl can also interact with non-bHLH factors in a 

tertiary fashion (Hill and Riley, 2004, Yamada et al., 2005). That is, such an 

interaction can occur concomitantly with the obligate binding of Handl to a bHLH 

partner. As such, tertiary interactions are likely to involve regions outside of the 

Handl HLH motif. Although the biological significances of most of these 

interactions are unclear, an exception is the interaction of Handl with the LIM 

domain-containing protein Fhl2. This factor has been shown to differentially regulate 

the trans-activational activity of Handl depending on its dimerisation status (Hill and 

Riley, 2004). Specifically, whilst Fhl2 represses Handl-E-factor-dependent 

transcriptional activity of a mock Handl target gene, it had no effect on Handl- 

Handl homodimer-induced transcription. However, the mechanism by which Fhl2 

interferes with Handl-E-factor activity is currently unclear as the factor did not 

impact on heterodimer formation or DNA binding (Hill and Riley, 2004). Non-bHLH 

factors with which Handl interacts are summarised in Table 1.1b.

The Y2H screen conducted by Firulli and colleagues also identified several 

Handl-interacting proteins with high sequence identity to Handl itself, suggesting 

that the transcription factor can function as a homodimer in vitro (Firulli et al., 2000). 

Handl homodimers were later shown to be transcriptionally-competent by co- 

immunoprecipitation and mammalian two-hybrid studies (Scott et al., 2000). 

However the DNA binding affinity of Handl homodimers was an order of magnitude 

lower than that of Handl-E-factor heterodimers. This suggests that these homodimers 

must be associated with other proteins in a higher-order complex to sufficiently 

enhance their DNA-binding affinity. Nevertheless, tethered Handl homodimers can 

drive the differentiation of trophoblast stem (TS) cells into trophoblast giant (TG) 

cells in culture to a degree similar to that of the Handl monomer (Hu et al., 2006). 

Furthermore, Handl homodimer knock-in mice develop normally until E l4.5, 

suggesting that Handl can act exclusively as a homodimer to regulate early 

developmental processes (Hu et al., 2006).

Based upon the high degree of amino acid identity between Handl and Hand2 

(87% amino acid identity between the bHLH regions), and the fact that Handl can 

homodimerise, it was not surprising to find that these factors can interact (Firulli et 

al., 2000). Handl-Hand2 heterodimers have been hypothesised to play a role in the
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formation o f  the interventricular septum (IVS) o f  the heart, based on their 

complementary expression domains in ventricular chambers that intersect at the 

interventricular groove (Firulli et al., 2001; reviewed by Firulli, 2003). Collectively, 

these findings reveal that Handl has a broad dimerisation profile. This may explain 

how this widely-expressed factor regulates discrete cohorts o f  genes in different 

tissues. For example, Handl may bind a trophoblast giant (TG) cell-specific bHLH 

factor during TG cell differentiation that directs Handl binding to the promoters o f  

TG cell-specific genes. Crucially, these genes would not be regulated by Handl in the 

other lineages in which it is expressed during embryogenesis, by virtue o f  their 

lacking expression o f the TG cell-specific factors to which Handl binds.

f \  L oop  

Helix

B a s ic  d o m a in

xxxxxx xxxxxx Lineage Specific  Gene
C G T C T G C A N N T G

Figure 1.4. The bHLH factor heterodimerisation paradigm.

As a lineage-restricted (class B) bHLH transcription factor, Handl conforms to the classic bHLH 

transcription factor heterodimerisation paradigm. This states that to become transcriptionally- 

competent, Handl (blue protein) must bind a near-ubiquitous (class A) bHLH factor (red protein). The 

paradigm is reliant on an interaction between the HLH domains o f Handl and its partner. This 

juxtaposes the two basic domains from each factor to form a dimeric DNA-binding motif, such that the 

E-factor recognises the E-box CANNTG and Handl the degenerate Thingl-box CGTCTG.
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Table 1.1. Factors known to interact with murine Handl. 

(a) bHLH factors

Factor Target genes/ function of complex Reference(s)
E-factors
(El 2/ E47/ALF1)

Unknown.
May activate the PL-1 promoter.

Cross et al., 1995. 
Hollenberg et a l,  1995.

Id-1 Handl repression. Cross et al., 1995.

MyoD Handl repression. Bounpheng et al., 2000. 
Firulli et a l, 2000.

Mashl Handl repression.
May regulate ANS development.

Bounpheng et al., 2000. 
Firulli et a l, 2000.

Hand2 Unknown.
May regulate IVS formation.

Firulli et aL, 2000. 
Reviewed by Firulli (2003).

HRT family (1-3) Unknown. Firulli et al., 2000.

Twistl Unknown. Firulli et al., 2005.

Handl Unknown.
May promote TG cell differentiation.

Firulli et al., 2000. 
Scott et al., 2000. 
Hu et al., 2006.

PL-l: Placental lactogen-1, ANS: autonomic nervous system, IVS: interventricular septum.

(b) Non-bHLH factors

Factor Target genes/ 
function of complex

Handl binding 
domain(s)

Reference(s)

I-rafa Unknown. Cysteine-rich I-mfa domain. Kraut et al., 1998.

Nkx2.5 Unknown. Unknown. Thattaliyath et al, 2002b.

B566* Handl dephosphorylation. Multiple regions. Firulli e ta l ,  2003.

Fhl2 Handl-El 2 repression. LIM domain. Hill and Riley, 2004.

Mef2, Gata Activate Nppa expression**. Unknown. Morin et al., 2005.

Soxl5 Unknown. HMG box domain. Yamada et al., 2006.

MamI2 Unknown. Unknown. P. Riley, unpublished data
*As part of the Protein Phosphatase 2A (PP2A) enzyme.
**Nppa encodes the Atrial Natriuretic Factor/ Peptide (Anf/ Anp).
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1.1.3.3. Post-translational modification of Handl

Covalent modification is a cellular mechanism that is widely-used to 

modulate the activity of transcription factors, including members of the bHLH super

family. For example, homo-cysteine disulphide linkage of E-protein homodimers 

stabilises these complexes during haematopoiesis (Benezra, 1994; Markus and 

Benezra, 1999). However, by far the most prolific post-translational modification is 

phosphoryLation. Indeed, during myogenesis, phosphorylation of the basic domain of 

myogenic bHLH factors enhances their DNA binding affinity (Li et al., 1992; Zhou 

and Olson, 1994). Additionally, phosphorylation of MyoD facilitates its 

heterodimerisation with E l2 (Lenormand et al., 1997). It is likely that post- 

translational modification acts as a molecular ‘switch’ that dictates the target genes of 

a bHLH factor. That is, phosphorylation modulates the DNA recognition sequence of 

a bHLH factor either directly (modification of residues in the basic domain) or 

indirectly (modification of residues in the HLH domain, which ultimately affects its 

dimerisation choice).

Through Y2H and GST-pull down assays, Firulli and co-workers identified an 

interaction between Handl and the regulatory B568 subunit of protein phosphatase 

2 A (PP2A) (Firulli et al., 2003). The identification of this Handl interactor ultimately 

led to the discovery that Handl can be site-specifically phosphorylated and 

dephosphorylated at two residues in helix 1. These covalent modifications were 

furthermore shown to be biologically relevant. Handl phosphorylation at these two 

residues increases during the differentiation of rat choriocarcinoma-1 (Rcho-1) 

trophoblast stem cells into trophoblast giant cells, in part due to the down-regulation 

of B56Sexpression during this process. The authors subsequently showed that Handl 

mutants that could not be phosphorylated at these residues had different dimerisation 

affinities and biological activity to wild-type Handl (Firulli et al., 2003). Since 

phosphorylation of Handl in the HLH domain alters its dimerisation affinity, and this 

bipartite DNA sequence to which it binds, changing the binding partner of Handl 

may thus be an important step in the TG cell differentiation program. Of note, the two 

helix 1 residues phosphorylated in murine Handl (T107 and S I09) are conserved in 

murine Hand2 (T112 and SI 14) and murine Twistl (T125 and SI27; Figure 1.2). 

They are also targeted for dephosphorylation by PP2A complexes containing B56S
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(Firulli et al., 2005). Moreover, the same study showed that mutation of these 

residues in Twistl affects the affinity of the factor for Hand2 and this underlies some 

cases of Saethre-Chotzen syndrome, characterised by limb defects (Firulli et al., 

2005). Thus, control of bHLH activity by the modulation of phosphorylation is 

evolutionarily-conserved within the Twist subfamily of bHLH factors and may 

explain how they regulate different sets of target genes in distinct tissues.

1.1.4. Modes of Handl activity

As described, Handl can act as a transcriptional activator, for example when 

bound to the E-factors E12/ E47 (Hollenberg et al., 1995). However, Handl has also 

been shown to function as a repressor at both the transcriptional and post- 

translational levels in vitro (Hollenberg et al., 1995; Knofler et al., 2002). This 

repressive activity may in part be underpinned by the atypical proline residue in the 

Handl basic domain. As discussed, this unusual feature has been associated with 

bHLH factors such as Drosophila enhancer-of-split (E(Spl)) and hairy (h), and 

mammalian Scleraxis, Stral3, and hairy-related transcription (Hrt) factors, which 

have also been shown to repress transcription. In this regard Hand2, which has not to 

date been observed to repress gene transcription, possesses an asparagine in its basic 

domain (reviewed by Firulli, 2003; Figure 1.2). Whether Handl acts as a 

transcription activator or repressor is likely dependent on cell type and cofactor 

availability, bHLH protein partner and DNA-binding sequence.

1.1.4.1. Transcriptional repression by Handl

That Handl can repress transcription was first suggested by reporter assays in 

which a GAL4-Handl fusion protein repressed a reporter gene downstream of GAL4 

DNA-binding sites (Hollenberg et al., 1995). Other findings also support a role for 

Handl in negative gene control. Handl may repress Hand2 expression in the 

developing yolk sac (Bounpheng et al., 2000), and has been shown to repress Soxl5- 

dependent transcription during TG cell differentiation (Yamada et al., 2006). 

Furthermore, several genes are up-regulated in a Handl -null background, implicating 

Handl in their repression (Smart et al., 2002; Morikawa and Cserjesi, 2004).
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The domain(s) responsible for conferring a transcriptional repressive activity 

to Handl are under debate. The original report of Handl-dependent transcriptional 

repression suggested that the HLH dimerisation domain was responsible for 

repression of a reporter gene, suggesting that Handl may bind a factor, bHLH or 

possibly otherwise, that conveys repressive activity (Hollenberg et al., 1995). Morin 

and colleagues showed that deletion of the Handl N-terminus produced a hyperactive 

deletion mutant that activated a reporter gene to a greater extent than wild-type 

Handl (Morin et al., 2005). This supports the observation of Knofler and colleagues, 

who suggested the presence of a repressive domain in the Handl N-terminus (Knofler 

et al., 2002). The N-terminal poly-histidine stretch and/ or a nearby alanine-rich 

region may be candidates and indeed similar motifs are thought to confer repressive 

activities to other transcription factors (Licht et al., 1990; Shi et al., 1991; Han and 

Manley, 1993). Alternatively, Handl-mediated transcriptional repression may be a 

function of the C-terminal tryptophan-rich ‘Hand domain’. This has homology to 

hydrophobic domains in the highly-related Hrt factors that recruit the co-repressor 

protein Groucho (Fisher et al., 1996) and to motifs in hairy-related transcription 

factors that are known to confer a repressive activity (Steidl et al., 2000). Finally, the 

asparagine-to-proline substitution in the basic domain of Handl has been associated 

with transcriptional repression in the bHLH family. Notably Stral3, one o f the bHLH 

factors that share this characteristic, blocks the assembly of the basal transcription 

complex at gene promoters to achieve its repressive effect (Boudjelal et al., 1997). 

However, it is unclear at present whether Handl is able to act in this fashion to 

repress its target genes.

As a final consideration, bHLH factors closely related to Handl interact with 

and modulate the function of transcriptional modifiers. For example, Twistl inhibits 

chromatin remodelling and thus transcription by displacing histone acetyltransferases 

(HATs) such as p300 (Creb-binding protein, CBP) and p300/CBP-associated factor 

(PCAF) from promoters of its target genes (Hamamori et al., 1999). Furthermore, 

Hand2, as a component of a complex with Gata4, physically interacts with CBP to 

synergistically activate the Nppa promoter (Dai et al., 2002). It is thus plausible that 

Handl also recruits co-repressors to, or displaces co-activators from, the promoters of 

target genes. Indeed, such a function for Handl was proposed on the basis of its 

interaction with Mef2 in a transcriptional complex bound to DNA at Me£2 binding
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sites (Morin et al., 2005). In this regard, Hill and Riley proposed that the mechanism 

of action of the Fhl2 cofactor may be to displace histone acetyl-transferases from the 

Handl-E-factor heterodimer-DNA complex, but not the Handl-Handl homodimer 

transcriptional complex (Hill and Riley, 2004).

1.1.4.2. Post-translational repression by Handl

Handl can also repress the activity of other transcription factors at the protein 

level. This was first suggested by mammalian one-hybrid experiments in which 

Handl suppressed GAL4-E47-dependent transcription from consensus E-box 

sequences (Knofler et al., 2002). This post-translational repressive function of Handl 

is thought to occur via three mechanisms. Firstly, Handl can compete for the obligate 

class A bHLH binding partners of other class B bHLH factors, a mode of action not 

without precedent within the Twist bHLH factor subfamily (Spicer et al., 1996). For 

example, Handl sequesters E-factors from Mash2 during TG cell differentiation to 

repress Mash2-dependent trans-activation (Scott et al., 2000). Secondly, Handl may 

bind and inactivate other class B bHLH factors to alter the bHLH dimer pool in a 

similar way to the inhibitory Id and Misti factors during myogenesis (Jen et al., 

1997; Lemercier et al., 1998). For example, Handl inhibits the DNA binding of 

MyoD-E12 heterodimers (Bounpheng et al., 2000; Firulli et al., 2000) and Alfl 

homodimers (Bounpheng et al., 2000) in competition EMSAs and reporter assays. 

Handl achieves this by forming heterodimers with E l2, MyoD and ALF1. Finally, 

Handl can inhibit MyoD-E47 tethered heterodimers, stable complexes resistant to 

dimerisation competition from other bHLH factors or HLH factors such as the Id 

proteins (Bounpheng et al., 2000). This mechanism suggests that Handl-mediated 

repression does not require its interaction with another bHLH factor. Handl-mediated 

post-translational repression in this case may depend on competition for common 

target gene promoters or cofactors, possibly including those involved in chromatin 

remodelling, such as histone acetyl-transferases (HATs; Morin et al., 2005).
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1.1.4.3. Does Handl function as a component of a multi-subunit 

protein complex?

Studies employing Handl deletion mutants have revealed that the Handl 

basic domain, and thus the ability of Handl to bind DNA, is required for Handl 

function in Rcho-1 cells (Scott et al., 2000). However, some evidence suggests that 

Handl may activate its target genes as a component of a multi-subunit complex, often 

containing non-bHLH transcription factors.

The possibility of Handl belonging to a higher-order transcriptional complex 

was first inferred from the observation that the DNA binding affinity of Handl 

homodimers is significantly lower than that of Handl-E-factor heterodimers (Scott et 

al., 2000). This suggested that Handl associates with other proteins to enhance its 

DNA-binding and/ or trans-activational affinity. For example, the Handl-interactor 

Fhl2 is thought to act as a scaffold around which a multi-subunit complex can 

assemble to enhance downstream transcriptional events (Hill and Riley, 2004). Thus 

Handl may activate genes in a DNA binding-independent fashion. Indeed, the 

closely-related Hand2 has been shown to operate via such a mechanism with Gata 

factors and the isolated HLH domain of Handl can drive the formation o f ectopic 

digits in the developing limb bud (Dai et al., 2002; McFadden et al., 2002). This 

suggests that regions outside this protein-protein interaction domain are not required 

in some settings for Handl activity and that DNA-binding and trans-activation 

domains may be provided by other factors in a Handl-containing multi-protein 

complex.

Morin and colleagues later showed that, whilst wild-type Handl is able to up- 

regulate Nppa expression, neither a tethered Handl-Handl homodimer nor a tethered 

Handl-Itf2 heterodimer could do the same (Morin et al., 2005). Moreover, mutation 

o f a Mef2-responsive element in the Nppa promoter drastically reduced wild-type 

Handl-mediated activation (Morin et al., 2005). These observations suggest that a 

complex containing Handl and Mef2 may activate Nppa expression. This is 

particularly supported by the fact that the DNA-binding domain of Mef2 was 

sufficient for synergy with Handl at the Nppa promoter, suggesting that Handl can 

support transcriptional activation. It was further suggested that Handl may represent
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a stage-specific Mef2 cofactor. This was based on the observation that the Mef2 

binding site in the Nppa promoter contributes differentially to gene activity in 

embryonic and postnatal cardiomyocytes (Naya et al., 1999). Notably, the Handl- 

dependent activation of Nppa was similarly abrogated when a Gata element was 

mutated (Morin et al., 2005). Thus complex interactions between Handl and the non- 

bHLH transcription factors Mef2 and Gata may activate the Nppa promoter.

1.2. The role of Handl in extra-embryonic tissues

Handl plays a crucial role during the formation of the rodent placenta. The 

haemochorial placenta is the first organ to develop during embryogenesis and brings 

maternal and fetal vascular systems together to allow fetal intrauterine development. 

It is responsible for nutrient, oxygen and waste transport and also has endocrine 

functions.

Placental defects in humans give rise to a range of complications, including 

spontaneous abortion, intrauterine growth retardation (IUGR), choriocarcinoma and 

pre-eclampsia (reviewed in Redman and Sargeant, 2005; Sibai et al., 2005). Pre

eclampsia occurs in up to 10% of all human pregnancies and is characterised by 

inadequate invasion of trophoblast, the fetal component of the placenta, into the 

maternal decidua. This in turn results in aberrant remodelling of the uterine spiral 

arterioles, which leads to IUGR and oedema in the fetus and hypertension and 

proteinuria in the mother. Investigating the role and regulation of Handl during 

placentation may thus shed some light on the molecular bases for these placental 

deficiencies. Additionally placental development is an attractive model system for 

investigating the molecular bases of stem cell maintenance and differentiation. This is 

in part because TS cells are extremely well-characterised in terms of stem cell 

potency and differentiation derivatives (Carney et al., 1993; reviewed by Rossant and 

Cross, 2001).
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1.2.1. Overview of rodent placentation

The following overview will focus on stages o f murine placentation unless 

otherwise stated. The haemochorial placenta of rodents and primates is evolutionarily 

the most advanced. The distance between the maternal and fetal blood spaces is very 

small (~ 100-3 OOprn) by virtue of the fact that the fetal trophoblast cells are in direct 

contact with the maternal blood.

The placenta in rodents is derived from two major cell lineages. The first, the 

cell lineage which contributes chiefly to the placenta, is the trophectoderm (TE). This 

is composed of pluripotent trophoblast stem (TS) cells and forms the epithelial 

portions of the placenta (Carney et al., 1993; reviewed by Rossant and Cross, 2001). 

The second cell lineage that contributes to the rodent placenta is the extra-embryonic 

mesoderm, derived from the ICM, which forms the yolk sac and related structures, 

and the blood vessels of the placenta. The emergence of the TE during mouse 

development occurs when cells of the morula separate into the inner cell mass (ICM) 

and the epithelial TE population at the point of blastocyst formation (at embryonic 

day (E) 3.5). This represents the first differentiation event in the pre-implantation 

mammalian embryo. Studies have suggested that the segregation of ICM and TE cells 

is dependent on the down-regulation of Oct-4 and Nanog in blastomeres destined to 

become the TE (Nichols et al., 1998; Mitsui et al., 2003; Hough et al., 2006).

By the time the murine blastocyst implants into the uterus at E4.5, two 

separate TE populations have formed. These are the mural and polar TE. TS cells of 

the mural TE, which surround the blastocoel cavity and lack contact with the ICM, 

form a limited number (approximately 50-60) of primary TG cells (PGCs). These are 

the first differentiated cell type to arise during development. PGCs surround the 

blastocyst and facilitate the initial implantation of the blastocyst into the uterine 

tissue. This establishes the interface for subsequent formation of a network of blood 

sinuses at the periphery of the embryo, which allows the growth o f the embryo prior 

to the formation of the definitive chorio-allantoic placenta. Meanwhile, TS cells of 

the polar TE, which overlie the ICM, continue to proliferate. This is likely in 

response to mitogenic fibroblast growth factors (Fgfs), particularly Fgf4, from the
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ICM-derived epiblast of the early post-implantation embryo (Gardner and 

Beddington, 1988; Tanaka et al., 1998; Zhong et al., 2006). Fgf-dependent paracrine 

signalling via Fgf2r on the surface of the polar TS cells promotes their proliferation 

and this forms the chorion, also called the extra-embryonic ectoderm (ExE; Arman et 

al., 1998). By E5.5, the chorion matures into the ectoplacental cone (EPC), also 

known as the implanting pole. The EPC subsequently flattens and expands by the 

primitive streak stage (E7.5) into the spongiotrophoblast (SpT) layer or ‘junctional 

zone’. Both the EPC and SpT are progress zones that serve as reservoirs of diploid 

cells which progressively lose their stem cell potential. These structures ultimately 

spawn secondary TG cells (SGCs) from their outer reaches (reviewed by Rossant and 

Cross, 2001). Thus, in an E7.5 conceptus, PGCs can be found lining the implantation 

chamber at the more distal anti-mesometrial region of the conceptus up to the level of 

the EPC. In contrast, SGCs are located at the more proximal mesometrial end o f the 

conceptus arising adjacent to the EPC.

SGCs are inherently invasive and phagocytic. These are characteristics that 

are underpinned by their secretion of proteases (Peters et al., 1999; Nie et al., 2005; 

Hassanein et al., 2007) and their up-regulation of certain extracellular matrix protein 

receptors such as Alpha-7 Integrin (Sutherland et al., 1993; Damsky et al., 1994; 

Klaffky et al., 2001). This facilitates the digestion of the extracellular matrix 

surrounding the uterine epithelial cells, so enabling SGCs to invade the maternal 

deciduum. The invasive capacity of SGCs has also been recapitulated in Matrigel, a 

uterine-like synthetic basement membrane matrix (Hemberger et al., 2004). The 

ultimate purpose of decidual invasion is to establish intimate contact with the 

maternal decidua cells and to contact maternal blood sinuses by displacing maternal 

endothelial cells from vessels in the implantation site. As such, SGCs secrete 

angiogenic, vasodilatory and anti-coagulatory factors to promote maternal blood flow 

into the implantation site (Jackson et al., 1994; Weiler-Guettler et al., 1996; Achen et 

al., 1997; Yotsumoto et al., 1998). Furthermore, these cells also have endocrine 

functions. They secrete leutotrophic and lactogenic hormones such as prolactins and 

placental lactogens, which promote local and systemic adaptations in the mother that 

are necessary for embryonic growth and survival. For example, SGCs secrete 

Placental lactogen-1 (PL-1), also known as Chorionic somatomammotrophin-1 (Csh- 

1), which targets the ovary to maintain the corpus luteum and stimulate progesterone
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production, and promotes mammary gland development and lactation (Nieder and 

Jennes, 1990; Faria and Soares, 1991; Hamlin et al., 1994). The process of SGC 

differentiation is described in more detail later in this chapter (section 1.2.2).

In parallel with the process of SGC invasion, formation of the 

syncytiotrophoblast (SynT), also known as the labyrinth, takes place. This layer 

consists of villi lined with a multinucleated syncytium and is bathed in maternal 

blood. The SynT arises at approximately E8.5-9.0 when the allantois (extra- 

embryonic mesoderm-derived) fuses with the chorion (TE-derived; the process of 

chorio-allantoic fusion; Anson-Cartwright et al., 2000). Molecular signals from the 

allantois may initiate the process, supported by the fact that isolated TS cells in 

culture, which readily differentiate into TG cells in culture after Fgf4 removal, very 

rarely differentiate into SynT (Hughes et al., 2004). Although the SynT component of 

the placenta secretes hormones such as the aromatase Cypl9 (Anson-Cartwright et 

al., 2000), it is folded and branched to provide a large surface area for nutrient, 

oxygen and waste exchange. As such, fetal blood vessels from the SynT layer occupy 

the spaces in the maternal decidua left by the invading TG cells (reviewed by 

Rinkenberger and Werb, 2000). Thus by E l0.5, the mature chorionic placenta has 

formed and this is composed of three layers. The outermost layer of the placenta, that 

is the layer closest to the deciduum, is composed of SGCs. The SynT represents the 

innermost layer of the placenta, namely that closest to the embryo. Between these 

layers resides the SpT. Figure 1.5 summarises the process of murine placentation.
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Figure 1.5. Overview of murine placentation.

At E4.5 the murine blastocyst, consisting o f the mural and polar trophectoderm (mTE and pTE) and 

inner cell mass (ICM), implants into the maternal decidua. By E5.5 the mTE has differentiated into a 

limited population o f primary trophoblast giant cells (PGCs), which facilitate implantation into the 

decidual wall. The pTE meanwhile proliferates to form the chorion. By E7.5 the ectoplacental cone 

(EPC) has formed from chorionic trophoblast and secondary trophoblast giant cells (SGCs) arise from 

this to invade the maternal decidua. By E l0.5 the mature three-layered placenta has formed. SGCs 

comprise the outer layer and represent an interface with the maternal tissue, and the EPC has flattened 

to form the spongiotrophoblast (SpT), a reserve o f diploid trophoblast destined to form SGCs. The 

innermost layer, the syncytiotrophoblast (SynT), arises when the chorionic trophoblast fuses with the 

allantois, and this establishes contacts with maternal blood vessels.
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Some data have, however, challenged this rather simple model of murine 

placentation. One study suggests the existence of a fourth trophoblast cell type, so- 

called glycogen trophoblast (GlyT) cells (Adamson et al., 2002). These comprise a 

specialised sub-type of SpT cell that arise after E l2.5, once the mature, three-layered 

placenta has arisen. These express specific prolactin genes and migrate deep into the 

interstitium of the decidua to line the lumen of the maternal spiral arteries to promote 

vasculature contacts between the mother and embryo. The molecular events that 

underlie GlyT differentiation are unknown, but their numbers increase in mice 

deleted for Igf2 and p57Kip (Takahashi et al., 2000). Additionally, a recent study has 

challenged the view that SGCs are a homogeneous cell population in the rodent 

placenta. As well as the previously-recognised SGC subtype that surrounds the 

implantation site and forms the interface with the maternal decidua, Simmons and 

colleagues identified at least three other SGC subtypes, which have distinct patterns 

of gene expression and developmental origins (Simmons et al., 2007). These 

comprise spiral artery-associated SGCs, maternal blood canal-associated SGCs and a 

SGC within the sinusoidal spaces of the SynT, as well as the previously-recognised 

sub-type, classified in this recent study as ‘parietal SGCs’.

1.2.2. Trophoblast giant cell differentiation

The differentiation of TS cells into TG cells, of both the PGC and SGC 

subclasses, coincides with marked changes in cell size and cytoskeletal organisation 

(this chapter, section 1.2.2.1), the onset of endoreduplication and changes to the cell 

cycle machinery (section 1.2.2.2) and the elimination of endoreduplication inhibitors 

(section 1.2.2.3). Furthermore, there is some evidence that the process of SGC 

differentiation is modified by oxygen tension (section 1.2.2.4).

1.2.2.1. Cytoskeletal re-organisation

TG cell differentiation is accompanied by a dramatic increase in cell size, 

cytoskeletal actin re-organisation, stabilisation of cell-cell interactions and changes in 

focal adhesion formation (Parast et al., 2001; Figure 1.6). These changes are thought 

to occur in three distinct stages. Firstly, an epithelial-mesenchymal transition gives
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rise to a proliferative population of cells with strong cell-cell contacts. This is 

followed by a re-epithelialisation stage, which forms an intermediate trophoblast cell 

population that have destabilised cell-cell and cell-matrix interactions and decreased 

motility. The final phase of TG cell differentiation involves a specialised type of re- 

epithelialisation. This stabilises the cell-cell contacts and reorganises the actin 

cytoskeleton, enabling TG cells to form anchoring contacts with the decidual matrix 

(Parast et al., 2001).

Studies by Parast and colleagues characterised in detail the cytoskeletal 

changes that occur during TG cell differentiation of rat choriocarcinoma-1 (Rcho-1) 

cells, a faithful model of TS cells in culture, and freshly-explanted E7.5 EPC-derived 

trophoblast (Parast et al., 2001). Rcho-1 stem cells are small, highly-motile cells with 

patches of filamentous actin at their periphery. They also possess few, small 

peripheral focal complexes of Vinculin responsible for cell-cell interactions. Rcho-1 

TG cells are larger, immotile cells with prominent actin stress fiber bundles and 

many, large internal focal Vinculin complexes (Figure 1.6). The reorganisation of the 

cytoskeleton correlates with changes in the activity of members of the Rho family of 

small GTPases including Rho A, Racl and Cdc42. Rcho-1 stem cells have low Rho A 

but high Racl and Cdc42 activity compared to TG cells. These GTPases are thought 

to regulate cytoskeletal re-organisation through phosphorylation of EphB2/EphrinB 

(Parast et al., 2001). These cytoskeletal changes also coincide with a decrease in 

focal adhesion kinase (Fak) activity. Fak enhances integrin- and growth factor- 

mediated cell migration by turning over focal adhesions between cells and mediates 

coincident changes in E-Cadherin and specific Connexin expression (Reuss et al., 

1996). Another study reveled that the p53/56lyn kinases, which regulate cytoskeletal 

re-organisation through a phosphatidylinositol-3-kinase (PI3-K)- and protein kinase 

B (PKB)-dependent signalling cascade, are up-regulated during TG cell 

differentiation (Kamei et a l , 1997; Kamei et al., 2002).
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Figure 1.6. Rcho-1 trophoblast stem and trophoblast giant cells differ 

dramatically in terms of size and cytoskeletal organisation.

Rcho-1 trophoblast stem (TS) cells have a diameter o f approximately 20pm and have patches o f  

filamentous actin at their periphery. Rcho-1 trophoblast giant (TG) cells are larger (> 100pm in 

diameter) and have prominent actin stress fiber bundles.

I.2.2.2. E ndoredup lication  and  associated changes to  the  cell cycle 

m achinery

Both PGCs and SGCs are polyploid, possessing DNA contents o f up to a 

thousand times the haploid content (Varmuza et al., 1988). This remarkable feature 

arises because progenitor TS cells exit the mitotic cell cycle and commence 

endoreduplication (enter the endocycle) at the point o f  committing to differentiate 

(reviewed by Rossant and Cross, 2001; Cross, 2002; Figure 1.7).

Post-mitotic endoreduplication in trophoblast, which also occurs in 

mammalian hepatocytes and megakaryocytes as well as in Drosophila salivary 

glands, consists o f  repeated rounds o f DNA synthesis in the absence o f  intervening
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mitoses. Such endoreduplication-based differentiation is initiated during the second 

gap phase (G2) of the final mitotic cell cycle (MacAuley et al., 1998), and is thus 

distinct from terminal differentiation and entry into the quiescent state (GO) that 

occurs during phase G l. The length of an individual endocycle in trophoblast giant 

cells in vivo has been estimated as fourteen hours by pulse-chase experiments 

(Nakayama et al., 1998). Furthermore [3H]-thymidine incorporation experiments 

show that the rate of DNA synthesis declines during differentiation to 25% of the rate 

in proliferating TS cells (Hamlin and Soares, 1995).

Endocycling, in which the chromosomes do not condensate, likely enables the 

bulk transcription of genes whose products are crucial for uterine invasion. It may 

also allow the growth of cells beyond the limit defined by the nuclear/ cytoplasmic 

ratio that normally restricts the size of diploid cells, so permitting substantial size 

increases (MacAuley et al., 1998). Furthermore endoreduplication in trophoblast is 

thought to prevent contacts of the TG cell genome with chromosomes o f the 

phagocytosed allogenic maternal tissue. This serves to prevent an adverse immune 

response during embryogenesis (reviewed by Zybina and Zybina, 2005).

Endoreduplication in trophoblast is underpinned by marked modifications to 

the cell cycle regulation machinery (MacAuley et al., 1998; Palazon et al., 1998). 

These serve to prevent the cell from entering mitosis and so shunt it into the 

endocycle. For a cell to enter mitosis, mitotic (B-type, B1 and B2) cyclins bind 

cyclin-dependent kinases such as Cdkl to form the mitotis-promoting factor (MPF; 

reviewed by Sullivan and Morgan, 2007). For a TS cell to exit the mitotic cell cycle, 

these mitotic cyclins must therefore be completely destroyed. This is a process which 

begins in phase G2 of the final mitotic cell cycle and is normally complete by the end 

of the first endocycle (MacAuley et al., 1998; Figure 1.7).

Mitotic cyclin destruction is mediated in rodent trophoblast by the anaphase- 

promoting complex/ cyclosome (APC/C), which possesses E3 ubiquitin ligase 

activity. This complex ubiquitinates the destruction (D)-box in mitotic cyclins to 

target them for proteasomal degradation (Sudakin et al., 1995). Other events also 

block the activity of the MPF. Palazon and coworkers showed that the onset of TG 

cell differentiation coincides with translational inhibition of Cyclin B 1, resulting in

53



Chapter 1

elimination of the protein, but not the transcript (Palazon et al., 1998). Furthermore, 

the activity of Cdkl, namely the most prominent cyclin B-associated kinase, is 

reduced at the onset TG cell differentiation (MacAuley et al., 1998). These 

observations may also explain why the trophoblast cell does not initiate mitosis 

during the first endocycle, despite the persistence of cyclin B protein. Additionally 

Rcho-1 TS cells switch cyclin D isoform expression from D3 to D1 during TG cell 

differentiation (MacAuley et al., 1998). However, the reason for this is currently 

unclear.

The existence of defined endocyle S phases separated by gap phases suggests 

that endoreduplication is as carefully regulated as progression through the mitotic cell 

cycle (Sauer et al., 1995). The initiation of, and progression through, endocyclic S- 

phases involves the synthesis, degradation and subcellular trafficking of cyclins E 

and A (Palazon et al., 1998; MacAuley et al., 1998). This was confirmed by the 

phenotype of cyclin E l c y c l i n  ET1' TS cells, which are unable to undergo multiple 

rounds of DNA synthesis during endoreduplication (Geng et al., 2003; Parisi et al.,

2003). In rodent trophoblast, the endocycle-specific cyclin A- and E-associated 

kinase inhibitor p57Kip2 was subsequently shown to halt DNA replication at the end of 

endocyclic S-phases as a pre-requisite for resetting origins of replication (Hattori et 

al., 2000). This is a function that has also been attributed to the transcription factor 

Dpi (Kohn et al., 2003).

Several checkpoints are also altered coincident with the onset of TG cell 

differentiation, which is likely a consequence of the cell cycle reprogramming. For 

example, TG cells acquire insensitivity to DNA-damaging agents and do not arrest at 

the Gl/S phase checkpoint upon DNA damage (MacAuley et al., 1998). This is in 

accordance with the observed down-regulation of p53 during TG cell differentiation 

(Soloveva et al., 2004). This is also consistent with the observation of increased 

numbers of TG cells in p53-null placentae (Komatsu et al., 2007) and the fact that 

loss o fp53 induces mammalian cells to endoreduplicate (Cross et al., 1995b; Peled et 

al., 1996). Furthermore, in Rcho-1 stem cells, but not Rcho-1-derived TG cells, the 

Gl-S phase transition is sensitive to the presence of growth factors. This likely 

underlies the ability of cultured TG cells to grow in the absence of serum (Hamlin et 

al., 1994; Cross et al., 1995; MacAuley et al., 1998).
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1.2.2.3. Elimination of endoreduplication inhibitors

To commence TG cell differentiation TS cells must inactivate so-called 

‘endoreduplication inhibitors’. These factors maintain TS cell proliferation and 

diploidy. They include Snail, previously called mSna (Nakayama et al., 1998), and 

Geminin (Gonzalez et al., 2006). However, how these endoreduplication inhibitors 

are inactivated at the onset of TG cell differentiation is currently unknown (Figure 

1.7).

One of the ways in which Geminin is thought to prevent hyper-amplification 

of DNA is by blocking the assembly of the pre-replication complex. Accordingly, 

genetic ablation of Geminin promotes endoreduplication in murine blastomeres prior 

to the establishment of the TE. This has the effect of committing all cells of the 

blastocyst to the TG cell lineage (Gonzalez et al., 2006). More is known about the 

activity and mechanism of action of Snail, the mammalian homologue of the 

Drosophila Snail family member Escargot. The loss of Escargot in Drosophila leads 

to abnormal development whereby ordinarily mitotic imaginal disc cells undergo 

endoreduplication (Hayashi et al., 1993; Roark et al., 1995). Conversely, ectopic 

expression of Escargot suppresses endoreduplication in Drosophila salivary glands 

(Fuse et al., 1994). Snail expression is restricted to the proliferating TG cell 

precursors within the core of the EPC and later the SpT layer, but down-regulated 

upon SGC differentiation (Nakayama et al., 1998). This was confirmed by 

transfection experiments in Rcho-1 cells. These showed that Snail over-expression 

blocked, whilst its antisense-mediated knock-down promoted, TG cell differentiation 

(Nakayama et al., 1998). Furthermore, stable Rcho-1 cell transfectants for Snail 

underwent TG cell differentiation at a markedly-reduced level (Nakayama et al., 

1998).

Snail is a zinc finger transcriptional repressor that is thought to directly 

repress transcription, perhaps of pro-endoreduplicative genes (Nakayama et al., 

1998). Indeed, Snail possesses an N-terminal seven-amino-acid SNAG domain, 

which likely recruits co-repressor complexes to the promoter of the gene(s) to be 

repressed (Grimes et al., 1996; Cano et al., 2000). Otherwise Snail may compete 

with and/ or displace pro-endoreduplicative bHLH factors from E-box DNA elements
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(Fuse et a l , 1994; Nakayama et al., 1998). Although it was suggested that Handl 

may be one of these bHLH factors (Nakayama et al., 1998), Handl is known to bind 

the degenerate E-box Thing-1 site in vivo (Hollenberg et al., 1995). Additionally, 

Snail also promotes the expression of mitotic cyclins, via an as-yet unidentified 

mechanism. Over-expression of Snail in Rcho-1 stem cells results in markedly- 

increased levels of cyclin A and cyclin B transcripts, which would be inferred to drive 

mitotic entry at G2 in preference to the initiation of endoreduplication (Nakayama et 

a l , 1998).

1.2.2.4. Modification of trophoblast giant cell differentiation by 

oxygen tension

Implantation o f the murine blastocyst at E4.5 occurs in hypoxic conditions (3- 

5% oxygen) because maternal blood flow to the implantation site is low. However, 

when the chorio-allantoic placenta develops and establishes connections with the 

maternal vasculature at E9.0-E10.0 in mice, the placental environment becomes 

relatively oxygen-rich (8.6% oxygen; Rodesch et a l , 1992).

Hypoxia is thought to promote the rapid proliferation of diploid trophoblast 

cells needed to amass the quantity of cells required for formation of the placenta, at 

least in humans (Genbacev et a l , 1997; Caniggia et a l , 2000). Ectopically increasing 

oxygen tension inhibits diploid trophoblast renewal and promotes precocious invasive 

trophoblast differentiation (Genbacev et a l , 1997; Caniggia et a l , 2000). 

Interestingly, the heterodimeric hypoxia-inducible factor (HIF), up-regulated by low 

oxygen tension, is a negative regulator of TG cell differentiation (reviewed by Fryer 

and Simon, 2006). Predictably, therefore, mice lacking HIF-1 subunits are embryonic 

lethal due to placental defects characterised by precocious TG cell differentiation at 

the expense of the formation of other placental layers (Kozak et a l , 1997; Adelman 

et a l , 2000; Cowden-Dahl et a l , 2005). These observations are in agreement with the 

hypothesis that Mash2, which encodes a bHLH factor required for TS cell 

maintenance, is up-regulated either directly or indirectly by HIF in vitro (Cowden- 

Dahl et a l , 2005). Interestingly, HIF-1 is thought to regulate genes that may play a 

role in the development of pre-eclampsia. These include the gene encoding TGF-p3,
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an inhibitor of TG cell invasion, whose expression persists beyond the first trimester 

in pre-eclampsia and may underlie the failure of TG cell invasion (Cannigia et al., 

2000).

Interestingly, aspects of invasive trophoblast differentiation are compromised 

in Rcho-1 cells and other trophoblast stem cell models induced to differentiate under 

low oxygen tension (Gultice et al., 2006; Lash et al., 2007; Takeda et al., 2007). 

Molecularly, Rcho-1 cells cultured under hypoxia maintained the TS cell-specific 

expression of Id-1 and Id-2, which are down-regulated during Rcho-1 TG cell 

differentiation in normoxic conditions (Cross et al., 1995). This is in agreement with 

a study that demonstrated that hypoxia prevents the down-regulation of ID-2 during 

human invasive trophoblast differentiation (Janatpour et al., 2000). The Id factors 

may thus persist to inhibit Handl or other bHLH factor activity, which may be 

responsible for a block to TG cell differentiation. Furthermore, despite retaining their 

characteristic gene expression profile, low oxygen correlated with reduced PL-I and 

Palladin protein production. The lack of Palladin, normally expressed at high levels 

in TG cells and which is required for the formation of focal adhesions, cell-cell 

junctions and stress fibres (Parast and Otey, 2000), resulted in cytoskeletal 

disorganisation.
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Figure 1.7. The molecular basis of trophoblast giant cell differentiation.

The commitment o f trophoblast stem (TS) cells to trophoblast giant (TG) cell differentiation occurs 

during phase G2 o f the final mitotic cell cycle. This is concomitant with cells initiating 

endoreduplication, the replication of genomic DNA in the absence o f intervening mitoses to produce 

polyploid cells. As a pre-requisite for endocycle entry, the anaphase-promoting complex/ cyclosome 

(APC/C) must target mitotic cyclins and possibly endoreduplication inhibitors such as Snail and 

Geminin for terminal destruction. Until now the G2-specific event(s) that promote TG cell 

differentiation have been unclear.

M: mitosis, Gl: first gap phase, G2: second gap phase, S: DNA synthesis phase.
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1.2.3. The molecular basis of rodent placentation

Expression of specific transcription factors in the trophoblast cells of the 

developing rodent placenta regulates the expression of downstream target genes. 

These control whether a TS cell continues to proliferate or commits to differentiate, 

and furthermore which fate it adopts. TG cell differentiation is considered to be the 

‘default’ differentiation pathway in the absence of factors that maintain TS cell 

proliferation. As such, several of the factors listed in Table 1.2 actively suppress TG 

cell differentiation and their withdrawal is sufficient for TG cell differentiation (see 

table for references). Nevertheless, several exogenous factors, for example, retinoic 

acid (RA; Yan et al., 2001), diethylstilbestrol (DES; Tremblay et al., 2001), 

parathyroid hormone-related protein (PTHrP; El-Hashash et al., 2005) and nerve 

growth factor (NGF; Kanai-Azuma et al., 1997), have been shown to actively 

promote TG cell differentiation in a paracrine fashion.

The combined expression patterns of many signaling molecules and 

transcription factors define distinct subpopulations of trophoblast cells in the placenta 

(reviewed by Cross, 2002). For example, Scott and colleagues identified three 

functionally-distinct trophoblast subpopulations in the E7.5-8.5 murine placenta 

based simply on the expression domains of Handl and Mash2. These are the TS cells 

of the chorion (Mash2 only), cells in the core of EPC or SpT (both Handl and 

Mash2) and the TG cells forming at the periphery of the EPC or SpT (Handl only) 

(Scott et a l , 2000). It is clear, however, that there are many more transcriptional 

domains in the developing murine placenta involving other factors and that there is 

considerable overlap between them. A selection of the molecules that control murine 

placentation are summarised in Table 1.2. The role of Handl in regulating SGC 

differentiation will be described in detail in the next section (1.2.4) of this chapter.
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Table 1.2. A selection of factors involved in murine placentation.
Factors required for TS cell renewal (a) are expressed at high levels in TS cells or promote TS cell proliferation in a paracrine fashion, but are down-regulated upon TG cell 

differentiation. If  the genes encoding these factors have been deleted in mice, placental defects characterised by precocious TG cell differentiation generally result. 

Conversely, factors required for TG cell differentiation (b) are absent from TS cells but are up-regulated during their differentiation into TG cells. I f  the genes encoding these 

factors have been deleted in mice, placental defects characterised by a lack o f  TG cells generally result. Factors required for SynT differentiation and for formation o f  extra- 

embryonic mesoderm are not listed.

Factor Function Reference(s)

(a) Factors required for trophoblast stem (TS) cell renewal

Fgf4, FgflS Act in a paracrine fashion through Fibroblast growth factor receptor-2 (Fgf2r) on 
the TS cell surface to activate Cdx2 and Eomes expression.

TGFp family members Act in a paracrine fashion to inhibit JunB but promote Mash2 and Snail 
(e.g. Nodal, Activin) expression.

Cdx2

Eomes

Errp

Controls trophoblast versus ICM cell fate. 

Controls polar versus mural trophectoderm fate. 

Unknown.

Arman et a l, 1998.
Tanaka et al.; 1998.
Zhong et al., 2006.

Ma et al., 2001. 
Guzman-Ayala et al., 2004.

Strumpf et al.t 2005.

Russ et al., 2000.

Luo et aL> 1997.
Tremblay et al., 2001.

Ap-2y

Elf5

Couples Fgf signalling to Cdx2 and Eomes expression. 

Controls chorionic versus EPC cell fate.

Auman et al., 2002. 

Donnison et al., 2005.



Factor Function Reference(s)

Spl Activates Id-1 expression. Takeda et al., 2007.

Foxd3 Unknown. Tompers et al., 2005.

Id-1 and Id-2 May inhibit Handl, Stra2 and Stral3 activity. Cross et al., 1995. 
Jen et al., 1997. 
Takeda et al., 2007.

Socs3 Suppresses Lif signalling. Takahashi et al., 2003. 
Isobe et al., 2006.

(b) Factors required for trophoblast giant (TG) cell differentiation

Handl Activates PL-I expression.
Promotes mitotic cell cycle exit at the onset of endoreduplication.

Cross et al., 1995. 
Hughes etal., 2004.

Ap-2y (Stra2) Activates PL-II and PTHrP expression.
Transduces retinoic acid (RA) secreted by the decidua, which promotes TG cell 
differentiation.

Yan et al., 2001. 
Auman et al., 2002. 
Ozturk et al., 2006.

Stral3 Promotes mitotic cell cycle exit at the onset of endoreduplication. 
Transduces RA secreted by the decidua.

Yan et al., 2001. 
Hughes et al., 2004.

Gata2/3 Activates PL-I expression.
Restricts the expression of PLP-A to secondary, rather than primary, TG cells.

Ng et al., 1994.
Ma and Linzer, 2000.

c-Jun Activates expression of PL-I and the matrix metalloproteinase genes Mmp2 and 
Mmp9.

Bamberger et al., 2004.

JunB Unknown. Schorpp-Kistner et al., 1999.

C
hapter 1



Factor Function  Reference(s)

I-mfa Inhibits Mash2 activity in diploid TG cell precursors. Kraut et al., 1998.

Soxl5 Enhances H andl-dependent transcription. Yamada et al., 2006.

Ets family Activate genes encoding various members of the placental lactogen family. Yamamoto et al., 1998. 
Sun and Duckworth, 1999.

Ngf Unknown. Kanai-Azuma et al., 1997.

PTHrP Maternal PTHrP stimulates PGC differentiation.
PTHrP-dependent signalling in SGCs promotes entry into the endocycle. 
Up-regulates Stra2 and Stral3 but down-regulates Mash2 and Snail expression.

El-Hashash et al., 2005. 
El-Hashash and Kimber, 
2006.

Ppar|3 Up-regulates I-mfa expression but down-regulates Id-2 expression. Nadra et al., 2006.
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1.2.4. Handl is required for rodent placentation

The expression of murine Handl in trophoblast was first demonstrated by 

injecting a Handl -encoding plasmid into an individual blastomere of a morula (Cross 

et al., 1995). After culturing this morula to later stages and allowing for blastocyst 

outgrowth, whole-mount RNA in situ hybridisation analyses were performed to map 

Handl expression. This revealed an absence of Handl transcripts in TS cells of the 

chorion layer, an up-regulation of Handl in the EPC, particularly in the more 

differentiated cells at its periphery, and the strongest expression in the TG cell layer 

surrounding the implanted conceptus. Weaker and more transient Handl expression 

was observed in the extra-embryonic mesoderm cells that form the developing yolk 

sac, amnion and allantois (Cross et al., 1995).

This Handl expression pattern was subsequently confirmed by in vivo studies. 

In one study, Handl was targeted in ES cells via the insertion of a LacZ (J3- 

galactosidase) expression cassette to create a loss-of-function Handl allele (Firulli et 

al., 1998). In E7.5 mouse embryos heterozygous for this allele, p-galactosidase 

staining revealed Handl promoter activity in the trophectoderm of the EPC and 

extra-embryonic mesodermal components of the primitive placenta, namely the 

amnion, allantois and yolk sac, as well as in the extra-embryonic mesoderm-derived 

umbilical and vitelline vessels. Whilst the previous in situ hybridisation study failed 

to show Handl expression in the chorion (Cross et al., 1995), chorionic LacZ 

expression was detectable in these embryos (Firulli et al., 1998). This implies that 

Handl is either very weakly expressed or its transcript is unstable in chorionic TS 

cells.

1.2.4.1, Handl is required for trophectoderm specification

Handl mRNA was detected at the two-cell embryo prior to blastocyst 

formation, suggesting a role in early lineage specification (Cross et al., 1995). Indeed, 

Handl over-expression in mouse blastomeres promotes their differentiation into 

trophectoderm whilst in ES cells ectopic Handl activity arrests cell proliferation 

(Cross et al., 1995). The bias of blastomeres towards the trophectoderm lineage at the
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expense of ICM formation resulted in blastocysts with fewer cells than wild-type 

blastocysts due to premature TG cell differentiation. Occasionally ‘trophoblastic 

vesicles’ arose, which resembled blastocysts but which lacked an ICM (Cross et al., 

1995). These observations implicate Handl in the specification of trophoblast cell 

fate at the morula-to-blastocyst transition.

I.2.4.2. Handl is required for trophoblast giant cell differentiation

Reporter assays using the Rcho-1 cell line, a faithful model of TS cells, 

revealed that endogenous Handl expression is up-regulated coincident with TG cell 

differentiation following serum withdrawal (Cross et al., 1995). Furthermore, ectopic 

expression of Handl drives precocious TG cell differentiation in Rcho-1 cells (Cross 

et al., 1995). Later experiments showed that the suppression of Rcho-1 TG cell 

differentiation by dimethyl sulphoxide (DMSO) correlates with a down-regulation of 

Handl expression (Sahgal et al., 2005). Another group later generated H andl-null 

TS cells from Handl-null blastocysts (Hemberger et al., 2004). Such cells 

appropriately have an impaired ability to undergo TG cell differentiation, as indicated 

by the down-regulation of the TG cell marker Placental lactogen-1 (.PL-1), upon the 

withdrawal of proliferation-inducing molecules such as Fgf4, its cofactor Heparin and 

those secreted by feeder cells. These cells also exhibit an approximately 50% 

decrease in invasion rates in comparison with Handl -heterozygous TS cells, as 

assessed by Matrigel assays (Hemberger et al., 2004). These and other studies (Kraut 

et al., 1998; Scott et al., 2000) imply that Handl is both necessary and sufficient for 

TG cell differentiation of Rcho-1 and trophoblast stem cells.

Two research groups independently generated a knock-out mouse model for 

Handl by gene targeting to analyse Handl function in vivo (Riley et al., 1998; Firulli 

et al., 1998). Mice heterozygous for Handl had no apparent phenotypic defects and 

were fertile. However, Handl-null mice arrested at E7.5 and were embryonic lethal at 

E8.0-E9.0. This was primarily due to combined failure of EPC cells, which are 

reduced in number, to properly differentiate into SGCs (Riley et al., 1998), and as a 

result o f defects of the extra-embryonic mesoderm, which ultimately resulted in a 

hemorrhaging of the yolk sac (Firulli et al., 1998). The reduced number of SGCs
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resulted in a smaller implantation chamber and a failure to invade the maternal 

decidua to establish a maternal-fetal interface (Riley et al., 1998; Figure 1.8). Indeed, 

the number of TG cells surrounding Handl-null implantation sites at E8.5 (-80) was 

not significantly different from the number of mural trophectoderm cells present at 

the blastocyst (E3.5) stage in wild-type concepti.

These studies collectively implied that Handl regulates cell commitment to 

the trophoblast lineage and subsequent SGC differentiation in rodents. Notably the 

number of SGC precursors in the EPC or its derivative SpT layer is not increased in 

Handl -null embryos, as might be expected in the absence of their differentiation, but 

is in fact reduced. This suggests that TS cells are able to exit the mitotic cell cycle 

normally in the absence of Handl and that the absence o f Handl prevents their 

subsequent differentiation. Nevertheless, if Handl-null TS cells, induced to 

differentiate by withdrawal of Fgf4, are transfected with a Handl expression 

construct, their rate of differentiation is not further increased (Hughes et al., 2004). 

