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Abstract

Our concept of intelligence is changing. Embodiment has led to the rise of morphologies in Artificial 

Intelligence (AI) research. This thesis focuses on two research questions: 1) How can system morpholo­

gies, well-adapted to changing environments, be designed? 2) How can adaptive behaviour be generated 

through morphology? It is the fundamental argument of this thesis that morphological plasticity (MP), 

the environmentally induced variation in growth or development, can provide a solution to both ques­

tions.

Specifically, this thesis is based around a detailed study of diatom valve morphogenesis. Diatoms, 

a unicellular organism, construct intricate siliceous structures (valves) around themselves which exhibit 

high plasticity to the environment. Diatom valve morphogenesis is a good example of how morphologies 

can be well-adapted to changing environments, an open problem in AI, and how adaptive behaviour 

can be generated through morphological processes alone. Through a constructivist approach this thesis 

contributes to both understanding of MP in natural systems and the design of MP algorithms for artificial 

adaptive systems.

Several original models and frameworks are defined within this thesis: the Nature’s Batik Model of 

basic diatom valve morphogenesis; the Cellanimat, a ‘Dynamic Morphology’ based on the unicell, capa­

ble of MP driven adaptive behaviour through its unique ‘Artificial Cytoskeleton’ model of cytoskeletal 

dynamics; the Environment-Phenotype Map framework; and the Cellanimat Colony Model, which com­

bines all previous models for the investigation of MP mechanisms during diatom colony formation. 

Cellanimat dynamics and optimization are thoroughly investigated and the model is shown to be multi­

functional, evolvable, scalable and reasonably robust.
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Chapter 1

Introduction

Organisms in nature exhibit complex adaptive behaviours that far surpass the ability of current state-of- 

the-art autonomous software and robotics. To understand intelligence and inspire new technology it is 

therefore prudent to closely study and indeed imitate natural systems. This thesis is an interdisciplinary 

exploration of the interplay between design and adaptive behaviour in natural and artificial systems.

The idea that embodiment is fundamental to intelligence (Brooks, 1991a) has hailed a new era in 

AI, in which the body plays an increasingly important role. Morphogenesis, ‘the generation of mor­

phological form’ (e.g. body shape, structure and colour) is fast becoming a key research theme in AI 

(Capcarrere, M. S., Freitas, A. A., Bentley, P. J., Johnson, C. G. and Timmis, J., 2005). Understanding 

morphogenesis could aid the design of efficient devices. Morphogenesis could provide a more scalable 

and robust methodology for the design of well-adapted AI systems and devices (Goodwin, B. C. et al., 

1993; Bentley, 1999a) but research currently is far from delivering all the answers. The open challenge in 

AI is to design systems able to cope within increasingly complex and changeable environments (Wilson, 

1990). System morphologies in AI tend to be grown or optimized for a single environment/task and can­

not adapt to cope with changing environments (Eggenberger, 1997; Hornby, G. and Pollack, J., 2001a; 

Iida, 2005). Adaptive behaviour mechanisms have almost exclusively focused on brain-centric models, 

ignoring exploitation of morphological properties for improved performance (Floreano, D. and Urzelai, 

J., 1999; Harvey, I. et al., 1996). As such this thesis strives for a new direction: adaptive morphological 

designs for systems up to the challenge of changeable environments.

Intelligent systems research has a dual aim to both create artificial intelligent/adaptive systems 

and understand intelligence (Floridi, 1999). This thesis aims to investigate the role of morphologies in 

adaptive behaviour, as related to both these objectives through: 1) the creation of a novel bio-inspired 

computer model and 2) constructivist modelling of biological systems to gain a deeper understanding in 

natural systems.

It is the fundamental argument of this thesis that morphological plasticity (MP) is a key factor in 1) 

generating adaptive behaviour without a brain (‘no brainer’ adaptive behaviour) and 2) the development 

of morphologies well-adapted to changing environments. Morphological Plasticity is the environmen­

tally induced variation in growth or development (Piersma, T. and Drent, J., 2003). Through adaptive 

growth in relation to the environment morphological designs can stay well-adapted, in spite of environ-
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Figure 1.1: The three stages in bio-inspired design of artificial intelligent systems. This thesis fits in at 

the early stages of research development, at the interface of modelling with biology with contributions 

in both directions.

mental changes, and adaptive behaviour can be generated by the re-organisation in form. Understanding 

morphological plasticity could aid the production of systems that can autonomously adapt their design, 

during the system’s ‘lifetime’, to changes in the problem space.

It was of course necessary to limit investigations and set achievable targets. To that end a single 

celled organism the diatom was used as a biological case study throughout. Two other animal cell types 

were also modelled. Single celled organisms were chosen as they exhibit morphological dynamics that 

surpass those of multicellular organisms. Due to its fluid nature, a unicell can rapidly reorganize its 

entire inner structure and outer body shape, transport organelles from one side to the other and even split 

itself in two; all in direct response to environmental changes (Alberts, B. et al., 1994).

Specifically this thesis is based on a detailed study of diatom valve morphogenesis. Diatoms con­

struct beautiful, intricate siliceous structures around themselves improving survivability (Round, F.E. 

and Crawford, R. M. and Mann, D. G., 1990). To this date no consensus has been reached on how 

a single cell performs such a feat. This intriguing example of morphogenesis could illuminate useful 

mechanisms, not just for AI, but also for nanotechnology, due to the nano-level synthesis of silica struc­

tures involved (Gordon, R. and Parkinson, J., 2005). Diatom morphogenesis involves a high level of 

plasticity to the environment (Trobajo, R. et al., 2002). Diatom colonies are a fascinating example of 

morphological plasticity to cope in a fluctuating niche, they play a central role in this investigation.

The grand research scheme: ‘designing bio-inspired artificial adaptive systems for complex envi­

ronments’ can be divided into three stages: 1) biological research; 2) modelling of biology, qualitative or 

quantitative; 3) bio-inspired models applied to non-biological problems. Each stage can produce results 

that feedback into the previous stage, thus enlarging understanding of intelligence in natural systems as 

well as informing artificial intelligent system design. It was not within the scope of this thesis to attempt 

to work at every stage of this process. Fig. 1.1 shows where the work in this thesis fits in, contributing to 

both computing and biology.

Without matching living systems in detail cellular automata and agent based models (see Appendix 

A), favoured models in this thesis, can still show that some set of mechanisms or rules is sufficient to 

generate the phenomenon of interest (Holland, 2003; Hogeweg, 2000). They are more computationally 

efficient than mathematical models and relate more closely to biologists’ conceptualization, breaking 

down the language barrier in interdisciplinary collaboration. Holland (2003) noted that it is not easy
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to build analytic equation based models to describe embryogenesis (developmental process of egg to 

embryo), and even if this were managed, the usual tools for analyzing such systems, such as determina­

tion of fixed points or statistical analysis, offer few insights. This thesis has the following overarching 

hypotheses and objectives:

Primary Hypothesis

A Biologically-based morphological plasticity algorithm, in the absence of a centralized controller, 

can generate adaptive behaviour and a well-adapted morphology in an animat in a changing environment.

Secondary Hypothesis

Morphological plasticity simulation can be used to formulate a biological hypothesis to identify 

key issues for further biological experimentation.

Objectives:

1 Investigate diatom morphogenesis to provide biological inspiration for new artificial systems.

2 Create a novel algorithmic model based on MP.

3 Show the model can generate adaptive behaviour/design in changing environments.

4 Investigate the properties of the model.

5 Use the model as a test bed to formulate a new hypothesis of MP in diatom colony formation.

1.1 Thesis Overview
Chapter 2 contains a review of morphologies in AI, emphasizing the increasing role that the body plays 

in AI research and our concept of ‘intelligence’. It will be argued that morphological plasticity is at 

the cutting edge of AI research. A review of the state of the art in morphologically plastic systems is 

given as well as a history of non-plastic morphogenesis in AI. The term ‘Dynamic Morphology’ will be 

introduced, for systems capable of MP, and a taxonomy of MP in AI presented.

Chapter 3 introduces diatoms, their morphogenesis and plasticity. Starting simply, first the non­

plastic morphogenesis case is considered. The ‘Nature’s Batik Model’, a cellular automata model of 

diatom valve morphogenesis, is presented, so called because it works on the premise that silica is de­

posited around an organically produced template similar to the artistic method of Batik (Schmid, 1980). 

A genetic algorithm was used to evolve valves using a fitness function selecting for functionality rather 

than aesthetic value, showing that the simulated valves were functionally similar to real diatoms. This 

chapter addresses Objective One of the thesis.

The Nature’s Batik Model was however very abstracted and simple. It did not explain how the 

‘organic template’ was formed or controlled. It was only a first step in the quest to understand and 

harness morphological plasticity mechanisms. Most cellular morphological behaviours are executed by
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the cytoskeleton (Alberts, B. et al., 1994). The cytoskeleton is a complex distribution of proteins which 

acts as a transport network, contractile muscle and/or structural support. Due to its non-rigidity it can 

rapidly disassemble and reform in a more advantageous distribution. The organic template in diatom 

morphogenesis is believed to be no exception (Schmid, 1980). Thus in Chapter 4 focus moves to the 

cytoskeleton to understand MP mechanisms.

‘The Cellanimat’, powered by the ‘Artificial Cytoskeleton’ (ArtCyto) mechanism, utilizing cellu­

lar automata and agent swarm techniques based on cytoskeletal dynamics, is also fully introduced and 

described in Chapter 4. The Cellanimat was designed to satisfy Objective Two. Morphology and be­

haviour in the Cellanimat are determined at every time step by direct environmental interaction rather 

than through gene expression. Consequently the Environment-Phenotype Map (E-P Map) framework is 

introduced and defined as the generator of morphology rather than the traditional genotype-phenotype 

map.

Results are given in Chapter 5 of the Cellanimat, with a single E-P Map, performing both chemo­

taxis and phagocytosis due only to a change in the environment, thus tackling Objective Three. It is 

shown that, through morphological plasticity, a single system can generate well-adapted morphology in 

a changing environment and adaptive behaviour through the body alone.

In Chapter 6 seven studies are detailed giving full insights into the Cellanimat model dynamics, 

properties and optimization, addressing thesis Objective Four. Redundancy, robustness, parameter sen­

sitivity and evolvability are examined, and in some cases improvements to the original model functions 

are made. Results are given of a genetic algorithm optimizing the Cellanimat parameters for speed at a 

phagocytosis task.

Objective Five is addressed in the final chapters of the thesis, returning to the diatom morphogenesis 

case study armed with the Cellanimat test-bed environment. In Chapter 7 the context of the problem is 

set, introducing the MP involved in diatom colony formation and fully critiquing current theories on 

the mechanisms involved. This chapter also serves as further fulfilment of Objective One. In Chapter 

8 the Cellanimat Colony Model is presented, as an aid at the hypothesis formulation stage, to further 

understanding of morphological plasticity in natural systems.

The use of simulations for hypothesis formulation in biology works as follows: 1) well-founded, 

proven aspects of the process in question are combined with new ideas to form a complete model; 2) 

the model is simulated and the new aspects refined until the observed behaviour can be generated; 3) 

predictions are made from the model for biological experiments to test the new hypothesized elements; 

4) experiments then validate/counter the hypothesized aspects leading to new information to incorpo­

rate into the model. This simulate-predict-test cycle can be repeated until all aspects of the model are 

considered to be well-founded and understood.

The Cellanimat Colony Model consists of two Cellanimats back-to-back performing ArtCyto-driven 

interactive growth whilst a 3D extension of the Nature’s Batik Model deposits silica. It is shown that 

given a single E-P Mapping both morphologies associated with diatom colonies (and the associated 

adaptive behaviour) can be generated, due only to a change in the environment. The simulation is used
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as a test bed to investigate aspects of the process, by no means fully understood at present, in order to 

stimulate further discussion.

Brooks (1991b) outlined three distinct levels in complete creature design: Micro (relationship be­

tween perception-intemal-action), Macro (how all the micro level systems integrate into a complete 

creature) and Multitude (how lots of creatures interact). Brooks concluded that many, limited in scope, 

theories and methodologies towards complete creature architectures will be developed, but from them 

global unified theories can be developed using the experience. The Cellanimat colony model is an exam­

ple of a system working at all three levels; it shows how local morphological plasticity in a single cell, 

generated by micro level processes, can result in a global gain for a collective system.

In Chapter 9 the advances and limitations of the work presented in this thesis, and the extent to 

which we have achieved the given objectives and proved the hypotheses, are discussed. Several avenues 

for future work are outlined. A basic introduction to generative algorithms commonly used for shape and 

pattern formation, as utilized by models described in this thesis, are given in Appendix A. A Glossary of 

the biological terms used throughout this thesis can be found in Appendix B.

1.2 Publications
The work in this thesis has been published in the following papers:

Bentley, K., Cox, E. J., Bentley, P. J. Nature’s Batik: A Computer Evolution Model of Diatom 

Valve Morphogenesis. Journal o f Nanoscience and Nanotechnology 5(1): 25-34. 2005.

Bentley, K and Clack, C. Morphological Plasticity: Environmentally Driven Morphogenesis. In 

Advances in Artificial Life (Lecture notes in AI series) Proceedings o f the Eighth European Conference 

on Artificial Life (ECAL ’05). Capcarrere, M. et al. (eds). Pp. 118-127. Springer-Verlag. 2005.

Bentley, K and Clack, C. The Artificial Cytoskeleton for Lifetime Adaptation in Morphology. 

In Workshop Proceedings o f the 9th International Conference on the Simulation and Synthesis o f Liv­

ing Systems (AlifelX). Bedau, M., Husbands, P., Hutton, T., Kumar, S., Suzuki, H.(Eds.) Pp 13-16. 2004.

In addition the following papers are in preparation:

Bentley, K and Clack, C. The Cellanimat: dynamics and evolvability in an adaptive system with 

developmental plasticity.

Bentley, K, Cox, E. and Clack, C. A mechanism for diatom colony formation based on an in silico 

simulation study.



Chapter 2

Morphologies and AI: a review

In this chapter the question ‘what does morphogenesis have to do with A I?’ is answered. Starting at 

the beginning, the central concepts and goals of Artificial Intelligence (AI) research are introduced. The 

changing emphasis in AI from abstraction to embodiment, from controllers to morphologies, is dis­

cussed. The changing attitudes, landmark models, and past/present research directions are discussed, 

illustrating the progression of ideas towards the theme of this thesis: morphological plasticity for intelli­

gent/adaptive behaviour in changing environments.

This review naturally arrives at a discussion of the biological concept of morphological plasticity, 

a new taxonomy of MP in AI is presented and the state of the art in situated, dynamic and plastic 

morphologies for the next generation of intelligent systems is discussed. A review of all generative 

design systems, applications and related AI work is however beyond the scope of this chapter. Instead, 

discussion is limited to research directly related to morphologies.

2.1 Intelligence, embodiment and philosophy: the rise of mor­

phologies
AI began in the late 1950s. It is the interdisciplinary quest to understand cognition through computation, 

and ultimately to produce intelligent computer systems comparable in ability to humans (Floridi, 1999). 

As Floridi (1999) discussed, the early ‘good old fashioned AI’ (GOFAI) approach held that intelligence is 

body-independent and mind-independent. So, in principle intelligence was implementable in a computer, 

or more precisely by a “brainless, mindless and lifeless cognitive system enjoying no psychological 

or bodily experience nor any interaction with other similar systems” (Floridi, 1999). Intelligence was 

reduced to the processing of symbolic representations by syntactic rules, performed in isolation from the 

‘real world’ (Fodor, 1975).

Traditionally, mind-independent intelligence is identified with materialist monism, where no dis­

tinction is seen between body and mind, mental events are considered nothing but neural events (Straw­

son, 2000). As Floridi noted, monism implies that intelligence is a direct manifestation of life and cannot 

be separated from the whole physical behaviour, bodily experience and natural interaction of a living or­

ganism with its environment (Floridi, 1999). GOFAI however, ignored this implication by claiming 

intelligence was also body-independent. Cognition was left completely abstract, severed from life, body
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and environment and consequently AI systems remained far from achieving human-level performance.

‘Nouvelle AI’, pioneered by Brooks in the late 80’s pulled AI back towards monism. (Brooks, 

1991a) showed that intelligent behaviour could ‘emerge’ from lower level interactive behaviours of a 

system with its environment, such as movement and collision-avoidance. With Brooks’ system there was 

no longer a need for complicated internal representations of the environment, as required by abstracted 

GOFAI models. With a body the system could simply exploit the real environment for information 

directly. High-level intelligent behaviour was shown to be achievable more simply in this manner, by the 

addition of lower level environment-system interactions rather than the design of a massively complex 

self-contained system. The aims of Nouvelle AI were considerably more modest however: to attain 

computational intelligence at the level of insects rather than human beings.

Intelligence was deemed inseparable from life and the bodily experience. Suddenly the body was 

centre stage in AI: intelligence requires embodiment (Varela, F. J. et al., 1993). Nouvelle AI, with its 

more monistic, matter-centred approach, began to have more in common with biology. Molecular biol­

ogists traditionally see no distinction between form (organisation) and matter (Emmeche, 1992). Phys­

ically instantiated systems in the ‘real world’ could potentially deliver next-level intelligent behaviour. 

Consideration now had to be given to materials and the morphological design of the system; bodies 

needed to be carefully constructed to maximize performance; the matter mattered.

Embodiment did not, however, necessarily imply that the abstract, functionalist approach to AI 

was dead. Functionalism is the philosophical doctrine that supposes psychological properties, such 

as intelligence, are multiply realisable (Emmeche, 1992). Although an object is a physical thing, the 

property of being that object is non-physical and can as such be realized in many different ways. So, 

embodiment itself could potentially be realized in abstraction from matter if the organization of the 

abstracted system and its environment satisfied requirements such that it was functionally similar to a 

physically embodied system (Quick, T. et al., 1999).

Functionalistic embodiment required a clear definition of embodiment, in terms of the organization 

of material with its environment, rather than the material or physics itself. Autopoiesis, introduced by 

Maturana, H. and Varela, F. J. (1980) holds still as the most reasonable definition of the organisation of 

life within an environment and forms the basis of most ideas of embodiment. “An autopoietic system 

is organised (defined as unity) as a network of processes of production (synthesis and destruction) of 

components such that these components: 1) continuously regenerate and realize the network that pro­

duces them and 2) constitute the system as a distinguishable unity in the domain in which they exist.” 

Autopoiesis is achieved through structural coupling with the environment, where the organization of the 

system can be altered by the environment and vice versa.

Quick, T. et al. (1999) provided a clear functionalistic definition of embodiment, which could be 

used to generate non-physical instantiations of nevertheless embodied intelligent systems. It is based 

on environment-system coupling and goes as follows: A system X is embodied in an environment E if 

perturbatory channels exist between the two. That is if  for every time t at which both X  and E exist, some 

subset o fE ’s possible states have the capacity to perturb X ’s state, and some subset o f X ’s possible states
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have the capacity to perturb E ’s state.

So Cognition, in Nouvelle AI, is seen as the product of changeable systems structurally coupled 

with their environment: embodied dynamical systems. Embodied cognition as an approach moved the 

modelling of intelligent systems from a representation-rich study of control systems as the originator 

of behaviour to the study of coupling dynamics between system and its environment (Almeida e Costa,

F. and Rocha, L. M., 2005; Beer, 2000). The dynamical systems approach to cognition was introduced 

as a real alternative to the computational approach (Van Gelder, 1998). As such, high-level artificial 

intelligence is deemed possible, instantiated in abstract by computational systems or physically in the 

real world, provided that the system’s organization is coupled with its environment.

The blurring of cognition and life, of adaptive behaviour and intelligent behaviour, led AI research 

away from purely human-brain based models. Focus moved to the adaptive behaviour of embodied 

agents in specific environments, based on a plethora of natural living systems from single cells to hu­

mans. The conventional approach to understanding intelligence through embodied agents is the animat 

approach (Wilson, 1990; Guillot, A. and Meyer, J-A., 2001). As Pfeifer summarized: “The animat ap­

proach is by definition synthetic. The underlying slogan is understanding by building... The way we 

build our animats is a manifestation of our views of intelligence” (Pfeifer, 1996). Animats are comprised 

of the basic components: sensors, controller and effectors. They exist within, and interact with, a given 

environment to generate adaptive behaviour/intelligence. Generally, the ‘morphology’ of an animat is 

comprised only of the sensors and effectors, the controller, or processor, is abstracted, seen to control the 

morphology from somewhere within the body casing. See Fig.2.1.

The Animat approach was well suited to facilitate embodied intelligence studies through simulation 

and real-world robotics. Controller design and optimization, for a given morphology (usually a Kephera 

robot in evolutionary robotics studies (Mondada, F. et al., 1993)), dominated the field for many years, 

and is still a strong area of AI today, e.g. (Harvey, I. et al., 1996; Nolfi, S. et al., 1994). It soon 

became clear however, that optimization of the morphology itself, of the sensor and motor distributions 

and overall shape, weight and size could also improve performance. Naturally, Nouvelle AI arrived at 

morphological research, optimising the body, for the improvement of the system-environment coupling 

and thus of intelligent behaviour.

Env j System

ProcessorSensors

Figure 2.1: Schematic of the traditional animat design with morphological components shown in grey.
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2.2 In the beginning: direct encoded morphologies
“The observation can be made, however, that evolution of a creatures controlling brain 

is just one part of the problem of artificial evolution of life — a creature that adapts to an 

environment needs an adequate body to inhabit.” (Funes and Pollack, 1998)

The hand design of optimal animat morphologies, physical or simulated, is a hard task. Evolution­

ary algorithms had been used to find optimal solutions to many other types of problem (Ogarty, 1994; 

Bentley, 1999a), so it was a natural first step to use them to generate optimized system morphologies. 

Design automation and optimization is a field in its own right with many applications, such as furniture 

design, artificial art and architecture, though discussion here is limited to animat based models (Bentley, 

1999b, 2002; Coates, P. and Carranza, P. M., 2000; Bentley and Come, 2002).

There are many different ways to represent a shape, e.g. with lines of different lengths and curvature, 

as a collection of smaller units or with equations. The simplest way to encode a shape as a string of 

numbers in a genotype is with a direct encoding. In a direct encoding each gene relates directly to an 

aspect of the shape, the morphology. The values could correspond to elements of the shape (where the 

genotype is the phenotype) as implemented by Chapman, C. D. et al. (1993) and shown in Fig.2.2. Or 

the genes could be parameters determining positions and sizes of the shape.

C hromosome:

1111100100001000010011111

Figure 2.2: Direct genotypic encoding of shape, reproduced from (Chapman, C. D. et al., 1993) with 

permission.

The inspired Golem project (Lipson, H. and Pollack, J., 2000) used direct encoding to generate the 

brain and body of robots that were subsequently printed out using a 3D printer (rapid prototyping), see 

Fig.2.3. Morphologies, and controllers, were evolved to optimize a given task: locomotion ability on an 

infinite plane. The genotype was a string of values representing packets of direct information as below. 

Where, bars connected vertices with a given length and stiffness, neurons had associated thresholds and 

coefficients of connections, and actuators could move a specified bar according to the output of a given 

neuron within a certain range.

{vertices) {bars) {neurons) {actuators). (2.1)

This was by no means the first instance of neural network evolution, nor of structure evolution, 

but it was one of the first and clearest examples of the evolution of both morphology and controller in 

simulation with successful, and mostly automated transfer to the real world. The generation of complete 

creatures as discussed by Brooks (1991b) has fast become a major stream of Nouvelle AI research. The
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Figure 2.3: Evolved morphology and controller as part of the Golem Project, left shows the printed out 

robot, right shows it in simulation. Reproduced from (Lipson, H. and Pollack, J., 2000) with permission.

recognition of bodily and environmental importance in intelligence meant that a cognitive system had to 

have all bodily aspects considered in the design process, not just features of abstracted networks. The 

golem project followed the view that embodiment requires a physically instantiated body in the real 

world - the simulated creatures were only a means to an end.

Though the design stage of the project was automated, it should be noted that the actual building of 

the golem robots still had to be finished by hand. Actuators and circuitry had to be implanted within the 

printed out structure as technology for this was not yet in place. However, this work showed in principle 

that embodied intelligent systems could be designed and generated by non-human means; through the 

evolutionary algorithm, design could be optimized for a given task and environment in ways that may 

not have occurred or been comprehendible to a human or been possible to manufacture by conventional 

methods (Lipson, H. and Pollack, J., 2000).

2.3 Importance of development: indirect encodings

The direct encoding approach was limited. It did not scale-up, with more complex morphologies the 

genotypic complexity also increased, resulting in combinatorial explosion for highly complex pheno­

types (Roggen, D. and Federici, 2004). The bio-inspired approach of indirect encodings followed, ad­

dressing the scalability issues in morphological design.

In nature, highly complex phenotypes are produced by comparably small genotypes through the 

process of development. In nature, genes do not specify morphological features directly, but rather, 

through genetic regulation, they determine protein synthesis regimes which then generate a hierarchy of 

structural organisations. Protein-protein interactions produce higher-level structures within and between 

cells. Cells, within multicellular organisms, display a further level of morphological organization, as 

they adhere, move, divide and die. Thus the morphology of a creature can only be indirectly attributed 

to the genotype: the intermediate processes in the organisational hierarchy are essential to the resultant 

morphological complexity. Development increases the phenotypic complexity possible from small gene 

strings, by reuse of genes and hierarchical self-organization of produced components.

2.3.1 Developmental Algorithms and Computational Embryology

Developmental algorithms indirectly map genotype to phenotype. Although development, as a term, can 

refer to the growth of a morphological feature at any point in the life-cycle, most developmental algo­
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rithms are in fact embryogenies, modelling early development only (Kumar, 2004). An Embryogeny is 

defined in (Bentley and Kumar, 1999) as having the following two properties: 1) an indirect correspon­

dence between alleles and phenotypic effects and 2) polygeny, where multiple genes act in combination. 

Bentley and Kumar (1999) defined three types of computational embryogeny, as follows:

•  External: hand-designed and not evolved.

•  Explicit: Evolved but every step of the growth process is explicitly specified by the user.

•  Implicit: Evolved, growth process generated by interaction of low-level components.

Most developmental algorithms to date are explicit embryogenies (Bentley and Kumar, 1999). The 

main problem with explicitly defined algorithms is that once again human design of a complex system 

is required. Instead of the morphology, now the growth process must be defined, but the same problems 

exist: the more complex the required morphology is, the more difficult the task of designing the devel­

opmental algorithm becomes (Kumar, 2004). The aim of this thesis is to explore a more implicit method 

of growth, utilizing low-level rules based on real biological systems, to generate growth without human 

design bias or limitations.

2.3.2 Virtual creatures
A number of full reviews of work in this particular area, using evolution and developmental algorithms 

to optimize simulated/real robot morphologies and controllers have already been made (Taylor, T. and 

Massey, C., 2001; Pfeifer, 2004; Lungarella, M. et al., 2004) so discussion here is limited to a selection 

of classic examples.

Karl Sims’s Virtual Creatures (Sims, 1994a,b) are the classic example of an evolved, explicit em­

bryogeny for the development of brain and body in physically simulated animats. Directed graphs were 

used as the genetic representation, giving instructions for the iterative building process of body and brain. 

This type of representation allowed reuse of instructions to generate recursive structural components, 

similar to L-systems (see Appendix A.2 for an introduction to L-systems).

The morphologies were composed of articulated 3D rigid parts connected together with joints of 

various types. A body part could contain a contact sensor, joint angle sensor or photosensor. Internal 

neurons, not associated with any part of the body were evolved to perform certain functions on the 

sensor inputs and return values to the effectors. The effectors then exerted a force, on the associated 

joint, moving the body.

Creatures were evolved for a single task, either walking, jumping or swimming within a physically 

simulated world with aspects such as articulated body dynamics, collision detection/response and fric­

tion. Some of Sims’s evolved creatures can be seen in Fig.2.4. The diagram in Fig.2.5 is taken from the 

same paper and highlights the inbuilt division in many developmental models between the body, physi­

cally instantiated in the world, and the brain, abstracted from the body but fundamentally orchestrating 

the intelligent behaviour.

Sims’s creatures, as noted by Funes (2001), behaved according some physical laws but lacked 

other reality constraints. E.g. blocks overlapped and movements were not motor generated. Funes’s



2.3. Importance o f development: indirect encodings 25

Figure 2.4: Evolved morphology of Karl Sims Virtual Creatures for walking, reproduced from (Sims, 

1994a) with permission.

Control system Physical simulation

Effectors

Body 

3D World

Brain

Sensors

Figure 2.5: The relationship between brain, body and world in Sims work, indicating the division be­

tween brain (abstract) and body (physical), reproduced from (Sims, 1994a) with permission.

work represented the first attempt at reality constrained evolution of brick based structures using indirect 

encoding. The morphologies were simulated then built in the real world, for such tasks as bridging 

gaps and holding external loads. Funes and Pollack (1998) presented their morphologies as ‘adaptive 

physical designs for robots’. However, adaptation in form only occurred across evolutionary timescales, 

the morphology remained static in design over the ‘lifetime’ of the system, and was more architectural in 

function rather than animat/robot based. However, principles in crossing the ‘reality gap’ in morphology 

design, useful to robotics, were discussed.

Hornby and Pollack’s work using L-systems as the generative encoding for evolved morphologies 

for locomotion tasks (Hornby, G. and Pollack, J., 2001b) and later co-evolved brains and bodies (Hornby,

G. S. and Pollack, J. B., 2001) showed the power of indirect encodings with recursive elements. L- 

systems were used to encode for the different joints and positionings within the creatures morphology. 

The structures were evolved for motility across given surfaces in simulation. The grammatical, develop­

mental encoding meant that the creatures obtained a far more natural look and a great many more parts 

than in previous research (Hornby, G. and Pollack, J., 2001b).

The Hornby and Pollack model once again followed a ‘grow then test’ methodology where growth 

occurred before the creatures entered the environment and the morphological design remained set for 

the rest of its ‘lifetime’. The same is true for many of the other landmark models in developmental 

algorithms research, e.g. Dalleart and Beer’s multicellular based model of morphogenesis involving cell 

division (Dellaert, F. and Beer, R., 1996, 1994) and Bongard’s memorable sphere-based creatures for
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block-pushing tasks (Bongard, 2001, 2003). Computational Development (Kumar, 2004) is an umbrella 

term that subsumes what was previously known as Computational Embryology. This distinction was 

made to avoid implications that the field only researches early development without environmental input. 

Development is an ongoing process spanning the entire lifetime of an organism. Lifetime adaptation in 

form is therefore one of the key aims of Computational Development, yet it has not been realized by 

current models.

2.3.3 The POE model

Sipper, M. et al. (1997) defined the POE model in order to partition work in bio-inspired hardware. POE 

stands for the three axes: Phylogeny, Ontogeny and Epigenesis. They define Phylogeny as the evolution 

of speciation, Ontogeny as the developmental process of a multicellular organism and Epigenesis as the 

combination of the system with its environment, resulting in learning and plasticity.

Epigenesis allows the small scale genotype, together with ontogeny, to define the large-scale com­

plex phenotypes exhibited in nature. Epigenesis is the modification of systems within the organism 

(innately specified), through lifetime interactions with the environment (acquired specification of the 

system) (Sipper, M. et al., 1997).

This model betrays the non-plastic stance of the developmental algorithms movement. Ontogenies 

are used to grow more complex morphologies from small genotypes, without environmental input, and 

epigenesis is not often implemented as far as morphologies are concerned. But, in reality all develop­

mental processes are plastic to some degree: as will be discussed in Section 2.6, the stages of ontogeny 

and epigenesis are far more blurred. Environmental interaction for example, cannot correctly be defined 

as occurring only after the formation of the individual. Throughout this thesis it will be shown that 

environmental interaction occurs at many stages of development and life to the adaptive benefit of the 

system.

Neural networks are the main example of models that do use epigenesis as defined here - learning 

reshapes the network structure, weights and connections e.g. (Floreano, D. and Urzelai, J., 1999). But, 

generally this stage is not modelled in terms of the morphology itself, i.e. in an ‘embodied robot’ only 

the neural network controller adapts to the environment, not the morphological ‘casing’.

2.3.4 Advances and Limitations

Hornby, G. and Pollack, J. (2001b) performed a comparison between direct and indirect encodings. 

They showed that increased morphological complexity can be generated with indirect encodings. In 

this study evolution with a developmental algorithm (L-system) outperformed evolution with a direct 

encoding at an automated design problem. Indirect encodings have also been shown to be superior in 

terms of genotype size and convergence, precision and efficiency (Eggenberger-Hotz, 2004). They are 

more scalable and evolvable due to the reduction in dimensionality of the search space. The following 

list is a summary of the advantages of indirect encodings as laid out by Bentley (1999a):

• Reduction of search space - smaller gene sets

• Increased repetition in structures
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•  More complex forms

• Adaptation - fault tolerance

The benefits of developmental algorithms reach further than simply improving on morphology op­

timization methods. Development as a process has many interesting properties, in addition to scalability 

and evolvability, it has been shown to improve the robustness of designs through adaptability and self­

repair (Miller, 2003; Ozturkeri, C. and Capcarrere, M. S., 2005). As Miller (2003) discussed, robustness 

is a big problem in the human design of hardware and circuitry. As technology becomes more complex 

it can become more costly in maintenance due to bad human design. Natural design processes, such 

as development, have in-built fault tolerance mechanisms which can and should be harnessed. Indeed 

the intrinsic robustness of morphogenesis mechanisms has been the subject of discussion for some time 

(Goodwin, B. C. et al., 1993).

The major limitation of developmental algorithms when applied specifically to animat morpholo­

gies, as exposed by the POE model, is the lack of lifetime development of morphologies where plasticity 

to the environment is possible. This can of course be justified by the short time span that the field has 

been in existence. Allowing developmental processes to continue throughout a creature’s lifetime could 

increase performance and robustness, by allowing it to actually exploit the identified properties of self­

repair and adaptation. Plasticity in morphology through situated lifetime development is seen to increase 

survivability in nature, as will be discussed in Section 2.6, and could be the next step towards animats 

capable of coping in more complex environments.

Research in developmental systems has remained, on the whole, controller-centric, or at least 

controller-dependent, following the original animat plan to the last where sensor and effectors, em­

bedded within the morphology are controlled by an abstract ‘brain’ like network. The ‘intelligence’ of 

the system is seen to emanate from the controller and the morphology is seen more as a ‘facilitator of 

cognitive powered adaptive behaviour’ than as its producer (Paul, 2004). But the balance of roles for 

brain and body is shifting.

2.4 Shift in control: cheap design
“Now there is a trivial meaning of embodiment, namely that “intelligence requires a 

body”. In this sense, anyone using robots for his or her research is doing work on embodi­

ment... However, there is a non-trivial meaning of embodiment, namely that there is a tight 

interplay between the physical and the information theoretic aspects of an agent...By infor­

mation theoretic implications of embodiment we mean the effect of morphology, materials, 

and environment on neural processing, or better, the interplay of all these aspects.” (Pfeifer,

R. and Ilda, E, 2005)

In recent years the emphasis has started to shift away from controller-centric models in the favour 

of morphologies. Investigations focus more on the physical properties and dynamics of bodies coupled 

with the environment than on controllers coupled to the environment. Iida (2005) noted that this shift 

comes with a change in aims in robotics: from precise and separable modelling of body, environment
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Figure 2.6: Schematic of a Braitenberg vehicle, the light sensors were connected directly to the opposite 

wheel motor. If the right sensor triggered the left wheel moved, leading the robot towards the light 

source.

and control architectures for reliable behaviour in static environments to adaptive, dynamical systems 

able to cope with changing environments.

It is clear from some of the models discussed in the previous section e.g. (Sims, 1994a; Hornby, G. 

and Pollack, J., 2001b; Bongard, 2001) that the evolved morphology may actually be doing some of the 

work, be responsible for whole or part of the intelligent behaviour (Pfeifer, 2000). This is the notion of 

cheap design (Paul, 2004; Iida, 2005) that well-adapted bodily design reduces the complexity and energy 

needed for control and power: controller complexity and the well-adaptedness of the morphology are 

inversely proportional. For further discussion of the controller-morphology tradeoff see (Pfeifer, R. and 

Scheier, C., 1999).

Taken to its logical conclusion: a morphology could be so well adapted that a controller is no 

longer required. In nature, many creatures survive without nervous systems, such as single cells. A 

seminal example of ‘no brainer’ cheap design, from the early days of Nouvelle Al, are Braitenberg 

vehicles (Braitenberg, 1984). Braitenberg vehicles had a morphology so well adapted to the task in hand 

(phototaxis) that they required no controller, see Fig.2.6. Indeed, cheap design was implied much earlier 

by Brooks (1991c), where he showed that embodiment would enable the use of simplified controllers 

requiring little or no representations.

2.4.1 Passive Dynamic Walker

Through studies in robot motion ideas of cheap design emerged, where motion could be generated 

through the exploitation of physics alone. The passive dynamic walker is the classic example of cheap 

design, as shown in Fig.2.7, a passive dynamic walker, in its simplest form, is comprised of bars con­

nected with knee joints, different weights are strategically attached which cause the structure to ‘walk’ 

when placed on a slope. It exploited the environmental physics and gradient, together with the body de­

sign to accomplish the seemingly complex task of human-like walking without the need for a controller.

The environmental dependence of the passive dynamic walker, the need for a slope, was overcome 

by the addition of a neural network controller which powered motion along flat surfaces (Endo, I. et al., 

2002). Passive dynamic walkers are energy efficient and simple. As they are bio-inspired they are ca­

pable of producing very life-like behaviour and are potentially more adaptable to unpredictable terrain
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Figure 2.7: Schematic of the passive dynamic walking exploiting physics to generate realistic walking 

motion. Reproduced from (Vaughan, E. et al., 2004) with permission.

and changing environments. (Vaughan, E. et al., 2004) showed that gait changes, controlled by a Cen­

tral Pattern Generator (CPG) regulated by sensor information, as in humans, could allow the walker to 

continue as terrain and gradients changed.

Though controllers were added to increase the potential of passive dynamic walkers control systems 

alone, without the crucial body design, could not have produced such realistic and efficient movement.

2.4.2 Morphological Computation and the XOR robot

Going beyond the idea that an embodied cognitive system can be decomposed into two distinct functional 

parts, where the controller performs computation and the body is physical, implies that the body can also 

be computational. This is the idea of morphological computation as introduced by Paul (2004).

Paul in (Paul, 2004) describes the XOR robot, it is a clear example of a morphology capable of 

computation, beyond the capabilities of its controller. Briefly, the XOR robot has one wheel and two 

motors. Motor A spins the wheel and motor B lifts the wheel off the ground. The robot controller is 

a perceptron network which classically cannot solve the non-linearly separable XOR problem. The OR 

output of the perceptron is linked to Motor A (output 1 causes it to lift) and the AND output is linked to 

motor B (output 1 causes it to spin). This means that if the two inputs to the perceptron are (0,0) then 

the wheel will not lift nor spin.

All possible inputs, outputs and robot motions are shown in Table 2.1. Through the combination 

of AND and OR outputs instantiated in the actual morphology, rather than in an extra layer of neural 

network nodes (as usually required to solve the XOR problem), the robot gave stationary or motile 

responses to the inputs in the correct order, solving the XOR problem.

The Fernando, C. and Sojakka, S. (2003) ‘brain in a bucket’ was a similar illustration of how material 

properties can generate the equivalent of a hidden layer in the perceptron, allowing it to solve the XOR 

problem. The bucket held water, again two motors representing the outputs of logical operations were 

used. The motors rippled the water and the four possible resulting interference pattern gave the solution 

of the XOR problem.
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Input 1 Input 2 OR Motor A AND Motor B XOR Robot

0 0 0 still 0 Ground 0 Stationary

0 1 1 spin 0 Ground 1 Motile

1 0 1 spin 0 Ground 1 Motile

1 1 1 spin 1 Lift 0 Stationary

Table 2.1: Summary of activity in Paul (2004) XOR robot.

2.4.3 Limitations

One major criticism frequently levelled at cheap design (Iida, 2005; Paul, 2004), is that it is environment- 

dependent. The argument runs: if the system exploits the environment to function then it is dependent 

on that environment and as such cannot cope with environmental changes and is not an adaptive system. 

This is indeed true for some cheap design systems, such as the basic passive dynamic walker, without 

the slope it would have no motion. However it was shown by Vaughan, E. et al. (2004) that cheap design 

combined with control can generate motion in changing gradients. The counter-argument put forward 

by Iida (2005) highlights the importance of cheap design to adaptive systems research in terms of cost, 

simplicity and for improving active exploration of environments by the incorporation of sensorimotor 

coordination.

The approach of designing task-specific systems through evolution in a single environment will 

inevitably incur problems if the environment changes. This is not a problem limited to cheap design. 

Indeed the method of designing/evolving a morphology that is structurally static throughout evaluation,

i.e. cannot grow or change in response to the environment may inhibit adaptation to changing environ­

ments more than the cheap design principle itself, as with the grow then test methodology adopted by 

developmental algorithm studies.

Development is not often used in the design process for cheap design systems. They tend to be 

hand designed, requiring detailed engineering knowledge and/or physical robot building. Again, scal­

ability becomes an issue and developmental encodings may need to be used in combination with the 

cheap design approach. One route to growing cheap design systems could be by evolving developmental 

algorithms to achieve a set task, in different environmental settings, whilst minimizing a cost function, 

ensuring efficiency and exploitation of the environment.

The dependence on environment of cheap design systems could be turned around to be an ad­

vantage. Dependence on the environment means that environmental information is in some way being 

passed to the morphological system and could be used to inform reorganizations of the morphology such 

that the system maintains performance in the face of changes. E.g. if the passive dynamic walker had 

morphological plasticity it could alter the weights on its legs in response to environmental input such 

that it could cope with different slope gradients, further reducing the controller’s role.

With an ability to adapt morphology over a lifetime could come a reduction in the role for con­

ventional, abstracted controllers altogether. Fully embodied agents may become the norm, where the 

‘controller’, similar to a neural network only in function, is actually part of the morphology. Just as it is
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accepted that morphology can compute, it also must be accepted that controllers can be physical.

2.5 Morphological Plasticity: future direction for Al?
“A research methodology is proposed for understanding intelligence through simulation 

of artificial animals (“animats”) in progressively more challenging environments.” (Wilson,

1990)

This thesis is concerned with the design of agents able to survive in complex and changing envi­

ronments, in line with the overall aim of animat research as stated in the above quotation. Interest lies 

in the potential of morphological solutions for the improved adaptability of animats. Focus is centered 

on the generation of efficient well-adapted morphologies, in natural and artificial systems, rather than on 

increased controller complexity. In particular mechanisms for lifetime adaptation in morphology, rather 

than controller plasticity, for increased performance in changing environments.

There are two logical options for designing a morphology well-adapted to a changing or complex 

environment, which contains many factors that the animat must cope with. Either:

1. it can have a multi-functional morphology, i.e. its form has duality and is well-adapted to many 

different tasks. Or, more likely, it is comprised of appendages for each possible task, rather like a 

Swiss Army knife.

2. It can change between different forms as new environmental challenges present themselves, it 

needn’t have an appendage for every eventuality, it can be changed, rather like building many 

different forms with lego bricks.

In Nature, examples of both types of morphology are seen. Organisms grow and change shape, 

some, as will be explored in this thesis, adapt their shape to extraordinary degrees. More permanent 

areas of morphologies are also seen, which are seemingly reserved for single functions, such as bacterial 

flagellum for swimming. If a large amount of the organism’s time is to be spent on a particular task, evo­

lutionary arguments can be conceived for the development of specific functional areas of morphology. If 

however, a task is less often performed, but still of importance, it could be argued that the development 

of a more universal on-the-spot growth mechanism would be more energy efficient. The functional mor­

phological area could be grown or altered on-demand saving energy in the maintenance of a permanent 

feature. As the environment an animat inhabits becomes more complex it becomes infeasible to con­

stantly maintain an appendage or design to cope with all eventualities, indeed different environmental 

factors or tasks may require morphological designs which are mutually exclusive.

Many physiological studies have investigated morphological plasticity, the changeability of form 

in relation to environmental factors, however evolutionary biology has tended to focus on developmen­

tal plasticity and not lifetime morphological dynamics (Piersma, T. and Drent, J., 2003). Reversible 

transformations in physiology and morphology over short time spans can incur selective advantages, 

they are adaptive responses that increase survival; thus they are now considered an important topic for 

evolutionary biologists (Piersma, T. and Drent, J., 2003); this trend should continue into Nouvelle Al 

research.
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A  wide variety of protozoa, plants and animal cells respond to mechanical and chemical signals 

in the environment with rapid morphological changes, for example: grazers induce defensive colony 

formation in freshwater green algae (Liirling, M. and Van Donk, E., 1999). Plants use phytochrome 

pigments to sense the red: far-red radiation ratio in the environment, they then modify their growth and 

morphology accordingly in a shade avoidance technique (Meyers, L. A. and Bull, J. J., 2002). The 

magnitude of body size decrease of the marine iguanas on the rocky shores of the Galapagos islands, 

when algal stocks are low, has been shown to be positively correlated with the likelihood of survival, 

due to lower maintenance costs; similarly sea cucumbers and several bird species such as the Japanese 

quail have been shown to have reversible size changes of the gut with food availability and diet change 

(Piersma, T. and Drent, J., 2003). A flexible morphology permits organisms to survive in fluctuating 

niches. Indeed, genotypes which incorporate lifetime morphological plasticity to the environment have 

been shown to potentiate rapid evolutionary adaptation, accounting for genetic assimilation (Behera, N. 

and Nanjundiah, V., 2004).

2.5.1 Dynamic Morphologies: a definition

The idea of an on-the-spot adaptive growth mechanism could illuminate new adaptive and indeed 

intelligent properties in artificial agents for the next-level of complex, changing environments. The 

mechanisms behind such morphological plasticity in nature could give insights into how a fully embod­

ied adaptive agent, not limited by environment-dependence, could be realized. For such morphological 

plasticity an animat would have to have a Dynamic Morphology. A more formal definition of a Dynamic 

Morphology follows:

Definition: Dynamic Morphology (DM) A morphology that is capable of change (by which is 

meant specifically altering sub-component connectivity) in active response to the environment.

In a DM system, genetic information relating to morphology continually combines with the wealth 

of information in the environment. So with increased MP, genotypes become more scalable, morpholo­

gies are kept relevant to current environmental conditions, and adaptive behaviour can be morphological, 

not solely controller-based. The stipulation is made that response must be active which means internal 

components must be stimulated to cause the resulting morphological change by a force from within the 

animat, as opposed to morphological change caused by a force from the environment alone, which would 

be classed as a passive response. For example, hitting a robot with an axe and splitting it in two would 

be a passive morphological change, the robot did not actively cause the change from within. Whereas, 

cell division, for example, can be stimulated by local environmental gradients of growth factors, but the 

ultimate force for division is generated from within the cell by activity in the cytoskeleton Alberts, B. 

et al. (1994).

