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Abstract.

The vertebrate hindbrain is a segmented structure, divided into repeating 

segments called rhombomeres, at the interface of which boundary cells are 

induced as a specific cell type. Previous work has found that, in the zebrafish 

hindbrain, there is a distinctive organisation of glia and neurons along the 

anterior-posterior axis within each rhombomere, with specific neurons at the 

centre or boundary regions, separated by a glial curtain adjacent to the boundary. 

Using molecular markers, I have characterised the organisation of several cell 

types within each rhombomeres, and found that from 24 hours of development, 

neurogenesis occurs predominantly adjacent to the rhombomere boundaries, 

which suggests a role for boundaries in establishing this pattern. The aim of this 

work was to test a possible patterning role of boundaries, and to establish a 

genetic hierarchy between boundary genes by carrying out knockdowns of 

boundary-specific genes.

The secreted factor w ntl is expressed in dorsal boundaries and is a 

candidate mediator of a potential signalling role of boundaries. From many lines 

of evidence in previous work, w ntl was known to promote proliferation of neural 

progenitors and inhibit neuronal differentiation. I found that in the zebrafish 

hindbrain, however, knockdown of w ntl or of the Wnt pathway effector tcf3b 

causes expansion of boundary-specific markers and loss of neurogenesis in non­

boundary regions. Knockdown of rfng, a component of the Notch pathway 

required for boundary expression of w ntl also causes expansion of boundary 

markers. W ntl is necessary for the expression of ash and ngnl proneural genes, 

and of delta genes, which in turn block ectopic boundary marker expression. 

Thus, w ntl mediates a lateral inhibition of boundary fate by regulating 

neurogenesis in hindbrain segments. Taken together with concurrent work in the 

lab, the model derived from this is remarkably similar to the regulatory 

interactions occurring at the dorso-ventral boundary of the Drosophila wing 

imaginal disc, and indicates recruitment of a conserved network of genes in non- 

homologous tissues.



Acknowledgements

I would like to thank first of all my supervisor, Dave, for giving me such a great 

project to work on, and for providing help and support throughout, particularly 

for writing this thesis.

I am also grateful to everyone in the Wilkinson lab, particularly Cheng, for 

sharing reagents, ideas, and the hindbrain boundary project, Andrea, for teaching 

me everything I know about zebrafish, and Sebastian, for invaluable IT and 

cloning help.

Other people in the institute have given me help and advice, I hope I don’t forget 

anyone : Qiling, Alex and lab members, Isabel from Derek’s lab (for most of the 

probes), James and lab members, Nobue and everyone on the 6th floor, the 

Guillemot lab (particularly Olivier), and Ang lab members (Yannis and Bertrand) 

for all the fun.

This is also a good opportunity to thank my friends (David, tu l ’as ta citation...), 

and especially my flatmates, Firas and Malte in Mecklenburgh Sq, and Hadrien 

in Arlington Rd. Thanks for putting up with me...

Un grand merci a toute la famille, Laure (et Steve, felicitations pour Emma), 

Anne (and Erik), Steph, papa, mum, papi et mimi.

And of course, Florence... Merci de m ’avoir soutenu et d ’avoir ete la pendant 

tout ce temps, et d ’etre venue a Londres, merci.



Contents.

ABSTRACT.________________________________________________________________II

ACKNOWLEDGEMENTS. I l l

CONTENTS. IV

LIST OF FIGURES. VIII

LIST OF ABBREVIATIONS. IX

INTRODUCTION. 1

Se g m e n t a t io n  i n  d e v e l o p m e n t . 1
Th e  v e r t e b r a t e  h in d b r a in  a s  a  m o d e l  f o r  s t u d y in g  s e g m e n t a t io n . 5

Evidence for and functional significance o f segmentation in the hindbrain. 5
Mechanisms o f segmentation in the hindbrain. 7
Acquisition o f segment identity. 9
Compartments and restrictions to cell mixing in the hindbrain.

A DISTINCT CELL TYPE AT INTERRHOMBOMERIC INTERFACES : RHOMBOMERE
13

BOUNDARIES. 16
Identification o f boundary cells : how and when do they form ? 17
Cellular properties o f boundary cells. 18
Gene expression defines boundary cells as a separate cell type. 20

P a t t e r n in g  s e g m e n t s  : s e g m e n t a t io n  a n d  s ig n a l l in g  c e n t r e s . 21
What is a signalling centre ? 21
Signalling at parasegment boundaries in Drosophila. 22
Signalling centres pattern the vertebrate neural tube. 24

Th e  co n tr o l  o f  n e u r o g e n e sis . 27
A GENERAL MOLECULAR PATHWAY FOR NEUROGENESIS. 27

Making neurons : the achaete-scute and atonal gene families. 28
Keeping cells undifferentiated : the Notch pathway and lateral inhibition. 30

G e n e r a t io n  o f  n e u r o n a l  d iv e r s it y  a n d  p a t t e r n in g  o f  n e u r o n a l  t y p e s . 33
Dorso-ventral patterning 35
Anterior-posterior patterning 37

Th e  W n t  sig n a l l in g  p a t h w a y  a n d  it s  r o l e s  in  d e v e l o p m e n t . 42
M o l e c u l a r  c h a r a c t e r is a t io n  o f  t h e  Wn t  p a t h w a y . 42

“Canonical” Wnt signalling. 43
Other signalling pathways downstream of Wnt ligands. 46

D e v e l o p m e n t a l  r o l e s  o f  Wn t  s ig n a l l in g . 48
Planar polarity and convergent extension. 48
Patterning functions. 50
Regulation o f proliferation. 52

A im s  o f  th is  st u d y . 54

iv



MATERIALS AND METHODS. 55

F is h  m a in t e n a n c e . 55
M o r p h o l in o  o l ig o n u c l e o t id e  a n d  R N A  in j e c t io n s . 5 6

In j e c t io n  p r o t o c o l . 56
MORPHOUNO OUGONUCLEOTIDES. 56
RNA CONSTRUCTS. 57

I n  s i t u  h y b r id is a t io n . 58
P r o t o c o l . 58
P r o b e s  u s e d . 59

IMMUNOHISTOCHEMISTRY. 60
M o l e c u l a r  b io l o g y . 61

CHARACTERISATION OF NEUROGENESIS AND BOUNDARY 
FORMATION IN WILD-TYPE EMBRYOS.___________________________________ 63

R e s u l t s . 63
P a t t e r n s  o f  n e u r o n a l  d if f e r e n t ia t io n  in  t h e  z e b r a f is h  h in d b r a in . 63

Localisation o f post-mitotic neurons. 64
Analysis o f neuronal differentiation between 18h and 48h. 66
Localisation o f selected individual neuronal and glial cell types. 71

F i g . 1 0 : Ex p r e s s io n  o f  b o u n d a r y  m a r k e r s . 77
Differentiation at interrhombomeric boundaries. 79

C h a r a c t e r is a t io n  o f  g e n e  e x p r e s s io n  a t  r h o m b o m e r e  b o u n d a r ie s . 80
C o n c l u s io n s . 83

D is c u s s io n . 8 4
D is t in c t  p h a s e s  o f  n e u r o g e n e s is . 85
Ea r l y  n e u r o g e n e s is  p r o d u c e s  s t e r e o t y p ic a l l y  p o s it io n e d  n e u r o n s . 86

Unexpected periodicity and distribution of early neurons. 86
How is early neurogenesis patterned ? 88

La t e  n e u r o g e n e s is  is  s e g m e n t a l l y  r e it e r a t e d . 90
Comparison between late differentiation patterns and accumulation o f Hu-labelled 
cells. 92

D if f e r e n t ia t io n  a t  r h o m b o m e r ic  in t e r f a c e s . 93
Neurogenesis at boundaries. 93
Origin and role o f radial glia adjacent to boundaries. 95

THE ROLE OF WNT SIGNALLING IN PATTERNING HINDBRAIN 
BOUNDARIES AND NEUROGENESIS.______________________________________ 96

R e s u l t s . 99
Specificity and efficacy o f morpholino oligonucleotides. 99
Gross morphological effects o f  wntl knockdown. 100

K n o c k d o w n s  o f  t h e  Wn t  p a t h w a y  c a u s e  e x p a n s io n  o f  b o u n d a r y  m a r k e r s . 100
Timing and effect o f  wntl knockdown on boundary marker expression. 100
rfng knockdown suggests that the boundary domain of wntl expression is required 
for the repression o f boundary markers. 104
The effect o f  wntl is mediated by tcf3b in the hindbrain. 104
Range o f phenotypes in injected embryos. 105
The expansion of boundary markers is due to de novo induction of boundary 
markers. 112

v



R o l e  o f  t h e  Wn t  p a t h w a y  in  r e g u l a t in g  h in d b r a in  n e u r o g e n e s is . 113
Regulation ofproneural and delta genes by wntl via tcf3b. 114
Range o f phenotypes in injected embryos. 122
Analysis o f patterns o f differentiation in wntl knockdowns at 24h and 48h. 124
Activation o f the Wnt pathway can induce neurogenesis. 130

P r o n e u r a l  g e n e s  a n d  d e lta A  r e p r e s s  b o u n d a r y  MARKERS. 131
C o n c l u s io n s . 135

D is c u s s io n . 135
P r o l if e r a t io n  v e r s u s  n e u r o g e n e s is . 136

A role o f Wnt signalling in proliferation. 136
Proliferation defects cannot account for the phenotypes observed. 137
Can different models be reconciled ? 138
Is Wntl instructive for neuronal differentiation ? 142

A CONSERVED GENE NETWORK REGULATES NEURAL DIFFERENTIATION AND LATERAL 
INHIBITION. 146

Boundary restriction and sensory organ differentiation in the fly  wing. 146
A model for hindbrain patterning in the zebrafish. 147
Differences between the zebrafish hindbrain and the Drosophila wing imaginal 
disc. 150
Contribution o f different Wnt sources. 152
Evolutionary conservation o f a regulatory gene network. 154

DISCUSSION AND PERSPECTIVES._______________________________________ 158

R e g u l a t io n  o f  n e u r o g e n e s is . 158
M e c h a n is m s  o f  n e u r a l  p a t t e r n in g  i n  t h e  z e b r a f is h  h in d b r a in . 158
HOW  IS THE LOCALISATION OF DIFFERENTIATION DETERMINED ? 159

Establishment o f proneural clusters. 160
Biasing differentiation within proneural clusters. 162

B o u n d a r ie s  a n d  n e u r o g e n e s is . 163
C o n s e r v a t io n  a n d  p o t e n t ia l  s ig n if ic a n c e  o f  a n t e r io r -p o s t e r io r  p a t t e r n in g  
WITHIN RHOMBOMERES. 164

N e w  in s ig h t s  in t o  t h e  r o l e s  a n d  f o r m a t io n  o f  r h o m b o m e r e  b o u n d a r ie s . 168
N o t c h  a n d  Wn t I  u n k  b o u n d a r y  m a in t e n a n c e  t o  t h e  r e g u l a t io n  o f

NEUROGENESIS. 168
HOW  DO BOUNDARIES FORM ? 170

Notch signalling. 171
Eph/ephrin signalling. 171

L e s s o n s  f r o m  r h o m b o m e r e  4. 173
Wh a t  a r e  t h e  r o l e s  o f  r h o m b o m e r e  b o u n d a r ie s  ? 176

Inhibition o f cell mixing across interfaces. 176
Restriction o f gene expression domains. 178
Guiding axons. 179
Boundaries as signalling centres. 180

A NEW MODEL OF BOUNDARY FORMATION AND MAINTENANCE. 181

BIBLIOGRAPHY._________________________________________________________ 183

APPENDIX A : “WNTI REGULATES NEUROGENESIS AND MEDIATES 
LATERAL INHIBITION OF BOUNDARY CELL SPECIFICATION IN THE
ZEBRAFISH HINDBRAIN”. AMOYEL ET AL.. 2005. 209



APPENDIX B : “NOTCH ACTIVATION REGULATES THE 
SEGREGATION AND DIFFERENTIATION OF RHOMBOMERE 
BOUNDARY CELLS IN THE ZEBRAFISH HINDBRAIN”. CHENG ET
AL.. 2004. 210



List of figures.

Fig. 1 :  Segmentation in Drosophila and in the vertebrate hindbrain. 4

Fig. 2 : Hox gene expression domains in Drosophila and vertebrates. 11

Fig. 3 : Neurogenesis and lateral inhibition. 31

Fig. 4 :  Signalling centres and patterning in the central nervous system. 41

Fig. 5 : The canonical Wnt signalling pathway. 45

Fig. 6 :  Localisation of post-mitotic neurons. 65

Fig. 7 : Neuronal differentiation in the zebrafish hindbrain. 70

Fig. 8 :  Spatial distribution of selected cell types in the hindbrain. 74

Fig. 9 : Differentiation at interrhombomeric interfaces. 76

Fig. 10 : Expression of boundary markers. 78

Fig. 11: Specificity and efficacy of morpholino oligonucleotides. 98

Fig. 12 : Knockdowns of the Wnt pathway cause expansion of boundary markers. 103

Fig. 13 : Range of phenotypes for boundary markers. 109

Fig. 14: Mixing between segments and proliferation cannot account for boundary marker

expansion in Wnt-palhway morphants. I l l

Fig. 15 : Regulation of proneural and delta genes by Wnt signalling. 117

Fig. 16: Neurogenesis is decreased following Wnt pathway or proneural gene knockdown. 118

Fig. 17: Range of phenotypes of delta gene expression in wntl MO or asha+bMO embryos. 120

Fig. 18 : Neural subtype specification in wntlMO embryos. 127

Fig. 19 : Effect of Wnt pathway activation on neurogenesis. 129

Fig. 20 : Proneural and delta genes regulate boundary expansion. 133

Fig. 21: Model of regulation of cell differentiation and restriction of boundary spreading. 145

viii



List of abbreviations

AER : Apical ectodermal ridge.

A P : Alkaline phosphatase. 

bHLH : Basic helix-loop-helix.

B M P : Bone morphogenetic protein.

DAB : 3,3-diaminobenzidine.

DIG : Digoxigenin.

DNA : Deoxyribonucleic acid.

FGF : Fibroblast growth factor.

GFP : Green fluorescent protein.

MHB : Midbrain-hindbrain boundary.

M O : Morpholino oligonucleotide.

M Z : Mantle zone.

PCP : Planar cell polarity.

PBS : Phosphate buffer saline.

PBST : Phosphate buffer saline containing 0.1% Tween-20. 

rl-r7  : rhombomere 1-7.

RNA : Ribonucleic acid. 

mRNA : Messenger RNA.

V Z : Ventricular zone.

Z L I : Zona limitans intrathalamica.

ZPA : Zone of polarising activity.



Introduction

Introduction

Segmentation in development

A prominent feature of the embryonic development of many vertebrate 

and invertebrate species is the formation of repeated morphological units from an 

initially uniform tissue, a process known as segmentation. There are essentially 

two distinct types of segmentation processes. Segments, or metameres, can be 

generated sequentially, for instance in the case of vertebrate somitogenesis, 

where somites are added bilaterally at the posterior end of the embryo (reviewed 

by Pourquie, 2001). In the second mechanism, segments are derived from the 

subdivision of an initially uniform field of tissue, as occurs in segmentation of 

the Drosophila syncytium (Akam, 1987; Ingham, 1988; Scott and Carroll, 1987; 

St Johnston and Nusslein-Volhard, 1992).

Much of the current knowledge on the processes of segmentation comes 

from studies in Drosophila  (F ig.lA , Nusslein-Volhard and Wieschaus, 1980), 

where several gene classes sequentially and hierarchically regulate the 

subdivision of the embryo into segments (reviewed in Akam, 1987; Ingham, 

1988; Scott and Carroll, 1987; St Johnston and Nusslein-Volhard, 1992). 

Maternal and gap genes define domains of expression, leading to pair-rule gene 

expression in alternating stripes corresponding to future parasegments. Segment
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Introduction

polarity genes are expressed at the anterior or posterior border of each 

parasegm ent and ensure that their interfaces are m aintained, as well as 

contributing to the patterning of the segments. Together, these genes are known 

as segmentation genes, as they regulate the formation of repeated segmental 

units. Parallel to this process, segment identity genes act, such that each 

parasegment acquires its own identity, for instance distinguishing abdominal 

from  thoracic segments. Genes of the hom eotic com plex (HOM -C) are 

responsible fo r determ ining segm ent identity , such that m utation or 

overexpression of these genes leads to homeotic changes in the fate of the 

segment, for example wings growing instead of halteres (Lawrence and Morata, 

1994; Lewis, 1978).

Although the mode of segmentation used by Drosophila  appears to be a 

specialised adaptation for its early developm ent which occurs before 

cellularisation, homologues of many of the genes involved are also found in 

other species to have similar roles, and act in similar regulatory hierarchies (Peel, 

2004; Tautz, 2004). In vertebrates, there are two obviously segmented structures: 

the mesoderm is divided in segments called somites, and the hindbrain, whose 

units are termed rhombomeres.

2
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Fig. 1 : Segmentation in Drosophila and in the vertebrate 

hindbrain.

A : Diagram schematising segmentation in Drosophila (from W ilkinson and 

Krumlauf, 1990). Graded maternal factors lead to the establishment of discrete 

domains of gap gene expression, and together with gap genes, to pair-rule gene 

expression. In turn, pair-rule genes activate expression of segment polarity genes, 

and the combined activity of gap, pair-rule and segment polarity genes gives rise 

to the correct pattern of homeotic (segm ent identity) gene expression. B : 

Morphological and molecular segmentation of the vertebrate hindbrain (adapted 

from Lumsden, 1990). Diagram of a chick hindbrain showing the relationships 

between rhombomeres (rl-r8), cranial nerves (roman numerals) and branchial 

arches (b 1-3). On the right, selected gene expression patterns are shown in 

relation to rhombomeres, and the posteriorising retinoid gradient is schematised. 

OV : otic vesicle, fp : floor plate, i : isthmus.

3
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Introduction

The vertebrate hindbrain as a model fo r  studying segmentation.

The vertebrate hindbrain has proven to be an im portant model of 

segmentation in vertebrates. Unlike somitogenesis, which involves cyclic gene 

expression within a growth zone underlying the sequential form ation of 

segments, hindbrain segments are laid down in a non-sequential manner within 

the neural epithelium  to give rise to 7 or 8 (depending on species and 

nomenclature) rhombomeres.

Evidence fo r  and functional significance o f segmentation in the 

hindbrain.

Morphological swellings in the hindbrain were first described as early as 

1823 by von Baer in chick embryos (cited by Graper, 1913). Subsequently, work 

by several authors in many vertebrate species found similar swellings, and after a 

suggestion by Remak in 1850, Orr (1887) firmly demonstrated a relationship 

between what he termed “neuromeres” and cranial nerves in lizard embryos (see 

literature reviews by Locy, 1895; and M cClure, 1891), suggesting that 

neuromeres constitute functionally important developmental units (an issue that 

was strongly debated, some believed that neuromeres resulted from mechanical 

pressures, while others believed their importance was secondary to that of 

mesoderm segmentation, see reviews by McClure, 1891; Neal, 1918). The term 

“rhombomere” was first used by Meek (1907), to distinguish the neuromeres of 

the rhombencephalon (hindbrain), with reference to seagull development. 

Rhombomeres and their relationships with cranial nerves, have since been 

reported in all classes of vertebrates, including elasmobranch (cartilaginous) and

5
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teleost (bony) fish, reptiles, birds and mammals, including human embryos 

(Gilland and Baker, 1993; Meek, 1909; Meek, 1910; Streeter, 1908; Vaage, 

1969). For a long time it was unclear what the significance of these 

rhombomeres was (see for instance Neal, 1918), but an important clue came 

from studies showing that segm entation of the hindbrain underlies the 

differentiation pattern of neurons, dem onstrating that segmentation is an 

underlying cause of patterning in the hindbrain (Lumsden and Keynes, 1989). 

Motor neurons differentiate first in even-numbered segments, and even after 

differentiation occurs in odd-numbered segments, the motor root exit points 

remain located in the even-numbered rhombom eres (F ig.IB , Lumsden and 

Keynes, 1989). Thus, a two-segment periodicity is present in the hindbrain, 

warranting comparisons with Drosophila segmentation. Different rhombomeres 

give rise to motor neurons with different identities, for instance, neurons 

contributing to the trigeminal (Vth) nerve are located in rhombomeres 2 and 3 (r2 

and r3), while neurons of the facial (Vllth) nerve are in r4 and r5 in the chick. 

Segmentation is also reflected in the reiteration of other classes of neurons, with 

some segmental differences in cell number (Clarke and Lumsden, 1993). 

Evidence of a functional importance for this metameric cellular organisation has 

been obtained from studies of the respiratory rhythm regulation (reviewed in 

Champagnat and Fortin, 1997). Pairs of rhom bom eres contain a “rhythm 

generator” that is a functionally autonomous unit generating rhythmic motor 

activity, but require an “intersegmental co-activator” for coordination across the 

whole hindbrain.

Another potential functional significance of the segmentation of the 

hindbrain is observed in the organisation of neural crest cells, which migrate out

6
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of the neural tube to give rise to many derivatives, including the entire facial 

skeleton and to connective tissue between muscles and bones, as well as 

peripheral nerves and glia (Noden, 1983; Noden, 1988). Neural crest streams 

form only adjacent to rhombomeres 2, 4 and 6 and migrate respectively into the 

first, second and third branchial arches (Lumsden et al., 1991). Thus, neural crest 

migration and motor nerve exit points are maintained in register with their 

respective branchial arches. Moreover, neural crest cells and their derivatives 

from different segmental origins are kept separate throughout development, and 

form sharp borders when they become juxtaposed in the structures which they 

contribute to, indicating that the initial segmental identity of the neural crest cells 

is maintained (Kontges and Lumsden, 1996). Although recent evidence shows 

that neural crest cells can change identity in a different environment, it is clear 

that hindbrain segmentation is important for segmental specification and for the 

proper patterning of neural crest cell migration (reviewed in Trainor and 

Krumlauf, 2000b; Trainor and Krumlauf, 2001).

Mechanisms of segmentation in the hindbrain.

Several genes involved in the segmentation process of the hindbrain have 

been identified, using different approaches in different species (Fig.IB). One of 

the first segmentation genes to be identified is a zinc finger transcription factor, 

krox20, which is expressed in rhombomeres 3 (r3) and 5 (r5) (Wilkinson et al., 

1989a). Mouse embryos in which krox20  has been inactivated completely lack 

these two rhombom eres, although the rest of the hindbrain is normally 

segmented (Schneider-Maunoury et al., 1997; Schneider-Maunoury et al., 1993; 

Swiatek and Gridley, 1993). Moreover, ectopic expression of krox20 is sufficient

7
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to confer odd-numbered segmental identity (Giudicelli et al., 2001) Another 

transcription factor, kreisler/maf-b (or valentino in zebrafish) defines the domain 

that will give rise to r5 and r6, and acts upstream of krox20  in r5 (Cordes and 

Barsh, 1994; Frohman et al., 1993; McKay et al., 1994; Moens et al., 1998).

The regulation of the expression of these genes is not yet well understood, 

but recent work has established the signalling cascades leading to proper 

segm entation gene expression in the posterior hindbrain (F ig.IB ). First, 

posteriorising factors involving a posterior-to-anterior gradient of retinoic acid 

control the initial expression of the segmentation genes (reviewed in Gavalas and 

Krumlauf, 2000). Subsequently, a organising centre is established in r4 (Maves 

et al., 2002; Walshe et al., 2002). Two fibroblast growth factors, fg f3  and fg f8 , 

are expressed in r4, and act cooperatively with retinoic acid signals to pattern r5 

and r6. vhnfl is a target of retinoic acid signalling in these rhombomeres, and is 

required for the r4-derived FGF signals to induce expression of valentino in r5 

and r6, and consequently krox20 expression in r5 (Hernandez et al., 2004; Marin 

and Charnay, 2000; Wiellette and Sive, 2003). Such cascades have not been 

established for more anterior regions, but several other factors that are important 

for segmentation have been identified. For instance, iro7  is expressed in the 

anterior hindbrain and has an antagonistic relationship with vh n fl. A sharp 

border between r4 and r5 is established by the mutual antagonism between these 

two transcription factors, but iro7 does not appear to be required for the process 

of segmentation itself (Lecaudey et al., 2004).

There are no homologies between the genes regulating the subdivision of 

the hindbrain into rhombomeres and those controlling segm entation in 

Drosophila. However, studies in these systems have unveiled that there may be
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common principles between the two processes. For instance, early in patterning, 

graded factors are used to establish broad domains. Another intriguing parallel is 

that of pair-rule expression, which can be compared to the expression of kroxlO  

in alternating segments. This may suggest that segmentation is most easily 

attained by conferring different properties to alternating segments. However, to 

date, very few segmentation genes have been identified in vertebrates, such that 

it has been difficult to establish clear genetic hierarchies.

Acquisition o f segment identity.

Rhombomere identity is regulated by the Hox gene family, which are 

homologues of the HOM-C genes in D rosophila, which regulate segment 

identity and pattern the nervous system (reviewed in Doe and Scott, 1988; 

Krumlauf, 1992; McGinnis and Krumlauf, 1992; Scott and Carroll, 1987). A 

defining feature of Hox genes is their organisation into clusters, and the 

collinearity of their expression patterns with their genomic organisation (Fig.2). 

Hox genes are expressed in nested patterns in vertebrate embryos, with genes 

that are located 3’ in the clusters expressed more anteriorly than genes that are at 

the 5 ’ end of clusters. In the hindbrain, boundaries of Hox gene expression 

correspond to boundaries between rhombomeres (Wilkinson et al., 1989b), and 

particular combinations of Hox genes are expressed in each segment at specific 

levels, although no Hox genes are expressed anteriorly to r2 (Fig.2, Hunt et al., 

1991; reviewed in Krumlauf, 1994; Lumsden and Krumlauf, 1996; and Moens 

and Prince, 2002).

Mutation or overexpression of Hox genes in mouse or chick embryos can 

lead to homeotic transformations, establishing Hox genes as segment identity
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regulators. For instance, hoxbl is expressed in r4 and mutation of this gene leads 

to a transformation of certain r4-specific neurons into neurons characteristic of 

r2, while overexpression of hoxbl in r2 causes cells to adopt r4 fate, as seen by 

the migration and innervation phenotypes of the motor neurons in these 

rhombomeres (Bell et al., 1999; reviewed in Lumsden, 2004; Studer et al., 1996). 

H indbrain-derived neural crest exhibits anterior transform ations in hoxa2  

mutants (Gendron-Maguire et al., 1993; Rijli et al., 1993). However, few other 

dramatic homeotic transformations have been observed, and this may be due to 

the fact that Hox genes are expressed in overlapping patterns and can 

functionally substitute or synergise with each other (Davenne et al., 1999; 

Gavalas et al., 2003; Gavalas et al., 1998; Greer et al., 2000; Krumlauf, 1994). 

Work in the zebrafish embryo has shown the important roles played by Hox 

cofactors, Meis and Pbx proteins (reviewed in Moens and Prince, 2002). 

Importantly, in embryos in which most Hox function has been removed, the 

hindbrain appears to adopt in its entirety an r l fate (Waskiewicz et al., 2002). 

This result is consistent with Hox genes not being expressed in r l ,  and with a 

model in which Hox genes act to confer a specific identity to segments. 

However, certain observations suggest that Hox genes may do more than 

regulate the identity of rhombomeres. The phenotype of hoxal mutant mouse 

embryos, in which r5 is deleted and r4 strongly reduced, implies that hoxal is a 

segmentation gene (Dolle et al., 1993; Mark et al., 1993). The zebrafish 

homologue of hoxal, hoxal a, is not expressed in the hindbrain (McClintock et 

al., 2001), but its function has been taken over by one of the hoxbl homologues, 

hoxblb  (McClintock et al., 2002). Thus, comparing the functions, as well as the 

expression patterns and genomic organisation of Hox genes across vertebrates
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Fig. 2 : Hox gene expression domains in Drosophila and vertebrates.
Diagram representing the Drosophila and vertebrate Hox clusters and the anterior limit of their 
expression domains (courtesy of Alex Gould, after McGinnis and Krumlauf, 1994). Paralogous 
genes are shown in the same colour. Hox genes are expressed in a nested pattern, with 3’ genes 
expressed more anteriorly than 5’ genes.
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has provided insights into evolutionary m echanisms, showing how gene 

duplications, function shuffling, and sub-functionalisation can act during 

evolution (Jozefowicz et al., 2003; McClintock et al., 2001; McClintock et al., 

2002).

Another important aspect of hindbrain patterning is the question of how 

Hox gene expression is regulated. Enhancer analysis of many Hox genes has 

shown that different factors control the expression of each gene at different times 

in development (Gould et al., 1998; Manzanares et al., 2001; Marshall et al., 

1994; Packer et al., 1998). In several cases, induction and early Hox gene 

expression is directly regulated by retinoic acid receptors, as retinoic acid 

response elements are present in Hox gene enhancers (Dupe et al., 1997; Gould 

et al., 1998; Maconochie et al., 1996; Marshall et al., 1996; Marshall et al., 1994; 

Packer et al., 1998). Blocking retinoic acid signalling either by removing the 

enzyme required for retinoic acid synthesis, or by using antagonists to retinoic 

acid receptors causes anteriorisation of the hindbrain (Dupe and Lumsden, 2001; 

N iederreither et al., 2000). This is thought to reflect collinear differential 

sensitivities of 5 ’ and 3 ’ Hox genes to increasing levels of retinoic acid 

(Papalopulu et al., 1991). Later acting enhancers are regulated by the 

segmentation genes, such as Krox20 and Kreisler, thus coupling Hox expression 

to segmentation. For instance, Krox20 controls hoxa2  and hoxb2  expression 

directly (Nonchev et al., 1996; Sham et al., 1993; Vesque et al., 1996), while 

Kreisler regulates hoxa3 and hoxb3 (Manzanares et al., 1999; Manzanares et al., 

1997). Hoxal (or its functional homologue in zebrafish, Hoxblb) is required to 

set the anterior limit of expression of hoxbl (hoxbla  in zebrafish) at the r3/r4 

interface (Barrow et al., 2000; McClintock et al., 2002). Finally, expression is
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maintained and refined by auto-regulation by Hox genes themselves, which bind, 

in conjunction with Meis and Pbx proteins, to enhancer elements on their own 

promoters (Di Rocco et al., 1997; Manzanares et al., 2001; Packer et al., 1998; 

Popperl et al., 1995; Popperl and Featherstone, 1992). Cross-regulation between 

Hox genes, such as that mentioned above between Hoxal and H oxbl, acts by 

activating transcription at sites which are later required for autoregulation (Di 

Rocco et al., 1997; Popperl et al., 1995; Studer et al., 1998). Similar auto- and 

cross-regulation occur for the maintenance of H oxa3  expression in r5 and r6 

(Manzanares et al., 2001).

Compartments and restrictions to cell mixing in the hindbrain.

One of the key features of Drosophila segmentation is that cells from 

adjacent parasegm ents do not mix with each other (M artinez-Arias and 

Lawrence, 1985). This ensures that parasegments remain as coherent units, and 

that the interfaces they form are sharp. Such units between which cells do not 

mix are termed compartments (Garcia-Bellido et al., 1973).