Indeed, in the same study, Handl over-expression was shown to promote exit from 

the mitotic cell cycle in TS cells concomitant with TG cell differentiation. This 

occurred even in culture conditions that normally maintain TS cell proliferation 

(Hughes et al., 2004). This dominant effect of Handl and its ability to override 

factors that maintain TS cell diploidy suggests that Handl activity is sufficient for 

mitotic cell cycle exit and the onset of endoreduplication, albeit via an 

uncharacterised mechanism.

It is also of note that Handl-null mutant blastocysts were able to implant, 

hatch and outgrow normally into maternal decidua (Riley et al., 1998). This suggests 

that Handl-null PGCs, responsible for blastocyst implantation, form and function 

normally. Despite the similarity in morphology of PGCs and SGCs, several 

molecules have been identified in either one or the other (Rebstock et al., 1993; Ma 

and Linzer, 2000). This suggests that the molecular events underlying their formation 

probably differ and that PGC differentiation may not require Handl. Nevertheless, 

maternal Handl transcripts have been identified in the oocyte and cleavage-stage 

embryos (Cross et al., 1995), which could support PGC formation in Handl -null 

embryos. However, this is unlikely to feature at later stages (E7.5-8.0) coincident 

with SGC differentiation.
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Figure 1.8. Handl is essential for secondary trophoblast giant cell differentiation 

in vivo.
In wild-type embryos, TS cells o f the ectoplacental cone differentiate into secondary giant cells 

(SGCs) that invade the maternal decidua to generate a maternal-fetal interface (a; enlarged section 

shows SGCs in (c)). However, Handl-nn\\ mice arrest at E7.5 due to a failure o f SGC differentiation 

and SGC invasion o f the maternal decidua (b). Adapted from Scott et al., 2000.

The exact mechanism by which Handl drives SGC differentiation is poorly 

understood. A possible mechanism was suggested based on the findings o f RNA in 

situ hybridisation experiments on E8.5 mouse embryos (Scott et al., 2000). These 

showed that Handl and Mash2 expression domains overlap in the EPC and its 

derivative SpT layer. Mash2 is the predominant bHLH transcription factor in diploid 

trophoblast but is absent in SGCs. Mash2 deficiency in mice causes embryonic 

lethality at E l0.5 due to excessive and precocious TG cell differentiation and a
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resultant absence of the SpT layer (Guillemot et al., 1994). Over-expression of 

Mash2 in Rcho-1 cells blocks TG cell differentiation (Scott et al., 2000). Similarly, 

Mas/z2-transfected TS cells continue to divide for longer after withdrawal of Fgf4, 

which ordinarily results in TG cell differentiation by default (Hughes et al., 2004). 

Collectively these studies implicate Mash2 in the maintenance of diploid trophoblast.

Whilst Mash2 expression is chorionic and that of Handl is highest in the SGC 

population, their expression domains overlap in the EPC and its derivative SpT layer. 

Scott and colleagues used co-immunoprecipitation, EMSA and reporter competition 

assays to show that the increasing levels of Handl in SGC precursors in these regions 

reduces Mash2 activity (Scott et al., 2000). Mechanistically this was due to Handl 

binding the E-protein partners of Mash2, and/ or Handl occupying Mash2 binding 

sites in the promoters of Mash2 target genes (Bounpheng et al., 2000; Scott et al., 

2000). A positive-feedback loop thus likely ensues. SGC differentiation, initiated in 

part by Handl expression, is accompanied by a progressive inhibition of Mash2 

activity (Scott et al., 2000). Ultimately the antagonistic relationship between Handl 

and Mash2 diminishes Mash2-induced expression of genes whose products are likely 

required for TS cell renewal, with the net and default effect being SGC 

differentiation. Whether heterodimers of Handl and E-factors in diploid trophoblast 

activate genes whose products promote TG cell differentiation, or otherwise, is 

presently unknown.

However, a wholly passive role for Handl during TG differentiation is 

disputed by the results of functional studies analysing Handl deletion mutants (Scott 

et al., 2000). Over-expression of a Handl deletion mutant lacking the basic domain, 

which is thus unable to bind DNA but can still compete for the E-factor binding 

partners of Mash2, had no significant effect on TG cell differentiation. This suggests 

that Handl has a more active role during TG differentiation, namely that it regulates 

its own target genes. The fact that Handl-null placental defects are retained in a 

H andl/ Mash2 double-null mutant mouse further supports this idea (Scott et al., 

2000). Thus Handl function is not restricted to inhibiting Mash2-dependent 

transcription and moreover the phenotype of Handl-null embryos is not simply due 

to ectopic Mash2 activity.
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E-factors are down-regulated during differentiation in several cell types and 

indeed are detectable neither in SGCs (Cross et al., 1995; Scott et al., 2000) nor 

cardiomyocytes (Riley et al., 2000). Thus, although Handl likely titrates E-factors 

from Mash2 during SGC differentiation, Handl must itself bind different bHLH 

partners during later stages of this process. Possible bHLH binding partners of Handl 

in SGCs include Handl itself, Stral3, and/ or the Hrt (Hey) factors (Firulli et al., 

2000; Hughes et al., 2004; Hu et al., 2006). Interestingly the bHLH factors 

NEUROD1 and D2 are expressed during human extravillous trophoblast invasion, 

although it is currently unknown whether this is the case in rodents and whether 

Handl interacts with these (Westerman et al., 2002). Recent studies argue against the 

possibility of Stral3 being a Handl binding partner, however. An interaction between 

Handl and Stral3 was neither detected in mammalian two-hybrid nor in co

transfection experiments and Stral3 and Handl did not synergistically promote SGC 

differentiation (Hughes et al., 2004). The Hrt factors are particularly strong 

candidates for Handl interaction in both trophoblast and cardiomyocytes; Hrt I '1'/ 

HrtT1’ double knockout mice are embryonic lethal due to cardiac and placental 

defects (M. Gessler, personal communication). Notably, tethered Handl homodimers 

can drive TG cell differentiation in cultured TS cells to a degree similar to that of the 

Handl monomer (Hu et al., 2006). This suggests that Handl may act as a homodimer 

to actively promote TG cell differentiation, but would require further investigation to 

corroborate.

Handl activity in TG cells may depend also on tertiary interactions, namely 

with non-bHLH factors. Handl interacts with the non-bHLH, HMG-box transcription 

factor Soxl5 in SGCs cells (Yamada et al., 2006). Soxl5 is up-regulated during TG 

cell differentiation in vivo and ectopic expression of Sox 15 promotes precocious 

Rcho-1 TG cell differentiation in a Handl-dependent fashion. Whilst Sox 15 

interaction with Handl enhanced Handl-dependent transcription in reporter assays, 

the Handl-Sox 15 interaction had the opposite effect at Sox 15-dependent promoters 

(Yamada et al., 2006). However, the biological relevance of these observations in 

vivo is currently unclear.

Handl, in combination with as-yet unidentified factors, likely activates genes 

whose products contribute to the process of SGC differentiation. Otherwise, Handl
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may repress genes whose products maintain the proliferative trophoblast population. 

However, few Handl target genes in the trophoblast lineage have been identified. 

This may be because Handl heterodimerisation partners are largely unknown and 

possibly since Handl activity, like that of Hand2, may not require the basic domain 

and is independent of DNA binding (McFadden et al., 2002). Handl, in combination 

with Gata2/3 and Ap-1 (Shida et al., 1993; Ng et al., 1994), regulates the gene 

encoding the hormone Placental Lactogen-1 (PL-1) (Cross et al., 1995). This gene is 

down-regulated in trophoblast of Handl -null mice (Riley et al., 1998; Firulli et al., 

1998). Appropriately the mouse PL-1 promoter contains a Thing 1-box (CTGCTG) 

which conforms to the consensus site to which Handl-E47 heterodimers bind 

(Hollenberg et al., 1995). Deletion of an 86bp region of the promoter (between -274 

and -188 relative to the Handl transcription start site) that encompasses this element 

furthermore results in diminished PL-I promoter activity in Rcho-1 cells co

transfected with Handl (Cross et al., 1995; Scott et al., 2000). Notably Smart and co

workers identified Wnt2 as a putative target gene of Handl, albeit in a cardiac cell 

model (Smart et al., 2002). Specifically, Wnt2 is up-regulated in a Handl-null 

background, implicating Handl in its repression. This is particularly interesting in 

light of the fact that deletion of the Wnt2 gene in mice is associated with defective 

placentation characterised by ectopic TG cells (Monkley et al., 1996). Notably, the 

expression domain of Handl in the developing mouse heart overlaps with that of the 

transcriptional co-activator Cited 1, and its expression is down-regulated in the hearts 

of conditional Handl-null embryos (Dunwoodie et al., 1998; McFadden et al., 2005). 

Cited 1 expression is furthermore required for proper placentation (Rodriguez et al.,

2004), suggestive of its regulation by Handl in trophoblast. Finally, Hughes and 

colleagues demonstrated that Stral3 was co-expressed in a subset of Handl-positive 

TG cells (Hughes et al., 2004). This implies that Handl may activate Stral3 

expression during TG cell differentiation.

1.2.4.3. Handl is required for formation of the yolk sac vasculature

During murine placentation, the yolk sac does not develop from TE (TS 

cells). Instead, the yolk sac is formed from two populations of cells derived from the 

ICM in two stages (reviewed by Rossant and Cross, 2001). Firstly, just after
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blastocyst implantation, endoderm cells migrate onto the basal surface of the PGC 

layer and form the parietal yolk sac. This absorbs nutrients from the maternal blood 

via capillaries in the decidua. It is not known whether Handl is required for this 

process. Subsequently, by E8.0, extra-embryonic mesoderm cells migrate to the inner 

surface of the parietal yolk sac. This generates the visceral yolk sac, composed of 

primitive vitelline vessels and haematopoietic cells, which facilitate more efficient 

exchange of materials between embryo and mother until formation of the definitive 

chorio-allantoic placenta. Handl is specifically expressed in this mesodermal yolk 

sac component (Firulli et al., 1998).

Handl -null embryos do not display reduced numbers of extra-embryonic 

mesodermal cells, suggesting that the gene is not required for their differentiation. 

However, such embryos have a visceral yolk sac that is rough and disorganised in 

appearance, particularly in the area in contact with the EPC (Firulli et al., 1998). In 

addition, their yolk sac vasculature is abnormal, which results in extensive leakage of 

haematopoietic cells into the space between the yolk sac and the amnion (yolk sac 

hemorrhaging; Firulli et al., 1998; Riley et al., 1998). Many of the features of Handl - 

null embryos, such as a failure to undergo turning and the formation of a crooked 

neural tube, may in this respect be consequences of a defective extra-embryonic 

blood supply.

A recent study cast some light on the function of Handl in the visceral yolk 

sac vasculature (Morikawa and Cserjesi, 2004). This reported that Handl is required 

for the remodelling and maturation of the visceral yolk sac blood vessels, including 

the recruitment of smooth muscle cells (SMCs) to the endothelial network. 

Endothelial cells exist in the Handl-null visceral yolk sac, as indicated by 

immunofluorescence for platelet endothelial cell adhesion molecule (PECAM). Thus 

early vasculogenesis, namely the formation and clustering of endothelial cells, is not 

dependent on Handl. However, the PEC AM-positive endothelial cells of Handl- null 

visceral yolk sacs were distributed in a honeycomb-like structure. This was 

characteristic of an immature vascular plexus, similar to the yolk sac phenotype of 

mice deleted for angiogenic genes such as Tiel, Tie2 and Vegf (Sato et al., 1995; 

Carmeliet et al., 1996). Recruitment of SMCs to the endothelial network was also 

defective in H andl-null visceral yolk sacs. This was demonstrated by reduced
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immunofluorescence for the early SMC marker smooth muscle alpha-actin (SMaA). 

Loss of smooth muscle support results in vessels that lack the strength to carry blood 

under pressure, and moreover may underlie the leakage of haematopoietic cells from 

the visceral yolk sac into the yolk sac-amniotic space. Thus vasculogenesis, the 

process by which angioblasts differentiate into endothelial cells to form the vascular 

primordium, occurs in Handl-null visceral yolk sacs. However, Handl is required for 

angiogenesis, namely the maturation of the primitive endothelial plexus to refine into 

a functional vascular system.

In the same study, several angiogenic genes were shown by RT-PCR analysis 

to be up-regulated in Handl-null extra-embryonic membranes, implicating Handl in 

their repression. The mis-expression of these genes may account for the observed 

visceral yolk sac vasculature defects. These genes include the signalling molecules 

vascular endothelial growth factor (Vegf), angiopoetin 1 (Angl) and the ephrin B 

ligand Efnh2. Furthermore, the expression of genes encoding the Vegf receptors 

Flkl, Fltl and Nrpl, and that encoding the Angl receptor Tiel, are all up-regulated in 

Handl -null yolk sacs. Additionally, Notchl/4 expression, also implicated in 

vasculogenesis, is enhanced in Handl-null yolk sacs. This occurs together with an 

up-regulation of the Notch-dependent gene Heyl (Morikawa and Cserjesi, 2004). 

This implies a direct role for Handl in Notch signaling, which attaches functional 

significance to our observed interaction of Handl with the placenta-expressed Notch 

regulator Maml2 (P. Riley, unpublished data; Appendix 8).

1.2.5. Human placentation and the role of HAND1 in human 

extra-embryonic tissues

The process of human placentation is markedly different to that in rodents 

(reviewed by Georgiades et al., 2002; Malassine et al., 2003). This is perhaps 

explained by the fact that the placenta is a relatively young organ in evolutionary 

terms. In humans, proliferation and differentiation of pluripotent, trophectodermal 

cytotrophoblasts, the equivalent cell population to rodent TS cells, gives rise to three 

placental layers. These are the syncytial chorionic villi (equivalent to the rodent 

SynT), cytotrophoblast cell columns (also called anchoring villi; equivalent to the
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rodent SpT) and the extravillous cytotrophoblast (EVT; equivalent to the outermost 

rodent SGC layer). These layers are thought to be in place by the third week of 

pregnancy (reviewed by Loregger et al., 2003), which is much earlier, relative to the 

length of gestation, than the time taken for the three-layered murine placenta to form 

(E10.5).

Reminiscent of the emergence of TG cells from the periphery of the rodent 

EPC, cytotrophoblast cell columns, bound to the uterine wall, give rise to EVT cells. 

EVT cells are known to up-regulate MMP9, which facilitates digestion of the uterine 

matrix (Librach et al., 1991), and have evolved mechanisms, such as the secretion of 

immuno-suppressors, to evade maternal immune responses (Roth et al., 1996). The 

EVT cells therefore invade the uterine endometrium to attain contacts with the 

maternal spiral blood vessels and also serve an endocrine function by secreting 

hormones such as human chorionic gonadotrophin (hCG) and human placental 

lactogen (hPL) (reviewed by Loregger et al., 2003). However, unlike the process of 

rodent TG cell differentiation and invasion, little is known about the mechanisms of 

EVT formation. Strikingly, human EVT cells do not undergo endoreduplication, but 

may instead fuse to produce multinucleate cells (al-Lamki et al., 1999). Notably, 

based on patterns of gene expression, it has been suggested that human EVT cells are 

more analogous to murine glycogen trophoblast (GlyT) cells (Giorgiades et al., 

2002).

Despite the morphological differences between rodent and human 

placentation, several factors that function in rodent placentation are also expressed in 

the developing human placenta. For example, the human MASH2 (HASH2), STRA13 

and I-MFA genes are expressed, in varying degrees, in both isolated cytotrophoblasts 

and the EVT invading the maternal decidua (Janatpour et al., 1999; Meinhardt et al.,

2005). Moreover, HASH2 is down-regulated during EVT differentiation, but STRA13 

and I-MFA are up-regulated, which is reminiscent of the molecular changes during 

rodent placentation (Table 1.2). Additionally, a later study by the same authors 

showed that ID-2, expressed at high levels in cytotrophoblast stem cells, is down- 

regulated during EVT differentiation. Moreover, ID-2 over-expression inhibits EVT 

differentiation and trophoblast invasion of a Matrigel matrix substance in vitro 

(Janatpour et al., 2000).
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However, most importantly for our study, a role for human HAND1 in 

placentation has yet to be demonstrated. Neither RT-PCR, RNase protection assays 

nor RNA in situ hybridisation could detect HAND1 expression in human 

cytotrophoblasts or the invasive EVT layer (Russell et al., 1997; Knofler et al., 1998; 

Janatpour et al., 1999; Meinhardt et al., 2005). HAND1 mRNA and protein are, 

however, abundantly expressed in the JEG-3 and BeWo human choriocarcinoma cell 

lines (Knofler et al., 2002). Furthermore, RT-PCR analysis and immuno- 

histochemical staining of blastocysts has revealed HAND1 mRNA and protein within 

the trophectodermal cell layer of the blastocyst (Knofler et al., 2002). These findings 

suggest that the transcription factor could be required for early trophoblast 

specification and/ or differentiation (Knofler et al., 2002). Moreover, HAND1 

expression is detectable in the mesodermal components of the human placenta, for 

example purified amnion cells {in vitro) and amniotic epithelium {in vivo; Knofler et 

al., 2002) at different stages of gestation. This suggests that HAND1 may be required 

for differentiation and/ or function of the early amnion during human placentation.

1.3. The role of Handl in the developing heart

Handl has been shown to play a crucial role during the formation of the 

rodent heart. The heart is the first organ to develop and function in the vertebrate 

embryo proper. The complexity of cardiac morphogenesis is underlined by the fact 

that congenital heart disease (CHD), the physical manifestation of defects in this 

process, occurs in 8 of 1000 (-1%) of live births in humans. The importance of 

normal cardiac morphogenesis is also underlined by the multitude of lethal 

phenotypes in animal models carrying null mutations in genes critical for 

cardiovascular development. CHD is also the most prevalent cause of miscarriage 

(Hoffman, 1995). CHDs tend to affect segments of the heart, rather than the whole 

organ, reflecting the modular fashion of heart development (reviewed by Fishman 

and Olson, 1997).

Several genes have been shown to play a role in cardiac morphogenesis in the 

mouse and have been linked to specific CHDs in humans. Their encoded transcription
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factors belong to a wide range of families. These include basic helix-loop-helix 

(bHLH), homeobox, T-box, zinc finger and MADS domain classes (reviewed by 

Harvey, 1999; Risebro and Riley, 2006). Handl has a crucial role in cardiac 

morphogenesis, as discussed below, but no mutations in this gene have been 

identified in human patients to date. Nevertheless, delineating how Handl is involved 

in heart development may provide valuable insight into the underlying molecular and 

cellular causes of a subset of patients with idiopathic CHD.

1.3.1. Overview of cardiac morphogenesis

1.3.1.1. Formation of the linear heart tube

The following overview will focus on stages o f murine cardiac 

morphogenesis unless otherwise stated. The heart is the first organ to form and 

function in the vertebrate embryo proper. Heart morphogenesis initiates soon after 

gastrulation, at around E7.0 in the developing mouse embryo. The process begins 

with the specification of cardiac precursor cells (CPCs) in the anterior portion of the 

lateral plate mesoderm, partly in response to molecular signals from the underlying 

endoderm (reviewed by Chen and Fishman, 2000). This region is termed the pre

cardiac mesoderm, cardiac crescent, cardiac primordia or primary heart field (PHF) 

(reviewed by Harvey, 1999). PHF CPCs are arranged in two bilaterally-symmetrical 

populations located in the anterior region of the primitive streak on either side of the 

embryonic midline. Subsequently, several cardiac transcription factors are induced in 

these cells. These include the homeobox factor Nkx2.5, the earliest known marker of 

the cardiomyocyte lineage (Lints et al., 1993).

At E7.5 in the mouse, the paired CPC populations that comprise the PHF 

migrate medially to the anterior of the embryo and by E8.0 fuse at the ventral 

embryonic midline to form the so-called linear heart tube. This structure is composed 

of an inner endocardium and an outer myocardial layer, which are separated by an 

extracellular matrix called ‘cardiac jelly’. This is attached to the body wall by the 

dorsal mesocardium and begins to pump blood rhythmically through its posterior end 

by E8.5 in the mouse, 29 hours in the chick and by day 23 in humans (reviewed by
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Risebro and Riley, 2006). The formation of the linear heart tube is summarised in 

Figure 1.9.

Recently, data have emerged that suggest that the heart is actually formed 

from two distinct CPC populations. In addition to the PHF, a more anterior and dorsal 

population of CPCs arise in the so-called second lineage, or secondary (anterior) 

heart field (SHF; Kelly and Buckingham, 2002; Zafffan et al., 2004). This is located 

in the splanchnic mesoderm and may be specified by the transcription factor Islet 1 

(Isll). This population is therefore distinct from the PHF that contributes to the linear 

heart tube. Between E8.5 and E l0.5, namely during cardiac looping, CPCs of the 

SHF contribute to the arterial pole myocardium of the developing outflow tract 

(OFT), as well as to the myocardium of the right ventricle (RV). In addition, CPCs of 

the SHF contribute to the endothelium of the aortic arch arteries (Kelly and 

Buckingham, 2002; Zaffran et al., 2004).

Lineage tracing analyses of the Islet-1 factor and retrospective clonal analyses 

were recently used to show that the PHF and the SHF are both derived from an 

ancestral population of cardiac progenitors, formed at around E6.5 (Meilhac et al., 

2004). This has been interpreted that the two heart fields actually represent a single 

heart-forming region (van den Hoff et al., 2004). Moreover, whilst this study agreed 

with the model that two separate cardiac lineages contribute to heart formation, it 

revealed that each contributes slightly differently to the developing heart than the 

previously-defined PHF and SHF. Namely, the left ventricle (LV) was derived 

entirely from the PHF and the OFT from the SHF, yet both lineages were shown to 

contribute to all other regions of the heart (Meilhac et al., 2004).

1.3.1.2. Heart tube looping and the ballooning model

At E8.0-8.5 during mouse development, the linear heart tube undergoes a 

morphological transition. This is termed rightward (dextral) cardiac looping 

(reviewed by Harvey, 1999). During this process, which is conserved among all 

vertebrates, the original anterior-posterior polarity of the linear heart tube is 

converted into a left-right asymmetry, the first manifestation of this in the developing
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embryo. This ensures that the presumptive chambers are aligned with the 

presumptive great vessels of the heart. During looping, the linear heart tube detaches 

from the dorsal mesocardium and substantially elongates via the contribution of cells 

from the SHF (Kelly and Buckingham, 2002; Zaffran et al., 2004). The process of 

murine heart tube looping is summarised in Figure 1.9.

Cardiac looping may be driven by asymmetric expression of extracellular 

matrix (ECM) molecules, for example Flectin, that differentially modulate the rate of 

cardiomyocyte migration (Tsuda et al., 1996; Linask et al., 2002). Otherwise the 

process may rely on shear forces of blood flow (Hove et al., 2003), and/ or the 

external forces of surface tension imposed by other embryonic or extra-embryonic 

structures (Voronov, 2004). Ultimately, the looping process creates a structure with a 

single ventricle, which has an inflow and an outflow region that connect to a single 

atrium via the atrioventricular canal (AVC) and the outflow tract respectively. 

Abnormalities in cardiac looping can cause defective OFT alignment, resulting in the 

aorta and the pulmonary artery arising from the right ventricle (double outlet right 

ventricle (DORV); reviewed by Risebro and Riley, 2006).

Early cell fate analyses in the mouse suggested that the linear and early- 

looping heart tube is patterned molecularly along the anterior-to-posterior (A/P) axis 

into the presumptive segments of the heart (Yutzey et al., 1995). However, the recent 

discovery of the SHF has led to the conclusion that the linear heart tube mainly 

contributes to the LV (Kelly and Buckingham, 2002; Zaffran et al., 2004). Moreover, 

this early model has been succeeded by the ‘ballooning model’ of chamber 

development (Christoffels et al., 2000). This is based on extensive gene expression 

studies and proposes that chamber formation occurs in two steps. The first step 

involves the formation of the linear heart tube, composed of ‘primary’ myocardium. 

This has molecular polarity along the anterior-to-posterior and dorsal-to-ventral axes. 

This is followed by the specification of ‘secondary’ (working, chamber) myocardium 

at the ventral surface of the heart tube, which has a distinct molecular profile to that 

o f the primary myocardium. As the heart tube loops, cells of the outer curvature of 

the primitive chambers proliferate and so ‘balloon’ out from the heart tube to 

generate the four chambers of the heart. Genes are activated in the outer curvature 

demarcating the future working myocardium of the atria and ventricles including
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Nppa, Chisel and Connexin 40 (Cx40). The myocardium o f the inner curvature, 

inflow tract, atrioventricular canal and OFT retains the gene expression profile it 

exhibited in the linear heart tube and thus remains as primary myocardium 

(Christoffels et al., 2000).

Notably, the myocardium o f the OFT, derived from the SHF, also receives a 

significant contribution from the cardiac neural crest during cardiac looping. This is 

also true o f the aortic arch arteries and the interventricular septum. The cardiac neural 

crest population arises from rhombomeres 6-8, and migrates through pharyngeal 

arches 3, 4 and 6 (reviewed by Kirby and Waldo, 1995; Srivastava et al., 1997; 

Waldo et al., 1999; Waldo et al., 2005). As such, ablating the cardiac neural crest in 

chicks causes cardiac defects, particularly affecting the OFT, as well as aortic arch 

anomalies (Kirby and Waldo, 1995).

El 2.5

Figure 1.9. Overview of murine cardiac morphogenesis.
Vertebrate cardiac morphogenesis begins when the primary heart field (PHF) progenitors are specified 

in the lateral plate mesoderm at E7.5, in the so-called cardiac crescent (purple). The second cardiac 

lineage (blue) is located in the splanchnic mesoderm, in the so-called secondary heart field (SHF) (a). 
The PHF progenitors migrate and fuse at the ventral midline o f the embryo, forming the linear heart 

tube at E8.0 (b). Between E8.5-10.5 the linear heart tube undergoes rightward cardiac looping and the 

SHF progenitors migrate to this structure and contribute to the arterial and venous poles (c). All 

regions o f the heart tube are colonised by progenitors from both fields with the exceptions o f the LV 

(derived entirely from PHF) and the OFT (derived entirely from SHF). Following cardiac looping, the 

heart undergoes maturation and the chambers septate, forming the mature four-chambered organ by 

E12.5 (d; adapted from Risebro and Riley, 2006).

LA: left atrium, RA: right atrium, LV: left ventricle, RV: right ventricle, OFT: outflow tract, A: atria.
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Following murine heart tube looping and the expansion of the chambers, 

namely beyond E l2.5, there is a requirement for heart remodeling and separation of 

the chambers to ensure uni-directional blood flow. The murine heart assumes its four- 

chambered structure coincident with the formation of endocardial cushions, the 

precursors of the cardiac valves and the membranous septae (reviewed by Eisenberg 

and Markwald, 1995). This occurs at two regions of the heart tube, namely at the 

position of the atrioventricular canal (AVC) and outflow tract (OFT). In parallel with 

endocardial cushion formation, the ventricular myocardium grows out from the 

ventral surface of the heart tube. This results in the formation of finger-like 

projections of myocardium surrounded by endocardium, called trabeculae. These are 

thought to provide contractive force to the beating heart during murine 

embryogenesis (reviewed by Harvey, 1999). Thus the primitive ventricles exhibit 

dorso-ventral (DV) asymmetry: trabeculae only form at the outer curvature, the inner 

curvature remaining smooth-walled (Christoffels et al., 2000). Once chamber 

septation and valve formation commences, specialised cardiomyocytes congregate to 

form the nodes, the site of initiation of the electrical impulse for contraction, and the 

conduction system (reviewed by Olson and Srivastava, 1996). Table 1.3 summaries a 

selection of factors that regulate the process of murine cardiac morphogenesis.

1.3.1.3. Overview of human heart development

Heart development in humans is similar to that described in the mouse, both 

in terms of morphological changes and the relative time-points during development at 

which they occur (reviewed by Harvey, 1999). During human embryogenesis, the 

cardiogenic plate, the equivalent progenitor population to the murine PHF at E7.5, is 

specified at day 15. This population gives rise to two endocardial tubes on either side 

of the embryo. These fuse at the midline and form a linear, contractile heart tube by 

day 21 (equivalent to the E8.0 linear heart tube in mice). Next, the heart tube loops at 

around day 28 (E8.5-E9.5 in mice), and the atria separate before the ventricles, 

resulting temporarily in a three-chambered heart, similar to that observed in the frog. 

By day 50 the four chambers and the OFT have completely septated, and the valves 

and conduction system have been established. Despite the subtle differences during 

cardiac morphogenesis between the mouse and human, the transcription factors that 

regulate this process are largely comparable.
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Table 1.3. A selection of factors involved in murine cardiac morphogenesis.

Note that Handl is involved in multiple processes during murine cardiac morphogenesis. The factors listed are not exhaustive. Adapted from the 

review by Risebro and Riley (2006); references therein.

E Stage of cardiac morphogenesis__________________________ Factors

7.0 Specification of the PHF CPCs Bmp ligands, Fgf ligands, Wnt 11, Mesp 1

7.5-8.0 Migration and fusion of PHF CPCs at the embryonic midline to form 
the linear heart tube

Nkx2.5, Gata factors, Mef2, Myocardin, Tbx20, Foxp4

8.0-10.5 Cardiac looping Handl, Nodal, Pitx2

8.0-10.5 Specification of the SHF CPCs and their migration to the looping heart 
tube

Isll, Mef2c, Tbxl, FoxHl, Bmp ligands, Fgf8, FgflO

10.5-12.5 Ventricular chamber formation and expansion

LV formation and expansion Handl, Tbx5, Irx4

RV formation and expansion Hand2, Irx4

13.5 Septation Handl, Cited2

14.5 Valvulogenesis Handl, Smad6, TGFp, Notch

E: embryonic day, PHF: primary heart field, SHF: secondary heart field, LV: left ventricle, RV: right ventricle, CPC: cardiac precursor cell.
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1.3.2. Handl is essential for cardiac morphogenesis

A significant proportion of the murine cardiovascular system is derived from 

lateral plate mesoderm and cardiac neural crest, and Handl is strongly expressed in 

both lineages. The Hand proteins of all species play highly-conserved roles in cardiac 

morphogenesis, with an emphasis on regulating differentiation of CPC into 

cardiomyocytes rather than the initial specification of CPCs (reviewed by Firulli, 

2003).

I.3.2.I. Hand/ Handl cardiac expression and role(s) in non- 

mammalian cardiac morphogenesis

Invertebrates and fish possess only a single Hand gene. C. elegans has a gene 

with homology to Handl, hnd-1, which is initially broadly expressed in the 

mesodermal precursors that generate striated muscles, but subsequently becomes 

restricted to the somatic gonadal precursor (SGP) cells (Mathies et al., 2003). Thus 

hnd-1 may have roles in both myogenesis and gonadogenesis. Ciona intestinalis is 

also thought to possess a Hand gene, which is expressed in its primitive heart, but its 

precise roles during development are unknown (Davidson and Levine, 2003).

The oldest definitive version of a Hand gene is present in Drosophila. 

Drosophila Hand, which is equally divergent from mammalian Handl and Hand2, is 

expressed in both cardioblast and pericardial cells of the developing dorsal vessel, the 

fly equivalent of the vertebrate heart (Kolsch and Paululat, 2002; Han et al., 2006). 

This is unusual as all other cardiac-specific transcription factors in Drosophila are 

expressed in only one of these cell types. This suggests that Drosophila Hand may be 

a master regulator of heart-specific genes (Kolsch and Paululat, 2002). However, 

expression of Drosophila Hand is initiated after that of the early regulators Tinman 

and Bagpipe (Yelon et al., 2000), which implicates Drosophila Hand in the 

subsequent differentiation of dorsal vessel cell types rather than in their initial 

specification. A more recent study suggested that Drosophila Hand is also involved 

in haematopoiesis, as disruption of Hand by homologous recombination results in a 

deficiency o f pericardial and lymph gland haematopoietic cells (Han et al., 2006).
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This phenotype is accompanied by profound cardiac defects, including hypoplastic 

myocardium, a deficiency of pericardial cells and abnormal cardiac morphology.

In zebrafish, which possess a primitive heart composed of a single atrium and 

a single ventricle, mutation of the single Hand gene (han) results in the formation of 

the hands o ff mutant (Angelo et al., 2000; Yelon et al., 2000). In addition to 

deformations of the pectoral fin, the hands o ff phenotype is characterised by an 

ablation of the single ventricular chamber. This is caused by impaired CPC 

specification and an inability to form a linear heart tube. Moreover, there is a marked 

lack of ventricular myosin heavy chain and tbx5 expression in these mutants, which 

results in the primitive heart tissue being molecularly of atrial identity (Angelo et al., 

2000; Yelon et al., 2000). Thus pre-cardiac, Nkx2.5-expressing lateral plate 

mesoderm is specified to the cardiac lineage but continued differentiation and 

development is impaired. Notably the primordial han gene in zebrafish is most 

closely-related to higher vertebrate Hand2, suggesting that there is no Handl gene in 

fish and that Hand2 is the ancestral member of the Hand gene family (reviewed by 

Firulli, 2003).

In Xenopus, which possesses a three-chambered heart with two atria and a 

single ventricle, both Handl and Hand2 exist. However, there has until recently been 

some controversy regarding the cardiac expression pattern of Xenopus Handl. 

Sparrow and colleagues concluded that Handl expression in the primitive heart tube 

is asymmetric, at least in the lateral plate mesoderm, exhibiting randomness as to its 

expression on the left or right side (Sparrow et al., 1998). In the myocardium and 

pericardium, transcripts are also asymmetrically distributed, but in these tissues they 

are specifically restricted to the left side. Moreover, the authors could not detect 

Handl expression in the neural crest-derived pharyngeal (branchial) arches. 

However, a later study showed a uniformly-symmetric expression of H andl, that is, 

without left-right asymmetry, throughout all tissues of the developing heart (Angelo 

et al., 2000). Furthermore, these authors were able to detect Handl transcripts in the 

pharyngeal arches.
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A subsequent study employed three-dimensional reconstruction techniques to 

derive accurate models from digital images of serial histological sections to analyse 

the morphological changes that accompany heart formation in Xenopus in more detail 

(Mohun et al., 2000). These revealed that Handl expression is dynamic in the 

Xenopus myocardium during cardiac morphogenesis. Specifically, Handl transcripts 

are initially restricted to the left side of the linear heart tube myocardium but become 

more symmetrical just before the onset of heart tube looping. After the onset of 

looping, Handl expression localises to the ventral portion of the myocardium that

will develop into the single Xenopus ventricle (Mohun et al., 2000). To date,

however, functional insight into the Xenopus Hand proteins in the developing heart is 

lacking.

Chick Handl is co-expressed with Hand2 throughout the heart tube

(Srivastava et al., 1995; Srivastava et al., 1997). Handl transcripts in the chick are 

first detected at HH stage 8 in the cardiac crescent, and in the paired heart primordia 

as they fuse at HH stage 9. Handl is expressed throughout the cardiac tube and the 

inflow region at HH stage 10. At HH stage 15, after cardiac looping, Handl is 

expressed in the atria, the future LV, bulbus cordis, truncus arteriosus and throughout 

the branchial arches (Srivastava et al., 1995; Srivastava et al., 1997).

Antisense experiments first implied a role for Handl in chick heart

development (Srivastava et al., 1995). Hamburger and Hamilton (HH) stage 8 chick 

embryos were treated with antisense oligonucleotides specific to Handl and Hand2 

transcripts, both singly and in combination, to knock-down their expression during 

development. Applied alone, the antisense oligonucleotides had no effect on cardiac 

development. However, in combination they arrested cardiac morphogenesis at the 

cardiac looping stage (stage 11-12). This has led to speculation that the Hand genes 

may be functionally-redundant, as discussed further in this chapter (section 1.5). Like 

frog Handl, however, little is known at present regarding the function of chick Handl 

during cardiac morphogenesis.

82



Chapter 1

1.3.2.2. Handl cardiac expression and role(s) in mammalian cardiac 

morphogenesis

Handl expression and function during mammalian cardiac morphogenesis has 

been chiefly studied in the mouse (Figure 1.10). Cardiac expression of murine Handl 

is first detected throughout the PHF at E7.0 (Firulli et al., 1998; Riley et al., 1998). 

Previous studies suggested that, at the onset of heart tube looping, Handl is 

expressed at the anterior and posterior termini of the linear heart tube (Yutzey et al., 

1995; Biben and Harvey, 1997; Srivastava et al., 1999). Early studies also reported 

symmetrical Handl expression along the left-right axis of the heart tube during 

looping (Thomas et al., 1998b). However, both conclusions are now considered 

incorrect.

More detailed analyses have revealed that by E9.5 and after cardiac looping, 

Handl expression is actually confined to the left side of the linear heart tube 

myocardium (Biben and Harvey, 1997). Subsequently, after cardiac looping, Handl 

transcripts are distributed heterogeneously along the dorso-ventral (DV) axis. Handl 

is expressed strongly in the outer (ventral) curvature of the LV, and weakly in the 

outer curvature of the RV and the cardiac neural crest cells-derived of the developing 

OFT (Riley et al., 2000; Figure 1.10a). Handl expression is, however, absent from 

the atria and the inner (dorsal) curvature of all structures. Thus Handl is uniquely 

expressed in derivatives of both the PHF (LV) and the SHF (OFT). During 

subsequent cardiac morphogenesis, Handl expression remains high in these regions 

of the developing heart until E l0.5, after which it declines. At El 1.5 Handl is still 

expressed in the OFT and by E l3.5 expression becomes restricted to the sites of the 

developing valves (Cserjesi et al., 1995).

The generation of mice lacking Handl identified a role for the transcription 

factor in the formation of extra-embryonic structures (Firulli et al., 1998; Riley et al., 

1998). However, the early embryonic lethality of these embryos originally precluded 

analysis of Handl function in the embryo proper. Thus to prove that the early 

developmental arrest of Handl-null mutants was caused by abnormal placentation,
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and to investigate embryonic roles for Handl, tetraploid-rescue was performed (Riley 

et al., 1998). Aggregation chimeras were generated from Handl mutant and 

tetraploid morulae. This meant that the resulting embryo was derived from diploid 

Handl mutant cells, whilst the extra-embryonic tissues were derived from wild-type 

tetraploid cells. Thus, if early lethality was primarily due to extra-embryonic defects, 

the embryo would be rescued and would develop further, allowing analysis of Handl 

function in the embryo proper.

Tetraploid-rescued Handl-null mouse embryos arrest at around E l0.0 and are 

embryonic lethal by E10.5 (Riley et al., 1998). Specifically, the Handl-null embryo 

possesses an un-looped, un-segmented heart tube and a malformed OFT and LV 

(Figure 1.10b). These phenotypes suggest that Handl may have a crucial role in the 

regulation of cardiac looping. This model is supported by the observation that Handl 

is expressed in the outer curvature of the LV, the leading edge of the looping heart 

tube (Biben and Harvey, 1997; Sparrow et al., 1998) and by the fact that Handl is 

down-regulated in Nkx2.5-null embryos, which also fail to undergo rightward looping 

(Biben and Harvey, 1997; Tanaka et al., 1999).

However a putative role for Handl in the regulation of cardiac looping cannot 

account for the fact that cardiac looping is initiated, albeit not completed, in 

tetraploid-rescued Handl -null mice (Riley et al., 1998). Furthermore it is not wholly 

compatible with the phenotype of situs inversus (inv/inv) mice, whose left-right heart 

asymmetry is reversed due to an atypical leftward looping. In these mice, expression 

of Handl persists in the LV and that of Hand2 in the RV, albeit in reversed 

anatomical locations (Thomas et al., 1998b). This suggests that Handl expression is 

chamber- rather than side-specific. Moreover it indicates that the Hand genes are 

involved in the development of segments of the heart tube, rather than controlling the 

direction of cardiac looping. Indeed, Handl-mx\\ embryos undergo defective LV 

morphogenesis, manifesting as a LV with a thin LV wall and a lack of myocardial 

trabeculation (Riley et al., 1998), whilst Hand2-null embryos have a hypoplastic RV 

(Srivastava et al., 1997). Thus debate has surrounded whether Handl is involved in 

regulating cardiac looping as a primary function that affects ventricular
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morphogenesis, or whether the role o f Handl is restricted to ventricle specification 

and maturation coincident with looping.

a.

Figure 1.10. Handl is expressed in the developing mouse heart and is essential for 

murine cardiac morphogenesis.

At E9.5, subsequent to cardiac looping, Handl expression in the developing mouse heart becomes 

restricted to the outer curvature o f the left ventricle (Iv) and the outflow tract (oft). At this stage, 

Handl is also expressed in the lateral plate mesoderm (1pm) and at the midline region o f the first 

branchial (pharyngeal) arch (ba) (a; Handl in situ hybridisation of E9.5 wild-type embryo courtesy of 

C. Risebro). Tetraploid-rescued Handl-null embryos are embryonic lethal at E l0.5 due to defects in 

cardiac looping and left ventricular morphogenesis (b; adapted from Riley et al., 1998).
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Despite the apparent defects in left ventricular myocardium in Handl-null 

hearts, cardiomyocyte commitment and differentiation can occur in the absence of 

Handl. The expression of cardiomyocyte marker genes, for example Nkx2.5, are 

normal in homozygous Handl mutant mice (Riley et al., 1998). Furthermore Handl - 

null embryonic stem cells are able to differentiate normally into cardiomyocytes that 

express cardiac-specific transcripts in vitro even after the time point (approximately 

day 6) at which Handl is normally activated (Riley et al., 2000; Smart et al., 2002; 

Risebro et al., 2006). However, it was noted that Handl -null ES cells generated more 

cardiomyocytes than the wild-type R1 ES cell line, suggesting that Handl may 

modulate the rate of cardiomyocyte differentiation (Riley et al., 2000).

Notably, at least one gene, myosin light chain-2 ventricular isoform (.Mlc2v), 

was shown by in situ hybridisation to be down-regulated in the LV myocardium of 

Handl -null embryos (Riley et al., 1998). Mlc2v encodes a protein required for 

ventricular cardiomyocyte differentiation and its putative regulation by Handl 

implicates the transcription factor in the specification and/ or differentiation of left 

ventricular myocardium. Despite this, cardiomyocytes derived from Handl-null ES 

cells form normally and express Mlc2v, albeit at reduced levels (Riley et al., 2000). 

Thus the thin ventricular wall and down-regulation of Mlc2v in the tetraploid-rescued 

Handl-null embryos may be secondary effects and Handl may not be required for 

specification of the LV.

To gain further insight into the role of Handl during heart development, Riley 

and co-workers generated chimeric embryos by aggregating Handl-null ES cells with 

ROSA26 embryos (Riley et aL, 2000). ROSA26 embryos ubiquitously express lacZ 

and so can be visualised by staining for p-galactosidase to assess cell contribution. 

Low-contribution chimeras, composed of 50% Handl-null ES cells or less, were able 

to develop normally. However, in E8.0 chimeras derived from >50% Handl -null ES 

cells, a non-random distribution of cells in the developing heart was observed. 

Specifically, Handl -null cells were under-represented in the caudal region of the 

linear heart tube, fated to become the LV. This may occur because Handl-null cells 

that initially colonised these regions failed to proliferate or underwent apoptosis. By
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E9.5, after cardiac looping, mutant cells were under-represented in the outer 

curvature of the myocardium of the LV and the OFT. Accordingly such embryos at 

E l0.5 were smaller than their littermates and their heart tubes were abnormal, 

possessing a thin, transparent wall. These chimera studies thus collectively indicate a 

cell-autonomous requirement for Handl in the expansion of the outer curvature of the 

LV during cardiac looping (Riley et al., 2000). The described studies have implicated 

Handl in LV specification and outer curvature expansion coincident with cardiac 

looping. More recent functional studies have revealed a role for Handl in the 

formation of the interventricular septum (IVS), the atrioventricular (AV) valves and 

the outflow tract (OFT).

In a study by Togi and colleagues, the Handl cDNA was targeted to the 

Mlc2v locus to force its constitutive expression in both its native left ventricular 

myocardium, but also the right ventricular myocardium (Togi et al., 2004). Handl 

over-expression was also detected in the intervening region that forms the 

interventricular septum (IVS). The outer curvatures of the LV and RV, known as the 

interventricular boundary region or interventricular groove (IVG), does not expand 

during the formation of the muscular I VS during normal cardiac morphogenesis. In 

contrast, over-expression of Handl throughout the ventricular myocardium and in 

septal cardiomyocytes resulted in hyper-expansion of the outer curvatures of both 

ventricles. This generated a single, expanded ventricle and was associated with an 

absence of the IVS, resulting in embryonic lethality between El 2.5 and E l 4.5.

In order to exclude the possibility that the septal defect was a secondary or 

non-specific effect, the same authors also generated transgenic embryos that over

expressed Handl in the ventricles alone (Togi et al., 2004). This ensured that Handl 

expression was absent from the boundary region between the ventricles. In these 

transgenic embryos, the IVS formed normally. These results thus suggested that 

Handl plays an important role in defining the ventricular boundary and that an 

absence of Handl expression in the IVG may be critical for the proper positioning 

and formation of the IVS. This is interesting in light of the finding that over

expression of the Tbx5 transcription factor in both ventricles, which promotes ectopic
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Handl expression in the RV and IVG, results in failed IVS morphogenesis (Takeuchi 

et al., 2003).

McFadden and colleagues more recently generated conditional, heart-specific 

Handl-null (Handl cardiacK0/K0) embryos. The authors generated mice harbouring a 

Handl allele flanked by Cre recombinase loxP recognition sites. They then crossed 

these with mice harbouring Cre recombinase downstream of a cardiac-specific alpha- 

myosin heavy chain (ccMHC) promoter or Nkx2.5 enhancer. The embryos thus 

specifically lacked Handl expression in cardiac tissues. Although viable until birth, 

these embryos exhibited a spectrum of heart defects. These included left ventricular 

hypoplasia, abnormally-thickened atrioventricular (AV) valves, and ventricular septal 

defects (VSDs). Of particular note, these mice had a disorganised but thickened 

ventricular septum at all stages of development. This supports the findings of Togi 

and colleagues, who suggested that the absence of Handl in the IVG is a pre-requisite 

for normal growth and/ or positioning of the IVS. Thus whilst over-expression of 

Handl abolishes septum formation (Togi et al., 2004), cardiac deletion of Handl 

causes an expansion of the septum (McFadden et al., 2005). These studies also 

support previous findings that implicate Handl in (left) ventricular expansion (Riley 

et al., 1998; Riley et al., 2000).

The AV valve malformations of conditional, cardiac Handl-null mutant mice 

are interesting because the alpha-MHC.Cre transgene does not direct Cre expression 

in endocardial cushions or their valve derivatives. This suggests that Handl may 

regulate an unidentified myocardium-derived signal that regulates endocardial 

cushion morphogenesis. However, early myocardial function has been shown to 

affect endocardial cushion development (Bartman et al., 2004), and therefore 

abnormal myocardial differentiation in these embryos could have an effect on 

endocardial cushion development. Previous studies have also shown that regions of 

the AV endocardial cushions contribute to both the atrial and ventricular septa 

(Bartram et al., 2001). This in interesting in light of the VSDs in Handl-mill hearts, 

present in 90% of the embryos (McFadden et al., 2005). However, comparison of cell 

proliferation rates and apoptosis levels between wild-type and mutant endocardial
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cushions revealed no significant differences.

OFT defects were observed in some of the conditional Handl knock-out mice 

at postnatal day 1-2 (McFadden et al., 2005). In this regard, a role for Handl in OFT 

morphogenesis has been implied by the findings of a more recent study (Risebro et 

al., 2006). Using homologous recombination in ES cells, Risebro and colleagues 

inserted the Tet-Off trans-activator (tTA), responsive to the antibiotic tetracycline 

(Tet), into the Handl locus, under the control of the Handl promoter and regulatory 

regions. Mice derived from these cells, the tTA knock-in strain, were termed 

‘drivers’, and these were crossed with ‘responder’ mice. In the responder mice, a 

tetracycline-responsive region was placed upstream of a full-length Handl cDNA 

and randomly inserted into ES cells to establish mice harbouring a Tet-responsive 

Handl transgene. Manipulation of Handl expression during gestation with the Tet 

derivative doxycyline allowed the authors to force over-expression of Handl in its 

‘native’ (Handl-expressing) tissues during embryogenesis.

In embryos over-expressing Handl, the heart tube was significantly extended 

and underwent extraneous rightward looping. The ultimate effect of this was that the 

distal OFT became significantly expanded in length (Risebro et al., 2006). The 

observed OFT expansion was not due to an enhanced migration of CPCs from the 

SHF, indicated by the normal expression of the SHF markers Isll, Mef2c and Hand2 

in Handl -over-expressing embryos. However, RT-PCR and in situ hybridisation data 

demonstrated down-regulation of several markers of cardiomyocyte differentiation in 

the OFT. These included Nppa, W ntll, Chisel, Nkx2.5 and Gata4. This was 

accompanied by an enhanced rate of cell proliferation, as assessed by enhanced levels 

o f phospho-histone H3. Additionally, markers of cardiomyocyte differentiation were 

also down-regulated in the left ventricular myocardium of Handl gain-of-function 

embryos. This was accompanied in many embryos by defective expansion of the 

developing LV. The authors suggested on the basis of this cardiac phenotype that 

Handl has a cell-autonomous role in promoting CPC proliferation during heart 

development.
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In light of the findings of this study, it is likely that Handl promotes SHF 

CPC proliferation prior to their commitment to differentiate into cardiomyocytes at 

the site of the developing OFT. Thus in Handl -over-expressing hearts, CPCs are 

unable to differentiate into cardiomyocytes at the time that Handl would normally be 

down-regulated, resulting in significant CPC hyperplasia in the distal OFT 

myocardium. The thin-walled LV in Handl-over-expressing embryos may similarly 

be explained by CPC hyperplasia. Hyper-proliferation of CPCs may prevent the outer 

curvature of the LV from expanding and ballooning ventrally as secondary 

myocardium in accordance with the ballooning model to produce the LV chamber 

(Christoffels et al., 2000). This is supported by the fact that the LV myocardium of 

Handl-over-expressing hearts is down-regulated for markers of secondary 

myocardium, for example Nppa and Chisel, which is suggestive of failed secondary 

myocardium differentiation (Risebro et al., 2006). These findings agree with the 

Handl loss-of-function studies. They are consistent with the left ventricular 

hypoplasia and a shortening of the OFT observed in the conditional, heart-specific 

Handl mutant embryos (McFadden et al., 2005), and may suggest that the 

hypoplastic OFT and a thin-walled LV of Handl -null tetraploid-rescued embryos are 

underpinned by deficiencies in CPC proliferation (Riley et al., 1998).

Whilst Handl over-expression in the developing heart promotes CPC 

proliferation, it is unclear how Handl regulates this activity per se. One possibility is 

via transcriptional modulation of the genes encoding the cell cycle regulators Cyclin 

D2 and Cdk4, suggested by their up-regulation in the gain-of-function embryos and 

embryoid bodies, but their down-regulation in Handl-null embryoid bodies (Risebro 

et al., 2006). Although it is unclear whether Handl directly activates the Cyclin D2 

and Cdk4 genes, adult transgenic mice over-expressing Cyclin D2 in the myocardium 

show enhanced cardiomyocyte proliferation (Pasumarthi and Field, 2002) and Cyclin 

D2 represses cell hypertrophy by enhancing proliferation (Busk et al., 2005).

Further insights into the role of Handl during murine cardiac morphogenesis 

have been made possible by the identification of some of its target genes. An isolated 

study suggested that Handl, in combination with Hand2, regulates cardiac expression 

of the gene encoding the striated muscle-specific metabolic enzyme adenylosuccinate
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synthetase 1 (Adssl) (Lewis et al., 1999). Handl is also thought to activate the Nppa 

gene, which encodes the Atrial Natriuretic Factor/ Peptide (ANF/ ANP). Cardiac- 

specific Handl -null mice have a reduced level of Nppa transcripts in the LV 

(McFadden et al., 2005), whilst ectopic expression of Handl in the RV was sufficient 

to mis-express Nppa expression in this region (Togi et al., 2004). Furthermore, 

Handl regulates the expression of Nppa in transfection assays in vitro, likely through 

a mechanism reliant on its interaction with other cardiac-specific transcription factors 

such as Mef2 (Morin et al., 2005).