Returning to Quick’s functional definition of embodiment, Section 2.1, only a DM, with the capac­

ity to affect its environment, is a true example of an ‘embodied morphology’ (EM), where morphological 

structure is coupled to the environment. Static morphologies, even with controller coupling to the en-



2.5. Morphological Plasticity: future direction for Al? 33

Light source

Figure 2.8: Schematic of Kawai’s linear cluster robot MfM ‘changing its shape’ in performing phototaxis 

and ‘baggage carrying’. Reproduced from (Hara, F. and Pfeifer, R., 2000).

vironment, do not themselves satisfy the criteria for embodiment, they are neither DMs or EMs. DMs 

exploit environmental dependence to generate adaptive behaviour.

2.5.2 Morpho-functional Machines and connectivity

There are as yet very few examples of true DMs in Al. Morpho-functional machines (MFM) are ani­

mats, often robots, where intelligent behaviour emerges from a balanced interplay between morphology, 

materials and control (Pfeifer, 2003). More generally they are machines that can change their morphol­

ogy while performing a task. Though similar in premise to Dynamic Morphologies there is a crucial 

difference: the perspective from which the morphological ‘change’ has occurred.

To qualify as an MFM a system is not required to alter the fundamental organisation of compo­

nents, but only to appear changed. For example, the linear-cluster robot ‘morpho-functional machine’ 

presented by Kawai, N. and Hara, F. (1998), see Fig.2.8, classes as a static morphology rather than a 

DM. Though its ‘straight form’ and ‘clustered form’ are different to the external observer, they are nev­

ertheless structurally isomorphic: the connectivity of subcomponents cannot change. Similarly, snake 

movement through grass is not an example of morphological plasticity, even though different body posi­

tions are observed as it moves.

This is an important difference between morpho-functional machines and Dynamic Morphologies. 

Logically, morphological plasticity requires that sub-component connectivity change in relation to the 

environment, that structural changes can occur. Otherwise, if no change could occur in a morphology 

at the fundamental level, then environment induced variation in growth or development would not be 

possible, indeed no growth and development would be possible at all. Only DM class animats satisfy 

this criteria, therefore only DMs are capable of morphological plasticity by definition. Of course a DM 

can be called a morpho-functional machine, but not necessarily vice versa. Therefore also, MFMs are 

not examples of EMs only of embodied controllers.

In MFMs, the extent of a morphology’s adaptability is measured in the degrees of freedom of its 

actuator joints, which permanently connect the subcomponents in some arrangement. With more degrees 

of freedom comes a greater potential for morphological adaptation (Hara, F. and Pfeifer, R., 2000). 

Through morphological plasticity mechanisms comes the potential for even greater adaptability, beyond 

the dictation of actuator joints in a static design. Continuous growth and development could pave the 

way for emergent morphological features, open-ended design beyond the initial designer’s configuration:
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autonomous, adapted novelty in form.

2.5.3 Self-assembly, Collective and Modular Robotics

There are examples in collective and modular robotics of systems that do allow the alteration of sub­

component connectivity. However, re-organisation does not always occurs in direct response to the 

environment, rather it can be controller dependent (Murata, S. et al., 2000; Chirikjian, G. S., 1994). 

Modular robotics is an interesting example of Nouvelle Al which offers a more dynamic approach to 

morphology determination.

Yim (1997) presented a self-assembling robotic system capable of approximating arbitrary 3D 

shapes utilizing the Rhombic Dodecahedron Shaped primitives. The basic idea of modular robotics 

is to have a collection of robotic modules which act together to perform a given task. There are various 

applications: locomotion over a variety of terrains for delivery, inspection or exploration and dynam­

ically forming structures like bridges, walls and chairs (Yim, 1997). In Yim’s work the modules are 

all of one type and made to fit together with minimal gaps. Structural change is achieved by modules 

maneuvering around one another. Each of their components contains a mechanism for transfer of power 

between adjacent modules, defining a robot whole to be all the modules in one connected component.

Penrose (1959) investigated the exploitation of form, without the need for complicated control 

systems and sensors, in his work on self-replicating chains. Penrose decided to avoid the encumbrance 

of prefabricated units such as photoelectric cells and wheels. His idea was to build simple units or bricks 

with properties such that a self-reproducing machine could be built out of them. They were cleverly 

made blocks of plywood each about 4ins long and a quarter inch thick standing end to end along the long 

side of a shallow rectangular box. When shaken the pieces moved in one dimension knocking into each. 

They would connect if a seed structure, of two connected units, was present. It was an example of a DM 

polymerising machine.

O’Grady, R. et al. (2005) presented a collective robotics system which utilized blue and red LED 

communication for navigation through rough terrain. The robots attempted phototaxis as individuals but 

if the terrain became too rough they grouped together through LED based communication. Through this 

functional self-assembly they achieved the phototaxis task, not possible as individuals in such unpre­

dictable terrain. Though this is not an explicit example of morphological plasticity in an Al system, as 

dynamics work at the society level rather than on the individual level, nevertheless the results show that 

plasticity in structures can improve performance.

A swarm-bot is defined as an artifact composed of simpler autonomous robots, called s-bots (Tri- 

anni V. et al., 2006). Limited in sensory and computational abilities as individuals, s-bots achieve high 

locomotory performance in rough terrains including hole avoidance (Trianni V. et al., 2006; GroB, R. 

et al., 2006). S-bots as individual robots have static, controller-centred conventional morphologies with 

the important feature that they can link with other s-bots, see Fig. 2.9. and as with DMs it is in this 

dynamic connectivity that their strength lies. However a swarm-bot can only be defined as a DM if 

the aggregate is seen as an individual organism. They seem to relate more to a social aggregate and as 

such work at a higher level of organisation than is required to be called morphological plasticity. The
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Figure 2.9: Swarm bots, reproduced from http://www.swarm-bots.org/ with permission.

individuals of the system cannot alter form.

These robotic systems highlight the need for a hierarchy of elements for adaptive shape, just as 

proteins, cells and multicellular organisms are at each level capable of connectivity changes and mor­

phological plasticity. At some point in the future self-organization in structure can be expected to apply 

to all elements in collective or modular robotic systems, not just the aggregate as a whole. This could be 

the future for Al, intelligent systems composed of adaptive, fully embodied, morphological hierarchies 

with structural plasticity at all levels. However, this thesis is not only concerned with how to build adap­

tive robots, but in all types of adaptive system and indeed the aim is to uncover truths about the process 

itself, as it occurs in reality; understanding adaptability through a constructivist framework.

2.5.4 Dynamic Morphologies in Al

Within other research areas some clear examples of Dynamic Morphologies exhibiting MP can be found. 

For example, Maree, A. F. M. and Hogeweg, P. (2001) and Savill, N. J. and Hogeweg, P. (1997) cellular 

automata based modelling of slime mold. Cells aggregate upon starvation, via chemotaxis, forming a 

differentiated higher-level slug-like organism. This work showed clearly an algorithmic environment- 

driven multicellular MP mechanism . Rieffel, J. and Pollack, J. (2005) included plasticity in their devel­

opmental algorithm for growing brick-based structures. Though not an example of animat MP it is one 

of the few examples of plasticity in developmental algorithms.

Open L-systems are an approach for the generation of recursive branching structures designed to 

incorporate environmental information. Examples using open L-systems for growing artificial plants 

discussed in (Mech, R. and Prusinkiewicz, P., 1996) certainly class as DMs.

Suzuki, K. and Ikegami, T. (2004) developed an Artificial Chemistry cell system that could also be 

classed as a DM due to the transport of new molecules across the membrane from the environment which 

are then able to combine with other molecules, changing connectivity within, though the morphologically 

plastic aspects were not the emphasis of this work. Indeed Artificial Chemistry as a modelling approach 

offers a flexible and abstracted method for investigating low-level connectivity changes and membrane 

morphology self-organization (Hutton, 2002) and greatly inspired the later work of this thesis. Basing a 

model on the cell immediately removes the role of a conventional neural network controller and provides 

the opportunity to study how adaptive behaviour can be purely morphological.

Fully embodied DM systems, allowing morphological responses to the environment, could provide

http://www.swarm-bots.org/
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solutions to the increasing challenges of complex environments, providing increased adaptability and 

efficiency, through cheap design, growth, morphological computation and plasticity.

2.6 A Taxonomy of Morphological Plasticity in Al
Table 2.2 shows the varying degrees and types of morphological plasticity in Al models, based on the 

framework for natural systems defined by Piersma, T. and Drent, J. (2003). Here it is extended to 

include instances of ‘no morphogenesis’ and ‘no plasticity’ (no possibility of morphological change via 

environmental input) as this is where most animat models currently belong. However, in biology, there 

are conspicuously no instances of living systems without growth or plasticity.



Change

is

reversible

Change 

within 

a lifetime

Change 

over a 

generation

Change 

periodic with 

environment

Biological example Al example

No Morphogenesis No No No No None
Most Al Work e.g. 

(Harvey, I. et al., 1996)

Non-Plastic Embryogenesis No No No No None
Most developmental algorithms 

e.g. (Sims, 1991)

Irreversible MP No No Yes No
Temperature/sex determination 

(Azuma, T. et al., 2004)

e.g. Cellanimat Colony Model, Chapter 8, 

also (Mech, R. and Prusinkiewicz, P., 1996)

Reversible MP Yes Yes No No
cell chemotaxis 

(Bray, 2001)

e.g. Cellanimat chemotaxis, Chapter 5, 

also (Suzuki, K. and Ikegami, T., 2004)

Life-cycle staging Yes Yes No Yes
Seasonal Plumage 

(Piersma, T. and Drent, J., 2003)
None

Polyphenism No No Yes Yes
Arthropod seasonal offspring 

(Piersma, T. and Drent, J., 2003)
None

Table 2.2: Taxonomy of morphological plasticity in Al compared with natural systems. See text for definitions.
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Non-plastic embryogenesis encompasses most developmental algorithms to date, as described in 

Section 2.3. Irreversible MP describes the environmentally influenced, initial growth of morphological 

attributes, which once grown cannot be altered further. Reversible MP is the large array of morphological 

adaptations that occur across an individual’s adult lifetime, influenced by the environment. It can include 

any context-based variation in morphology as well as the morphogenesis of specific new attributes. 

Growths of this kind can be altered at a later date.

Open L-systems class as a DM with irreversible MP: once branches of the plant have grown, using 

environmental information, they cannot be changed. The Cellanimat Colony Model described in Chapter 

8 is an example of irreversible MP. The Cellanimat Model performing chemotaxis and phagocytosis, 

described in Chapter 5, is an example of a DM with reversible MP; the morphological features can 

change shape further.

Life-cycle staging is a sub category of reversible MP describing cyclic or periodic morphological 

changes correlated with periodic environmental changes. It occurs across the lifetime of an individual. 

Polyphenism is a subcategory of Irreversible MP. It is the cyclic production of generations with discrete 

phenotypes related to seasonal or other periodic changes, it occurs across generations rather than the 

individual. The definitions here are more flexible: polyphenism and life-cycle staging are allowed to be 

correlated with any periodic environmental change, not just the seasons as described in (Piersma, T. and 

Drent, J., 2003), as seasons are rarely included in Al models.

Behera, N. and Nanjundiah, V. (2004) noted that morphological plasticity has Lamarckian implica­

tions. They verified that MP can ‘speed up evolution’ by using an evolutionary algorithm model with 

haploid genotype strings: one of ‘structural genes’ which cause the phenotype and one of ‘regulatory 

genes’ which determined the functioning of the structural string. Initial environmental triggers caused 

the canalization of regulatory proteins to favour certain phenotypes over short numbers of generations. 

Such quick, assimilated MP may be crucial to the characteristic phenotypic modifications of major evo­

lutionary transitions (Behera, N. and Nanjundiah, V., 2004). Open-ended evolution (whether agents can 

become increasingly adapted to an environment that offers increasingly complex challenges) is a crucial 

question in the field of Nouvelle Al (Holland, 2003). The challenge of becoming increasingly adapted is 

greatly reduced if MP offers a method for quick morphological adaptation.

2.7 Thesis Stance: A Summary
In this thesis a functionalist monist approach is followed, within the field of Nouvelle Al. This means that 

understanding, of how the bodily experience within an environment can produce adaptive behaviour, is 

strived for through a constructivist approach using simulated computational models. The aim is to con­

tribute to both understanding of intelligence and the design of intelligent systems. This work fits in 

neatly at the cutting edge of both streams of Al research detailed within this chapter: morphology opti­

mization (development) and embodied cognition (cheap design). The key advance investigated, relevant 

to both streams, is the addition of morphological plasticity mechanisms. MP allows the morphology to 

continually develop, in relation to the environment, throughout its ‘lifetime’, maintaining an optimized 

morphology even with environmental changes. MP also provides a body-dependent mechanism for com-
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1. Optimizing Morphology 2. Embodied Cognition Morphology

evolved direct encoding brain separate from body static

developmental algorithms cheap design static

situated development (MP) fully embodied cognition (MP) dynamic

Table 2.3: Brief overview of research progression (top to bottom = past to future) within the two mor­

phological research streams: optimizing morphology automation and increasing the embodiment of cog­

nition. The Morphological plasticity (MP) work in this thesis contributes to both streams (shown in bold 

type) by utilizing Dynamic Morphologies.

putation, producing fully embodied cognition: adaptive behaviour through the morphology alone. See 

Table 2.3.

MP is particularly useful for coping in complex, changeable environments. This is an open problem 

in intelligent systems research and indeed one of the stated aims of animat-based research is to simulate 

agents able to cope in increasingly difficult environments (Wilson, 1990). As described throughout 

this chapter, most Al systems are task-specific and require tightly controlled environments, since small 

changes could stop the behaviour working, e.g changes in terrain. Therefore this investigation is focused 

around single-celled organisms that live within fluctuating niches; they cope without a brain, so the 

‘body’ is doing all the work. One particular organism, the diatom, was chosen as a case study. Diatoms 

are bio-indicators which means their morphology is tightly linked to the environment, and changes as 

the environment changes.

Returning to the quote at the beginning of this chapter, Section 2.1: “The way we build our an­

imats is a manifestation of our views of intelligence” (Pfeifer, 1996). It is clear that views of intel­

ligence within Nouvelle Al are shifting from a human brain-centred idea of intelligence to a general 

morphology-centred intelligence. The cutting edge of Al animats today has the majority of emphasis 

on the organization of the body, on morphological computation, adaptive design and dynamics. Within 

this progression towards ‘fully embodied intelligence’, the ability of animats to alter morphology on a 

lifetime basis could be the next inevitable step towards systems that can cope in increasingly complex 

environments — next level intelligence. The goal of this thesis is to investigate, at a ground level, mech­

anisms for morphogenesis and morphological plasticity in natural systems, and algorithmic formulations 

for artificial systems, through the simulation of fully embodied animats.



Chapter 3

Nature’s Batik

“Inspite of received dogma that diatom valve morphology is constant with species, ex­

perimental work has shown that in addition to size related variation, changes in the environ­

mental conditions can modify the valve morphology.” (Cox, 1997)

It is difficult to grasp ideas about morphogenesis mechanisms and behaviours without focusing 

research on a particular case study or model organism. This chapter will introduce the model organisms 

of this thesis: the diatoms. Diatoms are a good choice for studying morphological plasticity mechanisms 

and adaptations because they show diverse phenotypic variability and plasticity correlated with temporal 

environmental composition. There are many open questions in diatom research related to morphogenesis, 

so as a model organism they offer an opportunity for contributions to both bio-inspired computing and 

biology.

The latter part of this chapter will describe experimentation with a tailor-made Cellular Automata 

model combined with a Genetic Algorithm, aimed at understanding the interacting processes involved 

in diatom valve morphogenesis. First understanding of these basic mechanisms is needed, before con­

sidering how the environment may be affecting the course of morphogenesis. Subsequent experiments 

to investigate mechanisms of morphological plasticity in diatoms, detailed in Chapters 7 and 8, relied 

heavily on the model described here.

3.1 Introduction to Diatoms
Diatoms are single celled photosynthetic protists that thrive in many environments such as seas, lakes, 

and damp soils. With over 200,000 species, they are the second most diverse group of photosynthetic 

organisms and produce approximately 20% of the worlds carbon fixation (Mann, D. G. and Droop, 

S. J. M., 1996). Most interestingly they possess an external shell or frustule of amorphous silica that 

functions as a cell wall. Organisms that incorporate inorganic material into their morphology offer a rare 

and exciting opportunity to learn, from nature, efficient mechanisms for the manipulation of materials 

for technology and as such there has been considerable interest in diatoms for nanotechnology (Gordon, 

R. and Parkinson, J., 2005).

The silica frustule is made up of two halves, each comprising a valve and a number of girdle 

bands. Diatom valves are often beautifully patterned, with regularly arranged pores perforating the
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Figure 3.1: SEM image of diatom Mastogloia. Reproduced with permission from the ADIAC, CEC 

contract MAS3-CT97-0122, online image database.

(a) (b)

Figure 3.2: (a) Centric diatom Arachnoidiscus sp, (b) pennate diatom Diploneis heemskerkiana. Repro­

duced with permission from the ADIAC, CEC contract MAS3-CT97-0122, online image database.

valves (Round, F.E. and Crawford, R. M. and Mann, D. G., 1990). See Fig. 3.1. As a cell wall, the 

frustule is structurally very strong and resistant to enzyme attack and also functions as a defense against 

grazing and infection. However, some diatoms are susceptible to parasitism by chytrids, oomycetes and 

protozoa, and variation in susceptibility within species has been observed (Canter, 1979; Canter, H. M. 

and Jaworski, G. H. M., 1982, 1983; Mann, 1999) although it is unclear whether there is a consistent 

point of entry for the parasites. Diatom cell walls confer rigidity and precise shape to the enclosed 

protoplasts. However, they must also allow the transport of small molecules to and from the protoplast 

and allow for its expansion during the mitotic cell cycle (Schmid, 1986).

Two major symmetry groups of diatoms can be recognized: centric and pennate. Centric diatoms 

usually exhibit radially symmetrical valves, with an annular pattern center, whereas pennate diatoms 

have approximately bilateral symmetry and an elongate pattern center (Round, F.E. and Crawford, R. M. 

and Mann, D. G., 1990), see Fig.3.2. Within the pennate group, raphid diatoms are characterized by the 

possession of a double-slit (raphe) system, which is the elongate pattern center and has an intrinsically 

asymmetrical mode of development (Cox, 2002).

Diatoms reproduce predominantly by mitosis, each daughter cell producing one new valve (the hy- 

povalve) after cytokinesis but retaining one of the parent valves as the older valve (epivalve) of each 

daughter. Because the new valves are formed within (and are constrained by) the parent frustule, there 

is often (but not invariably) a gradual decrease in average cell size over a series of mitotic divisions 

(MacDonald, 1869). Within a certain critical size range, diatoms can be induced to reproduce sexually 

(meiotic division results in either an ovum or a monoflagellate sperm) and thereby to restore the max­
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imum size for that species by auxosporulation (formation of a full sized auxospore offspring) (Mann, 

1999).

3.1.1 Diatom Phenotypic Plasticity

Many algae are notoriously plastic in morphology, growth and biochemical composition (Liirling, M. 

and Van Donk, E., 1999). Species specific form is variable depending on the interaction between the 

cell and the environment. Diatoms react very sensitively to the environment, for example they convert to 

resting spore morphology (vegetative, ‘hibernation’ state) and back again depending on environmental 

conditions, or even taking on the form of another species when put in a different environment (Paasche, 

E. et al., 1975; Cox, 1994; Schmid, 1979). Diatom taxonomy is based on the presumed invariability 

of valve structure, but as autotrophic organisms, diatoms are closely dependent on the environment in 

their reactions. Thalassiosira rotula valve morphology has been observed to change to that typical of a 

separate species: T. gravida with a temperature decrease (Syvertsen, 1977). Cox (1994) put forward the 

concept of ‘Ecotypes’: where alternate ‘species’ may actually be from the same taxa but in a different 

environment, the opposite of this is the traditional view that all distinct forms belong to a series of 

ecologically and genetically discrete taxa.

Trobajo, R. et al. (2002) tested morphological change against changes in salinity, Nitrogen to Phos­

phorus ratio and water movement. They showed that these three conditions often co-vary in an environ­

ment, i.e. not just one will alter, so the effect of a single factor can only be separated under controlled 

conditions. They showed that valve width decreased with increased salinity and length increased with 

salinity. However, other studies showed the converse to be true with different diatoms: that width in­

creased with salinity. So no consistent pattern change can be correlated with salinity effects. There is 

definitely a difficulty in determining the correct trigger from field data, or trusting the determined trigger.

Morphological variability within a taxon could itself be used as a bioindicator provided the vari­

ability is a clear response to environmental conditions (Trobajo, R. et al., 2002). Cox (1994) backs up 

this idea: understanding the environment-induced phenotypic plasticity could improve the predictive 

power of diatoms in water-monitoring paleoecological and climate change studies. However, this may 

not be so possible as some morphological changes may be the result of a combination of factors in the 

environment, not an isolated factor.

Certain species of diatom do not live as independent single cells. Instead they have developed 

a complex set of interactions during morphogenesis, which allow them to form and disband colonies, 

triggered by environmental cues and giving them a greater chance of survival. Colony formation in such 

diatoms is an explicit and interesting example of phenotypic plasticity, of morphological adaptation to 

environmental changes. There has been a large amount of interest and speculation as to the adaptive 

quality of the response and the possible underlying mechanisms, however, there are no current solid 

theories and very little data on exactly how and why certain species of diatom form colonies.

Diatom colony formation is therefore a good system to model in order to further understanding of 

the adaptive systems that underlie morphological plasticity and also to contribute to current understand­

ing within diatom research. The work described in this chapter, modelling valve morphogenesis forms
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the basis of the much broader investigation into colony formation described in the final chapter of this 

thesis.

3.2 Diatom Valve Morphogenesis
Despite a variety of studies over the last few decades (Pickett-Heaps,J. et al., 1990), the fine control of 

nanometre to micrometre-scale pattern during diatom valve morphogenesis remains poorly understood. 

Transmission electron microscopical (TEM) studies reveal that the cytoskeleton is intimately involved in 

valve patterning and may also incorporate the use of cytoplasmic organelles or other inclusions as molds 

for different valvar components (Edgar, L. A. and Pickett-Heaps, J. D., 1984; Edgar, 1980; Pickett- 

Heaps, J. et al., 1990). Schmid (1980) suggested that the process of using material to block the deposition 

of silica is comparable to the negative-technique used in batik, where the outline of an image is drawn 

with wax and the dye only soaks into the cloth where there is no wax. Thus colour is incorporated where 

wax was absent. The model is similarly based on the premise that silica is deposited around organically 

produced templates, the protoplast effectively generating a negative imprint of the valve pattern (Schmid, 

1980). The model explores the evolution of a negative space mechanism for the manipulation of silica, 

to produce a functional, patterned shape, similar in form to a raphid pennate diatom valve.

Parkinson, J. et al. (1999) presented a theoretical model, based on diffusion limited aggregation 

(DLA), which produced centric-like patterns. However, cell biologists would argue that observed pat­

terns are not explicable by the physics of diffusion alone (Schmid, 1986,1980; Pickett-Heaps, J. D. et al., 

1979, 1988; Cox, 2002), but that cytoplasmic components and processes are modulating valve morpho­

genesis. The model, described in the remaining part of this chapter, focused on the morphogenesis of 

raphid pennate diatoms, which had not previously been the subject of computer models.

3.2.1 Valve morphogenesis in raphid diatoms

Here the stages of valve morphogenesis in the diatom Cmspedostauros australis will be described. 

Fig.3.3 shows the nearly completed valve and Fig.3.4 is labelled to show which parts terminology, used 

in the following description, refer too.

During formation of diatom valves, silica is transported to the silica deposition vesicle (SDV) where 

it diffuses in and adheres to already consolidated silica in an accretive manner (Schmid, 1980). Valve 

formation occurs in a series of stages, which always occur in the same order, although taxon specific 

patterns are also observed (Cox, 1999). The variation in valve morphology between species and the 

consistency of morphology within species together indicate that morphology is genetically controlled.

Silicification begins with the raphe sternum (central spine), first forming a longitudinal rib that 

curls around as it approaches the cell apices and meets the extending shorter ribs on the secondary side 

(Round, F.E. and Crawford, R. M. and Mann, D. G., 1990; Pickett-Heaps,J. et al., 1990; Cox, 2002), 

see Fig. 3.5. The initial position of the SDV and of the raphe system seems to be controlled by the 

position of the microtubule centre (MC) (Schmid, 1980; Cox, 2002) whose orientation also sets that 

of the valve pattern (Schmid, 1980). After enclosure of the raphe slits, ribs of silica (virgae) that will 

ultimately lie between the striae (rows of pores), grow out in a transapical direction (Fig. 3.6(a)), with the



3.2. Diatom Valve Morphogenesis 44

Figure 3.3: Craspedostauros australis, external view of almost complete valve. Scale bars represent 10 

pm, courtesy of Eileen Cox.

Vimines

Raphe
sternum

Raphe slit

Forming pores 
within stria

Figure 3.4: Craspedostauros australis, with morphological features labelled. Scale bars represent 2 pm, 

courtesy of Eileen Cox.
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(b)

Figure 3.5: Craspedostauros australis (a) Raphe slit showing very early virga development. Valve centre 

to right hand side of picture, (b) Detail of other end of raphe system. Point where secondary side of raphe 

is completed indicated by arrowhead. Scale bars represent 2 pm, courtesy of Eileen Cox.

(a) (b)

Figure 3.6: Craspedostauros australis (a) Early raphe overlying part of mature valve, showing identical 

spacing of forming virgae and mature striae, (b) Vimines beginning to form near raphe slit.Scale bars 

represent 2 pm, courtesy of Eileen Cox.

cross connections (vimines) developing later to define the pores often between 0.1 and 0.5pm diameter, 

Figs.3.6(b) and also shown in 3.4, (Cox, 2002; Cox, E. J. and Ross, R., 1980; Brett and Waldron, 1996). 

As silica polymerizes onto the enclosed forming valve the SDV expands apically and transapically (Li, 

C. W. and Volcani, B. E., 1985).

The sequential formation of virgae, vimines and fine pore occlusions suggests that areas where 

silicification is initially prevented by the presence of organic material, e.g. between forming virgae, 

must subsequently be opened up to allow silicification of the vimines (Schmid, 1986). Tubulin and actin 

have been implicated in pattern formation, as microtubules and microfilaments are variously associated 

with the SDV during morphogenesis (Edgar, L. A. and Pickett-Heaps, J. D., 1984; Li, C. W. and Volcani, 

B. E., 1985; Chiappino, M. L. and Volcani, B. E., 1977) and their inhibition affects the raphe position 

and pore spacing respectively (Schmid, 1980; Blank and Sullivan, 1983; Cohn, S. A. et al., 1989).
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Cell State Material Represented Class (0= Organic, 1 = Siliceous)

0 Nothing

1 Raphe 0

2 Silica 1

3 Epitheca 1

4 Striae 0

5 Pore centre 0

6 Pore 0

Table 3.1: Possible states for grid cells and their classes.

3.3 The Nature’s Batik Model
The novel computer simulation described here uses evolution to design functioning raphid pennate di­

atom valves and was published in the paper “Nature’s Batik: A computer evolution model of diatom 

valve morphogenesis” (Bentley et al., 2005). The model of valve morphogenesis was constructed based 

on current theories that highlight the importance of cytoskeletal elements in valve development. An 

‘organic’ negative imprint was grown in a grid-based system, using both local and global rules to dic­

tate grid cell states. ‘Silica’ then diffused out into all remaining grid cells. This model was shown to 

generate simulated raphid pennate diatom valves capable of functioning as cell walls. At every stage of 

development the generated valves were consistent with observations of real diatom valve growth.

In the model, the valve was grown in several distinct stages, employing both local and global rules. 

The parameters involved in these stages, which ultimately governed the shape and patterning of the valve, 

were evolved using a genetic algorithm to explore the valve’s functionality as a cell wall. The model was 

highly abstracted, the Cellular Automata had only seven possible states during growth. These states were 

classed as either ’organic’ or ’siliceous’ and so, once the valve had grown, it could be further reduced to 

a two-state system. The possible states and the class to which they belong are detailed in Table 3.1. All 

parameters of the model discussed in this section are shown in italics in parenthesis and relate either to 

initial model settings or to genes (Tables 3.2 and 3.3).

3.3.1 Valve Growth

The valve was grown on a grid of size (2x M A X  x 2y M A X )  where x M A X  and y M A X  were set 

at the beginning of each experiment. The CA grid had all cells initialised in state 0, meaning ‘nothing 

present’. This is shown in Fig. 3.7(a), where x M A X  and y M A X  equal 10.

Defining epitheca shape

Hypovalve growth in diatoms is almost invariably restricted by the shape of the epitheca, as shown 

by SEM observations of developing virgae. Virgae are forced to curve and thus form the valve mantle 

when they impinge upon the epitheca (Cox, 1999). Epitheca shape must therefore first be defined, 

although for the purposes of the model an arbitrary shape could be chosen. In order to model the epitheca
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yMAX

xMAX

.yMAX -xMIN/2 xMIN/2
-xMIN xMIN

(a) (b) (c)

Figure 3.7: (a) Initial grid, all cell states set to 0, shown in white, (b) Control points shown in black, there 

are 4 on the left, which are mirrored on the right. Control points and the cells joining them shown in 

grey, are denoted by state 3 meaning ‘epitheca’. (c) Raphe slit material is denoted by state 1 and shown 

in dark grey.

simply and effectively, epitheca shape was described by a number of points (controlpoints), between 

which lines are drawn, analogous to placing a rubber band around a set of pins. A more complex shape 

can be generated by the use of more points.

Because many raphid pennate diatoms are both isopolar and bilaterally symmetrical, only the 

controlpoints in the bottom left quadrant of the grid were specified in the genotype. These were then 

reflected in the x  and y axes by a translation algorithm enforcing symmetry, to produce the full epitheca 

outline. The parameter x M I N  determined where the x  coordinate of a control point could lie. For the 

bottom left quadrant control points had to lie between, but not including —x M A X  and —x M I N ,  in 

Fig.3.7(b) x M I N  was set to 5. The first and last third of the control points lay between, but not includ­

ing, 0 and x M I N /2 .  Thus x M I N  constrained the width of the epitheca and also prevents the epitheca 

having tapered-out ends.

The y axis was divided into equal segments according to the number of control points. The control 

points each lay in one of these segments. This was essentially a way of generating endlessly different 

elliptical shapes. In practice, the locations of the x  and y coordinates were given by a decimal value 

between 0 and 1 specifying, when scaled to the size of the segment, how far from the bottom and away 

from the y axis the point lay, within the segment. For example (Fig. 3.7(b)), the first control point was 

specified by (0.6666, 0.8) in the genotype, which given that the segment was sized 3 x 5 ,  translated as

(2,4) within that segment. Due to the position of the segment, this translated finally as (-2, -9).

Setting the position o f the raphe

It has been suggested that the presence of a raphe fibre prevents silicification where the raphe slit 

is forming (Schmid, 1980). The model therefore postulates that raphe slit material (= raphe fibre) grows 

along the y-axis in both directions, starting a certain distance (RapheGap) from a given start point 

(M C , representing the microtubule centre) and within a given width (RapheW idth ). Cells within this 

area with no radius 1 neighbours of state 3 (i.e., not close to the epitheca) had their state changed to 1 

meaning ‘raphe slit material’ (Fig.3.7(c)).
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Simulation ofSDV growth and Silica Deposition

All silica deposition occurs within the SDV, and the SDV expands as silica diffuses in and is accreted 

(Schmid, 1986; Pickett-Heaps,J. et al., 1990; Schmid, 1980). For the model, the SDV was modeled 

simply as a rectangle with initial comer vertices defined by the following equation, where the vertices 

were labeled a to d clockwise from the top left hand comer.

a = (M C X — 2 x RapheW idth, M C y + RapheGap) (3.1)

b = (MCX, M C y + RapheGap) (3.2)

c = (MCX, MCy — RapheGap) (3.3)

d = (M C X — 2 x RapheW idth, MCy  — RapheGap) (3.4)

Only cells of state 0 within the SDV box could be changed to state 2 (silica), i.e., class 0 and 1 

material (organic and siliceous) in a CA cell within the SDV prevent silica deposition. State 0 cells 

within the SDV could only become state 2 if there was a state 2 cell in its radius 1 neighbourhood. The 

SDV was initiated with all state 0 cells changed to state 2, i.e. full of silica. The SDV increased in size if 

70% of the empty cells in the SDV had been filled with silica. The SDV expanded along the y axis until 

it reached the epitheca, then along the x axis, until it abutted the epitheca laterally.

Delimitation o f striae

The scenario presented by Schmid (1986) invokes the use of spacer vesicles and organic matter to 

set the position and form of pores that form striae. A certain number (Striae) of blocks of material 

that mark out the striae were placed at a certain distance (StriaeRapheGap) from the raphe slit and 

were grown outwards from the StriaeRapheGap  (=  sternum) along specific trajectories. This was 

based on the observation that many pennates have radiating striae. These trajectories were calculated as 

follows: start points: (xl, y 1) of the stria trajectory lines were equally spaced along the y-axis at a given 

distance from the raphe slit (StriaeRapheGap) on both sides. The end points (x2, y2) were calculated 

in polar coordinates (r, 6), where r equalled 300 for all experiments. Theta was calculated for each stria 

by dividing the given 27r radians into Striae  equal segments. Then x2 = rcos 6,y2 = r sin 9. Stria 

material was grown at a given thickness (StriaeW id th ) along each line between the respective (x l, y 1) 

and (x2, y2) until neighbours of radius 2 contained a cell of state 3 (it approaches the epitheca)(Fig. 

3.8(a)). For the model, this process has to be initiated almost simultaneously with the SDV to ensure the 

formation of striae.

Delimitation o f pores within striae

Pores were defined within striae by the outgrowth of vimines, once the virgae had reached a partic­

ular length, depending on the species (Cox, 1999). For each diatom taxon, mature pore diameter falls
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Figure 3.8: (a) Radiating striae, (b) Pore centers placed within striae.

Figure 3.9: Gomphonema truncatum . Vimines fusion creating offset pores within the striae. Scale bar 

represents 2pm, courtesy of Eileen Cox.

within a particular range and pores show consistent spacing along a stria. For the purposes of the model, 

pore centres were set using a simplified packing algorithm, to generate pore position as in Fig.3.9. The 

pore centres were placed at a given distance (PackingD ist) from each other along the first vertical line 

nearest the y axis of cells in all striae, then at equal PackingD ist and P ackingD ist/2  intervals from 

those along the stria trajectory gradient. Similarly, to attain a consistent size for each taxon, pores were 

assumed to have an ideal radius (radiusldeal) as the end point of their developmental trajectory. Pores 

were initialised with size ra d iu sM A X  = radiusldeal +  10, for all experiments, and pore radius de­

creased as the amount of silica in the cell’s local neighbourhood increased. The number of cells N  of 

state 2 in the neighbourhood of a pore centre with radius r =  2 x rad iusM A X  was calculated every 

third time step (to save on computation time). This specified by how much the pore material reduced, at 

each assessment, in accordance with equation 3.5.

Once all pore radii were calculated, any cell within the stria that was situated within a pore radius 

was set to state 6 (pore material). Pore centres however remained as state 5. To aid calculation at the 

next evaluation, remaining state 4 cells (= stria material) were reset to 0. This meant that half pores

j .  Tj  i . 50(packingDis tx0 .1)radiusldeal -I — HSr, -

ra d iu sM A X , otherwise.

jj- jy ^ radiusM AX .

(3.5)
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could occur, where the centre was within the stria boundary but the radius traversed it. The conversion 

from decimal distance calculations to integer cell state changes incurred a non-perfect pore arrangement, 

tantamount to noise (Fig.3.8(b)).

3.3.2 Computer evolution of valve morphologies
A genetic algorithm is an evolutionary algorithm used for problem solving or for modeling natural evo­

lution (Holland, 1975). Populations of individuals, each individual comprising a genotype and a corre­

sponding phenotype, are maintained by the computer. The fitness of each individual is measured using 

a fitness function to assess the quality of the phenotype with respect to some objective or environment. 

“Better-adapted” individuals are selected as parents that then give rise to the next generation of off­

spring, inheriting their parents’ genes through random crossover and mutation operators. Over a number 

of generations, the evolutionary algorithm creates individuals with higher fitnesses.

A standard generational GA was used to evolve parameters of the model to investigate the rela­

tionship between valve morphology and functionality/behaviour. The model was exposed to an ‘envi­

ronment’ involving molecules transporting across the membrane and grazers trying to attack the cell to 

see if the morphogenesis model would be able to evolve valves able to function in such an environment. 

Illustrating that 1) the model can produce functionally similar valves to real diatoms and is therefore 

plausible and 2) there is a link between morphology and behaviour in even the most rigid of structures.

Genotypes were initialised randomly, with evolution running for one hundred generations using 

population sizes of 100. Each genotype consists of the eighteen genes shown in Table 3.3, relating di­

rectly to the parameters for growth shown. Each member of the population was grown and then assessed 

by the fitness function described below. The top 10% of the population became the parents of the next 

generation. The highest scoring member genotype was transferred unchanged into the next generation 

(elitism). The other ninety-nine members of the next generation were produced using crossover at a 

random point in the genotype of two randomly chosen parents (with replacement). All ninety-nine were 

then subject to creep mutation with a probability of 0.08888. On average 1.6 genes were mutated per 

member of the population, which was usual for a standard GA. MRATEi was the creep value subtracted 

from integer genes. MRATEf was the creep value subtracted from decimal encoded genes (Table 3.2).

3.3.2.1 Fitness Function

Diatom cell walls, while protecting the enclosed protoplast against infection, must also allow molecular 

exchange with the external environment. Circular molecules and pathogens with radius M R A D I U S  

and P R A D I U S  respectively, were placed with their centres in each CA cell on the valve. Molecules 

were allowed to move randomly a set number of times (M T I M E ) whereas the pathogens remained 

static. This reflected the probability of molecules moving along concentration gradients and diffusing 

through pores, while pathogen attacks usually occur at much lower frequencies. If no class 1 material 

(silica) or state 0 (nothing) in all the CA cells in a molecule’s or pathogen’s radius was encountered, 

passage through the valve was permitted. (The rule about state 0 precludes the formation of impossible 

valves). Points, m  for a molecule or p for a pathogen, were then awarded. The fitness was a function of 

the two processes shown in equation 3.6. Fitness was thus higher for a valve that did not allow pathogen
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Static parameters Setting

xMAX 40

yMAX 160

controlpoints 10

MC(x,y) (0,0)

PRADIUS 2.1

MRADIUS 1.2

MTIME 5

MRATEf 0.4

MRATEi 20

Table 3.2: Static parameters and their usual setting in experiments

Gene Possible Range for Gene G

0 packinDist 0 <  G < x M A X  -  1

1 xMIN 0 <  G < x M A X  -  1

2 RapheWidth 0 <  G < x M A X  -  1

3 StriaeRapheGap 0 <  G < x M A X  -  1

4 Striae 0 <  G < y M A X /  4

5 striaeWidth 0 < G < 2y M A X

6 RapheGap 0 <  G < y M A X

7 radiusldeal 0.00G < 10.00

8 controlpointO(x) 0.00 <  G < 1.00

9 controlpointO(y) 0.00 <  G < 1.00

10 controlpointl(x) 0.00 <  G < 1.00

11 controlpointl(y) 0.00 <  G < 1.00

12 controlpoint2(x) 0.00 < G < 1.00

13 controlpoint2(y) 0.00 <  G < 1.00

14 controlpoint3(x) 0.00 <  G < 1.00

15 controlpoint3(y) 0.00 < G < 1.00

16 controlpoint4(x) 0.00 < G < 1.00

17 controlpoint4(y) 0.00 < G < 1.00

Table 3.3: The genes, their order in the genotype and the possible ranges for each.
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entry but allowed the maximum amount of molecular movement.

This was a highly simplified model of cell wall function, but was used so that the resulting pattern 

emerged from the interaction of two necessary functions of the valve. It precluded enforcing or unwit­

tingly ‘pre-programming’ the pattern by selecting for a certain arrangement and size of raphe, striae 

and pores. This approach to fitness by functionality has since been implemented in (Paulin, 2004). The 

penalty conditions that set fitness to -20000000 were set in order to ensure that impossible valves did 

not grow or propagate through subsequent generations. To save on computation time, if these penalty 

conditions were met, valve growth was not allowed to start, analogous to an organism possessing an 

expressed lethal gene (Equation 3.6).

3.4 Results and discussion
The model was programmed in C++, all experiments were performed on a standard 1.8 GHz PC work­

station with graphics programmed in openGL. In 15 evolutionary runs of the model to maximize the 

fitness function, the static parameters were set as in Table 3.2 (type A runs). The mean fitness was 2093, 

with standard deviation of 892.13. In a further 10 runs (type B runs), M R A T E i  was set to a random 

integer between 1 and 100 and M R A T E f  was set to a random decimal between 0 and 1. Mean fitness 

rose to 5184, with standard deviation of 1740. Improving the mutation operators allowed populations to 

reach a higher fitness. A typical evolutionary run took 8-12 hours.

3.4.1 Evolved Valves
A cross-section of evolved valves is shown in Fig.3.10, and their respective genes and fitnesses are given 

in Table 3.4. Both high and poor scoring (low fitness) valves are shown to illustrate the full effects of the 

evolutionary algorithm.

3.4.2 Growth patterns

Setting the initial SDV box slightly to the left of the MC meant that the growth of the primary silica rib 

(Fig.3.11) was consistent with EM observations. This emerged from the interaction of silica diffusion 

local rules, the SDV initial box placement and the prior placement of raphe material. Gradual decrease in 

the size of the pore material within the striae allowed the characteristic sequence of virga growth followed 

by vimen growth to occur. Fig.3.11 shows the growth of the virgae and vimines, while Fig.3.12 shows 

the decrease in size of pore material as silica accumulates around it. An enlarged section (Fig.3.13) 

shows the pore size decrease in more detail. The model produced growth patterns comparable to those 

observed in raphid diatoms by EM (Figs.3.5 to 3.3).

- 20000000,

- 20000000,

- 20000000,

if packingD ist < 2radiusldeal\

fitn e ss
if radiusldeal > fracstriaeW idth2; 

if Striae  x striaeW idth  > valveLength',

moved — attacked , otherwise.

moved

attacked = ')>^{jmPRADIU S ) (3.8)

(3.7)
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Figure 3.10: Evolved valves. Valve a is an example of a highly unfit valve, it was the highest scoring 

valve in the first generation of a type B run. The wide raphe leaves it open to attack by pathogens. Valves 

b, c and d are final generation valves from type A runs. The lower scoring ones are thinner (xMIN being 

smaller) and have not grown an effective raphe slit. Valve d has a better score as it has a larger surface 

area due to a greater xMIN value, it has also grown pores that allow molecular movement but not attack 

by pathogens (radiusldeal is between 1.2 and 2.1). Valves e and f are both final generation valves of type 

B runs. They have far higher scores as the surface area has been maximized w’hilst pore size and raphe 

slit width have been minimized. The number and width of striae is also maximized while gaps between 

striae and raphe have been minimized.

Figure 3.11: Frames showing the growth of valve d.
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Valve a b c d e f

Fitness -40718 1843 2136 4038 6258 6685

packinDist 38 4 6 6 7 8

xMIN 23 16 13 32 37 37

RapheWidth 31 3 15 3 2 3

StriaeRapheGap 18 2 0 8 3 2 2

Striae 18 16 2 0 16 14 18

Striae Width 19 15 1 0 17 2 2 17

RapheGap 8 1 2 154 6 4 2

radiusldeal 9.265175 1.198767 1.786889 1.214118 1.587725 1.779229

controlpointO(x) 0.179052 0.267885 0.066463 0.239570 0.278939 0.539293

controlpointO(y) 0.447951 0.012336 0.512589 0.385418 0.194739 0.568163

controlpointl(x) 0.853450 0.190313 0.641316 0.885647 0.442885 0.593188

controlpointl(y) 0.189459 0.486837 0.682882 0.454176 0.661061 0.598743

controlpoint2 (x) 0.457076 0.547197 0.499161 0.394147 0.814783 0.533769

controlpoint2 (y) 0.527757 0.107358 0.345067 0.168523 0.150304 0.117862

controlpoint3(x) 0.093081 0.048347 0.009485 0.023353 0.058443 0.265664

controlpoint3(y) 0.371258 0.189740 0.080178 0.001025 0.542070 0.591907

controlpoint4(x) 0.195929 0.085885 0.214515 0.628376 0.262612 0.093600

controlpoint4(y) 0.499649 0.498434 0.502548 0.157860 0.524644 0.018738

Table 3.4: The sample of evolved valve’s fitnesses and genotypes

Figure 3.12: Frames showing in white the epitheca outline and the shrinking of organic material to form 

pores during growth of valve d. Silica is diffusing as in Fig.3.11. The dotted box in the third frame is the 

section whose growth is shown enlarged in Fig.3.13.
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Figure 3.13: Three stages in the growth of the section enlarged from Fig.3.12 showing the organic 

material in the striae (shown in white) reduce down to the radiusldeal to form the pores, as the amount 

of silica around it increases, the silica is not shown

3.4.3 Areas for improvement of the model

This was a preliminary model and could therefore benefit from further exploration and development in 

a variety of directions. There was no realistic selection pressure on valve outline so the fittest shape for 

the epitheca was a rectangle, which is of course very rarely seen in nature. However, an extra component 

could be added to the fitness function to reward for shear drop shapes, which would cope better with 

flow, as detailed by Gordon, R. et al. (1996). More streamlined shapes may also favour moving over 

surfaces or through sediments, the typical habitats of most raphid diatoms. Stria trajectories and pore 

arrangements were similarly oversimplified. They failed to account for the occurrence of parallel, or 

intercalated shorter striae, and for the uniseriate rows of pores within striae, seen in many raphid diatoms. 

This could be overcome by the use of a variety of packing algorithms, for example that new striae could 

emerge where there is space, rather than being globally positioned. The CA model would also allow the 

substructure and pore occlusions seen in many diatom pores to be simulated, but would require a larger 

CA grid. xMAX and yMAX were relatively small, the number of control points was fixed at 10, the 

packing algorithm was the same throughout runs and the MC was set to (0,0) to minimize the program 

run time. However, larger grid sizes allow for more intricate patterning as one cell is translated as one 

pixel and alternate packing algorithms can be implemented to great effect (Fig.3.14).