Studies in which cells were labelled before and after boundary formation 

in the hindbrain revealed that rhombomere boundaries restrict clonal expansion 

(Fraser et al., 1990). This suggests that rhombomeres constitute compartments. 

Another im portant observation is that mixing between cells of different 

rhombomeres displays a two-segment periodicity : cells from r2, r4 or r6 can mix 

with each other, as can cells from r3 and r5, but cells from even-numbered 

rhombomeres do not mix with cells from odd-numbered rhombomeres (Guthrie 

et al., 1993; Wizenmann and Lumsden, 1997).

13



Introduction

A potential mechanism for mediating the inhibition of cell mixing 

between adjacent rhombomeres was suggested by the segmental expression of 

the genes of the Eph family of receptor tyrosine kinases (Becker et al., 1994; 

Gilardi-Hebenstreit et al., 1992; Nieto et al., 1992) and their transmembrane 

ephrinB ligands (Bergemann et al., 1995; Flenniken et al., 1996; Gale et al., 

1996). These genes are expressed in complementary patterns in many species 

and receptor-ligand pairs can be found that define most segment interfaces in 

mouse, chick, zebrafish and Xenopus (Fig.IB, Cooke and Moens, 2002; Irving et 

al., 1996a; Pasini and Wilkinson, 2002; Xu et al., 2000).

The role of Eph receptors and ephrinB proteins in mediating cell sorting 

and affinity differences has been dem onstrated in several experim ents. 

Interfering with Eph receptor function results in krox20-txpressing cells being 

found in even-numbered segments, possibly due to failure of cells to respect 

segment boundaries, (Xu et al., 1995). In vitro  experim ents show that 

bidirectional signalling between Eph receptors and ephrins leads to the 

segregation of Eph- and ephrin-expressing cells (M ellitzer et al., 1999). 

Moreover, mosaic expression of Eph receptors leads to sorting of cells to 

boundaries in even-numbered rhombomeres, whereas mosaic expression of 

ephrins results in sorting to boundaries in odd-num bered rhombom eres, 

indicating a role of Eph-ephrin signalling in regulating rhombomere-specific 

affinities (Xu et al., 1999). Indeed, some Eph receptors have been found to be 

under direct transcriptional control of segmentation or segment identity genes, 

providing an essential link between segmentation and the specification of 

different affinities between segments. For instance, the expression of EphA4 and 

EphA7 is regulated by Krox20 and Hoxa2, respectively (Chen and Ruley, 1998;
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Taneja et al., 1996; Theil et al., 1998). Similarly, ephb4  is downstream of 

valentino in the zebrafish and underlies the inability of valentino mutant cells to 

contribute to r5 and r6 (Cooke et al., 2001).

Thus, the segmentation of the hindbrain is maintained by the restriction of 

cell intermingling between rhombomeres, at least in part mediated by Eph/ephrin 

signals, due to complementary expression of these genes in adjacent segments. 

However, it must be noted that the restrictions on cell movement between 

rhombomeres refer only to cells in the ventricular zone. For instance, certain 

neurons undergo active migration between rhombomeres, in particular facial 

branchiomotor neurons of the V llth nerve, from their birthplace in r4 to more 

posterior locations (reviewed in Chandrasekhar, 2004). Moreover, although 

morphologically, rhombomeres are only present transiently, restriction to cell 

mixing is maintained in the ventricular zone after they are no longer visible, 

while clonal dispersal is much greater in the mantle zone (Wingate and Lumsden, 

1996). This reflects that compartmentalisation of the hindbrain stabilises patterns 

of gene expression in the ventricular zone which are important for neural 

specification, while migrations in the mantle zone can alter the final distribution 

of neuronal cell types.

Com partm entalisation occurs relatively late during developm ent ; 

boundaries form after rhombomeres are molecularly defined (Cooke and Moens, 

2002), yet clonal restriction occurs only after boundary appearance (Fraser et al., 

1990). Moreover, segmental gene expression domains are initially fuzzy, and 

occasionally cells expressing an odd-numbered marker are found in even- 

numbered rhombomeres (Irving et al., 1996b). A potential explanation for how 

sharp interfaces and homogeneity of cell identity within segments is obtained is
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provided by the observation that isolated cells, but not groups of cells, 

surrounded by cells of a different rhombomere can switch identity to adopt that 

of their neighbours (Schilling et al., 2001; Trainor and Krumlauf, 2000a). The 

signalling pathway that regulates this fate switching is not known, but it has been 

shown that Krox20 can induce its own expression non-autonomously, suggesting 

that it regulates a signalling molecule responsible for inducing odd-numbered 

identity (Giudicelli et al., 2001).

A distinct cell type at interrhombomeric interfaces : rhombomere 

boundaries.

Compartment boundaries were first uncovered in the wing imaginal disc 

of Drosophila, where cell lineage boundaries were found, which had no obvious 

morphological correlates (Garcia-Bellido et al., 1973). It was hypothesised that 

the role of these boundaries was to restrict the domain of action of selector genes 

(Garcia-Bellido, 1975). Subsequently, theoretical work proposed that boundaries 

could act as secondary organising centres and serve to impart positional 

inform ation (M einhardt, 1983a; M einhardt, 1983b). It has since been 

demonstrated that cells at the anterior-posterior and dorso-ventral boundaries of 

the wing imaginal disc of Drosophila have specific boundary identity and secrete 

morphogens that pattern the wing disc over long distances (reviewed in Irvine 

and Rauskolb, 2001; Strigini and Cohen, 1999).

In the vertebrate hindbrain, interfaces between adjacent segments are 

initially fuzzy and diffuse, but sharpen over time to become sharp and straight,
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both in mouse (Irving et al., 1996b) and zebrafish embryos (Cooke and Moens,

2002). Boundaries are then visible as constrictions in the neural tube, and are 

subsequently identifiable as a separate cell population due to specific properties, 

including histology, cell behaviour and gene expression (Guthrie et al., 1991; 

Heyman et al., 1995; Heyman et al., 1993; Layer and Alber, 1990; Mahmood et 

al., 1995; M ahmood et al., 1996). Thus, in this thesis, I will maintain a 

conceptual difference between interfaces, which are areas where gene expression 

domains abut, and boundaries, which are the cell population induced at 

interfaces, and are distinct from other cellsithe adjacent segments.

Identification of boundary cells : how and when do they form ?

M orphology initially  enabled the identification of rhom bom ere 

boundaries, and is still considered to be a hallm ark of boundary cell 

specification. Rhombomeres are visible as a series of bulges in the neural tube, 

separated by constrictions, which constitute the boundaries (Lumsden and 

Keynes, 1989; Vaage, 1969). An interesting aspect of the morphological 

appearance of boundaries is that it allows to estimate the timing of the molecular 

events leading to boundary cell induction, and the relative order of formation of 

different rhombomeres. There are differences between species in the order of 

boundary formation, at least in the posterior : in chick embryos, the r5/r6 

boundary is the first to form, followed by the r4/r5 and r6/r7 boundaries (Vaage, 

1969), whereas in zebrafish, the r5/r6 boundary is the last to form, and the 

boundaries of r4 are the first (Maves et al., 2002; Moens et al., 1998). This may 

suggest that the mechanisms of segmentation differ between species, as there is 

evidence for a “proto-segment” being the precursor of r5 and r6 in zebrafish
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(Cooke et al., 2001; Moens et al., 1998), which is not consistent with 

observations of “primary rhombomeres” in the chick hindbrain, where r4/r5, and 

r6/r7 appear to have a common precursor (Vaage, 1969).

Experim ents in chick embryos have shown that boundaries form 

whenever odd- and even-numbered rhombomeres are juxtaposed (Guthrie and 

Lumsden, 1991). However, apposition of rhombomeres of the same parity does 

not form a new boundary (with the exception of r5 and r7, whose juxtaposition 

leads to boundary formation). This implies that an interaction between adjacent 

segments is responsible for boundary formation, and therefore that boundary 

formation is a consequence of segmentation, rather than the opposite. Moreover, 

the interaction involves properties that vary with segmental parity, similar to the 

affinity differences described above. Thus, Eph/ephrin signalling is an attractive 

candidate for mediating boundary formation (Cooke and Moens, 2002). Indeed, 

disruption of Eph/ephrin signalling leads to a loss of boundary markers in the 

zebrafish hindbrain (Xu et al., 1995). Nevertheless, a direct input of Eph/ephrin 

signalling into boundary cell induction has not been demonstrated, and the 

signalling events leading to boundary cell formation are still unknown.

Cellular properties of boundary cells.

Hindbrain boundary cells differ in many ways from their neighbours. 

They exhibit a specific, elongated morphology, and in the chick, are found in 

fan-shaped arrays (Heyman et al., 1993; Moens et al., 1998). Moreover, enlarged 

extracellular spaces are present at rhombomere boundaries, which in chick and 

mouse embryos are colonised by axons (Heyman et al., 1993; Lumsden and 

Keynes, 1989; McKay et al., 1994). It has been suggested that the enlarged

18



Introduction

spaces between boundary cells are due to repulsive interactions at interfaces, 

mediated by Eph/ephrin signalling (Lumsden, 1999). Furthermore, whereas cells 

throughout rhombomere centres communicate through gap junctions, boundary 

cells are isolated from their neighbours (Martinez et al., 1992). This is consistent 

with the find ing  tha t Eph/ephrin signalling inhib its gap junctional 

communication at interfaces (M ellitzer et al., 1999). It is also possible that 

boundary cells have different affinity properties to cells in the centre of 

rhombomeres, as they do not express N-CAM, which is present throughout the 

ventricular zone in the centre of rhombomeres (Lumsden and Keynes, 1989). 

Work carried out in the Wilkinson lab in parallel with that presented in this thesis 

has addressed the question of boundary cell-specific affinity, and the results will 

be presented in the discussion. Finally, the extracellular matrix at boundaries 

differs from that in the centre of rhombomeres (Heyman et al., 1995; Lumsden 

and Keynes, 1989). Boundary matrix is enriched in laminin and chondroitin 

sulphate proteoglycan, suggesting a different cellular environment at boundaries 

than in rhombomere centres.

Boundary cells also have a different behaviour in relation to the cell cycle 

(Guthrie et al., 1991). First, they divide at a slower rate than cells in the centre of 

rhombomeres. Secondly, the nuclei of boundary cells do not undergo interkinetic 

nuclear migration, which is a process in which the nucleus of neuroepithelial 

cells moves from the ventricular surface to the pial surface of the epithelium as 

the cell enters S-phase, and back to the ventricular surface, where mitosis occurs. 

Thus, in a short pulse of BrdU labelling, which labels cells in S-phase, the nuclei 

of most neuroepithelial cells are located adjacent to the pial surface. The nuclei 

of boundary cells, however, are closer to the ventricular surface during S-phase.
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These observations suggest that boundary cells may have a stabilising role at 

interfaces by being less motile and dividing slower than cells in rhombomere 

centres.

Gene expression defines boundary cells as a separate cell type.

The properties that distinguish boundary cells from cells in the centre of 

rhombomeres presumably reflect that gene expression differs between these two 

cell populations. Indeed, certain genes thus define hindbrain boundary cells as a 

separate cell population. I will not list all the genes whose expression has been 

detected at hindbrain boundaries, but I will describe certain genes, either because 

they have often been used as markers of boundary cells, or because they suggest 

potential pathways controlling boundary formation or roles of boundary cells. In 

particular, genes whose boundary expression is conserved between species may 

underlie important functions of boundaries. The homeobox gene p a x 6  is 

upregulated at high levels in boundaries both in chick and zebrafish embryos 

(Heyman et al., 1995; Xu et al., 1995). Other genes encoding transcription 

factors expressed in boundaries include members of many gene families, such as 

PLZF, a zinc finger transcription factor, in both chick and mouse (Cook et al.,

1995), NSCL1, a basic helix-loop-helix transcription factor, also with boundary 

expression conserved between chick and mouse (Theodorakis et al., 2002), and 

the forkhead box-containing fo x b l .2, whose boundary expression has only been 

described in zebrafish embryos (also called mariposa and foxb3 , Moens et al., 

1996; Odenthal and Nusslein-Volhard, 1998). Another marker of interest is a 

signalling factor, fgf3, which is expressed in boundaries both of mouse and chick 

hindbrains, but not zebrafish (Furthauer et al., 2001; Mahmood et al., 1995;
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Mahmood et al., 1996), suggesting that, in mammalian and avian embryos at 

least, boundaries may be signalling centres.

Patterning segments : segmentation and signalling centres.

What is a signalling centre ?

During development, complex patterns of differentiation are generated 

from initially equipotential fields of cells. Often, this involves setting up 

gradients of positional information, that instruct cells to differentiate according to 

their position within the field. Such gradients require reference points, and 

compartment boundaries are good candidates for this role (Meinhardt, 1983b). 

Work in Drosophila  has suggested that there may be a recurrent theme in many 

different developmental sequences : first, morphogen gradients specify several 

cell fates, which are then determined by heritable expression of selector genes, 

and subsequently, interactions between the specified compartments leads to 

morphogen expression at the interface, forming gradients that organise pattern 

(Lawrence and Struhl, 1996). Morphogens are secreted substances that can 

induce cells to adopt different fates, depending on the concentration of 

morphogen they are exposed to (Wolpert, 1969).

Such mechanisms are clearly at work in organising the development of 

the wing of Drosophila (reviewed in Lawrence and Struhl, 1996). The selector 

genes apterous and engrailed  define the dorsal and posterior compartments, 

respectively. Short range interactions between com partm ents induce the 

expression of wingless and decapentaplegic at the dorso-ventral and anterior-
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posterior boundaries. There is now considerable evidence that these two 

signalling molecules act as morphogens, patterning the entire prospective wing 

blade along two of the three axes (for review, see Irvine and Rauskolb, 2001; 

Strigini and Cohen, 1999). Thus, complex patterns of vein and bristle 

differentiation are reliably reproduced by signalling centres, or organisers, which 

pattern the wing imaginal disc. It is worth noting that, in order to ensure that the 

correct pattern is established, it is essential that the interface at which the 

signalling source is induced be sharp and straight, and that the number of 

signalling cells be precisely regulated (Dahmann and Basler, 1999). Mechanisms 

for maintaining sharp interfaces and for regulating organiser cell number have 

been described for both the anterior-posterior and dorso-ventral boundaries. It 

should be noted, however, that not all signalling centres are linked to 

compartment boundaries, for instance, the leg imaginal disc in Drosophila is 

patterned by opposing gradients of W ingless and Decapentaplegic, but no 

restrictions to cell mixing are observed, and the appearance of sharp expression 

domains is due to cross-repression of the two pathways along the dorso-ventral 

axis, and their cooperation along the proximo-distal axis (Irvine and Vogt, 1997; 

Lecuit and Cohen, 1997).

Signalling at parasegment boundaries in Drosophila.

A further example of how signalling centres organise tissue is the precise 

arrangement of hairs, or denticles, in the cuticle of the D ro so p h ila  larva 

(reviewed by Sanson, 2001). Each segment consists of denticle belts and smooth 

cuticle, both about six cells in width. Denticle belts are made up of six rows of 

individually identifiable denticles. This cuticle pattern reflects the fact that the
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underlying epidermis, which secretes the cuticle, is patterned, and that every 

epidermal cell within one segment has a distinct identity. This pattern is 

established during the segmentation process. A signalling centre is established at 

parasegment boundaries, with the anterior row of cells expressing wingless, and 

the two cells posterior to the interface expressing hedgehog and engrailed. The 

range of Wingless signalling is asymmetric, acting on cells four diameters away 

in the anterior direction, but only one cell posteriorly (Sanson et al., 1999). Thus, 

six cells, including the W ingless-secreting cell, are exposed to W ingless. 

Transduction of the Wingless signal leads to the repression of shavenbaby, which 

is a selector gene required for denticle secretion, and therefore the cells exposed 

to Wingless secrete smooth cuticle (Payre et al., 1999). Cooperation of Wingless 

and Hedgehog signalling also serves to position a stripe of three cells expressing 

rhomboid, whose product is required for the activation of an Epidermal Growth 

Factor-related ligand, Spitz, whose activity regulates denticle formation. Finally, 

Wingless, Spitz and Hedgehog each play a role in activating three discrete cell 

rows of expression of stripe. These cells will give rise to the tendons attaching 

the muscles to the epidermis (Sanson, 2001).

This brief description shows how segm entation, by leading to the 

establishment of signalling centres at parasegment boundaries, leads to fine 

patterning of cells. In more general terms, this is an example of how subdivisions 

of the embryo give rise to a complex and refined pattern of differentiated cell 

types, through the formation of organisers.
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Signalling centres pattern the vertebrate neural tube.

In vertebrates, subdivision and patterning of tissue also involves 

signalling centres. For instance, anterior-posterior patterning of the limbs, and 

consequently digit determination, involves a signalling centre known as the Zone 

of Polarising Activity (ZPA), located at the posterior side of the growing limb 

bud. A homologue of the Drosophila hedgehog, Sonic Hedgehog, is expressed in 

the ZPA and behaves as a morphogen, inducing different digits at different 

concentrations (reviewed in Capdevila and Izpisua Belmonte, 2001). Another 

signalling centre in the limb, the Apical Ectodermal Ridge (AER), corresponds to 

borders of lineage restriction (Kimmel et al., 2000), and secretes Fibroblast 

Growth Factors (FGFs) that pattern limb development along the proximo-distal 

axis (Capdevila and Izpisua Belmonte, 2001).

Several organisers pattern the developing vertebrate neural tube (see 

Fig.4A). The roof plate and floor plate run along the length of the neural tube, 

dorsally and ventrally, respectively. They secrete morphogens, such as the 

ventralising Sonic Hedgehog, or dorsalising Bone M orphogenetic Proteins 

(BMPs, homologues of decapentaplegic, and members of the large Transforming 

Growth Factor |3 family), and pattern cell types along the dorso-ventral axis (see 

below). Regionalisation of the neural tube along the anterior-posterior axis also 

involves signalling centres (reviewed in Echevarria et al., 2003). As mentioned 

previously, rhombomere 4 is a source of FGFs and specifies and patterns the 

adjacent rhombomeres in zebrafish (Maves et al., 2002; Walshe et al., 2002), and 

is required for expression of specific genes in r3 and r5 in chick (Graham and 

Lumsden, 1996). Recent work has uncovered a new signalling centre at the 

boundary between thalamus (or dorsal thalamus) and prethalamus (or ventral
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thalamus) : the zona limitans intrathalamica (ZLI, Kiecker and Lumsden, 2004). 

The ZLI itself is a compartment ; cells of the ZLI do not cross either into the 

thalamus or the prethalamus (Larsen et al., 2001; Zeltser et al., 2001). The ZLI 

expresses the morphogen Sonic H edgehog  (sh h ), which regulates gene 

expression in both thalamus and prethalamus. For instance, nkx2.2 is expressed 

in a domain immediately flanking the ZLI on either side, while dlx2 is expressed 

in the whole prethalamus and gbx2  only in the thalamus, but all three genes 

require Shh for their expression. Differential responses to Shh are mediated by 

irx3, which seems to act as a selector gene for thalamic identity (Kiecker and 

Lumsden, 2004).

One of the most prominent and well studied organisers in vertebrates is 

the isthmic organiser, which forms at the midbrain-hindbrain boundary (MHB, 

reviewed in Echevarria et al., 2003; Wurst and Bally-Cuif, 2001). Positioning of 

the MHB depends on interactions between the midbrain, expressing genes of the 

Otx family, and the anterior hindbrain, which expresses Gbx family members, 

but other factors appear to be involved in the induction of the MHB. In the chick, 

the isthmus does not appear to be a boundary of lineage restriction, and it is 

likely that the maintenance of sharp gene expression interfaces is due to cells 

switching fate according to their position relative to the MHB (Jungbluth et al., 

2001; reviewed by Pasini and Wilkinson, 2002). Ablation and grafting studies 

have shown that the isthmic organiser is necessary and sufficient for the 

development of the whole of the midbrain, and of the anterior hindbrain 

(particularly of rhombomere 1 and its derived structures, such as the cerebellum). 

The isthmic organiser expresses w n tl (founding member of the Wnt family, 

homologous to Drosophila wingless)andfgf8. Of these signals, only FGF8 is able
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to mimic the patterning properties of the organiser. Finally, as well as being 

responsible for maintaining the midbrain-hindbrain area, signals from the isthmic 

organiser also pattern this region. For instance, FGF8 from  the organiser 

cooperates with signals from the floor plate (and also presumably with selector 

genes specifying m idbrain or r l  identity) to induce m idbrain-specific 

dopaminergic neurons and rl-specific serotonergic neurons of the raphe nuclei, 

and noradrenergic neurons of the locus coeruleus require dorsal BMP signals as 

well as isthmic-derived FGF (Wurst and Bally-Cuif, 2001).

In summary, organisers along the length of the neural tube pattern the 

dorso-ventral axis, while several signalling centres are involved in patterning 

specific regions of the anterior-posterior axis, providing the head region of 

vertebrate embryos with a grid-like coordinate system.
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The control of neurogenesis.

The role of patterning of neural tissue is to ensure that the correct number 

and subtypes of neurons and glia are born in appropriate locations, and that these 

neurons accurately connect to each other, so as to generate functional circuits. 

Thus, the subdivision of the neural epithelium must be linked to the control of 

neurogenesis.

Therefore, in order to understand the patterning of a neural tissue, it is 

important to understand how it relates to the spatial and temporal generation of 

neurons and glia and of different neuronal types. There are two fundamental, but 

interlinked questions to address : first, how' neurons are produced, and second, 

how different types of neurons are produced.

A general molecular pathway fo r  neurogenesis.

A conserved gene family controls many aspects of the acquisition of a 

generic neuronal fate. Members of the basic helix-loop-helix (bHLH) family of 

transcription factors encoded by proneural genes act to induce neuronal 

differentiation, controlling downstream bHLH neuronal differentiation genes, 

while other bHLH proteins counteract proneural proteins and maintain cells in an 

undifferentiated state (Bertrand et al., 2002). These opposing factors are linked 

by a process called lateral inhibition, involving signalling through the Notch 

pathway.
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Making neurons : the achaete-scute and atonal gene families.

Proneural genes are involved in driving cells towards neuronal 

differentiation (reviewed in Bertrand et al., 2002). These genes were first 

identified in Drosophila as being required for the formation of subsets of sensory 

bristles and sense organs. Genes of the achaete-scute complex and others related 

to atonal are each required for the generation of different neural progenitors from 

ectodermal cells, while gain of function experiments show that they can induce 

ectopic neural cells when expressed in the ectoderm, establishing a paradigm for 

these genes acting as selector genes for neural development.

Vertebrate homologues of proneural genes have been identified, and are 

divided into several families. The ash gene family is homologous to achaete- 

scute and the ath and neurogenin (ngn) families are related to atonal. To date, 

only three genes have been found to have proneural activity in mammals : 

M ashl, N gn l and N gn2  (Fode et al., 1998; Guillemot et al., 1993; Ma et al., 

1998). Loss of function analyses show that proneural genes are required for 

neurogenesis, and that in their absence, neuronal populations are lost and Notch 

signalling (see below) is not initiated. There are differences between proneural 

function in Drosophila  and vertebrates, however, as in vertebrates, these genes 

function in the context of a neural tissue to specify progenitors that are limited to 

a neuronal fate (Bertrand et al., 2002). Moreover, loss of proneural genes leads to 

an increase in gliogenesis, implicating proneural genes in the decision between 

neuronal versus glial fate (Nieto et al., 2001). In zebrafish, only one neurogenin 

gene, ngnl has been identified, but two M ashl homologues, asha and ashb, are
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present (Allende and Weinberg, 1994; Blader et al., 1997; Kim et al., 1997; 

Korzh et al., 1998).

The action of proneural genes has been extensively studied in the 

mammalian cortex, as well as in Xenopus and zebrafish embryos. They act in 

many ways : first, they initiate lateral inhibition to single out neuronal 

progenitors from neuroepithelial stem cells. Second, positive feedback loops, by 

direct regulation of their own promoters, or indirectly, via the regulation of 

factors such as hes6  or coe2, increase levels of proneural gene expression, 

leading to irreversible commitment of the cell. Finally, they induce expression of 

genes of the neuroD  family of neuronal differentiation genes, which are also 

bHLH genes related to atonal (Bertrand et al., 2002; Ross et al., 2003). The 

differentiation process is linked to exit from the cell cycle, but it is not known 

whether proneural genes themselves regulate cyclin-dependent kinase inhibitors, 

or if downstream differentiation genes are responsible.

The regulation of proneural gene expression and activity is achieved in 

many ways. Little is known about how proneural gene expression is positively 

induced in the vertebrate nervous system, but in Drosophila, promoter elements 

have been described for different expression domains, showing that several 

signalling inputs are integrated to establish proneural gene transcription (Gomez- 

Skarmeta et al., 2003). The activity of proneural genes is also tightly regulated. 

For instance, M ashl activity can be regulated by phosphorylation by glycogen 

synthase kinase 3 (GSK3), an enzyme that is regulated by several intercellular 

signalling pathways (Moore et al., 2002). Another mechanism of proneural gene 

activity regulation is the availability of binding cofactors. Proneural proteins bind 

DNA as heterodimers with other bHLH family members, E proteins, which are
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ubiquitously expressed. However, Id genes, which have a helix-loop-helix 

domain, but lack the basic DNA binding domain, can act in a dominant negative 

manner, by sequestering E proteins (reviewed in Ross et al., 2003). Id proteins 

therefore counteract proneural gene activity, and knockout of these genes leads 

to premature neuronal differentiation (Lyden et al., 1999). Finally, both 

expression and activity of proneural genes is inhibited by another class of bHLH 

genes, the hairy I enhancer o f  split family (Ross et al., 2003). These genes are the 

effectors of Notch signalling during lateral inhibition.

Keeping cells undifferentiated: the Notch pathway and lateral inhibition.

Lateral inhibition is a process whereby a cell selected to adopt a particular 

fate inhibits its neighbours from doing the same (Fig3). It was first described in 

D rosophila , where loss or gain of function mutations lead to supernumerary or 

loss of neural precursors (Heitzler and Simpson, 1991). Lateral inhibition 

involves signalling through the Notch receptor and its ligands Delta and 

Serrate/Jagged. Both receptor and ligand are transmembrane proteins. Upon 

interaction, the ligand is internalised by the signalling cell, provoking cleavage of 

the intracellular domain of Notch, which translocates to the nucleus and binds to 

its partner, Suppressor of Hairless (also called CSL) to regulate gene expression 

(reviewed in Schweisguth, 2004).
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Fig. 3 : Neurogenesis and lateral inhibition.
A : Molecular pathway of lateral inhibition (adapted from Bertrand et al., 2002). Proneural genes posi­
tively regulate their own expression and that of the Notch ligand delta (green arrows). Delta signals to 
Notch in adjacent cells, which represses proneural gene expression in the receiving (left) cell. This effect 
is reinforced over time as the signalling cell receives less inhibition, as Delta expression is downregulated 
in the receiving cells. The signalling cell initiates a programme of neuronal differentiation, while its neigh­
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only one cell is selected to become a neural precursor.
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For lateral inhibition to occur, it is necessary that the outcome of Notch 

signalling is to repress expression of delta  and serrate (Lewis, 1998). In the 

context of neurogenesis, expression of the Notch ligands is driven by proneural 

genes (Fig.3A, Bertrand et al., 2002). Low level expression of proneural gene in 

a group of equipotential cells leads to low levels of Notch ligand expression, and 

activation of the Notch receptor. If one cell in the group expresses higher levels 

of ligand, either randomly or by some bias, it will activate the Notch pathway 

more strongly in the neighbouring cells, causing them to express less ligand, and 

thus decreasing Notch activation and increasing ligand expression in the former 

cell (Fig.3B). Combined with positive feedback of proneural genes on their own 

expression, this leads to the amplification and maintenance of stochastic or 

biased differences, and to the selection of a single cell from a group that 

expresses high levels of delta and proneural genes, which is thus fated to become 

a neural progenitor (Artavanis-Tsakonas et al., 1999; Bray, 1998; Lewis, 1998; 

Simpson, 1997).

Activation of the Notch pathway in the adjacent cells leads to the 

expression of hairy/enhancer o f split genes (hes, hey and her gene families in 

vertebrates), which repress proneural genes and inhibit neuronal fate (Ross et al.,

2003). For instance, recent work has shown that in a hesl/hes5  mouse mutants, 

neuroepithelial stem cells are not maintained and differentiate precociously and 

ectopically into neurons (Hatakeyama et al., 2004). This is similar to the 

zebrafish mutant, mind bomb, where Notch signalling is severly impaired, and 

where early-born neurons are generated in vast excess, while later types of 

neurons are absent, due to a loss of progenitors (Bingham et al., 2003; Itoh et al., 

2003; Park and Appel, 2003). Thus, Notch activation is crucial in the vertebrate
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neural tube to maintain stem cells and prevent differentiation from occurring at 

the wrong time or place. A lthough its role in neurogenesis is the best 

characterised, the Notch pathway has many other roles during development, 

including boundary form ation, lineage decisions, cell proliferation and 

segmentation of the mesoderm in vertebrates (reviewed in Artavanis-Tsakonas et 

al., 1999; Bray, 1998; Lewis, 1998).

Generation o f neuronal diversity and patterning o f  neuronal 

types.

The molecular pathways described above give insights into the general 

acquisition of neuronal properties, but do not explain how different types of 

neurons are obtained. Neurons are the most diverse cell population in vertebrates. 

For instance, in the spinal cord, there are motor neurons, sensory neurons and 

several types of interneurons (reviewed in Jessell, 2000). Considering only motor 

neurons, different groups can be distinguished, depending on the area they 

innervate, which are grouped into columns, for instance, the medial motor 

column neurons that innervate limbs. Within each column, motor neurons are 

separated into medial and lateral divisions, and within each division, motor 

neurons are found in pools that correspond to the neurons that innervate single 

muscle groups. Each type of neuron thus defined by morphology and axon 

projection has a distinct molecular identity.

Several mechanisms are responsible for such diversity among neurons. 

One such mechanism is the regulation of the temporal identity of progenitors,
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such that they generate different types of neurons over time. This can be 

achieved as a result either of intrinsic tim ing mechanisms or of changing 

extrinsic cues (Pearson and Doe, 2004). Examples of both types of temporal 

regulation exist : neuroblasts in D rosophila  give rise to different neuronal 

precursors at every division, due to an intrinsic programme of changing 

transcription factor expression (Pearson and Doe, 2003). In the mammalian 

cortex, however, heterochronic transplants show that cells can adopt a later fate 

if progenitors are transplanted before they start a division cycle, indicating the 

presence of extrinsic cues regulating neuronal identity (M cConnell and 

Kaznowski, 1991). Conversely, cells from older donors are restricted in the cell 

types they can produce, even in young hosts, implying that an intrinsic 

mechanism also occurs (Desai and McConnell, 2000; Frantz and McConnell,

1996). A combination of both extrinsic and intrinsic factors is also observed in 

the retina, where a suggested model for temporal determination of neuronal cell 

types is that stem cells undergo changes in intrinsic competence states to produce 

specific types of cell, but that extrinsic signals regulate whether they produce 

those cells (Livesey and Cepko, 2001). Other examples of temporal specification 

of neuronal cell type are found in the spinal cord, where oligodendrocytes are 

generated from  progenitors that previously gave rise to m otor neurons 

(Richardson et al., 2000; Rowitch et al., 2002), and in the hindbrain, where motor 

neuron progenitors later give rise to serotonergic neurons, except in rhombomere 

4 (Pattyn et al., 2003a).