As described, Handl has been implicated in the migration of cardiomyocyte 

and neural crest populations during cardiac looping and OFT morphogenesis (Riley et 

al., 2000). Another study employing representational differential analysis (RDA), 

which compared RNA species from in vzYro-differentiated wild-type and Handl -null 

ES cells, appropriately implicated cohorts of Handl target genes in cell movement 

and migration (Smart et al., 2002). In Handl-null EBs, Thymosin {14 (T/34), which 

encodes a protein involved in actin-based cell motility (Smart et al., 2007), was 

significantly down-regulated. Conversely, Cystatin C, which encodes a cysteine 

protease inhibitor involved in ECM degradation and remodelling (Afonso et al., 

1997) was up-regulated. This was also true of a-cardiac actin, which encodes a 

component of the cardiomyocyte cytoskeleton (Arber et al., 1997). Using whole- 

mount in situ hybridisation, all three analysed genes were moreover shown to be 

temporally- and spatially-co-expressed with Handl in the LV and OFT of wild-type 

embryos and mis-expressed in Handl-null mutant hearts. Additionally Wave3, a 

member of the WASP family that functions downstream of the Rac GTPase during 

cell migration, is up-regulated in a Handl -null background (P. Riley, unpublished 

data). In addition to the genes involved in cell migration, the RDA screen identified 

various others, including several involved in cell cycle regulation (a selection of these 

genes is listed in Table 1.4). Nevertheless it remains to be determined whether Handl 

directly or indirectly regulates these genes.
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Table 1.4. A selection of putative cardiac target genes of Handl, up-regulated (a) 

or down-regulated (b) in a H andl-null background. Adapted from Smart et al., 

2002; references therein.

Gene Function of Encoded Protein

(a) Genes up-regulated in a Handl-null background

Cystatin C Cysteine protease inhibitor/ECM remodelling

Cyclin D2 G1 phase cyclin

Wnt2 Placentation

a-cardiac actin Component of cardiac sarcomere

HMGP2 Oct2 interactor

(b) Genes down-regulated in a Handl-null background

Thymosin P4 Regulates actin polymerisation/ cell motility

Fibronectin Extracellular matrix (ECM) component

Lim kinase 1 Actin assembly

Wave3 Negative regulator of Ras neuroblast proliferation/ cell cycle control

TifI3 Transcriptional co-repressor

Circumstantial evidence also implicates other genes as Handl targets. The 

expression domain of Handl in the developing mouse heart overlaps with that of the 

transcriptional co-activator Citedl and its expression is down-regulated in the hearts 

of conditional Handl-null embryos (Dunwoodie et al., 1998; McFadden et al., 2005). 

Additionally, the myocardial marker Chisel is up-regulated upon Handl over

expression in the ventricular myocardium (Togi et al., 2004). This is also true of 

Cx40, whose expression is also reduced in Handl cardiacKO/KO embryos (McFadden 

et al., 2005). Another putative Handl target is endothelin-1 (ET-1) (Morin et al.,

2005), which has also been implicated in the regulation of Handl expression (Ivey et 

al., 2003), suggesting that these factors operate in an auto-regulatory feedback loop. 

Notably, despite the up-regulation of Hand2 in a Handl-null background (Morikawa
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and Cserjesi, 2004), and its down-regulation upon Handl over-expression in the RV 

(Togi et al., 2004), it is unlikely that Handl and Hand2 regulate each other’s activity, 

consistent with their non-overlapping respective domains of expression (Cserjesi et 

al., 1995; Srivastava et al., 1995).

1.3.3. Roles of Handl in the adult heart

Handl expression was previously undetected in the adult mouse heart 

(Cserjesi et al., 1995; Srivastava et al., 1995). However, more recent studies 

identified Handl transcripts in adult rodent and human ventricles, but not the atria 

(Natarajan et al., 2001; Thattaliyath et al., 2002). Moreover experiments in adult 

rodent hearts showed that following cardiac hypertrophy induced by pharmacological 

(phenylephrine treatment) and surgical (aortic constriction) manipulation, Handl and 

Hand2 expression were down-regulated in the LV and RV respectively (Thattaliyath 

et al., 2002). This is in agreement with a previous study, which demonstrated a down- 

regulation of HAND1, but not HAND2, in the hearts of human patients suffering 

pathological ischemic or dilated cardiomyopathy (Natarajan et al., 2001).

Supporting these observations, mouse hearts lacking cardiac lineage protein-1 

(Clp-1), which exhibit a fetal form of cardiac hypertrophy characterised by a reduced 

left ventricular chamber with thickened myocardial walls, are down-regulated for 

Handl (Huang et al., 2004). Furthermore, Irx4-null mice, which have reduced Handl 

expression in the developing LV, are prone to adult-onset, left ventricular 

hypertrophy (Bruneau et al., 2001). Finally, some evidence implicates the Handl 

interactor Fhl2 in modulating the hypertrophic response in the heart (Kong et al., 

2001). Thus Handl appears to inhibit cardiac hypertrophy in both the adult human 

and rodent hearts. As such, the down-regulation of Handl expression in rodent 

hypertrophy and human cardiomyopathy may allow cardiomyocytes to reinitiate the 

fetal gene program and thus promote physiological changes that allow the heart to 

respond to genetic insult or environmental stresses by undergoing hypertrophy.
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1.4. The role of Handl in other developing tissues

Handl is expressed during the development of murine lineages that receive a 

significant contribution from the neural crest population. Notably Handl transcripts 

are not detectable in the developing or migrating neural crest cells, arguing against a 

role for the transcription factor in the formation or migration of these cells. However, 

Handl expression is up-regulated by the time such cells have populated the 

pharyngeal arches and aortic arch arteries, suggesting a role in neural crest cell 

differentiation (Firulli et al., 1998; Thomas et al., 1998b).

At E l0.5 Handl transcripts and/ or promoter activity are detectable in the 

precursors of the sympathetic trunk ganglia, whilst by El 1.5 expression is up- 

regulated in lateral mesoderm derivatives, namely the first pharyngeal arch and the 

developing mid- and hindgut (Cserjesi et al., 1995; Firulli et al., 1998). At mid

gestation Handl is also expressed in the forebrain, the septal region of the tongue bud 

and the mandible (Cserjesi et al., 1995; Hollenberg et al., 1995). Riley and colleagues 

confirmed these findings by identifying regions of the embryo, in addition to the left 

ventricular myocardium, from which Handl -null ES cells are excluded (Riley et al., 

2000). This study identified a requirement for Handl in the branchial arches and 

dorsal root ganglia, both of which are in part neural crest-derived, and in several 

mesoderm-derived structures such as the limb bud and gut.

1.4.1. Handl is required for limb morphogenesis

Whilst Hand2 activates Sonic hedgehog (Shh) as an essential step during the 

formation of the zone of polarising activity (ZPA) (Charite et al., 2000), little is 

known about the precise role of Handl during limb morphogenesis. Early studies 

demonstrated low Handl levels in the mouse limb buds at E l0.5 (Cserjesi et al., 

1995). Thattaliyath and colleagues showed later that mis-expression of either Handl 

or Hand2 in the developing limb bud in transgenic mice induces ectopic digits, and 

that this activity is dependent exclusively on the HLH region (Thattaliyath et al., 

2002).
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Fernandez-Teran and co-workers more recently demonstrated that Handl 

expression, initially detectable in the ventral mesoderm of the developing chick limb 

(Hamilton and Hamburger stages 17-20), becomes restricted to a more antero-ventral 

population of mesoderm cells and later to the ventral portions of the digits 

(Fernandez-Teran et al., 2003). Importantly, a re-specification of the anterior 

mesoderm in the developing chick limb, in response to Shh or retinoic acid 

application, leads to a down-regulation of Handl expression. Conversely, over

expression of Handl in a low percentage of cases results in duplications of digit 2. 

The pattern of Handl expression in two chick mutants further supports its association 

with the anterior identity of the mesoderm (Fernandez-Teran et al., 2003). The limbs 

of the talpid-2 (ta2) mutant, which have a constitutively-active Shh pathway that 

results in all the limb mesoderm being posteriorised, do not express detectable levels 

of Handl. Conversely, the oligozeugodactyly (ozd) chick mutant, which lacks limb- 

specific Shh activity, is accordingly up-regulated for Handl. However, at present, the 

precise function(s) of Handl during limb development are unclear.

1.4.2. Handl is involved in gut formation

The expression of Handl in the gut is conserved between organisms, although 

the specific cells in which it is expressed varies. The Drosophila Hand gene is 

expressed in circular visceral midgut muscle progenitors (Kolsch and Paululat, 2002), 

whilst in the chick transcripts encoding Handl are observed only within the cells 

forming the epithelial lining of the small intestine and colon (Wu and Howard, 2002). 

This is the first description of Hand gene expression in an endoderm-derived tissue.

In the mouse, Handl expression is restricted to smooth muscle cells of the 

embryonic gut and persists in the adult mouse intestine (Cserjesi et al., 1995; 

Hollenberg et al., 1995). A later study suggested that different lineages of cells in the 

developing mouse gut express Handl and Hand2. Whilst Hand2 is required for the 

neuronal differentiation of neural crest cells, Handl expression is limited to 

mesodermal gut derivatives (D’Autreaux et al., 2007). To date, neither the role of 

Handl during gut morphogenesis, nor in the adult gut, is understood.
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1.4.3. Handl is required for the formation of the autonomic 

nervous system

Drosophila Hand is expressed in the developing central nervous system, but 

its role during this process is largely unknown (Kolsch and Paululat, 2002). In the 

chick, Handl plays a role in the development of the autonomic nervous system. 

Antisense knock-down of Handl transcripts revealed Handl involvement in the 

differentiation of avian neural crest-derived cells into sympathetic, catecholaminergic 

neurones in culture (Howard et al., 1999). This may be dependent on an interaction 

between Handl and the neurogenic bHLH factor Mashl (Bounpheng et al., 2000). 

The same factors also activate the catecholaminergic differentiation program in vivo 

and in cultured chick neural crest cells (Howard et al., 1999). However, the precise 

function(s) of Handl during the formation of the autonomic nervous system, and 

whether this role is conserved in mammals, are currently unclear.

1.4.4. Handl is required for craniofacial and tooth 

development

Barbosa and colleagues recently identified a role for Handl, in co-operation 

with Hand2, in the regulation of distal midline mesenchyme development (Barbosa et 

al., 2007). Handl is expressed in the distal (ventral) zone of the branchial arches 

(arches 1 and 2), an expression domain that partly overlaps with that of Hand2 and 

whose derivatives include the inter-dental mesenchyme and the distal symphysis of 

Meckel’s cartilage. The authors generated mice with neural crest-specific deletion of 

H andl, using Cre recombinase controlled by the neural crest cell-specific Wntl 

promoter, in combination with various Hand2 mutant alleles. Whilst the loss of 

Handl activity in neural crest cells had no phenotypic effect, concurrent Hand2 

deletion led to impaired growth of the distal midline mesenchyme of the first 

branchial arch. Secondary to the loss of distal midline mesenchyme, both the terminal 

differentiation of chondrocytes in Meckel’s cartilage symphysis and the membranous 

ossification of the mandible is aberrant, leading to impaired growth of the lower 

incisors. Interestingly, expression of the genes Msx2, Pax9 and Prx2 was down- 

regulated in the distal mesenchyme, implicating the Hand factors in their regulation.
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1.5. Functional redundancy of Hand genes

Several studies have suggested the existence of functional redundancy 

between the Hand factors, that is, an ability to compensate for each other. Functional 

redundancy was first inferred when knock-down of Handl and Hand2 using 

antisense oligonucleotides in combination, but not in isolation, was shown to disrupt 

heart development at the cardiac looping stage in chick embryos (Srivastava et al., 

1995). These antisense experiments suggested that the Hand factors play redundant 

roles in avian cardiac development.

However, uniform overlapping expression of the Hand genes applies only to 

the chick. The distinct and only partially-overlapping expression patterns of Handl 

and Hand2 in mice, and the complementary phenotypes of Handl-null and Hand2- 

null mice, suggest that the Hand factors have separate and independent roles in 

murine ventricular morphogenesis (Firulli et al., 1998; Riley et al., 1998). For 

example, Handl -null mice are characterised, in part, by defective LV morphogenesis, 

whilst loss of Hand2 results in the formation of a hypoplastic RV (Srivastava et al., 

1997). Related to this, Hand2 and Nkx2.5 synergistically regulate expression of Nppa 

in the RV, but this is not true of Handl and Nkx2.5, despite their ability to physically 

interact (Thattaliyath et al., 2002b). Other data also support the idea that Handl and 

Hand2 have non-overlapping roles during embryogenesis. For example, whilst Hand2 

is up-regulated in Handl-null yolk sacs, this attempted compensatory mechanism is 

ultimately insufficient as yolk sac defects persist (Morikawa and Cserjesi, 2004). In 

agreement with this, the yolk sac vasculature defects in Hand2-null mice are distinct 

from those seen in Handl -null mice (Srivastava et al., 1997; Firulli et al., 1998).

Nevertheless, evidence does exist to support the idea that Hand factors have 

overlapping functions in mice. The lethality of Drosophila Hand mutants can be 

rescued by the cardiac expression of a single human HAND gene (Han et al., 2006). 

The zebrafish hands o ff cardiac phenotype is caused by the loss of the han gene, 

which bears most similarity to mammalian Hand2. The hands o ff fish have cardia 

bifida, which is a is much more severe than the Hand2-null cardiac phenotype in the 

mouse (Srivastava et al., 1997; Angelo et al., 2000; Yelon et al., 2000). This suggests
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that in Hand2-null mutant mice, in which Handl and Hand2 cardiac expression 

domains partially overlap, Handl may somewhat compensate for the loss of Hand2. 

Since zebrafish possess only one Hand gene, no such compensation can occur, and 

the resultant phenotype is more severe (Yelon et al., 2000).

Studies in mouse models have also suggested the existence of functional 

redundancy between the Hand factors. For example, over-expression of the HLH 

domain of either Handl or Hand2 in the developing limb bud induces polydactyly 

(McFadden et al., 2002). Additionally, a more recent study showed that when Handl 

cardiac-specific knockout mice, which die of mild cardiac abnormalities at birth, are 

crossed into a //a«<72-heterozygous background, the resulting mutants have a more 

severe embryonic lethal phenotype (McFadden et al., 2005). Such mice are 

embryonic lethal at E l0.5 due to a thin and poorly-trabeculated left ventricular 

myocardium. Similarly, the removal of one Handl allele significantly exacerbated 

the Hand2-mi\\ phenotype, resulting in an earlier embryonic lethality. Furthermore, 

embryos lacking both Hand genes (HandlKO/KO (cardiac); Hand2KO/KO) displayed the 

most severe cardiac phenotype, an ablation of both ventricles, and were embryonic 

lethal at E9.0. The authors proposed that the absence of both Hand genes results in a 

loss of CPC specification at an early stage of cardiogenesis, similar in mechanism to 

that that is thought to underlie the lack of cardiomyocytes and failure of ventricular 

morphogenesis in the hands o ff zebrafish mutant, deficient for the sole Hand gene 

(Angelo et al., 2000; Yelon et al., 2000). Finally, a recent study showed that distal 

midline mesenchyme development was only impaired when both Handl and Hand2 

were deleted in the neural crest lineage (Barbosa et al., 2007). Given the Handl 

domain is completely included in the Hand2 domain in the branchial arches, this 

suggests that Hand2 activity compensates for the loss of Handl and that the Hand 

factors redundantly regulate the same sets of target genes in the pharyngeal arches.

In conclusion, in species with more than one Hand gene, the encoded Hand 

factors may function in a redundant fashion, but only to a degree. Some of their 

observed functional overlap may be due to their dimerisation with a common partner 

that confers a dominant function regardless of the Hand protein to which it is bound. 

Knock-in studies in which either Hand gene is replaced by the other and vice versa 

are required to confirm Hand factor functional redundancy in vivo.
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1.6. The rat choriocarcinoma-1 (Rcho-1) cell line

Gain- and loss-of-function studies have provided only limited insight into the 

specific role(s) of Handl during development. A better understanding of the 

mechanisms of Handl function and regulation could nevertheless provide insight into 

the underlying cellular causes of defective placentation and idiopathic CHD. Indeed, 

no mutations in the human Handl gene have been identified. This implicates Handl 

as an excellent candidate for mutations in cz's-acting sequences or defects in its 

upstream regulation that could lead to congenital heart or placental failure in humans.

Mechanisms regulating the developmental activity of Handl remain elusive 

and have been difficult to discern both in vitro and in vivo. In terms of cell culture 

experiments, there are no faithful models of cardiomyocytes. With respect to the in 

vivo lineages in which Handl is expressed, for example cardiomyocytes and primary 

TS cells, they are often difficult to maintain and manipulate in culture (S. Tanaka, 

personal communication). ES cells have previously been employed to investigate 

aspects of Handl regulation and function in vivo (Riley et al., 2000; Smart et al., 

2002; Risebro et al., 2006). Several studies suggest that the process of ES cell 

differentiation into EBs faithfully models cardiomyocyte differentiation in the 

developing heart (Maltsev et al., 1993; Doevendans et al., 2000; Fijnvandraat et al., 

2003). However, the percentage of ES cells that give rise to Handl -expressing 

cardiomyocytes can be very low and this can rule out their use in certain assays 

(reviewed by Boheler et al., 2002).

For these reasons, we employed a trophoblast cell model, the rat 

choriocarcinoma-1 (Rcho-1) cell line, to investigate the mechanistic bases of Handl 

post-translational regulation in vivo. These cells are easy to culture and faithfully 

mimic many aspects of primary TS cells in vitro, including an ability to undergo 

trophoblast giant (TG) cell differentiation (Hamlin et al., 1994; Sahgal et al., 2006). 

Most importantly for our study, Handl appears to be both necessary and sufficient 

for the process of Rcho-1 TG cell differentiation (Cross et al., 1995; Scott et al.,

2000). This made the use of the Rcho-1 trophoblast model highly attractive for 

interrogating key aspects of Handl cellular function.
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1.6.1. Overview

Rcho-l cells were derived from a transplantable rat choriocarcinoma (Rcho), 

a highly-malignant trophoblast tumour, 25 years ago (Teshima et al., 1983). 

Asynchronous Rcho-l stem cells have a large nuclear-to-cytoplasmic ratio and 

comprise a morphogenetically-heterogeneous population. They consist of either 

mitotic, rounded cells with circularly-distributed peripheral actin, or slightly-spread, 

highly-motile interphase cells possessing patches of actin at the periphery (Faria and 

Soares, 1991; Figure 1.6). After differentiation, Rcho-l TG cells resemble their in 

vivo counterparts by virtue of a dramatic increase in cytoskeletal complexity and 

immotility. Rcho-l stem cells moreover mimic TS cells in that their differentiation 

into TG cells is dependent on mitotic cell cycle exit and entry into the endocycle 

(MacAuley et al., 1998).

Importantly, the molecular mechanisms underlying Rcho-l TG cell 

differentiation are largely conserved. Rcho-l-derived TG cells faithfully recapitulate 

the incremental changes in gene expression typical of bona fide  TG cell 

differentiation. For example, they up-regulate members of the placental prolactin 

family related to the pituitary hormone prolactin (PRL) (Hamlin et al., 1994). The 

changes to the cell cycle machinery that coincide with mitotic cell cycle exit and the 

onset of endoreduplication in Rcho-l cells also faithfully copy those that occur in 

rodent trophoblast in vivo (MacAuley et al., 1998). In this regard, numerous analyses 

have effectively employed Rcho-l cells as a model system in which to investigate 

changes in gene expression pattern during TG cell differentiation (Yamamoto et al., 

1994; Grummer et al., 1996; Oda et al., 2001; Mehta et al., 2002; Hayashi et al., 

2004; Morris-Buus and Boockfor, 2004; Novak et al., 2004; Xu et al., 2005; 

Hassanein et al., 2007; Minekawa et al., 2007). These are in addition to studies that 

have successfully used the Rcho-l cell line as a tool to investigate the role of Hand 1 

during TG cell differentiation (Cross et al., 1995; Scott et al., 2000; Firulli et al., 

2003).

Cultured Rcho-l stem cells can be induced to undergo TG cell differentiation 

by numerous methods. These include increasing the plating density, applying ectopic 

factors such as retinoic acid, the anti-retroviral drug PMEA or diethylstilbestrol
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(DES), or simply by replacing mitogen-rich fetal bovine serum (FBS) with horse 

serum (HS) (Cross et al., 1995; Hatse et al., 1998; Yan et al., 2001; Tremblay et al.,

2001). Rcho-l TG cells can subsequently be separated from Rcho-l stem cells by 

virtue of their increased adherence and accompanying insensitivity to trypsin (Parast 

et al., 2001). The spontaneous differentiation rate of Rcho-l stem cells is 5.9±0.5% 

per 24 hours, which represents the percentage of Rcho-l cells cultured in FBS- 

supplemented medium that initiate TG cell differentiation over a 24 hour period 

(Nakayama et al., 1998; Scott et al., 2000). Consistency in cell culture practices is 

vital, since variations in culture densities and passaging ratios influence cell 

phenotype (Cross et al., 1995).

Rcho-l TG cells are specifically a model of SGCs. The ontogeny of 

expression of members of the PRL gene family during Rcho-l differentiation 

resembles that of cells originating from the periphery of the EPC (Hamlin et al., 

1994). This is supported by the observation that a monoclonal antibody directed to 

Rcho-l stem cells specifically recognises proliferative TG cell precursors at the 

periphery of the EPC (Verstuyf et al., 1992). Furthermore, recent data has likened 

Rcho-l cells to SGCs by virtue of their cytoskeletal organisation and gene expression 

profile (Parast et al., 2001; Gultice et al., 2006). In light o f the recent findings by 

Simmons and co-workers, it is encouraging also that the only subtype of SGC that 

expresses PL-1, in common with Rcho-l TG cells, is the so-called ‘parietal SGC’ 

(Simmons et al., 2007). This is the cell type that forms the interface with the maternal 

decidua and which has traditionally been refereed to as the ‘SGC’.

1.6.2. Differences between TS cells and Rcho-l cells

The Rcho-l cell model is not, however, perfect. These cells do differ from 

their in vivo counterparts due to phenotypic drift in culture. By flow cytometry, Rcho- 

1 stem cells were shown to possess up to eight times the haploid content, in contrast 

to diploid TS cells (MacAuley et al., 1998). The underlying reason for this difference 

is unknown. Furthermore, pulse-chase experiments revealed that the length of an 

Rcho-l endocycle is between 40-50 hours (MacAuley et al., 1998), significantly 

longer than the 14-hour endocycle of TS cells (Nakayama et al., 1998). Moreover
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Rcho-l stem cells are a transformed cell line and unlike cultured TS cells they can 

grow in an Fgf4-independent, un-regulated manner, without the additional factor(s) 

provided by conditioned medium (CM) or embryonic fibroblast feeder cells 

necessary for TS cell maintenance (Tanaka et al., 1998; Hughes et al., 2004). This 

may, in part, be due to the specific, as-yet unidentified, mutations that occurred 

during the transformation of TS cells into the choriocarcinoma cells from which 

Rcho-l cells were originally derived.

Although generally conserved, certain aspects of the gene expression profile 

of Rcho-l TS and TG cells differs to that of their counterparts in vivo. For example, 

Rcho-l TG cells do not express the TS cell-specific bHLH factor Mash2 and, unlike 

TS cells, cannot differentiate into syncytiotrophoblast upon Gcml over-expression 

(Scott et al., 2000; Hughes et al., 2004). Rcho-l stem cells express low levels of 

Handl, whilst TS cells only initiate Handl expression when they are positioned at 

the outer reaches of the EPC (Cross et al., 1995; Hughes et al., 2004; Gultice et al.,

2006). Additionally Sox 15 expression increases during TG cell differentiation in vivo, 

but is not expressed during Rcho-l differentiation (Yamada et al., 2006). 

Furthermore, PL-1 is only transiently expressed in SGCs in vivo, and yet its 

expression persists during Rcho-l cell differentiation in vitro (Nieder and Jennes, 

1990; Faria and Soares, 1991; Hamlin et al., 1994). Finally, whilst Rcho-l cells 

express increasing levels of Mmp9 through 13 days of culture, in vivo trophoblast 

cells reduce Mmp9 expression at an earlier time during differentiation (Peters et al., 

2000). However, these differences are subtle and do not preclude the use of Rcho-l 

cells as a relatively faithful model of in vivo TS cells to investigate the mechanisms 

underlying Handl regulation during TG cell differentiation.

1.7. Aims of these PhD studies

A subject of long-standing interest in developmental biology centers on how 

the differentiation of stem cells is temporally controlled. Several studies have shown 

that specific transcription factors, including those of the basic helix-loop-helix 

(bHLH) super-family, play a major role in the commitment of certain stem cell
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populations to differentiation. For example, it has been known for nearly a decade 

that the bHLH factor Handl is involved in determining trophoblast stem (TS) cell 

fate during rodent placentation and has been implicated in regulating cardiomyocyte 

differentiation during cardiac morphogenesis (Riley et al., 1998; Firulli et al., 1998). 

However, how Handl biological activity is regulated in either lineage remains largely 

unknown.

Handl protein-protein interactions are clearly very important for modulating 

Handl activity (Table 1.1). However, to date, Handl has only been shown to 

functionally interact with other bHLH factors in vivo. Given the promiscuous 

dimerisation properties of Handl, we hypothesised that the transcription factor may 

interact with non-bHLH factors, which may play a role in regulating Handl function 

and biological activity. In this regard, we carried out a yeast two-hybrid screen to 

identify Handl interactors and isolated the murine orthologue of the nucleolar factor 

HICp40.

The following PhD studies examined the functional significance of the 

Handl -HICp40 interaction in a model of TS cells and progressed to uncover a novel, 

potentially more widespread, mechanism of controlling the developmental activity of 

a transcription factor via its nucleolar sequestration and subsequent release. Later in 

the thesis we evaluate these findings in terms of the known functions of the nucleolus 

and of Handl, and describe ongoing studies and areas of potential future work. A 

better understanding of Handl regulation and function during invasive trophoblast 

differentiation may provide insight into the underlying molecular and cellular defects 

resulting in common placental defects such as pre-eclampsia. This is a very common 

disease that occurs in up to 15-10% of all human pregnancies and is characterised by 

inadequate invasion of trophoblast into the maternal decidua and deficient 

remodelling of the uterine spiral arterioles (reviewed by Redman and Sargeant, 2005; 

Sibai et al., 2005). Additionally, delineating the cellular mechanisms that control 

Handl activity during cardiomyocyte differentiation may suggest how signalling 

cascades involving the transcription factor become aberrant during a subset of 

idiopathic congenital heart disease.
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Chapter 2
Materials and methods
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Described below are the materials and methods used during the course of this 

work. Reagents, PCR primers, PCR programs, antibodies and in situ hybridisation 

riboprobes employed are listed in Appendices 1-7. The yeast two-hybrid analysis 

(this chapter, section 2.3), characterisation of the Handl-HICp40 interaction (section 

2.4) and whole-mount RNA in situ hybridisation of HICp40 (section 2.5) were 

carried out by Maria del mar Franco Viseras. The northern blot analysis (section 2.8) 

was carried out by Catherine Risebro.

2.1. Construction of plasmids

Several constructs used during the course of this study either existed in house 

or were obtained from outside sources. These included those used for:

• Yeast two-hybrid assay: pGBDU-Hand 1 (provided by Stanley Hollenberg).

• In vitro transcription assay: pcDNA3-Handl and pcDNA3-E12 (existed in- 

house), pcDNA3-HICp40, pcDNA3-HICp32 and pcDNA3-HICAC (provided by 

Sabine Thebault).

• Immunofluorescence: pCEP4.1-B568 (provided by Anthony Firulli), pEGFP- 

HICp40 and pEGFP-HICp32 (provided by Sabine Thebault), pGFP-Plk4 

(provided by Frank Sicheri) and pEGFP-MyoD (provided by Vivek Mittal).

• Co-immunoprecipitation: pFLAG-Handl (existed in-house), pHIS-HICp40 and 

pHIS-HICp32 (provided by Sabine Thebault) and pFLAG-Plk4 (wild-type) and 

pFLAG-Plk4 (T170D) (provided by Carol Swallow and James Dennis).

• Various other assays: pHand2-Neo, pFLAG-Hand 1 (T107;S109A) and pFLAG- 

Handl (T107;S109D) (provided by Anthony Firulli).

The following constructs were generated for specific use in this project.

• The pHandl-EGFP construct was produced by inserting the full-length Handl 

cDNA, generated by PCR amplification of the pcDN A3-Handl template, 

including the ATG start codon but minus the stop codon, into the pEGFP-Nl 

vector downstream and in frame with the EGFP cDNA (Clontech).

• The pHand 1 (T107;S 109A)-EGFP and pHandl(T107;S109D)-EGFP constructs
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were generated in a similar way, but by PCR amplification of the relevant point- 

mutated, full-length Handl cDNAs from the pFLAG-Handl(T107;S109A) and 

pFLAG-Handl(T107;S109D) templates, and their insertion in-frame with the 

EGFP cDNA in the pEGFP-N 1 vector.

• The pHandl-EGFP fragments (pbHLHHandi-EGFP and pHandlHis-EGFP; 

Appendix 4) were generated in a similar way, but by PCR amplification of the 

relevant stretch of Handl cDNA from the pEGFP-Handl template and their 

insertion in-frame with the EGFP cDNA in the pEGFP-N 1 vector.

• The pHand2-EGFP construct was generated in a similar way, but by PCR 

amplification of the full-length Hand2 cDNA from the pHand2-Neo vector 

template and its insertion in-frame with the EGFP cDNA in the pEGFP-N 1 

vector.

• The pGST-Handl construct was generated by PCR amplification of the full- 

length Handl cDNA from the pFLAG-Hand 1 template and its insertion in-frame 

with the GST cDNA in the pGEX4.1 (Promega) vector.

• The pKS+-MICp40 and pcDNA3-MICp40 constructs were generated by PCR 

amplification of the MICp32 cDNA using a specific IMAGE clone as a template 

(#12645-K05). This cDNA, inserted into the pKS+ vector, was then extended by 

the upstream ligation of a PCR product amplified from a template consisting of a 

BAC containing mouse genomic sequence (#RP24-350N23). This generated 

pKS+-MICp40. pcDNA3-MICp40 was produced by simply excising the full- 

length MICp40 cDNA from pKS+-MICp40 and inserting it into the pcDNA3 

vector.

• The RNAi constructs (.HICshRNAil, HICshRNAi2, PM shRN Ail and 

Plk4shRNAi2) were generated by inserting annealed 21 bp or 22bp sense and 

antisense HICp40 and Plk4 oligonucleotides downstream of the HI RNA 

polymerase III promoter in a modified pcDNA3 vector (Kunath et al., 2003). The 

oligonucleotide design is predicted to generate a transcript with a hairpin structure 

containing a 9 base-pair loop. The sequences were designed in accordance with 

published guidelines (Cui et al., 2004; www.bioit.dbi.udel.edu/mai/). This 

involved employing sequences of the form 5,-AA(Ni7.i9)TT-3’ or 5’-AA(Ni9-2i), 

where N is any nucleotide, starting at least 100 nucleotides downstream from the 

start codon. This pattern is optimal because siRNAs with 3’ overhanging UU
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dinucleotides are the most effective. Sequences with GC content below 30% or 

above 79% were also excluded due to considerations relating to thermo-stability 

and the formation of secondary structure. Sequences containing AAAA or TTTT 

were also excluded since they are inappropriate for siRNA generation via RNA 

polymerase Ill-mediated promoters due to the tendency of RNA polymerase III 

transcription to terminate at these sequences. In addition, sequences containing 

CCCC or GGGG are excluded from consideration as they are known to form a 

nucleotide quartet and may affect RNAi function. The annealing reaction was 

carried out in a total volume of 1 Opl with 1 x annealing buffer and was left to 

proceed at an initial temperature of 95 °C that gradually cooled to room 

temperature.

With the exception of the RNAi constructs, these constructs were generated as 

follows. Pfu DNA polymerase-based PCR was used to amplify the relevant cDNA 

from lOng plasmid or lOOng BAC template. Each of the primers used for the PCR 

contained recognition sites for specific restriction enzymes at their 5’ end (see 

below), such that the generated PCR products could be cut and ligated into the 

relevant vector, generally within the polylinker region (multi-cloning site (MCS)). 

Notably, each primer contained a recognition site for a different restriction enzyme, 

to exclude the possibility of incorrect orientation of the insert in the vector plasmid 

after ligation. After the PCR, the reaction mix was supplemented with l/6th of its 

volume of gel loading solution, loaded onto a 1% agarose gel (in lxTBE) and run 

through the gel for 90 minutes at 100V. The amplified DNA was visualised by way 

of an ultra-violet illuminometer and excised from the gel using a scalpel. It was then 

purified by way of the QIAquick™ Gel Extraction Kit (Qiagen) according to the 

manufacturer’s protocol. Each end of the amplified PCR product was subsequently 

digested using the relevant restriction enzymes (New England Biosciences). The 

digestions were performed separately for each enzyme at 37°C, in a total volume of 

lOjal for the first digest and then 20pl for the second, with lx  reaction buffer and lOx 

BSA. Between the two digests, the first enzyme was denatured by heating the mixture 

to 65°C for ten minutes. Concurrently, lpg  of each vector into which the cDNAs 

were to be inserted were also cut with the same enzymes. The enzymes used to cut 

the various DNAs were as follows:
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• Wild-type and mutant Handl cDNAs, Handl cDNA fragments and Hand2 

cDNA, were restricted with iscoRI (5’ end) and BamRl (3’ end) for insertion into 

pEGFP-N 1.

• MICp32 cDNA was restricted with Dr all (5’ end) and BamHl (3’ end) for 

insertion into pKS+. A 51 Obp region of the mouse BAC upstream of the MICp32 

start codon was inserted upstream of MICp32 using the Kpnl (5’) and Drall (3’) 

enzymes.

• The annealed 21 bp or 22bp oligonucleotides were designed such that their 

overhangs were complementary to the Asp718 (5’ end) and Xbal (3’ end) sites 

downstream of the HI RNA polymerase III promoter in the modified pcDNA3 

vector.

After another round of agarose gel electrophoresis and gel purification to 

purify restricted insert and linearised vector DNA, DNA ligation was carried out. An 

appropriate amount of insert and vector, estimated by assessing the relative molar 

ratios of the two species by agarose gel electrophoresis, were mixed in the presence 

of 2pi ligase buffer and 1U T4 DNA Ligase (both from Promega) in a total volume 

of 20pl. Generally, insert was incubated at a three-fold molar excess with vector. The 

reaction was left to proceed overnight at an initial temperature of 30°C that gradually 

cooled to 4°C. In control ligations, vector and insert were incubated individually and 

a mix lacking T4 DNA ligase was also included. The following day, 5 pi of the 

ligation mixture was added to 50pl of DH5a subcloning efficiency competent E. coli 

cells (Invitrogen), which were subsequently incubated on ice for 20 minutes to 

promote plasmid uptake. Cells were then incubated at 42°C for one minute (‘heat 

shock’), which induced expression of the antibiotic resistance marker on the 

transformed construct, and returned to ice for another five minutes. Next, 1ml of 

antibiotic-free Luria broth (LB) was added to the cells, which were then incubated at 

37°C for 60-90 minutes to allow for expression of the gene whose encoded enzyme 

confers antibiotic resistance. After centrifugation and re-suspension of the cells in a 

smaller volume of LB, the cells were then plated on LB-agar plates containing the 

appropriate antibiotic, using a flamed, glass spreader, carried out in such a way as to 

ensure single colony growth. Plates were then incubated at 37°C overnight to select 

for transformants.
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The following day, colonies were picked from these plates and grown in 2- 

3 ml LB containing the appropriate antibiotic over 8 hours in a shaking incubator at 

37°C. 1.5ml of each culture was then centrifuged at 12,000rpm for 2 minutes and the 

supernatant discarded. Next, 200 j l x 1 TELT solution A was added to the pellet, which 

was then vortexed and placed on ice for 20 minutes to lyse the cells. Subsequently, 

protein was removed from the preparation by extraction in 200pi 

phenol:chloroform:isoamyl alcohol (24:24:1). The mixture was vortexed before 

spinning at 12,000rpm for 2 minutes. The upper, aqueous phase was removed and 

added to 200pl isopropanol, and this mixture was then placed on a rotating platform 

for one hour at room temperature to precipitate DNA. After centrifugation for 30 

minutes at 12,000rpm and removing the supernatant, the remaining DNA pellet was 

washed with 70% ethanol and re-suspended in TE (pH8.0) supplemented with 

RNAse A. An aliquot of this DNA (5 pi) was then digested with the appropriate 

enzymes as before, and the size of the respective fragments ascertained by agarose 

gel electrophoresis in the presence of a Hindlll/A, DNA size ladder. In the case of the 

RNAi constructs, whose oligonucleotide insert was too small to resolve by agarose 

gel electrophoresis, the presence of the correct insert was determined by colony PCR. 

This was carried out using one primer specific to the insert and one to the vector 

backbone and involved transferring a sample of the colony grown in LB to the PCR 

reaction tube using a lOpl pipette tip. If the DNA was correct, lOng was re

transformed into competent cells, and the Qiagen Maxiprep Kit™ was used to 

generate sizeable quantities of the DNA from a larger bacterial culture according to 

the manufacturer’s instructions. After suspending the DNA in TE (pH8.0), its 

concentration was assessed using a spectrophotometer set at OD2 6 0 -

2.2. Cell culture

Rcho-l cells were a kind gift from Michael Soares, trophoblast stem cells 

were obtained from Satoshi Tanaka, P19-CL6 embryonic carcinoma (EC) cells were 

generously provided by John Pizzey and the transgenic embryonic stem (ES) cell line 

was a kind gift from Sean Wu. The H9c2 and NIH-3T3 cell lines existed in house and 

their ATCC catalogue numbers are CRL-1446 and CRL-1658 respectively.
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Cells were cultured in 75cm3 flasks containing 15ml of relevant medium in a 

humidity-controlled chamber at 37°C and 5% CO2 . Cells were passaged by washing 

with 10ml of sterile PBS, applying 1ml of pre-warmed 0.05% trypsin/ 0.02% EDTA 

for 5 minutes at 37°C until the cells were lifted off the plate, spinning down the cells 

at 7,000rpm for 10 minutes and plating down 10-30% of the flask contents in fresh 

15ml of appropriate medium. This was carried out at each 48 hour period, which was 

particularly necessary in the case of NIH-3T3, P I9, P19-CL6 and Rcho-l cells, which 

divide particularly rapidly and can reach confluence in a short period of time.

Certain cell lines and assays required specific culturing conditions. Prior to 

seeding ES cells, plates were coated with 0.1% gelatin to ensure proper cell adhesion. 

To culture trophoblast stem (TS) cells, a ‘feeder’ layer of primary mouse embryonic 

fibroblast (MEF) cells, pre-treated with the antibiotic mitomycin-C, were first grown 

to 70% confluence. At this point, TS cells were plated on top and the conditions 

changed to TS cell-specific medium. Synchronising cells at the G2/M phase 

checkpoint was achieved by application of 400ng/ml nocodazole, a drug that 

promotes Tubulin depolymerisation and which therefore blocks mitosis. Culturing 

cells in hypoxic conditions was carried out by one of two methods. The first method 

involved culturing cells in a humidified, normoxic (ambient air, supplemented with 

5% carbon dioxide/ 21% oxygen) chamber at 37°C in medium supplemented with 

250pM cobalt chloride, which has previously been shown, in cell types including 

Rcho-l cells, to initiate intracellular signalling cascades triggered ordinarily by low 

oxygen (Hayashi et al., 2004). Otherwise, cells were incubated in a humidified, 

hypoxic chamber {Coy Laboratory Products), maintained at 1% oxygen/ 5% carbon 

dioxide/ 94% nitrogen at 37°C. In order to decrease cellular exposure to oxygen, 

reagents used in hypoxic experiments were pre-equilibrated in the chamber for a 

minimum of 30 minutes prior to use. In both cases, an appropriate cellular response 

to hypoxic conditions was assessed by western blot analysis to assess an up- 

regulation of the hypoxic inducible factor-1 alpha (H IFla) subunit.

Several cell lines were induced to undergo differentiation in vitro by 

modifying culture conditions. To induce Rcho-l trophoblast giant (TG) cell 

differentiation, freshly-passaged Rcho-l stem cells were washed with 10ml PBS and
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then treated with 15ml differentiation-inducing medium. The medium was 

completely replaced at 48 hour intervals throughout the differentiation process. By 

48-72 hours after the initiation of differentiation, trophoblast giant cells were 

observed in the cultures. Of note, a relatively homogeneous population of Rcho-l 

stem cells could be obtained, in common with previous studies (Cross et al., 1995; 

MacAuley et al., 1998), by trypsinising freshly-plated Rcho-l cells, by virtue of the 

fact that TG cells are trypsin-resistant. To induce P19-CL6 embryonic carcinoma 

(EC) cell differentiation into cardiomyocytes, cells were grown to confluence and re

suspended in bacteriological-grade dishes in medium supplemented with 0.8% 

DMSO. After two days of incubation, medium was replenished with fresh DMSO- 

containing medium, and after 4 days in suspension aggregates were plated in medium 

lacking DMSO. By 5-6 days after the initiation of aggregate formation, rhythmically- 

contracting cardiomyocytes were observed in the cultures. To induce transgenic 

embryonic stem (ES) cell differentiation into cardiomyocytes, cells were trypsinised 

at approximately 80% confluency and were re-suspended in ES medium minus 

ESGRO. Cells were transferred to 10cm non-gelatin coated bacteriological dishes at 

low density. Cells were maintained in floating culture for 14 days and their medium 

partially replaced daily, with care taken not to remove the embryoid bodies (EBs). By 

10-14 days after the initiation of differentiation, rhythmically-contracting, fluorescent 

cardiomyocytes (within the EBs) were observed in the cultures.

Although most cell types used in this study could be transfected at a high 

efficiency with Effectene™ (Qiagen), we found that the transfection efficiency of 

Rcho-l and trophoblast stem cells transfected with Lipofectamine™ 2000 

(Invitrogen) was significantly higher. Transfection with Effectene™ was carried out 

as per the manufacturer’s instructions. Briefly, cells were plated 16 hours before 

transfection into 6-well plates such that they had reached approximately 70% 

confluency by the time of transfection. 100 pi DNA condensation buffer (EC buffer) 

and 8pi Enhancer were added to 1-1.5pg total plasmid DNA, and mixed by vortexing 

for 1 second. The total amount of transfected DNA per well was kept constant by 

adding an appropriate amount of empty expression vector or pcDNA3. The DNA- 

Enhancer mix was incubated at room temperature for 5 minutes to allow 

condensation of the DNA. 15 pi Effectene™ was then added to this mix and vortexed
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for 10 seconds. The samples were then incubated at room temperature to allow 

Effectene™-DNA complex formation. During this incubation time, cells were 

washed with sterile PBS and 1.2ml fresh medium was added to each well. 800pl fresh 

medium was then added to the transfection complexes, mixed by pipetting up and 

down, and added drop-wise to the cells. Swirling the dish gently attained uniform 

distribution of the complexes. The cells were then incubated for 48 hours in normal 

culture conditions, although the medium was changed completely 24 hours post

transfection. Transfection with Lipofectamine 2000™ was carried out again as per 

the manufacturer’s instructions. Briefly, cells were plated 16 hours before 

transfection into 6-well plates such that they had reached approximately 80% 

confluency by the time of transfection. In two separate tubes, 2-2.5pg total plasmid 

DNA was added to lOOpl serum- and antibiotic-free medium, and 5 pi of 

Lipofectamine™ 2000 was added to another lOOpl of such medium. The two 

mixtures were mixed thoroughly by pipetting up and down, and were subsequently 

incubated at room temperature for 30 minutes to allow for complex formation. 

During this time, cells were washed with sterile PBS and 1.8ml fresh, serum- and 

antibiotic-free medium was added to each well. The mixture (about 200pl) was then 

added to each well in a drop-wise fashion, and the plates were then swirled to attain a 

uniform distribution of complex. Cells were then incubated at 37°C for 5-8 hours in 

normal culture conditions. After this time, cells were washed with PBS and treated 

with normal, serum- and antibiotic-added medium and incubated for 48 hours in 

normal culture conditions.

For the generation of Handl-dsRed knock-in ES cells, transgenic ES cells 

(generously provided by Sean Wu) were co-transfected with the Handl-dsRed 

construct and a pTK-Neo selection plasmid (Clontech) using Effectene™ (Qiagen). 

Initially, a killing curve was determined with concentrations of neomycin (G418; 

from 50-200pg/ml), applied 48 hours post-transfection, to determine the optimum 

concentration of antibiotic. After 14 days’ culture at the optimum concentration of 

neomycin, resistant clones were picked into 96-well plates and the cultures expanded 

in media containing a maintenance concentration of neomycin (50pg/ml). Once the 

stable clones had expanded sufficiently, samples were taken for DNA extraction and 

aliquots were frozen down. For genomic DNA extraction from selected cells, cells
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were lysed, using 0.5% SDS and 0.25jag/jLxl proteinase K, at 55°C for three hours. The 

DNA was extracted in one volume of 1:1 phenol:chloroform on a nutator, for a 

minimum of 30 minutes. The extraction mix was centrifuged at 12,000rpm for 10 

minutes at 4°C and the upper, aqueous phase then transferred to a fresh Eppendorf. 

The DNA was then precipitated with 0.6 volumes of isopropanol, on a nutator, for a 

minimum of 30 minutes. The mixture was then spun down at 12,000rpm for 10 

minutes at 4°C and the remaining pellet washed in 70% ethanol and re-suspended in 

50|iil of TE (pH8.0). This DNA was then used as a template in a PCR reaction with 

relevant primers to genotype for stable Handl-dsRed expression.

For RNA and protein extraction, cells were harvested in all cases by washing 

twice with 10ml ice-cold PBS, scraping with an elongated rubber spatula and 

spinning down the resultant mixture in 10ml ice-cold PBS at 7,000rpm for 10 

minutes. Supernatant PBS was then removed using an aspirator. Cell pellets were 

then lysed by one of the following methods.

• To lyse cells for the luciferase and (3-Gal assays, the cell pellet was re-suspended 

in 450pl lx  reporter lysis buffer (RLB; Promega) and vortexed for 10 seconds. 

The resultant mixture was then frozen and thawed rapidly twice between -70°C 

and 37°C to ensure complete cell lysis. Cell debris was then removed by 

centrifugation at 12,000rpm for 2 minutes at 4°C and the supernatant was 

transferred to a fresh Eppendorf.

• To lyse cells for mRNA extraction, the cell pellet was re-suspended in 1ml 

Micro-FastTrack™ 2.0 lysis buffer (.Invitrogen) and was incubated at 45°C for 20 

minutes to allow the complete digestion of proteins and ribonucleases. The lysate 

was then passed through a 21-gauge needle 4 times to shear any remaining DNA. 

Finally, the NaCl concentration of the samples was adjusted to a final 

concentration of 0.5M to attain optimum salt concentration for mRNA 

purification.

• To lyse cells for western blotting and anti-FLAG co-immunoprecipitation, the cell 

pellet was treated with 800pl FLAG IP kit lysis buffer, to which 8pi of a protease 

inhibitor cocktail had been added. The mixture was vortexed and incubated at 4°C 

on a spinning wheel for 30 minutes, before being centrifuged to remove cell
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debris for 10 minutes at 12,000rpm. The supernatant was then transferred to a 

fresh tube.

• A previously-described method was used to generate whole-cell lysates 

subtracted for the nucleolar fraction (Kurki et al., 2004). Briefly, the cell pellet 

was treated with lOOpl so-called ‘NP-40 lysis buffer’, the constituents of which 

are listed in Appendix 1, and was vortexed vigorously for 30 seconds before 

being incubated on ice for 20 minutes. After centrifugation for 10 minutes at 

12,000rpm the supernatant was removed, and this represents the whole-cell lysate 

subtracted for the nucleolar fraction.

• To lyse cells for co-immunoprecipitation, the cell pellet was treated with 0.5ml 

ice-cold RIPA buffer, to which lOpl of a protease inhibitor cocktail had been 

added. The mixture was vortexed and incubated at 4°C on a spinning wheel for 30 

minutes, before being centrifuged to remove cell debris for 10 minutes at 

12,000rpm. The supernatant was then removed.

Cells to be immunostained were seeded onto glass cover slips (13mm 

diameter), which had been incubated for 5 minutes in 0.1% gelatin, and which were 

themselves placed into wells of a 6-well plate. After cells had adhered and/ or been 

transfected, they were washed twice with 2ml PBS. Cells were fixed with either 4% 

paraformaldehyde in PBS (if they were to be probed with anti-C23) or ice-cold 100% 

methanol (used in all other cases) and incubated for 10 minutes at room temperature. 

Cells were then washed twice with PBS and then permeabilised with 0.5% Triton X- 

100 in PBS and incubated for a further 5 minutes. Cells were then washed once more 

with PBS, and then blocked with 1% Bovine Serum Albumin (BSA) in PBS for 2 

hours at 4°C. Next, cover slips were removed from the plates, attached to glass slides 

using DPX cover mount and encircled with a ring of wax using an Immedge Pen. The 

slides were housed in a dark (aluminum foil-covered), humidity-controlled chamber. 

Cells were then washed twice with 1% BSA in PBS by applying drop-wise and 

aspirating the liquid. The relevant primary antibody, diluted in 1% BSA-PBS, was 

then added drop-wise to the cells, which were then incubated overnight. A secondary 

antibody-only coverslip was included as a control and was left overnight in 1% BSA- 

PBS alone.
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The following morning, after washing cells three times for 5 minutes with 

PBS, the relevant fluorescin isothiocyanate (FITC)- or tetramethyl rhodamine 

isocyanate (TRITC)-labelled secondary antibody, diluted in 1% BSA-PBS, was 

applied to cells and incubated for 1 hour. Cells were then washed with PBS twice, 

and 5pg/ml of the DNA stain bis-benzamide (Hoechst 33342) was applied in PBS for 

10 minutes at room temperature. Cells were again washed twice with PBS, and were 

mounted with cover-slips secured in 50% glycerol-PBS.

Fluorescent images were obtained, and cell counts conducted, using a Zeiss 

Axio Imager M l fluorescent microscope with lOx, 20x and 40x Zeiss Plan-Neofluar 

objectives and FITC, TRITC and DAPI filters. Images were captured with a Zeiss 

Axiocam CCD-videocamera followed by image processing and multiplayer analysis 

using AxioVision™ 3.0. Time-lapse movies were recorded using a Zeiss Axiovert 135 

fluorescent microscope with the program Openlab™ 4.0.

For long-term storage, cells were frozen to -70°C in medium containing 45% 

DMEM, MEMa or NCTC-135 (as appropriate), 45% serum and 10% DMSO. This 

was carried out in an isopropanol bath (Coy Laboratory Products; isopropanol added 

fresh) to ensure gradual cooling. After 72 hours cells were transferred to liquid 

nitrogen.

2.3. Yeast two hybrid assay

The Y2H screen was carried out as described previously using a mouse 

E9.5/10.5 library (Hollenberg et al., 1995). Bait (Handl) was cloned into the DNA- 

binding domain vector (pGBDU-C3), which was expressed as a fusion protein to 

amino acids 1-147 of the yeast Gal4 protein. The cDNA library was cloned into the 

activation domain vector, which was expressed as a fusion protein to amino acids 

768-881 of Gal4. pGBDU-C3 contains the URA-3 (Uracil) selectable marker.

One litre of the yeast strain PJ69-4A* was transformed with 500jug of a 

mixture of the mouse embryo library and lOmg of salmon sperm carrier DNA by the 

lithium acetate method with 10% DMSO. Briefly, this involved preparing a carrier
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mix of sheared salmon sperm carrier DNA (lOmg/ml) by boiling 5 pi of carrier mix 

for 5 minutes, followed by rapid chilling on ice. lOOng of DNA was then added to the 

carrier mix. lOOpl of competent yeast cells was also added, together with 300pl of 

1 xlithium acetate/ 1 xTE/ 40% PEG, and the cell/ DNA mixture incubated at 30°C for 

30 minutes. 70pl o f DMSO was added to the cell/ DNA mixture, and this was 

followed by a heat shock at 42°C for 15 minutes. Cells were harvested (10,000rpm, 

10 seconds at room temperature), re-suspended in 500pl o f dEEO and plated onto 

minimal media plates with the appropriate selection (histidine-deficiency) and 

incubated at 30°C for 2-3 days. Histidine-synthesising clones were lysed in liquid 

nitrogen and assayed for P-Gal activity on filters. Library DNA from colonies which 

were positive with pGBDU-Handl was sequenced, and the sequences were tested 

against the National Centre for Biotechnology Information (NCBI) database using the 

BLAST search program.

* The genotype of the yeast strain PJ69-4A is gal4, gal80, his3-200, trpl-901, 

ura3-52, leu2-3, 112, + GAL2->ADE2, LYS2::GAL1-*HIS3, met2::GAL7->LacZ.

2.4.In  wYro-translation and GST-pull down assay

The pGEX4.1-Handl, pcDNA3-HICp40, pcDNA3-HICp32 and pcDNA3- 

HICAC plasmids were processed for in vitro transcription and translation using a 

TNT™ kit (Pr omega), as per the manufacturer’s instructions. Briefly, lp g  of 

supercoiled DNA was combined with 25 pi TNT rabbit reticulocyte lysate, 2pi 

reaction buffer and lp l amino acid mixture (minus methionine). 3pi S-methionine 

(Amersham Pharmacia), 1U of RNAsin (RNAse inhibitor) and 1U of RNA 

polymerase (T7) was added and the volume made up to 50pl with dH20. The reaction 

was incubated for 60-120 minutes at 30°C.