It did prove possible to simulate valves in which the raphe does not lie centrally along the long axis, 

mimicking the situation observed in cymbelloid diatoms, although the model has not modified valve 

outline. Offsetting the MC offsets the patterning without the need to recalculate or change the model. 

Fig. 3.14(b) shows a valve grown with an offset MC where all parameters were set by hand. It would be 

interesting to investigate these properties in further experiments using evolution.

Although there is currently much interest in the biochemistry of silicification and the nanofabrica­

tion of consolidated silica in diatom valves (Kroger, N. and Sumper, M., 2000, 1998) variation in the 

form of silica deposited occurs at a finer scale than the valve features with which this chapter has been 

concerned. Similarly, it has been assumed that the position of the SDV (within the confines of the parent 

cell) reduces the direct influence of the external medium on silica deposition.

There are several other aspects in which this first model simplifies wall morphogenesis. It was 

assumed that morphology was primarily controlled by genetics, rather than attempting to incorporate the 

effects of environmental variables on morphology. However, it could also be argued that until a clearer
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Figure 3.14: Valves grown using hand specified genotypes, (a) Increased resolution, xMAX = 70, 

yMAX= 320. (b) offseting the MC offsets the entire process in a realistic manner, MC at (-10,0). Both 

use an alternate packing algorithm where pore centers were set in horizontal rows.

understanding of the interaction between the environment and diatom valve morphology is obtained, it 

is difficult to set up suitably realistic hypotheses to model. There are relatively few experimental studies 

of the effects of varying environmental regimes on morphology (Schultz, 1971; Cox, 1994; Trobajo, 

R. et al., 2002). Similarly, the fitness function tested does not represent the only factors that affect 

morphology. Other factors such as locomotion and buoyancy (Pickett-Heaps,J. et al., 1990) could be 

incorporated, but the fitness function could easily be extended to include these. Further simulations could 

also be carried out where the various static parameters are changed. Arguably, the use of developmental 

genetic encoding would be more biologically plausible than the current genetic encoding and should be 

explored. It has also been shown that symmetry arises spontaneously in such systems (Dellaert, F. and 

Beer, R., 1996, 1994).

3.5 Summary
The case study organisms of this thesis, the diatoms, have been introduced and a simple model of valve 

morphogenesis, involving only the interaction of silica and organic material, has been presented. This 

chapter has satisfied thesis Objective One, as detailed in Chapter 1. It has also provided a starting point 

for the biologically inspiration needed to test the primary hypothesis.



Chapter 4

Cell and Cellanimat

In order to develop new ways to design artificial systems, with increased abilities to adapt and survive in 

changing environments, an understanding of morphological plasticity is strived for. How it is facilitated 

by single cells, allowing them to perform adaptive behaviour without a brain and have such well-adapted 

designs, is of primary concern. Mechanisms of diatom valve morphogenesis were discussed in the 

previous chapter, in a simplified un-situated way. But this clearly is not the whole story. To build on 

this model the question was asked: how might environmental information signal this system to generate 

different valve morphologies as the environment changes? Focus centred on the organic material that 

blocks silica deposition. How does the cell know where to place this? As discussed previously, the 

cytoskeleton has been implicated in this process (Schmid, 1980). Thus, the next step was to investigate 

how the cytoskeleton may be able to achieve such a feat.

It became clear that the cytoskeleton may be the underlying mechanism that, if harnessed in artificial 

systems, could generate adaptive behaviour, and design, through environment-morphology interaction. 

Extending biological inspiration beyond diatoms, to all eukaryotic cells, it is possible to understand 

how the cytoskeletal-generation of variety and adaptation in morphology is achieved, owing to the large 

volume of cell-physiology research. This knowledge can then be used to both create artificial systems 

with similar adaptive capabilities and gain greater insights into the mechanisms that may be controlling 

diatom valve morphogenesis.

This chapter is comprised of two halves: first the basic biology of eukaryotic cells will be intro­

duced, focusing only on the problem in hand, rather than detailing the wide array of cellular components 

and properties. Only the particular cellular subsystems involved in morphological change and environ­

mental signalling will be discussed. The biology has been reformulated into more computational terms. 

Identifying key, functional, system features was a crucial stage in forming the sound basis for the novel 

artificial adaptive system: the Cellanimat. The Cellanimat is then introduced, step by step, in the latter 

half of this chapter, along with the novel framework for characterizing the environment-system interac­

tions generating its morphological plasticity: the Environment-Phenotype Map.
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4.1 The Cell Basics
Cells belonging to the different kingdoms, e.g. animal, plant and protista, exist in many shapes and 

sizes with specialized features and functionalities. However, all cells have certain features in common. 

The most fundamental, ubiquitous and important feature of cells is that they are in a semi-fluid state. 

The dynamic adaptability of cells can be attributed fundamentally to this fact, that constituent parts are 

flexible: they can move with ease, alter state and produce new components through chemical reactions. 

Indeed, cellular membranes have been described as a fluid mosaic due to the free and often rapid diffusion 

of the phospholipid molecules comprising them (Singer, S. J. and Nicolson, G. L., 1972). There are two 

classes of cell: eukaryotic and prokaryotic. The fundamental difference is that eukaryotes have a double 

membrane encapsulating genetic material within the nucleus, enhancing their evolvability. Focus will 

centre on eukaryotic cells.

A cell is made up of four classes of macromolecule: nucleic acids, proteins, complex carbohy­

drates and lipids. The shape of a macromolecule is determined by its physical properties, the shape 

also determines the interactions possible between macromolecules. This is because a macromolecule’s 

shape affects which binding sites are exposed. In shape changes, due to changes in substance properties, 

e.g. through binding, macromolecules can alter which binding sites are exposed affecting the course 

of future interactions. Shape also affects the electrostatic field around the macromolecule generating a 

guidance system for potential binding partners; a strong attractive force on one particular side of the 

macromolecule can pull appropriate neighbouring macromolecules in for binding, indeed this property 

has evolved in cells to accelerate, and increase the accuracy of, the binding process as discussed in 

(Smith, G. and Sternberg, M. J. E., 2002). Macromolecules can be viewed as ‘autonomously dynamic 

agents’ involved in a low level of a dynamical hierarchy, where they decay, unfold, refold, form new 

proteins or catalyze reactions (Lenaerts, T. et al., 2002). Shape is an essential concept throughout the 

hierarchical levels in cells and crucial when considering the structure of the higher level system (Widnell, 

C. C. and Pfenninger, K. H., 1990).

Macromolecules organize into higher level structures: networks and organelles (so called as they 

resemble organs in a multicellular organism). Although organelles first appeared to be relatively per­

manent in early electron microscope experiments, they have since been shown to be dynamic, both 

metabolically and structurally (Widnell, C. C. and Pfenninger, K. H., 1990). A brief introduction to 

the cellular organelles and systems that seem necessary for morphological plasticity follows, see also 

Fig.4.1.

• Nucleus: the nucleus is the defining feature of eukaryotic cells, which contains DNA and associ­

ated proteins. Gene expression in the nucleus results in protein synthesis at the ribosomes, studded 

along the endoplasmic reticulum (ER).

• Endoplasmic Reticulum (ER): continuous with the outer membrane of the nucleus, the ER is 

the cell’s own body-part manufacturing station (Widnell, C. C. and Pfenninger, K. H., 1990). Its 

large span means that it acts as a large scale delivery system of newly synthesized proteins. The 

ER cistemae (membrane sacks) act as a storage and release site of Ca2+ ions, which can play an
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important role by affecting the behaviour of proteins in the cytoskeleton.

• Cytoskeleton: the cytoskeleton is a complex network of dynamically assembling and disassem­

bling protein filaments within the cytoplasm (semifluid, translucent substance within cells, outside 

the nucleus, composed of primarily of proteins and fats) that coordinate changes in cell shape and 

movement.

• Membrane: a membrane is a self-organizing structure of lipid bilayers. Lipids have a hydrophilic 

head and a hydrophobic tail, thus the most energetically stable arrangement is for them to form 

into bilayers where the tails face each other, blocking out water. The ability of all living systems 

to adapt their morphology relies heavily on the fluidity of membranes. The plasma membrane 

(also called the plasmalemma) defines an interface between the cell and environment; intracellular 

membranes compartmentalize the cell.

• Mitochondria: a mitochondrion contains an inner membrane folded to form cisternae enclosed 

within an outer membrane. The major function is adenosine triphosphate (ATP) synthesis. ATP is 

required for any cellular chemical reaction to take place, it is the energy store of the cell. When 

it loses a phosphate group energy is released leaving adenosine diphosphate (ADP). ADP must 

reattach a phosphate before it can return to the ATP state and provide further energy. Thus ADP- 

bound macromolecules are inactive and ATP-bound macromolecules are active — capable of ac­

tivity. The cell is not the ‘basic unit of life’, the cell is itself seen as a symbiosis of subcellular 

components, which were once autonomous living systems; the mitochondria is the most obvious 

example of this: it was once a free living prokaryotic cell (Rizzotti, 2000).

(a) (b)

Figure 4.1: (a) The cytoskeleton: actin filaments and actin cortex shown in red, microtubules in green 

sprouting from the centrosome (microtubule organising centre) around the nucleus. Reproduced from 

www.helios.mol.uj.edu.pl. (b) Basic cellular components: nucleus shown in blue; endoplasmic reticu­

lum shown in purple; mitochondria in red and white; all encapsulated by the cell membrane (plasma 

membrane). Adapted from http://www.ibiblio.org/virtualcell/index.htm with permission.

The ability of eukaryotic cells to execute coordinated, directed movements and rapid, sometimes 

massive, changes in shape depends crucially on the cytoskeleton: the complex network of protein fila­

ments that extends throughout the cell’s cytoplasm (Alberts, B. et al., 1994). The above listed cellular

http://www.helios.mol.uj.edu.pl
http://www.ibiblio.org/virtualcell/index.htm
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Figure 4.2: the opposing binding sites on an actin monomer give it polarity; as minus sites always bind 

onto a plus site the filament as a whole also has polarity, with monomers only able to polymerize onto 

the plus end. Arp2/3 is a complex needed to start filament polymerization.

components have been singled out for discussion as they are all directly involved in cellular MP and are 

thus included in the Cellanimat model to some degree or other. The nucleus contains genetic material 

which determines the levels of, amongst other things, cytoskeletal proteins to be synthesized in the ER. 

These levels, combined with the changing levels of energy produced by the mitochondria, and signals 

from the environment, generate changing structures and networks of filaments in the cytoskeleton. The 

dynamic cytoskeletal structures can affect membrane shape and behaviours, facilitating the morphologi­

cal plasticity of the cell.

4.2 The Cytoskeleton
The cytoskeleton is a major system within cells. It is involved in the transport of molecules and small 

vesicles carried, in a directed fashion, along filament lengths rather than left to travel by haphazard 

diffusion. It determines cell shape and controls cell shape changes. Muscle movements and movements 

within non-muscle cells are orchestrated by the cytoskeleton — it is capable of contraction. It is involved 

in cellular ingestion of particles (phagocytosis) and is the brawn, and organising power, behind cell 

division. In short, it is crucial for cellular travel, ingestion, reproduction and structure.

Though it can be described as the brawn of the cell, the structure and muscle system, it is not always 

simply sent instructions from a ‘decision maker’ as might be imagined by an advocate of traditional, 

neural network based animats (of the format: sensors —> processor —> effectors), though muscle cells 

do follow this structure (Alberts, B. et al., 1994). The cytoskeleton itself interacts directly with the 

environment, as will be seen, allowing it to process, regulate and control cell structure and behaviours 

in an autonomous way; indeed, this is how single celled organisms, of course lacking in brains, are able 

to survive. The cytoskeleton is much more than a mechanism for changing shape, it is a fundamentally 

different way of executing and processing adaptive behaviour.

The cytoskeleton consists of structural and accessory proteins. Actin and tubulin are structural 

proteins, of which the cytoskeletal filaments are made. Actin monomers (single macromolecules) poly­

merize into long chains called microfilaments. Thirteen tubulin polymers combine to form cylindrical 

‘microtubules’. The cytoskeleton also contains intermediate filaments with varied protein composition 

from cell to cell. The long chain morphology of filaments is possible only because the protein monomers 

that comprise them are polar (they have opposing binding sites: labelled minus and plus sites) allowing 

them to form chains rather than clusters. Filaments themselves are polar, as the monomers within always 

join minus sites to plus sites, the two ends of a filament are similarly labelled minus and plus. Monomers
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add on at the ‘plus’ end and fall off at the minus end. A nucleating complex, such as Arp2/3, is needed 

to initiate actin filament polymerization, see Fig. 4.2. Arp2/3 is an interesting complex, it not only 

nucleates filaments it also has a binding site for F-actin (actin in a filament) meaning it can stick to an 

already formed filament and nucleates a new filament as a branch offshoot. This results in actin filaments 

being part of a branched, tree-like structure and also reinforces polymerization within a small area. See 

Fig.4.2.

(a) (b)

Figure 4.3: Arp2/3 sticks to actin filaments then nucleates a new filament branch generating tree-like 

structures composed of actin filaments. EM image of actin branching within lamellapodia (sheet-like 

membrane protrusions) during fibroblast chemotaxis. Reproduced with permission from (Svitkina, M. 

and Borisy, G. G., 1999).

Structural proteins are recruited from large ‘subunit pools’ of monomers within the cytoplasm. 

For perspective: eukaryotic cells typically contain a billion or so protein molecules, there are around 

10,000 different types and their diameter is typically 2000 times smaller than the cell (10 //m). In non­

muscle cells actin comprises about 15% of the total protein content. Thousands of structural proteins can 

polymerize together into filaments, which can be long enough to span the entire cell (Alberts, B. et al., 

1994).

4.2.1 Focus

In this thesis, focus lies on modelling only the structural protein actin and microfilaments, see Fig.4.4. 

The cytoskeleton consists of massive numbers of proteins and it would not be feasible or useful to attempt 

to model all protein types. Each actin molecule is a single polypeptide 375 amino acids long that has 

a molecule of ATP tightly associated (ATP is the energy currency of the cell). Actin has been chosen 

over tubulin for two reasons. 1) The actin cortex exists at the cell’s periphery, as shown in Fig.4.1(a) 

and so can quickly alter the cell’s outer membrane morphology and function. Microtubules on the other 

hand are less dynamic; though they can still disassemble, they give fundamental structural support rather 

than executing quick morphological changes (Alberts, B. et al., 1994). 2) Actin, and not tubulin, has 

been indicated in diatom valve formation (Pickett-Heaps, 1998) so further study and inclusion of an 

actin based model could give greater insight, not only into algorithmic methods for MP for artificial 

applications but also into the process as performed in the chosen model organisms: the diatoms.
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Figure 4.4: Human fetal lung fibroblast cell, actin filaments shown in red using fluorescence staining, 

nucleus in blue. Reproduced with permission from http://www.olympusmicro.com/primer/techniques/- 

fluorescence/gallery/cells/mrc5/mrc5cellslarge3.html

4.2.2 Dynamics

Actin filaments are highly dynamic, they can be assembled in one place and then rapidly disassembled, 

ready to be rebuilt in a more advantageous position. Filaments rarely occur in isolation but rather in 

much stronger cross-linked aggregates or bundles. The arrangement and behaviours of filaments are 

regulated and controlled by the cell through the strategic release, distribution and removal of accessory 

proteins. Barbieri (2001) concluded that accessory proteins are ‘true adaptors’ for this flexible role in 

regulating the cytoskeleton. There are a multitude of accessory proteins, see Fig.4.5(a); their combined 

use results in a complex system of cooperative/competitive interactions, generating a rich diversity of 

filament behaviours and structures. See Fig.4.5(b).

http://www.olympusmicro.com/primer/techniques/-
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Filaments are very efficient; actin monomers are recycled through them due to ATP loss, and 

through interactions with accessory proteins, see Fig.4.6. The activation and binding of actin to a fila­

ment and then the subsequent loss of affinity for the filament provide both the ‘on’ and ‘off’ mechanisms 

needed for filament assembly and disassembly, which are tweaked and controlled by the accessory pro­

teins to perfectly suit a given situation. Without loss of affinity, filaments would extend indefinitely and 

monopolize all available actin, and space, inside the cell. For balanced, productive, behaviour, disasso- 

ciation must be considered with as much importance as the binding events themselves.

4.2.3 Environment and the Transduction Pathway

Accessory proteins regulate cytoskeletal filaments, but how are they controlled? Accessory protein levels 

are ultimately controlled by signals from the environment. There are three ways for the environment to 

affect cytoskeletal behaviour: 1 ) direct effects on local accessory protein levels; 2 ) direct effects on 

structural proteins. 3) indirectly via effects on genetic regulation and protein synthesis. Focus will 

centre on mechanisms involving the first two types, which involve signals from the environment filtering 

through into the cell via the Transduction Pathway (TP), a complex cascade of reactions among specific 

proteins, triggered by a change at the cell’s periphery.

The flow diagram shown in Fig. 4.7 shows the generalized sequence of events as a cell processes 

environmental information and then morphologically responds via TP signalling of the cytoskeleton. 

Many upstream pathways in the TP are multifunctional and can be triggered by different receptors; 

PIP2, Rho, WASP and Cdc42 are indicated as involved in many different responses. Focus will lie on 

just two to keep things simple.

PIP2 (phosphatidylinositol, 4,5-bisphosphate) is a membrane-bound protein complex activated 

when a signal is detected by certain membrane receptors. Profilin, the cytoskeletal ‘activating’ acces­

sory protein binds to inactive PIP2 and is released upon PIP2 activation. Deactivation of PIP2 causes 

profilin in the vicinity to re-bind to it (Bray, 2001). Thus it can be seen how the environment, through 

the manipulation of PIP2 has a direct route to affect actin polymerization.

The WASP (Wiscott-Aldrich Syndrome Protein) family are membrane-associated, proline-rich pro­

teins. When activated by a receptor they undergo structural changes, resulting in the exposure of a 

previously hidden binding site for Arp2/3 and ATP-bound actin (i.e. profilactin) (Holt, M. R. and Koffer, 

A., 2001; Miki, H. and Takenawa, T., 2003). Once bound to WASP Arp2/3 also changes form, ‘acti­

vating it’ and exposing an actin-binding site, meaning it is ready to start a filament. WASP and PIP2 

are crucial, and impressive, for their funneling of structural proteins to the exact, correct locality in the 

cell, and activating them, such that they will polymerize into filaments and make needed changes to the 

membrane shape (Holt, M. R. and Koffer, A., 2001).

It is worth noting that ‘sensors’ in living systems need not be membrane embedded, specific recep­

tors. Changes can be triggered by indirect links to external influences. For example, lowered nutrient 

or light intake can result in lowered overall energy causing changes in behaviour, though there are no 

‘membrane sensors’ for nutrient levels, the cell is still able to respond to environmental conditions. Cells 

have a variety of perceptual pathways at their disposal, they needn’t have evolved a specific receptor for
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Figure 4.5: (a) A selection of cytoskeletal accessory proteins, shown in black, affecting actin fila­

ment behaviour. From left to right: filamin cross-links filaments; fimbrin bundles filaments in parallel; 

tropomyosin strengthens filaments; gelosin is a capping protein, blocking further addition to the plus 

end; cofilin is a severing protein; myosin I is a motor protein, its head domain ‘walks’ along the filament 

towards the plus end. Myosin I can have either a filament, vesicle or cell membrane attached to its tail do­

main causing contractile motion or transporting cellular material around the cell along the actin filament 

network, (b) Actin filaments combine into higher level structures, which can cause local protrusions of 

the membrane, regulated by accessory proteins. Here long parallel bundles of filaments are held together 

by fimbrin and a-actinin which hold them apart at different distances. Erzin, a plasmalemma protein, 

anchors the filament bundles to the membrane as they extend outwards. Reproduced from (Alberts, B. 

et al., 1994).
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Figure 4.6: Actin monomers are recycled through filaments in the following stages. (1) Profilin (P) 

facilitates the reattachment of a phosphate group in ADP-bound actin (monomers shown in white) giving 

ATP-bound actin (monomers shown in grey). Profilin and ATP-bound actin together form the complex: 

profilactin. (2) Profilactin can bind onto the plus end of an actin filament, releasing the profilin back 

into the system in the process. (3) Whilst in the filament ATP-bound actin hydrolyzes to ADP-bound 

actin (the energy is used up by binding to the filament). (4) Both ADP-bound actin and arp2/3 (the 

macromolecule needed to start the actin filament) lose affinity for the filament and disassociate, only from 

the minus end. (5) Cofilin (C) binds to ADP-bound actin and increases its likelihood of disassociating 

from the filament. (6) Thymosin (T) then binds to the newly removed ADP-bound actin, rendering it 

unable to bind back onto a filament (sequestering) until profilin releases it and begins the cycle again. 

Adapted from (Holt, M. R. and Koffer, A., 2001).

each environmental factor.

4.3 The Cellanimat: an overview
The Cellanimat is a prototype computational model designed for the investigation of MP capable systems 

and based wholly on the biology presented in the previous section. It will be thoroughly introduced in 

this overview section. Rule-by-rule instructions for re-implementation are detailed in the next section. 

It is ostensibly an agent-based model, though some aspects are modeled within Cellular Automata rules 

for efficiency. It can be thought of as a game where ‘agents play on a CA board'. The major component 

facilitating MP within the Cellanimat is the Artificial Cytoskeleton (ArtCyto). However, all components 

were seen as minimally necessary to generate MP (see Section 6.2 for a full investigation into this claim).

The name ‘Cellanimat’ derives from the model’s adaptive abilities based on cellular mechanisms 

(literally cell - animat). However, it holds interesting new properties differing from the traditional animat 

(described in Chapter 2) due to the unique cell-based design, where having a separate controller to the 

body no longer holds meaning. Instead, the ArtCyto can be seen to play dual roles — there is less 

modularity in function, see Fig.4.8.

This observation is consistent with it being a highly biologically inspired model, rather than pre­

dominantly human-designed, as discussed by Paul in (Paul, 2004). Paul highlighted the following differ­

ence between human design and biological architectures: there is a human tendency to design compo-
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TP

Receptor Signal

shapecell

Figure 4.7: Flow diagram showing how a cell can morphologically adapt to environmental changes 

through TP signals affecting the cytoskeleton. When a receptor in the plasma membrane is triggered 

by the environment, membrane-associated TP proteins are affected. Changes in TP reactions affect the 

behaviour of cytoskeletal accessory proteins (e.g. profilin) which in turn affect structural proteins and, 

ultimately, filament dynamics. Rearrangements in the filamentous structures within the cell can alter cell 

membrane shape. Any alteration in cell membrane shape could then cause the environmental inputs to 

receptors to change.

nents with single functions whereas in Nature much duality in function is seen, where single components 

play many roles.

The Cellanimat is intended as a system capable of ‘morphological computation’, as introduced 

by Paul, and the duality inherent in the model is the mechanism by which this is possible — growth 

and decision making, movement or processing of external information can all be performed by the same 

subsystem of the model, allowing for greater computational weight — or indeed all computational weight 

— to be taken by the morphology rather than a separate controller.

The Cellanimat is designed as an implicit developmental algorithm, as described in Section 2.3.1. 

The progress of growth depends on the self-organization of proteins together with the environment rather 

than following an explicitly defined route. It should in this way, be capable of generating a variety of 

changing forms.

The Cellanimat is a Dynamic Morphology for autonomous morphological design and adaptive be­

haviour. Morphology is determined at each time step through interaction with the environment. The 

Cellanimat is a dynamical hierarchy, modelling real cells at three levels: 1) the cell as a whole, in its 

environment; 2) the cells subsystem interactions (membrane, transduction pathway, cytoskeleton, cy­

toplasm); 3) each subsystem’s macromolecular interactions. The Cellanimat and its environment are 

implemented as a 3D voxellated world. It is an idealized model of Nature (partially inspired by artifi­

cial chemistry techniques (Hutton, 2002)and the Glazier and Graner cellular automata approach to cell 

modelling Glazier, J. A. and Graner, F. (1993)) that concentrates on the computational process of mor­

phological adaptation; macromolecular interactions in the Cellanimat are faithful to the biology but it is
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Figure 4.8: (a) Traditional animat architecture, where processing is performed by a separate module to 

the physical body, (b) Cellanimat architecture, where processing is performed by the body itself. The 

Cellanimat exhibits duality, the ArtCyto component performs both processing and effecting. Similarly 

the TP can be considered as bearing some processing responsibility along with sensor signalling.
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Subsystem Description

M Membrane; the Plasmalemma, the outer membrane of the Cellanimat

C Cytoplasm; contains concentration gradients of diffusing proteins

ArtCyto Artificial Cytoskeleton; consists of structural and accessory proteins

TP Transduction Pathway; consists of membrane-associated signalling proteins

Table 4.1: The subsystems of the Cellanimat.

Environment

(  ArtCyto

Cytoplasm

M embrane

Figure 4.9: Schematic of the Cellanimat’s nested subsystems generating environmentally driven mem­

brane shape change.

not an exact model of a cell.

4.3.1 Cellanimat subsystem overview

The Cellanimat is comprised of the four subsystems shown in Table 4.1 as interest focused on only those 

relevant to morphological plasticity. However, the Cellanimat is designed such that the incorporation of 

further subsystems would be possible. The subsystems themselves are comprised of smaller units, the 

Cellanimat’s macromolecules: modelled versions of lipids and proteins. The Cellanimat has fluidity; 

its component parts can move, interact, bind and change their state freely. The macromolecules inter­

act across subsystems, giving rise to interactions between subsystems at a higher level and observable 

changes in shape and behaviour of the Cellanimat as a whole.

The subsystems are nested: the ArtCyto exists within the Cytoplasm subsystem and the TP exists 

within the Membrane subsystem, see Fig.4.9 for a schematic. This is because in real cells the cytoskele­

ton resides within the cytoplasm and the TP proteins included in the prototype were all membrane-bound. 

It would however be possible to include TP proteins that exist within the Cytoplasm in future experiments 

by nesting the TP within both the Membrane and Cytoplasm subsystems.

The subsystems are only distinguishable due to the self-organization of the macromolecules they 

contain. No extra rules have been overlayed to differentiate between subsystems, the subsystems are 

merely a way of classing groups of macromolecules together, in terms of function and role, as they are 

in biology. The system as a whole works from the interaction of the macromolecules alone.
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4.3.2 Cellanimat macromolecule overview

The ArtCyto structural proteins are modelled as agents with a unique identity and internal knowledge 

(e.g. of their position, binding site activity); they are discussed in further detail in the next section. All 

other macromolecules are modelled within a Cellular Automaton. Further macromolecule types could be 

modelled as agents, for example if greater focus on their behaviour is required by a particular experiment. 

Agent numbers are set at creation and conserved.

All macromolecules (agents or CA) exist in single voxels and interact with their local Moore Neigh­

bours (MNs), see Appendix A for further explanation. All voxels have sub-states, indicating the presence 

and properties of macromolecules and, where appropriate, concentrations contained. For simplicity, all 

proteins have the same diffusion coefficients (i.e. move only to neighbours within a radius of one voxel 

in a single time step), this could easily be altered if it is known that specific proteins can diffuse faster.

4.3.3 The Environment-Phenotype Map

The Cellanimat model needed to be considered within a new framework as the unique developmental 

process at the heart of the model would be generated not through a conventional genotype to phenotype 

mapping (G-P map), but rather through interaction with the environment. Therefore the growth process 

is explained in terms of the Environment-Phenotype Map framework (E-P Map), novel to this thesis. 

Of course a G-P Map could include information exchange with the environment, but as discussed in 

Section 2.3 the majority of developmental algorithms to date are non-plastic, taking the genotype to 

phenotype map idea literally and not including any information from outside of the system. The E-P 

Map concept was developed in order to highlight the importance of environment-system interactions in 

generating morphologies, not just genetics. It also highlights the level of plasticity and mechanisms for 

morphological adaptation during the ‘lifetime’ of the system.

The E-P Map is a general framework for understanding and classifying MP in Dynamic Morpholo­

gies. It is based on, and extended from, the open L-system approach for plant-environment interactions 

and classifications of morpho-functional machines, described in (Mech, R. and Prusinkiewicz, P., 1996; 

Pfeifer, 2003). It was also inspired by Hogeweg (2002b) which focused on the interplay of many lower 

mechanisms to generate the overall morphogenesis mechanism. It considers the generation of form, and 

growth-related behaviours, in terms of the system’s structural coupling to the environment, rather than 

through purely internal processes. As such, a systematic measure of the DM environmental interface 

(the E-P Map) would not only provide a comprehensive framework for understanding and explaining 

morphogenesis mechanisms, but could help clarify, and indeed quantify, the level of embodiment of a 

system, as proposed by Quick, T. et al. (1999).

4.3.3.1 Formal definition

An E-P Map is a set comprised of distinct environment-phenotype interactions, or ‘EP functions’, whose 

competitive/cooperative combination within a specific environment can be used to explain observed 

morphological behaviours and structural changes in the system. Three possible types of EP function can 

be defined:
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• Type 1 : the effect of a global environmental factor on the whole morphological structure.

(e.g. gravity, temperature)

• ty p e  2 : the effect of a local environmental factor on part of the morphological structure.

(e.g. obstacles, gradients)

•  Type 3: the reciprocal effect on the environment of a morphological-structural change.

(e.g. depletion of environmental sources by uptake for growth)

We further classify an EP function as either passive or active: passive interactions do not cause or 

require the activation of new information-processing pathways in the DM. For example, a collision that 

simply blocks a DM’s growth (addition of connected sub-components) is a type 2-passive interaction. A 

collision that triggers sensor activation, resulting in new sub-component behaviours and connectivity, is 

a type 2 -active interaction.

4.3.4 Example: The Protrusions E-P Map

To aid discussion of the Cellanimat the ‘protrusions E-P Map’, used in the experiments described in 

subsequent chapters, will be introduced and used as an example. However, other E-P Maps could be im­

plemented by changing the rules of macromolecular interaction or their properties or by adding/removing 

macromolecules. The protrusions E-P Map closely models the first stage of chemotaxis, the formation 

of a protruding ‘leading edge’ facilitating movement of a cell towards a diffusing chemoattractant signal 

(Bray, 2001). Actin filaments, induced to assemble by the environmental signal, push out the membrane 

locally (creating the membrane protrusions). These protrusions change the cell’s overall morphology 

and behaviour, allowing it to move to the stimulus when combined with other stages of the processes (a 

fuller description of chemotaxis can be found in the next chapter). The protrusions E-P Map consists of 

the three EP functions below, which determine the Cellanimat’s morphology and behaviour at each time 

step.

•  EPi: ‘Filament formation’ type 2-active

•  EP 2 : ‘Collision’ type 2-passive

•  EP 3 : ‘Redistribution’ type 3-passive

See Fig. 4.10 for a schematic of EPi, the filament formation interaction and Fig. 4.11 for an 

overview of this in practice. EPi aims to model the environment-induced actin filament formation de­

scribed in the previous section, hence its classification as type 2 -active (local environmental factors

induce activity within the Cellanimat). EP2  defines a passive, local interaction where a solid object, such

as the environment boundary, will block filament-driven membrane expansions. EP3  allows filaments to 

push out the membrane through non-solid environmental factors, such as a chemical gradient. Instead 

of simply overwriting the environment’s contents that the membrane has extended into, the contents 

are redistributed to all environment state MN voxels, conserving environmental factor volumes. EP3  is 

therefore a type 3-passive function: the Cellanimat has a reciprocal affect on the environment.
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Figure 4.10: Filament formation EPi function from the protrusions E-P Map, abstracted from the bio­

logical pathway for fibroblast chemotaxis.
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Figure 4.11: Filament formation EPi function in practice.
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Macromolecule Subsystem Modelling scheme

Actin ArtCyto agent

Arp2/3 ArtCyto agent

Profilin ArtCyto CA concentration gradient

WASP TP CA state

PIP2 TP CA state

Receptors TP CA state

Table 4.2: The protein selection used in the Protrusions E-P Map example.

The protrusions E-P Map consists of a selection of just six proteins, see Table 4.2. The TP proteins 

only exist as CA state changes applied to the membrane voxels. Fuller descriptions of each macro­

molecule and its behaviours are given in the next section. In this example system, only one accessory 

protein (profilin) is used, which activates actin, allowing it to join on to a filament as previously dis­

cussed. The levels of profilin in the Cellanimat are raised and lowered by environmental interaction 

affecting PIP2 release/uptake. For simplicity, and to control variables, all other protein levels remain 

constant within the Cellanimat, i.e. Thymosin and Cofilin are realized by static parameters and attributes 

of actin agents only, as an ‘inactive state’ or loss of affinity parameter respectively.

Of course in real cells all protein levels constantly fluctuate in relation to the environment, recy­

cling, degrading or by genetic regulation. The protrusions E-P Map is used only as an example here; 

the Cellanimat could work with many different versions of this mapping, involving different protein se­

lections for the ArtCyto and TP, or indeed completely different E-P Maps such as internal transport of 

material in relation to external stimuli.

4.4 The Cellanimat: Rules of Play
Evaluation of the Cellanimat occurs in the order shown in Fig. 4.12, at the end of each evaluation the 

time step t (initially zero) is incremented and the evaluation repeats as desired. First the world is created, 

then, throughout the time steps each CA voxel and all agents are assessed and states are updated. Each 

stage of the Cellanimat algorithm will be fully described in the sections that follow. The Cellanimat 

was implemented as a 3D model in the experiments described in subsequent chapters (and published in 

(Bentley and Clack, 2004, 2005)), however, for simplicity here the 2D case will be described 1. Table 

4.3 contains all the threshold parameters for the protrusions E-P Map that will be used, and more fully 

described, throughout this model description.

These parameters, together with those shown in Table 4.4, constitute the genotype of the system, 

they are a small set of unchanging parameters whose predefined setting, along with specified environ­

mental factors, affect the course of growth as determined by the implicit interactions between proteins. 

Results from evolutionary experiments with these parameters are described in Chapter 6 ; it is clear that 

the size of the genotype is small, though it will be shown that it can be used in conjunction with the E-P

’For 3D, there are simply twenty-six Moore Neighbours (MNs), instead of eight, for macromolecules to interact with.
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CREATION (if Timestep=0):

-  C l) Initialize C. M and E  voxels

-  C2) Initialize T P

-  G3) Initialize ArtCyfcci

• ASSESSM ENT (if Tiniestep>0)

-  CA rules (synchronous):
* CA1) update Environment
* CA2) update TP
* CA3) Diffusion
* CA4) Membrane-tidy

-  Aetin agent rules (asynchronous):
* A l) assess Moore neighbours 
■* A2) affect Moore neighbours
* A3) movement

-  Nucleator agent rules (asynchronous):
*  N l)  assess Moore neighbours
* N2) affect Moore neighbours
* N3) movement

y

Figure 4.12: The Cellanimat model evaluation performed at each time step. Details of each rule given in 

text.

Map to generate complex, adaptive forms and behaviours.

4.4.1 Creation

At the start of a run, the Cellanimat and its environment need to be initialized. A variety of initial shapes 

can be assumed; for example in the experiments described in the next chapter a 3D cylindrical form is 

used. In this description for simplicity a 2D square is used. See Table 4.4 for details of the parameters 

needed in creation.

C l) Initialize C, M and E voxels

Creation rule Cl initializes the basic E (environment), C (cytoplasm) and M (membrane) voxels. 

The environment, with size (columns, rows), has all voxels set to voxel-state E (environment). The Cel­

lanimat Cytoplasm voxels are then initiated as defined by the the L, W, and position (x,y) parameters. 

The membrane is initialized to satisfy the simple rule that no cytoplasm can be exposed to the environ­

ment in any of its MNs, see Equation 4.1. Note that the total length and width of the Cellanimat, once 

the membrane has been initialized, is L+2, W+2.

WE, if 3 C e M N ,  E - > M  (4.1)

E, M and C voxels had type specific substates as detailed in Fig.4.14. The stored values in the sub­

states reflected the presence and properties of macromolecules which altered through the update rules
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Acronym Description

RECth concentration of stimulant in environment 

needed to activate a receptor

CHEMth diffusion rate of chemoattractant

PPlume plume of profilin released by PIP2

Pth diffusion rate of profilin

PAth Concentration of profilin needed 

to change actin state (SA —► PA)

Precycle amount of profilin bound and released 

by actin in the rules PrUptake and PrRelease

FTH time an agent must have spent in a filament 

before it starts to lose affinity

FINT time interval at which a filamentous agent’s 

affinity for a filament decreases

Table 4.3: Cellanimat threshold parameters.

Parameter Definition

(columns, rows) size of environment

(x,y) cellanimat centre

L cytoplasm length

W cytoplasm width

#A no. of Actin agents

#N no. of Nucleator agents

P(REC) probability of M voxel containing a receptor

chemPlume amount of chemoattractant initialized in a voxel

Table 4.4: 2D Cellanimat creation parameters.
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yc KEY
■  M ----------

|  Stimulant 
|j §  Activator 

^  Actin 

Q  Nucleator 

w  Receptor (Inactive) 

^  Receptor (active) 

/V  PIP2 

■■ WASP

(a) (b ) (c )

Figure 4.13: (a) Creation rule Cl initializes the basic E (environment), C (cytoplasm) and M (membrane) 

voxels, a small plume area of stimulant has also been initialized in the environment, (b) Creation after 

rules C2 and C3: the proteins residing within the three voxel types are shown, (c) Key for all similar 

diagrams.

described in the coming assessment section. For a specific experiment various things could be initialized 

in the environment, for example, a chemoattractant plume. A plume of set amount (chemPlume) could 

be initialized in a single voxel, or a group of voxels, by setting E.chemo in each to chemPlume. See Fig. 

4.13(a) and 4.13(c) for an example view of the Cellanimat’s world after stage Cl has been executed.

C2) Initialize TP

3 Voxel types Sub-states

M em brane
-TP

-tec '0.1 or 2) 
-WASP ( O o r ti  
-PtP2fO  or 1j

Cytoplasm
-ArtCyto

-actin (int) 
-nucleator (int) 
-profilin (float)

Env -chem o (float)

Figure 4.14: Voxel types and substates. E.g. if M.rec = 1 then a receptor is present, if M.rec=2 then the 

receptor is active; if C.actin=4 then the actin agent with identifier 4 resides in that voxel. If no agent is 

present then C.actin = #A+1 and C.nucleator=#N+l.

In the protrusions E-P Map only the front and back end TP proteins are modelled, i.e. those that 

are directly affected by the environment (Receptors) and those that directly affect the ArtCyto (PIP2 

and WASP). This greatly improved model efficiency. The voxel substate M.rec could be in one of three 

settings: absent (0), inactive (1) or active (2). All membrane voxels had the same probability, P(REC) of 

containing a receptor (M.rec was set to 1 with probability P(REC)).

PIP2 and WASP are represented by the substates M.PIP2 and M.WASP respectively, they could be 

in two possible states: active (1) or inactive (0). In creation both substates were initialized as zero for all 

M voxels.
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Altering P(REC) can have a marked affect on Cellanimat performance, more fully investigated in 

Chapter 6 , as the number of receptors relates to the scale of reaction that can be triggered. In the pro­

trusions E-P Map receptors have no movement across membrane surfaces directly, though distribution 

does change as the membrane shape and size changes during growth.

C3) Initialize ArtCyto:

In the protrusions E-P Map the ArtCyto consists simply of the structural agents actin and nucleators 

(representing the nucleator Arp2/3) and the accessory protein profilin (an activator). Only one agent was 

allowed per voxel and profilin could only diffuse through ‘empty’ C voxels — not containing an agent. 

C.profilin was initialized as zero for all C voxels.

Agents are initialized in randomly chosen C voxels to mimic the widely dispersed synthesis of 

proteins by the Endoplasmic Reticulum, which extends throughout the cell. Agent internal knowledge 

initial settings are given in Table 4.5.

Actin agents cycle through the states SA, PA, WA and FA representing their binding activity. SA is 

the inactive state, representing sequestering by thymosin; they are unable to form into filaments when in 

this state. PA is the active state, when the agent has bound to profilin. The WA state is held when active 

actin binds to WASP and FA when it joins onto a filament. It can then fall off from the filament returning 

to state SA. The state changes are fully described in the next subsection. As profilin levels are initialized 

as zero in all voxels actin agents are initialized in the ‘inhibited’ state SA.

Nucleator agents play the role of the Arp2/3 complex from real cells. They cycle through the states 

N, WN and FN. They are ‘inactive’ (unable to start filaments) in state N. WN is the active state, when 

bound to WASP. FN state nucleators have nucleated a filament and are still bound to it. They then fall 

off the filament and return to stated N. As WASP are all initialized as inactive all nucleators begin in the 

inactive state N. See Fig. 4.13(b) for an example view when stages C2 and C3 have been executed.

4.4.2 Assessment: CA Rules

First, all components modelled within the CA are evaluated synchronously then the agents are each 

updated in turn (asynchronous updating).

CA1) Assess Environment

if V.P — D th  +  5, where <5 > 0 

then V.P D th , and

V V  e M N , V.P := V.P  +  f

Depending on the environment’s contents, different rules can be implemented here. For a diffusing 

chemoattractant, or ‘stimulant’, a method similar to Miller’s described in Miller (2003) is used. In 

their CA model of diffusion all voxels in the correct state are evaluated at each time step, according 

to a specified diffusion threshold and initial plume value. The equation above shows this for a general 

diffusible protein P , within voxel V, with diffusion threshold Dth and x  being the number of MNs also 

in state V.
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Agent internal state Knowledge contained Initial setting

Ai.(x, y) x,y coordinate position random

Ai.minusSite identifier of agent bound to at minus site none

Aj.plusSite identifier of agent bound to at plus site none

Ai. orientation orientation of binding sites none

Aj.Fcounter time spent in current filament 0

state current state SA

N U x, y) x,y coordinate random

iVi.bindingSite identifier of actin bound at binding site none

Ni. branch if forming a branch none

iVj.Fcounter time spent in current filament 0

state current state N

Table 4.5: Agent internal knowledge attributes and initial settings for actin agents (A) and nucleators 

(N). i is the agent’s unique identifier.

CA2) Assess TP:

Environmental factors, such as the diffusing stimulant, can trigger the Cellanimat’s receptors to 

activate. Fig.4.15 shows the exact rules for receptor, WASP and PIP2 state changes in pseudo code; 

every membrane voxel is evaluated using this rule in a time step. PIP2 when activated, and only upon 

activation, releases a plume of profilin (of size PPlume) into each neighbouring C voxel not containing 

an agent.

If no active receptor exists in an active WASP’s MNs, the WASP is deactivated within the 

Membrane-tidy function (rule CA4 described later). Without such a tidy-up function WASP could be 

left stranded when receptors are moved around during the agent rule ‘Mchange’.

As described in the previous section, profilin binds to inactive PIP2 and is released upon its acti­

vation. So in the model, at each time step, if M.PIP2=0 then all neighbouring profilin is removed. The 

removal of profilin is an important feature of real cells, it allows the cell to concentrate cytoskeletal 

activity into just the area needed, rather than activity being triggered throughout the cell as profilin dif­

fuses. The chain of events in the TP, and subsequent regulation of profilin levels allows the environment 

to ‘contact’ the ArtCyto and trigger shape changes. Figure 4.16(a) shows the activation of TP receptors 

in the example Cellanimat shown in Fig.4.13(b), resulting in local state changes.

CA3) Diffusion

Any accessory proteins modelled as concentration gradients within the Cellanimat are diffused 

within this stage of the algorithm. In the protrusions E-P Map only profilin is present as a concentration 

gradient, its diffusion is calculated using the method as described in the CA1 rule above. Figure 4.16(b)
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M.REC & M.PIP2 = active ' 
VMMNs , M.WASP = active

M.REC & M.PIP2 = inactive 
VMMNs , M.WASP = inactive

If M.REC !=absent:
VMs

- If SE.chemo > RECth

- else

Figure 4.15: pseudo code for rule CA2) environmental control of TP activations, 

shows the sample Cellanimat after profilin diffusion has taken place.

CA4) Membrane-tidy

At every time step a ‘tidy up’ function is implemented for the following two reasons.

1. To maintain the membrane as a continuous barrier, with single-voxel thickness, between the E and 

C voxels. Any membrane voxel that does not have both C and E MNs is overwritten as state E, see 

Fig. 4.22(b). This is a very simple model of membrane lipid assimilation and self-organization, 

which in reality is due to the progression towards an overall low-energy state by lipids possessing 

both hydrophilic head and hydrophobic tail domains as discussed previously.

2. To maintain integrity in the WASP activation system, an M voxel will have WASP deactivated if no 

active receptor can be found in its MNs. This is implemented because receptors can be overwritten 

and ‘moved’ during the agent rule ‘Mchange’ (described in Section 4.4.3) and so active WASP 

would otherwise become stranded.

4.4.3 Assessment: actin agent rules (asynchronous)

When a protein agent binds to another its own state changes, but it also changes the state (and possibly the 

position) of the other protein involved; this means that when a single agent is being assessed, fundamental 

changes can occur in another agent (and its local environment) before or after (but not during) the other 

agent’s turn to be assessed, thus the agents update asynchronously. All agents are assessed in turn, in 

numerical order, based on their identifiers. There are three stages to agent assessment:

1. Assess Moore neighbours consists of state and attribute changes in the agent resulting from as­

sessment of the current local neighbourhood. The agent, and also a neighbour agent if two are 

binding together, change state and update their internal attributes.

2. Affect Moore neighbours involves changes made to the local CA environment by the agent. Rules 

for the new or persisting state are implemented which may alter the local environment.

3. Movement finally, the new agent position is calculated based on its current state.
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I

(c) (d)

(e) (f)

Figure 4.16: refer to Key in Fig 4.13(c). (a) Rule CA2 ‘Assess TP’: two receptors neighbouring the 

environmental stimulant have become activated. WASP and PIP2 have subsequently also been activated 

and PIP2 has released profilin. (b) Rule CA3 ‘Diffusion’: profilin has diffused into nearby empty C 

voxels, (c) ‘Actin agent rules’: two actin agents have changed state to PA as they encountered local 

profilin levels over the PAth threshold (rule Al). Amount ‘Precycle’ of profilin has been removed from 

their MNs (rule A2). All SA and PA state actin agents move to a randomly chosen MN (rule A3), (d) The 

bottom N state nucleator has changed state to WN and pushed out the local membrane (Mchange rule), 

as it had WASP in its MNs (rule Nl). WN agents cannot move, the other N state agents move randomly 

(rule A3), (e) A few time steps later it can be seen that random movement has landed one of the PA state 

actin agents next to WASP, causing it to change state to WA. (f) The WN and WA have bound together 

forming a filament - their states change respectively to FN and F+A. This triggered the Mchange rule, 

where the local membrane is again pushed out (rule A2). A new receptor and WASP distribution was 

initiated and the stimulator in the environment has been redistributed (EP3 ).
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Figure 4.17: Actin agent state changes, reflecting the macromolecule the agent is bound to, see Table 4.6 

for acronyms, here Pr means C.profilin and W means active WASP. State changes can only occur in this 

sequence, reflecting the biological case. Certain state changes provoke a reciprocal affect on the agent’s 

environment, these are shown in boxes and described in Section 4.4.3.