These last two examples highlight the fact that temporal determination 

cannot account for all neuronal diversity in the central nervous system, as 

temporal changes occur in subsets of progenitors that are already defined along
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the dorso-ventral axis, and in the case of the hindbrain, also along the anterior- 

posterior axis. Thus, spatial patterning is crucial for the generation of distinct 

neuronal types.

Dorso-ventral patterning

One of the best understood models of neural patterning is along the 

dorso-ventral axis of the spinal cord (reviewed in Briscoe and Ericson, 2001; 

Jessell, 2000). In the spinal cord, motor neurons are found ventrally, and neurons 

that process sensory inputs dorsally, and several types of interneurons are found 

at various dorso-ventral positions. Two signalling centres, the floor plate and the 

roof plate, are responsible for patterning along the dorso-ventral axis. The floor 

plate is a specialised glial cell population at the ventral midline of the spinal 

cord, induced by the notochord, a mesodermal structure below the neural tube. 

Both the notochord and the floor plate secrete the morphogen Sonic Hedgehog 

(Shh). Shh induces distinct neuronal progenitor types at different concentrations. 

The action of Shh is mediated by the expression of two classes of homeobox 

proteins, the first (including members of the Pax, Dbx and Irx families) being 

repressed by different thresholds of Shh activity, and the second class being 

activated by Shh signalling, and comprising genes of the Nkx family. Class I and 

class II genes cross-repress each other in pairs, leading to the formation of sharp 

interfaces of expression. Thus, a homeodomain protein code is established, and 

determines five distinct progenitor domains (Briscoe et al., 2000). Cells in each 

domain generate a distinct class of post-mitotic neurons. However, although Shh 

can generate all five classes of ventral progenitors, it is not required in all of
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them, and instead, retinoids derived from paraxial mesoderm induce the two 

most dorsal types of ventral interneuron in vivo (Pierani et al., 1999).

Patterning of the dorsal half of the spinal cord is less well understood, in 

part due to few er markers being available to define individual progenitor 

domains. Nevertheless, six types of dorsal interneurons can be distinguished at 

different dorso-ventral positions. The code for these progenitor domains appears 

to involve bHLH as well as homeodomain containing proteins (Bermingham et 

al., 2001; Chizhikov and Millen, 2005; Gowan et al., 2001; Mansouri and Gruss, 

1998). Indeed, recent work indicates that, as well as their general proneural 

function of promoting neurogenesis, proneural genes may have direct inputs into 

neuronal subtype specification (Bertrand et al., 2002). Signals from the roof plate 

pattern the dorsal spinal cord, and include many members of the Transforming 

Growth Factor p family, such as BMPs and Growth/Differentiation Factors 

(GDFs), as well as at least two members of the Wnt family, W ntl and Wnt3a 

(reviewed in Chizhikov and Millen, 2005). Genetic ablation of roof plate cells 

suggests that only the three most dorsal populations of neurons are specified by 

roof plate signals, and one transcription factor, Ibxl, is responsible for specifying 

the three remaining types (Lee et al., 2000; Muller et al., 2002). However, BMPs 

regulate the range of Shh signalling and prevent ventralisation of the dorsal half 

of the spinal cord, implying that that the roof plate does pattern more than just 

the three dorsal-most neuronal progenitor populations (Briscoe and Ericson, 

2001; Jessell, 2000).

Thus, many (up to eleven) progenitor domains are defined along the 

dorso-ventral axis of the spinal cord, by the cooperation of dorsal and ventral 

signalling centres, as well as signals from paraxial mesoderm. These domains
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each give rise to distinct classes of neurons, due to the combinations of 

transcription factors expressed by the progenitors. However, differences in the 

transcription factor code, in the gene regulatory hierarchies and in the types of 

neurons produced are observed at different anterior-posterior locations in the 

neural tube. For instance, in the spinal cord, most motor neurons are somatic 

motor neurons, innervating somite-derived skeletal muscles, except at particular 

sacral and thoracic levels, where visceral motor neurons are also generated, 

which innervate autonomic ganglia (Jessell, 2000). In the hindbrain, both types 

of motor neuron are produced, but they originate from  different progenitor 

domains, and analysis of their regulation shows that the same homeodomain and 

bHLH containing proteins may be in different regulatory hierarchies compared to 

the spinal cord (Ericson et al., 1997; Pattyn et al., 2003a; Pattyn et al., 2003b; 

Takahashi and Osumi, 2002; Vallstedt et al., 2005). Thus, anterior-posterior 

patterning is also an important factor in the production of neuronal diversity.

Anterior-posterior patterning

Less is known about how anterior-posterior patterning affects neuronal 

specification than for dorso-ventral patterning. However, while Shh signalling 

occurs ventrally at all axial levels, responses to this signal differ according to 

position along the anterior-posterior axis, implying that the way in which neural 

cells respond to the same signal is modified by their axial properties. The dorso- 

ventral progenitor code differs between spinal cord and hindbrain, as mentioned 

above, and is also different in the midbrain and forebrain (Puelles et al., 2004; 

Toresson et al., 2000). Direct input from anterior-posterior signalling centres 

affects neuronal specification in these areas. For instance, the generation of
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midbrain dopaminergic and r l serotonergic nuclei requires a direct input of 

isthmic-derived FGF signals, as well as Shh from the floor plate (Fig.4A, Hynes 

and Rosenthal, 1999; Ye et al., 1998). Recent work has shown that, although the 

same signals are present in the anterior hindbrain and posterior midbrain, they 

are interpreted in different ways by cells in these tissues, due to the expression of 

otx2 in the midbrain (Puelles et al., 2004). In the hindbrain, different segments 

give rise to different neurons (Lumsden and Keynes, 1989). One well studied 

example integration of anterior-posterior and dorso-ventral signalling is the case 

of ventral hindbrain progenitors that sequentially generate visceral motor neurons 

and serotonergic neurons. In rhombomere 4, this switch does not take place, due 

to the maintained expression of phox2b, which is a direct target of the r4-specific 

genes, H oxbl and Hoxb2, but phox2b  expression also requires the dorso- 

ventrally restricted Nkx2.2 (Pattyn et al., 2003a; Samad et al., 2004).

Similarly in the spinal cord, there are differences in neuronal specification 

along the anterior posterior axis. One of the most evident is that different motor 

columns form at different locations : at limb levels, lateral motor columns are 

generated, while in intervening thoracic regions, autonomic motor neurons are 

grouped into the Column of Terni in chick (Dasen et al., 2003; Jessell, 2000). 

The establishment of these columns is due to expression of different Hox genes 

at different anterior-posterior locations, which in turn is due to a posterior-to- 

anterior gradient of FGF signalling. Expression of either group 9 Hox genes or of 

group 6 Hox genes leads to those neurons adopting forelim b lateral motor 

column or Column of Terni identity, respectively (Dasen et al., 2003). 

Remarkably, this patterning event occurs in post-mitotic cells, once they have 

been specified as motor neurons.
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Another example of anterior-posterior patterning has been described in 

the hindbrain of the zebrafish (Fig.4B, Hanneman et al., 1988; Trevarrow et al., 

1990). The distribution of neuronal and glial cell types is patterned along the 

anterior-posterior axis within each hindbrain segment. Early-born neurons and 

reticulospinal neurons are located in segment centres, while commissural 

neurons are located at rhombomere boundaries. Separating centre and boundary 

regions, a row of radial glial cells forms a “glial curtain”. In chick and mouse, 

individual types of neuron are generally found in longitudinal columns along the 

anterior-posterior axis within each rhombomere (Auclair et al., 1999; Clarke and 

Lumsden, 1993; Lumsden et al., 1994). Thus, the anterior-posterior patterning of 

neural types within each rhombomere in the zebrafish is remarkable compared to 

other vertebrate systems, where patterning along the anterior-posterior axis 

occurs between, but not within segments, making the zebrafish hindbrain a 

particularly interesting model for studying regional neural patterning.
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Fig. 4 : Signalling centres and patterning in the central nervous 

system.

A : Diagram schematising the anterior vertebrate neural tube, with signalling 

centres indicated in red boxes (adapted from W urst and Bally-Cuif, 2001). 

Secreted signalling molecules are indicated by colours, as shown in the key. 

Particular neuronal populations around the isthmic organiser, as described in the 

text, are indicated, together with arrows showing the inductive signalling events 

that pattern them. B : Cell type organisation along the anterior-posterior axis of 

each rhombomere in the zebrafish (from Trevarrow et al., 1990). Reticulospinal 

neurons (grey) are located in the centre of rhombomeres, and commissural 

neurons (black) are at segment borders, separated from the centre regions by a 

curtain of glial fibres.
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The Wnt signalling pathway and its roles in development.

The Wnt pathway is named after its upstream ligands, the Wnt family of 

secreted signalling molecules. This name derives from  the two founding 

members of the family (Nusse et al., 1991), the Drosophila wingless gene, which 

was identified for its role in wing development (Sharma and Chopra, 1976), and 

its mouse homologue, int-1 (for integration site 1), which was identified as a 

potential oncogene due to the frequent insertion of a tumour-provoking virus, the 

Mouse Mammary Tumour Virus, leading to overexpression of its transcript 

(Nusse and Varmus, 1982; van Ooyen and Nusse, 1984). These two very 

different contexts leading to the identification of Wnt gene homologues suggest 

that the Wnt signalling pathway has normal roles in regulating im portant 

developmental events, and promotes carcinogenesis when deregulated.

Molecular characterisation o f the Wnt pathway.

Extensive biochem ical and genetic evidence (see for instance 

Noordermeer et al., 1994 for genetic elucidation of the pathway in Drosophila) 

has allowed the molecular pathway leading to gene transcription downstream of 

Wnt ligands to be characterised (Cadigan and Nusse, 1997; Logan and Nusse,

2004). Moreover, this evidence has shown that at least two distinct pathways 

exist downstream of Wnt ligands or receptors, although only one of these, the
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“canonical” Wnt pathway (Fig.5) is well understood (Huelsken and Behrens, 

2002; Veeman et al., 2003).

“Canonical” Wnt signalling.

The canonical Wnt signalling pathway activates nuclear transcription 

through the Tcf/Lef family (T-Cell Factor/Lymphoid Enhancer Factor -  called 

dT C F  or pango lin  in D rosophila  and pop-1  in C. Elegans). Tcf/Lef family 

members are HMG box-containing transcription factors, and are constitutively 

bound to their target DNA sequences (reviewed in Roose and Clevers, 1999). In 

the absence of a Wnt signal, Tcfs actively repress transcription of target genes, 

due to interactions with the transcriptional repressor Groucho (Cavallo et al., 

1998). The Wnt pathway switches Tcfs to an activator function by promoting the 

nuclear entry of p-Catenin (Armadillo in Drosophila, WRM-1 in C. Elegans), 

which forms a complex with Tcfs and provides a transcriptional activator domain 

(Cadigan and Nusse, 1997).

The way in which the regulation of P-Catenin localisation is achieved 

involves regulated degradation. There are two pools of p-Catenin in the cell, one cJ 

which is localised to the cell membrane, and is involved in cell adhesion (Nelson 

and Nusse, 2004), and one in the cytoplasm, which is rapidly degraded by 

ubiquitination-dependent proteasome degradation (Aberle et al., 1997). Wnt 

signalling inhibits the degradation of the cytoplasmic pool of P-Catenin, enabling 

it to enter the nucleus (Giarre et al., 1998). The degradation of P-Catenin is 

mediated by a complex involving many proteins ; of particular importance are 

Axin, Adenomatous Polyposis Coli (APC) and Glycogen Synthase Kinase 3p
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(GSK3P, or Zeste White 3 in Drosophila). GSK3|3 phosphorylates (3-Catenin to 

induce its ubiquitination and subsequent degradation.

Wnts signal to inhibit the degradation of |3-Catenin. They bind their 

receptors, Frizzled proteins, and require co-receptors, LRPs (low density 

lipoprotein receptor-related proteins, called Arrow in D rosophila ). This 

interaction activates Dishevelled, which binds to and recruits Axin to the 

membrane, leading to disassembly of the |3-Catenin degradation com plex, 

allowing p-Catenin to activate target genes (reviewed in Huelsken and Behrens, 

2002; Logan and Nusse, 2004; Tolwinski and W ieschaus, 2004). In addition, 

Dishevelled acts at other levels to inhibit P-Catenin degradation.

This picture is further complicated by the many other components of the pathway 

that have been identified. For instance, secretion of active Wnt molecules 

requires a lipid modification, palmitoylation, mediated by the product of the 

porcupine gene in Drosophila (Kadowaki et al., 1996; Zhai et al., 2004). Heparin 

sulphate proteoglycans are required for either transport or reception of the ligand, 

and the signal can also be modulated by extracellular inhibitors, such as SFRPs 

(secreted frizzled-related proteins) or WIF (Wnt inhibitory factor), that bind 

Wnts extracellularly, or Dickkopf, that binds to the W nt co-receptors, 

LRP/Arrow, as well as causing them to be removed from the cell surface. Many 

more components of the P-Catenin degradation pathway have been identified (for 

a comprehensive review of known pathway components, see Logan and Nusse, 

2004 or http://www.stanford.edu/~rnusse/wntwindow.html). Moreover, both P- 

Catenin and Tcfs have many binding partners in the nucleus that could modulate 

their activity and/or the expression of specific target genes (Sharpe et al., 2001).
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In summary, the canonical Wnt pathway is complex, but in its essence 

involves the inhibition of p-Catenin degradation upon binding of Wnts to their 

receptors. P-Catenin then translocates to the nucleus and associates with Tcfs to 

activate transcription of genes that Tcfs repress in the absence of Wnts (Fig.5).

Other signalling pathways downstream of Wnt ligands.

While canonical Wnt signalling is mediated through the regulation of 

cytoplasmic P-Catenin, some roles of Wnts have been found to be independent of 

p-Catenin (reviewed in Veeman et al., 2003). W hile many details of these 

pathways remain unclear, at least two different cellular events are affected by p- 

Catenin-independent signalling : polarity of cells and intracellular calcium 

release.

Two similar, but not identical, pathways regulating cell polarity have 

been described which regulate D rosophila  planar cell polarity (PCP) and 

convergent extension movements during vertebrate gastrulation (Mlodzik, 2002; 

Veeman et al., 2003). They differ especially in that no Wnt ligand is known to be 

involved in PCP, whereas at least two, Wnt5a and W n tll ,  regulate convergent 

extension movements. Frizzled and Dishevelled are involved in this pathway, 

and modulate the activity of certain members of the Rho GTPase family of small 

G -proteins. An adaptor protein, D aam l is required for Rho activation 

downstream of Dishevelled, and one downstream  effector of Rho, ROK, is 

involved both in PCP and in convergent extension. Activation of Rho and ROK 

leads to cytoskeletal rearrangements. Also involved are two transmembrane 

proteins, Strabismus (mutated in the tr ilob ite  zebrafish mutant, also called 

Vangl2 in mouse) and Flamingo (Celsr in vertebrates), and the intracellular LIM-
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domain protein Prickle. These proteins are known to regulate the asymmetric 

location of each other and of Frizzled in the cell and establish PCP in Drosophila 

(Fanto and McNeill, 2004). They are also involved in convergent extension, but 

it is not known whether they are asymmetrically distributed. No clear linear 

pathw ay has been estab lished  betw een th ese  p ro te in s and the 

Frizzled/Dishevelled/Rho hierarchy.

The W nt/calcium pathway also involves Dishevelled (Sheldahl et al., 

2003). Signalling through this pathway leads to the activation of two calcium- 

sensitive proteins, Protein Kinase C and Calcium/Calmodulin-dependent Kinase 

II (Kuhl, 2004). Additionally, intracellular calcium increases that are induced by 

non-canonical W nts through Frizzled are dependent on the activity of 

heterotrimeric G proteins, acting upstream of Dishevelled. Finally, there is some 

evidence that signalling through this pathway may antagonise canonical Wnt 

signals (Kuhl, 2004; Veeman et al., 2003). It is of note that, although the 

PCP/convergent extension pathway and the W nt/calcium pathway are often 

described as separate pathways, they share many components, including the 

same Wnt ligands, as well as requiring the same domain of Dishevelled for their 

activity. Moreover, activation of the c-Jun N-terminal Kinase (JNK) pathway 

occurs downstream of non-canonical roles of Dishevelled and Frizzled, as well 

as Rho-family GTPase signalling and activation of Protein Kinase C (Fanto et 

al., 2000; Moriguchi et al., 1999; Pandur et al., 2002; W eber et al., 2000; 

Yamanaka et al., 2002). Nevertheless, it is possible that the pathways diverge 

downstream of Prickle and Dishevelled, and that different effector branches of 

non-canonical Wnt signalling exist (reviewed in Veeman et al., 2003).
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Developmental roles o f Wnt signalling.

Planar polarity and convergent extension.

Non-canonical Wnt signalling was first identified for its roles in planar 

polarity in the wing hairs, body bristles and ommatidia in the eye of Drosophila, 

and in regulating certain gastrulation movements. Planar cell polarity describes 

the properties of some epithelia, which are polarised along an axis perpendicular 

to the apical-basal axis. The best characterised system of PCP is that of the 

orientation of actin-rich bundles which give rise to hairs called trichomes 

(reviewed in Fanto and McNeill, 2004). Each cell in the wing produces one 

trichome, pointing towards the distal end of the wing. Many PCP mutations have 

been found which affect either the orientation, sub-cellular localisation or 

number of hairs produced. The precise mechanism by which polarity is 

established is not known, but it is likely that it is maintained and stabilised by 

localised interactions between cells. Frizzled and Dishevelled localise to the 

distal membrane of cells, while Prickle and Strabismus are found at the proximal 

membrane, and interactions between proteins at the distal membrane of one cell 

with those at the proximal membrane of its neighbour stabilise this system (Fanto 

and McNeill, 2004; Mlodzik, 2002). In the eye, PCP involves the orientation of 

ommatidia, that undergo rotation in different directions, depending on their 

localisation relative to the equator of the eye, and the differentiation of two 

photoreceptor cells, R3 and R4 (Fanto and McNeill, 2004). It is thought that 

Frizzled is differentially activated in the R3 and R4 precursors, which leads to 

differential activation of the Notch signalling pathway between these two cells.
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Thus, in this instance, the establishment of PCP leads to transcriptional activity 

and changes in cell identity. It is also interesting to note that, in the eye, PCP 

specifies the orientation of groups of cells, rather than the polarity of single cells, 

as occurs in the wing. Additional genes are involved in setting up the initial 

polarity both in eye and wing, such as f a t  and dachsous, encoding atypical 

cadherins. These genes appear to act upstream of Frizzled and are expressed in 

opposing gradients, both in the wing and in the eye, but the way in which they 

are regulated is not clear (Fanto and McNeill, 2004; Mlodzik, 2002). Currently, 

no single upstream gene is known to regulate overall polarity in these tissues, 

and many models involve a combination of a localised graded signal, defining 

and setting up the axis of polarity, and local cell-cell interactions, which maintain 

coherence within the organisation of the tissue (see for example Ma et al., 2003).

In vertebrates, planar cell polarity is observed in the cochlear hair cells, 

whose actin-rich bundles of hairs, called stereocilia, form organised arrays, with 

the apex pointing in the same direction. Recent work has shown that certain 

genes of the PCP pathway affect this organisation, particularly Wnts and Wnt 

inhibitors, and homologues of strabismus and flam ingo  (Curtin et al., 2003; 

Dabdoub et al., 2003; Montcouquiol et al., 2003). The best characterised 

occurrence of non-canonical Wnt signalling is the control of convergent 

extension movements during gastrulation. These m ovem ents involve the 

accumulation of cells on the dorsal side of the embryo, and the elongation of the 

anterior-posterior axis, which is achieved by intercalation of cells (Heisenberg 

and Tada, 2002; Tada et al., 2002). Unlike PCP, where cells have a defined 

polarity, convergent extension requires that cells adopt a bipolar morphology 

along the medio-lateral axis (Veeman et al., 2003). Nevertheless, work in
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Xenopus anym ore recently, genetic tools in the zebrafish have uncovered a role 

for non-canonical Wnt signalling in regulating this polarisation and consequent 

cell movements (Du et al., 1995; Heisenberg et al., 2000; Moon et al., 1993). 

Genes recovered from genetic screens for disruption of convergent extension in 

the zebrafish have been found to encode two Wnt ligands (silberblicklw ntl 1 and 

p ip e ta illwnt5, Heisenberg et al., 2000; Rauch et al., 1997), as well as 

homologues of strabismus (called trilobite, Jessen et al., 2002). Knockdown and 

overexpression of a prickle homologue shows that, as in the Drosophila  PCP 

pathway, it is also involved in regulating convergent extension (Carreira-Barbosa 

et al., 2003). It is interesting that, although the PCP pathway in vertebrates 

involves Wnts as ligands for Frizzled, it does not appear to require that these 

Wnts form gradients, indicating that it is likely that they only act permissively 

(Heisenberg et al., 2000). Finally, two genes of the convergent extension 

pathway, trilobite and prickle 1, have been involved in the tangential migration of 

branchiomotor neurons, particularly of the facial nerve (nVII), which normally 

migrate from r4 to r6 and r7 (Bingham et al., 2002; Carreira-Barbosa et al., 

2003).

Thus, non-canonical Wnt pathways control polarity and movement in 

many different systems, but, in most cases, do not appear to affect gene 

expression or cell type patterning. This is quite distinct from canonical Wnt 

signalling, which has many important roles in patterning during embryogenesis.

Patterning functions.

Although one of the first and most striking phenotypes of Wnt 

overexpression to be observed was the induction of secondary axes in Xenopus
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embryos (McMahon and Moon, 1989), subsequent work has shown that Wnts 

themselves are not involved in axis formation. Instead, a mechanism occurring 

during cortical rotation causes p-Catenin to localise preferentially in the future 

dorsal side of the embryo, thus inducing the two early organisers which are 

responsible for dorsal axis induction (for a recent review, see De Robertis and 

Kuroda, 2004). However, recent work has found a role for Wnt signalling in 

regulating anterior-posterior patterning at subsequent stages in development. 

Wnts are found posteriorly, and Wnt inhibitors are expressed anteriorly. The 

activation of Wnt signalling inhibits the proper formation of anterior structures, 

such as occurs in the zebrafish headless mutant. In this case, tcf3 is mutated, and 

the phenotype is due to de-repression of Wnt target genes (Kim et al., 2000). 

Thus, the posterior-to-anterior gradient of Wnts is translated into an anterior-to- 

posterior gradient of repression of Wnt targets, leading to discrete domains, such 

as forebrain or midbrain, being established (Dorsky et al., 2003; Kiecker and 

Niehrs, 2001; Nordstrom et al., 2002).

The D rosophila  Wnt family member, w in g less , is one of the better 

characterised genes of the family. Among its numerous roles, the patterning of 

parasegments has been presented above. Studies of the role of W ingless in 

patterning the wing imaginal disc have suggested that it may act as a morphogen 

during development (reviewed in Strigini and Cohen, 1999). Wingless acts at a 

distance from its source to induce at least three genes in nested patterns : 

achaete, distal-less and vestigial requiring gradually lower levels of Wingless 

protein (Neumann and Cohen, 1997).

The vertebrate homologue of wingless, w n tl, has important roles in the 

formation and maintenance of the midbrain. During development, w n tl  is
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transiently expressed throughout the midbrain, and is then restricted to the 

midbrain-hindbrain boundary and the roof plate of the midbrain (Wilkinson et 

al., 1987). In w ntl knockout mice, the whole midbrain and anterior hindbrain are 

deleted (M astick et al., 1996; McM ahon and Bradley, 1990). However, the 

midbrain is specified in these mutants, but is gradually deleted, indicating that 

W ntl controls either the maintenance of midbrain fate, or proliferation and/or 

apoptosis (McMahon et al., 1992). The precise roles of W ntl in the midbrain and 

at the midbrain-hindbrain boundary have not yet been elucidated, but strong 

evidence points towards a specific role in the regulation of proliferation, as 

overexpressing W ntl has no discernible effect on midbrain gene expression 

(Panhuysen et al., 2004).

Regulation of proliferation.

The regulation of cell proliferation is a recurring theme for W nt/p- 

Catenin signalling. Several studies in the vertebrate neural tube, in which either 

W ntl or p-Catenin is overexpressed, have shown that ectopic cell proliferation 

occurs, at the level of the spinal cord, midbrain or forebrain (Chenn and Walsh, 

2002; Dickinson et al., 1994; Panhuysen et al., 2004). The primary mode of 

action of Wnt signalling leading to an increase in cell number is to bias the 

choice cells make between differentiation and re-entry into the cell cycle towards 

the latter alternative (Chenn and Walsh, 2002; Megason and McMahon, 2002). It 

is also known that W ntl directly regulates cyclindl expression, which is thought 

to mediate at least in part its mitogenic effect (Shtutman et al., 1999; Tetsu and 

McCormick, 1999). In the spinal cord, this has led to a model in which the dorsal 

midline, which is a source of two mitogenic Wnts, W ntl and Wnt3a, regulates
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the growth of the neural tube in the dorso-ventral axis, and is responsible for the 

ventral-to-dorsal order of neuronal differentiation (M egason and McMahon, 

2002). Wingless also has a role in regulating cell number in the wing imaginal 

disc in D ro so p h ila , although it appears that it only indirectly regulates 

proliferation, and has an important role in inhibiting apoptosis (Giraldez and 

Cohen, 2003).

The link between Wnt/p-Catenin signalling and cell proliferation is of 

particular interest as several lines of evidence point to roles of this pathway, 

when deregulated, in cancer (reviewed in Giles et al., 2003). Approximately 90% 

of colorectal cancers have activating mutations in the W nt pathway, although 

few of these actually involve Wnt ligands. Loss-of-function mutations of APC 

are involved in many cases, and it appears that even a heterozygous loss of APC 

can result in increased risk of colorectal cancer, as well as a rare dominant 

inherited disease, familial adenomatous polyposis, where patients develop 

multiple adenomas in the colorectum (Groden et al., 1991; Nakamura et al., 

1991). Conversely, gain-of-function m utations of P-Catenin have been 

im plicated in many cancer types. M ost p-C atenin m utations affect the 

phosphorylation sites for GSK3P, such that the mutant protein is not targeted for 

degradation (Polakis, 1999). However, W nt/p-C atenin signalling occurs 

normally in adults, to regulate stem cell proliferation and differentiation in the 

intestine and colon, implying that progression to cancer involves several changes 

additionally to activating Wnt signalling (Giles et al., 2003).
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Aims of this study.

I set out to understand how zebrafish hindbrain boundary cell formation is 

regulated. I also decided to investigate possible relationships that boundary cells 

may have with the anterior-posterior organisation of neural cell types within each 

rhombomere. Zebrafish hindbrain boundaries express w n tl , which is a candidate 

to mediate possible signalling roles of boundaries. In this thesis, I will first 

describe the normal pattern of neurogenesis, neural cell type organisation and 

boundary cell marker expression in the zebrafish hindbrain, and then analysis of 

the function of W ntl in loss and gain of function experiments.
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Materials and methods.

Fish maintenance.

Adult zebrafish were maintained in lOh night/14h day cycles. Wild-type 

zebrafish embryos were obtained by natural spawning and raised at 28°C, as 

described (Westerfield, 1993). For stages earlier than 24h, embryos were raised 

at 22°C and staged by somite number. Control and injected embryos were stage- 

matched by somite number or eye pigmentation (Kimmel et al., 1995). 24h-old 

after eight embryos, mutant for deltaD , were obtained fixed from Phil Taylor at 

Cancer Research (Lincoln’s Inn Fields). Embryos were manually dechorionated 

after fixation.
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Morpholino oligonucleotide and RNA injections.

Injection protocol.

0.5-2.5 pmol of morpholino oligonucleotide or 0 .2 -lng  of capped RNA 

was injected into 1-4 cell blastomeres, or into one cell at the two to sixteen cell 

stage to obtain mosaic RNA expression, using an electric microinjector (Inject 

Matic, Switzerland). In the case of embryos injected with both w ntl MO and 

stabilised P-catenin, the morpholino was injected at the one cell stage, and P- 

catenin RNA was injected into one cell at the eight cell stage, together with 

membrane-targeted GFP RNA. The needles used for injection were obtained 

from 1.0mm external diameter glass capillaries with internal filament (Harvard 

Apparatus, Kent) with a David Kopf Instruments needle puller.

Morpholino oligonucleotides.

Morpholino oligonucleotides (MOs) were purchased from Gene Tools, 

LLC (Oregon). MOs were kept as ImM stock solutions by addition of pure water 

(Sigma), and further dilutions of between 1:5-1:20 were made in pure water for 

injection. The following MO sequences were used : 

w ntl MO: AGCAACGCGAGAACCCGCATGATAT 

asha MO: CCATCTTGGCGGTGATGTCCATTTC
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ashb MO: T CGT AGCG ACG AC AGTT GCCT CC AT

ngnl MO: AT ACG AT CT CC ATT GTT GAT A ACCT

deltaA MO: CTT CT CTTTT CGCCG ACT GATT CAT

rfng MO: as described (Cheng et al., 2004)

tcf3b MO: as described (Dorsky et al., 2003)

standard control MO : CCT CTT ACCT C AGTT ACA ATTT AT A .

RNA constructs.

pCS2 plasm ids containing inserts encoding full-length chick W ntl 

(cW ntl), stabilised p-catenin, lacking 87 amino acids that include the 

phosphorylation site for GSK3 (Domingos et al., 2001, both gifts of Nobue 

Itasaki), membrane-targeted GFP (Moriyoshi et al., 1996) or nuclear-localised 

GFP with normal or mutated w ntlM O  and rfngM O recognition sequences 

(described below) were linearised with Notl. In order to obtain capped mRNAs, 

the following reagents were incubated at 37°C for 2h :

2//L linearised plasmid at l/*g///L 

20//L transcription buffer 

12.5/iL DTT

\0piL nucleotide stock (lOmM ATP, CTP, UTP, ImM GTP, Pharmacia Biotech) 

10//L methylated cap (Roche)

2//L RNasin (Promega)

2//L SP6 RNA polymerase (Roche)
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41.5/^L pure water (Sigma)

After incubation, 2/iL of RQ1 DNase (Promega) were added for 20 minutes, then 

the reaction was purified using Microspin G-50 columns (Amerham), and stored 

at -80°C after 1/iL was run on a gel for verification.

In situ hybridisation.

Protocol.