For the GST pull-down assay, 2pg GST-Handi was captured on glutathione- 

Sepharose beads and 0.5pg radio-labelled HICp40, HICp32 and HICAC were then 

added. Binding was performed in 150ml binding buffer overnight on a rotating wheel 

at 4°C. The next morning, the beads were washed four times with binding buffer. The
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beads were eluted in 20pl of 2x Laemmli buffer (+5% beta-mercaptoethanol) and 

boiled for ten minutes. Protein interactions were then analysed by SDS-PAGE, 

followed by western blot, with 5% of the input crude extract being used for the 

determination of protein expression levels (see section 2.9).

2.5. Whole-mount in situ hybridisation

The whole-mount in situ protocol was carried out in RNAse-free conditions. 

Thus, prior to use, all equipment was rinsed once with RNAseZap (Ambion) and twice 

with dFEO to remove RNAse activity. Embryos were extracted and fixed in 4% 

paraformaldehyde (in PBS) overnight at room temperature, then transferred to 100% 

methanol. Embryos were then re-hydrated through 75%, 50% and 25% methanol in 

PBS for five minutes each, and then washed twice in PBS for 10 minutes each. The 

embryos were then digested with lOpg/ml proteinase-K in PBS for 15 minutes at 

room temperature, rinsed once in PBS and post-fixed for 30 minutes in 4% 

formaldehyde in PBS and 0.1% gluteraledhyde. Following post-fixing, the embryos 

were washed twice in PBS, for five minutes, and then pre-hybridised in hybridisation 

solution overnight at 68°C in a humidity-controlled chamber.

The riboprobe was denatured at 95 °C for three minutes and cooled 

immediately on ice. The following day, the riboprobe was applied to the embryos at 

an approximate concentration of 400ng/ml in fresh hybridisation solution, and this 

was left to incubate overnight at 68°C. After hybridisation with the riboprobe, the 

embryos were rinsed twice for five minutes, and washed three times for 30 minutes in 

hybridisation solution at 68°C. Next, the embryos were washed three times for 30 

minutes in TBST at room temperature on a nutator. The embryos were subsequently 

blocked in TBST with 10% sheep serum and 1% BSA for a minimum of three hours 

at room temperature on a nutator.

The antisense RNA probe was labeled with digoxigenin {Roche), and this was 

then incubated with the samples at a concentration of 1:2000 on a nutator at 4°C 

overnight. Following this, the embryos were washed at room temperature on a nutator 

three times for one hour in TBST and washed twice for 10 minutes in PBS. After
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washing, the embryos were developed in Nitro Blue Tetrazolium and 5-bromo-4- 

chloro-3-indolyl-phosphate (NBT/BCIP) solution (one tablet in 10ml dl-hO; 

Amersham Pharmacia) in the dark (aluminum foil-covered) at room temperature on a 

nutator. Once the signal strength was sufficient, the embryos were washed in PBS 

with 0.1% Triton X-100 to stop the reaction and were fixed overnight at room 

temperature in 4% paraformaldehyde in PBS. To reduce background, embryos were 

cleared in 1 0 0 % methanol for 1 0  minutes on a nutator and re-hydrated through a 

methanol-PBS gradient. Embryos were then imaged using a Nikon SMZ-U 

microscope, and photographed using a FujiFilm FinePix S2 Pro digital camera and 

Hyper-Utility Software HS-S2.

2.6. Luciferase assay

1 0 0 pl of luciferase assay buffer (Promega) was added to 2 0 pl of cell lysate 

(transfected with appropriate vector(s) and the pCMV-figal plasmid 48 hours before) 

in a Turner Designs TD-20/20 illuminometer. Luminescence was measured at room 

temperature for 10 seconds. A concurrent P-Gal assay was performed by adding 50pl 

lx  Reporter Lysis Buffer (Promega) and 150jnl 2xp-Gal assay buffer to lOOpl cell 

lysate. The mixture was vortexed and incubated at 37°C until the reaction turned 

yellow (indicating the presence of O-nitrophenyl, which was usually between 30 

minutes and 2 hours). To stop the reaction, 300pl of 1M Na2 CC>3 was added and the 

samples vortexed. The A4 2 0  was measured for each sample and was in the linear 

range between 0 . 2  and 0 .8 .

2.7. RNA extraction and RT-PCR analysis

Cells were lysed as described earlier, and mRNA was extracted using 

lnvitrogeri’s Micro FastTrack™ 2.0 kit, as per the manufacturer’s instructions. 

Briefly, the cell lysate was added to an oligo(dT) cellulose column and placed on a 

nutator at room temperature for an hour. The oligo(dT) cellulose was then pelleted by 

centrifugation at 6000rpm for 2 minutes and then washed 3 times in Binding Buffer. 

Next, the oligo(dT) cellulose was re-suspended in Binding Buffer and transferred to a
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spin column. The spin column was subsequently washed 3 times with Binding 

Buffer, and a further 2 times with Low Salt Wash Buffer. The mRNA was eluted 

from the spin column with Elution Buffer. 20pl glycogen carrier, 70mM (pH5.2) 

sodium acetate and 100% ethanol were then added to this solution, and the mixture 

was frozen on dry ice to precipitate the mRNA as a pellet. The mRNA pellet was then 

re-suspended in 1 Opl of Elution Buffer, assessed for concentration using a nanodrop 

spectrophotometer, and stored at -70°C.

Prior to the RT-PCR reaction, lOOng purified RNA was incubated with lx 

RQ1 RNase-free DNase (Promega) in lx  RQ1 RNase-free DNase reaction buffer in 

dELO at a final volume of lOpl for 30 minutes at 37°C. After this time, lp l of RQ1 

DNase Stop Solution was added to the mixture to terminate the reaction, and this total 

mixture was then incubated at 65°C for 10 minutes to inactivate DNase activity. The 

mixture (11 pi) was then split into two tubes of 5.5pl each, which each contained 

ImM dNTP mix in dLLO, 300ng random primers and were made up to lOpl with 

dLLO. These mixtures were then incubated at 65°C for five minutes.

The reverse transcription reaction was then carried out. Each tube was treated 

with a mixture containing lx  first strand buffer (Invitrogen), 5mM MgCL, 0.01M 

DTT and 40 units RNAsin (Promega), but only one set were also treated with 50 

units o f Superscript II RT (Invitrogen). This meant that one set of tubes acted as a 

control for genomic DNA contamination. Both sets o f tubes were then subject to a 

pre-programmed RT-PCR reaction to produce first-strand cDNA (using a PE Applied 

Biosystems GeneAmp® PCR System 9700 PCR machine). PCR was then performed 

using the first-strand cDNA as a template and Taq polymerase-containing Ready-To- 

Go™ beads (Amersham Biosciences). The PCR mix was then supplemented with 

l/6 th o f its volume of gel loading solution, loaded onto a 1% agarose gel (in lx  TBE) 

and run for an hour at 100V. DNA was then visualised by way o f an ultra-violet 

illuminometer and photographed.
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2.8. Northern blot analysis

Northern blot analysis was carried out in RNAse-free conditions. Thus, prior 

to use, all glassware and electrophoresis equipment was rinsed once with RNAseZap 

(Ambion) and twice with dH20 to remove RNAse activity. Northern blots were 

carried out using the NorthernMax™  formaldehyde-based system {Ambion). Briefly, 

2pg o f sample RNA, extracted from cells as described earlier, was mixed with 3 

volumes of formaldehyde/ ethidium bromide (provided in the kit) to a final 

concentration of lOpg/ml. The samples were denatured for 15 minutes at 65°C in a 

dry heat block, pulsed, and loaded into a 1% agarose, lx  denaturing gel buffer 

(RNase-free) gel (included with the kit). The gel was run in lx  MOPS gel running 

buffer at 5V/cm (distance between the two electrodes) until the bromophenol dye 

front reached the bottom of the gel. The mRNA on the gel was then visualised by 

way o f UV light, photographed and transferred to a positively-charged nylon 

membrane (Hybond™-N+; Amersham) by the downward-capillary method for 2 

hours in MOPS gel transfer buffer (included with the kit). Following transfer, the 

membrane was rinsed in lxMOPS gel running buffer and the mRNA was cross- 

linked by baking at 80°C for 20 minutes. Next, the membrane was pre-hybridised at 

42°C for 1 hour in ULTRAhyb™ {Ambion) in a bottle rotator hybridisation oven. The 

RNA probe was radio-labeled by the random primer labeling method and was then 

denatured and added immediately to the pre-hybridised blot. Hybridisation was 

carried out overnight at 42°C. The membrane was then washed twice at room 

temperature with agitation using low-stringency wash solution, followed by two 

washes at 42°C in the hybridisation oven using high-stringency wash solution. The 

blot was then wrapped in cling film and exposed to Kodak BioMax autoradiography 

film for 15 minutes to overnight, depending on the relative signal strength as 

determined by Geiger counter measurement.

2.9. SDS-PAGE and western blot analysis

Western blotting was performed using the Bio-Rad Mini-Protean® III 

apparatus {Ambion). Briefly, lysate samples were mixed with an equal volume o f 2x 

Laemmli buffer (+5% beta-mercaptoethanol) and denatured for 10 minutes at 100°C.
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The samples were loaded on an SDS-PAGE gel (approximate dimensions 

65x85x1.5mm). Electrophoresis was performed in lx  TGS running buffer at a 

constant current of 30mA until the dye front reached the bottom of the gel. 

Importantly, the samples were run in parallel with lOpl of the Rainbow (full-range) 

protein molecular weight marker (.Amersham), to indicate the molecular weight of 

sample proteins. The separated proteins were then transferred to a Hybond™-C 

nitrocellulose membrane (.Amersham) by a ‘wet transfer’ method using an 

electroblotter (Biometra). Briefly, this involved placing the nitrocellulose membrane 

on top o f the gel and closest to the anode, and inserting a small sheet of Whatman 

paper and a thin sheet of sponge on either side. A constant current of 200mA was 

then applied to this entire assembly, which was submerged in lx  TGS transfer buffer, 

for 2 hours at 4°C. Proteins on the membrane were then visualised by staining in 

0.2% Ponceau S. Next, the membrane was then rinsed in lx  TBS and blocked in 

blocking buffer for 2 hours at room temperature on a nutator, and was then briefly 

rinsed with TBST. The primary antibody was then diluted in blocking buffer to the 

required concentration, added to the membrane in a sealed polythene bag and 

incubated overnight at 4°C on a nutator. The next morning, the membrane was 

washed 6 times for 10 minutes with wash buffer on a nutator. The secondary 

antibody, conjugated to horseradish peroxidase (HRP), was subsequently diluted to 

the required concentration in blocking buffer and incubated with the membrane in a 

sealed polythene bag on a nutator for 1 hour. The membrane was then washed again 6 

times for 10 minutes with wash buffer. A further two, 5-minute washes were then 

carried out in lx  TBS. Subsequently, the membrane was developed using ECL™ 

Western blotting detection reagents {Amersham). A 1:1 mix o f the ECL™ 

components was freshly made and 0.123ml/cm2 was added to the membrane for one 

minute. The blot was then wrapped in cling film and exposed to autoradiography film 

for 5 seconds to 30 minutes, depending on the signal strength.

2.10. Co-immunoprecipitation

To purify the FLAG-Plk4 proteins for use in the kinase assay, Rcho-l cells 

were transfected with either pFLAG-Plk4 or pFLAG-Plk4;T170D (gain-of-function, 

activating mutant). After 48 hours cells, were lysed using FLAG IP kit lysis buffer as
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described, and the resultant lysates were immuno-precipitated using a a-FLAG M2 

antibody Kit (Sigma) as per the manufacturer’s protocol. Briefly, 40pl of the supplied 

Anti-FLAG M2 affinity gel was washed three times with 0.5ml 1 x Wash Buffer and 

once with 0.5ml lx  Elution Buffer. 1ml of cell lysate was added to this pre-washed 

Anti-FLAG M2 affinity gel and incubated overnight at 4°C on a rotating wheel. The 

next morning, the resin, now bound to the FLAG-tagged fusion protein to be purified, 

was centrifuged for 30 seconds and washed again three times with 0.5ml lx  Wash 

Buffer. 3x FLAG Elution Buffer was prepared by adding 3 jul o f the provided 3x 

FLAG peptide solution to lOOpl kinase buffer. This was then added to the washed 

affinity gel, incubated on a rotating wheel for 30 minutes at 4°C and subsequently 

centrifuged. The supernatant, containing the eluted FLAG fusion protein, was then 

transferred to a fresh tube. An equal volume of 2x Laemmli buffer (+5% beta- 

mercaptoethanol) was then added to the precipitates. Protein interactions were then 

analysed by SDS-PAGE followed by autoradiography, and 5% percent of the input 

crude extract was used for determining protein expression levels by western blot 

analysis (see section 2.9).

To purify Handl-Plk4 complexes formed in vivo, Rcho-l cells were treated 

for 1 hour with medium supplemented with 10% horse serum to induce a 

commitment towards differentiation and then lysed in RIPA buffer as described. The 

control cell population was untreated, asynchronous Rcho-l stem cells. 250pl protein 

sepharose A/G beads (Amersham Pharmacia) were pre-blocked by incubation in an 

equal volume of 1% BSA in PBS on a rotating wheel for one hour at 4°C. After brief 

centrifugation at 6,000rpm to collect the resin and after washing once with PBS, 3- 

4pg o f a-Plk4 antibody was conjugated to the resin in the same volume of fresh 1% 

BSA in PBS for 2 hours under the same conditions. After centrifugation to remove 

the supernatant, cell lysates were added to these antibody-conjugated beads and the 

mixture was incubated at 4°C on a rotating wheel overnight to allow for immuno- 

precipitation. The following morning, the beads, to which endogenous Plk4 was now 

bound, were centrifuged at 6,000rpm for 1 minute and washed five times (between 

similar centrifugations) with ice-cold PBS. After all traces of supernatant were 

removed using a fine pipette, an equal volume of 1% BSA in PBS was then added to 

the beads. An equal volume of 2x Laemmli buffer (+5% beta-mercaptoethanol) was
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then added to the precipitates. Protein interactions were then analysed by SDS-PAGE 

followed by autoradiography, and 5% percent of the input crude extract was used for 

determining protein expression levels by western blot analysis (see section 2.9).

2.11. In vitro phosphorylation (kinase) assay

FLAG-Plk4 (wt) and FLAG-Plk4 (T170D) were in v/vo-translated in 

transfected Rcho-l cells and purified as described (see section 2.10). The eluates 

were incubated with 30pg of GST-Handi or lysates from wild-type Handl-EGFP or 

Handl-EGFP T107;S109A/D-transfected Rcho-l cells and 2juCi of 30 CimM'1 32P 

ydATP (Amersham) for 30 minutes at 37°C in kinase buffer in a total volume of 30pl. 

In separate, parallel reactions, 2pg of a-Casein was used as a positive control, as 

described previously (Swallow et al., 2005), and 30pg GST and 30jag BBS2-GST 

were used as negative controls. After the reaction, radio-labelled protein was boiled 

in 2x Laemmli buffer (+5% beta-mercaptoethanol) and then analysed by SDS-PAGE 

(western blot analysis; see section 2.9). The gel was then washed in TBS and dried on 

Whatman paper before exposure to Kodak BioMax autoradiography film.

2.12. /YA:4-null embryo analysis

Genotyping o f embryos by nested PCR was carried out on tissue taken from 

wax-embedded sections. E7.5 Plk4-null concepti were fixed with 4% 

paraformaldehyde (in PBS) for a minimum of 4 hours, but preferably overnight 

(especially for whole embryos). Thereafter, embryos were either dehydrated and 

wax-embedded or cryo-embedded.

Wax embedding was carried out by dehydrating the embryos through a graded 

ethanol series, two hours in each 50%, 70%, 80%, 90% and 96% ethanol/ dH20, 

followed by two one-hour incubations in 100% ethanol. The embryos were then 

cleared in 100% butanol overnight at room temperature. Next, the embryos were 

transferred to a 1:1 mix of butanol:molten pastillated fibrowax (BDH) for 30 minutes 

at 60°C. The embryos were then incubated in 100% molten fibrowax at 60°C for 24
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hours, with three changes of wax during this period. The embryos were then placed in 

individual moulds, orientated with a warm needle, and left to set. The embedded 

embryos were stored at 4°C until sectioning. Sections were cut at 10pm thickness in a 

Micro HM 330 microtome (Microm), and gently guided in series onto TESPA-coated 

slides. The embryo sections were dried on a flat bed dryer (R.A. Lamb) for 30-60 

minutes at 50°C and stored in a dry, dust-free box at room-temperature until analysis.

Cryo-embedding was carried out using established protocols. Firstly, the 

embryos were cryo-protected by incubating at 4°C in 30% sucrose (in PBS) 

overnight, or until the samples sunk to the bottom of the vessel. Then, embryos were 

infiltrated by applying a 1:1 mixture of sucrose in PBS:OCT embedding medium 

(Miles Inc.) for 30 minutes. The embryos were then transferred to an embedding 

mould, which was filled with fresh OCT. The embryos were then oriented with a 

pipette tip, frozen on dry ice until solid, wrapped in aluminum foil and then stored at 

-70°C until ready for sectioning. Sections were cut at 10pm thickness in a Cryo-2000 

cryostat (Sakura), and gently guided in series onto Superfrost™ glass slides (LSL) 

and allowed to dry at room temperature. Slides were carefully wrapped in aluminum 

foil and then stored at -70°C until analysis.

Sections were processed prior to analysis. Wax sections were de-waxed and 

re-hydrated, by applying 100% of the de-parafinising agent Histoclear (R.A. Lamb) 

for five minutes, carrying out serial ethanol dilutions applying 100% ethanol twice, 

then 95%, 80%, 70% and 50% once each, and then carrying out two 5-minute washes 

in dE^O. Cryosections were simply thawed to room temperature and washed twice in 

PBS. For histology, sections were stained with haematoxylin and eosin. This was 

carried out by application of 0.5% eosin (aqueous) for one minute and then by 

washing in dE^O. Meyer’s haematoxylin solution was then applied for 5 minutes and 

slides were washed twice in df^O. The slides were then visualised on an Olympus 

SZ4045TR microscope. For immunostaining, sections were firstly boiled in 0.1M 

citric acid (pH6.0) for five minutes (antigen retrieval), circled with an ImmEdge pen 

and permeabilised with 0.5% Triton X-l00/PBS for five minutes. They were then 

blocked in 1% BSA in PBS for 30 minutes. The slides were then incubated with 

primary antibodies against Handl (Abeam), Nucleostemin (NS; R&D Systems) or

124



Chapter 2

Plk4 (Abeam; to confirm the PCR genotyping of Plk.4-null embryos) overnight in a 

humidity-controlled chamber at 4°C. A secondary antibody-only coverslip was 

included as a control, and was left overnight in block. The embryos were then washed 

three times in block solution and the relevant, fluorophore-conjugated secondary 

antibody was applied to samples in a humidity-controlled chamber at room 

temperature for one to three hours. The samples were then counterstained with the 

nuclear marker bis-benzamide (Hoechst 33342) at a concentration of 5pg/ml in PBS 

for 10 minutes. Slides were mounted with coverslips using a 1:1 mixture of PBS and 

glycerol and wrapped in foil until imaging.

2.13. Embryoid body (EB) dissociation

Individual cardiomyocytes were isolated from in v/7ro-differentiated embryoid 

bodies (EBs) using collagenase-B according to a previously-published protocol 

(Maltsev et al., 1993). Briefly, 5-10 fluorescent, beating EBs were manually isolated 

using a pipette tip, and placed into an Eppendorf containing 1ml low calcium 

medium. The isolated cells were then spun down and re-suspended in 1ml enzyme 

medium (supplemented with 1 mg/ml collagenase-B) for 30 minutes at 37°C in order 

to dissociate the individual cells. The cells were then incubated in 1ml KB medium 

with gentle shaking at room temperature for one hour to complete their dissociation. 

The dissociated cells were then completely re-suspended in an appropriate volume o f 

normal ES culture medium and incubated overnight in 0.1% gelatin-treated flasks at 

37°C under normal cell culture conditions.
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Chapter 3
Nucleolar interaction with HICp40 
negatively-regulates Handl activity
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3.1. INTRODUCTION

Handl is essential for placentation and appropriate genesis of the heart. 

However, how its activity is regulated during these embryologically-distinct 

processes is largely unknown. Protein-protein interactions commonly regulate the 

activity of transcription factors and indeed numerous bHLH factors, and some non- 

bHLH factors, have been shown to bind to and modulate the activity of Handl 

(Chapter 1, Table 1.1). The promiscuous dimerisation properties of Handl led us to 

speculate that a wider range of non-bHLH factors may also bind the transcription 

factor to achieve functional effects. We thus conducted a yeast two-hybrid (Y2H) 

screen to identify novel Handl cofactors.

3.2. RESULTS

3.2.1. H andl interacts with the murine orthologue of 

HICp40

In order to identify proteins that interact with Handl and that may modulate 

its activity, we conducted a yeast two-hybrid (Y2H) screen using Handl as bait. This 

identified numerous Handl-interacting factors from a murine E9.5/ El 0.5 cDNA 

library (Hollenberg et aL, 1995; Appendix 8). The assay was validated by the 

identification of an interaction between Handl and A lfl, the murine orthologue of 

human E47, a class A bHLH factor previously shown to bind Handl (Hollenberg et 

a l , 1995).

Sequence analysis of one particular Handl interactor (identified by two 

independent clones in the Y2H screen) revealed an 89% nucleotide identity and 95% 

amino acid identity with the murine orthologue of the human inhibitor of MyoD 

family (I-mfa) domain containing protein (HIC). HIC is otherwise known as the 

MyoD family inhibitor containing protein (Mdfic) or as the protein derived from the
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kidney-derived transcript-1 (K dtl). HIC consists o f  two isoforms o f  molecular 

weights 32kDa and 40kDa, denoted HICp32 (o f 246 amino acid residues) and 

HICp40 (o f 355 amino acid residues), respectively. These arise from different 

translational initiator codons (GTGo for HICp40 and ATG591 for HlCp32; Thebault et 

al., 2000a). The structure o f HIC is shown in Figure 3.1.

GTG (109) 259 325

45 63 273 355

Figure 3.1. The structure of HIC, a novel H andl interactor identified in a yeast 

two-hybrid (Y2H) assay using H andl as bait.

HICp40, translated from an unusual GTG start codon, possesses two so-called nucleolar localisation 

signals (NoLS) at its N-terminus o f the form R/K-R/K.-X-R/K (shown in green). These are lacked by 

the HICp32 isoform, which is translated from a downstream ATG start codon. At the C-terminus o f  

both HIC isoforms there is a cysteine-rich I-mfa domain (shown in red), which has significant 

homology to the sequence o f the I-mfa domain in the ancestral I-mfa protein. The location of the 

Handl-interacting clones identified by Y2H in the HIC protein sequence, which overlap with the I-mfa 

domain, are shown in yellow.

Our Y2H clones represent the mouse orthologue o f  HIC, which we term 

murine I-mfa domain containing protein (MIC). This cDNA is represented in the EST 

database (GenBank accession number BB222360) and includes a coding region with 

81% amino acid identity to that o f HICp32. The full-length MIC gene can be located 

in ENSEMBL (NM _175088), where transcript information predicts an exon/ intron 

structure and further 5 ’ coding sequence with homology to the longer human isoform 

HICp40. Full-length HICp40 homologues in the monkey, chicken and various other 

species are also listed in ENSEMBL. We cloned the full-length MICp40 cDNA by 

extending the MICp32 cDNA (from an IMAGE clone) using a BAC sequence. By in 

vitro translation (IVT) we subsequently demonstrated that, like HICp40, MICp40 

encodes two proteins, o f  molecular weights 40kDa and 32kDa (data not shown).
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We then sought to corroborate the Handl-HICp40 interaction in vitro (Figure

3.2). This interaction was initially demonstrated by a pull-down assay using a GST- 

Handi fusion protein and in v//ro-translated HICp40 (Figure 3.2a). Furthermore, a 

HIS-HICp40 fusion protein could be co-immunoprecipitated using a FLAG-Handl 

antibody in transfected NIH-3T3 cells (Figure 3.2b). These results therefore 

collectively confirm that Handl interacts with the HIC protein in vitro.

4 5 -
2 9 -

5% IVT

GST-Hand1

G ST alone

control

5% input

FLAG-Hand1

-< H IS-H ICp40

Figure 3.2. Confirmation of the H andl-H IC  interaction by GST pull-down and 

co-immunoprecipitation assays.

A GST pull-down assay using a GST-Handi fusion protein and in v/7ro-translated HICp40 confirmed 

the ability o f Handl to interact with HICp40 (a). Co-immunoprecipitation o f  FLAG-Handl with HIS- 

HICp40 in transfected NIH-3T3 cells with polyclonal a-HIS antibody further corroborated the Handl- 

HICp40 interaction (b).

3.2.2. HICp40 sequesters H andl in the nucleolus

By virtue o f  their translation via alternative initiator codons, the two HIC 

isoforms have a common C-terminal I-mfa domain but their N-termini significantly 

differ. This has implications for the sub-cellular localisations o f the two isoforms. 

The N-terminus o f HICp40 contains two highly-basic, so-called nucleolar localisation 

signals (NoLS) between residues 45 and 63 in its extended (I09aa) N-terminus (o f  

the form R/K-R/K-X-R/K, specifically RKRR and RRRR), which are lacking in 

HICp32 (Figure 3.1). The use o f  a secondary, upstream codon has been reported 

previously to generate a longer isoform o f a protein that contains a NoLS, for 

example, in the case o f  PTHrP (Lam et al., 2000). Thus, whilst HICp40 localises to 

nucleoli, with additional cytoplasmic fluorescence, HICp32 assumes a granular
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cytoplasmic distribution with only weak nuclear staining (Thebault et al., 2000a; 

Thebault et al., 2000b).

In light of the differences in subcellular location of the HIC isoforms, we next 

sought to investigate whether interaction of Handl with these proteins occurs in 

discrete subcellular compartments. A Handl-EGFP fusion protein was generally 

nuclear-wide in transfected NIH-3T3 cells 24 hours post-transfection. However, a 

small percentage of cells (15.0%+1.55) exhibited nucleolar fluorescence 

(mean±S.E.M.; n (the number of cells counted) =240; p<0.01; Figure 3.3). This is in 

contrast with transfected H9c2 cells, a rat DB1X heart myoblast (ventricular) cell 

line, of which 98.6%±2.70 exhibited nucleolar Handl-EGFP 24 hours post

transfection (mean± S.E.M.; n=250; p<0.01). However, co-transfection of NIH-3T3 

cells with Handl-EGFP and an expression construct encoding HICp40 resulted in the 

restriction of the largely nuclear-wide fluorescent fusion protein almost exclusively to 

the nucleolar compartment (85.4%±1.24 of co-transfected cells exhibited nucleolar 

EGFP fluorescence 24 hours post-transfection (mean±S.E.M.; n=210; p<0.01; Figure

3.3). Handl-EGFP localisation to nucleoli was independent of fixation method and 

was confirmed by immunostaining to illustrate co-localisation with the nucleolar 

protein C23 (Nucleolin), a factor involved in ribosomal biogenesis. Interestingly, co

transfection of NIH-3T3 cells with Handl-EGFP and an expression construct 

encoding HICp32 did not result in the restriction of the largely nuclear-wide 

fluorescent fusion protein to the cytoplasm. In conclusion, these results demonstrate 

that the interaction of Handl with HICp40 results in the nucleolar sequestration of 

Handl.
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H
Figure 3.3. HICp40 sequesters H andl-EG FP in the nucleolus.

Handl-EGFP is predominantly localised throughout the nucleus in transfected N1H-3T3 cells with a 

small percentage (~15%) exhibiting weak staining in the nucleolus as confirmed by immunostaining 

for the nucleolar protein Nucleolin (C23; top row). However, upon ectopic expression o f HICp40, 

>85% of cells exhibit nucleolar-localised Handl-EGFP (bottom row). See text for statistical 

significance.

3.2.3. Nucleolar sequestration of H andl negatively-regulates 

its transcriptional activity

In light o f  previously-described roles for the HIC isoforms as negative 

regulators o f  specific developmental pathways (discussed later in this chapter (section 

3.3.1)), we then investigated the functional consequences o f  their interaction with 

Handl. To this end, we carried out transient transfection assays in NIH-3T3 cells 

(Figure 3.4). HICp40 repressed the ability o f a Hand 1-E-factor (E l2) heterodimer to 

trans-activate a ‘mock’ Handl target gene. This comprised six high affinity Thing 1 

box (Thl) sequences upstream o f a minimal a-cardiac actin promoter and a 

luciferase cassette (Hill and Riley, 2004). This result revealed that HICp40 

negatively-regulates Handl activity in vitro.

Notably, HICp32, which lacks the N-terminal nucleolar localisation signals 

present in HICp40, was unable to abrogate Handl transcriptional activity to the 

extent o f  full-length HICp40 in the described reporter assay (Figure 3.4). Thus the 

HICp40 N-terminal nucleolar localisation signal is necessary for optimal Handl
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repression. Moreover, a HICp40 deletion mutant lacking the C-terminal I-mfa 

domain (HICAC) could not significantly repress Handl-E12-mediated reporter gene 

activity (Figure 3.4). Thus the C-terminal I-mfa domain of HICp40 is necessary for 

its interaction with and repression of Handl. The fact that the HICAC protein could 

not significantly sequester Handl-EGFP to the nucleoli o f NIH-3T3 cells in a similar 

assay to that described in Figure 3.3 adds weight to this conclusion (data not shown).
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Figure 3.4. HICp40 negatively regulates Handl activity.
In a transient transfection reporter assay in NIH-3T3 cells, the Handl-El 2 heterodimer can activate 

expression of a ‘mock’ Handl target gene comprising six high-affinity Handl-binding sites (Thingl 

boxes) upstream of a minimal a-cardiac actin promoter and a luciferase cassette (dotted-bar). 

However, HICp40 significantly represses Handl-El2 activity in this assay (diagonal lined-bar). 

HICAC, a HICp40 deletion mutant lacking the C-terminal I-mfa domain, cannot significantly repress 

Handl-El2 heterodimer activity (horizontal-lined bar). HICp32, which lacks the N-terminal nucleolar 

localisation signals present in the N-terminus of HICp40, can only modestly repress Handl-El2 

heterodimer activity (vertical-lined bar). Measurements are mean±S.E.M.; n=3; *** indicates p<0.001.
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We also investigated the regions o f  Handl required for its functional 

interaction with HICp40 (Figure 3.5). An EGFP fusion with the isolated Handl 

bHLH domain (b H L H Handi-EGFP) does not localise to the nucleolus (Figure 3.5a). 

Furthermore an EGFP fusion with a fragment o f Handl containing its poly-histidine 

stretch and flanking sequence (HandlHiS-EGFP), is nuclear-wide (Figure 3.5b). In 

both cases, this is true even upon HICp40 over-expression (data not shown). Both 

fusion proteins were expressed at detectable levels in transfected cells, as assessed by 

western blot analysis using an anti-EGFP antibody. In conclusion, neither the Handl 

bHLH domain nor the Handl poly-histidine stretch are sufficient for interaction with 

HICp40.

a.
U/T

►  -

b .
U/T

► --------

b H L H ^ -E G F P

H andl^-EG FP

m m
IvIgjS

Figure 3.5. Neither the H andl basic domain, nor the H andl poly-histidine 

stretch, is sufficient for nucleolar interaction with HICp40.

An EGFP fusion with the isolated bHLH domain o f Handl (bH LH Handi-EGFP) cannot localise to the 

nucleoli o f transfected NIH-3T3 cells (a). An EGFP fusion with a fragment o f Handl containing the 

N-terminal histidine-rich domain, HandlHiS-EGFP, is also nuclear-wide (b). Presented also are western 

blot analyses using an anti-EGFP antibody to illustrate expression o f the EGFP fusion proteins in 

transfected cells. U/T: untransfected.
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3.2.4. HICp40 is co-expressed with Handl in several tissues 

during development

We next investigated whether the Handl-HICp40 interaction is likely to occur 

in vivo (Figures 3.6 and 3.7). In Rcho-1 cells, a rat cell line which was discussed in 

Chapter 1 (section 1.6), HICp40-EGFP is nucleolar (Figure 3.6a). Furthermore, the 

rat orthologue o f HICp40, ‘RlCp40\ is endogenously expressed in both Rcho-1 stem 

cells and Rcho-1 cells induced to differentiate over an eight-day time-course into 

trophoblast giant cells, as determined by RT-PCR (Figure 3.6b).

a.

HICp40-EGFP ct-C23

Diff e re ntia tion /da ys

RICp40’

Tubulin

Figure 3.6. HICp40-EGFP localises to Rcho-1 stem cell nucleoli and the rat 

orthologue o f HICp40 is endogenously expressed in Rcho-1 cells during their 

differentiation.

HICp40-EGFP is predominantly nucleolar, but with some cytoplasmic fluorescence, in Rcho-1 

trophoblast stem cells (a). Rcho-1 trophoblast stem cells endogenously express weak but detectable 

levels o f transcripts o f the rat orthologue of HICp40, ‘RICp40’, as assessed by RT-PCR, and its 

expression is maintained during their differentiation into trophoblast giant cells over an eight-day time- 

course (b).
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We then determined the endogenous expression pattern o f MICp40 (Figure 

3.7). Whole mount in situ hybridisation was performed on E9.5 wild-type embryos 

using a probe for full length HICp40. This showed that endogenous MICp40 is 

expressed in the LV and OFT o f the developing heart, and as such is co-expressed 

with Handl during embryogenesis (as reviewed in Chapter 1, section 1.3.2.2). 

Collectively, these findings strongly suggest that the Handl-HICp40 interaction, 

resulting in Handl nucleolar sequestration, may regulate Handl activity in vivo.

Figure 3.7. H IC p40  is co-expressed with H a n d l  in the developing heart.

Whole-mount in situ hybridisation using a probe for full length HICp40 shows that the murine 

orthologue o f HICp40, MICp40, is expressed in the left ventricle (lv) and outflow tract (ot) o f the 

developing heart, as well as in the first branchial (pharyngeal) arch (ba), aortic arch arteries (aa) and 

the tail bud (tb).
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3.2.5. Members of the bHLH family closely-related to 

H andl do not localise to the nucleolus

We finally investigated whether bHLH transcription factors closely-related to 

Handl localise to the nucleolus (Figure 3.8). EGFP fusions with both the closely- 

related bHLH factors Hand2 (Figure 3.8a) and MyoD (Figure 3.8b) are nuclear-wide 

in transfected NIH-3T3 cells. This suggests that nucleolar localisation, at least among 

closely-related members, is specific to Handl within the bHLH family.

Hand2-EGFP a-C23 Merge

MyoD-EGFP a-C23 Merge

Figure 3.8. Nucleolar localisation o f H andl-EG FP is not observed with EGFP  

fusions of the related bHLH factors Hand2 and MyoD.

The related bHLH transcription factor-EGFP fusion proteins, Hand2-EGFP (a) and MyoD-EGFP (b), 

are nuclear-wide in transfected Rcho-1 stem cells.
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3.3. DISCUSSION

Using a Y2H screen with Handl as bait, we identified a negative regulator of 

H andl, the murine orthologue of the human I-mfa domain-containing protein (HIC). 

HIC comprises two isoforms, HICp40 and HICp32. The data presented in this chapter 

strongly suggest that the interaction of Handl with either factor, but particularly with 

HICp40, results in the negative-regulation of Handl transcriptional activity. HICp40 

achieves this by sequestering Handl in the nucleolus. However, the mechanism 

underlying HICp32-dependent repression of Handl is, as-yet, unclear, but does not 

seem to rely on Handl cytoplasmic sequestration. The co-expression and co

localisation of Handl with the murine orthologue of HIC in rodent trophoblast and 

during cardiac morphogenesis moreover suggests that this mechanism may control 

Handl activity in vivo.

3.3.1. HIC isoforms negatively-regulate Handl activity

In our Y2H screen, the region of HIC that interacted with Handl and which 

was indispensable for its repression of Handl mapped to a portion o f its cysteine- 

rich, C-terminal I-mfa-domain. The I-mfa domain of HIC has a high degree of 

homology to the corresponding I-mfa domain of the ancestral I-mfa protein (77% 

identity and 81% similarity; Thebault et al., 2000a). Indeed, the two proteins, which 

are found in all vertebrates, are thought to have arisen by duplication, supported by 

their similar intron-exon structures and homologous flanking genes (Wang et al., 

2007). Without exception, the determined roles of both I-mfa and HIC depend 

absolutely on the presence of the I-mfa domain, reflecting its importance in protein- 

protein interactions.

During somitogenesis in the mouse, the I-mfa protein is confined to cells of 

the ventral somite, the sclerotome, and here it inhibits the potent myogenic bHLH 

factors MyoD, Myf5, Mrf4 and Myogenin to prevent myogenesis (Chen et al., 1996). 

I-mfa is also thought to interact with and negatively-regulate the chondrogenic bHLH 

factor Scleraxis, and as such I-mfa-mx\\ embryos exhibit delayed caudal neural tube
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closure and skeletal patterning defects (Kraut et al., 1998). The I-mfa protein also has 

a crucial role during placentation. During this process it inhibits Mash2, a bHLH 

factor required for TS cell maintenance (reviewed in Chapter 1, section 1.2.4.2), by 

sequestering it in the cytoplasm. This contributes to the process of TG cell 

differentiation. Appropriately, I-mfa is strongly-expressed in cells at the periphery of 

the EPC and in SGCs, and an J-mfa-nu\\ mouse is embryonic lethal at E9.5 due to a 

significantly-reduced number of SGCs (Kraut et al., 1998). Furthermore I-mfa over

expression induces precocious TG cell differentiation in the Rcho-1 trophoblast stem 

cell model, whilst conversely an I-mfa-null trophoblast stem cell line cannot undergo 

TG cell differentiation in culture (Kraut et al., 1998).

Most importantly for our study, an interaction between I-mfa and Handl, 

which is dependent on the I-mfa domain, has previously been reported in trophoblast 

cells (Kraut et al., 1998). However, the functional significance of this interaction 

remains unknown. Thus our results are in agreement with previous studies that report 

a role for I-mfa-domain-containing proteins in the negative regulation of factors 

involved in rodent placentation. Whilst no functional consequence was previously 

attributed to the interaction of the I-mfa protein with Handl, we show that the 

interaction of Handl with I-mfa domain-containing iso forms negatively-regulates the 

bHLH factor.

Similarly, the HIC proteins also play crucial roles in post-transcriptional 

repression of developmental factors. Reminiscent of I-mfa, every reported function of 

HIC is absolutely dependent on its interaction with other proteins via its C-terminal I- 

mfa domain. As such, deletion mutants lacking this portion are unable to mimic the 

full-length protein in relevant assays (Chen et al., 1996; Kraut et al., 1998). The HIC 

isoforms were first identified by Thebault and colleagues on the basis of their 

differential regulation of human retroviral promoters in the presence of viral 

transcriptional activators (Thebault et al., 2000a). Specifically, the HIC proteins 

enhance transcription from the Human T-Cell Leukemia Virus-1 (HTLV-1) long 

terminal repeat (LTR) promoter in the presence of the HTLV-1 trans-activator Tax, 

but down-regulate Human Immunodeficiency Virus-1 (HIV-1) pro viral transcription 

in the presence o f the HIV-1 trans-activator Tat (Thebault et al., 2000a).
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Later studies implicated the Xenopus orthologues of the HIC proteins, 

XICp40 and XICp32, in embryonic axis specification (Kusano and Raab-Traub, 

2002; Snider et al., 2001; Snider and Tapscott, 2005). Specifically, the XIC proteins 

bind to and mask the DNA-binding domain of the ventralising, HMG-box 

transcription factor Tcf3 to repress Wnt-dependent signalling. This blocks Tcf3- 

dependent expression of Wnt target genes a pre-requisite for the activation of the 

dorsalising homeodomain transcription factor Siamois and formation of the dorsal 

(Spemann) organiser (Snider et al., 2001; Snider and Tapscott, 2005). Embryos 

injected with a morpholino to XIC  mRNA thus lacked head structures, a neural tube 

and paraxial mesoderm, and were down-regulated for several dorsal organiser factors 

such as goosecoid and Cerberus (Snider and Tapscott, 2005). Conversely, another 

study revealed that the XIC proteins have a stimulatory effect on Wnt signalling, 

namely by binding the glycogen synthase kinase-3 p-binding site on Axin and 

preventing Axin-mediated phosphorylation of P-Catenin as a pre-requisite for its 

degradation. p-Catenin is then able to translocate to the nucleus and activate T-cell 

factors (Tcf) and lymphocyte enhancer factors (Lefs), which activate their Wnt target 

genes (Kusano and Raab-Traub, 2002). This study also showed that XIC binds Axin 

to prevent its interaction with Mekkl, so blocking downstream c-Jun N-terminal 

kinase (Jnk) signaling in the nucleus. However, the functional significance o f these 

interactions and effects are currently unknown. Overall, our results are in agreement 

with previous studies that have reported a role for I-mfa domain-containing proteins 

in the negative regulation of developmental factors, including members of the bHLH 

transcriptional factor super-family.

In conclusion, the HIC proteins can repress the transcriptional activity of 

Handl in vitro. Importantly, the C-terminal I-mfa domain o f HIC, a portion of which 

interacted with Handl in our Y2H assay and which is present in both HIC iso forms, 

was necessary for this effect. This is in agreement with previously-determined roles 

for HIC and the ancestral I-mfa protein in the negative regulation o f developmental 

factors. In many cases these targets, like Handl, are members of the bHLH family 

and have roles in determining cell fate.
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3.3.2. HICp40 sequesters Handl in the nucleolus

Our results demonstrate that HICp40 sequesters Handl in the nucleolus and 

that this is specific to Handl amongst closely-related bHLH family members. We 

show that the consequence of Handl nucleolar sequestration is its transcriptional 

repression. The nucleolar sequestration of a target factor by HICp40 may not be 

without precedent. HICp40 activates HTLV-1 pro viral transcription from the LTR 

promoter by blocking bHLH transcription factor activity (Thebault et al., 2000a). 

This occurs because the HTLV-1 trans-activator Tax activates pro viral transcription 

by binding co-activators such as CBP, which are also bound to by certain bHLH 

factors such as c-Myb (Colgin and Nyborg, 1998). HICp40 may repress bHLH 

factors by sequestering them in the nucleolus, supported by our findings regarding 

Handl presented in this chapter. Conversely, the repression of HIV-1 pro viral 

transcription from the LTR promoter by HICp40 (Thebault et al., 2000a) is thought to 

be underpinned by the nucleolar sequestration of the HIV-1 trans-activator Tat in the 

nucleolus (Young et al., 2003). Of note, HICp40 also binds and inhibits, perhaps via 

nucleolar sequestration, the Cyclin T1 component of the positive transcription 

elongation factor b (pTEFb) complex (Young et al., 2003). This may block pTEFb- 

dependent phosphorylation of the C-terminal domain of RNA Pol II, which is 

required for the transcriptional elongation of HIV-1 transcripts (Zhu et al., 1997). 

Thus our findings are in agreement with several of the established roles for HICp40 

in the repression o f factors, often via nucleolar sequestration.

Handl nucleolar sequestration may occur either via active transport into the 

organelle in complex with HICp40, which may shuttle between the nuclear and 

nucleolar compartments, or via passive diffusion followed by HICp40-dependent 

nucleolar retention. With respect to the latter possibility, the nucleolus lacks a 

membrane and so any soluble protein should be able to diffuse in and out of the 

organelle. By the ‘hit and run’ model, passive diffusion of nucleoplasmic proteins 

into the nucleolus is thought to be followed by non-specific retention of only those 

proteins which possess a nucleolar localisation signal (NoLS) (van Eenennaam et al., 

2001; Misteli, 2000; Olson, 2002). In contrast, active transport of proteins into the 

nucleolus is generally considered unlikely. Although a consensus sequence has not 

been identified, several viral proteins, for example HIV-I Rev and Tat, contain
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sequences with homology to cellular NoLS motifs and depend on these to localise to 

the nucleolus and hijack the host ribosome biogenesis machinery and/ or as a pre

requisite for proviral replication (reviewed by Hiscox, 2007; Sirri et al., 2008). The 

NoLS is usually highly-basic, containing mainly arginine and lysine residues 

(reviewed by Thebault and Mesnard, 2001). As such, the motif is thought to form 

electrostatic interactions with negatively-charged nucleic acids or acidic components 

of the ribosome biogenesis machinery. For example, the nucleolar factors Ubf and 

C23 bind rDNA (Maeda et al., 1992; Heine et al., 1993; Schmidt-Zachmann and 

Nigg, 1993) and pRB binds the B23 factor, which has roles in ribosomal biogenesis 

(Takemura et al., 2002). A ribosome biogenesis machinery-attached scaffold of 

protein anchors, which include HICp40, is thus formed, and these possess high- 

affinity binding sites for specific nucleoplasmic proteins, which have neither a NoLS 

nor an obvious nucleolar role. Currently, the mechanisms underlying nucleolar 

release are largely unknown, but, in light o f the consensus view of nucleolar 

retention, are likely to require energy and/ or post-translational modification.

Our data thus suggest that binding of HICp40 to Handl is necessary and 

sufficient for Handl nucleolar sequestration. Our observation that a higher proportion 

of transfected H9c2 cells exhibit nucleolar-localised Handl-EGFP than transfected 

NIH-3T3 cells may in this regard be due to the presence or absence of HICp40 

cofactors or other proteins involved in nucleolar translocation of Handl, or otherwise 

due to variations in the abundance of HICp40 between cell lines. Further work is 

required to investigate these possibilities, but it is interesting that a recent study 

indicated a variation in the abundance of HIC mRNA between several cell lines 

(Wang et al., 2007). At present, the differences in Handl-EGFP sub-cellular 

localisation between cell lines are unclear.

Importantly, our data rule out the putative, albeit degenerate, NoLS of the 

form R/K-R/K-X-R/K in the Handl basic domain (RKGSGPKKERRR) as being 

sufficient for Handl nucleolar localisation. A possible involvement of this sequence 

in the nucleolar localisation of Handl was suggested by two observations. Analogous 

sequences in the related zebrafish bHLH factor Myf5 are required for nucleolar 

localisation (Wang et al., 2005) and Handl-EGFP remains nucleolar in the HICp40- 

deficient cell line, human breast epithelial MCF-7 cells (Wang et al., 2007; data not
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shown). However, two pieces of data argue against HICp40-independent Handl 

nucleolar localisation. An EGFP fusion with Hand2, which also possesses a similar, 

putative NoLS motif in its basic domain, does not localise to the nucleolus. 

Furthermore, the highly-related bHLH family member Twistl has been localised 

throughout the nucleus of several cell types (A. Firulli, personal communication). 

This suggests that HICp40 probably binds Handl specifically amongst members of 

the bHLH family. Additionally, the isolated Handl bHLH domain is unable to traffic 

to nucleoli when fused to EGFP. Nevertheless, the localisation of Handl-EGFP to the 

nucleolus in a HICp40-deficient background gives some insight into the mechanistic 

basis o f Handl nucleolar sequestration. Specifically, this suggests that HICp40 is not 

required for the active transport of Handl into the nucleolus. Thus Handl is likely to 

enter the nucleolus either in complex with other protein(s) or passively by diffusion 

and the role of HICp40 may be restricted to the subsequent retention of Handl in the 

organelle.

Despite these findings, the sequestration of some factors in the nucleolus is 

reliant on the nucleolar sequesteror unmasking a ‘cryptic’ NoLS in the nucleoplasmic 

target protein. This is thought to reinforce the negative regulatory mechanism. For 

example, Mdm2 possesses a ‘quiescent’ NoLS that is only activated by its binding to 

its nucleolar anchor, p ^ ^ * "  (Lohrum et al., 2000). Thus it cannot be ruled out that 

binding o f HICp40 to Handl may unmask a cryptic NoLS in Handl, possibly the 

putative signal in its basic domain. Nevertheless, contrary to this hypothesis is the 

fact that an EGFP fusion with the isolated Handl bHLH domain is unable to localise 

to the nucleolus. Thus, at present, it is unclear as to whether HICp40 is sufficient for 

Handl localisation to the nucleolus. Indeed, the fact that our Y2H screen identified an 

interaction between Handl and another nucleolar component (Fibrillarin-2; Appendix 

8) hints that other proteins may be involved in the nucleolar sequestration and/ or 

retention of the transcription factor.

Our data suggest that the C-terminal I-mfa domain o f HICp40 is necessary for 

its interaction with Handl. However, only by carrying out assays employing the 

isolated I-mfa domain would we be able to investigate whether this domain is 

sufficient to bind Handl, or whether Handl also binds other regions of HICp40. 

Furthermore it is currently unknown which domain(s) of Handl bind HICp40.
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Preliminary assays show that the bHLH domain of Handl is not sufficient, since an 

EGFP fusion with this domain failed to localise to the nucleolus, even upon HICp40 

over-expression. We hypothesised that the Handl-HICp40 interaction could be 

underpinned, in part, by contacts between the poly-histidine stretch in the N-terminus 

o f Handl and cysteine residues in the HIC I-mfa domain. HIC and I-mfa bind 

histidine-rich regions in gonadotrophin-inducible transcription factor 1 (Giotl) and in 

the Cyclin T1 subunit of the pTEFb complex (Mizutani et al., 2001; Young et al., 

2003; Wang et al., 2007). These interactions are dependent upon the cysteine-rich I- 

mfa domain coordinating bivalent metal ions in combination with histidine residues 

in the target protein. Importantly the N-terminal poly-histidine stretch is absent in the 

closely-related, but non-nucleolar, Hand2 factor. However, despite these precedents, 

our data suggest that the Handl poly-histidine stretch is not sufficient for HICp40 

interaction and Handl nucleolar localisation. Nevertheless, despite these findings, the 

bHLH domain and the poly-histidine stretch may still be involved in binding HICp40, 

that is, they may be necessary for the interaction. This could be assessed by 

determining whether EGFP fusions with Handl mutants lacking these domains 

localise to the nucleolus. Ultimately, GST-pull down and co-immunoprecipitation 

assays (as conducted to generate the data presented in Figure 3.2) employing Handl 

deletion fragments would need to be carried out to definitively map interaction 

domains.

Notably, the cytoplasmic HICp32 isoform is still able to moderately abrogate 

Handl activity. HICp32 is cytoplasmic, so we investigated whether it was able to 

restrict Handl to this subcellular compartment in a method similar to the negative 

regulation, mediated by cytoplasmic sequestration, of the Mash2 and myogenic 

bHLH factors by I-mfa (Chen et al., 1996; Kraut et al., 1998). However, this was not 

the case, suggesting that HICp32 may instead interfere with the DNA binding activity 

o f Handl, another mechanism by which I-mfa represses the activity of its bHLH 

targets (Chen et al., 1996; Kraut et al., 1998). Further investigation will, of course, be 

required to confirm this hypothesis, but it is interesting that I-mfa, as described, 

interacts with Handl but does not repress its activity in vitro (Kraut et al., 1998). This 

implies that sequences outside of the I-mfa domain of HICp32 are required for the 

repression of Handl. Despite this, it is clear that nucleolar sequestration, reliant upon 

the HICp40 N-terminal NoLS motifs, is required for maximal, possibly biologically-
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relevant, Handl repression. In this regard it can be inferred that HICp32-dependent 

repression of Handl, unlike its confinement to the nucleolus, cannot completely 

block its biological activity. It is also interesting in light of the modest negative 

regulation of Handl by HICp32 that several other nucleolar anchors also have a 

secondary, nucleolus-independent mode of regulating their target factor. For 

example, although p l9 ARF sequesters the p53 agonist Mdm2 in the nucleolus to 

enhance p53 stability (Tao and Levine, 1999; Weber et al., 1999) and p l9 ARF 

isoforms lacking the signals required for nucleolar localisation are thought to bind to 

and stabilise p53 to enhance its activity independent of effects on Mdm2 subcellular 

localisation (Llanos et al., 2001). Additionally, whilst Cfil (Netl) primarily 

sequesters the Cdcl4 phosphatase in the nucleolus to prevent it dephosphorylating its 

nuclear targets and promoting exit from mitosis (Shou et al., 1999; Visintin et al., 

1999), cells co-transfected with Cdcl4 and Cfil exhibit a Cdcl4 loss-of-function 

phenotype despite Cdcl4 being nucleoplasmic. This suggests that Cfil directly 

affects the catalytic activity of Cdcl4 independently of nucleolar sequestration 

(Visintin et al., 1999). In conclusion, the underlying molecular basis of HICp32- 

dependent repression o f Handl transcriptional activity is unknown and requires 

further investigation.