Acronym Protein In Voxel movement

SA Sequestered-actin (inactive) C RM

PA active actin (Profilin bound) C RM

WA active actin (WASP bound) c WM

F+A Filamentous-actin (+site free) c None

F A Filamentous-actin (-site free) c None

FA Filamentous-actin (fully bound) c None

N Nucleator (inactive) c RM

WN active Nucleator (WASP bound) c None

FN Filamentous-nucleator c None

Profilin activator accessory protein (Profilin) c Diffusion

WASP WASP M None

PIP2 PIP2 M None

Table 4.6: Cellanimat protein Acronym descriptions, the voxel type they belong to and their types of 

movement RM denotes random movement, WM - WASP-bound movement described in text.
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A1) Assess Moore Neighbours

Agents first assess the contents of their MNs and change state if necessary. The local rules for 

agent state changes are shown in Fig.4.17. Each state change represents a change in connectivity of 

components, the forming of new macromolecules, and so agent attributes are updated to reflect binding 

changes.

Actin agents are initialized as sequestered (SA - bound to inhibitor). When the sum of profilin in an 

SA agent’s MNs exceeds the threshold PAth the agent’s state changes to PA, as if it has bound to profilin 

and become active. Actin is restricted from joining onto a filament in the Cellanimat (becoming FA) 

until it has first bound to WASP (WA), mimicking the WASP related funnelling of structural proteins to 

the membrane, in real cells, see Figs 4.16(e) and (f).

A filament is started when a WA agent detects a WN nucleator in its MNs, i.e. when WASP has 

brought an active nucleator and an active actin to the same location, close to the source of stimulation by 

the environment. See Figs.4.18(a) & 4.16(e). The cycling of actin through filaments is characterized by 

the FA substates, full details shown in Fig.4.19. F+A identifies the agent at the plus end of a filament, 

that has its plusSite (see Table 4.5) free. Fig.4.18(a) shows that the first actin agent in a filament is 

assigned this state, signifying to neighbouring WA actin that they can bind to it, joining the filament, 

see Fig.4.18(b). To generate only straight, rigid filaments, when agents bind together their orientation 

attribute is set, maintaining the direction of growth. Fig. 4.21 shows the set orientation function.

State F~A indicates the agent is at a filament’s minus end due to the nucleator, or actin agent, 

originally bound to its minusSite disassociating, see Fig.4.20. An agent in this state has its minusSite 

free and is next to disassociate from that filament. When actin disassociates from a filament it returns 

to the inactive, sequestered state SA. Disassociation, or ‘Loss of affinity’ is implemented as a simple 

probabilistic function, P(LOSS), which increases with time, rather than directly modelling ATP-ADP 

hydrolysis. Increasing P(LOSS) is akin to increasing levels of a severing protein, such as cofilin. As 

P(LOSS) increases average filament length decreases. When an actin agent is in any of the FA substates 

its internal filament counter (Fcounter) increments with each time step spent in the filament. When, and 

only when, an actin agent is in state F~ A can it disassociate. When A*.Fcounter > FTH the probability 

of disassociation is activated and increases with time, inline with the set interval FINT, as shown in 

Equation 4.2.

A2) Affect Moore Neighbours

Certain agent state changes, or binding events, effect important changes back onto the agent’s local 

environment. Fig.4.17 shows when the following rules (shown in boxes) are implemented.

PrUptake: This rule is called when an actin agent is activated by profilin. A small amount of 

profilin (less than or equal to Precycle) is removed from the system, as if it has actually bound to the 

agent. Specifically one random C state MN voxel is chosen and its profilin content is removed. If

A, .Fcounter 
iooxFINT ’ if Ai.Fcounter > F T H \

P(LOSS)
otherwise.

(4.2)
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Starting a filament

mlnusSte = empty 
ptusSie = empty 
orientation = o 
Fcounter = 0

Foourjler* 0

minusSite =  k 
plusSrte = em pty 
orientation =  3 
Fcounter = 0
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(a)

Joining a filament

m nLESite = k  
plusSite = em pty 
orientation = 3 
Fcounter = 5

minusSite = empty 
plusSite = empty 
crientaicn = 0 
Fcourter = 0

bindmgStre « J 
Fcounter ■ 5

minusSite = k 
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orientation =  3 
Fcounter = 5

minusSite = j  
plusSite = em pty  |_  
orientatfon =  3 
Fcounter = 0

Bnangste = / 
Fcounter 5

(b)

Figure 4.18: Agent state and attribute changes during filament formation. Actin agents shown as white 

circles, nucleators shown in grey. When a state change occurs, agent attributes are overwritten, ensuring 

agents bind to the correct number of neighbours and that the neighbour knows which agent they are bound 

to, eliminating incorrect disassociation events. Orientation values are obtained by the ‘set orientation’ 

function, detailed in Fig.4.21.
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Figure 4.19: As Actin agents have two actin-binding sites, the FA state can be further divided into the 

three states shown. This extra F state change sequence models the polarity of filaments, so that new 

agents join onto only the filament’s plus end and fall off at the minus end. An agent can go straight 

from F+A to F - A if it joined a filament and loses affinity before another agent had time to join onto its 

plusSite.

Losing affinity
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orientation = 3 
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orientation = 3 
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FcaurtarscO

Figure 4.20: Agent state and attribute changes during loss of affinity from the filament’s minus end. 

Actin agents shown as white circles, nucleators shown in grey.
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Figure 4.21: The actin agent’s ‘orientation’ attribute (A*.orientation) denotes the orientation of binding 

sites. Orientation is set when binding to another agent. If an actin agent A* in state WA (shown in black 

in the central voxel) is next to a nucleator WN agent (top left) then they bind. The MNs of the binding 

agent are numbered with position values (P v ) clockwise in the way shown. A j. orientation is set to zero 

(the nucleator’s Pv). For a further actin agent Aj  to bind to the forming filament its position value Pv, 

from the perspective of Ai must satisfy: P v =& Ai.orientation + 4; here, its P v  is 4 so the condition is 

satisfied and the two bind together. In binding agent A., .orientation is set to zero, as from its perspective 

this is Aj’s Pv.

C.profilin > Precycle then only the amount Precycle is taken.

PrRelease: This rule represents the release of profilin, when active actin (state WA) binds onto the 

end of a filament. When a WA agent changes state to FA a random C state MN is chosen to receive 

the extra Precycle amount of profilin. Combined with the PrUptake rule this simulates the recycling of 

profilin, at the leading edge, observed in real cells. Profilin is hindered from diffusing too far from the 

membrane by this recycling, thus reinforcing the local activation of actin, with no wasted effort too far

from the desired site (Holt, M. R. and Koffer, A., 2001).

ClearContents: This rule represents the movement of all profilin from a voxel as an agent moves 

into it, so that profilin concentrations are conserved during agent movements, see rule A3 ‘movement’

below. The contents are distributed fairly to all C MNs not containing an agent. This rule adds realism

to the diffusion of profilin as the number of other Cellanimat proteins moving will further affect profilin 

distribution.

Mchange: This rule occurs in two stages, to allow a filament to alter membrane shape whilst

conserving Cellanimat cytoplasm volume, see Figs.4.16(d) & 4.16(f).

VM <E M N ,  M —> C (4.3)

Vnew C, if 3E e  M N ,  E -> M (4.4)

1. Push-out: as an agent changes from WA to F+A the membrane is moved outwards locally, using 

the exact rule detailed in Equation 4.3 above. M voxels newly generated by this rule have prob­

ability P(REC) of containing a receptor, as in creation rule C2. This represents the migration of 

receptors laterally on the membrane as membrane shape changes, and also the production of new 

receptors during a cell’s lifetime.

2. Contract: To conserve cytoplasm volume a crude contraction function is used, modelling ba-
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(a) (b)

Figure 4.22: (a) for each new cytoplasm voxel created by the push-out stage of the Mchange rule, the 

furthest C voxel is simultaneously ‘contracted’ (changed to an M voxel) to conserve cytoplasm volume. 

This leaves the membrane with areas of higher density, (b) Membrane thickness is kept constant by the 

assimilation of surplus M voxels back into the uniform thickness, using the membrane-tidy rule (rule 

CA3).

sic surface tension properties. In chemotaxis and phagocytosis complicated cytoskeleton-powered 

mechanisms control contraction at the rear of the cell which were beyond the scope of the model 

and experiments performed so far. The contract rule does the following: for each new C voxel 

created during push-out, the furthest C voxel not containing an agent in a filamentous state (dC) is 

found. If dC contains profilin, then the ClearContents function is called to redistribute it. If dC con­

tains an agent, that agent is moved to a randomly chosen MN; if no free MN exists, the agent would 

be re-initialized in a randomly chosen free C voxel, representing the decay and re-production of 

proteins. Once cleared of its contents dC is then changed to state M as if the membrane has pulled 

into the Cellanimat at that point, see Fig.4.22(a).

A3) movement.

There are different forms of movement associated with each state, shown in Table 4.6.

• Random movement (RM): the agent has (arbitrarily) ten tries to randomly pick a free C MN to 

move to, otherwise it remains still. The ClearContents rule is called upon a successful move. The 

new C voxel acquires the agent’s identifier, the agent’s position data is updated (actin.(x,y)) and 

the old C.agent substate is reset to empty.

• WASP Movement (WM): the biological concept of ‘recruitment’ of proteins, to a specific protein 

such as WASP, is modelled as follows: an agent in state WA can only move such that a WASP 

is still in its MNs. If there is no WASP MN, e.g. if the adjacent WASP has deactivated, then 

actin.state changes back to PA with random movement.
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Figure 4.23: Nucleator agent state change rules. W stands for active WASP, MN r=2 stands for radius 2 

Moore neighbourhood.

4.4.4 Assessment: Nucleator Agent Rules

N1) Assess Moore neighbours

Figure 4.23 shows the nucleator state change rules. Nucleator agents are active only when bound to 

WASP (WN). When active they are able to start a filament, if a similarly active actin agent is present to 

bind to. When an actin agent binds to an active nucleator its state changes to FN and other attributes are 

overwritten as in Fig.4.18(a). N changes to WN if there is an active WASP in its MNs. To allow room 

for actin agents, bound to WASP at the membrane, to move in front of the nucleator and start a filament 

the Mchange rule is called here and the membrane is pushed out locally, whilst contracting at the back. 

See Fig.4.16(d). WN agents return to state N if an active WASP can no longer be found in its radius 2 

MNs (given that the Mchange causes the WASP to move out to the radius 2 MNs this is allowed to still 

activate it). A nucleator in state WN can become state FN if a WA state actin agent is present in its MNs, 

see Figs.4.16(e) & 4.16(f). The WA agent then also changes state (to FA) and the two agents, now bound 

together, can no longer move. With probability P(LOSS) the state FN agent will disassociate from the 

FA agent and return to the inactive, unbound state N, shown in Fig.4.20.

Branching: nucleator agents in state N and not already ‘stuck’ to a filament, check their MNs for 

a filament to stick to in order to form a branch, as observed in real cell and described in section 4.2. 

If an FA state actin agent exists in its MNs, bound to another FA agent, then the nucleator changes its 

N.branch state from zero to one and abstains from random movement for one turn. This gives it more 

of a chance to form a filament next to another in a branch. If it does not nucleate a branch in this next 

time step then it returns to random movement and tries elsewhere. This avoids nucleators becoming 

permanently stuck in unviable positions.

N2: affect Moore neighbours

In the protrusions E-P Map nucleators could only have the effect on their environment of redis­

tributing the profilin gradient during movement, through the ClearContents rule as described previously 

in Section 4.4.3.

N3: movement

Table 4.6 shows the type of movement associated with each nucleator state. The movement types



4.5. Pseudo code overview 87

are described in Section 4.4.3. See Figs. 4.16(d) and 4.16(f) for examples of these rules in situ.

4.5 Pseudo code overview
In this section a brief overview of the Cellanimat algorithm is given, as described above.

• CREATION

-  C l) Initialize C, M and E voxels

* set all voxels to state E

* set voxels within length L, width W centred on (x,y) to state C

* set all C voxels with E neighbours to state M

-  C2) Initialize TP in M state voxels

* initialize an inactive receptor with probability P(REC) otherwise set to none present

* set WASP and PIP2 to zero (inactive) in all M voxels

-  C3) Initialize ArtCyto in C state voxels

* initialize #A actin agents in random positions (in state SA)

* initialize #N nucleator agents in random positions (in state N)

* set profilin level to zero in all C voxels

• ASSESSMENT

-  CA Rules (synchronous)

* CA1) Update environment (if voxel is state E)

• diffuse excess chemoattractant to E state MNs

* CA2) Update TP (if voxel is state M)

• if sufficient stimulus in E state MNs and voxel contains a receptor: activate receptor 

and PIP2. Activate WASP in all M MNs

• otherwise: deactivate receptor and PIP2. deactivate WASP in all M MNs

* CA3) Diffusion (if voxel is state C)

• diffuse excess profilin to C state MNs

* CA4) Membrane-tidy (if voxel is state M)

• change state to E if does not form part of minimal barrier (does not have both E and 

C MNs)

• deactivate WASP if no active receptor in MNs

-  Actin agent rules (asynchronous)

* A l) Assess Moore neighbours

• SA actin: change to PA if sufficient profilin,

• PA actin: change to WA actin if 3 WASP MN
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• WA actin: change to FA actin if 3 an active nucleator or F+A in MNs. Or change 

back to PA if no WASP in MNs

• FA actin: change to SA with probability P(LOSS)

* A2) Affect Moore neighbours

• PrUptake: as SA changes to PA remove amount ‘Precycle’ of profilin from one C 

state MN

• PrRelease: as WA changes to FA release amount ‘Precycle’ to one C state MN

• ClearContents (conserve profilin): distribute profilin contents of voxel to all C state 

MNs not containing an agent, before moving into it.

• Mchange (as WA changes to FA): 1) Push-out (filopodia extension), overwrite all 

M state MNs to C, overwrite all E MNs, for each new C voxel, to state M; 2) Con­

tract (conserve cytoplasm), for each new C voxel created during push-out, overwrite 

furthest C voxel to state M.

* A3) Movement

• Random movement: SA and PA agents try ten times to randomly pick an empty C 

MN to move to.

• WASP movement: WA agents can only move if the new voxel has a WASP MN

-  Nucleator agent rules (asynchronous)

-  N l) Assess Moore neighbours

* N: change to WN if 3 WASP MN

* WN: change to N if no WASP in radius 2 MNs. Change to FN if 3 WA in MNs

* FN: change to N with probability P(LOSS)

-  N2) Affect Moore neighbours

* ClearContents (conserve profilin): distribute profilin contents of voxel to all C state MNs 

not containing an agent, before moving into it.

-  N3) Movement

* state N agents perform random movement

4.6 Summary
In this chapter basic cell biology and the cytoskeleton have been introduced. The Cellanimat, powered 

by the Artificial Cytoskeleton, has been presented in detail as a model addressing Objective Two of 

this thesis. It is a loyal yet abstracted model of the cytoskeleton within a cell generating morphological 

plasticity to the environment. Due to the many local rule interactions of the cytoskeleton that have been 

modelled it is hypothesized to be capable of powering a similar level of morphological plasticity in the 

Cellanimat to real cells. The aim was, through careful close modelling, to harness the ability of real cells
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to generate large arrays of different, well-adapted morphologies through environmental interaction with 

many small component parts of dynamic structures.

Certain aspects have been simplified and scaled down, part of the aim of the model was to create a 

small, efficient model that could run on a single workstation providing a viable mechanism for powering 

adaptive behaviour in a simulated animat. As such the cell:filament:monomer scale was not maintained, 

instead filaments are much larger in size. This greatly improved model efficiency and was hypothesized 

to be powerful enough as a mechanism to generate visibly, and functionally, similar morphological 

plasticity and behaviours to real cells. Increasing the accuracy of celkfilament scale was presumed to 

add only greater resolution in the complexity of forms generated, rather than extra system features. To 

reduce the realism of the scale further however could result in lost ability to generate complex forms, 

e.g. if only one filament could fit within the Cellanimat.

The Cellanimat is reasonably complex as a first-incarnation model, simulating the generative pro­

cess reasonably accurately, for two reasons: 1 ) to avoid loss of information and ability in the early stages 

of creating an MP mechanism for an AI system and 2) to remain useful as a biological model for the 

investigation of diatom morphogenesis and MP. The Cellanimat was based on real low-level production 

rules involved in cellular morphogenesis. This allows it to be useful for actually understanding morpho­

genesis rather than just as an abstract, unrealistic mechanism for growing life-like looking AI systems. 

For example L-systems (Lindenmayer, 1968), though simple, effective and able to produce life-like tree 

structures, cannot tell us how and why a branch in a tree actually is generated. Conversely, basing the 

Cellanimat growth process on realistic ‘perception-action loops’ (EP functions) does give an explanation 

of how and why certain morphological features occur and as such could be of more use in understanding 

morphological plasticity in natural and artificial systems.

The cytoskeleton is able to perform incredible feats of structural plasticity due to the many physical 

properties of the component parts, the shear numbers of proteins involved and the interactions between 

them. To lose these aspects in the first version would have denied the model, and future incarnations, 

the very attributes it needs to produce rich behaviours. However, starting with a more detailed model 

allows us to pick and choose aspects that are useful for particular applications: simplifying and pruning 

the complex model to create a simplified, refined model is a preferable task to attempting to improve 

the realism and detail of a highly simplified model for an application, refer to the schematic shown in 

Fig. 1.1. Indeed in coming chapters it will be shown that some rules can be further simplified, and even 

omitted, to create a more simplified version and applied to a particular modelling problem in diatom 

morphogenesis.

To test these hypotheses the Cellanimat was subjected to several experiments concerned with judg­

ing its ability to produce similar morphological plasticity to real cells, detailed in the next chapter. To 

investigate the inner workings of the model, uncover any hard to detect problems, investigate parameter 

optimizations for increased efficiency and rule simplifications seven studies where performed, detailed 

in Chapter 6 .



Chapter 5

Cellanimat multifunctionality: from 

chemotaxis to phagocytosis

In the previous chapter the Cellanimat model was introduced and a small scale 2D example of the Cel­

lanimat, growing membrane protrusions in response to an environmental stimulus, was described. In this 

chapter results from full scale experiments will be discussed, as published in (Bentley and Clack, 2004, 

2005).

To validate the protrusions E-P Map, by showing a qualitative similarity between Cellanimat be­

haviour and cytoskeletal driven cell behaviours, the Cellanimat model was tested at chemotaxis (Exper­

iment A), a well-defined biological case involving the cytoskeletal generation of membrane protrusions.

This thesis is concerned with adaptive systems for changing environments, where morphological 

plasticity can prove to be a distinct advantage. As such the ArtCyto was designed to be capable of 

powering many different forms of adaptive behaviour, and not be designed in a task-specific way. The 

expectation was that by basing the model on the cytoskeleton it would indeed have the qualities necessary 

to cope with a variety of problems that a changing environment might throw at it; that, through situated 

morphogenesis it would design itself in such a way that would be beneficial for the prevailing conditions.

With this in mind a comparison test was performed (Experiment B), discussed in the latter half 

of this chapter, where a single change in the Cellanimat’s environment — from a chemotactic cue to a 

foreign particle — was shown to cause a change in observed morphology and behaviour, from chemo­

taxis to phagocytosis. No change was made in the system itself. This was an important experiment that 

highlighted the multifunctionality of the Cellanimat with the protrusions E-P map and highlighted the 

level to which the environment can determine morphology as well as behaviour in an artificial system.

5.1 Experiment A: chemotaxis
As previously discussed, the unicell exhibits morphological dynamics that surpass those of multicellular 

organisms. Due to its fluid nature, a unicell can rapidly reorganize its entire inner structure, outer body 

shape, transport organelles from one side to the other and even split itself in two; all in direct response to 

environmental changes. All these behaviours are executed by the cell’s cytoskeleton (Alberts, B. et al., 

1994).
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Figure 5.1: The stages of chemotaxis, reproduced from (Bray, 2001). First actin-driven membrane 

protrusions form into a leading edge lamellapodium towards the stimulus. Focal adhesions attach the 

cell to the substratum and cortical tension increases. Contraction at the rear and disassembly of focal 

adhesion sites, combined with newly forming focal adhesions at the front move the cell forward.

Fibroblast cell chemotaxis is a reasonably well defined example of lifetime morphological adap­

tation as it involves no obvious locomotory organelle, such as a flagellum. Instead, the cell undergoes 

transformations in form. In the first identified stage protrusions extend forward in a ‘leading edge’ 

formed of lamellapodium (large sheets of extended membrane) and microspikes (finger-like extensions 

comprised of bundles of actin filaments in parallel). In the next stage attachment, actin-driven focal ad­

hesions connect the cell to the substratum and in contraction the cell’s cortical tension pulls it forward, 

along with other actin-driven mechanisms, the focal adhesions disassemble and new ones form as the cell 

crawls forward. The further stages of attachment and traction involve less well defined biological and 

physical mechanisms and exceed the scope of this experiment. Thus, only the first stage of chemotaxis 

has been modelled in the protrusions E-P Map (Alberts, B. et al., 1994; Bray, 2001). See Fig.5.1 for a 

schematic of chemotaxis and Fig.5.5(a) for an SEM image of a fibroblast cell during chemotaxis.

The aim was to validate the protrusions E-P Map, as it was based in the molecular dynamics during 

the chemotactic protrusions stage, by testing the Cellanimat at chemotaxis. Its ability to generate a lead­

ing edge was judged and, with the simplified contraction mechanism, its success at motility towards the 

chemoattractant source was measured. The aim was to show that morphologically and functionally the 

Cellanimat simulates, qualitatively, the morphological plasticity of fibroblast cells. That the Cellanimat 

was capable of exhibiting adaptive motile behaviour through situated morphogenesis.

5.1.1 Experimental Set Up

A cylindrical Cellanimat, radius 25, height 10 voxels was placed on the base, in the centre, of a 3D 

environment with dimensions: 250 x 75 x 20 (l ,w ,h ). Table 5.1 shows the parameter settings for the 

experiment. For simplicity these were set by hand. In the next chapter these parameters are comprehen-
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Parameter Description Setting

CPlume 1 0 0 0

CHEMth 0 . 0 0 0 1

P(REC) 1/5

#A 6000

#N 1500

RECth 0.005

PPlume 0.005

Pth 0.0005

PAth 0.008

Precycle 0 . 0 0 0 1

FTOP 1 0

FINT 2

Table 5.1: The parameters used in experiment A: chemotaxis

Figure 5.2: Initial Cellanimat in its environment, chemoattractant gradient featured left.

sively investigated and optimized. A plume of chemoattractant (CPlume) was dropped, in voxel (37,0,0), 

2000 time steps previous to the start of the test during which it diffused creating a gradient. The plume 

drop site was 120 voxels from the Cellanimat’s centre, meaning that to reach it the Cellanimat would 

have to travel a distance twice its length. See Fig. 5.2. The model as described in the previous chapter 

was run 40 times in this environment. Each run lasted 800 time steps. The experiment was performed 

on a standard 1.8 GHz PC workstation programmed in C, with graphics programmed in openGL. Each 

run took approx 7 minutes.

Null Hypothesis A: the Cellanimat will not show any significant, sustained, directed movement 

towards the chemoattractant source.

Null Hypothesis B: the Cellanimat will not behave in such a way as to maximise its exposure to 

the chemoattractant.

Null Hypothesis C: the Cellanimat’s morphology throughout the process will not be similar to real 

fibroblast morphology during chemotaxis.

The aim of this experiment was to falsify the above three null hypotheses. The expectation was
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that the ArtCyto/TP protein selections and the protrusions E-P Map will allow the Cellanimat to adapt 

its morphology by forming membrane protrusions into a leading edge increasing its exposure to the 

chemoattractant by moving the Cellanimat’s centre of mass towards the source.

5.1.2 Motility results

The cellanimat’s centre of mass was defined as the average position of its voxels. As such the centre 

of mass could in theory reside outside of the actual structure. The mean distance left, between the 

Cellanimat’s centre of mass and the chemoattractant initial plume drop, after 800 time steps was 84 

voxels, averaged over the 40 runs. The progression of the mean distance between the two through the 

time steps is shown in Fig.5.3. The Cellanimats accelerated at approx. time step 230 and then more 

gradually crept nearly twice their radius towards the initial plume drop site.

The Cellanimat was not expected to travel the entire distance to the initial plume drop site, as the 

high concentration of stimulant at this point would have dispersed after 2 0 0 0  time steps of diffusion. 

However, the Cellanimat was expected to sense the areas of highest concentration and travel into them. 

This it did, travelling in an almost straight line towards the original source, see Fig.5.5. Bearing in mind 

that the original radius of the Cellanimat was 25 voxels, it can be said that, though the radius had changed 

through the changes in form, it had a distance, on average, of about 60 voxels left between its periphery 

and the initial plume drop site, and that it travelled in exactly the correct direction, i.e. a significant, 

sustained and directed movement in response to the environmental stimulus, falsifying null hypothesis 

A.

5.1.3 Chemoattractant exposure

To see if the Cellanimat satisfied the requirement for increasing exposure to the chemoattractant, the 

concentration of chemoattractant experienced at its periphery, at each time step ([C]), was calculated. 

This was calculated by summing the E.chemo values in all E voxels with state M voxel MNs. On 

average, this value increased from 0.5 at the start of the run to 12.1 at time step 800, see Fig.5.3. The 

average value increased steadily over the run. However, an unexpected peak occurred in every run, not 

captured by the averaged plot, as the peaks occurred at varying times and averaged out. The variance 

around the peak varied from an average 1.85 to 3.99. The peak of one typical run can be clearly seen in 

Fig.5.3. See Fig. 5.4 for an explanation of the peak phenomena using other data collected during run A.

5.1.4 Morphological change

The Cellanimat had three distinguishable morphologies during a run: 1) the initial cylindrical form; 

2) a leading edge lamellapodia with protrusions during accelerated movement (Fig.5.5(b) & 5.5(c)); 3) 

finally, a skewed cylinder with short protrusions in most directions (Fig.5.5(d) & 5.5(i)). See Figs.5.5(e) 

to 5.5(i) for images of protein distributions during chemotaxis; active proteins are situated more densely 

at the leading edge (left) and inactive ones to the rear (right). Further images of Cellanimat chemotaxis 

are shown in experiment B and in the next chapter.
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Figure 5.3: dotted line: the average distance of the Cellanimat’s centre of mass from the chemoattractant 

plume drop site at each time step (right hand axis) averaged over 40 runs. Thick, peaked line: the 

concentration of chemoattractant [C] (left hand axis) that a Cellanimat in one typical run (run A) was 

exposed to (sum of chemoattractant in E voxels neighbouring membrane voxels). Thin line: the average 

exposure of [C\ over all runs.
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Figure 5.4: Data from run A. Dotted line: the concentration of chemoattractant [C] at the Cellanimat’s 

periphery as shown in Fig.5.3. Upper thick line: the number of exposed M voxels (those with E state 

neighbours) decreased rapidly just before the peak in [C]. Lower thick line: the no. of M voxels touching 

the environment boundary (with no E MNs, e.g. those on the base and those touching the environment 

ceiling) rapidly increases at this point. This implies, given that the Cellanimat is initiated with non­

exposed M voxels at its base and the sides of the environment are far from the Cellanimat, that vertical 

protrusions increase the cell’s exposed surface area until they abut the environment roof, suddenly, and 

significantly, decreasing the cell’s exposed surface area, causing the observed peak in [C].
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(i)

Figure 5.5: (a) A fibroblast cell during chemotaxis, reproduced from (Alberts, B. et al., 1994). Lead­

ing edge and lamellapodia left. Microspikes (parallel AF bundles) visible top left, (b) filaments form 

lamellapodia leading edge left in Cellanimat, at time step 230 (during accelerated growth), black line 

shows the centre of mass path, (c) Membrane morphology with underlying filaments shown, t = 230. 

(d) Membrane morphology, black units contain active WASP, time step 800. Distribution of: (e) inactive 

nucleators (state N); (f) actin agents in state PA; (g) SA state actin; (h) profilin gradient (only in non­

agent voxels); (i) view from top during chemotaxis, note redistribution of chemoattractant gradient as 

the Cellanimat has moved through it.
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5.1.5 System effects on the environment

The Cellanimat could affect its environment; EP3  (described in Section 4.3.4) called within the morphol­

ogy push-out rule allowed the Cellanimat to locally redistribute the chemoattractant in its environment, as 

shown in Fig.5.5(i). This in itself generated interesting phenomena. As actin filaments created outward 

membrane protrusions, pockets of chemoattractant became trapped between protrusions and continually 

reinforced growth locally. Indeed the peak that occurred in Fig.5.3 was generated by the gradual trapping 

of chemoattractant against the environment ceiling, until the Cellanimat grew too tall and pushed all of 

it out to the sides, reducing its exposure. Similarly internally, profilin could become trapped, as filament 

formation further compartmentalized the cytoplasm space within, also resulting in positive feedback.

Due to the lack of filament movement, the filaments could not align correctly to form microspikes 

(unless they by chance grew in parallel). However, the small scale of the model led to morphologically 

similar protrusions occurring from the growth of a single filament. Of course real cells are enormous 

in relation to the size of an actin filament, but it was not necessary in the model to stick to this scale in 

order to show functionally and qualitatively similar behaviours.

5.1.6 Conclusions

The Cellanimat exhibited lifetime adaptation in morphology due to the protrusions E-P Map as a situated 

growth process. The morphological plasticity exhibited was reversible, as the body could revert back to 

its original form, or change to another — the changes were not permanent. Exposure to the chemoattrac­

tant gradient was increased through the activity in the Cellanimat, and the Cellanimat travelled towards 

the source: the task was achieved. The major subsystem, the ArtCyto, closely modelled on the eukary­

otic cytoskeleton, exhibited qualitatively similar dynamics to those in real cells. Due to the connectivity 

changes that occurred between sub-components (binding changes of the macromolecules) the Cellan­

imat can be called a dynamic morphology. Therefore, the protrusions E-P Map has been validated as 

a feasible model of the actin-driven protrusions mechanism during chemotaxis and shown to generate 

adaptive behaviour through morphological computation alone.

5.2 Experiment B: phagocytosis vs chemotaxis
The aim in this experiment was to test the multifunctionality of the cellanimat with the protrusions E-P 

Map, to see if the system could cope and perform new behaviours if the environment changed, with no 

change to the system itself. The expectation was that this would be possible as the biological process that 

the protrusions E-P Map was based on had itself been evolved over millions of years to allow an organism 

to survive in a changing environment. By coupling the Cellanimat with a different environment the aim 

was to show, through a simple comparison experiment, that the environment can be a major player in 

determining morphology and that morphogenesis can generate behaviours without the need for external 

controllers, due to the plasticity of the underlying systems. As such the aim was to motivate further study 

of environment-morphology interactions, for well-adapted design and adaptive behaviour.

As the same proteins involved in the protrusions stage of chemotaxis have been indicated in the early 

stages of phagocytosis (engulfment of a foreign particle), it was hypothesized that the Cellanimat with the
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protrusions E-P Map would be able to perform phagocytosis if the chemical gradient in the environment 

was simply replaced with a foreign particle. Experimental results will be provided, demonstrating that 

with this single E-P Map a bifurcation in morphology did indeed occur, caused only by the environmental 

difference. The inter-relation of observed morphologies, behaviour and environment will be discussed 

using the E-P Map framework.

5.2.1 The process of phagocytosis
In macrophage cell phagocytosis (to ingest foreign particles), cell surface receptors trigger and bind to 

the particle, tethering it; this causes reactions involving the same proteins downstream as in fibroblast 

chemotaxis, but leads to a different morphology — in this case an enclosing concave morphology called 

the ‘phagocytic cup’ (Castellano, F. et al., 2001). Chemotaxis (movement morphology) and phagocy­

tosis (ingestion morphology) are distinct both topologically and functionally yet are controlled by the 

same underlying mechanism of continual environment-morphology interaction, thus the environmental 

difference causes the bifurcation in morphology.

Macrophage cells (white blood cells), dendritic cells, neutrophils, dictyostelium discoideum and 

many other cell types use the process of phagocytosis to engulf, internalize and degrade large particles 

(over 5pm in diameter), it is a quite universal cell function relying on profound rearrangements of the 

actin cytoskeleton and the plasmalemma. It is used to intake food, foreign particles in the immune system 

and for the engulfment of apoptotic ‘corpse’ cells (Niedergang, F. and Chavrier, P., 2004; May, R. C. and 

Machesky, L. M., 2001; Castellano, F. et al., 2001). The process of phagocytosis can be summarized in 

the following four stages:

1. The engagement of receptors on the surface of the cell is triggered after recognition of ligands 

on the particle. The receptors then bind to the surface of the particle, tethering it and starting the 

‘phagocytic cup’ formation, independent of actin activity. This is due to the ‘zippering effect’, 

where the binding of one ligand, pulls the next ligands closer to the particle allowing them to bind, 

repeating the process (May, R. C. and Machesky, L. M., 2001). See Fig.5.6(a).

2. The receptor activation initiates reactions in the transduction pathway, involving the same proteins 

downstream (e.g. WASP, PIP2) as in chemotaxis. This triggers large-scale actin filament formation 

at the edge touching the particle, which causes the observed ‘phagocytic cup’ morphology. See 

Fig. 5.6(b).

3. Through ‘focal exocytosis’ the particle is fully engulfed, forming the ‘phagosome’. This may re­

quire the recruitment of internal membranes (recycled from the Endoplasmic Reticulum) to add to 

the plasmalemma along cytoskeletal tracks utilizing myosin motors (accessory proteins) (Nieder­

gang, F. and Chavrier, P., 2004), or it may involve myosin based contractile activity (May, R. 

C. and Machesky, L. M., 2001). Specific proteins that initiate phagosome maturation are also 

delivered. See Fig. 5.6(c).

4. Phagosome maturation occurs after full engulfment. Enzymes are delivered to the phagosome. 

During maturation the phagosome, still at the periphery of the cell, is carried along microtubules
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(a) (b)

(c) (d)

Figure 5.6: The four stages of phagocytosis, the engulfment of a foreign particle by a cell. See text for 

explanation.

Aspect Chemotaxis Phagocytosis

example cell fibroblast macrophage

environmental stimulus chemical gradient foreign particle

characteristic morphology convex leading edge concave phagocytic cup

behaviour movement ingestion

Table 5.2: The default Cellanimat parameter settings.

to the cell centre (perinuclear location) whereupon antigen presentation degrades the ingested 

material. See Fig. 5.6(d).

Table 5.2 summarizes the main differences between chemotaxis and phagocytosis in terms of mor­

phology and behaviour.

5.2.2 Experimental setup

The aim was to test the multifunctionality (in behaviour and morphology) of the protrusions E-P Map. 

The primary investigation therefore used the protrusions E-P Map first in an environment with chemoat- 

tractant (Env A) and then in an environment with a foreign particle (Env B). Two further investigations 

were then performed: (i) improving the E-P Map, where improvements were made and the Cellanimat 

was re-tested in each environment and (ii) exploring the limits of phagocytic cup morphology within just 

environment B. All together five tests were performed, each run 100 times to gain averaged results.

For all experiments the Cellanimat was cylindrical (cytoplasm radius 20 voxels, height 6  voxels). 

The environment had dimensions (100,100,10) the Cellanimat’s base was centred at (50,70,1) (before
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(C) (d )

Figure 5.7: (a) Top view of Cellanimat in Env A at t=27 when chemoattractant has diffused to reach 

Cellanimat (b) side view, Env A, 1=21 (c) initial top view of Cellanimat in Env B t=0 (d) Env B side view 

t=0 .

the membrane was created around it using rule C l, see Section 4.4.1). The chemoattractant plume, or 

particle centre depending on the environment chosen, was initialized 30 voxels south of the Cellanimat 

center at (50, 40, 0). The chemoattractant was permitted to diffuse for a short number of time steps until 

it came into contact with the Cellanimat: the particle was initialized already in contact. See Fig.5.7 for 

views of the initial set up with both environments.

5.2.3 Default parameters

For the following experiments, in this section and in the next chapter, a default parameter set was used, 

shown in Table 5.3. These parameters were again hand designed for simplicity though alterations were 

made to improve on the performance in Experiment A; the following chapter fully explores parameter 

optimization.

Logically, increased agent quantity corresponds to increased response. However, over-crowding 

could impair agent movement and profilin diffusion, leaving agents inactive and stuck. Therefore the 

total number of agents (actin and nucleators) was set to 75% of the cellanimat’s total cytoplasm volume 

(6565 voxels given the Cellanimat dimensions). As only one nucleator is needed to start a filament, the 

75% of agents was not divided 50:50 between the two types, but 65:35 in favour of actin (which gave 

3,201 actin and 1,723 nucleators).

P(REC), the probability of a newly created membrane voxel containing a receptor, controls the 

strength of communication between the environment and the system. If P(REC) is low then the Cellan-



5.2. Experiment B: phagocytosis vs chemotaxis 100

imat has less communication channels to the environment and performance will be low. Conversely if 

P(REC) is very high then the system may become overloaded, too many newly activated nucleators (WN 

state) could block actin agents from the leading edge. So, P(REC) was set to 0.5.

P(LOSS) controls actin recycling through filaments, modeling the hydrolysis of ATP-bound actin 

to ADP-bound actin combined with the severing of filaments by cofilin, as described in Section 4.2.2. 

If the rate of loss of actin from filaments exceeds the rate of new actin binding at the plus end then the 

filament will disappear. If the loss rate is much lower than the rate of binding actin then the filament 

will become unnecessarily long, using more actin agents than needed. The P(LOSS) parameter was set 

to a low percentage of the total test time (250 time steps), so that an agent at the minus end of a filament 

would start to fall off after it had been in the filament for ten time steps. FINT was also set to a low value 

(2) to greatly increase the likelihood of disassociation as further time was spent in the filament. This was 

found in preliminary tests to allow for sustainable filaments with efficient actin recycling, i.e, they would 

not extend indefinitely with little disassociation.

All four parameters relating to profilin (PAth, Pth, PPlume and Precycle) are closely interlinked, and 

cannot really be considered separately. For example, if PAth (the amount of profilin needed to activate 

actin to state PA) were to be much higher than PPlume (amount of profilin released by PIP2) and Pth 

(diffusion threshold of profilin), then the occurrence of PA agents is unlikely, as it would exceed the 

average amount of profilin in each voxel. The relationships between these parameters, detailed in the 

equations below, were upheld. In the CA model of diffusion as described in Section 4.4.2 a low value for 

the diffusion threshold (Pth) will give a wide but low spread of profilin; a high value produces a small but 

intense spread. So in setting the four profilin parameters a medium diffusion spread and low PAth setting 

were used to ensure activation of sufficient actin agents by profilin. Precycle (the amount removed and 

released through actin activation and actin binding to a filament) was kept small so that only low levels 

of profilin were removed from the system in recycling, to avoid jeopardizing future actin activation.

P P lum e  <  1, (5.1)

P th  < P P lum e  x 8  (5.2)

P A th  < P P lum e  x 8  (5.3)

Precycle < P A th  (5.4)

5.2.4 Multifunctionality
Within experiment B five tests were performed (denoted Exp 1 to 5). The Cellanimat was first tested 

at chemotaxis (Exp 1) with the setup and parameters as described above. The distance covered by 

the Cellanimat to reach the plume drop site was calculated as its ‘movement behaviour’. Fig. 5.8(a) 

shows that by 100 time steps (t=100) the Cellanimat had, on average, moved its centre of mass 78% 

of the distance towards the plume site. See Fig.5.9 for example screen shots of Exp 1. The leading 

edge morphology is shown in Fig. 5.9(b). The morphology returned to a cylindrical form towards 

the end of the run, as observed in Experiment A. This morphology and the subsequent lack of further
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Parameter Default setting

#A 3201

#N 1723

FTOP 10

FINT 2

P(REC) 1/2

Pth 0.5

PPlume 0.5

PAth 0 .0 1

Precycle 0.01

Table 5.3: The default Cellanimat parameter settings.
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Figure 5.8: (a) Average distance (%) covered at each timestep over 100 runs of chemotaxis: Exp l 

(lower) Exp 3 (upper) (b) Average engulfment (%) at each time step over 100 runs of phagocytosis: Exp 

2 (lower) Exp 4 (upper) Exp 5 (middle).

distance covered was due to the EP3  redistribution function being of ‘type 3’: redistribution caused the 

Cellanimat to become completely submerged in chemoattractant triggering EPi (filament formation) in 

all directions, evening out the form and inhibiting movement. See Fig.5.l0 for close up views of the 

filamentous actin structure within the leading edge and submerged forms.

(a) (b) (c)

Figure 5.9: Screen shots of one run in Exp l chemotaxis. Actin filaments (red) and nucleators (white). 

Membrane (blue) becomes submerged in chemoattractant (yellow-orange) due to its redistribution of the 

gradient.

The Cellanimat with the same E-P Map was then tested at phagocytosis in Env B (Exp 2). The 

‘engulfment behaviour’ was measured as the number of external particle voxels (its exposed surface, 

not including the base) with membrane MNs. The particle had radius 10, height 3 voxels. Fig. 5.8(b) 

shows that the behaviour reaches a plateau, resulting from the competition of EPi and EP2; particle P
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(a) (b)

Figure 5.10: (a) filamentous actin network within leading edge, (b) final submerged form. Actin (red), 

nucleators (white), empty cytoplasm voxels (white/grey), PA state actin (green), membrane (blue).

both activates and inhibits growth. The phagocytic cup morphology is visible in Fig. 5.11(b) and can be 

easily compared to the leading edge morphology in Fig.5.11(a).

Q
w

(a) (b) (c)

(d) (e)

Figure 5.11: WASP (Black); filaments (white); active actin (grey); membrane(grey). slice view of first 3 

layers only (a) Exp 1: chemotactic leading edge, white voxels outside cell contain C, timestep t=90 (b) 

Exp 2: Phagocytic cup t=250 (c) Exp 4: t=250 (d) Exp 5: t= 125 (e) Exp 5: full top view t=250.

Morphometries

A clear difference in observable morphology is evident from Figs. 5.12(a) and 5.12(c), the chemo­

taxis morphology (Morph 1) is convex, whereas the phagocytosis morphology (Morph 2) is concave. In 

a convex morphology advancing membrane voxels assist the advance of neighbouring membrane voxels. 

By contrast in the concave Morph 2, leading membrane voxels are prevented from moving ahead by the 

particle itself (EP2). A cup morphology is thus intrinsically more difficult to achieve. The difference
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Experiment Description Mean dist/engulf Standard deviation

Exp 1 Chemo 78% 1 2 %

Exp 2 Phago 41% 7%

Exp 3 Chemo WASP r=2 78% 3%

Exp 4 Phago WASP r=2 92% 6 %

Exp 5 Phago WASP r=2 large particle 8 6 % 7%

Table 5.4: Averaged behavioural results (distance or engulfment); Chemo t=100, Phago t=250

can be quantified by calculating a Medial Axis Function (MAF) 1 (Lee, 1982) for both morphologies as 

Clack described in (Bentley and Clack, 2005); see Figs. 5.12(b) and 5.12(d). In Morph 1, the illustrated 

medial axis contains a middle “body” section, whereas the Morph 2 medial axis has none. Futhermore, 

the radius functions of circles forming the medial axis “legs” in Morph 1 are four times Morph 2’s. A 

further difference results from EP3  in Exp 1, chemoattractant is eventually displaced so Morph 1 starts 

to grow haphazardly, whereas Morph 2 remains smooth and controlled.

(a) (b) (c) (d)

Figure 5.12: The two morphologies (Exp 3, Exp 4) and their medial axis functions (environment omit­

ted).

5.2.5 Improving the E-P Map

In order to allow filaments to form just to the side of the particle, and thus avoid inhibition by EP2  it was 

hypothesized that an increase in the radius of WASP activation, upon receptor activation, would increase 

the viable range for filament formation, as WASP-bound agents are needed for filaments. Therefore the 

Cellanimat was re-tested, with WASP activated in all membrane voxels within a radius of two voxels 

(rather than one) from an activated receptor, in Exp 3 (chemotaxis) and Exp 4 (phagocytosis). See Table 

5.4. Increasing the WASP radius only had a small effect on chemotaxis as EP2  inhibition was never a 

problem, but it greatly increased engulfment in Exp 4, see Fig. 5.11(c) for full cup morphology and 

Fig.5.13 for screen shots of a run of Exp 4.

Wider WASP activation in Exp 4 increased the range of viable locations for EPi (filament forma­

tion),as EP2  inhibited growth into the particle. However, engulfment ability in real cells is more likely

1 The Medial Axis Function (known variously as the median axis, medial axis, symmetric axis, or line skeleton) is defined as 

the locus of points, which lie in the interior of the form exactly equidistant from the border of the outline. This procedure allows 

the collapsing of a 2-D outline onto a curve. The approach consists o f embedding a series of overlapping circles that touch the 

outline in such a way that they are tengential to the borders o f the form. The centres o f each of these circles define a point on the 

MAF. Paraphrased from (Lestrel, 2000)
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(b)(a)

(c) (e)

Figure 5.13: Screen shots of one run in Exp 4 phagocytosis with WASP radius 2 activation. Actin 

filaments (red) and nucleators (white). Membrane (blue) particle (green), active WASP (black).

due to two factors: 1) increased filament branching potential and 2) the flexibility of filaments. Flexi­

bility and further branching would allow filaments to grow around the side of the particle, rather than 

stubbornly trying to grow in straight lines into it and failing. Branching was possible in the protrusions 

E-P Map, but nucleators deactivated when disassociated from WASP, thus branching was actually very 

rare, only occurring if the branch point also neighboured active WASP. It is not known whether nucle­

ators stay active after WASP disassociation in real cells; this would seem worthy of further investigation. 

Increased WASP radius was a simple way to fully achieve engulfment with the model as it stood.

5.2.6 Extreme ingestion

In the paper ‘How to Eat Something Bigger Than Your Head’ Aderem (2002) showed that a cell can 

engulf a particle larger than itself through the recycling of internal membranes. In Exp 5 the improved 

system was tested against a particle equal in radius to the Cellanimat, as the Cellanimat had no limits 

imposed on membrane stretching. For this test, so that the particle and Cellanimat did not overlap, 

but were initialized in contact, the particle centre was placed a further ten voxels south, at (50,30,0). 