In situ hybridisation was carried out as described in Xu et al. (1994), with 

the following modifications. No proteinase K treatm ent was carried out, 

consequently, embryos were immediately pre-hybridised after rehydration. All 

steps of pre-hybridisation, hybridisation and washes in 50% formamide-2X SSC, 

2X SSC and 0.2X SSC were carried out at 68°C. The anti-DIG-AP antibody 

(1:2000, Roche) was not preabsorbed. After the colour reaction, embryos were 

briefly fixed in 4% paraformaldehyde, then rinsed in PBS-0.1% Tween20 

(PBST) and stored and flat-mounted in 70% glycerol in PBST. Alternatively, 

after fixing, embryos were treated for EphA4 or Hu immunohistochemistry (see 

below). In the case of tw o-colour in situ  hybridisation, both DIG- and 

fluorescein-labelled probes were hybridised simultaneously. The fluorescein- 

labelled probe was detected first, using anti-fluorescein-AP (Roche) and Fast 

Red tablets (Roche) for the colour reaction. Once this reaction was carried out,
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the alkaline phosphatase was inactivated by incubating the embryos twice in 

0.1M glycine/HCl for 15 minutes. Embryos were then briefly fixed in 4% 

paraformaldehyde, then rinsed in PBS and treated with anti-DIG-AP antibody 

and colour as described above.

Probes used.

The following probes have been previously described : 

rfng (Cheng et al., 2004; Qiu et al., 2004) 

w ntl (Molven et al., 1991) 

fo xb l.2  (Moens et al., 1996) 

asha and ashb (Allende and Weinberg, 1994) 

ngnl (Blader et al., 1997; Kim et al., 1997; Korzh et al., 1998) 

pax6  (Krauss et al., 1991) 

wnt8b (Kelly et al., 1995) 

netrinla  (Lauderdale et al., 1997) 

crapb2 (Sharma et al., 2003) 

deltaA, deltaB and deltaD  (Haddon et al., 1998) 

p27Xlcl-a (obtained from the RZPD, Geling et al., 2003) 

tbx20 (Ahn et al., 2000) 

olig2 (Park et al., 2002) 

pax3 (Seo et al., 1998) 

dbxla  (Fjose et al., 1994) 

evxl (Thaeron et al., 2000) 

krox20 (Oxtoby and Jowett, 1993)
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hoxbla  (Prince et al., 1998)

In the case of gfap and cyclinD l, the genes have been cloned (Nielsen 

and Jorgensen, 2003; Yarden et al., 1995, respectively), but the expression 

patterns have not been described. For both of these genes, I obtained ESTs from 

the RZPD (Berlin, Germany) corresponding to the published sequences, which I 

used to make probe from (ESTs : fc83al2 .y l for cyclinD l and fc66a07.yl for 

gfap , both of which were linearised with Sail and transcribed with SP6 for 

antisense RNA). her9 is a new hairy/enhancer of split family member identified 

in this lab by Andrea Pasini, which will be the subject of a descriptive paper.

Immunohistochemistry.

Immunohistochemistry was carried out with the following antibodies : 

anti-EphA4 (1:500, Irving et al., 1996b), anti-HuC/HuD (1:200, M olecular 

Probes), anti-GFAP (1:500, Sigma), RMO-44 (anti-NF-M, 1:25, Zymed) and 

anti-phosphorylated histone H3 (1:200, Upstate). The secondary antibodies used 

were Alexa Fluor 488, 594 or 647 goat anti-rabbit or goat anti-mouse (all 1:500, 

Molecular Probes), or HRP-goat anti-rabbit (1:250, DAKO). For EphA4 and Hu 

immunohistochemistry, embryos fixed in 4% PFA were blocked in PBST 

containing 5% goat serum for at least lh , then incubated overnight at 4°C in the 

antibody diluted in PBST with 2% goat serum. After several washes in PBST, 

the embryos were incubated overnight at 4°C (or 2h at room temperature) in the
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secondary antibodies diluted in PBST with 2% goat serum, then washed in PBST 

and stored and flat-mounted in 70% glycerol in PBS or in Vectorshield medium 

(Vector) in the case of fluorescent secondaries. For GFAP, embryos were fixed 

40 minutes at -20°C in 90% ethanol, 10% acetic acid, then treated as normal. In 

the case of phospho-histone H3, PBS containing 0.1% Triton X-100 was used 

instead of PBST. For DAB colour reaction, embryos were incubated in a solution 

of lm g/m L DAB, 0.02% hydrogen peroxide in PBS until precipitate formed. For 

RMO-44 immunohistochemistry, embryos were fixed in 2% trichloroacetic acid 

for 4h at room temperature, washed in PBST twice, then in distilled water and 

incubated in acetone for 10 minutes at -20°C, and again rinsed in distilled water 

then PBST several times. After this, embryos were processed as for other 

antibodies.

Molecular biology.

pCS2+ constructs encoding nuclear localised GFP (nlsGFP) with 

w ntl MO or rfngMO recognition sequences were generated as follows. The 

nuclear localised GFP was excised from  pU A S-G FPnls (gift of Cyrille 

Alexandre, Vincent lab) and directionally cloned into pCS2+ using Xhol and 

Xbal restriction enzymes. This construct was then used to generate the 

recognition sequence constructs by excising the start codon (located between 

Xhol and BglHI restriction sites) and purifying this digest. Oligonucleotides 

containing the morpholino recognition site, Xhol and BglHI overhangs and an 

inserted Notl site for verification purposes were pre-annealed by incubating l//g 

of forward and reverse oligonucleotide in 20//L total volume for 4 minutes at
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98°C, then ten minutes each at 90°C, 80°C, 70°C and 60°C. These were then 

ligated into the linearised nlsGFP-pCS2+ plasm id and transform ed. The 

insertions were verified by sequencing, as well as restriction analysis of Notl, as 

a site was inserted, and Hindlll, as its restriction site was removed in this 

process. The following oligonucleotides were used (morpholino recognition 

sequences are shown in capital letters, start codons underlined, and mutated 

nucleotides in b o ld ):

rfngMO : tcgaggcggccgcATGCACTTATCCCATGTCGCCTCCAata 

gatctatTGGAGGCGACATGGGATAAGTGCATgcggccgcc 

mutated rfngMO : tcgaggcggccgcATGCATTTGTCGCACGTGGCCTCCAata 

gatctatT GG AGGCC ACGT GCG AC A A AT GC AT gcggccgcc 

w ntl MO : tcgaggcggccgc AT AT CATGCGGGTT CT CGCGTT GCT ca 

gatctgAGCAACGCGAGAACCCGCATGATATgcggccgcc 

mutated w ntlM O  : tcgaggcggccgcATATGATGCGCGTACTGGCATTGCTca 

gatctgAGCAATGCCAGTACGCGCATCAT AT gcggccgcc
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Characterisation of neurosenesis and

boundary formation in wild-type embryos.

Results.

Patterns o f neuronal differentiation in the zebrafish hindbrain.

Previous studies of the organisation of neurons and glia in the zebrafish 

hindbrain have uncovered a stereotypical pattern along the anterior-posterior axis 

within each rhombomere (Fig.4B, Hanneman et al., 1988; Trevarrow et al., 

1990). However these studies have been limited by few molecular markers being 

available at the time they were carried out. In order to gain a better understanding 

of the timings and locations of neurogenesis and gliogenesis in the hindbrain, I 

analysed a series of markers by in situ hybridisation and immunohistochemistry. 

In most cases, double labelling was carried out with EphA4 antibody (Irving et 

al., 1996b), which labels rhombomeres 3 and 5 (r3 and r5), to determine in which 

rhombomere the staining occurs, and where within that rhombomere, relative to 

its interfaces with adjacent segments.
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Localisation of post-mitotic neurons.

To analyse the global pattern of neurogenesis, I have used an antibody 

against the RNA-binding proteins HuC and HuD, which labels all post-mitotic 

neurons (Park et al., 2000a; Park et al., 2000b; Wakamatsu and Weston, 1997).

The earliest neurons detected, as early as the 10 somite stage (14h of 

development, Fig.6A), are located at the r2/r3 boundary and the r4/r5 boundary, 

as well as in the centre of r4, and two neurons in the centre of r6. The cell in the 

centre of r4 presumably corresponds to the Mauthner cell, which is the earliest- 

born neuron (Mendelson, 1986).

By 16.5 hours of development (15 somites, Fig.6B), there are more 

neurons, but they are still individually identifiable. Compared to the 10 somite 

stage, there are new neurons in r2, near to the rl/r2  interface, as well as adjacent 

to the r2/r3 interface. There are also neurons in segments where none could be 

seen at 10 somites, in the centre of r3 and of r5, as well as two more neurons in 

each of r4 and r6.

At 24h, the distribution of HuC/HuD staining shows that neurons are 

more numerous, forming clusters in the centre of each rhombomere, and that 

little differentiation has occurred at the interfaces between segments (Fig.6C). 

However, by 30h (Fig.6D), a pattern has been established which persists until at 

least 48h (not shown). A single row of neurons occupies the segment interfaces, 

separated from the large neuronal clusters in the centres of the rhombomeres by a 

row of Hu-negative cells. This distribution corresponds to the pattern which has 

been described previously (Hanneman et al., 1988; Trevarrow et al., 1990).
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Fig. 6 : Localisation of post-mitotic neurons.
HuC/HuD immunohistochemistry (green), with EphA4 (red) labelling rhombomeres 3 and 5. 
Dorsal views of flat-mounted embryos, anterior to the top, A-C are maximum value projections 
of confocal stacks, showing the strongest labelling at all “z” locations, D is a single confocal 
section. A : 10 somite stage, showing a few Hu-positive cells, at the r2/r3 and r4/r5 boundaries, 
and in the centre of r4 and r6 (arrows). At the 15 somite stage (B), additional Hu-positive cells 
are shown with arrows. C : 24h embryo, showing most additional Hu-positive cells in the middle 
of rhombomeres (arrows show boundaries, where less staining is seen). D : 30h embryo, display­
ing a distinct pattern at rhombomere boundaries (arrowed) of a single Hu-positive row of cells 
surrounded by a single row of Hu-negative cells (presumptive glia). Scale bar : 50//m. r3 : rhom­

bomere 3, r5 : rhombomere 5.
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Thus, until at least 15 somites, individual neurons are identifiable at the 

centre and boundaries of rhombomeres. By 24h, neurons are present mainly in 

clusters at the centre of each rhombomere, and later still, there are neurons at 

boundaries, separated from the large neuronal clusters in the rhombomere centres 

by a row of non-neuronal cells.

Analysis of neuronal differentiation between 18h and 48h.

The arrangement of post-mitotic neurons is not uniform throughout the 

hindbrain. Looking only at stages when significant numbers of neurons are 

present, especially at 24h, it is apparent that neurons are concentrated in some 

areas (rhombomere centres) and present in small numbers in others (boundary 

regions). This suggests that differentiation is regulated along the anterior- 

posterior axis within each rhombomere. A better picture of the neurogenesis 

process would therefore be obtained by analysing where neuronal differentiation 

takes place in the zebrafish hindbrain.

I have therefore analysed the expression patterns of several classes of 

genes involved in the process of neurogenesis. First, proneural genes, which 

encode bHLH transcription factors involved in the selection of neuronal 

progenitors from undifferentiated neuroepithelium , leading to the neuronal 

differentiation programme (reviewed in Bertrand et al., 2002). The zebrafish has 

three known proneural genes, asha, a sh b , and n g n l  (Allende and Weinberg, 

1994; Blader et al., 1997; Kim et al., 1997; Korzh et al., 1998). Second, Delta 

genes, which are targets of proneural genes in all species analysed (Casarosa et 

al., 1999; Haenlin et al., 1994; Hans and Campos-Ortega, 2002; Heitzler et al.,
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1996; Kunisch et al., 1994; Ma et al., 1998). These genes are involved in 

selecting the cell that will differentiate by lateral inhibition of differentiation in 

neighbouring cells. In zebrafish, there are four known Delta genes, but deltaC  is 

expressed in few cells in the central nervous system  (Yi-Chuan Cheng, 

unpublished data, and Haddon et al., 1998). Moreover, deltaA  and deltaD  are 

expressed broadly in proneural patches, but have higher expression levels in 

prospective neurons, while deltaB transcripts are found only in the differentiating 

neurons (Haddon et al., 1998). The third type of marker I have used is the cdk 

inhibitor p27Xlcl-a, which promotes cell cycle exit and is required for neuronal 

differentiation (Carruthers et al., 2003; Geling et al., 2003; Ohnuma et al., 1999).

At 18h of development, asha and ng n l are expressed in the dorsal and 

ventral half of each rhombomere, respectively, but are not expressed in boundary 

cells (Fig.7A,C). ashb  transcripts are detected at high levels in r4 (Fig.7B). 

deltaA  and deltaD  are also expressed throughout the hindbrain, except 

rhombomere boundaries (Fig.7D,F). However, while these patterns suggest that 

differentiation is occurring throughout rhombomeric segments, expression of 

p27Xlc]-a and of deltaB  shows that most differentiation at this stage is actually

located ventrally in the centre of each segment (Fig.7E,G).

By 26h, the expression of ashb and ngn l proneural genes now occurs in 

stripes adjacent to rhombomere boundaries, with weaker expression maintained 

throughout the rest of the ventricular zone, except at boundaries (Fig.7I,J). That 

the stronger expression corresponds to presumptive neuroblasts is confirmed by 

the fact that deltaA, deltaB  and deltaD, as well as p27Xlcl-a are all expressed in

similar stripes adjacent to rhombomere boundaries (Fig.7K-N). asha expression 

at this stage is limited to scattered cells but remains excluded from boundaries
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(Fig.7H), but from approximately 30h onwards it is also found in stripes flanking 

boundaries. The hindbrain is also patterned in the dorso-ventral axis, in that ngnl 

is expressed more ventrally, ashb medially and asha dorsally.

Finally, between 26h and 48h it can be seen that differentiation occurs in 

a dorsal to ventral manner, as the ventral-m ost expression of asha  and ashb 

recedes dorsally over this time frame (Fig.70-R). This is also evident from the 

difference in the timing of the appearance of d b x la  (medial) and pax3  (dorsal) 

stripes (see below, Fig.8E,I).

The expression patterns of these genes reveal that differentiation is 

localised in the hindbrain : while at 18h, it occurs mainly in the centre of each 

rhombomere, by 24h, stripes of differentiation are present adjacent to the 

boundaries. The latter pattern persists until at least 48h, but shifts dorsally over 

time.
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Fig. 7 : Neuronal differentiation in the zebrafish hindbrain.

Expression of proneural and delta genes, and of the cell cycle inhibitor p27xlcl-a

at 18h (A-G), 24h (H-O), 36h (Q) and 48h (P,R). A-N are dorsal views, with 

anterior at the top, O-R are lateral views, with anterior to the left. All markers 

shown display gaps of expression at rhom bom ere boundaries, indicated by 

arrowheads. W hile most markers are segmental at 18h (A-D, F), differentiation 

occurs in the centre o f rhombomeres (E,G), but at later stages, it takes place 

mainly in stripes adjacent to rhombomere boundaries (I-R), in a ventral to dorsal 

wave (O-R, arrows indicate that the distance between the floor plate and the most 

ventral labelled cells increases over time). Scale bar : 100pm.
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Localisation of selected individual neuronal and glial cell types.
A more detailed picture of neurogenesis and gliogenesis is gained by

examining the distribution of specific cell types within the hindbrain, which may

help to refine the previous observations of anterior-posterior pattern within each

segment, particularly as the differentiation patterns show important temporal

differences. I have therefore analysed markers for cell types that differentiate at

various time points.

Reticulospinal neurons are the earliest to develop, (with only four

exceptions, all are born between 7.5 and 15 hours of development Hanneman et

al., 1988; M endelson, 1986). The RM O -44 antibody, which recognises

neurofilament-M, labels a subset of these reticulospinal neurons, which are found

in the centre of each rhombomere (Fig.8A). Cranial motor neurons are also born

relatively early, detectable between 16-20 hours post fertilisation (Chandrasekhar

et al., 1997). In situ hybridisation with the T-box transcription factor tbx20 as a

marker, shows that these neurons are present in clusters in the centre of each

rhombomere at 48h (Fig.8B), although they initially appear as an unsegmented

column of neurons (Ahn et al., 2000; Chandrasekhar et al., 1997).

dbxla  labels progenitors and neurons at medial locations along the dorso-

ventral axis (Fjose et al., 1994). Ventricular labelling forms a continuous column

along the anterior-posterior axis, but from about 24h (Fig.8E), neurons are

present in rows of cells adjacent to rhombomere boundaries. This pattern is

similar at 48h (Fig.8F,G), when two clear stripes are visible in each rhombomere.

Transverse cryostat sections of d b x l^-labelled embryos at 48h (Fig.8H) show

that most labelled cells are in the post-mitotic mantle zone (MZ), at only one

dorso-ventral location.
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A more dorsal marker, pax3, is initially expressed continuously along the 

dorsal ventricular zone (Fig.81). By 48h, transcripts are detected in bilateral 

stripes adjacent to boundaries (Fig.8J,K). As the neural tube at the level of the 

hindbrain has a ventricular zone shaped like a “T ” at this stage (Lyons et al., 

2003), the dorsal location of these cells is visible as a lateral position (compare 

for instance to the more ventral dbxla  pattern, which is present medially relative 

to pax3 expression).

Finally, oligodendrocyte progenitors first differentiate around 48h. olig2 

labels both motor neuron progenitors and oligodendrocyte progenitors in the 

spinal cord (Park et al., 2002), but in the hindbrain, no expression can be 

detected until 48h (not shown), indicating that it is not expressed in motor 

neurons. At 48h, olig2 expression can be detected ventrally in the centre of each 

rhombomere (Fig.8C,D).

The analysis of markers for distinct neuronal subtypes reveals that they 

have stereotypical localisations both along the anterior-posterior and dorso- 

ventral axes. As a general rule, early-born neurons are found in rhombomere 

centres, whereas later born neurons form stripes adjacent to boundaries. 

Oligodendrocyte progenitors are born in the centre of rhombomeres at two days 

of development.
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Fig. 8 : Spatial distribution o f selected cell types in the hindbrain.

Im m unohistochem istry (A) and in situ hybridisation (B-K) of whole-m ount 

embryos (A-G, I-K) and cryostat transverse sections (H) for the indicated marker 

and stage. All views are dorsal with anterior to the top. A: Reticulospinal 

neurons, labelled with RMO-44, are found in the centre of rhombomeres. B: 

Distribution of cranial motor neurons, mostly in the centre of rhombomeres. 

Oligodendrocyte progenitors are also found ventrally in rhombomere centres 

(C,D). E-H : stripes of neuronal d b x la  expression are found outside the 

ventricular zone from 24h. Ventricular zone (VZ) and post-mitotic mantle zone 

(MZ) are indicated on H and were determined by a combination of DA PI stain 

and immunohistochemistry with the pan-neuronal marker Hu. Stripes of pax3  

expression are also seen at 48h (J,K), but not at 24h (I). Scale bar : 50pm  in A 

and H, 100/mi in B-G and I-K.
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Fig. 9 : Differentiation at interrhombomeric interfaces.

Expression of evxl (A-D) and of gfap (E-G) and immunohistochemistry against 

the GFAP antigen (H). All views are dorsal with anterior at the top. A : 18h 

embryo, focussed on a dorsal plane, showing labelled cells at both boundaries of 

rhombomere 4  (r4, boundaries shown with arrowheads). B,C : medially- and 

dorsally-focussed view of the same 24h embryo, showing the presence of two 

different populations of e v x l-p o s itiv e  cells, one of w hich is found at 

rhombom ere boundaries (arrowheads in C). By 26h, neurons at boundaries 

(arrowheads) form  continuous columns. E : expression of gfap  at 18h, with 

stronger expression in rhombomeres 4  and 6, while at 24h (F), expression is 

more uniform  in the ventricular zone, although slightly stronger in r4, and 

upregulated in rhombomere boundaries. The boundary expression domain splits 

into two (arrow in F). G shows a false-coloured in situ hybridisation against gfap  

in red, followed by immunohistochemistry against HuC/HuD (green), to confirm 

that the gaps in Hu labelling correspond to g/ap-positive cells. H : GFAP protein 

accumulates in bundles of fibres adjacent to rhombomere boundaries. Scale bar : 

50/rm in G,H, 100/mi in A-F.
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Hindbrain development in wild-type embryos

Fig. 10 : Expression o f boundary markers.

Time courses of expression of rfng  (A), p a x 6  (B), fo x b l .2  (C, also called 

mariposa), w ntl (D) and cyc lin D l  (E) in rhom bom ere boundaries. Selected 

stages of the following markers are also shown : wnt8b (F,G), her9 (H,I), crabp2 

(J,K) and netrin la  (L,M). Stages are indicated on the panels. The first and fourth 

images in A, as well as G and H were obtained from Yi-Chuan Cheng. Scale bar: 

100/mi.
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Hindbrain development in wild-type embryos

Differentiation at interrhombomeric boundaries.

Two differentiation markers display a different pattern to the markers 

described in previous paragraphs, in that they are detected at rhombomere 

boundaries, suggesting that the cells labelled are derived from boundary cells.

One of these markers is the neuronal gene evx l  (Thaeron et al., 2000), 

which is first detected in a few neurons, including ventral reticulospinal neurons 

in the centre of r2 r5 and r6 (not shown), but can also be seen in dorsal neurons 

at the rl/r2, r3/r4 and r4/r5 interfaces (see Fig.9A, for 18h). By 24h, two different 

cell populations are labelled: one more ventral which is adjacent to boundaries 

(Fig.9B) and more dorsally, clusters of cells at boundaries (Fig.9C). At 26h, a 

row of evxl-positive cells can be seen aligned at rhombomere boundaries, 

corresponding to the boundary commissural neurons (Thaeron et al., 2000; 

Trevarrow et al., 1990), as well as clusters either side of the boundaries (Fig.9D).

The glial marker gfap  labels both astrocytes and radial glia in many 

species including zebrafish (Kawai et al., 2001; Levitt and Rakic, 1980; Marcus 

and Easter, 1995; N ielsen and Jorgensen, 2003). A lthough the protein 

distribution has been described at 48h as forming the “glial curtain” either side of 

boundaries (Trevarrow et al., 1990), the localisation of the cell bodies has not 

been described. In situ hybridisation allows this question to be addressed, as it 

labels cell bodies. Early expression of gfap is segmental (18h, Fig.9E), with low 

levels present throughout the neural tube, and at higher levels in rhombomeres 4 

and 6. By 24h (Fig.9F), expression continues to be restricted to the ventricular 

zone, and elevated levels can be detected ventrally in boundaries from about 22h. 

By 30h, the expression domain at boundaries has split into two stripes adjacent to 

boundaries. Double labelling with the Hu antibody shows that gfap and Hu do
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not colocalise, indicating that the gaps in Hu staining adjacent to boundaries do 

indeed correspond to glial cells (36h, Fig.9G). As described previously, fibres 

detected by an antibody to GFAP are found in bundles projecting ventrally 

adjacent to boundaries (Fig.9H and Trevarrow et al., 1990). Thus, both the cell 

bodies and bundles of fibres are present adjacent to boundaries.

Characterisation o f  gene expression at rhombomere boundaries.

In order to gain insight as to the mechanism of boundary formation, I 

characterised in detail the expression patterns of various known and novel genes 

expressed in boundaries. The order of their induction provides clues as to their 

potential hierarchical relationships, as well as the roles of boundaries. To this 

effect, I have carried out in situ hybridisation with RNAs for boundary genes, in 

conjunction with Yi-Chuan Cheng, who kindly provided me with two images on 

Fig.lOA, and Fig.lOF,G. Confirmation of the localisation of transcripts with 

respect to the odd/even segment interfaces was obtained by fluorescently co­

labelling embryos with EphA4 immunohistochemistry (not shown).

The earliest available boundary marker is w n tl (Fig.lOD), a member of 

the W nt family of secreted signalling molecules. In the hindbrain, w n tl  is 

expressed in the roof plate of rhombomeres 2, 3 and 5 at the 10 somite stage 

(14h). This segmental restriction remains until about 18h ; by 26h, continuous 

roof plate expression is seen. Boundary expression is first seen from about the 10 

somite stage (14h) as stripes of stronger expression compared to the roof plate 

expression, which at this stage is segmental and restricted to r2, r3 and r5. This 

expression increases in dorso-ventral extent and at 16.5h and 18h, w ntl
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transcripts are detected in the dorsal half of rhombomere boundaries. By 26h, 

boundary expression has become restricted to a more dorsal population. A 

known downstream target of W ntl is the cell cycle regulator cyclinD l (Megason 

and M cM ahon, 2002; Shtutman et al., 1999; Tetsu and M cCormick, 1999), 

which is expressed in boundaries also from 14h, (Fig.lOE). At 18h, high levels of 

expression are seen throughout hindbrain boundaries, with weaker expression in 

rhom bom ere centres. By 26h, in addition to the boundary dom ains, high 

expression levels are also detected in stripes in the rhombomere centres. Another 

m em ber o f the W nt fam ily, w nt8b  is also expressed in the dorsal half of 

rhombomere boundaries. At 18h, wnt8b expression is restricted to r3 and r5 (not 

shown). The expression at boundaries is gradually upregulated and is readily 

detectable from 20h (not shown, see Fig.lOF for 22h), while that in the segment 

centres is downregulated (Fig.lOG). wnt8b transcripts are also present at the rl/r2  

and r6/r7 boundaries, suggesting that boundary expression is not simply due to 

the downregulation of expression in the centre of r3 and r5.

Boundary expression of pax6, a paired box transcription factor, has been 

described both in chick (Heyman et al., 1995) and in zebrafish (Xu et al., 1995). 

pax6  is expressed in the medial part of the hindbrain along the dorso-ventral axis, 

making it difficult to observe when boundary expression first occurs. The earliest 

that elevated expression at boundaries can be detected is at the 11 somite stage 

(14.5h, Fig.lOB), as dorsal protrusions from the expression domain, and is 

readily detected from about the 14 somite stage (16h, not shown). Subsequently, 

boundary expression is visible as areas of higher intensity of staining. Non­

boundary expression is stronger in r2 and r3 at early stages, but by 26h, it is 

uniform. A similar pattern is observed for fo x b l.2 (Fig. 10C, also called mariposa
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and fkd3 , Moens et al., 1996; Odenthal and Nusslein-Volhard, 1998), although 

no indication of boundary-specific expression is detectable at 14.5h. Transcripts 

can be seen to accumulate at higher levels in boundaries around the 14-15 somite 

stage (16-16.5h, not shown), and at 18 and 26h looks similar to pax6, except that 

the difference in intensity of staining between boundary and non-boundary is 

more evident.

The Notch pathway component radical fr inge  (rfng) has recently been 

described (Cheng et al., 2004; Qiu et al., 2004), and is the most specific 

boundary marker observed to date. Expression is first seen at the 14 somite stage 

(16h, not shown), and by 16.5h (Fig.lOA), all boundaries are labelled. In the 

hindbrain, no expression can be detected outside rhombom ere boundaries. 

Expression persists until 26h, when it begins to be downregulated, and has 

disappeared by 27h. Studies by Yi-Chuan Cheng have shown that rfng transcripts 

are detected in two rows of cells straddling the m orphological constriction 

between segments (Cheng et al., 2004).

Other markers that label boundary cells include her9, a hairy-related 

transcription factor cloned by a form er lab m em ber (Andrea Pasini). her9  

expression is very dynamic in the hindbrain, with higher expression levels in 

boundaries at 24h, and a punctate pattern in the rhombomere centres (Fig.l0H,I). 

crabp2 (cellular retinoic acid binding protein 2) is also transiently detected in all 

boundaries at around 18h (Fig.lOJ), with stronger expression in posterior 

boundaries, and in r6 and more caudally. It is rapidly lost from more anterior 

boundaries, and gradually downregulated in the hindbrain, where expression 

persists only in r6 by 24h (Fig.lOK), making this the earliest gene to be 

downregulated from  boundaries. Finally, n e tr in la ,  a member of the Netrin
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family of growth cone guidance molecules, is also detected in boundaries. 

netrin la  transcripts are present in the ventral half of boundaries from about 18h 

(not shown, Fig.lOL,M ), as well as at the ventral midline throughout the 

hindbrain and spinal cord. Higher levels of expression can also be distinguished 

in ventral rhombomere 4.

Conclusions.

The data presented here show that spatial patterns of neurogenesis are 

regulated along the anterior-posterior and dorso-ventral axes w ithin each 

rhombomere. At early stages, until about 18hpf, neurogenesis occurs ventrally in 

the centre of rhombomeres, but after this stage, most neurogenesis occurs 

adjacent to rhombomere boundaries, in a pattern that progresses in a ventral to 

dorsal manner. Two cell types are found at rhombomere interfaces : e v x l-  

positive neurons and g/a/?-expressing radial glial cells.

Moreover, these results show that rhombomere boundaries have dynamic 

gene expression profiles and that they are patterned along the dorso-ventral axis, 

with w n tl  and w n t8 b  dorsally and n e tr in la  ventrally. D ifferent levels of 

expression of crabp2  in different boundaries also suggest that boundaries are 

patterned along the anterior-posterior axis. They also show that the most specific 

boundary marker is rfng, as it is the only gene to be restricted to boundaries at all 

stages observed, making rfng the only clear marker of boundary fate.

The patterns of neurogenesis observed could be explained by a role of 

boundaries in organising hindbrain neuronal differentiation. In particular, the
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secreted factors expressed by boundaries are good candidates for mediating a 

possible signalling role of boundaries.

Discussion.

Previous work had established that neuronal organisation in the zebrafish 

hindbrain is patterned along the anterior-posterior axis within each rhombomere 

(Hanneman et al., 1988; Trevarrow et al., 1990). I have further investigated this 

organisation using pan-neuronal, differentiation and subtype-specific markers, 

and I have found that distinct neuronal and glial subtypes are found at distinct 

anterior-posterior and dorso-ventral locations within each rhombomere. Two 

possible m odels can be imagined to explain this organisation : either a 

morphogen gradient patterns neural subtype specification depending on the 

location of each cell along the anterior-posterior axis, and/or an affinity or 

migration guidance gradient underlies the positioning of each cell type after its 

specification.
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Distinct phases o f neurogenesis.

The characterisation of neurogenesis in wild type embryos presented here 

shows that at least three distinct phases of neurogenesis can be distinguished in 

the zebrafish hindbrain. The first is the development of individually identifiable 

neurons at stereotypical locations. Although no specific markers are available at 

early stages for reticulospinal neurons, most of the Hu-positive neurons seen at 

10 and 15 somites (Fig.6A,B) are likely to be primary reticulospinal neurons, 

based on the stereotypy of their location, and the timing of their appearance 

(M endelson, 1986; Metcalfe et al., 1986). Indeed, M endelson was not able to 

detect any other neurons that became post-mitotic earlier than or at the same time 

as the first reticulospinal neurons. Unexpectedly, however, some early-born 

neurons are found at rhombomere interfaces.

The second phase of neurogenesis occurs between 15 somites (16.5h) and 

22-24h, when neurons differentiate mainly in the centre of rhombomeres, and 

few if any additional neurons are seen at interfaces. This pattern has been 

described previously (Hanneman et al., 1988; Trevarrow et al., 1990) and 

suggests a block in neurogenesis at boundaries. Recent work in this lab has 

shown that Notch signalling has a role in preventing prem ature neuronal 

differentiation at rhombomere boundaries (Cheng et al., 2004). It is intriguing 

that neurons are clustered at this stage (see Fig.6C), and there are two potential 

explanations : either that the differentiating progenitors themselves are clustered, 

or, as is the case for motor neuron pools in the spinal cord (Price et al., 2002), the 

post-mitotic neurons assemble into clusters. Here, it appears that patterning
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occurs at the level of differentiation itself, as the distribution of p27x,cl-a in post­

mitotic progenitors matches quite closely that of Hu antigens in differentiating 

neurons. For example in rhombomere 4, differentiation occurs in a broader area, 

reflected in the lower clustering of Hu-positive cells in r4 at 24h (see Fig.6C and 

Fig.7G).