In conclusion, HICp40 is required for Handl nucleolar localisation and this 

has the effect of repressing Handl transcriptional activity. On the basis of these data, 

we can conclude that HIC and I-mfa repress their target transcription factors in a 

similar way. Both factors interact with all o f their target proteins via their I-mfa 

domains and furthermore negatively-regulate them via subcellular confinement, 

either to the nucleolus by HICp40 or to the cytoplasm by I-mfa (Chen et al., 1996; 

Kraut et al., 1998; Thebault et al., 2000a; reviewed by Thebault and Mesnard, 2001; 

Snider et al., 2001; Kusano and Raab-Traub, 2002; Snider and Tapscott, 2005; data 

presented in this study). This may restrict the access of these target factors to their 

binding partners and/ or target genes and so limit their biological activity. At present, 

however, it is unclear which regions of Handl are required for HICp40 interaction 

and this is a subject of ongoing studies.
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3.3.3. Summary and concluding remarks

The nucleolus has been traditionally viewed as a ‘ribosome biogenesis 

factory’ (reviewed by Perry, 1966). However, more recently, proteomic studies have 

demonstrated the nucleolar localisation of transcription factors, cell cycle regulators 

and tumour suppressors that are unlikely to play any part in the traditional roles of 

this organelle (Scherl et al., 2002; Andersen et al., 2002; Andersen et al., 2005). This 

has led to the suggestion that the nucleolus also acts as a molecular ‘safe’ or ‘sink’ to 

retain and negatively regulate proteins, preventing them from interacting with their 

downstream protein partners or target genes until a specific cell cycle stage or 

metabolic state. Indeed, this is a mechanism not without precedent among 

transcription factors. For example, the activity of p53 is modulated by p l9 ARF- 

dependent nucleolar sequestration of its negative regulator, Mdm2 (Tao and Levine, 

1999; Weber et al., 1999). Other examples include the inhibition of c-Myc-induced 

progression through the cell cycle by the sequestration of the transcription factor in 

the nucleolus by p lO ^ 1" (Datta et al., 2004) and the modulation of cell proliferation 

by NoBP-dependent nucleolar sequestration of Fgf3 (Reimers et al., 2001).

In agreement with these previous studies, we have identified an interaction 

between Handl and HICp40, a factor known to negatively-regulate several 

developmental factors in a post-translational fashion. The functional basis of this is 

the sequestration of Handl in the nucleolar compartment. This may occur during 

development to prevent Handl from binding its nucleoplasmic protein partners and 

activating its target genes until a specific cell cycle stage or metabolic state. 

Moreover, since the nucleolus lacks a membrane, this stockpile o f pre-existing Handl 

could be instantaneously released to permit a rapid response to molecular and/ or 

cellular cues, which could occur without the need for transcriptional up-regulation or 

even nuclear import.

Importantly, HICp40-dependent nucleolar sequestration is likely to regulate 

the activity o f Handl in vivo. Although HIC is chiefly expressed in lymphoid tissues, 

Thebault and colleagues localised embryonic murine HIC mRNA to organs in which 

Handl is expressed, including the developing small intestine (Thebault et al., 2000a). 

Nevertheless, their northern blot analysis was restricted to a limited number of tissues
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and there was no information on HIC expression in the heart. We have, however, 

demonstrated a co-localisation of Handl and the murine orthologue of HICp40 in the 

developing mouse heart by in situ hybridisation experiments. Moreover, the two 

mRNA species particularly overlapped in the left ventricular myocardium and 

outflow tract (OFT). Furthermore, we have demonstrated nucleolar localisation and 

endogenous expression of the rat orthologue of HICp40 in Rcho-1 trophoblast stem 

cells and their TG cell derivatives, coincident with Handl.

Since Handl is involved in the terminal differentiation o f trophoblast and 

cardiomyocyte cells (Riley et al., 2000; Hughes et al., 2004; reviewed in Chapter 1, 

sections 1.2.4 and 1.3.2), its nucleolar sequestration and negative-regulation by 

HICp40 may contribute to determining cell fate. For example, nucleolar localisation 

and inactivation of Handl may correlate with a trophoblast stem cell or cardiac 

precursor cell decision to proliferate. Upon Handl activation through its release into 

the nucleoplasm, these cells could then be committed to differentiation. Thus to 

assess the physiological significance of the findings of this chapter in vivo, we next 

investigated the biological relevance of Handl nucleolar anchorage in an appropriate 

cell model and our findings are presented in the following chapter.
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Chapter 4
Nucleolar sequestration and release 
regulates Handl activity in rodent

trophoblast
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4.1. INTRODUCTION

Handl plays an essential role in the differentiation of rodent trophoblast, the 

first lineage to arise in the developing embryo (reviewed in Chapter 1, section 1.2.4). 

Study of the regulation and function of Handl in this lineage is difficult, however, 

since trophoblast stem (TS) cells are difficult to maintain and manipulate in culture 

(S. Tanaka, personal communication). Thus we employed the rat choriocarcinoma-1 

(Rcho-1) TS cell line (reviewed in Chapter 1, section 1.6), to investigate the 

biological significance of Handl nucleolar sequestration in vivo.

Rcho-1 cells represent a faithful model of TS cells. They can be induced to 

exit the mitotic cell cycle and undergo endoreduplication concomitant with 

differentiation into so-called trophoblast giant (TG) cells (Kraut et al., 1998; Scott et 

al., 2000; Hughes et al., 2004; Sahgal et al., 2006). Importantly for our study, Rcho-1 

cells endogenously express Handl and its expression is necessary and sufficient for 

TG cell differentiation (Cross et al., 1995; Kraut et al., 1998; Scott et al., 2000). 

However, the precise role of Handl and how its activity is regulated during this 

process are unknown. Handl expression is detectable in Rcho-1 TS cells, albeit at a 

lower level compared to differentiated Rcho-1 TG cells (Cross et al., 1995), so the 

activity of Handl in this lineage may be post-translationally regulated. In this 

chapter, we show that the activity of Handl is regulated during Rcho-1 differentiation 

by its nucleolar sequestration and release, and discuss the implications o f this finding.

4.2. RESULTS

4.2.1 Nucleolar Handl-EGFP relocates to the nucleoplasm  

during TG cell differentiation

In order to investigate whether Handl nucleolar localisation plays a role in its 

regulation in rodent trophoblast, we ectopically expressed a Handl-EGFP fusion 

protein in Rcho-1 stem cells cultured in conditions favouring Rcho-1 stem cell
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maintenance (20% FBS-supplemented medium). We then tracked the subcellular 

localisation o f Handl-EGFP over a 72 hour period post-transfection (Figure 4.1).

In proliferating Rcho-1 stem cells 24 hours post-transfection, Handl-EGFP 

was almost exclusively localised to nucleoli. However, after 48 and 72 hours post

transfection, Handl-EGFP gradually dispersed from nucleoli to assume a nuclear- 

wide distribution. This was coincident with the differentiation o f  the transfected 

Rcho-1 stem cells to TG cell differentiation (Figure 4.1). Additionally, the kinetics o f  

the change in Handl-EGFP localisation were recorded using time-lapse video

microscopy. This revealed Handl-EGFP release from the nucleolus over a 12-hour 

period as individual transfected cells began to differentiate, which was coincident 

with decreased motility and an increase in cell size (Movie 4.1, Appendix 10).

Handl-EGFP

Figure 4.1. Release o f nucleolar H andl-EG FP coincides with Rcho-1 stem cell 

comm itm ent to a trophoblast giant cell fate.

In Rcho-1 stem cells, Handl-EGFP localises exclusively to the nucleoli. However, nucleolar Handl- 

EGFP becomes nuclear-wide as these cells undergo trophoblast giant cell differentiation over a 72 

hour period post-transfection.
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Quantitatively, the relative proportions o f transfected cells with nucleolar 

versus nuclear-wide EGFP fluorescence and the number o f  fluorescent TG cells were 

determined at each time point (Figure 4.2). These cell counts revealed that the nuclear 

dispersal o f  Hand 1-EGFP during the 72-hour time course o f the experiment was 

statistically significant (Figure 4.2a). Moreover, the number o f fluorescent TG cells at 

the 72-hour point was significantly higher than the number o f  fluorescent TG cells 24 

hours after transfection and statistically greater than the number o f Rcho-1 stem cells 

at the time-point (Figure 4.2b). This confirmed that nucleolar release o f  Hand 1-EGFP 

correlates with TG cell differentiation.

a. b.
□  Stem□  NucleolarI | i iu c icu ia i  f  ' | w w »—i

P i "  Nudear  BGiant ̂ _

1  dJ n i l
24h 48h 72h 24h 48h 72h

Hours post-transfection Hours post-transfection

Figure 4.2. The relocation of H andl-EG FP that coincides with Rcho-1 stem cell 

commitment to differentiation is statistically-significant and correlates with the 

differentiation process.

Cell counts o f Handl-EGFP-expressing Rcho-1 cells reveal a significant reduction in nucleolar fusion 

protein with a corresponding elevation in nuclear-wide localisation over a 72 hour period post

transfection (a). Cell counts o f the same populations reveal an increasing number o f fluorescent Rcho- 

1 giant cells during the course o f the experiment (b). Measurements are mean±S.E.M.; n (the number 

o f cells counted per treatment at each time point) = 450; * indicates p<0.05; ** indicates p<0.01; *** 

indicates pO.OOl.

Importantly, these figures were corrected for spontaneous Rcho-1 

differentiation in medium that ordinarily maintains Rcho-1 stem cell proliferation 

(5.9% per 24-hour period; Nakayama et al., 1998; Scott et al., 2000), and for an 

observed increase in differentiation rate due to the transfection with a construct
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encoding EGFP alone (10.3% per 24-hour period; mean±S.E.M.; n=250; PO.Ol). 

This applies to all cell counts in this thesis.

We next undertook experiments to confirm that Hand 1-EGFP, upon its release 

from the nucleolus, promotes normal TG cell differentiation. TG cells derived from 

Rcho-1 stem cells by a change in serum conditions (20% FBS to 10% horse serum) 

dramatically up-regulate the TG cell marker PL-1 and undergo cytoskeletal 

rearrangement, as assessed by phalloidin staining for F-actin (Figure 4.3a). 

Importantly, Rcho-1 stem cells induced to differentiate by ectopic Hand 1-EGFP 

expression in conditions favouring Rcho-1 stem cell maintenance produce TG cells 

with equivalent PL-1 up-regulation and cytoskeletal rearrangement (Figure 4.3b). 

These data confirm that the TG cells derived from Rcho-1 stem cells transfected with 

Hand 1-EGFP were bona fide. In conclusion, these results collectively demonstrate 

that nucleolar Hand 1-EGFP is released and becomes nuclear-wide during the 

differentiation of transfected Rcho-1 stem cells into bona fide TG cells.
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Figure 4.3. H andl-EGFP-induced differentiation of Rcho-1 cells produces bona  

f id e  trophoblast giant cells.

Rcho-1 giant cells induced by a change in serum conditions (20% FBS to 10% HS) undergo a dramatic 

up-regulation in the TG cell-specific marker PL-1 and complex cytoskeletal rearrangement as 

visualised by phalloidin staining for F-actin (a). Rcho-1 cells induced to differentiate by over

expression o f ectopic Hand 1-EGFP (in medium supplemented with 20% FBS) produce giant cells with 

equivalent PL-1 up-regulation and cytoskeletal rearrangement (b).
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4.2.2. N ucleolar-endogenous H andl relocates to the 

nucleoplasm  during TG cell differentiation

We next sought to investigate whether the observed changes in the subcellular 

localisation o f Handl-EGFP during Rcho-1 TG cell differentiation applies also to 

endogenous Handl. Immunostaining for Handl and C23 revealed that endogenous 

Handl is restricted to the nucleoli o f  proliferating Rcho-1 stem cells (Figure 4.4). 

However, upon a change in serum conditions to promote TG cell differentiation, 

nucleolar-endogenous Handl is released and assumes a nuclear-wide localisation 

over a 72-hour period (Figure 4.4). In addition to the nuclear-wide localisation o f  

endogenous Handl in TG cells, a cohort (<5% o f  total cells) exhibited peri-nuclear, 

endogenous Handl (Figure 4.5a) or retained nucleolar-endogenous Handl (Figure 

4.5b). However, in both cases, a fraction o f total Handl was also localised in the 

nucleoplasm, suggesting that any amount o f endogenous Hand 1 translocation may be 

sufficient to drive TG cell differentiation.

a - H a n d 1 a - C 2 3 M e rge DNA

m
mSSm

Figure 4.4. Release of nucleolar-endogenous H andl coincides with Rcho-1 stem  

cell commitment to a trophoblast giant cell fate.

Immunostaining for a-Handl and a-C23 over a 72 hour time-course o f Rcho-1 differentiation reveals 

that endogenous Handl is predominantly localised to nucleoli in Rcho-1 stem cells (indicated as 24h). 

However, nucleolar-endogenous Handl is released to assume a nuclear-wide localisation coincident 

with a commitment o f Rcho-1 stem cells to differentiate over a 72-hour period.
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Figure 4.5. Endogenous Handl can occupy different subcellular localisations in 

trophoblast giant cells.

Endogenous Handl is localised to the peri-nuclear region (a) or occasionally retained in the nucleolus 

(b) in <5% of TG cells (induced by a change in serum conditions and differentiated for 72 hours). 

However, a proportion of Handl in both instances is nuclear-wide and induces TG cell differentiation.

Release o f endogenous Handl from the nucleoli o f  Rcho-1 stem cells during 

their differentiation was further confirmed by western blot analysis on whole-cell 

Rcho-1 lysates subtracted for the nucleolar fraction (Figure 4.6a,b). Levels o f  non- 

nucleolar Handl protein were analysed over an 8-day time-course o f  Rcho-1 

differentiation induced by a change in serum conditions (Figure 4.6a). The western 

blot data confirm the absence o f nuclear-wide Handl in Rcho-1 stem cells. 

Interestingly, nucleolar release o f Handl becomes evident 3 hours (‘day O’) after 

serum withdrawal. Furthermore, a more detailed western blot time-course revealed 

that endogenous Handl relocates from the nucleolar to the nucleoplasmic 

compartment just 1.5-2 hours after serum conditions are modified to promote Rcho-1 

differentiation (Figure 4.6b). Importantly, the elevated levels o f  non-nucleolar Handl 

protein at the onset o f differentiation are not accompanied by an up-regulation o f  

Handl transcription, as revealed by a northern blot analysis on mRNA extracted from 

Rcho-1 cells differentiated over a similar time-course (Figure 4.7). Several studies 

have reported that p-Tubulin transcription is down-regulated during Rcho-1 

differentiation (Faria and Soares, 1991; Hamlin et al., 1994). This explains our 

preference for the GAPDH probe and antibody in these analyses. In addition, 

GAPDH protein was shown to localise to the nucleolus in recent nucleolar proteomic 

analyses, further validating its use here as a loading control (Andersen et al., 2002).
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Figure 4.6. Redistribution of nucleolar-endogenous H andl during Rcho-1 

differentiation is confirmed by western blot analysis.

Western blot analysis using whole-cell lysates of Rcho-1 cells (subtracted for the nucleolar fraction) 

induced to differentiate over an 8-day time course reveal that nucleolar-endogenous Handl becomes 

nuclear-wide just 3 hours (‘day O’) after a change in serum conditions (20% FBS to 10% HS) (a). A 

more detailed time-course reveals that this nucleolar-to-nuclear relocation of endogenous Handl is 

initiated just 1.5 hours after this change in serum conditions (b).

g Differentiation/days
Q)
CO 0 2 4 6 8 +ve

Handl

GAPDH

E
%

E 0 2 4 6 8

Differentiation/days

Figure 4.7. H a n d l transcription is not up-regulated during Rcho-1 trophoblast 

giant cell differentiation.

Northern blot analysis reveals that Handl transcription is not up-regulated at the onset o f TG cell 

differentiation in Rcho-1 cells induced to differentiate by a change in serum (20% FBS to 10% HS).
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In conclusion, these results demonstrate that during the early stages o f  Rcho-1 

TG cell differentiation, endogenous Handl is released from the nucleolus and 

becomes nuclear-wide. Importantly, this up-regulation in nuclear-wide Handl protein 

levels is caused by a change in Handl protein subcellular localisation and not an up- 

regulation o f Handl transcription.

4.2.3. H a n d l-E G F P  is localised to the nucleoli o f p r im ary  

m u rin e  trophob las t stem cells

We next demonstrated that Handl-EGFP is localised to the nucleoli o f  

primary murine trophoblast stem (TS) cells (Figure 4.8). This confirms that our 

observations in Rcho-1 cells are not cell line-dependent and also further supports the 

authenticity o f the Rcho-1 model with respect to trophoblast in vivo.

Handl-EGFP Merge

Figure 4.8. Handl-EGFP is localised to the nucleoli of transfected primary 

trophoblast stem cells.
Primary trophoblast stem cells transfected with Handl-EGFP exhibit nucleolar EGFP fluorescence.

4.2.4. In Rcho-1 stem cells, H IC p40  sequesters  and  

negatively-regulates endogenous H a n d l  in the nucleolus

To investigate the functional significance o f  Handl nucleolar sequestration by 

HlCp40 in vivo, we next conducted over-expression (gain-of-function) and RNA- 

interference (RNAi)-mediated knock-down (loss-of-function) assays involving
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HICp40 in Rcho-1 stem cells (Figure 4.9). Over-expression of HICp40 as an EGFP 

fusion protein (HICp40-EGFP) significantly blocked the differentiation of Rcho-1 

stem cells cultured in differentiation-inducing conditions, compared to untransfected 

Rcho-1 cells cultured in the same conditions (Figure 4.9a). Only transfected cells 

were counted, and these were identified by virtue of EGFP fluorescence.

We conversely used RNAi to knock-down endogenous HICp40. RNAi is a 

multi-step process involving the generation of a large double-stranded RNA 

(dsRNA), which is cleaved into small interfering RNAs (siRNAs) in vivo by an 

RNase III endonuclease. These siRNAs down-regulate target gene expression by 

forming an RNA-induced silencing complex (RISC) with cellular proteins. RISC then 

promotes the degradation of mRNAs containing sequences similar to the siRNA 

component and also may silence the target gene by recruitment of chromatin 

remodelling complexes (reviewed by Hannon, 2002). RNAi-mediated knock-down of 

endogenous HICp40, using two independent RNAi sequences (HICshRNAil and 

HICshRNAil), significantly promoted the differentiation o f Rcho-1 stem cells 

cultured in non-differentiating conditions (Figure 4.9b; sequence of RNAi 

oligonucleotides and their position within HICp40 are shown in Appendix 3). 

Endogenous HICp40 knock-down was confirmed in this study by western blot 

analysis using an anti-HIC antibody, a kind gift from J.-M. Mesnard (Figure 4.9c). Of 

note, these RNAi constructs would be predicted to also knock-down endogenous 

HICp32 as they contain sequences common to both HIC cDNAs. However, nucleolar 

localisation of endogenous Handl was a functional read-out that applied exclusively 

to HICp40-dependent sequestration.
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Figure 4.9. HICp40 gain- and loss-of function assays reveal that HICp40 

sequesters H andl into the nucleolus and negatively-regulates its activity in vivo.

Over-expression of HICp40-EGFP in Rcho-1 stem cells cultured in differentiation-inducing conditions 

(shown as HS) significantly inhibits TG cell differentiation (a). In comparison, knock-down of  

endogenous HICp40 in Rcho-1 stem cells cultured in non-differentiating conditions (shown as FBS), 

using two independent RNAi sequences o f HICp40 (HICshRNAil (i) and HICshRNAi2 (ii)), 

significantly promotes TG cell differentiation (b). HICp40 knock-down was demonstrated in this assay 

by western blot analysis using an anti-HIC antibody and then comparing HIC levels between un

transfected (control, Co) and transfected cells by scanning densitometry (c). Measurements are 

mean±S.E.M.; n=350; ** indicates p<0.01; *** indicates p<0.001. o/e: over-expression.
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We next investigated the effect of HICp40 gain- and loss-of-function on 

Handl subcellular localisation in vivo. Gain in HICp40 function by HICp40-EGFP 

over-expression, which was associated with elevated numbers of Rcho-1 stem cells, 

resulted in a significant increase in nucleolar-endogenous Handl, as assessed by 

counts o f transfected cells. The percentage of control cells with nucleolar-endogenous 

Handl localisation was 43.9±1.87 (meantS.E.M.; n=210), whilst the percentage of 

HICp40-over-expressing cells with nucleolar-endogenous Handl localisation 72 

hours after transfection was 77.6+2.67 (meantS.E.M.; n=240) (p=<0.001). These 

data therefore suggest that gain of HICp40 function leads to reduced nuclear-wide- 

endogenous Handl and an associated block to TG cell differentiation.

Conversely, knock-down of endogenous HICp40y which was associated with 

elevated numbers of TG cells, resulted in increased nuclear-wide-endogenous Handl. 

The percentage of cells with nuclear-wide-endogenous Handl localisation in control 

cells was 28.6±2.08 (meantS.E.M.; n=210), whilst the percentage of cells 72 hours 

after transfection with HICshRNAil was 4 7 .lil.9 3  (meantS.E.M.; n=280), and those 

72 hours after transfection with HICshRNAi2 was 46.4i2.39 (meantS.E.M.; n=280) 

(p=<0.001). These data therefore indicate that loss of HICp40 function leads to 

increased nuclear-wide-endogenous Handl and associated TG cell differentiation.

4.2.5. Hypoxia neither affects Handl nucleolar release nor 

its nuclear activity

Previous studies have revealed that hypoxia blocks the proper differentiation of 

Rcho-1 stem cells and other trophoblast stem cell models in vitro (Gultice et al., 

2006; Lash et al., 2007; Takeda et al., 2007). Therefore, we sought to determine 

whether culture of Rcho-1 cells under hypoxic conditions has an effect on Handl 

nucleolar release. Hypoxic conditions were attained by either supplementing the 

medium with 250pM cobalt chloride, which has previously been shown, in cell lines 

including Rcho-1 cells, to initiate intracellular hypoxic signalling cascades (Hayashi 

et al., 2004), or by culturing cells in a hypoxic chamber (1% oxygen, 5% carbon 

dioxide, 94% nitrogen). Cells cultured under hypoxic conditions were shown by
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western blot analysis to have increased levels o f the alpha subunit o f the hypoxia 

inducible factor (HIF), a heterodimeric transcription factor activated by low oxygen 

(reviewed by Cannigia, 2000). This is consistent with an appropriate cellular response 

to low oxygen tension (Figure 4.10).

HxC CoCI

HIF1a

GAPDH
CoCI

Figure 4.10. Rcho-1 cells cultured under conditions that induce a hypoxic 

cellular response up-regulate the hypoxia-inducible factor-1 alpha subunit.

Culture of Rcho-1 cells in a hypoxic chamber (HxC) or in medium supplemented with 250pM cobalt 

chloride (CoCl2) induces HIF la  up-regulation. This was assessed by western blot analysis using an 

anti-HIFla antibody and then comparing HIF la  levels between control (cultured in normoxic 

conditions; Co) and cells exhibiting a hypoxic response by scanning densitometry.

Culture o f  Rcho-1 stem cells in differentiation-inducing (10% HS- 

supplemented medium) conditions in either medium supplemented with cobalt 

chloride or in a hypoxic cell culture chamber resulted in a significant suppression o f  

TG cell differentiation over 72 hour period in conditions that favour their 

differentiation (Figure 4.11). This is compared with Rcho-1 cells differentiated in 

normoxic, differentiation-inducing conditions and was assessed by PL-1 expression 

and changes in cytoskeletal organisation by staining for F-actin, as carried out by a 

previous study (Gultice et al., 2006). However, the percentage o f Rcho-1 stem cells 

cultured in normoxic, differentiation-inducing conditions for 72 hours that exhibit 

nucleolar-endogenous Handl localisation (43.9+1.87 (mean±S.E.M.; n=210)) was 

not significantly different to the percentage o f Rcho-1 stem cells cultured in hypoxic- 

response-inducing, differentiation-inducing conditions for the same time period with 

nucleolar-endogenous Handl (44.6±2.01 (mean±S.E.M.; n=220) for cells cultured in 

a hypoxic chamber, and 45.6+1.51 (mean±S.E.M.; n=220) for cells cultured in 

medium supplemented with 250juM C0 CI2). Furthermore, hypoxia had no effect on
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the ability o f  Handl-EGFP to drive Rcho-1 differentiation over a 72 hour period post

transfection (Figure 4.12). These data therefore suggest that oxygen tension 

influences the process o f TG cell differentiation, but achieves this neither by affecting 

the release o f  Handl from the nucleolus, nor Handl-EGFP activity in the nucleus.

C o HxC CoCI2

Figure 4.11. Hypoxia significantly blocks Rcho-1 TG cell differentiation.

Cell counts o f Rcho-1 cells 72 hours after serum conditions were changed to promote their 

differentiation (20% FBS to 10% HS) revealed that cells cultured in hypoxic-response-inducing 

conditions (either in a hypoxic cell culture chamber (HxC) or in the presence o f 250pM CoCl2) have a 

reduced rate o f TG cell differentiation, indicated by a reduced number of giant cells and an increased 

number of stem cells, than control cells cultured in normoxic conditions (Co). TG cells were identified 

by PL-I up-regulation and cytoskeletal re-organisation. Measurements are meantS.E.M.; n=270; * 

indicates p<0.05; ** indicates p<0.01.
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Figure 4.12. Hypoxia does not modify Handl activity during Rcho-1 trophoblast 

giant cell differentiation.

Cell counts of Rcho-1 stem versus giant cells at 24, 48 and 72 hours post-transfection reveal that 

Rcho-1 cells transfected with Handl-EGFP and then cultured under conditions that induce a hypoxic 

response (either in a hypoxic cell culture chamber (HxC) or in the presence o f 250pM CoCl2) do not 

have a significantly different rate of differentiation to control cells transfected with Handl-EGFP and 

then cultured under normoxic conditions (Co). All cells were cultured under differentiation-inducing 

conditions (10% HS-supplemented medium). TG cells were identified by PL-I up-regulation and 

cytoskeletal reorganisation. Measurements are mean+S.E.M.; n=250.

4.3. DISCUSSION

4.3.1. The activity of H a n d l  is regu la ted  by nucleo lar  

sequestra tion  and  release in roden t tro p h o b las t

We have demonstrated that a Handl-EGFP fusion protein, nucleolar in Rcho- 

1 stem cells, gradually disperses throughout the nucleus over a time course o f 72 

hours as these cells undergo TG cell differentiation. TG cells exhibiting nuclear-wide 

Handl-EGFP are importantly bona fide , as determined by a characteristic up- 

regulation o f  PL-1 and associated changes in actin cytoskeleton and cell motility 

(Faria et al., 1991; Parast et al., 2001). The Handl-EGFP immuno-localisation
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studies in Rcho-1 cells were further supported by quantitative data, which revealed 

that the gradual nucleolar release of Handl-EGFP over the time-course of the 

experiment was statistically significant. The number of fluorescent TG cells in 

transfected cultures was significantly higher than the number of Rcho-1 TS cells at 

any given time point, and moreover the number of TG cells at the 48 and 72 hour 

points was higher than the number at the 24 hour point. This suggests that nuclear- 

wide, but not nucleolar-sequestered, Handl-EGFP is able to promote Rcho-1 TG cell 

differentiation. Importantly, the nucleolar localisation of Handl-EGFP was also 

observed in primary TS cells. This supports the authenticity of the Rcho-1 model 

with respect to the trophoblast lineage in vivo and excludes the possibility of any cell 

line-dependent effects. However, primary TS cells were precluded from any further 

use in these studies due to well-characterised problems with the maintenance of 

primary TS cells in an undifferentiated state in culture and very low transfection 

efficiency (S. Tanaka, personal communication).

Immunostaining for endogenous Handl using an anti-Hand 1 antibody 

revealed a similar relocation of the protein during Rcho-1 differentiation. This result 

was confirmed by western analysis using the same antibody on whole cell lysates, 

subtracted for nucleolar content, taken over a time course o f Rcho-1 differentiation 

induced by serum withdrawal. Notably, nucleoplasmic levels of Handl protein were 

significantly elevated only 1.5-3 hours after a change in serum conditions to promote 

differentiation. This suggests that the release of nucleolar Handl into the 

nucleoplasm is required for the earliest stages of TG cell differentiation. This event 

may even be responsible for the commitment of Rcho-1 stem cells to a TG cell fate. 

Crucially, this rapid increase in nuclear Handl protein level does not appear to be due 

to an up-regulation of Handl transcription. Northern analysis on the equivalent time- 

course revealed neither a change in Handl mRNA levels at the onset of Rcho-1 

differentiation nor during long-term differentiation. This observation of a constant 

level of Handl transcription during differentiation, although entirely reproducible, is 

at odds with previous studies (Cross et al., 1995; Firulli et al., 2003). The reason(s) 

for this discrepancy remains unclear.

It is worth here speculating on the underlying basis for the protocol used in 

this chapter to generate sub-cellular lysates. The study by Kurki and colleagues does
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not explain how the protocol operates at the molecular level (Kurki et al., 2004). 

Nonetheless immunostaining for nucleolar and non-nucleolar proteins revealed 

appropriate enrichment in the two subcellular fractions (data not shown), which 

suggested that the lysis protocol successfully separates the two cell compartments. 

We presume that the lysis buffer used in our current study, sufficient to lyse the cell 

and nuclear membranes, cannot break up the nucleoli. As will be discussed in 

Chapter 6 (section 6.4.1), nucleoli are membrane-less. Nonetheless they are robust 

structures whose architecture is held together by the rDNA and ribosome biogenesis 

machinery. When mammalian nuclei are physically disrupted, nucleoli remain intact 

even under conditions that disintegrate most other subnuclear bodies. Crucially, 

HICp40 and Handl would remain in the nucleolar fraction as many proteins that 

localise to the nucleolus are thought to bind the negatively-charged rDNA and acidic 

nucleolar proteins. So perhaps the inherently compact, dense structure of the 

nucleolus is resistant to (insoluble in) the NP-40 lysis buffer and can be separated in 

pellet form from the remainder of the cell lysate by ultra-centrifugation. NP-40 lysis 

buffer may be a more 'gentle' reagent than, for example, RIPA buffer in this regard. 

Only upon boiling the pellet in Laemelli buffer can the nucleolar proteins be 

denatured and suspended in solution. Possibly, this fraction also contains other 

organelles, meaning that the 'nucleolar' fraction is impure. However a 'dirty' method 

such as this was sufficient to illustrate the bulk translocation of Handl from the 

nucleolar to the nuclear fraction for the purposes o f our study. Further confirmation 

of the nucleolar sequestration and release of Handl could be attained by employing 

the more precise nucleolar isolation protocol of Angus Lamond’s group (listed at 

www.lamondlab.com/pdfnoprotocol). This involves centrifugation of sonicated 

nuclei through sucrose solutions of graded concentration.

We have also demonstrated a functional relationship between HICp40 and 

Handl, important for the control of TS cell fate, which involves the nucleolar 

sequestration and inactivation of Handl in Rcho-1 stem cells. Over-expression of 

HICp40 as an EGFP fusion protein in differentiation-inducing conditions 

significantly reduced Rcho-1 differentiation compared to untransfected Rcho-1 cells 

cultured in the same conditions. Conversely, RNAi-mediated knock-down of HICp40 

significantly enhanced the differentiation of Rcho-1 stem cells cultured under 

conditions that ordinarily maintain a proliferative Rcho-1 stem cell population.
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Furthermore, this gain- or loss-of-function of HICp40 correlated with a bias towards 

Handl nucleolar- or nuclear-localisation respectively, as assessed by cell counts. This 

confirms that the effects of HICp40 gain- and loss-of-function on TG cell 

differentiation are mediated through changing Handl subcellular localisation.

According to our data, the level of Handl-EGFP nuclear translocation does 

not seem to correlate precisely with the increase in Rcho-1 TG cell differentiation. 

Similarly, although cohorts (<5%) of TG cells exhibited peri-nuclear- or nucleolar- 

endogenous Handl, in both cases some fluorescence was also nuclear-localised. 

Although the spontaneous rate of Rcho-1 differentiation was taken into account 

during our quantitative analyses, the exact figure may have varied between 

transfected populations. Furthermore, Handl is clearly not the only factor that 

promotes TG cell differentiation and other factors that modulate this process may 

have affected the cell counts. For example, Ap-2y is another transcription factor 

required for TG cell differentiation (Auman et al., 2002) and its activity may have 

varied between transfected populations in our assays. Overall, however, our data 

indicate that the release of any amount of nucleolar Handl-EGFP, or nucleolar- 

endogenous Handl, may be sufficient to drive Rcho-1 TG cell differentiation. In 

summary, the data presented in this chapter are consistent with a role for HICp40- 

mediated nucleolar sequestration of Handl in governing TS cell fate.

4.3.2. Hypoxia inhibits Rcho-1 differentiation but not by 

modulating Handl nucleolar release

Mounting evidence suggests a link between protein nucleolar sequestration 

and the cellular response to hypoxia. Nucleolar confinement of both the alpha subunit 

o f HIF-1 (Fatyol and Szalay, 2001) and its negative regulator, the von Hippel-Lindau 

(VHL) tumour suppressor (Mekhail et al., 2004), modulate HIF-1 activity. 

Additionally, human STRA13, a bHLH factor whose mouse orthologue has been 

proposed to interact with Handl in TG cells (Hughes et al., 2004), is up-regulated by 

hypoxia (Ivanova et al., 2001). Interestingly, Stral3 also associates with Msp58, a 

protein that localises to the nucleolus (Lin and Shih, 1998). We thus hypothesised 

that Handl may be released from nucleolar confinement only under normoxic
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conditions. Indeed, previous studies have demonstrated that aspects of Rcho-1 TG 

ceil and other trophoblast stem cell model differentiation are blocked by low oxygen 

concentration (Gultice et al., 2006; Lash et al., 2007; Takeda et al., 2007; reviewed in 

Chapter 1, section 1.2.2.4). A model whereby Handl is only released from the 

nucleolus under normoxic conditions would be biologically-relevant in that TG cell 

differentiation would be blocked until the placenta makes contacts with the maternal 

blood supply and cellular oxygen concentration increases. This post-translational 

mechanism would furthermore explain why, in the study by Gultice and colleagues, 

Handl mRNA and protein levels were normal in Rcho-1 cells undergoing 

differentiation under hypoxic conditions (Gultice et al., 2006).

Consistent with the previous studies, we indeed showed that hypoxia 

suppressed the ability of Rcho-1 cells to differentiate over a 72-hour period. This was 

assessed by a block to PL-1 up-regulation and impaired cytoskeletal development. 

However, this block to differentiation was not due to an inability of Handl to escape 

from the nucleolus. There was no significant difference between the relative 

proportions of nucleolar- versus nuclear-wide-endogenous Handl in TG cells 

cultured under normoxic or hypoxic conditions for 72 hours after the culture 

conditions were modified to induce a hypoxic response. Thus, if impaired TG cell 

differentiation in hypoxic conditions is due to a deficiency o f Handl activity, these 

data suggest that the factor may be negatively-regulated after its nucleolar release. 

However, a further assay revealed that the ability of Handl-EGFP to drive Rcho-1 

differentiation is not modified by hypoxia. On first consideration, these data suggest 

that the nuclear activity of Handl is not modified by oxygen tension. However, 

Handl was over-expressed in this experiment, and as such any mechanism that 

ordinarily negatively-regulates endogenous Handl in trophoblast cultured under 

hypoxic conditions may have been squelched by ectopic Handl-EGFP. In any case, 

this result serves to reiterate the fact that Handl is not the only factor that promotes 

TG cell differentiation (Chapter 1, Table 1.2b). Hypoxia may thus modify the activity 

o f any one of a number of these TG cell differentiation-inducing factors. At present, 

just how hypoxia modifies the process of TG cell differentiation, through effects on 

Handl or otherwise, is unknown. What is clear, however, is that oxygen 

concentration does not appear to modify the nucleolar release of Handl during TG 

cell differentiation.
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4.3.3. Summary and concluding remarks

In this chapter we have demonstrated that the previously-described elevation 

of Handl activity during Rcho-1 TG cell differentiation is primarily due to a 

relocation of pre-existing Handl protein rather than an up-regulation of Handl 

expression. Handl is sequestered in an inactive state in the nucleoli of proliferating 

Rcho-1 stem cells by the rat orthologue of HICp40. However, upon commitment of 

these cells to a TG cell fate, Handl is released into the nucleoplasm, where it can 

drive Rcho-1 differentiation. However, we provide data that rules out the possibility 

that hypoxia, previously shown to impair proper Rcho-1 TG cell differentiation, 

modulates Handl nucleolar release.

Protein redistribution may be a more efficient method of regulating TG cell 

differentiation. Handl protein release into the nucleoplasm enables a rapid, likely 

almost instantaneous, commitment of Rcho-1 stem cells to a TG cell fate. This 

mechanism is probably more suited to govern TS cell fate than the relatively slow 

alternative of inducing an up-regulation of the Handl gene, followed by protein 

translation, in response to serum withdrawal. In this regard, our findings support 

previous studies that implicate the nucleolus as a molecular ‘safe’ or ‘sink’ that 

temporarily stores factors in an inactive state until a specific cell cycle stage or 

metabolic state (Tao and Levine, 1999; Weber et al., 1999; Datta et al., 2004).

Our RT-PCR data, presented in Figure 3.6b, indicate a persistence o f the rat 

orthologue of HICp40 in differentiated Rcho-1 TG cells. Thus it is likely that HICp40 

and/ or Handl are post-translationally modified to abrogate their interaction and 

permit Handl nucleolar release. In this regard, we next investigated the mechanism 

underlying Handl nucleolar release at the point of Rcho-1 stem cell commitment to 

differentiate and our findings are presented in the following chapter.
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Chapter 5
Phosphorylation of Handl underlies its 

release from the nucleolus
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5.1. INTRODUCTION

We next investigated the molecular mechanism that underlies the release of 

Handl from the nucleolus. Post-translational modification is a quick and reversible 

way of modulating the activity of a transcription factor. For example, 

phosphorylation of residues within the basic domain of myogenic bHLH transcription 

factors enhances their DNA-binding efficiency (Li et al., 1992; Zhou and Olson, 

1994). Additionally, phosphorylation of MyoD encourages its heterodimerisation 

with E l 2 (Lenormand et al., 1997). A wide range of post-translational modifications 

and ligands have been implicated in the nucleolar-nucleoplasmic or nucleolar- 

cytoplasmic shuttling of factors (Table 5.1). Despite this, phosphorylation is by far 

the most widely-used mechanism that underpins the nucleolar release of factors and 

several protein kinases and phosphatases have been localised to this organelle 

(Andersen et al., 2005). The best-characterised example of this is the phosphorylation 

of the budding yeast protein phosphatase Cdcl4 by the polo-like kinase Cdc5. This 

event promotes Cdcl4 nucleolar release as an essential step towards exit from mitosis 

(Shou et al., 1999; 2002; Visintin et al., 1999; 2003; Yoshida and Toh-e, 2002).

Handl is phosphorylated at the helix 1 residues T107 and S I09 during Rcho-1 

TG cell differentiation (Firulli et al., 2003). These residues are highly-conserved 

between bHLH factors of the Twist subfamily (Figure 1.1b). This process is 

enhanced by a down-regulation of the protein phosphatase 2A (PP2A) regulatory 

subunit B568, which targets Handl for dephosphorylation. The protein kinases PKC 

and PKA were suggested to site-specifically phosphorylate Handl during Rcho-1 

differentiation. The resultant net increase in Handl phosphorylation at these two 

residues was shown to enhance the affinity of the transcription factor for its E-factor 

binding partners as an important step in the TG cell differentiation program (Firulli et 

al., 2003). We hypothesised, therefore, that phosphorylation of Handl at these helix 1 

residues underlies its nucleolar release, as a pre-requisite for its E-factor binding and 

biological activity in the nucleus.
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Table 5.1. Post-translational modifications that underlie the nucleolar- 

nucleoplasmic/ cytoplasmic shuttling of factors.

Post-translational Factor Reference(s)
Modification

Asymmetric bFGF Xu et ah, 2003.
dimethylation of arginine
residues

Poly(ADP-ribosyl)ation CTCF Torrano et al., 2006.

Hydrogen ion binding VHL Mekhail et a l 2004.

GTP binding B23 Finch et al., 1995.
Nucleostemin Tsai and McKay, 2005.
Rrp22 Elam et al., 2005.
Gnl31 Rao et al., 2006.

Calcium ion binding Calmodulin Thorogate and Torok, 2007.

Phosphorylation Nucleolin Schwab and Dreyer, 1997.
Ki-67 Endl and Gerdes, 2000.
Cdcl4 Shou et al., 2002.
pRB Takemura et al., 2002.
TIF-IA Mayer et al., 2005.
Limk2 Goyal et al., 2006.
B23 Negi and Olson, 2006.

5.2. RESULTS

5.2.1. Phosphorylation of nucleoplasmic Handl increases 

during Rcho-1 differentiation

We first sought to investigate whether the nucleolar release of Handl 

coincides with increased Handl phosphorylation. To this end, we conducted western 

blot analysis using an anti-phosphoserine antibody on whole-cell Rcho-1 lysates 

subtracted for the nucleolar fraction over a time course of differentiation induced by a 

change in serum conditions (from 20% fetal bovine serum (FBS) to 10% horse serum 

(HS); stem, 0-8 days; Figure 5.1). This assay revealed that phosphorylation of non-
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nucleolar-endogenous Handl increased during this time-course, particularly between 

the stem cell stage and ‘day O’ (3 hours after a commitment to differentiate), relative 

to total cellular-endogenous (i.e. including nucleolar) Handl. This suggests that 

Hand 1 is phosphorylated coincident with its release from the nucleolus.

Nuclear lysates Total cell lysates
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Figure 5.1. Non-nucleolar, endogenous H andl is phosphorylated during Rcho-1 

differentiation.

Phosphoserine western (lysates subtracted for the nucleolar fraction and total cell, including nucleolar) 

on Rcho-1 cells over a time-course o f differentiation in 10% horse serum (HS; stem, 0-8 days). 

Elevated non-nucleolar-endogenous, phosphorylated Handl at the onset o f differentiation (‘day O’; 3 

hours’ exposure to HS) suggests nucleolar-to-nuclear re-distribution o f phosphorylated Handl.

5.2.2. A H a n d l  m u ta n t  th a t  canno t be phosphory la ted  

can n o t escape from  the nucleolus, w hilst a H a n d l  

phosphory la tion  mimic is nuclear-w ide

We next investigated whether the phosphorylation o f  Handl is required for its 

nucleolar release and moreover which residues are phosphorylated. To this end, we

171



Chapter 5

fused the EGFP cDNA to a Handl mutant generously provided by Anthony Firulli in 

which the two residues previously shown to be phosphorylated during Rcho-1 

differentiation were mutated to alanines and, therefore, cannot be phosphorylated 

(T107;S109A) (Firulli et al., 2003). This construct was transfected into Rcho-1 stem 

cells and these were cultured in non-differentiating conditions for 24, 48 or 72 hours 

post-transfection. At these time-points, cells were immunostained with an antibody 

specific for the nucleolar protein C23. This assay revealed that Handl T107;S109A- 

EGFP was almost exclusively nucleolar at all time points (Figure 5.2). This result 

suggests that Handl phosphorylation at residues T107 and S I09 is necessary for its 

release from the nucleolus during Rcho-1 TG cell differentiation.

We also engineered a mutant Handl-EGFP protein in which the same two 

residues were mutated to aspartic acids, substitutions that are thought to mimic the 

change in amino acid charge introduced by phosphorylation (T107;S109D; Huang et 

al., 2004b). This construct was again transfected into Rcho-1 stem cells and these 

were cultured in non-differentiating conditions for 24, 48 or 72 hours post

transfection. This assay revealed that Handl T107;S109D-EGFP was dispersed 

throughout the nucleoplasm in discrete foci at all time points (Figure 5.3). This result 

suggests that Handl phosphorylation at residues T107 and S I09 is sufficient for its 

release from the nucleolus during Rcho-1 differentiation.

We next counted cells to investigate whether the observed differences in the 

subcellular localisations of these two mutant Handl-EGFP fusion proteins were 

statistically significant (Figure 5.4a,c). This data revealed that the number of Handl- 

EGFP T107;S109A-transfected cells with nucleolar fluorescence at any time-point 

post-transfection was significantly higher than the number with nuclear-wide 

fluorescence at the same time point (also compare Figure 5.4a with Figure 4.2a for 

differences relating to wild-type Handl-EGFP). In contrast, the Handl-EGFP 

T107;S109D mutant was predominantly nucleoplasmic throughout the time course 

of the experiment and <5% of cells exhibited nucleolar fluorescence at any given 

time point (also compare Figure 5.4c with Figure 4.2a). Thus the observed 

differences in the sub-cellular locations of these two mutant Handl-EGFP fusion 

proteins, with respect to wild-type Handl-EGFP, were statistically significant.
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T107 ;S109A-EGFP a-C23 Merge

H H
Figure 5.2. Mutation o f Handl residues T107 and S109 to alanines creates a 

Handl mutant that cannot be released from the nucleolus.

A Handl-EGFP T107;S109A mutant fusion protein remains nucleolar in transfected Rcho-1 cells 

over a 72 hour time-course post-transfection.
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T107 ;S109D-EGFP a-C23 Merge

■ ■
■ ■ M

Figure 5.3. Mutation of Handl residues T107 and S109 to aspartic acids creates 

a Handl phosphorylation mimic that localises to nucleoplasmic foci.

Handl-EGFP T107;S109D assumes a nuclear-wide punctate localisation in transfected Rcho-1 cells 

and this remains over a 72 hour time-course post-transfection.

Moreover the differences in the sub-cellular locations o f  the Handl mutant 

fusion proteins have a significant bearing on their ability, again relative to wild-type 

Handl-EGFP, to induce TG cell differentiation (Figure 5.4b,d). The number o f  

fluorescent TG cells in Handl-EGFP T107;S109A-transfected populations, as 

assessed by up-regulation o f PL-1 and cytoskeletal complexity, was significantly less 

than the number in wild-type Handl-EGFP-transfected populations at any given time 

point post-transfection (also compare Figure 5.4b with Figure 4.2b for differences 

relating to wild-type Handl-EGFP). Moreover, the number o f fluorescent TG cells in 

Handl-EGFP T107;S109A-EGFP mutant populations did not significantly increase 

over the 72-hour time-course. In contrast, the numbers o f  fluorescent TG cells in 

Handl-EGFP T107;S109D mutant populations at the 48- and 72-hours post

transfection were significantly greater than the number o f  fluorescent TG cells at the
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24 hour time-point, but still significantly less than those in wild-type Handl-EGFP 

cultures at any given time-point (also compare Figure 5.4d with Figure 4.2b). These 

results collectively reveal that the Handl-EGFP T107;S109A and the Handl-EGFP 

T107;S109D proteins are significantly less efficient than wild-type Handl-EGFP at 

driving Rcho-1 differentiation.
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Figure 5.4. The subnuclear locations of the two H andl mutants are significantly 

different and correlate with their relative abilities to drive Rcho-1 

differentiation.

Handl T107;S109A-EGFP localises predominantly to the nucleolus throughout the 72 hour time 

course o f the experiment (a) and is unable to promote TG cell differentiation (b). In contrast Handl 

T107;S109D-EGFP is detectable throughout the nucleus at all time points during the experiment (c) 

and is able to promote TG differentiation to an extent similar to, but still significantly less than, wild- 

type Handl-EGFP (d). Measurements are mean±S.E.M.; n=400. * indicates p<0.05; ** indicates 

p<0.01; *** indicates p<0.001.

175



Chapter 5

We next carried out experiments with a view to identify the nuclear-wide foci 

to which the Handl T107;S109D-EGFP fusion protein localises. These bodies neither 

co-localise with Cajal bodies (as assessed by immunostaining with an anti-Coilin 

antibody; data not shown) nor centromeres (using an anti-CENPB antibody; data not 

shown). A cohort o f  these bodies do, however, co-localise with regions o f active gene 

transcription, so called ‘transcription factories’ (Iborra et al., 1996; Osbourne et al, 

2004), as determined by co-localisation with RNA polymerase II (RNA Pol II; Figure 

5.5). However, at present, we cannot precisely define these nuclear bodies and this 

remains an area o f future studies.

Merge

Vi
■''gm

40 pm

Figure 5.5. H andl T107;S109D-EGFP localises to a subset o f ‘transcription 

factories’.

A cohort of the foci to which the Handl T107;S109D-EGFP fusion protein localises in transfected 

Rcho-1 stem cells overlap with so-called ‘transcription factories’, demarcated by RNA Pol I I .

5.2.3. B568 antagonises H a n d l-E G F P  nucleo lar  release an d  

is ‘e lim ina ted ’ d u ring  Rcho-1 differentia tion

In light o f  our results implicating phosphorylation in the release o f nucleolar 

Handl, it is interesting that a protein phosphatase 2A (PP2A) complex site- 

specifically dephosphorylates Handl at the T107 and S I09 residues in Rcho-1 stem 

cells (Firulli et al., 2003). The PP2A complex responsible for this contains the 

regulatory (B, substrate-recognising) subunit B568 and appropriately B56S 

expression is down-regulated during Rcho-1 differentiation. Thus, we next

Handl (T107;S109D) 
EGFP
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investigated whether B568 is involved in the regulation of Handl activity via 

nucleolar sequestration.

To this end, we over-expressed a construct encoding B56S in Rcho-1 stem 

cells co-transfected with Handl-EGFP under non-differentiating conditions. 

Compared with Rcho-1 stem cells transfected with Handl-EGFP alone, significantly 

more of these cells exhibited nucleolar EGFP fluorescence 72 hours post-transfection 

(compare Figure 5.6a with Figure 4.2a). Moreover, the number of fluorescent TG 

cells in co-transfected cultures, as assessed by up-regulation of PL-1 and changes in 

cytoskeletal complexity, was significantly lower than the number of fluorescent TG 

cells in cells transfected with Handl-EGFP alone (compare Figure 5.6b with Figure 

4.2b). This suggests that B568 blocks the release of Handl-EGFP from the nucleolus 

and, in so doing, inhibits Rcho-1 TG cell differentiation.

We next over-expressed B56S in Rcho-1 cells, 24 hours after a change in 

serum conditions to induce TG cell differentiation, in order to investigate whether the 

observed effect of ectopic B56S  on the localisation of Handl-EGFP also applies to 

endogenous H andl. This was observed to inhibit the differentiation of these cells into 

TG cells (Figure 5.7) as the number of Rcho-1 TG cells in transfected cultures was 

significantly lower than in untransfected cultures. Importantly, B568  over-expression 

was associated with a significant block to the nucleolar release of endogenous H andl. 

The percentage of control cells with nucleolar-endogenous Handl was 43.9±1.87 

(mean±S.E.M.; n=210) compared with the percentage of R56£-overexpressing cells 

with nucleolar-endogenous Handl 72 hours after transfection, which was 69.2±2.56 

(mean±S.E.M.; n=250) (p=<0.001). These results suggest tha tB 568  blocks the 

release of endogenous Handl from the nucleolus and this inhibits Rcho-1 

differentiation.
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Figure 5.6. B568 inhibits the nucleolar release o f H andl-EG FP and its 

promotion of Rcho-1 TG cell differentiation.

Co-expression of B568 with Handl-EGFP prevents release of the fluorescent fusion protein from the 

nucleolus (a), relative to when Handl-EGFP is expressed alone (Figure 4.2a). Ectopic expression of  

B568 blocks Handl-EGFP-induced TG cell differentiation (b), relative to when Handl-EGFP when 

expressed alone (Figure 4.2b). Measurements are mean±S.E.M.; n=330; * indicates p<0.05; ** 

indicates p<0.01; *** indicates p<0.001.
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Figure 5.7. B568 inhibits Rcho-1 TG cell differentiation induced by a change in 

serum conditions.

Ectopic expression of B568 in Rcho-1 stem cells, 24 hours after serum replacement to induce 

differentiation, inhibits TG cell differentiation. Measurements are mean±S.E.M.; n=350; * indicates 

p<0.05; ** indicates p<0.01; *** indicates p<0.001.

178



Chapter 5

Notably, immunostaining o f Rcho-1 cells over-expressing B568 using an anti- 

8565 antibody revealed that, whilst distributed throughout Rcho-1 stem cells, the 

protein is predominantly cytoplasmic and excluded from the nuclei and nucleoli o f  

TG cells (Figure 5.8). In support o f this observation, western blot analysis using the 

anti-B565 antibody on whole-cell Rcho-1 lysates subtracted for the nucleolar fraction 

confirmed that endogenous B568 predominantly localises to the nuclear/ nucleolar 

compartment o f Rcho-1 stem cells but is restricted to the cytoplasm o f TG cells 

(Figure 5.9). These results suggest that B568 is trafficked to the cytoplasm during 

Rcho-1 TG cell differentiation.

a-B568 DNA Merge

Stem

Giant

Figure 5.8. Ectopic B568 is nuclear in Rcho-1 stem cells but is exported from the 

nucleus upon their differentiation.

Ectopic B56S is localised throughout the nucleus, including the nucleoli, in Rcho-1 stem cells (a) but 

relocates to the cytoplasm upon their differentiation into trophoblast giant cells (b).
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Figure 5.9. Relocation of endogenous B565 during Rcho-1 differentiation is 

confirmed by western blot analysis.

Western blot analysis on whole-cell Rcho-1 lysates, subtracted for the nucleolar fraction, reveals 

elevated non-nucleolar, but decreased nucleolar, B565 during Rcho-1 TG cell differentiation.

