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ABSTRACT

Dupuytren’s disease is a debilitating fibroproliferative disorder o f the palmar fascia 

affecting hand function. Clinically the appearance o f nodules and cords is characterised 

by the deposition o f excess extracellular matrix within the fascia. Progressive shortening 

o f the matrix leads to increased stiffness and permanent tissue contracture. Surgical 

release o f contracture is the only current treatment but despite this, recurrence rates are 

high. It has been postulated that contracture is a result o f  two separate processes 

occurring in parallel: a) Cell mediated contraction o f the matrix -  whereby fibroblasts act 

to cause a physical deformation within the resident tissue (Harris et al 1981), and b) 

Continuous matrix remodelling, leading to the permanence of contracture (Flint and 

Poole 1990; Tomasek et al 2002).

A culture force monitor model was used to study the contractile properties of fibroblasts 

cultured in three dimensional collagen gels. Dupuytren’s nodule and cord fibroblasts 

generated significantly greater forces in comparison to carpal ligament fibroblasts 

(p<0.001), and similar forces in comparison to dermal fibroblasts over a 48 hour period. 

Carpal ligament and dermal fibroblasts reached tensional homeostasis by 24 hours 

showing no further increase in contraction. Dupuytren’s fibroblasts continued to contract 

with no plateau at 24 or 48 hours (p< 0.001). A reduction in external load applied to 

these fibroblasts resulted in an increase in cellular contraction by both Dupuytren’s and 

control fibroblasts.

Baseline tissue inhibitor of matrix metalloproteinase (TIMP) expression in both 

Dupuytren’s and control fibroblasts without external mechanical stimulation was 

significantly greater than that of the matrix metalloproteinases (MMPs). There was no 

difference in expression between carpal ligament and Dupuytren’s fibroblasts. 

Mechanical stimulation resulted in a significant up-regulation of MMP gene expression 

by Dupuytren’s nodule fibroblasts (p<0.01). There was no up-regulation of MMPs by 

cord or carpal ligament derived fibroblasts. There was a reciprocal significant up-



regulation of TIMP-1 expression by carpal ligament derived cells after mechanical 

stimulation (p<0.001), with a similar response by cord derived cells (p<0.005). This 

response was absent in nodule derived fibroblasts.

The amount of permanent shortening of a collagen matrix, the residual matrix tension 

(RMT), was quantified over a 48 hour period using the culture force monitor model. 

Over a short time period residual matrix tension was minimal following disruption of the 

actin cytoskeleton by cytochalasin-D in all fibroblasts under investigation, indicating that 

no spatial remodeling of the collagen had occurred. However by 48 hours a permanent 

shortening of the collagen network was seen which was most marked for Dupuytren’s 

and dermal fibroblasts, and which was significantly greater than that for carpal ligament 

fibroblasts (p<0.05).

In summary, there appears to be a primary abnormality in the process of cellular 

contraction, leading to the progression of contracture seen in Dupuytren’s disease. It is 

postulated that cellular contraction holds the matrix in a newly shortened state, while 

concurrently the cells act to remodel the surrounding matrix to hold it there permanently.
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Introduction

1.1 HISTORY OF DUPUYTREN’S DISEASE

The name Dupuytren’s disease is derived from the French surgeon, Baron Guillaume 

Dupuytren (1777-1835), who lectured extensively on the subject during the course of 

1830’s. However this flbroproliferative disorder has been mentioned as far back as the 

12th century in a review of the Icelandic sagas (Whaley and Elliot 1993)f'ourpatients 

appeared to have received miracle cures for their contracted digits, either by rupture, or 

fasciotomy. It has also been thought that “the Papal hand of Benediction” was adopted 

due to an early Pope suffering from digital contracture, although this has noti 

been substantiated (Elliot4999)*,

The earliest reference to the disease in surgical text is in the writings of Felix Plater of 

Basel in 1614. He documented the case of a stonemason who presented with contracted 

ring and little fingers into the palm of the hand, with ridging of the palmar skin. The 

condition was originally thought to have been due to contracted tendons, which had 

bowstringed across the palm. It is only retrospective analysis of these findings that has 

connected Plater’s work with Dupuytren’s disease.

The legendary “Curse of the McCrimmoos” demonstrates the increased prevalence of the 

disease in the Northern latitudes (Elliot 1999). The clan members were recognized as 

outstanding bagpipe players; however they were believed to have been cursed with a 

condition that bent the little finger, making the playing of bagpipes impossible. This 

curse only seemed to affect the older and more accomplished players, leading to the 

retrospective assumption that this was due to Dupuytren’s disease and not a congenital 

hand disorder.

Henry Cline, a pupil of John Hunter, is thought to have been the first to dissect 2 hands 

with the condition in 1777. His notes record the involvement of the palmar fascia and the 

effects of dividing it as a fasciotomy. Indeed by coincidence this was during the year of 

Dupuytren’s birth. Despite much debate on the origins of the description of this 

condition, it is Baron Dupuytren’s name that has remained associated with the disease
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today, and indeed it must be accepted that Dupuytren did much to further the treatment of 

the condition that bears his name.

1.2 EPIDEMIOLOGY

The prevalence of Dupuytren’s disease varies worldwide. McFarlane (1990) looked at 

over 1000 patients in a study of data from over 12 countries around the world. He found 

that patients with Dupuytren’s disease are of mainly Northern European descent, and that 

the disease is also relatively common in the Oriental population.

Much variation in the incidence and prevalence of Dupuytren’s disease has been reported 

in the literature. The main problems have been in reporter accuracy in diagnosing the 

condition. A study by Noble et al (1984) found that the prevalence of the disease was 

42% when patients were examined by hand surgeons, but only 18% when examined by a 

physician. Prevalence is defined as the rate of disease in a specific population at a certain 

time (Prevalence = proportion of population with the disease at one point in time), 

whereas incidence notes the rate of development of a disease in a group over a period of 

time (incidence = number of new cases in one year divided by number at risk). Based on 

these definitions, it is understandable that the majority of data is prevalence based.

A well conducted epidemiological study was performed by Mikkelsen (1972), who 

reported a prevalence of 9.4% for men and 2.8% for women for Dupuytren’s disease. 

The disease was bilateral in 59% of men and 43% of women. In both sexes the 

prevalence increases with age. In the UK, prevalence of the disease is estimated at 39% 

of men and 21% of women in patients over the age of sixty (Lennox et al 1993). 

However a study of 919 patients in an English orthopaedic hospital found that 5% of men 

and 3.5% of women were affected (Mackenny 1983), while Carson and Clarke (1993) 

reported a prevalence of 13.75% in a group of elderly ex-servicemen. If a prevalence rate 

of approximately 5% is extrapolated to the total population of the UK in 2002 of 59.2 

million (Office for National Statistics 2003), then a minimum of 2.9 million British
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people may be affected by Dupuytren’s disease. The resulting economic implications are 

obvious.

The prevalence of Dupuytren’s disease increases with advancing age (Ross 1999), and 

also the sex distribution changes. Mikkelson (1972) reported that the sex ratio decreases 

from 8.4:1 (male: female) at the age of 40, to 1.2:1 at the age of 80. Men typically 

present for treatment one decade earlier than affected women, in the fifth decade 

(Thurston 2003). Only a few cases in the literature have mentioned the disease appearing 

in children (Urban et al 1996).

Dupuytren’s disease has rarely been reported in non-Caucasian races. Within the black 

population it is extremely rare, and documentation has been limited to only a few case 

reports (Ross 1999). Saboeiro et al (2000) assessed 9938 patients over a 10-year period, 

looking in particular at racial background. The incidence of Dupuytren’s disease was 

seen to be 0.13% for the black population, 0.07 % for Asians, and 0.24% for the Hispanic 

population, in comparison to 0.73% in a Caucasian population. Egawa (1985) reported a 

prevalence of 19% in the Japanese population, but noted that rate of progression appeared 

to be much slower than in Caucasians.

13 AETIOLOGY

The search for a direct causative agent in Dupuytren’s disease continues, and although 

there have been many links to associated diseases or factors, it remains unclear whether 

the disease / associations have common causes, influence each other or indeed are simply 

age related.

13.1 Smoking

A link between Dupuytren’s disease and nicotine use has been documented in the 

literature. Between 35 -  68% of patients with the disease were reported to be smokers in 

some research (An 1988; Brenner and Rayan 2003). A study by Burge et al (1997)
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showed that patients with Dupuytren’s disease smoked a significantly greater amount 

compared to control patients (16.7 vs. 12 pack years). It has been postulated that oxygen 

free radical generation and local changes in the microcirculation of the hand in smokers 

may predispose the patient to fibromatous deposits (Yi et al 1999).

13.2 Alcohol

The role of alcohol in the pathogenesis of Dupuytren’s disease is difficult to establish 

mainly due to the problem that alcoholic patients tend also to abuse other substances 

including nicotine, and that alcohol excess is also associated with hepatic disease. Noble 

et al (1992) reported findings that the disease was more common in alcoholics in 

comparison to those with non-alcoholic liver disease, although his study did not reach 

statistical significance. Burge et al (1997) showed evidence that weekly alcohol 

consumption in patients with Dupuytren’s disease exceeded that of control patients. 

However in contrast separate studies have shown that there was no difference in alcohol 

consumption between control patients and those with digitopalmar contracture (Hurst et 

al 1990; Brenner and Rayan 2003). With respect to cirrhosis, the prevalence of 

Dupuytren’s disease was seen to be significantly higher in patients with alcohol induced 

liver disease in comparison to patients with non-alcoholic liver disease, but there was no 

difference in prevalence between alcoholics with or without liver disease (Attali et al 

1987).

1 3 3  Occupation

The relationship between occupation and Dupuytren’s disease has been extensively 

debated with no firm conclusions reached. Some studies suggest an increased prevalence 

in those engaging in hard manual labour (Dupuytren 1832; Mikkelsen et al 1978; Liss et 

al 1996), while others have reported that as many non-manual workers are affected as 

manual workers (Hueston 1987; McFarlane 1991). Recent interest in the condition 

‘Vibration white finger” has sparked discussion about vibrating tools and Dupuytren’s 

disease, but no associations have been made (Hueston and Seyfer 1991). It has been 

suggested however that the severity of Dupuytren’s disease is related to manual labour in
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two separate studies looking at Tubiana’s classification and occupation (Mikkelsen 1990; 

Brenner et al 2001). In both cases disease severity was higher in manual workers.

13.4 Hand trauma

The contribution made by repetitive hand microtrauma to Dupuytren’s disease is still 

uncertain. Another relationship which has been discussed is that of an isolated injury to 

the hand or forearm that initiates contracture. Certainly Dupuytren’s disease has been 

documented occurring after a single distal radius fracture and from simple soft tissue 

trauma (Hueston 1968; Stewart et al 1985; Gordon and Anderson 1961), but opinion 

remains divided upon whether the insult was the cause, or the factor directing the patient 

to the disease.

It is felt that a single specific traumatic event to the hand may precipitate the disease, 

particularly in younger people (Hueston 1968, Millesi 1967). Wilhelm in 1971 stated 

that a relationship between specific trauma and fibromatous change is present, but only in 

cases where a hereditary predisposition can be excluded, and no Dupuytren-like changes 

were identifiable in the preceding 6 months of the injury. However others have stated 

that a single injury may not cause the disease, but may precipitate its onset in genetically 

predisposed individuals (Ross 1999).

13.5 Epilepsy

Epilepsy has been found to be much more common in patients with Dupuytren’s disease 

with a reported incidence of between 8% and 57% (Yi et al 1999). There are two schools 

of thought on the reasons behind this. Some think that both conditions are hereditary 

disorders with genetic causes, while others state that the increased incidence of the 

disease is due to a side effect of anti-epileptic medication, in particular phenobarbitones 

(Brenner and Rayan 2003). A recent case control study has shown no associations 

between epilepsy or its medication with Dupuytren’s disease (Geohegan et al 2004).
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1.3.6 Diabetes

An association between diabetes and Dupuytren’s contracture has been demonstrated by 

many workers (McFarlane 1987; Hurst et al 1990; Ross 1999). The frequency of the 

disease in diabetic patients is thought to increase with age and with the duration of 

diabetes (Ross 1999). What stands out most significantly is the finding that in the 

majority of cases of Dupuytren’s disease affecting diabetics, the disease follows a milder 

course, with few patients progressing to surgical intervention (McFarlane 1987; Hurst et 

al 1990; Noble 1992). In addition to this the disease appears to affect the radial aspect of 

the hand to a greater degree than the ulnar side (Brenner and Rayan 2003).

The reasons behind these findings remain unclear. A study by Rosenbloom et al (1996) 

has shown that there is an excess of advanced glycation end products (AGE) in diabetics 

with Dupuytren’s contracture. AGE products are formed as a result o f the nonenzymic 

reaction o f glucose with proteins, causing structural protein rearrangement, and 

dehydration, release of inflammatory cytokines, and increased collagen cross-linking. 

This may explain the changes seen within the palmar fascia, and also associated changes 

within the flexor sheath in some patients with diabetes. It has also been hypothesized that 

these AGE products may be a factor in the limited joint mobility seen in patients with 

diabetes and Dupuytren’s disease.

13.7 Autoimmune Disease

An autoimmune disease occurs as a result of a breakdown in either the humoral or 

cellular immune system, so that antigen cross-reaction occurs, and the body loses the 

ability to recognize self (Brenner and Rayan 2003). Many have suspected that 

Dupuytren’s contracture may be an autoimmune phenomenon. The first to provide 

evidence of this however was Menzel (1979) who demonstrated the presence of collagen 

III antibodies in the sera of patients with the disease. Similarly Pereira (1986) found 69% 

of patients with Dupuytren’s had antibodies to one of the collagen subtypes compared to 

only 28% of blood donor controls. Other recent work has shown that it may be an
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abnormality in the T cell mediated immune response that may be responsible for palmar 

fibromatosis (Brenner and Rayan 2003).

13.8 Links to Neoplasia

Dupuytren’s disease is classified as a benign condition. However it does display several 

features similar to neoplastic disease. These include its strong genetic association with 

distinct chromosomal abnormalities, the multiple disease stages, and also the high 

recurrence rate, with invasive phenotypes in some (Varallo et al 2003). Indeed recent 

epidemiological studies have shown an increase in total mortality, and in cancer mortality 

among men with Dupuytren’s contracture, even after adjustments were made for age, and 

other confounding factors (Mikkelsen et al 1999; Gudmundsson et al 2002).

Despite a large number o f  studies over many years, the underlying aetiology o f  

Dupuytren ’s disease has still not been identified. It is fo r  this reason that experimental 

investigation into the cellular and environmental factors that may contribute to the switch 

from normal to diseased fascia must continue.

1.4 GENETICS OF DUPUYTREN’S DISEASE

There are 2 elements that stand out in the aetiology of Dupuytren’s disease. The first is 

the strong association between the disease and Caucasians of Northern European 

ancestry, and the second is the familial nature of the condition (Burge 1999). Genetic 

studies have yet to detect a specific gene or set of genes as the primary cause of 

Dupuytren’s disease.

There have been many different hypotheses into the mode of inheritance in Dupuytren’s 

disease, but most workers agree that appears to be a complex oligogenic condition (Burge 

1999). Indeed since the development of gene microarray techniques, plus advances in 

knowledge of the human genome, it has been seen that at least 23 genes are expressed at
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consistently different levels in Dupuytren’s tissue in comparison with that of normal 

palmar fascia (Pan et al 2003).

Previous work has identified no association between Dupuytren’s Disease and TGFpl 

and TGFp2 polymorphisms (Bayat et el 2002). However recent studies by the same 

authors have shown a new association with a single nucleotide polymorphism in the 

TGFpRII gene in patients with more severe forms of the disease (Bayat et al 2003). 

Further work has also shown a definite association in Dupuytren’s disease with the ZF9 

transcription factor gene located on chromosome 10pl5. This factor is responsible for 

the expression of TGFpl in tissue, and thus an abnormality of its corresponding gene 

may be responsible for the increased fibrosis that is pathognomic of Dupuytren’s (Bayat 

et al 2003).
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1.5 THE ANATOMY OF DUPUYTREN’S DISEASE

1.5.1 Normal palmar fascia

The palmar fascial complex (PFC) consists of the radial aponeurosis (RA), the ulnar 

aponeurosis (UA) and the central palmar aponeurosis (PA), palmodigital fascia (figure 

1.1) and digital fascia (figure 1.2a). Within each digit the fascia is composed of a 

pretendinous band, a spiral band, and the lateral digital sheet, with additional ligamentous 

elements of the superficial transverse ligament, natatory ligament, Grayson’s ligament 

and Cleland’s ligament. The fascia is described as a three-dimensional interweaving of 

longitudinal, transverse and vertical fibres (Skoog 1967; McGrouther 1982; 1990). It has 

been suggested that it provides a protective function to deeper structures of the hand, and 

aids in the pliant conformation of grasping surfaces to the contours of objects by virtue of 

its additional dermal connections (Williams et al 1989).

Nl

Pakno-dtgrtal Fascia

PA

RA

Figure 1.1: The palmar fascial complex, consisting of the palmar fascia (subdivided into 
radial (RA), ulnar (UA) and palmar aponeuroses (PA)), palmo-digital fascia, and digital 
fascia. NL represents the natatory ligament. (Adapted from Rayan 1999)
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1.5.2 Pathological Anatomy

It has been considered that the nodules and cords in Dupuytren’s contracture are a result 

oh pathological changes in normal fascia (table 1.1; figure 1.2b). Nodules usually form, 

superficial to the pretendinous band. Palmar nodules are adherent to the overlying skin, 

and are fixed to the underlying aponeurosis. Digital nodules may become fixed to other 

deep structures such as the flexor sheath. It is felt that cords usually form after the 

development of a nodule (Rayan 1999). The pretendinous cord is most common and is 

responsible for metacarpophalangeal (MCP) joint contracture. The digital cords are 

responsible for proximal interphalangeal (PIP) joint contractures, and include the central, 

spiral and lateral cords. The normal structures in the hand are referred to as bands or 

sheets. Ilie name of these same structures changes to cords when they are affected by 

DupuytrenN disease.

ateral cord

Central cord

Spiral cord

atatory cord

Pretendinous cord

Cleland’s ligament

Grayson’s ligament
Lateral digital 

sheet

'Neurovascular

bundle Natatory

ligament

Spiral band

Superficial

■transverse

ligament

Pretendinous band

Figure 1.2a Figure 1.2b
Figure 1.2. The normal anatomical structures of the digital fascia on the left (a), and the
diseased cords that they become on the right (b). (Adapted from McFarlane 1990)
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NORMAL
STRUCTURE

PATHOLOGIC
CORD

ACTION

Septa of Legueu and 
Juvara

Vertical cord Extends deeply between the 
neurovascular bundle and flexor 
sheath
Contributes to stensosing 
tenosynovitis

Hypo thenar eminence 
fascia

Abductor digiti minimi 
cord

Little finger ulnar contracture

Spiral band Spiral cord Responsible for displacement of the 
neurovascular bundle (NV) 
Originated from the pretendinous 
cord, passes deep to the NV bundle, 
then runs lateral to the NV bundle 
involving the lateral digital sheet, 
and finally passes superficial to the 
NV bundle as it joins Grayson’s 
ligament

Natatory ligament Natatory cord Converts the U shaped web space 
fibres into a tight V shape 
Limits digital abduction

Pretendinous band Central cord 
Pretendinous cord

An extension of the pretendinous 
cord into the digit.
Attaches to the flexor sheath or to 
the periosteum of the middle 
phalanx

Lateral digital sheet Lateral cord Attaches to the skin or the tendon 
sheath through Grayson’s ligament 
Causes flexion contracture of the 
PIP joint and rarely the DIPJoint

Abductor digiti minimi 
tendon

Isolated digital cord / 
Abductor digiti minimi 
cord (ADM)

A cord on the ulnar side of the little 
finger taking origin from the ADM 
tendon
Passes superficially to the NV 
bundle

Retrovascular band Retrovascular cord Present deep to the neurovascular 
bundle

Table 1.1: The normal anatomical structures and their associated diseased cords seen in 
Dupuytren’s disease. Table adapted from McFarlane (1990).
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1.6 CLINICAL PRESENTATION

Early Dupuytren’s disease is often not noticed by many patients, until the development of 

a digital contracture. The disease usually begins with the formation of a subcutaneous 

nodule in the palm of the hand with associated skin changes of pitting and thickening. 

Subsequently more visible nodules or cords develop, and over time, which may be 

months or several years, contracture of either metacarpophalangeal joint, proximal - 

interphalangeal joint, or both occurs.

In the vast majority of cases the ulnar part of the hand is affected with the ring, little and 

middle fingers involved in decreasing order of frequency (Rayan 1999). However in 

rarer cases radial disease of the index, thumb and 1st web may occur. Patients complain 

rarely of pain or altered sensation. The main problem experienced is that of restricted 

function with difficulty for example in washing, dressing, donning gloves and work.

Progression of Dupuytren’s disease is very variable. In some, fascial disease remains 

confined to the palm and does not progress to contracture, whereas in others disease 

progresses rapidly to cause flexion deformity (Rayan 1999). No features have been 

identified as yet to locate those patients at highest risk of rapid progression.

1.7 CURRENT TREATMENT OF DUPUYTREN’S DISEASE

Despite much research into the aetiology o f Dupuytren’s disease, very little has changed 

in the management since Dupuytren’s first fasciotomy in the early nineteenth century 

(Dupuytren 1832). Surgery remains the mainstay of treatment, and although 

complication rates and rehabilitation have improved, recurrence is still a common 

occurrence (Rombouts et al 1989).

13



Introduction

1.7.1 Non-operative Treatment

The search is ongoing for an effective, safe and easy to use non-operative treatment for 

this disease. Many non-surgical therapies have been used historically including topical 

creams, massage, radiotherapy, splinting and pharmacological injection (Hurst and 

Badalamente 1999). Those recently under investigation include mechanical elongation 

techniques pre-surgery (Messina and Messina 1991), and collagenase injection which is 

in use within the remits of a phase II clinical trial (Badalamente et al 2000; 2002).

The use of splintage regimes as an alternative to surgery has never gained in popularity 

(Abbott et al 1987), although splinting post-operatively is commonly used as an adjunct 

in rehabilitation and in theory as an aid to reducing recurrence rates.

In the early 1990’s the continuous elongation technique (TEC) was introduced by 

Messina and Messina (1991; 1993) as a means of straightening the affected digit, and 

elongating the contracted palmar fascia via an external fixation device. The method was 

used in severely contracted PIP joints in particular. The main drawback was the need for 

immediate surgical intervention after removal of the fixator. If this did not occur, 

recurrence of contracture became apparent in over 70% of patients, within a period of 

only days (Messina et al 1993). Similar external fixation techniques have been employed 

by others (Hodgkinson 1994), although long term results are still awaited.

Pharmacological agents have been used to induce “enzymic fasciotomy” of the 

contracted digits in Dupuytren’s disease (Bassot 1965; Hueston 1971; McCarthy 1992). 

Those recently under investigation were the use of intralesional y interferon (Pittet et al 

1994), and clostridial collagenase (Badalamente et al 2000). y interferon is postulated to 

reduce fibroblast replication, collagen production and myofibroblast expression. Within 

a pilot clinical trial patients undergoing intralesional injection of y interferon into 

Dupuytren’s nodules were found to have a reduction in the size of the nodule (Pittet et al 

1994). However no information on long term follow up is yet available. Dupuytren’s 

cords were tested by loading to failure in an in-vitro study after injection with collagenase
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with the result that a dose of 300 units was sufficient to cause rupture (Starkweather et al 

1996), and following this a phase II clinical trial was successfully performed in 29 

patients with clinical contractures (Badalamente et al 2000). A randomized placebo 

controlled double-blind trial (Badalamente et al 2002) concluded that this was a safe and 

effective treatment for contracture, although results of phase III trials and long term 

recurrence rates are awaited before firm conclusions may be made.

1.1.1 Surgical Intervention

The aim o f surgery is to restore hand function with minimal complications. Surgical 

fasciotomy is performed mainly in patients with metacarpophalangeal joint contractures. 

It has proved useful in those patients for whom major surgery is contraindicated. Reports 

have shown that out-patient needle fasciotomy may be performed effectively (Badois et 

al 1993; Lermusiaux et al 1997), although this technique has been criticized for its blind 

approach (Hurst and Badalamente 1999). A problem with simple fasciotomy is the early 

and high recurrence rate reported in many studies (Luck 1959 (71%); Millesi 1965 

(77%); Lermusiaux 1997 (50%)).

Fasciectomy remains the most commonly used surgical procedure for both MCPJ and 

PIPJ contractures. This may be performed as a limited, segmental regional or rarely as a 

radical fasciectomy. Limited fasciectomy involves the excision o f all macroscopically 

affected fascia with a small rim of normal appearing fascia (Hueston 1961). Segmental 

fasciectomy involves the excision of all diseased fascia but with the preservation o f the 

transverse fibres of the superficial transverse ligament (Skoog 1967). Once the diseased 

tissue has been excised a range of techniques have been employed to close the wound 

ranging from the “open palm” (McCash 1964), Z-plasty, and full thickness skin graft. 

Dermofasciectomy has been recommended in younger patients with severe aggressive 

disease, and in those with recurrent disease (Hueston 1963; Wilson 1997). One 

advantage is that it has been shown that recurrence with this procedure is significantly 

reduced (Tonkin et al 1984; Brotherston et al 1994; Hall et al 1997). A curative 

procedure for this disease is not yet known. Reappearance o f the disease may be as a true 

recurrence (at the site of primary surgery), or as extension (in a new site
15
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within the hand). Recurrence rates are high ranging from 34 -  71% over a 5-10 year 

follow-up period (Millesi in 1981 stated 39% at lOyrs; Schneider et al in 1986 stated 32- 

48% at 5yrs; Norotte et al in 1988 stated 71% at lOyrs; Leclerq in 1986 stated 66% at 10 

yrs; McGrouther in 1999 stated 50% at 5 yrs). Recurrence rate increases with the length 

o f follow up time in all cases. A recent report has implicated that tension within a 

fasciotomy skin wound may result in an increased recurrence rate. It was seen that those 

patients with a transverse incision showed significantly greater recurrence in comparison 

to those with a Z-plasty closure, although follow up was for only 2 years (Citron and 

Heamdon 2003). Similarly Evans et al (2002) demonstrated an improved post-operative 

outcome in patients undergoing a period o f rehabilitation without mechanical tension on 

the digits.

Large numbers o f  researchers have looked at non-operative alternatives to Dupuytren ’s 

surgery, and at recurrence rates post surgical and non-surgical treatment. From this it is 

clear that at the current time there is no ideal standard procedure fo r  this disease that 

will improve outcome. These next sections therefore will focus on the histology, cellular 

biology and cell mechanics underlying the disease, in order to introduce the key elements 

o f  this project.

1.8 HISTOLOGY OF DUPUYTREN’S DISEASE

In 1959, Luck classified the progression o f Dupuytren’s disease into three stages -  

proliferative, involutional and residual. The first stage was characterized by proliferation 

and differentiation of fibroblasts with minimal collagen production, the fibroblasts being 

randomly orientated. This is clinically seen as a nodule. During the involutional stage 

fibroblasts were postulated to align themselves along lines of tension, and tissue collagen 

content increased. It was hypothesised that during this involutional phase contraction 

occured. The final residual stage was characterized by a reduction in cell density, and the 

presence of a thick almost acellular collagen cord (Luck 1959).
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Clinically and morphologically the nodule and the cord are two distinct entities. The 

nodule is a highly vascularised tissue containing a high population of fibroblasts, with a 

distinct subset of myofibroblasts. The cord, in contrast, is relatively acellular; relatively 

lacking in myofibroblasts and has a high proportion of collagen when compared to the 

nodule. Most theories suggest that the nodule progresses into a cord as the disease 

progresses with joint contracture occurring at the time of cord formation (Hueston 1985; 

Moyer et al. 2002). Others have suggested that the nodule and cord represent 2 separate 

entities, and arise independently of each other (Gosset 1985).

Few workers have investigated Dupuytren’s disease by studying the nodule and the cord 

as separate entities (Vande Berg et al 1984; Moyer et al 2002; Bisson et al 2003; 2004). 

In order to further our understanding o f the disease it was elected to use separate nodule 

and cord cell lines, as there may be a difference in the behaviour o f  cells from each 

region.

1.9 THE EXTRACELLULAR MATRIX

The extracellular matrix (ECM) is a dynamic complex three dimensional environment 

that is closely connected to its resident cells. It is composed of four major classes of 

macromolecules -  the collagens, proteoglycans, structural glycoproteins and elastin 

(Haralson and Hassell 1995). It functions not only as a structural support, but also plays 

a major role in modulating the biology of the cell and the cell’s response to growth 

factors, hormones, and other cell-cell interactions. There are specific cell surface 

receptors for ECM components which link the matrix to the cell via specific binding 

domains (Haralson and Hassell 1995). Interactions between the cell, the matrix and 

growth factors are reciprocal, i.e. a change in mechanics of the matrix will result in 

altered cellular behaviour, whereas a change in cell growth and biochemical activity will 

alter the composition of the surrounding matrix (Flint and Poole 1990). ECM production 

is controlled by cell type, number and many growth factors, and its degradation and

17



Introduction

remodeling is controlled by specific proteases (the matrix metalloproteases) that act to 

cause matrix breakdown (Haralson and Hassell 1995).

The composition of the ECM changes during tissue repair and regeneration. Mutations in 

matrix genes may result in a variety of pathological changes, and changes in matrix 

metabolism (both in synthesis and degradation) characterize the changes seen in a 

number of acquired diseases including Dupuytren’s contracture (Tomasek et al 2002).

1.10 BIOCHEMISTRY OF DUPUYTREN’S DISEASE

There are major changes between the biochemistry of the collagen found in Dupuytren’s 

disease compared to normal palmar fascia. These changes are very similar to those found 

in newly healing wounds, granulation tissue, and embryonic tissue (Brickley-Parsons et 

al 1981).

Type III collagen is present throughout the affected and unaffected regions of palmar 

fascia in Dupuytren’s tissue; this collagen type appears virtually absent in normal fascia 

(Bazin et al. 1980; Brickley-Parsons et al. 1981). There are increased amounts of total 

collagen, with an increased proportion of reducible cross-links, both indicating new 

collagen synthesis (Brickley-Parsons et al 1981). The proportion of type III collagen is 

increased to 20-30% in the nodules and to 30-40% in the cords (Bailey et al 1977). In 

addition to this, 10-15% of all the collagen in the clinically uninvolved regions of the 

palmar fascia consists of type III collagen. The stimulus for continued type III collagen 

production in Dupuytren’s remains unexplained compared to its disappearance in a 

normal healing wound. In wound healing these biochemical changes return to that of 

normal tissue, whereas in Dupuytren’s disease the biochemical changes seen are ongoing 

reflecting disease progression over a long period of time (Bazin et al 1980; Murrell et al 

1991). Collagen production per cell is postulated to fall in areas of high cellularity 

(Murrell et al 1991). A decrease in type I collagen production may raise the ratio of type
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III to type I collagen, rather than type III collagen production increasing. This would 

imply that the cells are acting normally in an abnormal situation (Murrell et al 1991).

Hydroxylysine is a functional amino acid residue of collagen. It has been reported that 

there is an increased concentration of hydroxylysine residues in both the fascia taken 

from Dupuytren’s patients and the clinically uninvolved fascia, with a corresponding 

increase in the total number of glycosylated hydroxylysine residues (Brickley-Parsons et 

al. 1981). The number of reducible aldimine intermolecular cross links is increased, and 

hydroxylysinohydroxynorlysine, which is virtually absent in normal palmar fascia was 

found to be the predominant intermolecular cross-link in cases of Dupuytren’s disease. 

(Brickley-Parsons et al. 1981). Water content and glycosaminoglycan contents are also 

increased.

1.11 THE MATRIX METALLOPROTEINASES

(Taken from reviews by: Parsons et al 1997; Massova et al 1998; Ravanti and Kahari 

2000: Visse and Nagase 2003)

The normal function of a tissue depends upon the interaction of the cells with their 

surrounding extracellular matrix. Modulation of cell-matrix interactions occurs through 

the action of proteolytic enzymes, which are involved in the breakdown of matrix 

components. By the regulation of the structure of the extracellular matrix, these enzyme 

systems play a major role in the control of signals elicited by matrix molecules, which in 

turn, regulate cell proliferation, cell differentiation and death. In normal tissues the 

turnover and remodeling of the extracellular matrix is tightly controlled, but in some 

pathological conditions characterized by either excessive degradation or lack of 

degradation (Dupuytren’s disease) of ECM components, proteolysis is uncontrolled.

Matrix metalloproteinases (MMPs), also known as matrixins, are a major group of zinc- 

dependent endopeptidases that function in the degradation of the extracellular matrix.
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These proteinases play a central role in many biological processes, both normal and 

pathological. The major function of MMPs is thought to be the removal of ECM in tissue 

resorption. However proteolysis of ECM components can lead to release of biologically 

active molecules such as growth factors. Thus MMP function can act to alter cell 

behaviours, and phenotypes, demonstrating these enzymes’ highly complex role. At the 

present time there are 23 MMP genes identified in humans. These are subdivided into 6 

groups of MMPs seen in the table below (table 1.2).
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MMP Function
Collagenases MMP-1, MMP-8, MMP-13, MMP-18

These enzymes fimction to cleave interstitial collagens I, 11 and 
III at a specific site three-fourths from the N-terminus. 
Collagenases can also digest a number of other ECM and non- 
ECM molecules.

Gelatinases MMP-2 and MMP-9
These digest the denatured collagens, gelatins 
These enzymes have 3 repeats of a type 11 fibronectin domain 
inserted in the catalytic domain, which bind to gelatin, collagens 
and laminin
MMP-2 digests collagen I, II, III

Stromelysins MMP-3 and MMP-10
MMP-3 activates a number of pro-MMPs, and its action on
proMMP-1 is essential for this MMP to function
Act to breakdown collagen IV, V, X, IX, fibronectin, elastin and
fibrin

Matrilysins MMP-7, MMP-26
These are characterized by the lack of a hemopexin domain 
MMP-7 processes cell surface molecules such as pro-defensin, 
pro-tumor necrosis factor, and e-cadherin 
MMP-26 digests a number of ECM components

Membrane-type
MMPs

There are 6 of these (MT-MMP)
4 are type I transmembrane proteins (MMP-14, 15, 16, and 24)
2 are glycosylphoshphatidylinositol anchored proteins (MMP- 
17 and MMP-25)
They are all capable of activating pro-MMP-2, and all can 
digest a number of ECM proteins.

Other MMPs 7 MMPs are unclassified
MMP-12 is essential for macrophage migration
MMP-19 function uncertain
MMP-20 digests amelogenin
MMP-22 has an unknown function
MMP-23 is thought to be a type II membrane protein mainly 
expressed in reproductive tissues
MMP-28 is mainly expressed in keratinocytes, and is thought to 
function in wound repair

Table 1.2: The matrix metalloproteinases -  classification and functions (from Visse and 
Nagase 2003)
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MMPs produced by fibroblasts are thought to be MMP-1, MMP-2, MMP-3, MMP-9, and 

MMP-13,

Under normal physiological conditions, the actions of these enzymes are precisely 

regulated at i) the level of transcription, ii) activation of precursor zymogens, iii) 

interaction with specific extracellular matrix components, and finally iv) inhibition by 

endogenous inhibitors. A loss of control at any level may result in the fibrosis commonly 

seen in Dupuytren’s disease. The level of expression of MMPs is very low in v/vo, but 

expression can be induced by various exogenous signals, including cytokines, growth 

factors and chemical agents. The activation of precursor zymogens usually occurs via 

tissue or plasma proteinases, or other MMPs in the same group forming an effective 

network in normal physiologic conditions.

Tissue inhibitors of matrix metalloproteinases (TIMPs) are specific inhibitors that act to 

control the local activities of MMPs in tissues. 4 TIMPs (TIMP-1, 2, 3, 4) have been 

identified in humans, and their expression is regulated during development and tissue 

remodeling. They are produced by several cell types including fibroblasts, keratinocytes, 

endothelial cells and osteoblasts. Under pathological conditions associated with 

unbalanced MMP activity, changes in TIMP levels are considered to be important 

because they directly affect the level of MMP activity. TIMPs inhibit all MMPs, 

although TIMP-3 is different to the others in that it also inhibits the aggrecanases. As 

well as inhibiting the MMPs, TIMPs have additional wider roles, including cell growth 

promotion, morphogenesis, and both proapoptotic and antiapoptotic activity. TIMPs are 

important in establishing a balance between matrix synthesis and matrix degradation 

caused by MMPs, and are thus present wherever the MMPs are to be found.
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1.12 MMPS IN DUPUYTREN’S DISEASE

Few researchers have focused on this area in the study of Dupuytren’s disease. Tarlton et 

al (1998) stated that a significant increase in the levels of MMP-2 and MMP-9 were 

observed after mechanical stretching of Dupuytren’s tissue in- vitro. These findings were 

also observed in a separate in-vivo study (Bailey et al 1994). The success of mechanical 

stretching such as in the continuous elongation technique of Messina and Messina (1991), 

was postulated to be due to the detection of stress by resident fibroblasts resulting in the 

release of degradative matrix metalloproteinases that cause collagen weakening, and thus 

allow digital extension (Tarlton et al 1998). One study has recently looked at the ratios 

of MMPs and TIMPs (Ulrich et al 2003). These workers measured the concentrations of 

MMP-1,2,9, and TIMP-1 and 2 in the sera and tissue of 22 patients with Dupuytren’s 

disease, and 20 patients with clinically normal palmar fascia. They found that in those 

patients with the disease, the TIMP-1 concentration was significantly higher in 

comparison to controls, but there were no significant differences in MMP concentrations 

between the 2 groups. The MMP to TIMP ratio was also significantly lower in patients 

with Dupuytren’s disease in comparison to the normal group. It was concluded that a 

decrease in MMP to TIMP ratio may reflect increased collagen synthesis, and decreased 

breakdown, thus leading to palmar fibromatosis.

1.13 MMP EXPRESSION IN FIBROBLASTS UNDER TENSION

There have been several studies focusing on this area using dermal fibroblast models. No 

studies have worked on MMP expression by Dupuytren’s fibroblasts in a tightly 

controlled environment. Some work has indicated that fibroblasts can be induced to 

produce proteases by disruption of the cytoskeleton, or by changes in the mechanical 

environment (Aggeler et al 1984; Unemori et al 1986; Mauch et al 1988; Lambert et al

2001). Lambert et al (2001) looked at the expression of MMP-2, 3, 9, 13 and 14 in a free 

floating circular collagen gel model for human dermal fibroblasts, and found that MMP-2
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in particular was significantly up-regulated on disruption of the cytoskeleton by 

cytochalasin-D. Prajapati et al (2000) measured protease activity in three dimensional 

collagen gels by gelatin zymography after subjecting them to either static or cyclical 

mechanical loads within the culture force monitor system. Under static loads thirteen 

times more MMP-2 was produced in comparison to MMP-9, but production of MMP-9 

increased significantly thirty-seven fold on cyclical loading while MMP-2 production 

decreased. The increase in MMP-2 and 9 production occurred to a reduced extent when 

the cells were stress shielded by using a stiffer surrounding collagen matrix, indicating 

the mechano-sensitive nature of MMP production. In similar work by the same author 

(2000), the greatest stimulation of MMP-9 was produced in slow ramp loading regimes 

over 11 hours, in comparison with loads applied quickly over 10 minutes. Other work 

(Mudera et al 2000) has looked at unidirectional forces applied to cells within a three 

dimensional collagen lattice, and compared MMP expression by cells in a load aligned 

zone in comparison to cells in a randomly oriented zone. It was found that cells that were 

aligned parallel to the mechanical load showed down-regulation of MMP expression, 

whereas cells in the non-aligned zone significantly increased their MMP expression, in 

particular MMP-2. It was postulated that non-aligned, mechanically loaded cells are 

stimulated to move and remodel the surrounding tissue matrix, and utilize MMPs in order 

to do this.

1.14 THE MYOFIBROBLAST

The myofibroblast was first identified in Dupuytren’s disease by Gabbiani and Majno in 

1972, although its presence has been documented in many other normal and pathological 

states (Tomasek et al 2002). This cell type exhibited ultrastructural features of both 

fibroblasts and smooth muscle cells. Morphologically myofibroblasts are characterized 

by an increase of intracellular actin microfilaments, deep indentations of the cell nucleus, 

gap junctions connecting one cell to another and hemidesmosomes attaching them to the 

basal lamina (Bazin et al 1980; Badalamente et al 1983). Within the cells the large 

bundles of actin microfilaments are noted to traverse the cell along its long axis

24



Introduction

(Gabbiani and Majno 1972). The main distinguishing feature of myofibroblasts is their 

ability to express alpha smooth muscle actin (a-SMA) in comparison to normal 

fibroblasts (Schurch et al. 1984; Foo et a l 1992). Differentiated myofibroblasts in 

granulation tissue express only a-SMA, whereas a proportion of differentiated 

myofibroblasts in Dupuytren’s disease may also express desmin and smooth muscle 

myosin (Schurch et al 1990; Tomasek and Rayan 1995; Tomasek et al 2002). The a- 

SMA isoform is hypothesized to be instrumental in force generation by myofibroblasts, 

with significantly stronger contraction noted in collagen gels seeded with cells 

transfected with a-SMA in comparison to those transfected with cytoplasmic actin (Hinz 

et al 2001). The mechanism by which a-SMA promotes contraction is still unknown, 

although recent work has identified a specific NH2-terminal peptide that has been 

postulated to play a role (Hinz et al 2002).

Myofibroblasts are capable of sustaining a contractile force that is theorized to be 

generated by contractile stress fibres (Tomasek 1999). Stress fibres are composed of 

bundles of actin microfilaments, actin binding proteins and associated non-muscle 

myosin (Tomasek 1999). Force generation is regulated by myosin light chain 

phosphorylation and in particular through the rho/rho kinase intracellular pathway (Parizi 

et al 2000; Katoh et al 2001). Myofibroblasts are postulated to exert their action via a 

coordinated multicellular unit (Grinnell 1994), but this has been contraindicated by 

Eastwood et al (1994,1996) who demonstrated early fractional forces in a fibroblast 

populated collagen lattice in the absence of any myofibroblasts.

The transformation of the fibroblast into the myofibroblast phenotype has been the 

subject of many studies reviewed by Gabbiani (2003), and is hypothesised to be a result 

of the combined action of mechanical tension, growth factor stimulation and ED-A 

cellular fibronectin. Tomasek et al (2002) have suggested that fibroblasts differentiate 

into myofibroblasts, by firstly developing intracellular stress fibres in response to changes 

in the surrounding connective tissue. This transient change in the cell phenotype has led 

to the cells being named protomyofibroblasts during this stage. Under the influence of 

growth factors or a mechanical change in the extracellular matrix, the protomyofibroblast
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may evolve into a myofibroblast that is characterized by the de-novo expression of a- 

smooth muscle actin, and large supermature focal adhesion complexes.