Finally, in the third stage, neurogenesis occurs predominantly adjacent to 

boundaries, where it progresses from ventral to dorsal over time, as revealed by 

many differentiation markers {ngnl, ashb , delta genes, p27xlci-a, see Fig.7), by 

markers of individual neuronal subtypes (such as d b x la ,  see Fig.8) and by 

several other m arkers, including some subunits of the neuronal sodium- 

potassium ATPase, (Canfield et al., 2002) or noradrenergic neuron markers 

(Holzschuh et al., 2003). Most neurogenesis appears to have taken place by 48h, 

based on the decreasing expression of proneural genes (see Fig.7P,R and Lyons 

et al., 2003).

Early neurogenesis produces stereotypically positioned neurons.

Unexpected periodicity and distribution o f early neurons.

Previous descriptions of early-born neurons were made either in 5 day- 

old larvae (Mendelson, 1986; Metcalfe et al., 1986), or at 18h using Nomarski 

optics or acetylcholinesterase reactivity and im m unoreactivity to the zn-1 

antibody (Hanneman et al., 1988). These methods are susceptible to lead to an 

underestimation of the number of neurons present, and are not informative as to
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the tim ing of appearance of these neurons, as the m orphology and gene 

expression markers used may be later events in differentiation. The study by 

Hanneman et al. (1988) had reported that the earliest neurons to differentiate 

were located in the centre of each segment. By looking at an early pan-neuronal 

marker, I have made slightly different observations. First, and similarly to what 

has been described for neurogenesis in the chick hindbrain (Lumsden and 

Keynes, 1989), the earliest neurons are found in even-numbered rhombomeres 

(Fig.6A), suggesting a two-segment periodicity. Second, neurons are also found 

at the r2/r3 and r4/r5 segment interfaces at the 10 somite stage. By the 15 somite 

stage (16.5h), neurons are found in the centres and at the interfaces of most 

segments (with the apparent exception of the r5/r6 interface), indicating a half­

segment periodicity, which has been briefly alluded to by Hanneman et al. 

(1988), but only for the two known reticulospinal neurons at the borders of r4, 

the MiR class. However, the presence of neurons at the rl/r2  and r2/r3 interfaces, 

the latter being among the earliest neurons, cannot be accounted for if they are 

reticulospinal neurons. This implies either that a small number of neurons of a 

different kind differentiate as early as the earliest reticulospinal neurons, or that 

certain reticulospinal neurons migrate from their place of origin at rhombomere 

boundaries towards the centre of each rhombomere.
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How is early neurogenesis patterned ?

An important question arises as to what determines the location of each 

particular neuron, given the stereotypical nature of its position. The difficulties of 

this question are particularly evident in the case of the Mauthner cell, which is 

positioned in the centre of r4 and is born around 7.5h of development, during 

gastrulation (Mendelson, 1986). While it has been shown that specification of the 

M authner cell requires at least one of the two zebrafish h o xb l genes, it was 

found that a knockdown of hoxblb , which is expressed between 6-10h in r4, is 

not sufficient to cause a loss of this cell, while the second gene, hoxb la , is not 

expressed until lOh (McClintock et al., 2002). The latter authors argue that this 

reflects that the identity of the Mauthner cell is not determined for some time 

after it leaves the cell cycle. Similarly, several other reticulospinal neurons are 

bom around 9.5h, among which some are found in r5 and r6 (Mendelson, 1986). 

This is roughly 30 minutes before the segmentation genes krox20 and valentine 

are expressed (Moens et al., 1998; Oxtoby and Jowett, 1993). Although this 

timing difference may not be significant, the patterning of segments at these 

stages is still coarse (see Cooke and Moens, 2002), which makes it difficult to 

comprehend how precise patterning of the positioning of these neurons is 

eventually attained.

There are several potential explanations for how this pattern is obtained. 

One explanation could be that segmentation occurs earlier than is thought based 

on current markers. Nevertheless, the early expression patterns of segmental 

markers are coarse (Cooke and Moens, 2002; Irving et al., 1996b), implying that 

even if this is the case, an early pre-pattern cannot account for later precise 

positioning of individual cells. Therefore, it seems more likely that a mechanism
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of progressive refinement of pattern operates. Taking for instance the case of the 

Mauthner neuron, it is conceivable that it is specified as a neuron within a broad 

domain encom passing rhombom ere 4 when only coarse anterior-posterior 

patterning has been established, and that the later expression of Hox genes 

confers its specific identity to this neuron. Precise positioning of the Mauthner 

m ust require cell m ovem ent, as at early stages each rhom bom ere is 

approximately 2-3 cells wide.

The most likely explanation for the stereotypical position of each early- 

born neuron is that of an affinity gradient within each rhombomere. This idea has 

been proposed to play an important role in reducing intrinsic cell mobility and 

therefore maintaining sharp patterning in segments in the Drosophila ectoderm 

(Lawrence et al., 1999). In the hindbrain, such a gradient could similarly stabilise 

pattern and ensure that each cell is located in a precise location. Unlike neuronal 

specification, however, establishment of the cues that regulate affinity within 

each rhombomere requires that segmentation is fully completed, as the source of 

these cues must be precisely located, in the same way that morphogen sources 

must be precisely regulated (Dahmann and Basler, 1999). Evidence for this is 

provided by the hoxbl knockdowns alluded to above (McClintock et al., 2002), 

in which the Mauthner neuron, when still present in double hoxbl and hoxblb  

knockdowns, is often shifted relative to rhombomere interfaces.
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Late neurogenesis is segmentally reiterated.

The second and third phases of neurogenesis both occur in patterns which 

are repeated from segment to segment, first in the centre of each rhombomere, 

then adjacent to boundaries. There are differences between the neurons produced 

in different segments, particularly in the case of cranial motor neurons, but 

overall, the general pattern of neuronal production in each segment suggests 

more similarities than differences, and that a similar mechanism of anterior- 

posterior patterning occurs in all segments. The ventral and dorsal midline 

structures (floor and roof plates) are known regulators of patterning and 

differentiation along the dorso-ventral axis (Briscoe and Ericson, 2001; Lee and 

Jessell, 1999; M egason and McMahon, 2002). By analogy, it is likely that 

signalling centres pattern the anterior-posterior axis within segments, and 

rhombomere boundaries are the best candidates. However, it is interesting to note 

that it is not the identity of cells that is regulated along the anterior-posterior axis, 

but the location of their differentiation. For instance, the ventricular expression 

of db x la  is continuous along the anterior-posterior axis within segments, while 

stripes of differentiated neurons are present only adjacent to boundaries. This 

implies that the post-mitotic neurons have stayed at the anterior-posterior 

location where they differentiated. Considering that other types of neuron do 

migrate along the anterior-posterior axis after differentiation (subsets of cranial 

motor neurons, for example, Chandrasekhar et al., 1997), it can be postulated that 

there is a mechanism to stabilise the localisation of differentiating neurons along 

the anterior-posterior axis after they leave the ventricular zone. This mechanism 

could consist either of an affinity gradient along the anterior-posterior axis within
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each rhombomere, with the properties of each neural cell type assigning its 

location along this gradient, or local migration cues to which each cell type 

responds independently. The former model is most likely, due to its simplicity, 

but it is not excluded that there are certain types of neuron that respond to local 

guidance cues during active migration, as has been demonstrated for the facial 

motor neurons (Schwarz et al., 2004).

Thus, the regulation of neural patterning in the hindbrain involves an 

unexpected mechanism. The characteristic anterior-posterior pattern within each 

segment (Trevarrow et al., 1990 and this work) may be obtained not by a 

morphogen gradient, but by a combination of spatially-restricted differentiation 

of progenitors and affinity- or migration-driven localisation of post-mitotic cells. 

The most likely source of a potential signal regulating both affinity and the 

location of differentiation are the rhombomere boundaries. Indeed, they express 

at least one secreted signalling molecule, w n tl. In the chick spinal cord, W ntl 

has been shown to regulate the spatial distribution of differentiation, by 

promoting proliferation of progenitors and inhibiting neuronal differentiation, 

thus providing an explanation for the observed ventral to dorsal order of 

differentiation (Megason and McMahon, 2002). This raises interesting questions 

about the role of W ntl in the zebrafish hindbrain, as at 18h neuronal 

differentiation occurs ventrally in the centre of rhombomeres, distant to the 

sources of W ntl in the roof plate and hindbrain boundaries. However, the fact 

that, at 24h and later stages, neurogenesis occurs adjacent to boundaries suggests 

that at these stages, boundaries may positively regulate neuronal differentiation.
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Comparison between late differentiation patterns and accumulation o f

Hu-labelled cells.

Early studies of neurogenesis in the hindbrain did not reveal the pattern of 

differentiation in stripes adjacent to boundaries. This is most likely due to the 

limitation in the availability of markers at the time. However, this poses an 

important question of why this pattern cannot be seen, for instance using markers 

which label all neurons (such as Hu immunohistochemistry). Indeed, considering 

that most differentiation takes place adjacent to boundaries, and that at least 

some neuronal subtypes, such as d£x7a-expressing neurons, remain in this 

position, one would expect to see more neurons adjacent to boundaries than in 

the centre of rhombomeres, particularly in dorsal regions where there is no 

differentiation at early stages, yet no such organisation can be seen. Post-mitotic 

neurons seem equally distributed throughout the non-boundary regions. It 

remains possible that the discrepancy between the two patterns is due to a lack of 

available markers and that other genes drive differentiation in centre regions. For 

instance, there are at least two homologues of the Xenopus p 2 T lcI and one gene 

closely related to the mammalian p27kipl in zebrafish (Geling et al., 2003). 

However, this idea is inconsistent with the expression pattern of Delta genes. 

Therefore, in order to account for the discrepancy between neurogenesis patterns 

and the arrangem ent of post-mitotic neurons, it seems likely that some cells 

m igrate away from  their point of birth adjacent to boundaries towards 

rhom bom ere centres. To determine whether this is the case, it would be 

necessary to have a set of markers labelling various identified subsets of neurons 

and observe their positions along the anterior-posterior axis. However studies are 

limited by the fact that the dorso-ventral patterning of the neural tube has been
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less studied in the zebrafish than in other species, and therefore that it is harder to 

assign a transcription factor code to individual cell types, as has been done for 

chick and mouse (Briscoe et al., 2000; Lee and Jessell, 1999). Nevertheless, 

individual markers can help to give information about neuronal types. For 

instance, gata3 is initially expressed at 24h in small clusters of ventral neurons 

either side of rhombomere boundaries (data not shown, see also the Zebrafish 

Information Network expression data at www.zfin.org, referenced in Sprague et 

al., 2003), but by 30h, a single large cluster of expressing neurons is found in 

what appears to be the centre of each rhombomere (Neave et al., 1995). This 

could indicate that this particular group of neurons is born adjacent to boundaries 

but migrates to the centre of each rhombomere, but could also be due to different 

cells expressing this same gene at different times in development. However, the 

evidence that some differentiating neurons migrate to the centre of rhombomeres 

consolidates the idea of a tw o-step model for neural patterning : first 

differentiation is localised to areas adjacent to boundaries, then individual 

neurons respond to local or graded cues to find their final location.

Differentiation at rhombomeric interfaces.

Neurogenesis at boundaries.

As described in previous work, differentiation is delayed at boundaries in 

a Notch-dependent manner (Cheng et al., 2004). Interestingly, it is when the 

Notch pathway com ponent rfng  is downregulated in boundary cells that 

significant numbers of boundary neurons start to be detected (around 27h).
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However, in the mind bomb mutant, where most, but not all, Notch function is 

removed (Cheng et al., 2004; Itoh et al., 2003), there are still gaps in 

neurogenesis at some boundaries. Delta gene expression is defective in mind 

bomb embryos (Bingham et al., 2003), such that boundary cells experience less 

activation of Notch. However, it is likely that residual Notch activation occurs in 

mind bomb which is sufficient to partially inhibit neurogenesis.

So far, only one type of neuron has been identified at rhombomere 

boundaries, which is a population of e v x l-positive commissural neurons 

(Thaeron et al., 2000). It is probable that there are also other types of neurons 

located at boundaries, as e v x l-positive cells only occupy a particular dorso- 

ventral location at the boundary, while Hu-positive neurons are found throughout 

the dorso-ventral axis of boundaries. The origin of neurons found at interfaces 

remains to be established, as no markers of neurogenesis can be seen at 

boundaries at any stage examined. It is therefore possible that boundaries are 

non-neurogenic and that the evx/-positive neurons are derived from progenitors 

located in the non-boundary regions. Alternatively, after asymmetric division, 

the daughter of a boundary cell could find itself in the progenitor domain 

adjacent to boundaries, and thus give rise to neurons. Another possibility is 

suggested by the observation that boundary neurons and gfap-expressing cells 

start to be seen around the same stage. It has been shown recently that the radial 

glia that form the glial curtain are proliferating (Lyons et al., 2003), and this 

suggests interesting analogies with studies in the mouse cortex, where radial glia 

have been shown to be an important population of neuronal progenitors (Gotz et 

al., 2002; Malatesta et al., 2003; Noctor et al., 2002).
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Origin and role of radial glia adjacent to boundaries.

Although no lineage analyses have been carried out, several lines of 

evidence suggest that the radial glial cells that differentiate adjacent to hindbrain 

boundaries may be boundary-derived. First, in situ hybridisation with gfap labels 

cells in single stripes located at boundaries at 22-24h (Fig.9), although these 

stripes later split in two. Moreover, when boundary markers expand in ectopic 

situations, such as in w ntl knockdowns, gfap expression also expands (Fig. 180- 

R). This is consistent both with the lack of expression of proneural genes in these 

morphants, as well as with expansion of boundary fate, but it is difficult to 

distinguish these two explanations. Indeed it may be significant that boundary 

fate and glial/non-proneural fate appear to be linked, as boundary cells do not 

express proneural genes.

The role of the radial glia adjacent to boundaries is unclear. One 

possibility is that they guide commissural axons (Trevarrow et al., 1990). It is 

also conceivable that they are neuronal progenitors for non-boundary neurons, 

like radial glia in the mammalian cortex which are neuronal progenitors (Gotz et 

al., 2002; M alatesta et al., 2003; Noctor et al., 2002). Although this could 

account for the stripes of neurogenesis adjacent to boundaries, it is unlikely as 

stripes of proneural genes can be seen before the appearance of clear gfap- 

expressing stripes. It is possible that these radial glial cells are part of a pool of 

progenitors required for future neurogenesis (Lyons et al., 2003). Finally, it is 

also likely that the cell bodies of neurons differentiating adjacent to hindbrain 

boundaries migrate along the radial glial fibres to the mantle zone, as occurs in 

the mammalian cortex (Rakic, 1978).
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The role ofWnt sisnallins in vatternin2

hindbrain boundaries and neurosenesis.

The distribution of neuronal and glial cell types that I have characterised 

above suggests that boundaries may have a role in patterning the anterior- 

posterior axis of each rhombomere in the zebrafish hindbrain. This is the 

hypothesis I have set out to test in the second part of my thesis, where I have 

knocked down genes expressed in boundaries. The best candidate for carrying 

out a potential patterning role is W ntl, a secreted extracellular signalling 

molecule, which is expressed by boundary cells (see Fig.lOD). In my analysis I 

tested first the effect of w ntl knockdown on the expression of boundary genes, in 

order to establish a hierarchy among genes expressed in boundaries, and second, 

whether perturbing boundary genes has an effect on expression patterns in non­

boundary regions. At the same time, Yi-Chuan Cheng, a postdoc in the 

W ilkinson lab, analysed the role of the Notch pathway, given the striking 

expression pattern of rfng and the exclusion of delta genes from boundaries. As 

will be discussed, we found that these genes are linked in a regulatory pathway.
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Fig. 11 : Specificity and efficacy o f  morpholino oligonucleotides.

Low-magnification images of sphere stage (4h) live embryos injected with RNA 

constructs encoding nuclear GFP containing the m orpholino oligonucleotide 

recognition sequences for w ntlM O  (A ,B), m utated w ntlM O  (C,D), rfngM O 

(E,F) or mutated rfngMO (G,H). Co-injection of the w ntlM O  (B,D) or rfngMO 

(E,H) blocks GFP expression (B ,F), but not from  the RNAs in which the 

sequence has been mutated (D,H).

97



+Morpholino

B

WntlMO-
GFP

Mutated
WntlMO
sequence

rfngMO-
GFP

Mutated
rfngMO
sequence

98



The role o f  Wnt signalling

Results.

Specificity and efficacy of morpholino oligonucleotides.

The role of w n tl was assessed by using a morpholino oligonucleotide 

(MO) to block w ntl translation. In order to test that the morpholinos I have used 

efficiently block translation, I assayed their effectiveness in in vivo conditions. I 

inserted the nucleotide sequence that is recognised by either w ntlM O  or rfngMO 

(morpholino against rfng, see below), at the start site of a nuclear localised green 

fluorescent protein (GFP) cDNA. For each of the morpholinos tested, I also 

made a construct differing from the morpholino recognition sequence by five 

random nucleotides. RNA was then synthesised from  these recombined GFP 

cDNAs and injected into one to four cell stage embryos. Injected alone, each of 

the RNAs gives robust GFP expression (Fig.l 1A,C,E,G). Injection of w ntlM O  

blocks GFP fluorescence when co-injected with the RNA containing the 

w ntlM O  recognition sequence (F ig .lIB ), but not with the RNA containing the 

mutated sequence (F ig.lID ). Similarly, rfngMO can block GFP expression from 

the RNA containing the rfngMO recognition sequence (F ig .lIF ), but not the 

mutated sequence (F ig .llH ). These results suggest that the morpholinos tested 

can efficiently and specifically inhibit translation from RNAs containing their 

recognition sequence. In the case of rfngMO, all the results presented below 

were confirmed using a second morpholino oligonucleotide with a recognition 

sequence that lies upstream of the start codon (see Cheng et al., 2004). All the 

images shown in this thesis have been obtained from experiments with the ATG- 

overlapping morpholino. Finally, in the case of the morpholino against tcf3b, the
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same sequence was used as previously published (Dorsky et al., 2003), where it 

was shown that this morpholino can block translation of the tcf3b gene product in 

vitro.

Gross morphological effects of wntl knockdown.

Embryos injected with wntlM O are slightly smaller than their wild type 

siblings, and the neural tube fails to open in the hindbrain, and is thinner. 

Nevertheless there are no other obvious defects in the embryos up to 48h ; the 

midbrain-hindbrain region appears grossly normal morphologically, unlike what 

has been described in the mouse for a w ntl knockout (McMahon and Bradley, 

1990; McMahon et al., 1992).

Knockdowns o f the Wnt pathway cause expansion o f boundary 

markers.

In the first set of experiments, I tested the possibility that W ntl might 

have a role in the formation or organisation of hindbrain boundaries.

Timing and effect of  wntl knockdown on boundary marker expression.

I detected the expression of rfng and fo x b l.2  boundary markers in w ntl 

M O-injected (w ntlM O ) embryos. These genes are independent markers of 

hindbrain boundaries, since knockdown of either does not lead to decreased 

expression of the other (see below, and data not shown). At 18h, no effect on
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rfng expression can be observed (Fig.l2A,B). In contrast, only 1.5 hours later, at 

19.5h (21 somite stage), rfng expression is much broader and extends into the 

centre of rhombomeres, except rhombomere 4 (Fig.l2C,D). By 24h, expression 

of rfng can be seen in most of the hindbrain, with the exception of rhombomere 4 

(Fig.l2E,F). Similarly, the boundary domain o f fo x b l .2 expression is expanded 

in w ntlM O  embryos (Fig.l2G,H, brackets indicate broadened boundary stripes), 

although, due to the non-boundary expression dom ain of f o x b l . 2 in the 

ventricular zone, this is less evident than for rfng.

It is more difficult to discern whether there is a similar effect on pax6  

expression (Fig. 121,J), since the boundary and non-boundary expression levels 

are hard to distinguish. However, broadened stripes of expression are discernible 

in injected embryos (brackets in Fig.l2J), consistent with an expansion of the 

boundary domain of expression. In control embryos at 24h, wnt8b is expressed in 

rhombom ere boundaries, and more weakly in dorsal r3 and r5 (12K). In 

w ntlM O -injected  embryos, w nt8b  is not upregulated in boundaries, and is 

expressed at high levels in r3 and r5. This expression is reminiscent of the earlier 

expression pattern of wnt8b, up to 18h, when transcripts are only detected in 

dorsal r3 and r5.
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Fig. 12 : Knockdowns o f the Wnt pathway cause expansion o f  

boundary markers.

Dorsal views of boundary m arker expression in uninjected, w ntlM O -injected 

(B,D,F,H,J,L), rfng MO-injected (M,N) and tef3bMO-injected (0 ,P )  embryos. 

Stage and markers are indicated in the top left hand corner of each panel. A -F : 

Time course of the expansion of rfng expression in w ntlM O  embryos showing 

that between 18h and 19.5h, rfng expression spreads to fill most of the hindbrain, 

except rhom bom ere 4 (r4). G-L : expression o f f o x b l . 2, pax6,  and w n t8 b  

showing the effect of w ntlM O  injection. Arrowheads in G and I point to sharp 

stripes o f boundary expression in uninjected em bryos, as com pared to the 

broader domains in all three m orphants (brackets in H,J,N,P). M -P : expression 

of rfng and fo x b l  .2 in rfngMO and tcf3bM O  em bryos, displaying a sim ilar 

phenotype to w ntlM O  embryos. Q,R : boundary expression of w n tl  (arrows in 

Q) is lost in rfngMO embryos (Q and R from  Yi-Chuan Cheng, see Cheng et al., 

2004). Scale bar : 100/rm.
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Taken together, these findings suggest that W ntl is required for the 

appearance of later boundary markers such as wnt8b , as well as to block rfng and 

fo x b l.2 boundary marker expression in the centre of rhombomeres.

rfng knockdown suggests that the boundary domain of  wntl expression is 

required fo r  the repression o f boundary markers.

Recently published work by this laboratory has suggested that boundary 

cells have elevated Notch signalling and that modulation of Notch activity by 

Rfng is required for w ntl expression in boundaries (F igl2Q ,R  and Cheng et al., 

2004). M oreover, in rfng  knockdowns, roof plate expression of w n tl  is 

maintained, thus allowing me to assay specifically for roles of the boundary 

domain of w ntl expression.

In embryos injected with rfngMO, expression of rfng  expands to fill 

entire rhombomeres, with the exception of r4 (F ig .l2M ), and the boundary 

expression of fo x b l .  2 is also much broader (F ig.l2N ), the same phenotype as 

w ntlM O  em bryos (compare with F ig .l2F ,H ). This result implies that the 

boundary expression of w ntl is required to prevent boundary markers from being 

expressed ectopically.

The effect o f  wntl is mediated by tcf3b in the hindbrain.

A candidate mediator of Wnt signal transduction in the hindbrain is the 

transcription factor tcf3b, as tcf3b knockdown was previously shown to have a 

phenotype in the hindbrain which includes a lack of morphological boundaries, 

and uniform levels of f o x b l .2 expression. The authors interpreted uniform 

fo x b l.2 expression as absence of boundaries (Dorsky et al., 2003). However, the
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non-boundary domain of fo x b l .2 expression makes it difficult to distinguish 

between an absence of boundaries and an expansion of boundary expression.

To resolve this question, I used the same morpholino as these authors, 

directed against the tcf3b translation start site, and analysed the expression of 

boundary markers. In tcf3bM O embryos, both rfng  and fo x b l  .2 boundary 

expression domains expand to fill most of the rhombomere centres (Fig. 120 ,P), 

as described above for w ntlM O  and rfngMO. The image shown in F ig .l2P  

corresponds to half the dose of tcf3bM O usually injected, to show that the 

fo x b l .2 expression observed does correspond to the boundary domain, as higher 

doses give a strong phenotype with almost uniform expression of boundary 

markers, making it difficult to distinguish between the two hypotheses presented 

above.

The finding that morpholinos against w n tl  and tcf3b  give the same 

phenotype suggests that both morpholinos are specific, and also that these two 

genes act in the same pathway, that is to say that the effect of W ntl in the 

zebrafish hindbrain is mediated by Tcf3b.

Range o f phenotypes in injected embryos.

As is commonly observed in m orpholino injections, there is some 

variability in the severity of the effect observed, perhaps reflecting variations in 

the amount injected and/or response of the embryo. The embryos shown in the 

figures are representative of the majority of embryos. However, an accurate 

representation of the effect of morpholino injections requires that the range of 

phenotypes observed be presented.
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In the case of rfng  expression in w ntlM O  embryos, four distinct 

phenotypes can be observed. First, in about 7% of embryos (3/41 embryos, these 

figures correspond to two separate experim ents), r fn g  expression  is 

indistinguishable from  uninjected or control m orpholino-injected embryos 

(Fig.l3A ). In the second category, a mild phenotype of boundary expansion is 

observed, where the stripes of expression are broader, but do not fill the 

rhom bom ere centres (F ig.l3B ). This accounts for about 10% of w ntlM O  

embryos (4/41 embryos). The third, and most common, phenotype (about 66% of 

embryos -  27/41) is shown in F ig .l3C  and F ig .l2F . In this instance, rfng  

expression fills most of the hindbrain, except r4 where little expression can be 

seen. Higher levels of expression are distinguishable around the rhombomere 

interfaces. In the fourth category, rfng expression is very strongly upregulated 

throughout the hindbrain, and the levels at rhombomere interfaces and centre 

regions are similar. Expression can be detected in r4, but it is weaker than in 

other rhombomeres. Approximately 17% of embryos (7/41) correspond to this 

phenotype.

Only two phenotypes can be distinguished for fo x b l .2 expression after 

w ntlM O  injection, as no embryos were found to resemble uninjected or control 

m orpholino-injected embryos. In the first case, two levels of expression of 

fo x b l .2 are distinguishable, with the high level boundary expression in broader 

stripes compared to uninjected embryos (Fig.l2H  and Fig.l3F). This corresponds 

to 61% of w ntlM O  embryos (17/28 from two separate experiments). In the 

second category, fo xb  1.2 expression appears uniform throughout most of the 

hindbrain, except rhombomere 4, where lower levels are often detected. This 

accounts for 39% of wntlM O embryos (Fig.l3G).
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The effect of tcf3b knockdown appears consistently stronger than for 

w n tl,  especially in the case of fo x b l .  2 expression. W hen the same dose of 

morpholino is injected as for w ntlM O , about 75% of embryos show the same 

phenotype as in F ig .l3G , compared to 39% for w ntl M O-injected embryos. 

However, when half the amount of tcf3bMO is injected, the proportions of each 

phenotype are comparable to w ntlM O  injections. This may account for the 

differing interpretations of the phenotypes proposed here and in Dorky et al. 

(2003). Finally, in the case of the rfng morpholino, the phenotype appears 

weaker than w ntlM O . In one representative experim ent (sim ilar data was 

obtained by Yi-Chuan Cheng), most embryos show the mild boundary expansion 

phenotype presented in F ig.l3B  (72% - 13/18 embryos), and only 6% (1/18 

em bryos) have boundary m arker expression in rhom bom ere centres, 

corresponding to the most common w ntlM O  phenotype.

In summary, the results shown are consistent for each morpholino, but 

there are differences in the strength of the phenotype observed with morpholinos 

targeted to different mRNAs, with tcf3bMO being the most severe, and rfngMO 

the mildest. Possible explanations for this will be presented in the Discussion.
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Fig. 13 : Range o f phenotypes fo r  boundary markers.

Phenotypes of rfng (A-D) and fo x b l .2 (E-G) following w ntlM O  injection. In 7% 

of embryos (3/41), rfng expression is indistinguishable from uninjected (A). 10% 

(4/41) have broader expression that does not fill entire rhombom eres (B), while 

66% (27/41) have expression throughout most of the hindbrain, except in r4, 

where little ectopic expression is seen (C). In 17% of cases (7/41), ectopic 

expression in rhombomere centres is indistinguishable from  boundary expression 

(D). For fo x b l .2, no injected em bryos have a sim ilar phenotype to uninjected 

embryos (E). 61% (17/28) have distinguishable broader boundary expression 

domains (F), and 39% (11/28) have uniform expression (G). Scale bar : 100pm.
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Fig. 14 : M ixing between segments and proliferation cannot 

account fo r  boundary marker expansion in Wnt-pathway 

morphants.

A ,B : h o x b la /k r o x 2 0  double in situ  hybrid isation  confirm ing that the 

segmentation of the hindbrain is normal in tcf3b knockdowns, and that no mixing 

occurs between segments. C,D : com bined r fng  in situ  hybridisation with 

im m unohistochem istry against phosphorylated histone H3 (p-H3, brown) in 

uninjected and w ntlM O  embryos at 19h, from which mitotic ratios, shown in G, 

were derived. The mitotic ratios o f both boundary and non-boundary cells 

decreases in w ntl M O-injected em bryos (42% decrease for r/hg-positive cells 

versus 30% decrease for rfng-negative cells). cyc lin D l expression (E,F) also 

shows that boundary expression is specifically lost in w ntlM O  embryos, which 

suggests that W ntl enhances the proliferation of boundary cells, rather than act 

to restrict it. Scale bar : lOOpim.
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The expansion o f boundary markers is due to de novo induction o f  

boundary markers.

Three main hypotheses can be put forward for the observed expansion of 

boundary markers when signalling through the Wnt pathway is inhibited. The 

first is that it is due to an increased mixing of cells, either of boundary cells that 

move away from interfaces, or to an interleaving of interfaces, as boundary 

markers are upregulated by interactions between cells from  neighbouring 

rhombomeres (Guthrie and Lumsden, 1991). However, there are many more cells 

expressing boundary markers in W nt pathway knockdowns, precluding the 

possibility of a simple migration of boundary cells into rhombomere centres; and 

the sharp segmental interfaces between the expression domains of krox20  and 

h o x b l  form normally in w ntlM O  and tcf3bM O embryos (F ig.l4A ,B  for 

tcf3bMO, not shown for w ntlM O ). Similarly, the limits of epha4  expression 

domains are sharp (see for instance Fig.l6E).

A second alternative is that the excess number of cells expressing 

boundary markers reflects a large increase in proliferation of boundary cells and 

concom itant loss of non-boundary cell proliferation. This seems unlikely, 

however, as only 1.5 hours are sufficient for most cells in the hindbrain to 

express rfng. Nevertheless, the mitotic index of rfng-positive and negative cells 

was assayed using an antibody against phosphorylated histone H3, which labels 

m itotic cells. During the stages when the boundary marker expansion is 

occurring, at 19h of development, the mitotic index of boundary cells decreases 

by approximately 42%, whereas that of non-boundary cells decreases by about 

30% (Fig. 14G). Another argum ent against changes in proliferation being 

responsible for the ectopic boundary marker expression is the localisation of
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cyc lind l transcripts in uninjected and w ntlM O  embryos. In the spinal cord, 

CyclinDl is a target of Wnt signalling and is thought to mediate the mitogenic 

effect of dorsal midline Wnts (Megason and McMahon, 2002). However, in the 

hindbrain, cyclindl is expressed at high levels in boundary cells, and lower levels 

throughout most of the hindbrain. The high boundary levels of cyclinD l are 

specifically lost in w ntlM O  embryos (Fig.l4E,F), suggesting that W ntl acts to 

enable proliferation in boundaries.