5.2.4. Plk4 is the nucleolar kinase that phosphorylates 

H andl

Our results and those o f  others (Firulli et al., 2003) implicate the site-specific 

phosphorylation o f  Handl as essential for its nucleolar release, subsequent 

heterodimer formation with E-factors and trans-activational activity in the nucleus. 

This cascade o f  events likely underlies the onset o f  Rcho-1 TG cell differentiation. 

Thus the next question we wished to address was the identity o f  the nucleolar kinase 

responsible for phospho-Handl nucleolar release. Previously, studies in HEK293 

cells implicated protein kinase C and, particularly, protein kinase A (PKC and PKA), 

as the kinases that phosphorylate Handl at T 107 and S I09 during this process (Firulli 

et al., 2003). However, since neither o f these ubiquitous kinases localise to the 

nucleolus (reviewed by Jaken, 1996; Griffioen and Thevelein, 2002), and are absent 

from the mammalian nucleolar proteome, despite their ubiquitous cell type 

expression (Scherl et al., 2002; Andersen et al., 2002; Andersen et al., 2005), it is
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unlikely that they are responsible for phosphoryating endogenous Handl in the 

context of nucleolar-nuclear relocation.

Rcho-1 stem cells exit the mitotic cell cycle and undergo endoreduplication 

concomitant with differentiation (MacAuley et al., 1998). We thus adopted a 

candidate-protein approach to identify a nucleolar serine/ threonine kinase that may 

simultaneously modify the cell cycle. A comprehensive search of the nucleolar 

proteome database (Scherl et al., 2002; Andersen et al., 2002; Andersen et al., 2005; 

www.lamondlab.com/NOPdb/) revealed a putative candidate in the non-canonical 

polo-like kinase Plk4 (Sak, Stkl 8). Plk4 belongs to a small family of eukaryotic 

serine/ threonine polo-like kinases (Plks) that function predominantly during mitosis 

(reviewed by Lowery et al., 2005; van de Weerdt and Medema, 2006). Plk4 localises 

to the nucleolus specifically at phase G2, the cell cycle stage at which both TS cells 

and Rcho-1 stem cells are thought to initiate endocycling upon their commitment to 

differentiate (MacAuley et al., 1998). Moreover, Plk4 is involved in the anaphase- 

promoting complex/ cyclosome- (APC/C)-dependent destruction of the mitotic cyclin 

B1 and exit from mitosis in the post-gastrulation embryo (Hudson et al., 2001). This 

is very relevant to our study as under certain conditions the APC/C destroys mitotic 

cyclins to promote mitotic cell cycle exit and the initiation of endoreduplication. For 

example, APC/C substrate-determining Cdhl orthologues in angiosperm plants 

(Ccs52A) and Drosophila (Fizzy-related, Fzr) are respectively required for down- 

regulating mitotic cyclins to switch the mitotic cell cycle at phase G2 to the 

endocycle during seed (Cebolla et al., 1999) and salivary gland (Sigrist and Lehner, 

1997) development. Furthermore, mutations that interfere with the activity o f the 

mitotic cyclin B-Cdkl complex induce an endoreduplication phenotype in both 

fission yeast (Hayles et al., 1994) and budding yeast (Azzam et al., 2004). Indeed 

APC/C targets, including Cyclin B l, Cdkl and Aurora A, persist beyond the 

appropriate cell cycle checkpoint in cells of a Plk4-null mouse (Hudson et al., 2001).

Semi-quantitative RT-PCR using mRNA prepared from Rcho-1 stem cells 

and cells at different stages of their differentiation into TG cells revealed that Plk4 is 

up-regulated during this process. This elevation was most marked a few hours after 

serum modification, and was subsequently maintained at high levels during a time- 

course of TG cell differentiation over eight-day time-course (Figure 5.10).
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Figure 5.10. Plk4 is up-regulated at the onset of Rcho-1 differentiation.

Semi-quantitative RT-PCR analysis reveals that Plk4 is up-regulated at the onset o f Rcho-1 

differentiation induced by 10% horse serum (from the stem cell stage to ‘day O’; 3 hours’ exposure to 

HS) and maintained at high levels during subsequent differentiation.

We subsequently sought to investigate the subcellular localisation o f  PIk4 in 

Rcho-1 stem cells. A GFP-Plk4 fusion protein localised to multiple nucleoli with 

additional peri-nuclear fluorescence in Rcho-1 stem cells synchronised at the G2/M 

checkpoint by nocodazole treatment (Figure 5.11). Furthermore, immunostaining 

with an anti-Plk4 antibody showed that endogenous Plk4 also localised to Rcho-1 

stem cell nucleoli synchronised at the G2/M checkpoint using nocodazole (Figure 

5.12). Interestingly, endogenous Plk4 occupied only a single nucleolus in each Rcho- 

1 stem cell, the significance o f which is presently unclear.

Merge

Figure 5.11. A GFP-Plk4 fusion protein is nucleolar in Rcho-1 stem cells 

synchronised at the G2/M phase checkpoint.

A GFP-Plk4 fusion protein localises to multiple nucleoli with additional peri-nuclear fluorescence in 

Rcho-1 stem cells synchronised at the G2/M phase checkpoint following nocodozole treatment.
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a-Plk4 a-C23 Merge

b h U
Figure 5.12. Endogenous Plk4 localises to a single nucleolus in Rcho-1 stem cells 

synchronised at the G2/M phase checkpoint.

Endogenous Plk4 localises to a single nucleolus in Rcho-1 stem cells synchronised at the G2/M phase 

checkpoint following nocodozole treatment.

Figure 5.13. The sub-cellular localisation of GFP-Plk4 differs markedly in 

asynchronous Rcho-1 cells.

GFP-Plk4 localises to multiple subcellular regions in addition to the G2/M phase nucleolus, localizing 

throughout the nucleus in a punctuate, nuclear-wide pattern (a), to the peri-nucleus (b) along the 

cleavage furrow (c) and throughout the cytoplasm (d) depending on the cell cycle stage.
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Notably GFP-Plk4 localised to multiple subcellular regions in asynchronous 

Rcho-1 stem cells (Figure 5.13), revealing punctate nuclear-wide (anaphase; Figure 

5.13a), peri-nuclear (interphase; Figure 5.13b), cleavage furrow (telophase; Figure 

5.13c) and cytoplasmic (prophase; Figure 5.13d) fluorescence depending on stage of 

the cell cycle. Thus the subcellular location of Plk4 in Rcho-1 cells mirrors that in 

3T3 fibroblasts, where these localisations were first reported (Hudson et al., 2001).

In light of these results, we then proceeded to investigate whether Plk4 

phosphorylates Handl during Rcho-1 TG cell differentiation. Initially, we 

investigated whether Plk4 and Handl interact in vivo. To this end, we performed co- 

immunoprecipitation analysis using lysates of either untreated and asynchronous 

Rcho-1 stem cells (control, Co) or Rcho-1 cells induced to differentiate for one hour 

by a change in culture conditions (horse serum, HS; Figure 5.14). This revealed that 

endogenous Handl can pull-down endogenous Plk4 and conversely endogenous Plk4 

can pull-down endogenous Handl. Moreover, the relative concentration of Handl 

and/ or Plk4 immunoprecipitate was greater in a co-immunoprecipitation assay using 

lysates of Rcho-1 cells induced to differentiate for one hour, in comparison to an 

assay using control lysates of untreated and asynchronous Rcho-1 stem cells. Thus 

endogenous Handl and endogenous Plk4 interact in vivo and appropriately their 

interaction is enhanced by inducing Rcho-1 cells to differentiate.

Given Plk4 interacts with Handl, we next investigated whether Plk4 

phosphorylates Handl. To do this, we carried out an in vitro kinase assay using an in 

vitro-translated Handl-GST substrate protein and in v/vo-translated wild-type Plk4 

and an activated Plk4 mutant that possesses a mutation in the T-loop region of the 

kinase (T170D-Plk4) (Swallow et al., 2005; Figure 5.15; Figure 5.23). This assay 

revealed that Plk4 is able to specifically phosphorylate Handl to greater than 1 mol 

Pimol'1 substrate and at levels comparable to its established substrate a-Casein 

(Swallow et al., 2005). Notably Plk4 could neither phosphorylate the T107;S109A 

nor the T107;S109D mutant EGFP fusion proteins in the same assay (data not 

shown). These results suggest that Plk4 acts in a site-specific manner at the predicted 

T107 and S I09 residues in helix 1 and may act as a Handl kinase in a relevant 

physiological setting.
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Figure 5.14. Endogenous H andl interacts with endogenous Plk4 in vivo.

Co-immunoprecipitation o f endogenous Handl with endogenous Plk4, or vice versa, in either 

untransfected Rcho-1 stem control cells (Co), or Rcho-1 stem cells promoted to differentiate with 10% 

HS for one hour (HS) reveals that the two factors interact in vivo. Note the stronger interaction in the 

HS-treated cells, consistent with a commitment towards a TG cell fate. NS: non-specific band.

Mr(K)

6 6 .

29.

2 0 .

2
2

2
Qoh-

JSC

WT Plk4

GST-Hand1 GST GST- 
BBS2

Casein

Figure 5.15. Plk4 phosphorylates H andl in vitro.

A GST-Handi fusion protein is specifically phosphorylated in vitro by both wild-type Plk4 and the 

activated mutant T170D-Plk4 (Swallow et al., 2005) and at levels comparable to the Plk4 positive 

control substrate a-Casein. Plk4 can neither phosphorylate GST alone nor the negative control protein 

BBS2. W T: wild-type.
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To investigate the functional significance of Handl phosphorylation by Plk4 

in vivo, we next conducted over-expression (gain-of-function) and RNAi-mediated 

knock-down (loss-of-function) assays involving Plk4 in Rcho-1 stem cells (Figure 

5.16, Figure 5.17). Over-expression of FLAG-Plk4 in conditions that favour Rcho-1 

stem cell maintenance (shown as FBS) significantly promoted Rcho-1 differentiation 

to a level equivalent to that induced by horse serum (Figure 5.16a). Only transfected 

cells were counted, and these were identified by immunostaining using an anti-FLAG 

antibody. These data suggest that gain of Plk4 function promotes TG cell 

differentiation.

Conversely, RNAi-mediated knock-down of endogenous Plk4, using two 

independent RNAi sequences (Plk4shRNAil and Plk4shRNAi2), significantly blocked 

the differentiation of Rcho-1 stem cells cultured under differentiation-inducing 

conditions (shown as HS; Figure 5.16b; sequence o f RNAi oligonucleotides and 

position within Plk4 are shown in Appendix 3). Plk4 knock-down was demonstrated 

in this assay by western blot using an anti-Plk4 antibody (Figure 5.16c). These data 

indicate that loss of Plk4 function blocks TG cell differentiation.

We next investigated the effect of Plk4 gain- or loss-of-function on Handl 

subcellular localisation. Gain in Plk4 function by the over-expression o f a FLAG- 

Plk4 fusion protein, which was associated with reduced numbers o f Rcho-1 stem 

cells, resulted in a significant increase in nuclear-wide-endogenous Handl levels, as 

assessed by counts of transfected cells. The percentage of control cells with nuclear- 

wide-endogenous Handl localisation was 28.6±2.08 (mean±S.E.M.; n=210), whilst 

the percentage of Plk4-over-expressing cells with nuclear-wide-endogenous Handl 

localisation was 54.1+2.78 72 hours after transfection (mean±S.E.M.; n=250) 

(p=<0.001). These data suggest that gain of Plk4 function promotes nucleolar release 

of endogenous Handl in Rcho-1 stem cells.
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Figure 5.16. Gain- or loss-of function of Plk4 in Rcho-1 stem cells respectively 

enhances or inhibits TG cell differentiation.

Over-expression o f Plk4 (FLAG-Plk4) in Rcho-1 cells cultured in non-differentiating conditions 

(shown as FBS) significantly promotes TG cell differentiation (a). Knock-down of endogenous Plk4 in 

Rcho-1 stem cells cultured in differentiation-inducing conditions (shown as HS), using two 

independent RNAi sequences (Plk4shRNAil (i) and Plk4shRNAi2 (ii)), significantly blocks TG cell 

differentiation (b). Plk.4 knock-down was demonstrated by western blot analysis using an anti-Plk4 

antibody and then comparing Plk4 levels between un-transfected (control, Co) and transfected cells by 

scanning densitometry (c). Measurements: n=360; *** indicates pO.OOl. o/e: over-expression.
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Conversely, knock-down o f endogenous Plk4, which as associated with 

reduced numbers o f TG cells, resulted in increased levels o f nucleolar-endogenous 

Handl. The percentage o f cells with nucleolar-endogenous Handl in control cells 

was 43.9±1.87 (mean±S.E.M.; n=210), whilst the percentage o f  cells 72 hours after 

transfection with Plk4shRNAil with nucleolar-endogenous Handl was 68.9±2.39 

(mean±S.E.M.; n=230), and those 72 hours after transfection with Plk4shRNAi2 was 

69.8±1.44 (mean±S.E.M.; n=230) (p=<0.001). These data collectively indicate that 

loss o f  Plk4 function blocks the nucleolar release o f  endogenous Handl in Rcho-1 

stem cells. Moreover, over-expression o f FLAG-Plk4 or RNAi-mediated knock-down 

o f  endogenous Plk4, using two independent RNAi sequences, in Rcho-1 cells resulted 

in enhanced or reduced phosphorylation o f  non-nucleolar Handl respectively, as 

assessed by immunostaining using an anti-phosphoserine antibody (Figure 5.17).

Plk4 shRNA
FLAG

0.6

®-Handl

4 5 -
2 9 - GAPDH

Co FLAG- 
Plk4

Figure 5.17. Plk4 gain- or loss-of function in Rcho-1 stem cells respectively 

enhances or reduces Handl phosphorylation in vivo.

Western analysis and scanning densitometry show that over-expression o f Plk4 (FLAG-Plk4) 

significantly enhances the phosphorylation o f non-nucleolar Handl (lysates subtracted for the 

nucleolar fraction; lane 2), relative to untransfected, control Rcho-1 cells (lane 1; Co). Conversely, 

down-regulation o f Plk4 (by two RNAi sequences; lanes 3 and 4) significantly reduces Handl 

phosphorylation.

The results described so far suggest that the nucleolar phosphorylation o f  

Handl by Plk4 underlies Handl nucleolar release as a pre-requisite for TG cell 

differentiation in the Rcho-1 cell line. However this data was derived from an in vitro 

cell-based model so we subsequently sought to investigate whether it occurred in an 

in vivo setting. To this end, we obtained Plk4-null embryos from the laboratory o f

188



Chapter 5

James Dennis and Carol Swallow (SLRI, Toronto, Canada). PM^-heterozygous and 

Plk4-null E7.5 embryos were genotyped using primers and nested PCR techniques 

previously described (Hudson et a l 2001; data not shown) and the lack o f Plk4 

protein in Plk.4-null embryos was confirmed by immunostaining for anti-Plk4 (data 

not shown). Genotyped Plk4-null embryos were then investigated in terms of  

trophoblast differentiation and mis-Iocalisation o f  Handl in vivo (Figure 5.18 -  

Figure 5.21). Compared with heterozygous control embryos, E7.5 Plk4-null concepti 

were smaller (Figure 5.18a,b) and have a markedly enlarged ectoplacental cone 

(EPC) (Figure 5.18c,d). This was consistent with an expansion in the diploid source 

o f  trophoblast ‘stem cells’ and reduced TG cell differentiation.

Figure 5.18. Plk4-null embryos are smaller and have an enlarged ectoplacental 

cone and reduced SGC number compared to P!k4-heterozygotes.

Histological sections through Plk4-heterozygous and -homozygous mutants at E7.5 reveal that Plk4- 

null embryos are smaller than their heterozygous littermates (compare (a) with (b)) and have a 

significantly expanded ectoplacental cone (EPC) of diploid trophoblast cells (compare (c) with (d)). 

The / ’/^-hom ozygous mutant visceral yolk sac (b) also appears rough and disorganised in appearance.
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DNA staining of histological sections revealed that the differentiation of 

primary trophoblast giant cells (PGC), namely those that arise directly from 

trophectoderm at the blastula stage, was normal in Plk4-null mutants (Figure 

5.19a,c,e). However, the secondary trophoblast giant cell (SGC) population, which 

arises from the outer layer of the EPC, was significantly reduced with associated 

failed migration through the overlying maternal decidua (Figure 5.19b,d,f). PGC and 

SGC populations were distinguished by relative positions in relation to the maternal 

decidua (reviewed in Chapter 1, section 1.2.1) and by immunostaining for prolactin

like protein A (PLP-A), which is expressed exclusively in a peri-nuclear pattern in 

SGCs and Rcho-1 TG cells, but not in PGCs (Hamlin et al., 1994; Ma and Linzer, 

2000; Figure 5.22). Comparable plane sections through E7.5 embryos revealed 

63±9.6 (mean±S.E.M.) SGCs in controls versus 21 ±5.2 (mean±S.E.M.) SGCs in 

Plk4-null embryos. Six replica sections for each genotype were analysed. These 

observations suggest that SGC, but not PGC, differentiation is impaired in a Plk4- 

deficient background.

The subcellular localisation of Handl was then investigated in the Plk4- 

heterozygous (Figure 5.20) and PIk4-null (Figure 5.21) backgrounds using an anti- 

Hand 1 antibody. This revealed that Handl was nuclear-wide in the majority o f SGCs 

in the control Plk4 heterozygotes (Figure 5.20). However, in the expanded diploid 

trophoblast of P/fcZ-mutants, Handl remained predominantly nucleolar, coincident 

with a rare commitment to a SGC fate (Figure 5.21). Collectively, these studies 

confirmed inappropriate in vivo subcellular localisation of endogenous Handl in a 

Plk4 loss-of-function background. This supports our in vitro analyses in Rcho-1 cells, 

which themselves are a model of SGCs (reviewed in Chapter 1, section 1.6.1), and 

strongly suggests that Plk4-dependent phosphorylation of Handl underlies its 

nucleolar release.
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Figure 5.19. PGC differentiation, but not SGC differentiation, is normal in Plk4- 

null embryos.

DNA staining of sections (the boxes in (a) are magnified in (c) and (e), and the boxes in (b) are 

magnified in (d) and (f)) reveals that P/W-homozygous mutants have equivalent levels o f  PGCs (c, d) 

but significantly reduced SGCs (e, f) compared with their P/A4-heterozygous littermates. White 

arrowheads identify PGCs in (c) and (d) and SGCs in (e) and (f).
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Figure 5.20. /YA</-heterozygous SGCs form normally and have nuclear-wide 

H andl.

Immunostaining for Handl (the box in (a) is magnified in (c), and the box in (b) is magnified in (d)) 

reveals nuclear-wide localisation of Handl in SGCs in ^/^-heterozygous control embryos. White 

asterisks in (a) and (b) reveal the relative position of the most rostral part o f the embryo in section.
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Figure 5.21. P lk4 -null trophoblast remains undifferentiated and exhibits 

nucleolar-restricted H andl.

Immunostaining for Handl (the box in (a) is magnified in (c) and (e), and the box in (b) is magnified 

in (d) and (f)) reveals nucleolar restriction of Handl in the expanded diploid trophoblast population o f  

the Plk4-m\\ embryos (a, c). This was confirmed by counterstaining for the nucleolar-specific maker 

Nucleostemin (NS; e, f). White asterisks in (a) and (b) reveal the relative position o f the most rostral 

part o f the embryo in section. White arrowheads in (c) highlight mutant cells with exclusively 

nucleolar Handl.
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Figure 5.22. PLP-A is a specific marker of secondary giant cells and Rcho-1 

giant cells. Secondary giant cells (SGCs) emerging from the ectoplacental cone (EPC) at E7.5 

express PLP-A, as determined by immunofluorescence, whereas primary giant cells (PGCs), derived 

from the polar trophectoderm, are negative for PLP-A (a; white arrowheads highlight SGCs and 

PGCs). Rcho-1 giant cells cultured for 72 hours express PLP-A (b), consistent with the observation 

that they represent a model for SGCs.

5.3. DISCUSSION

A previous study showed that the phosphorylation o f  Handl at T107 and 

S I09 during Rcho-1 TG cell differentiation enhances the affinity o f  the transcription 

factor for its E-factor binding partners and thus its biological activity (Firulli et al., 

2003). In this chapter, we reveal that this phosphorylation event also underlies its 

nucleolar release at the onset o f Rcho-1 differentiation. Moreover, we have revealed 

that the polo-like kinase Plk4 is responsible for Handl phosphorylation in this 

context. Plk4-nu\\ embryos appropriately have impaired SGC differentiation and this 

is underpinned by a failure o f Handl nucleolar release. Additionally, nuclear export 

o f  B568 during Rcho-1 differentiation counteracts PP2A-mediated Handl 

dephosphorylation and aids the increase in Handl phosphorylation. Taken together, 

our results show that Plk4-mediated Handl phosphorylation drives its nucleolar- 

nuclear release as a pre-requisite for TG cell differentiation during placentation.
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5.3.1. Site-specific phosphorylation of Handl underpins its 

nucleolar release

Our results uniquely show that only nuclear-wide phospho-Handl, but not 

unphosphorylated Handl sequestered in the nucleolus, is able to promote Rcho-1 

differentiation. Firstly, we demonstrated that a Handl T107;S109A-EGFP fusion 

protein, which cannot be phosphorylated at these two residues, remained almost 

exclusively nucleolar during a 72-hour time-course of Rcho-1 differentiation. In these 

cultures, the number of fluorescent TG cells 72 hours post-transfection was not 

significantly different to the number of fluorescent TG cells 24 hours post

transfection. These observations suggest that the change in charge conferred by 

phosphorylation of these two helix 1 residues is necessary for promoting Handl 

nucleolar release. The few TG cells observed in the Handl T107;S109A-EGFP 

mutant cultures 72 hours post-transfection were likely attributable to endogenous 

wild-type Handl activity.

In contrast, substitution of both T107 and S I09 for aspartic acid residues 

yielded the opposite result. The Handl T107;S109D-EGFP mutant fusion protein 

adopted a nuclear-wide distribution immediately after its expression, due to either a 

failure of nucleolar sequestration or retention. It is of note that aspartate substitutions 

serve as substitutes of phosphorylation, mimicking the change in charge that 

phosphorylation confers. For example, mutation of a serine residue to an aspartate in 

helix 1 of c-Myc renders the bHLH transcription factor constitutively active (Huang 

et al., 2004b). Thus the Handl T107;S109D-EGFP mutant fusion protein acts as a 

useful positive control in this study. It suggests that the change in protein charge 

conferred by phosphorylation of these two helix 1 residues is sufficient for Handl 

nucleolar release. The fact that this mutant is not as potent as wild-type Handl in 

driving TG cell differentiation is in agreement with previous observations that this 

mutant has a reduced affinity for nucleoplasmic E-factors and a predisposition to 

homodimerise (Firulli et al., 2003). In conclusion, the phosphorylation of Handl at 

T107 and/ or S I09 is required for its release from the nucleolus in Rcho-1 stem cells 

at the onset of TG cell differentiation. It will be interesting in this regard to analyse 

the trophoblast phenotype of Handl T107;S109A and Handl T107;S109D knock-in
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mice, which are currently being generated (A. Firulli, personal communication).

Interestingly, the Handl T107;S109D mutant fusion protein localised to 

discrete, as-yet unidentified nucleoplasmic foci. Why wild-type Handl-EGFP does 

not occupy such foci is curious. Perhaps its association with these unidentified bodies 

occurs at a very early stage of differentiation or is only transient, whilst the Handl 

phosphorylation mimic constitutively resides within these foci. Preliminary data 

excluded co-localisation of these foci with centrosomes or Cajal bodies by 

immunostaining for markers specific for these organelles. However, a degree of co

localisation of the Handl phosphorylation mimic was demonstrated with so-called 

transcription factories (Iborra et al., 1996; Osbourne et al., 2004), specific nuclear 

sites of gene activation and nascent RNA synthesis. Immunostaining for RNA 

polymerase II, a marker for such foci, demonstrated a weak overlap with Handl 

T107;S109D. Since there was not a complete overlap in localisation of the 

T107;S109D mutant with transcription factories, it was hypothesised that this fusion 

protein may also in part become a component of site-specific multi-protein 

complexes involved in chromatin remodelling and gene expression. Indeed, during 

terminal differentiation of C2C12 myoblasts the nucleolar ZPF106 protein is released 

and localises to very similar nucleoplasmic foci that coincide with the TSPYL 

protein, a putative chromatin-remodelling factor (Grasberger and Bell, 2005). 

Interestingly, another of the Handl interactors identified in the Y2H screen was the 

SWI/SNF-related matrix-associated actin-dependent regulator of chromatin 

subfamily E member 1 (Smarcel; Appendix 8). This is involved in transcriptional 

activation and repression of select genes by chromatin remodeling (Belandia et al.,

2002). Thus activated, nucleoplasmic Handl may localise to these site-specific 

chromatin-remodelling complexes to regulate genes required for TG cell 

differentiation. In conclusion, despite some overlap with transcription factories and a 

strong possibility of co-localisation with a subset of chromatin remodeling 

complexes, the identity of the nuclear-wide foci to which the Handl T107;S109D 

mutant localises are currently unknown.
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5.3.2. Nuclear export of B568 complements Handl nucleolar 

release

The regulatory subunit B568 of protein phosphatase 2 A (PP2A) targets Handl 

for dephosphorylation at T107 and S I09 (Firulli et al., 2003). Appropriately, this 

previous study also showed that B56S is down-regulated during Rcho-1 

differentiation. As final confirmation that Handl nucleolar release is reliant on site- 

specific phosphorylation, we over-expressed B568 in Rcho-1 stem cells co

transfected with Handl-EGFP. This resulted in both a significant failure of the 

fluorescent fusion protein to exit the nucleolus and a significant reduction of TG cell 

differentiation compared to Rcho-1 stem cells transfected with Handl-EGFP alone. 

Moreover, ectopic expression of B565 in Rcho-1 stem cells cultured in 

differentiation-inducing conditions antagonised their differentiation as compared with 

untransfected Rcho-1 stem cells cultured under the same conditions. Importantly, this 

B568-induced block to differentiation was associated with a failure of endogenous 

Handl to exit the nucleolus.

We also demonstrated that the PP2A B568 subunit is distributed throughout 

Rcho-1 stem cells but is predominantly cytoplasmic and excluded from the nuclei and 

nucleoli of TG cells. This observation is consistent with a relevant role for B568 in 

Rcho-1 stem cell maintenance. As part of a PP2A complex, B568 is possibly present 

in and/ or around the nucleoli of Rcho-1 stem cells. Here it may target any Handl that 

has been inappropriately phosphorylated and released from the nucleolus prior to cell 

commitment to differentiation. After the onset of TG cell differentiation, exclusion of 

B568 from the nucleus, in combination with the down-regulation o f the B56S gene 

(Firulli et al., 2003), may prevent PP2A8566 site-specifically dephosphorylating 

Handl in the nucleoplasm. Nuclear exclusion of B565 is reminiscent of the 

cytoplasmic sequestration and negative regulation of the myogenic and Mash2 bHLH 

factors by I-mfa (Chen et al., 1996; Kraut et al., 1998) and of the p50 subunit of NF- 

k B  by Ik B  (Beg et al., 1992). In conclusion, the down-regulation (Firulli et al., 2003) 

and nuclear export (data presented in this study) of B565 prevents PP2AB568-mediated 

dephosphorylation of Handl during Rcho-1 differentiation.
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5.3.3. Plk4 is the kinase responsible for nucleolar Handl 

phosphorylation

The data presented in this chapter are consistent with a requirement for the 

polo-like kinase Plk4 in the phosphorylation of nucleolar Handl as a pre-requisite for 

its release into the nucleus and concomitant TG cell differentiation. Appropriately, 

Plk4 mRNA levels increase during this process, immediately after serum withdrawal. 

This is consistent with our interpretation that the kinase triggers the onset of 

endoreduplication at the point of Rcho-1 stem cell commitment to differentiate. Plk4 

mRNA levels are known to be cell cycle regulated, being low in G1 phase but 

reaching a peak at the G2/M transition (Swallow et al., 2005). However, our 

observations in TG cells are in contrast with the findings of previous studies that have 

been unable to detect Plk4 expression in other distinct quiescent and differentiated 

cells (Fode et al., 1994). However, the differences in Plk4 expression in TG cells 

versus other cell types may reflect the unique requirement for TS cells to enter the 

endocycle in order to differentiate into TG cells.

Despite the transient interaction between kinases and their substrates, we were 

able to demonstrate interaction and reaction between endogenous Handl and Plk4 in 

vitro. Moreover, over-expression and RNAi-mediated knock-down of Plk4 had 

appropriate effects on Handl phosphorylation and sub-cellular localisation, as well as 

Rcho-1 stem cell fate. This confirms that Plk4 gain- or loss-of-function has effects on 

TG cell differentiation via the modulation of Handl subcellular localisation. It is 

interesting in this regard that transient over-expression of Plk4 has previously been 

shown to suppress mitotic cell cycling and promote multi-nucleation (Fode et al., 

1994; Fode et al., 1996). A non-canonical target consensus phosphorylation motif for 

Plk4 has only recently been determined via in vitro kinase assays on peptide spots 

arrays (Z-[Ile/Leu/Val]-Ser/Thr-Y-Y-X-Z/Pro; Leung et al., 2007). In this degenerate 

consensus sequence, Y is a large, hydrophobic residue, Z is a charged residue, whose 

charge specifically depends on the context of the surrounding sequence, and residues 

in brackets are unfavoured. However, Plk4 cannot phosphorylate several peptides 

containing this theoretically-optimal motif, suggesting the existence of other 

sequences outside of the core motif that influence the reaction. Thus the consensus
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phosphorylation motif of Plk4 is highly context-dependent. In peptides that have a net 

positive charge, Plk4 favours basic residues in the -2 and +4 positions. Conversely, in 

peptides with a net negative charge, Plk4 favours acidic residues in the -2 and +4 

positions (Leung et al., 2007). This may explain why the region of Handl containing 

the T107 and S I09 residues does not strictly match this consensus sequence. Notably 

the study by Leung and co-workers also showed that Plk4 can phosphorylate peptides 

when they are free in solution, and that it cannot phosphorylate GST alone and 

requires a high substrate yield for in vitro kinase assays. These observations are in 

agreement with our findings.

Plk4-null mouse embryos arrest at E7.5 and are embryonic lethal at E8.0 due 

to widespread apoptosis caused by inappropriate anaphase arrest (Hudson et al., 

2001). However, the mutant extra-embryonic tissues were not analysed in detail 

(Hudson et al., 2001). Consequently, our study is the first to investigate the 

phenotype of Plk4-null embryos in terms of trophoblast differentiation in vivo. We 

revealed that embryos deficient for Plk4 have a markedly-enlarged ectoplacental cone 

(EPC) compared with Plk4-heterozygous controls. This is consistent with an 

expansion of the diploid source of trophoblast cells and reduced SGC differentiation 

from the outer layer of the EPC. Our data reveal that the inability of Handl to exit the 

nucleolus in Plk4-null diploid trophoblast underlies the enlarged EPC of these 

concepti, namely because the diploid TG cell precursors cannot exit the mitotic cell 

cycle and so continue to proliferate. At first, this finding does not appear to agree 

with the initial analyses of Plk4-null embryos, namely the defects in mitotic 

progression and thus impaired cell proliferation. However, the fact that Plk4-null 

embryos proceed through many cell divisions before arresting at E7.5 was proposed 

to be either due to a persistence of maternal Plk4 mRNA or protein, functional 

redundancy with another polo-like kinase or due to unique features of the mitotic exit 

network during early embryogenesis (Hudson et al., 2001; Swallow et al., 2005). 

These factors may also underlie the proliferation of diploid trophoblast until 

embryonic arrest at E7.5. That is, the larger EPC of Plk4-null concepti reflects not 

hyper-proliferation of diploid trophoblast, but rather a lack of SGC differentiation.

The observation of reduced SGC differentiation in Plk4-mx\\ embryos is also 

consistent with the phenotype previously described for Handl-null embryos. Handl-
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null embryos develop until around E7.5 and begin to gastrulate and establish an 

implantation chamber through PGC migration. However, they have significantly 

reduced numbers of SGCs (Riley et al., 1998). Despite the lack of SGCs being a 

common feature of both Handl-rm\\ and Plk4-null concepti, Plk4-null mutants do not 

exactly phenocopy Handl-null mutants. This is consistent with the fact that not all of 

Handl function during early embryogenesis is mediated through Plk4 and vice versa. 

Indeed, whilst Plk4 is required for mitotic cell cycle exit in rodent trophoblast, Handl 

is required for the proliferation and maintenance of diploid trophoblast in the EPC, by 

an as-yet unknown mechanism (Riley et al., 1998). This may be dependent on its 

binding E-factors, which are present in SGC precursors but are down-regulated 

during TG cell differentiation (Scott et al., 2000). In fact, in the absence o f Handl, 

the EPC is reduced to approximately 20% of its normal size due to reduced 

trophoblast cell number (Riley et al., 1998). How these findings can be reconciled 

with the more recent finding that Handl -null TS cells do not have proliferation 

defects in culture (Hemberger et al., 2004) is currently unclear. Thus the crucial 

finding in the context of this study is that, in both genetic backgrounds, commitment 

o f diploid trophoblast precursors to a SGC fate is impaired.

Importantly, whilst Handl was nuclear-wide in a significant number of SGCs 

in control embryos, the transcription factor remained predominantly nucleolar in the 

expanded diploid trophoblast of Plk4-null mutants. This was coincident with a 

restricted and rare commitment to a SGC fate in the mutant placentae and is 

consistent with our in vitro studies. Thus, the observed effects of Plk4 knock-down in 

Rcho-1 cells, namely a block to TG cell differentiation and retention of nucleolar 

Handl, mimics the in vivo situation following Plk4 loss-of-function. It is important to 

acknowledge that some SGCs arise in Plk4-nu\\ concepti, and furthermore 

endogenous Handl was detected outside of the nucleolus in some of these cells. This 

is not hugely surprising, as other factors are known to drive TG cell differentiation 

(Chapter 1, Table 1.2b), and these would likely be able to still do so in the absence of 

Plk4. Moreover, Handl is phosphorylated at other residues in addition to T107 and 

S I09 during TG cell differentiation (for example, the basic domain residue serine-98; 

Firulli et al., 2003). Although we did not investigate whether Plk4 phosphorylates 

this residue and others, we acknowledge that other nucleolar kinases in addition to 

Plk4 target Handl for phosphorylation during this differentiation process and may

200



Chapter 5

contribute to its nucleolar release.

Our data suggest a differential requirement for Plk4 and nuclear-localised 

Handl during the differentiation of PGCs and SGCs. DNA staining of histological 

sections revealed that the differentiation of PGCs, which arise directly from the 

trophectoderm at the blastocyst stage, was normal in Plk4-null mutants. Despite their 

morphological similarity, the mechanisms underlying the differentiation of PGCs and 

SGCs are different. This is supported by the fact that the glycoprotein mCGMl and 

certain hormones, such as PL-II and PLP-A, are confined to SGCs (Rebstock et al., 

1993; Ma and Linzer, 2000; reviewed in Chapter 1, section 1.2.4.2). Indeed Handl, 

or at least zygotic Handl, does not appear to be required for primary TG cell 

differentiation as Handl-null blastocysts form trophectoderm and hatch and outgrow 

in vitro (Cross et al., 1995; Riley et al., 1998). Thus, by inference, Plk4-mediated 

nucleolar release of pre-existing Handl is not required for PGC differentiation. This 

differential effect on SGC versus PGC differentiation in P/&4-deficient embryos is in 

agreement with the in vitro studies, in that Rcho-1 differentiation is thought to most 

closely resemble SGC differentiation (Hamlin et al., 1994). This is an observation 

supported by our demonstration of the expression of the SGC-specific marker PLP-A 

(prolactin-like protein A) in Rcho-1 TG cells, in agreement with previous studies 

(Hamlin et al., 1994; Ma and Linzer, 2000). It is also worth mentioning that Handl is 

required for the normal differentiation of all four subtypes of SGCs in the recent 

study by Simmons and colleagues, which importantly includes the so-called ‘parietal 

SGCs’ that form the interface with the maternal decidua (Simmons et al., 2007).

The cellular functions of Plk4 include regulating centriole duplication during 

prophase and spindle organisation during cytokenesis (Bettencourt-Dias et al., 2005; 

Habedanck et al., 2005; Kleylein-Sohn et al., 2007). Down-regulation of Plk4 is also 

thought to play a part in the DNA damage response at the‘G2/M checkpoint by 

promoting p53-dependent apoptosis, which possibly relies on an observed interaction 

between Plk4 and p53 (Li et al., 2005; Swallow et al., 2005). Plk4 is the most 

divergent member of the polo-like kinase family and, unlike other Plk members, does 

not exhibit functional redundancy (Swallow et al., 2005; Figure 5.23a). The basis of 

this lack of conservation may be underpinned by the fact that Plk4 possesses only one 

so-called polo-box (pb), a protein-protein interaction domain that is thought to
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localise the enzyme to subcellular structures, whilst all other Plks possess two (Leung 

et al., 2002; Swallow et al., 2005; Figure 5.23b). The single polo box of Plk4 is 

moreover thought to interact with an upstream Plk4-specific ‘cryptic’ polo-box, 

which forms a novel intra-molecular dimer that may play a part in the unique 

localisation of Plk4, amongst Plk family members, to the nucleolus (Hudson et al., 

2001; Leung et al., 2002; Figure 5.23b).

Our findings provide insight into the functional basis for Plk4 nucleolar 

localisation during G2 phase in TS cells. Plk4 localises to the nucleolus specifically 

at phase G2, the cell cycle stage at which Rcho-1 cells are thought to initiate 

endocycling upon their commitment to differentiate (MacAuley et al., 1998). We also 

provide evidence that Plk4 localises to a single nucleolus in each Rcho-1 stem cell. 

This raises the possibility that each nucleolus has a discrete identity in terms of 

protein content and putative function(s). Our in vivo data show that Plk4 

phosphorylates nucleolar Handl during G2 as a prerequisite for Handl nucleolar 

release and the onset of endoreduplication and concomitant TG cell differentiation. 

The consequence of this is that Plk4 restricts the potency of TS cells by promoting 

mitotic cell cycle exit and the onset of endoreduplication with concomitant TG cell 

differentiation. This is the first role proposed for Plk4 in the nucleolus. Of relevance 

for our study, Plk4 is known to contribute to the activation of the anaphase-promoting 

complex/ cyclosome- (APC/C) ubiquitin ligase. This targets mitotic cyclins for 

proteasomal destruction as a pre-requisite for endocycle entry (Hudson et al., 2001). 

Thus our data show that Plk4 plays a part in promoting mitotic cell cycle exit and 

entry into the endocycle, at least in rodent trophoblast. This is in addition to its role in 

promoting exit from mitosis during normal mitotic cell cycling.
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Figure 5.23. Comparison of the basic structure o f murine PIk4 with that o f P lkl 

(a) and the evolutionary divergence of Plk4 from other members o f the Plk 

family (b).

In (a), phylogenic relationship of polo-like kinases was determined by the CLUSTALX program, and 

the scale represents 0.1 amino acid replacement per site. In (b), the position o f the threonine-170 

residue, whose mutation to an aspartic acid generates a gain-of-function Plk4 allele (Swallow et al., 

2005), is shown, pb: polo box, cry-pb: cryptic polo-box, blue boxes: PEST destruction motifs., d: 

Drosophila, m: mouse, h: human. Adapted from Hudson et al., 2001.
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5.3.4. Summary and concluding remarks

We conclude that the site-specific phosphorylation of Handl at two key 

residues in helix 1 is essential for its nucleolar release in rodent trophoblast. A 

previous study illustrated that site-specific phosphorylation of Handl is enhanced 

during the differentiation of Rcho-1 cells and that this alters Handl dimerisation 

affinities and thus its biological function (Firulli et al., 2003). Our study is entirely 

consistent with these findings but defines the phosphorylation and resultant nucleolar 

release of Handl as the earliest event in the cascade towards the commitment of 

Rcho-1 stem cells to a TG cell fate. Phosphorylation of Handl at T107 and S I09 at 

the onset of Rcho-1 differentiation is enhanced by the polo-like kinase Plk4 and the 

down-regulation and nuclear export of the Handl-targeting PP2A subunit, B568. 

That the protein kinases A and C were previously shown to phosphorylate Handl 

may also still be biologically-relevant and occur in the nucleoplasm, but only after 

Handl has been phosphorylated in the nucleolus by Plk4 as a pre-requisite for its 

release (Firulli et al., 2003). We propose that, in the hypo-phosphorylated state, 

Handl is sequestered in the nucleolus and is thus unable to physically interact with E- 

proteins. However, Handl phosphorylation likely changes the charge and/ or 

conformation of the transcription factor and so abrogates its affinity for its nucleolar 

repressor, HICp40. This is particularly likely in view of the finding that the HLH 

domain of Handl, within which region T107 and S I09 reside, is known to bind 

several other proteins, possibly including HICp40. Nuclear-wide Handl is then able 

to heterodimerise with E-proteins and thus activate its target genes and/ or trigger 

mitotic cell cycle exit, an event which commits Rcho-1 stem cells towards a 

differentiated TG cell fate.

The processes that underlie the nucleolar-nucleoplasmic/ cytoplasmic 

shuttling of mammalian factors are largely unknown, but several studies, mainly in 

budding yeast, have shown that phosphorylation is responsible for such trafficking 

(Table 5.1). In this study we present the first example of phosphorylation 

underpinning the release of a nucleolar factor during interphase in a mammalian cell. 

Site-specific phosphorylation of nucleolar Handl by Plk4 identifies not only the first 

physiological substrate for this non-canonical polo-like kinase but also underpins the
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functional release of Handl into the nucleoplasm. In the context of this study, the 

alteration of protein charge or steric hindrance introduced by phosphorylation or 

other post-translational modifications likely abrogates the interaction between the 

sequestered factor and its ribosomal-machinery-bound nucleolar anchor, namely 

HICp40, to permit its escape from the nucleolus. Otherwise, Handl phosphorylation 

may promote its interaction with a nuclear anchor or perhaps activate a putative 

nucleolar export signal. By whichever mechanism, this covalent modification may 

thus act as a ‘molecular switch’, implying that nucleoplasmic-nucleolar shuttling can 

be regulated and is responsive to extracellular stimuli via intracellular signalling 

pathways.

In conclusion, the findings presented in this chapter reveal a novel mode of 

Handl regulation during TG cell differentiation. This provides insight into the 

molecular mechanism underlying rodent trophoblast invasion and placentation. In the 

following chapter, we discuss the wider implications of these findings, the 

unanswered questions that remain and the aims of ongoing studies.
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6.1. Nucleolar release of Handl acts as a molecular 

switch to determine trophoblast stem cell fate

The interaction of Handl with other factors is important for controlling its 

activity (Firulli et al., 2000). Given the promiscuous dimerisation properties of 

Handl with both class A and class B bHLH factors (Chapter 1, Table 1.1), we 

hypothesised that the transcription factor may functionally interact with non-bHLH 

factors and that these co-factors may regulate Handl activity.

In our current study, we demonstrated that the activity o f Handl is regulated 

by the rodent orthologue of the human I-mfa domain-containing protein (HICp40). 

HICp40-dependent nucleolar sequestration negatively-regulates Handl activity in a 

faithful model of TS cells, the Rcho-1 cell line (reviewed in Chapter 1, section 1.6). 

Specifically, the nucleolar localisation of Handl is associated with its transcriptional 

inactivity and TS cell renewal. Rcho-1 TS cells can be induced to undergo TG cell 

differentiation by modifying the culture conditions, namely by replacing fetal bovine 

serum with horse serum. We found that Handl disperses throughout Rcho-1 stem cell 

nuclei coincident with their differentiation into TG cells. As confirmation of this, 

HICp40 gain- and loss-of function assays modulate Rcho-1 TG cell differentiation by 

affecting Handl subcellular localisation. Thus the release of Handl from the 

nucleolus is necessary and sufficient for TG cell differentiation and this mechanism 

may underlie the first differentiation event during embryogenesis.

A previous study showed that Handl is phosphorylated at two residues in 

helix I during TG cell differentiation (Firulli et al., 2003). This enhances the affinity 

o f Handl for its bHLH binding partners as a crucial step in the TG cell differentiation 

program. We demonstrated that an increase in Handl phosphorylation at these two 

residues underpins its nucleolar release at the onset of TG cell differentiation. 

Crucially, our findings are entirely consistent with the earlier study (Firulli et al.,

2003), but place the phosphorylation and nucleolar release of Handl as the earliest 

event during TG cell differentiation. We speculate that this post-translational 

modification modifies the charge and/ or conformation of Handl, so diminishing its 

affinity for nucleolar HICp40 and thus triggering its nucleolar release.
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We then investigated which nucleolar kinase phosphorylates Handl. This was 

shown to be Plk4 (Sak), a non-canonical member of the serine/ threonine polo-like 

kinase family whose members commonly modify the subcellular localisation of their 

substrates (Toyoshima-Morimoto et al., 2001; 2002; Kim et al., 2005). 

Haploinsufficiency for Plk4 results in mitotic infidelity, chromosomal instability and 

carcinogenesis, particularly old age-onset liver tumourigenesis (Ko et al., 2005). The 

basis of this is likely to be the crucial role for Plk4 in centriole duplication and 

spindle organisation during mitosis (Bettencourt-Dias et al., 2005; Habedanck et al., 

2005; Kleylein-Sohn et al., 2007). Indeed, PLK4 expression is aberrant in some 

colorectal cancers and hepatomas (MacMillan et al., 2001; Ko et al., 2005). Plk4-mi\\ 

mice are embryonic lethal at E9.5-El0.0 due to widespread apoptosis caused by 

inappropriate anaphase arrest (Hudson et al., 2001). However, the trophoblast lineage 

was not analysed in this study.

Plk4 is unique in the mammalian Plk family in that it localises to the 

nucleolus during the second gap phase (G2) of the mitotic cell cycle (Hudson et al., 

2001). Interestingly this is the stage at which TG cell differentiation is thought to be 

initiated (MacAuley et al., 1998). Therefore, Plk4 is in the right place at the right 

time to activate Handl and so initiate endoreduplication. Our current study 

demonstrated that Plk4 can interact and react with Handl in vitro and in vivo. 

Moreover gain- and loss-of-function Plk4 assays modify Handl subcellular 

localisation with appropriate effects on TG cell differentiation. Importantly, Handl is 

unable to exit the nucleoli of Plk4-null diploid trophoblast and this is associated with 

their impaired ability to undergo SGC differentiation.

O f note, the site-specific phosphorylation of Handl by Plk4 is complemented 

by the ‘elimination’ of a Handl phosphatase. During TG cell differentiation the 

Handl-targeting regulatory subunit B568 of protein phosphatase 2A (PP2A) is both 

exported from the nucleus (data presented in this study) and down-regulated (Firulli 

et al., 2003). Thus a positive-feedback loop is likely to ensue, whereby the 

elimination of PP2A3568 from the nuclear compartment allows phosphorylated Handl 

to persist. Phosphorylated Handl is in turn able to accomplish its nuclear functions 

and this further drives the process of TG cell differentiation (Figure 6.1).
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Figure 6.1. The molecular mechanism underlying mitotic cell cycle exit in rodent 

trophoblast.

During TS cell renewal, pre-existing Handl is sequestered in an inactive state in the nucleolus by the 

rat orthologue of HICp40. Should nucleolar Handl be inappropriately phosphorylated by Plk4 and 

released, nuclear PP2A8565 targets it for dephosphorylation and nucleolar re-entry. It is unknown 

whether Handl nucleolar sequestration is active or passive (a). A change in serum conditions results in 

the phosphorylation o f nucleolar Handl by Plk4 during phase G2 o f the final mitotic cell cycle. 

Concurrently, B565 is exported to the cytoplasm and down-regulated. These events enhance the 

phosphorylation of Handl, resulting in its nucleolar release (b). P: phosphoserine/ phosphothreonine.
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In conclusion, our current study implicates the bHLH factor Handl in 

governing the onset of endoreduplication and thus cell fate in rodent trophoblast. The 

release of Handl from the nucleolus represents the molecular switch between 

proliferative self-renewal of Rcho-1 stem cells and their differentiation into TG cells. 

It is also worth mentioning that the role of bHLH transcription factors in promoting 

mitotic cell cycle exit is not without precedent. An Arabidopsis strain (gl3) that 

undergoes reduced trichome endocycles has a mutation in a gene encoding a bHLH 

factor (Payne et al., 2000). Similarly, the bHLH factor dMyc and the Notch-induced 

HLH factor Extra macrochaetae (Emc) are necessary for Drosophila ovarian somatic 

cells to enter the endocycle and differentiate into follicular epithelial cells (Maines et 

al., 2004; Adam and Montell, 2004). In light of these studies and our current work we 

propose that bHLH factors, which are often involved in determining cell fate, play an 

evolutionarily-conserved role in promoting the onset of endoreduplication and 

accompanying terminal differentiation.

6.2. A conserved eukaryotic cascade that modifies the 

cell cycle relies on the nucleolus

The commitment of TS cells to a TG cell fate coincides with their terminal 

mitotic cell cycle exit and concomitant entry into the endocycle (Cross et al., 1995; 

MacAuley et al., 1998; Hughes et al., 2004). In this study, we have shown that the 

release of Handl from the nucleolus underlies the onset of endoreduplication in the 

rodent trophoblast lineage. Notably, for a rodent TS cell to exit the mitotic cell cycle, 

mitotic cyclins must also be ubiquitinated for proteasomal degradation by the 

anaphase-promoting complex/ cyclosome (APC/C) (MacAuley et al., 1998). 

Otherwise their activity must be inactivated (Palazon et al., 1998). The APC/C 

complex is also required for exit from mitosis during the mitotic cell cycle, which in 

turn is dependent again on its targeting of mitotic cyclins for degradation (reviewed 

by Cerutti and Simanis, 2000).

APC/C substrate specificity is governed by its interaction with WD-repeat 

family proteins including budding yeast Cdc20 {Drosophila Fizzy, human p55CDC)
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and Cdhl (Drosophila Fizzy-related (Fzr), human hCDHl) (Sigrist and Lehner, 

1997; Lorca et al., 1998; Kramer et al., 2000). APC/Ccdc20 appears during metaphase 

and is required for the destruction of the Separase inhibitor Securin as a crucial step 

towards sister chromatid separation and the trigger for anaphase entry. In contrast, 

APC/Ccdhl predominates in late anaphase and promotes mitotic exit by targeting 

mitotic cyclins and other mitotic inducers for proteasomal degradation (reviewed by 

Sullivan and Morgan, 2007).

That the APC/CCdhl targets mitotic cyclins for proteasomal degradation to 

trigger mitotic exit is very relevant in light of the findings of our study. APC/C 

substrate-determining yeast Cdhl orthologues in Arabidopsis (Ccs52A) and 

Drosophila (Fzr) are respectively required for down-regulating mitotic cyclins to 

switch the mitotic cell cycle at phase G2 to the endocycle during seed (Cebolla et al., 

1999) and salivary gland (Sigrist and Lehner, 1997) development. Furthermore, 

mutations that reduce mitotic Cyclin B-Cdkl activity induce an endoreduplication 

phenotype in both fission (Hayles et al., 1994) and budding (Azzam et al., 2004) 

yeast. Thus in terms of mitotic cell cycle exit in TS cells, the release of Handl from 

the nucleolus underlies the onset of the endocycle. How Handl achieves this is as yet 

unknown, but possible mechanisms are discussed later in this chapter (section 6.3.2).

6.2.1. Release of a factor sequestered in the nucleolus 

underlies mitotic (cell cycle) exit and genomic hyper

amplification

In this study, we show that the release of a nucleolar factor, Handl, underpins 

the onset of endoreduplication and concomitant TG cell differentiation in the Rcho-1 

trophoblast stem cell line. Interestingly, studies in S. cerevisiae have also identified 

an APC/CCdhl activator that is sequestered in the pre-mitotic nucleolus, the 

phosphatase Cdcl4 (Shou et al., 1999; 2002; Visintin et al., 1999; 2003; Yoshida and 

Toh-e, 2002). During interphase and early mitosis, Cdcl4 is bound in an inactive 

state to the nucleolar, multi-functional regulator of nucleolar silencing and telophase 

(RENT) complex (reviewed by Cockell and Gasser, 1999). This complex comprises 

several nucleolar proteins including Cfil (Netl), Nani and Sir2. However, at the
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onset of anaphase, Cdcl4 is released from the nucleolus to dephosphorylate its 

nuclear targets (reviewed by Cockell and Gasser, 1999). These include a cyclin- 

dependent kinase inhibitor (Sicl), which is stabilised by dephosphorylation, and a 

Sicl transcription factor (Swi5), whose dephosphorylation induces its nuclear entry. 

Another of its targets is the APC/C substrate-determining subunit Cdhl, whose 

dephosphorylation promotes its nuclear export and integration into an APC/Ccdhl 

complex that ubiquitinates and marks mitotic cyclins for proteasomal degradation 

(Jaquenoud et al., 2002; Bembenek et al., 2005; reviewed by Morgan and Sullivan, 

2007). Collectively, these events underlie exit from mitosis in budding yeast and the 

onset o f the next mitotic cell cycle.