See Table 5.4 and Figs. 5.11(d) and 5.11(e); the Cellanimat stretched its entirety around the particle 

engulfing an astonishing 8 6 % on average. See Table 5.4 for a breakdown and comparison of all results. 

See Fig.5.14 for screen shots during one run of extreme ingestion.

5.2.7 Summary

In this chapter, with experimental results the Cellanimat’s effectiveness as a ‘no-brainer’ adaptive system, 

able to cope with different tasks in a changing environment, through MP has been shown, addressing the 

overarching primary hypothesis of this thesis and Objective Three specifically. With a single E-P Map
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Figure 5.14: Screen shots, top view, of one run in Exp 5 extreme phagocytosis with WASP radius 2 

activation. Large image in each sub-figure shows a slice through view of first three layers; actin filaments 

(red), PA actin (green), and nucleators (white), membrane (blue), active WASP (black), particle (green). 

Each small top right image shows: actin agent distribution in full top view; SA actin (yellow) and FA 

actin (red), PA actin (green). Each bottom right image shows: receptor distribution in full top view; 

inactive receptors (red), active receptors (dark blue).

a bifurcation in morphology, and behaviour, has been shown to occur, caused only by a difference in 

the environment. The Cellanimat displayed functionally similar adaptive behaviour and morphologies 

to chemotactic and phagocytic cells. This validates it as a model and shows it to be a multifunctional 

adaptive system where many forms can be assumed and functions performed, as required by a changing 

environment.



Chapter 6

Cellanimat dynamics and optimization

In the last chapter two instantiations of the Cellanimat model, embedded within an environment, were 

discussed. The ArtCyto, as it stands, was capable of generating MP in the Cellanimat once coupled 

with the environment (either the chemoattractant gradient or the foreign particle). The Cellanimat shares 

many working features of real cells e.g. actin recycling through filaments, profilin diffusion and recycling 

and membrane fluidity and assimilation. These features have been modelled qualitatively: not anchoring 

the model to the experimental data of one specific cell type permits exploration of parameter variation 

effects on behaviour, system dynamics and optimization for specific tasks. It is this pursuit, of dynamical 

analysis and optimization for a specific task, that this chapter is concerned with.

When the array of Cellanimat features all work together they can combine to produce the higher 

level behaviours of movement and ingestion, as shown in the previous chapter. But, what are the dy­

namics of each of these lower features during the behaviour? How do they combine and which ones 

dominate? Are any of the defined features actually redundant? Is the system robust to the stochastic 

elements in the model? How do perturbations in the model’s parameters effect the overall behaviour? To 

what extent is the Cellanimat a DM, how does protein connectivity change over time?

Through a meticulous investigation of Cellanimat dynamics deeper insights into the inner workings 

of the system, and its many interesting interdependent-features, are revealed. This allows improvements 

on the model to be made: optimizing performance, speed and fidelity to biology. The Cellanimat’s pa­

rameters are scrutinized, in order to optimize the default parameter set described in the previous chapter 

along with specific functions. This is done methodically with ID and 2D projections into fitness space. 

The projections are plots of the average fitness when one or two parameters are co-varied between a 

range of values whilst all other parameters remain constant. This permits a fuller understanding of why 

parameter variants have certain affects. The results of the dynamical investigations are then validated 

by comparison with an evolved parameter set optimized for speed and engulfment ability. A param­

eter set was not simply evolved alone, as the primary goal was to have a deep understanding of the 

workings of the model and its parameters, in terms of efficiency, robustness, redundancy, dynamics and 

self-organization together with optimization and evolvability.
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6.1 Overview of studies
The following list summarizes the seven studies detailed in this chapter. For all studies, the Cellanimat 

was tested at either chemotaxis or phagocytosis, as indicated, and the model, parameters and environ­

mental set up were exactly as described in Section 5.2.4 in the previous chapter, unless otherwise stated.

•  Study One. Redundancy and compositional dynamics. An overview and comparison of macro- 

molecular dynamics and compositional changes in the Cellanimat during chemotaxis and phago­

cytosis is given. Also, the effects of removing each subsystem/protein on Cellanimat behaviour 

and protein activity are discussed. This results in a stricter definition of the WASP-nucleator inter­

action to improve biological fidelity.

•  Study Two. Agent volume: optimization and robustness. An investigation, using a 2D pro­

jection, where the ratio of actin and nucleator agents to the total cytoplasm volume is varied to 

indicate optimal settings of the #A and #N parameters. Robustness of the system is tested for the 

range of ratios investigated, indicating how the sensitivity of the system to stochastic elements 

varies with agent volumes. Interesting new issues are raised linking low robustness to the release 

of profilin in systems with high agent volumes, resulting in a revision of the PIP2 release function 

for such systems.

• Study Three. The role of profilin: recycling or saturation? First, the dynamics of profilin 

in each related function are observed, leading to optimization of the profilin system. Then the 

role of profilin recycling in the Cellanimat is investigated leading to conclusions concerning links 

between the over-saturation of the diffusible signal and high performance.

• Study Four. The role of cofilin: actin recycling in the Cellanimat. An assessment of the effects 

on overall performance of agent recycling through filaments. The P(LOSS) function determines, 

stochastically, the off-rate of proteins from filaments, modelling cofilin-severing of actin filaments 

together with the natural disassociation of agents from filaments. It is recast as a deterministic 

function to aid investigation of optimal parameter settings. A ID projection varying P(LOSS) is 

detailed and the saturation of actin compared to cofilin-related recycling is discussed.

•  Study Five. The extent of an optimal TP. A comparison of radius 1 and radius 2 WASP re­

cruitment regimes, during phagocytosis, using the improved functions from previous studies. The 

optimal number of receptors is investigated by varying P(REC) in a ID projection. Issues relating 

P(REC) to profilin saturation are discussed.

• Study Six. Compositional dynamics with the optimized model. Composition dynamics, with 

all the new improved functions and optimized parameters, during chemotaxis and phagocytosis, 

are compared.

• Study Seven. Saturation GA, evolution of an optimal parameter set. Genotypes (parameter 

sets), that maximize engulfment and speed, are evolved and saturation is shown to be exploited
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rather than recycling mechanisms. A complementary, future GA is discussed which would apply a

cost function to over-saturation, inducing exploitation of the more realistic recycling mechanisms.

6.2 Study One. Redundancy and compositional dynamics
In this study the dynamics of protein composition in the Cellanimat during chemotaxis and phagocytosis 

are first compared. The Cellanimat was tested at chemotaxis, as in Section 5.2.4 for 200 time steps in 

an environment with a diffusing chemoattractant plume, WASP was recruited to radius 1 MNs only. The 

Cellanimat was then tested at phagocytosis for longer (300 time steps) with WASP recruited to radius 2 

MNs, as it has been shown, in the previous chapter, to be an intrinsically harder task than chemotaxis. 

Each state of actin was treated as a different macromolecule. SA and PA, for example, represent the 

binding of actin to thymosin (sequestering protein) and profilin respectively which constitute different 

macromolecules. Monitoring how volumes of the system proteins, in the various states, changed indi­

cated how connectivity between proteins changed throughout the Cellanimat’s lifetime. At each time 

step the volume of each protein state was recorded throughout a sample run.

6.2.1 During chemotaxis

Figure 6 .1 shows the Cellanimat’s compositional dynamics during chemotaxis. See Fig.6.2 for screen 

shots of the protein distribution changes during chemotaxis. Fig.6.1(a) shows that the Cellanimat’s 

centre of mass (at creation it was 30 voxels) came closest to the initial site of the chemoattractant plume 

at around t=95, and as with the examples in the previous chapter, the distance then increased slightly 

as the plume itself has moved since the initial plume was dropped. The number of membrane voxels 

increased as the Cellanimat accelerated towards the chemoattractant (Fig.6.1(b)); this stretching ability 

of the membrane facilitates the development of the leading edge. Once the Cellanimat reached the 

original plume drop site the high membrane volume then decreased. Interestingly, a regrowth of the 

membrane is observed after this point due most likely to the Cellanimat following new gradients all 

around it, created by its own displacement of the chemoattractant, see Figs.6.2(v) and 6.2(x).

Profilin concentration increased as the Cellanimat travelled, reaching a peak when the plume site 

was reached, Fig.6.1(c). The levels are notably high however, and will be discussed in the next section. 

The number of inactive (SA state) agents decreased rapidly, coinciding with the growth of PA and FA 

state agents and the acceleration of the Cellanimat towards the chemoattractant, Fig.6.1(d). The number 

of WA agents stayed low and remained near constant after the initial bloom. This results from limited 

amount of room at the membrane for WA agents as compared to the full space inside the Cellanimat for 

the other agent states to exist in.

Fig. 6.1(e) shows that a relatively low percentage of nucleator agents become involved in the 

activity at the leading edge, and once the source of the plume was reached, the number of FN agents 

gradually decreased, though it still remained higher than expected. This can be explained by Fig. 6.1(f) 

which shows that the density of WASP within membrane voxels continued to rise (to around a third of 

the number of membrane voxels) after the source had been reached and only slightly declined towards 

the end of the run. This related to the submersion of the Cellanimat, such that instead of a leading edge,
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the entire periphery was recruiting WASP in most directions, particularly above, where chemoattractant 

was trapped between the environment roof and the Cellanimat. See in Fig. 6.2 the distribution of WASP 

at t= 125.
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Figure 6.1: Cellanimat compositional dynamics over one run of chemotaxis for 200 time steps using the 

original model and default parameters.(a) change in distance between Cellanimat’s centre of mass and 

the initial plume drop site (b) profilin levels (c) number of membrane voxels (d) number of actin agents in 

the different states (e) number of nucleator agents in the different states ( 0  number of membrane voxels 

containing active WASP and active PIP2.
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L
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Figure 6.2: Screen shots of chemotaxis. Rows top to bottom show: t=30,50,88,100 and 125. Columns 

left to right: first column shows Membrane (blue) and chemoattractant (yellow); second shows receptor 

distribution, active=purple, inactive=orange; third WASP distribution (black); fourth actin distribution, 

SA=red, PA=green, WA=blue, FA=white; finally, nucleator distribution, N=blue, WN=black, FN=white.
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Figure 6.3: Cellanimat compositional dynamics over one run of phagocytosis for 300 time steps using the 

original model and default parameters: (a) engulfment score, number of membrane voxels neighbouring 

the particle; (b) number of membrane voxels (c) profilin concentration (d) number of actin agents in the 

different states (e) number of nucleator agents in the different states (f) number of membrane voxels 

containing active WASP and active PIP2.

6.2.2 During phagocytosis

The results are shown in Fig.6.3. Figure 6.3(a) shows that the maximum engulfment achieved during 

this sample run at t=284 was 98.2% (701 is the maximum possible and it achieved a maximum of 689). 

The dynamics of composition for phagocytosis were different from those collected during chemotaxis. 

One reason is that even after 300 time steps the Cellanimat’s engulfment has not passed its maximum, 

as it did in chemotaxis at t=95. In Fig.6.3(b) the number of membrane voxels, on average, increased 

throughout phagocytosis and begins to plateau at t= 2 0 0  as less of the particle is left to engulf so there is 

less chance of a filament growing in the right place.

Fig 6.3(c) shows that profilin concentrations were overall far lower in phagocytosis than in chemo­

taxis. The EPb function ‘obstruction’ within the E-P Map meant that the particle blocked the Mchange 

rule as it tried to push-out the local membrane. Profilin plumes are released by PIP2 if and only if a 

receptor activates, not during its active period. In phagocytosis all receptors that are active remain so for 

the whole run, only releasing a single plume of profilin upon activation. In chemotaxis, the receptors
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are constantly being generated in the Mchange push-out rule (unrealistically modelling the movement 

of receptors with the membrane) causing a constant release of profilin from PIP2. This generates higher 

levels of profilin and possibly drives the Cellanimat to complete the task in less time.

In Figs.6.3(d) and (e) less filamentous agents (FN and FA) are detected than during chemotaxis, 

as filament growth is inhibited by the particle’s presence. This also contributes to the slower progress 

during the task. Fig.6.3(f) shows that WASP and PIP2 steadily grow in number over the whole run. 

More WASP was recruited during chemotaxis, even though WASP was recruited to radius 2 MNs in 

phagocytosis. This was due to far more receptors being stimulated during chemotaxis.

6.2.3 Subsystem redundancy
The Cellanimat consists of a minimal protein selection so there is expected to be little redundancy. The 

need for a simple, small, first selection to illustrate the model’s capabilities outweighed the advanced 

benefits of redundancy, which could be costly to the model’s simplicity and size. However, in real cells 

the opposite is true: redundancy is rife, proteins are numerous and play many roles; the organism needs, 

above all, to be able to continue to function in the face of many types of perturbation. The aim was to 

show in this study that the Cellanimat has no redundancy as it does indeed consist of a minimal selection. 

First the effect on activity and behaviour of a whole subsystem’s absence will be described, and then the 

results of the removing each macromolecule in turn in Section 6.2.4.

There are no functionality overlaps of subsystems as a whole, each plays an equally important role 

and if any are knocked out there is a total system failure: no behaviour can be generated. Without the 

TP a message cannot reach the cytoskeletal proteins; without the ArtCyto no structural changes can 

be made; without the Cytoplasm subsystem, there is nowhere for the ArtCyto to exist in; without the 

Membrane subsystem there is nowhere for the TP to reside in and there would be no coherent boundary 

between the environment and the internal cellular components. Some activity would of course still occur 

in the Cellanimat when certain subsystems are knocked out: without the Cytoplasm or ArtCyto activity 

and compositional changes would still occur in the TP.

In real cells no morphological behaviour (in chemotaxis or phagocytosis) would be observed with­

out the transduction pathway, and similarly, without the cytoskeleton, membrane or any cytoplasm. 

These subsystems are all necessary. However, a failure within the transduction pathway of a real cell 

would most likely be overcome, as it maintains a high level of redundancy, many proteins within it can 

play the same role. Similarly if certain cytoskeletal proteins failed the behaviour might still be possi­

ble. However actin, filament nucleators (such as Arp2/3) and proline-rich proteins (such as WASP) have 

been shown to play a central role in chemotaxis and phagocytosis and so a total system failure could be 

expected upon their removal (Castellano, F. et al., 2001; Holt, M. R. and Koffer, A., 2001).

6.2.4 Macromolecular redundancy
The effects of removing each macromolecule in turn from the system (with replacement), on Cellani­

mat behaviour and internal activity during phagocytosis, are shown in Table 6.1. In contrast with the 

biological case, if actin is absent, the behaviour is still is possible. Fig. 6.4(a) shows that, on average, 

engulfment of 25% is still possible without actin. Indeed, if profilin or PIP2 are absent the behaviour
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also still occurs due to the ability of nucleators to push-out the membrane when they bind to WASP. PIP2 

provides profilin and profilin simply enables actin to reach its activated state and then bind to WASP as 

profilactin (state PA). Absence of profilin/PIP2 manifests as equivalent to a failure of actin, the only 

difference being that actin agents are still present, taking up valuable space in the cytoplasm.

Engulfment
(%)

Profilin/PIP2 Actin
Protein removed

(a)
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1 0 0
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Figure 6.4: (a) Effect on behaviour of certain protein absences averaged over 20 runs with original 

model and parameters, (b) Results of ID projection varying number of nucleators with zero actin agents. 

Averaged over 20 runs. Original model and parameters for 200 time steps.

Fig.6.4(b) shows the results of a 1D projection, with #A set to zero — no actin agents. The number 

of nucleator agents was varied, between 10% and 100% of the total Cellanimat cytoplasm voxel volume, 

in 10% jumps. The total volume of cytoplasm voxels was 6565. Results were averaged over 20 runs of 

phagocytosis, each for 200 time steps. The model appears to deviate significantly from the biological 

case. If there is a sufficient number of nucleator agents then high levels of engulfment can be achieved 

even in the absence of actin, though phagocytosis is an actin-driven process — actin should not be 

redundant.

Cofilin also has a level of redundancy, Fig. 6.4(a) shows that its absence had little effect on en­

gulfment ability. Cofilin allows the cell to control filament length, increased cofilin can increase the 

recycling of actin through filaments, increasing efficiency. It stimulates the rapid disassembly of fila­

ments in one area so they can be reused quickly in another region. In real cells the level of cofilin would
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Macromolecule removed Activity Engulfing behaviour

actin yes (N to WN) yes (nucleators still push out membrane)

nucleators yes (SA to PA to WA) no

profilin yes (N to WN) yes (nucleators still push out membrane)

cofilin yes (all) yes (full)

Receptors no no

WASP yes (SA to PA) no

PIP2 yes (N to WN) yes (nucleators still push out membrane)

Table 6.1: Effects on macromolecular activity (viable state changes that remain) and overall engulfment 

behaviour of each macromolecules absence.

rise and fall as needed in different areas of the cell, in the Cellanimat it is modeled as a constant in the 

P(LOSS) parameter. If the cell is over saturated with actin, recycling becomes redundant. In the default 

parameter set, although the parameters relating to recycling (FTOP and PINT) imply good efficiency, the 

high volume of actin agents renders this mechanism obsolete. The issues of recycling and saturation are 

more fully investigated in subsequent sections.

6.2.5 Optimization of WN rule
The outcome of the redundancy investigation points to an interesting deviation from the biological case. 

New WN state nucleators are able to push out the local membrane. This provides room for a WA actin to 

bind to it, as described in Chapter 4. This means however, that the system can, given an overabundance 

of nucleators, actually perform engulfment without the need for actin, which is not possible in real cells. 

To eradicate this artifact of the simplified model two simple changes were made to the WN rule: 1) that 

nucleators cannot call the Mchange rule, they can no longer push-out the membrane; 2) They bind to 

WASP found only in its radius 2 MNs (not in its radius 1 MNs). See Fig.6.5 and compare Figs.6 . 6  to the 

old versions shown in Fig.4.16(d) in Chapter 4.

The optimized WN rule is based on the biological insight that WASP is a long protein with several 

different binding regions along its length, the arp2/3 binding region being located at the ‘C-terminus’, 

the end farthest away from the membrane (Miki, H. and Takenawa, T., 2003; Holt, M. R. and Koffer, A., 

2001). It binds nucleators far enough from the membrane for actin to join on to them without the need 

to push out the membrane first.

A simple model, where all radii for binding and assessment are set to one, is obviously not going to 

maintain fidelity to biology on close scrutiny, the question is when is it necessary to lose some simplicity 

to gain increased performance? It may not always be beneficial to use the optimized WN rule, and in fact 

the new rule has little impact on engulfment ability overall as shall be seen. But here, within the context 

of a dynamical and redundancy assessment of the model, it is worth defining a more life-like function so 

any projected/evolved optimal parameters can be appreciated and increase the biological fidelity of the 

model.

To validate the new WN rule the effects of macromolecular knock-outs were re-assessed when
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Original WN rule:

If  nucleator.state =N  and 3 a WASP MN:
- nucleator .state = WN
- Mchange

If nicteatcr.state = WN and ^ a  WASP in MN r= 2:
- nucleator .state =N

New WN rule:

If nucleator .state = N and 3 a WASP MN r=2:
- nucleator .state = WN

If nucleator .state = WN and ^.a WASP in MN r=2:
- nucleator .state = N

Figure 6.5: Pseudo code for the original and new WN rules relating to Nucleator state WN activity. 

Mchange is not called in the new WN rule so nucleators cannot affect Cellanimat form directly.

(a) (b)

Figure 6 .6 : The new WN rule in practice: (a) a nucleator at a distance of 2 voxels from an active WASP 

can bind to it, changing state to WN. There is no local membrane push-out and (b) enough room is left 

for a WA agent to bind to it and form a filament.

the new WN rule was implemented. See Table 6.2. It is clear that now macromolecular redundancy 

is consistent with expectations, based on the biological literature. There is less redundancy with the 

new WN rule but greater emphasis on a minimal realistic model. The decision to implement the new 

or original WN rule will depend on which factor (fidelity/redundancy) is more important in a given 

application.

6.3 Study Two. Agent volume: optimization and robustness

The main aim of this study was to discern the optimal number of agents required to perform the phagocy­

tosis task. The aim was also to test how robust such ‘optimal’ settings were, given the stochastic nature 

of the model, and to assess any correlation between robustness and agent volume. A 2D projection into 

engulfment space was performed, where the number of actin and nucleator agents in the system were 

varied. The number of agents, #A and #N, were given as a percentage of Cellanimat cytoplasm volume 

(6565 voxels in total) and varied in 10% jumps between 0 and 100% of the total Cellanimat volume.
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Macromolecule removed Activity Engulfing behaviour

actin yes (N to WN) no

nucleators yes (SA to PA to WA) no

profilin yes (N to WN) no

cofilin yes yes

Receptors no no

WASP yes (SA to PA) no

PIP2 yes (N to WN) no

Table 6.2: Redundancy with new WN rule. Effects on macromolecular activity and engulfment be­

haviour when each macromolecule is removed, with replacement

The optimized WN rule, as defined in section 6.2.5, was used. Results were averaged over 20 runs; each 

run lasted 250 time steps. Certain combinations were not included in the study and were allocated a 

zero score. These were impossible combinations where either there were no actin or no nucleators or if 

the combined volume of agents was greater than or equal to 100% of the cytoplasm volume. With zero 

actin/nucleators, the redundancy study showed, that this would generate no behaviour; with 1 0 0 % of the 

Cellanimat composed of agents there would be no way for them to move.

Fig. 6.7(a) shows that, on average, performance increased as actin agent volume increased and 

nucleator volume decreased. The results reflect the inclusion of the new improved WN rule, which of 

course favours actin over nucleators as the weight of the process has been entirely shifted onto actin. This 

kind of combination — high-actin with low-nucleators — is what was logically expected in a biologically 

loyal model, as a greater quantity of actin, compared to arp2/3, is needed for filament formation. This 

again reaffirmed the use of the new WN rule for increased biological fidelity. The agent projection gives a 

valuable insight into striking the right balance between ‘room to move’ and ‘enough activity’: a tradeoff 

is required. As the number of nucleator agents rose a drop off in engulfment ability was observed. The 

nucleators can be seen to have‘taken up valuable space’, which could have been better occupied by actin, 

or left free to improve agent movement.

The errors (standard deviation over the twenty runs) on the agent projection were higher than would 

be expected for a robust solution, see Fig.6.7(b). Though the results were only averaged over a relatively 

small number of runs, it became clear that there was an inconsistency in engulfment ability affecting the 

errors greatly, that would not have been ironed out by increasing the number of runs. Instances where no 

behaviour was recorded occurred when on most other runs it would achieve near full engulfment. This 

resulted in the high errors, note that the long high peak on the errors graph occurs when the combined 

agent volume is close to the total cytoplasm volume.

It was found that the Cellanimat was dependent on initial conditions when a high percentage of 

agents was used, specifically the initial locations of receptors and agents. The PIP2release function, 

which releases profilin into the cytoplasm when a receptor activates, was designed with simplicity in 

mind, and lower agent volumes. An amount (PPlume) of profilin would be released to any available



6.3. Study Two. Agent volume: optimization and robustness 117

( b  )  N ucleators (%)N ucleatois (%|

N ucleators (%) N ucleators (*•)

Figure 6.7: (a) 2D projection results showing the average effect on engulfment of varying actin and 

nucleator agent volumes (agent volumes given as a percentage of the total cytoplasm voxel volume (6565 

voxels)), (b) Error margin on the averaged results shown in (a), (c) 2D projection results varying agent 

volumes with the optimized PIP2release function. More agent combinations achieve high engulfment. 

(d) Error margins on projection shown in (c), errors have been considerably reduced by the PIP2release 

function.

cytoplasm MNs upon PIP2 activation (receptor activation). This of course was fine with the original, 

lower volumes of agents. But when agent volumes are high, there becomes a real chance that all the 

initially active receptors (touching the particle) will have no cytoplasm voxel MNs to release profilin to, 

as they all contain agents, resulting in the absence of profilin and thus no further behaviour or activity. 

Interestingly, this phenomena would not have occurred when tested at chemotaxis. If the receptors ini­

tially exposed to the required amounts of chemoattractant could not release profilin due to high agent 

density, other receptors would activate as the chemoattractant diffused. See Fig.6 .8 (a) for a graph detail­

ing the frequency of ‘no behaviour’ runs. Note that when no behaviour is generated by the system the 

engulfment score is not zero but 5%, as some membrane voxels are initiated in contact with the particle.

6.3.1 Optimization of PIP2-profiIin functions

In the light of the projection results, that higher overall volumes of agents yield better performance, a 

new more biologically plausible version of the PIP2 release function is presented. Simplicity must be 

sacrificed, if robustness of behaviour to initial conditions and stochastic elements is desired, when using 

high agent volumes.

Instead of the PIP2release function releasing profilin to any available cytoplasm voxels, meaning 

the released amount varies from receptor to receptor, it was decided to define a set amount that every
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Figure 6 .8 : (a) Frequency graph showing that instances of no behaviour generated correlate with high 

agent volume, (b) reduction in instances of no behaviour with optimized PIP2release function.

activated receptor would release, in packets of size (PPlume), over time. Arbitrarily, this new parameter 

(PPlumeFull) was set to be eight packets of size PPlume. Each receptor voxel was given a new substate 

that counted how many packets of profilin had been released, and stopped all further attempts once the 

counter reached eight. This slow-release mechanism may also aid the phagocytosis task further, when 

high agent volumes are used, as it will maintain a constant supply of newly released profilin at the site 

where active actin is most needed, rather than releasing a single larger packet and allowing it to diffuse 

back into the cell too early. In addition to this the PIP2uptake of profilin, by inactive receptors (containing 

inactive PIP2), were restricted to taking only the amount PPlumeFull in total. Inactive receptors utilized 

the new counter to achieve this. See the pseudo code in Fig.6.9 for the old and new PIP2release/uptake 

functions.
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Figure 6.9: Pseudo code for the original and new PIP2 release and uptake rules relating to the release 

and uptake of profilin by PIP2.
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6.3.2 Agent projection with optimized PIP2 function

The agent volume projection was re-run with the optimized PIP2release function. As the new 

PIP2release function improved performance, the model was only run for 200 time steps, and indeed 

may have attained high fitness much earlier even than this. Fig.6.7(d) shows that the errors have been 

significantly reduced, the top error being half the errors gained with the old version of the PIP2release 

function. Fig. 6.7(c) shows that the improved robustness, and possibly the increased levels of profilin 

released (investigated in the next study), allow more combinations of agent volumes to achieve high 

performance.

Compare Fig.6 .8 (b) with Fig.6 .8 (a), the PIP2release function does indeed appear to have reduced 

the instances of ‘no behaviour’ due to high agent volume no longer blocking profilin release. Some 

instances when actin levels are low are still encountered, but this could be due to an actual lack of ability, 

on the Cellanimat’s part, when actin levels are low rather than a blockage of agents. Indeed, the average 

score for a Cellanimat with an actin:nucleator ratio of 10:80 was 7.52% (error =2.54%), so the ‘no 

behaviour’ score (5%) did not significantly deviate from the average score — it was within one standard 

deviation of the mean.

From these results the optimal settings for #A and #N, for robustness and performance, were found 

to be #A=70% (which gives 4596 actin agents) and #N=20% (which gives 1313 nucleator agents). These 

are far higher than previously suspected. However both the 80:10 and 60:30 volume combinations also 

reliably yield near 100% engulfment. So as long as the number of actin agents stays over 50%, and the 

total number of agents fill 90% (or possibly more) of the Cellanimat’s cytoplasm voxels it will achieve 

near full engulfment. Of course this result is task dependent, and dependent on the settings of the other 

static parameters. To gain a parameter set optimal over all parameters a GA is recommended, details 

given in study 7. The Cellanimat’s increased production of profilin, due to the optimized PIP2release 

function, meant that the original balance in the parameters has now been upset. A projection into profilin 

dynamics was conducted to understand more precisely the effects that profilin levels have on perfor­

mance, and to suggest profilin-related parameter optimizations.

6.4 Study Three. The role of profilin: recycling or saturation?

Profilin is a cytoskeletal accessory protein, in the Cellanimat it is a crucial component, it is the diffusible 

signal linking the ArtCyto to the external environment. To understand the role of profilin in the Cellani­

mat, in terms of efficiency and optimization, a thorough investigation of all profilin related mechanisms, 

and their dynamics, was performed. Based on insights from this investigation, improvements to the 

system are outlined and then validated. In real cells profilin recycling can be seen as a very efficient 

method of maintaining high profilin levels at the leading edge (Holt, M. R. and Koffer, A., 2001). A 

2D projection was performed, varying the two profilin parameters PAth and Precycle, to gain insights 

into the necessity of a profilin recycling mechanism within an artificial setting, and to define optimal 

parameter settings. Profilin dynamics are determined by the following four functions in the Cellanimat, 

as previously described in Chapter 4:
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• PIP2 release/uptake: profilin is released/uptaken by PIP2 upon receptor activation/deactivation.

•  diffusion: all profilin is diffused through empty cytoplasm voxels.

• PrUptake: in real cells profilin activates sequestered actin (state SA) and binds to it forming 

profilactin. In the Cellanimat this is represented by the removal of a small quantity of profilin 

local to the actin agent concerned.

•  PrRelease: In real cells, when profilactin binds onto the end of an actin filament the profilin is 

released back into the cytoplasm. In the Cellanimat, this is represented by a release of profilin 

when state WA actin changes state to FA, by joining a filament.

There are just four parameters, given below, that relate to profilin. The amounts are given in ar­

bitrary, abstract units and do not relate to actual concentrations found in real cells. Default settings are 

given in square brackets.

• PAth [0.01]: amount of profilin needed, in an actin (state SA) agent’s MNs, to activate it (change 

state to PA).

• Precycle [0.01]: approximate amount of profilin taken, and subsequently released, during profilin 

recycling (through the PrUptake and PrRelease functions).

• PPlume [0.5]: amount of profilin released by PIP2 into each available Cytoplasm MN upon, and 

only upon, receptor activation.

•  Pth [0.5]: the profilin diffusion threshold.

6.4.1 Dynamics of profilin recycling

Before finding optimal parameter settings related to profilin it was necessary to take a deeper look at how 

the profilin recycling mechanisms were implemented within the model. Investigation into how each of 

the stated functions, relating to profilin, affected profilin levels was performed. Areas for improvement 

were searched out, in terms of simplicity and accuracy. A higher degree of transparency, and improved 

accuracy, of the profilin recycling mechanisms sheds greater light on the definition, and importance, of 

optimal parameters, and will lead to greater insights into the role of diffusible signals and recycling 

systems during morphological plasticity in the artificial system as a whole.

Using all original versions of functions, and the default parameter set, the Cellanimat was tested 

for 250 time steps at phagocytosis with WASP radius 2 recruitment. The following data was collected 

at each time step: the average amount of profilin detected by an SA actin agent upon activation; the 

average amount of profilin actually removed per agent in the PrUptake function; and the average amount 

of profilin released per agent in the PrRelease function. This gave a fuller picture of the role of profilin in 

the original model, as used in the previous chapter, and the recycling/activation ‘strategy’ implemented 

by the default parameter set.
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6.4.1.1 Profilin detected during PrUptake

On average, over the whole run, 0.043 (with error 0.085) profilin was detected when state SA actin 

agents changed state to PA, which is 4.3 times the default PAth setting. Fig.6 .10 shows that over the time 

steps a wide range of profilin levels were detected as can be expected. A small number of peaks can be 

distinguished in this graph, where much higher levels of profilin were detected, possibly by agents close 

to a newly released plume of profilin, that has not yet diffused.
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Figure 6.10: The average sum of profilin detected by an SA agent in its MNs (whilst being ac­

tivated by profilin and changing state to PA). Averaged over all SA agents with enough profilin 

(J3 P r o filin M N s  >  PAth) to activate in each time step.

6.4.1.2 Profilin removed by PrUptake

Fig.6 .11 clearly shows that throughout a run the amount removed from the system via the PrUptake rule 

is rarely the full amount of the Precycle parameter (0.01), and on average, the amount taken is less (the 

overall average value for this run is 0.00191, which is 19.1% of the Precycle parameter, with standard 

deviation 0.0014). Indeed sometimes the amount taken is zero. As the model was not initially designed 

to optimize efficiency, but rather to perform a desired task optimally (chemotaxis or phagocytosis), the 

functions relating to profilin recycling were quite relaxed and simplified. Conservation of profilin was 

not given high priority. The PrUptake function removes all profilin from a single, randomly chosen 

cytoplasm voxel (neighbouring the actin agent changing state), not containing an agent up to the value 

of the Precycle parameter. So, if C.profilin < Precycle, then the amount removed would of course be 

less than Precycle, and may even be zero.

6.4.1.3 Profilin released by PrRelease

The amount of profilin released with the PrRelease function, called when WA actin changes state to FA 

(as it joins a filament), over one run can be seen in Fig.6 .12. 99.3% of the releases of profilin, in the 

PrRelease function, were of exactly the amount stated by the Precycle parameter (0.01). There were only 

10 instances (out of 1323 calls of the function during one run) of actin being unable to find a C state MN 

to release the amount to, thus losing a small amount of profilin from the system. Were there more agents 

(with the default parameters only 75% of Cellanimat volume was occupied by agents) the expectation is 

that the number of instances where no C state MN could be found, to release to, would rise.

100 150
Time steps
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Figure 6.11: The average amount of profilin removed in PrUptake, when actin changes state from SA to 

PA, in each timestep.
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Figure 6.12: (a) Frequency charts showing how often PrRelease fails to release profilin as actin.state 

changes from WA to FA. (b) Frequency when the NEW WN and NEW PIP2 rules are used with agent 

volumes at 70:20.

To test whether release failures would increase with agent volume the study was re-run using the 

updated WN rule and the updated PIP2 rule (as defined in sections 6.2.5 and 6.3.1 respectively). The 

optimal agent volume of 90% of the total cytoplasm volume was used, divided into the ratio 70:20 (actin 

to nucleators). This high agent volume left less Cytoplasm voxels available for profilin release during the 

PrRelease function. Fig.6 .12(b) shows that surprisingly, a similar frequency to Fig.6 .12(a) was found. 

Over the vast majority of cases PrRelease managed to locate a free Cytoplasm voxel for profilin release, 

in the Moore neighbourhood of the agent in question (changing state from WA to FA). So, the amount 

of profilin lost over a run was only a tiny proportion and further complication of this rule to restrict loss, 

though trivial, was deemed unnecessary, given the current level of abstraction of the model from biology.

6.4.1.4 Summary

Overall, on this sample run, 3.682 (arbitrary units) of profilin were removed from the system by the 

PrUptake recycling function, whilst 14.13 units were released by the PrRelease recycling function. It
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is clear why the default parameter set yielded high engulfment: the Cellanimat was benefiting from the 

simplicity of the PrUptake rule and actually generating more profilin to the system with the recycling 

mechanism. This increased actin activation beyond the amount that should have been generated by the 

influx of profilin from PIP2 release alone.

An extension to the PrUptake function, so that it searches through all available neighbours until 

the full amount Precycle has been removed, could be implemented to rectify the advantageous anomaly 

observed in the recycling system and to improve conservation of profilin. An extension such as this 

would shift importance back onto the parameter settings rather than there being intrinsic benefits in the 

mechanism. This change could initially have a detrimental effect on the Cellanimat’s engulfment ability. 

However, it can be seen that the extra amount released by the recycling system (10.448) if spread over 

the 300 time steps may have been negligible, it would have only been enough to activate three extra 

SA-state actin agents in a time step, as it becomes 0.03 (2.d.p) extra per time step.

The Cellanimat was over-saturated with profilin in the original version, as used in Chapter 5, due 

to the simplicity of the recycling system. Saturation of profilin allowed it to perform well at the cost 

of efficiency. An efficient system would minimize the energy cost of protein production, recycling 

mechanisms in real cells represent one of the ways natural systems implement efficiency. But as task 

performance rather than efficiency was the main criterion for success in the chemotaxis and phagocytosis 

studies, the cost of protein production did not matter. For integrity however, improving the PrUptake 

function is suggested.

Optimized PrUptake function

To improve on profilin conservation and efficiency the PrUptake function can be amended, as shown 

in Fig.6.13, such that the uptake of exactly the amount specified by Precycle is enforced. For full profilin 

conservation, the PrRelease function could be extended so that if no empty C voxel exists in the agents 

MNs to release the previously removed profilin to then it widens the search to radius two neighbours 

and so on until a suitable voxel is found. A more radical change could be to give profilin agent status. 

However, such a change would require more major, structural changes to the model. Profilin agents were 

originally discarded in favour of a gradient in the creation of the model as they ‘took up valuable voxel 

space’; higher resolution (increasing Cellanimat voxellation), or doubling up of agents in voxels, would 

be necessary to sustain a greater density of agents. No such extensions to improve the PrRelease function 

were implemented within this thesis as the benefits did not out way the extra memory and calculation 

time required.

6.4.1.5 Validation

To validate the optimized PrUptake function, to show that it does indeed improve conservation of profilin 

the new function was implemented and data collected on profilin levels over one typical run. The Cel­

lanimat was tested at phagocytosis for 200 time steps with WASP radius two recruitment using both the 

previously optimized WN and PDP2 release functions and the optimal agent ratio of 70:20 (see studies 

one and two). The Cellanimat achieved 100% engulfment by 200 time steps. Restricting the PrUptake
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Original PrUptake rule

124

i f  I  Proffin in C MNs > Path
go through MNs until a  Cyto state voxel is found 

______remove *Precydef/ or less if not enough, from this voxel

NEW PrUptake rale

I f I  Prom  in MNs > Path 
go through a/KMNs until amount 'PrecydeT has been taken

Figure 6.13: Pseudo code for the original and new versions of the PrUptake rules. They are implemented 

by an actin agent in SA state as it changes to state PA.

rule had no detrimental effects on performance, however the over saturation of profilin due to the new 

PIP2release function must be taken into account. Figure 6.14 shows that the optimized PrUptake rule 

yields more realistic profilin removal/release levels. Now more profilin has been removed than released, 

24.24 was released and 40.03 was removed in total. This is what was expected, as each actin agent in 

state PA or WA has removed profilin in PrUptake but has not yet re-released it in PrRelease, as it has not 

changed state to FA: the remainder of profilin removed from the system is caught up with agents that 

have not joined on to filaments.

6.4.2 Finding the Critical Saturation Point and optimized profilin parameters

Does the Cellanimat only function well when over-saturated with profilin or does recycling play a nec­

essary part in activating actin? Is there a critical point, in parameter space, when recycling benefits the 

system? What is that saturation point? ID and 2D projections into engulfment space were used to shed 

light on these questions.

A preliminary ID projection into engulfment space was run for 200 time steps to give an idea of 

the effects of the optimized recycling mechanism on performance before optimization of the profilin 

parameter set began in full. The Cellanimat was tested at phagocytosis using all previously described 

updated functions (optimized WN, PIP2release and PrUptake rules) and the optimal agent volume ratio 

of 70:20. The task was repeated ten times varying Precycle in 10% jumps, between 0 and 100% of PAth. 

Fig.6.15(a) shows that, with the default profilin parameters, varying Precycle had no effect on behaviour. 

The Cellanimat was saturated with profilin and could reach full engulfment without recycling. The 

increase in profilin released by the optimized PIP2 function may have rendered the recycling mechanisms 

useless.

To test this, PAth was increased to 50% of PPlumeFull. Raising the amount needed to activate SA 

actin (PAth) reduced saturation as much more was needed for activation. Note that PPlumeFull is equal 

to eight times PPlume, which equalled four, so PAth was set to 2, rather than the original setting of 

0.01, which is 0.25% of PPlumeFull. Precycle was varied in 10% jumps between 0 and 100% of PAth. 

With each new setting of Precycle the Cellanimat was tested ten times (so one hundred runs in total). It 

was hypothesized that, when profilin was a restricted commodity, increasing the amount recycled back 

to the membrane would increase performance. The expectation was to see that recycling could play an
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Figure 6.14: (a) Dynamics of profilin amounts released and removed at each time step with the new 

PrUptake rule, (b) Over the validation run only the amount Precycle (0.01) was removed using the new 

PrUptake rule.

important role in a profilin deficient, or at least under-saturated, system.

The highest fitness was indeed attained when Precycle was highest (equal to PAth) see Fig.6.15(b). 

Setting PAth to half the value of PPlumeFull put too much strain on the system, it was deficient in profilin 

and only achieved a top engulfment of 47.03% on average. The Critical Saturation Point (CSP) would 

be reached when the profilin parameters were such that the amount of profilin in the system was exactly 

the amount needed to yield high engulfment, no more no less. To find the CSP PAth was varied together 

with Precycle in a 2D projection.

6.4.2.1 Critical Saturation Point 2D projection

The Cellanimat was tested at phagocytosis 10 times for each pair of PAth and Precycle parameter settings 

within the 2D projection, where PAth was varied in 10% jumps between 0 and 100% of PPlumeFull, 

whilst Precycle was varied in 10% jumps between 0 and 100% of PAth. Each test lasted 200 time steps. 

All optimized functions described in the previous studies where implemented (the new WN, PIP2release 

and PrUptake rules), WASP was recruited to radius 2 MNs, and the optimal 70:20 ratio of actin/nucleator 

agents was used.

See Fig.6.16(a), performance (engulfment) was on average above 50% when PAth was less than 

50% of PPlumeFull and highest with PAth=10% of PPlumeFull, see Fig.6.16(a). The optimal setting for 

Precycle can be seen to be 100% of PAth. If high performance is desired and are profilin recycling or
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Figure 6.15: (a) Recycling had no effect on performance when PAth was set to 2.5% of PPlumeFull; (b) 

with PAth set to 50% of PPlumeFull, average engulfment increased as Precycle approached PAth. This 

shows that recycling of profilin increases performance when the system is less saturated with profilin as 

expected.

efficiency are not a concern, then it is optimal, as shown in the first ID profilin projection, to set PAth 

less than or equal to 0.25% of PPlumeFull. But, if a Cellanimat optimized for efficiency and loyalty to 

biology is required, by avoiding over-saturation, the Critical Saturation Point must be found.

The Critical Saturation Point is located at on the 2D projection at the intersection of a high Precycle 

value (100% of PAth) with a PAth value which is high enough to define profilin as precious (improve­

ments in performance are observed with increased recycling), yet also low enough that a useful number 

of actin agents can still be activated by it (indicated by high performance). If ‘high performance’ is 

defined as greater than or equal to 80% engulfment, then the Critical Saturation Point can be seen to lie 

at approximately PAth = 10% of PPlumeFull (0.4) and Precycle = PAth. Above this point, when PAth 

is less than 10% of PPlumeFull, increases in Precycle does not appear to have any beneficial effects, so 

the system is over saturated. Below this point the engulfment level of 80% is not, on average, attained. 

Of course the Critical Saturation Point varies as the definition of ‘high engulfment’ varies, if only 50% 

engulfment is required then the point would lie at PAth = 40% of PPlumeFull and Precycle = PAth.
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Figure 6.16: (a) 2D projection averaged results varying PAth and Precycle to find the Critical Saturation 

Point where recycling improves performance, and performance is also high, (b) Higher resolution 2D 

projection averaged results of the Critical Saturation Point area where PAth is between 0 and 10% of 

PAth.

For completeness, the resolution around the approximate Critical Saturation Point for 80% engulf­

ment was increased, in order to define it more accurately. A further 2D projection was performed, this 

time varying PAth in 10% jumps between 0 and 10% of PPlumeFull and Precycle in 10% jumps between 

0 and 100% of PAth. Each parameter pair, as PAth and Precycle were varied in the projection, was run 

ten times and results averaged. See Fig. 6 .16(b). When PAth was less than 6 % of PPlumeFull the system 

was saturated with profilin, as increased recycling yields no beneficial effects. However, when PAth is 

greater than 6 % increased recycling began to cause improvements with the most striking improvement 

seen at PAth = 10% of PPlumeFull.

So, in an efficient and optimal Cellanimat, which strikes the right balance between over satura­

tion and under activation utilizing the in-built recycling mechanisms, PAth should be set to be 10% of 

PPlumeFull (which is 0.4, when PPlume is 0.5) and Precycle to be 100% of PAth (0.4). With Precy­

cle equal to PAth, all of the amount needed to activate actin (which represents the binding of a profilin 

molecule to actin forming profilactin) is recycled. Thus in this parameter set, the value 0.4 represents 

one molecule of profilin which is removed, during binding to actin, and released when the PA (then WA) 

actin loses the molecule and binds to a filament. If saturation is not a concern then optimal PAth would
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be below 6 % with any setting of Precycle.

6.5 Study Four. The role of cofilin: actin recycling in the Cellani­

mat

Two parameters, within the P(LOSS) function, control the dynamics of actin recycling through filaments: 

FTOP and FINT. They simplistically model the natural loss of affinity that actin molecules exhibit for fil­

aments, generating disassociation of actin from filaments, and thus recycling of actin through filaments, 

as actin joins at one end and disassociates at the other. Increases in P(LOSS) are akin to the effects of 

cofilin, a ‘severing’ cytoskeletal accessory protein, which controls filament length. In real cells ATP- 

bound actin hydrolyses back to ADP-bound actin whilst bound within a filament. ADP-bound actin has 

less affinity for the filament. So actin would lose affinity after a certain amount of time and disassociate 

without the need for a severing protein. However, severing proteins give the cell tighter control over 

average filament length, precisely regulating filament dynamics in response to the environment.

This study concerns the effect, if any, that variation in actin recycling speed (probability of loss 

of affinity/severing) has on Cellanimat performance, i.e. the effect of increasing/decreasing average 

filament length, and therefore also the volume of available actin for polymerization. The expectation was 

that greater recycling (high P(LOSS) values) will improve performance as more actin will be available 

at the active edge, and less will be needlessly tied up, bound in filaments far from the active edge. 

The default setting for P(LOSS) was high but not too high, with the argument that very high values 

would yield ineffectively short filaments that disappeared before further actin could bind to them exerting 

maximum extensions of the membrane. This argument will be tested in this study and optimal settings 

defined.

The ability to recycle actin improves efficiency in real cells. But, as energy was not modelled in 

the Cellanimat directly, the benefits of actin recycling, if any, would be of a different nature to energy 

efficiency. For instance it was expected that increased actin recycling could have a beneficial effect when 

actin agents were scarce, as displayed by the profilin saturation/recycling relationship in Study Three. If 

the system were saturated with actin, then recycling could result in no improvement in performance. So, 

the agent ratio from the default parameter set was used, instead of the newly found optimal combination, 

as there were less actin agents in the original parameters yet high engulfment could be achieved. In the 

agent volume projection (Study Two), with the optimized WN rule, the original agent settings (where 

75% of the cytoplasm voxels were agents, 35% of which were nucleators, giving: #A=49%, #N=26% of 

the total cytoplasm volume) averaged 79% engulfment after 200 time steps.