The final and favoured hypothesis, therefore, is that W ntl signalling via 

Tcf3b is required to inhibit non-boundary cells from expressing boundary 

markers.

Role o f the Wnt pathway in regulating hindbrain neurogenesis.

A potential mechanism by which W ntl may act on neighbouring cells is 

suggested by the expression patterns of proneural and delta genes, which, as 

described previously, are found in stripes of high expression adjacent to 

boundaries by 24h (Fig.7). This situation is reminiscent of patterning events at 

the dorso-ventral boundary of the Drosophila wing imaginal disc, where Notch 

signalling upregulates wingless at the boundary. In turn, Wingless signals to 

adjacent cells in the anterior compartment to upregulate achaete, delta  and 

serrate, and specify these as sensory hair cells. Delta cell autonomously blocks 

Notch activation and therefore prevents these cells from expressing wingless, 

thereby mediating a pathway of lateral inhibition of boundary cells (de Celis and
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Bray, 1997; de Celis and Bray, 2000; D iaz-Benjum ea and Cohen, 1995; 

Micchelli et al., 1997; Rulifson and Blair, 1995; Rulifson et al., 1996).

It is intriguing that the homologous genes in the zebrafish hindbrain are 

expressed with similar spatial relationships as in the Drosophila  wing imaginal 

disc. Furthermore, it is known that Notch signalling in hindbrain boundaries 

activates w n tl expression in boundaries (F ig.l2Q ,R  and Cheng et al., 2004). I 

therefore tested first whether the regulatory relationships between Wnt signalling 

and achaete-scute  and delta  homologues are comparable to those in the wing 

disc, and second whether proneural genes and delta homologues mediate lateral 

inhibition of boundary fate.

Regulation of proneural and delta genes by w ntl via tcf3b.

Analysis of deltaD  expression in w ntl MO embryos reveals no apparent 

change in injected embryos at 18h compared to their uninjected siblings 

(Fig.l5A,B), whereas at 19.5h, there is a major decrease in the number of cells 

expressing deltaD  in the hindbrain (Fig.l5C,D). The timing of this decrease in 

neurogenesis correlates with the timing of boundary spreading following w ntl 

knockdown (Fig.l2A-D). This decrease is even more apparent by 24h, when few 

cells express deltaD , although r4 has a higher number of expressing cells than 

other rhombomeres (Fig. 15S,T). Similar patterns are seen at 24h for deltaA  and 

deltaB  (Fig. 150,P, not shown for deltaB), when only a few expressing cells are 

left, except in r4, and the stripes of expression adjacent to boundaries in wild 

type embryos are absent. The same phenotype of a decreased number of Delta- 

expressing cells is seen in embryos injected with tcf3bMO, with fewer labelled 

cells compared with w n tl  knockdowns (Fig.l5Q ,U ). This suggests that Wnt
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signalling through Tcf3b is required for delta  gene expression. The relative 

contributions of boundary and non-boundary w n tl  sources were assessed by 

comparing these phenotypes with those of embryos injected with rfngMO. 

Again, although the rfngMO phenotype is slightly milder than for w ntlM O  

injections, for all delta genes analysed, there is a large reduction in the number of 

expressing cells, with r4 being the least affected (Fig.l5R). This indicates that 

boundary W ntl is required for normal levels of d e lta  expression and 

neurogenesis in the hindbrain.

Knockdown of w ntl leads to decreased expression of the proneural genes, 

asha (Fig. 151,J), ashb (Fig.l5E,F) and ngn l (Fig.l5L,M ). At 24h, two distinct 

levels of expression of ashb  and n g n l  can be distinguished : high levels of 

expression are present adjacent to boundaries and correspond to presumptive 

neuroblasts, and low levels of expression are found throughout the ventricular 

zone of rhombomere centres. In w ntlM O -injected embryos, both types of 

expression are decreased, and only scattered expressing cells remain. However, 

in the case of a s h b , as for Delta genes, injected embryos have stronger 

expression in rhombomere 4. asha is expressed in scattered dorsal cells, but is 

excluded from boundaries. Expression in w ntl MO embryos is present in fewer 

cells than in uninjected siblings.
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Fig. 15 : Regulation o f proneural and delta genes by Wnt

signalling.

A-D : time course of the effect of wntl MO injection on deltaD  expression. No 

effect is seen at 18h (A,B), but at 19.5h, deltaD  is strongly downreguiated (D). 

E-U : effect of knockdowns of w n t l , tcfSb  and rfng, as indicated in the bottom 

left of each panel on proneural gene expression (E-H : ashb, I-K : asha, L-N : 

n g n l)  and deltaA  (O-R) and deltaD  (S-U) expression. All are downreguiated in 

injected em bryos, but expression is often stronger in rhom bom ere 4 (r4), and 

posterior to the r6/r7 boundary (arrow s in M ,N,P,R). V-Y : knockdowns of 

proneural genes, as indicated at the bottom left o f the panels causes a reduction 

in deltaD  (V) and deltaA (W-Y) expression. All views are dorsal with anterior at 

the top. Scale bar : 100/rm.
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Fig. 17 : Range o f  phenotypes o f  delta gene expression in wntl MO  

or asha+bMO embryos.

A-E : deltaA  expression in uninjected (A) or w ntlM O -injected embryos (B-E). 

The phenotypes were obtained in injected  em bryos w ith the fo llow ing 

proportions : A, 0%; B, 3.5% (2/57 embryos); C, 25% (14/57 embryos); D, 58% 

(33/57); E, 14% (8/57 embryos). F-I : deltaD  expression in uninjected (F) and 

embryos injected with both ashaMO and ashbM O (G-I). G-l are representative of 

the phenotypes observed, with 12.5% of em bryos (2/16) resem bling G, 69% 

(11/16) similar to H, and 19% (3/16) like I. Scale bar: 100/im.
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The role o f Wnt signalling

Sim ilar phenotypes are observed in embryos injected with tcf3bM O 

(Fig.l5G ,K ,Q), suggesting that W ntl signalling through Tcf3b is required for 

proneural gene expression. Tcf3bMO embryos have fewer expressing cells in the 

hindbrain than w ntl MO embryos. Knockdown of rfng also causes a decrease in 

ashb expression (Fig.l5H ), but the phenotype is milder than for wntlM O. As for 

w ntl and tcf3b knockdowns, injected embryos have low-level expression of ashb 

in rhom bom ere 4. It is also of note that, particularly for n g n l  and Delta 

expression, a much weaker effect is observed caudal to rhombomere 6 (arrows in 

Fig.l5M ,N,P-R mark the posterior border of r6).

As previous studies of the regulation of delta  gene transcription have 

shown that proneural genes are essential for delta  expression (Haenlin et al., 

1994; Hans and Campos-Ortega, 2002), an obvious prediction would be that the 

reduction of delta expression observed is due to the reduction of proneural gene 

expression. This idea is supported by knockdown experiments of either asha, 

ashb  or n g n l,  or combinations of knockdowns of these genes, in which deltaA 

and deltaD  expression is reduced (F ig.l5V -Y ). These experiments do not 

preclude the possibility of a direct input of Wnt signalling into Delta expression, 

but they do suggest that W ntl affects expression of Delta genes via proneural 

genes.

The observation that both proneural and delta  gene expression is 

decreased in w ntl MO embryos is indicative of a decrease in neurogenesis. I have 

therefore examined in more detail the distribution of markers of neurogenesis.

The expression of p27Xlc]-a reveals the cells that are leaving the cell 

cycle, and p27Xlcl-a is therefore a marker of differentiating cells. In one day-old 

embryos, p2 7 Xlcl-a expression is strongly decreased in w ntlM O  embryos
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(Fig.l6A ,B), indicating that many fewer cells are leaving the cell cycle at this 

time point. Similarly, in tcf3b knockdowns, p27Xlcl-a expression is decreased 

(F ig .l6C ), suggesting that W ntl signals through Tcf3b to allow neuronal 

differentiation in the hindbrain. As noted previously with other markers, most 

labelled cells are found in r4 in the morphants. Detection of differentiated 

neurons with Hu antibody reveals the cum ulative effect of this lack of 

differentiation, and indeed, there are fewer neurons at 26h in w ntlM O embryos, 

most of which are found ventrally in the centre of rhombomeres (Fig.l6D,E). 

Knockdown of proneural genes also leads to reduced neurogenesis. In ngnl MO 

embryos, fewer Hu-positive cells are observed in the hindbrain, and, consistent 

with published data (Andermann et al., 2002), no neurons are present in the 

cranial ganglia of these morphants (Fig.l6F,G, arrowheads point to Hu-positive 

cells in the cranial ganglia of uninjected siblings, which are absent in injected 

embryos).

Range of phenotypes in injected embryos.

As previously described for boundary markers, a range of phenotypes 

was observed with each morpholino for each marker. The images shown in 

Fig. 15 correspond to the most commonly observed phenotype in each case. For 

instance, in the case of deltaA  expression in w ntlM O -injected embryos, a 

continuum  of phenotypes ranging from robust expression to alm ost no 

expressing cells was observed (Fig.l7A-E). While no embryos have as strong 

expression as uninjected or control morpholino-injected embryos, 3.5% have 

stripes with fewer deltaA-expressing cells adjacent to boundaries (Fig.l7B, 2/57 

embryos, data from two separate experiments). A larger proportion, almost 25%
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(14/57 embryos), does not display evidence of organisation of deltaA-positive 

cells into stripes, but expression is present throughout most of the hindbrain 

(Fig.l7C). deltaA  expression is weakest in rhombomeres 5 and 6. A stronger 

phenotype was observed in 58% of embryos (33/57), in which few cells in each 

rhombomere express deltaA, except in rhombomere 4, throughout which low 

levels of expression remain. In other rhombomeres, the labelled cells are lateral 

and express high amounts of transcript (Fig.l7D). Finally, in the most extreme 

cases (14%, 8/57 embryos), very few cells express deltaA , even in rhombomere 4 

(F ig .l7E ). It is interesting to note that, from this data, there appears to be 

d ifferent sensitivities of different rhom bom eres to increasing levels of 

morpholino, with r5 and r6 being most sensitive, then r2 and r3, and r4 being 

least sensitive. This is consistent with the results observed following injection of 

morpholinos against tcf3b or rfng. For instance, in Fig.l5R , expression of deltaA 

in a rfngMO-injected embryo is weakest in r5 and r6, intermediate in r2 and r3, 

and stronger in r4. Similar results are seen for ashb expression in w ntlM O , 

tcf3bMO or rfngMO embryos (Fig.l5F-H).

Similarly, the pattern of deltaD  expression in embryos injected with 

morpholinos against both asha and ashb displays some variability. No embryos 

have the same pattern as uninjected or control morpholino-injected embryos 

(Fig.l7F). In 12.5% of embryos (2/16), high-level deltaD  expression is present in 

stripes adjacent to boundaries in most rhombomeres, similar to, but weaker than 

in uninjected embryos (Fig.l7G). Most embryos (69%, 11/16) have only a few 

deltaD -positive cells located ventrally in each rhombomere (Fig.l7H ). In the 

most severe cases, few cells express deltaD, although it is not completely absent
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from the hindbrain (Fig. 171, 3/16 embryos, 19%). It seems likely that n g n l is 

responsible for the remaining deltaD expression.

In summary, some variability in the strength of the phenotype is seen for 

all morpholinos, and this may in part be due to variations in amount injected. 

However in all cases examined, the expression of proneural and Delta genes is 

reduced following knockdown of the Wnt pathway or of rfng, and Delta gene 

expression is reduced following proneural gene knockdown.

Analysis o f patterns o f differentiation in w n tl knockdowns at 24h and 

48h.

The stage-specific effect of w ntl knockdown implies that W ntl may be 

required only for neural cell types that differentiate after 18h of development. To 

analyse this, I have examined the expression of several cell type-specific markers 

at 48h where there is a well-characterised pattern of cell types (see results shown 

above and Trevarrow et al., 1990). Detection of a subset of reticulospinal 

neurons with RMO-44 antibody shows that these are still present in w ntlM O  

embryos, although axon pathfinding and fasciculation defects can be seen 

(Fig.l8A,B). Cranial motor neurons, as detected by in situ hybridisation with 

tbx20 probe, are present in w ntlM O  embryos (Fig.l8C ,D), but there are fewer 

cells, particularly in the more posterior regions. However, this contrasts with the 

midbrain and rhombomere 1, where almost all motor neurons of the Illrd and 

IVth nerves are absent, suggesting that the requirem ent for W ntl in the 

specification of cranial motor neurons differs between the midbrain-hindbrain 

area and the hindbrain itself.
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At 48h, dbxl and pax3  are expressed in stripes of neuronal cells, as well 

as in continuous columns in the ventricular zone (F ig.l8E ,G ). In w ntlM O  

embryos, although there does not seem to be a major reduction in the number of 

cells labelled with either dbxla  or pax3, the pattern is disorganised, and no clear 

stripes of neuronal cells are visible (Fig.l8F,H). From dorsal views, it appears 

that most staining for these two markers in w ntlM O  embryos is ventricular. To 

analyse this, I detected d b x la  expression in conjunction with Hu staining in 

transverse sections (Fig. 18I-N). The ventricular zone (VZ) is much thicker in 

w ntlM O  embryos, and the proportion of Hu-labelled cells is greatly decreased. 

Most dbxla  expression is within this enlarged progenitor cell domain, and only 

few cells are found that are co-labelled with Hu. Finally, and in accordance with 

the known phenotype of loss of proneural genes (Nieto et al., 2001), there is an 

increase in gfap expression in the hindbrain of embryos in which w ntl has been 

knocked down (F ig .l80 ,P ). The organisation of both the cell bodies and the 

fibres into stripes is also lost, and both RNA and protein can be detected at high 

levels throughout the hindbrain (Fig.l8Q,R).

These phenotypes of selective loss of neuronal cell types are consistent 

with a requirement for W ntl for neurogenesis only subsequently to 18h of 

development, as suggested by the effects on deltaD  expression. Reticulospinal 

neurons are mostly born before 15h, motor neurons are born between 16h-20h, 

and neurogenesis adjacent to boundaries takes place from  about 22h 

(Chandrasekhar et al., 1997; Mendelson, 1986). Furthermore, the presence of an 

enlarged ventricular zone, and of ectopic g/a/?-expressing cells, demonstrates that 

lack of neurogenesis is not due to a loss of progenitors, rather, it reflects a block 

in neuronal differentiation.
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Fig. 18 : Neural subtype specification in w ntlM O  embryos.

Dorsal views of whole mount (A -H ,0-R) and transverse cryostat sections (I-N) 

of 48h embryos. Reticulospinal neurons (RM O-44 immunohistochemistry, A,B) 

are normally specified and cranial motor neurons, though hypomorphic, are still 

present (tb x lO , G,H). Stripes of pax3  (E,F) and d b x la  (G,H) expression are 

disrupted. Sectioning reveals that most dbxla-positive cells in w ntlM O  embryos 

are non-neuronal ventricular zone cells (I,L, ventricular zone is determined by 

DAPI stain and Hu immunohistochemistry, J,K,M,N), and that there are much 

fewer neurons. O-R : analysis of g fa p  expression (0 ,P )  and of protein 

distribution (Q,R), revealing excess of glial cell types and disorganisation of glial 

fibres. VZ : ventricular zone, MZ : mantle zone. Scale bar : 50pm  in A-B,I-N and 

Q-R, lOOpm in C-H and 0,P.
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Fig. 19 : Effect o f  Wnt pathway activation on neurogenesis.

HuC/HuD immunohistochemistry (red) showing the distribution of neurons in 

either uninjected (A), full length chick W ntl-injected (B,C), dominant active (3- 

catenin-injected (D-G), w ntlM O -in jected  (H) or embryos co-injected with 

w ntlM O  in all cells and mosaic dominant active (3-catenin (I,J). EphA4 is shown 

in blue to identify rhombomeres 3 and 5, while the distribution of the injected 

construct is shown by co-injection of GFP (green). B,C ; D,E and F,G show the 

same embryos, but in B,D,F only the red channel is shown for the sake of clarity. 

Overexpression of mosaic cW ntl causes a general increase in neurogenesis 

(B,C), while cells expressing DA (3-catenin often ectopically express Hu (arrows 

in D-G), although sometimes clusters of high-expressing cells form in which no 

Hu-positive cells can be seen (asterisk in F,G). DA |3-catenin is able to rescue in 

part the loss of neurogenesis caused by injection of w n tlM O  (H-J). Scale bar : 

50/mi.
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The role o f Wnt signalling

Activation o f the Wnt pathway can induce neurogenesis.

Studies in the chick spinal cord have shown that ectopic activation of the 

W nt/p-C atenin pathway promotes cell proliferation and inhibits neuronal 

differentiation (Megason and McMahon, 2002). I have therefore tested whether 

W ntl prom otes or inhibits neurogenesis in the zebrafish hindbrain by 

overexpressing either full length chick W ntl (cW ntl) or a stabilised form of p- 

Catenin, which lacks the first 87 amino acids, including the phosphorylation sites 

for GSK3 (Domingos et al., 2001).

Mosaic overexpression of cW ntl leads to an increased number of neurons 

in the hindbrain compared to uninjected siblings (F ig.l9B ,C , compare with 

Fig.l9A). Although it has not been quantified in these experiments, there does 

seem to be an increase in cell proliferation, as the hindbrain appears broader than 

in control embryos. Thus, although Wnt signalling may regulate proliferation, it 

does not appear to be inhibitory for neuronal differentiation in the hindbrain.

Confirmation of this result was obtained using an approach that allows to 

examine the cell autonomy of the phenotype. By mosaically co-injecting a 

dominant active form of P-Catenin with green fluorescent protein, one can 

determine whether cells in which the Wnt signalling pathway is continuously 

activated are inhibited from becoming neurons, as shown in the chick (Megason 

and McMahon, 2002). However, P-Catenin-expressing ectopic neurons were 

observed at aberrant locations, such as the ventricular surface, in the hindbrain of 

embryos injected with these RNAs (F ig.l9D -G ). This finding suggests that 

continuous exposure to Wnt signalling is permissive for neurogenesis, and may 

actively promote neuronal differentiation. However, very high levels of 

expression do seem to be inhibitory, as the stronger-expressing cells often form
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clumps which do not contain any Hu-positive cells, whereas cells with lower 

expression levels do express Hu, as seen in the posterior hindbrain of the embryo 

shown in Fig.l9F,G. Finally, overexpression of stabilised p-Catenin in wntlM O 

embryos can rescue the decrease in neurogenesis (compare the left and right 

sides of the embryo shown in Fig. 191,J). Since activating a downstream mediator 

of Wnt signalling can rescue the lack of W ntl, this argues both for a requirement 

for W nt/p-Catenin signalling in neurogenesis, and for the specificity of the 

neuronal phenotype of the w ntl morpholino.

Proneural genes and deltaA repress boundary markers.

Having shown that W ntl regulates expression of proneural genes and of 

delta genes in the hindbrain, I next tested whether these latter genes have a role 

in preventing the expansion of boundary markers. Knockdown of asha leads to 

expansion of both rfng and fo x b l.2  boundary markers (Fig.20B, fo x b l .2  not 

shown), as does blocking a sh b  translation, although to a lesser extent 

(Fig.20C,J). By contrast, in n g n l morpholino-injected embryos, little, if any 

boundary marker expansion is seen (Fig.20E), yet ngnl MO and ashbMO double 

knockdowns synergise to give a stronger expansion phenotype than either 

morpholino alone (Fig.20F). Similarly, asha and ashb  double knockdowns also 

give a stronger phenotype than single knockdowns (Fig.20D,K).
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Fig. 20 : Proneural and delta genes regulate boundary expansion.

A-H : r fng  expression in either uninjected (A) or in single or combined 

knockdowns of asha, ashb and n g n l  (B-G) or in deltaA knockdowns, all shown 

in dorsal views at 24h, in which expansion occurs. I-L : fo x b l .2  expression, 

arrowheads in L point to the sharp boundary expression domain, which is 

broader in knockdowns of proneural genes or of deltaA  (brackets in J-L). M-P : 

Hu immunohistochemistry on a deltaAMO embryo in which rfng expression is 

seen to expand, showing decreased neurogenesis in the hindbrain (M,N), whilst it 

is increased in the spinal cord (0,P). Scale bar : 100/rm.
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An additional question that can be addressed is whether the absence of 

boundary m arker spreading into r4 is due to the continued expression of 

proneural genes in this rhombomere in w n tl ,  tc f3b  or rfng  knockdowns. 

However, in a triple knockdown of asha, ashb and n g n l, rfng expression is still 

excluded from r4 (Fig.20G), indicating that another mechanism is responsible for 

preventing boundary fate acquisition within r4. There may be other, unknown, 

proneural genes, but this is unlikely as almost no neurons were detected in the 

hindbrains of embryos in which asha, ashb and ngn l have been knocked down 

(not shown).

Finally, the role of delta genes was addressed, particularly that of deltaA 

and deltaD, as their expression patterns suggest that they are the most relevant, 

deltaB  being found exclusively in maturing neuroblast, outside the ventricular 

zone. In the deltaD  mutant, after eight, no expansion of rfng  expression was 

detected (not shown), however in deltaA knockdowns, ectopic boundary markers 

can be seen throughout the hindbrain, with the exception of r4 (Fig.20H). Due to 

the role of Delta genes in lateral inhibition, deltaA  knockdown might be 

predicted to increase the amount of neurogenesis (Chitnis et al., 1995; Haddon et 

al., 1998; Holley et al., 2000). Indeed, in the spinal cord there are more Rohon- 

Beard neurons following deltaA  knockdown (Fig.2 0 0 ,P). In contrast, there is 

decreased neurogenesis in the hindbrain in deltaAMO embryos (Fig.20M,N), and 

this is consistent with a role of DeltaA in the boundary regulation of 

neurogenesis.
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Conclusions.

The data presented in the previous sections provide support for a model in 

which W ntl signal from boundaries acts via Tcf3b to promote proneural and 

delta gene expression, and therefore neurogenesis in non-boundary cells, thereby 

preventing them from adopting a boundary fate.

Discussion.

In this work, I have identified a role of W ntl in regulating neurogenesis 

and preventing the spread of boundaries. The wider implications of the findings 

and models of boundary and hindbrain development will be discussed later (see 

“discussion and perspectives”). Here, I will discuss how this work relates to 

previous studies of the roles of Wnts in proliferation and neurogenesis, and the 

similarities between the genetic pathway in the zebrafish hindbrain and in the 

formation of sensory hair cells in the Drosophila wing imaginal disc.
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Proliferation versus neurogenesis.

A role of Wnt signalling in proliferation.

Many studies have implicated W nt/p-catenin signalling in the positive 

regulation of cell proliferation, both during development of neural tissues (Chenn 

and W alsh, 2002; Dickinson et al., 1994; M egason and McMahon, 2002; 

Panhuysen et al., 2004; Zechner et al., 2003) and, when deregulated, in cancer 

(reviewed in Giles et al., 2003). In addition, a number of these studies found that 

Wnt or P-catenin gain of function leads to a decrease in neurogenesis and a 

concomitant increase in progenitors re-entering the cell cycle (Chenn and Walsh, 

2002; M egason and McMahon, 2002; Zechner et al., 2003). W nt targets, 

including cyclinD l and cyclinD2 are expressed in the spinal cord in response to 

W nt signalling and mediate at least part of the m itogenic effect of Wnts 

(Megason and McMahon, 2002). These studies lead to the conclusions that Wnt 

signalling increases neural progenitor numbers by reducing their differentiation 

rate as well as shortening the cell cycle. Moreover, in P-catenin loss of function 

experiments, the differentiation rate is greatly increased and progenitors are not 

maintained (Zechner et al., 2003).

In the experiments I have carried out, knockdown of w ntl is accompanied 

by a decrease in cell proliferation in the hindbrain (F ig.l4G ). Furthermore, the 

hindbrains of embryos injected with full length w ntl RNA are broader than those 

of uninjected siblings (Fig.l9A-C). These findings indicate that Wnt signalling 

does promote cell proliferation in the zebrafish hindbrain, as in other systems. 

Moreover, the fact that early differentiation occurs primarily in rhombomere 

centres (Fig.6C and Hanneman et al., 1988) suggests similarities to the spinal
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cord where neurogenesis initially occurs distant from the Wnt source. However, I 

find that after 18h of development, W ntl is required for neurogenesis, and that 

overexpression of w ntl does not suppress neurogenesis, but rather increases the 

number of neurons (Fig.l9A-C).

Proliferation defects cannot account for the phenotypes observed.

One interpretation of these findings could be that W ntl is selectively 

required for the proliferation of progenitors of neuronal cell types born after 18h, 

and that these progenitors are depleted in w n tl morphants. However, the total 

decrease in cell number at 19h is only approximately 15%, suggesting this may 

not account for the greater decrease in neurogenesis. Furthermore, while there is 

a decrease in proliferation in w ntlM O  embryos, this affects non-boundary cells 

less than boundary cells, and yet most cells in r2, r3, r5 and r6 up-regulate 

hindbrain boundary markers. This indicates a change of fate, rather than a simple 

role in selectively maintaining a group of progenitors. Further evidence is given 

by the fact that progenitors expressing d b x la  are still present (F ig .l8P), and 

accumulate in the enlarged ventricular zone. This shows that the decreased 

neurogenesis is due to a block in differentiation, not a loss of progenitors. 

Moreover, the excess gfap  expression in w ntlM O  embryos is consistent both 

with a block in neuronal differentiation (Nieto et al., 2001) and with a change of 

fate of cells to adopt a boundary identity. Therefore, although cell proliferation is 

affected in w n tl knockdowns, the decrease in neurogenesis is due mainly to a 

switch of progenitors from non-boundary to boundary identity. As boundaries are 

progenitors that do not express proneural genes (see Fig.7), they generate few 

neurons, if any.
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Can different models be reconciled ?

Although the knockdown experiments of w n tl in the zebrafish hindbrain 

agree with a role for W nt signalling in the regulation of proliferation, the 

observation that neurogenesis depends on the presence of W ntl appears 

contradictory to previous models of a role of Wnts in suppressing neurogenesis. 

However, there are many inconsistencies in the literature about the effect of 

overexpressing Wnts or p-catenin. In transgenic mouse embryos expressing w ntl 

under the control of the hoxb4  promoter, dorsal parts of the spinal cord are 

preferentially expanded without any apparent inhibition of neurogenesis 

(Dickinson et al., 1994). This role in the regulation of dorsal proliferation is 

consistent with the observation that the dorsal hindbrain is reduced in 

w ntllw nt3a  double mutants (Ikeya et al., 1997). However, in chick embryos 

electroporated with an expression construct for w n tl,  proliferation is increased 

only in ventral parts, while P-catenin overexpression affects all dorso-ventral 

levels (Megason and McMahon, 2002). M oreover, in the midbrain-hindbrain 

area, overexpression of w ntl by different methods also yields different results. In 

transgenic mouse embryos ectopically expressing w n tl under the control of the 

en l promoter, increased proliferation is seen only in one midbrain structure, the 

inferior colliculi, and only at specific stages, although cyclinD l is upregulated 

until adulthood in these embryos (Panhuysen et al., 2004). Interestingly, in these 

embryos, there is a slight shift in the relative densities of neurons and glia 

towards neurons, although total cell density is unchanged. Retroviral transfection 

of w n tl  in chick embryos leads to increased forebrain size, but no effect is 

observed in the midbrain (Adams et al., 2000), while electroporation of w n tl
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leads to a mild expansion of the tectum as well as the telencephalon, due to a 

transient increase in proliferation (Matsunaga et al., 2002). Finally, recent studies 

in the mouse neocortex and in vitro cell culture have shown that Wnt/p-catenin 

signalling can induce neurogenesis in a developmental context (Chenn and 

Walsh, 2003; Hirabayashi et al., 2004; Israsena et al., 2004; Kan et al., 2004; 

Muroyama et al., 2004; Otero et al., 2004) and in P19 cells (Lyu et al., 2003; 

Tang et al., 2002).

These apparent contradictions suggest that W nt signalling may have 

different effects in different areas of the neural tube. Indeed, analysis of ngnl 

expression (Fig.l5M ) provides evidence of spatial differences in the response to 

w n tl  knockdown in the zebrafish. Expression is strongly reduced in the 

hindbrain, but caudal to the r6/r7 boundary, little effect is observed. Moreover, 

the spatial relationship between w ntl and cyclinD l is different in the spinal cord 

and in the hindbrain. In the spinal cord, cyc lin D l is expressed in a dorsal to 

ventral gradient, but not at high levels in the dorsal Wnt source (Megason and 

McMahon, 2002), but in the hindbrain transcripts are found at high levels in 

boundary cells. As well as this, there are differences in the way different cranial 

nerve neurons are affected. In the midbrain-hindbrain boundary area, the Illrd 

and IVth nerves are not formed in w ntlM O  embryos, while in the hindbrain 

itself, the craniaW W ^'M sform, although in slightly sm aller numbers than 

uninjected siblings. This result is interesting in itself, as no published work has 

involved Wnt signalling in regulating the formation of cranial around the

isthmus, especially as in w ntl mutants, the whole area is missing. In zebrafish 

embryos, knockdown of w n tl  does not lead to loss of the midbrain or of 

midbrain-hindbrain boundary (MHB) markers (data not shown, but see Lekven et
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al., 2003), suggesting that the loss of the Illrd and IVth cranial nerves reflects a 

specific role of W ntl in neurogenesis rather than a general role in maintaining 

the MHB or midbrain. This result shows clearly that even a related population of 

neurons (cranial motor neurons in this instance) respond differently to the same 

signal according to their position along the anterior-posterior axis.

Another possibility is that W nt signalling may have different roles at 

different times in development, as suggested by the stage-specific response of the 

tectum to ectopic W ntl (no increase in cell proliferation is observed before 

E l 1.5, although the transgene used is active by E9.5, Panhuysen et al., 2004). 

This possibility is again supported by the data obtained here, as no effect of the 

W ntl morpholino on neurogenesis or boundary spreading is observed before 18h 

in the hindbrain (Fig.l5A,B). This idea has been proposed in a recent study in the 

mouse neocortex which has shown that W nt/p-catenin signalling promotes 

neuronal differentiation of progenitors (Hirabayashi et al., 2004). This increased 

differentiation is observed with cells from embryonic day 13.5 (E l3.5) embryos, 

but not with cells prepared from E10.5 embryos. Moreover, these and other 

authors show that a p-catenin/TCF complex can bind the n g n l promoter and 

activate transcription of this gene (Hirabayashi et al., 2004; Israsena et al., 2004).