Cdcl4 inactivation by nucleolar sequestration during interphase also serves a 

second cellular function in budding yeast. This negative regulatory mechanism 

prevents inappropriate Cdc 14-dependent dephosphorylation and inactivation o f DNA 

replication factors during S-phase (Bloom and Cross, 2007). In this regard, it is 

interesting that Handl is sequestered in the nucleolus in an inactive state until cells 

begin to hyper-amplify the genome during endoreduplication (data presented in this 

study). In conclusion, the nucleolar sequestration of a cell fate determinant, Cdc 14 in 

budding yeast or Handl in rodent trophoblast, is a key cellular event that regulates 

exit from mitosis and genomic replication.

6.2.2. A polo-like kinase is recruited to the nucleolus to 

phosphorylate and release a factor involved in mitotic (cell 

cycle) exit

The mechanistic similarities between the budding yeast mitotic exit network 

and the entry of TS cells into the endocycle extend beyond the analogous function of 

the APC/C. We have shown that nucleolar release of Handl is dependent on its 

phosphorylation by the polo-like kinase, Plk4. Interestingly, the sole polo-like kinase 

in budding yeast, Cdc5, phosphorylates Cdc 14 to initiate its nucleolar release (Shou 

et al., 1999; Shou et al., 2002; Visintin et al., 1999; Visintin et al., 2003; Yoshida and 

Toh-e, 2002).
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Cdc5 phosphorylates Cdc 14 at the end of the Cdc fourteen early anaphase 

release (FEAR) network, a poorly-understood cascade that releases a small amount of 

Cdc 14 from the nucleolus (Stegmeier et al., 2002). Cdc5 also phosphorylates Cdc 14, 

amongst other targets, during the mitotic exit network (MEN). This cascade is 

initiated by the first wave of nucleolar-released Cdc 14, which triggers a G protein- 

(Teml-) initiated signalling cascade and the dephosphorylation of the Cdcl5 kinase 

(Shou et al., 2002). Ultimately, this results in a positive-feedback loop that releases 

Cdcl4 from the nucleolus in bulk (Jaspersen et al., 1998; Shou et al., 1999; 2002; 

Visintin et al., 1999; 2003; Yoshida and Toh-e, 2002).

Plk4 is a component of the analogous mammalian mitotic exit network that 

relies on the same premise of APC/CCdhl-dependent destruction of mitotic cyclins 

(Hudson et al., 2001). Although Plk4-nu\\ embryos exhibit high levels of cyclin B 

and Cdkl, indicative of defective APC/CCdhl activation, it is unclear whether Plk4 

directly phosphorylates and activates components of the APC/CCdhl. It is notable, 

however, that the sole polo-like kinase in fission yeast (Plol; May et al., 1998), and 

the related mammalian Plk family member, Plkl (Kotani et al., 1998; Feng et al., 

2001; Golan et al., 2002; Moshe et al., 2004), modulate APC/C activity by 

phosphorylating its subunits, inhibitors and even its proteasome effector.

Alternatively, the process may be analogous to the MEN in budding yeast in 

that Plk4 could activate an as-yet unidentified phosphatase that then 

dephosphorylates and activates an APC/C component. Indeed, one human CDC 14 

isoform, CDC 14A, is centrosomal and dephosphorylates and activates the human 

CDH1 component of the APC/C as a pre-requisite for exit from mitosis (Bembenek 

and Yu, 2001). Another human CDC 14 isoform, CDC14B, is nucleolar during 

interphase, but its function has been more elusive (Kaiser et al., 2002; Mailand et al.,

2002). It will in this regard be interesting to see whether Plk4 can phosphorylate 

CDC14B in the G2 phase nucleolus and furthermore investigate the functional basis 

of such an event. However, it is worth mentioning that the S. pombe homologue of 

Cdc 14 (Flplp/ Clplp) is not required for mitotic exit, but is instead involved in 

septum formation and cytokinesis (Cueille et al., 2001; Trautmann et al., 2001). Thus 

it would not be surprising to find that the mechanism governing mitotic cell cycle exit 

in rodent trophoblast does not involve CDC 14 isoforms.
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Notably other aspects of Cdc5 and Plk4 regulation are also conserved between 

yeast and mammals. For example, both Cdc5 and Plk4 are rapidly ubiquitinated for 

proteasomal degradation as part of a negative feedback loop during G1 by the 

APC/C, which they in part activated at the end of the previous mitotic cell cycle 

(Fode et al., 1996; Shirayama et al., 1998). In the case of Plk4, a low protein half-life 

is conferred by three so-called PEST sequences at its C-terminus (Fode et al., 1996; 

Yamashita et al., 2001; Figure 5.23b). In conclusion, whilst both Cdc5 and Plk4 are 

required at anaphase for exit from mitosis, we have shown in this study that Plk4 can 

additionally initiate endoreduplication during phase G2 under certain conditions. It 

achieves this by phosphorylating nucleolar Handl, whose release into the 

nucleoplasm underlies the transition from the mitotic cell cycle to the endocycle.

6.2.3. A PP2A complex antagonises the nucleolar release of a 

factor involved in mitotic exit

The down-regulation (Firulli et al., 2003) and nuclear export (data presented 

in this study) of the regulatory (B, substrate-recognising) subunit B566 of the protein 

phosphatase 2A (PP2A) serine/ threonine phosphatase contributes to Rcho-1 TG cell 

differentiation. This exclusion of PP2A8565 from the nucleolus and nucleus likely 

facilitates Plk4-dependent Handl phosphorylation at the onset of TG cell 

differentiation. This is yet another conserved aspect of the cascade governing cell 

cycle regulation between yeast and mammals: the PP2A B-subunit Cdc55 plays a 

critical role in blocking the onset of the budding yeast MEN (Queralt et al., 2006).

Budding yeast Netl, the nucleolar anchor for Cdc 14, is kept hypo- 

phosphorylated prior to anaphase by a PP2A complex containing Cdc55 (Queralt et 

al., 2006). This has the effect of suppressing ectopic Cdc 14 nucleolar release and thus 

inappropriate mitotic exit outside of anaphase. At anaphase the sister chromatid- 

separating protease Separase, released at the onset of anaphase from its Securin 

inhibitor, interacts with and inactivates PP2ACdc55 (Queralt et al., 2006). Thus, a 

PP2A complex containing Cdc55 (budding yeast) or B568 (rat trophoblast; Firulli et 

al., 2003; data presented in this study) antagonises exit from mitosis until the onset of 

anaphase or exit from the mitotic cell cycle until the onset of endoreduplication
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respectively. However, the PP2A complexes achieve this effect by different means. 

PP2ACdc55 dephosphorylates the nucleolar sequesteror of Cdc 14, Netl (Queralt et al.,

2006), whereas PP2A8565 maintains the sequestered factor, Handl, in a 

dephosphorylated state during TS cell renewal (data presented in this study).

6.2.4. Speculative extrapolations of our model

In conclusion, there are numerous similarities between a mechanism 

governing mitotic exit in budding yeast and mitotic cell cycle exit in rodent 

trophoblast. In light of these, it is possible that other aspects of the S. cerevisiae 

FEAR and MEN pathways also serve to modulate the onset of TG cell differentiation. 

Cdc55 is degraded by Separase at the onset of anaphase in budding yeast and this 

allows Cdc5-dependent phosphorylation of Cdc 14 to persist (Queralt et al., 2006). In 

this regard, it will be interesting to investigate whether mammalian Separase is partly 

responsible for B565 ‘elimination’ at the onset of TG cell differentiation. 

Additionally, at anaphase, Cdc5 is also thought to phosphorylate the nucleolar 

sequesteror of Cdcl4, Netl (Yoshida and Toh-e, 2002). PP2ACdc55 conversely keeps 

Netl hypo-phosphorylated prior to anaphase (Queralt et al., 2006). Thus it is possible 

that Plk4 and PP2A8566 similarly modulate the phosphorylation of the Handl 

sequesteror, HICp40. Indeed another kinase, the pTEFb component Cdk9, 

phosphorylates HICp40 at conserved sites in its I-mfa domain (Wang et al., 2007). 

Related to this, it would be interesting to investigate whether, like other bHLH 

proteins, Handl recruits the pTEFb complex to its target gene transcripts for the 

purpose of transcriptional elongation (Simone et al., 2002). Should this be the case, 

the observed inhibitory effect of HICp40 on the pTEFb complex (Young et al.,

2003), possibly via nucleolar sequestration, may represent another mode by which 

HICp40 negatively-regulates Handl transcriptional activity. Further investigation is 

required to confirm these hypotheses.
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6.3. Unanswered questions

There are, however, some aspects of our model that remain unclear and 

require further investigation. For example, the bHLH or non-bHLH transcription 

factor partners to which nucleolar-released Handl binds in TG cells remain to be 

definitively determined. A few studies have suggested that the bHLH factors Stral3 

and/ or Hrtl-3, and the HMG-box factor Soxl5, bind Handl during TG cell 

differentiation and that this makes Handl transcriptionally-competent (Firulli et al., 

2000; Hughes et al., 2004; Yamada et al., 2006). However, no in vivo evidence was 

provided by these studies. Another study suggested that Handl may act as a 

homodimer to drive the process of TG cell differentiation in vivo (Hu et al., 2006). 

The identity of the pro-endoreduplicative signals and how they affect Plk4 and 

PP2A8565 activity upstream of Handl are also currently unknown. Finally, at present, 

we can only speculate as to how the nucleolar release of Handl triggers mitotic cell 

cycle exit. The following section discusses some of the putative underlying cellular 

and molecular mechanisms which could shed light on these key questions.

6.3.1. What precedes the release of Handl from the 

nucleolus?

The nucleolar release of Handl is by no means at the pinnacle of the cascade 

that promotes TG cell differentiation. However, precisely how the transition from the 

normal mitotic cycle to endocycle is regulated remains poorly understood, 

particularly in the rodent trophoblast lineage. In Drosophila, one study identified an 

insulin receptor/ phospho-inositol-3-kinase-reliant link between the abundance of 

dietary amino acids and mitotic cell cycle exit (Britton and Edgar, 1998; Britton et 

al., 2002). There also appears to be a relationship between the onset of 

endoreduplication in Drosophila and oxygen concentration, dependent on cyclin 

D/Cdk4 (Frei and Edgar, 2004). This is interesting in light of the results of previous 

studies and ours that report that low oxygen concentration blocks aspects of invasive 

trophoblast differentiation (Gultice et al., 2006; Lash et al., 2007; Takeda et al.,

2007). However, whether such mechanisms induce rodent TS cells entry into the 

endocycle is currently unknown.
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In light of our recent work we can assume that as-yet unidentified factors in 

horse serum (HS), or alternatively a lack of inhibitory factors present in fetal bovine 

serum (FBS), are responsible for driving TS cells into the endocycle. These 

extracellular factors are likely to initiate an intracellular signalling cascade that 

modulates Handl phosphorylation, via the adjustment of Plk4 and/ or B568 levels, 

subcellular localisation and/ or activity. Such a mechanism would not be without 

precedent: a previous study showed that Fgf2 binds to Casein kinase II, and that this 

event promotes nucleolar serine/ threonine phosphorylation o f Nucleolin (Bonnet et 

al., 1996). More recently, the GTP-dependent shuttling of Nucleostemin between the 

nucleolar and nucleoplasmic compartments has been proposed to link extracellular 

signalling cascades to protein subcellular localisation (Tsai and McKay, 2002). 

Indeed, nucleoli are known to respond to changes in cellular growth rate and 

metabolic activity, suggesting that they constantly receive and respond to signalling 

events. At the onset of endoreduplication, Plk4 expression increases (data presented 

in this study) whilst that of B568 is down-regulated (Firulli et al., 2003). This occurs 

in parallel with the export of the B568 protein from the nucleus. Further investigation 

is therefore needed to identify the factors that regulate the transcription of these two 

genes in rodent trophoblast.

In proliferating diploid trophoblast, Plk4 plays a part in regulating centriole 

duplication during prophase and spindle organisation during cytokenesis 

(Bettencourt-Dias et al., 2005; Habedanck et al., 2005; Kleylein-Sohn et al., 2007) 

and localises to the nucleoli at every G2 phase (Hudson et al., 2001). However, it is 

clear from our data that Plk4 does not react with nucleolar Handl during each mitotic 

cell cycle in proliferating TS cells. How, then, is the nucleolar Plk4-Handl reaction 

confined to diploid trophoblast about to undergo TG cell differentiation? One 

possibility is that the PP2A3568 complex, present in TS cell nuclei, antagonistically 

counteracts Plk4-dependent Handl phosphorylation. Only when the TS cell is 

triggered to differentiate is B568 protein exported to the cytoplasm and B568 down- 

regulated, which allows phosphorylated Handl to persist in the nucleus. However, 

this cyclic phosphorylation-dephosphorylation mechanism strikes us as inefficient. 

Other mechanisms may thus restrict the reaction of Plk4 with Handl to an 

appropriate time.
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Another possibility is that levels of Plk4 protein need to cross a critical 

threshold to phosphorylate nucleolar Handl. Crucially, this level would be higher 

than that required for its other cellular functions. This hypothesis is supported by our 

observation of Plk4 up-regulation at the onset of TG cell differentiation. 

Nevertheless, this up-regulation of Plk4 is coincident with the nucleolar release of 

Handl, which suggests that other mechanisms must also play a part. Perhaps in order 

to phosphorylate Handl, Plk4 must bind a nucleolar co-activator, itself activated by a 

change in serum conditions. Yet another possibility is that Plk4 only recognises 

Handl after the transcription factor has first been phosphorylated by a nucleolar 

‘priming kinase’. This would be reminiscent of the mechanism of action of its related 

mammalian family member, Plkl (Elia et al., 2003). The polo-box domain (PBD) of 

Plkl, which comprises both of its polo-boxes and some flanking sequence, can only 

dock onto its substrates after their modification by enzymes including Cdks, MAP 

kinases and other mitotic kinases (reviewed by Lowery et al., 2003). This mechanism 

of action may also apply to the S. pombe polo-like kinase Plol (Grallert and Hagan, 

2002). Further investigation would be required to investigate whether kinase(s) act 

upstream of Plk4 on H andl.

Alternatively it is possible that the signalling cascades upstream of nucleolar 

and non-nucleolar Plk4 may be independent. This was recently suggested by others 

(Tanenbaum and Medemao, 2007) and would entail the activation of nucleolar Plk4, 

but not non-nucleolar Plk4, in response to a change in serum conditions. Finally, we 

have assumed that Handl phosphorylation reduces its affinity for HICp40 and that 

this underlies its nucleolar release. An alternative possibility is that, in proliferating 

TS cells, HICp40 conceals the Handl phosphorylation sites targeted by Plk4. HICp40 

modification in response to a change in serum conditions may subsequently expose 

these residues to the kinase.
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6.3.2. What follows the release of Handl from the 

nucleolus?

Perhaps the principal question still remaining is just how the nucleolar release 

of Handl triggers mitotic cell cycle exit. The most obvious hypothesis is that nuclear- 

wide Handl commits TS cells to differentiation via transcriptional effects. However, 

very few target genes and protein-protein interactions have been identified for Handl 

in trophoblast. Furthermore, where interactions have been identified, such as occurs 

between Handl and the HMG-box transcription factor Soxl5 (Yamada et al., 2006), 

the functional significance remains unclear.

A pre-requisite for endoreduplication in all organisms is the down-regulation 

of genes whose products promote entry into mitosis (Grafi and Larkins, 1995; Sauer 

et al., 1995; MacAuley et al., 1998). Indeed, an inappropriate endocycle can be 

induced in diploid cells simply by inhibiting mitotic cyclin activity (Sigrist and 

Lehner, 1997). Conversely, ectopic expression of mitotic cyclins shunts endocycling 

plant cells into a mitotic cell cycle (Schnittger et al., 2002). Handl can function as a 

transcriptional repressor but no evidence to date implicates it in the down-regulation 

of mitotic activators in trophoblast. It is interesting, however, that Plk4-null embryos 

exhibit high levels of cyclin B and Cdkl (Hudson et al., 2001), indicative o f a loss of 

APC/C function. It is possible, then, that Plk4 may directly phosphorylate 

components, regulators or downstream effectors of the APC/C. Indeed, this is a 

function attributed to Plol, the sole polo-like kinase in S. pombe (May et al., 2002), 

and the highly-related mammalian polo-like kinase Plkl (Kotani et al., 1998; Feng et 

al., 2001; Golan et al., 2002; Moshe et al., 2004). Otherwise nuclear-wide Handl, or 

the products of its target genes, may block mitotic cyclin synthesis or activity. Indeed 

Handl is released during G2, just prior to what would normally be the start of mitosis 

and which is coincident with mitotic cyclin synthesis (MacAuley et al., 1998).

A role for Handl in cell cycle control has been suggested previously, on the 

basis of the down-regulation of the transcription factor in gastric and pancreatic 

cancers (Kaneda et al., 2002; Hagihara et al., 2004). Two studies focusing on the 

cardiac lineage have implicated Handl in the regulation of genes encoding cell cycle
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modifiers, including cyclin D l (Smart et al., 2002; Risebro et al., 2006). It is 

plausible, therefore, that the dramatic switch upon TG cell differentiation from cyclin 

D3 to D l expression (MacAuley et al., 1998; Palazon et al., 1998), and the up- 

regulation of two associated cyclin-dependent kinase inhibitors (Bates et al., 1998; 

Hattori et al., 2000), may be instigated by Handl. Notably Smart and co-workers 

identified Wnt2 as a putative target gene of Handl, albeit in a cardiac cell model 

(Smart et al., 2002). Notably, deletion of the Wnt2 gene in mice is associated with 

defective placentation characterised by ectopic TG cells (Monkley et al., 1996). This 

suggests that Wnt2 is involved in blocking TG cell differentiation and moreover 

implicates Handl in its repression in trophoblast.

In the current study, we reveal that a constitutively-nucleoplasmic Handl 

phosphorylation mimic (Handl T107;S109D) localises to discrete subnuclear foci. 

These may represent a subset of so-called ‘transcription factories’, based on co

localisation of RNA polymerase II. These sites, which may be transiently occupied 

by wild-type Handl, are hotspots of gene activation in the nucleus (Osbourne et al.,

2004). Additionally these subnuclear bodies resemble chromatin-remodelling 

complexes, which are involved in altering DNA-nucleosome topology, to which other 

transcription factors localise upon their release from the nucleolus (Grasberger and 

Bell, 2005). Chromatin-remodelling complexes have additionally been shown to bind 

and sequester the mitotic cyclins whose inactivation is necessary for mitotic cell 

cycle exit (Kellogg et al., 1995). Interestingly, another of the Handl interactors 

identified in the Y2H screen was the SWI/SNF-related matrix-associated actin- 

dependent regulator of chromatin subfamily E member 1 (Smarcel; Appendix 8). 

This is involved in transcriptional activation and repression of select genes by 

chromatin remodeling (Belandia et al., 2002). Further investigation is required to 

corroborate this interaction and to investigate whether it has functional significance in 

rodent TG cell differentiation.

Does nuclear-wide Handl alternatively promote mitotic cell cycle exit more 

directly, in a mechanism independent of transcription? One way in which Handl 

could achieve this is by promoting TS cells to endoreduplicate by default. Handl has 

been shown to promote TG cell differentiation by competing for the E-factor binding 

partners and promoters of Mash2, a bHLH factor required for TS cell maintenance
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(Guillemot et al., 1994; Scott et al., 2000). However the role of Handl in promoting 

TG cell differentiation is not restricted to inhibiting Mash2-dependent transcription 

(Scott et al., 2000). Moreover, Rcho-1 TS cells proliferate independently of Mash2 

(Cross et al., 1995).

Another possibility is that nuclear-wide Handl, or the products of putative 

Handl target genes, interfere with fibroblast growth factor (Fgf)-dependent 

signalling. Fgfs, in particular Fgf4, have been shown previously to play a part in TS 

cell maintenance (Tanaka et al., 1998; Zhong et al., 2006). Such a role for Handl has 

been suggested previously, in view of the fact that ectopic Handl expression in TS 

cells can override Fgf4-dependent mitotic cell cycling and force endocycle entry 

(Hughes et al., 2004). However, the mechanistic basis for this was not investigated. 

In this regard, it is also interesting that another of the Handl interactors identified in 

our Y2H screen was the receptor for Fgf4-dependent signaling in trophoblast stem 

cells (Fgf receptor-2 (Fgfr2); Appendix 8; Auman et al., 1998). However, further 

investigation is needed to corroborate this interaction and assess its functional 

significance.

Retinoic acid (RA)-dependent signalling also promotes TG cell differentiation 

(Yan et al., 2001), possibly via the transcription factors Stra2 (AP-2y) and Stral3, 

which themselves drive TG cell differentiation (Auman et al., 2002; Hughes et al.,

2004). However an involvement of Handl in this pathway has yet to be determined. 

It is also interesting that Notch-dependent signalling has been implicated in the 

transition from the mitotic cell cycle to the endocycle, at least in Drosophila 

follicular epithelial cells (Deng et al., 2001; Schaeffer et al., 2004; Sun and Deng,

2005). In one study Notch-dependent signalling was shown to down-regulate the 

homeodomain gene Cut, whose product is a negative regulator of the APC/C 

activator Fzr (Sun and Deng, 2005). Handl can bind Mastermind-like 2 (Maml2), a 

placenta-expressed trans-activator of the Notch signalling pathway (P. Riley, 

unpublished data). However, whether this interaction occurs in rodent trophoblast 

with functional significance is unknown.
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An alternative possibility is that Handl modifies the function of the APC/C. A 

modified APC/C may target Snail and Geminin, factors that inhibit the onset of 

endoreduplication in diploid trophoblast (Nakayama et al., 1998; Gonzalez et al.,

2006), for proteasomal degradation. Thus in Plk4-null trophoblast Handl would be 

unable to achieve this because it remains sequestered in the nucleolus. It is interesting 

in this regard that several of the Handl interactors identified in our Y2H screen are 

E3 ubiquitin ligases or proteins with RING-finger domains, which are motifs that 

mediate the transfer of ubiquitin from conjugating enzymes to substrates to be 

degraded. Whether a relationship exists between Handl and APC/C activity is 

unknown, however, and would require further investigation. The possible events 

downstream of the release of Handl from the nucleolus during TG cell differentiation 

are listed in Figure 6.2.
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CRC
Handl  /  bHLH H andl

M itotic cy c lin s

CRC
H andl

Handl

APC/Co o
(  S n a il N

Geminin

FGF

TS CELL PROLIFERATION TG CELL DIFFERENTIATION

Transcription-independent effects 

Transcription-dependent effects

Figure 6.2. How does nuclear H andl promote mitotic cell cycle exit and the 

onset of endoreduplication in trophoblast stem cells?

Handl may promote endoreduplication in a transcription-dependent or transcription-independent 

fashion. This may antagonise Fgf-dependent signalling pathways, which sustain TS cell proliferation, 

or may promote RA- and Notch-dependent signalling pathways, which promote TG cell 

differentiation. Otherwise APC/C activity may be modified to target mitotic cyclins and 

endoreduplication inhibitors for destruction.

CRC: chromatin remodelling complex, APC/C: anaphase-promoting complex/ cyclosome, FGF: 

fibroblast growth factor, RA: retinoic acid, P: phosphoserine/ phosphothreonine.
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6.4. Integrating our findings with established views 

on the nucleolus

The nucleolus belongs to a group of nuclear bodies (NBs), subnuclear entities 

that also include splicing speckles, Cajal bodies, PML bodies and transcription, 

replication and repair factories (reviewed by Handwerger and Gall, 2006). The 

nucleolus is the most prominent of these NBs and is visible by phase contrast light 

microscopy by virtue of its large size (5-10pm) and high refractile index relative to 

the surrounding nucleoplasm, which reflects its dense protein content. As such, 

Wagner, Valentin and Schleiden first identified the nucleolus in three independent 

reports between 1835 and 1838 (reviewed by Franke, 1988). Nucleoli are eukaryote- 

specific, but the size and number of nucleoli vary between eukaryotes. Higher 

eukaryotic cells possess several, spherical nucleoli per cell, whilst budding yeast cells 

usually possess only one nucleolus, which is crescent-shaped and occupies up to a 

third of the nucleus (reviewed by Melese and Xue, 1995).

Traditionally the nucleolus has been viewed as a ‘ribosome factory’, a 

eukaryotic subnuclear organelle dedicated to ribosome subunit biogenesis (Perry, 

1966). Ribosome biogenesis is a complex process and is incompletely understood, 

particularly in higher eukaryotes (reviewed by Fatica and Tollervey, 2002). Briefly, it 

involves the synthesis and assembly of four mature rRNA molecules. Three of these 

(28S, 18S and 5.8S) are generated from a 47S precursor transcribed from tandemly- 

repeated ribosomal DNA (rDNA), namely the so-called nucleolar organizer regions 

(NORs) or clusters of ‘ribosomal genes’. In humans, the NORs reside on the five 

acrocentric chromosomes and nucleoli form around these loci. The organelle contains 

both RNA polymerase I, responsible for the transcription of rDNA into pre-rRNA 

(the 47S precursor). They also contain the machinery for subsequent pre-rRNA 

processing, for example the small nucleolar ribonucleoproteins (snoRNPs). Finally, 

protein components that are later complexed with the mature rRNA species to form 

the 40S and 60S ribosome subunits are also concentrated in the nucleolus. These 

subunits ultimately leave the nucleolus and nucleus and bind to cytoplasmic mRNA 

to form a functional (80S) ribosome.
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More recently, several studies have characterised the ultrastructure (reviewed 

in this chapter, section 6.4.1), biogenesis (section 6.4.2) and roles beyond ribosomal 

biogenesis (section 6.4.3) of the nucleolus. Additionally, motifs found in nucleolar 

proteins have been arranged into phylogenies and this has given an insight into its 

evolutionary history (Staub et al., 2004). Although nucleoli are eukaryote-specific, 

many of their constituent proteins, particularly those related to ribosome biogenesis, 

are of prokaryotic, particularly archaebacterial, origin. An interesting observation is 

that most of the higher eukaryote-specific nucleolar protein domains are involved in 

protein-protein interaction, protein folding (chaperone) and chromatin remodelling. 

This suggests an increasing tendency during evolution towards compaction of 

material, perhaps to ensure efficient ribosome biogenesis and/ or to tightly sequester 

factors away from the rest of the cell. The nucleolus likely arose because it provided 

a selective advantage in terms of an enhanced efficiency of ribosomal biogenesis and 

thus proliferation rate. However, once evolved, cells probably exploited the presence 

of the nucleolus to incorporate additional functions. We show, for example, that the 

role of the nucleolus as a sequestration centre for proteins involved in cell cycle 

regulation is conserved between evolutionarily-distinct eukaryotes (discussed 

previously in this chapter (section 6.2)).

6.4.1. Theories of nucleolar ultrastructure

The amniote nucleolus is subdivided into three components (reviewed by 

Scheer and Hock, 1999; Dundr and Misteli, 2001; Raska et al., 2006; Sirri et al.,

2008). The transcription of rDNA occurs at the border between the fibrillar centers 

(FC), which are rich in RNA Pol I subunits and surround the NORs, and the dense 

fibrillar component (DFC), which surrounds the FC and is characterised by an 

abundance of Fibrillarin. Although the number and size of the FC foci vary, a typical 

nucleolus contains about thirty, each accommodating about four rRNA genes 

(reviewed by Dundr and Misteli, 2001). Subsequent pre-rRNA processing occurs in 

the DFC, which is rich in snoRNPs, and then processed rRNA molecules are 

transported to the granular component (GC), for association with ribosomal proteins. 

The GC is the largest intra-nucleolar domain and is rich in B23. Thus the process of 

ribosomal biogenesis is vectorial. It occurs in discrete stages as the rRNA transcripts
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move outwards through the concentric layers surrounding the ribosomal genes (Thiry 

et al., 2000). There is, however, considerable diversity in the arrangement of the three 

nucleolar components between species. For example, only amniotes possess the FC, 

the nucleoli of lower eukaryotes such as Drosophila and yeast instead being bipartite 

(reviewed by Thiry and Lafontaine, 2005). Plant cell nucleoli also have a fourth 

nucleolar structure, the nucleolar vacuole or cavity, whose role is unknown (reviewed 

by Shaw and Brown, 2004). Additionally, the plant DFC and FC are integrated into a 

unique nucleolar structure called the nucleonema (Sato et al., 2005).

The GC, the largest and most permeable nucleolar sub-domain, has been 

described as a ‘non-ribosomal landscape’ (Handwerger et al., 2005; Politz et al.,

2005). This region lacks rDNA and ribosome biogenesis machinery and as such is 

unlikely to play any major role in ribosome biogenesis. The GC may therefore 

represent the ‘sequestration centre’, whose existence is strongly supported by the 

findings of our work and other studies. Indeed, the nucleolar proteins p l9 ARF and 

Nucleostemin specifically occupy this sub-domain (Lindstrom et al., 2001; Politz et 

al., 2005). Interestingly, we showed that Handl appears to co-localise with NS in this 

region (Figure 5.22), but further investigation using subnucleolar fractionation 

techniques would be required to definitively localise Handl to this domain. Notably, 

Politz and colleagues also noted that the GC is heterogeneous at a molecular level 

(Politz et al., 2005). It is further subdivided into compartments, within which a 

certain factor or group of factors may be enriched.

Our results reveal that endogenous Plk4 resides in only a single H andl- 

positive nucleolus in each Rcho-1 stem cell, being absent from the others. This 

appears to be a unique finding as, to our knowledge, no literature to date has reported 

such a protein sub-nucleolar localisation. This raises the possibility that different 

nucleoli within the same nucleus may possess different proteomes, which is implicit 

o f heterogeneity between nucleoli within the same cell. Indeed, mammalian nuclei 

can possess nucleoli with considerable heterogeneity in size and morphology 

(reviewed by Hernandez-Verdun, 2006), which is implicit of differences in 

composition. If confirmed, such an observation impacts on the current theories 

regarding nucleolar biogenesis and structure. Nevertheless, we cannot rule out 

antibody-specific artifacts giving rise to these observations, especially in light of the
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fact that an over-expressed GFP-Plk4 fusion protein localised to multiple nucleoli per 

cell.

6.4.2. The dynamic nucleolus theory

The formation of the nucleolus and the maintenance of its architecture are 

thought to be dependent on ribosomal biogenesis (reviewed by Scheer and Hock, 

1999; Dundr and Misteli, 2001; Raska et al., 2006). Early studies showed that ectopic 

rDNA transcription is sufficient for the genesis of a nucleolus in budding yeast and 

Drosophila cells (Karpen et al., 1988; Oakes et al., 1998). In humans, nucleolar size 

can be used to gauge the rapidity of cell proliferation in tumour cells (Derenzini et 

al., 2000). Moreover, inhibition of ribosomal biogenesis, via the inactivation of RNA 

Pol I using actinomycin-D (Act-D), inactivation of upstream-binding factor (Ubf) 

using anti-Ubf antibodies, or upon infection by certain viruses, leads to a loss of 

nucleolar integrity and its breakdown (Dundr et al., 1996; Rubbi and Milner, 2003; 

reviewed by Hiscox, 2007). These data have led to the now widely-believed theory 

that the nucleolus is self-organised, that is, ‘the nucleolus is an organelle formed by 

the act of building a ribosome’ (Melese and Xue, 1995). By this mechanism, nucleoli 

form passively as a result of local accumulation of factors around the rDNA genes.

However, a more recent study has uncoupled the maintenance o f nucleolar 

morphology from RNA Pol I-driven transcription in Xenopus (Gonda et al., 2003). In 

this study, two proteins (FRGY2a and FRGY2b) were shown to reversibly 

disassemble the nucleolus in vitro and in vivo, independently of transcriptional 

inhibition. It is interesting, also, that inhibition of proteasome activity can affect 

nucleolar morphology independently of RNA Pol I activity (Mattsson et al., 2001). 

Furthermore, as discussed in the next section, the fact that several proteins 

accumulate in nucleoli after inhibition of RNA Pol I-dependent transcription suggests 

that neither resident nucleolar proteins, nor nucleolar structure, are dependent upon 

rDNA transcription.

In addition to the formation of the nucleolus, the maintenance of nucleolar 

architecture is also dependent on ongoing ribosomal biogenesis. As such, nucleoli
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disassemble at the onset of mitosis, when rDNA transcription and pre-rRNA 

processing terminate (reviewed by Dundr and Misteli, 2000; Dundr et al., 2000; 

Hernandez-Verdun et al., 2002; Leung et al., 2004). This is likely due to the 

phosphorylation and inactivation of components of the rDNA-transcription 

machinery by the increasing levels of Cyclin B l-Cdkl during prophase (Sirri et al., 

2002). Although some components of the rDNA-transcription machinery remain 

attached to the NORs during mitosis, most nucleolar proteins, particularly those 

involved in pre-rRNA processing, are released from the NORs and disperse 

throughout the cell (Leung et al., 2004). By metaphase these have either bound the 

peri-chromosomal region (PR) (Gautier et al., 1992), or have clustered into 

cytoplasmic aggregates, so-called nucleolus-derived foci (NDF) (Dundr et al., 1996; 

Dundr and Olson, 1998). Proteins may adopt the former localisation to maintain the 

integrity of chromosomes during mitotic segregation, or otherwise ensure an equal 

protein distribution between daughter cells.

RNA polymerase I transcription reinitiates at late telophase when Cyclin B 1 - 

Cdkl activity reduces, and this, in combination with chromosomal decondensation, 

induces PR- and NDF-associated proteins to travel to the NORs (Dousset et al.,

2001). Here they form pre-nucleolar bodies (PNBs), which ultimately coalesce during 

early G1 phase into nucleoli in a step-wise process in which the FC and DFC form 

before the GC (Bell et al., 1992; Jimenez-Garcia et al., 1994; Savino et al., 2001; 

reviewed by Dimario, 2004; Angelier, 2005; reviewed by Boisvert et al., 2007). 

Notably, only higher eukaryotic nucleoli undergo these cycles of disassembly and 

reassembly prior to and after mitosis. Yeast nucleoli remain intact during cell division 

and rDNA transcription continues during yeast mitosis (Oakes et al., 1998; reviewed 

by Fatica and Tollervey, 2002; Tschochner and Hurt, 2003). This is interesting in 

light of the fact that the mechanism governing mitotic exit in budding yeast is not 

conserved in higher eukaryotes (Kaiser et al., 2002; Mailand et al., 2002).

Several proteins have also been demonstrated via time-lapse video

microscopy with photo-bleaching (FLIP and FRAP) experiments to be in a state of 

continuous flux between the nucleolus and nucleoplasm during interphase (Phair and 

Misteli, 2000). The residence times of most nucleolar proteins are thought to be on 

the order of tens of seconds; thus a micrograph image of the nucleolus is just a
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‘snapshot of multiple nucleolar components in rapid motion’ (reviewed by Olson and 

Dundr, 2005). These observations support the previously-described ‘hit and run’ 

model, namely that proteins enter the nucleolus by passive diffusion rather than by 

active targeting, and only those proteins with a high affinity for nucleolar components 

are retained. These observations have important implications for our model, namely 

that this rapid nucleolar-nucleoplasmic diffusion may also apply to Handl.

On first consideration, these observations would suggest that mitotic Handl 

would trigger precocious TG cell differentiation. However this is clearly not the case, 

possibly because mitotic Handl is kept inactive in NDFs or at peri-chromosomal loci. 

Nevertheless, to date, only nucleolar proteins involved in ribosomal biogenesis have 

been localised to NDFs or to the PR during mitosis. It is interesting in this regard that 

we have demonstrated that the trans-activational activity of Handl is negatively- 

regulated by cytoplasmic HICp32. Although the functional basis and biological 

relevance of this interaction is not known, HICp32 may act in the same fashion as 

non-nucleolar I-mfa to inhibit Handl activity. That is, it may sequester mitotic Handl 

in the cytoplasm, away from its nuclear target genes, and/ or interfere with its DNA- 

binding activity (Chen et al., 1996; Kraut et al., 1998). Alternatively, of course, the 

Handl -HICp40 interaction may remain intact during mitosis. In this case, non- 

nucleolar HICp40 may continue to block Handl activity by an as-yet uncharacterised 

mechanism. It should also be noted that the commitment o f Rcho-1 stem cells to a 

TG cell fate is induced by Handl nucleolar release, specifically during G2. In this 

regard, mitotic Handl release from the nucleolus does not coincide with the pre

mitotic cellular conditions (at prophase) required to induce mitotic cell cycle exit. 

Nevertheless, these previous studies would explain why some Rcho-1 stem cells 

exhibit non-nucleolar Handl, namely because they are mitotic.

6.4.3. The pluri-functional nucleolus theory

Traditionally the nucleolus has been thought of as a ‘ribosome factory’, a 

eukaryotic subnuclear organelle dedicated to ribosome subunit biogenesis. Recently, 

however, it has become clear that the nucleolus is actually more ‘plurifunctional’ than 

once thought, particularly in higher eukaryotes (reviewed by Pederson, 1998; Table
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6.1). Yet further functions for the nucleolus have been inferred by the physical 

association and protein trafficking between nucleoli and other nuclear bodies such as 

splicing speckles, paraspeckles and Cajal (coiled) bodies (Sleeman et al., 1998; Fox 

et al., 2002; Leung and Lamond, 2002).

Table 6.1. The putative, wide-ranging roles of the nucleolus.

Role Reference(s)

Translation and/ or export o f certain mRNAs

Processing of tRNA precursors

Control of ageing

Regulation of RNA editing

Schneiter et a l,  1995.
Ideue et al., 2004.

Bertrand et al., 1998. 
Pederson and Politz, 2000. 
Thompson et al., 2003.

Sinclair and Guar ante, 1997. 
Johnson et ah, 1998.

Desterro et al., 2003.
Sansam et al., 2003.

Regulation of the meiotic pachytene checkpoint San-Segundo and Roeder, 1999.

Biogenesis of ribonucleoprotein machines 
(signal recognition particle (SRP), spliceosomal 
U5 and U6 snoRNAs, and telomerase)

Small interfering RNA (siRNA) pathways

Jacobson and Pederson, 1998. 
Politz et al., 2000.
Jady and Kiss, 2001.
Wong et al., 2002.

Pontes et a t ,  2006.

One major role for the nucleolus is as a cellular ‘stress sensor’ (reviewed by 

Olson, 2004), which is not surprising given the link between cell proliferation rate 

and ribosome biogenesis. The organelle importantly contributes to the control of 

apoptosis. This was first suggested by the DNA damage-dependent nucleolar- 

nucleoplasmic shuttling of the pro-apoptotic factors Dedd, Ingl and Daxx (Stegh et 

al., 1998; Scott et al., 2001; Lin and Shih, 2002). The nucleolus has also been 

implicated in the cellular p53-dependent (Tao and Levine, 1999; Weber et al., 1999; 

Tsai and McKay, 2002) and -independent (Mayer et al., 2005) responses to DNA 

damage and other stresses. Notably, several nucleolar proteins are released into the 

nucleoplasm in response to DNA damage. These are thought to interact with
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nucleoplasmic p53 to inhibit its proteasomal degradation, so stabilising the tumour- 

suppressor (Tao and Levine, 1999; Weber et al., 1999; Colombo et al., 2002; Daniely 

et al., 2002; Kurki et al., 2004). In this respect, chemical or immunological disruption 

of the nucleolus is sufficient to stabilise p53, even in the absence of DNA damage 

(Rubbi and Milner, 2003). The ability of the nucleolus to act as a ‘stress sensor’ is in 

part dependent on its compartmentalisation of proteins away from the rest of the cell 

(Table 6.2).

By the end of 2001, 121 human proteins had been localised to the nucleolus. 

In most cases, these were individually shown to adopt a nucleolar localisation by way 

of antibody staining and fluorescent tagging. Owing to their high density, nucleoli 

can be isolated from disrupted nuclei by centrifugation through a sucrose gradient. In 

this regard, large-scale nucleolar protein identification, by mass spectrometry, has 

been carried out and the human nucleolar proteome has recently been published 

(Scherl et al., 2002; Andersen et al., 2002; Andersen et al., 2005; reviewed by Leung 

et al., 2003). These proteomic analyses have provided a more detailed insight into the 

composition of the organelle.

The first two published proteomic analyses of nucleoli purified from HeLa 

(human cervical carcinoma) cells identified 271 proteins (Andersen et al., 2002) and 

210 proteins (Scherl et al., 2002), where the combination of these results revealed a 

collection of approximately 350 different nucleolar proteins. Recently another study 

increased this number and also analysed the composition of HeLa cell nucleoli under 

differing metabolic conditions, for example chemical-induced inhibition of RNA Pol 

I transcription or proteasome-dependent proteolysis (Andersen et al., 2005; Figure

6.3). This particular study allowed the examination of the behaviour and dynamics of 

certain sets of proteins. One interesting observation was that, whilst some proteins 

exit the nucleolus in response to metabolic inhibition, some actually accumulate in 

the organelle (Fox et al., 2002; Andersen et al., 2005). Thus there appears to be no 

unique, complete proteome for the nucleolus, but rather different proteomes that are 

dependent on the metabolic state of the cell. This is in agreement with our 

observations relating to the release of Handl from the nucleolus to the nucleoplasm 

during TG cell differentiation.
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Currently, the nucleolar proteome database (NOPdb), listed at 

www.lamondlab.com/NOPdb/, comprises more than 700 proteins (Leung et al.,

2006). This represents about 2.5% of the predicted human proteome, and also details 

the quantitative changes in protein levels for 498 of these proteins after transcription 

is inhibited by treating cells with actinomycin-D. Of note, the Arabidopsis thaliana 

proteome has also been recently characterised (Pendle et al., 2005). Approximately 

70% of the 217 identified proteins were homologues of human nucleolar proteins. It 

is also of note that, whilst the budding yeast nucleolar proteome has not been 

definitely characterised, one study carried out large-scale protein localisation studies 

using GFP fusion proteins to illustrate the nucleolar localisation of numerous proteins 

(Huh et al., 2003). Andersen and colleagues later compared the findings of this study 

with those of the human nucleolar proteome and showed that approximately 90% of 

the yeast nucleolar proteins with human homologues are also nucleolar in HeLa cells 

(Andersen et al., 2005). These studies suggest that the contents of the nucleolus have 

been highly conserved throughout eukaryotic evolution.

Despite it becoming increasingly clear that the nucleolus is more 

plurifunctional than once thought, the findings of the nucleolar proteome analyses 

were still relatively surprising. An unexpectedly high percentage (88%) o f the 

proteins identified in the original human nucleolar proteome screen were not 

previously thought to exist in this organelle. Furthermore, about 30% of proteins co

purified with isolated human nucleoli are of unknown function, being encoded by 

novel ORFs (Scherl et al., 2002; Andersen et al., 2002; Andersen et al., 2005; 

reviewed by Leung et al., 2003; Figure 6.3). A couple of studies have attempted to 

assign a function to these factors following literature searches and bioinformatics but 

with limited success (Coute et al., 2006; Hinsby et al., 2006). These two studies 

suggested potential functions for about 150 previously-uncharacterised human 

proteins, o f which only 30% were projected to function in ribosomal biogenesis.

Further insight into the roles of the novel proteins that reside in the nucleolus 

was gained by an analysis of the domains they possess (Andersen et al., 2002; Scherl 

et al., 2002). The most abundant motifs in the nucleolar proteome, which include 

RRMs (RNA-recognition motifs), DEAD/DEAH (Asp-Glu-Ala-Asp/His)-box 

helicase domains and WD- (Trp-Asp)-repeat motifs (reviewed by Leung et al., 2003),
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are present in neither HICp40 nor in Handl, however. Certain amino acid residues 

are also over- or under-represented in nucleolar proteins, in comparison with the total 

cell proteome. Charged amino acids (e.g. glutamate, aspartate, lysine and arginine) 

are favoured in nucleolar proteins compared to total cellular proteins. This is in 

accordance with the fact that several nucleolar-localised proteins possess basic NoLS 

motifs. In contrast, neutral residues (e.g. proline and cysteine), are disfavoured. This 

residue bias is true for both HICp40 and Handl. Furthermore the protein 

phosphatase-1 (PPl)-binding motif, (Lys/Arg)-Val-X-Phe, and the tetra-peptides 

FGGR and RGGF are enriched in nucleolar proteins, compared with either total- 

cellular or nuclear-specific proteins (reviewed by Leung et al., 2003). However, 

neither HICp40 nor Handl possess these tetrapeptides.

The unexpected protein content of the HeLa nucleolus is in agreement with 

our finding of Handl in the nucleolus of rodent diploid trophoblast cells, a protein 

with no known role in the traditional functions of the organelle. It is, however, 

unlikely that all proteins that localise to the nucleoli were identified in the nucleolar 

proteome analyses (Scherl et al., 2002; Andersen et al., 2002; Andersen et al., 2005). 

Nucleolar samples for analysis were not obtained from cells exposed to certain 

metabolic conditions and, moreover, these cells were unsynchronised. Since several 

proteins undergo bi-directional shuttling between the nucleolus and nucleoplasm, 

depending on the cell cycle stage or in response to certain stimuli, many factors were 

also likely of a too low a concentration to be detected in these analyses. More 

importantly in light of the findings of our study, only nucleoli purified from HeLa 

cells were analysed. Thus tissue-specific factors, for example trophoblast-expressed 

Handl, would not have been present. These are thus excluded from the current 

nucleolar proteome list and this was acknowledged by the authors (Andersen et al.,

2002). This is supported by the absence of other tissue-specific proteins in the 

published nucleolar proteome, which are nonetheless known to associate with the 

organelle, for example, the testes determinant Maestro (Smith et al., 2003).
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Transcription factors 

RNA-binding proteins 

Cell cycle proteins 

Other translation factors 
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DNA-replication proteins 

Chromatin-related factors 

Kinases/ phosphatases 

Cytoskeleton proteins 

Ubiquitin-related proteins 

RNA polymerases 

DNA repair proteins
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Figure 6.3. The findings of recent human nucleolar proteome analyses.

Adapted from www.lamondlab.com/NOPdb/NPDdatabase.htm. (January 2008). hnRNP: 

heterogeneous nuclear ribonucleoprotein.
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One of the first studies to suggest a role for the nucleolus as a ‘sequestration 

centre’ was by Munro and colleagues (Munro and Pelham, 1984). In this study, the 

Drosophila chaperone Hsp70 was shown to conditionally localise to the nucleolus as 

part of the cellular response to temperature-induced stress. Since then, several 

mitogenic growth factors, such as PTHrP, Fgf2 and Fgf3 (Henderson et al., 1995; 

Antoine et al., 1997; reviewed by Pederson, 1998b; Sheng et al., 2004), enzymes, for 

instance protein phosphatase 1-gamma (PPly; Trinkle-Mulcahy et al., 2001) and cell 

cycle regulators, for example Cdc2 (Ino et al., 1993), have been shown to adopt a 

nucleolar localisation. Indeed, at least 3.5% of the proteins identified in the recent 

nucleolar proteome screens have established roles in cell cycle control (Andersen et 

al., 2005; Figure 6.3). Also nucleolar are specific tumour suppressors, such as pRB 

(Takemura et al., 2002) and other transcription factors, for example the Hox 

homeoproteins (Corsetti et al., 1995). Although the basis for their nucleolar 

localisation was not characterised, these factors are unlikely to serve any function in 

ribosomal biogenesis. This suggests that nucleolar sequestration of proteins is a 

relatively common mechanism of post-translational gene control.

The findings of our study and the observations of others (A. Firulli, personal 

communication) showed that bHLH factors closely-related to Handl, namely Hand2, 

Twist 1 and MyoD, do not localise to the nucleolus. However, regulation by nucleolar 

sequestration may apply to other members of the bHLH superfamily. Indeed, Wang 

and colleagues showed that zebrafish Myf5 localises to the nucleolus, although the 

functional significance of this was not investigated (Wang et al., 2005). It will be 

interesting to investigate whether this mechanism regulates not only bHLH 

transcription factors but also a wider range of factors involved in modulating 

transcription, some of which have been identified in the nucleolar proteome (Figure

6.3). Examples of protein regulation utilising nucleolar sequestration are described in 

Table 6.2.
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Table 6.2. Well-characterised examples of proteins whose sequestration in the nucleolus regulates their activity.

Sequestered Nucleolar
factor(s) sequesteror(s) Bask for nucleolar sequestration References
Cdcl4
(S. cerevisiae)

Cdcl4 is nucleolar during interphase and early mitosis. At anaphase onset Cdcl4 enters the 
nucleoplasm to dephosphorylate its targets and trigger mitotic exit.

Visintin et al., 1999; 2003. 
Shou et al., 2001; 2002. 
Yoshida and Toh-e, 2002.

Rnr2, Rnr4 
(S. cerevisiae)

Wtml Rnr2 and Rnr4, subunits of ribonucleotide reductase (Rnr), are only released from the 
nucleolus to bind the cytoplasmic third subunit, Rnrl, at the advent of S-phase.

Lee and E Hedge, 2006.

Mdm2
(Mouse)

Pml, p!9ARF The ubiquitin ligase Mdm2 is nucleoplasmic in resting cells and targets p53 for proteolysis. 
Upon DNA damage, Mdm2 is recruited to the nucleolus to permit p53 stabilisation.

Tao and Levine, 1999. 
Weber et al., 1999. 
Bemardi et al., 2004.

HIF-la
(Mouse)

pl9ARF In normoxic cells the a-subunit of HIF-1 is sequestered in the nucleolus. Upon hypoxic 
stress it is released to bind its [3-subunit binding partner to form HIF-1.

Fatyol and Szalay, 2001.

VHL
(Human)

Unknown The ubiquitin ligase VHL is nucleoplasmic in resting ceils and targets the alpha subunit of 
hypoxia-inducible factor-1 (HIF-la) for proteolysis. However under hypoxic conditions, 
VHL is sequestered in the nucleolus and HIF-1 is stabilised.

Mekhail et al., 2004.

Hsp70
(Mouse)

Unknown Hsp70, an inhibitory chaperone of Hsfl, is nucleoplasmic in resting cells and prevents Hsfl 
from binding Hsf2. Upon heat shock, Hsp70 is recruited to the nucleolus to allow Hsfl-Hs£2 
interaction, stress granule formation and the heat shock response.

Alastalo et al., 2003.

RelA
(Mouse)

pl9ARF, B23, Nfbp DNA damage recruits RelA, a component of NFkB, to the nucleolus. This prevents its 
binding cytoplasmic p50 to form NFkB and results in apoptosis. In response to mitogenic 
cytokines, RelA is released from nucleoli to form NFkB and this promotes cell proliferation.

Stark and Dunlop, 2005.

Telomerase
(Human)

Nucleolin Telomerase is sequestered in an inactive state in the nucleolus during most of the cell cycle, 
but is released at the onset of telomere replication in late S-phase. Interestingly, the nucleolar 
localisation of telomerase is neither detected in transformed cells nor in cells that have 
experienced DNA damage.

Wong et al., 2002. 
Khurts et al., 2004.
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Once considered a simple ribosome biosynthesis factory, the eukaryotic 

nucleolus is now recognised as a major orchestrator of numerous cellular functions 

(reviewed by Pederson, 1998; Boisvert et al., 2007). This is supported by the 

surprisingly wide range of factors recently discovered in the nucleolus by proteomic 

analysis (Andersen et al., 2002; Scherl et al., 2002; Andersen et al., 2005). Our 

study supports previous studies that implicate the organelle as a molecular ‘safe’ or 

‘sink’ that temporarily stores factors in an inactive state until a specific cell cycle 

stage or the occurrence of a certain metabolic state. Compartmentalisation of 

proteins within the cytoplasm (Beg et al., 1992; Chen et al., 1996; Kraut et al., 

1998), or within PML bodies (Goodson et al., 2001) has also been reported. The 

nuclear lamina has also emerged as a major site for the sequestration of transcription 

factors, including c-Fos, Oct-1 and pRb, whose release into the nucleoplasm from 

the nuclear periphery coincides with an up-regulation of their target genes (Imai et 

al., 1997; Johnson et al., 2004; Ivorra et al., 2006).

However, despite these studies, the nucleolus stands out as likely being the 

organelle most suited for use as a sequestration centre for transcription factors. This 

organelle is the largest in the nuclear matrix, is highly-permeable and furthermore 

lacks a membrane (reviewed by Dundr and Misteli, 2001; Handwerger et al., 2005). 

These features would permit the storage of a stockpile of pre-existing protein that 

could be released, in response to cellular cues at a specific cell cycle stage or at a 

certain developmental time-point, without the need for transcriptional up-regulation 

or even nuclear import. That nucleoli are usually located at or near the nuclear 

envelope in higher eukaryotes, or otherwise connected to the nuclear envelope by a 

so-called ‘nucleolar canal’; reviewed by Hemandez-Verdun, 2006b), suggests that 

nucleolar sequestration may also regulate the activity of cytoplasmic proteins. In 

conclusion, our current study represent the most compelling evidence to-date that the 

nucleolus can act in this fashion as a subnuclear ‘sequestration centre’ in the 

physiological setting of cell fate determination.