An ultrastructural study of the extracellular matrix of the nodules in Dupuytren’s disease, 

and in the granulation tissue of healing wounds reveals that the extracellular material is 

composed of a mixture of fine fibrils and larger ones which intermingle forming a 

filamentous complex (Tomasek et al 1987). This is associated only with the 

myofibroblast. These bundles were found to extend from the myofibroblast, connecting 

these cells to each other, and also to the extracellular matrix (Tomasek et al 1987; 

Tomasek and Haaksma 1991; Tomasek et al 1995). The filamentous material is also 

associated with the large intracellular actin filament bundles, connected via a 

transmembrane association. It is these specialized transmembrane connections that are 

thought to translate cellular contraction to the extracellular matrix, and they have been 

termed “the fibronexus” (Singer et al 1984) or “supermature focal adhesions” (Dugina et 

al 2001). In general fibroblasts in vivo are thought to lack this contractile 

microfilamentous apparatus that is seen in myofibroblasts (Gabbiani 2003).

Myofibroblasts are found primarily in the nodules rather than the cords in Dupuytren's 

tissue (Vande Berg et al 1984; Chiu 1978; Gokel et al 1977; Hueston et al 1976), 

although this has been debated by recent work in this laboratory (Bisson et al 2003). 

Their presence has led to the proposal that the myofibroblast may be responsible for 

digital flexion deformity in Dupuytren’s disease (Schultz and Tomasek 1990). In 

recurrent Dupuytren’s disease, degree of recurrence has been related to the number of 

myofibroblasts present within the dermis (McCann et al 1993).

Thus myofibroblast contractility appears to be a key element in the process o f the 

development o f  a permanent tissue contracture. Many techniques have been used to 

measure contractility and these will be outlined in more detail below.
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1.15 MODELS OF CELLULAR CONTRACTION

Cells exist within a complex dynamic three-dimensional environment in-vivo where 

tension and mechanical loading play a role in each cell’s morphology and function. It 

was Elsdale and Bard (1972) who showed that the phenotypic appearance of fibroblasts 

cultured in three dimensional collagen gels was much more like that seen in vivo in 

comparison to monolayer cultures. Over several years a multitude of methods have been

used to measure tissue, and cell contraction in vitro using increasingly advanced 

techniques. (Table 1.3)

RESEARCHER EXPERIMENTAL
MODEL

ACTION

1956 Ehrman and Grey Fibroblasts grow within a 
collagen lattice

1972 Elsdale and Bard Fibroblasts within a 
collagen gel cause 
contraction of the gel

In a cell filled collagen matrix 
cell motility results in collapse 
of the matrix/shrinkage

1982 Stopak and Harris Wrinkling of a monolayer 
silicone sheet by fibroblasts

Thought to be due to tractional 
forces by cell locomotion

1986 Hurst et al Wrinkling of a deformable 
rubber substratum

Dupuytren’s fibroblasts can 
transmit force to a substratum

1990 Kasugai, Suzuki et al Analogue force transducer 
of free floating collagen 
gels

Force generated by dog 
alveolar periodontal 
fibroblasts is sufficient to 
cause tooth eruption

1991 Delvoy e e ta l Analogue system for 
isometric force 
measurements

Force is generated by dermal 
fibroblasts within a 
rectangular collagen gel

1992 Tomasek et al Stress- release pattern of 
contraction in circular gels

Measurements of diameter 
reduction in a circular gel

1992 Kolodney and 
Wysolmerski

Quantitative measurements 
of isometric contraction of 
fibroblasts

Measurement of diameter 
reduction in a circular gel

1994 Eastwood et al 

1996 Eastwood et al

Culture force monitor 
(CFM) for measurement of 
contractile force developed 
by fibroblasts 
Tensioning culture force 
monitor (tCFM)

Force is generated by dermal 
fibroblasts within rectangular 
collagen gel. External forces 
may be applied across the gel 
to study response to a 
changing tensional 
environment

Table 1.3: Experimental models used to investigate cell contractility, and morphology

27



Introduction

The earliest of these was the development of a three dimensional cell seeded circular 

collagen matrix (Elsdale and Bard 1972). These have been studied as free floating gels 

which are under little mechanical stress, as tethered stressed gels where a tensile stress is 

applied to the gel via its attachment to a surface, and this provides a reactive tensile force 

on the resident cells as they contract, or as stress-released gels where cells develop 

isometric tension while the gel is attached, and this tension is then released to initiate 

cellular contraction (Grinnell 1994; 2000; 2003). (Table 1.4; figure 1.3) Disadvantages 

with these systems is that measurement of force generation is only semi-quantitative, and 

that that manipulation of load is unable to be performed.

MODEL 1) Floating matrix 
contraction

II) Anchored matrix 
contraction

III) Stress-relaxed 
matrix contraction

MEASUREMENT Reduction in 
diameter

Reduction in height Reduction in 
diameter after 
release from 
anchorage

MECHANICS Isotopic tension 
distribution 
Mechanically 
relaxed tissue

Anisotropic 
distribution of tension 
Stressed tissue

Initially
mechanically
stressed
Then mechanically 
relaxed ■

Table 1.4: Models for matrix ntraction.

0 ) (ID OH)

Figure 1.3:
Diagrammatic 
representation of
circular models of collagen gel contraction. (Adapted from Grinnell -  Fibroblasts, 
myofibroblasts and wound contraction (1994))
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Fibroblasts resident within collagen gels that are floating in culture medium are 

mechanically unloaded, whereas those in gels that are attached develop isometric tension. 

These mechanical differences lead to changes in cell phenotype. Fibroblasts that are 

attached develop stress fibres and may differentiate into myofibroblasts, whereas those 

that are unstressed or floating will become quiescent, with a subpopulation becoming 

apoptotic (Grinnell 1994). Morphologically there are marked differences, with cells in 

floating matrices appearing dendritic, and those in stressed matrices demonstrating a 

stellate or bipolar appearance (Grinnell 2003).

The mechanism of free floating collagen gel contraction is postulated to be based upon 

cell attachment to the matrix, with cellular migration or locomotion through it (Grinnell 

1994). Tethered gels develop an isometric force as the resident cells contract against the 

fixed points. Stress-relaxed gels behave as tethered gels initially, and when the gel is 

released from its attachment, a rapid contraction will occur that is proportional to the 

isometric force generated by the cells (Grinnell 2003).

Later experimental models have advanced to directly measure cellular forces within a 

collagen matrix, and these include the culture force monitor (CFM), the tensioning 

culture force monitor (tCFM) (Eastwood et al 1994; 1996) and a similar system 

developed by Delvoye et al (1991). Use of these machines is both accurate and 

reproducible, and has for the first time resulted in researchers having the ability to make 

fine precise adjustments to the external tension applied across a collagen gel, and monitor 

the responses made by the cells in real time over many hours. A static load is applied 

across this rectangular gel by virtue of its attachments at each end to the CFM force 

transducer, and fixed point. Additional forces may be applied externally to the system 

either manually or by using a computer driven motor. As a comparison to circular gels 

models, the culture force monitor most closely resembles an anchored gel. However the 

most important difference is that the anchors are placed at each end of the rectangular gel 

giving a single direction to force generation by the cells whereas within a circular gel 

forces generated are multidirectional (Eastwood et al 1994; 1996). The ability to directly
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measure the tensional force on a collagen substrate has led to improved understanding of 

fibroblast function in both normal and diseased tissue, which is an exciting development 

in the realm of cellular mechanics.

1.16 FIBROBLAST CONTRACTION

Much research using a variety of the experimental models described above has led to 

greater understanding of the mechanism by which fibroblasts contract. Several different 

components to the generation of a contractile force by a single fibroblast have been 

defined. The process is thought to involve several linked stages, commencing with cell- 

matrix contact, recruitment of cell contact sites, cytoskeletal organization with cell 

spreading, generation of cell-matrix tractional force, and finally contraction (Sethi et al 

2002). Possibly one of the most important of these is physical linking between the cell 

cytoskeleton and the extracellular matrix. It is thought that cell surface integrins play a 

vital role in this process by attachment to one or more matrix ligands, including 

fibronectin, and vitronectin. The integrins are a family of extracellular matrix receptors 

present on a cell surface which act by linking extracellular macromolecules with the 

cytoskeleton and promoting cell attachment, migration and shape changes (Burridge et al 

1988; Clyman et al 1990). Cell-collagen attachment has been shown to be fibronectin 

dependant, with the contractile force being dependant on specifically the a2pl integrin- 

matrix interaction (Schiro et al 1991; Langholtz et al 1995; Xu et al 1998), but 

independent on other integrin interactions such as that of the a5pi integrin (Tomasek and 

Akiyama 1992). Recent work has indicated that there may be a short sequential cascade 

of integrin utilization in the early phases of fibroblast contraction commencing with 

fibronectin receptors and ending with the collagen integrin subcomponent (Sethi et al

2002). Other work has also suggested that TGF-p may act via integrin function and cell 

attachment during the early phase of cell contraction (Brown et al 2002). Indeed TGF-p 

was seen to dramatically up-regulate vitronectin integrin receptor expression, although it 

was concluded that TGF-p behaves primarily as a mechanoregulatory growth factor, and 

that integrin stimulation may be a consequence of altered cell stress.
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Forces applied through the membrane bound integrins are transduced into intracellular 

signals that mediate the redistribution of cytoskeletal proteins, and alter expression of 

cytoskeletal genes such as actin, filamin and vinculin (D’Addario et al 2001). The 

filamin protein acts to stabilize cortical actin fibres, increasing actin rigidity, and 

preventing cell depolarization by distortion of the membrane by external force 

(Kainulainen et al 2002). Part of the contractile force generated by the fibroblast is due 

to stored energy within the cell’s actin-myosin motor elements of the microfilaments. 

This force is proposed to be held as a compressive load that maintains cell shape. This 

has been termed the residual internal tension (Brown et al 1996). In addition to this the 

microtubules within the cell act as an intracellular framework, which counteracts the 

pulling force of the microfilaments and maintains the cell morphology (Brown et al 

1996). Microtubules are thought to affect cell attachment to the extracellular matrix by 

regulating turnover at adhesion sites (Kaverina et al 2002)), and also play a role in 

modulating mechanotransduction via transcription of the filamin A gene (D’Addario et al

2003).

Thus it can be seen that the contraction of a cell seeded collagen gel is an active process. 

The rate of contraction is dependant on the cell number, the type and concentration of the 

collagen, the presence or absence of serum (Bell et al 1979; Guidry and Grinnell 1985), 

and is also dependant on all the factors involved in fibroblast action as has been discussed 

above.

1.17 TENSIONAL HOMEOSTASIS

It has been demonstrated using the culture force monitor that fibroblasts seeded into a 

three dimensional collagen gel are able to generate substantial contractile forces 

(Eastwood et al 1996). Cellular contraction was described as occurring in three phases. 

The first phase occurs with in the first three hours, when cells contribute little to the net 

force recorded by the CFM. The generation of force in this stage was hypothesized to be
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due to the stabilisation and intermeshing of the collagen fibrils within the gel. The 

second phase consists of a near linear increase in force, occurring between 3 and 8 hours 

that correlates with cell attachment, spreading and extension of cell processes (Delvoye et 

al 1991; Kolodney and Wysolmerski 1992; Eastwood et al 1994). The final phase is a 

flat plateau phase of equilibrium where the force generated was balanced by the tension 

of the culture force monitor. As tension develops within the system the cells become 

aligned parallel to the strain along the collagen gel (Eastwood et al 1998).

Later experiments using the culture force monitor have demonstrated that fibroblasts 

respond to changes in mechanical loading in a way, which maintains tensional 

homeostasis in their surrounding matrix (Brown et al. 1998). Fibroblasts seeded in a 

three-dimensional collagen gel rapidly generate and maintain a tensional force within that 

matrix. Their response to mechanical stress was deduced by applying precise mechanical 

loads across the lattice, and then measuring the gross and net force across the substrate. 

Dermal fibroblasts were seen to increase their contraction in response to underloading of 

the tensioning culture force monitor, reaching a force close to that prior to unloading. By 

applying external overloading forces, it was seen that a reduction in cell-mediated tension 

occurred. The cellular response was always in the opposite direction to the previously 

applied load. This was defined as tensional homeostasis since resident cells appeared to 

respond by maintaining a constant endogenous matrix tension. It is still uncertain exactly 

how fibroblasts monitor tension within the extracellular matrix and by which mechanisms 

their own internal cellular tension changes. Mechanisms that have been proposed for this 

phenomenon have included intracellular fluxes of calcium ions in response to stretch 

(Arora et al 1994), and an upregulation of a cyclic AMP secondary messenger system as 

stress is increased (He and Grinnell 1994).

1.18 CONTRACTION IN DUPUYTREN’S DISEASE

It has been proposed that contractile forces generated by Dupuytren’s fibroblasts play an 

important role in the development and progression of the shortened contracted fascia seen
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in this disease (Schultz and Tomasek 1990; Schurch et al 1990). The majority of 

contraction studies on Dupuytren’s fibroblasts have utilized stress-relaxed collagen gel 

models (Rayan and Tomasek 1994; Rayan et al 1996; Tarpila et al 1996; Sanders et al 

1999; Vaughan et al 2000), with few others utilizing the culture force monitor model 

(Jemec 1999 MD thesis; Bisson et al 2004).

Rayan and Tomasek (1994) examined the organization of the actin cytoskeleton, and 

extracellular matrix attachments in a stressed collagen gel, and demonstrated that 

contraction of these gels was completely actin-dependant upon release. These workers 

noted that normal palmar fascia fibroblasts developed the morphological appearance of 

myofibroblasts on light microscopy after being seeded into a collagen lattice, plus these 

cells generated large amounts of contractile force, not significantly different from forces 

generated by Dupuytren’s derived cells. The same team (Rayan et al 1996) ran another 

study to identify specific agents that had the potential to promote or inhibit contraction of 

Dupuytren’s fibroblasts. It was demonstrated that lysophosphatidic acid (LPA) promotes 

cellular contraction whereas nifedipine, verapamil and prostaglandins inhibit contraction 

of Dupuytren’s fibroblasts. The action of LPA was hypothesized to occur by activation 

of specific second messenger cascades via decreasing cAMP, and increasing intracellular 

calcium levels. In other studies using the culture force monitor the application of 5- 

fluorouracil to a Dupuytren’s fibroblast seeded collagen gel resulted in a significant 

decrease in contraction (Jemec, MD thesis 1999).

A reduction in cellular contraction has been shown to occur in Dupuytren’s fibroblasts 

exposed to interferon-y in a stress relaxed circular collagen gel model (Sanders et al 

1999). On a molecular level it was found that interferon down-regulated the mRNA 

levels of cytoplasmic p and y actin isoforms. It was postulated that a reduction in these 

actin isoforms in cytoplasm may impede the formation of filopodia by fibroblasts and 

thus reduce contractile ability. It has previously been shown that increased expression of 

a-smooth muscle actin (SMA) is associated with increased contractility of fibroblasts in 

Dupuytren’s disease (Tomasek and Rayan 1995). The expression of a-SMA correlated 

with the stage of the disease, with the greatest percentage occurring in the proliferative
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phase. However of note was the finding that expression of a-SMA is not required for 

contraction. Enhanced cellular contraction occurs after exposure of Dupuytren’s 

fibroblasts to TGF-(31 in both a stress relaxed model (Vaughan et al 2000) and a culture 

force model (Bisson et al MD thesis 2004).

Only two researchers have studied variation in contractility between Dupuytren’s nodule 

and cord derived cells (Moyer et al 2002; Bisson et al 2004). Moyer et al (2002) 

demonstrated that there was a significantly increased contractile ability for early passage 

nodule fibroblasts in comparison to cord fibroblasts. Late passage nodules became less 

effective at contraction, and were equal to both early and late passage cord cells in their 

ability to contract a collagen gel. It was hypothesized that Dupuytren’s nodule fibroblasts 

change their phenotype after undergoing repeated cell passage acquiring a cord like 

phenotype, suggesting that the nodule is the early stage of the disease. The work of 

Bisson et al (2004) has also showed increased force generation by nodule derived cells in 

comparison to cord in a culture force monitor again suggesting functional differences 

between these different entities.

1.19 FROM CONTRACTION TO CONTRACTURE

It is currently accepted that the contractile ability of fibroblasts is responsible to a great 

extent for connective tissue remodeling during wound healing or in pathological fibrosis 

(Tomasek et al 2002). Tissue matrices exist under a mechanical tension, while the cells 

residing within tissue matrices are protected from external forces by the mechanical 

properties of the tissue itself. This has been described as “stress-shielding” (Tomasek et 

al 2002), and it appears that there is a very close relationship between the normal tension 

of resident cells, the ability of the matrix to act in “stress shielding” and remodeling of 

that matrix to keep a tissue in mechanical equilibrium whereby deposition is equal to 

degradation (Tomasek et al 2002). In Dupuytren’s disease it appears that the balance has 

been disturbed towards excess matrix deposition, thus resulting in permanent tissue 

contracture (Flint and Poole 1990).
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1.20 MATRIX REMODELLING AND DUPUYTREN’S DISEASE

There is little data that looks at the measurement of matrix remodeling in the literature. 

However a vast amount of information has been written on the fact that tissues are able to 

remodel during embryogenesis, growth, wound healing and disease progression. It is 

postulated that cells are sensitive to mechanical forces, and can change the extracellular 

matrix in response to a change in the surrounding environment (Tomasek et al 2002). 

Using a three dimensional collagen gel system allows the creation in vitro of a tissue 

equivalent material, and this allows fibroblast behaviour to parallel that seen in the in 

vivo situation with regards migration, morphology, and protein synthesis.

Mechanical tension governs fibroblast proliferation and collagen production in the 

maintenance of the extracellular matrix. In any tissue there is complex interplay of 

synthesis and degradation of the extracellular proteins which usually results in a steady 

state homeostasis of the tissue. In the case of Dupuytren’s disease and other 

fibroproliferative disorders collagen synthesis appears to exceed its degradation resulting 

in the typical nodules and cords seen within the palmar fascia. It is uncertain however 

how much remodeling of the matrix contributes to progression of the disease, and how 

much is due to the cellular fibroblast contraction. Some workers proposed that 

contracture is a result of physical shortening of matrix, rather than collagen folding or 

pleating as shown by X-ray diffraction studies (Brickley-Parsons et al 1981) and also by 

electron microscopy (Legge et al 1981). Others suggest that contracture is a result of two 

separate processes occurring in parallel (Guidry and Grinnell 1987; Glimcher and 

Peabody 1990):-

1. Cell mediated contraction of the matrix

Fibroblasts resident within a tissue matrix contract, pulling on their matrix and

causing a physical deformation and shortening of the matrix (Harris et al

1981).
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2. Continuous matrix remodeling

Remodeling of the tissue matrix in the new shortened position may lead to the

permanence of contracture seen in the diseased digits of Dupuytren’s disease

(Flint and Poole 1990)

By stepwise repetition of these processes over a long period of time it is possible that this 

may lead to the flexion deformities seen in Dupuytren’s disease.

The first major study to measure the ability of cells to transfer force to a tissue matrix 

was that performed by Grinnell and Ho in 2002. This work using human dermal 

fibroblasts showed that mechanical load was transferred from fibroblasts incubated with 

TGF-p 1 into a stress-relaxed collagen matrix. It was seen that collagen matrix 

contraction was completely actin-dependant at culture day one, but by day 6, over 50% of 

generated force was retained within the gel after disruption of the actin cytoskeleton. It 

was hypothesised that this retained force involved rearrangement of collagen fibrils, plus 

deposition of collagen and fibronectin (Fukamizu et al 1990; Vaughan et al 2000).

Connective tissue contracture tends to be a slow irreversible process, which involves 

matrix dispersed cells and is dominated by extracellular events such as matrix remodeling 

(Glimcher and Peabody 1990). The end result is progressive shortening of the tissue 

involved. It is thought that contracture occurs as a result of local pericellular shortening 

events initiated by the myofibroblast (Tomasek et al 2002). Myofibroblasts within a 

collagen lattice bind to their extracellular matrix via the fibronexus which is linked to the 

cells’ actin intracellular stress fibres. As the myofibroblast contracts, the local tissue 

matrix also contracts, and this results in bundling of the pericellular collagen network. 

New matrix components are then laid down to stabilize the new position of the collagen 

fibrils. The cell then respreads within the newly remodeled environment, and the process 

can begin again. Throughout the tissue, this process occurs in a small incremental 

manner (Ryan et al 1974; Tomasek et al 2002).
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1.21 CYTOCHALASIN-D

Cytochalasin-D (CD) is an alkaloid drug produced by the mould Metarrhizium 

anisopliae. It is one of a group of related fungal toxins discovered in 1964 by Carter et 

al. while working on mould filtrates. It is a potent inhibitor of actin dependant cellular 

processes, and cellular contractile force. It has been implicated in promoting conditions 

favourable for depolymerising actin.

Actin is one of the main proteins of eukaryotic cells of which there are 2 forms. G-actin 

is the monomeric subunit and can polymerize into F-actin. F-actin filaments are 

organized into higher order fibrous structures by interaction with actin binding proteins. 

When fibroblasts adhere to a surface, stress fibres of F-actin attach to the inner surface of 

the plasma membrane at sites called focal adhesion plaques, and also attach from the cell 

to the extracellular matrix via integrins. Stress fibres are orientated parallel to the 

direction of movement of the cell (Tomasek and Haaksma 1991). Shortening of the 

stress fibres occurs via the action of myosin-ATP activity.

After addition of cytochalasin-D, cells become rounded, microvilli and lepiellopodia 

disappear. At high concentrations the actin cytoskeleton is completely disrupted 

(Wakatsuki et al 2000). The total F-actin content of treated cells diminishes as stress 

fibres and cortical thin filaments are no longer visible under the microscope. Thus, 

cytochalasin-D is postulated to bind to G actin and prevent polymerization of actin 

monomers. Existing F-actin fibers then depolymerize as the effective concentration of 

free G-actin becomes limiting. In some types of cells, binding of cytochalasin-D to G- 

actin also results in proteolytic degradation of monomeric actin.

Schliwa (1982) proposed that the dramatic effects of cytochalasin-D results from both a 

direct action of the drug on the actin filament component of the cytoskeletal network, 

plus a secondary cellular response. The direct action leads to an immediate disruption of 

the cytoskeletal network that involves breaking of actin filaments. The cellular response
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engages network fragments in an energy dependent (contractile) event that leads to the 

formation of filament foci.

Thus addition of an appropriate concentration of cytochalasin-D to a fibroblast populated 

collagen matrix will result in a disruption of the cells’ cytoskeletal network, loss of stress 

fibres and loss of contractile ability. Cells will be prevented from further rearranging 

their collagen fibrils, although those already reorganized are maintained via fibril-fibril 

interactions stabilized by noncovalent bonds (Guidry and Grinnell 1985). By “knocking 

out” cellular contraction matrix remodeling may be calculated in the culture force 

monitor model (Marenzana et al 2004 in press).

1.22 SUMMARY

It is appreciated that the current management of Dupuytren’s disease is not ideal 

considering the high recurrence rates following surgery and the lack of a suitable non- 

surgical option.

Although our understanding of the disease has improved considerably, none of these 

findings have led to clinical progress. We must therefore continue to improve our 

knowledge of the cell biology, cell mechanics and molecular biology of the disease.
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1.23 INTRODUCTION TO THE THESIS

This thesis focuses primarily on the events that occur from the initial cellular contraction 

of the Dupuytren’s fibroblast through to the shortening and remodeling of the 

extracellular matrix.

The literature review has summarised the current knowledge of the history, epidemiology 

and aetiology of Dupuytren’s disease. Some background is given to current therapeutic 

strategies, and the problems associated with these. Further to this the literature specific to 

the cellular events surrounding Dupuytren’s contracture has been evaluated focusing in 

particular on current theories of cell-mediated contraction, matrix metalloproteinase 

expression and matrix remodeling.

From this review it was established that there are several gaps in knowledge, from which 

several key questions were raised:-

1. Do Dupuytren’s fibroblasts have the ability to achieve tensional homeostasis over a 

time course of 48 hours, or it absent in these cells during this period? Chapter 3.1

2. Are fibroblast responses to a reduction in mechanical strain altered in Dupuytren’s 

disease in comparison to the responses previously documented in dermal fibroblasts 

(Eastwood et al 1998)? Chapter 3.2

3. Does fibroblast morphology change with mechanical stimulation in Dupuytren’s 

disease? C hapter 3 3

4. How does the expression of the genes for the matrix metalloproteinases, their tissue 

inhibitors, and collagen change in response to mechanical stimulation in Dupuytren’s 

fibroblasts? Chapter 4

5. Do Dupuytren’s fibroblasts display an increased ability to remodel a collagen matrix 

in comparison to normal fibroblasts? Chapter 5

6. Is there any relationship between force of contraction by Dupuytren’s fibroblasts and 

disease recurrence? Chapter 6
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From the questions raised above the following hypothesis is proposed: -

It is hypothesised that Dupuytren’s fibroblasts have increased 

contractile properties with no evidence of tensional homeostasis in 

comparison to normal fibroblasts derived from the palmar fascia of the 

carpal ligament Dupuytren’s fibroblasts will contract in response to an 

externally applied mechanical load, and this will lead to an up- 

regulation of matrix metalloproteinase gene expression, with increased 

matrix remodelling as measured within a three dimensional collagen gel 

system.

All methods have utilized fibroblasts derived from separate nodule and cord regions from 

patients with primary Dupuytren’s disease only, in order to exclude the influence of 

previous surgery. Normal control palmar fascia fibroblasts have been taken from patients 

undergoing carpal tunnel release that have had no history or clinical evidence of 

Dupuytren’s disease.
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CHAPTER2 

MATERIALS AND METHODS
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2.1. GENERAL CELL CULTURE

Dupuytren's and control carpal ligament fibroblasts were established in culture following 

local ethical committee approval (Number EC2002-77). Dupuytren’s disease tissue was 

obtained from excised specimens at elective surgical fasciectomy. Skin was obtained 

from the RAFT tissue bank for use as an additional control tissue. Carpal ligament was 

selected as control palmar fascia and excised from the incised free edge of the carpal 

ligament at routine carpal tunnel decompression. These patients showed no clinical 

evidence of Dupuytren’s disease. Several previous investigators have used carpal 

ligament cells as non-diseased fibroblasts for comparison with Dupuytren’s disease 

derived cells (Badalamente et al 1983; Rayan and Tomasek 1994; Tomasek and Rayan 

1996). [Cell lines established are detailed in appendix 1]. All cell culture work was 

carried out in sterile class II laminar airflow hoods, (HERA Safe, No. HS 12, Heraeus 

Instruments, Hanau, Germany) and flasks maintained in Heraeus (No. BB16, Heraeus 

Instruments) incubators kept at 37°C, humidified and with a CO2 concentration of 5%.

2.1.1. Establishment of Cell Cultures

Fresh tissue was obtained from the plastic surgery theatres wrapped in a saline soaked 

sterile swab. Dupuytren’s tissue excised at fasciectomy was selected to include at least 

one clinical nodule and a length of pathological cord identified per-operatively as judged 

by the senior operating surgeon and the primary researcher. All tissue was obtained from 

patients undergoing primary procedures for Dupuytren’s disease; no recurrent cases were 

included. When cleaned of surrounding fatty and loose connective tissue the specimen 

would often resemble a “drumstick” shape (figure 2.1). This tissue was sectioned 

longitudinally with one half being fixed in 10% formal saline for histology and the other 

half being used to establish cell cultures. An explant method (Jones and Witowski 1979) 

was used to establish cells in culture with two cell lines obtained from each specimen, 

one from the nodule and one from the cord (figure 2.1). Tissue from these regions was
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macerated using a sterile scalpel and forceps, which had been previously sterilized in 

70% Industrial Methylated Spirits (IMS) and allowed to air dry. The tissue was placed 

on the base of a T25 tissue culture flask (No. 690-160, Greiner Labortechnik, Greiner bio 

one, Germany.) and allowed to adhere for 2 minutes. It was bathed in normal fibroblast 

growth medium (NGM - see appendix II for composition) and incubated until fibroblasts 

were observed migrating from the specimen. At this point the media was changed and 

then further media changes were carried out on every third or fourth day thereafter. Cells 

were passaged into T175 tissue culture flasks (No. 658-170, Greiner bio one.) just prior to 

confluence.

Carpal ligament tissue was explanted in exactly the same way, but without separation into 

selected zones. Established dermal fibroblast cell lines were brought up from frozen as 

detailed in section 2.5.

Figure 2.1. A Typical Dupuytren’s Disease Specimen.
Dupuytren’s disease tissue being excised from a patient undergoing routine primary 
fasciectomy. b) The defatted specimen illustrating macroscopically identifiable regions of 
nodule (N, red arrow) and cord (C, yellow arrow), c) The specimen bisected 
longitudinally. The inked end of the specimen allows orientation of the specimen 
throughout processing.
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2.1.2. Routine Propagation of Cell Cultures

Cells were passaged just prior to confluence by splitting 1:3 in T225 tissue culture flasks. 

Culture medium was aspirated and the cell monolayer washed with 10ml phosphate 

buffered saline w/o calcium and magnesium and w/o sodium bicarbonate (PBS) (No. 

14190-094, Gibco, Paisley, Scotland). This was aspirated and 5ml of 1:10 trypsin : 

versene ( see appendix II for formulation ) solution was added. The flask was incubated 

for 5 minutes and then agitated to obtain a single cell suspension. The trypsin solution 

was neutralized with 20ml of NGM and the resulting suspension was then centrifuged at 

1000 rpm for 5minutes. The supernatant was discarded and the cell pellet resuspended in 

9mls of culture medium.

3mis of solution was distributed to each of 3 T225 cell culture flasks. These were 

incubated as previously described. Cells used were all at or below passage 5 in an 

attempt to limit any dedifferentiation of the fibroblast population. (Passage represents the 

subculturing from one flask to another by trypsinisation, as each flask reaches 

confluence. The higher the passage number, the older each generation of cells becomes).

2.13 , Cryopreservation of Cells

Cells were stored once established at passage 2 in culture by freezing. A cell suspension 

obtained after trypsinisation of the monolayer, described above, was centrifuged at 1000 

rpm for 5 minutes to obtain a cell pellet. The supernatant was discarded and the pellet 

resuspended in 10 mis of NGM prior to being centrifuged again at 1000 rpm for another 5 

mins. The supernatant was discarded and the pellet resuspended in 3ml of a solution of 

10% DMSO (Dimethylesulphoxide, No. D2650, Sigma Chemical Company, Poole, 

Dorset) and 90% fetal calf serum (No. 10106-169, Gibco). 1ml was dispensed into each 

of 3 cryovials labelled with name, cell line, passage and date. The usual cell density for
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cryopreservation was at 1x10 6 /ml). They were wrapped in tissue paper for insulation 

and then placed in a -80°C freezer for 24 hours. The tissue paper allowed a gradual 

decrease in temperature during the freezing. Once frozen, samples were transferred to 

liquid nitrogen for long-term storage.

2.1.4. Raising Cells from Frozen

Cryovials were thawed rapidly in a water bath at 37°C. The cell suspension was 

transferred to a 15ml Falcon tube and 10ml of NGM was very slowly added whilst 

agitating gently. The resulting suspension was centrifuged at 1000 rpm for 5mins and the 

supernatant aspirated and discarded. The cell pellet was washed of remaining 

cryopreservative with 10ml of NGM and recentrifuged. The supernatant was again 

discarded, the cell pellet was resuspended in 5ml of NGM and dispensed into a T25 flask 

for incubation.

2.1.5. Determination of Cell Number and Viability

Cells were counted using a haemocytometer (improved Neubauer) and stained with 

Trypan Blue to determine viability. An aliquot of 50pl of a well-mixed cell suspension 

was diluted 1 in 2 with 50pl of Trypan Blue (0.4%, Sigma.) and then drawn between the 

haemocytometer (Nebauer) and cover slip by capillary action. This was examined under 

an inverted phase contrast microscope (Olympus CK2, Olympus Optical Co., Japan.) 

where dead cells were seen to stain darkly with the Trypan Blue as live cells pump out 

the dye. The number of viable cells contained within 1 large grid of the haemocytometer 

was counted and this repeated in 3 further grids. The mean cell number of all 4 was taken 

and multiplied by 2 (the dilution factor) and then by 104 to give the cell density. (Viable 

cells/ml)
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2.2. HISTOLOGY

The fixed specimens of Dupuytren’s tissue were embedded in paraffin blocks with a 

known orientation maintained by inking of one edge of the sample. This allowed 

accurate identification of the areas corresponding to those where cell cultures were 

established from under light microscopy. Representative sections of the embedded tissue 

were cut and stained with haematoxylin and eosin. Paraffin blocks were sectioned at 4 

pm using a Reichert-Jung Microtome (Leica Instruments, Germany) and were mounted 

on glass slides (No. 00210, Snowcoat Extra; Surgipath, St. Neots, Cambs.). Sections 

were dewaxed by bathing in xylene (No. 202-422-2, Genta Medical, York, UK) for 10 

minutes and were then rehydrated through bathing in a series of ethanol (Hayman Ltd, 

Essex, UK) dilutions, from 100% then 90%, 70% then to tap water. The sections were 

stained in Harris Haematoxylin (No. 31945S, BDH, Poole, Dorset, UK.) and Eosin (1% 

solution; 1034197, BDH) by firstly immersing the slides in Haematoxylin for 1 minute. 

They were then washed well under running tap water before immersion in eosin for 1 

minute. After a further washing sections were dehydrated through the alcohols, cleared 

and mounted using DPX (No. M81330/C, DiaCheM, London, UK.) and 22 X 30 mm 

cover slips (Menzel-glazer). Examination at lOx and 20x magnification (Zeiss 

Axioscope 20, Carl Zeiss, Germany) allowed confirmation of histological differences in 

the regions used for different cell culture zones. These broadly corresponded to Luck’s 

1959 classification. The “Nodule” zone was highly cellular with disorganized 

architecture and minimal collagen deposition correlating to the proliferative phase, (fig. 

2.2) The “Cord” was relatively acellular with large amounts of parallel, longitudinally 

aligned collagen representing the residual phase, (fig. 2.3)
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Figure 2.2: Haematoxylin and Eosin section of a Dupuytren’s nodule showing cells 
orientated in a disorganised fashion, and minimal surrounding extracellular matrix (x 200 
magnification)

Figure 2.3: Haematoxylin and Eosin section of a Dupuytren’s cord showing aligned 
extracellular matrix, with very few cells aligned in an organised fashion along the matrix 
fibres (arrow indicates direction of alignment of cells). Note in both pictures the same 
magnification, but very different cellularity. (x 200 magnification)
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23 . THE CULTURE FORCE MONITOR

The culture force monitor (Eastwood et al 1994) is an apparatus designed to measure 

forces generated by cells within a three dimensional matrix in real time.

The cell seeded collagen lattice resides within a rectangular well filled with normal 

growth media in order to provide a friction free environment. The well is a standard size 

situated within a single rectangular block of PTFE (RS components). The well has 

standard dimensions 75=25=15mmm to a depth of 10mm and is hydrophobic to inhibit 

collagen gel seeded cell attachment. The collagen gel floats between two hydrophilic 

floatation bars (appendix III). The floatation bars are connected to the culture force 

monitor by means of two “A” frames of stainless steel suture wire (appendix III). One 

frame is attached to a fixed point within the apparatus, and the other is attached to a 

sensitive force transducer by means of a small hook. The chamber sits on a base stage, 

similar to that of a microscope mounting stage, with a micrometer calibrated wheel 

allowing accurate, unidirectional movement of the system towards or away from the 

force transducer. The whole apparatus is kept at 37°C, 5% CO2, and constant humidity 

within an incubator (Galaxy S, Wolf laboratories).

The CFM is powered by a 12V power supply which applies a high input signal increased 

by a strain gauge amplifier. The output from the amplifier is channeled into a voltmeter, 

and through an analog digital converter at a rate of one reading per second of force and 

time. This is transferred to a desk top computer (Akhter, Pentium PC; 48MB RAM; 

Windows 95) via which a computer software programme (Labview, National 

Instruments) records the data.

The force transducer is regularly calibrated against a series of known weights (appendix 

IV) in order to ensure linearity of displacement of the strain guage.
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Figure 2.4. The Culture Force Monitor Set Up.
The cell seeded collagen lattice (a) is suspended between two floatation bars (b) attached 
to “A” frames. It floats within a well of fixed dimensions in a silicone elastomer mould 
(c), which is filled with growth media. One “A” frame is attached to a fixed point (d), 
whilst the other is attached to the force transducer (e). The force transducer is connected 
to a desktop computer. The apparatus sits on a moveable microscope mounting stage, 
which can be moved towards or away from the force transducer by the micrometer wheel 
(0.

2.3.1. Preparing the Fibroblast Populated Collagen Lattice

The cells to be used were grown to just sub-confluence in a T225 cell culture flask 

(Coming, Coming Inc NY). In general two flasks were required to provide sufficient 

cells at this density. The monolayer was washed twice with 10ml PBS and the cells were 

then trypsinised off of the flask using 5ml of trypsin/versene solution (1 in 9 dilution). 

Once in suspension the trypsin was neutralised with normal growth medium and then the 

cells were centrifuged at lOOOrpm for 5 minutes. The supernatant was discarded and the 

cells resuspended in 10ml of normal growth media. Cell counting and viability 

confirmation was then carried out as described earlier and the cells were centrifuged once 

more. The cell pellet was resuspended in normal growth media depending on the viable 

cell number to reach a concentration of one million viable cells per lOOpl of media.
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Meanwhile the mould and floatation bars for the culture force monitor gel were prepared. 

The bars (appendixlll ) were checked for symmetry and correct height relative to the 

mould. They were then immersed in alcohol to sterilise them and left on a sterile petri 

dish to air dry. The mould was pre-autoclaved and obtained ready for use.

The collagen gel was prepared using 6ml of collagen prep mixed with 700pl of lOx 

Minimal Essential Media (MEM) (Gibco Cat No. 21430-20). The solution was 

neutralised using drop wise addition of first 5M NaOH and then with 1M NaOH until a 

colour change of the solution from yellow to just pink is observed. The liquid was mixed 

by swirling and lml of the solution was quickly dispensed into the lattice of each bar. 

Five million fibroblasts were then seeded into the remaining solution by adding 500pl of 

the cell suspension prepared above and mixed trying to avoid bubbles. The bars were 

placed at each end of the mould well and the gel poured between them and agitated to fill 

the remaining space before it started to set. This was placed in an incubator at 37°C to 

gelate using an inverted 9cm petri dish base, with windows cut out to accommodate the 

bar arms, as a protective lid. (see figure 2.5.) A temperature change from room 

temperature to 37°C was required in order for the gel to set over a time period of 20 to 30 

minutes.
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Figure 2.5. A Close up of the Collagen Lattice within the Mould.
The collagen lattice has contracted, indicated by the concave long edges. It is floating 
freely in the well so that there is no friction on the system and even small changes in 
force can be accurately measured. The lid (arrow), made out of an inverted 9cm petri dish 
base, can be see sitting on top of the mould. Windows have been cut out of each side of 
the lid (arrow head) to allow the “A” frames to extend through.

2.3.2. Setting up the Fibroblast Populated Collagen Lattice on the Culture

Force Monitor

Once set, 20ml of normal growth media was added to the mould containing the fibroblast 

populated collagen lattice. A sterile needle was used to free the edge of the gel from the 

mould walls and the floatation bars gently moved inwards to release them. The gel then 

floated to the surface between the buoyant bars. The gel was then transferred to the 

culture force monitor situated within a humidified incubator at 37°C, and 5% CO2 . The 

eye of one bar was placed over the fixed strut of the culture force monitor as the 

container was placed on the mounting stage. The stage was moved in towards the 

measuring arm until the other bar could be hooked onto it and the system gently altered 

until the gel, bars and arms were aligned and floating free with no friction (figure 2.5).
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The lid was replaced and the force transducer measured a voltage corresponding to the 

displacement of the measuring arm. The system was linked to a desk-top computer with 

software (Labview VI, National Instruments) recording one measurement every second, 

converting the voltage reading into a force measurement in dynes using a pre determined 

calibration factor (see Appendix IV for method of CFM calibration). Thus a real time 

graph of the force across the system was generated. At initial set up the force at 

equilibrium was set at zero and subsequent changes were observed over the following 48 

hours with readings once a second.

2 J J . Contraction Profile Determination (Static loading)

Once the fibroblast populated collagen gel was set up as described above the incubator 

was closed and data recording begun after 5 minutes of equilibration for temperature and 

CO2 . The whole system was maintained at 37°C and 5% CO2 for the duration of the 

experiment. The gel was left to contract for between 8-72 hours producing a contraction 

profile for each cell line studied as the attached desktop computer recorded one force 

reading every second in real time for the duration of the experiment. This data for each 

experiment was converted to a mean reading per minute (1 minute data points) at the end 

of the experiment using a DOS macro software program which was able to determine the 

mean force for each minute from the 60 one second readings recorded. A contraction 

profile could then be plotted of force against time using Microsoft Excel software 

(Microsoft corporation).

23 .4. Determination of Gradients of Contraction

The gradient of contraction at both 24 hours and 48 hours was calculated to give values 

for contraction rate in dynes per minute. The gradient of contraction at 24 hours was 

calculated by dividing the difference in the force readings at 23 hours and 24 hours by 60 

to give a value of rate of change of force in dynes per minute per 5 million cells. 

Similarly a similar calculation was made between 47 and 48 hours to determine the 48
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hour gradient. The gradient over the whole period from 0-24, and 0-48 was not utilized 

due to the non-linearity of each contraction profile. Mean maximum force and mean 

gradients of contraction for Dupuytren’s nodule, cord, carpal ligament and dermal 

fibroblasts overall were calculated using a Microsoft Excel spreadsheet (Microsoft Office 

2000).

2 J i .  System Underloading

At the end of an experimental run of 20 hours where the cell seeded collagen gel was 

allowed to contract on the culture force monitor, a series of underloading forces were 

applied to the gel. An underload was defined as a reduction in external tension applied to 

the gel. Each underload was achieved by rapidly turning the micrometer wheel on the 

CFM mounting stage by 30 micrometers leading to a reduction of longitudinal uniaxial 

tension on the gel of around 30 dynes. The system was then left for 30 minutes to record 

the response to this rapid reduction in load. The procedure was repeated a further three 

times so totaling four rapid underloads and four 30-minute post-underload responses. 

The experiment was terminated at this point and the gel removed from the machine and 

processed.

23.6. System Overloading

At the end of an experimental run of 20 hours where the cell seeded collagen gel was 

allowed to contract on the culture force monitor, a series of overloading forces were 

applied to the gel. An overload was defined as an increase in external tension applied to 

the gel. Each overload was achieved by rapidly turning the micrometer wheel on the 

CFM mounting stage by 30 micrometers leading to an increase of longitudinal uniaxial 

tension on the gel of around 30 dynes. The system was then left for 30 minutes to record 

the response to this rapid increase in load. The procedure was repeated a further three 

times so totaling four rapid overloads and four 30-minute post-overload responses. The
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experiment was terminated at this point and the gel removed from the machine and 

processed.