A possible explanation for differences in response to Wnt signalling in 

different tissues and in the same tissue at different stages is that other factors are 

involved in modifying the response to Wnts. Fibroblast Growth Factors (FGFs) 

are good candidates for this role, as it has been shown that in the presence of 

FGF2, ectopic p-catenin leads to increased proliferation, but in the absence of 

FGF2, P-catenin promotes increased differentiation (Israsena et al., 2004). 

Another intriguing observation is that in gain and loss of function experiments
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with P-catenin, while the rate of differentiation relative to the total number of 

cells is strongly affected, the absolute number of cells that differentiate over a 

period of time is the same (Zechner et al., 2003). This may simply be due to 

inhibition of differentiation by P-catenin, but may also indicate that another 

factor is limiting for differentiation, even when increased numbers of progenitors 

are present.

Finally, another explanation for the differences observed in different 

studies of W nt/p-catenin  signalling  and its re la tionsh ip  to neuronal 

differentiation could be that different levels of signalling elicit different 

responses. Evidence of this is found by comparing the effect of retrovirus- 

induced misexpression and of electroporation of w n tl  on proliferation in the 

tectum (Adams et al., 2000; M atsunaga et al., 2002). W hile the levels of 

transcription obtained from retroviral vectors do not lead to ectopic proliferation, 

electroporation of an expression vector, which leads to higher levels of 

expression, significantly increases BrdU incorporation in the tectum. Similarly, 

my experiments provide some evidence for differing effects according to levels 

of expression of dominant active p-catenin. I find that when high levels of GFP 

are visible, indicating a high amount of injected GFP and p-catenin RNA, they 

tend to be in clusters within which no cells are positive for Hu, and that ectopic 

Hu-positive cells have lower levels of GFP fluorescence. Finally, papers by 

Chenn and Walsh (2002; 2003) show that transgenic mouse embryos expressing 

different levels of dominant active P-catenin have different phenotypes. In 

embryos expressing high levels, proliferation is greatly increased and more cells 

re-enter the cell cycle rather than differentiate. In embryos expressing lower
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levels, the increase in proliferation is more modest, and many ectopic neurons 

are seen (Chenn and Walsh, 2002; Chenn and Walsh, 2003).

It is therefore likely that the effects of W nt signalling on neuronal 

differentiation are context-dependent, varying with time, levels of signal, and 

between different tissues. Moreover, Wnt signalling cannot always be interpreted 

as simply affecting the choice between proliferation and differentiation. For 

instance, in the wntllwnt3a  double knockout, the two most dorsal neuronal types 

are very reduced, while a more ventral type is expanded, suggesting a role in 

choice of cell type fate rather than in regulating proliferation (Muroyama et al., 

2002). As zebrafish rhombomere boundaries do not express proneural genes, it is 

difficult in this case to distinguish between a regulation of boundary versus non­

boundary fate by W ntl in non-boundary cells and the induction of neurogenesis, 

as the two processes are linked.

Is Wntl instructive for neuronal differentiation ?

A question that is raised from these observations is whether W ntl is 

sufficient to instruct progenitors to differentiate or is a permissive factor. A clue 

comes from the observation that in w ntl MO or tcf3bMO embryos both low and 

high levels of proneural and delta gene expression are lost in the hindbrain, with 

the exception of r4 (see Figs. 10 and 11). Studies of neurogenesis in Drosophila 

(Skeath and Carroll, 1994) and zebrafish (Haddon et al., 1998) have suggested 

that low-level proneural and Delta gene expression underlies a competence to 

differentiate, and that higher level expression occurs during differentiation. In the 

hindbrain, ashb  and ngn l proneural genes, as well as deltaA  and deltaD  show
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these two different expression levels, while expression of p27x,cl-a and deltaB  is 

restricted to the differentiating neuroblasts (Fig.7 and Haddon et al., 1998). The 

decrease in low-level proneural gene expression in w ntlM O  embryos may 

therefore indicate that W ntl has a permissive role in neuronal differentiation.

That more neurons are observed when w ntl is ectopically expressed may 

simply be due to the fact that there is more proliferation in the injected embryos, 

and a consequent increase in the number of neurons. However, the presence of 

neurons at ectopic locations among cells expressing dominant active p-catenin 

indicates that activation of the Wnt pathway can lead to ectopic differentiation. 

This is consistent with a number of recent studies in other systems, showing in 

particular that Wnt/p-catenin activates transcription of the neurogeninl gene in 

mouse and causes stem cells to differentiate (Hirabayashi et al., 2004; Israsena et 

al., 2004; Muroyama et al., 2004). In this model, Wnt signalling leads directly to 

neuronal differentiation, and the stripes of differentiation adjacent to boundaries 

are due to high levels of secreted Wnt ligand being present there. Another way in 

which W ntl may influence the distribution of neurogenesis in the zebrafish 

hindbrain is by biasing Delta/Notch signalling such that high levels of delta 

genes are expressed adjacent to boundaries, such that other cells within hindbrain 

centres, although competent to differentiate, do not, as they are inhibited by 

Notch. This idea is supported by recent work showing that many consensus Tcf 

binding sites are present on the mouse delta l promoter (Galceran et al., 2004; 

Hofmann et al., 2004), including within the region of high homology with the 

zebrafish deltaD  promoter, which drives expression within the nervous system 

(Beckers et al., 2000; Hofmann et al., 2004). In this model, W ntl signals 

throughout hindbrain segments for cells to express proneural genes, and then
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high levels of W ntl bias the lateral inhibition process, causing differentiation to 

occur adjacent to boundaries.

Nevertheless, other indications suggest that W nt signalling may not be 

organising the stripes of differentiation adjacent to boundaries. First, if high 

levels of W ntl cause differentiation in adjacent cells, one would expect 

differentiation to take place also adjacent to the roof plate, but this is not the 

case. Second, the expression of w ntl in boundaries is confined to the dorsal half 

of boundaries, but the stripes of differentiation occur adjacent to most of the 

dorso-ventral extent of boundaries (see for instance F ig .70). Finally, by 24h, 

w n tl expression becomes increasingly dorsally restricted at boundaries, while 

neurogenesis adjacent to boundaries continues well beyond this stage.

Thus it seems likely that Wnt signalling is required for non-boundary 

cells to express uniform low levels of proneural genes and thus confer 

competency to differentiate to these cells (similar to the "equivalence groups" in 

Drosophila, where all cells expressing AS-C genes are competent to become 

neuronal progenitors, reviewed in Skeath and Carroll, 1994). Other factors are 

then required to cooperate with W ntl to instruct neuronal differentiation and 

organise the stripes of differentiation.
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Fig. 2 1 : Model o f regulation of cell differentiation and restriction o f boundary 
spreading.
These diagrams illustrate the similarity between the regulatory gene hierarchies in the anterior com­
partment of the Drosophila wing imaginal disc (A), and the zebrafish hindbrain (B). In both systems, 
fringe-mediated modulation of Notch at the boundary causes expression of wg/wntl. Wg/Wntl acts 
on neighbouring cells to upregulate proneural gene expression (as-c/ash), inducing neural fate. In 
Drosophila, Wg upregulates delta expression in neighbouring cells, but in vertebrates, delta genes are 
upregulated through proneural genes. Delta activates Notch in boundary cells, thus creating a feed­
back loop. In addition, proneural gene products and/or Delta act cell autonomously to prevent Notch 
activation and suppress boundary formation. In the zebrafish (B), Notch is not sufficient to induce 
boundary cell markers (Cheng et al., 2004), therefore another factor (‘X’) is proposed to be required 
for boundary cell specification.
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A conserved gene network regulates neural differentiation and 

lateral inhibition.

Similarities between spatial relationships of gene expression in the 

hindbrain and in the wing imaginal disc of Drosophila suggested a model for the 

action of W ntl in the zebrafish hindbrain (Fig.21). I will begin by describing 

current understanding of the patterning of the wing blade in the fly, and I will 

discuss the evidence supporting this model in the zebrafish hindbrain, and the 

aspects of this model that differ between the zebrafish hindbrain and the 

Drosophila wing disc.

Boundary restriction and sensory organ differentiation in the fly  wing.

In the wing imaginal disc of D rosophila , the Notch ligands delta and 

serra te  are initially expressed in the ventral and dorsal com partm ents, 

respectively. Expression of fringe  in the dorsal compartment renders those cells 

less responsive to serrate  and more sensitive to signal from de/ta-expressing 

cells, such that a stripe of cells has elevated Notch signalling at the dorso-ventral 

boundary (Diaz-Benjumea and Cohen, 1995; Irvine and Wieschaus, 1994; Panin 

et al., 1997). Notch activation leads to expression of wingless in the boundary 

cells (de Celis and Bray, 1997; de Celis et al., 1996; Diaz-Benjumea and Cohen, 

1995; Doherty et al., 1996; Kim et al., 1995; Micchelli et al., 1997; Rulifson and 

Blair, 1995). Wingless then acts on adjacent cells, causing them to express both 

delta and serrate at high levels (de Celis and Bray, 1997; Micchelli et al., 1997; 

Yan et al., 2004), while expression of cut in boundary cells causes them to 

downregulate the Notch ligands (de Celis and Bray, 1997). In the anterior
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compartment, W ingless regulates bristle form ation along the wing margin by 

upregulating proneural genes achaete and scute in the adjacent cells (Blair, 1992; 

Blair, 1994; Couso et al., 1994; Johnston and Edgar, 1998; Neumann and Cohen, 

1997; Phillips and Whittle, 1993; Rulifson et al., 1996; Simpson et al., 1988; 

Skeath and Carroll, 1991), and these genes also regulate delta  expression 

(Haenlin et al., 1994). High levels of delta and serrate have a cell autonomous 

inhibitory effect on Notch activation and therefore the cells adjacent to 

boundaries cannot express cut or wingless, and consequently Wingless mediates 

a lateral inhibition that prevents spreading of its own expression domain (de 

Celis and Bray, 1997; de Celis and Bray, 2000; de Celis and Garcia-Bellido, 

1994; Micchelli et al., 1997; Rulifson et al., 1996). Thus, patterning of sensory 

bristles is tightly linked to the regulation of the dorso-ventral boundary, 

maintaining a sharp signalling source (see Fig.21A).

A model fo r  hindbrain patterning in the zebrafish.

In the zebrafish hindbrain, there is a remarkable similarity in the spatial 

relationships of expression patterns with the Drosophila  wing imaginal disc, and 

the regulatory hierarchy of the homologous genes appears comparable (Fig.21). 

At early stages, deltaA  and deltaD  are expressed throughout rhombomeres, but 

are excluded from boundaries. The Notch pathway component rfng is expressed 

in boundaries, and there is indirect evidence that Rfng promotes Notch 

activation, as w ntl expression in boundaries is dependent on Rfng (this study and 

Cheng et al., 2004). Notch signalling does occur at boundaries and is sufficient to 

regulate the affinity properties of boundary cells (Cheng et al., 2004). After 18h 

of development, expression of proneural genes and of delta genes becomes
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restricted to stripes adjacent to boundary cells. Knockdown of w ntl or tcf3b leads 

to a strong reduction in the number of cells expressing proneural and delta genes, 

and an expansion of the domain of expression of boundary-specific genes. Delta 

genes are under transcriptional control of proneural genes, as has been previously 

described in the case of deltaD  (Hans and Cam pos-Ortega, 2002). Finally, 

knockdown of asha, a sh b , n g n l  or deltaA  leads to ectopic boundary marker 

expression in the hindbrain, implicating these genes in the repression of 

boundary fate.

Thus W ntl regulates the boundary domain in a m echanism linking 

neuronal differentiation to maintenance of Notch activation in boundaries. This 

mechanism inhibits neighbouring cells from adopting a boundary fate, and has 

remarkable similarities to the genetic network between notch, wingless, delta and 

proneural genes in the Drosophila wing imaginal disc.

A recent paper, published while this work was being completed, also 

examines the roles of Wnt genes in patterning the zebrafish hindbrain (Riley et 

al., 2004). In this study, the authors find that four W nt genes are expressed at 

boundaries {w ntl, wnt3a, wnt8b  and wnt 10b), and that they organise the stripes 

of deltaA  expression, without affecting the total number of cells expressing 

deltaA. They interpret the phenotype in embryos deficient for all four Wnts 

(using a deletion that removes both w n tl  and wntlOb  as well as morpholinos 

against wnt3a and wnt8b) as a loss of rhombomere boundaries, based on the loss 

of organisation of the radial glial fibres and an apparent absence of boundary 

commissural neurons. Moreover, based on the previous interpretation of the 

change 'm fo x b l.2  expression in tcf3b  morphants (Dorsky et al., 2003), the 

authors attribute the disorganisation of the hindbrain to a loss of boundaries, and
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interpret the reduced deltaA  expression as due to W nt-independent roles of 

Tcf3b. The apparently fundamental difference in interpretation between that 

work and this may be explained simply by a lack of appropriate markers, as 

interpreting the phenotype of fo xb  1.2 is difficult, due to its expression in the 

ventricular zone as well as in boundaries. Consequently, apparently uniform 

expression of fo x b  1.2 was interpreted as being due to normal non-boundary 

expression, rather than a spreading of boundary expression. In contrast, analysis 

of rfng expression shows that boundaries have indeed expanded.

A more important question arising from Riley et a l.’s work is how to 

account for the different effects on deltaA  expression. While I found that in 

w ntlM O embryos, deltaA  expression is strongly reduced (Fig.l5P), a phenotype 

also observed in tcf3bMO embryos (Fig.l5Q  and Fig.3B in Riley et al., 2004), in 

embryos with a deletion spanning the w ntl and wntlOb loci, no apparent change 

in deltaA expression is seen (Fig.2A in Riley et al., 2004). The authors show that 

two more Wnts, Wnt3a and Wnt8b, need to be impaired for a strong effect to be 

observed. This is all the more surprising as I have shown that boundary 

expression of wnt8b is not upregulated in w ntl MO embryos, although I have not 

analysed wnt3a  and wntlOb  expression. One potential explanation is that the 

deletion which removes w ntl and wntlOb is larger than previously estimated (by 

using genetic distances, the authors estimate the deletion spans approximately 

500kb Lekven et al., 2003), as the physical distance between the two markers 

that are deleted is 4Mb according to the current, although incomplete, genome 

assembly (Birney et al., 2004). Allowing for errors in the current assembly, a 

conservative estimate of the deletion size is approximately 1.5Mb. Moreover, 

many known and predicted transcripts are within this area, including at least the
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first exon of a predicted homologue of deltex3  (Curwen et al., 2004), whose 

activity inhibits neuronal differentiation in mouse and Xenopus  (Kishi et al., 

2001). Therefore, at least one of the genes that are deleted along with w ntl and 

wntlOb could counteract the effect of deleting wnt 1 by promoting neurogenesis.

My data thus favours a model in which W ntl signals to adjacent cells to 

repress boundary fate by upregulating proneural and delta genes. Notch 

signalling is reinforced at boundaries by Delta in neighbouring cells, and 

m aintains w n tl  expression in boundary cells (Cheng et al., 2004). This 

mechanism links the patterning of neurogenesis to the maintenance of a sharp 

signalling centre.

Differences between the zebrafish hindbrain and the Drosophila wing 

imaginal disc.

Although this model appears remarkably similar to that regulating wing 

margin development in Drosophila, there are differences that may reflect distinct 

features of hindbrain development. First, the expression of fr inge  homologues 

and Notch ligands that establishes the stripe of Notch activation at the boundary 

is different, which presumably reflects the larger number of fr in g e  genes in 

zebrafish whose function may have diverged (Dale et al., 2003). For instance, 

lunatic fringe  is expressed in even-numbered segments in the zebrafish hindbrain 

(Prince et al., 2001), in a pattern which is closer to the expression of fringe  in the 

dorsal compartment of the fly wing disc. Another difference is that Wnt 

signalling appears to regulate asha and ashb, the homologues of achaete and 

scute, as well as the atonal homologue ngnl in the zebrafish, while atonal is not
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expressed in the wing disc. This reflects the greater diversity of neuronal types in 

the hindbrain.

Another point of difference is the regulation of delta expression by Wnt 

signalling. In the wing disc, delta  and serrate are upregulated adjacent to the 

whole length of the boundary, while proneural genes are only expressed in the 

anterior compartment, indicating direct regulation by W ingless of these genes, 

independently of proneural function (which has been demonstrated in the case of 

serra te , Yan et al., 2004). In neural cells in vertebrates, however, proneural 

genes are necessary and sufficient for delta gene expression (Casarosa et al., 

1999; Fode et al., 1998; Hans and Campos-Ortega, 2002; Ma et al., 1998), 

therefore I have presumed that W nt regulates d e lta A , de lta B , and deltaD  

indirectly, by regulating proneural gene expression. This assumption is difficult 

to verify in this context. There does, however, remain the possibility of a direct 

input of Wnt signalling into delta gene expression in the hindbrain, as the Wnt 

pathway has been recently found to directly regulate d ill  expression in the pre- 

somitic mesoderm of mouse embryos (Galceran et al., 2004; Hofmann et al., 

2004).

Another significant difference between the two systems is that, while 

Notch signalling is sufficient to instruct cells to adopt a boundary fate in the 

wing disc (de Celis and Bray, 1997; Diaz-Benjumea and Cohen, 1995; Doherty 

et al., 1996; Micchelli et al., 1997; Rulifson and Blair, 1995), it does not have 

this role in zebrafish (Cheng et al., 2004). An implication of this is that the 

mechanisms by which repression of boundary fate by proneural and/or delta 

genes may be different from the mechanisms in the wing disc, where Delta cell 

autonomously blocks Notch activation. Current evidence suggests that blocking
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Notch activity is not sufficient to abolish boundary formation in the hindbrain 

(Cheng et al., 2004). Consequently, the primary mechanism by which proneural 

and/or delta genes suppress boundary fate may involve another, as yet 

undetermined factor (factor “X” in Fig.21B). Indeed, if Notch activation induced 

boundaries, most of the hindbrain would consist of boundary cells, as most cells 

are likely to experience Notch signalling during normal developm ent as a 

consequence of lateral inhibition. Boundaries appear to be defined by the 

absence of proneural gene expression in the zebrafish, and this may provide clues 

as to the genes that W ntl indirectly represses to suppress ectopic boundary 

formation. The experiments described in this work do not address the question of 

whether repression of boundary markers is carried out by proneural genes or by 

high levels of Delta protein, and this will need addressing in future work.

Contribution o f different Wnt sources.

Another significant difference between the Drosophila wing disc and the 

zebrafish hindbrain is that, in the hindbrain W ntl is produced not only by 

boundary cells, but also by the roof plate, w n tl morpholino knockdowns block 

translation of both roof plate and boundary transcripts, and do not allow to assess 

whether boundary W ntl is important. However, in rfngMO embryos, expression 

of w ntl is lost at boundaries, but not in the roof plate (Cheng et al., 2004), and a 

phenotype similar to w ntl MO embryos of boundary marker expansion and 

reduction in neurogenesis is observed. A lthough it remains possible that 

knockdown of rfng affects other genes that could mediate a similar function, the 

simplest explanation is that the expansion of boundary markers observed 

following rfng knockdown is due to decreased w n tl expression at boundaries.
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Nevertheless, this does not imply that the roof plate W ntl does not participate in 

this, as it would be difficult to conceive that the same protein derived from 

different cells would have different roles. Rather, the most likely hypothesis is 

that boundary-derived W ntl is required to elevate total levels of extracellular 

W ntl in the hindbrain above a certain threshold, which must be reached to block 

boundary marker expression.

A further complication is that at least five Wnts are expressed in zebrafish 

hindbrain boundaries : w n t l , wnt8b  (this study), w nt3a, w ntlO b  (Riley et al., 

2004) and wnt4a (referred to as wnt4 in Blader et al., 1996). This could be one of 

the reasons why knockdown of tcf3b has a stronger phenotype than knockdown 

of w ntl. However, considering that there are four other Wnts at boundaries, the 

w ntlM O  phenotype is surprisingly strong. One explanation could be that W ntl 

regulates expression of the other Wnt genes, and this is indeed the case for 

w nt8b , which is no longer detected in rhombomere boundaries following w ntl 

knockdown. I have nof je )f tested this possibility for the three remaining Wnt 

genes. Nevertheless, even in the case of wnt8b, expression is not abolished in 

w ntlM O  embryos, and remains in the roof plate. As roof plate W ntl is able to 

contribute to repression of boundary markers and promotion of neurogenesis, this 

explanation cannot account for the strength of phenotype after w ntlM O  

injection. An alternative is that all these W nts are necessary to achieve a 

threshold concentration throughout the hindbrain, and that disrupting W ntl is 

enough to lower the concentration below that threshold. Arguing against this is 

the fact that in embryos injected with morpholinos against both wnt8b and wnt3a, 

deltaA  expression is not significantly reduced (Riley et al., 2004). Although this 

could imply that W ntl is the major contributor to Wnt protein levels, this is
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unlikely. Instead, this finding suggests that different Wnts may have different 

activities and regulate different aspects of boundary and hindbrain development. 

Many studies have found that “canonical” Wnts have different roles, either by 

eliciting a response from one cell type but not another, or by eliciting different 

responses from the same cell type (for instance, different midbrain neurons 

respond to W nt3a than to W ntl and W nt5a, and within the same group of 

neurons, W ntl affects primarily proliferation, while Wnt5a has a direct effect on 

fate, Castelo-Branco et al., 2003; and in the spinal cord, only W ntl and Wnt3a, 

but not W nt3,4,7a or 7b, cause ectopic proliferation, Megason and McMahon, 

2002).

Thus, the most likely model for the action of Wnts in the hindbrain is that 

W ntl is required at threshold levels to achieve repression of boundary fate and 

promote neurogenesis, while other Wnts may contribute to this threshold but 

some may have other roles.

Evolutionary conservation of a regulatory gene network.

That the Notch/Wnt/proneural pathway that has been identified in this 

work and in previous work on the Drosophila  wing disc should be so similar 

suggests that it constitutes an evolutionarily conserved genetic module. Some 

aspects of this network appear to have been recruited in other contexts. For 

instance, ectopic Notch activation can lead to w ntl expression in other vertebrate 

tissues such as developing nails (Lin and Kopan, 2003). Similarly, loss of Notch2 

function in the midbrain leads to disorganised and reduced w ntl expression in 

the roof plate, and ubiquitous expression of notch3 may account for remaining 

expression (Kadokawa and Marunouchi, 2002).
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Other regulatory interactions in the pathway are also found in many 

systems. The regulation of proneural genes by Wnt signalling has been described 

in Drosophila Malpighian tubules, where, similarly to the results of this study, 

wingless is not required at early stages of achaete  gene expression. However 

achaete gene expression is lost in a wingless mutant at later stages (Wan et al., 

2000). In the vertebrate intestine, stem cells can differentiate into either 

absorptive or several types of secretory cells, the latter requiring the expression 

of a proneural-related bHLH gene, M athl (reviewed in Sancho et al., 2003). 

Inhibition of Wnt signalling leads to a loss of proliferating cells and also of all 

the secretory lineages, implicating Wnt signalling in the regulation of M a th l 

(Pinto et al., 2003). In neural tissue, recent work has found that P-Catenin/TCF 

complexes can directly regulate N eu ro g en in l  expression by binding to its 

promoter (Hirabayashi et al., 2004; Israsena et al., 2004).

A further situation where many similarities with the Notch/Wnt pathway 

are observed is in patterning of the limb bud. A structure called the apical 

ectodermal ridge (AER) is responsible for outgrowth, similar to the margin of the 

fly wing. Interestingly, radical fringe  has been implicated in the formation of the 

AER (Laufer et al., 1997; Rodriguez-Esteban et al., 1997). Mutation of the Notch 

ligand jagged2  results in expansion of the AER (Jiang et al., 1998), as does 

reducing repression of the Wnt pathway in the doubleridge mutant mouse, where 

expression of the W nt antagonist d k k l  is reduced (Adamska et al., 2003; 

MacDonald et al., 2004). This implies a relationship between Notch and Wnt 

signals, although in this instance, they appear to have opposing effects. Indeed, 

several studies have shown that W nt/p-Catenin signalling can induce AER 

formation (Barrow et al., 2003; Kawakami et al., 2001; Kengaku et al., 1998;
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Soshnikova et al., 2003). A potential explanation is that in the limb buds, cuxl, a 

homologue of the Drosophila gene cut, is expressed adjacent to the AER, and is 

possibly induced non cell-autonomously by (3-Catenin (Tavares et al., 2000). 

C uxl appears to have opposing effects to Wnts, and represses AER markers, 

which is similar to its role in the wing disc, where it renders cells unable to 

respond to W ingless (Micchelli et al., 1997). Thus, boundary restriction is 

achieved using homologous genes, albeit expressed with different spatial 

relationships. Many details of this pathway are still to be elucidated, but insights 

from the role of genes and their interactions at the Drosophila wing margin may 

help to advance understanding of limb development. Finally, an intriguing 

parallel is observed in the inner ear of chick and mouse embryos, where 

overactivation of the Wnt pathway (Stevens et al., 2003) or of the Notch pathway 

(Daudet and Lewis, 2005) both cause the appearance of ectopic sensory patches, 

suggesting that a similar regulatory gene network involving Wnt, Notch and 

sensory genes may also regulate hair cell formation in the inner ear.

It is striking, therefore, that the spatial relationships between homologous 

genes in the zebrafish hindbrain and the wing margin are so similar, and that the 

similarities cover the whole pathway, unlike the other examples presented. Many 

of the differences between the genetic networks described in the zebrafish 

hindbrain and the Drosophila  wing can be attributed to a higher complexity of 

the tissue in the hindbrain, as well as a higher genomic complexity. Nevertheless, 

the parallels between the regulatory hierarchies are remarkable, since they cannot 

be due to the two structures being homologous. It seems likely that the 

similarities are due to independent recruitment of a regulatory network of genes
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that has a key role in organising boundary cells by linking the patterning of 

adjacent tissue to the prevention of the spread of the signalling source.
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Discussion and perspectives.

Regulation of neurogenesis.

Mechanisms o f neural patterning in the zebrafish hindbrain.

Analysis of markers for neuronal differentiation and for individual neural 

cell types, and the finding that Wnt signalling is required for neurogenesis after 

18h in the hindbrain have provided new insights into the mechanisms organising 

the anterior-posterior neural pattern in each rhombom ere. Several lines of 

evidence suggest that this patterning involves two processes : the restriction of 

neuronal differentiation to particular areas along the anterior-posterior axis, and 

the subsequent movement of differentiated cells to their final location. The latter 

process suggests that there may be an affinity gradient regulating cell position 

along the anterior-posterior axis of each rhombomere and maintaining each cell 

type at its appropriate location. Both m echanism s are likely to involve 

boundaries as the source of signals regulating positional information, implying 

that gradient landscapes along the anterior posterior axis of each rhombomere 

have a low point at the centre of each rhombomere. My work has not addressed 

the question of how final cell position is regulated, but has identified a 

mechanism regulating neuronal differentiation in the hindbrain.
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How is the localisation o f differentiation determined ?

The spatial regulation of neurogenesis requires that proneural gene 

expression is localised to the appropriate areas. This is particularly clear at early 

somitogenesis stages, when ngnl expression is restricted to a few cell clusters in 

the hindbrain that will give rise to primary neurons (Blader et al., 1997; Kim et 

al., 1997; Korzh et al., 1998). At later stages, this requirement for spatial 

regulation of proneural genes is less evident, as low-level proneural gene 

expression is detected the hindbrain, except at boundaries. Nevertheless, as w ntl 

knockdown leads to decreased proneural gene expression, it is clear that it is 

important to positively regulate their expression in order for neurogenesis to 

occur.

However, expression of proneural genes is not enough to determine 

where differentiation occurs. In D rosoph ila , during specification both of 

neuroblasts and of macrochaete, there is evidence that, after proneural clusters 

are established, extrinsic signals bias the lateral inhibition process so that the 

same cell within a cluster is always specified as the macrochaete precursor or 

neuroblast (reviewed in Simpson, 1997). Similarly, in the zebrafish hindbrain, 

the location of differentiating neuroblasts is stereotyped, but at 18h and 24h, 

proneural and Delta gene expression is broader than this area (Fig.7). Work 

carried out in the Wilkinson lab has suggested that the early expression of Delta 

genes has a role in activation of the Notch pathway at hindbrain boundaries 

(Cheng et al., 2004). High and low levels of deltaA  and deltaD  expression are 

detectable at 24h (Fig.7). The high levels correspond to cells also expressing 

d e lta B  and p 2 7 xlcI-a , indicating that these cells are in the process of
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differentiating. Low-level expression presumably indicates cells in a proneural 

state, which can initiate a programme of neuronal differentiation, but are 

maintained as progenitors by lateral inhibition.

Therefore, spatial patterning of neuronal differentiation requires two steps 

: first that clusters of cells are in a state of competency to differentiate, and 

second, that a bias determines which cells within these clusters do differentiate.

Establishment of proneural clusters.

Recently, genes of the Iroquois family have emerged as candidates for 

patterning primary neurogenesis. Iroquois complex members in Drosophila are 

among the prepatterning genes involved in determining where proneural genes 

can be expressed (Cavodeassi et al., 2001; Gomez-Skarmeta et al., 2003; Gomez- 

Skarmeta et al., 1996; Gomez-Skarmeta and Modolell, 1996). In the vertebrate 

hindbrain, Iroquois genes are expressed at very early stages of segmentation in 

domains with distinct anterior and posterior boundaries, and regulate n g n l  

expression in the zebrafish as well as in Xenopus (Calle-Mustienes Ede et al., 

2002; Glavic et al., 2002; Gomez-Skarmeta et al., 1998; Itoh et al., 2002; 

Lecaudey et al., 2004). It seems likely therefore, that Iroquois genes, probably in 

combination with other factors, contribute to the pattern of reticulospinal neuron 

development. Moreover, comparisons with Drosophila neurogenesis seem more 

warranted for the early pattern of neurogenesis in the hindbrain than for later 

vertebrate neurogenesis. Whereas most neurogenesis produces many cells of the 

same type from single progenitor domains, early neurogenesis in the zebrafish 

hindbrain gives rise to a defined set of individually recognisable cells at 

particular, reproducible locations. This is similar to the situation in the fly, where
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proneural clusters have a stereotypical shape, and the cell that is selected to 

become neuronal is found at a constant position within the cluster, such that the 

neuronal cells are found at the same location in the tissue (Cubas et al., 1991; 

reviewed in Gomez-Skarmeta et al., 2003; Skeath and Carroll, 1991). However, 

this does not exclude a potential role for Iroquois genes in the regulation of 

proneural competency at later stages, as many of these genes are expressed in the 

hindbrain at 24h (Feijoo et al., 2004; Tan et al., 1999; Wang et al., 2001).

After 18h of development, expression of proneural genes requires W ntl. 