Several studies have reported a flux of cell fate determinants between the 

nucleolus and nucleoplasm. In many cases the subcellular localisation of these 

factors correlates with the status of the cell, namely whether it continues to 

proliferate or commits to differentiate (Galcheva-Gargova et al., 1998; Gao and

237



Chapter 6

Scott, 2002; Tsai and McKay, 2002; Kuroda et al., 2004). For example, the nucleolar 

Rbml9 RNA-binding factor is expressed throughout the undifferentiated murine 

embryonic gut tube but restricted in the adult to stem cells residing in the duodenal 

crypts of Lieberkiihn. This assumes a cell-wide distribution to promote intestinal 

epithelial differentiation (Lorenzen et al., 2005). Another example concerns the 

bHLH-Zip transcription factor c-Myc, which has been localised to the nucleolus in 

several studies (Schlosser et al., 2003; Datta et al., 2004; Arabi et al., 2005; Sanders 

and Gruppuso, 2005). This is only released from p l9 ARF-dependent nucleolar 

anchorage to reach its nucleoplasmic heterodimerisation partner Max if  quiescent 

adult hepatocytes are induced to re-enter the cell cycle during liver regeneration after 

partial hepatectomy (Sanders and Gruppuso, 2005). Similarly the testis-specific 

transcription factor ZPF106 is released from the nucleolus during terminal 

differentiation of C2C12 myoblasts as levels of its sequesteror TSG118 diminish 

(Grasberger and Bell, 2005). Translocation from the nucleolus to the nucleoplasm of 

CTCF is also accompanied by differentiation of human myeloid cells and rat 

neuroblasts into neurones (Torrano et al., 2006). Finally, Nucleostemin, a putative 

p53 regulator that resides in the nucleolus of several stem cell types, is similarly 

down-regulated and/ or released into the nucleoplasm during their terminal 

differentiation (Tsai and Mackay, 2002).

Despite these examples, we are nevertheless the first to report that the 

nucleolar sequestration and release of a protein can control the commitment o f stem 

cells by effects outside of the nucleolus. That is, the change in subcellular 

localisation of many of the aforementioned nucleolar cell fate determinants affects 

the process of ribosome biogenesis with ultimate effects on cell fate. For example, 

nucleolar CTCF silences rDNA transcription (Torrano et al., 2006) and nucleolar 

p l9 ARF targets the rRNA processing factor B23 for degradation through 

ubiquitination (Itahana et al., 2003; Sugimoto et al., 2003; Bertwistle et al., 2004). 

In both cases, this coincides with cell cycle arrest, entry into the quiescent state and 

concomitant differentiation. Conversely, c-Myc promotes cell proliferation by 

facilitating rDNA transcription and rRNA processing (Schlosser et al., 2003; Arabi 

et al., 2005). Furthermore, even proteins whose localisation in the nucleolus has 

been attributed to their negative regulation by nucleolar sequestration have 

secondary, traditionally-nucleolar roles. For example, Cdcl4 contributes to the
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organisation of nucleolar chromatin and aids nucleolar segregation at mitosis (de 

Almeida et al., 1999). Similarly, Pch2, whose sequestration in the nucleolus is 

thought to play a role in the meiotic pachytene checkpoint, represses rDNA 

recombination (San-Segundo and Roeder, 1999). Additionally, the growth factor 

Fgf2 regulates ribosomal biogenesis (Sheng et al., 2005). We believe, however, that 

Handl is unlikely to have a role in ribosome biogenesis. Handl is tissue-specific and 

the components required for ribosomal biogenesis are thought to be uniform across 

cell types (reviewed by Fatica and Tollervey, 2002; Tschochner and Hurt, 2003). 

Thus, Handl nucleolar residence is likely solely explained by its negative regulation 

by HICp40. Its nucleolar localisation is thus the strongest evidence yet that the 

organelle can, in some cases, act solely as a subnuclear ‘sequestration centre’.

6.5. Extrapolating our findings to human 

placentation

So what are the implications of our findings for the understanding of human 

placentation? Unfortunately it is unlikely that the role we propose for Handl in 

determining rodent TS cell fate is conserved in humans. As discussed in Chapter 1 

(section 1.2), the placenta is evolutionary a young organ. As such, the process of 

decidual invasion and the molecular mechanisms underlying it are in many cases 

very different between mammalian species (reviewed by Georgiades et al., 2002 

and Malassine et al., 2003). Moreover, HAND1 is not thought to be essential for the 

differentiation of the human counterpart of rodent TG cells, the extravillous 

trophoblast (EVT) (Knofler et al., 1998; Janatpour et al., 1999; Loregger et al., 

2003; Meinhardt et al., 2005). Strikingly, human EVT cells, the equivalent invasive 

trophoblast subtype to rodent TG cells, do not undergo endoreduplication. This 

notably represents circumstantial evidence that murine Handl is required for mitotic 

cell cycle exit at the onset of TG cell differentiation. Finally, many examples of 

protein regulation dependent on nucleolar sequestration are poorly conserved, even 

between mammals (Zhang and Xiong, 1999).

Our results do, however, confirm the findings of previous studies in
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demonstrating that hypoxia has a negative effect on Rcho-1 TG cell differentiation 

(Gultice et al., 2006; Lash et al., 2007; Takeda et al., 2007). This has implications 

for the understanding of the molecular basis of pre-eclampsia. Pre-eclampsia occurs 

in up to 10% of all human pregnancies and is characterised by inadequate invasion 

of trophoblast into the maternal decidua (reviewed by Redman and Sargeant, 2005; 

Sibai et al., 2005; reviewed in Chapter 1, section 1.2.2.4). Our data, in combination 

with the work of others, strongly support the hypothesis that hypoxia inhibits the 

activation of critical factor(s) involved in the differentiation of invasive rodent 

trophoblast (Gultice et al., 2006; Lash et al., 2006; Takeda et al., 2007). This may 

include Handl, but appears to be independent of its nucleolar release. In any case, 

our data support the idea that pathologically-prolonged hypoxic conditions during 

placentation could give rise to pre-eclampsia or other defects.

6.6. Ongoing and future studies

It remains to be determined whether the nucleolar sequestration of Handl by 

HICp40 and its release upon Plk4-dependent phosphorylation regulates its 

biological activity in other key lineages in which a requirement for Handl function 

has been demonstrated, most notably the developing heart. Investigating how the 

cardiac function of Handl is controlled has proven difficult in vivo, due to early 

embryonic lethality following Handl loss-of-function. Furthermore, few cardiac 

cell lines exist, precluding in vitro analysis of Handl function. In this section we 

address ongoing studies in the cardiomyocyte lineage to determine whether 

nucleolar sequestration and/ or release of Handl is a more widespread mechanism 

o f regulating its activity during embryogenesis.

6.6.1. Ongoing and future in vitro studies

As described in Chapter 3 (section 3.2.2), Handl-EGFP localises to the 

nucleoli o f H9c2 cells, a rat ventricular cardiomyocyte cell line. This suggests that 

the underlying molecular mechanisms responsible for Handl nucleolar anchorage 

are retained in at least one cardiac cell model. However, this cell line is terminally-
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differentiated and so the potential o f its use in vitro to assess the functional 

significance o f  Handl nucleolar sequestration during cardiomyocyte differentiation 

is limited. We have, in this regard, also observed Handl-EGFP nucleolar 

localisation in subtypes o f  embryonic carcinoma (EC) and embryonic stem (ES) cell 

lines, cells that can be induced to differentiate into derivatives o f all three primary 

germ layers, including cardiomyocytes (Figure 6.4).

^■9mm
Figure 6.4. Handl-EGFP localises to the nucleoli o f embryonic carcinoma (EC) 

and embryonic stem (ES) cell lines.

Handl-EGFP localises to the nucleoli o f P19-CL6 cells, an EC cell line whose differentiation is 

modestly skewed towards the cardiomyocyte lineage (Habara-Ohkubo, 1996; a). Handl-EGFP also 

localises to the nucleoli o f an ES cell line that endogenously expresses EGFP upon their 

differentiation into Nkx2.5-expressing cardiomyocytes (Wu et al., 2006; b).

Studies suggest that the process o f  ES cell differentiation into EBs in vitro 

faithfully models the molecular changes that accompany fetal cardiomyocyte 

differentiation in the developing heart in vivo (Maltsev et al., 1993; Doevendans et 

al., 2000). Despite this, a study in the HM1 ES cell line suggests that 

cardiomyocytes that differentiate in vitro are not mature cardiomyocytes, but 

instead, in terms o f electrophysiological characteristics and gene expression, more 

closely resemble those o f  the early primary myocardium o f  the embryonic heart 

tube (Fijnvandraat et al., 2003). Despite the results o f  this study, it is likely that 

different ES cell lines exhibit variation in behaviour and gene expression patterns. 

ES cells in culture are derived from the inner cell mass (ICM) o f  developing 

blastocysts. When maintained in an undifferentiated state by culturing in the 

presence o f  leukemia inhibitory factor (LIF), they are able to undergo proliferative 

self-renewal. However, by removing LIF from the culture medium, ES cells in
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suspension spontaneously differentiate into embryoid bodies (EBs), three- 

dimensional floating cell aggregates. EBs comprise many different specialised cell 

types derived from the three germ layers of the developing embryo, namely the 

endoderm, ectoderm and mesoderm. Importantly for our study, EBs can contain 

beating cardiomyocytes, located between an epithelial layer and a basal layer of 

mesenchymal cells (Risebro et al., 2006).

ES cells provide the best available model system in which to study the 

molecular basis of cardiomyocyte differentiation in vitro (reviewed by Boheler, 

2002). Indeed, they have previously been employed to interrogate aspects of Handl 

regulation and function in vivo (Riley et al., 2000; Smart et al., 2002; Risebro et al., 

2006). However, the percentage of ES cells that differentiate into cardiomyocytes in 

culture is generally very low (reviewed by Boheler et al., 2002). A transgenic ES 

cell line, generously provided by Sean Wu, was in this regard chosen for further 

study. Wu and colleagues introduced a 2.1 kb enhancer fragment o f the early cardiac 

differentiation marker Nkx2.5, as well as 500bp of Nkx2.5 basal promoter, upstream 

of the EGFP cDNA into CJ7 ES cells (Wu et al., 2006). Using this transgenic ES 

cell line, differentiated cardiomyocytes, which express Nkx2.5, can therefore be 

distinguished and isolated by virtue of EGFP fluorescence (Movie 6.1, Appendix 

10).

Initially, we sought to investigate at which time-point the Handl protein 

became detectable during the differentiation of these transgenic ES cells into 

cardiomyocytes. In agreement with previous studies (Riley et al., 2000; Risebro et 

al., 2006), western blot analysis using an anti-Hand 1 antibody revealed that Handl 

was absent in ES cells (data not shown) and was low in cells differentiated for 4 

days (Figure 6.5). Handl protein levels had increased by 6 days after the onset of 

differentiation and persisted at high levels until day 10. After this period, the 

amount o f Handl protein reduced (Figure 6.5). Consistent with these observations, 

we could neither detect Handl via immunostaining in stem cells nor in cells 

differentiated for 4 days (data not shown).
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Figure 6.5. Handl is endogenously expressed in transgenic in vitro- 

differentiated cardiomyocytes.

Western blot analysis using an anti-Handl antibody and whole-cell transgenic ES cell lysates shows 

that, during a time-course o f differentiation over 14 days, Handl appears in EGFP-cxpresslng 

cardiomyocytes at the day 4-6 period (post-LIF removal) and persists until day 10, after which 

period its levels decline.

We then carried out immunostaining o f  cardiomyocytes, dissociated from 

EBs differentiated for 6 and 8 days, namely the time-points at which Handl levels 

are maximal. However, this has so far given spurious results. A peri-nuclear signal, 

seemingly for endogenous Handl, was observed in fluorescent cardiomyocytes 

(Figure 6.6). Although this pattern was seen in some Rcho-1 TG cells (Chapter 4, 

Figure 4.5a), suggesting its reliability, cells in these cultures that lacked detectable 

EGFP expression also exhibited this pattern. Since these cells were unlikely to be 

Handl-positive cardiomyocytes, this signal is likely non-specific. This result was 

independent o f  fixation method, antibody concentration and source. Currently, we 

are attempting to perform in situ hybridisation analyses with the anti-Handl 

antibody. This will allow us to analyse the subcellular localisation o f  Handl during
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cardiomyocyte differentiation o f  these transgenic ES cells without the need for 

immunofluorescence and may eliminate non-specific signals.

Figure 6.6. A non-specific peri-nuclear pattern for H andl in EGFP-expressing 

cardiomyocytes differentiated for 8 days.

Populations o f transgenic ES cells were differentiated for 8 days by removing LIF from the culture 

medium and EBs were dissociated to isolate individual cardiomyocytes. After fixing, 

immunostaining with an anti-Handl antibody revealed a peri-nuclear pattern in cells with (a), but 

also in cells without (b), EGFP fluorescence.

In light o f  our inability to detect a specific signal for Handl by 

immunostaining EGFP-expressing cardiomyocytes, we harvested EBs differentiated 

over a 12 day time-course and performed western blot analysis on whole-cell 

lysates subtracted for the nucleolar fraction. Although FACS sorting was considered 

in order to isolate fluorescent cardiomyocytes, Handl expression is likely restricted 

to only those ES-derived cells that differentiate along the cardiomyocyte lineage. 

Thus whole EBs were harvested for use in this assay. In contrast to the results we 

obtained using Rcho-1 cell lysates subtracted for the nucleolar fraction (Chapter 4, 

Figure 4.6), the relative amounts o f Handl we observed in the non-nucleolar ES cell 

lysates at each time-point mirrors those observed in the whole-cell ES cell lysates at 

each time-point in Figure 6.5 (data not shown). This suggests that following an up- 

regulation in Handl at approximately day 6 post-differentiation induction, Handl is 

immediately, or very soon after becomes, nuclear-wide.
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This result suggests that Handl may be released almost immediately after its 

nucleolar sequestration during cardiomyocyte differentiation. Ongoing studies seek 

to investigate this by analysing a more detailed time-course of differentiation, 

particularly between the fourth and sixth days post-differentiation induction, during 

which period we observe the most dramatic increase in Handl levels. However, 

overall, the results described in this chapter suggest that Handl is not regulated via 

nucleolar sequestration during cardiomyocyte differentiation in vitro. Unlike the 

onset of differentiation of TG cells, which is marked by immediate mitotic cell 

cycle exit and endocycle entry, cardiomyocyte differentiation is not thought to 

initiate so abruptly and is a more gradual multi-step process. Taking this into 

account, Handl protein may not need to be stored in an inactive state in ES cells 

with a view to being instantaneously activated at a specific developmental time- 

point. Thus Handl up-regulation may be sufficient to regulate Handl activity 

during cardiomyocyte differentiation in vitro. In any case, we are currently 

modifying the transgenic ES cells used in the assays described in this chapter to 

stably express a Handl-dsRed fusion protein. This will enable us to analyse changes 

in the subcellular location of Handl during ES cell differentiation into EGFP- 

expressing cardiomyocytes.

6.6.2. Ongoing and future in vivo studies

As illustrated in Chapter 3 (Figure 3.7), whole-mount in situ hybridisation 

using a probe for full-length HICp40 demonstrated that the murine orthologue is 

expressed in the left ventricle and outflow tract. These are regions of the developing 

heart in which Handl is endogenously co-expressed, as reviewed in Chapter 1 

(section 1.3.2.2). Thus HICp40 is expressed in the right place and at the right time 

to negatively-regulate Handl activity by nucleolar sequestration during murine 

cardiac morphogenesis.

In light of the MICp40 expression pattern, it would be interesting to generate 

a mouse model lacking MICp40 expression in cardiac tissues. This has been 

considered, and would be carried out by electroporating a construct with similarity 

to the RNAi vector used in this study, namely based on the described HI
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polymerase III shRNAi (Kunath et al., 2003). In this vector, the 5T termination 

sequence, preceding the relevant RNAi hairpin sequence, is flanked by loxP 

sequences. Using this approach, it would not be necessary to target the endogenous 

locus; the construct would be present but inactive in all cells, but RNAi knock

down of HICp40 would only occur upon cre-recombination of the 5T termination 

sequence. Furthermore, an EGFP reporter gene has been incorporated between the 

loxP sequences, which would mark cells transfected with the conditional vector. 

Initially the construct would be extensively tested in vitro, namely by inducing cre- 

recombination in stably-transfected cells and assessing EGFP expression. Floxed 

MICp40 shRNA mice would be crossed with two knock-in strains of cardiac- 

specific ere recombinase-QXpressing mice already in house, namely Mlc2v-creKI 

mice (provided by Ken Chien) and Mx2.5-creKI mice (provided by Robert 

Schwartz). Hearts of embryos derived from such matings would then be analysed 

between E8.0-E10.5 and cardiomyocytes immunostained to assess the subcellular 

localisation of Handl.

On the basis of our findings in the trophoblast lineage, and assuming 

MICp40 plays a similar role in negatively-regulating Handl activity during cardiac 

morphogenesis, conditional MICp40-nu\\ mice would be predicted to exhibit a gain- 

of-function Handl cardiac phenotype. This would likely result in OFT extension 

and LV abnormalities, as recently reported in a mouse over-expressing Handl in its 

‘native’ (endogenously-expressed) tissues (Risebro et al., 2006). Interestingly, the 

study by Risebro and co-workers implicated Handl in governing the balance 

between cardiac precursor cell (CPC) proliferation and differentiation. Specifically, 

whilst down-regulation of Handl during normal cardiac morphogenesis permits 

CPC cell cycle exit and differentiation, CPCs over-expressing Handl are hyper- 

proliferative, which results in distal OFT hyperplasia and thus extension (Risebro et 

al., 2006; reviewed in Chapter 1, section 1.3.2.2). In view o f the function for Handl 

in governing TS cell fate, it may be the case that excess Handl protein in these 

CPCs is responsible for their hyper-proliferation and the mechanism for this may be 

retention of Handl in the nucleolus. This hypothesis is supported by the fact that 

Handl, presumably nucleolar, is required for proliferation of diploid trophoblast in 

the EPC (Riley et al., 1998). To address this question we have prepared 

cryosections of H andl-overexpressing E9.5 mouse hearts. We hope to conduct
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immunostaining and/ or in situ hybridisation analysis to investigate the subcellular 

localisation of Handl in cells of the presumptive OFT and LV, and analyse whether 

the relative proportions of nucleolar versus nuclear-wide Handl differ with respect 

to wild-type hearts at the same developmental stage.

In light of the findings of this study in the rodent trophoblast lineage, a non

conditional MICp40-nu\\ mouse model would be equally interesting. On first 

consideration, and in light of the role we demonstrate for the rat orthologue of 

HICp40 in rodent trophoblast, we would predict that this mouse would phenocopy 

certain aspects of the Mash2-deficient mouse (Guillemot et al., 1994). As discussed 

in Chapter 1 (section 1.2.4.2), Mash2 plays a complementary role to Handl during 

trophoblast differentiation in that it maintains TS cell diploidy through an as-yet 

uncharacterised mechanism. Mash2-null mice are appropriately embryonic lethal at 

E7.0 as a consequence of precocious TG cell differentiation (Guillemot et al., 

1994). This phenotype would be predicted to apply also to a loss-of-function 

MICp40 (that is, gain-of-function Handl) mouse. In the absence of its nucleolar 

sequesteror, Handl, which promotes TG cell differentiation, would likely be 

ectopically nuclear-wide and could thus promote mitotic cell cycle exit. That said, a 

simple lack of Handl nucleolar sequestration may not precede its normal, nuclear 

function. One possible reason for this is that Plk4-dependent phosphorylation of 

Handl, which not only promotes Handl nucleolar release but also enhances the 

affinity of Handl for its nuclear E-factor binding partners (Firulli et al., 2003), only 

occurs during a narrow developmental window during placentation.

In conclusion, further work is needed to investigate whether nucleolar 

sequestration modulates the activity of Handl in the cardiomyocyte lineage. 

Although our preliminary data suggest that nucleolar sequestration is unlikely to 

control Handl activity during cardiomyocyte differentiation in vitro, further 

experiments will be needed to rule this out in vivo. Additional studies are also 

required to investigate whether Handl activity is regulated by nucleolar 

sequestration in other lineages in which it is expressed during development, namely 

the developing limb, gut and autonomic nervous system. It is entirely possible, 

however, that Handl regulation via nucleolar sequestration is a tissue-specific 

mechanism and restricted exclusively to the rodent trophoblast lineage.
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APPENDICES 

APPENDIX 1. Reagents

All reagents were of AnalaR grade and were obtained from Sigma Aldrich or 

Gibco (Invitrogen) unless otherwise stated. Solutions were made using Milli-Q- 

purified dl-bO and autoclaved where appropriate. The reagents are listed below.

1. Construction of plasmids

•  1% agarose gel: lg  agarose, 1ml lOxTBE running buffer (25mM EDTA 

pH8.0 (186.lg  EDTA, 20g NaOH, 1.01 dH20)), 0.9M Tris/ HC1 pH 8.0 

(121.lg TRIZMA™ base (Tris), 42ml c.HCl, 1.01 dH20), 0.9mM Boric 

Acid), 9ml dH20, 0.5pg/ml ethidium bromide.

• lOx TE: lOOmM Tris-HCl (pH 8.0), lOmM EDTA.

•  Ampicillin: Ampicillin (200mg) was dissolved in 4ml dH20 (final 

concentration 50mg/ml), filtered (using a 0.22pm Millipore filter (Waters, 

Harrow, Middx, U.K)) using a 5ml syringe, before being stored at -20°C.

• Annealing Buffer: 0.25mM TE pH8.0 (lOmM Tris/ HC1 pH 8.0, ImM 

EDTApH8.0), lOOmM NaCl.

• Gel loading solution: 0.5% bromophenol blue, 0.5% xylene cyanol, 50% 

FicolUoo-

•  Kanamycin: Kanamycin (150mg) was dissolved in 10ml dH20 (final 

concentration 15mg/ml) filtered (using a 0.22pm Millipore filter (Waters, 

Harrow, Middx, U.K)) using a 5ml syringe, before being stored at -20°C.

•  LB/ agar plates: 15g bacto-agar (Difco) was added to 1 litre LB and this 

was autoclaved. After setting, the LB-Agar mix was heated in a microwave 

to melt, allowed to cool and supplemented with either 50pg/ml ampicillin or 

15pg/ml kanamycin (1:1000), poured into bacteriological plates and allowed 

to set at room temperature. Plates were then stored at 4°C.

•  Luria broth (LB): lOg NaCl, lOg Bacto-Tryptone (Difco) and 5g Bacto- 

Yeast Extract (Difco) were dissolved in 1 litre dH20 and this was autoclaved.

•  Pfu  polymerase PCR reaction mixtures: solution A (lOOmM dNTP mix,
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15mM Pfu Buffer, 50% glycerol, lOpmol of each primer, lOng template); 

solution B (20mM Pfu buffer, 10 units Pfu DNA polymerase).

•  TELT plasmid preparation solution A: 500pl 50mM Tris pH 8.0, 400^1 

4% Triton X-100, 5ml 2.5M LiCl, 1.25ml 62.5mM EDTA, 2.85ml dH20.

2. Cell culture

• 0.1% gelatin: lg  gelatin in 1.01 dH20, autoclaved.

• Cell culture (3-galactosidase assay buffer: 2xp-gal assay buffer (0.2M 

sodium phosphate (pH 7.4), 2mM magnesium chloride, 0.1M p- 

mercaptoethanol, 1.5mg/ml ONPG).

• H9c2/ MEF medium: DMEM + GlutaMAX, 10% Foetal Bovine Serum, 

1% (lOOmg/ml) Penicillin-Streptomycin Mix.

• NIH-3T3 medium: DMEM + GlutaMAX, 10% Bovine Calf Serum, 1% 

(lOOmg/ml) Penicillin-Streptomycin Mix.

• NP-40 lysis buffer: 25mM Tris-HCl (pH 8.0), 120mM NaCl, 0.5% NP-40, 

4mM NaF, lOOpM NasV0 4 , ImM PMSF, lOOpg/ml aprotinin, 10p.g/ml 

leupeptin.

• P19-CL6 medium, maintains P19-CL6 stem cell proliferation: MEM

Alpha + GlutaMAX, 10% Foetal Bovine Serum, 1% (lOOmg/ml) Penicillin- 

Streptomycin Mix.

• P19-CL6 medium, promotes P19-CL6 EC cell differentiation: MEM

Alpha + GlutaMAX, 10% Foetal Bovine Serum, 1% (lOOmg/ml) Penicillin- 

Streptomycin Mix, 1% dimethyl sulphoxide (DMSO).

• Rcho-1 medium, maintains stem cell proliferation: NCTC-135, 20% 

Foetal Bovine Serum, 1% (lOOmg/ml) Penicillin-Streptomycin Mix, 1% 

Sodium Pyruvate, lOOpM P-mercaptoethanol solution.

• Rcho-1 medium, promotes TG cell differentiation: NCTC-135, 10% 

Horse Serum, 1% (lOOmg/ml) Penicillin-Streptomycin Mix, 1% Sodium 

Pyruvate, lOOpM (3-mercaptoethano 1 solution.

•  RIPA buffer: 50mM Tris-HCl (pH7.6), 150mM NaCl, 1% NP-40, 0.5% 

DOC, 0.1% SDS, 0.0ImM PMSF (in isopropanol), ImM DTT, lx  protease 

inhibitors (added fresh).

• Transgenic ES stem cell medium, maintains stem cell proliferation:
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DMEM + GlutaMAX, 15% ES-qualified FCS, 1% (lOOmg/ml) Penicillin- 

Streptomycin Mix, 1% non-essential amino acids, ImM sodium pyruvate, 

lOOpM p-mercaptoethanol solution, 103 units/ml ESGRO™ {Chemicon).

•  Transgenic ES stem cell medium, promotes differentiation: DMEM + 

GlutaMAX, 15% ES-qualified FCS {Chemicon), 1% (lOOmg/ml) Penicillin- 

Streptomycin Mix, 1% non-essential amino acids, ImM sodium pyruvate, 

lOOpM p-mercaptoethanol solution.

• Trophoblast stem cell medium: RPMI1640 (pH 7.2), 20% Foetal Bovine 

Serum, 1% L-glutamine, 1% Sodium Pyruvate, 25ng/ml Fgf4 (.Peprotech), 

lpg/ml heparin, 1% (lOOmg/ml) Penicillin-Streptomycin Mix, lOOpM p- 

mercaptoethanol.

3. Yeast two-hybrid assay

• Yeast complete medium (1.01): 20g bacto-peptone, lOg yeast extract, 50ml 

40% glucose, 10ml 0.2% adenine.

• Yeast lysis buffer: lOmM Tris-HCl (pH 8.0), 2% Triton X-100, 1% SDS, 

lOOmM NaCl, ImM EDTA.

•  Yeast minimal medium (1.01): 6.7g nitrogen base, 50ml 40%glucose, 10ml 

0.2% adenine, 10ml 0.2% uracil, 3m 1% lysine.

• Yeast plates: appropriate medium containing 20g agar.

4. In vitro-translation and GST pull-down assay

• Binding buffer: 20mM Tris-HCl pH8.0, lOOmM NaCl, ImM EDTA, 0.5% 

NP-40, protease inhibitor cocktail {Roche’, added fresh).

5. Whole mount in situ hybridisation

•  Hybridisation buffer: 50% formaldehyde, 1.3x SSC (pH5.3 with citric 

acid), 5mM EDTA pH8.0, 50pg/ml yeast RNA, 0.002% Tween-20, 0.005% 

CHAPS, lOOmg/ml heparin in dH20.

•  NTMT: lOOmM Tris-HCl pH9.5, lOOmM NaCl, 50mM MgCl2, 0.05% 

Tween-20.
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6. Luciferase assay

• 2xp~Gal assay buffer: 0.2M Sodium Phosphate, 2mM Magnesium 

Chloride, 0.1M p-mercaptoethano 1, 1.5mg/ml O-Nitrophenyl-p-D- 

galactopyrano side.

• Luciferase cell culture lysis buffer: 25mM Tris (pH7.8), 2mM DTT, 2mM 

l,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid, 10% glycerol, 1% 

Triton X-100.

7. RNA extraction and RT-PCR

Reagents were provided in the Micro-FastTrack™ 2.0 kit from Invitrogen.

•  Binding buffer: 500mM NaCl, lOmM Tris-HCl pH7.5 in dH2 0 .

• Elution Buffer: lOmM Tris-HCl pH7.5 in dH2 0 .

• M icro-FastTrack™  2.0 Lysis Buffer: 1ml Stock Buffer + 20pl Protein/ 

RNase degrader (proprietary mix of proteases; added fresh).

• Stock buffer: 200mM NaCl, 200mM Tris-HCl pH7.5, 1.5mM MgCl2, 2% 

SDS.

8. Northern blot analysis

Reagents were provided in the NorthemMax™ Formaldehyde based system kit

from Ambion.

•  High stringency wash solution: O.lxSSC (2 0 x: 3xNaCl, 0.3M sodium

citrate pH7.0), 0.1% SDS.

• Low stringency wash solution: lxSSC, 0.1% SDS.

• MOPS gel running buffer (lOx): 200mM MOPS (3-[N-

Morpholino]propanesulphonic acid), 50mM sodium acetate, lOmM EDTA.

9. Western blot analysis

• lxR unning Buffer: 25mM Tris-HCl, 192mM Glycine, 0.4% SDS

• lxT ransfer Buffer: 25mM Tris-HCl, 192mM Glycine, 0.4% SDS, 20% 

Methanol.

• lOxTBS: 250mM Tris-HCl pH 8.0, 50mM KC1, 25mM NaCl.

• 2xLaemelli Buffer for SDS-PAGE (5% P-mercaptoethanol added fresh):
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250mM Tris-HCl pH6 .8 , 4% SDS, 25% glycerol, 0.1% bromophenol blue

• Blocking buffer: 5% non-fat milk {Marvel) in TBS with 0.05%Tween-20.

• Gel loading solution: 250mM Tris-HCl pH 6 .8 , 4% SDS, 25% glycerol, 

0.1% bromophenol blue, 5% P-mercaptoethanol (added fresh).

•  SDS-PAGE Resolving Gel (10%; component volumes per 10ml gel): 

3.33ml 30% acrylamide {National Diagnostics), 50 j l x 1 20% SDS, 3.75ml 1M 

Tris pH8 .8 , 2.82ml dH2 0 , 3.3pl Temed, 50pl 20% ammonium persulphate 

(Amps). Once the resolving gel was poured, a layer of dH2 0 -saturated 

isobutanol was placed on top to prevent air from blocking the 

polymerisation process.

• SDS-PAGE Stacking Gel (8 %; component volumes per 5ml gel): 1.33ml 

30% acrylamide, 25pl 20% SDS, 0.625ml 1M Tris pH6 .8 , 3ml dH2 0 , 5pl 

Temed, 25pi 20% ammonium persulphate (Amps)

• Stripping buffer: 70mM Tris-HCl pH 6 .8 , 2% SDS, lOOmM p- 

mercaptoethanol

• TEST: 0.05% Tween-20 in 1 xTBS.

• Wash buffer: 0.5% Tween-20 in lxTBS

10. Im mu noprecipitation

Reagents were provided in the a-FLAG M2 antibody kit from Sigma.

•  Lysis buffer: 50mM Tris HC1 (pH7.4), 150mM NaCl, ImM EDTA, 1% 

Triton X, 0.1MPMSF,

11 .In vitro phosphorylation (kinase) assay

• Kinase Buffer: 50mM Hepes pH7.5, 5mM MgCH, ImM DTT

\2.Plk4-null embryo analysis

• lOxPBS: 1.37M NaCl, 27mM KC1, 43mM Na2 H P0 4 .7H2 0 , 14mM 

KH2 PO4 , treated with DEPC.

•  Eosin stain: 0.2% eosin Y in 95% ethanol.

•  Mayer’s Haematoxylin: 50g potassium alum, 0.2g sodium iodate, l.Og 

citric acid, 50.0g chloral hydrate, 1.0g haematoxylin, made to 1.01 with dH2 0
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13.Embryoid body dissociation

• Enzyme medium: Low calcium medium supplemented with 1 mg/ml 

collagenase B {Roche) and 30pM CaCl2

• KB medium: 85mM KC1, 30mM K2 HPO4 , 5mM MgS0 4 , ImM EGTA, 

5mM sodium pyruvate, 5mM creatine, 20mM taurine, 20mM glucose, 2mM 

Na2ATP in dH2 0.

•  Low calcium medium: 120mM NaCl, 5.4mM KC1, 5mM MgS0 4 , 5mM 

sodium pyruvate, 20mM Taurine, lOmM Hepes/NaOH pH6.9 in dH2 0.

APPENDIX 2. PCR Primers

The melting temperature (Tm) of an oligonucleotide primer can be 

determined from the equation Tm=2AT+4GC, where AT is the number of AT base 

pairs and GC the number of GC base pairs. The annealing temperature in a PCR is 

set at 5°C less than the Tm of the primers. All primers were ordered from Sigma 

Aldrich (www.Sigma-Aldrich.com). were received as lyophilised powder and were 

re-suspended in dH20 to 10jag/pl and then to a working concentration of O.lpg/pl.

•  Colony PCR {HICshRNAl). forward (5 ’- ATCCTTCAGCTGGTGAACT-3 ’); 

reverse (5’- ATTCGCGCTAGGTTGATTC -3’).

• Colony PCR (HICshRNA2): forward (5 ’ -AGTCCAGCTTGTCTGTAAA-3 9); 

reverse (5’- ATT CGCGCT AGGTT GATT C -3’).

• Colony PCR (Plk4shRNAl): forward (5 ’ - AC AGAG ATTT CC AGG ACT A-3 ’); 

reverse (5’- ATT CGCGCT AGGTT GATT C -3’).

• Colony PCR (Plk4shRNAl): forward (5 9- ATACTGGCGGAAAATATCA-3 ’); 

reverse (5’- ATT CGCGCT AGGTT GATT C -3’).

• HICshRNAl: 5 9 - AAT CCTT C AGCT GGT G AACTT-3 9.

• HICshRNA2. 5 9 -C AGT CC AGCTT GT CT GT AAAC A-3 9.

•  MICp32 IMAGE clone amplification: forward (5’-

T AT GCGAT CGAT AGCT AGG A-3 ’); reverse (5 ’-

GAT AGCGCT AGGCGG AT CG-3 ’).

• MICp32 RT-PCR: forward (5 9 -GAGCAGCAGTGCCCGGTCGA-3 ’); reverse 

(59 -CT GAT GT CT GGAGTT G AGGC-3 ’)•
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• MICp40 BAC amplification: forward (5’-

CGGGGT ACCGCTT CCCT GGGGC ATT CCT-3 ’); reverse (5’-

CTT GGC AT CCCCCCGT GGGCT GT-3 ’).

• MICp40 RT-PCR: forward (5 ’ -GG AGT GGT C AGGCT GCC AGG-3 ’); reverse 

(5 ’ - AGCGAGGGCTT C ACCCGCGC-3 ’).

• Murine H andl (wild-type and mutant) amplification for cloning: forward 

(5 ’ -CCGG A ATT CT GT CCA AC AT GA ACCT CGT GGGC-3 ’); reverse (5’- 

CGGGGT ACCGT CT GGTTT AGCT CC AGCGCCC A-3 ’).

• Murine H andl bHLH domain amplification for cloning: forward (5’- 

CCGG AATT CT GT CCA AC AT GCG AA AAGGCT C A-3 ’); reverse (5 ’ - 

CGGGGT ACCGTT CCTT GGCC AGC ACGT CC AT C-3 ’).

• Murine H andl histidine-rich stretch (and flanking sequence) amplification 

for cloning: forward (5 ’ -CCGG AATT CT GT CC AAC AT G AGCT ACGC AC AT - 

3’); reverse (5’-CGGGGTACCGTTGCGGCGGGTGTGAGTGGTGA-3’).

• Murine Hand2 amplification for cloning: forward (5’-

CCGG A ATT CT GT CC AAC AT GAGT CT GGT GGGG-3 ’); reverse (5 ’ -

CGGGGT ACCCT GCTT G AGCT CC AGGGCCC AG A-3 ’).

• Murine Plk4 RT-PCR: forward (5 ’ -GTT GGTT GGGCT AC AC AGCT -3 ’); 

reverse (5 ’ -CT GAT GG AAG AT ACT CCT GC-3 ’)•

• Murine Tubulin RT-PCR: forward (5 ’ -T C ACT GT GCCT GAACTT ACC-3 ’); 

reverse (5 ’ -GG AAC AT AGCCGT A AACT GC-3 ’).

• Plk4- null embryo genotyping round 1 (mutant): forward (5’-

TTT AAAAGT GCCCGCT AGC-3 ’); reverse (5

AT CGCTT CTT G ACG AGTT C-3 ’).

• Plk4- null embryo genotyping round 1 (wild-type): forward (5’-

GCCCCC ACT AAG ACG AC-3 ’); reverse (5 ’ - AGCT GGGGCT CG ACT AG-3 ’) •

• Plk4- null embryo genotyping round 2 (mutant): forward (5*-

TTT AAAAGT GCCCGCT AGC-3 ’); (5 ’ - AAGCCT GGGG AT GT ACC-3 ’).

• Plk4-n\s\\ embryo genotyping round 2 (wild-type): forward (5*-

GCCCCCACTAAGACGAC-3’); reverse (5’-

TGCTAGT AAAT AATCCGAC AGG-3 ’).

• Plk4shR N A l: 5 ’ - AAC AG AG ATTTCC AGG ACT AT-3 ’.

• Plk4shRNA2: 5 ’ - AAT ACT GGCGG AAA AT AT C AGT-3 ’.
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A PP E N D IX  3. Position of  RNAi sequences

The oligonucleotides designed for RNAi analysis (listed in Appendix 2) are 

shown below to illustrate the dsRNA, comprising a 9-nucleotide hairpin loop, that 

is expected to form in vivo. Also shown are the positions within HICp40 and Plk4 

to which the RNAi oligonucleotides were designed. Please refer to Figures 3.1 and 

5.23b for further information regarding HICp40 and Plk4 protein structure.

HICshRNAH

Sense Antisense

ggtaccAATCCTTCAGCTGGTGAACTTttcaagagaAAGTTCACCAGCTGAAGGATTtttttggaaat
gTTAGGAAGTCGACCACTTGAA aagttcfctTTCAAGTGGTCGACTTCCTAAaaaaacctttagatc

GTG
ATG
(109) 173 179

II___
273 355

l-mfa domain HICp40

45 63 

NoLS

T T
246 252

HICshRNAi2

Sense Antisense

ggtaccCAGTCCAGCTTGTCTGTAAACAttcaagagaTGTTTACAGACAAGCTGGACTGtttttggaaat
gGTCAGGTCGAACAGACATTTGT aagtfctt ACAAATGTCTGTTCGACCTGACaaaaacctttagatc

Plk4shRNAi1

Sense Antisense

ggtaccAACAGAGATTTCCAGGACTATttcaagagaATAGTCCTGGAAATCTCTGTTtttttggaaat
gTT GTCGCT AAAGGTCC T GAT A aagttetct T ATC AGGACCTTT AGAGAC AAaaaaacctttagatc

12
I

265
I

Kinase domain

528 534 596 836 911

cry-pb l j [ jpb2 Plk4

705 711 847

Plk4shRNAi2

Sense Antisense

ggtaccAATACTGGCGGAAATATCAGTtteaagagaACTGATATTTCCGCCAGTATTtttttggaaat
gTTATGACCGCCTTTATAGTCA aag tfc tt TGACTATAAAGGCGGTCATAAaaaaacctttagatc
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APPENDIX 4. Handl fragment constructs

The two Handl fragment constructs were constructed as described in 

Chapter 2 (section 2.1), and are as follows. Please refer to Figure 1.1b for further 

information regarding Handl protein structure.

• bHLHnandi-EGFP: the isolated bHLH domain o f Handl fused to EGFP (Handl 

residues 93-147).

• Handlnis-EGFP: a fragment of Handl containing the N-terminal histidine-rich 

domain and the residues that immediately flank it (Handl residues 6-21).

APPENDIX 5: PCR Programs

All reactions used a PE Applied Biosystems GeneAmp® PCR System 9700.

1. RT-PCR 

1 cycle

• 10 minute incubation at 25 °C

• 50 minute incubation at 42°C

• 15 minute incubation at 70°C

2. 77/r/genom 

30 cycles

• Template denaturation: 30 second incubation at 94°C

• Primer annealing: 30 second incubation at 58°C

• PCR product extension: 45 second incubation at 72°C

3. Pjwgenom 

30 cycles

•  Template denaturation: 30 second incubation at 97.5°C

•  Primer annealing: 30 second incubation at 58°C

•  PCR product extension: 45 second incubation at 72°C
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APPENDIX 6. Antibodies

Primary antibodies are listed below with the employed respective

fluorescent-tagged (for immunostaining) or horse radish peroxidase-conjugated (for

immunoblotting) secondary antibody. Rhodamine-phalloidin (Molecular Probes)

was used at a final concentration of 5 units (165nM).

• a-B568 (/Strategene): used at a concentration of 1/500 for immunostaining 

(mouse-TRITC (Dako) at a concentration o f 1/50 used as the secondary 

antibody) and 1/2000 for immunoblotting (mouse-HRP (Amersham) at a 

concentration of 1/5000 used as the secondary antibody).

• a-C23 (a-Nucleolin; Santa Cruz): used at a concentration of 1/100 for 

immunostaining (rabbit-TRITC (Dako) at a concentration of 1/50 used as the 

secondary antibody) and 1/100 for immunoblotting (rabbit-HRP (Amersham) at 

a concentration of 1/5000 used as the secondary antibody).

• a-EGFP (Clontech): used at a concentration of 1/1000 for immunoblotting 

(mouse-HRP (Amersham) at a concentration of 1/5000 used as the secondary 

antibody).

• a-FLAG M2 (Sigma): used at a concentration of 1/700 for immunoblotting 

(mouse-HRP (Amersham) at a concentration of 1/5000 used as the secondary 

antibody).

• a-GAPDH (Chemicon): used at a concentration of 1/1000 for immunoblotting 

(mouse-HRP (Amersham) at a concentration of 1/5000 used as the secondary 

antibody).

• a-Handl (Abeam): used at a concentration of 1/300 for immunostaining 

(rabbit-FITC (Santa Cruz) at a concentration of 1/100 used as the secondary 

antibody) and 1/500 for immunoblotting (rabbit-HRP (Amersham) at a 

concentration of 1/5000 used as the secondary antibody).

• a-Handl C-terminus (Santa Cruz): used at a concentration of 1/100 for 

immunostaining (goat-FITC (Dako) at a concentration of 1/50 used as the 

secondary antibody) and 1/200 for immunoblotting (goat-HRP (Santa Cruz) at a 

concentration of 1/5000 used as the secondary antibody).

• a-HIC (a kind gift from Jean-Paul Mesnard): used at a concentration of 1/500
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for immunoblotting (mouse-HRP (Amersham) at a concentration of 1/5000 used 

as the secondary antibody).

• a-HIF (Sigma): used at a concentration of 1/250 for immunoblotting (mouse- 

HRP (Amersham) at a concentration of 1/5000 used as the secondary antibody).

• a-HIS (Abeam): used at a concentration of 1/1000 for immunoblotting (mouse- 

HRP (Amersham) at a concentration of 1/5000 used as the secondary antibody).

• a-phosphoserine (Abeam): used at a concentration of 1/150 for immunoblotting 

(mouse-HRP (Amersham) at a concentration of 1/5000 used as the secondary 

antibody).

• a-PLl (Chemicon): used at a concentration of 1/200 for immunostaining 

(rabbit-FITC (Santa Cruz) at a concentration of 1/100 used as the secondary 

antibody).

• a-Plk4 (Abeam): used at a concentration of 1/200 for immunostaining (goat- 

FITC (Dako) at a concentration of 1/50 used as the secondary antibody) and 

1/200 for immunoblotting (goat-HRP (Santa Cruz) at a concentration of 1/5000 

used as the secondary antibody).

• a-PLP-A (Chemicon): used at a concentration of 1/200 for immunostaining 

(mouse-TRITC (Dako) at a concentration of 1/50 used as the secondary 

antibody).

•  a-PolII (Upstate): used at a concentration of 1/100 for immunostaining (mouse- 

TRITC (Dako) at a concentration of 1/50 used as the secondary antibody).

APPENDIX 7. In situ hybridisation riboprobes

•  Handl (pcDNA3-Handl): cDNA expression driven by T7 RNA polymerase, 

probe linearised with Notl.

• HICp40 (pKS+-HICp40): cDNA expression driven by T3 RNA polymerase, 

probe linearised with Hindlll. Cross-reacts with MICp40.
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Appendices

The table below lists details of clones with homology to known proteins that 

were identified in the Y2H screen. False positives are excluded.

Clone Size (bp) Protein

A10 411 Checkpoint with forkhead and RING finger domains 
protein (Chff); RING finger protein 196 (Rfpl96)

B12 536 Zinc finger protein 313 (Zfp313)

B15 570 Mastermind-like protein-2 (Maml2)

C23 397 Hypothetical RING finger domain-containing protein

D18 Fibrillarin-2 (Fib2)

E17 467 RING finger protein 26 (Rnf26)

G18 607 Bromodomain and PHD finger containing-protein 1 
(Brpfl; Peregrin)

J24 547 SWI/SNF-related matrix-associated actin-dependent 
regulator of chromatin subfamily E member 1 
(Smarcel)

J31 515 Nicotinamide nucleotide transhydrogenase (Nm)

LI Tubulin

L18 593 Exportin-T (tRNA exportin) (Xpot)

N27 613 Fibroblast growth factor receptor-2 (Fgfr2)

Q8 512 Thrombospondin-1 precursor (Thbs-1)

Q27 324 Human I-mfa domain-containing protein (HIC)

R19 307 Human I-mfa domain-containing protein (HIC)

Alfl ‘i - ■’=-4;

S31 611 RING finger protein 31 (Zinc in-between RING finger 
ubiquitin A protein; Zibra)
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APPENDIX 9. Quantitative data

The following tables list the quantitative data obtained during the course of this study, 

a. Luciferase assay

Transfected constructs Luciferase activity (RLU) P-Gal activity RLU/ ft-Gal activity
R1 R2 R3 Mean R1 R2 R3 Mean

Reporter alone 0.27 0.04 0.55 0.29 1.26 0.80 0.90 0.99 0.29

H andl + reporter 1.44 1.88 1.17 1.50 0.66 1.02 0.75 0.81 1.85

E12 + reporter 0.51 0.58 0.89 0.66 0.75 0.61 0.70 0.69 0.95

HICp40 + reporter 0.23 0.40 0.20 0.28 0.99 1.48 0.95 1.14 0.24

HICAC + reporter 0.12 0.20 0.67 0.50 0.72 0.70 0.84 0.75 0.67

HICp32 + reporter 0.43 0.81 1.02 0.75 0.28 0.50 0.61 0.57 1.32

H andl + E12 + reporter 15.69 20.91 17.11 17.90 0.93 0.91 1.39 1.08 16.57

H andl + E12+ HICp40 + reporter 8.21 6.10 5.10 6.47 1.29 1.92 1.60 1.60 4.04

H andl + E l 2+ HICAC + reporter 13.19 19.04 11.22 14.48 0.89 1.09 0.76 0.91 15.91

H andl + E12+ HICp32 + reporter 13.29 12.56 10.00 11.95 0.72 0.98 1.19 0.96 12.44
Rl: reading 1; R2: reading 2; R3: reading 3; RLU: relative light units
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b. Handl-EGFP immuno-Iocalisation assays in NIH-3T3 and H9c2 cells

Cell population Nucleolar Handl-EGFP (%) S.E.M.
NIH-3T3, Handl-EGFP o/e 15.0 1.55

NIH-3T3, Handl-EGFP & HICp40 o/e 85.4 1.24

H9c2, Handl-EGFP o/e 98.6 2.70
o/e: over-expression.

c. Handl-EGFP immuno-Iocalisation assays in Rcho-1 cells

Cells were cultured in normoxic conditions in medium supplemented with fetal bovine serum (FBS) unless otherwise stated.

Cell population Nucleolar Handl-EGFP (%) S.E.M.
| 24hr 48hr 72hr 24hr 48hr | 72hr

Handl-EGFP o/e 68.4 46.4 33.4 1.32 0.95 1.80

Handl-EGFP T107;S109A o/e 70.2 64.2 60.5 1.79 0.95 3.17

Handl-EGFP T107;S109D o/e 5.10 2.50 1.20 0.82 0.44 1.30

Handl-EGFP & B56S o/e 69.4 65.4 61.1 1.05 1.54 6.48
o/e: over-expression.

A
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d. Endogenous Handl immuno-Iocalisation assays in Rcho-1 cells

Cells were cultured in normoxic conditions in medium supplemented with fetal bovine serum (FBS) unless otherwise stated.

Cell population Handl-EGFP (%) S.E.M.
Untransfected, HS 28.6 (Nu), 43.9 (No) 2.08 (Nu), 1.87 (No)

Untransfected, HS, HxC 44.6 (No) 2.01 (No)

Untransfected, HS, C0 CI2 45,6 (No) 1.51 (No)

B568 o/e, HS 69.2 (No) 2.56 (No)

HICp40-EGFP o/e, HS 77.6 (No) 2.67 (No)

FLAG-Sako/e 54.1 (Nu) 2.78 (Nu)

B IC sh W A il  o/e 47.1 (Nu) 1.93 (Nu)

HICshRNAi2 o/e 46.4 (Nu) 2.39 (Nu)

P M shR N A il o/e 68.9 (No) 2.39 (No)

Plk4shRNAi2 o/e 69.8 (No) 1.44 (No)
Nu: nuclear-wide; No: nucleolar; o/e: over-expression; HS: cultured in medium supplemented with horse serum; CoCl2: cultured in medium supplemented with 250pM

cobalt chloride; HxC: cultured in a hypoxic chamber.
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e. Rcho-1 TG cell differentiation assays

Cells were cultured in normoxic conditions in medium supplemented with fetal bovine serum (FBS) unless otherwise stated. All cell counts 

have been corrected for the spontaneous differentiation rate of Rcho-1 stem cells (5.9±0.5% per 24 hours), which represents the percentage 

of Rcho-1 cells cultured in FBS-supplemented medium that initiate TG cell differentiation over a 24 hour period (Nakayama et al., 1998; 

Scott et al., 2000). All cell counts have also been corrected for an observed increase in differentiation rate due to the transfection with a 

construct encoding EGFP alone (10.3% per 24-hour period; mean±S.E.M.; n=250; p<0.01).

R<:ho-l TS cells (<Vo) S.E.M.
24hr 48hr 72hr 24hr 48hr 72hr

Cell Dooulation

Untransfected 81.2 70.9 65.2 1.32 0.95 1.8

Untransfected, HS 56.1 35.5 29.2 1.79 0.95 3.17

Untransfected, HS, HxC - - 40.1 - - 1.60

Untransfected, HS, CoCl2 38.0 - 2.16

Handl-EGFP o/e 59.1 35.7 24.8 0.82 0.44 1.30

Handl-EGFP o/e, HxC 61.4 34.5 25.0 1.40 2.30 1.08

Handl-EGFP, o/e, CoCl2 60.1 37.5 23.4 1.35 1.03 2.09

Handl- EGFP T107;S109A o/e 64.4 64.1 56.5 1.05 0.45 1.59

A
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Cell population Rcho-1 TS cells (%) S.E.M._____________
^ ___________48hr___________ 72hr 24hr 48hr 72hr
Handl-EGFP T107;S109D o/e 71.8 52.7 31.4 3.77 1.54 6.48

B568 o/e 67.2 64.8 61.4 1.17 0.44 1.22

B568 o/e, HS 54.8 49.4 45.8 1.68 1.22 1.48

Handl-EGFP (wt) & B568 o/e 68.2 62.0 56.8 1.44 3.10 1.50

HICp40-EGFP o/e, HS 68.6 63.2 54.5 2.22 1.07 0.57

FLAG-Plk4 o/e 60.2 49.5 37.1 1.68 0.50 1.17

HICshRNAil o/e 58.0 40.5 39.8 0.71 1.21 1.93

HICshRNAi2 o/e 61.8 51.9 40.6 0.60 0.61 0.64

Plk4shKNAil o/e, HS 72.3 57.9 54.8 0.36 0.44 1.21

Plk4shSNAi2 o/e, HS 73.0 58.8 54.1 1.68 1.36 1.30
o/e: over-expression; HS: cultured in medium supplemented with horse serum; CoCl2: cultured in medium supplemented with 250 pM cobalt chloride; HxC: cultured in a 

hypoxic chamber.



Appendices

APPENDIX 10. Time-lapse movies

QuickTime time-lapse movies (.mov format) are provided on the attached CD.

• Movie 4.1. Handl-EGFP is released from the nucleolus over a 12-hour period 

as individual transfected Rcho-1 stem cells commit to differentiate, which is 

coincident with decreased motility and an expansion in size. Time-lapse was 

initiated 24 hours after transfection and images captured every 20 minutes over 

a period of 12 hours.

• Movie 6.1. After differentiation, £GFP-expressing transgenic ES cells produce 

embryoid bodies (EBs) containing contractile, fluorescent cardiomyocytes.
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