2.3.7. Measurement of Matrix Remodelling by Addition of Cytochalasin-D

Fibroblast populated collagen lattices were set up as described previously (Section 2.31- 

3). The lattices were allowed to set for 30 minutes at 37°C in 5% CO2 prior to floatation 

in 20ml of normal growth media and insertion into the culture force monitor. In half of 

the test cases of Dupuytren’s fibroblasts the media was supplemented by the addition of 

ascorbic acid to give an overall concentration of 50pg/ml. Three separate experiments 

were conducted.

In the first the collagen lattices were left to contract over a period of 8 hours. At this 

point the maximum generated force was noted, and then a single dose of cytochalasin-D 

(Sigma, Poole, Dorset, UK), 20pl of 60mM in 0.5ml of normal growth media was added 

to the normal growth media filled chamber to give an overall concentration of 60 pM 

within the chamber. This was added rapidly in order to minimise disruption to the 

incubator temperature and CO2 levels. Throughout this period force measurements were 

continuously recorded by the culture force monitor in real time, and these were continued 

for at least 4 hours after addition of cytochalasin-D. The above process was followed in 

separate experiments occurring at 24 hours and at 48 hours in order to investigate the 

effects of incubation time on matrix remodelling.

2.3.8. Limitations of the Culture Force Monitor Model

The culture force monitor set up is in an open chamber within an incubator, and thus the 

environment is not sterile. Infection of the media or collagen gel becomes more frequent 

by 72 hours, and indeed many specimens analysed at this time point under light
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microscopy showed microscopic evidence of infection. This would be likely to cause 

error in results. All cell seeded collagen gels were examined under light microscopy after 

removal from the CFM in order to exclude those from the study that showed evidence of 

contamination or infection.

23.9. Removal and Processing of gels from the CFM

At the conclusion of each experimental run the data was saved. The collagen gel was 

removed from the CFM mould under tension by holding the floatation bars in a fixed 

position using a sterile needle at each end attached to a polystyrene block. The culture 

media was removed with a pipette and the gel washed 3 times with sterile phosphate 

buffered saline solution. The collagen gel was removed from between the floatation bars. 

The gel was cut into 2 and processed according to figure 2.6. One half was snap frozen 

in liquid nitrogen before being stored at -80p°C. This half was used for molecular 

processing. The other half of the gel was processed for histological purposes in order to 

study cell morphology and extracellular matrix appearance. This section of gel was fixed 

in 4% paraformaldehyde solution and stored for 48 hours at 4°C.

Delta zone: stained in 

a selection o f gels^ v^
Snap Frozen in 

LN2Stained with

Toludine bhie.

Section stained for transmissionSections stained for a-smooth

electron microscopymuscle actin and collagen III

Figure 2.6. Processing of CFM gel at termination of runs.
Diagram indicating the whole collagen gel at the conclusion of experimental runs and the 
fate of different regions of the gel.

55



Materials and Methods

2.3.10. Measurement of Cell Viability within collagen gels on the CFM

Cell viability within the three dimensional collagen gels for separate nodule (n=4), cord 

(n=4) and carpal ligament (n=4) cell lines was determined at the end of 24 hours and 48 

hours on the culture force monitor in order to ensure that there was no significant cell 

death over the time that experiments were run using trypan blue. In all cell types the 

number of viable cells remained high at greater that 95% viability at both 24 and 48 

hours, with no significant difference in percentage viability between cell types. Thus 

variation in contraction profiles over time or between cell types cannot be attributable to 

differential cell death within the collagen gels.
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2.4. STAINING FIBROBLAST POPULATED COLLAGEN LATTICES FOR 

LIGHT MICROSCOPY

Basic cellular morphology within FPCLs run on the culture force monitor was assessed 

by staining with Toluidene blue. One quarter of each gel was soaked in a 1% solution of 

Toluidene blue (No. G298, Gurr’s Ltd, London, UK) for 15 seconds and then washed 

thoroughly with three changes of PBS for 15 seconds each. It was then observed under a 

light microscopy (Zeiss Axioscope 20). Digital images were taken and comparisons in 

morphology and alignment were made between Dupuytren’s nodule, cord and carpal 

ligament cell lines. The degree of alignment of the cells was calculated by measuring the 

mean angle of deviation from the long axis of the collagen gel of the bipolar fibroblasts 

that were in focus in a random 2-D micrograph at 200 times magnification. 8 randomly 

selected fibroblasts were measured from each field of view, with three fields of view used 

for each gel.

2.4.1. Staining Fibroblast Populated Collagen Lattices for a-Smooth Muscle

Actin

To assess myofibroblast content and orientation within the collagen gels small 

rectangular sections of the gel previously fixed and stored in PBS at 4°C were cut. The 

position of origin within the gel was noted as this has a bearing on the lines of stress and 

hence cellular orientation (Eastwood et al 1998). In each case a portion from the middle 

of the gel was used (figure 2.6).

The segment of gel to be stained was soaked in ice-cold methanol in a 6 well plate on an 

orbital shaker (Luckham R100 Rotatest Shaker) for lhr to permeabilise the cells. The gel 

was then washed with three changes of PBS for a total of lhr again on the orbital shaker
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(1 wash lasting 20 minutes each). The gel was incubated overnight in the dark at 4°C 

bathed in 500pl of the primary antibody, a mouse monoclonal anti a-smooth muscle actin 

antibody (Sigma) at lin 1000 dilution in PBS. A second piece of gel to be used as a 

negative control was placed in a separate well and incubated in the same way with only 

500|il of PBS.

The following morning the gels were transferred to separate wells of a new 6 well plate 

and washed with three changes of PBS on an orbital shaker for a total of 45 minutes (1 

wash for 15 minutes each). They were then placed in another well of the 6 well plate and 

each incubated with 500pl of the secondary antibody solution covered in foil on orbital 

shaker for lhr. The secondary solution was a FITC conjugated rabbit anti-mouse 

monoclonal antibody (Dako) at 1 in 400 dilution in PBS with Propidium Iodide at 1 in 50 

dilution as a nuclear counterstain. Finally the gels were again washed with three changes 

of PBS for lhr in a Universal container wrapped in foil to keep them in the dark and 

prevent degradation of the fluorescence.

The pieces of gel were placed on a glass slide, two drops of DABCO (see appendix V for 

composition) added and then covered with a cover slip for viewing. Stained pieces o f gel 

were viewed under ultraviolet light on a microscope at x 20 and x 40 magnification. 

Myofibroblasts positive for a-smooth muscle actin demonstrated intra cellular fibres that 

fluoresced bright green. Negative cells showed a red nucleus with diffuse pale red or 

orange cytoplasmic staining.

2.4.2. Assessment of Cell Alignment within Collagen Gels

Digital images of the gels stained with both toluidine blue and smooth muscle actin were 

captured at x 20 and 40 magnification using a Zeiss axioscope with a Leica DC200 

mounted camera and software (Leica DC Viewer, Leica Miscrosystems Ltd). By 

focusing in a specific plane a 2-D slice of the gel was captured and these were analysed 

using image analysis software (Sigma Scan).
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By correct orientation of the gel on the microscope slide, the overall orientation of the 

whole gel and its long axis was known. The long axis of the cells in focus was drawn and 

the angle of this from the long axis of the gel was calculated from the slope of the line. 

The mean angle of orientation of the in-focus cells was then calculated for each gel. 0° 

would indicate perfect cell alignment along the gel axis, whereas 90° indicated cell 

orientation at right angles to the direction of gel alignment and force.

2.43 . Staining Fibroblast Populated Collagen Lattices for Collagen Type III

To assess for the presence of collagen type III within the collagen type I gels, small 

rectangular sections of the gel previously fixed and stored in PBS at 4°C were cut. The 

position of origin within the gel was noted as this has a bearing on the lines of stress and 

hence cellular orientation (Eastwood et al 1998). In each case a portion from the middle 

of the gel was used (figure 2.6).

The segment of gel to be stained was soaked in ice-cold methanol in a 6 well plate on an 

orbital shaker (Luckham R100 Rotatest Shaker) for lhr to permeabilise the cells. The gel 

was then washed with three changes of PBS for a further lhr again on the orbital shaker. 

The gel was incubated overnight in the dark at 4°C bathed in 500pl of the primary 

antibody, an anti-human collagen type III monoclonal antibody (ICN) at lin lOpg/ml 

dilution in PBS. A second piece of gel to be used as a negative control was placed in a 

separate well and incubated in the same way with only 500pl of PBS.

The following morning the gels were transferred to separate wells of a new 6 well plate 

and washed with three changes of PBS on an orbital shaker for a total of 40 minutes. 

They were then placed in another well of the 6 well plate and each incubated with 500jil 

of the secondary antibody solution covered in foil on orbital shaker for lhr. The 

secondary solution was a FITC conjugated rabbit anti-mouse monoclonal antibody
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(Dako) at 1 in 400 dilution in PBS with Propidium Iodide at 1 in 50 dilution as a nuclear 

counterstain. Finally the gels were again washed with three changes of PBS for lhr in a 

Universal container wrapped in foil to keep them in the dark and prevent degradation of 

the fluorescence.

The pieces of gel were placed on a glass slide, two drops of DABCO (see appendix V for 

composition) added and then covered with a cover slip for viewing. Stained pieces of gel 

were viewed under ultraviolet light on a microscope at x 20 and x 40 magnification. 

Cells showed a red nucleus with diffuse pale red or orange cytoplasmic staining. The 

presence of collagen III was seen by the appearance of fibres or a haze staining green.

2.5. FIXATION AND STAINING OF GELS FOR TRANSMISSION 

ELECTRON MICROSCOPY (TEM)

Post fixation the gel was cut in half. One central sliver was processed for transmission 

electron microscopy (figure 2.6). This sliver was placed in a sterile petri dish and fixed 

for a further 24 hours in 2.5% glutaraldehyde buffered with 0.1M sodium cacodylate ( 

320 mosmol pH 7.4 at room temperature) (Appendix VI).

After 24 hours the small sliver of gel was cut into small portions of approximately 1- 

2mm3. These sections were placed into a container and washed for 5 minutes in 0.1 M 

sodium cacodylate buffer. They were then soaked in 1% osmium tetroxide buffered with 

0.1M sodium cacodylate for 90 minutes (Appendix VI). The specimens were then 

washed three times for 10 minutes each in 0.1 M sodium cacodylate.

The tissue blocks were progressively dehydrated with increasing concentrations of ethyl 

alcohol (Electron Miscroscopy Sciences Ltd Cat 15058) (2x10 mins 70%; 2x10 mins 

90%, 2x10 mins 96% ethyl alchohol and 2x20 mins 100% ethyl alcohol dried with
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sodium sulphate). The blocks were left for a final 30 minutes in 100% alcohol (dried 

with sodium sulphate).

The blocks were transferred to a fresh container and immersed in a 1:1 resin: alcohol 

mixture for an hour (Appendix VI). From now after each stage blocks were placed in 

fresh containers. The specimens were then immersed in pure resin for one hour with 

vacuum infiltration, and then a further hour in fresh resin, and finally they were left 

overnight in a final immersion of fresh resin. The next morning the blocks were placed 

in labelled cylindrical embedding moulds with fresh resin and cured overnight at 65 °C 

for a total of 18 hours.

The resin blocks were rough trimmed using a hacksaw. Thick 1 micrometer sections 

were cut using a glass knife on a Reichart ultracut microtome. 2 -3  sections were placed 

onto a glass slide and stained with methylene blue to confirm depth and location of the 

sections, prior to cutting ultrathin sections.

The microtome was then adjusted to cut using a diatome diamond knife (Gilder). 

Ultrathin sections from each block were cut and placed on to copper grids (Gilder 200 

mesh, 3mm diameter). The sections were transferred to a plate of dental wax surrounded 

by fresh crystals of sodium hydroxide in order to minimize CO2 degradation of stain. 

The sections were stained for 15 minutes with 2% aqueous uranyl acetate, followed by 

rinsing three times in deionised water. They were then stained for a further 15 minutes 

with Reynold’s lead citrate (Reynolds 1963), followed by washing three times in 

deionised water. Grids were stored in a glass petri dish on the surface of a piece of 

blotting paper.

Sections were viewed on a Phillips CM 12 electron microscope at 80KV at a 

magnification of 3,400 to 50,000 times. Photographs were taken using a 35mm roll film 

camera housed within the microscope.
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2.5.1. Development of TEM Negatives

All procedures were carried out in a dark room. A stock solution of Kodak D19 was 

prepared by taking 700ml and making it up to 2000ml volume with water at 20°C. This 

solution was poured into a developing tank. A working solution of the fixative was also 

prepared and placed into a second fixing tank.

The negatives were carefully removed from the electron microscope under dark room 

conditions, and transferred into a negative carrier. The negative carrier was transferred 

into the developing tank for 4 minutes agitating every ten seconds. After this time the 

cassette was removed from the tank and washed for 20 seconds in water. The cassette 

was transferred into the fixing tank for 3 minutes, again agitating regularly. The carrier 

was then washed under running water for 10 minutes, and then a single drop of Kodak 

wetting agent was added to the water filled tank. The carrier was agitated briefly before 

removal and transfer to a drying room. Once dry each negative was checked and placed 

into separate bags and stored.

2.5.2. Printing of TEM Photographs

All processes were carried out within safe dark room conditions. In a standard dark 

room, the fixative (Kentmere photographic -  high speed fixative) was made up to a 

volume of one litre, 1:9 with water at 20°C and poured into a developing tray. The 

developer (Kentmere photographic -  variable contrast developer) was similarly prepared 

using 100ml of developer in 900 ml of water, and again was poured into a separate 

developing tray keeping the mixture at 20°C. Two trays were filled with running tap 

water for the wash stages.

The negative to be processed was placed on a Devere 514 photographic machine. The 

negative was placed into an emulsion. An appropriate filter was selected from a book of
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Ilford multigrade filters and placed into the machine. Magnification and filter setting 

were adjusted accordingly, as were exposure time and light aperture.

The negative was exposed onto Kentmere 6 by 8 inch glossy mid weight photographic 

paper. The paper was then immersed fully into the developer and this tray was gently 

agitated for between 30-90 seconds until development was complete. The paper was 

washed once in water for 15 seconds, and transferred to the fixative for a total of 3 

minutes. Following this the photograph was placed in a tray of running water for 10 

minutes, and then dried using a Durst RCD 3200 photographic drier. The photograph 

was then ready to be viewed.
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2.6. RNA EXTRACTION

2.6.1. Harvesting of Cell Monolayers

An 80% confluent tissue culture flask was trypsinised by the usual method (section 2.12). 

The resulting cell pellet was then washed with sterile PBS and cells counted. This cell 

mixture was then centrifuged at lOOOrpm for 5 minutes; the supernatant was removed 

leaving a single cell pellet of known cell number. 2ml of GT buffer at 4°C was added to 

the cell pellet within the universal container (See Appendix VII for RNA extraction 

reagents). The mixture was divided into 0.5ml aliquots in sterile eppendorf tubes. To 

each aliquot in a fume cupboard 500pl of water saturated phenol, lOOpl of (24:1) 

isoamylalcohol (CHCI3), plus 50pl 2M sodium acetate was added. This mixture was 

vortexed and incubated on ice for fifteen minutes. These aliquots were then spun in a 

precooled centrifuge (4°C) at 13,000rpm for 15 minutes.

After the aliquots were removed it was seen that there were two layers of fluid within the 

tube. The top layer was removed by sterile pipetting into a new eppendorf tube, taking 

care to avoid picking up any DNA which lies at the phase interface. The bottom layer 

was discarded. An equal volume of isopropranolol (approx 500-600pl) was added to the 

new eppendorf contents at room temperature, and mixed using a vortex. The tubes were 

then left at -20°C overnight before proceeding to the next stage.

After removal from the freezer the eppendorfs were spun in a precooled centrifuge for 30 

minutes at 13,000rpm. The supernatant was removed and the residual pellet was gently 

washed with 300pl of 70% ethanol at 4°C (see appendix VII). The residue was removed 

with a fine tip. The pellets were dried slowly in a 37°C heating block for 10 minutes, and 

then dissolved in 20-40pi of DEPC (diethylpyrocarbonate) water (appendix VII) by 

repetitive aspiration, until the viscosity increased. The RNA was then pooled into a
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single eppendorf, incubated at 65°C for 5 minutes and then either used immediately for 

preparation of cDNA or stored in a freezer at -80°C.

2.6.2. Harvesting RNA from collagen gels

Each collagen gel was removed from the -80°C freezer and allowed to defrost slowly on 

ice. Once defrosted the gel, within a universal container, was centrifuged at 2500rpm for 

2 minutes to remove any excess water. To the gel, 3ml of GT extraction buffer was 

added. The contents of the tube were mixed thoroughly by vortexing, and once the gel 

had dissipated within the buffer, the fluid was aspirated several times through a 20 guage 

needle, to facilitate cell break up. The procedure documented above for cell monolayer 

extraction was then followed.

2.63 . Determination of RNA yield and quality

A 2pl aliquot of the extracted RNA was diluted with 998pl of DEPC 

(diethylpyrocarbonate) treated water (1:500 dilution factor), and its absorbance 

determined spectrophotometrically. The spectrophotometer (ComSpec M330) was 

zeroed by making a reference against DEPC water alone, and absorbence readings were 

taken at 260 nm (A260) and at 280 nm (A28o)- 1 absorbance unit (A260) equals 40pg of 

single stranded RNA per ml (Sambrook et al 1989).

The purity of the extracted RNA was estimated by comparing the ratio of absorbences 

A260 • A280. Pure RNA gives a ratio of 2.0, however sample ratios between 1.7 and 2.1 

were deemed acceptable (Sambrook et al 1989).

The concentration and subsequently the total yield of RNA were calculated from the A260 

reading: -

mRNA concentration (pg/pl) = A260 x 40 x dilution factor (500)
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mRNA yield (pg) = mRNA concentration x total volume of pooled RNA

2.6.4. Determination of RNA Integrity

The integrity of the RNA was checked using denaturing agarose gel electrophoresis. It 

was checked that the ratio of 28S to 18S eukaryotic ribosomal RNAs was approximately 

2:1 by ethidium bromide staining indicating that no gross degradation of the RNA had 

occurred.

The gel equipment was assembled (Gibco BRL Electrophoresis power source (model 

250Ex), plus Biorad gel tank) and a 0.8% agarose gel solution was prepared (0.8g 

agarose, with 100ml lxTAE) (Appendix VII). The gel mixture was microwaved (Proline 

microchef 950W, category E, at power level 6) for 2-4 minutes, stirring frequently, until 

fully dissolved, and then left to cool to approximately 60°C. To the solution 5pl of 

ethidium bromide (Invitrogen Cat 15585-011, lOmg/ml) was added and mixed well by 

swirling. The gel was then poured into a mould of dimensions 6x7cm, and an 8 well 

cone added and the gel was then allowed to set for 30 minutes (dimensions of each well = 

5x1x10mm). The gel was then placed into an electrophoresis tank filled with lxTAE 

buffer. 10 pi of each RNA sample was loaded into a gel well mixed with 2pl blue dye 

(“all Blue” Biorad Cat 161-0373). A 1 kilobase DNA ladder was loaded into a separate 

well as a marker (Invitrogen Cat 15615-016). The gel was run for 30 minutes at 100V. 

Analysis was performed under an ultraviolet light source (UVP-dual intensity 

transilluminator), with eye protection using a UVP face shield. Bands were viewed on a 

Sony black and white (SSM 121CE) monitor and printed images taken using a Sony 

Video graphic printer (UP890 CE).
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2.7. OBTAINING CDNA FROM RNA (REVERSE TRANSCRIPTASE (RT) 

REACTION)

All reagents were thawed on ice except for reverse transcriptase (RT) (See appendix VIII 

for reagent make up). The heating block was set to 65°C. The RNA from the stock 

solutions was first diluted in DEPC water at a ratio of 5pg / 8pl in fresh sterile PCR grade 

eppendorf tubes. The samples were heated at 65°C for 10 minutes and then placed on ice 

for a further 5 minutes.

In a separate tube the RT working mix was prepared (4pi 5x RT buffer, 2pi 0.1M DTT, 

lp l oligo-dT primer, lpl DEPC water, 2pl lOmM dNTP, per RNA sample) (see appendix 

VIII). 10 pi of the working mix was added to each sample and mixed by pipetting, lpl 

of RNA guard (an RNAse inhibitor) and lp l of Reverse transcriptase (RT) (200IU/ml -  

fresh from the freezer) was then added to the samples and mixed by pipetting. The 

samples were then pulse spun in a centrifuge for 10 seconds and left at 37°C for one hour 

in a water bath. The reaction was terminated by heating samples to 75°C with a heating 

block (Techne DRI) for 10 minutes. cDNA samples were then spun at 13,000 rpm for 1 

minute at 4°C and stored at -80°C or used immediately for PCR.

2.8. THE POLYMERASE CHAIN REACTION (PCR) METHOD

All reagents were stored on ice, except DNA polymerase (Appendix IX). Both a positive 

and a negative control (DEPC water) were used for each primer. The positive control 

used was cDNA from a dermal fibroblast cell line. 2pl of each cDNA sample was 

aliquoted into a fresh 0.5ml PCR grade eppendorf tube. In a separate tube the PCR 

working mix was prepared (2pl lOxPCR buffer, 2pl 2mM dNTPs, 2pi of forward and 

reverse housekeeping primer (lOpM) (GAPDH), 2pi of forward and reverse test primer
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(lOpM), lp l DMSO, 4.75pl DEPC-water and 0.25pl 5U/ml DNA polymerase) 

(Appendix IXa). Full details of each primer sequence used are given in Appendix IXb. 

This 18pl mix was added to each aliquot of cDNA. The samples were pulse spun in a 

centrifuge for 10 seconds. 2 drops of mineral oil were then added to each sample to 

ensure the PCR working mix remained at the bottom of the tube, and the PCR was set up 

to run overnight. The PCR machine used was a Techgene (Techne, Jenkons PLS), and a 

total of 30 PCR cycles were utilized for each experiment (See appendix IXa).

2.8.1. PCR Gels

2% agarose gels were made by dissolving 2g agarose in 100ml of lxTAE buffer and 

heating in a microwave for 2-4 minutes stirring frequently as discussed previously in 

section 2.64. The gel solution was then allowed to cool to approximately 60°C before 

adding 5pl of ethidium bromide and casting the gel. The gel was left to set for 30 

minutes. At this stage the gel was gently inserted into an electrophoresis tank filled with 

lxTAE buffer. lOpl of each PCR sample was mixed with 2pl of blue dye on a sheet of 

paraffin, mixing thoroughly. Each sample was loaded onto the gel along with an EZ 

Load precision molecular Mass Standard DNA ladder (Biorad) (see overleaf figure 2.7), 

and a 1,2,3, DNA ladder (Invitrogen-Cat 15613-029). The gel was run at 100V for 30 

minutes, or until the dye front had migrated down to two thirds of the gel. The gel was 

then viewed under an ultraviolet lamp.

2.8.2. Oligonucleotide Primers

Specific human oligonucleotide primers were used to amplify the various variable 

portions for collagen I, collagen III, MMP-1,2,3,9,13 and TIMP-1 and 2 (appendix IX). 

GAPDH was the housekeeping gene used as an internal cellular control. All primers 

were ordered and synthesised commercially by MWG Biotech. The internal control is
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required to compare the changes in mRNA against the primers to be tested. It was 

important that the mRNA level of the housekeeping gene did not change with the 

alterations in tension given to the gel. It has previously been reported that GAPDH is 

mechano-insensitive (Mudera et al 2000; Cheema et al 2003; 2004; Jemiolo et al 2004; 

Spofford et al 2003; Tan et al 2004) hence its use as a housekeeping gene for these 

experiments. The level of expression of the test mRNAs was compared to the internal 

housekeeping gene.

2.8 J . Image Analysis

Gel analysis was performed using the Labworks Image Acquisition and Analysis 

Software system (UVP Laboratory Products). The gels were scanned within a UVP 

epichemll darkroom using an ultraviolet source and a digital camera. Bands were 

identified using the computer software above, and intensities quantified. The net 

intensities for GAPDH were quantified and then compared to net band intensities for the 

test genes. This resulted in relative band intensities.

Using the EZ precision molecular mass marker, quantification of bands was made 

possible via the Labworks system. When 5pl of marker was used in a lane, the 

quantification of each band intensity is seen in figure 2.7.
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1,000 bp = lOOng

700bp = 70ng

500bp = 50ng

200bp = 20ng

lOObp = lOng

Figure 2.7:- Molecular mass marker used for the analysis of bands in the PCR reaction

2.84 STATISTICAL ANALYSIS

The mean and standard error of the mean were calculated for each gel type analysed for 

the Dupuytren's derived fibroblasts, the dermal fibroblasts and the carpal ligament 

control fibroblasts. Either a paired students t-test or a Mann-Whitney Rank Sum test for 

unpaired data was used to compare the groups, using Sigma Stat statistics software 

package (Jandel Corporation). Statistical significance was taken as a p value of <0.05.
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2.9. METHOD DEVELOPMENT -  RNA EXTRACTION

2.9.1. Aim

To assess the reliability of this method of RNA extraction utilized by the primary 

operator.

2.9.2. Methods

A standard dermal fibroblast cell line was used in order to assess the yield and purity of 

RNA extracted. RNA was extracted using the protocol documented above from between 

1 -  5 million dermal fibroblasts in cell monolayer. For collagen gels 3 dermal fibroblast 

gels were made, and after 24 hours snap frozen in liquid nitrogen as per the Dupuytren’s 

tissue and stored at -80°C for at least one week. These were then defrosted and RNA 

extracted as per the documented policy.

2.9.3. Results

Figure 2.8 demonstrates the total RNA yield calculated for each specimen for the dermal 

fibroblast cell line. It is seen that as cell number increases so does the yield.
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Total Extracted RNA
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Figure 2.8 A histogram demonstrating total yield of RNA in micrograms for a series of 
1-5 million dermal fibroblasts. Note the increasing yield with increasing cell number.

For each specimen the ratio of A260 to A280 was calculated and in all cases this was 

between 1.7-2.0.

In order to assess the reliability of the dilutions used within the spectrophotometer, a 

further test was performed. For a single dermal fibroblast RNA specimen, the 

absorbance at 260nm was measured using a range of dilutions of the specimen with 

DEPC water. It was hypothesized that the relationship should be linear within the range 

of dilutions anticipated for experimental use. Absorbance was measured using dilutions 

of between lin 1000 to lin 50. Results are shown in figure 2.9 .
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Figure 2.9:- Graph demonstrating the measured spectrophotometer absorbance against a 
range of concentrations of RNA. Note the near linear relationship demonstrating 
reliability of method in the range to be used experimentally.

For three dimensional collagen gels, 3 separate gels were made of 3 different cell lines 

each containing 2.5 million cells per gel. The RNA extraction protocol was followed and 

RNA yield calculated using spectrophotometric analysis. An average of 240pg of total 

RNA was extracted (range 192 -  288), confirming the suitability and reliability of this 

technique.

2.9.4. Conclusions

It can thus be summarized that the materials and methods used for extracting RNA are 

reliable and can be applied to the experimental specimens.
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2.10. METHOD DEVELOPMENT -  INVESTIGATION OF THE 

SUITABILITY OF THE HOUSEKEEPING GENE AS AN INTERNAL 

CONTROL

2.10.1. Introduction

GAPDH is an enzyme involved in glycolysis and glyconeogenesis and its expression has 

commonly been used in previous work as a housekeeping gene as a control against which 

other gene expression can be compared (Mudera et al 2000; Cheema et al 2004; Jemiolo 

et al 2004; Spofford et al 2003). It can be postulated that the expression of a 

housekeeping gene is unregulated and constant for given experimental conditions. The 

use of GAPDH as a housekeeping gene in Dupuytren’s disease has been reported in one 

previous publication (Alman et al 19%), but validation of GAPDH as a housekeeping 

gene in Dupuytren’s disease or in normal palmar fascia has not previously been reported 

in the literature.

2.10.2. Aims

• To investigate the expression of the housekeeping gene GAPDH (glyceraldehydes-3- 

phosphate dehydrogenase) by Dupuytren’s fibroblasts to establish whether it can be 

used as an internalconteolgene for competitive PCR reactions

2.10.3. Methods

Fibroblast seeded collagen gels were set up on the culture force monitor and allowed to 

contract over a 20 hour period {Section 2.3). At this time point they were either allowed 

to contract for a further 4 hours (static load), or exposed to a series of uniaxial 

underloads, or uniaxial overloads {Section 2.3.3- 2.3.6). After removal from the culture
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force monitor {Section 2.3.9) the gels were snap frozen in liquid nitrogen and stored at - 

80°C in a freezer immediately until being used for RNA extraction as outlined previously 

in section 2.6-2.8. There were 3 groups composed of Dupuytren’s nodule, Dupuytren’s 

cord and carpal ligament derived gels. Each group was subdivided into statically loaded 

gels (n=4-5), overloaded gels (n=4-6), and underloaded gels (n=4-6).

5jig of extracted RNA was taken from each cell line, and used for the RT reaction to 

make cDNA (Section 2.7). 2pl of cDNA per cell line was utilised for the PCR reaction 

{section 2.8), with the exception that the only primers used in the working mix were those 

for GAPDH. The volume of working mix was made up to 20pl with the addition of 4pl 

of DEPC water to replace the test primers.

2.10.4. Results

Figure 2.10 demonstrates the electrophoretic separation of GAPDH PCR products in a 

2% agarose gel by a selection of Dupuytren’s fibroblast cell lines exposed to a variety of 

stimuli. A single band appears in each lane, with the 462 base pair (bp) product 

corresponding to GAPDH. The figure indicates that there was no difference in 

expression of GAPDH between cell lines, and stimuli, and this was quantified as outlined 

earlier using a UVP image analysis system {Materials and Methods 2.83). A similar 

protocol was followed for all remaining Dupuytren’s cell lines and all carpal ligament 

fibroblast cell lines with similar findings. Following densitometric scanning this data 

was plotted graphically (figure 2.11). There was no significant difference observed 

between cell type or mechanical stimulus in the expression of GAPDH. It was therefore 

concluded that GAPDH could be utilized as a control against which all other gene 

expression could be compared.
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Figure 2.10:- A photograph depicting GAPDH expression by a representative section of 
Dupuytren’s nodule cell lines, exposed to static load (lane2,3), overload (lane4,5), 
underload (lane 6,7), and overload with TGFbeta (lane 8,9,10). The 2%  agarose gel 
stained with ethidium bromide shows a 462bp band representing GAPDH. A 100 bp 
DNA ladder marker is placed on the left of the gel.
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Figure 2.11:- The expression of GAPDH as net band intensity by carpal ligament (blue), 
Dupuytren’s nodule (red), and Dupuytren’s cord (yellow) derived fibroblasts exposed to 
either a static load, and underload, an overload, or exposed to TGFbeta. Error bars 
represent standard errors of the mean. There was no significant difference in gene band 
intensity between cell type or mechanical stimulus.
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2.10.5. Conclusions

Two variables were tested within this investigation, the first is cell type and the second is 

that of mechanical stimulus. There was no significant difference seen in GAPDH gene 

expression between cell types. Similarly there was no significant difference in gene 

expression between the various types of externally applied mechanical stimuli.

Some housekeeping genes may vary considerably between certain biological samples. 

Certainly GAPDH has been shown to be variable in its expression in human T cell 

culture (Dheda et al 2004; Bas et al 2004) and in asthmatic airways (Glare et al 2002). 

However when GAPDH was investigated in work on human skeletal muscle at rest and 

after exercise, stable expression was found in both cases (Jemiolo et al 2004; Mahoney et 

al 2004). In addition work on myeloid cell lines has demonstrated GAPDH to be a good 

control (Ullmannova et al 2003), as has research on embryonic stem cells (Murphy et al 

2002).

With regards variability of GAPDH expression to mechanical change, Mudera et al

(2000) have used this gene as a housekeeping gene in work on contact guidance in a 

culture force monitor model. Cheema et al (2004) in work on smooth muscle cells and 

mechanical force validated GAPDH as a control. Other work has included that of Tan et 

al (2004) who used GAPDH as a housekeeping gene when investigating the differential 

expression of a mechanosensitive potassium channel in epicardial and endocardial 

myocytes, and Spofford et al (2003) who measured mechanotransduction in arterial 

smooth muscle cells. GAPDH has been used as a housekeeping gene by Kessler et al

(2001), who found a strong induction of the gene at 20 hours in a relaxed collagen gel 

system, and these authors did not recommend its use as a control for the quantification of 

RNA levels in this type of system.

As stated earlier this is the first time that GAPDH expression has been validated for use 

in Dupuytren’s fibroblasts, and from this it can be concluded that this gene was a suitable
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control against which the expression of other genes could be compared within this 

experimental setup. However it is noted from the evidence above that it is important to 

ascertain a gene's response to stimulation before it is used in a control situation.
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CHAPTER 3

THE CONTRACTILE PROPERTIES 

OF DUPUYTREN’S FIBROBLASTS 

AND THEIR RESPONSE TO 

MECHANICAL STIMULATION
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3.1 THE CONTRACTION OF DUPUYTREN’S FIBROBLASTS IN 

THE ABSENCE OF MECHANICAL STIMULATION

3.11 INTRODUCTION

Researchers have used a variety of models of cellular contraction in order to assess 

contractile force generation in Dupuytren’s disease (Schultz and Tomasek 1990; Rayan 

and Tomasek 1994; Rayan et al 1996 Tarpila et al 1996; Sanders et al 1999; Vaughan et 

al 2000; Moyer et al 2002; Bisson et al 2004). (For full details on models of cellular 

contraction -  see Section 1.14-1.16 Introduction).

Previously Dupuytren’s fibroblasts and palmar fascia fibroblasts have been shown to 

generate equal amounts of contractile force measured by a reduction in diameter of 

circular collagen gels as a stress relaxed model, and in both cases this was proposed to be 

entirely actin-dependant (Rayan and Tomasek 1994). Later work by the same team 

(Rayan et al 1996) has also demonstrated that lipophosphatidic acid (LPA) promotes 

cellular contraction whereas nifedipine, verapamil and prostaglandins inhibit contraction 

of Dupuytren’s fibroblasts. A reduction in cellular contraction has been shown to occur 

in Dupuytren’s fibroblasts exposed to interferon-y (Sanders et al 1999), and in those 

exposed to 5-fluorouracil (5-FU) (Jemec, MD thesis 1999). Enhanced cellular 

contraction occurs after TGF-pi stimulation of Dupuytren’s fibroblasts in both a stress 

relaxed model (Vaughan et al 2000) and a culture force model (Bisson et al 2004).

Bisson et al (2004) revealed differences between the contraction profiles of normal 

palmar fascia in comparison to Dupuytren’s fibroblasts. Using the same experimental set 

up as described here {Materials and Methods section 2.3), it was seen that Dupuytren’s 

derived cells exhibited a rapid production of force within the first few hours, and a failure 

of these fibroblasts to plateau at the end of the experimental time course at 20 hours. 

These results contrasted with those of previous work on other normal cell types in the 

same model that did reach a plateau of force generation by 20 hours (Eastwood et al
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1994; 1996; Brown et al 1998). The plateau in force generation was defined as tensional 

homeostasis by Brown et al (1998) as it was postulated that cells generate and 

subsequently maintain a constant endogenous matrix tension. It was hypothesized that 

failure of Dupuytren’s fibroblasts to plateau in force generation may be a result of an 

abnormality in these cells ability to reach tensional homeostasis, or an escape from 

normal homeostatic controls, and that this may be a cause for the slow tissue shortening 

seen in a typical flexion deformity (Bisson et al 2004). A limitation to the research was 

that contraction profiles were obtained over a period of time of just 20 hours. This work 

raised some questions which the following section aims to answer: - 1) Tensional 

homeostasis -  is it delayed in Dupuytren’s fibroblasts? 2) Does homeostasis persist in 

normal cell lines?

3.12 HYPOTHESIS

• Tensional homeostasis is absent in Dupuytren’s derived fibroblasts over a period of 

48 hours

• Tensional homeostasis persists in normal cell lines derived from dermal fibroblasts 

and carpal ligament over a 48 hour time period.

3.13 METHODS

Fibroblasts derived from Dupuytren’s nodule (n=12), Dupuytren’s cord (n=15), and 

carpal ligament derived palmar fascia from non-Dupuytren’s patients (n=7) were seeded 

into three dimensional collagen gels and allowed to contract on the culture force monitor 

over a period of 24 hours (as detailed in section 2.3 Materials and Methods). A similar 

procedure was followed as above over 48 hours for 7 Dupuytren’s nodule, 7 Dupuytren’s 

cord, 3 carpal ligament and 4 dermal fibroblast cell lines. Average gradients of 

contraction were calculated for each cell type investigated as outlined in section 2.34 

{Materials and Methods).
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3.14 RESULTS 

24 Hour Profiles

160

140
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Dupuytren’s nodulecarpal ligament Dupuytren's cord

Figure 3.11: The mean contraction profiles of n=7 carpal ligament, n=12 Dupuytren’s
nodule, and n=15 Dupuytren’s cord fibroblast cell lines. The error bars represent 
standard errors of the mean. Black arrow outlines the plateau of force generation by the 
carpal ligament cell lines, with the red arrow showing the continued increased force 
generated by Dupuytren’s cells

The mean contraction profiles of the cell lines investigated are shown in figure 3.11 

above, for n = 7 carpal ligament, n = 12 Dupuytren’s nodule and n = 15 Dupuytren’s cord 

specimens. Carpal ligament fibroblasts demonstrate an early rise in force generation over 

the first 5 hours to just over 20 dynes, with an increase in measured force after 15 hours 

to 40 dynes. The force then changed little or reached a plateau during the next 9 hours, 

with maximum force at 24 hours recorded at 45 dynes (black arrow). In contrast to this is 

the rapid rise in force generation of the Dupuytren’s derived cell lines (red arrow). There 

is very little difference in contraction profile between the nodule and cord derived cells, 

with no significant difference in force generation (p > 0.38 (t-test)) at 24 hours. The 

Dupuytren’s cell lines show a rapid rise in force over the first 5 hours to 55 dynes, with a
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continued increase in force generation over the next 20 hours with no evidence of a 

plateau. By 24 hours Dupuytren’s nodule fibroblasts generate a force of 121 dynes (SEM 

± 9.6 dynes) and cord generate a force of 135dynes (SEM ± 9.8 dynes). There is 

significantly greater force produced by these cell lines in comparison to the carpal 

ligament derived controls at 51.8 dynes (SEM ±4.1)  (p<0.002). Bisson et al (2004) 

noted that Dupuytren’s nodule displayed greater contraction in comparison to 

Dupuytren’s cord, however in this extended series, no significant difference was noted. 

Larger cell line numbers were involved in this case (n=12-15 here in comparison to n=9 

for Bisson et al) and many of these profiles were continued over a full 48 hour time point 

as discussed in the next section. These findings would indicate a similar contractile role 

for nodule and cord in the development of contracture, rather than the quiescent cord 

phase suggested previously (Luck 1959; Hueston 1963; Rayan 1999; Moyer et al 2002).

These results suggest that Dupuytren’s derived cells display an altered contraction profile 

from previously investigated cell types such as dermal fibroblasts (Eastwood et al 1994; 

1996; Brown et al 1998), and the normal palmar fascia of the carpal ligaments (Bisson et 

al 2004), with increased force production and no evidence of a plateauing of force during 

the 24 hour time period. These results may represent a delay in Dupuytren’s cells in 

reaching tensional homeostasis or that these cells have lost or do not have the ability to 

achieve homeostasis. No work has examined contraction profiles using a culture force 

monitor model over an extended period of time beyond 24 hours. Experiments were set 

up to over 48 hours, in order to establish whether Dupuytren’s derived cells continue to 

contract or begin to plateau in force generation during this time period. In view of the 

finding that carpal ligament fibroblasts generate a significantly lower force in comparison 

to Dupuytren’s fibroblasts, an additional control, the dermal fibroblast, was used. These 

fibroblasts have been investigated using the culture force monitor model in the literature, 

and were thought to generate similar amounts of force in comparison to Dupuytren’s 

fibroblasts (Eastwood et al 1994; 1996; Brown et al 1998; Bisson et al 2004). Tarpila et 

al (1996) found dermal fibroblasts to be more contractile than Dupuytren’s fibroblasts in 

a stress-relaxed circular gel model, although the mechanics of circular gels differs from
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that of a semi-constrained gel used here (see Intoduction section 1.14) which makes 

comparison of data difficult.

48 Hour Profiles

The graph below demonstrates the mean contraction profiles for n = 3 carpal ligament, n 

= 7 Dupuytren’s nodule, n = 7 Dupuytren’s cord and n = 4 dermal fibroblast cell lines 

over a 48 hour time course (Fig. 3.12).
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 CONTROL (n = 3 ) NODULE (n=7) CORD (n = 7 ) DERMAL (n=4)

Figure 3.12: - Mean contraction profiles of Dupuytren’s nodule, cord, carpal ligament, 
and dermal fibroblast cell lines over a 48 hour period. Error bars represent standard 
errors of the mean. The black arrow outlines the flattening or plateauing of force 
generation by the control cell lines, whereas the red arrow demonstrates that for both 
Dupuytren’s nodule and cord cell lines force generation continues to increase.

The appearances of the graph over the first 24 hours are as discussed earlier for the 

Dupuytren’s and carpal ligament derived cells. The dermal fibroblasts generated a 

contraction profile of a similar shape to that of the carpal ligament, albeit at a higher 

measured force. There was an early rise in force generation over the first 15 hours to 95
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dynes. From 15 to 48 hours the measured force altered little (horizontal arrow parallel to 

x axis) indicating force generation had plateaued. Measured force at 15 hours was 95 

dynes and at 48 hours was 100 dynes. Similarly for carpal ligament the force generated 

at 24 hours of 50 dynes was not significantly different from force measured at 48 hours of 

55 dynes. By 48 hours Dupuytren’s nodule demonstrated greater force generation at 172 

dynes (SEM ± 21 dynes). For cord force generation rises to 143 dynes (SEM ± 16 

dynes). Again there is no significant difference in force between the nodule and the cord 

(p>0.2). This indicates that both nodule and cord have a very similar level of 

contractility, and also implies that the cord does not play a quiescent role in disease 

progression as suggested by some workers (Luck 1959; Hueston 1963; Rayan 1999; 

Moyer et al 2002). There is no significant difference in force generation between dermal 

fibroblasts and Dupuytren’s fibroblasts at either the 24 hour or 48 hour time points, 

although there is a trend for the Dupuytren’s fibroblasts to generate greater force by the 

48 hour marie. This finding demonstrates the similar contractile ability of dermal 

fibroblasts with Dupuytren’s fibroblasts as was only postulated in previous work 

(Eastwood et al 1996; Brown et al 1998; Bisson et al 2004).