Around the same time, their expression patterns change from segmental patterns 

to stripes of high level expression adjacent to rhombomere boundaries, and low 

levels throughout rhombomere centres. This suggests that different mechanisms 

regulate proneural gene expression before and after this point. It is possible that 

W ntl directly regulates proneural gene expression, as TCF/j3-Catenin complexes 

bind to the neurogeninl promoter in mouse (Hirabayashi et al., 2004; Israsena et 

al., 2004). However, as discussed above, it seems likely that Wnt signalling acts 

in a permissive manner for proneural gene expression. Work in Drosophila has 

found that Wingless signalling acts permissively to establish proneural clusters 

during microchaete specification (Ramain et al., 2001). Wingless functions to 

inhibit a Suppressor of Hairless-independent function of Notch, in which Notch 

signals via Deltex to block the establishm ent of proneural clusters. This 

regulation takes place prior to the Suppressor of Hairless-dependent lateral 

inhibition that occurs subsequently. It is thus likely that many different 

m echanisms are responsible for the regulation of proneural competency, 

including repression (at boundaries, for instance), direct activation, and relief of 

repression.
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Biasing differentiation within proneural clusters.

The second step in patterning the location of differentiation is to bias the 

lateral inhibition process, such that the location of cells that are selected to 

differentiate is fixed and stereotyped. Interestingly, in Drosophila, Wingless can 

signal to initiate this bias (Simpson, 1997). Bias can be obtained through 

elevated levels either of proneural or Delta genes, and, as discussed previously, 

Delta gene promoters in both zebrafish and mouse contain TCF binding sites 

(Galceran et al., 2004; Hofmann et al., 2004). Thus the bias in the hindbrain, 

giving rise to differentiation adjacent to boundaries, could be achieved in this 

way by Wnt signalling. However, W ntl is unlikely to be responsible, due to its 

dorsally restricted expression. Other Wnts, most notably Wnt4a (ZfWnt4 in 

Blader et al., 1996), are expressed more extensively in boundaries, and may have 

a role in this type of patterning.

It is interesting to note that at 18h and at 24h, proneural genes are 

expressed throughout the ventricular zone in non-boundary regions, but that 

differentiation occurs mainly in the centre of rhombomeres at 18h and adjacent 

to boundaries at 24h. This implies that signals that regulate differentiation in the 

proneural equivalence groups vary between these time points. There is evidence 

to support this idea : for instance, it is from 18h that wnt8b expression begins to 

be upregulated in boundaries. Boundary cells may thus act to promote neuronal 

differentiation at close range after 18h. Conversely, it is possible that neuronal 

differentiation is inhibited by local signalling events in rhombomere centres. 

Dynamic gene expression in non-boundary regions is also observed between 18h 

and 24h, such as the ETS-related erm  transcription factor, which is upregulated
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in rhombomere centres (Munchberg et al., 1999), although no evidence links this 

gene to the regulation of neurogenesis.

Boundaries and neurogenesis.

An interesting aspect of neurogenesis in the hindbrain is that boundaries 

do not express proneural genes, suggesting that they do not generate any 

neurons. It is plausible that the radial glia located adjacent to boundaries are 

boundary-derived, but another possibility is that when boundary cells divide, one 

of the daughter cells finds itself in the adjacent, neurogenic, area, and produces 

neurons. An implication of this second hypothesis is that boundary fate is not 

inherited, but instead requires a constant, localised input for its maintenance.

The mutually exclusive spatial relationship between boundary cells and 

proneural gene expression suggests that these are two separate identities, that 

cross-repress each other. Indeed, when proneural genes are knocked down, 

boundary markers expand to fill entire rhombomeres. Conversely, work in the 

Wilkinson lab has shown that overexpression of n g n l  leads to repression of 

boundary markers such as rfng (Y.-C. Cheng, unpublished observations). The 

mechanism by which proneural genes repress boundary fate is not known. One 

possibility is that Delta gene expression, which depends on proneural genes, acts 

in a dominant negative manner on Notch activation, as occurs at the wing margin 

during D rosophila  developm ent (de Celis and Bray, 1997; Micchelli et al., 

1997). This model requires that Notch activation be a necessary condition for 

boundary cell fate specification. An alternative is that proneural genes act,
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directly or indirectly, at the level of transcription to repress rfng  and other 

boundary-specific genes. Equally, a mechanism must be present to prevent 

boundary cells from expressing proneural genes, and render them insensitive to 

Wnt signalling. In the case of the wing margin, a single transcription factor, Cut, 

represses the Wingless targets delta and serrate, and thus ensures that the margin 

cells remain distinct from their neurogenic neighbours (de Celis and Bray, 1997; 

Micchelli et al., 1997). Such a transcription factor that acts as a selector gene for 

boundary fate remains to be found in vertebrates.

Conservation and potential significance o f anterior-posterior 

patterning within rhombomeres.

Clues as to the functional importance of the patterning of neurogenesis 

along the anterior-posterior axis within rhombom eres may be gleaned from 

examining conservation between species. Medaka fish (Oryzias Latipes) have 

stripes of expression of deltaA  (Candal et al., 2004), and of a cyclin-dependent 

kinase inhibitor (Nguyen et al., 2001) within rhombomeres, reminiscent of those 

observed with zebrafish p 2 T lcl-a. This suggests that the patterns, and probably 

the mechanisms, of hindbrain neuronal differentiation are common between 

teleosts. There are few descriptions of neurogenesis in the hindbrain of Xenopus 

at stages equivalent to those in this study, but X a sh l, the homologue of ash 

genes, is expressed throughout the hindbrain, except in stripes that probably 

correspond to rhombomere boundaries (Ferreiro et al., 1993). However, no 

stripes of elevated expression adjacent to boundaries have been described, which
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suggests that late neurogenesis is not spatially restricted, except in so far as 

boundary cells do not express proneural genes. In the case of early neurogenesis 

in Xenopus, reticulospinal neurons are among the earliest neurons to develop in 

the hindbrain, but individual cells do not appear to have particular locations 

within rhombomeres. Instead, reticulospinal neurons are present in continuous 

columns in the hindbrain, with the exception of the M authner neuron, which is 

unique and restricted to r4 (Hartenstein, 1993; Nordlander et al., 1985; Sanchez- 

Camacho et al., 2002; van Mier and ten Donkelaar, 1984). In mouse, neuronal 

markers and proneural genes are expressed in longitudinal columns, which are 

mostly continuous along the whole hindbrain (often with the exception of r4, 

which is dorsally shifted, Davenne et al., 1999; Gavalas et al., 2003). The Notch 

ligand homologues delta and serrate/jagged  are also expressed in longitudinal 

columns both in mouse and chick (Kusumi et al., 2001; Myat et al., 1996). 

Indeed, while there may be differences in neuronal phenotypes between 

rhombomeres, within rhombomeres neurons are arranged in continuous columns 

(Clarke and Lumsden, 1993). That there are differences between fish and other 

vertebrates in neuronal organisation within segments implies that different 

mechanisms may pattern neurogenesis. The functional importance of having 

anterior-posterior organisation of neuronal types is not clear. Presumably, it must 

correspond to some organisation of neural circuits in aquatic organisms, but of 

circuits that are not required for tadpoles. It is intriguing that, although tadpoles 

swim and have escape reactions involving reticulospinal neurons, similar to 

zebrafish, the circuits regulating these responses do not appear to require 

clustering of reticulospinal neurons, as occurs in the zebrafish hindbrain (van 

M ier and ten Donkelaar, 1989). Finally, in my experiments, two day-old
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zebrafish larvae in which w ntl has been knocked down appear to have normal 

movements, although detailed studies have not been carried out. These embryos 

lack most neurons born after 18h. Therefore, it may be that the organisation of 

late-born neurons along the anterior-posterior axis of each rhombomere is 

important for functions in adult fish.

However, unlike the pattern of neurogenesis, which seems to be restricted 

to teleosts, the presence of radial glia at rhombomere boundaries is a feature 

conserved throughout evolution. It has been shown that vimentin, a radial glial 

marker (Dahl et al., 1981), is expressed at high levels in hindbrain boundaries in 

chick (Heyman et al., 1995), in Xenopus Laevis (Yoshida, 2001; Yoshida and 

Colman, 2000), and in alligator embryos (Pritz, 1999). The significance of this 

seems to differ between species ; whereas in chick increased vimentin is 

associated with axon outgrowth at boundaries (Heyman et al., 1995; Heyman et 

al., 1993; Lumsden and Keynes, 1989), no increase in axon density has been 

described at boundaries in Xenopus. Xenopus boundary radial glia are the only 

proliferating cells in the hindbrain at late stages (Katbamna et al., 2004). In 

zebrafish, glia appear to fulfil a combination of both these roles. Early axons 

populate the centre of rhombomeres, but later commissural axons follow the glial 

fibres (Trevarrow et al., 1990). However, the glia also proliferate, and by 48h are 

the only non-neuronal cells in the hindbrain (Lyons et al., 2003), implicating 

these cells not only in structural organisation of neuronal connectivity, but most 

likely also in the process of neurogenesis. Indeed, in the cerebellum of the adult 

teleost Apteronotus leptorhynchus, radial glia are neuronal progenitors (Zupanc 

and Clint, 2003). An important aspect of the role of the radial glia in the
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zebrafish hindbrain may be that they are involved in guiding the migration of cell 

bodies of differentiating neurons out of the ventricular zone. This is similar to the 

role that radial glia are thought to fulfil in the mammalian cortex (Rakic, 1978), 

where newly born neurons use radial glial processes as a substrate for migration 

into the cortical plate. The radial glial curtain adjacent to boundaries could 

provide a good substrate for migration of neurons into the mantle zone, as 

neurogenesis occurs adjacent to boundaries. Thus, differentiating neurons are 

immediately adjacent to radial processes that they can migrate along, and once 

they reach the mantle zone, they can migrate along the anterior-posterior axis or 

stay adjacent to boundaries, as in the case of dbxl-positive  neurons. In chick, 

however, as there is no evidence of localised neuronal differentiation adjacent to 

boundaries, radial glia probably fulfil other roles at boundaries, such as 

stabilising boundaries, or guiding axons. Therefore, although the presence of glia 

at rhombomere boundaries is a conserved feature of vertebrate evolution, they 

have been recruited for different uses in different organisms.

The second aspect of anterior-posterior patterning within rhombomeres 

that appears to be conserved is the relationship between boundaries and 

proneural genes. In Xenopus, for instance, X a sh l is not expressed at boundaries 

(Ferreiro et al., 1993). In chick embryos, the expression patterns of proneural 

genes have not been described with respect to boundary expression in the 

hindbrain, but id l  whose product antagonises proneural gene function is 

expressed at high levels in boundaries (Kee and Bronner-Fraser, 2001). Thus, it 

is likely that boundary cells generate fewer neurons than non-boundary cells in 

many vertebrates, and this may be important to maintain a stable population of 

boundary cells.
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New insights into the roles and formation of rhombomere 

boundaries.

Previously, little had been known about the role of rhombomere 

boundaries, and it was suggested that their prim ary role was to stabilise 

interfaces and thus inhibit cell mixing between segments (Guthrie et al., 1991). 

Recently published work supports this idea by showing that boundary cells have 

specific affinity properties, which are modulated by Notch activation (Cheng et 

al., 2004). Here, I show that zebrafish rhombomere boundaries are signalling 

centres that regulate neurogenesis in the hindbrain. Moreover, I have found that 

following decreased Wnt signalling, boundary cells can be induced away from 

segmental interfaces, implying that the mechanism of boundary formation is 

more complex than previously thought.

Notch and W ntl link boundary maintenance to the regulation of  

neurogenesis.

Taken together with work we have previously published (Cheng et al., 

2004), my results reveal a regulatory loop between boundary and non-boundary 

cells that stabilises the identity of each population via bidirectional lateral 

inhibition. Sustained Notch activation in boundary cells, modulated by Rfng, 

prevents their premature differentiation and regulates their affinity properties,
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thereby maintaining their segregation to segment interfaces. Notch activation 

also upregulates w ntl expression in hindbrain boundary cells. Notch activation is 

maintained by expression of delta genes in adjacent cells (Cheng et al., 2004). I 

have found that W n tl, expressed by boundary cells, is required for the 

expression of delta and proneural genes in non-boundary cells, which enables 

neuronal differentiation and laterally inhibits the spread of boundary marker 

expression. Expression of w ntl in the roof plate is independent of Rfng function, 

and contributes to the promotion of neurogenesis, but is not sufficient either for 

the normal level of neurogenesis, or to block the spreading of boundaries. Thus, 

tissue patterning and maintenance and restriction of boundaries are linked in a 

bidirectional feedback loop involving Notch, W ntl and proneural and delta 

genes.

In order for localised signals to pattern the adjacent tissue, it is necessary 

that the amount and location of signal is precisely regulated. Thus the interface at 

which the signalling source is induced must remain sharp and the location and 

number of signalling cells must be tightly controlled (Dahmann and Basler, 

1999). The molecular pathway that occurs in hindbrain accomplishes this : Notch 

regulates the segregation of boundaries, while inhibiting their differentiation, and 

W ntl ensures adjacent cells do not become boundary cells, whilst reinforcing 

Notch activation in boundaries via proneural and delta gene expression. These 

processes ensure that signalling from hindbrain boundaries is maintained at 

restricted locations and at relatively constant amounts.
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How do boundaries form ?

W hilst the model presented above explains how boundaries are 

maintained, it does not address the question of how they are induced in the first 

place. It is known that boundaries are induced when odd- and even-numbered 

rhombomeres are juxtaposed, but not when segments of the same parity are made 

to interact (Guthrie and Lumsden, 1991). Both Notch and Eph/ephrin pathways 

are candidates for inducing boundaries as they display differences between odd- 

and even-numbered segments in different species from mouse to zebrafish, such 

that activation of the pathway would occur only at the interface between 

segments of different parity.

The genes involved in the regulatory loop revealed in this work (Fig.21B) 

do not affect initial boundary formation. Notch signalling appears to be neither 

required nor sufficient for the initial expression of boundary markers such as 

fo x b l.2  and rfng (Cheng et al., 2004). Similarly, boundary-restricted genes are 

not required for boundary formation, as knockdown of w n t l , pax6, rfng  or of 

fo x b l.2  does not lead to loss of boundary markers (this work, preliminary data 

not presented and fo x b l .2  knockdown carried out by Yi-Chuan Cheng). 

Moreover, boundaries are visible by morphological analysis before any currently 

known markers are expressed there (all boundaries can be detected as early as the 

8 somite stage (12.5-13h), Moens et al., 1998). It is possible, however, that 

boundary cell morphology is simply due to cells at segment interfaces being 

exposed to Eph/ephrin signalling, for instance, and change their shape due to 

repulsive interactions. Thus, morphological boundaries may be formed before 

boundaries are induced as a distinct cell type.
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Notch signalling.

Although boundaries are still present in mind bomb mutants that have a 

strong deficiency for Notch signalling, there is residual Notch activity in these 

mutants (Cheng et al., 2004; Itoh et al., 2003), so that it cannot be excluded that 

low levels of Notch signalling may be required, if not instructive for boundary 

formation. Two observations support a role for Notch in the early development 

of boundaries ; one is that activating Notch signalling drives cells to sort to 

segment interfaces as early as 13.5h of development (Cheng et al., 2004). The 

second is that zebrafish lunatic fr inge  (Ifng) is expressed in even-numbered 

rhombomeres from the three somite stage (Prince et al., 2001). Lfng could be 

involved in modulating Notch activity at the interfaces of its expression domains, 

in a similar manner to the role of its homologue, fringe, in establishing the dorso- 

ventral boundary of the wing disc in Drosophila (Panin et al., 1997). Moreover, 

the observation that lfng  is also expressed in alternating segments in mouse 

suggests that this role may be conserved in development (Johnston et al., 1997). 

Since mouse lfng is expressed in odd-numbered rhombomeres (rather than even- 

numbered in zebrafish) indicates that the significance of its expression may be to 

define interfaces of differential Notch sensitivity to its ligands, rather than roles 

within each segment. Nevertheless, Notch signalling alone is not sufficient to 

induce ectopic boundaries, and must therefore cooperate with other signals for 

boundary formation.

Eph/ephrin signalling.

Obvious candidates for mediating interactions specifically at rhombomere 

interfaces are the ephrin transmembrane family of proteins and the ephrin-
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interacting receptor tyrosine kinases, Ephs (reviewed in Cooke and Moens, 2002; 

Xu et al., 2000). The alternating expression of Eph receptors and ephrins in odd- 

and even-numbered rhombomeres leads to bidirectional signalling at segment 

interfaces (Cooke et al., 2001; M ellitzer et al., 1999; Xu et al., 1999). 

Furthermore, there is increasing evidence that both Ephs and ephrins can regulate 

gene transcription, in addition to their known roles in regulating cytoskeletal 

assembly/deassembly (Lai et al., 2004; Li et al., 2001; Takasu et al., 2002). It has 

also been shown that disrupting Eph/ephrin signalling leads to cell intermingling 

and absence of boundary markers in the zebrafish hindbrain (Xu et al., 1995). 

Similarly, loss of boundaries upon retinoic acid treatment of the chick hindbrain 

is closely correlated to loss of ephA 4  expression (Nittenberg et al., 1997), 

although many other cellular processes may be affected by this treatment. 

However, a fundamental problem for analysing roles of Eph/ephrin signalling in 

boundary formation is that disrupting this signalling leads to cell mixing between 

segments (Xu et al., 1995). Thus it is difficult to distinguish whether the absence 

of boundaries observed is due to a direct input of Eph/ephrin signalling into 

boundary formation, or whether it reflects that boundary induction requires a 

stable cell population at interfaces, which is destabilised when Eph/ephrin 

signalling is impaired.

Moreover, there are many difficulties to overcome when examining the 

role of Eph/ephrin signalling in boundary formation. The large number of Eph 

receptors and ephrin ligands expressed in the hindbrain mean that no phenotypes 

are observed in mouse knockouts, probably due to functional redundancy 

(reviewed in Cooke and Moens, 2002). Moreover, many receptors and ligands 

are expressed in overlapping, not complementary patterns, which may affect the
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intensity and the outcome of signalling, as may interactions with other signalling 

pathways (reviewed in Poliakov et al., 2004). Thus, no signalling system has as 

yet been directly implicated in boundary cell induction.

Lessons from  rhombomere 4 .

The observation that different cell responses are observed in different 

experiments from cells in r4 poses many questions, but may also help in 

addressing fundamental questions regarding boundary formation and regulation. 

First, the presence of a Notch-regulated cell affinity difference in the centre of r4 

is intriguing (Cheng et al., 2004). Cells expressing dominant-active Suppressor 

of Hairless sort to the centre of r4, as well as boundaries, while cells expressing 

dominant-negative Suppressor of Hairless sort away from the centre of r4. This 

may reflect the fact that r4 is the first rhombomere to differentiate (Maves et al., 

2002). However, this explanation is not fully satisfactory, as the kinetics of cell 

sorting in r4 are not consistent with the appearance of gaps in delta gene 

expression in the centre of r4. An alternative hypothesis is that Notch signalling 

regulates differential affinity within segments in order to maintain the anterior- 

posterior organisation of neuronal and glial cell types within each rhombomere, 

or simply to limit cell movement before this organisation is established. Instead 

of the model stated above in which affinity states are graded across the anterior- 

posterior axis of rhombomeres, this finding may imply that affinity differences 

form discrete stripes that partition rhombomeres. That only r4 has this regulation 

implies that its integrity is important for hindbrain development, and may reflect
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the fact that r4 is a signalling centre that regulates the development of r5 and r6 

(Maves et al., 2002). A further implication of this pattern of Notch-regulated 

affinity is that Notch activity may not be regulated solely by its ligands and 

known m odulators (such as fringe genes), as no difference is seen in the 

expression of these genes between r4 and other rhombomeres.

Further insights into boundary formation can also be gleaned from the 

pattern of expansion of boundary markers in W nt pathway knockdowns. As rfng 

expression is not expanded into r4, it can be inferred that boundary formation is 

inhibited in r4. This raises the question of whether the generation of boundaries 

in normal embryos is symmetrical, that is to say whether odd- and even- 

numbered rhombomeres can contribute equally to boundary formation. Drawing 

again from com parisons with the wing im aginal disc of Drosophila, two 

radically different models of boundary formation can be envisaged (reviewed in 

Dahmann and Basler, 1999). In the first case, one segment/compartment signals 

to cells at the border of the other to become boundaries, as in the case of hh 

inducing boundary cells at the anterior-posterior boundary of the wing disc. The 

alternative model is that a bidirectional signal at the interface causes one cell 

from each side to adopt a boundary fate, as occurs at the dorso-ventral boundary 

of the wing disc. It may be the case that a combination of these mechanisms 

occuu* as all rhombomeres appear to be able to generate boundary cells except r4, 

such that bidirectional boundary formation may occur at the r2/r3 and r5/r6 

boundaries, while it may be unidirectional at the r3/r4 and r4/r5 boundaries. 

Alternatively, it is possible that r4 normally generates boundary cells, but that
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boundary spreading in r4 is inhibited by a mechanism independent of the Wnt 

pathway.

Similarly, neurogenesis, as detected by continued expression of proneural 

genes, is less affected by loss of W ntl in r4 than in other rhombomeres. 

Interestingly, at early stages w ntl is not expressed in the roof plate of r4, nor is 

w nt8b . Thus, in a normal situation, r4 is exposed to less W nt than other 

rhom bom eres and presum ably uses o ther m echanism s to ensure that 

neurogenesis does occur. The lower dependence of r4 on Wnt signalling implies 

that it must be important to pattern this particular rhombomere correctly.

Nevertheless, proneural gene expression is severely reduced in r4 in 

W ntlM O  embryos, and gfap  expression is strongly increased, as in other 

rhombomeres. This observation suggests that boundary cells are not simply 

neural cells that do not express proneural genes. M oreover, in embryos when 

asha, ashb and ngnl functions have been impaired, no expression of rfng is seen 

in r4. The implication of these observations is that, while proneural gene 

expression may be incompatible with boundary fate, the latter is not a default 

identity in the absence of proneural gene expression.

It is possible that the distinct properties of r4 in boundary formation and 

neurogenesis reflect to its role as a signalling centre responsible for specifying 

the posterior hindbrain (Maves et al., 2002). This organising function of r4 may 

require that it is more stable than other areas. It is not known what mediates this 

stability. fg f3  and fg f8  are expressed in r4 and mediate the patterning properties 

of r4 on adjacent segments (Maves et al., 2002). It is possible that the high levels 

of FGF signalling experienced by r4 modulate its response to other signals,
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including boundary-inducing signals. However, expression of two FGF targets, 

erm  and pea3 , is uniform in the hindbrain at early somitogenesis stages (Maves 

et al., 2002; Raible and Brand, 2001; Roehl and Nusslein-Volhard, 2001). This 

suggests that it is not FGF signals that confer the distinct properties of r4, and 

better candidates are genes that are specific to r4, such as hoxbla  for instance.

What are the roles o f rhombomere boundaries ?

Few studies have addressed the role of hindbrain boundaries, but several 

hypotheses have been put forward. In addition to possibly inhibiting cell mixing 

between adjacent rhombomeres, or stabilising interfaces (Guthrie et al., 1991; 

Lumsden, 1990), it has been suggested that they may block the spread of signals 

and restrict domains of gene expression due to the absence of gap junctions 

(Martinez et al., 1992), or act as axon scaffolds (Heyman et al., 1995; Heyman et 

al., 1993; Lumsden and Keynes, 1989). A further possibility is that they specify 

neuronal and glial patterns within segments.

Inhibition of cell mixing across interfaces.

A suggested role of boundaries is that they could restrict cell mixing 

between segments. This idea has been reinforced by the recent observation that 

the affinity of boundary cells is different to that of non-boundary cells (Cheng et 

al., 2004), suggesting a model in which two different cell affinity mechanisms 

regulate affinity differences between adjacent segments (the Eph/ephrin system) 

and between boundary and non-boundary cells (driven by Notch activation at
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boundaries). This would lead to greater stability across an interface than if a 

single mechanism operated. However, it appears that disruption of Eph/ephrin 

signalling alone is sufficient to cause intermingling between rhombomeres (Xu et 

al., 1995). This may reflect that this pathway is im portant in restricting 

movement at stages before the Notch pathway has stabilised interfaces. 

Moreover, cell labelling experiments show that cell mixing is inhibited between 

cells from adjacent segments, but not between boundary and non-boundary cells 

(Fraser et al., 1990; discussed by Lumsden, 1990). Similarly, when boundaries 

are ablated or not present due to retinoic acid treatm ent, no significant 

intermingling is observed across interfaces (G uthrie and Lumsden, 1991; 

Nittenberg et al., 1997). Thus, it seems likely that the restriction of mixing 

between segments is due to interactions at segm ent interfaces, and not to 

boundary cells. However, there is some evidence for a role of Notch signalling in 

maintaining sharp interfaces between adjacent rhombomeres. In the mind bomb 

mutant, for instance, where Notch signalling is strongly impaired, the borders of 

the EphA4 domains are not as sharp and straight as in wild type embryos (Cheng 

et al., 2004). However, in knockdowns of rfn g , which may promote Notch 

activation in boundaries, epha4  and krox20  expression are normal (Yi-Chuan 

Cheng, unpublished observations).

Although boundary cells are not responsible for the inhibition of mixing 

across segment interfaces, they have distinct affinity properties (Cheng et al., 

2004), and may be less motile than non-boundary cells (Guthrie et al., 1991). It is 

possible that these properties are required for maintaining cell organisation 

within segments, rather than between segments. It would be interesting to see 

whether cell movement is increased following boundary ablation, or conversely,
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whether boundary expansion leads to decreased movement, to test the possibility 

that boundary cells are less motile than non-boundary cells. Instead, if a model of 

graded affinity across segments is true, boundary ablation and boundary 

expansion should lead to similar increases in movement, as in both cases, the 

effect would be to level affinity across all cells in a segment.

Restriction o f gene expression domains.

Another possibility is that boundaries are important to maintain the 

hom ogeneity of gene expression within segments. This idea derives from 

observations that boundary cells do not share cell-junctional communications 

with other cells and that they can inhibit the inductive capabilities of isthmic 

cells (Martinez et al., 1992; Martinez et al., 1995). In addition, it is known that, 

within each rhombomere, there are “community effects” such that if individual 

cells are in the wrong segment, they can switch identity to that of their new 

environment, but groups of cells can maintain their old identity (Pasini and 

W ilkinson, 2002; Schilling et al., 2001; Trainor and Krum lauf, 2000a; 

Wilkinson, 1995). Moreover, experiments showing that Krox20 can induce its 

own expression non-autonomously provide evidence for signals mediating 

community effects (Giudicelli et al., 2001). Thus, it can be conceived that 

boundaries limit the spread of the signals mediating these community effects, 

ensuring the isolation of each compartment. In this way, signals produced by one 

compartment to maintain that segment’s identity and homogeneity do not affect 

neighbouring compartments. As the nature of these signals is not known, it is 

currently not possible to test this idea. However, it can be suggested that when 

most cells in the hindbrain adopt a boundary fate, the signals that maintain
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segment identity cannot diffuse as far as they normally do, and in that way, it 

could be conceived that some cells may lose their identity. Nevertheless, when 

boundaries expand to fill most of the hindbrain, segment identity markers are not 

affected. This argues that the signals can be transmitted by or across boundary 

cells. Indeed, it may be that it is interfaces rather than boundary cells that restrict 

the spread of signals. This is consistent with the finding that Eph/ephrin 

signalling can restrict gap-junctional communication across interfaces (Mellitzer 

et al., 1999). In this model, boundary cell spreading would not affect 

communication within or between segments, an idea conforming to the results I 

have obtained.

Guiding axons.

Work in the chick has established that early axons populate hindbrain 

boundaries (Heyman et al., 1993; Lumsden and Keynes, 1989). A role in axon 

guidance is further suggested by the presence of specialised extracellular matrix 

at boundaries, as well as vimentin labelling, suggesting that at least some 

boundary cells are glia (Heyman et al., 1995; Lumsden and Keynes, 1989). Thus 

it may be that an important role of rhombomere boundaries is to act as a scaffold, 

to pattern and support axon growth. However, in zebrafish embryos, early axons 

develop in the centre of rhombomeres (labelled with anti-acetylated tubulin, for 

instance, Jiang et al., 1996), and although axons are later seen in boundary 

regions, they follow the curtain of radial glial processes which are adjacent to the 

boundaries (Trevarrow  et al., 1990). N evertheless, zebrafish hindbrain 

boundaries express n e tr in la ,  which acts as either a chemoattractfijit or a 

chemorepellent for axonal growth cones (Lauderdale et al., 1997). Moreover, in
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the zebrafish, I have shown that boundaries regulate the expression of glial 

markers, and the distribution of radial glial fibres, implying that they do have an 

input, even if indirect, into the organisation of axonal fibres and tracts. The 

observation that the spatial relationship between boundaries and axons is 

different between zebrafish and chick hindbrain suggests that this role is not the 

primary role of boundaries, and that different mechanisms have taken advantage 

of boundaries to pattern axon tracts in different species.

Boundaries as signalling centres.

A final possibility, which has been confirmed in this work, is that a major 

role of rhombomere boundaries is to function as signalling centres. It appears 

likely that the localisation of neuronal differentiation is patterned by boundaries, 

and that the final location of neurons could also be regulated and maintained by 

boundary-derived signals. I have shown that w ntl is expressed in boundary cells 

and regulates neurogenesis in rhombomere centres. It is unlikely that W ntl is a 

morphogen regulating cell type, or that it directly regulates the localisation of 

neuronal differentiation. Several other Wnts are also expressed in boundaries in 

the zebrafish (Blader et al., 1996; Riley et al., 2004), and it is possible that some 

Wnts may have a role in organising neurogenesis, rather than enabling it as in the 

case of W ntl. Alternatively, other signals expressed at boundaries may regulate 

the anterior-posterior organisation of cell types within hindbrain segments.

In other species, it seems likely that rhombomere boundaries also secrete 

signals. In mouse, elevated levels of w ntl transcript are detected at boundaries 

(Echelard et al., 1994), although it is not clear how far the expression extends 

ventrally. In chick and mouse, hindbrain boundaries express fg f3  (Mahmood et
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al., 1995; Mahmood et al., 1996), and in chick embryos they express follista tin  

(Connolly et al., 1995). Therefore, hindbrain boundaries in all species examined 

express secreted signalling molecules (or secreted antagonists of signalling 

molecules), although it appears that the nature of the signal itself may vary 

between species. Moreover, the effect of the signal may also vary, as there is no 

evidence of anterior-posterior organisation of neuronal types within segments in 

chick or mouse.

A new model o f  boundary formation and maintenance.

The simplest model for the mechanisms which induce boundaries is that 

boundaries form at segment interfaces, due to interactions that occur only there. 

For instance, the complementary expression of cell surface ligands and receptors 

in different segments could underlie signal transduction only at segm ent 

interfaces. However, I have found that by blocking the Wnt pathway, most cells 

in the hindbrain, with the notable exception of r4, can adopt a boundary fate. 

This implies that boundary cell formation does not necessarily need to be located 

at segment interfaces. The mechanisms responsible for inducing boundary cells 

are also active away from interfaces, but are normally prevented from causing 

ectopic boundary cell formation.

Therefore, a new model can be put forward to describe boundary 

formation. It is proposed that interactions that occur at interfaces between 

rhombomeres provide a bias to ensure that boundary cell specification occurs at 

this location. Secondarily, boundary cells signal to laterally inhibit any further
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cells from adopting a boundary fate. Since W ntl mediates lateral inhibition only 

after 18h, this model requires that other factors are involved at earlier stages.
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