A ID  projection was performed, varying the probability of an agent disassociating from a filament 

within a simplified, deterministic version of the P(LOSS) function, as described below. Optimal profilin 

parameters, as defined in Study Three, were used (PAth and Precycle set to 0.4) all other parameters were 

taken from the default set. The engulfment was expected to be lower than 79% as the newly optimized 

profilin parameters reduce the Cellanimat profilin saturation apparent in the agent projection.
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6.5.1 Deterministic P(LOSS)

The original P(LOSS) function dictates that after a certain point (FTOP) the probability of an agent, 

residing at the minus end of a filament (so only a FN or F_ A state agent), losing affinity for that 

filament (unbinding and returning to the inactive state: N or SA respectively) increases by the in­

terval (FINT). So for example, with the default parameter settings, when an F- A actin agent with 

actin.Fcounter = 10, the chance, P(LOSS), of it disassociating from the filament and returning to state 

SA, is actin.Fcounter/(FINT x 100), which is 10/200 = 1/20. So there is a 1 in 20 chance of disassociat­

ing, however if it remains attached to the filament, on the next time step there will be a 1 in 18 ( 1 1 /2 0 0 ) 

chance of disassociation and so on. Thus disassociation becomes more likely as the time spent bound to 

a filament increases.

Removing the stochastic element from this disassociation function gave a clearer picture of recy­

cling effects with a projection. Determinism reduced noise. So, for the purposes of this experiment the 

P(LOSS) function was reduced simply to this: if the agent exists at the minus end of a filament and 

agent.Fcounter is equal to FTOP, then disassociate (unbind and change state to N or SA depending on 

agent type). This translation to a deterministic function can be implemented within the original function 

by resetting FINT to equal FTOP/100, this sets the probability of disassociation, when agent.Fcounter = 

FTOP, to 1.

6.5.2 Results

FTOP was varied between 0 and 150 (150 equalled the total time steps performed within each run). The 

results were averaged over 20 runs. The graph in Fig.6.17 shows that fast agent recycling through fila­

ments (when FTOP was low) can be detrimental to the engulfment behaviour. If agents fall off filaments 

at a faster rate than they are polymerizing, then filaments were actually observed to disappear rather than 

persevering throughout a run. A relatively small range, in which the performance is heightened by recy­

cling, is observed between FTOP = 10 and 40. After FTOP = 40 a performance plateau was observed, 

where increased filament length neither increased or decreased performance.

100 120 140
FTOP

Figure 6.17: ID cofilin projection using deterministic P(LOSS) function varying FTOP between zero 

and the top number of timesteps. Standard deviation over 20 runs shown in grey.

In real cells a balance is necessary, between the rate of polymerization and the rate of loss, within
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filaments. When these are equal, the filament length remains constant, though the individual monomers 

comprising the filament are constantly changing. This phenomenon is called treadmilling (Alberts, B. 

et al., 1994). To achieve extending filaments, the rate of loss must be less than the rate of polymeriza­

tion, for short but stable filaments, presumed to be the most efficient state, the rate of loss needs to be 

only slightly less than the rate of addition. Variation in disassociation rate during the run would allow 

the Cellanimat to chose between the different types of filament dynamics for different tasks. Variable 

disassociation would provide extra functionality and could prove to be an interesting addition in future 

work.

The role of cofilin and actin recycling deserves further, in depth, study. These preliminary re­

sults show that actin recycling affects overall performance and functionality, whilst holding interesting 

dynamic properties itself. Efficiency and further multifunctionality, indeed the overall complexity of 

possible Cellanimat behaviours, could be enhanced by the simple extension of variability in P(LOSS), 

giving the Cellanimat autonomous, and environmentally driven, control over filament length, dynamics 

and behaviour, a possibility for future work.

6.6 Study Five. The extent of an optimal TP
WASP recruitment to radius 2 neighbours, upon receptor activation, was found in Experiment B in 

previous chapter to more than double engulfment ability. To test if the model, with the parameter and 

function optimizations accumulated through the previous studies, had been so improved that WASP 

recruitment to radius 2 would now no longer be required for high engulfment, the Cellanimat was tested, 

with all optimizations discussed throughout this chapter, at phagocytosis with WASP radius 1 and then 

with WASP radius 2 recruitment, and results compared. A run lasted for 250 time steps and results were 

averaged over 50 runs. The optimal parameter settings used were (70:20 agent volume, PAth = 0.4, 

Precycle = 0.4) along with all improved functions (WN, PIP2 and PrUptake).

Fig.6.18 shows that WASP radius 2 recruitment still played a key role in engulfment and displayed 

less variability in performance than with WASP radius 1 recruitment, due probably to less dependence 

on initial conditions. However, with WASP radius 1 the optimized model gained an average of 80% 

engulfment by t=250, greatly surpassing the original model and parameters, which managed just 41% 

on average (Experiment B in previous chapter).

Indeed, these graphs highlight another important fact; with the improved model and optimized 

parameters, on average, full engulfment is actually achieved by time step 150, and in many cases much 

earlier. This is markedly faster than the 250 time steps it took on average to reach 92% engulfment with 

the original model and parameters in the previous chapter.

6.6.1 Receptor density optimization

To find out the optimal number of receptors for the phagocytosis task, P(REC), the probability of a 

new membrane voxel containing a receptor, the following experiment was repeated 50 times. P(REC) 

was varied between a zero and a 1 0 0 % chance of placing a receptor in a new membrane voxel, in 1 0 % 

intervals, and the Cellanimat was tested at phagocytosis for 150 time steps (as results described above
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Figure 6.18: (a) WASP radius 1 activation still yields low performance at phagocytosis even with the 

improved model functions (b)WASP radius 2 activation still yields higher performance with the improved 

functions.

show that full engulfment can be achieved by t=150 with P(REC)=50%), with WASP recruited to radius 

2 MNs, 70:20 agent volume, PAth=0.4, Precycle=0.4 and all other parameters as in the default set. The 

test was performed to give insights into the sensitivity of engulfment to P(REC), and the stochastically 

determined distribution of receptors.

Fig.6.19 shows that as P(REC) increased there was a sharp rise in performance followed by a plateau 

at near full engulfment after approx. P(REC)= 30%. The performance plateaus at approx. 95% engulf­

ment. There was greater variability recorded in performance with low P(REC) values, as the response 

was sensitive to the stochastic initial, and prevailing, receptor distribution.

The initial parameter setting of P(REC) (50%) was found to be appropriate. But initial concerns 

suggesting that high P(REC) values would cause the system to be overloaded and thus performance 

would degrade were shown to be false. Of course, as P(REC) increases so does PIP2 volume, so high 

P(REC) values are linked to profilin saturation. An efficient Cellanimat, especially one that has any kind 

of cost function associated with generation of receptors or other proteins, would need P(REC) to be low.

6.7 Study Six. Compositional dynamics with the optimized model
In this study the compositional dynamics of the optimized model were compared to those of the original 

model, detailed in Study One. The Cellanimat was tested at Phagocytosis with WASP recruitment to 

radius=2 for 300 time steps and at chemotaxis with WASP radius 1 recruitment for 200 time steps. The 

optimized WN, PIP2 release and PrUptake functions were used along with the optimal parameters: agent 

volume 70:20, PAth=0.4, Precycle=0.4. All other parameters were taken from the default set.
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Figure 6.19: Varying P(REC), the probability of a membrane voxel containing a receptor, affects perfor­

mance.

6.7.1 Phagocytosis

See Fig.6.20. The run displayed reached almost full engulfment by just 150 time steps, concurring 

with results from the WASP recruitment radius investigation in Study Five. In comparison with the 

compositional dynamics using the original model, a higher overall level of profilin is now observed. 

These graphs betray more about what happens after full engulfment is reached than the original model 

data as full engulfment was achieved earlier in the run. The number of FA agents rose higher than with 

the original model, related possibly to the earlier achieved engulfment creating more active WASP sites 

for filament formation earlier. The number of WN agents continued to rise whilst the number of FN 

agents decreased, validating the claim that WASP-bound agents take up the only available room at the 

particle-membrane periphery. The number of membrane voxels barely increased once full engulfment 

was reached as there was little filament growth in other directions as there is in chemotaxis.

6.7.2 Chemotaxis

The obvious differences between the dynamics shown in Fig.6.21 and the data collected with the original 

model, shown in Study One, was that the Cellanimat reached the source sooner. The number of nucleator 

agents in filaments (FN) actually exceeded the number inactive at one point. A higher level of profilin 

overall was also recorded, as PIP2 was now always releasing PPlumeFull. This did not mean that the 

Cellanimat was more saturated with profilin, just that the value of a profilin unit had changed, due to the 

increased PAth parameter.

6.8 Study Seven. Saturation GA, evolution of an optimal parame­

ter set
This study concludes the investigations of optimization, efficiency, robustness and the inner workings of 

the Cellanimat. An optimal parameter set was evolved, so that all parameters were optimized in terms 

of the other parameters, rather than in isolation related to only their particular functions, as described 

within the earlier studies. A standard generational GA was used to evolve an optimal parameter set 

for phagocytosis, optimized for speed and engulfment. It was hypothesized that through evolution,
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Figure 6.20: Compositional dynamics over one run of phagocytosis with the Updated Model.

saturation would be exploited leaving recycling obsolete: evolution would chose the easy, greedy, option 

if not directly encouraged to be efficient. As a result of the previous studies into recycling, it was 

expected that: agents would be seen to occupy a high proportion of Cellanimat volume, high receptor 

density and low PAth compared to PPlumeFull (profilin over-saturation) would be selected for.

Genotypes, initialized randomly within the ranges shown in table 6.3, were evolved over 50 gener­

ations with a population size of 50. Each member of the population was tested at phagocytosis for 200 

time steps (experimental set up as in Experiment B in previous chapter) using the optimized functions 

from previous studies (the new WN, PIP2 release and PrUptake functions). Each genotype was assessed 

by the fitness function described in Equation 6.5. Parents were taken at each generation as the top 10% 

of the population. The highest scoring genotype was transferred, unchanged, into the next generation 

(elitism). The remaining population were produced using a crossover method that conserved the integrity 

of the genotype, given the interdependent value constraints, and were then subject to creep mutation, as 

described in the next sub-section.

6.8.1 Crossover and mutation

As some genes were interdependent, for example PAth depended on PPlume, crossover of two randomly 

chosen parents (with replacement) occurred at four distinct locations in the genotype only, see Fig.6.22. 

The top scoring parent was first entered into the next generation without crossover or mutation, but with 

replacement; it could also be chosen for crossover.
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Figure 6.21: Compositional dynamics over one run of chemotaxis with the optimized functions and 

parameters from Studies One to Five.

Each new genotype in the population was then subject to mutation with a probability of 1 gene 

being mutated in each gene string (P(gene mutation)=l/8). See equation 6.1. A gene G was classified 

as either an integer or a float value and had the respective mutation operator applied to it. The mutation 

operator Mint was picked, upon mutation, from integers in the given range (eqn. 6.3) using a uniform 

distribution. Similarly for Al f ioat but any float value could be picked. The sum was calculated within 

modulus r, ensuring the parameter remains within its viable range r  as detailed in table 6.3.

Gint =  Gint +  Mint (mod r) (6.1)

Gfloat =  Gfloat + Mfloat (mod r) (6.2)

o < Mint < 1000 (6.3)

o  <  M f i o a t < l  (6.4)

6.8.2 Fitness Function

In order to optimize for speed and engulfment the fitness function in equation 6.5 was used. Tq  was 

the time step when engulfment of 700 or above was achieved. If this score was not reached To was the 

full time of the run (200). The highest engulfment value possible was 701 (E top) (see previous chapter 

for explanation of the engulfment metric). Eg was the actual engulfment achieved at Tq . FITg would
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Gene Parameter Range

0 FTOP 0  <  x  <  2 0 0

1 #A 0 <  x  <  (95% CytoVolume — #iV)

2 #N 0 < x  < (95% CytoVolume — # A )

3 P(REC) 0  <  x  < 1 0 0

4 PPlume 0 . 0  <  x  <  1 1 . 0

5 Pth 0.0 < x  < P P lum eF ull

6 PAth 0.0 < x  < P P lum eF ull

7 Precycle 0 . 0  < x  < P A th

Table 6.3: Genes and their viable parameter ranges. ‘CytoVol’ refers to the total initial volume of 

cytoplasm voxels (6565). The first four genes can take integer values only, the latter four can take and 

number belonging to the real numbers.

decrease as engulfment and speed grew. In order to watch this as a maximization function rather than 

a minimization function, the final Fitness value was F IT q subtracted from the highest possible score

(FIThigh) which was 901 — no engulfment achieved by the final, 200th time step (i.e. Tg=200 and E g

= 0 ).

F IT q =  Tq + (E top — E g ) (6.5)

f i tn e s s c  = FIThigh ~  F IT g (6 .6 )

6.8.3 Results

The evolution took approximately thirty hours although high fitness genotypes were discovered rela­

tively early on, by around generation 10, see Fig.6.23 for the evolutionary dynamics. The top fitness 

in generation 50 was 847; engulfment of 700 was reached by time step 53. The mean fitness for the 

final generation was 711, meaning that, on average, full engulfment was reached by time step 190. The 

genotype for the final generation high scorer is shown in Table 6.4.

The evolved, optimal parameter set shown in Table 6.4 does indeed reflect and strengthen the find­

ings of the studies performed in this chapter. A high proportion of membrane voxels contained recep­

tors, 84% on average. The number of agents filled a high proportion of the cytoplasm volume (94%) 

corroborating the findings in Study Two. PAth was 0.5% (to l.d.p) of PPlumeFull. This meant that the 

Cellanimat had indeed exploited the lack of constraints on protein production (e.g. an energy constraint) 

resulting in the complete over-saturation of profilin and actin.

The top scoring genotype achieved high engulfment extremely fast, but it was very inefficient. 

Precycle was very close to PAth which would indicate high recycling, however, as PAth was so low 

in comparison to PPlumeFull, it is clear that recycling would have had no effect on engulfment ability 

(from Section 6.4.2). Similarly the cofilin recycling of actin was ineffectual, given the over saturation 

of actin. The FTOP gene was 7 so filaments were kept very short, this would have been expected to
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Figure 6.22: (a) The four viable crossover points in the saturation GA to conserve integrity in the param­

eter values due to interdependence, (b) Example of two parents crossed at point C.

be detrimental, from the results in Study Four, however the high density of agents may override any 

negative affects of short filaments.
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Figure 6.23: Evolutionary dynamics of the Saturation GA.

A complementary study to this Saturation GA could highlight a more realistic role for profilin recy­

cling in the Cellanimat. The ‘Starvation GA’ could utilize a cost function, putting a price on each protein 

included. This would select for efficient, optimal parameter sets that minimize the number/concentration 

of macromolecules. In such a study, recycling mechanisms could be expected to become fully imple­

mented by the selection of high Precycle, low PAth, low agent volumes and medium P(LOSS) parame­

ters. The cost function would represent energy in the system, a parameter set could be sought to optimize 

performance in harsh environments — under ‘starvation’ conditions. The expectation would be that the
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Gene Parameter Highest Scoring Genotype

0 FTOP 7

1 #A 5120

2 #N 1052

3 P(REC) 84

4 PPIume 2.032882

5 Pth 0.870663

6 PAth 0.090932

7 Precycle 0.085083

Table 6.4: Highest scoring genotype.

system, evolved under these more stressful conditions, would more closely resemble real cells and give 

greater insight into the necessary mechanisms within the Cellanimat for different types of environment, 

harsh or rich in resources.

6.9 Summary
The seven studies described in this chapter were designed to address Objective Four of the thesis, in­

vestigating the properties of the artificial MP model created in Chapter 4. The dynamics, optimization, 

robustness, redundancy and evolvability of the model have been investigated. This is by no means 

meant to represent a full investigation. There are many more aspects and properties of the model to 

study, such as the branching dynamics of actin filaments regulated by the nucleators, or areas for im­

provement/expansion such as the inclusion of more accessory proteins or realism in receptor behaviours. 

Further depth or detail in the more preliminary experiments detailed here, such as Study Four, could 

illuminate further interesting dynamics or properties. In relation to the primary hypothesis, this chapter 

has raised the issue of a ‘level’ of well-adaptedness of the design, or the level of performance that can be 

reached by the adaptive behaviour. For example, increases in saturation or quantities of proteins within 

the Cellanimat were shown to increase the level of behavioural performance of the system at a task, also 

showing its well-adaptedness to the environment/task in terms of its design, to be improvable. Compare 

the original model’s performance at phagocytosis (engulfment=98% at t=300), to the optimized model 

in Study Six where near full engulfment was reached by just t= 150.



Chapter 7

A case study in morphological plasticity: 

diatom colony formation

Returning to diatom valve morphogenesis, armed now with a framework and optimized model for mor­

phological plasticity investigation (the E-P Map and Cellanimat, Chapter 4), a full simulation study into 

the mechanisms involved in diatom MP can now be conducted in order to test the secondary hypothesis. 

As a case study the MP exhibited during diatom colony formation is explored here. The benefits of 

this exploration are two-fold: 1 ) furthering understanding of diatom colony formation mechanisms in 

biology by original review and qualitative modelling and 2 ) investigating algorithmic formulations and 

mechanisms for plasticity in morphological development of artificial, interacting creatures.

First, in this chapter, the phenomenon of diatom colony formation, involving valve plasticity to the 

environment, is introduced. The subtleties involved in determining the underlying mechanisms, along 

with a review of current theories, are discussed. This chapter represents a crucial stage in the develop­

ment of the testbed simulation model. Without thorough, careful consideration of the related biology, 

current knowledge, theories and open problems, an accurate and useful model cannot be created. In the 

following chapter (Chapter 8 ) the Cellanimat Colony Model, which combines the earlier Nature’s Batik 

Model (Chapter 3) with the Cellanimat (with the ArtCyto optimized and tailored to the new problem), 

based on the biology presented in this chapter, is described with results and implications discussed.

7.1 Background
Certain species of diatom do not live as independent single cells. Instead, they have developed a com­

plex set of environment-related interactions during valve morphogenesis, which allow them to form and 

disband colonies. In tune with the environmental changes of their fluctuating niche, colony dynamics 

are presumed to give these diatoms a greater chance of survival.

As a diatom undergoes cell division it must generate two new ‘sister’ valves, back-to-back, in order 

for the two new daughter cells to be fully enclosed in silica, see Fig.7.1. In general, a colony forming 

diatom will, upon cell division, produce two new sister valves such that they interlock and hold the cells 

together, e.g. Fig.7.3(a). In certain species this continues until the colony reaches a certain average 

length, then a dividing cell, within the colony, produces different sister valves such that the cells are
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Figure 7.1: (a) Aulacoseira granulata colony of linked cells with separation spines delimiting the colony, 

reproduced with permission from (Crawford, 1979). (b) 2D schematic of a diatom dividing and forming 

new sister valves back-to-back.

able to slide apart (‘separation valves’). Thus the separation valves provide a mechanism to divide the 

colony in two, giving the diatoms a mechanism for controlling colony length without loss of life through 

breakage, Fig.7.3(d).

It has been shown that all cells, within such colonial species, have the potential to form separation 

valves, but statistically the middle cell in the colony has been shown to exhibit the behaviour most 

prevalently(Davey, M. C. and Crawford, R. M., 1986). It is not clear how the cell ‘knows’ it is central 

(Davey, M. C. and Crawford, R. M., 1986). Conflicting evidence was however presented by Yakushin 

(1997), which found that on average colonies of Aulacoseira subarctica split with a 3:5 ratio. Colony 

formation has been implicated as beneficial in a number of ways, which will be discussed throughout 

this chapter, most distinctly as a mechanism to modify sinking rates in order to optimize nutrient and 

light exposure and to defend against grazers. The MP involved can be seen as a mechanism for executing 

adaptive behaviour at the individual level and society level.

Diatom Colony formation, in species able to develop both interlocking and separation valves (not all 

colonial diatoms form separation valves), is an explicit and interesting example of morphological plastic­

ity to environmental change. There has been a large amount of interest and speculation as to the adaptive 

quality of the response and the possible underlying mechanisms, however, there are no current solid the­

ories and very little data on exactly how and why certain species of diatom form colonies. Diatom colony 

formation is therefore a good system to model in order to further understanding of the adaptive processes 

that can underly MP and also contribute to current understanding within diatom research. Understanding 

the environmental cues which trigger/influence the morphological changes in diatom colonies has been 

highlighted as useful to understanding climate change through their use as bioindicators (Davey, M. C. 

and Crawford, R. M., 1986).

Most diatoms that form colonies are members of the phytoplankton, the assemblage of photoau-
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Figure 7.2: Schematic of the euphotic zone in the water column. Nutrients are more abundant below and 

light is more abundant above. The most advantageous strategy for phytoplankton is to cycle in the water 

column, benefiting from high exposure to both nutrients and light.

totrophs1 that reside in open waters (pelagic zones) of seas, lakes, ponds and rivers for the majority of 

their life-cycle. They provide organic carbon to pelagic food-webs and as such are analogous to plants 

in terrestrial food webs, though not all photoautotrophs are true plants (Reynolds, 1994).

A mechanism to prolong suspension in the upper, illuminated layers of water (euphotic zone) is 

of great importance in phytoplankton. Adaptations to maintain this residence have functional relevance 

and it has been presumed that they have therefore been favoured by natural selection (Reynolds, 1984, 

1988). Indeed marine phytoplankton’s immense net carbon production of 1010 tons (annual net) is 

linked to their successful suspension within the euphotic zone (Smayda, 1970). However, continuous 

suspension is not always necessary or desirable (Reynolds, 1984).

A further characteristic of phytoplankton is the need to maintain a high exposure to essential nu­

trients such as phosphorus, which are more concentrated in the lower layers of the water column, see 

Fig. 7.2. Successful growth and survival require only that the mean daily residence time within the eu­

photic zone permits photosynthesis in excess of the total daily respiratory and secretory losses incurred 

within and below the zone. It has been suggested that temporary suspension mechanisms may be easier 

and more various than permanent suspension, granted that access must be at least periodic, though no 

justification for this suggestion was given by Smayda (1970).

Reynolds (1988) put forward the terms below to describe aspects of the phytoplanktonic environ­

ment. Above a critical range of disturbance, planktonic algae are vertically entrained (transported up 

through the light gradient). Stress/disturbance levels vary considerably between pelagic environments. 

Presumably, phytoplankton have evolved particular strategies and adaptations of morphology and phys­

iological function to survive under one or other type of environment, shown in table 7.1. Colony forma­

tion can be seen as a response to a low stress/high disturbance environment. Colonial diatoms therefore 

usually fall into the ruderal category (see glossary for definition) and the large variation in colony mor­

phology and dynamics between species may be seen as variation in strategy due to differences in stress 

and disturbance levels between their environments.

'photoautotrophs: microorganisms that synthesize their food from inorganic substances using light as an energy source
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Low Stress High Stress

Low Disturbance Competitors Stress Tolerant

High Disturbance Ruderals No Viable strategy

Table 7.1: Table showing the adaptive strategies in the evolution of phytoplankton in freshwater pelagic 

environments. Competitors: exploit light/nutrient saturation by rapid growth and reproduction; Stress 

tolerant: can operate on low nutrients (Reynolds, 1988).

•  Stress: when there may be insufficient essential nutrients available to match the supply of photo- 

synthate

•  Disturbance: the extent of wind-driven turbulent mixing

Reynolds (1988) also noted that many aspects of cell metabolism are related to cell morphology: 

efficiency of light interception and utilization, capacity to absorb and store nutrients, ability to alter 

rates of removal by grazers, susceptibility to loss by sinking and the manner in which they respond 

to temperature fluctuations. Motility can be a solution, allowing the individuals to migrate to depths 

with more favourable light and nutrient absorption. Most colonial diatoms are non-motile, so colony 

formation can be seen as a mechanism by a non-motile taxa to migrate, to cycle beneficially in the water 

column via morphological plasticity.

Crucial open questions:

• What environmental factor triggers/influences the change between linking and separation valves?

•  What underlying organisation within the cell facilitates such morphological plasticity?

• Why does only the middle cell, on average, undergo the morphological transition?

• Does the difference in colony length affect the likelihood of being entrained?

7.2 Three example genera
There are a multitude of colony forming species each with its own particular morphology and behaviour. 

For example, there are diatoms that interconnect using organic material such as threads from strutted 

processes or by siliceous material such as interdigitating spines or fusion of structures; some attach in 

the girdle region (Round, 1972). The following are detailed descriptions of species within three distinct 

genera. The Cellanimat Colony Model, detailed in the coming chapter was based on the first example.

1: Aulacoseira

Aulacoseira Thwaites is a cosmopolitan diatom genus of ecological importance (Edgar, 2003); the 

species are centric colony forming diatoms, displaying similar yet varied linking/separating valve mor­

phologies. Aulacoseira granulata is one such species, occurring in freshwater habitats such as lakes, 

reservoirs and large rivers throughout the world (Davey, M. C. and Crawford, R. M., 1986). The linked 

valves of A.granulata have small interlocking spines and curved rows of pores, the separation valves
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Figure 7.3: A. granulata SEM images (a-d reproduced with permission from (Crawford, 1979), e-i 

reproduced with permission from (Edgar, 2003). (a) Two linked cells, (b) linking valve morphology, 

(c) and (d) separation valve morphology, (e) Aulacoseira unidentified species SEM, separation spines 

visible on outer valves, (f) A.Italica interlocking morphology detail showing the spines from one cell 

grow past, then over, the sister spines, (g) and (h) valve face view and side view of unknown species of 

Aulacoseira showing that spines form only around the edge of the valve face (i) A.ambigua separation 

spines. Scale bar represents either 1 pm  or 10 pm
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(a) (b)

Figure 7.4: (a) Chaetoceros decipiens colony, bar = 50 pm, the separation valves differing curva­

ture is shown on the two end cells. Reproduced with permission from (Pickett-Heaps, 1998), (b) 

Chaetoceros concavicomis colony l-2mm in length, of economic interest in the Pacific Northwest be­

cause their setae (spines) can cause the death of pen-reared salmon at Fish Farms. Reproduced from 

http://thalassa.gso.uri.edu: 16080/ESphyto/list/taxa/chconca.htm.

have longer, flat spines and straight rows of pores. Fig. 7.3 shows example images of the linking and 

separation valve morphologies.

It has been suggested that colony length reflects the longer term environmental conditions, not day- 

to-day fluctuating conditions (Davey, M. C. and Crawford, R. M., 1986). Colony density has been shown 

to be inversely related to cell size, thus the cell wall thickness is the same regardless of cell size (Davey, 

M. C., 1986). Colony length on average, rarely exceeds 6-9 cells (Reynolds, 1984).

2: Chaetoceros

There are many species of Chaetoceros, all join by fusion of silica between long setae (protruding 

spines) see Fig. 7.4. Of the following two types: I) C.bacteriastroides cells are joined together by seven 

‘pegs’ as well as by two ‘horns’ that grow together and remain connected at their base. The separation 

valves have small spines and perforations. 2) C.pseudocurvisetum has curved, fused setae, valves also 

join at two areas, leaving a large aperture between the cells. It has curved chains and no small setae. It 

has specialized, deeply lobed, girdle bands which allow the setae of sibling valves to protrude outside the 

diameter of the chain during their formation, similar to those shown in Fig. 7.4, the large setae are joined 

by crossing over (Fryxell, 1978). C.decipiens, shown in Fig. 7.4(a), forms separation valves which are 

shorter, thicker and curve sharply, becoming almost parallel to the colony (Pickett-Heaps, 1998). This 

sharp change in curvature may prevent fusion as the sister setae no longer grow together in the same 

direction, allowing the cells to separate.

Fryxell (1978) proposed that the evolutionary direction between these two species was

C.bacteriastroides to C.pseudocurvisetum with primitive colony formation involving cells tightly con­

nected by valve surfaces, evolving to loosely connected cells allowing greater cell surface exposure. The 

spiral pattern of the chain has been proposed as advantageous for control of position in water column 

and orientation during sinking (Fryxell, 1978).

http://thalassa.gso.uri.edu
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Figure 7.5: General morphology of the genus Skeletonema reproduced from (Sarno, D. and Kooistra, W. 

H. C. F., 2005). Light Microscopy: D,F,H,J. B,C show TEM valve face and side view. SEM: A,E,G,I 

show in turn a colony (scale bar 1 0  //m), separation valve, interlocking valves joined 1 : 1  apart from a 

single spine joined to two sister spines (both with scale bar 2  /mi), interlocking valves joined 1 : 2  (scale 

bar 1 /tm).

3: Skeletonema

Skeletonema is a morphologically and genetically diverse genus (Zingone, A. et al., 2005; Sarno,

D. and Kooistra, W. H. C. F., 2005), see Fig.7.5. Skeletonema costatum is a coastal species that exhibits 

extreme variation in size and shape, and survives a wide range of salinities. It possesses strutted processes 

that facilitate colony formation (Medlin, 1991; Fryxell, G. A. and Miller, W. I . , 1978). Within S.costatum 

an isolate was identified as a new species due to its differing morphological behaviour (Sarno, D. and 

Kooistra, W. H. C. F., 2005). The usual isolates formed chains of twenty cells on average with robust 

processes between cells; the external tubes began at the valve surface, then interlocked and fused with 

the sibling cell’s tubes; separation valves developed in the same way but did not fuse, see Fig. 7.5. The 

new isolate had chains of about ten cells under the same conditions (continuous light, 16° C, salinity 

28% as artificial sea water) and weakly silicified strutted processes; the tubes were intact but trough-like 

with one side higher than the other, they met but did not fuse, the sibling cells remain connected due to 

the parent girdle bands remaining intact. As these differences have been observed for many years it is 

assumed that the difference in chain length is genetic (Medlin, 1991).

7.3 Possible reasons for colony formation

There are many possible reasons for colony formation to have evolved and environmental conditions 

that could be responsible for triggering the change in morphology between interlocking and separation 

valves.
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7.3.1 Sexual reproduction

Colony formation could be an adaptation to increase the rate of population growth (Reynolds, 1988). 

It has been speculated that the close proximity of cells in colonies increases the likelihood of sexual 

reproduction as there is more opportunity for fertilization and a higher concentration of growth factors 

is maintained (Reynolds, 1988; Fryxell, G. A. and Miller, W. I . , 1978).

7.3.2 Fluid flow

Most cells experience an active and variable fluid environment. Flow has been shown to have a reversible 

effect on the morphology of Ceratocorys horrida (Peridiniales, Dinophyta): in still conditions it grows 

six long spines, when agitated it produces shorter spines and reduces cell volume, resulting from a 39% 

decrease in vacuole size. When conditions reverse it reverts back to the long-spined form, sometimes 

within a single cell’s lifetime. Sinking rates of the longer-spined form were shown to be lower than the 

short-spined form. It has been proposed that this could be an adaptation to escape from regions of high 

turbidity that can cause cell damage (Zirbel, M. J. et al., 2000). If sinking rate does indeed increase with 

colony length, then the fluid flow to which diatoms are subjected will also increase, and could affect 

spine morphology, perhaps resulting in separation valves. It would be interesting to test the effects of 

flow on diatom linking/separation valve morphology. However, cell size is unlikely to be affected in the 

same way as in Dinophyta.

7.3.3 Defence against grazers

Due to the pressures grazers exert on phytoplankton populations, colony formation has been regarded by 

many as an evolved defence (Davey, M. C. and Crawford, R. M., 1986; Fryxell, G. A. and Miller, W. I. 

, 1978). The colony chains may prove unmanageable to grazers due to awkward size, shape and exten­

sions, they may clog filtering apparatus, they also may be unpalatable due to toxicity and indigestibility 

(Fryxell, G. A. and Miller, W. I. , 1978). Some species release extrametabolites to inhibit grazers and 

it has been pointed out that these would be concentrated in a colony (Fryxell, G. A. and Miller, W. I. , 

1978), although it has been shown that size selection is more of a deterrent than taste (Porter, 1977).

Colony formation in Scenedesmus acutus (Chlorophyceae), a freshwater green algae, has been 

shown to be induced by the detection of chemical gradients from grazers; in the presence of Daph- 

nia the unicellular Scenedesmus form colonies, reducing vulnerability (Liirling, M. and Van Donk, E., 

1999). It would be interesting to analyze diatom colony dynamics with and without the presence of 

grazers, the shape may not only be a good defense, it could be a consequence of grazer presence. For 

instance, separation valves may only form in the absence of grazers. However, unlike Scenedesmus, 

colony forming diatoms do not live as unicells at any point, they are always in colonies, albeit of varying 

length, thus it is unlikely that grazers can be considered a sole cue.

7.3.4 Sinking rate increase or decrease?

Stoke’s equation (Equation 7.1) suggests the most important factor affecting sinking rate is morpho­

logical change, rather than density change, due to the form resistance coefficient (9). V  is the sinking 

velocity of a particle, g is gravity, r  is the radius of equivalent sphere (the term is squared here as resis­
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tance is proportional to r  and force is proportional to r 3), p is the density of the particle, p' is the density 

of the medium and r) is the viscosity of the medium. Particles remain in suspension when excess density 

equals zero or is positive, e.g. by water movement or motility (Davey, M. C., 1986). The form resistance 

coefficient cannot be derived, it has to be determined experimentally by comparing the sinking velocity 

of a particle with the sinking velocity of a sphere of equivalent density and volume, such as glass beads 

(Davey, M. C. and Walsby, A. E., 1985). This has important consequences when considering the calcu­

lation of sinking rates for artificial colonies, as a powerful physics simulator would seem to be the only 

possibility for calculating the form resistance.

v  =e^ g r 2{ p -  p')r)~l d~l (7.1)

There have been various speculations as to whether the size, shape and other morphological at­

tributes of diatom colonies help or hinder suspension in the water column (Smayda, 1970). Although 

an increase in the colony length:width ratio brings an increase in colony form resistance (Davey, M. C. 

and Walsby, A. E., 1985), colony elongation ultimately results in increased sinking rate rather than aid­

ing flotation; Skeletonema has been highlighted as the only contrasting example, where micro-turbulent 

conditions between the numerous silica spines slow sinking (Smayda, 1970).

Reynolds showed that as density and volume of spheres doubled the rate of sinking increased ap­

proximately linearly, by on average 20 p m s~ l whereas the sinking rate of Melosira colonies of equiva­

lent volume and density increased by only 2 p m s~ l as their length doubled (Reynolds, 1984). Thus for 

an individual, colony formation slightly increases its sinking rate. Form resistance of the colony keeps 

the increase low such that if the colony length increased to the average maximum of nine cells then the 

individual’s sinking rate would only increase by on average 4 p m s~ l . The increased sinking rate may 

be necessary to reach lower depths and increase exposure to nutrients as a greater volume of medium 

passes over the cells surface (Davey, M. C. and Walsby, A. E., 1985; Reynolds, 1988); this may also be 

necessary to avoid depleting nutrients in the higher levels of the water column with a static population; 

the low rate of the sinking increase may be necessary to avoid dropping out of the euphotic zone.

It has been noted that dead colonies sink faster than living ones, possibly due to a lack of mucilage 

strands adding to drag (Davey, M. C., 1986), so it is difficult to tell exactly what the sinking velocity 

effects are of elongating colonies as Reynolds’ work used dead colonies. It may be necessary to test with 

living colonies, it could be found that living colonies have slower sinking rates. Indeed, non-siliceous 

protuberances under metabolic control might provide a more direct influence on suspension than other 

surface extensions such as the long tubular setae of C.decipiens which also incur an increase in density 

(Smayda, 1970).

Stoke’s equation results in a ‘flotation paradox’ for diatoms. Suspension becomes the requirement to 

compensate by biological means the ‘overweight’ characteristic (self-regulated encrustation with dense 

material); cytoplasm density is approx 1.05 g/cm3, water density is 1.02 g/cm3  and silica wall density is 

around 2.6 g/cm3, so the silica cell wall actually hinders flotation (Smayda, 1970). The siliceous frustule 

seems counter adaptive to planktonic existence as it makes diatoms heavier and dependent on additional
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nutrients, thus more prone to sinking. However, they are noted as being among the most successful taxa 

in freshwater and marine phytoplankton so the wall morphology must also incur benefits or at least be 

neutral (Sommer, 1988).

Sinking rate decreases with the age of the colony because the chain length decreases, due to sepa­

ration valves (Smayda, 1970). The advantage of separation valves may be to reduce sinking rather than 

prevent it, it may give the colony a longer time in the euphotic zone and thus a higher probability of 

being entrained upwards. Assuming that the colony will have sunk in the water column when separation 

valves are initiated, it is conceivable that the altered local environment of the colony actually triggers the 

change in morphology, either the increased nutrient concentration, the decreased light and temperature 

gradient or their combination.

It can be concluded then, that linking valves may be advantageous as they allow individual cells to 

reach lower depths at slow rates and separation valves further slow the sinking rate to avoid loss from 

the euphotic zone. However, the increase in sinking rate due to colony formation in living cells may 

be negligible in which case it could be seen as a flotation device, and separation valves must perform a 

different function.

Separation valves do not directly result in vertical movement back to the higher layers in the water 

column unless shorter colonies are favoured by entrainment. So essentially, the mechanism for suspen­

sion in the euphotic zone remains unclear and further tests must be carried out to confirm the precise 

spatial dynamics of colonies in the water column before evolutionary and mechanistic conclusions can 

be drawn.

It is difficult to see the benefit for an individual diatom to reside in a colony in terms of sinking 

rates alone, given the inconsistencies surrounding colony suspension. It would seem that an individual 

planktonic diatom cell would fare better, in terms of suspension, if it were not in a colony. Thus, it is 

most likely that colony formation, and in particular separation valve formation, is the result of a trade­

off between the benefits of grazer defence and suspension. Morphological plasticity is the necessary 

compromise response to multiple environmental concerns.

7.3.5 The null environmental hypothesis

The null hypothesis must be that there is no environmental trigger/influence generating the morpholog­

ical change. Morphological change would then be in response to internal cues, without any causal link 

to environmental changes. This relates to the idea of a coincidental synchrony between internal home­

ostatic mechanisms and environmental periodicity, which creates the illusion of adaptive behaviour, as 

detailed by Todd, P. et al. (1994).

7.3.6 Summary and environmental hypothesis
The logical and possible colony dynamics with associated triggers are detailed in Table 7.2. The other 

conceivable permutations related to colony sinking rates would cause the colony to sink out of the eu­

photic zone and thus are eliminated as plausible theories. If the morphology of the colony is such that 

it achieves case A, permanent suspension, through the maintenance of colony length with separation 

valves, then it is unlikely that environmental changes in nutrients, light and temperature would trigger
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Separation valves slow Separation Valve triggers

Linking valves slow floating population (A) grazers, sex, internal

Linking valves fast cycling population (B) light, nutrients, temp, flow, sex

Table 7.2: The logical possibilities for sinking rate dynamics and related triggers. Case A: linking valves 

do not cause a significant change in sinking rate, the colony is suspended, and separation maintains this 

suspension. Case B: linking valves cause significant increases in sinking rates, but separation valves 

reverse sinking via more probable entrainment, such that shorter colonies are found in higher concentra­

tions in the upper layers of the water column and longer ones lower down.

separation valve morphology, as the environment is unchanged. Chain length could be maintained due 

to other factors previously discussed: grazers or even internal cues, unrelated to the environment.

If the colony morphology is such that it achieves case B, cycling through the water column, and 

there is indeed some mechanism for vertical movement in the water column related to shortened colony 

length (without this the colony would eventually drop out of the euphotic zone, so it is a necessary re­

quirement) then it seems likely that the change in environmental levels of nutrients, light and temperature 

experienced at lower depths might cause the separation valve morphology, although the null hypothesis 

must still be considered.

Given that the phytoplankton colony forming diatoms can be considered to be ruderals, existing in 

a fluctuating niche, B is chosen, for the purposes of this study, as the more plausible case and thus the 

assumption is made that linking valves do indeed increase sinking rate and that plasticity is related to a 

perceived environmental difference.

Light, nutrients and temperature variation through the water column can all translate as changes in 

available energy for growth processes. This study will focus on light as the difference in environment 

experienced by diatoms between the top and bottom of the water column. There is an abundance of light 

at the top of the water column and a lack of it at the bottom. The availability of light can be equated 

with energy levels for morphogenesis in a similar way to growth rate being related to light. In high light 

environments growth rate increases (Yakushin, 1997). Growth rate can be calculated as the number of 

cell divisions performed by a population over a set time, i.e. how quickly the population divides and 

multiplies. This means that more light provides the energy for growth more quickly, i.e. diatoms in high 

light have more energy available for growth processes over a given time period.

7.4 Morphogenetic mechanisms
In order to understand how colonial diatoms are able to adapt their form so spectacularly to the environ­

ment the low-level mechanisms underlying silica spine formation need to be understood. Once a basic 

method is in place it is then possible to consider how environmental information may be able to affect 

progress, resulting in alternate morphologies. Consider the combination of morphogenesis mechanism 

examples discussed in this thesis, of chemotaxis/phagocytosis and diatom valve formation, described 

in Chapters 3 and 5, diatom spine formation is thought to be due to a combination of membrane and
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cytoskeletal activity creating a mould for silica deposition, which is of course is open to environmental 

influence.

7.4.1 Schmid’s tricornate spine mechanism

Schmid (1982) proposed the following mechanism for spine formation in Thalassiosira eccentrica which 

it is hypothesized could account, at least in part, for the spines of certain types of colonial diatoms such 

as Aulacoseira.

During normal cell division, plasmalemma outfolds can be seen which cause a local lifting of the 

plasmalemma, creating moulds for the spines. The synchrony and coordination of these events have 

indicated that the two sister cells behave like a two-celled tissue, pulling themselves into position for 

stretching their surfaces. Schmid noted that contractions of the entire protoplast, or locally defined 

alterations of the cytoplasmic surface, are some of the more striking phenomena during morphogenesis. 

See Fig.7.6 for an outline of the process. Following Schmid’s proposed mechanism the morphology 

of an auxospore (produced by sexual reproduction) should be very different to an asexually produced 

cell, as there is no interactive growth with a sister cell. The auxospore of T. eccentrica indeed has very 

different morphology, it is not flat but hemispherical and has no spines.

“The plasmalemma is an absolute necessity for valve shaping and completion, mediated 

by interaction with the cytoskeleton, secretion of swelling and adhesive mucilage and vol­

ume changes of the sister cells relative to each other. The mechanisms involved in gene 

expression, the biochemical and biophysical events as well as the cytomorphic interactions 

are far from understood.” (Schmid, 1982)

Due to this lack of knowledge surrounding the biochemical and biophysical events (see above), 

Schmid asks the question “if the silicalemma (SDV membrane) is the mould for the valve then what 

is the mould for the mould?” Cytoskeletal elements are generally found in a variety of other silica 

depositing organisms e.g. radiolarian skeletons and sponge spicules. Thalassiosira eccentrica is a good 

model system for illustrating the importance of the plasmalemma in valve and spine shaping, however 

to be applied to colony formation, the mechanisms underlying the plasmalemma modifications, and the 

environmental dependencies, need to be defined. Low doses of osmotic stress and microtubule inhibitors 

have been shown to cause fasciculation and a lack of spines in vegetative cells. Further research into 

the cytoskeletal influences on local plasmalemma morphology during colony spine formation would be 

desirable.

7.4.2 Pickett-Heaps’ seta formation mechanisms

“Valve morphology starts when the SDV expands across a cleavage furrow covered by 

an unidentified layer which may aid in its shaping.” (Pickett-Heaps, 1998)

Pickett-Heaps (1998) proposed two cytoskeletal mechanisms for seta formation in the diatom 

Chaetoceros decipiens (the long silica spines protruding from the colony shown in Fig.7.4(a)). A form­

ing seta (long spine) is a hollow tube of silica, at the end of which is a bulbous, naked area of cytoplasm,
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Figure 7.6: Diagram adapted from (Schmid, 1982) showing the major steps of spine formation. Thick 

arrows indicate the direction the daughter cell is shifting in, green circles highlight areas of interest, 

PL=plasmalemma, SL=silicalemma.(a) First the PL outfolds and adheres to the girdle bands.(b) There 

is further growth and outfolding of the PL, secretion of extracellular mucilage and adhesion of the two 

cell’s PLs along the the girdle band, the PL detaches locally from the SL. (c) After establishing junctions 

between the PLs there is local contraction of the cytoplasm surfaces drawing it into conical shape, the 

PL also becomes less ‘sticky’, (d) Conical PL outfold becomes the moulding surface for the spine (SP).
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Figure 7.7: Pickett-Heap’s proposed models for setae formation by the cytoskeleton, redrawn with per­

mission from (Pickett-Heaps, 1998), shown as a 2D cross-section, SDV containing silica shown in dark 

grey, (a) Molecular Racheting: The fibrous band could move forward as a single unit using molecular 

motility systems involving myosin. The band moulds the forming edge of the SDV just inside the plas­

malemma. (b) Membrane ruffling: the fibrous band could be recycling or treadmilling where subunits 

disassemble at the left and reassemble at the right, as in filapodia.

containing a few vesicles. Immediately behind the soft end is a fibrous band whose morphology strongly 

suggests that it constrains the diameter of the seta. Close behind the fibrous ring is the SDV.

Molecular Racheting is the first mechanism Pickett-Heaps proposed, whereby the whole fibrous 

ring is steadily moved by some interaction with the just-formed wall by myosin motor proteins that can 

bind to the plasmalemma and actin filaments to move one against the other, see Fig.7.7(a). Therefore 

the fibrous ring concurrently drives and controls seta formation. Secondly Pickett-Heaps proposed a 

membrane ruffling mechanism, where the actin subunits in the fibrous ring are recycled, see figure 7.7(b).

No major roles for microtubules have been indicated in spine tip morphogenesis, although they are 

thought to govern the initial position of the seta. Although the fibrous ring is presumed to be actin, 

experiments to elucidate the precise role of actin in tip morphogenesis have been inconclusive, as anti- 

actin drugs and other physical/chemical disturbances inhibit seta growth. Pickett-Heaps ruled out turgor 

pressure (cell tension due to fluid contents, see glossary) driving the extension, although it drives exten­

sion in large vacuolated plant cells, such as root hairs, as it would not be sufficient to extend such low 

diameter tubes (the pressure required to extend the wall enclosing the tip is inversely proportional to the 

tube diameter, (Pickett-Heaps, 1998)).

7.5 Summary
This chapter has introduced some of the major concepts and theories surrounding MP in colonial diatoms, 

further satisfying Objective One and paving the way for fulfilment of Objective Five and testing of the
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secondary hypothesis laid out in the next chapter. The subtleties and issues involved in understanding 

how such MP mechanisms might work have been specifically included in this thesis in order to highlight 

the intricate, complex nature of such adaptive morphological responses and the wealth of unanswered 

questions that remain. Careful consideration of all the facts are needed to ensure mechanism models are 

useful, in terms of actually furthering understanding of the complexities involved and harnessing the full 

potential of such mechanisms for future AI technologies.