Of importance is the shape of the contraction curve. It can be seen that at the 48 hour 

time point, the tendancy is for continued increase in contraction and thus measured force 

for both Dupuytren’s nodule and cord with no evidence of a plateau in force generation 

(see red arrow Fig 3.12), whereas for normal control cell lines a plateauing of force 

generation is apparent by 16 hours. This is demonstrated better in the histogram showing 

the mean gradients of the contraction profiles for each cell type (Fig. 3.13). The gradient 

of contraction at the 24 and 48 hour time points were calculated as described in section

2.3.4.
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Figure 3.13: - Histogram demonstrating the gradient of contraction profile at 24 and 48 
hours for n = 3 carpal ligament, n = 7 Dupuytren’s nodule, n = 7 Dupuytren’s cord, and 
n= 4 dermal fibroblast cell lines. Error bars represent the standard error of the mean. 
There is a statistically significant difference "^between both Dupuytren’s cell lines and 
the carpal ligament and dermal fibroblast cell lines (£<0.05 at 24 hours; p<0.01 at 48 
hours). There is a statistically significant difference between Dupuytren’s nodule and 
cord at 24 hours (p<0.02), but not at 48 hours (p=0.06). Notethe absence of bars for 
carpal ligament and dermal fibroblasts at the 48 hour time point -  for both of these the 
gradient was measured at zero.

It is seen that at 24 hours the gradients for both carpal ligament and dermal fibroblasts are 

minimal at 0.008 (SEM ± 0.008) and 0.002 (SEM ±0.01) dynes per minute respectively, 

indicating that although the force generated by these cells is rising, the increase is almost 

negligible. In contrast for Dupuytren’s nodule the gradient of contraction is significantly 

greater at 0.15 (SEM ± 0.05) dynes per minute, as it is for cords with a gradient of 0.04 

(SEM ± 0.004) dynes per minute (p<0.05). Additionally there is a trend for nodules to be 

contracting at a greater rate than cords at 24 hours that is significant (p<0.02). Thus at 24 

hours, although the nodule and cord generate a similar amount of force, it is the nodule 

that is contracting more quickly at this time point.

At 48 hours the gradient of contraction for both control cell lines is zero (arrowed on 

figure 3.13), indicating that there is no further increase in contraction and that generated
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force has plateaued. It may be interpreted that both the carpal ligament and the dermal 

fibroblast cell lines have reached tensional homeostasis, and are in mechanical 

equilibrium where the force generated is balanced by the tension of the force transducer 

on the culture force monitor. Both the Dupuytren’s cell lines exhibit continued 

contraction as seen from the positive gradients seen on the graph (figure 3.13). The 

gradient for Dupuytren’s nodule is 0.04 (SEM ± 0.007) dynes per minute, and for cord it 

is 0.2 (SEM ± 0.003) dynes per minute. There is a trend for Dupuytren’s nodule to 

contract at a greater rate than cord similar to the findings at 24 hours, although this just 

fails to reach statistical significance (p>0.06). Gradients of contraction for Dupuytren’s 

derived cells are significantly less than they were at 24 hours, indicating that the rate of 

contraction is decreasing with time. It may be postulated that this decreased rate of 

contraction by the Dupuytren’s fibroblasts is an indicator that the cells are beginning to 

reach a plateau phase, and thus will achieve tensional homeostasis.

3.15 DISCUSSION

Dupuytren’s disease has been defined as a fibrocontractive disorder. It is hypothesised 

that digital flexion contracture is caused by a combination of cell mediated contraction 

and matrix remodelling (Brickley-Parsons et al 1981). This study has provided a means 

of identifying the contribution of cellular contraction to this process using a defined 

collagen gel model on the culture force monitor in real time.

In previous work using the culture force monitor it has been shown that dermal 

fibroblasts demonstrate a three-phase contraction profile over a 24-hour period 

(Eastwood et al 1996). In the first phase there is a rapid increase in force generation over 

8 hours thought to be secondary to cellular locomotion and attachment throughout the 

collagen matrix. The second phase is related to cellular traction on the matrix and 

represents a plateauing of force generation over the 8-12 hour period. The final phase 

represents the steady state of force generation where the cells are in tensional
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homeostasis with the collagen matrix and the forces of cellular contraction are balanced 

by matrix tension (Brown et al 1998).

These results are the first to compare dermal fibroblast contraction with that of 

Dupuytren’s disease specimens in the culture force monitor. The majority of work using 

this model previously has examined dermal fibroblast contraction only. The mean force 

generated at 24 hours of 120 dynes for nodule derived cells, and 118 dynes for cords is 

not significantly different than that for dermal fibroblasts at 101 dynes. These values for 

dermal fibroblasts correspond with previous work using the culture force monitor model 

(Eastwood et al 1996; Brown et al 1998), although a study using a free floating collagen 

gel model has demonstrated that dermal fibroblasts contract to a greater degree than 

Dupuytren’s nodule cells at 36 hours (Tarpila et al 1996). The free floating model as 

discussed earlier is based on slow sustained cellular contraction, in contrast to the 

tethered collagen gels utilised in the culture force monitor, so that these studies cannot be 

directly compared based on their different mechanics. However by 48 hours although the 

force generation by Dupuytren’s nodules of 172 dynes is not significantly greater than 

that of the dermal fibroblast cell lines, it is the different shape of the curves that is 

significant. Force generation has plateaued for dermal fibroblasts with a gradient of zero, 

but gradient continues to rise for Dupuytren’s fibroblasts indicating continued cellular 

contraction. This plateau of force was defined by Brown et al (1998) as being the stage 

of tensional homeostasis where the force generated by the cells is equal to the resistance 

of the force transducer, and it was hypothesised to be the preferred level of tension at 

which the cells exist within a matrix. This stage is absent in Dupuytren’s derived 

fibroblasts within the time period of these experiments.

Previous work looking at the contraction profiles of nodule and cord derived fibroblasts 

have shown that nodules display a higher level of contraction in comparison to cord. 

This has been demonstrated in both the culture force monitor model (Bisson et al 2004) 

and in a free floating collagen lattice model (Moyer et al 2002). This work is contrary to 

the above. At both 24 and at 48 hours there is no significant difference noted in force 

generation between nodule and cord. What is important here is the large number of
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specimens investigated in comparison to the other authors, providing a more accurate 

representation of the contraction profiles of nodule and cord (Moyer et al 2002; Bisson et 

al 2004). Moyer et al (2002) from work on free floating collagen gels proposed that 

nodules progressed to cords as the disease progressed. This was based on the finding that 

nodule derived fibroblasts contracted a collagen gel to a greater extent than cord, but that 

this contraction decreased to cord like levels with increasing cell passage. Bisson et al 

(2004) postulated that the nodule represented the most active stage of the disease. It may 

be hypothesised from this that nodule and cord derived cells are similar in phenotype, and 

indeed that the cord is not the quiescent phase of the disease as stated by many (Luck 

1959; Hueston 1963; Rayan 1999; Moyer et al 2002).

The altered contraction profiles of Dupuytren’s derived fibroblasts in comparison to those 

of both dermal fibroblasts and carpal ligament fibroblasts may be highlighted here. 

Certainly the early phase rapid generation of force remains similar corresponding to cell 

attachment and migration throughout the matrix. However even by 48 hours the 

Dupuytren’s fibroblasts exhibit continued contraction without evidence of a plateau, the 

nodules to a greater extent than the cords. These findings indicate that Dupuytren’s 

fibroblasts show a delay in reaching tensional homeostasis in view of the progressive 

slowing in rate of force generation at 48 hours in comparison to 24 hours, but it can be 

speculated that these cells may never reach homeostasis within their surrounding tissue 

matrix. Experiments could not be continued much beyond 48 hours in order to elucidate 

whether a plateau of force generation is reached over longer time periods due to the 

limitations of the CFM system. The culture force monitor set up is in an open chamber 

within an incubator, and thus the environment is not sterile {see Material and Methods 

section 2.3.7). Other theories for loss of contraction with time may include cell 

utilisation of growth factors within the bath of growth media, and build up of cell 

metabolites. However there was no change in cell viability over the 48 hour time course 

and no significant cell death as shown from assays taken at the end of the experimental 

time period (see Materials and Methods section 2.3.10). Other workers have also studied 

cell viability and numbers within collagen gels. Within tethered systems such as used
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here both Kolodney and Wysolmerski (1992) and Greco and Ehrlich (1992) found no 

proliferation of human fibroblasts during a three day time period.

Carpal ligament fibroblasts taken from the normal palmar fascia exhibit a lower level of 

force generation plus evidence of homeostasis in a similar manner to dermal fibroblasts. 

It is postulated therefore that tensional homeostasis persists over the period tested for 

these control fibroblasts. There is little data on other cell types in the literature using this 

experimental model and thus it is difficult to determine whether all cells will show this 

sort of behaviour within a three dimensional collagen gel. Indeed work with human 

myoblasts and smooth muscle cells (Cheema et al 2003) has shown an absent early phase 

of contraction, with later plateauing of force, and studies on rat tendon fibroblasts have 

shown continued cellular contraction over a 48 hour time period in a similar manner to 

Dupuytren’s cells (Wilson-Jones et al MSc thesis 2003). The significantly lower level of 

contraction of carpal ligament fibroblasts has been documented previously (Bisson et al 

2004), and was proposed to be due to these cells location in a stress-shielded area of 

matrix in-vivo. In contrast to the results presented here, and those of Bisson et al (2004), 

Rayan and Tomasek (1994) used a stress-relaxed circular gel model that found similar 

levels of gel contraction by both carpal ligament and Dupuytren’s nodule fibroblasts. As 

discussed earlier, a direct comparison of these results in not possible due to the 

mechanical differences of the models used.

This data suggests that Dupuytren’s fibroblasts have a delayed ability to reach tensional 

homeostasis, and will generate higher levels of tension within a tissue matrix than control 

fascial fibroblasts. An increase in cellular contraction may over time result in local 

fascial shortening, and this may be a significant factor in the progressive contracture seen 

in the digits of Dupuytren’s disease patients.
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3.16 SUMMARY

• Dupuytren’s fibroblasts generate significantly greater forces in a culture force 

monitor model in comparison to control fibroblasts derived from carpal ligament.

• Dupuytren’s fibroblasts generate similar forces to dermal fibroblasts within a culture 

force monitor model at both 24 hours and 48 hours.

• There is no significant difference in force generation between Dupuytren’s nodule 

and cord at 24 or 48 hours in a series of 12 specimens. This is in contrast to previous 

work utilizing smaller numbers using this model and a circular collagen gel model 

(Moyer et al 2002; Bisson et al 2004).

• Dupuytren’s derived cells continue to contract over 48 hours with an absence of the 

plateau seen in dermal fibroblasts or carpal ligament fibroblasts. The rate of 

contraction falls significantly after 48 hours. It is postulated from this that tensional 

homeostasis is delayed rather than absent.

• Tensional homeostasis persists in control cell lines over a 48 hour time period.

This work has demonstrated a difference in contractile force generation by Dupuytren's 

fibroblasts in comparison to control fibroblasts with the absence o f  a plateau phase o f  

force generation. Previous work has established that Dupuytren’s fibroblasts contract in 

response to an externally applied mechanical load (Bisson et al 2004) in contrast to 

dermal fibroblasts which act by relaxation (Brown et al 1998). The effects o f a reduction 

in externally applied load on Dupuytren’s fibroblasts have not been elucidated, and this 

was investigated further.
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3.2 MECHANICAL UNDERLOADING OF DUPUYTREN’S 

FIBROBLASTS

3.21 INTRODUCTION

Distinctive nodules and cords aligned in a longitudinal direction within the palm of the 

hand and digits are characteristic features of Dupuytren’s disease (Rayan 1999). The arc 

of flexion and extension at the MCP and PIP joints occurs along the longitudinal axis, as 

does the transmission of any externally applied load to the hand. This section 

concentrates on unidirectional forces applied to cells as this simulates the situation seen 

in-vivo.

Cells are highly sensitive to external mechanical forces that are transmitted through the 

extracellular matrix. Cellular responses to tension include changes in morphology, 

synthesis of hormones, changes in matrix synthesis, and release of regulatory enzymes 

(Jones 1992; Ohno et al 1995; Butt et al 1995; Eastwood et al 1996; Kain and Reuter

1995). Fibroblast contractility has been studied for many years, mainly as a model of 

wound healing, and usually in circular three dimensional collagen gel experiments 

(Elsdale and Bard 1972; Bell et al 1979; Delvoye et al 1991; Tomasek and Hay 1984; 

Eastwood et al 1994; 1996; Kolodney and Wysolmerski 1992; Grinnell and Ho 2002). 

Using a circular model it is not possible to ascertain cellular responses to external 

unidirectional changes in mechanical tension, and it was not until the development of the 

tensioning culture force monitor (Eastwood at al 1996) or it’s equivalent (Delvoye et al 

1991) that these responses have been measured.

Bisson et al (2004) have demonstrated that rapid overloading of control carpal ligament 

fibroblast lattices results in a gradual reduction in force over a 30-minute period, which is 

consistent with the theory of tensional homeostasis seen in dermal fibroblasts (Brown et 

al 1996). However overloading of lattices seeded with Dupuytren’s fibroblasts resulted
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in an abnormal contractile response during the first overload period, and this effect was 

enhanced by pre-incubation of these cells with TGF-pl (Bisson MD thesis 2003).

This section investigates the application of unidirectional mechanical loads to 

Dupuytren’s fibroblasts using a culture force monitor model. Previously extension or 

overloading forces have been discussed, but no earlier work has looked at the application 

of underloading or a reduction in external load as would occur in passive flexion of the 

digits, to this model. The only clinical reports that have looked at mechanical unloading 

of the palmar fascia in Dupuytren’s disease are those debating the use of fasciotomy, 

where incising the Dupuytren’s cord suddenly reduces tension within the fascia. In some 

of these cases it has been observed that the disease regresses after tension is released 

(Moermans 1981; Andrew and Kay 1991). However conversely it has also been 

demonstrated that simple fasciotomy leads to rapid disease recurrence (Luck 1959; 

Millesi 1965; Lermusiaux 1997).

3.22 AIMS

• To test the effects of mechanical underloading on Dupuytren’s nodule, cord, and 

carpal ligament fibroblasts.

3.23 HYPOTHESIS

• Mechanical underloading of Dupuytren’s fibroblasts will result in greater cellular 

contraction in comparison to normal controls

93



Results

3.24 METHODS

Fibroblast populated collagen lattices were set up as described previously, and allowed to 

contract {Materials and Methods 2.33). At 20 hours a series of uniaxial mechanical 

underloads were applied to the gel {Materials and Methods 2.34). This was achieved by 

rapidly turning the culture force monitor mounting stage towards the force transducer by 

manually turning the stage micrometer wheel through 30 micrometers. This led to a 

reduction in uniaxial load on the gel of 30 dynes. The experiment was then left to run for 

a further 30 minutes while any change in force was recorded in real time. In total 4 

underloading forces were applied per gel.

6  acellular control gels, 4 Dupuytren’s nodule, 6  Dupuytren’s cord and 3 carpal ligament 

cell lines were investigated. The gradient of the contraction profile over the 30-minute 

post underload period was calculated as the rate of change in force (dynes per minute).

94



Results

3.25 RESULTS 

Acellular control gels

A control acellular contraction profile is demonstrated below (figure 3.21). Each 

underload is characterized by a sudden decrease in force recorded by the force transducer. 

There is a steady increase in force recorded after each underload. After each underload 

the force increases, but never returns to the pre-underloading level of force, so that with 

each underload there is a step-wise decrease in measured force. Of note is the finding 

that after the first underload, the remainder of the underloads occur with negative force 

i.e. with the force transducer being pushed away from its normal resting position (figure 

3.22).
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Figure 3.21: - Contraction profile of a control acellular blank gel undergoing a series of 4 
uniaxial tensional underloads (arrows) after 20 hours on the CFM. The subsequent post 
underload periods are numbered 1-4.
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Figure 3.22: - A) Blank acellular gel settles within the media filled chamber, and
contracts to a resting tension of 20 dynes, pulling the force transducer inwards.
B) The system is underloaded by rapidly turning the micrometer screw which pushes the 
fixed point inwards towards the force transducer. This takes the load off the system, and 
pushes the force transducer in a negative direction outwards.
C) The gel is floating freely within the media filled bath and this allows the transducer to 
gradually move inwards towards its resting position, hence the slow increases in 
measured force recorded on the graph.

The gradient of the traces in each underload period for the blank acellular gels is positive 

and shown in the histogram overleaf (figure 3.23).
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zero value. It is therefore only valid to utilise data from the 1st underload period with 

any accuracy.

In order to test this hypothesis, a further set of experiments was carried out. After 

insertion of the acellular gel into the CFM system, the external force applied to the 

system was increased rapidly to over 200 dynes. The gel was then left to equilibrate for 

20 hours, and at this time 4 sequential underloads were applied as previously. There was 

a minimal increase in contraction of the gel after each underload period of 0.18 dynes per 

minute in each case (figure 3.24). There was no significant difference in gradient 

between each underload period. It was noted that each period in this preloaded sequence 

was very similar to that of the 1st underload period in the original acellular gels tested.

0.5
0.45

£  0.4
I  0.35 -
1 0 . 3 -  a>
£  0.25

T3
r  0.2
I  0.15 
o> 0.1 

0.05 
0

*

T

riri

2 3
underload periods

I blank ■  preloaded blank

Figure 3.24: - Histogram showing the mean post underload gradients for control acellular 
blank gels (n=3), and preloaded acellular blank gels (n=3), after a series of 4 uniaxial 
tensional underloads. Error bars represent standard errors of the mean. Note that for the 
preloaded blank gels there is a similar positive gradient.

In view of these findings, the results of underloading cell-seeded gels were compared to 

those of the preloaded blank gels. This avoided the utilization of data that involved
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negative deflection of the force transducer, and was thus not validated. The use of 

preloaded gels was reproducible, and accurate as demonstrated above, was and therefore 

a suitable control model for this experimental model.

Of note is that an acellular collagen gel has non-linear mechanical characteristics. 

Unpublished data from this laboratory (Marenzana, personal communication 2003) has 

shown that increasing external tension by overloading will result in increased matrix 

stiflness. Gels manufactured from type I collagen are hypothesised to possess non-linear 

viscoelastic properties when axial strain is applied, and will not return to their original 

position once tension is increased. (Ozerdem et al 1995). It is seen here that within 

acellular gels that have been loaded to increase matrix stiflness, an underloading regime 

will not act to allow the force to return to pre-underloading levels. After application of a 

reduction in external load it may be postulated that the gel does display some elasticity by 

the measured increase in force recorded by the force transducer. The finding that the 

elastic properties are not significantly different after each underload demonstrates that the 

elasticity of the gel is similar in the region of measured force that we wish to examine. 

Thus because the material properties of the gel have been defined, it is postulated that it 

will be possible to differentiate the cellular events that occur when a gel is underloaded 

from the naturally occurring gel elasticity.

Cell seeded gels -  carpal ligament

When carpal ligament seeded collagen lattices were subjected to the underloading 

sequence described earlier (section 3.24), an increased response was seen in comparison 

to the acellular blank gels. This is demonstrated in the histogram below (figure 3.25).

99



Results

underload period

Figure 3.25: - Histogram demonstrating the mean post underload gradients for n=3 carpal 
ligament cell lines. Error bars represent the standard error of the mean.

Gradients are positive after each underload period (0.27 ± 0.06; 0.37 ±0.16; 0.46 ± 0.08 

and 0.34 ± 0.05 dynes per minute respectively). There is no significant difference 

between the gradients in each period. These results are significantly greater than those 

for the acellular gels (p<0.001), indicating a cellular response to the change in external 

tension. If the mechanical properties of the gel are removed as shown earlier, it remains 

that a positive gradient persists. It can be postulated that this can be attributed to the cells 

seeded within the gel. The fibroblasts have responded to the reduction in external load 

applied across the gel, by generating an increase in contractile force, hence the positive 

gradient. As shown in the previous section (chapter 3.14) carpal ligament fibroblasts will 

rapidly generate an endogenous tension within the collagen matrix as measured by the 

culture force monitor, and by 15 hours this measured force will have plateaued. When 

endogenous tension is reduced as performed here, the cells respond in a manner that 

tends to increase the force back towards this level of endogenous tension.
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Cell seeded gels -  Dupuytren’s fibroblasts

When Dupuytren’s fibroblasts were seeded into the collagen gels, results were not 

significantly different to those demonstrated by the carpal ligament fibroblasts (figure 

3.26).
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Figure 3.26: - a) Histogram on left demonstrates the mean underload gradients for n=3 
acellular gels, n=3 carpal ligament cell lines, n=4 Dupuytren’s nodule and n=5 
Dupuytren’s cord cell lines after the first underload. Error bars represent standard errors 
of the mean. There is no significant difference between cell types, but all gradients for 
cell seeded gels are significantly greater than that of the blank acellular gels (p<0.05).
b) Graph on right demonstrates a typical Dupuytren’s cell line undergoing a series of 4 
uniaxial tensional underloads after being left to contract for 20 hours. Note the increase 
in generated force after each underload period (block arrows in black = underload applied 
to the gel; arrow in yellow = increase in measured force as shown).

After the first underload period the mean gradient for nodule was 0.32 dynes per minute 

(SEM ± 0.09) and for cord 0.39 dynes per minute (SEM ± 0.05). There was no 

significant difference between gradients for nodule and cord (figure 3.26a). This pattern 

continued in the later underload periods; all gradients were positive with cord 

demonstrating a slightly increased response in comparison to nodule (figure 3.27). Once 

again there was no significant difference between cell types or between underload 

periods. Values for nodule were 0.23 ± 0.05, 0.32 ± 0.09 and 0.38 ±0.1 for 2nd to 4th
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underload period, and those for cord were 0.39 ± 0.05, 0.42 ± 0.06, 0.49 ± 0.04, and 0.43 

± 0.05 dynes per minute respectively.

■ blank
■ control
■  nodules 
□ cords

1st underload 2nd underload 3rd underload 4th underload

Figure 3.27: - Mean post underload gradients for acellular blank gels (n=3), carpal 
ligament fibroblasts (n=3), Dupuytren’s nodule (n=4), and Dupuytren’s cord fibroblast 
(n=6). Error bars represent standard errors of the mean.

Thus there is a significant increase in force generated by all the cell seeded gels 

(p<0.001) in comparison to the blank acellular gels, with control carpal ligament 

fibroblasts showing a gradient of 0.33 dynes per minute (SEM ± 0.14), a gradient of 0.39 

dynes per minute (SEM ± 0.08) for cords and a gradient of 0.32 dynes per minute (SEM 

± 0.11) for the nodules. There is no significant difference seen between the gradients in 

any of the cell seeded gels. All of the cell lines investigated here demonstrate a positive 

response to the reduction in externally applied load, by increasing cell generated force. 

This follows tensional homeostasis, whereby fibroblasts will establish a tension within 

the collagen matrix, and act to maintain the level of tension against the opposing 

influence of mechanical unloading (Brown et al 1998). The Dupuytren’s derived 

fibroblasts responses are similar to those for carpal ligament within the remits of this 

experiment.
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In the second to fourth underload periods it is seen that for each cell seeded gel, there is a 

positive gradient of contraction. There is no significant difference in gradient between 

the cell lines investigated or between underload periods. Thus after each progressive 

underload sequence the cellular response is that of an increase in generated force. The 

progressive loss in tension after each underload does not appear to affect the cellular 

response given the similarity of the gradient recorded after each sequence; so a step wise 

decrease in tension seen in 4 underloads, gives a similar contractile response in 

comparison to a single underload. As before the cellular response in each case always 

opposes the applied external underloading.

Thus it appears that in all cases both Dupuytren’s fibroblasts and carpal ligament derived 

fibroblasts respond to a reduction in mechanical load, by increasing their cellular 

contraction. This correlates with previous work on dermal fibroblasts (Eastwood et al 

1998).

3.26 DISCUSSION

Tensional homeostasis in dermal fibroblasts was first described by Brown et al in 1998. 

The fibroblast response to mechanical stress was deduced by applying precise mechanical 

loads of between 15 and 1 2 0  dynes across a collagen lattice and then observing cellular 

response to these loads in real time on the culture force monitor. Dermal fibroblasts were 

seen to increase their contraction in response to underloading (a reduction in externally 

applied load), reaching a force close to that prior to underloading. By applying external 

overloading forces, it was seen that a reduction in cell-mediated tension occurred. The 

cellular response was always in the opposite direction to the previously applied load. 

This was defined as tensional homeostasis since resident cells appeared to respond by 

maintaining a constant endogenous matrix tension. It was hypothesised from this work 

that fibroblasts are able to monitor and regulate endogenous tension in a manner which 

reduces or minimises the externally applied tensional loading.
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Bisson et al (2004) applied a series of overloading forces to Dupuytren’s fibroblast 

seeded collagen gels using a similar system to Brown et al (1998), and the responses of 

the resident cells within the collagen matrix were measured in real time. After an 

overloading force was applied Dupuytren’s fibroblasts tended to increase their 

contraction, rather than reducing it as seen in the case of dermal fibroblasts and carpal 

ligament fibroblasts. This phenomenon was enhanced by the pre-incubation of cells with 

TGFP-1. It was postulated from this that Dupuytren’s fibroblasts do not achieve 

tensional homeostasis as proposed by Brown et al (1998), given the increase in 

contractile force generation after an increase in externally applied load.

It has been demonstrated here, that after application of an underload all cell types tested 

responded by increasing contraction, and thus the measured force within the system. 

There was no significant difference seen between nodule, cord or carpal ligament. It can 

therefore be concluded that no matter which external mechanical stimulus is applied, the 

response by Dupuytren’s fibroblasts remains the same i.e. an increase in cell-generated 

force.

This study was limited by the fact that the cellular response to each underload period was 

observed for only 30 minutes. It would be anticipated that in carpal ligament cell lines 

the increased contraction would eventually plateau to a steady state of force as the cells 

return to homeostasis. However in Dupuytren’s fibroblasts the contraction in response to 

an underload may be speculated to increase to a level above that measured before 

external forces were changed, and indeed the force may continue to increase, as it appears 

that Dupuytren’s fibroblasts never reach tensional homeostasis and indeed continue to 

contract within the time frame investigated here.

It was observed that carpal ligament fibroblasts demonstrated a definite response to a 

reduction in external load. Previous work (Bisson et al 2004) has demonstrated that there 

was no significant difference in response between the acellular blank collagen gels and 

carpal ligament seeded gels to an overloading force. At this time it was concluded that 

this cell type exhibited a low level of responsiveness to mechanical overloading in the
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environment and they were hypothesised to be mechano-insensitive. However this work 

provides evidence to the contrary. Carpal ligament cell lines responded to a reduction in 

external load, and there is a significant difference between the gradient of contraction 

calculated for an acellular blank gel in comparison to that for the carpal ligament 

fibroblast seeded gels, which indicates a cellular response to the change in force once the 

mechanical properties of the collagen gel alone are subtracted. It can be concluded that 

this cell type does exhibit some features of tensional homeostasis as shown by its typical 

plateau type contraction profile, and its response to underload stimuli in a similar manner 

to dermal fibroblasts (Brown et al 1998). However the lack of response to an 

overloading stimulus as demonstrated by Bisson et al (2004) is important to consider. 

Bison et al (2004) hypothesised that this lack of response was due to the low level of 

force generated by these cells when allowed to contract alone in the absence of 

stimulation, such that cellular relaxation after a mechanical overload was 

indistinguishable from the elastic properties of a blank acellular gel.

It may be postulated that the low level of force generated by carpal ligament fibroblasts 

can explain the lack of response to an overload. A blank acellular gel has been 

demonstrated to produce a force of 2 0  dynes on average, whereas for carpal ligament an 

average force of 50 dynes is generated (Bisson et al 2004). It may be speculated that the 

gels mechanical properties do not change, and that there is a minimal increase in matrix 

stiffness at this low level of force based on previous work in this area (Eastwood et al 

1994; Tranquillo 1999). Due to this carpal ligament fibroblasts may be able to perceive 

by their deformation a reduction in load because they are not “stress-shielded” by a stiffer 

matrix, and thus respond in a manner similar to dermal fibroblasts by increasing tension. 

Dupuytren’s derived cells generate higher baseline forces within a collagen gel, and will 

thus cause the gel to become stiffer as it deforms. This has been demonstrated previously 

using rat tendon fibroblasts within the culture force monitor model (Marenzana et al 2004 

in press). The fibroblasts will therefore be “stress-shielded” to a greater extent, and this 

may explain why these cells did not respond to a decrease in load to any greater degree 

than the carpal ligament fibroblasts.
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Another limiting factor in this work and that of Bisson et al (2004) is that these 

mechanical loads were applied to Dupuytren’s cells while they were still contracting and 

not in the plateau phase of the contraction profile. It may be that this contractile response 

to both overloading and underloading is simply an exaggeration of the events already 

occurring if the cells were simply exposed to a static load, as occurs within the culture 

force monitor model, and left to contract as seen earlier in section 3.11-3.16. It would be 

useful to apply mechanical underloads and overloads to cell seeded collagen gels at the 

time Dupuytren’s fibroblasts reach tensional homeostasis, if in fact this ever occurs. A 

proposal for future work would be setting up the culture force monitor within a sterile 

closed environment to allow the measurement of collagen gel contraction to proceed over 

time courses beyond 48 hours, with the avoidance of bacterial contamination and 

infection.

These findings are important in several respects. From this and previous work it is 

postulated that Dupuytren’s fibroblasts will contract irrespective of the mechanical load 

applied. In the case of a reduction in external load however, it does appear that these 

cells do respond to some mechanical cues in a similar manner to control dermal and 

carpal ligament fibroblasts. If these findings are combined with the significantly greater 

contraction and force generation these cells exhibit in comparison to carpal ligament 

fibroblasts, this goes some way to explaining why progressive digital contracture 

continues or recurs. It may be speculated that surgical intervention such as fasciotomy 

will reduce the external load detected by the resident fibroblasts, and they will respond by 

increasing contraction to return to a level of homeostasis. If the cells’ homeostatic 

equilibrium is set at a very high level, then contraction and contracture are likely to recur. 

If these cells display equilibrium at a lower level of force, then contracture may be less 

likely to recur. Similarly overloading forces such as external splintage regimes will result 

in an increase in cell mediated contraction, leading again to progressive contracture.
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3.27 SUMMARY

• Rapid underloading of pre-loaded acellular gels results in a very gradual increase in 

force over 30 minutes due to the gels’ visco-elastic properties.

• Underloading of control carpal ligament fibroblasts results in a slow increase in cell 

generated force over a 30 minute period which corresponds with the theory of 

tensional homeostasis in dermal fibroblasts proposed by Brown et al (1998)

• Underloading of Dupuytren’s fibroblasts results in a response not significantly 

different to that of carpal ligament fibroblasts. Combining this with previous work 

(Bisson et al 2004) it is postulated that Dupuytren’s fibroblasts will contract 

irrespective of the mechanical stimulus. In the case of a reduction in external load 

however, it does appear that these cells will respond to this mechanical cue in a 

similar manner to control dermal and carpal ligament fibroblasts.

In conclusion, Dupuytren’s fibroblasts will contract in response to a decrease in the 

externally applied load in a manner similar to control dermal and carpal ligament 

fibroblasts. Perhaps in-vivo, it can be speculated that an external extending force applied 

to the finger will be transmitted to the cells within the matrix of the palmar fascia, and 

this will result in cellular contraction, rather than a reduction in cell mediated tension in 

Dupuytren’s disease. A flexing force will tend to take load off the palmar fascia, and it is 

speculated that this may have little effect on disease progression or even disease 

induction as both Dupuytren’s and control palmar fascia responded to this type of 

stimulus by contraction.
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33 THE CELLULAR MORPHOLOGY OF DUPUYTREN’S 

FIBROBLASTS WITHIN COLLAGEN GELS

331 INTRODUCTION

The observation of cell morphology within three dimensional gels has allowed a much 

greater understanding of the relationship between cellular orientation and contractile 

function (Bellows et al 1981; Ehrlich and Rajaratnam 1990; Eastwood et al 1996; 1998; 

Vaughan et al 2000). Using toluidine blue staining to observe overall cellular 

morphology it has been observed that fibroblasts change from a rounded appearance 

when first seeded into a gel, to the extension of cell processes as the cell attaches and 

contraction begins, and proceeding to alignment of the cells along the lines of isometric 

tension within the gel in a culture force monitor model (Eastwood et al 1996; 1998). It 

was postulated that the early generation of force by fibroblasts was due to the extension 

of cell processes, attachment to the matrix and tractional remodelling (Eastwood et al

1996).

Within a dermal fibroblast seeded three-dimensional collagen gel as used here previous 

work (Eastwood et al 1998) has demonstrated 2 zones where the measured force is 

different (figure 3.31). The delta zone has minimal strain due to the stiffness imparted 

into the collagen gel by its proximity to the rigid floatation bars. The remainder of the 

gel has a high strain gradient, aligned along the gel’s long axis. Morphologically it was 

seen that cells were aligned with bipolar morphology along the gel’s long axis, with the 

exception of the delta zone where the cells were non-aligned with a mixture of stellate 

and bipolar morphology. This work indicated that fibroblasts are sensitive to mechanical 

load and will orientate in a manner to reduce the perceived strain across the cell, thus the 

long bipolar morphology parallel to the principal strain, whereas in areas with no strain 

the cells are randomly orientated.
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Figure 3.31: - The delta (d) and aligned (a) zones of a three dimensional collagen gel. 
Note the shaded areas of the delta zone which are protected from strain by the attached 
floatation bars (Derived from Eastwood et al 1998).

Other methods have been employed to look at fibroblast orientation, including 

immunohistochemical staining for a-smooth muscle actin (Vaughan et al 2000; Tomasek 

at al 2002), and fluorescent staining of actin using phalloidin (Ehrlich and Rajaratnam 

1990; Rayan and Tomasek 1994; Tarpila et al 1996). Recently a novel method using 

time-lapse photography has been employed to measure the relationship between cell 

traction and migration (Shreiber et al 2003) in mechanically strained collagen gels.

Bisson (MD thesis 2003) used both immunohistochemical staining for a-smooth muscle 

actin, and toluidine blue staining to measure cell alignment, and postulated that 

immunohistochemical stains gave better visualization of alignment. Other work has 

looked at the quantification of cellular alignment. Umeno and Ueno (2002) measured 

cell orientation caused by magnetic fields, and composed a scale of investigated cell 

orientation related to the mean total orientation of the cells. Both Bisson (2003) and 

Harding et al (2000) utilised the technique of constructing a line through bipolar 

fibroblasts and measuring the deviation of this line from the long axis of the gel in 

Bisson’s case and fibronectin cables in Harding’s case.
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332 AIMS

• To quantify the degree of alignment of fibroblasts within collagen gels following 

static loading and underloading in order to compare cell type.

• To relate changes in cell morphology to molecular changes in the same cells as shown 

in the next chapter.

333 METHODS

At the conclusion of the experimental runs on the culture force monitor, the collagen gels 

were processed for light microscopy as detailed in section 2.4 {Materials and Methods). 

A combination of both staining with toluidine blue, and immuno-histochemical staining 

of alpha smooth muscle actin was undertaken for each gel. The degree of alignment was 

calculated by measuring the mean angle of deviation from the long axis of the collagen 

gel of the bipolar fibroblasts that were in focus in a 2-D micrograph at 200 times 

magnification (for n = 4 statically loaded gels, and n = 4-6 underloaded gels; all separate 

cell lines). The results were compared and statistical analysis performed using a 

student's t-test (Sigma Stat, Jandel Corps).
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3.34 RESULTS

The following pages demonstrate representative examples of micrographs of the aligned 

zone from the three cell types under investigation. Both staining techniques for each 

specimen are shown (figures 3.32-7). The long axis of the three dimensional collagen gel 

in all cases lies across the page (or at 0 °).
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Long axis of gel

Figure 3.32: Micrograph of the aligned zone of a three dimensional collagen gel seeded 
with carpal ligament fibroblasts (x 200 magnification). At the conclusion of the 
experiment on the culture force monitor the gel was fixed in 10% formal saline, and then 
stained with 1% toluidine blue. Note random cell alignment.

Figure 3.33: Micrograph of the aligned zone of a three dimensional collagen gel seeded 
with carpal ligament fibroblasts (x 200 magnification). At the conclusion of the 
experimental run on the culture force monitor the gel was fixed in 10% formal saline, and 
then stained immunohistochemically for alpha smooth muscle actin. Note random cell 
alignment.
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Long axis of gel

Figure 3.34: Micrograph of the aligned zone of a three dimensional collagen gel seeded 
with Dupuytren’s nodule fibroblasts (x 200 magnification). At the conclusion of the 
experimental run on the culture force monitor the gel was fixed in 10% formal saline, and 
then stained with 1% toluidine blue. Note alignment of cells along the long axis of the 
gel. __________________________________________________

Figure 3.35: Micrograph of the aligned zone of a three dimensional collagen gel seeded 
with Dupuytren’s nodule fibroblasts (x 200 magnification). At the conclusion of the 
experimental run on the culture force monitor the gel was fixed in 10% formal saline, and 
then stained immunohistochemically for alpha smooth muscle actin. Note alignment of 
cells along the long axis of the gel.
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Long axis of gel

Figure 3.36: Micrograph of the aligned zone of a three dimensional collagen gel seeded 
with Dupuytren’s cord fibroblasts (x 200 magnification). At the conclusion of the 
experimental run on the culture force monitor the gel was fixed in 10% formal saline, and 
then stained with 1% toluidine blue. Note alignment of cells along the long axis of the 
gel. ___________________________________________________

Figure 3.37: Micrograph of a the aligned zone of three dimensional collagen gel seeded 
with Dupuytren’s cord fibroblasts (x 200 magnification). At the conclusion of the 
experimental run on the culture force monitor the gel was fixed in 10% formal saline, and 
then stained immunohistochemically for alpha smooth muscle actin. Note alignment of 
cells along the long axis of the gel.
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The mean angle of deviation of each cell type from the gel’s long axis was calculated 

using both light microscopy and also separately immunofluorescent microscopy. There 

was no significant difference in angle of deviation for any cell type for either staining 

technique (t-test).

For statically loaded cells (figure 3.38), the mean angle of deviation for carpal ligament 

fibroblasts was 37.2° (SD ± 2.0°), which was significantly greater than that for 

Dupuytren’s nodule at 16.2° (SD ± 1.4°) (p<0.001), and for Dupuytren’s cord at 22.8° 

(SD ± 2.2°) (p<0.005). There was no statistically significant difference in angles 

between nodule and cord derived fibroblasts.
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Figure 3.38: The mean angle of deviation from the long axis of a three dimensional 
collagen gel for Dupuytren’s nodule fibroblasts (n= 4), Dupuytren’s cord fibroblasts (n= 
4), and carpal ligament fibroblasts (n= 4), at the end of a static loading regime on the 
culture force monitor. (Error bars represent standard error of the mean). * indicates a 
statistically significant difference (p<0.001) for the angle of deviation between nodule 
and cord, and for carpal ligament and nodule. # indicates a statistically significant 
difference (p<0.005) for the angle of deviation between carpal ligament and cord.
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For underloaded gels, the mean angle of deviation of carpal ligament fibroblasts was 

32.2° (SD ± 7.7°), and this was significantly greater than that of Dupuytren’s nodule at 

12.1° (SD ± 3.5°) (p<0.026), although not significantly different from that of 

Dupuytren’s cords that displayed an angle of deviation of 18.9° (SD ± 4.9°). (figure 

3.39)
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Figure 3.39: The mean angle of deviation from the long axis of a three dimensional 
collagen gel for Dupuytren’s nodule fibroblasts (n= 7), Dupuytren’s cord fibroblasts (n= 
7), and carpal ligament fibroblasts (n=4), at the end of an underloading regime on the 
culture force monitor. (Error bars represent standard error of the mean)

There is no significant difference in cell alignment between statically loaded or 

underloaded gels. Similarly when compared to the results obtained by Bisson (MD thesis 

2003), there is no significant difference in cell alignment between statically loaded, 

underloaded or overloaded gels.

It must be noted that when these cells were stimulated with TGF-p, the mean angle of 

deviation from the long axis decreased significantly in each cell type investigated 

compared to un-stimulated values (Bisson MD thesis 2003). For nodule fibroblasts this 

was 7.8° (SD ± 1.9°), for cord it was 14.7° (SD ± 6.1°), and for carpal ligament this
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dropped to 15.8° (SD ± 6.5°). All of these cell types generated a significant increase in 

contractile force after stimulation with TGF-01, in comparison to no stimulation (Bisson 

MD thesis 2003), which corresponds with the increasing cell alignment along the gel’s 

lines of principle strain.

From this a graph of fibroblast alignment against maximum generated force has been 

derived (figure 3.310), by plotting the mean maximum generated force for each cell type 

investigated against the mean angle of deviation from the long axis of the collagen gel for 

each cell type. Both the data from this work, and from Bisson (MD thesis 2003) were 

used.
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Figure 3.310: - Correlation curve of maximum generated force vs. fibroblast alignment 
with and without TGF-beta stimulation. (Key : g  square box represents fibroblasts
without stimulation; A diamond represents fibroblasts stimulated with TGF beta.

•  Dupuytren’s nodule; O  Dupuytren’s cord; •  carpal ligament

It may be observed from this graph that cell alignment correlates in a linear manner with 

the maximum force generated by a population of fibroblasts. As force increases, cell 

alignment increases also. It is postulated that when force is high, fibroblasts will align
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parallel to the direction of force in order to minimise the load across the cell, whereas at 

lower forces alignment is less critical.

335 DISCUSSION

From this analysis fibroblast alignment corresponds with overall force generation in a 

linear fashion. Fibroblasts that generate the greatest force within the culture force 

monitor appear to be most aligned along the long axis of the collagen gel. An acellular 

collagen gel will generated a force of around 2 0  dynes if left within the culture force 

monitor system for several hours. This phenomenon was hypothesised to be due to 

intermeshing of collagen fibrils during the accretion phase of collagen maturation and 

fibril growth (Eastwood et al 1994). Collagen gels are postulated to possess non-linear 

viscoelastic properties when axial strain is applied (Ozerdem et al 1995). It is uncertain 

whether greater cell alignment is a result of greater force generation, or whether the cells 

align first and thus are able to generate larger forces. Stopak and Harris (1982) 

demonstrated collagen alignment as a result of fibroblast traction on previously randomly 

orientated collagen gels, and similar findings have been reported by other workers 

(Bellows et al 1981; Davis and Trinkaus 1981; Grinnell et al 1984; Guidry and Grinnell 

1985; 1987; Tranquillo 1995). Due to a gel’s rectangular shape and its attachment to bars 

at each end, even without cells seeded into the matrix, the gel already has a long axis and 

a directional stimulus for the collagen fibrils to settle into once floatation occurs, and it 

would be speculated that a similar effect would occur in cell seeded gels also. Thus it is 

hypothesised that fibroblast contraction plus a directional element from the matrix will 

cause fibroblast alignment.

There was a linear relationship between generated force and alignment, not only for 

Dupuytren’s derived cells but also for carpal ligament cells stimulated with TGF-beta. 

Eastwood et al (1998) proposed that fibroblasts are able to perceive force within a matrix, 

and both orient themselves and adjust their own forces to minimise the load across the 

cell. This has been referred to as “stress-shielding” (Eastwood et al 1998). Fibroblasts 

have also been demonstrated to align by contact guidance of cells along an orientated
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matrix (Guido and Tranquillo 1993; Curtis and Wilkinson 1997). Petroll et al (2004) 

used the technique of reflective light confocal imaging to visualise live cells and their 

surrounding fibrillar collagen matrix. Focal adhesions were orientated parallel to the 

direction of collagen fibril alignment in front of the cell. Mechanical stimulation rather 

than contact guidance was proposed to be the strongest guide for cells from recent work 

by Mudera et al (2000) who subjected fibroblasts to opposing dual cues.

It is hypothesised that those cells that are more contractile would be able to generate 

initially greater force, thus ensuring even better alignment of collagen fibrils, 

concomitant with bipolarity of cell shape. For carpal ligament derived cells generated 

force was only 45dynes, with average cellular alignment of 37° along the gel’s long axis. 

It is possible that in view of these cells’ low contractile ability that they are unable to 

orientate themselves or the surrounding collagen matrix along the longitudinal axis of the 

gel. However when these cells were stimulated with TGF-pl, both force generation and 

alignment significantly increased, suggesting a role for force in providing orientation. 

Several theories may explain why Dupuytren’s fibroblasts align to a greater degree than 

control fibroblasts within a rectangular collagen gel. It has been postulated that these 

cells adhere or attach to the matrix to a greater extent than control cells e.g. via integrins 

(Riikonen et al 1995). Certainly it is known that TGF-p appears to increase the number 

of fibronexus adhesion complexes, and fibronectin fibrils for matrix attachment in 

Dupuytren’s fibroblasts (Vaughan et al 2000). In addition it has been demonstrated that 

TGF-beta II receptors are increased in Dupuytren’s fibroblasts in comparison to controls 

(Kloen et al 1995).

Mechanical stimulation of fibroblasts by underloading appeared to make no significant 

difference to cell orientation. There was a trend for alignment to increase after an 

underload all cell types investigated but this difference was not significant. As discussed 

previously (section 3.2), an underloading force applied across a cell seeded collagen gel 

resulted in an increase in cell contraction. Thus it may be hypothesised that an 

underloading force will also result in increasing cell alignment. The reduction in 

mechanical load by each underload was 30 dynes, and this may reflect the non-significant
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changes seen in cell orientation. Bisson’s work (MD thesis 2003) demonstrated no 

significant change in alignment between statically loaded cells and overloaded cells. It is 

hypothesised that this is because of continued contraction by Dupuytren’s derived cells in 

response to an overloading stimulus.

It has been observed previously that a change in cellular morphology is required to alter 

gene expression (Benya and Shaffer 1982; Spiegelman et al 1982; 1983; Lee et al 1984; 

Zanetti and Solursh 1984). Unemori and Werb (1986) have shown that actin cytoskeletal 

changes within collagen gels are associated with an increase in procollagenase 

expression, probably at a pretranslational level. Similarly work by Mudera et al 2000 has 

shown an upregulation of matrix metalloproteinase activity in fibroblasts within a 

collagen gel that were exposed to conflicting mechanical cues and are thus unable to 

align. This is supported by a study on human tendon fibroblasts that demonstrated that 

fibroblast responses to mechanical stretching depended on cell orientation to the 

stretching direction (Wang et al 2004).

336 SUMMARY

•  Fibroblast alignment correlates with maximum generated force in a linear fashion.

•  Dupuytren’s nodule derived fibroblasts exhibited greatest alignment along the gel’s 

long axis, which was significantly greater than that of cord or carpal ligament derived 

fibroblasts

• Mechanical stimulation of fibroblasts by an underloading regime resulted in no 

significant changes in cell orientation

The next step in this research was to investigate the expression o f  enzymes important in 

the turnover o f the extracellular matrix, the matrix metalloproteinases in response to 

mechanical stimulation. In addition gene expression o f collagen deposition was also 

assessed.
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CHAPTER 4

GENE EXPRESSION OF THE MATRIX 

METALLOPROTEINASES AND 

COLLAGEN BY DUPUYTREN’S 

FIBROBLASTS EXPOSED TO 

MECHANICAL STIMULATION
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4.1 GENE EXPRESSION OF THE MATRIX METALLOPROTEINASES BY 

DUPUYTREN’S FIBROBLASTS EXPOSED TO MECHANICAL STIMULATION

4.11 INTRODUCTION

As mentioned previously cellular responses to alterations in applied mechanical load 

include changes in matrix synthesis, and the release of regulatory enzymes including the 

matrix metalloproteinases (Lambert et al 2001). Previous observations have shown that 

Dupuytren’s fibroblasts display an abnormal contractile response to overloading 

mechanical stimuli (Bisson et al 2004). Application of underloading forces as described 

earlier has also shown an increase in contraction, so that it is postulated that any 

mechanical stimulus applied to Dupuytren’s fibroblasts results in a contractile response. 

There is much information to be gained regarding the molecular events taking place 

during this time, in particular regarding expression of the matrix metalloproteinases and 

their tissue inhibitors. As described earlier {Review o f the Literature, sections 1.11, 1.12, 

and 1.17), the MMPs function in the degradation of the extracellular matrix as part of 

controlled matrix turnover. In normal physiological conditions expression and release of 

these enzymes is tightly regulated, but a loss o f control may result in pathological fibrosis 

as seen in Dupuytren’s disease. Alterations in the mechanical environment that cells 

reside in can also lead to changes in the production of these enzymes, both in normal and 

pathological conditions. Is Dupuytren’s disease a result o f an imbalance of these 

enzymes, and does mechanical load also play an exacerbating role?

MMP expression in Dupuytren’s disease is an area that has been under investigated 

previously, the majority of work having focused on other tissues and cell types. Ulrich et 

al (2003) have looked at the levels of MMPs and their tissue inhibitors in the sera of 

patients with Dupuytren’s disease, finding an imbalance in the ratio between the two, 

with an increase in TIMP-1 levels in Dupuytren’s sufferers. However a limitation with
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this work was that patient samples were not obtained in a controlled environment, so only 

an estimation of MMP levels could be deduced, in view of the fact that many external 

patient factors may affect MMP release, including anaesthesia and perioperative trauma. 

No research appears to have directly measured MMP expression in a series of 

Dupuytren’s fibroblast cell cultures, so this is an area where there are some gaps in 

knowledge.

Research has investigated mechanical stimulation and MMP expression in Dupuytren’s 

tissue (Bailey et al 1994; Tarlton et al 1998), finding that an increase in mechanical load 

induces increased expression of MMP-2 and MMP-9. It was hypothesized that this may 

be a cause of collagen breakdown with loss of mechanical strength of a contracture for 

example as seen in the continuous elongation technique (Messina and Messina 1991). 

The majority of researchers within the literature have employed cyclical loading regimes 

to measure responses to mechanical load (Yang et al 1998; Seliktar et al 2001; Sun and 

Yokota 2002; Asanuma et al 2003; Berry et al 2003), although Mudera et al (2000), and 

Prajapati et al (2000a and b), have both measured MMP expression or release using a 

culture force monitor model in dermal fibroblasts, both of these workers finding an 

upregulation of MMP-2 and MMP-9 in response to mechanical loading.

4.12 AIMS

• To investigate the baseline expression of MMPs and TIMPs by Dupuytren’s 

fibroblasts and carpal ligament fibroblasts statically loaded on the culture force 

monitor

• To determine the modulation of these MMPs and TIMPs by underloading, and 

overloading regimes
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4.13 HYPOTHESES

• Dupuytren’s derived fibroblasts will display a greater baseline expression of MMPs 

and TIMPs in comparison to carpal ligament derived fibroblasts

• MMP and TIMP expression will decrease with mechanical underloading in 

Dupuytren’s fibroblasts and in carpal ligament derived fibroblasts

• MMP and TIMP expression will increase with mechanical overloading in 

Dupuytren’s fibroblasts but not in control carpal ligament derived cells.

4.14 MATERIALS AND METHODS

Fibroblast seeded collagen gels were set up on the culture force monitor and allowed to 

contract over a 20 hour period {Material and Methods 2.3). At this time point they were 

either allowed to contract for a further 4 hours (static load), or exposed to a series of 

uniaxial underloads, or uniaxial overloads {Materials and Methods 2.3.3, 2.3.5-6). After 

removal from the culture force monitor {Materials and Methods 2.3.9) the gels were snap 

frozen in liquid nitrogen and stored at -80°C in a freezer immediately until being used for 

RNA extraction as outlined previously in section 2.6-2.8 {Materials and Methods). There 

were 3 groups composed of Dupuytren’s nodule, Dupuytren’s cord and carpal ligament 

derived gels. Each group was subdivided into statically loaded gels (n=4-5), overloaded 

gels (n=4-6), and underloaded gels (n=4-6). A change in MMP expression as a ratio 

compared to GAPDH expression was quantified using RT-PCR (section 2.8).
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4.15 RESULTS

4.2 THE EXPRESSION OF MMPS BY DUPUYTREN’S FIBROBLASTS 

EXPOSED TO STATIC LOADS

Fibroblasts seeded within a longitudinally orientated collagen gel were left to contract 

within the culture force monitor. No external stimuli were applied across the gel, but by 

virtue of the gel’s attachment to the fixed point and force transducer the gel can be said to 

have a static load applied to it (as discussed in section 1.14 Introduction). From the 

previous section it was demonstrated that Dupuytren’s derived cells demonstrate an 

increased contractile ability, compared to control carpal ligament derived cells, with 

greater force generation and alignment over a 24-hour period.

MMP-1 MMP-2 MMP-13 T1MP-1 71MP-2MMP-9

□  control □  nodule a c o rd

Figure 4.1:- Relative expression of the matrix metalloproteinases and their tissue 
inhibitors in n=5 control carpal ligament, Dupuytren’s nodule and Dupuytren’s cord 
fibroblasts exposed to static load only. Transcription of each gene is expressed as a ratio 
of the band intensities of the test gene / GAPDH. Each data point represents the mean 
band intensity. Error bars represent standard errors of the mean.
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From the histogram (figure 4.1) it can be seen that expression of MMP-1 and MMP-2 

was low in comparison to the housekeeping gene {For densitometric pictoral 

demonstration o f each PCR product analysed here please see Appendix X  (a-h) for  

details). (A ratio of 1 indicates that expression of the investigated gene is the same as 

that of the internal housekeeping gene GAPDH). For MMP-1 absorbance values were 

0.375 (SEM ±0.17) for carpal ligament, 0.274 (SEM ±0.13) for nodule, and 0.322 (SEM 

±0.12) for cords. Values for MMP-2 ranged from 0.516 to 0.63 (SEM ±0.1), with no 

significant difference in expression between cell lines. In contrast expression of the 

natural inhibitors of matrix metalloproteinases, TIMP-1, and TIMP-2 was significantly 

greater (p<0.001) than for the MMPs in each cell type. For TIMP-1, absorbance values 

were 2.39 (SEM ± 0.4) for carpal ligament, 2.73 (SEM ± 0.33) for nodule and 1.78 (SEM 

± 0.28) for cord. Values for TIMP-2 were 1.67 (SEM ±0.15) for carpal ligament, 1.95 

(SEM ± 0.13) for nodule and 2.00 (SEM ± 0.17) for cords.

It can be seen that expression of MMP-13, and MMP-9 was minimal in all cell lines 

investigated with relative absorbance values of less than 0.1. However despite low levels 

of expression of MMP-13 in all cases there was a significantly greater baseline 

expression in nodule derived fibroblasts (p<0.05) compared to controls (seen in greater 

detail in figure 4.4 and 4.5). For nodule this absorbance value was 0.067 (SEM ± 0.016), 

compared to 0.008 (SEM ± 0.004) for controls and 0.049 (SEM ± 0.02) for Dupuytren’s 

cord

Thus it appears that in general, in both diseased and normal palmar fascia fibroblasts, 

expression of TIMPs is higher than that of the matrix metalloproteinases, which may be 

extrapolated to reflect little matrix turnover.

4.21 DISCUSSION

Few workers have investigated gene expression of MMPs in Dupuytren’s disease or in 

palmar fascia. Ulrich et al (2003) measured the serum concentrations of TIMP-1, and 2,
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and MMPs- 1,2, and 9 in patients with either active stage disease or residual disease as 

defined by Luck (1959). These were compared with serum concentrations from patients 

undergoing routine carpal tunnel surgery. Thus patient populations in comparison to this 

study are very similar. Serum TIMP-1 concentrations were found to be significantly 

higher in Dupuytren’s patients in comparison to controls, with significantly higher levels 

seen in those patients with active disease. There was no difference in serum TIMP-2 

concentrations between groups. Similarly there was no difference in MMP levels 

between groups. Levels of TIMP-1 were greater than those of the MMPs in all cases, 

although TIMP-2 levels were similar to those of the MMPs. The same workers have 

demonstrated elevated TIMP-1 levels in pathological dermal scars also (Ulrich et al 

2003). They hypothesized that an elevated systemic TIMP level may result in lack of 

degradation of the extracellular matrix components, and thus progressive fibrosis.

Gene expression was measured in a very controlled environment in this in-vitro collagen 

gel model, whereas for Ulrich et a l 's work (2003), enzyme levels were taken directly 

from patients' sera with a large degree of external factors being involved such as 

operative stress, anaesthesia, and hormonal factors. It has been recorded (Herouy et al 

2001; Belotti et al 1999; Parsons et al 1997; Ravanti and Kahari 2000), that a large 

number of stimuli including mechanical load and growth factors may affect MMP 

expression and production, and this is a limitation of Ulrich’s (2003) study. In view of 

the different models used, the results reported here are not comparable with those of 

Ulrich et al (2003).

In both normal palmar fascia and Dupuytren’s derived cells baseline expression of TIMP- 

1 and 2  were elevated in comparison to the MKIfe with no significant difference 

between cell origin. We can postulate that in cells exposed to static loads where no 

external stimulation has been applied, a low level of expression of MMPs may indicate 

that matrix turnover is also low. When the extracellular matrix is in a steady state there is 

an equal balance between matrix degradation and production. Perhaps higher levels of 

TIMPs are required to maintain an equilibrium, and this would reflect their increased 

expression in this unstimulated state. In non-wounded skin there are very low measured
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basal levels of MMP-1, MMP-9 and TIMP-1 suggesting minimal roles in normal skin 

maintenance (Soo et al 2000).

Thus it can be concluded that the differences seen in the Dupuytren’s fibroblast cellular 

contraction profiles in comparison to control carpal ligament likely to be unrelated to 

MMP expression, given the similar levels of gene expression between Dupuytren’s and 

control carpal ligament fibroblasts. The baseline enhanced levels of TIMPs in all cases 

investigated suggests that matrix turnover is unlikely to be occurring within this 

experimental model.
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4.3 THE EXPRESSION OF MMPS AND TIMPS IN DUPUYTREN’S 

FIBROBLASTS EXPOSED TO MECHANICAL STIMULATION

4.31 UNDERLOADS

Following the application of a series of 4 uniaxial underloads to the collagen gels, the 

changes in gene expression were measured and documented below. In view of the very 

low levels of expression of MMP-13 and MMP-9 by all cell types these results will be 

displayed using separate histograms in order that a scale of zero to one on the y axis for 

relative band intensity may be used.

Figure 4.2:- Mean relative band intensity for the MMPs and TIMPs following a series of 
uniaxial underloads for n=4 carpal ligament, n=4 Dupuytren’s nodule and n=6 
Dupuytren’s cord derived fibroblasts. Error bars represent standard errors of the mean. 
MMP-1 and MMP-2 expression is significantly greater in Dupuytren’s nodule in 
comparison to control carpal ligament and Dupuytren’s cord (*) (Figure 5 overleaf gives 
a diagrammatic representation of the comparison between static loads and underload 
using the same data)

p<0.004

MMP-1 MMP-2 MMP-13 MMP-9 TIMP-1 TIMP-2

□  control □  nodule D cord
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Figure 4.3:- Histogram to compare the gene expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 between 2 different mechanical stimuli: static loading, and 
underloading. Each bar represents the mean relative band intensity for each gene. MMP-1, MMP-2gene expression is significantly greater for Dupuytren’s 
nodule in comparison to control carpal ligament and Dupuytren’s cord (*). TIMP-1 expression is significantly greater for Dupuytren’s cord (*).
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From the previous 2 histograms (figure 4.2 and figure 4.3), it can be seen that an external 

mechanical load applied to the fibroblasts results in a change in gene expression. In this 

case a reduction in load (underload) was applied to the gels. For MMP-1, application of a 

series of underloads resulted in no significant change in gene expression for the carpal 

ligament fibroblasts at 0.423 (SEM ± 0.14), or for the Dupuytren’s cord derived 

fibroblasts at 0.14 (SEM ± 0.07) in comparison to a static load. However for nodule 

there was a significant up-regulation (p<0.05) in gene expression from 0.275 to 1.29 

(SEM ± 0.12) in comparison to nodules exposed to a static load. This upregulation in 

MMP-1 expression by Dupuytren’s nodule fibroblasts was also significantly greater 

(p<0.05) than expression for underloaded carpal ligament and Dupuytren’s cord 

fibroblasts.

Application of a series of uniaxial underload also resulted in a significant upregulation 

(p<0.004) of MMP-2 for Dupuytren’s nodule in comparison to expression with a static 

load from 0.63 (SEM ± 0.2) to 4.67 (SEM ± 0.86). There was no significant upregulation 

of MMP-2 expression for either carpal ligament or for Dupuytren’s cord derived 

fibroblasts in comparison to a static load. When MMP-2 expression for Dupuytren’s 

nodule after an underload was compared to that for cord and carpal ligament, again a 

significantly higher level of expression (p<0.004) was noted for nodule derived cells. 

These results for both MMP-1 and MMP-2 gene expression indicate that the behaviour of 

the nodule and the cord are different, with the nodule up-regulating expression of these 

genes, while the cord behaves in a similar manner to control carpal ligament and shows 

no significant change in gene expression. It may be interpreted that fibroblasts derived 

from nodule are a separate cell population from those derived from cord, and that it is 

these cells which are most sensitive to changes in externally applied mechanical load as 

seen here with underloading.

In contrast to the upregulation of MMP-1 and 2 by Dupuytren’s nodule, there were few 

changes in the expression of the tissue inhibitors (TIMPs) after underloading. 

Application of a series of underloads resulted in no significant change in TIMP-1 

expression for carpal ligament or Dupuytren’s nodule derived fibroblasts. However for
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Dupuytren’s cord there was a significant increase (p<0.004) from 1.78 (SEM ± 0.28) to 

4.79 (SEM ± 0.66). With regard to the expression of TIMP-1 between cell types after 

underloading, no significant difference in expression of TIMP-1 was seen between carpal 

ligament or Dupuytren’s derived cells. Similarly for TIMP-2 there was no significant 

change in gene expression between cell types. Expression levels remained unchanged 

from those o f a static load with values o f  2.09 (SEM ± 0.52) for control, 2.02 (SEM ± 

0.57) for nodule and 1.25 (SEM ± 0.46) for cords. Thus within this experimental set-up, 

it can be interpreted that TIMP-2 gene expression is not affected by a reduction in 

externally applied uniaxial load. However TIMP-1 gene expression within Dupuytren’s 

cord fibroblasts is up-regulated by reduced load. From this it can be extrapolated that in 

the cord matrix degradation is inhibited by the up-regulated TIMP-1 when load is 

reduced, and thus overall matrix turnover may also be reduced in this situation. This 

suggests that mechanical load may contribute to the net matrix production as seen in the 

Dupuytren’s cord.

~  0.35 -

0.15

□  control static Q control under □  nodule static

□  nodule under □  cord static □  cord under

Figure 4.4:- Expression of MMP-13 after simple static loading or after an underloading 
regime for control carpal ligament (n=4), Dupuyten’s nodule (n=4) and Dupuytren’s cord 
(n=5). Error bars represent standard errors o f the mean.

From the histogram above (figure 4.4) an underloading regime results in an upregulation 

o f MMP-13 expression in both the control and Dupuytren’s derived fibroblasts. Despite
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the trend for upregulation these differences are not significant for any cell type. MMP-13 

has been shown in osteoblasts to be up-regulated when mechanical load is applied (Yang 

et al 2004), but it was uncertain of the effects on reducing load. This data implies that 

both control palmar fascia fibroblasts derived from carpal ligament and Dupuytren’s 

fibroblasts react in a similar manner to underloading with regards MMP-13 expression.

For MMP-9 expression levels are extremely low in all cases. However exposure to 

underloading results in an upregulation o f  MMP-9 expression in all cell types (figure 

4.5). This up-regulation is significant (p<0.003) for Dupuytren’s nodule with an increase 

from 0.002 (SEM ± 0.002) to 0.046 (SEM ± 0.009). Similar significant increases 

(p<0.003) occurred for Dupuytren’s cord from 0.0016 (SEM ± 0.009) to 0.034 (SEM ± 

0.018). For carpal ligament there was an increase in MMP-9 expression from 0.003 

(SEM ± 0.002) to 0.045 (SEM ± 0.018), although this was not significant (p>0.057).

g  0.16
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p<0.003 *p<0 003

DJ
□  control static ■  control underload □  nodule static
□  nodule underload □  cord static □  cord underload

Figure 4.5:- Expression o f MMP-9 after simple static loading or after an underloading 
regime for control carpal ligament (n=4), Dupuyten’s nodule (n=4) and Dupuytren’s cord 
(n=5). Error bars represent standard errors o f the mean. Expression o f MMP-9 increased 
significantly after underloading for Dupuytren’s cell lines (p<0.003).
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This data demonstrates that expression of MMP-9 in Dupuytren’s fibroblasts is altered by 

a reduction in externally applied load. This change is also mimicked in control carpal 

ligament. Previous work has demonstrated that expression of this gene is up-regulated by 

changes in mechanical load (Mudera et al 2000; Von den Hoff 2003) in both dermal 

fibroblasts and in periodontal ligament fibroblasts. Given the low level of expression of 

this gene in all cases and the similarity in the change of expression in response to 

underloading, it may be postulated that in this experimental set-up, it is not an 

abnormality in MMP-9 gene expression that is responsible for the overall difference in 

contractility seen between Dupuytren’s and control fibroblasts.

432 OVERLOADS

Application of a series of uniaxial mechanical overloads to the collagen gels resulted in 

pronounced changes in the gene expression profiles for both the MMPs and for the 

TIMPs. Figure 4.6 demonstrates the expression of MMPs exposed to an overloading 

regime, and figure 4.7 gives a graphical comparison between a static loading regime and 

an overloading regime.
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JK 0 .0 0 6

MMP-1 MMP-2 MMP-13 MMP-9 TIMP-1 TIMP-2

■  control ■  nodule Qcord

Figure 4.6:- Mean relative band intensity for the MMPs and TIMPs following a series of 
uniaxial overloads for n=4 control carpal ligament, n=5 Dupuytren’s nodule and n=6 
Dupuytren’s cord derived fibroblasts. Error bars represent standard errors of the mean. 
The asterixes * indicate the significantly greater gene expression for MMP-1 , MMP-2 
and TIMP-2 for Dupuytren’s nodule in comparison to cord and carpal ligament, and also 
the significantly greater expression of TIMP-1 for the carpal ligament fibroblasts in 
comparison to cord and nodule. (Figure 4.7 overleaf gives a diagrammatic representation 
of the comparison between static loads and overloads using the same data)

After application of a series of overloads there is a significant increase in MMP-1 

expression for Dupuytren’s nodule. For control carpal ligament MMP-1 expression rises 

from 0.375 (SEM 0.17) to 0.60 (SEM ± 0.18) although this is not significant. For nodule 

expression rises from 0.274 (SEM ± 0.13) to 2.68 (SEM ± 1.1), which is a significant 

increase (p<0.05). However MMP-1 expression for Dupuytren’s cord fibroblasts drops 

from 0.322 (SEM ± 0.12) in statically loaded gels to 0.12 (SEM ± 0.07) in overloaded 

gels, which is significant (p<0.05). Dupuytren’s nodule fibroblasts display significantly 

increased MMP-1 expression after overloading in comparison to controls and cords 

(p<0.02). There is no difference in MMP-1 expression between an overload and an 

underload stimulus for nodule, cord or carpal ligament. Thus it appears that in this 

experimental set up it is the nodule derived fibroblasts that display greatest up-regulation 

of MMP-1 when both mechanically overloaded and also underloaded. This suggests first 

of all a functional difference between nodule and cord with respect to this gene.
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Secondly it is important to note that no matter which type of mechanical load is applied 

to the nodule (either underload or overload), the molecular response of MMP-1 is the 

same i.e. upregulation. This implies that changes in mechanical load can increase MMP- 

1 expression that may be extrapolated to reflect an increase in local matrix degradation by 

nodule derived fibroblasts.

For MMP-2 once again the upregulation in gene expression seen previously after 

underloading, also occurs after overloading. MMP-2 expression increased for control, 

nodule and carpal ligament derived cells. However this is not significant in the case of 

carpal ligament and Dupuytren’s cord fibroblasts. In marked contrast is the statistically 

significant up-regulation for Dupuytren’s nodule with a rise from 0.63 (SEM ± 0.09) after 

static loading to 5.16 (SEM ± 0.74) after overloading (p<0.003). When comparing 

overloading gene expression to underloading gene expression there is no difference in 

MMP-2 expression for all cell lines. The up-regulation of MMP-2 in Dupuytren’s nodule 

is significantly greater than that for both cord and carpal ligament (p<0.006). This data 

provides additional weight to the extrapolation given above. An up-regulation of both 

MMP-1 and MMP-2 for Dupuytren’s nodule is indicative of an increased ability to 

degrade the extracellular matrix in comparison to cord or carpal ligament. It also 

demonstrates the similarity of molecular behaviour between carpal ligament and cord 

with regards to MMP gene expression, with the nodule acting in a separate manner.
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Figure 4.7: Histogram to compare the gene expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 between 2 different mechanical stimuli: static loading, and 
overloading. Each bar represents the mean relative band intensity for each gene. Note the significantly greater expression of MMP-1, MMP-2, and TIMP-2 for 
Dupuytren’s nodule in comparison to static load (*). Note also the significantly greater TIMP-1 expression for control carpal ligament and cord.

137

Relative 
band 

intensity 
(test gene 

/ G
A

PD
H

) arbitory 
values



Results

In contrast to the findings above are the changes seen in the expression levels of the 

tissue inhibitors of the matrix metalloproteinases. After application of a series of uniaxial 

overloads, TIMP-1 expression increases significantly for carpal ligament derived 

fibroblasts (p<0.001) from 2.39 (SEM ± 0.38) to 9.68 (SEM ± 1.1). This increase is 

significantly higher than that for both Dupuytren’s derived cell types (p<0.001), and is 

also significantly greater than the response of carpal ligament cells to an underloading 

regime (P<0.009). There is no significant change in TIMP-1 expression in response to an 

overloading regime by Dupuytren’s nodule derived fibroblasts, but for cord derived cells 

the up-regulation is similar to that for carpal ligament. Cord derived cells increase 

expression levels for TIMP-1 from 1.78 (SEM ± 0.28) to 3.86 (SEM ± 0.59), which is 

again a significant increase (p<0.006). This result indicates as earlier the contrasting 

changes in gene expression between nodule and cord derived cells, suggesting functional 

and phenotypic differences between these cell types. In addition it is also important to 

observe that the up-regulation of TIMP-1 by control carpal ligament cells is also seen in 

cord derived cells, which indicates that these fibroblasts display similar characteristics 

with regards MMP and TIMP expression in this situation. The up-regulation in TIMP-1 

expression by carpal ligament control fibroblasts suggests that these cells are acting to 

inhibit matrix degradation, and thus turnover in response to mechanical overloading, with 

a similar response by Dupuytren’s cord fibroblasts. However for Dupuytren’s nodule an 

opposing reaction appears to occur with up-regulation of MMP-1 and 2 gene expression 

which would signal matrix degradation, with no inhibition of matrix turnover as indicated 

by the lack of increased TIMP-1 expression in response to overloading.

For TIMP-2 no significant change in expression occurs when comparing static load to 

underloading and to overloading regimes. Expression levels for carpal ligament and for 

Dupuytren’s cord remain fairly static at 1.57 (SEM ± 0.24) and 1.7 (SEM ± 0.51) 

respectively with no significant change in comparison to static loading or to 

underloading. However for Dupuytren’s nodule there is a significant up-regulation of 

TIMP-2 expression with an increase from 1.96 (SEM ± 0.13) for static load to 4.16 (SEM 

± 0.57) (p<0.015) for overloading. This value is also significantly greater than the
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response to an underloading regime (p<0.02). Up-regulation by nodules is also 

significantly greater when comparing these values to those of carpal ligament and 

Dupuytren’s cord (p<0.015). Up-regulation of TIMP-2 has also been observed after 

mechanical loading in periodontal fibroblasts (He et al 2004) and fetal lung fibroblasts 

(Yokota et al 2002). As introduced earlier the role of the TIMPs is not only in the 

inhibition of MMP activity, but they are also involved in causing enhanced cellular 

proliferation, which may explain the up-regulation of TIMP-2 in the Dupuytren’s nodule 

only.

For MMP-13 up-regulation of gene expression was seen for Dupuytren’s nodule only 

which occurred to a significantly greater extent than with an underload (figure 4.8). Band 

intensity increased from 0.067 (SEM ± 0.016) for statically loaded gels to 0.24 (SEM ± 

0.03) for overloaded gels, which was significant (p<0.002). For carpal ligament and for 

cord derived cells there was no significant change in MMP-13 expression after 

overloading in comparison to static loading or underloading. The upregulation seen in 

nodule derived cells was significantly greater than the values seen for carpal ligament 

controls and for Dupuytren’s cord (p<0.05). Once again this result supports the 

postulation that the nodule appears to play a key role in matrix degradation in response to 

applied mechanical load.
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Figure 4.8: Expression of MMP-13 after static loading or after an overloading regime for 
control carpal ligament (n=4), Dupuyten’s nodule (n=4) and Dupuytren’s cord (n=5). 
Error bars represent standard errors of the mean. Note the significant increase in gene 
expression for Dupuytren’s nodule after overloading (* p<0.002). Note also that MMP- 
13 gene expression for nodule was significantly greater than that for cord or control 
carpal ligament (# p<0.05).

The up-regulation in expression of MMP-9 that was seen after underloading in all cases 

was also seen after overloading (figure 4.9). From minimal MMP-9 expression in all 

investigated statically loaded fibroblasts, there was an increase to 0.09 (SEM ± 0.03) for 

control carpal ligament, to 0.12 (SEM ± 0.03) for nodule and to 0.08 (SEM ± 0.02) for 

cord derived cells. Up-regulation was significant for each cell type investigated (p<0.05 

for carpal ligament; p<0.005 for Dupuytren’s fibroblasts). There was no significant 

difference between overloading and underloading regimes.

(# p<0.05)

p<0.002
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Figure 4.9:- Expression of MMP-9 after static loading or after an overloading regime for 
control carpal ligament (n=4), Dupuyten’s nodule (n=4) and Dupuytren’s cord (n=5). 
Error bars represent standard errors of the mean. Note the significant increase in MMP-9 
expression after an overload compared to static loading (*) in all cases.

It may be postulated that in this experimental set-up, that the up-regulation of MMP-9 is a 

normal and usual response to a change in mechanical load, given the similarity in 

response by all three cell types to both overloading and underloading. This is also 

supported by previous work on both human dermal fibroblasts and human periodontal 

fibroblasts (Mudera et al 2000; Von den Hoff 2003).

4 3 3  D IS C U S S IO N

Mechanical load has been shown in many cell types to stimulate production of MMP-1, 

MMP-2 and MMP-9 (Li et al 1999; Seliktar et al 2001; WuDunn 2001; Asanuma et al 

2003; Von den Hoff 2003; He et al 2004). These have included cardiac fibroblasts, 

vascular smooth muscle cells, trabecular meshwork cells, and periodontal ligament 

fibroblasts in both cell monolayer and collagen gel models. Other work has demonstrated 

no change in MMP-1 and 2 expression after application of a mechanical load e.g. in 

scleral fibroblasts (Yamaoka et al 2001). Some studies have shown an increase in MMP-
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13 expression with mechanical load in osteoblastic cells (Yang et al 2004), while others 

have demonstrated a reduction after cyclic loading in synovial cells (Sun and Yokota 

2002). After reviewing the literature it appears that the molecular response of each MMP 

is very much dependant on the tissue of origin and the exact mechanical stimulus applied. 

This is the first time that MMP and TIMP expression has been examined under controlled 

mechanical conditions in both Dupuytren’s tissue and in control carpal ligament fascia.

As previously discussed in Section 1.18 (Introduction), Dupuytren’s nodule fibroblasts in 

particular demonstrate a contractile response to a series of 4 uniaxial overloads. When 

load is taken off the cell seeded gel as in the case of an underload, cellular contraction 

occurs again. So that it appears that no matter which mechanical load is applied, the 

response of Dupuytren’s nodule derived cells is by contraction. The molecular 

expression of MMPs has been observed here within a single snap-shot in time, with the 

gene expression being measured thirty minutes after a series of 4 underloads or 

overloads. Time and laboratory limitations did not permit the examination of these 

molecular changes at separate time points as this would give us a more in depth picture of 

the intracellular events as they occur. It is for these reasons that a static load has been 

utilized as the standard with which to compare the other loading regimes.

From this work it may be postulated that it is the Dupuytren’s nodule which is most 

active with regards to MMP expression. There is a distinct significant up-regulation of 

all of the MMPs under investigation here (MMP-1,2,9, and 13), after both underloading, 

and to a greater degree after overloading. In contrast is the behaviour o f the Dupuytren’s 

cord which parallels that of the control carpal ligament derived cells. These displayed no 

up-regulation of MMP-1, 2, or 13 after a mechanical stimulus, excepting MMP-9. From 

this we may conclude that there is some fundamental difference in the make-up of these 

cells. It is postulated that the Dupuytren’s cord derived fibroblasts come from a different 

cell population to those of the nodule.

When seeded into a collagen gel -  the behaviour of the nodule and cord is remarkably 

similar as shown by their force generated on the culture force monitor. Both generate
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significantly greater force than control carpal ligament fibroblasts, and both continue to 

contract with no evidence of tensional homeostasis at 48 hours. In addition when 

subjected to an overload, both display a contractile response (Bisson et al 2004), although 

this is more significant in the nodule. Previous work investigating the differences in 

cellular behaviour between nodule and cord has been inconclusive. Moyer et al (2002) 

analysed gap-junction intercellular communication and free floating circular collagen gel 

contraction in nodule and cord derived cell lines over a period of 8  passages, finding that 

as passage number increased the behaviour of the nodule derived fibroblasts became 

similar to that of cord, with reduced contractility, and increased coupling index (a 

measure of increased gap junction communication). They concluded that this provided 

weight to the theory favoured by Hueston (1985) that the Dupuytren’s nodule represented 

the early stage of the disease, and that with time nodules will change their phenotype and 

progress into cords. The histological appearance of cells within nodule and cord are 

different (Luck 1959), and since the discovery of the myofibroblast by Gabbiani and 

Majno (1972) a lot of work has investigated the location of this cell type within the 

Dupuytren’s disease nodule/cord complex. Some workers (Badalamente et al 1983; 

Vande Berg et al 1984; Qureshi et al 2001) have demonstrated that the cord generally 

lacked myofibroblasts, whereas Bisson et al (2003) demonstrated their presence in cord 

albeit in low proportions (2.7% myofibroblast content). When stimulated with TGF-beta 

however they found a significant increase in myofibroblasts within cord cultures to levels 

similar to that for nodule (25% myofibroblast content).

The data presented here provides new evidence for a difference between nodule and cord 

fibroblasts with regards MMP gene expression. It does not however help the debate as to 

which, if either, o f these Dupuytren’s lesions arises first. As seen from the static loading 

results, the baseline expression of MMP-1,2,9 and 13 in all cell types is very low, with a 

greater expression of TIMP-1 and 2. As soon as a change in mechanical load is applied, 

the nodule and the cord behave in converse ways with MMP, and TIMP-2 upregulation 

for nodule, and TIMP-1 up-regulation for cord. It is therefore postulated that these are 

two separate cell populations, each with a different role to play in the disease. On a 

molecular level it is the nodule that is the most sensitive to mechanical load and active
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when it comes to protease gene expression. No matter which mechanical load is applied, 

the result is increased gene expression of MMP-1,2,9 and 13. For the cord, there is very 

little change in MMP expression, and behaviour is remarkably similar to that for carpal 

ligament. It may be extrapolated from this that the cord is relatively quiescent, and does 

not play a major role in matrix remodeling activity. By virtue of the cords close 

relationship to the nodule it is entirely possible that these separate entities are part of the 

same unit, but with different roles to fill in the process of forming a flexion contracture.

An up-regulation in the expression of the MMPs in response to mechanical stimulation 

has been previously reported in Dupuytren’s disease (Tarlton et al 1998), and other cell 

types (Seliktar et al 2001; Asanuma et al 2003; Von den Hoff 2003; He et al 2004). 

Seliktar et al (2001) exposed human vascular smooth muscle cells in a 3-D construct to 

either static loads or cyclical loads and found a significant up-regulation of MMP-2 

production using gelatin zymography when mechanically stimulated. They also 

measured an increase in strength of the tested construct after mechanical stimulation. 

The same cell types have been shown to increase their expressed levels of MMP-1, 

MMP-2 and MMP-9 when exposed to a static load, whereas cyclic loading resulted in a 

downregulation (Yang et al 1998; Asanuma et al 2003). It was proposed that an increase 

in static load seen in arteries with atheroma may act as a stimulus for matrix breakdown 

and possible plaque failure, and thus distal vascular occlusion. Transgenic mice with 

overexpression of MMP-3, or MMP-1 have developed increased reactive stroma and an 

increased collagen content within the ECM, and for mice with increased expression of 

MMP-1, left ventricular hypertrophy occurs (Sympson et al 1994; D’Armiento et al 

1997). Similarly MMP-1, 2, and 9 levels were enhanced in preloaded dermal fibroblasts 

subjected to cyclic strain (Berry et al 2003), and it was suggested that this results in a 

shift to a more active catabolic state. In the case of the smooth muscle cells static load 

occurs as a result of a pathological disease state such as atheroma, and an increase in 

MMP activity is an action performed by these cells in order to improve flow. The 

difference with Dupuytren’s disease is that these changes as far as we know are not a 

normal response to an abnormal mechanical situation within the hand, but an abnormal 

response to a normal mechanical situation.
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Amoszky et al (2004) found a strong inverse correlation between MMP-1 expression and 

static load applied to rat tendon fibroblasts. An increase in load resulted in a significant 

fall in expressed MMP-1. Load deprivation in tendon cells has been shown to result in 

degradation of the ECM, and proteolytic action of the MMPs has been thought to have 

been a causative factor (Goomer et al 1999; Majima et al 2000). The action of 

cytochalasin-D to disrupt the actin cytoskeleton resulted in a similar level of MMP-1 to 

load-deprived fibroblasts, which supported the hypothesis that a cytoskeletally based 

mechanosensory tensegrity system was involved in the control of MMP gene expression. 

Work on periodontal ligament cells yielded similar findings with mechanical load in 

collagen gels preventing matrix degradation, and free floating gels showing enhanced 

MMP-2 and 9 activity (Von den Hoff 2003). In this work it appears that a mechanical 

overloading results in an increase in expressed MMP-1 in Dupuytren’s nodule. However 

regarding static load alone the levels of expressed MMP-1 are low in Dupuytren’s and in 

carpal ligament cells.

Kessler et al (2001) concluded from their work, that mechanically loaded fibroblasts are 

activated to a synthetic phenotype characterized by connective tissue synthesis in concert 

with the induction of protease inhibitors, while downregulating proteases and 

inflammatory mediators. They observed induction of ECM synthesis of collagen I and 

tenascin C, with downregulation of MMP-1 in a mechanically loaded gel in comparison 

to a free floating gel. In parallel the protease inhibitors TIMP-1 and TIMP-3 were 

induced by a mechanical load. It was thought that an increased level of these inhibitors 

could disturb the balance between matrix synthesis and degradation leading to 

accumulation of extracellular matrix. Our work contrasts with this study. We see no 

downregulation of MMP activity after mechanical load in the normal carpal ligament 

control cells, and an up-regulation in the Dupuytren’s nodule cells. One can postulate 

that in order for a tissue to remodel, first an element of matrix degradation and 

“softening” must take place in order that cell motility can occur within the matrix, 

followed by cellular contraction and then finally knitting together of the “softened” 

matrix with deposition of new extracellular matrix materials. Thus the initial event may
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well be an up-regulation of MMP activity in order for this to occur. A repeated 

continuation of this process may lead to further tissue contraction, and eventually long 

term net matrix deposition leading to contracture

Compressive forces applied to periodontal ligament fibroblasts results in decreases of 

type 1 collagen and fibronectin protein, downregulation of collagen I gene expression, 

and upregulation of MMP-2, with no change in TIMP-2 expression (He et al 2004). In 

contrast a mechanical load increased expression of MMP-2 and TIMP-2. This indicated 

that these cells have the ability to perceive different types of mechanical stimuli, and 

respond in a different manner to each. It can be seen here that Dupuytren’s nodule 

derived cells display the same responses to mechanical load as the cells described above, 

and thus can be termed mechanosensitive, in contrast to the carpal ligament and 

Dupuytren’s cord derived cells. An upregulation of MMPs may be a normal response for 

periodontal ligament derived fibroblasts where a key role in the maintenance of a stable 

tooth is the detection of mechanical load. This lays weight to the findings that normal 

palmar fascia cells have a low baseline contractility, and do not upregulate MMPs when 

exposed to a mechanical load. It can be postulated that the palmar fascia is not 

mechanosensitive. It is possible that an insult to the palmar fascia fibroblast be it 

chemical, traumatic, or genetic may suddenly trigger these cells to become particularly 

sensitive to load, thus resulting in the characteristic fibrotic changes seen clinically in 

Dupuytren’s disease.