Chapter 8

The Cellanimat Colony Model

The Cellanimat Colony Model was a simulation study of the morphological plasticity exhibited by colony 

forming diatoms, as described and discussed in the previous Chapter. It combined the earlier Nature’s 

Batik model of diatom valve formation with the Cellanimat and E-P Map frameworks for exploring 

morphological plasticity in an artificial setting.

Building an artificial system from scratch to mimic, through only local interactions of the con­

stituent parts, the generation of either interlocking or separation spines offered a unique opportunity 

to catalogue comprehensively the necessary and sufficient components and interactions for the colony- 

forming process. Simulation permits cheap and fast assessment of each element of the process in turn 

and in combination. The simulation methodology proved a useful tool at the hypothesis formulation level 

of the scientific process. Through close scrutiny of different versions of interacting processes, and the 

resultant unfolding of the morphogenetic process, the most likely processes and parameters that would 

generate the observed overall plasticity in morphology/behaviour, close to those seen in real diatom 

colonies, could be assessed and predicted.

The model was intended for use as a tentative, yet comprehensive preliminary basis: it was not 

intended as a final or fixed account. Using biological experiments either to validate or counter the 

various aspects of the model, it could be revised, improved or indeed completely overhauled in progres­

sion towards the truth of the process. It is easier to pursue evidence to validate or counter a proposed 

theory than to investigate without any clear theories in place (Rizzotti, 2000), so this work aims to pro­

vide the first compilation of a full, feasible model for the environment-dependent morphogenesis of 

diatom colony valves. In the final part of this chapter predictions and suggested future experiments for 

validation/counter-examples are discussed.

The aim was to show, using a specially created simulation, that the two morphologies exhibited by 

colony forming diatoms, interlocking and separation spines, could be generated by a single mechanism. 

The idea is that the evolution of colonial-diatom valve morphogenesis has resulted in a mechanism that 

will, through the incorporation of environmental information into the cytoskeletal-driven development, 

generate morphologies well-adapted to the two different environments experienced. It was hypothesized 

that the morphological bifurcation occurs as a result of changing environmental conditions between the 

top and bottom of the water column, such as variation in light levels.



8.1. Overview o f the Cellanimat Colony Model mechanism 154

A simulation of two Cellanimats, modelling the interactive growth of two sibling cells within a par­

ent frustule, was developed to investigate this theory in the context of a Dynamic Morphology exhibiting 

irreversible MP (in Chapter 5 reversible MP was investigated). This provided an opportunity to observe 

the behaviour of a higher-level system comprising two interacting Cellanimats. During the model con­

struction process, plausible interactions were examined and alternative ways of configuring components 

in order to assess viable elements that may be at work in the real process were explored, which will be 

discussed throughout.

The model was based on a combination of Pickett-Heaps’ and Schmid’s mechanisms, described in 

Section 7.4, and the original Nature’s Batik Model described in Chapter 3. Considerable ‘gap-filling’ was 

necessary, as these theories are all qualitative, relatively speculative and lack the detail, quantification and 

substance needed for creating a large-scale realistic simulation. For example, Pickett-Heaps discusses 

actin dynamics but does not propose a trigger for cytoskeletal activity nor does he suggest the numbers of 

proteins involved. Attempts were made to fill gaps in the theory, such as these, with simple, generalized 

mechanisms, which were not intended to represent actual mechanisms in place, but merely facilitate the 

more solid aspects of the theorized mechanisms. Similar mechanisms to those explored in the chemotaxis 

and phagocytosis experiments were utilized in ‘gap-filling’ as they were simple, tested and, at least 

plausible. For example the cytoskeletal trigger utilized the TP proteins WASP and PIP2.

8.1 Overview of the Cellanimat Colony Model mechanism
The Cellanimat Colony Model is based on the fundamental idea that the cytoskeleton is needed to alter 

outer membrane shape, generating a mold within which silica can deposit to form spines, as encapsu­

lated in both Schmid and Pickett-Heaps spine formation mechanisms (Section 7.4). The fact that the 

cytoskeleton can be affected by environmental conditions, either directly through cell signalling, as used 

in Chapter 5, or indirectly through changes in energy levels, as used in this model, allows the system to 

be morphologically plastic. The cytoskeletal mechanism could in theory generate either interlocking or 

separation spines, with the deciding factor being the environmental light levels, which provides differing 

amounts of energy for the process.

An E-P Map similar to the protrusions E-P Map described in Section 4.3.4 was used, which relied on 

the ArtCyto within each Cellanimat to generate local membrane protrusions protruding into the sibling 

cell. Silica continually deposited within a simple ‘greedy algorithm’ (stigmergically, into all available 

space) so a membrane protrusion would be the template for a silica spine to deposit in. As with the 

Nature’s Batik Model, cytoplasmic material was placed by each Cellanimat in an initial configuration 

which blocked silica deposition. Interactions between the blocking material and silica generated the 

realistic stages of valve development and created pores. Silica was used as the trigger for the ArtCyto, 

activating WASP and PIP2 in neighbouring voxels of depositing silica.

A growing, actin-driven membrane protrusion could be blocked by silica in the sister Cellanimat. 

Thus each Cellanimat’s developing silica structure acted as a template for the other. So the cytoskeleton 

created a dynamic membrane mold for silica deposition, whilst simultaneously the depositing silica 

created a template for the actin-powered membrane mold, and the whole self-organising system was
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constrained by the parent frustule encasing the two Cellanimats. The important dual role of silica in 

this model, both activating and obstructing, was functionally similar to the role of the foreign particle in 

phagocytosis, Chapter 5. It is once again a Batik-based mechanism but this time reliant on a dynamical 

system of growing templates, generated and controlled by the cytoskeleton.

8.1.1 The Colony Environment-Phenotype Map
The following E-P Map defines the interactive growth of each Cellanimat with its environment. A 

Cellanimat’s environment is comprised of the sister Cellanimat, the parent frustule and external light 

levels. Full descriptions of how these functions were implemented are given in Section 8.5. There were 

three distinct EP functions belonging to the E-P map as follows:

EPa Activation (type 2-active): Silica deposition triggers WASP recruitment, and ArtCyto activity, 

within the same Cellanimat

EPb Obstruction (type 2-passive): All silica, of the parent, sibling or same Cellanimat, blocks mem­

brane protrusions driven by actin filaments

EPc Redistribution (type 3-active): a membrane protrusion redistributes the contents of the sister cell.

EPd Energy (type 1-active): light levels in the environment determine how much energy/time is avail­

able to the ArtCyto and cytoplasmic Blocks during the morphogenetic process.

8.1.2 Hypotheses

The Null Hypothesis of this work was that with this E-P Map a bifurcation in morphology, functionally 

and observationally resembling interlocking and separation spines, would not be generated by changes 

in environmental light levels only.

Specifically it was hypothesized that 1) a high light regime (called Env A), representing the top of 

the water column, would cause the ArtCyto to generate interlocking valves and 2) a low light regime 

(called Env B), representing the bottom of the water column, would cause the ArtCyto to generate sepa­

ration valves due to the reduction in energy/time available for the ArtCyto agents.

8.2 Initialization
Two 3D rectangular Cellanimats were aligned face to face within a bounding box (CellA left and CellB 

on the right), representing a shallow cross-section through two sister cells containing only the edges of 

the valves, as shown in Fig.7.3(b). Each Cellanimat had, in addition to the usual three voxel types (C,M 

and E), new ones to simulate silica deposition: S voxels contained silica and could contain nothing else; 

C voxels had a new substate B (for blocking material) representing the cytoplasmic material positioned 

by the cytoskeleton to block silica deposition, as detailed in Chapter 3. If a C voxel were in substate B 

it could still allow agents and profilin to reside within it, but could not be changed to state silica. These 

additions, and the rules determining their behaviour described later in this section, were directly based 

on the Nature’s Batik Model. The membrane represents the outer membrane or ‘plasmalemma’ of the 

diatom (PL). Once initialized the two sister PLs lay touching back-to-back, as the ‘gap’ parameter was
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Figure 8.1: (a) The initial parameters defining sizes and spacing in the model. Viewed from above, 

showing two daughter cells within parent frustule boundary, CellA to the left and CellB right, (b) Top 

view with silica deposition and ArtCyto initiated, FA agents shown in red, FN agents shown in white, 

Blocks in pink, PL in blue, parent frustule in grey, silica in black, (c) Side view.

set to 2 and membrane, within the Cellanimat rule C 1, see Section 4.4.1, is initialized in all E state voxels 

surrounding the cytoplasm voxels.

The Cellanimat’s dimensions were configured to fit a desired number of ribs (virgae) into both cells, 

aligned with an offset, as detailed in Table 8.1 and shown in Fig. 8.1. Ribs in CellB were offset by a 

certain amount, which could of course be varied in future experiments, the initial alignment of ribs could 

indeed affect the outcome of interactive valve development. The model is 3D but can be thought of as a 

stack of 2D layers with interactions occurring across, and between, the voxels in each layer, see Fig.8.2.

The simulation followed the structure shown in Fig.8.3. This structure closely followed the form 

described in Chapter 4 for a single Cellanimat, it was simply extended to incorporate silica deposition 

and certain functions tailored to suit the new task. The updated model was implemented (with some 

simplifications to be described) following the optimization insights described in Chapter 6 . Silica depo-
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Figure 8.2: The 3D model as a stack of 2D planes (layers), viewed from front, CellA left, CellB right, 

silica (black ribs) only depositing on startHeight layer within the Cellanimats initially. WASP black, 

central; SA actin yellow, PA actin green, FA actin red.

•  CREATION (if timeStep=C)

C l ) Initialize C M ancl E voxels

-  C'2) Initialize blocking material

-  C 3) In itia lize  lilts

-  C4) Initialize agents

•  ASSESSMENT (otherwise)

-  A l)  CA rules (synchronous)

-  A2) Rib rules (asynchronous)

-  A3) Block rules (asynchronous)

-  A4) Actin rules (asynchronous)

-  A5) Nucleator rule’s  (asynchronous)

Figure 8.3: Simulation structure, all rules listed are implemented in a time step, after rule Al) the CA 

states are all non-agent voxel states are updated. For all following rules each agent and relevant voxels 

are updated in turn (asynchronously). After rule A5 the timeStep is incremented and the process repeats.
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Parameter Description Default setting (voxels)

ribs number of ribs 2

ribWidth width of each rib 5

blockWidth initial width of each block ribWidth+(ribPLgap x 2)+blockSize

blockSize scalar added to blockWidth ribPLgap x 2

blocks no.of blocks between two ribs 3

cellRows width of each Cellanimat (2.5xribWidth)+ (1.5 x blockWidth)

cellColumns length of each Cellanimat (blockWidth x (blocks-1)- block^ d th  ̂

cellLayers height of each Cellanimat 1

Rows width of Parent boundary cellRows+(sideGap x 2)

Columns length of Parent boundary (cellColumns x 2)+Gap+(sideGap x 2)

Layers height of Parent boundary cellLayers+(LayersideGap x 2)

sideGap horizontal parent/Cellanimat gap 2

Gap distance between Cellanimats 2

LayersideGap parent/Cellanimat gap above/below 2

offset rib/block alignment offset r ib W  id th + b lo ck W  id th  
2

shift horizontal block offset blockWidth-ribPLgap

ribPLgap horizontal gap between membrane and silica 4

#A no. of actin agents per Cellanimat 3465

#N no. of nucleator agents per Cellanimat 1485

Table 8 .1: Model creation parameters. Gap was set to 2 so that the Cellanimat membranes touched once 

they were initiated.
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sition on the valve face was assumed to have already occurred, this model was concerned only with the 

deposition involved in spine formation, around the edges of the valve.

Creation rules Cl and C4 followed the same format of initialization as described in Chapter 4. 

The only difference was that every Cellanimat voxel had a flag associating it with either CellA or CellB. 

Actin agents in CellA were numbered up to #A and initialized randomly within C voxels with the ‘CellA’ 

flag. In CellB they were numbered from #A+1 to 2#A and placed only in C voxels with the ‘CellB’ flag, 

similarly for nucleator agents.

8.3 Cellanimat
The Cellanimat and ArtCyto modelling methods only differed from the default model, described in 

Chapter 4, due to simplifications to fit the new scenario. There were no receptors, instead WASP and 

PIP2 were recruited to membrane voxels by the deposition of silica within the cell. WASP and the release 

of profilin triggered state changes in the agents, as in the default model, resulting in the formation of 

filaments. For simplicity, and as a result of the investigations into Cellanimat recycling mechanisms in 

Chapter 6 , the PrUptake and PrRelease functions were not used, meaning that profilin was not recycled. 

Over-saturation of profilin was encouraged, in the absence of biological data, to speed up the membrane 

protrusions process, as shown in Chapter 6 . So, high PPlume values were used and inactive PIP2 did not 

remove profilin from the system.

In the CA rules, the membrane-tidy function again replaced any excess membrane voxels (ones that 

had no environment or sister membrane neighbours) with cytoplasm, and assigned blocking material to 

it using the ‘blockAssign’ function, as described in Section 8.5.3. The only other CA function diffused 

profilin throughout each cell as in the default model. The contract membrane rule was not used, so 

cytoplasm volume was not conserved. This was because the Cellanimat does not represent the whole 

diatom cell, but only a section, so contraction of the membrane at the back would not be realistic.

The agent ratio (actin:nucleators) used was 35:15 per cent of the initial cytoplasm volume (which 

was 9856), giving 3465 actin and 1485 nucleator agents per Cellanimat. This ratio was selected after 

consideration of the results of the agent projection performed in Chapter 6  and the fact that the available 

cytoplasm for agents to occupy decreases with silica deposition. It was desirable to optimize perfor­

mance through high agent volume yet also optimize their fluidity and movement within the Cellanimat. 

Indeed the speed and efficiency of the simulation was a factor, as increased agent volume increased the 

simulation time. So it was decided that a fifty percent total volume of agents per Cellanimat satisfied all 

criteria.

Agent state change rules featured only three differences: 1) a deterministic P(LOSS) function was 

used where P(LOSS)=l if agent.Fcounter>FTOP, as described in Chapter 6 . 2) No filament branching 

was used as a simplification. 3) a more realistic agent movement algorithm was used. The random 

movement algorithm described in Chapter 4 gave unrealistic protein distributions when protrusions were 

long. As a protrusion progressed the agents did not fill the newly created space as quickly as real 

concentrations of proteins would; the newly created cytoplasm voxels are meant to represent cytoplasmic 

material ‘flowing in’ behind the newly stretched membrane, which should bias agent movement. The
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Figure 8.4: Types of agent movement affect protein distribution using 2200 actin and 1100 nucleators in 

each cell. 2D slice through views of layer startHeight+1 at t=95 (a) random movement gives unrealistic 

bunching of PA state actin (green) away from new cytoplasm, resulting in slowed progression of protru­

sions (b) gradient movement gives a more even spread of PA and SA (yellow) flowing into the newly 

created space, speeding up protrusion growth.

(a) (b)

Figure 8.5: views from side showing agents present throughout the 3D layers.

chance of moving in the same direction, towards the new space, several time steps in a row was slim 

with the random movement algorithm. Instead a ‘gradient movement’ algorithm was used where each 

agent picked two random MNs and moved to the one with the greater number of empty cytoplasm MNs, 

i.e. agents flow down gradients in a space filling manner. Compare Figs.8.4(a) and 8.4(b). Fig.8.5 shows 

two 3D views of agents.

8.4 Silica deposition: re-implementing the Nature’s Batik Model
As in the Nature’s Batik Model certain stages of silica deposition, in terms of dimensionality, were 

predefined. In diatom valve formation, silica is first deposited along a ID line on the valve face (for 

pennate diatoms), then in the full 2D plane (valve face) and finally in 3D as the ribs curve outwards 

back into the cell (and forwards into the sister cell in colony forming diatoms) whilst the valve face 

also thickens outwards, see Fig.8 . 6  (only stages 3 and 4 were modelled). First a particular 2D layer 

(startHeight) had silica deposited, modelling the deposition along the valve mantle (side of the valve) in 

stage 3 rather than on the valve face (as with the original Nature’s Batik Model).
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Figure 8 .6 : Silica deposition stages through the dimensions, using a pennate example. First along a ID, 

then 2D along the valve face, the ribs curl backwards and forwards when they reach the edge of the valve 

face. Finally silica is deposited along all surfaces, building the surface structure out into 3D layers. In 

these experiments only stages 3 and 4 were modelled.

Figure 8.7: Dimensionality in growth process in SEM of Diadesmis reproduced with permission from 

(Cox, 2006). Ribs grow laterally along valve face until they abut the parent valve, then they grow out in 

third dimension back into the cell as well as forwards to form spines, only this stage is modelled in the 

Cellanimat Colony Model.

When the amount of silica in the current layer exceeded the set threshold (SDVexpand3D) silica 

deposited on the next layer vertically upwards in the stack (modelling stage 4 of the process, where the 

valve thickens). StartHeight was set to layer 1 inside each Cellanimat for all experiments, see Fig. 8 .8 . 

When the amount of silica deposited in the new layer exceeded the threshold, deposition started on the 

next layer above and so on. Deposition in 2D and 3D was still a stigmergic process. As in the Nature’s 

Batik Model, silica could only be deposited in a voxel that had at least one other S-state neighbour. Silica 

deposition was initialized as if it was curving round from the valve face to the valve mantle (side of the 

valve), as depicted in Fig.8.7.

8.4.1 Blocks

The use of blocking material follows from the hypothesis outlined in Chapter 3, that the cytoskeleton 

transports vesicles and other cellular material to particular sites, which then block silica deposition and 

ultimately determine pore sizes and positions. Chapter 3 went further and suggested that the deposition of 

silica could be responsible for partially shrinking/pushing the cellular blocking material away, explaining 

the observed stages of growth, where ribs (virgae) form before the cross-connections (vimines) define 

the pores.
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(b)

Figure 8 .8 : Side views showing silica deposition (black) only on startHeight layer (first layer up within 

Cellanimat) initially. Filament agents shown in red and white.

As with the Nature’s Batik Model a set of blocks of a maximum size were used. Each block was 

treated as a ‘stationary agent’ with the following information associated with it: 1 ) a unique identifier 2 ) 

an unchanging set of coordinates defining the block’s centre, 3) a radius (initially set to blockWidth/2) 

which reduced with increases in local silica levels, and 4) an incremental counter involved in block 

shrinking (initially set to -1). Each block could shrink in relation to its local silica volume. The empty 

space created between two shrinking blocks provided new room for silica to deposit. These newly 

deposited cross-connections, when fully deposited between two ribs, defined the pores.

Initialization: each block was initialized as a 3D stack of 2D squares with sides of length block­

Width. The base square of the pile was initialized on the startHeight layer within the Cellanimat, with 

the pile reaching up to the top of the Cellanimat as shown in Fig.8.9. The centre (x,y) coordinates for the 

block squares were determined for a particular block b, using Equation 8.1, where Shift determines how 

indented the block centres are from the side, determining how far back the first cross-connection will 

form from the valve edge. For a cross-connection to form on the valve edge (far right in CellA or far left 

in CellB), Shift would need to be set to zero, otherwise it would be positive, see Fig.8 . 10. The startHeight 

parameter determined the first layer of blocking material, to coincide with initial silica deposition on this 

layer and the eventual deposition on all layers above, see Fig.8.9.

Shrinking: though blocks were initialized as stacks of squares, when they were ‘shrunk’, as in 

Chapter 3, they became circles, hence the block radius attribute. This was a simplification of the method 

in the Nature’s Batik Model where blocks were initialized as very large, overlapping circles appearing 

only within a rectangular, predefined space (Striae). Setting them to have flat sides to begin with pre­

cluded the need for a predefined space or extra, unseen shrinking stages, thus simplifying the algorithm. 

The resulting rectangular shape of a row of blocks represented the idea that silica deposition, as each rib 

turned the corner onto the valve mantle, had already pushed the blocking material into distinct streams 

leaving an open space in which the ribs could be deposited.

Each block shrank its radius, by amount Rdelta (set to 1), if the amount of silica within a radial
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(a) (b)

Figure 8.9: Side views showing silica deposition only on startHeight layer with block material (purple) 

present throughout the 3D layers, ready to block 3D silica deposition.

BlockWidth-ShiftBlockWidth

Figure 8.10: Slice through, view from top, of layer startHeight showing Block and rib centres, 

cellA left, cellB right, blocks with even identifiers shown in black, odd in blue. ribWidth=5 voxels, 

shift=blockWidth-ribPLgap, blocks=4

x  =  sideGap 4 - D  4 - S  4 - (b x blockWidth) (8 .1)

y = sideGap -I- o f  fs e t  4 - (b x I)  (8.2)

I  = ribW idth  4- blockWidth (8.3)

{0, if CellA;
(8.4)

cellC O LU M N S  4 - gap, if CellB.

^  f —(blockWidth) 4- ( shi f t  - 1), if CellA; ^

I - ( s h i f t  4-1),  if CellB.
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Parameter Description Default setting

SDVexpand no of S voxels needed to expand SDV horizontally 3

SDVexpand3D no of S voxels needed to expend SDV to next layer 400

startHeight initial layer for silica and blocking material 1

rDelta block shrink amount 1

silicaTH block shrink silica threshold 1 0

silicaR local silica radius from block shrinking block.radius+ 1

radiusMIN minimum block radius b lockW idth  n 
2 Z

delay block shrink delay related to energy levels dependent on Environment

P(PPlume) probability of PIP2 releasing profilin 2 0 %

PPlume plume of profilin released by PIP2 0 . 0 1

Pth threshold for profilin diffusion 0.005

PAth actin/profilin activation threshold 0.05

LOSS time until agents disassociate from filament 1 0

WASPradius radius of silica for WASP recruitment ribPLgap+1

Table 8.2: Model assessment parameters

distance (silicaR) exceeded the set threshold (silcaTH, set to 10). After a set delay (delay) up to a 

minimum radius (radiusMIN) no further shrinks would be possible. See Table 8.2 for a full breakdown 

of all parameters used during the simulation. See Fig.8.11(b). By shrink it is meant that any cytoplasm 

voxels containing the block’s identity, which reside outside the new radius from the block’s centre, have 

the block’s identity removed. If the voxel contains no block identities it is set to ‘no-blocking material’ 

state.

The delay setting is crucial and is one of two variables representing the effect of the external envi­

ronment. If the delay is high, this means that the cell takes longer to form cross-connections between 

ribs, as if the cell resists for longer before being forced into changing shape by the depositing silica. This 

can allow sister spines to grow into the space between ribs before cross-connections form (as seen in 

Fig.7.3(c)). The effects of changing the delay setting will be discussed later in this chapter.

8.4.2 Silica

Each rib had a globally defined position and was again treated as a stationary agent with the following 

attributes: 1) unique identifier, 2) centre position (x,y), 3) start time, 4) xFront value, and 5) xBack 

value. The rib centre (x,y) was calculated for each rib r using the equations that follow; zLayer stored 

the current 2D layer for deposition, initiallized as startHeight. Start time was set to 3 for all ribs, and 

determined when rib deposition would start. In future experiments this could be set differently for each 

rib allowing investigation of any effects on overall morphology.

x =  sideGap +  D + cellColumns — (ribPLgap  +  1) (8.6)
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y
. , ribW idth

sideGap H   h-P o f f s e t  +  (r x I) (8.7)

D

I ribW idth  + blockW idth  

j  0, if CellA;

|  gap, if CellB.

(8.8)

(8.9)

(8.10)

Deposition rules: each time step, each rib attempted silica deposition within two functions. First, 

within a backwards growth algorithm, each rib attempted to deposit (change state of voxels to S) in all 

cytoplasm voxels from its centre x  coordinate back to its xBack position (the current local edge of the 

SDV), within a rectangle of width (ribW idth  x 2) +  blockW idth) in layer startHeight. Similarly for 

the forwards growth algorithm, it attempted deposition in voxels within the rectangular space, out from 

the cell to the xFront position. See Fig.8.11(a). The deposition would fail if the voxel had either a) no 

neighbours of state silica (the stigmergic rule), b) contained an agent (A or N), c) if it contained blocking 

material. On the next time step it would try again to deposit in all voxels regardless of the result on the 

previous timestep.

The xBack and XFront values were incremented, backwards one or forwards one respectively, if 

the amount of silica in the current xBack or xFront column of the rectangle exceeded the threshold 

(SDVexpand). This mimicked the method described in Chapter 3, which was meant to simulate the 

expansion of the Silica Deposition Vesicle (SDV) as more silica deposited within it. When the amount of 

silica over the current, whole 2D plane of a single Cellanimat exceeded the threshold (SDV3Dexpand) 

then silica would begin deposition in the next 2D layer up in any viable voxel with an S neighbour 

(stigmergy), whilst continuing forwards and backwards growth on layer startHeight and deposition in all 

layers below.

In forward growth there was a further stipulation: there must be a set amount of horizontal space 

(ribPLgap) between the voxel and PL for deposition to take place. A simple test was done to check the 

next few voxels ahead, if no M voxel was found then silica could be deposited. This ensured enough 

room was always available between the forming rib and the PL in which cytoskeletal agents could exist. 

The cytoskeletal process will be discussed below. Figure 8.11(b) shows blocks shrinking as ribs are 

deposited forward and backwards in the cells.

In this section a full explanation of the implementation of the three EP functions is given. The EP 

functions encapsulate the growth process and determine Cellanimat morphology, in relation to the envi­

ronment, at each time step. A short discussion then follows of the implications, for the development of 

spines, of using the EP functions or slight variants on them.

8.5.1 EPa: Activation (type 2-active)

The cytoskeleton has been implicated in spine formation (Pickett-Heaps seta formation mechanism, sec­

tion 7.4.2) and valve formation (Edgar, L. A. and Pickett-Heaps, J. D., 1984; Pickett-Heaps,J. et al.,

8.5 The EP functions
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R2.xBack

Rib 2

Rib 1

Figure 8.11: (a)The variable rectangles, which together represent the growing SDV. Hatched box shows 

the rib 2 SDV area associated with backwards growth, the stippled box shows the area for rib 2 forwards 

growth, (b) Ribs growing with blocks shrinking, delay set to 30. The blocks furthest out have not yet 

shrunk. Voxels containing agents have not yet been filled in with silica.

1990). As there is no clear experimental evidence of how the cytoskeleton is recruited a simple mecha­

nism to activate the cytoskeleton was implemented. The suggestion is that something functionally similar 

must be taking place in diatoms. Following the Pickett-Heaps mechanisms, for a spine to grow out from 

the cell, the PL must be pushed forward in advance, allowing room for deposition. For the PL to be 

pushed-out ahead of a growing rib (ahead being out towards the sister cell) something must trigger the 

cytoskeleton to grow actin filaments at that point. There were a few options: filament growth could 

be stimulated along the edges where the sister cells touch; they could be triggered by the sister’s silica 

deposition, or indeed by a totally unrelated event.

In the absence of experimental evidence, here this simple hypothesis is put forward: actin filaments 

are stimulated to grow only where new silica is depositing. This could generate Pickett-Heaps’ mech­

anisms. Again no data has been collected on which proteins to stimulate the cytoskeleton are present, 

so the mechanism for generating membrane protrusions as used previously was used for simplicity, see 

Chapter 5.

8.5.2 EPb: Obstacle (type 2-passive)

This is a simple function that stops membrane protrusions growing into a space if any of the space is 

taken up with silica, be it the parent valve or otherwise. Silica, once deposited is permanent. It is too 

solid to be broken or moved by actin filament activity.

8.5.3 EPc: Redistribution (type 3-active)

As a growing actin filament in the ArtCyto tries to push out the local membrane (see description of the 

Mchange rule in chapter 4) it is able to redistribute certain types of sister cell material found in the local 

environment, as with the redistribution of chemoattractant described in Chapter 5. There were four steps 

to the Mchange rule, described through the 2D example situation shown in Fig.8.12, where a CellA state 

FA actin agent has joined a filament (not shown) and is trying to push-out the local membrane.

Step one: for all CellA M voxels neighbouring the FA agent, each CellB M MN was assessed. For

Rib 4
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Figure 8.12: (a)Actin driven membrane protrusions: the four stages of the Mchange rule calling the EPc 

redistribution function. CellA left. WASP shown as black rectangles within membrane, silica voxels 

black.(b)Key.

each CellB M MN, all its agent MNs must be redistributed (EPc) to a randomly chosen MN, since all 

these voxels need to be overwritten to membrane in a following step. The process can fail at this point 

if: a) there is an F-agent (FA or FN) neighbouring the sister membrane, b) if there is no room in which 

to move an agent, or c) if silica neighbours any membrane voxels belonging to the parent or the sister 

(EPb). Sister profilin concentrations are also redistributed, though without being conserved, that is, if 

there is nowhere to move the profilin, this does not halt the process, that amount is simply overwritten. 

The non-conservation of profilin is justified by the initial over-saturation, by high PPlume values.

To increase the likelihood of step one succeeding, an extra ‘re-initialize’ function was used. If 

no MN could be found to which to move an agent, during EPc redistribution, then it would be simply 

removed and re-initialized in the default state (SA or N for actin or nucleators respectively) in a random 

location in the cell. This function was introduced to combat the slowed progress of protrusions once the 

sister cell becomes condensed due to the small scale of the cells (they represent only a section of a bigger 

cell, though fully enclosed). The re-initialization function also represented the decay and synthesis of 

proteins occurring throughout the cell’s lifetime.

Step two: if step one succeeded then there is enough room to overwrite the CellA membrane and 

extend it into CellB, pushing the CellB membrane back into its cell. First the CellA membrane voxels 

neighbouring the FA agent were overwritten to state ‘cytoplasm’.

Step three: All MNs of the newly replaced cytoplasm voxels in state ‘environment’ or ‘membrane’ 

are replaced with membrane voxels with the CellA identifier. The EPa function is called, upon the 

creation of each new membrane voxel, to assign WASP/PIP2. The ambiguity of this step allows CellA 

to overwrite other CellA membrane voxels if the membrane is not straight. This produced interesting 

and realistic assimilation of membranes. However it can be switched off by simply specifying that only 

sister membrane are to be overwritten, which would allow two similar membranes to line up along side
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Figure 8.13: For an ArtCyto filament agent to push the membrane out over a sister silica rib there need 

to be at least seven voxels of height above the rib, to allow room for both sisters’ membranes to be bent 

over the rib. Actin agent belongs to cellA, cellA membrane shown in white, cellB membrane in grey.

each other rather than wipe each other out.

Step four: Similarly, all state ‘cytoplasm’ MNs of the newly created CellA membrane voxels are 

overwritten as CellB membrane and EPa is called to assign WASP and PIP2.

8.5.4 Height and interlocking spines
To deposit silica over a sister rib in order to form an interlocking spine, a membrane protrusion must first 

be made, such that the cell has room to deposit silica. In forming a membrane protrusion over a sister 

rib with an actin filament, the redistribution rules must be satisfied. This means that there must be room 

between the sister silica and the actin agent for both membranes, and above the agent, thus maintaining 

membrane continuity, see Fig.8.13.

8.5.5 WASP activation investigation
Using the ArtCyto, described in Chapter 4, at each time step within the CA, every membrane voxel was 

assessed using the EPa function to see if its WASP/PIP2 substates should be switched on or off. Also, 

within the Mchange rule, when the PL had been pushed-out by a growing filament, the EPa function was 

used to determine WASP/PIP2 activity in the newly created membrane voxels. Each time step, voxels 

with PIP2 switched on had a probability ‘P(Plume)’ of releasing a plume of profilin into one cytoplasm 

neighbour. EPa WASP activation conditions: WASP and PIP2 were switched on in an M voxel if:

•  3 a sister membrane MN (Moore neighbourhood), i.e. only membrane voxels that existed at the 

interface with the sister cell could contain WASP

• 3 an S voxel within a set radius (WASPradius).

• Type-1 WASP activation: only silica within WASPradius that was deposited in the ‘forward 

rib growth algorithm’ activates WASP and PIP2 in an M voxel, given that the sister membrane 

requirement is also satisfied.

• type-2 WASP activation: any silica within WASPradius activates WASP/PIP2, given that the 

sister membrane requirement is satisfied.
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Figure 8.14: The different types of WASP activation and the importance of getting the right blockWidth. 

There must be room for a growing spine and the two PLs either side to pass through the space between 

sister ribs, (a) WASP type-1 activation. Circles of radius r  =  W A SP rad ius  show possible regions 

for WASP activation. The circle will extend forward as the rib xFront value moves forward. (b)WASP 

type-2 activation. Regions for possible WASP activation shown to surround all ribs up to a distance of r  

from the rib.

There were two options for this WASP recruitment function, as shown above. The difference be­

tween the two becomes evident when, for example, a rib from CellA has grown into the space between 

two CellB ribs; it will have pushed the sister’s PL back into its cell. With type-2 recruitment this will 

trigger actin filament formation in the sister cell along the sister ribs see Fig.8.14 and Fig.8.15(d). Type- 

1 activation generated less opposing actin filament growth from the sister cell during spine outgrowth, 

only occurring during the initial stages of deposition where the radii of recruitment for the two cells 

meet, see Fig.8.14(a), this region was dubbed the ‘battle zone’ as the two sibling cells ‘battle’ to dom­

inate the available space through cytoskeletal protrusions, filled in and made permanent by depositing 

silica. The blockWidth setting was therefore of great importance, to ensure there was room for a rib to 

grow through, between two sister ribs. As blockSize is increased, rib thickness increases upon entering 

the gap between the sister ribs, as silica deposition together with actin driven membrane protrusions was 

a ‘greedy mechanism’, filling all available space with silica.

The choice of WASP activation type for the EPa function was of paramount importance. It con­

tributed greatly to the final shape of the spine that formed. Fig. 8.15 shows the different spine morpholo­

gies generated by the two types of WASP recruitment. Fig.8.15(d) also shows a ‘false strut’ a small silica 

outgrowth which occurred where the blocking material did not continue out into the sister cell. Blocking 

material was only placed within the initial boundaries of the Cellanimat. As the ArtCyto of one cell 

pushes the PL out into the sister cell, areas that silica can deposit in open up, beyond the blocking ma­

terial boundary. Either blocking material could be placed continuously, as the membrane is pushed out, 

or these struts could be seen as noise, as they only form when the interactive, opposing filament growth 

allows one cell to dominate the other. Interestingly this domination effect, where one rib gains a majority 

of space over the opposing ribs can cause the dominant rib to extend faster into the sister than the others,
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causing a longer spine. This is similar to the long spines seen in the separation valves of Aulacoseira in 

Fig.7.3. Both examples shown in Figs.8.15 have one dominant spine extending faster and further than 

the others.

It would seem that type-2 WASP activation yields the best result, however when 3D silica deposition 

is considered, type 2 induces opposing growth all along each rib, all through the layers, so there is no 

way for one rib to grow over the top of another. It is always inhibited by the sister’s active cytoskeleton, 

as in the 2D case where it cannot grow near the sister rib (Fig.8.15(d)). So, type-1 WASP activation must 

be used in order to generate interlocking spines.

8.5.6 Clear ArtCyto

The Cellanimats only represented sections through real diatoms, focused at the site of forming spines on 

the valve mantle. However all edges of a Cellanimat served as real boundaries to agent movement. This 

means that as silica deposits less room is available for agents to occupy, whereas in real diatoms proteins 

would be able to move freely throughout the rest of the cell. Also, non-filamentous actin and nucleators 

would not stop silica depositing in real cells, as they do in this simplified model, they would probably 

be moved as silica deposits. To allow more realistic silica deposition an artificial clearing function was 

implemented at the end of the run.

Ten time steps before the end of the simulation the Clear ArtCyto function removed all ArtCyto 

agents from the Cellanimats, signifying that all available energy for the ArtCyto, provided by light in 

the EPd function, had been used up. The deactivation of WASP, and the gradual flow of all agents away 

from the section of the cell being modelled in a single time step. All WASP was switched off and all 

filamentous agents were removed, as well as non-filamentous agents. This sudden clear function was 

used for efficiency only, and is not meant to represent a real process, but rather to allow for a more 

realistic final siliceous form, where deposition has not been unrealistically inhibited by overcrowding of 

inactive agents in a small section.

Once all agents had been removed, silica was deposited stigmergically in all available and viable 

voxels that remained, as per the deposition rules. Clearly, after the removal of the ArtCyto no further 

membrane shape changes could occur. The ArtCyto was crucial for pushing out the membrane and 

creating space for ‘greedy algorithm’ silica to deposit in. Once the ArtCyto was removed, the silica 

could only fill in spaces that had been created before removal, so this function was for finalizing the 

valves, not for any continuation of the developmental process.

For simplicity, 3D deposition was only allowed once the ArtCyto had been cleared. After the 

ArtCyto was cleared and once the number of silica voxels on the current layer exceeded the threshold 

(SDVexpand3D) deposition could begin on the layer above, whilst still depositing on any layers below. In 

a larger version of the model, where more room would exist for ArtCyto agents to occupy, it is conceiv­

able that 3D silica deposition could be executed in tandem with the cytoskeletal-driven developmental 

process.
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(a) (b)

(c) (d)

Figure 8.15: (a) type-1 WASP activation, t=35 as ribs start to grow towards each other where the radii 

of WASP activation meet there is opposing cytoskeletal growth which maintains the straight form of the 

rib. This area of opposition is called the battle zone, (b) t= 280 once the rib grows past the battle zone, 

the sister rib’s radius of activation, there is no opposing force so the rib grows into all available space, 

forming a bulbous end. (c) Type-2 WASP activation, t= 141 rib growth is slower as there is always a battle 

between the opposing cytoskeletal growth of the sisters, initial stages look similar to type 1 recruitment. 

The battle zone extends to the entire breadth of the cells, (d) As WASP recruitment continues back into 

the cell the straight rib form persist. Arrow labeled A shows a false strut.
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Figure 8.16: as interlocking spines are pulled apart they exhibit form resistance but will shatter and break 

if enough force is applied, exposing and endangering the cell. Pseudostaurosira SEM reproduced with 

permission from (Cox, 2006).

8.5.7 Quantification of Connectedness

To show conclusively that the Colony E-P Map could produce both separation and interlocking spines, 

given only a difference in the environment, quantification of these morphologies in terms of functionality 

was needed (following the functionality approach to fitness used in the Nature’s Batik Model rather 

than using a subjective, observer dependent method based on how connected the morphologies appear. 

Functionally, the two forms behave differently when pulled apart. If highly connected — interlocking 

— then it would be difficult to pull the valves apart, see Fig.8.16; the separation form on the other hand 

is particularly suited to being pulled apart, see Fig.7.3(d). So a quantification of ‘Connectedness’ was 

created, based on how easy it would be to pull the structure apart.

For each row on each layer a point was awarded if, as the voxels on that row were considered in 

turn from left to right, the Cellanimat to which a silica voxel belonged switched from cellA to cellB and 

then back to cellA again. I.e. if cell A was pulled to the left, cellB would necessarily come with it rather 

than being left behind, as they are entwined. See Fig.8.17.

So, what does a given Connectedness value mean? A fully connected 2D plane would score a point 

for each row, as the two cells occupying it would be entwined on each row. So the full Connectedness 

value is equivalent to the number of rows times the number of layers. In this system there are seven 

layers, with the Cellanimats occupying forty-four rows initially, so the full Connectedness value would 

be 308 (7 x  44). However, no silica is deposited on the first layer (layer zero) as startHeight is set to 1. 

Further, on the first layer of deposition, overlapping is impossible, as deposition occurs backwards into 

the cell as well as forwards. The next two layers of deposition also preclude overlapping as room must 

be made for the two sister membranes to stretch over the rib as the ArtCyto pushes upwards and over, 

as described earlier in Fig. 8.13. However some connectedness is possible, as one cell pushes into the 

other, it could form a 2D interlocking pattern, by depositing behind previously formed sister silica ribs.

So, layer zero will always get zero Connectedness and the next three layers will always return low 

values, even in a well-connected system. So the top Connectedness value must be reduced to define
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Figure 8.17: Example of the Connectedness quantification function on a slice through layer of interlock­

ing valves. As voxels are considered in turn along a row from left to right, the current cell that the silica 

voxels belong to is initiated as cellA, a silica voxel is encountered belonging to CellB, close to the end 

of the row another cellA silica voxel is encountered before finally ending with a CellB silica voxel. This 

row gains a point for Connectedness. On row b, again a CellB silica voxel is encountered, but this time 

no further CellA silica is found, so this row returns a zero score. The Connectedness value is the sum of 

points awarded for all rows in all layers.

a more realistic version of a highly connected system. The suggestion is that three layers could be 

expected to achieve at best a quarter of the full 2D Connectedness and the other three layers achieve 

full 2D Connectedness. As such a well-connected system would gain an overall value of approx. 165 

(11 x 3 -I- 3 x 44). A fully unconnected system would of course return a Connectedness value of zero, 

this means that the two Cellanimats have grown perfect separation valves that could pull apart with no 

resistance. However even with low Connectedness values the two cells might still be able to pull apart 

with relative ease. So a separation system is defined as one with a total Connectedness value <  10 

overall.

8.5.8 Light, time and structure

The environmental difference between the top and bottom of the water column, that this model focused 

on, is light. The availability of light has been equated with energy levels for the morphogenesis process. 

As there are no explicit energy parameters or processes in the model, the unit of time, a time step, is 

actually stated as a proxy for a unit of energy. To provide a system with more energy it is simply allowed 

more time steps to perform its task. This does not mean that the task would take longer in reality, just 

that it would use more energy. So for a light-deprived environment, the system would be allowed only 

a small number of time steps (energy) in which to grow. Indeed to avoid confusion it is best to think of 

time steps as ‘energy steps’, as they more precisely represent the time it takes to use one arbitrary unit 

of energy, than simply being an arbitrary measure of time.

There are two parameters that depend explicitly on time steps (light-related energy) in the model. 

The number of time steps given to perform the task overall (runTime) and the number of time steps 

that it takes to shrink a block (delay). When more time steps are allowed for the process (high runTime
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setting), it tends towards a connected system. With more light/energy both parameters are given more 

time steps. Given that there is little experimental data on how the cell and silica interact during valve 

formation it is of course hard to assign appropriate values to the delay parameter. A low delay setting 

manifests as a low resistance of the blocking material to pressure by depositing silica: shrinking would 

occur faster generating cross-connections earlier. This could correspond to low-energy for the block 

resistance induced by low light, e.g. in Env B delay would be lower together with a low allocation of 

overall time for the process.

The simulation methodology offers an opportunity to modify and play out the logical morpholog­

ical possibilities by setting the delay and runTime with a variety of values. If the delay setting is high, 

as previously discussed, this would ultimately cause cross-connection formation to be inhibited for an 

extended period. This was expected to allow for long protruding sister spines as seen in the separation 

spines of Aulacoseira. However, a further interesting effect of varying the delay was found. The charac­

teristic morphology of a separation spine is that it culminates in a point, whereas interlocking spines tend 

to balloon out into a bulbous end. Varying the delay parameter was found to induce the two different 

spine tip shapes, rather than a difference in spine length.

With a low delay (fast block shrinking), the cross-connections form quickly, a sister spine will 

have its forward progress blocked and also, due to the curved shape of cross-connections, deposition 

will necessarily continue only into a point, as the curve blocks any bulbous deposition. With a high 

delay setting the spines continue forwards further but whilst doing this they would grow up and over 

sister ribs and interlock. The amount of time that it took to grow further forwards, only increased the 

Connectedness as it allowed the cells time to flange out over the top of sister ribs.

This model shows that altering the amount of energy available for delaying cross-connection for­

mation (block shrinking) can affects both the spine tip shape and the length of spines. However, in the 

time it takes to grow long spines the connectivity also increases, as the Cellanimats have time to push the 

membrane up and over sister ribs increasing interconnectedness. It seems impossible, with the current 

model, to produce separation spines with long spines. It would be possible to generate long separation 

spines, i.e. have a high delay setting, if the rate of forwards rib deposition could be increased. Perhaps 

the reduced energy experienced in low light could result in reduced resistance from sister cells, allow­

ing one cell to increase its forwards deposition into the other cell, whilst the energy needed to push its 

own membrane out over the top of ribs for interlocking remains the same, meaning that long forward 

spines would be observed, due to delayed cross-connections and accelerated forwards growth, but little 

connectedness due to a short number of time steps for the entire process. Or perhaps a change in WASP 

activation regime from type-1 to type-2 could be justified. It is possible to generate separation spines 

with long spines using type-2 WASP activation, as discussed previously, extending the ‘battle zone’ 

of the two cells’ cytoskeletons would preclude overlapping membrane protrusions and thus, preclude 

interlocking.

See Fig.8.18 for a summary of the effects of varying the runTime and delay parameters. See the 

corresponding example screen shots for examples of the morphological variation, as viewed through the
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Figure 8.18: The effects on spine morphology, of varying the number of time steps allowed for the run­

Time (amount of time given to complete process) and delay (time it takes to shrink a block) parameters, 

as viewed from the startHeight layer up through the layers in the stack (shown left to right). With low 

delay values cross-connections form quickly and block further spine protrusion, the curvature of cross- 

connections enforces a spike shape compared with an otherwise bulbous tip. Given a high runTime value 

all spines that have breached the ‘battle zone’ will flare out into an overlapping form. Connectedness 

scores are from the example runs shown in Figs.8.19 & 8.20. Env A was set with high delay and high 

runTime values, producing the highest Connectedness score (interlocking valves). Env B was set to have 

low delay and low runTime to yield the lowest Connectedness score (separation valves).

layer stack, incurred by altering these parameters in the model, Figs.8.19 & 8.20.

8.6 Results
The model was programmed in C++, all experiments were performed on a standard 1.8 GHz PC work­

station with graphics programmed in openGL. To test whether the Cellanimat Colony Model could con­

sistently produce the two alternative morphologies, given only a change in the environment, the simu­

lations performed in examples A and D, in the previous section, were repeated one hundred times each 

and compared the Connectedness values obtained. It was hypothesized that this change in the environ­

ment could be enough to cause the change in morphology, between interlocking and separation spines. 

Env A represented the light-abundant top of the water column, so delay and runtime were both set to 

be HIGH (higher numbers of time steps (energy) allowed for each), delay=180 and runTime=300 with 

clear ArtCyto called at t=290. Env B represented the light-restricted bottom of the water column and 

thus had delay and runtime set LOW (less time steps (energy) available for the processes), delay=80 

and runTime=150 with clear ArtCyto called at t=140. Following the example runs in section 8.5.8 the 

expectation was to see a higher frequency of interlocking spines in Env A and a higher frequency of 

separation spines in Env B, thus the Connectedness value in Env A was expected to be high (close to the 

value of 165 as defined in section 8.5.7) and close to zero in Env B.