Levels of TIMP-1 and TIMP-2 remain unchanged after mechanical loading in trabecular 

mesh work cells (WuDunn 2001). Similar findings have been documented for vascular 

smooth muscle cells (Asanuma et al 2003). However work on synovial cells, 

chondrocytes and fetal lung cells has demonstrated an increase in expression of TIMP-1 

and 2 after cyclical loading (Honda et al 2000; Xu et al 1999; Sun and Yokota 2002), 

whereas a downregulation of TIMP-1 occurs in human scleral fibroblasts (Yamaoka et al 

2001). With regards to pathological conditions, chronic leg wound fibroblasts have been 

shown to have a decreased expression of MMP-1 and 2, with increases in expression of 

TIMP-1 and TIMP-2. It was suggested that the impaired ability of chronic wound
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fibroblasts to reorganize the extracellular matrix in vitro is related to this change in 

protease activity (Cook et al 2000). Similar patterns of TIMP expression have also been 

seen in the dermis of scleroderma patients (Takeda et al 1994) and in fibroblasts derived 

from hypertrophic and keloid scars (Arakawa et al 1996; Neely et al 1999). When we 

analyse the results seen from mechanical underloading of fibroblasts in our own model, 

there is no significant change in the expression of TIMP-2 for normal and Dupuytren’s 

derived fibroblasts. A trend for up-regulation of TIMP-1 is seen after underloading for 

all cell types, although this is only significant for cord derived cells. Once mechanical 

overloading is applied there is a significant upregulation of TIMP-1 for carpal ligament in 

particular, but also for cord. There appears to be no reciprocal up-regulation of TIMP-1 

gene expression to “mop-up” protease expression in the Dupuytren’s nodule. This may 

go some way to explaining the continued matrix remodeling seen in the disease process, 

whereas in normal palmar fascia the release of MMPs might be very closely controlled by 

this up-regulation in TIMP-1 resulting in little matrix turnover. Thus we can postulate 

that in normal palmar fascia, cells are non-mechanosensitive, and are in a stable state 

with regards matrix turnover. If stimulated by a sudden increase in mechanical load, 

these fibroblasts will react with an up-regulation of TIMP-1 in order to block any of the 

matrix degrading activity of the MMPs, and thus maintain the tissue in a steady state. In 

contrast for Dupuytren’s nodule an opposite reaction is postulated to occur. After 

stimulation up-regulation of MMP activity begins with no reciprocal “blocking” activity 

of TIMP-1, and this may lead to matrix degradation along with new matrix remodeling.

The use of MMP inhibition as a therapeutic strategy to oppose matrix remodeling in 

Dupuytren’s disease is a concept that may be suitable for further investigation. Certainly 

in the failing human heart it appears that a similar process to that occurring in the 

Dupuytren’s nodule occurs with increased MMP activity, while TIMP-1 activity is 

decreased (Li et al 2000). Animal models have displayed improved cardiac pump 

function after application of a synthetic MMP inhibitor (Spinale et al 1999).

The main limitation of this work was that only RNA expression was measured. It would 

have been useful to have investigated MMP and TIMP activity via additional techniques
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such as gelatin zymography and Western blotting as this would have given more 

information on protein levels of these enzymes, and also information on whether 

enzymes were inactive or active.

434  SUMMARY

• Baseline TIMP-1 and 2 expression in all statically loaded fibroblasts is significantly 

greater than that of MMP-1,2,9 and 13. There is no significant difference in gene 

expression of MMPs and TIMPs between carpal ligament and Dupuytren’s fibroblasts 

after static loading.

• A change in mechanical load results in significant up-regulation of MMP gene 

expression by Dupuytren’s nodule fibroblasts. This is most significant after 

overloading. There is no up-regulation of MMPs by cord or carpal ligament derived 

fibroblasts.

• There is a reciprocal significant up-regulation of TIMP-1 expression by carpal 

ligament derived cells after mechanical loading, with a similar significant response by 

cord derived cells. This response is absent in nodule derived fibroblasts.

• It is postulated that there is a complex interplay of events when mechanical load 

changes -  this begins with localised matrix breakdown, which can then allow 

structural alterations in the ECM, further tissue contraction, and eventually long term 

net matrix deposition leading to contracture.

Having established the molecular response o f these fibroblasts to mechanical 

stimulation, the molecular behaviour o f  Dupuytren's derived fibroblasts to stimulation 

with TGF-fil was then investigated.
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4.4 GENE EXPRESSION OF THE MATRIX METALLOPROTEINASES BY 

DUPUYTREN’S FIBROBLASTS PRE-INCUBATED WITH TGF-BETA AND 

EXPOSED TO MECHANICAL STIMULATION

4.41 INTRODUCTION

TGF-pl is a ubiquitous polypeptide growth factor that is thought to play a central role in 

fibrotic conditions, having been shown to increase collagen deposition (Alioto et al 1994; 

Reed et al 1994) and enhance contraction of fibroblast populated collagen lattices 

(Montesano and Orci 1988; Riikonen et al 1995; Vaughan et al 2000; Brown et al 2002). 

It is also documented that TGF-pl promotes fibroblast to myofibroblast differentiation in 

cell cultures, and although the exact relationship between increased lattice contraction 

and myofibroblast upregulation is controversial several authors have proposed a direct 

correlation (Desmouliere et al 1993; Yokozeki et al 1997). It is therefore conceivable 

that TGF-pl acts at several levels to promote cellular contraction, as a primary 

mechanoregulatory growth factor as suggested by Brown et al (2002), by increasing 

integrin expression (Riikonen et al 1995), and also by stimulating cytoskeletal component 

upregulation as in the transformation of myofibroblasts.

TGF-Pi has been implicated in the causation or progression of Dupuytren’s disease for 

some time, traditionally being described as a profibrotic growth factor (Alioto et al 1994; 

KJoen et al 1995; Badalamente et al 1996). When TGF-pi is applied to the collagen gel 

model used here and previously by Bisson (MD thesis 2004), it is seen to stimulate a 

higher generation of force by both Dupuytren’s and carpal ligament fibroblasts, with 

some of that effect occurring early in the contraction profile. After exposure to a series 

of uniaxial overloads, there was an enhancement of the contractile response seen 

previously only for Dupuytren’s nodule without TGF-pl stimulation (Bisson et al 2004). 

This contractile response to overloading was additionally seen in cord and carpal
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ligament derived fibroblasts, whereas without stimulation by TGF-(31, these cells had 

previously responded by a reduction in contraction, and a decrease in measured force. 

The mechanism by which TGF-(31 stimulation was affecting this response was not 

addressed in this previous work, but it was speculated that TGF-pi was possibly 

increasing the sensitivity to mechanical stimulation within the investigated population of 

fibroblasts.

No previous work has investigated the effects of TGF-pl on MMP and TIMP expression 

in studies on Dupuytren’s disease or carpal ligament derived fibroblasts, and given the 

findings documented earlier, it was felt that this work would provide greater insight into 

the molecular processes occurring in Dupuytren’s fibroblasts exposed to this growth 

factor.

4.42 AIM

• To determine the MMP and TIMP gene expression responses of Dupuytren’s nodule, 

cord and carpal ligament fibroblasts to mechanical loading after stimulation with 

TGF-pl.

4.43 HYPOTHESIS

• TGF-pl will downregulate MMP expression and upregulate TIMP expression as a 

reflection of its profibrotic activity in control carpal ligament, Dupuytren’s nodule 

and Dupuytren’s cord fibroblasts.

4.44 RESULTS

After pre-incubation with TGF-betal, fibroblast seeded three dimensional collagen gels 

were left to contract on the culture force monitor, and at 2 0  hours were subjected to a
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series of uniaxial overloads, in a manner identical to that documented previously 

{Materials and Methods section 2.33-2.36). The changes in gene expression are seen in 

the histogram below (figure 4.10), and overleaf in a pictoral comparison between 

overloads with or without TGF-betal (figure 4.11).

MMP-2 MMP-13 TIMP-1 TIMP-2MMP-9

□  control □  nodule Dcord

Figure 4.10:- Mean relative band intensity for the MMPs and TIMPs following a series of 
uniaxial overloads after pre-incubation with TGF-pl for n=4 control carpal ligament, n=5 
Dupuytren’s nodule and n=5 Dupuytren's cord derived fibroblasts. Error bars represent 
standard errors of the mean. Note the significantly greater MMP-1 expression for 
Dupuytren’s nodule in comparison to control carpal ligament (*p<0.02). (Figure 4.11 
overleaf gives a diagrammatic representation of the comparison between overloads and 
overloads with TGF-pl using the same data)

Stimulation with TGF- pi resulted in a downregulation of MMP-1 gene expression for 

carpal ligament, and Dupuytren’s nodule. For control carpal ligament MMP-1 expression 

fell from 0.6 (SEM ± 0.18) to 0.19 (SEM ± 0.11), although this was not significant. 

Similarly for nodule a fall from 2.68 (SEM ± 1.1) to 0.81 (SEM ± 0.12) was observed 

which was significant (p<0.03). For cord there was no significant change in MMP-1 

expression after stimulation. Of note is that after stimulation with TGF-pl, expression of 

MMP-1 remained significantly higher for Dupuytren’s nodule in comparison to control 

(p<0.02), with no difference noted between nodule and cord.
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For MMP-2 a similar trend was observed with a downregulation of gene expression after 

stimulation with TGF-pl for Dupuytren’s nodule. For carpal ligament no significant 

change was observed. For nodule a fall from 5.16 (SEM ± 0.74) to 1.19 (SEM ±0.18) 

was seen, which was significant (p<0.006). However for Dupuytren’s cord an increase in 

gene expression was observed from 0.69 (SEM ±0.19) to 1.28 (SEM ± 0.15), (p<0.05) 

which was just significant.

Once again for TIMP-1 a downregulation of gene expression was observed in all cases. 

There was a significant fall for carpal ligament from 9.68 (SEM ± 1.1) to 0.99 (SEM ± 

0.14) (p<0.003). For nodule there was an insignificant drop from 3.62 (SEM ± 0.53) to 

2.16 (SEM ± 0.63). But for cord the fall in measured band intensity was significant 

(p<0.03) with a change from 3.86 (SEM ± 0.59) to 1.7 (SEM ± 0.62). There was no 

difference in relative band intensity between cell types after stimulation with TGF- p i .

In contrast TIMP-2 expression appeared to be up regulated after stimulation with TGF- 

beta. For carpal ligament there was a significant up-regulation with gene expression 

rising from 1.57 (SEM ± 0.24) to 3.78 (SEM ± 0.84) (p<0.04). There was no significant 

difference in TIMP-2 expression for nodule derived cells with or without TGF-pl. 

However for cord, expression of TIMP-2 rose from 1.7 (SEM ± 0.51) to 5.64 (SEM ± 

1.19), which was significant (p<0.008).

152



Results

p<0.006

OVERLOAD TGFBETA

MMP-1 MMP-2 TIMP-1 TIMP-2

Figure 4.11: Histogram to compare the gene expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 between 2 different mechanical stimuli: overloading, and 
overloading with TGF-beta. Each bar represents the mean relative band intensity for each gene. Note the significant downregulation of MMP-1, MMP-2 for 
nodule, and TIMP-1 for cord and carpal ligament*. Note the significant up-regulation of TIMP-2 for cord and carpal ligament*
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For MMP-13, despite the continued low levels of expression, there was a trend for TGF- 

pl incubation to result in up-regulation of this gene. However in all cases there was no 

significant difference in expression (figure 4.12), before or after TGF-pl stimulation.

■  control ■control TGFbeta ■  nodule □  nodule TGFbeta □  cord DcordTGFbeta
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Figure 4.12:- Expression of MMP-13 after overloading or after overloading with pre
incubation with TGF-beta for control carpal ligament (n=4), Dupuyten’s nodule (n=4) 
and Dupuytren’s cord (n=5). Error bars represent standard errors of the mean

For MMP-9 no significant change in gene expression was noted after incubation with 

TGF-beta, for any of the cell types investigated.

4.45 DISCUSSION

The main limitation associated with this area of work is that gels that had been statically 

loaded and also pre-stimulated with TGF-pl were not examined. Due to time constraints 

on this thesis it was only possible to compare the data provided from statically loaded 

gels and overloaded gels to that from overloaded TGF-pi stimulated gels. This therefore 

leaves a gap in our knowledge of the molecular events occurring with TGF-pl 

stimulation alone. Although we can compare like with like for the overloaded gels, it
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would have been ideal to compare like with like for gels that had not been mechanically 

stimulated. In these results we are interpreting the molecular response to two cues -  the 

first being a mechanical strain, and the second being the influence of a growth factor. 

The genetic expression of MMPs to each of these cues alone may differ to them 

occurring together, and hence any conclusions must be made with some caution.

Transforming growth factor-pi (TGF p i) is an important regulator of MMP expression. 

It is thought to act through the TGFpi inhibitory element (TIE), which is a c/s-acting 

element on the promoter region of each MMP gene (except MMP-2) (Duivenvoorden et 

al 1999). TGFpl is postulated to suppress overall proteolytic activity via reduced 

proteinase synthesis and by an increase in TIMP activity in studies on monolayer cell 

cultures (Li et al 2000; Verrecchia and Mauviel 2002; Karmakar and Das 2002). 

However in some cases it appears to increase MMP-2 and MMP-9 activity in various cell 

types tested in monolayer culture (Wahl et al 1993; Edwards et al 1996; Poncelet et al 

1998; Martin et al 2000). TGFpl has been seen to prevent cytokine induced MMP-1 

gene expression in fibroblasts possibly via the SMAD intracellular signaling pathway 

(Yuan and Varga 2001; Hall et al 2003). Other workers have implicated other 

intracellular signaling pathways in the induction of TIMP-1 including c-fos, c-jun and 

JunD, with no dependence on the SMAD pathway (Hall et al 2003). Similarly treatment 

of monolayer peritoneal mesothelial cells with TGFpl has resulted in a decrease in 

MMP-1 expression, while increasing expression of TIMP-1, whereas TIMP-2 expression 

was unaffected (Ma et al 1999). Similar work on cell monolayers yielded similar results 

in myometrial smooth muscle cells (Ma and Chegini 1999). These workers found that 

baseline expression of TIMPs were higher than those of MMPs in a similar manner to 

this study. However in the presence of TGF-pl, there was a reduction in MMP-1 and 3 

expression, and an increase in TIMP-1 and 2 expression. It was hypothesized that high 

TIMP expression in vivo may allow only limited proteolysis leading to deposition rather 

than degradation of the ECM. In TGF betal overexpressing transgenic mice, it has been 

seen that interstitial collagenase activity was reduced in the myocardium in comparison to 

controls, but expression of MMP-2 and 9 was not affected. TIMP-1 and 2 expression 

were significantly increased (Seeland et al 2002). These changes were thought to
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promote myocardial fibrosis in vivo. Vascular smooth muscle cells as monolayers were 

exposed to either static load or cyclical mechanical load on a flexorcell apparatus, and 

levels of MMPs were measured (O’Callaghan and Williams 2000). It was found that 

after 5 days of cyclical load collagen concentrations increased, and MMP-2 activity 

increased. In addition TGF-beta expression increased. It was concluded that strain 

induced ECM accumulation was not due to inhibition of ECM protein degradation.

Our work has yielded slightly different results in comparison to the literature above. 

Expression of MMP-1 and 2 in overloaded gels certainly fell in all cell types investigated, 

and this was significant in the case of Dupuytren’s nodules. This correlates with most 

previous reported work. Expression of MMP-9 and 13 did not change significantly 

before or after TGF-pl stimulation. For TIMPs, an upregulation in expression of TIMP-2 

was seen to occur in all cell types, in particular for Dupuytren’s cord, and carpal 

ligament. However TIMP-1 expression appeared to be down regulated by the addition of 

TGF-pl in this experimental series. This trend was again seen to occur in all three cell 

types investigated. Certainly the reduction in MMP expression, and increase in TIMP-2 

expression observed is consistent with the pro-fibrotic nature of TGF-beta. However the 

reduction in TIMP-1 expression is an unusual finding. There are several explanations for 

these findings.

It appears that TGF-pl acts to “damp-down” the activity of the MMP-1 and 2 in 

Dupuytren’s nodule, while having little effect on cord and carpal ligament. MMP-9 and 

13 activity was unaffected by TGF-pl in all cases. Based on our earlier findings with 

overloading it seems that there is a complex interplay of events occurring at a genetic 

level here. It can be postulated that in the first instance exposure to mechanical force will 

cause an increase in MMP activity, which will allow cellular migration, and local matrix 

degradation to occur, with the resultant further action of cellular contraction and matrix 

shortening. It is possible that the addition of TGF-pl will allow the cells to downregulate 

their MMP activity, and switch to a state of matrix deposition and net production. As in 

any physiological or pathological condition there will by many processes occurring in 

parallel at any one time. This work in vitro is, of course, a gross oversimplification of
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events occurring in vivo, but it does provide an idea of activity at a cellular level. TIMP- 

2 expression is up regulated by TGF-pi in cord and carpal ligament, with no change in 

expression for nodule. It can be postulated that nodule derived cells are already acting to 

block any excess MMP activity once stimulated by overloading, and that TGF-pl cannot 

enhance this effect. It can be extrapolated that in cord and carpal ligament MMP 

inhibition is beginning to occur, and cause a switch to matrix deposition from matrix 

equilibrium.

As mentioned earlier the findings regarding TIMP-1 expression are different to those of 

previous workers investigating other cell types. When we compare the expression of 

TIMP-1 here to that of the statically loaded gels, there is no significant change in TIMP-1 

expression. It was hypothesised that TIMP-1 would be up regulated after stimulation 

with TGF-pl, and that this up-regulation would be significant given the enhanced 

response of this gene to overloading. Given that stimulation with TGF-pl has resulted in 

a down-regulation of the MMPs, it can be postulated that it is also beginning to down

regulate TIMP-1 in addition, as matrix degradation stops and net production begins, with 

the up-regulation of other genes involved in new matrix synthesis. However, we are 

looking at a single time point, and gene expression may change over several minutes. By 

investigating expression of TIMP-1 over a longer time course it may be possible to 

deduce the exact events occurring, although this was beyond the scope of this project. It 

is theorised that an up-regulation of TIMP-1 expression after stimulation with TGF-pi, 

may then lead to a feedback inhibition of TIMP-1 expression after an additional stimulus 

such as an overload, which may lead to a reduction in this gene’s expression as seen here. 

As discussed earlier, it would also have been beneficial to have information regarding 

TIMP-1 expression in unstimulated cells, as this would have provided valuable 

information to explain these findings.
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4.46 SUMMARY

• TGF-pl down-regulates MMP-1 and 2 expression, with no effect on expression of 

MMP-9 and 13 in all of the cell types investigated. This is consistent with thte results 

of previous workers.

• TGF-pl causes an up-regulation of TIMP-2 activity in the case of carpal ligament and 

Dupuytren’s cord derived cells.

• The finding of a reduction in TIMP-1 expression in all cases may be explained by a 

feedback inhibition response resulting from stimulation by both mechanical and 

growth factor derived cues.

• It is postulated that TGF-pl acts to dampen down the matrix degrading activity in 

order to allow matrix deposition to begin.

Given the above findings, investigation o f  the genes responsible fo r  matrix deposition

(collagen I  and collagen III) was the next step in the elucidation o f matrix deposition in

Dupuytren’s disease.
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4.5 MESSENGER RNA SIGNALLING FOR COLLAGEN I AND COLLAGEN 

III BY DUPUYTREN’S FIBROBLASTS EXPOSED TO MECHANICAL 

STIMULI AND TO TGF-B1

4.51 INTRODUCTION

Mechanical forces have been known to be important regulators of extracellular matrix 

homeostasis. The composition of the ECM is adapted according to the load that is 

applied through it (Flint and Poole 1990). Previously we looked at the molecular 

signaling and regulatory mechanisms involved in matrix breakdown. In this section we 

aimed to establish the effects of mechanical strain on the genes responsible for collagen 

production.

Collagen type I is the predominant form of collagen in normal palmar fascia, with both 

type I and type III seen in Dupuytren’s disease lesions (Bailey et al 1977; Brickley- 

Parsons et al 1981). As mentioned previously the stimulus for type III collagen 

production remains unexplained, compared to its disappearance in a healing wound. In 

addition to this it is unknown exactly which factors are involved in the continued 

deposition of collagen I and III in the Dupuytren’s cord. By examining collagen 

expression in fibroblasts given set mechanical cues, the stimulus to this activity may be 

elucidated.

TGF-p induces the synthesis of many ECM proteins such as collagen, fibronectin and 

tenascin, and it is thought to inhibit the matrix degrading enzymes, thus playing an 

important role in fibrosis. TGF-P stimulates the COL1A2 promoter activity via the 

SMAD pathway, resulting in enhanced type I collagen gene expression and synthesis 

(Ghosh 2002). The effects of this growth factor on collagen expression under this 

experimental regime were investigated in this section.
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4.52 AIMS

• To investigate the baseline expression of types I and III collagen by Dupuytren’s 

fibroblasts and carpal ligament fibroblasts exposed to a static load.

• To determine the effects of underloading and overloading regimes on Collagen I and 

III gene expression.

• To determine the effects of TGF-pl on collagen I and III expression.

4.53 HYPOTHESES

• Baseline expression of collagen I will be low in all cases exposed to static loads

• Baseline expression of Collagen III will be greater in the case of Dupuytren’s 

fibroblasts

• A mechanical loading regime will up-regulate collagen III expression

• TGF-pl expression will cause an up-regulation of both collagen I and collagen III

expression

4.54 METHODS

As outlined earlier in section 2.6-2.8  {Materials and Methods), and in section 4.14 

(Results).
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4.55 RESULTS

The baseline expression of collagen I and of collagen III is fairly constant for all cell lines 

investigated (figure 4.13a and b), with little difference in expression between the collagen 

types. For collagen I relative band intensity was 0.65 (SEM ± 0.12) for control carpal 

ligament, 0.76 (SEM ± 0.06) for nodule, and 0.87 (SEM ± 0.08) for cord. There was no 

significant difference in levels of expression between cell types. For collagen III values 

were not significantly different to those of collagen I with a relative expression of 0.43 

(SEM ± 0.11) for control carpal ligament, 0.75 (SEM ± 0.05) for nodule and 0.87 (SEM 

±  0.18) for cord. It is however noted that collagen III expression was significantly 

greater for Dupuytren’s nodule and cord in comparison to controls (p<0.017). This 

correlates with findings by previous workers investigating collagen III content in 

Dupuytren’s tissue in comparison to normal fascia (Bailey et al 1977; Bazin et al 1981). 

It can be interpreted that this may represent an increase in matrix remodeling and new 

collagen deposition by these fibroblasts in Dupuytren’s disease.
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Figure 4.13a and b:- Expression of collagen I (a) and collagen III (b) by Dupuytren’s 
nodule (n=5), cord (n=5) and carpal ligament fibroblasts (n=4) exposed to a static load 
only. Error bars represent standard errors of the mean *  The star in fig 15b 
demonstrates a significantly higher level of expression of collagen III for Dupuytren’s 
derived cells (p<0.017).
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Following a series of uniaxial underloads, and overloads the expression of collagen I and 

III was examined again. For collagen I (figure 4.14), a mechanical underload leads to a 

decrease in collagen gene expression, although this trend was only significant in the case 

of Dupuytren’s cord (p<0.005), with a fall in collagen I expression from 0.87 (SEM ± 

0.08) to 0.43 (SEM ± 0.07). Mechanical overloading however led to no alteration in gene 

expression when compared to a static applied load, with no significant change in gene 

expression for any cell type investigated.

In contrast for collagen III (figure 4.15), mechanical load makes no significant difference 

to this gene’s expression in any of the cell lines investigated.
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p<0.005

Figure 4.14:- Diagrammatic representation of collagen I expression by mechanically 
stimulated fibroblasts derived from Dupuytren’s nodule, cord and carpal ligament. A 
comparison of static vs underloading and overloading reveals no significant difference in 
collagen I expression for control and nodule, but a significant fall for cord (*) after 
underloading
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Figure 4.15:- Diagrammatic representation of collagen III expression by mechanically 
stimulated fibroblasts derived from Dupuytren’s nodule, cord and carpal ligament. A 
comparison of static vs. underloading and overloading reveals no significant difference in 
collagen III expression
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When all gels were stimulated with the growth factor TGF-p, once again there seemed to 

be little change in the expression of collagen I or of collagen III (figure 4.16 and figure 

4.17). For collagen I there was no significant change in gene expression for control (0.95 

± 0.46), nodule (1.23 ± 0.42) or cord (0.76 ± 0.18), in comparison to an overload alone. 

Similar findings were seen in the case of collagen III, with relative gene expression 

measured at 0.67 (SEM ± 0.25) for control, 0.81 (SEM ± 0.23) for nodule and 0.32 (SEM 

± 0.06) for cord derived cells. In addition to this there was no significant difference in 

the levels of expression between collagen I and collagen III.
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OVERLOADCONTROL
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Figure 4.16: Diagrammatic representation of collagen I expression by mechanically 
stimulated fibroblasts derived from Dupuytren’s nodule, cord and carpal ligament. A 
comparison of overloading and overloading with TGF-pl stimulation reveals no 
significant difference in collagen I expression

Figure 4.17: Diagrammatic representation of collagen III expression by mechanically 
stimulated fibroblasts derived from Dupuytren’s nodule, cord and carpal ligament. A 
comparison of overloading and overloading with TGF-pl stimulation reveals no 
significant difference in collagen III expression
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4.56 DISCUSSION

The data here is consistent with that of earlier workers investigating the basal levels of 

collagen III expression. Dupuytren’s fibroblasts expressed a significantly higher amount 

of collagen III in comparison to normal palmar fascia. However, there was no significant 

difference in basal levels of collagen I in comparison to collagen III. Studies on both 

uninvolved and involved fascia of Dupuytren’s patients have demonstrated an increase in 

the amount of collagen type III, with an increase in the ratio of type III / type I compared 

with normal palmar fascia which is composed of almost all collagen type I (Bailey et al 

1977; Menzel et al 1979; Bazin et al 1980; Brickley-Parsons et al 1981). The changes in 

collagen seen in Dupuytren’s disease are similar to those seen in newly healing wounds 

and in embryogenesis.

An observation in this test system is that gene expression was measured from cells seeded 

into collagen gels. Previous work has shown a significant downregulation of both 

collagen I and III at a pretranslational level from fibroblasts within restrained collagen 

gels in comparison to those in monolayer (Mauch et al 1988), and therefore comparison 

of these results with others must take this into consideration. Little work has focused on 

the response of collagen gene expression to mechanical stimulation, and certainly no 

previous work has looked at this in the case of Dupuytren’s disease. Lambert et al (2001) 

focused on expression of procollagens I and III within stress relaxed three dimensional 

collagen gels, finding that relaxation of tension resulted in their decreased expression, 

with collagen I being down-regulated to a significantly greater extent than collagen III. 

Previous work by the same author has shown an increase in collagen gene expression 

after mechanical load (Lambert et al 1992). He et al (2004) have examined the 

expression of collagen I in periodontal ligament fibroblasts in response to both 

compression and mechanical loading in a cell monolayer system, finding that a 1 0 % 

compression resulted in a decrease in expression whereas 1 0 % mechanical loading 

increased expression. Similarly Xu et al (1999) displayed similar up-regulation of 

collagen I in response to intermittent load in fibroblasts, while Swartz et al (2001)
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showed upregulation of collagen III, and to a lesser degree collagen I in response to 

mechanical load in lung fibroblasts. Kessler et al (2001) aptly summarized that 

mechanically loaded fibroblasts appear to be activated to a “synthetic” phenotype with 

the induction of collagen gene expression.

The limitation with many studies investigating changes in ECM gene expression in 

response to mechanical load is that in some cases changes in expression have only been 

observed after several days (Chiquet et al 2003). In the case of this work, we have 

investigated only one time point i.e. at 24 hours. It can therefore be postulated in the case 

of the collagen genes that up-regulation may have occurred if the experiment had 

continued over a more prolonged period of time. Within the short time scale of this 

experiment, important regulatory changes may not have occurred. It was beyond the 

scope of this project to look at this at later time points, but certainly this is an area that 

may merit further work in the future.

With regards to mechanical stimulation and collagen I gene expression, the results here 

correspond to those in the literature for a reduction in mechanical load, with down

regulation of collagen I expression. However in contrast there was no up-regulation 

when an overloading regime was applied. This may have occurred for several reasons. It 

is postulated that in the control samples, static loading of cells is sufficient to cause a 

change in collagen I gene expression already without the added stimulus of an overload, 

and thus no change in gene expression would be noted. In order to confirm this one 

would need to measure gene expression in gels with no mechanical load applied at all. 

As described by Chiquet et al (2003), in principal there are three different mechanisms by 

which a gene may be regulated by mechanical signals. Firstly a cellular 

mechanotransduction pathway may activate a transcription factor that binds to a 

“mechano-responsive” regulatory element in the gene promoter. In a secondary 

response, a mechanical signal would first induce the transcription and synthesis of a 

nuclear factor, which then transactivates a specific gene. The third mechanism is that 

mechanical stress might induce the synthesis or secretion of a growth factor that 

indirectly regulates gene expression via an autocrine or paracrine feedback loop. It is
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possible that it is this third mechanism that controls collagen gene expression, which may 

explain the absence of a response to the overloading regime. If gene expression was 

observed over a longer time point a change may well be noticed. Certainly it has been 

shown that collagen I gene induction does depend upon autocrine release of TGF-p 

(Lindahl et al 2002).

TGF-P has been thought to stimulate fibroblasts to synthesise increased quantities of type 

I collagen (Montesano and Orci 1988; Alioto et al 1994). Certainly work by Reed et al 

(1994) has shown that TGF-p can stimulate an increase in mRNA expression of collagen 

I in dermal fibroblasts seeded into three dimensional collagen gels (after 44 hours of 

exposure). Alioto et al (1994) showed an increase in collagen synthesis in Dupuytren’s 

fibroblasts in comparison to normal palmar fascia after exposure to TGF-p in a study of 

cells in monolayer. Interestingly there was a cut off in the dose of TGF beta used, 

whereby for normal fascia there was no further increase in collagen synthesis at doses 

greater than 0.3ng/ml, whereas this did not occur for Dupuytren’s derived cells. 

Similarly work on human kidney mesangial cells has demonstrated an up-regulation of 

both collagen I and III after TGF-P stimulation in cell monolayer (Poncelet and Schnaper 

1998). The results displayed here are in contrast to the studies above. It was shown here 

that TGF-pl did not cause any significant change in collagen I or in collagen III gene 

expression when simultaneously mechanically overloaded. It is possible that because the 

cells were prestimulated with TGF-P 1 for three days prior to contraction in a collagen 

gel, that a feedback down regulation o f collagen expression may have occurred during 

that time. In addition it may be that a combination of both the mechanical stimulus plus 

TGF-P results in no change to gene expression as the two stimuli may act in opposing 

ways. Further work is required to answer the questions raised by these results.

MMPs not only play a role in matrix degradation but they also modulate collagen 

synthesis. The end result is often an increase in MMPs accompanied by increased 

fibrosis such as has been demonstrated most often in the failing heart (Li et al 1999; Li et 

al 2000). Collagen expression was increased after intermittent mechanical strain of fetal 

rat lung cells, without affecting the expression of MMPs or TIMPs (Xu et al 1999). It
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was suggested that mechanical load appears to result in an increase in ECM synthesis and 

that this is not due to decreasing activity of degradadve enzymes.

In summary there is a very complex interplay of events occurring at a molecular level, 

when fibroblasts are mechanically stimulated. Although this work has provided 

information on the molecular events occurring at one moment in time, there is still a vast 

amount of information that is as yet unknown. More progress is yet to be made regarding 

how a mechanical signal is transferred via signaling pathways to activate certain genes, 

and how activation of these genes results in structural changes in the extracellular matrix.

4.57 SUMMARY

• Dupuytren’s fibroblasts demonstrate a greater baseline expression of collagen III in 

comparison to normal palmar fascia

• Mechanical underloading results in a trend for downregulation of type I collagen 

expression in all cell types (although this remains significant only for Dupuytren’s 

cord)

• There is no up-regulation of collagen expression after an overload in any cell type 

investigated. This is postulated to be related to a possible feedback loop effect.

• TGF-P 1 does not appear to affect collagen gene expression within this experimental 

set up.
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CHAPTER 5

THE QUANTIFICATION OF 

PERMANENT MATRIX 

REMODELLING BY DUPUYTREN’S

FIBROBLASTS
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5.1 INTRODUCTION

It has been postulated that contracture is a result of two separate processes occurring in 

parallel, firstly cell mediated contraction of the matrix, and secondly continuous matrix 

remodelling, leading to permanent contracture (Harris et al 1981; Flint and Poole 1990; 

Tomasek et al 2002). Much research has focused on the first process, but very little has 

focused directly on the second. Some studies have looked at collagen fibril orientation 

and alignment (Bell et al 1979), whereas others have studied collagen non-covalent 

bonding, and biochemical assays of collagen turnover (Guidry and Grinnell 1985) in 

order to understand the process of matrix remodelling. Other work has examined 

contraction in stress-relaxed circular collagen gels with and without the disruption of the 

cellular actin cytoskeleton by the drug cytochalasin-D (see Introduction 1.21). Guidry 

and Grinnell (1985) found complete reversibility of contraction in fibroblast seeded 

circular collagen gels after the addition of cytochalasin-D indicating that no permanent 

physical change had occurred to the gel i.e. the diameter of the gel was the same before 

contraction at the start of the experiment, as it was after cellular contraction had been 

eliminated. A later study (Grinnell and Ho 2002) demonstrated a permanent shortening 

of the matrix even when cellular contractile action was eliminated. These studies were 

limited because they did not involve any method of quantifying the strength or extent of 

the matrix shortening that had occurred.

Recently a tissue engineered model of collagen remodelling under tension based on a 

three dimensional collagen matrix has been developed that is capable of quantifying the 

extent of spatial remodelling (Marenzana et al 2004). They used the culture force 

monitor model to quantify the force generated within a fibroblast populated collagen 

lattice in a rat tendon model. They distinguished cell dependant force from cell 

independent force by the addition of cytochalasin-D, which eliminated the cell-dependant 

element of contraction (figure 5.1). The physical shortening of the matrix persisted even 

after cellular contraction was eliminated. This physical shortening has been termed the 

residual matrix tension (RMT). Matrix remodeling was identified as early as 18 hours 

and increased with time so that by 65 hours 45% of the maximal force generated was
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retained within the gel after inactivation of the actin cytoskeleton. When these cells were 

incubated with TGF-P 1, the amount of remodeling increased by over 100% after the 18- 

hour time point.
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Figure 5.1:- A typical contraction profile of a human fibroblast cell line demonstrating 
the cellular and remodelled components of force generation. Note that force is rapidly 
generated by the fibroblasts and this increases with time reaching a maximum force of 
250 dynes at 48 hours. At this time point cytochalasin-D is added and it can be seen that 
force rapidly decreases, and then gradually plateaus leaving a residual measured force of 
70 dynes.
The sudden drop is known as the active cellular actin dependant component of 
contraction. The residual measured force is therefore the actin independent “remodelled” 
residual matrix tension. This demonstrates an accurate way to measure the amount of 
matrix remodelling a cell type can produce (Tomasek et al 2002; Marenzana et al 2004 in 
press).

These studies were the first to directly measure matrix remodelling in a collagen gel 

system, rather than using indirect measurements of this process, and the model supported 

the theory that only limited new collagen is required for matrix shortening or remodeling. 

The work outlined below is the first to directly measure matrix remodelling in 

Dupuytren’s tissue.
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5.2 AIMS

To investigate the contribution to tissue contracture made by matrix remodelling in 

Dupuytren’s fibroblasts in comparison to that of normal palmar fascia and that of dermal 

fibroblasts

5 3  HYPOTHESES

• Dupuytren’s fibroblasts will demonstrate increased matrix remodelling in comparison 

to carpal ligament.

• Matrix remodelling will increase with time

5.4 METHODS

Fibroblast populated collagen lattices were set up as described previously. The lattices 

were allowed to set for 30 minutes at 37°C in 5% CO2 prior to floatation in 20ml of 

normal growth media and insertion into the culture force monitor. In half of the test 

cases of Dupuytren’s fibroblasts the media was supplemented by the addition of ascorbic 

acid to give an overall concentration of 50pg/ml. Three separate experiments were 

conducted.

In the first the collagen lattices were left to contract over a period of 8  hours. At this 

point the maximum generated force was noted, and then a single dose of cytochalasin-D 

(Sigma, Poole, Dorset, UK), 20pl of 60mM in 0.5ml of normal growth media was added 

to the normal growth media filled chamber to give an overall concentration of 60 pM 

within the chamber in order to abolish cell mediated force generation. This was added 

rapidly in order to minimise disruption to the incubator temperature and CO2 levels. 

Throughout this period force measurements were continuously recorded by the culture
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force monitor in real time, and these were continued for at least 4 hours after addition of 

cytochalasin-D. The above process was followed in separate experiments occurring at 24 

hours and at 48 hours in order to investigate the effects of incubation time on matrix 

remodelling.

Residual matrix tension (RMT) was determined by the measurement of force on the 

culture force monitor two hours following the addition of cytochalasin-D to the system 

by which time the drop in measured force had plateaued {Review o f  the Literature section 

1.20-1.2; Materials and Methods Section 2.35). Collagen gels were fixed under tension 

in 4% paraformaldehyde before processing for light and electron microscopy as outlined 

previously {Materials and Methods Section 2.36-2.5).
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5.5 RESULTS

5.51 Calculation of appropriate dose of cytochalasin-D

Cytochalasin-D was added to the experiments resulting in a rapid reduction in force as 

the actin cytoskeleton was disrupted. In order to calculate the correct dose that ensures 

complete disruption of the actin cytoskeleton a set of experiments was run adding a single 

dose of 20|iM cytochalasin-D at 24 hours. There was an initial drop in force, which 

plateaued (Fig. 5.2). After 1 hour a second 20jiM dose of cytochalasin-D was added and 

there was a further drop in force, which again plateaued. This was repeated again and a 

further drop noted. After this further doses of cytochalasin-D were added to the system 

with no further drops. It was at this point that it was felt that the actin cytoskeleton had 

been completely disrupted. Thus the concentration required to completely inactivate the 

actin cytoskeleton for Dupuytren’s fibroblasts was calculated to be at 60pM. 

Confirmation of disruption of the actin cytoskeleton was visualised both via light 

microscopy and electron microscopy (as shown overleaf) (figure 5.3-5.6).
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Figure 5.2:- Contraction profile of a Dupuytren’s cord cell line after 24 hours 
demonstrating the effect of addition of 20pM increments of cytochalasin-D to the media. 
Red arrows indicate that there is a drop in measured force after each addition. However 
it can be seen that after further doses of cytochalasin-D (yellow arrows) that the measured 
force eventually plateaus.
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These results were confirmed by performing a second set of experiments where the 

cytochalasin-D was added to the gel within the culture force monitor, and this was 

followed by the replacement of media with the addition of distilled water in order to 

perform hypotonic lysis of the cells. There was no further drop in force after the addition 

of distilled water.

To finally confirm, another set of experiments were run, where instead of addition of 

cytochalasin-D, a 0.5 ml aliquot of simple normal growth media was added to the 

chamber. This confirmed that there was very minimal disruption to the system by 

opening the incubator door and adding fluid to the chamber.

The saturating dose of cytochalasin-D used here is much greater than that used in other 

experimental procedures on dermal, and rat tendon fibroblasts (Wakatsuki et al 2000; 

Grinnell and Ho 2002, Marenzana et al 2004 in press). Previously a dose of 20pg / ml 

was found to be sufficient to eliminate cell mediated contraction in rat tendon fibroblasts, 

and only 2pg / ml in dermal fibroblasts (Marenzana et al 2004 in press). As can be seen 

from the above graph, three times this dose was required to eliminate Dupuytren’s 

fibroblast contraction. Perhaps Dupuytren’s derived cells are resistant to actin 

depolymerisation using this drug. It is entirely conceivable that stronger actin 

cytoskeletal networks within the Dupuytren’s fibroblast may contribute to the greater 

contraction profiles seen on the culture force monitor, although this can only be 

hypothesised here.
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Figure 5.3 a and b. Immunohistochemical staining of fibroblast seeded collagen gels for 
a-smooth muscle actin (green fluorescence) before and after the addition of cytochalasin- 
D.

a) Dupuytren’s fibroblasts aligned longitudinally along the collagen gel before disruption 
of the actin cytoskeleton (white arrow).

b) Dupuytren’s fibroblasts after the addition of cytochalasin-D to the media. Note the 
cells have become rounded, and the actin filaments have become disrupted (white arrow).
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Figure 5.4: Transmission Electron Micrograph of a Dupuytren’s fibroblast allowed to 

contract within a collagen gel, without the addition of cytochalasin-D (x 8000)

Collagen gel is removed from the culture force monitor and a 
small segment (seen in red) is excised and processed for TEM.

Each section is viewed first under 
the light microscope, and then 
ultrathin sections are cut for 
viewing under the Philips xl2 
microscope

TEM of a Dupuytren’s fibroblast 
before the addition of cytochalasin-D. 
Note the elongated appearance of the 
cell. In addition note the interaction 
of the cell (arrow) with the 
surrounding collagen fibrils
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Figure 5.5: TEM magnified view of a Dupuytren’s fibroblast demonstrating the 

interaction of the cell with the surrounding extracellular matrix at the fibronexus

TEM shows the surface of the fibroblast interacting with the surrounding type I collagen 
matrix. Note the bundle of filamentous extracellular material extending from the 
fibroblast into the matrix (arrow), otherwise known as the fibronexus. This is closely 
associated with the intracellular actin microfilaments (A) (x 16,000) {as first described by 
Tomasek et al 1987 in embedded tissue specimens; and later in 1991)
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Figure 5.6: Transmission Electron Micrograph of a Dupuytren’s fibroblast after addition 
of cytochalasin-D at 48 hours. (X 8000)

Each section is viewed first under 
the light microscope, and then 
ultrathin sections are cut for 
viewing under the Philips xl2 
microscope

Collagen gel is removed from the culture force monitor and a 
small segment (seen in red) is excised and processed for TEM.

TEM of a single fibrobroblast after 
addition of cytochalasin-D to the gel. 
Note the cell has become rounded, and 
the lack of stress fibres. There are no 
pseudopodia, and the cell is no longer 
able to exert a tractional force on its 
surrounding matrix
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5.52 EFFECT OF CYTOCHALASIN-D ON BLANK ACELLULAR GELS

A typical contraction profile of an acellular blank gel is shown in the figure below 

with addition of cytochalasin-D at 24 hours (Fig. 5.7). It can be seen that as the 

cytochalasin-D is added there is a reduction in measured force, which quickly 

recovers, and the force returns to the measured value recorded prior to interruption of 

the system. This measured flux in force is due to the opening of the incubator door 

and addition of fluid to the system that is recorded by the sensitivity of the force 

transducer. This result indicates that the cytochalasin-D has very little effect on the 

force generation by a simple collagen gel and that this chemical does not alter the 

stiffness of the collagen matrix.
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Figure 5.7: - Contraction profile of a blank acellular collagen lattice with the addition 
of cytochalasin-D at 24 hours (shown by red arrow). Note the slow recovery from the 
initial drop in force as the chemical is added. The drop in force seen was postulated 
to be due to the sensitivity of the force transducer to the addition of fluid to the culture 
force monitor mould.
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Figure 5.8: - Histogram demonstrating in the first section the maximum force 
generated at 8, 24 and 48 hours for n=3 acellular blank gels. In the second section is 
the residual matrix tension after cytochalasin-D has been added. In the third section is 
the percentage of force retained after the addition of cytochalasin-D. Note that there 
is no significant change in measured force before and after the addition of 
cytochalasin-D to the system. This indicates that cytochalasin-D does not affect the 
mechanical properties o f the collagen gel within this experimental set-up.

The histogram above demonstrates this finding (Fig. 5.8). It can be seen that there is 

very little change in the measured force, before and after addition of cytochalasin-D at 

all 3 time points. This indicates that cytochalasin-D has very little effect on the 

mechanical properties of the collagen lattice. Thus any effects seen in the cell seeded 

lattices is likely to be related to its action on the cells themselves rather than the 

matrix they are seeded into. This has also been demonstrated in previous work in cell 

seeded collagen gels in which cellular activity was blocked by the addition of hypo- 

osmotic media sufficient to cause cell lysis (Marenzana et al 2004 in press). The 

addition of cytochalasin-D to this system had no additional effect on residual matrix 

tension.
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5.53 MATRIX REMODELLING AT 8  HOURS

The following graph demonstrates a typical contraction profile of a Dupuytren’s 

nodule cell line with inactivation of the actin cytoskeleton at 8 hours (Fig. 5.9). There 

was only a small remnant residual force recorded within the system at this time point 

equivalent to that of an acellular blank gel.
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Figure 5.9: - Contraction profile for a Dupuytren’s fibroblast seeded collagen gel with 
cytochalasin-D added (red arrow) at 8 hours. There is a fall in generated force to 20 
dynes, the equivalent of a profile for a blank acellular gel. Note the two phases of 
force generation -  the active cellular component which is eliminated by the 
cytochalasin-D, and the passive residual matrix tension which is the force recorded by 
the culture force monitor once the cellular component is eliminated.

The following histogram demonstrates the effects of inactivation of the actin 

cytoskeleton on various cell lines after they are allowed to contract for 8 hours (Fig.

5.10). The maximal force generated at this time point is significantly greater for 

Dupuytren’s nodule and dermal fibroblast cell lines (force = 72.6 dynes; SEM ± 13 

and 11) in comparison to that of Dupuytren’s cord (35 dynes SEM ± 7) and carpal 

ligament (33 dynes SEM ± 8).
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However the measured force i.e. the residual matrix tension (RMT) within the system 

after addition of cytochalasin-D was minimal for all cell types, and was equivalent to 

the baseline blank acellular gel (Fig 5.7; fig 5.9). There was no significant difference 

in RMT between any cell type. Thus it may be concluded that at this early time point 

there was no evidence of permanent matrix remodelling within the collagen matrix.
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Fig 5.10: - Histogram demonstrating the maximal force generated, the residual matrix 
tension and the % of maximal force retained for carpal ligament (n=3), dermal 
fibroblast (n=4) and Dupuytren’s cell lines (n=7) after 8 hours contraction on the 
culture force monitor. Error bars represent standard errors of the means. There are 
significant differences in maximal force generation between both Dupuytren’s nodule, 
carpal ligament and Dupuytren’s cord groups. Similarly these differences are also 
significant for the dermal fibroblast cell lines (p<0.05)

5.54 MATRIX REMODELLING AT 24 HOURS

By 24 hours the maximal force generated for carpal ligament cell lines has reached a 

plateau at 39 dynes (SEM ± 2), as has that for the dermal fibroblasts at 130 dynes 

(SEM ± 20). However both Dupuytren’s nodule and cord cell lines continue to 

contract, reaching maximal forces of 120 dynes (SEM ± 13) and 118 dynes (SEM ± 

17) respectively. There is a significant difference in maximum force between 

Dupuytren’s and dermal cell lines in comparison to carpal ligament (P<0.001)(Fig.
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5.11). The significantly lower level of contraction of carpal ligament fibroblasts has 

been documented previously (Bisson et al 2004), and was proposed to be due to these 

cells location in a stress-shielded area of matrix in-vivo. These values for dermal 

fibroblasts correspond with previous work using the culture force monitor model 

(Eastwood et a l 1996; Brown et al 1998), and demonstrates the similar contractile 

ability of dermal fibroblasts in comparison to Dupuytren’s fibroblasts. Dermal 

fibroblasts have been postulated to play a role in the contraction of wounded skin as it 

heals by secondary intention (Majno et al 1971), which may be extrapolated to reflect 

their significantly higher contractile force generation in comparison to carpal 

ligament.
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Figure 5.11: - Histogram demonstrating the maximal force generated, the residual 
matrix tension and the % of maximal force retained for carpal ligament (n=3), dermal 
fibroblast (n=4) and Dupuytren’s cell lines (n=7) at 24 hours. Error bars represent 
standard errors of the means. There are significant differences in maximal force 
generation between both Dupuytren’s nodule, carpal ligament and Dupuytren’s cord 
groups. Similarly these differences are also significant for the dermal fibroblast cell 
lines (pO.OOl). There is no significant difference in residual matrix tension between 
cell lines.

The residual matrix tension for all cell types at 24 hours is significantly higher that 

that at 8 hours (p<0.05), although there is no significant difference between cell types. 

For carpal ligament cell lines there was a residual matrix tension of 16.9 dynes (SEM 

± 9 dynes) that varied very little from the baseline force measured for a blank 

acellular gel. However for Dupuytren’s nodule and cord cell lines the residual matrix
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tension was 29.8 (SEM ± 6) and 29.6 (± 8) dynes respectively. The value for dermal 

fibroblasts was not significantly greater at 37 dynes (SEM ± 7). If these values are 

taken as a percentage of the maximal force generated at his time point there is a mean 

“remodelled” force of around 25 %  for dermal fibroblasts and Dupuytren’s 

fibroblasts.

5.55 MATRIX REMODELLING AT 48 HOURS

At the 48-hour time point it is noted that maximum generated force has not changed 

significantly for carpal ligament at 61 dynes (SEM ± 3) and dermal fibroblasts at 105 

dynes (SEM ± 19). However measured force continues to increase for Dupuytren’s 

nodules at 172 dynes (SEM ±21), and Dupuytren’s cord 140 dynes (SEM ± 14), and 

indeed for both these cell types no plateau phase is reached, as demonstrated in 

previous work demonstrating that Dupuytren’s fibroblasts exhibit a delay in reaching 

tensional homeostasis (Chapter 3) (Fig. 5.12).
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rigure 5.12: - Histogram demonstrating the maximal force generated, the residual 
matrix tension and the % of maximal force retained for carpal ligament (n=3), dermal 
fibroblast (n=4) and Dupuytren’s cell lines (n=7) at 48 hours. Error bars represent 
standard errors of the means. There are significant differences in maximal force 
generation between both Dupuytren’s nodule, carpal ligament and Dupuytren’s cord 
groups. Similarly these differences are also significant for the dermal fibroblast cell 
lines (p<0.001). Dupuytren’s nodules demonstrated a significant increase in residual 
matrix tension in comparison to carpal ligament (p<0.05).
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The residual matrix tension at 48 hours for carpal ligament again remained minimal at 

22 dynes (SEM ± 7.7), and no different from that of a blank acellular gel. It may be 

interpreted from this that these cells may be unable to permanently remodel a collagen 

matrix. It can be postulated that this is related to their low contractile force 

generation. For dermal fibroblasts RMT had increased to 49 dynes (SEM ± 12), for 

Dupuytren’s nodules it was 56 dynes (SEM ± 3.5) and for cord it was 51 dynes (SEM 

± 10). There was no significant difference in residual matrix tension between 

Dupuytren’s fibroblasts and dermal fibroblasts, but Dupuytren’s nodule fibroblasts 

remodelled the matrix significantly greater (p<0.05) than carpal ligament fibroblasts, 

and for cords this remodelling was approaching significance. For Dupuytren’s cells 

this remodelling was 35% of the total force generated. For Dupuytren’s derived cells 

it was noted that there was no significant difference in force generation or residual 

matrix tension at any time point if the cells were incubated with supplemented 

ascorbic acid.
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Figure 5.13: - Line chart demonstrating maximal generated force at 8,24 and 48 hours,
and RMT at the same time points for dermal fibroblasts (n=4), Dupuytren’s nodule 
(n=7) and Dupuytren’s cord fibroblasts (n=7). The black line indicates the force 
generated by an acellular blank gel over the same time period. Note the near linear 
increase in RMT for Dupuytren’s derived cells in comparison to dermal fibroblasts.
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When these results are analysed together (figure 5.13) over 8  to 48 hours it appears 

that with time for Dupuytren’s derived fibroblasts, both generated force, and the 

residual matrix tension increase. What is important in this graph is the overall shape 

of the curve. Values for carpal ligament fibroblast were omitted here as carpal 

ligament fibroblasts throughout this experimental series generated little force, and 

RMT was minimal, at the level o f an acellular gel, at all time points investigated.

For normal dermal fibroblasts RMT is seen to increase significantly over the first 24 

hours (p<0.034), with only a small increase in RMT over the full 48-hour period. 

This parallels the fibroblasts contractile behaviour in that the cells reach a plateau of 

force generation by 24 hours. In contrast is the RMT for nodule and cord derived 

cells. RMT for these increased in a near linear fashion with a significant increase 

between 8  to 24 to 48 hours each (p<0.01 (nod), p<0.034 (cord)). Once again the 

RMT parallels the cells’ contractile behaviour with increasing force being generated 

throughout the 48-hour period. The correlation between force and RMT which was 

much more marked for Dupuytren’s cells (R = 0.46) in comparison to control cells 

(R = 0.01), although neither were highly significant.

It can be interpreted firstly that carpal ligament fibroblasts show no increase in 

permanent matrix remodelling with time, and thus fail to permanently shorten the 

collagen matrix within this experimental system. This cell type generates little force, 

and also little remodelling activity, which may be a reflection of its location in vivo 

within a dense “stress-shielded” matrix where matrix turnover is expected to be 

minimal. Dermal fibroblasts are involved in the wound healing process where tissue 

contraction and matrix remodelling play an important role. Indeed fibroblasts 

harvested from the granulation tissue of healing wounds generate significant 

contractile forces (Gabbiani et al 1972; Higton 1964). It is apparent that Dupuytren’s 

fibroblasts and dermal fibroblasts display similarities with regards force generation 

and permanent remodelling ability. This would be anticipated for dermal fibroblasts 

given their role in vivo. This similarity in behaviour between these cell types is an 

important finding.

188



Results

5.56 MATRIX REMODELLING -  THE “CREEP” ZONE

If the graph of force generation against time is examined in closer detail after the 

addition of cytochalasin-D it may be noted that there are 3 separate components of the 

curve (figure 5.14). There is an initial rapid drop in measured force over 10 minutes 

after the drug is added, then there is a slow decline in force over a 20 minute period 

before the curve plateaus at the level of the residual matrix tension.
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Figure 5.14: - Graph of force against time demonstrating the 3 components to the 
change in force after the addition of cytochalasin-D for n=8 Dupuytren’s nodule cell 
lines at 48 hours. The first component shows a sharp initial drop in force (1), 
followed by a region of slow decline or “creep” (2), and finally a plateau phase (3) 
termed the residual matrix tension (RMT).

These changes have been observed in previous initial work by Marenzana et al (2004, 

unpublished data) on rat tendon fibroblasts. The changes within the creep zone were 

proposed to be due to the exposure of the collagen gel to an opposing force exerted by 

the force transducer. The initial drop in force was thought to be due to the loss of 

action of the cellular element by the cytochalasin-D. Prior to addition of this drug, the 

cells have contracted leading to a physical shortening of the gel, and hence a 

deformation of the strain gauge in an inwards direction. As force falls in the first 

phase, it was thought that the spring like action of the strain gauge being released and
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attempting to return to its original resting position, leads to a slowing of the decline in 

force being measured as the gel begins to hold in its new “remodelled” position. 

Marenzana et al (2004, unpublished data) proposed that this area o f creep is the result 

o f breaking o f the newest weakest bonds that had formed between collagen fibrils. 

This hypothesis was backed up by evidence o f a linear relationship between “creep” 

and the maximal generated force for each experiment. Thus this data shows that 

RMT is the fixed tension that survives the application of recoil stress, and therefore 

RMT is an underestimate o f the full degree o f matrix remodelling.

5.6 DISCUSSION

It has been demonstrated that normal and diseased fibroblasts are capable of 

generating contractile force (Gabbiani et al 1971; Harris et al 1981; Grinnell 1994; 

Eastwood et al 1998). It is still not fully known how this contraction is transferred 

into the permanent shortening seen in tissue contracture. A multitude o f studies have 

looked at matrix remodelling by using tools such as measurement of matrix 

metalloproteinases, and other molecular markers of collagen breakdown and 

production (Ragoowansi et al 2001; Tarlton et al 1998; Werb et al 1986; Kleiner and 

Stetler-Stevenson 1993; Chiquet-Ehrismann et al 1994; Chiquet et al 1996; 

Chaussain-Miller et al 2002). However precise measurement of remodelling has been 

difficult to achieve.

In order for a cell to contract and generate force its actin cytoskeleton must remain 

intact (Bell et al 1979). This was demonstrated by Kolodney and Wysolmerski in 

1992, who disrupted the cytoskeleton o f chick embryo fibroblasts using cytochalasin- 

D and found that generated force rapidly disappeared in a floating force transducer 

model. Similar findings have also been shown by Eastwood et al in 1996. It was 

therefore postulated from these models that cells may hold force via their attachment 

to the collagen matrix and subsequent cellular contraction. If cellular contraction is 

eliminated no residual force is left behind within the tissue matrix (Kolodney and 

Wysolmerski 1992; Rayan and Tomasek 1994).
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Few workers have managed to quantify the ability of cells to permanently alter a 

collagen matrix. The earliest measurements were undertaken by Guidry and Grinnell 

(1985) who measured the diameter o f circular free floating collagen lattices before 

and after the addition o f cytochalasin-D or simple detergent to eliminate any cellular 

contribution to force generation. This study concluded that matrix remodelling 

increased with time with almost full gel re-expansion occurring within a few hours of 

cell seeding, and less occurring after over 20 hours. Grinnell and Ho (2002) using a 

stress-relaxed model demonstrated that collagen matrix contraction was completely 

actin dependant at day zero using a population of human dermal fibroblasts 

preincubated with TGF-p, but that by day 6  over 50% of generated force was retained 

within the collagen gel after the cellular dependant actin contribution to force was 

eliminated. This was thought to be due to reorganisation or remodelling o f the 

collagen matrix by the cells. The present study shows that at 8  hours there was only a 

residual matrix tension o f 14 dynes in the dermal fibroblast cell lines, a value similar 

to that o f an acellular collagen gel, but by 48 hours residual matrix tension had 

increased to 49 dynes, which was over 45% o f overall generated force.

There are difficulties in comparing the work here with that of Grinnell and Ho (2002), 

in view o f the fact that they were using a circular stress relaxed system, and the 

duration o f the experiments was longer. However, overall our findings are similar. It 

can be stated that matrix remodelling or stiffening o f the collagen matrix will increase 

with time. It also appears that the cells that produce greater forces o f contraction will 

also achieve a greater residual matrix tension. Many proposals regarding the exact 

mechanism o f action of this matrix stiffening have been proposed. Some feel that 

remodelling is mainly a physical rearrangement of the collagen fibrils with the 

formation of new noncovalent bonds between fibrils (Guidry and Grinnell 1985; 

Eastwood et al 1998). Others have hypothesised that cellular contraction leads to 

matrix deformation, followed by secretion of new collagen and matrix deposition, 

before the process begins again (the slip and ratchet theory) (Tomasek et al 2002). 

Recent work has revealed that this may be due to a combination of both these 

processes (Parsons et al 1999; Grinnell and Ho 2002).

Wakatsuki et al. (2000) stated that the mechanical properties o f any tissue are 

determined by the cell, the matrix and their interactions. They constructed a model by
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which the contribution of each may be determined, using chick embryo fibroblasts 

embedded in a collagen matrix, via the application of uniaxial stretch measurements. 

The stiffness o f a tissue is the sum o f the active and the passive elements. The passive 

contribution is that o f the extracellular matrix, whereas the active is dominated by 

cytoskeletal and some matrix contributions. These researchers found that the cellular 

contribution to force generation is made up of a contractile component (CC) due to 

actin-myosin interactions, and in series with that a cellular component dominated by 

the actin cytoskeleton, but not related to myosin interactions (SC), plus a matrix 

component at the point where the cells connect to the extracellular matrix (SM) via 

their actin network. In parallel with this cellular contribution to force is the residual 

cellular force (PC) remaining from the cells once the actin cytoskeleton is completely 

disrupted. This residual force (PC) is thought to be negligible as demonstrated by 

work disrupting intermediate filaments and microtubules in a similar system. The 

remainder o f force within a cell filled collagen system is that provided by the tissue 

matrix itself (PM), and this is likely to be unaffected by any inactivation of the actin 

cytoskeleton.

The exact events that occur in order for the matrix to shorten are not elucidated for 

certain here. Certainly what this model clearly shows is that there are two elements of 

force generated by a cell seeded gel: - the cell dependent force, and the cell- 

independent force which increases with time as more force becomes permanently 

“held” or “enmeshed” within the collagen gel. The cell is appearing to transfer its 

force into the surrounding matrix by stabilising or changing, or adding to the structure 

of the collagen, hence residual matrix tension. It is proposed that once this action has 

occurred, the cell may then be free to contract again in order to deform and shorten 

the matrix to an even greater degree.

Collagen type I has been used as an extracellular matrix in this case, and there are 

some limitations that have been encountered in view of its make-up. Firstly collagen 

type I gels are made of homogenised collagen, with a significant water content. As 

cells contract this deforms the matrix and this may lead to the extrusion of water from 

the gel and a change in the gel’s mechanical characteristics. Previous unpublished 

work from this lab (Marenzana, personal communication) has shown that if an 

acellular gel is mechanically overloaded; once the overload is released the gel will not
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return to its previous resting position. This phenomenon is expected in viscoelastic 

materials such as collagen, and it is important to note that the changes expected from 

the material alone are distinct from the changes encountered in cell seeded gels 

exposed to cytochalasin-D (Marenzana et al, personal communication). Cell seeded 

gels will display some viscoelastic behaviour, but the overall increase in stiffness of 

the matrix is likely to be due to spatial changes in the collagen itself, rather than 

elasticity alone. Further mechanical work needs to be undertaken in this area to make 

any firm conclusions, and this was beyond the scope of this thesis.

Recent work on rat tendon fibroblasts using the culture force monitor model 

(Marenzana et al 2004) has shown that at 4 hours there was no residual measured 

force in the system after addition o f cytochalasin-D; by 18 hours this had increased to 

a residual matrix tension of 43 dynes or 35 % o f the maximum force generated. By 

24 hours residual matrix tension had increased to 8 6  dynes or 36.7% of the maximum 

force generated, and by 65 hours a 295-dyne value for residual matrix tension was 

recorded or 45% o f the maximal force. Similarly for all o f the cell lines investigated 

in this study it was seen that residual matrix tension increased with time o f incubation. 

Indeed at 8  hours for all cases there was no evidence of permanent matrix 

remodelling, with the value for residual matrix tension below that of a blank acellular 

gel. By 24 hours residual matrix tension had increased to a value greater than that for 

an acellular blank gel indicating permanent matrix remodelling within the collagen 

gel. There was no significant difference noted between cell types with all retaining 

between 21 and 35% of the maximum generated force. This is slightly less than that 

previously noted for rat tendon fibroblasts. The differences observed between our 

study and that using rat tendon tissue, may simply be a reflection of the tissue of 

origin. Certainly rat fibroblasts show a higher proliferation in comparison to those 

from human tissue. Similarly tendon derived fibroblasts are resident within a thick 

collagenous matrix that is exposed to greater mechanical forces in comparison to the 

relatively thinner and more pliable palmar fascia.

It is at 48 hours that the changes in residual matrix tension become more marked. For 

carpal ligament there is very little residual matrix tension to be measured at 2 2  dynes. 

It is postulated that this cell type responds little with respect to force generation and 

matrix remodelling. This may be a result o f their location in vivo. These cells are
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located in a dense collagenous matrix in a region that is not exposed to high 

mechanical stress on a regular basis, and thus they may be “stress-shielded” 

(Eastwood et al 1998; Tomasek et al 2002). By virtue of their relatively protected 

location these cells may have over time become insensitive to changes in mechanical 

force, and have less ability to generate a force themselves and hence remodel their 

surrounding tissue matrix.

It is the Dupuytren’s nodule fibroblasts, which have demonstrated the greatest ability 

to permanently remodel a collagen matrix. Residual matrix tension was 56 dynes, 

greater than that of the cord (51 dynes), and the dermal fibroblasts (49 dynes), and 

significantly greater than that for normal palmar fascia from the carpal ligament ( 2 2  

dynes). However if  taken as a percentage o f maximum force, matrix remodelling is 

certainly much less than that of rat tendon fibroblasts at the same time point. It is 

entirely possible that Dupuytren’s fibroblasts do not have any greater ability to 

remodel a tissue matrix in comparison to their normal counterparts. Matrix 

remodelling is said to occur as a function of both matrix degradation, plus deposition. 

It may be in this case, that the laying down o f new matrix components does not occur 

more quickly than normal. Examination of this matrix remodelling process has been 

looked at over a relatively short period o f time of only 48 hours. It has been 

documented that Dupuytren’s disease progresses very slowly over many years 

duration, in comparison to the relatively short forty eight hour experimental run. Due 

to this it is possible that changes occurring to the cells and matrix may be occurring 

later, and thus will have been missed. In order to test this hypothesis, long-running 

experiments within this system would need to be performed. In the future it would be 

possible to alter the experimental design in order to do this for example by using a 

bioreactor system.

What is apparent from this work is not only the difference in remodelling ability 

between the Dupuytren’s and dermal fibroblasts in comparison to carpal ligament 

fibroblasts, but possibly more importantly is the similarity in behaviour o f the 

Dupuytren’s and dermal fibroblasts. Dermal fibroblasts would be expected to display 

features o f matrix remodelling by virtue of their anatomical location and their role in 

wound healing and scarring. These are cells isolated from clinically normal 

individuals. In contrast Dupuytren’s fibroblasts are isolated from clinically abnormal
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tissue, and it is postulated that these cells are behaving in a manner comparable to 

cells from a healing wound, as described previously histologically (Majno et al 1971; 

Gabbiani et al 1971; 1972; Darby et al 1990). Carpal ligament cells do not display 

this permanent pattern o f remodelling.

It is postulated that pre-incubation with a pro-fibrotic agent such as TGF-pi in this 

model would only serve to increase the residual matrix tension. Work performed by 

Wilson-Jones (MSc thesis 2002), and Marenzana et al (2004) has shown that not only 

does matrix remodelling increase with time, but in addition it increases when cells are 

incubated with TGF-pl. Grinnell and Ho (2002) proposed that permanent 

extracellular matrix remodelling was a result not only of collagen fibril 

rearrangement, but was also due to deposition of collagen and fibronectin by cells 

after incubation with TGF-pl. Further work (Marenzana et al 2004) has

demonstrated that mechanical loading o f a cell seeded collagen gel led to a more 

stable remodelling o f the matrix in comparison to TGF-pi stimulation as judged from 

the residual matrix tension. From this it was postulated that fibroblasts may be able to 

produce different matrix material properties in response to different environmental 

cues, with load promoting collagen synthesis and matrix alignment, while TGF- pi 

stimulation increases overall force generation and collagen accumulation.

What is also interesting is the description that RMT is underestimated in all cases due 

to creep within this experimental model (Marenzana et al 2004, in press). As 

described by Marenzana et al (2004) the recoil o f the transducer beam applied a force 

to the collagen gel once the cellular action had been eliminated. This sudden transfer 

of force was proposed to result in rupture of some new inter-fibril bonds that were 

contributing to the matrix shortening. The higher the cell generated force, the greater 

the recoil force applied to the gel, and the rate of fall.
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5.7 SUMMARY

• There was no evidence o f permanent matrix remodelling after 8  hours in culture 

for all cell types

• Residual matrix tension was similar in all cell types investigated after 24 hours.

• After 48 hours RMT was significantly greater in Dupuytren’s nodules in 

comparison to carpal ligament fibroblasts, but not significantly different in 

comparison to cord or dermal fibroblast cell lines.

• In all cell type matrix remodelling increased with time, and this was most 

significant in the case of Dupuytren’s fibroblasts.

• Both Dupuytren’s and dermal fibroblasts displayed a similar ability to 

permanently remodel a collagen matrix in comparison to carpal ligament 

fibroblasts.

It is postulated that there is a primary abnormality in the process o f  cellular 

contraction, leading to the progression o f  contracture seen in Dupuytren’s disease. 

However the process o f  remodelling o f  a collagen matrix is not significantly greater 

in Dupuytren's cells in comparison to dermal fibroblasts. It is hypothesised that 

cellular contraction holds the matrix in a newly shortened state, while concurrently 

the cells act to remodel the surrounding matrix to hold it there permanently. Thus the 

greater the degree o f  cellular contraction the greater the permanent shortening o f  the 

matrix becomes.
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5.8 STAINING OF FIBROBLAST POPULATED COLLAGEN 

LATTICES FOR COLLAGEN III

5.9 INTRODUCTION

In view of the findings of permanent remodelling o f the collagen matrix discussed 

above, it was proposed to examine collagen in detail on an immunohistochemical 

level. The enhanced gene expression for collagen III in Dupuytren’s fibroblasts, and 

the permanent matrix remodelling in this system led us to question whether this is 

translated into collagen deposition over the experimental time period observed.

Other earlier workers have looked at collagen III staining for fixed tissue specimens 

under light microscopy in renal, dermal and gingival fibroblasts (Hillman et al 1999; 

Kelynack et al 1999; Chaussain-Miller et al 2002) with the demonstration of positive 

staining over long time courses. It was hypothesized that Dupuytren’s fibroblast 

seeded collagen gels would stain positively for collagen III in comparison to those 

from seeded with cells from carpal ligament.

5.10 METHOD OF DEVELOPMENT FOR STAINING COLLAGEN GELS 

FOR COLLAGEN TYPE III

Only a few studies have documented staining o f fibroblast populated collagen gels for 

collagen III. It was therefore important to establish a procedure that was both 

sensitive and specific for collagen III staining. An anti-human collagen type III 

mouse monoclonal antibody (ICN Biomedicals Inc.) was used.

4 six well plates were used to make a total of 24 circular type I rats tail collagen 

acellular gels. For each gel, 3ml of rats tail type I collagen (First Link, UK) and 0.35 

ml o f Minimal Essential Media (MEM) were mixed together with a variable dose of 

collagen type III. The solution was neutralised using drop-wise addition of 1M
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sodium hydroxide until a colour change from yellow to orange was noted. Into each 

well a different dose o f collagen III was added (see table 5.1).

6 well plate Dose of collagen III

Well 1 0  mg

Well 2 0 .1  mg

Well 3 0.05mg

Well 4 0 .0 2 mg

Well 5 O.Olmg

Well 6 0 . 0 0 1  mg

Table 5.1: -dose of collagen type I I added to each well of a six well plate

The gels were then placed in an incubator at 37 degrees with 5% C02 and allowed to 

set overnight. The next morning each gel was gently freed from the base of the dish 

using a sterile spatula, and placed into 10% formal saline solution for 24 hours at 4 

degrees C.

Following this the protocol outlined in section 2.43 {Materials and Methods) was 

followed for immuno-staining for type III collagen. Various different concentrations 

o f anti-collagen III antibody were tested in order to determine the most appropriate 

concentration to be used in the experimental gels. A total of 4 plates were used for 

each o f the doses o f collagen III seen above, using a different concentration of 

antibody in each plate (table 5.2). This gave a total of 24 gels.

Concentration of anti-collagen III antibody

Plate A 5mcg/ml

Plate B lOmcg/ml

Plate C 15mcg/ml

Plate D 2 0 mcg/ml

Table 5.2: Concentration o f anti-collagen III antibody used in each plate
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5.11 RESULTS

■
 Figure 5.15a: Example of a blank gel with no

collagen III added. Similar pictures were 

seen for each concentration of antibody 

added. Not the absence of green

fluorescence throughout the sample

■
 Figure 5.15b: Example of a gel with O.lg of

added collagen III using an antibody dose of 

5pg/ml. Note positive green fluorescent

staining of collagen III (arrow)

■
 Figure 5.15c: Example of a gel with 0.05g of

added collagen III using an antibody dose of 

5pg/ml (arrow)
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Figure 5.15d: Example of a gel with 0.00lg of added 

collagen III using an antibody dose of 5pg/ml. In 

figures 4-6 note positive staining for collagen III as 

shown by green fluorescence (arrow)

Figure 5.15e: Example of a gel with 0.01 g of added 

collagen III using an antibody dose of 10pg/ml 

(arrow)

Figure 5.15f: Example of a gel with 0.00lg of added 

collagen III using an antibody dose of 10pg/ml 

(arrow)
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Figure 5.15g: Example of a gel with O.lg of added 

collagen III using an antibody dose of 15pg/ml 

(arrow)

Figure 5.15h: Example of a gel with 0.01 g of added 

collagen III using an antibody dose of 15pg/ml 

(arrow)

Figure 5.15i: Example of a gel with 0.00lg of added 

collagen III using an antibody dose of 15pg/ml 

(arrowO
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■
 Figure 5.15j : Example of a gel with 0.01 g of added 

collagen III using an antibody dose of 20pg/ml 

(arrow)

The pictures demonstrated above (figure 5.15a-k) indicate that it is possible to 

positively identify collagen III deposition using an immuno-histochemical technique 

with good sensitivity and specificity. Doses as low as 0.001 g of collagen III were 

visualised at a range of antibody concentrations from 5 to 20 pg /ml.

It was thus decided that a dose of lOpg / ml of anti-collagen III antibody would be 

utilised for the experimental gels due to the ease of dilution calculation.

Figure 5.15k: Example of a gel with 0.00lg of added 

collagen III using an antibody dose of 20pg/ml 

(arrow)
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5.12 METHODS

Using a dose o f 10pg / ml of anti-collagen III antibody as calculated above, a total of 

5 gel specimens each from Dupuytren’s nodule, Dupuytren’s cord and carpal ligament 

were taken after being allowed to contract for 48 hours on the culture force monitor, 

and processed as described fully in Section 2.43 (Materials and Methods). Specimens 

were viewed under a fluorescent light microscope at x20 and x40 magnification, in 

three separate fields for each gel.

5.13 RESULTS

All photomicrographs viewed at x 20 magnification.

■
 Figure 5.16: a typical Dupuytren’s nodule

cell line fixed in a 48hr collagen gel and 
stained for collagen III. There is no 
evidence of deposition of collagen III 
within the gel at this time point as shown 
by the lack of green fluorescence, and 
positive red nuclear staining

■
 Figure 5.17: a typical Dupuytren’s cord

cell line fixed in a 48hr collagen gel and 
stained for collagen III. There is no 
evidence of deposition of collagen III 
within the gel at this time point as shown 
by the lack of green fluorescence, and 
positive red nuclear staining
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Figure 5.18: a typical carpal ligament cell 
line fixed in a 48hr collagen gel and 
stained for collagen III. There is no 
evidence of deposition of collagen III 
within the gel at this time point as shown 
by the lack of green fluorescence, and 
positive red nuclear staining

As can be seen in the three representative photomicrographs above (figure 5.16-5.18), 

in each cell type there was no evidence of positive green fluorescent staining that 

would indicate the presence of collagen III within the collagen I matrix. There is 

positive red staining for the cell nuclei from the propidium iodide.

These results indicate that there was no collagen III deposition within the extracellular 

matrix over a 48 hour time period that was detectable by the technique used above. It 

is certainly possible that smaller amounts than 0.001 g may have been produced, but 

this experimental procedure was not deemed sensitive enough to detect these levels.

5.14 DISCUSSION

This work provides evidence that over the short period of time of these experiments, 

there was no detectable deposition of collagen III in the surrounding matrix.

It has been shown in previous work that in vivo collagen synthesis is much lower in 

three dimensional gel systems in comparison to monolayer culture (Nusgens et al 

1984; Mauch et al 1988). A study by Hillman et al (1999) on human gingival 

fibroblasts revealed absent staining for collagen I or III in the first 48 hours of culture 

with positive staining only apparent after 2 weeks. Chaussain-Miller et al (2002) 

have shown weak positive staining for collagen III in dermal and gingival fibroblasts 

seeded in type I collagen matrices after a single day in culture, with greater intensity
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after 3-7 days. The collagen appeared to be located as thin fibres in a reticular fashion 

at the basement membrane. Other work has shown that renal myofibroblasts are 

synthetically active within collagen matrices with the positive detection of 

intracellular collagen III, however none was detected within the matrix itself 

(Kelynack et al 1999).

There are some limitations to this work, and clearly there are some questions that 

remain unanswered by these light microscopic studies. Very small quantities of 

collagen III may have been missed by an immunostaining regime at this 

magnification. Due to the positive red nuclear staining it was difficult to focus clearly 

on the cell cytoplasm at magnifications o f x40, and thus detection of intracellular 

collagen III was not possible. It is likely that this would be the first change noticed 

during this short time period.

5.15 SUMMARY

It is thus likely that the permanent shortening o f  the collagen matrix (otherwise known 

as residual matrix tension) seen in experiments run on the culture force monitor are 

unlikely to be due to the deposition o f  collagen III, and are more likely to be due to 

other structural changes in the matrix. Clearly there is some spatial rearrangement 

o f  the type I  collagen matrix produced by the indwelling fibroblasts, what is as yet 

unclear is how this occurs. Theoretically it may be that non-covalent fibrillar bonds 

form first, and that later on, in days rather than hours, collagen is deposited to link 

these fibrils together to form stronger bonds.
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CHAPTER 6

THE RELATIONSHIP BETWEEN 

FIBROBLAST CONTRACTION AND 

PATIENT FACTORS
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6.1 INTRODUCTION

Recurrence or extension in Dupuytren’s disease is a difficult problem both for the patient 

and for the surgeon. Currently the only therapeutic option is surgical revision with its 

associated higher morbidity and complication rate in comparison to primary surgery. As 

documented earlier {Introduction section 1.7.2), the recurrence rate increases with time of 

follow up, but in today’s overstretched health care system it is not always possible or cost 

effective to review all patients that have had Dupuytren’s surgery over many years. It 

would be useful to identify patients who are most at risk of disease recurrence in order 

that intervention occurs at an appropriate time. For those least at risk, the inconvenience 

of regular hospital outpatient visits could be delayed.

Some clinical features have provided a means of identifying those patients most at risk, 

including early age of onset of disease, positive family history, and bilaterality (Hueston 

1961; McFarlane 1985). Histological studies have also been used to predict recurrence, 

with Gelberman (1980) relating recurrence to the findings of myofibroblasts and 

prominent microtubules in the nodules on electron microscopy. Rombouts et al (1989) 

used light microscopy to subdivide patients into three groups of either proliferative, 

fibrocellular or fibrotic stages, finding a higher risk of recurrence in the first group.

Given the relative ease of setting up a culture force monitor experiment, it was felt that it 

may be possible to utilize this experimental model as a possible clinical aid to predict 

patients most at risk of disease recurrence or extension.
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6.1 AIMS

• To establish whether there is any relationship between Dupuytren’s fibroblast 

contractile ability and clinical recurrence in patients with the disease.

6.3 HYPOTHESIS

• Patients that show evidence of the disease by either recurrence or extension will have 

fibroblasts that generate the greatest forces when allowed to contract a collagen gel 

on the culture force monitor, in comparison to patients with no evidence of disease re

activation.

6.4 METHODS

All cell lines that had been used to obtain contraction profiles on the culture force 

monitor were traced back to the original patient after obtaining ethical approval from the 

local ethics committee. Each patient was asked for permission to review his/her medical 

notes, and each patient was also invited to attend a review appointment that would be 

held at their local GP surgery.

Cell lines from the previous researcher in this area (n=l 1, Bisson MD thesis 2003), and 

the work conducted in this thesis were reviewed (n=15), giving a total of 26 patients 

available for follow-up. Of these 2 patients were unobtainable for follow up, and were 

excluded from the study. For the remainder a full patient questionnaire was filled in 

based on a review of the medical notes (Appendix XI), and both a telephone interview 

and patient visit arranged. Further evidence of Dupuytren’s disease was documented as 

either a true recurrence (at the site of original surgery) or as disease extension (new 

disease elsewhere in the hand) based on the work of previous researchers (Gordon 1957; 

Millesi 1974; Gelberman et al 1980; Tonkin et al 1984). Care was taken to distinguish
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Dupuytren’s disease from scar contracture or joint contracture by careful clinical 

examination. Maximum force generated from contraction profiles were correlated with 

patient age, and recurrence. Statistical analysis of results was performed using a Sigma 

Stat software package.

6.5 RESULTS

The interval between the primary surgery for Dupuytren’s disease and research follow up 

was 19 months on average (range = 1 3 -3 2  months; median = 19 months). Only 2 of the 

patients were female (8.3%), the remainder being male (91.7%). All of the patients in 

this group had undergone a standard limited fasciectomy for their Dupuytren’s disease. 

The maximum number of digits involved was two, with the ring and little finger being 

involved in the majority. 18 patients had undergone surgery on their dominant hand, with 

6 on their non-dominant hand. 8 patients showed evidence of an MCPJ contracture, 5 

had PIPJ contractures and 8 had both MCPJ and PIPJ contractures, with no 

documentation of the type of contracture in the notes of 3 patients. All but 3 patients 

achieved full extension of the affected digit on the operating table (see table 6.1).

6.51 Age Correlations

The maximum generated force for Dupuytren’s nodule and for cord cell lines at 24 hours 

were plotted against patient age in order to determine if there was any association 

between the two (figure 6.1 and 6.2). Mean age was 64.4years (range 29-77; median 

67yrs; Standard Deviation = 10.5).
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Figure 6.1:- Scatter graph of patient age versus generated force in dynes for Dupuytren’s 
nodule derived fibroblasts. Note that there appears to be no linear correlation between 
the age of the patient and the generated force.

For Dupuytren’s nodule there was no correlation between generated force and patient age 

(figure 6.1). Measured force was variable when plotted against age. However for cord a 

correlation was noticed, with increasing force generated as age increased (figure 6.2).
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Figure 6.2:- Scatter plot of patient age against maximum generated force for Dupuytren’s
cord derived fibroblasts. There is a trend for generated force to increase as the age of the 
patient increases, although this is not highly significant (R2 = 0.33).



In view of this correlative finding the contraction profile curves from the Dupuytren’s 

cord population was examined in more detail. From this it could be seen that there 

appeared to be two groups within a large continuum, with a subset of high contractors 

and a subset of low contractors (figure 6.3). The age related data was subdivided based 

on this into two groups also, and it could again be seen that the patients who were older 

in age generated significantly greater forces (p<0.05) (figure 6.4).
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Figure 6.3:- Contraction profiles for n=26 Dupuytren’s cord cell lines over 24 hours.
Black line represents the cut off between two groups, the high and the low contractors.
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;■ high contractors Blow contractors

7igure 6.4:- Age difference between high contractors and low contractors, showing a 
significantly higher age for the high contractors (p<0.05).

6.52 Recurrence Correlations

In order to assess recurrence 24 patients in total were followed up, and a full hand 

examination performed. Each patient was assessed for evidence of a true recurrence, 

disease extension or both. Patient notes were reviewed to obtain information on 4 month 

follow up, and a full discussion and patient assessment were performed by the primary 

researcher on the second follow-up, rather than using patient notes to obtain the 

information. (Results are summarized in table 6.1).

At 4 months no patients showed evidence of recurrence. At the nineteen month follow- 

up, there were 7 patients with signs of disease extension, and 5 patients with signs of 

disease recurrence. Of these there were none with both extension and recurrence. The 

true recurrence rate was therefore 20.8%, which is slightly higher than that of Hueston 

(1961) who showed a 12.5% recurrence rate at 2 years. All other studies have looked at 

longer time periods to assess recurrence rates.



number age nodule cord force duration hand mcp pip operation 4 month >1yr follow up >1 yr follow up
(years) force (dynes) (dynes) of disease (degrees) (degrees) follow up extension recurrence

DP0502 68 153 124 ? Left 60 30 full NONE new thumb rec little

DP0602 70 120 130 ? left* 0 45 full NONE NONE NONE

DP0702 65 unknown 209 15yrs right* 0 30 full NONE new index slow NONE

DP0103 64 165 165 4yrs left* 35 15 full NONE new little slow NONE

DP0203 60 unknown 96 3yrs right* 0 45 full NONE NONE NONE

DP0303 77 87 unknown ? right* 45 90 res 10-20 NONE de novo, no rec NONE

DP0403 75 130 195 ? right* 15 45 res 5 NONE NONE NONE

DP0503 63 81 103 ? right* 45 0 full NONE new 1st web NONE

DP0603 67 104 95 ? right* 45 0 full NONE NONE NONE

DP0703 71 145 unknown 3yrs left* 20 20 full NONE NONE NONE

DP0803 67 208 93 ? right* 5 45 full NONE NONE NONE

DP0903 74 unknown 174 ? right* 30 0 full NONE NONE NONE

DP1003 63 118 78 12yrs Left 30 0 full NONE NONE NONE

DP0600 49 unknown 53 sev yrs left* ? Cont 0 full NONE NONE NONE

DP0700 47 unknown 75 >10 yrs left a bit 45 full NONE NONE rec pipj

DP0101 65 unknown 124 ? right* 30 0 full NONE NONE NONE

DP0601 62 183 147 1 yr right* a bit full NONE new little NONE

DP0701 70 126 139 >10yrs right* 65 55 20 deg NONE NONE NONE

DP0801 68 127 unknown ? right* 40 0 full NONE NONE NONE

DP0901 70 180 82 >5yrs left 0 45 full NONE NONE rec slow

DP1001 67 162 162 >5yrs left ? ? full NONE NONE rec slow 25 deg

DP1101 29 163 89 2yrs right* no no full NONE NONE NONE

DP0102 59 254 54 >15yr left 0 min ? NONE ext little NONE

DP0202 76 164 194 >10yrs right* 0 45 full NONE NONE slow

Table 6.1: Table documenting patients followed up post surgery for Dupuytren’s disease, detailing force generated, patient age, contracture, and evidence of  
recurrence or extension at 1st and 2nd follow-up. The gaps in the column for force are due to no contraction profiles being available for these patients.
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The findings of disease recurrence and extension were correlated with the force 

generation by the patients’ fibroblasts as shown in figure 6.5.

■  none □  extension ■  recurrence

7igure 6.5:- Average maximum generated force for fibroblasts derived from Dupuytren’s 
nodule with no recurrence (n=l2),nodule with extension (n=7) and nodule with 
recurrence (n=5). There is no significant difference in force generation between sub
groups.

Of note is that there was no significant difference in force generation between each 

group, with the average force generated from fibroblasts in patients with no disease 

recurrence being 138 dynes (SEM ± 10 dynes), 155dynes (SEM ± 28 dynes) for 

extension and 165 dynes (SEM ± 6 dynes) for recurrence. Although these differences 

were not significant, what is of note is the trend for an increase in generated force for 

those fibroblasts isolated from patients with a recurrence. The numbers utilized in this 

work are too small to make any firmer conclusions.

Similarly for Dupuytren’s cord derived fibroblasts, a trend for increasing force generation 

in relation to recurrence was noted, but once again these values were not significant. 