The experiment was repeated one hundred times in each environment. On average Connectedness 

was found to be 148.26 in Env A with standard deviation 38.02 (2.d.p), and 0.68 in Env B with standard 

deviation 2.67 (2.d.p), see Fig.8.21. Interlocking dovetail joints were formed in Environment A and
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A
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Figure 8.19: Low delay. Two example runs shown in 2D slices, from above, going left to right up through 

the layers from startHeight. Both example A and B have delay set LOW (to 60), runTime was set LOW 

in A (150) and HIGH in B (300), clear ArtCyto was called at t= 140 and t=290 respectively. Spines with 

spike-tip morphologies are seen in both examples as detailed in Fig.8.18 with overlapping morphology 

seen in B.

Figure 8.20: High delay. Two example runs shown in 2D slices, from above, going left to right up 

through the layers from startHeight. Both example C and D have delay set HIGH (180). runTime was 

set LOW in C (150) and HIGH in D (300), clear ArtCyto was called at t=140 and t=290 respectively. 

The spines deposit past the point where sister cross-connections would form, due to high delay, the tip 

becomes bulbous as it fills the space. In D HIGH runTime meant the spines flared out and overlapped 

sister ribs. Note in D, slices 2 and 3 show the membranes stretched out over sister ribs before overlapping 

begins in the next layer above. Also note the assimilation of membranes evident in the slice 6  of example 

D where the silica flaps merge.
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Figure 8.21: Frequency distribution of Connectedness values obtained over 100 runs in Env A and Env 

B showing that the system in Env B on average produced separation valves (zero Connectedness) and 

interlocking valves in Env A (high Connectedness values).

(a) (b)

Figure 8.22: (a) interlocking dovetail joints in Env A (b) separation spines in Env B

separation spines in Environment B. See Figs.8.22(a) and 8.22(b) and Figs.8.23 and 8.24.

8.6.1 A larger version

A larger version of the model was run with Cellanimats containing four ribs and five blocks per row. 

This increased size slowed computation time, so for efficiency a lower agent ratio was used (15:8 actin 

to nucleators) this required higher time step allowances for both delay and runTime but kept the compu­

tation time down, as the number of agents reduced from 17,405 actin and 7455 nucleators per Cellanimat 

(cytoplasm volume was 49,728) to 7455 actin and 3976 nucleators per Cellanimat. With these new set­

tings the model took around 15 minutes to run for 1000 time steps. For Env A delay was set to 300 and 

runTime to 1000. For Env B a delay of 180 was used and runTime was set to 300. The decreased agent 

volume resulted in more time steps to move the membrane. See Figs.8.25 to 8.30 and compare to the 

original diatom images in Fig.7.3. The examples shown in these figures obtained Connectedness values 

of 251 for Env A and zero for Env B.
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Figure 8.23: slice through view of interlocking valves shown in Fig.8.22(a). first 2 rows shown as one 

slice in (a) otherwise single layer slice views upwards through the layers. Cell A plasma membrane light 

blue, Cell B plasma membrane dark blue, silica black.
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Figure 8.24: slice through view of separation valves shown in Fig.8.22(b). first 2 rows shown as one 

slice in (a) otherwise single layer slice views upwards through the layers. Cell A plasma membrane 

light blue, Cell B plasma membrane dark blue, silica black.sCell A plasma membrane light blue, Cell B 

plasma membrane dark blue, silica black.
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Figure 8.25: Separation valves grown in larger version in Env B. a) initial rib deposition on startHeight 

layer, FA agents (red) push out the membrane ahead of silica spines depositing, b) view from above of 

early rib deposition; battle zone shown as radius of active WASP in sister PLs (black) overlap; ArtCyto 

agent distribution shown (SA yellow, PA green, FA red, all N agents white), c) Initial rib deposition 

reaches Cellanimat edge, blocks not yet shrinking, spine deposition has reached further forwards, wider 

distribution of PA agents visible (green), d) Actin activation viewed from above (SA yellow, PA green, 

profilin gradient dark blue to light blue), e) Profilin gradient only, higher concentration at spine tip as 

more PIP2 are activated. 0  profilin gradient and PA distribution, g) Close up view of actin filaments 

pushing out membrane ahead of depositing spine.
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Figure 8.26: Later stages of separation valve development, grown in Env B. a) Blocks start to shrink, 

vimines (cross-connections) begin depositing, forming pores, b) After more time steps only the outer 

blocks are left to shrink, cross-connections near fully formed, c) & d) Silica-only views of forming 

cross-connections, e) Close up of final separation spines with point tip morphology. 0  Full view from 

above of separation valves and PL. g) Full view of silica-only from above. Connectedness=0 of final 

valves at t=300.
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Figure 8.27: Interlocking valve development, grown in Env A with larger version, a) View from above 

before clear ArtCyto is called, PLs have been stretched out over sister ribs (dark blue patches), b) When 

blocks start to shrink, spines have grown past where the first cross-connection would have formed (due 

to longer delay setting), FA agents (red) pushing out membrane ahead of depositing silica, c) PL of 

upper layer in stack showing the space, created by the ArtCyto, to be filled by silica after clear ArtCyto 

is called, d) The ArtCyto can be seen either side of the sister PLs pushing against each other in the battle 

zone (FA red, FN white), e) Completed linking valves viewed from CellA. f) Completed valves viewed 

from above. Connectedness=251 at final t= 1000.
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Figure 8.28: Side views of linking valves grown in Env A with larger version, Connectedness=251, 

t= 1 0 0 0 .

8.7 Discussion

The ‘complex’ morphological plasticity in the Cellanimat Colony Model arises, not out of a complex 

model, but out of a large model comprising many simple interactions. The plasticity was possible only 

because it included a large number of interacting factors. There had to be a group of interactions govern­

ing silica deposition. There had to be groups of interactions governing cytoskeletal dynamics, membrane 

behaviours and Cellanimat-Cellanimat interactions. The global phenomena resulted from the epigene­

sis of the groups interactions as well as their internal interactions. This model represents a dynamical 

hierarchy that goes further than the original Cellanimat model. It models at the levels of proteins, cell 

subsystems, cells and colonies. The inclusion of silica deposition extended the model still further, with­

out any one group of interactions, the behaviour could not have emerged.

The aim was to have a small simple illustration of the colony phenomenon, but that was sufficiently 

powerful and realistic to generate the behaviour. A low number of ribs (2) was used with small width 

(5 voxels) per Cellanimat, the number of blocks was set to three giving ample room in the sister cell for 

forward-spine growth. However, the larger version of the model, described in the previous section, made 

it easier to visualize the valves in relation to the images of real diatoms from Chapter 7. This simulation 

was implemented on a standard desktop workstation and ran in a number of minutes. Larger systems are 

entirely possible but may require more expensive computation, or more patience!

A comprehensive account of a novel model for diatom colony formation has been presented, ad­

dressing the secondary hypothesis and thesis Objective Five. The processes of building a full model in 

an area with little experimental data necessarily involved substantial creativity. This will of course have 

mixed results, some ideas within the model will inevitably be off the mark, others may be supportable. 

The main aim, from the point of view of diatom research, was to stimulate debate and further research 

to support/counter the presented mechanisms. It is important to understand this example of morpho­

logical plasticity in response to the environment as the permanency of diatom valves provides a key to
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Figure 8.29: Silica only views of larger version linking valves grown in Env A, Connectedness=251, 

t=1000. Top) layer startHeight; middle left) CellA, middle right) CellB; bottom) view from above of 

final 3D valves.
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Figure 8.30: Single Cellanimat views of larger version linking valves grown in Env A, Connected- 

ness=251, t= 1000. Top and middle) CellA; bottom) CellB. Note the entire siliceous structure is contained 

within the plasmalemma.
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Figure 8.31: Dominant spine formation (top rib CellA, left) with low blockSize value (=ribPLgap+2) 

causing greater competition for space, and thus an opportunity for dominance, t= 162.

knowledge of the environment, of climate past and present, leaving us better equipped to predict future 

trends.

Through the model development a deeper understanding of how many groups of interactions may 

be necessary to generate such plasticity has been gained, indeed the suggestion is that the current model 

falls short. In order to achieve more realistic separation spines, long spines and spines such as those seen 

in Skeletonema and Chaetoceros additional mechanisms must be involved. There may also be many 

more ways in which the environment affects the progress of morphogenesis, relating back to the idea 

that colony formation may be an adaptation to more than one environmental factor.

The diatom colony application also presented an opportunity to set up a two-Cellanimat system 

and found that it is entirely possible for the Cellanimats to react to each other as if each formed the 

other’s environment. Multiple Cellanimats however meant that the number of agents quickly rises and 

computation time expands. This could be resolved with a review of the algorithms involved, optimizing 

for speed rather than behaviour. Also, a small number of PC workstations could be linked to easily cope 

with many Cellanimats. It has been shown that multi-Cellanimat systems are implementable and can 

be useful for studying interactive growth mechanisms, social interaction and mutual-adaptation through 

morphological plasticity, opening up a wide array of possible follow-up experiments and projects.

8.7.1 Future study: Dominant Spines

Interestingly, with certain parameter settings a single rib could be seen to quickly dominate and grow 

at far greater speeds than the others, resulting in one long spine for every few shorter spines. This phe­

nomenon was seemingly induced with low blockSize values but eradicated with higher blockSize values, 

although this was not shown conclusively in preliminary tests. The blockSize parameter controlled how 

much extra room there was between two ribs, affecting the ease with which the sister rib could pass 

between them. High values resulted in very little resistance between the sisters as their radii of WASP 

recruitment would no longer overlap. Low values cause vast overlapping of sister WASP radii, as the 

ribs grew past each other, resulting in an intensified ‘battle zone’. Eventually, one rib would dominate 

and its growth would then accelerate, possibly further hindering sister rib deposition. See Fig.8.31.



8.7. Discussion 186

If a rib accidently generated actin filaments first it could extend relatively un-opposed by the sister 

ribs, allowing it to dominate the space and thus further increase its chances of actin-filament formation, 

accelerating growth (as a larger membrane protrusion creates a larger space near WASP to recruit further 

actin into filaments). This phenomenon seemed to occur more often with high values of blockSize when 

random movement was used instead of gradient movement of agents. This could be because agents at 

the growing tips were not a uniformly abundant source, with the random movement algorithm, so if one 

rib happened to have more agents at its tip then it could dominate the space.

It would be interesting to see if the gaps between ribs in the separation valve of Aulacoseira are 

shorter than those of the interlocking valve, as this could explain why certain spines have become domi­

nant and extended far beyond the others, see Fig. 7.3.

8.7.2 Predictions and suggested experimentation

Here predictions and useful follow-up biological experiments, indicated by the simulation, are listed. 

This leads to the conclusion that the secondary hypothesis can be accepted.

Firstly, complete morphometries of linking and separation valves would generate more realistic 

initial parameters and corroborate or refute ideas about ideal distances between ribs for generating the 

correct thickness and opposing growth in the battle zone. Are there any consistent differences in pore 

width between separation and linking spines? Study and quantification of the ‘battle zone’ in real diatoms 

would be a useful step, indeed if it could be altered in some way to see how this affects further growth, 

more could be revealed about the nature of the siblings’ interactions. Are there any examples of badly 

formed valves? Morphometries on valves such as these could give vital clues as to the necessary spacings 

for completion of the process.

Implementation of the plasticity experiment with real diatoms should be a high priority future ex­

periment. Expose one culture of colony-forming diatoms to an over-abundance of light and another to 

constant low-illumination, simulating the positioning of the cultures at either the top (Env A) or bottom 

(Env B) of the water column. Is a higher frequency of separation spines seen in Env B? Indeed many 

experiments could be devised to further clarify the link, if any, between light/energy and structure. A 

parallel experiment could replace light with nutrients, or other environmental factors to explore the other 

possibilities.

More evidence is needed to support the ‘shrinking blocks’ mechanism. It is highly idealized but 

represents a fundamental hypothesis concerning interaction between the cell and the depositing silica, 

where the cell is a template and the silica deposits in a ‘greedy algorithm’, filling all available space. 

An in vitro system could perhaps be set up to test the validity of this theory further. Could the ‘greedy 

algorithm’ for silica deposition be tested? Perhaps by artificially removing sections of parent silica, or 

cross-connections during daughter valve development to see if silica deposition will continue into all 

available space.

Far more data are needed on exactly which cytoskeletal and transduction pathway proteins are in­

volved in the valve forming process. These could give much needed information regarding environmental 

triggers and concerning the process as a whole. How is the actin cytoskeleton activated? Can silica be
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causing the activation, perhaps through a WASP related pathway, or is there an entirely separate trigger, 

from another part of the developmental machinery?



Chapter 9

Summary and conclusions

Through the biological inspiration from diatom morphogenesis, yielded in Chapter 3 combined with the 

cytoskeleton study detailed in Chapter 4, the novel artificial system, the Cellanimat, was created. The 

Cellanimat was shown to be capable of adaptive behaviour, and generating a well-adapted morphology 

in a changing environment, through the multifunctionality experiments detailed in Chapter 5. In Chapter 

6  the properties of the Cellanimat were investigated resulting in an optimized and refined version of the 

model. This was then implemented, together with the Nature’s Batik Model developed in Chapter 3, 

as a test bed (The Cellanimat Colony Model) for developing new hypotheses concerning diatom colony 

formation. Therefore, both the primary and secondary hypotheses have been tested and shown to be true. 

The thesis objectives have all been achieved as detailed below.

1 Satisfied in Chapters 3 and 7. Diatom morphogenesis was investigated through design of novel Na­

ture’s Batik Model and a diatom colony formation literature survey, which inspired the direction 

of the thesis research towards the cytoskeleton and environment-related membrane shape changes.

2 Satisfied in Chapter 4. A novel algorithmic model based on MP was created: the Cellanimat.

3 Satisfied in Chapter 5. The model was shown to generate adaptive behaviour/design in a changing

environment.

4 Satisfied in Chapter 6 . The properties of the model were investigated.

5 Satisfied in Chapters 7 and 8 . The model was used as a test bed for furthering knowledge of MP in

diatom morphogenesis.

9.1 Summary
The goal of this thesis has been achieved, stated in Chapter 2, to investigate, at a ground level, mecha­

nisms for morphogenesis and morphological plasticity in natural systems, and algorithmic formulations 

for artificial systems, through the simulation of fully embodied animats. Autonomous design principles 

for self-organizing adaptive systems capable of growing new structures on a ‘need-to-grow’ basis through 

a dynamic, active structural coupling between the system and environment, have been investigated and 

developed.
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In Chapter 2 the term ‘Dynamic Morphology’ was introduced, setting out system requirements for 

MP. The major requirement for a DM, in order to support reconfiguration at a higher level, states that 

the low level components must have the capacity for interactive change and movement. A taxonomy of 

MP in AI systems to date was also presented. This illustrated the large gap between the capabilities of 

natural systems and current AI systems.

In Chapter 3 the Nature’s Batik Model was presented, which generated raphid pennate diatom 

valves, using a cellular automaton, exhibiting some of the functions of cell walls. At each stage of 

development the generated valves were consistent with observations of real diatom valve growth. The 

model also highlighted that morphological form can be explained as the compromise between optimizing 

two opposing functions: in this case as a cell wall and as a defensive structure.

Simulated models are extremely useful for investigating, visualizing and developing theories of 

morphogenesis. The Nature’s Batik model was however very abstracted and simple. It did not explain 

how the ‘organic template’ was formed or controlled. It was the intention of this work only to provide 

a starting point for the thesis investigation in the context of a real morphogenesis system. In order to 

understand how morphological plasticity of valves was being implemented focus turned to the cytoskele­

ton.

In Chapter 4 the Artificial Cytoskeleton was introduced as a new combined processor and effec­

tor generating lifetime adaptation of morphology in the novel animat model based on single cells: the 

Cellanimat. The ArtCyto was closely modelled on the eukaryotic cytoskeleton and served as a proof-of 

concept that the cell’s cytoskeleton could be effectively interpreted and modelled algorithmically with 

agent-based simulation. The E-P Map framework, for classifying the morphogenesis process in terms of 

environment-system interactions, was also intriduced. An example E-P Map for generating membrane 

protrusions, a fundamental cellular mechanism involved in many higher-level behaviours, was presented.

In Chapter 5 results were given of two experiments which illustrated the Cellanimat’s multifunc­

tionality when using the protrusions E-P Map. In the first experiment the Cellanimat was placed in an 

arena with one environmental factor: a chemoattractant gradient. It was shown to perform chemotaxis 

though MP alone, generated by the novel mechanism. In the second experiment it was shown that if 

the chemoattractant gradient was changed to a solid particle the Cellanimat was able to perform phago­

cytosis, with no change to the system itself. This was an important result showing that environmental 

dependence in a growth mechanism needn’t be a drawback. It could, with the right mechanism, be 

exploited to generate adaptive behaviour allowing the system to perform new functions by adjusting 

morphology to suit the new environmental conditions. These results showed that the Cellanimat was 

capable of reversible MP, lifetime alterations in morphology, in relation to the environment.

The second experiment also served as validation of the Cellanimat, with the protrusions E-P Map, 

as a reasonable biological model. The model, originally based on the first stage of fibroblast chemotaxis 

could, without explicitly being programmed to, also perform phagocytosis. The biological system on 

which the model was based had evolved to generate both behaviours, thus a good model of this stage of 

chemotaxis should also generate the initial stages of phagocytosis.
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The E-P Map encapsulated the ideas of Hogeweg (2002a), that morphogenesis arises out of many 

interacting mechanisms. The EP functions represent different mechanisms at work, so in the E-P Map 

overall morphological behaviours result from their interactions. Though she focused on multicellular 

development (Hogeweg, 2000), on the interplay of differential cell adhesion and gene regulation, in this 

thesis it has been illustrated that the same is true in single cell morphogenesis, considering cytoskeletal 

dynamics and obstacle collisions as the interacting mechanisms, where the properties of one material 

generate a barrier (obstacle), blocking the growth of a weaker material, thus forming a template. The E- 

P Map also represented the exploitation of inhomogeneity in mediums, by using the combination of EP 

functions to generate behaviour/morphology rather than a simple repetitive algorithm such as Reaction 

Diffusion Turing patterns, which tend to assume unrealistic medium uniformity (Hogeweg, 2002a).

In Chapter 6  results of seven studies were given, into the dynamics and optimization of the Cel­

lanimat as an artificial system. Improvements in function definitions and parameter settings resulted in 

significant improvements in performance. The system was found to be reasonably robust to the stochas­

tic nature of functions when high numbers of receptors and agents were used. Through investigations 

into the Critical Saturation Point a link was uncovered between over-saturation of proteins and improved 

performance. Recycling was found to be mostly redundant as a mechanism as no constraints on energy 

expenditure were imposed. However, as in real cells, if protein production cost the Cellanimat, then 

recycling would be expected to play a major role.

The Cellanimat as a developmental model was shown to reduce scalability problems. Results from 

evolutionary experiments with the Cellanimat, described in Chapter 6  showed that even though the size of 

the genotype was small, it could be used in conjunction with the E-P Map to generate complex, adaptive 

forms and behaviours. Evolution of fit genotypes optimizing speed and performance were found after 

only ten generations, showing the system is evolvable.

Relating back to the advantages of developmental encodings for system morphology design in sec­

tion 2.3.4. From the results in Chapter 6  it can be stated that the model exhibits all advantageous proper­

ties of an indirect encoding: robustness, scalability, evolvability, adaptability and complexity in form. It 

more importantly overcame the major limitation of environment dependence by incorporating environ­

mental information into the growth process.

The thesis was brought together in the final chapters, where the Nature’s Batik Model was com­

bined with the optimized Cellanimat model and E-P Map framework to investigate a real, and as yet 

unexplained, example of irreversible morphological plasticity in diatoms. First, a detailed literature 

review was presented in Chapter 7 illustrating some of the complexities involved when attempting to 

unravel how and why MP occurs in nature.

The Cellanimat Colony Model was presented in Chapter 8 . It showed the importance of timing in 

the developmental process, how changes in the timing regime can lead to a bifurcation in morphology. 

The role of energy levels, affected by environmental changes, in regulating timing during diatom mor­

phogenesis was highlighted. It was shown that a single system, combined with changes in energy levels 

due to light regime changes in the environment, could generate both separation and interlocking spine
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morphologies. The model serves as an example of system perception of environmental factors without 

the use of specific sensor channels. The environment does not need to only ‘input’ through designated 

sensors when the processor is fully embodied, as with the ArtCyto. Physics and energy laws affect all 

matter universally, they do not need to go through sensor ‘gateways’ to get in and have an effect.

9.1.1 Specific contributions

The major contribution of this thesis was to the understanding of adaptive behaviour and design of adap­

tive systems. The role of MP in life, adaptation and design has been emphasized and new algorithms, 

frameworks and definitions have been presented to stimulate and facilitate further exploration and devel­

opment of MP for next-generation AI systems. Following the cheap design principle, novel mechanisms 

were developed, based on morphological plasticity in nature, allowing an adaptive system to cope in 

a changing environment through plasticity in design, both generating well adapted-form and adaptive 

behaviour without a centralised controller.

Below is a list of specific contributions made by this thesis:

•  Introduced Dynamic Morphology definition stating requirements for an MP capable animat

• Constructed a Taxonomy of MP in AI

• Created novel model ‘Nature’s Batik’ for simulating diatom valve morphogenesis

• Created novel framework for generating well-adapted and adaptive morphologies: the E-P Map

• Created novel mechanism for generating MP: the Artificial Cytoskeleton

• Created novel model the Cellanimat powered by the Artificial Cytoskeleton

• Showed with the Cellanimat an artificial system can have adaptive morphology over a lifetime

• Showed with the Cellanimat an artificial system can demonstrate adaptive behaviour without a 

brain

•  Detailed investigation of Cellanimat parameters, functions and optimization

• Detailed investigation of Cellanimat dynamics

• Created novel multi-Cellanimat model for investigating diatom colony formation

• investigation of diatom colony morphogenesis mechanisms

• showed that diatom colony formation dynamics could be generated by a single morphogenesis 

mechanism

•  made predictions for biological experiments from the simulated MP model of diatom colony for­

mation
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9.2 Conclusions
This thesis has shown that through environmental interaction in the developmental/growth processes 

morphologies can themselves 1 ) produce interesting adaptive behaviour and 2 ) continually change to 

remain well-adapted to environmental changes. Morphological plasticity can provide a solution to the 

problem of static, environment-dependent morphologies and offers an alternative route to adaptive be­

haviour, providing ‘no-brainer’ adaptive behaviour.

The Cellanimat is a cheap design model. Environment-system interactions are exploited to generate 

adaptive behaviour and morphology. One of the interesting and important aspects of cheap design, dis­

cussed in Chapter 2, is that sensorimotor coordination enhances the perceptual capabilities of the situated 

system (Iida, 2005). There was evidence of sensorimotor coordination in the Cellanimat enhancing ‘per­

ception’ when exposure to the chemoattractant was increased by trapping pockets of it between growing 

protrusions, which caused a positive feedback loop stimulating further growth and further exposure.

The Cellanimat is an adaptive system that satisfies Di Paolo’s (Di Paolo, 2006) extended definition 

of agency: natural agency. In natural agency he impresses the requirement that the agents must actively 

(in the same sense used in the E-P Map) affect their environments, rather than only being affected upon. 

He draws the distinction between structural coupling of organism and environment (which can be ob­

served due to the physical constraints of the world rather than through any activity in the organism) and 

the regulation of structural coupling which is something only done by activity in the organism. He con­

cluded that only regulating systems can be said to be performing behaviour. Indeed in the quote below 

he uses the example of unicellular phagocytosis as an example of active regulation of the environment.

“Parametrical regulation such as active transport through the selective opening and clos­

ing of ion channels is widespread in uni-cellular organisms and is one of the most common 

examples of control of the conditions of physical exchange between organism and environ­

ment. More sophisticated control involves the whole cell, as in the displacement towards 

nutrient-rich regions of the medium, or the construction of protective biofilms, or the pro­

jection of pseudopodia to engulf another cell in phagocytosis.” (Di Paolo, 2006)

Di Paolo’s addition to the original Varela, F. J. (1979) definition of structural coupling allows an 

important distinction to be made between the ‘living system’, capable of active regulation, and the 

non-living environment, which is not. The Cellanimat on both protein and whole cell levels exhibits 

active regulation of the coupling. The component parts can alter their local environment through re­

organization of sub-component parts. For example, at the component level, agent binding activity can 

alter membrane shape (rule A2 in the Cellanimat); at the whole Cellanimat level, membrane protrusions 

extend and redistribute the local chemoattractant gradient (EP3  in the protrusions E-P Map). This regu­

lation exchange has been seen to benefit the system in the three example experiments, in chemotaxis it 

reached the source, in phagocytosis it engulfed the particle and in the colony model it was able to control 

colony length (form separation valves) as light levels dropped, decreasing the chance of dropping out of 

the photic zone.

Di Paolo’s natural agency is therefore an important definition, given the original aim to develop an
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adaptive system based on morphological computation rather than an abstracted controller. In conclusion, 

the system, through active, regulated structural coupling does indeed exhibit ‘life-like’ qualities of be­

haviour and agency, and as such warrants further study in terms of its adaptivity and control capabilities.

9.3 Future work
Work on the Cellanimat is continuing in three key areas, related to the three stages of research develop­

ment identified in Chapter 1: (i) further work with biologists to improve the fidelity of the Cellanimat 

model and/or explore its capabilities as a biological modelling tool in other cell biology domains; (ii) 

further exploration of the Cellanimat properties and dynamics for the investigation of improved develop­

mental algorithms and adaptive systems (iii) applicability in other domains, such as autonomous software 

agents and portfolio optimization.

9.3.1 Biological modelling
The Cellanimat and E-P Map framework were used in this thesis to explore a real case of morphological 

plasticity in diatoms. This work was however, only a starting point. The predictions and future studies 

outlined at the end of Chapter 8 are all prospective experiments for further work. Once more biological 

data has been gathered, based on these predictions, improvement and model updating can begin. Through 

a cycle of model predictions - biological data - model corrections it is hoped that understanding the actual 

mechanisms involved in diatom colony formation may improve.

The modelling approach of the Cellanimat, using a hybrid of heterogenous swarm agents and cellu­

lar automata, combined with the E-P Map framework is applicable to many protein or cell based systems, 

not just the cytoskeleton. This thesis work has inspired several MSc thesis projects related to cancer drug 

delivery, modelling the extracellular matrix rather than the cytoskeleton, e.g. (Semenova, 2005). It is 

also to be applied in a new context to angiogenesis (blood vessel formation) plasticity to different tissue 

environments in an upcoming project at Cancer Research UK. For a full discussion of the merits of the 

Cellanimat modelling framework for biological and medical research see (Clack, 2006).

9.3.2 Cellanimat properties as a developmental/adaptive system

The components of the Cellanimat necessary for MP were considered as a simple starting point. There 

are many directions that research could take from here, e.g. addition of cytoskeletal mechanisms such 

as organelle transport, further investigation of evolvability, or relating back to the idea of an implicit 

embryogeny, see Chapter 2, new E-P Maps could be evolved, keeping just the basic rules of interaction 

between Cellanimat macromolecules. Here just a handful of possible directions will be outlined.

In the Cellanimat a set amount of each protein was initialized, in order for focus to lie solely on the 

cytoskeletal dynamics. In a more involved model, however the inclusion of a genetic regulatory network 

(GRN) is proposed, allowing the levels of proteins synthesized to vary in relation to current needs. It 

would also be interesting to involve energy constraints, to investigate efficiency of protein production 

and recycling mechanisms further.

The interesting self-organizing dynamics of lipid membranes have been explored within Artificial 

Chemistry research (Hutton, 2002). With the Cellanimat however, the focus was on investigating situ­
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ated cytoskeletal dynamics and so a less biologically-loyal model of lipid dynamics was used, though 

interesting properties were still observed, for example the assimilation of same-cell membranes in the 

colony model. It would be interesting to merge Artificial Chemistry membrane models with the ArtCyto 

to investigate further realism in morphology changes, through the combination of two self-organising 

processes. Such a combination could be relevant to self-replication modelling, central to Artificial Chem­

istry research, as the microtubule cytoskeleton coordinates cell division with the formation of the mitotic 

spindle in real cells (Alberts, B. et al., 1994).

In the protrusions E-P Map receptors had no movement across membrane surfaces directly, though 

distribution did change as the membrane shape and size changed during growth. Receptor clustering 

however, is an interesting biological phenomenon (Alberts, B. et al., 1994) of strategic and economic 

importance - if needed receptors can be ‘delivered’ to a desirable site improving the strength and speed 

of a reaction without the cost of large scale synthesis. To investigate the effects of such clustering on 

adaptive performance, the receptors could, in a future version, be upgraded and modelled as agents, with 

rules of interaction and movement.

Multi-Cellanimat systems were investigated in the Cellanimat Colony model but it would be inter­

esting to explore this further, with more than two Cellanimats, possibly modelling a multicellular system 

with cell signalling pathways for communication.

It would be useful to compare the Cellanimat, as a fully embodied cognitive agent, to an animat 

using a more traditional abstract neural controller. One possible task could be ‘ball catching’, similar to 

phagocytosis but the particle is free moving around the arena. Fig.9.1 shows screen shots of a preliminary 

ball catching experiment. The Cellanimat could perform chemotaxis to actively find the particle rather 

than waiting for a surface collision. With a randomly moving ball this could be a hard task for a neural 

network to predict where to move to next and catch it in time.

9.3.3 Applications in other domains

There are possible software applications that are currently being explored, such as financial portfolio 

optimization. The Cellanimat was instantiated in 2D in an environment containing shares with changing 

prices in a recent MSc project (Zhang, 2005). Receptors activated when share prices changed favourably 

and protrusions into the environment represented the buying of shares. Indeed any problem space that 

could be reformulated spatially is a potential application of the Cellanimat, such as infotaxis - movement 

towards desired information in a spatially arranged network.

One of the main applications considered by morpho-functional machines and collective robotics 

involves traversing difficult terrains to obtain objects, or people or assume functional shapes like bridges. 

It was important to instantiate the Cellanimat in simulation, as robotic models currently lack the plasticity 

in materials to produce such complex forms. At this early stage of MP investigation it seemed logical 

to use the most flexible method for study. However, a robotic implementation of the Cellanimat has 

been considered, which could be an interesting direction to take. Utilizing collective robotics for the 

cytoskeletal agents, and a flexible rubber/spring based membrane fence containing them, the Cellanimats 

ability to cope in changing, real environments could be tested.
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Figure 9.1: Screen shots of one preliminary run in the ball catching experiment. The Cellanimat pro­

trudes an ‘arm’ trapping the particle in the corner of the environment.



9.3. Future work 196

Figure 9.2: Schematic of collective robotics version of the Cellanimat to grab an object. Lights and 

light sensors could be used to communicate between active receptors (dark grey boxes) and the actin- 

bots/nucleator-bots (dark grey/light grey circles), actin and nucleator-bots could have connecting arms 

allowing for connection and disconnection with filaments. Connecting arms could fold in when inactive.

Lights could be used to convey the profilin gradients or receptor and WASP/PIP2 activations, see 

Fig 9.2. Initially this system is envisaged as a 2D version of the model, however it is conceivable that a 

3D model could be built where the bots are more like modules in a modular robot, able to move over each 

other. Actin-bots could have two opposing connector arms which would fold inwards when inactive. To 

find a neighbouring filament to join to they could have a spin behaviour during which they try to connect 

to any neighbours.

There are many fruitful directions that Dynamic Morphologies, capable of morphological plasticity, 

could lead, in terms of understanding intelligent adaptive behaviour more fully, encompassing all living 

creatures from humans to unicellular organisms, and creating the next generation of artificial intelligent 

systems, capable of rich, complex behaviours in ever-changing environments.
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Basic shape and pattern generative algorithms

There are a variety of methods/algorithms to choose from if creating a shape or pattern, or a whole 

morphology, artificially. Here we will give a brief introduction to the major ones, used in most AI mor­

phological models for their simplicity and ability to generate higher-level complexity from low-level 

interactions and simple rules. There are many mathematical methods relating to shapes and surfaces. 

These are however, often descriptive rather than generative, they globally define a process rather than al­

lowing it to self-organize and generate itself from lower-level components. The idea of self-organization 

and interaction between components is more intuitive, and relevant when considering biological genera­

tion of forms, as such its use can improve dialog between the disciplines.

A.l Cellular Automata
A Cellular Automaton (CA) is a grid-based, discrete computational system in which every grid cell can 

be one of a set of states, and a finite set of local rules determines how the state of cells change. The 

state of every cell in the grid is iteratively updated every time step. A cell’s state is changed in response 

to the states of its local neighbourhood (which comprises the cells surrounding it within a given radius) 

according to the specific rules of the CA. The Moore Neighbourhood (MN), which takes its name from 

its pioneer Edward F. Moore, is defined, in the 2D case, as the eight grid cells sharing a side or vertex, 

see Fig. A. 1.

Cellular automata are useful for studying a variety of phenomena (Wuenche, A. and Lesser, M. J., 

1992; Burks, 1970) and have been used in particular to model pattern formation as it occurs in many 

domains because of their general property of local interactions to produce global phenomenon, meaning 

that they provide a good generic model of other models of pattern formation, for example the Turing 

system, described in section A.3, (Bonabeau, E. et al., 1992). Computer simulations of CA’s ca be used 

to generate aesthetic patterns as well as for modelling biology (Sims, 1991; Bentley, 2002).

A.2 L-systems
In 1968 Aristid Lindenmayer introduced L-systems in (Lindenmayer, 1968). They exhibited the curious 

phenomenon of “data base amplification” (Prusinkiewicz, P. et al., 1995): they have the ability to gener­

ate complex structures from small data sets. The concept behind L-systems looks at biological methods 

of growth within a discrete mathematical framework. There are many discrete entities that occur natu-
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Figure A.1: A CA grid cell shown in black and its neighbours of radius 1, 2 and 3.

Figure A.2: First few iterations of the example L-system given in text.

rally in the biological world, genes and cells for example. In development these different units interact 

to bring about the processes of growth and differentiation (Herman, G. T. and Rozenberg, G., 1975).

An L-system has three components, an alphabet, an axiom and a set of re-writing rules, also called 

the next state functions. The best way to describe the processes involved in an L-system is through an 

example. This particular example is of a PDOL-system, a propagating, deterministic 0-context L-system.

• Alphabet: a, b

• Axiom: a

• Rules: b goes to a & a goes to ab

The method is to take the axiom, apply the rules to each element of it then write the result below, 

then take every element of this new row and apply the rules, writing the result below this one, this then 

continues ad infinum. See Fig. A.2. Due to the branching structure produced they have been used 

effectively to simulate plant growth (Prusinkiewicz, P. et al., 1995).

A.3 Reaction Diffusion
The Turing system of reaction-diffusion of chemicals (Turing, 1952) models the development of pattern 

without positional information (Wolpert, L. and Stein, W. D., 1984). The reaction diffusion mechanism 

is one of inhibition. The existing structures diffuse ‘inhibitor’ chemicals which suppress the formation 

of similar cells within a certain radius, determined by the threshold of ‘reaction’. That is, a cell will react 

by developing into a cell such as the existing ones only when the amount of inhibitor detected is below 

a certain threshold. See fig. A.3 for an illustration of how reaction diffusion works. In experiments
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performed with reaction diffusion systems it is very easy to add one more element, another cell type or 

a diffusing activator and the level of complexity of the patterns can increase by an order of magnitude.

Figure A.3: Reaction Diffusion. When the threshold is set to 1.5, all cells receiving less inhibitor are not 

inhibited from becoming cell type A.

A.4 Agent Swarms
There are many species that construct complex architectures. Social insects can be seen to generate 

hugely intricate patterns and structures when nest building. The possible organizational mechanism 

put forward by Grasse (1959) to explain how this can occur is stigmergy. The basic idea is that the 

coordination of individuals’ tasks depends not on any communication between them but on the nest 

structure itself (Bonabeau, E. et al., 1992). The idea is that a termite picks up a soil pellet, impregnates 

it with a cement pheromone which then diffuses away. The termites are attracted by this pheromone, 

meaning that they tend to drop their soil pellets in the same area. The process of self organization is 

distributed, meaning that there is no centralized controller ordering the insects or agents to behave in a 

certain way, only the structure/environment combined with some rules of reaction.

Swarm intelligence is a Nouvelle AI idea where a group of agents may be able to perform tasks, 

without the use of explicit representations, of their environment or fellow agents, i.e the swarm is a self 

organizing system. Craig Reynold’s Boids (Reynolds, 1987) are the classic example of this, where the 

interaction of the agents together with their simple, ‘innate’ rules produce flocking behaviour. The entire 

process is based on a succession of sensorimotor loops, where the agents adapt their current trajectory 

based only on the information they receive about the environment, which includes their fellow boids. 

Stigmergic swarm intelligence occurs when the innate rules require that the agents produce and react to 

pheromones (Bonabeau, E. et al., 2000; Bentley, 2002).
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Glossary

This glossary of biological terms is divided into two sections: first, general cell biology terms used

within Chapters 4 and 5; secondly, diatom related terms used in Chapters 3 ,7  and 8.

B.l Cell Biology terms
Actin Structural protein of the cytoskeleton polymerizes to form microfilaments.

Arp2/3 Molecular complex residing within cell cytoplasm which nucleates (starts) actin filaments.

Binding site The reactive parts of a macromolecule that directly participate in its specific combination 

with another molecule.

Cistemae Membrane bounded sacks located in the endoplasmic reticulum, as well as other areas.

Centrosome The microtubule organising centre, from which the microtubules grow, located around the 

nucleus. .

Cofilin Accessory protein of the cytoskeleton which severs actin filaments.

Cytokinesis during cell division, after division of the nucleus the cytoplasm, organelles and cellular 

components are, in the usual case, redistributed equally to each daughter cell.

Eukaryote Organism whose cells have chromosomes separated from the cytoplasm by a two membrane 

nuclear envelope.

Fibroblast Resident cell of connective tissue, secretes fibronectin amongst other things.

Filopodia Plural of filopodium, a thin protrusion from a cell, usually supported by actin microfilaments.

Flagellum Long thin projection from a cell used in movement.

Lamellapodia sheet like membrane protrusions comprised of actin microfilament networks.

Lipid Any of a heterogeneous group of fatlike substances characterised by being water insoluble and 

being extractable by nonpolar (or fat) solvents such as alcohol.
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Macromolecule term relating to large molecules including, proteins, nucleic acids and carbohydrates 

and lipids.

Macrophage Relatively long lived phagocytic cell of mammalian tissues.

Microspike A thin protrusion from a cell, usually supported by bundled actin microfilaments, also 

called filopodia.

Microtubule Polymer of tubulin monomers arranged in a cylindrical tube. .

Microfilament Single-strand polymer of actin monomers .

Meiosis Special form of cell division in which each daughter cell receives half the amount of DNA. It 

is the cell division by which eggs and sperm are produced.

Mitosis Process by which a cell separates its duplicated genome into two identical halves, generally 

followed immediately by cytokinesis resulting in two identical daughter cells with a roughly equal 

distribution of organelles and other cellular components.

Monomer A single molecule that is the subunit of a polymer.

Organelle A structurally discrete component of a cell.

PIP2 Phosphatidylinositol 4,5-bisphosphate, found in biomembranes and a precursor to certain cellular 

signals.

Plasmalemma Archaic name for the plasma membrane of a cell.

Polymer A macromolecule made of repeating (monomer) units.

Profilin Accessory cytoskeletal protein that binds to actin, activating it allowing it to bind onto filaments.

Prokaryote Organisms, namely bacteria and cyanobacteria, characterised by the possession of a simple 

naked DNA chromosome, occasionally two such chromosome, without a nuclear membrane and 

possessing a very small range of organelles, generally only a plasma membrane and ribosomes.

Protein Any of a group of complex organic compounds which contain carbon, hydrogen, oxygen, 

nitrogen and usually sulphur, the characteristic element being nitrogen and which are widely 

distributed in plants and animals.

Receptor Molecular structure within a cell or on the surface characterised by selective binding of a 

specific substance and a specific physiologic effect.

Ribosome An organelle composed of RNA and ribosomal proteins (known as a Ribonucleoprotein). It 

translates mRNA into a polypeptide chain (e.g., a protein). It can be thought of as a factory that 

builds a protein from a set of genetic instructions. Ribosomes can float freely in the cytoplasm 

(the internal fluid of the cell) or bind to the endoplasmic reticulum, or to the nuclear envelope.
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Vesicle Membrane bound sack, possibly containing other cellular material.

WASP Wiskott-Aldrich Syndrome Protein: a 502-amino acid protein in the transduction pathway de­

pendent upon Cdc42 and PIP2 for activation. Once activated it can bind to the Arp2/3 complex 

and serve as a nucleation point for actin organization.

B.2 Diatom related terms
Apices Plural of apex, meaning to be at the apex or tip.

Apical Longitudinal plane of symmetry.

Autotroph Organism that produces organic compounds from carbon dioxide as a carbon source, using 

either light or reactions of inorganic chemical compounds, as a source of energy.

Auxospore Larger cell created by sexual reproduction. Has a primary organic wall, composed mainly

of polysaccharides, silica bands are then laid down. The auxospore wall is far less limiting than

the usual valves and girdle structure, so when it divides the valves that form have a modified 

morphology (auxosporulation is the formation of the auxospore).

Chromophyte (or chromista) Eukaryotic supergroup, which may be treated as a separate kingdom or 

included among the Protista. They include all algae whose chloroplasts contain chlorophylls a and 

c (including diatoms), as well as various colorless forms that are closely related to them.

Chlorophyceae class of green algae in the plantae kingdom, distinguishable by their flagellum and 

clear green colour.

Cingulum All elements of the girdle region.

Cleavage furrow A groove formed from the cell membrane in a dividing cell. As cytokinesis continues 

the furrow deepens. .

Diatom (Gr. dia ’through’; tomos ’cutting’, i.e. ‘cut in half’) Major group of eukaryotic algae, and 

are one of the most common types of phytoplankton. Belonging to the kingdom Protista the het- 

erokontophyta division (subgroup of chromophyta) and the Bacillariophyceae class. Most diatoms 

are unicellular, although some form chains or simple colonies. A characteristic feature of diatom
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cells is that they are encased within a unique cell wall made of silica. .

Dinophyta large group of flagellate protists. About half are photosynthetic making up the largest group 

of eukaryotic algae aside from diatoms.

Entrain vertically move a particle or organism up through the water column via water currents.

Epicingulum Larger (and thus older) elements of the girdle region.

Epitheca The epivalve and associated epicingulum.

Epivalve Larger (and thus older) of the frustules two valves.

Extrametabolites substances given off by organisms which, as they accumulate in the environment, 

affect the life processes of other organisms.

Frustule Silica structure surrounding the cell comprised of two valves and their associated cingulum 

elements.

Genus Taxonomic grouping in the classification of living organisms (plural genera) comprised of 

species. .

Grazers Animal that eats low-lying vegetation.

Hypocingulum Smaller (and thus younger) elements comprising the girdle region.

Hypotheca The hypovalve and associated hypocingulum.

Hypovalve Smaller ( and thus newer) of two valves of a frustule.

Interlocking valve valve of a colonial diatom that permanently connects the cell to its sister.
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Mantle Side part of the valve.

Mucilage Thick gluey substance, often produced by plants. Mucilage is another term for exopolysac­

charides.

Paleoecological Branch of ecology that deals with the interaction between ancient organisms and their 

environment.

Pelagic zone part of the open sea or ocean comprising the water column.

Phagotrophic Organisms that feed by ingesting particulate organic carbon or intact cells, feed by 

phagocytosis.

Photic zone (also euphotic zone) Depth of water exposed to sufficient sunlight for photosynthesis to 

occur.

Phototaxis Organism movement in response to the stimulus light, advantageous for phototrophic or­

ganisms: they can orient themselves most efficiently to receive light for photosynthesis.

Phytoplankton The autotrophic component of the plankton that drifts in the water column.

Process (morphological term) An outgrowth or protruding morphological part.

Protist Heterogeneous group of living things, comprising those eukaryotes that are neither animals, 

plants, nor fungi. They are usually treated as the kingdom Protista or Protoctista.

Protoplast The actual organic diatom cell within the siliceous frustule, consisting of a cytoplasmic 

layer that lines the interior of the frustule and surrounds a large central vacuole, within the cyto­

plasmic layer there is a diploid nucleus and two to several pigment-bearing plastids (the site of 

photosyntheseis).

Radiolarian Amoeboid protozoa that produce intricate mineral skeletons, typically with a central cap­

sule dividing the cell into inner and outer portions. They are found as plankton throughout the 

ocean, and their shells are important fossils.
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Raphe A seam or continuous ridge. Used to describe the long vertical rib of silica on the valve (Raphe 

sternum) which can have contain one or two hollow slits (raphe slit).

Resting spore Metabolically inactive spore formed in times of low light, nutrients or other stresses. 

They hav thicker silica walls so sink to the bottom of the sea, if they can return to favourable 

conditions normal cell function may resume.

Ruderals Tolerate frequent turbulence or transportation through light gradient

SDV Silica deposition vesicle, also called the silicalemma. The membrane sack within which silica is 

deposited.

Separation valve specialized valve developed by some colonial diatoms allowing cells to drift apart, 

splitting the colony.

Seta Stiff hair, projection or bristle.

Species The basic unit of biodiversity. In scientific classification, a species is assigned a two-part name 

in Latin. The genus is listed first (and capitalized), followed by a specific epithet.

Sponge spicules Skeletal structures that appear in some types of sponges. They are made of either 

calcium carbonate or silica.

Strutted process Morphological term. Tube penetrating the silica framework of a valve and supported 

internally by two or more buttresses (also known as fultoportula)

Taxon (plural taxa) A grouping of organisms (named or unnamed). Once named, a taxon will usually 

have a rank and can be placed at a particular level in a hierarchy, broadly following this scheme of 

ranks in hierarchical order: kingdom, phylum, class, order, family, genus, species.

Transapical Latitudinal plane of symmetry.

Ttirgor pressure normal fullness or tension produced by the fluid content of blood vessels, capillaries, 

and plant or animal cells



B.2. Diatom related terms 206

Uniseriate Single row of pores.

Valve A structural component of the diatom frustule, two valves fit together like the two halves of a 

petri dish forming (along with the girdle bands) the frustule .

Vegetative cell See resting spore.

Vimines Cross-connections of silica that grow between virga to form the pores.

Virgae Ribs of silica that grow out perpendicular to the raphe sternum .

Water column Vertical section of the sea or lake; the water mass between the surface and the bottom.
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