Force generated for fibroblasts with no recurrence was 115 dynes (SEM ± 13 dynes),
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force for extension was 134 dynes (SEM ± 22 dynes), and force for recurrence was 127 

dynes (SEM ±  23 dynes). A Fisher’s exact test was performed to establish that there was 

no significant relationship between force generation and recurrence (p>0.156) (relative 

risk 2.6. 95% confidence interval 0.81-8.7).

6.6 DISCUSSION

Recurrence and disease extension remain a major problem for patients with Dupuytren’s 

disease, with the associated need for regular follow-up, and further surgery. It has been 

difficult to identify which patients are most at risk of recurrence either clinically or 

experimentally.

This work has shown that there is a trend for an increased force generation by fibroblasts 

derived from patients with disease extension or recurrence, although values were not 

significant. The main problem that was encountered here was that patient numbers were 

very low in order to come to any definite conclusions. The only prognostic test available 

clinically at the current time is good clinical history and examination in order to identify 

the Dupuytren’s diathesis. Recent work has identified bilateral hand involvement, 

ectopic lesions, and early age of onset as the best predictors of recurrence and extension 

(Abe et al 2004), and these authors have composed a scoring system in order to evaluate 

risk. However results of a prospective cohort study are awaited to verify the system.

Rombouts et al (1989) utilized a histological classification as a predictor for recurrence 

finding greater recurrence in the proliferative group. They defined the proliferative group 

as areas on histology with mitotic figures visible within areas of high cellularity. The 

main limitation with their study was that examination of specimens individually usually 

revealed more than one histologic subtype making it difficult to grade the specimen. 

Certainly in our work where primary cell cultures were set up, it was apparent that the 

majority of specimens obtained from the operating theatre had two main components that 

we have grossly defined as nodule and cord, and which in Rombout’s study would be
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defined as proliferative type and fibrotic type. Thus it would be difficult to utilize their 

grading system clinically due to the problems with grading. Similarly electron 

microscopic examination as used by Gelberman et al (1980) is time consuming, and 

expensive.

None of these methods developed have been ideal to ascertain those patients most at risk 

of recurrence. This work is currently only preliminary with a small patient number and 

short follow-up period available from which to draw any conclusions. At least 40 more 

specimens would need to be processed in order to obtain results from which powerful 

statistical analysis may be performed. The overall feeling is that it has promise as a 

diagnostic aid to identify patients most at risk, although it is doubtful that it will ever 

replace regular patient review in the out-patient clinic.
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CHAPTER 7

GENERAL DISCUSSION
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General Discussion

7.1 BACKGROUND

The main clinical problem in Dupuytren’s contracture is not only the formation of 

disabling flexion contractures of the digits, but also the high recurrence rates seen post- 

operatively. At each operation for recurrent disease the operative risks increase, and with 

them the chances of a fully functional hand are much reduced. Since the advent of 

surgery for Dupuytren’s disease in 1831, few technological advances have been made 

which improve prognosis for patients.

Many aetiologic factors have been associated with Dupuytren’s disease, but the trigger 

that induces a fibroproliferative reaction and progressive matrix shortening remains 

unknown. This thesis has concentrated mainly on the effect of mechanical stimulation on 

Dupuytren’s fibroblasts. This is an area that is of great importance in an organ that is 

constantly moving in flexion and extension and which within a normal day is exposed to 

many externally applied forces. It is also an area of interest when considering post

operative rehabilitation regimes in the hand where both passive and active flexion and 

extension exercises are used to restore function.

Work has looked at the contractile properties of the diseased fibroblasts, their responses 

to mechanical stimulation, both in terms of contractile behaviour and in terms of 

molecular behaviour, and at the ability of these cells to remodel a collagen matrix. 

Finally the relationship between these findings and clinical recurrence has been 

investigated. It is hoped that this will lead on to allow a better understanding of the 

natural history of the disease itself, and of the normal behaviour of the palmar fascia.
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7.2 THE USE OF A CONTROL TISSUE IN THE INVESTIGATION OF 

DUPUYTREN’S DISEASE

There has been much debate on the ideal control tissue for use in the investigation of 

Dupuytren’s disease. Previous workers have used tendon fibroblasts (Bulstrode MD 

thesis 2001), clinically normal adjacent fascia from hand affected by the disease (Alioto 

et al 1994), and the carpal ligament (Badalamente et al 1996; Tomasek et al 1995; Bisson 

et al 2004). There are pros and cons to the use of each. It was elected in this case to 

continue using the distal free edge of the carpal ligament as a control, firstly in order to 

provide some continuity to the work commenced by the previous research fellow in this 

area, and secondly as it is, of all the controls identified, likely to be closest in biochemical 

structure and function to the palmar fascia of a normal hand. The use of adjacent 

clinically normal fascia to the disease was thought to be unsuitable based on the abnormal 

biochemical findings seen from work by Brickley-Parsons et al (1981), and the fact that 

cells from this area may already be acting in an abnormal manner. An alternative would 

have been the use of normal fascia taken from patients undergoing trauma surgery to the 

hand, although this idea was rejected due to the reduced likelihood of obtaining tissue 

from patients of the same age range as in the Dupuytren’s group.

7.3 THE INVESTIGATION OF SEPARATE NODULE AND CORD DERIVED 

CELL LINES

The separation of Dupuytren’s tissue into nodule and cord derived fibroblasts has been 

performed very rarely in the past in tissue culture based experiments. Some have used 

undefined tissue (Murrell et al 1991), and the majority have focused on the nodule alone 

(Hurst et al 1986; Rayan et al 1996; Tarpila et al 1996). Bisson et al (2003; 2004) 

demonstrated that there is a difference in the phenotype of fibroblast cultures from nodule 

and cord, and hypothesized that due to the higher myofibroblast content in nodules that
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this was likely to be the most active contractile element of the lesion. Similarly, Vande 

Berg et al (1984), and Moyer et al (2002) demonstrated differences in phenotype and 

activity between nodule and cord. Due to the above, it was deemed important to continue 

to investigate these two structurally different components of the Dupuytren’s lesion 

separately.

7.4 EXPERIMENTAL EVIDENCE

In section 3.1, Dupuytren’s fibroblasts were shown to display no evidence of tensional 

homeostasis over a 48 hour time period in the culture force monitor model. This is a 

significant finding, especially when comparing the contraction profiles of the 

Dupuytren’s cells to two separate controls, the carpal ligament and dermal fibroblasts in 

which an obvious plateau period was observed after 15 hours. The ability of Dupuytren’s 

cells to generate higher levels of tension within a collagen matrix than normal fibroblasts, 

and the progression of this contraction with time provides a possible explanation for the 

slow continued shortening of the matrix seen clinically. Morphologically it appears that 

fibroblast alignment within a collagen gel correlates well with overall force generation 

(section 3.3), with the nodules displaying greatest alignment along the long axis of the 

gel.

Within the same experimental model subsequent loading regimes were applied in order to 

provide a clearer picture of the response of Dupuytren’s fibroblasts to changes in their 

mechanical environment (section 3.2). Given earlier work showing a significant 

abnormal contractile response to a mechanical overloading regime (Bisson et al 2004), 

suggestive of a positive feedback response with exacerbation of cell mediated 

contraction, it was important to determine these cells response to a loss of mechanical 

tension. Interestingly underloading resulted in cellular contraction for all cell types with 

no difference in response between Dupuytren’s and control cells. From this it appears 

that Dupuytren’s fibroblasts will tend to contract irrespective of the mechanical stimulus
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applied to them. This finding may go some way to explaining the recurrence of a 

contracture after fasciotomy. A reduction in perceived tension after contracture release is 

likely to evoke increasing cellular contraction to a higher level of homeostatic 

equilibrium than normal, thus tending to return the hand to its pre-operative flexed state.

Morphological changes in response to mechanical stimulation were found to be minimal 

for both overloading and underloading when compared to static load for both control and 

Dupuytren’s fibroblasts, with little change in overall cell alignment. However force 

changes introduced were relatively small, and thus may reflect the absence of a 

morphological change. In view of this, it was interesting to observe and discuss the 

genetic findings regarding matrix degrading enzymes released in response to mechanical 

stimulation, as it appears that changes in cell orientation are not responsible for the 

alterations in MMP gene expression or alterations to the shortened fabric of the matrix.

Firstly expression of MMPs and TIMPs was obtained from fibroblasts exposed to static 

loads only, in order to provide a baseline with which to compare loading regimes to. The 

striking finding was that there was no difference in gene expression between control and 

Dupuytren’s cells, with a higher TIMP expression for both in comparison to the MMPs, 

which was extrapolated to indicate little matrix turnover in a non stressed environment. 

When a mechanical overload was applied there was a markedly different response by 

Dupuytren’s nodules in comparison to cord and carpal ligament. For nodule a distinct 

up-regulation of all investigated MMPs occurred, with no up-regulation of TIMP-1 or 2. 

For carpal ligament and cord derived cells there was a converse effect, with up-regulation 

of TIMPs and no up-regulation of MMPs. It can be hypothesized that there is an increase 

in matrix turnover by the nodule, with a reciprocal “mopping-up” of turnover by the 

TIMP up-regulation by cord and carpal ligament in response to strain. Thus it can be 

theorized that there is a complex interplay of events when mechanical strain changes in 

the Dupuytren’s nodule- this begins with localised matrix breakdown, which can then 

allow structural alterations in the ECM, further tissue contraction, and eventually long 

term net matrix deposition leading to contracture. The other important finding here is 

that there is a distinct difference in behaviour between the nodule and the cord
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fibroblasts, reflecting the likelihood that they come from distinct separate cell 

populations, each with a different role within the disease. On a molecular level the 

nodule appears most active in relation to matrix turnover, with the cord acting in a 

quiescent manner very similar to that of carpal ligament, with no major role in 

remodelling activity.

Finally, having already established the abnormal contraction profiles of Dupuytren’s 

fibroblasts with their altered MMP expression, and contraction in response to load, the 

next logical step was to measure the amount of permanent shortening of a collagen matrix 

that diseased cells were capable of producing (section 5). Over a short time period a 

complete loss of tension followed disruption of the actin cytoskeleton by cytochalasin-D 

in all fibroblasts under investigation, indicating that no spatial remodeling of the collagen 

had occurred. However by 48 hours a permanent shortening of the collagen network was 

seen which was most marked for Dupuytren’s nodule fibroblasts, but not significantly 

greater than dermal fibroblasts. It may be hypothesized that although matrix remodeling 

is important for the permanence of a contracture, it is the abnormal cellular contraction 

that lends to the progression of the disease, while incremental remodeling occurs at each 

step.

Collagen was investigated as a possible structural element responsible for remodeling of 

a collagen matrix during the experimental period, both on a molecular level (section 4) 

and on a histological level (section 5). Certainly overall collagen III expression was 

greater in Dupuytren’s fibroblasts than in controls in statically loaded specimens. 

Mechanical loading or TGF-(31 stimulation resulted in little change in collagen 

expression, although as summarized earlier the time course of 24-48 hours may be 

sufficiently small to note changes in collagen expression here. Similarly, no evidence of 

collagen III deposition was demonstrated by immunohistochemical staining in either 

Dupuytren’s or control cells. Thus it is felt that the permanent shortening of the collagen 

matrix as discussed above is likely to be due to other factors, and not the deposition of 

collagen III. Theoretically it may be that non-covalent fibrillar bonds form first, and that
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later on, in days rather than hours, collagen is deposited to link these fibrils together to 

form stronger bonds.

On a more clinical level, patients were followed up at around nineteen months after their 

primary surgery in order to assess whether the measurement of contractile force by 

fibroblasts could act as a useful clinical tool to assess those most at risk of recurrence. 

The main limitation here was the small number of patients within the study. Although a 

trend for an increased force with recurrence was noted this was not significant, and thus it 

was concluded that this test would be unreliable at this stage to aid clinicians when 

conducting patient reviews.

7.5 RELATION TO THE RECENT LITERATURE

The majority of connective tissues are characterized by a small number of quiescent 

fibroblasts embedded within large amounts of extracellular matrix. These cells act to 

establish a resting tension within the ECM by the cross-linking of proteins, and by the 

synthesis of new protein (Hinz and Gabbiani 2003). Earlier work has found that 

fibroblasts resident within the ECM are usually stress-shielded, and do not develop stress 

fibres (Tomasek et al 2002). Myofibroblasts are thought to form when the ECM alters 

such as in the case of a wound in the dermis. The loss of mechanical stress seems to be 

an important stimulus for differentiated myofibroblasts to dedifferentiate or disappear 

(Hinz and Gabbiani 2003). This has been seen in wound healing models where at the 

time that the ECM is reconstituted and takes over mechanical load, the myofibroblasts are 

released from stress and become apoptotic (Desmouliere et al 1995; Grinnell et al 1999; 

Fluck e ta l  1998).

In Dupuytren’s disease a shift occurs from the behaviour of the normal palmar fascia 

where cells are acting as described above, and are stress shielded, to the marked change 

seen in Dupuytren’s fibroblasts which have the ability to generate significantly greater
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force and form many stress fibres. What is as yet unknown is the trigger by which this 

occurs. The generation of contractile force results in mechanical loading, which is 

thought to lead to a synthetic cell phenotype characterized by increased matrix synthesis 

and decreased degradation (Kessler et al 2001), plus cellular proliferation (Rosenfeldt 

and Grinnell 2000). The up-regulation of MMPs seen here in the Dupuytren’s nodule 

would reflect matrix remodeling activity taking place. The difference between wound 

healing and Dupuytren’s contracture is the lack of an end point in this remodeling 

activity, with matrix changes continuing over many years.

7.6 THEORY OF THE PROGRESSION OF DUPUYTREN’S 

CONTRACTURE

From the results of the work presented here in combination with current knowledge of the 

fibrocontractive disorders in general, a hypothetical theory for the progression of a 

clinical contracture has been formulated (figure 7.1). It is hypothesized that a number of 

triggers act together to allow the change from normal palmar fascia to Dupuytren’s 

disease. Having switched from normal to “pathological”, a number of changes occur that 

are related to mechanical tensional homeostasis of the Dupuytren’s nodule fibroblast in 

particular. These cells lose the ability to maintain a tensional equilibrium within the 

surrounding extracellular matrix, which results in an abnormal excessive cellular 

contraction. Any external mechanical force applied across the matrix results in a cascade 

of matrix metalloproteinase up-regulation. One can theorise that this may lead to a 

localized pericellular matrix softening, which will then allow further cellular contraction, 

which may then hold the matrix in a shortened state. This tissue contraction produced by 

the cells is then translated into permanent remodeling, initially by changes in the overall 

spatial arrangement of the matrix, and later on by the deposition of collagen and other 

structural elements of the matrix. This is similar to the slip and ratchet theory discussed 

in previous work (Tomasek et al 2002). For the Dupuytren’s cord, despite the generation 

of a high contractile force with the absence of tensional homeostasis, there is no major
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change in the expression of the matrix metalloproteinases in response to changes in 

matrix tension. It is proposed (like previous workers (Vande Berg et al 1984; Hueston 

1985; Moyer et al 2002; Bisson et al 2004)), that the cord is more quiescent than the 

nodule, and is composed of a different cell population. These cells, located in their dense 

collagenous matrix may, in fact act as an anchor against which the nodular tissue can 

“pull” as a contracture progresses.
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Figure 7.1 : A theory for the progression of Dupuytren’s 
Contracture
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7.7 FINAL SUMMARY

• Dupuytren’s nodule and cord fibroblasts developed significantly greater force than 

carpal ligament derived fibroblasts in the culture force monitor model. There was no 

significant difference in contractile behaviour between nodule and cord.

• Dupuytren’s derived cells continue to contract over 48 hours with an absence of the 

plateau seen in dermal fibroblasts or carpal ligament fibroblasts. The rate of 

contraction falls significantly after 48 hours. It is postulated from this that tensional 

homeostasis is delayed rather than absent.

• A reduction in externally applied mechanical load (underload) to fibroblast seeded 

collagen gels resulted in a contractile response by both Dupuytren’s and carpal 

ligament fibroblasts

• Degree of fibroblast alignment within collagen gels correlated in a linear fashion with 

the degree of generated force.

• There was no significant change in cell alignment when an external mechanical 

stimulus was applied
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• Baseline TIMP gene expression in statically loaded fibroblasts for both carpal 

ligament and Dupuytren’s nodule and cord is significantly greater than that of the 

MMPs

• Mechanical stimulation results in up-regulation of MMP gene expression by 

Dupuytren’s nodule fibroblasts, with no up-regulation by carpal ligament or 

Dupuytren’s cord fibroblasts

• Dupuytren’s cord fibroblast MMP gene expression responses to mechanical

stimulation broadly mimic those by carpal ligament, indicating that these cells are

likely to represent a separate cell population to those from nodule.

• Carpal ligament fibroblasts display an up-regulation of TIMP-1 expression when 

exposed to mechanical stimulation, a response that is absent in nodule derived cells.

• The action of TGF-(31 appears similar regarding MMP expression between carpal 

ligament and Dupuytren’s tissue. TGF-pl acts to downregulate MMP-1 and MMP-2 

expression, and acts to up-regulate TIMP-2 expression which is consistent with its 

profibrotic action.

• The finding of a reduction in TIMP-1 expression in all fibroblasts exposed to TGF-pi 

may be explained by a feedback inhibition response resulting from stimulation by 

both mechanical and growth factor derived cues.
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• Dupuytren’s fibroblasts demonstrate a greater baseline gene expression of collagen III 

in comparison to normal palmar fascia.

• Neither TGF-pl nor mechanical stimulation appeared to affect collagen gene 

expression within this experimental set up.

• There was no evidence of permanent matrix remodelling apparent after 8 hours in 

culture for all cell types investigated on the culture force monitor model

• After 48 hours residual matrix tension was significantly greater in Dupuytren’s 

nodules in comparison to carpal ligament fibroblasts, but not significantly different in 

comparison to cord or dermal fibroblast cell lines. In all cell type matrix remodelling 

increased with time.

• As described in previous work (Marenzna et al 2004), it is likely that RMT and thus 

matrix remodelling is underestimated due to the influence of “creep” on the collagen 

gel

• It is postulated that the permanent shortening of the collagen matrix (otherwise 

known as residual matrix tension) seen in experiments run on the culture force 

monitor are unlikely to be due to the deposition of collagen III, and are more likely to 

be due to other structural changes in the matrix.
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7.8 FUTURE WORK

There are a number of areas that would merit further research after reflecting on the 

findings discussed here. Two ideas work on expanding the investigation of the cells’ 

contractile and molecular behaviour that was focused on previously.

The first is the investigation of fibroblast contractile behaviour and of matrix remodeling 

over prolonged time courses. Due to the associated problems of infection, and nutrition 

when allowing gel’s to contract within an open culture system it was difficult to obtain 

accurate data beyond 48-56 hour time periods. It would be of interest to study the time 

taken for Dupuytren’s fibroblasts to reach tensional homeostasis, if indeed this happens at 

all. Similarly, it would be exciting to analyse the fixed changes in the matrix by 

remodeling over several days rather than hours.

Secondly analysis of matrix metalloproteinases only occurred at a gene expression level, 

due to the time constraint of the thesis. It would have been of interest to directly measure 

protein levels within the media by a combination of Western blotting and Northern blot 

techniques. In addition it would also have been useful to look at gene expression over 

several different time points rather than after a static load or a single mechanical 

stimulus.

When taking all of the results obtained in this thesis together it seems that there is one 

avenue in particular which would be of relevance in developing a future therapeutic 

strategy for Dupuytren’s disease -  by further investigation of the abnormal MMP and 

T1MP expression. Future work on the Dupuytren’s project would seek to study ways in 

which the aggressive fibroblast contraction and proliferation can be arrested in 

Dupuytren’s disease using chemotherapeutic agents, and secondly: to extend this 

knowledge into the setting of clinical medicine by devising ways to administer the agent 

safely and effectively to patients in order to halt disease recurrence.
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Production of natural inhibitors of MMPs (TIMPs) is one of the usual mechanisms by 

which MMP expression is controlled (Visse and Nagase 2003). Due to the fact that 

MMPs are overexpressed in some cancers and in wounds, there has been much interest in 

using matrix metalloproteinase inhibitors as therapeutic agents, in order to limit tumour 

invasion, and to facilitate normal wound healing. Both natural TIMPs and the synthetic 

TIMPs or MMPIs have been investigated.

Scott et al (1998) investigated the role of marimastat, a synthetic MMP inhibitor, in the 

contraction of dermal fibroblast seeded collagen gels. It was seen that Marimastat 

inhibited MMP-I activity, and fibroblast collagen lattice contraction, and this effect was 

reversible upon removal of the inhibitor. The viability and ability of cells to migrate and 

spread was not affected by the drug. A study on human retinal pigment epithelial cells 

demonstrated similar findings using the broad spectrum MMP inhibitor Galardin 

(Sheridan et al 2001). Galardin inhibition was dose-dependent, reversible, and dependent 

on cell number. Ilomastat has been shown to inhibit inflammatory protease activity in 

human middle ear effusions (Antonelli et al 2003), and has been very successful in the 

treatment of bacterial keratitis in human eyes within the remits of a clinical trial (Galardy 

et al 1994). Recent work in the field of glaucoma surgery has found the MMPIs to be 

effective in the inhibition of scar tissue formation in the eye (Wong et al 2003). By 

targeting the actions of these proteolytic enzymes, it is felt that a more physiologic and 

controlled method of modulating fibrosis may be achieved.

Many of these MMP inhibitors have been safely and effectively utilized in the treatment 

of neoplasia in order to limit metastatic spread all within closely monitored clinical trials. 

Marimastat has been most closely investigated (Praga-Wojtowicz et al 1998; Belotti et al 

1999). It has been seen in human patients to be well tolerated, with reported side effects 

of musculoskeletal myalgia and arthralgia, which in all patients settled after a 2-week 

drug holiday. Phase III trials are ongoing in patients with glioblastoma and gastric 

carcinoma. It would be very interesting to investigate the ability of a broad spectrum 

matrix metalloproteinase inhibitor to arrest Dupuytren’s fibroblast contractility and 

remodeling ability. If successful this may be put to some use in the future clinically.
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Appendix

APPENDIX 1

Cell Lines Established from Patients undergoing Surgery for D upuytren 's 
Disease and C arpal Tunnel Syndrome

D upuytren’s patients

Patient Cell line Sex Age Digit affected

1 DP0302 M 71 R little

2 DP0402 M 71 L ring and little

3 DP0502 M 74 L little

4 DP0602 M 72 L little

5 DP0702 F 65 R little

6 DP0103 M 64 L ring

7 DP0203 M 60 R little

8 DP0303 M 77 R ring and little

9 DP0403 M 75 R ring and little

10 DP0503 F 63 R ring

11 DP0603 M 60 R little

12 DP0703 F 71 L ring

13 DP0803 M 67 R middle and ring

14 DP0903 M 74 R ring

15 DP 1003 M 63 L ring

16 DPI 103 M 67 L ring

17 DP 1203 F 81 L little and middle

18 DP 1303 M 78 R ring and little

19 DP1403 M 77 R little

20 DP0104 M 63 R little

21 DP0204 F 67 L ring and middle

22 DP0304 M 56 R little

C arpal ligament patients

Patient CELL LINE Sex Age Hand affected

1 NC0302 M 64 Right

2 NC0103 65 Left

3 NC0203 77 Left

4 NC0303 71 Right

5 NC0403 84 Right

6 NC0503 53 Right

7 NC0603 40 Right

8 NC0703 82 Right

6 NC0104 F 76 Left
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APPENDIX II

FORMULATIONS OF CELL CULTURE SOLUTIONS USED

Normal fibroblast Growth Media (NGM 10%FCS)

Reagent Final Concentration Volume

Fetal calf serum (Gibco) 10% 50ml

Penicillin / Streptomycin (Gibco) lU /m l 5 ml

L-glutamine 200MM (Gibco) ImM 5 ml

HEPES Buffer (lM p H 8) 7mM 3.5ml

Dulbecco’s Modified Eagle’s Media 

(Gibco)

500ml

Trypsin : Versene Solution (1:10)

Reagent Volume

Trypsin (2.5%) (Gibco) 2 ml

Versene (Gibco) 18ml

Buffered Form al Saline

Reagent Amount

Formaldehyde (BDH) 1 litre

Sodium Dihydrogen Phosphate (dehydrate) 45g

Di-sodium hydrogen phosphate (anhydrous) 65g

Distilled water Made up to 10 litres
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APPENDIX III

Com position o f floatation bars and “A”frames for the Culture Force M onitor

“A” frames were constructed from lengths of surgical wire, bent and twisted to the 
dimensions shown above.

2.1cm

Completed floatation bar shown 
above

Floatation bars (A and B)were constructed from No. 10 Clear Mesh (Cat 33030-1, 
Haberdashery department, John Lewis Department Store). Four 8 by 3 square 
rectangles were joined together to form each bar using stainless steel sutures.
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APPENDIX 111(b)

Composition and Dimensions of Mould for the Culture Force M onitor

2.5cm

Culture force monitor moulds were purchased from RS components (UK). These 

moulds are made of PTFE, and are easy to clean and autoclave. The surfaces are non

stick. Dimensions are shown on the annotated photograph above. The chamber has a 

depth of 1.5cm.
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APPENDIX IV 

Calibration of the Culture Force M onitor

Displacement of the force transducer in a horizontal direction occurs as a result of 

contraction of cells within a collagen gel. The cell filled gel acts to pull the 

transducer lever inwards and this is recorded as a positive force reading. Any manual 

forces on the transducer or prolonged time at a temperature different from 37 C may 

cause inaccuracies of the transducer’s readings. Thus calibration of the force 

transducer within the culture force monitor was performed on a monthly basis to 

ensure continued accuracy of readings obtained.

The transducer is removed from its retaining clamp and placed in a vertical direction 

on top of the micrometer mounting stage. The transducer sits in a neutral position 

when no weight is applied to it. The incubator door is shut, and the system allowed to 

equilibrate for temperature and CO2 levels. The calibration factor on the labview 

program is set to 1. A one minute recording is then made of the measured force by 

the transducer in the neutral position. At this stage a small known weight is applied to 

the transducer, which causes a deflection of the arm, and an increase in the 

transmitted force reading. Once again the door is closed and the incubator allowed to 

equilibrate before recording the force reading for a one-minute period. The process is 

repeated for a series o f 5 known weights in total. Each one-minute period allows the 

software to record 60 readings of force, and the mean of these readings is calculated 

to provide a relative mean force transducer reading for each weight.

The data is tabulated against each weight used, and the force in dynes that this weight 

corresponds to (1 dyne = 10'5 Newtons). A sample table is shown overleaf. From this 

the corresponding scatter plot of each computer reading, and the equivalent standard 

force applied can be generated. A line of best-fit is drawn, and providing the 

correlation coefficient (R2) is good, the slope of the graph will correspond to the 

calibration factor. This value is then entered into the computer software, (i.e. the 

value of the actual reading of the force transducer needs to be multiplied in order to
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convert the figure to dynes). A sample graph and the relevant calculations are shown 

below.

W eight number Actual weight (g) Corresponding force 

in Dynes

Mean force transducer 

reading

0 0 0 0

1 0.03 29.4 12.48

2 0.05 49 19.84

3 0.2 196 80.82

4 0.3 294 122.24

5 0.5 490 214.17

Table above demonstrates each weight used to calibrate the CFM, with its 
corresponding force in dynes that it related to, plus sample readings from a calibration 
run.

Calibration Curve for Bronson 28/04/03
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Scatter plot of calibrating force in dynes plotted against the CFM force transducer 
reading. The slope of the curve gives the calibration factor to be used.

Force = mass times acceleration 
Force (Newtons) = Weight (kg) times Gravity (9.8)
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APPENDIX V 

Composition of DABCO

DABCO M ixture -  Anti fade agent for immunofluorescence

Stored at 4°C wrapped in silver foil.

R E A G E N T Amount

14-Diazodicyclo 2,2,2 Octane (Sigma) lg

Phophate Buffered Saline (PBS) (Gibco) 4ml

Glycerol 36ml
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APPENDIX VI 

T.E.M fixatives and buffers 

2.0% GLUTARALDEHYDE
• A stock solution o f 25% glutaraldehyde is taken (EM Sciences Ltd. Cat 

no: 16210)
• 8ml of the stock solution is mixed with 42 ml of distilled water
• To this is added 50ml of 0.2M Sodium cacodylate buffer pH 7.2

PARAFORMALDEHYDE (PA) -  GLUTARALDEHYDE (GA) FIXATIVE
To make a 0.2%GA in 4% PA in a 0.2 M sodium cacodylate buffer

• 2 g of PA is dissolved in 25 ml of distilled water (heated to 60-70°C and stirring)
• Solution is cleared with 1M sodium hydroxide (slight milkiness may persist)
• Solution is cooled
• 0.4ml o f 25% GA is added to 25ml of PA
• Solution is made up to 50ml with the addition of 0.2M sodium cacodylate buffer
• All fixation is carried out at 4°C

0.2M SODIUM CACODYLATE BUFFER

• Sodium cacodylate (Na(CH3)2As 0 2.3H20  -  M.W. 214.03)
• Take 4.280g o f sodium cacodylate and dissolve in 66.6ml of distilled water in a 

volumetric flask
• Adjust to pH 7.4 using an appropriate volume of 0 .1M hydrochloric acid
• Make up to the final volume of 100ml using distilled water

OSMIUM TETROXIDE
• 2ml ampoules of 2% osmium tetroxide were used individually (SPI chem. -  

02595-BA)

RESINS

To make a hard Spurr’s resin, the following were mixed together.
• ERL 4206 -  20g
• DER 736 -  8g
• NSA -  52g
• S-l - 0.8g
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APPENDIX VII

GENERAL PRECAUTIONS USED FOR RNA EXTRACTION

A separate clean “RNA area” lab bench was designated for RNA extraction. This was 
cleaned with IMS, and then cleaned further with DEPC water (see below). A clean 
lab coat and fresh gloves were utilised on a regular basis. All equipment and 
apparatus was designated for RNA use only and was pre-incubated with DEPC-water 
before autoclaving. (DEPC water is ultrapure water i.e. DNAase and RNAase free).

REAGENTS FOR RNA EXTRACTION

DEPC WATER
• Add 2ml diethylprocarbonate (0.2%) (Sigma P-1037) to 1 litre ultrapure 

(18MQ) water shaking vigourously
• Incubate overnight at 37°C
• Autoclave
• Dry bottle

GT EXTRACTION BUFFER 
(Store at 4°C for 2 months)

FORMULATION SOURCE For 500ml
4M guanidium thiocyanate 
(GT)

Sigma 236.4g

0.5% sarkosyl (free acid) Sigma 2.5g
0.1% anti foam A Sigma 0.5ml
25mM sodium citrate pH 7.0 BDH 50ml of 250mM stock
0.1M P-mercaptoethanol BDH 3.49ml
0.2% DEPC Sigma D5758 1ml

• Dissolve GT in 200ml of DEPC-water at 60°C, stirring thoroughly for 30 
minutes

• Separately dissolve Sarkosy in the sodium citrate stirring thoroughly at room 
temperature, for 30 minutes

• Mix the citrate-sarkosyl plus the GT in the fume cupboard
• Add anti foam A
• Make solution up to 500ml using a measuring cylinder
• Adjust pH to 7.0
• Add 0.2% DEPC, shaking vigourously to dissolve.
• Incubate at 37°C overnight
• Autoclave
• Add p-mercaptoethanol
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WATER SATURATED PHENOL
• Melt lOOg of molecular grade phenol (Sigma (D5758)) at 60°C, then allow to 

cool
• Fill bottle to the top with an equal volume of DEPC water and shake 

vigourously
• Leave overnight to allow phase separation
• Remove the top layer, the aqueous phase
• Transfer or convert to a foil wrapped bottle
• Store at 4°C

ISOAMYLALCOHOL
• Isosamylalcohol (BDH 100383L)
• Chloroform (BDH 100774W)
• Mix chloroform with isoamylalcohol at a ratio of 24:1 in a clean autoclaved 

container

SODIUM ACETATE
• 2M sodium acetate adjusted to pH 4 with acetic acid.
• 12.31 g sodium acetate
• 48.75ml of acetic acid, made up to 500ml with DEPC water.

SODIUM CITRATE
• 36.76g o f tri-sodium citrate made up to 500ml in DEPC water, and adjusted to 

pH 7.0 with acetic acid.

70% ETHANOL
• 70ml of absolute alcohol was taken, and to this was added 30ml of DEPC 

water.

TAE
To make 1 litre stock solution of 50x TAE
• 242g Tris base (Sigma Cat T1378-500G)
• 57.1ml glacial acetic acid
• 18.5g EDTA (ethylenediaminetetacetic acid) (Sigma E-5134)
• 20g Sodium Acetate
• Add 700ml of distilled water to the above in a conical flask swirling gently
• Make up to pH 8

To make a stock solution of lx TAE, take 20ml of 50xTAE in a one litre beaker 
and add 980ml of distilled water.
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APPENDIX VIII 

Reagents for Reverse Transcriptase Reaction

REAGENTS QUANTITY VOLUME SOURCE

Extracted RNA 5mcg 8pl -

Oligo-DT primers 200pg/ml lpl Gibco

0.1M DTT 2 pi Gibco

5 x RT buffer 4pl Gibco

DEPC water lpl -

lOmM dNTPs 2 pi Pharmacia 

(lOOmM kit)

RNA guard 30U/pl lpl Pharmacia

(porcine)

MMLV Reverse 

transcriptase (RT)

200U/ml lpl Gibco

TOTAL VOLUME 20 pi -

Table showing reaction substrates for the RT reaction for cDNA synthesis

CYCLE NUMBER TEM PERATURE (°C) DURATION (mins)

1 65 1 0

1 0 5

1 37 60

1 75 1 0

Table demonstrating reverse transcriptase reaction conditions
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APPENDIX IXa 

Reagents for the Polymerase Chain Reaction

REAGENT Quantity Origin

CDNA (from RT reaction) 2 pi -

10 x PCR buffer 2 pi Finnzymes

2mM dNTP 2pl Invitrogen

DEPC water 8.75pl -

DMSO lpl Sigma

Primer 1 (F) 2pl (lOpmol) Applied Biosystems

Primer 2 (Rev) 2pl (lOpmol) Applied Biosystems

GAPDH primer (F) 2pl (lOpmol) Applied Biosystems

GAPDH primer (Rev) 2pi (lOpmol) Applied Biosystems

DNAzyme 0.25pl Finnzymes

TOTAL VOLUME 20pl
Table showing reaction su t>strates for the polymerase chain reaction

PCR CONDITIONS

N um ber of cycles Tem perature °C Duration / minutes
30 95 1

Annealing temp minus 2° 2
72 3

1 72 7
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APPENDIX IXB

Table showing primer sequences for target genes for PCR, their expected PCR 
product size, and annealing temperatures for each gene investigated.

TARGET
PROTEIN
PRIMER

SEQUENCE PCR 
product 
size (base 
pairs (bp))

Tm
°C

Annealing 
temp °C

MMP-1 F - 5 ’ CGA CTC TAG AAA CAC A AG AGC A AG A 3 ’ 787 72 70

R -  5 ’A AG GTT AGC TTA CTG TCA CAC GCT T 3 ’ 72

MMP-2 F -  5 ’ GTG CTG A AG GAC AC A CTA A AG AAG A 3 ’ 605 70 68

R -  5 ’ TTG CCA TCC TTC TCA AAG TTG TAG G 3 ’ 72

MMP-9 F -  5 ’ CAC TGT CCA CCC CTC AG A GC 3 ’ 263 66 62

R -  5 ’ GCC ACT TGT CGG CGA TAA GG 3’ 64

MMP-13 F -  5 ’ TGC TGG CTC ATG CTT TTC CTC 3 ’ 273 64 62

R -  5 ’ GGT TGG GGT CTT CAT CTC CTG 3’ 66

TIMP-1 F -  5 ’ ACC ACC TTA TAC CAG CGT TAT GAG 3 ’ 363 70 68

R -  5 ’ GAG GAG CTG GTC CGT CCA CAA GCA 3 ’ 78

TIMP-2 F -  5 ’ CGC TGG ACG TTG GAG GAA AGA AGG 3’ 358 76 74

R -  5 ’ GGG TCC TCG ATG TCG AGA A AC TCC 3’ 76

COLLAGEN-I F -  5 ’ CCC CCT CCC CAG CCA CAA AG 3’ 361 68 64

R -  5 ’ TCT TGG TCG GTG GGT GAC TCT 3’ 66

COLLAGEN-III F -  5 ’ GGC TCC TGG TGA GCG AGG AC 3 ’ 530 68 63

R -  5 ’ CCC ATT TGC ACC AGG TTC TCC 3’ 66

GAPDH F -  5’ AAG AAG ATG CGG CTG ACT GTC GAG CCA 

CAT 3 ’

462 92 80

R -  5 ’ TCT CAT GGT TCA CAC CCA TGA CGA ACA 

TG 3 ’

82
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APPENDIX X (a)

Densitometric analysis of PCR products from RT-PCR

MMP-1

MMP-1
787bp

GAPDH
462bp

-ve C +ve C

lOOObp
700bp
500bp

200bp
lOObp

Photograph depicting MMP-1 expression by a representative selection of 4 different 

cell lines from Dupuytren’s tissue or carpal ligament. A 2% agarose gel stained with 

ethidium bromide shows the transcription of MMP-1 (787bp) and GAPDH (462bp). 

A 1 OObp marker is placed to the left of the gel, and in addition a precision mass ruler 

to its immediate right. Note the absence of bands for the negative control, and the 

presence of GAPDH for the positive control. Note also the constant expression of the 

control gene GAPDH in all cases.
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APPENDIX X (b)

Densitometric analysis of PCR products from RT-PCR

MMP-2

lOOObp

700bp 
5 OObp 
200bp 
lOObp

CONTROL CARPAL LIGAMENT 

(0

lOOObp

700bp 
5 OObp

200bp 
lOObp

DUPUYTREN’S NODULE

(ii)
Photograph depicting MMP-2 expression by a representative selection of cell lines 
from Dupuytren’s tissue or carpal ligament. A 2% agarose gel stained with ethidium 
bromide shows the transcription of MMP-2 (605bp) and GAPDH (462bp). A lOObp 
marker is placed to the left of the gel, and in addition a precision mass ruler to its 
immediate right. Note the constant expression of the control gene GAPDH in all 
cases. Note the enhanced band intensity for MMP-2 for Dupuytren’s nodule (ii) in 
comparison to controls (i).

MMP-2
605bp

GAPDH
462bp

MMP-2
605bp

GAPDH
462bp
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APPENDIX X (c)

Densitometric analysis of PCR products from RT-PCR

MMP-9

lOOObp 
700bp 
5 OObp 
200bp 
lOObp

GAPDH
462bp

MMP-9
263bp

Photograph depicting MMP-9 expression by a representative selection of cell lines 
from Dupuytren’s tissue or carpal ligament. A 2% agarose gel stained with ethidium 
bromide shows the transcription of MMP-9 (263bp) and GAPDH (462bp). A lOObp 
marker is placed to the left of the gel, and in addition a precision mass ruler to its 
immediate right. Note the constant expression of the control gene GAPDH in all 
cases. Note the low band intensity for MMP-9 in all cases.
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APPENDIX X (d)

Densitometric analysis of PCR products from RT-PCR

MMP-13

lOOObp 
700bp 
5 OObp

200bp
lOObp

GAPDH
462bp

MMP-13
273bp

Photograph depicting MMP-13 expression by a representative selection of cell lines 
from Dupuytren’s tissue or carpal ligament. A 2%  agarose gel stained with ethidium 
bromide shows the transcription of MMP-13 (273bp) and GAPDH (462bp). A lOObp 
marker is placed to the left of the gel, and in addition a precision mass ruler to its 
immediate right. Note the constant expression of the control gene GAPDH in all 
cases. Note the low band intensity for MMP-13 in all cases.
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APPENDIX X (e)

Densitometric analysis of PCR products from RT-PCR

TIMP-1

lOOObo
700bp
500bD

200bp
lOObp

Photograph depicting TIMP-1 expression by a representative selection of cell lines 
from Dupuytren’s tissue or carpal ligament. A 2%  agarose gel stained with ethidium 
bromide shows the transcription of TIMP-1 (363bp) and GAPDH (462bp). A lOObp 
marker is placed to the left of the gel, and in addition a precision mass ruler to its 
immediate left. Note the constant expression of the control gene GAPDH in all cases.

GAPDH
462bp

TIMP-1
363bp
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APPENDIX X (f)

Densitometric analysis of PCR products from RT-PCR

TIMP-2

lOOObp 
700bp 
5 OObp

200bp
lOObp

GAPDH
462bp

TIMP-2
358bp

Photograph depicting TIMP-2 expression by a representative selection of cell lines 
from Dupuytren’s tissue or carpal ligament. A 2%  agarose gel stained with ethidium 
bromide shows the transcription of TIMP-2 (358bp) and GAPDH (462bp). A lOObp 
marker is placed to the left of the gel.
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APPENDIX X (g)

Densitometric analysis of PCR products from RT-PCR

COLLAGEN I

lOOObo
700bn
500bp

200bo
lOObp

GAPDH
462bp

COLL 1 
361 bp

mmmm
Photograph depicting collagen I gene expression by a representative selection of cell 
lines from Dupuytren’s tissue or carpal ligament. A 2% agarose gel stained with 
ethidium bromide shows the transcription of collagen I (361 bp) and GAPDH (462bp). 
A lOObp marker is placed to the left of the gel, and to the left of that a precision mass 
ruler.
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APPENDIX X (h)

Densitometric analysis of PCR products from RT-PCR

COLLAGEN III

Photograph depicting collagen III gene expression by a representative selection of cell 
lines from Dupuytren’s tissue or carpal ligament. A 2% agarose gel stained with 
ethidium bromide shows the transcription of collagen III (530bp) and GAPDH 
(462bp). A lOObp marker is placed to the left of the gel, and to the right of that a 
precision mass ruler.
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APPENDIX XI

PATIENT QUESTIONNAIRE FOR DUPUYTREN’S DISEASE

1. FEM ALE/M ALE

2. AGE..................................................................................................................................

3. D.O.B.................................................................................................................................

4. UNIT NUMBER.............................................................................................................

5. CELL LINE NUMBER....................................................................................................

6. RIGHT HANDED / LEFT HANDED

7. OCCUPATION...........................................................................................................

8. PREVIOUS INJURY.....................................................................................

9. SMOKING....................................................................................................................

10. ALCOHOL........................................................................................................................

11. DIABETES....................................................................................................................

12. HAND AFFECTED..........................................................................................

13. TIME BEGAN.......................................................................................................

14. TIME CONTRACTURE 1st NOTICED..............................................

15. TIME CONTRACTURE AFFECTED DAILY LIFE........................

CLINICAL EXAMINATION

DIGITS - THUMB INDEX MIDDLE RING LITTLE

SKIN CHANGES PITS THICKENING

CONTRACTURE -  DEGREES FOR MCPJ AND PIPJ
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