

REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree PhD Year 2007 Name of Author BOSCHER, Nicolas

COPYRIGHT

This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting this thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION

I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author.

LOANS

Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION

University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines.

- A. Before 1962. Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible).
- B. 1962-1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration.
- C. 1975-1988. Most theses may be copied upon completion of a Copyright Declaration.
- D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

This copy has been deposited in the Library of _____

This copy has been deposited in the Senate House Library, Senate House, Malet Street, London WC1E 7HU.

Atmospheric Pressure Chemical Vapour Deposition of Transition Metal Selenide Thin Films

A thesis presented to the University of London in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nicolas D. Boscher

Supervised by Dr. C. J. Carmalt and Professor Ivan P. Parkin

2007

UMI Number: U591855

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U591855 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

ŝ

I, Nicolas D. Boscher, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

Abstract

This thesis investigates the formation of thin films of metal selenides *via* atmospheric pressure chemical vapour deposition (APCVD). The films and powders produced were characterised by SEM, EDAX/WDX, XPS, XRD, Raman, SQUID, reflectance and absorbance measurements.

The APCVD reaction of TiCl₄, $[V(NMe_2)_4]$ and NbCl₅ with ¹Bu₂Se were respectively found to be a convenient route to stable and crystalline titanium, vanadium and niobium diselenide films. The use of VCl₄ and VOCl₃ showed that they were both found unsuitable for producing VSe₂ from the APCVD reaction with ¹Bu₂Se. Molybdenum and tungsten diselenide films were respectively synthesised using MoCl₅ and WCl₆ with Et₂Se. The WSe₂ films produced were highly hydrophobic with contact angles for water droplets in the range of 135 – 145°. Furthermore these surfaces were highly adherent for water droplets — that did not roll or slide even at a tilt angle of 90°. The deposition of tin monoselenide and tin diselenide films was achieved by the reaction of SnCl₄ with Et₂Se. The deposition temperature, flow rates and position on the substrate determined whether mixed SnSe - SnSe₂, pure SnSe or pure SnSe₂ thin films could be obtained.

The characterisation of the films and powders formed from the APCVD or gas phase reaction of CrO_2Cl_2 and Et_2Se confirmed the formation of an unknown solid solution of $Cr_2Se_{3-x}O_x$. $Cr_2Se_{3-x}O_x$ adopts the hexagonal Cr_2O_3 structure for a stoichiometry between Cr_2O_3 and $Cr_2Se_{0.2}O_{2.8}$, and the rhombohedral Cr_2Se_3 structure for a stoichiometry varying from $Cr_2Se_{0.3}O_{2.7}$ to $Cr_2Se_{2.15}O_{0.85}$. Magnetic studies showed that all the $Cr_2Se_{3-x}O_x$ compounds formed with the rhombohedral Cr_2Se_3 structure had an antiferromagnetic ordering with a Néel temperature lower than the expected one for Cr_2Se_3 .

Acknowledgements

I wish to express my sincere thanks and appreciation to my supervisors, Dr. C. J. Carmalt and Professor Ivan Parkin, for their attention, guidance and support during my Ph.D. I would like to thank Dr. Christopher Blackman for constructive comments and suggestions. He has been abundantly helpful in numerous ways, including both my practical work and analysis. I would also like to thank Dr. Ana Garcia Prieto and Professor Quentin Pankurst for the SQUID analyses and related useful discussions. I am extremely grateful for the assistance of Kevin Reeves with EDAX, WDX and SEM, Dr. Robert Palgrave and Dr. Geoffrey Hyett for XPS, Steve Firth for Raman microscopy and TGA measurements and John Hill for mass spectrometry. In addition I would like to thank Dave Knapp, Joe Nolan and Dave Morphett for maintenance of my CVD rig.

I would like to express my gratitude to Dr. Siama Basharat, who has assisted me in the synthesis of my precursors and helped me to improve my English over these 3 years. In addition, special thanks are due to Caroline Knapp and Paolo Melgari for constructive comments and suggestions. It has been a pleasure to study at UCL during these 3 years. Dr. Jalpa Patel, Naima Narband, Dr. Uzma Qureshi, Dr. Clara Piccirillo, Stephen Potts, Dr. Jesus J. Gil-Tomas and Kristopher Page are cordially thanked for their friendship.

Most importantly I would like to thank my parents Pierrette and Daniel Boscher, my brothers Aurélien and Vincent Boscher, and Maryline Corbin. It is to them that I dedicate this work.

Table of Contents

	Abstract · · · · · · · · · · · · · · · · · · ·	3
	Acknowledgements	4
	Table of Contents	5
	List of Figures and Tables	13
Chapte	r 1 - Introduction	23
1.1.	Introduction	23
1.2.	Titanium Diselenide	23
1.2.1.	Structure and Properties of TiSe ₂	23
1.2.2.	Applications of TiSe ₂	24
1.2.3.	Bulk and Thin Film Synthesis of TiSe ₂	25
1.2.4.	Chemical Vapour Deposition of TiSe ₂ Thin Films	25
1.3.	Vanadium Diselenide	26
1.3.1.	Structure and Properties of VSe ₂	26
1.3.2.	Applications of VSe ₂	26
1.3.3.	Bulk and Thin Film Synthesis of VSe ₂	27
1.4.	Niobium Diselenide	27
1.4.1.	Structure and Properties of NbSe ₂	27
1.4.2.	Applications of NbSe ₂	27
1.4.3.	Bulk and Thin Film Synthesis of NbSe ₂	28
1.5.	Molybdenum Diselenide	28
1.5.1.	Structure and Properties of MoSe ₂	28
1.5.2.	Applications of MoSe ₂	28
1.5.3.	Bulk and Thin Film Synthesis of MoSe ₂	29
1.6.	Tungsten Diselenide	29
1.6.1.	Structure and Properties of WSe ₂	29
1.6.2.	Applications of WSe ₂	30
1.6.3.	Bulk and Thin Film Synthesis of WSe ₂	30
1.6.4.	Chemical Vapour Deposition of WSe ₂ Thin Films	31

1.7.	Tin Monoselenide	31
1.7.1.	Structure and Properties of SnSe	31
1.7.2.	Applications of SnSe	32
1.7.3.	Bulk and Thin Film Synthesis of SnSe	32
1.7.4.	Chemical Vapour Deposition of SnSe Thin Films	33
1.8.	Tin Diselenide	33
1.8.1.	Structure and Properties of SnSe ₂	33
1.8.2.	Applications of SnSe ₂	33
1.8.3.	Bulk and Thin Film Synthesis of SnSe ₂	33
1.8.4.	Chemical Vapour Deposition of SnSe ₂ Thin Films	34
1.9.	Chromium Sesquiselenide	34
1.9.1.	Structure and Properties of Cr ₂ Se ₃	34
1.9.2.	Bulk and Thin Film Synthesis of Cr ₂ Se ₃	35
1.10.	Chromium Sesquioxide	35
1.10.1.	Structure and Properties of Cr ₂ O ₃	35
1.10.2.	Applications of Cr ₂ O ₃	36
1.10.3.	Bulk and Thin Film Synthesis of Cr ₂ O ₃	36
1.10.4.	Chemical Vapour Deposition of Cr ₂ O ₃ Thin Films	36
1.11.	Chemical Vapour Deposition of Metal Selenides	37
1.11.1.	Hydrogen Selenide	37
1.11.2.	Dialkylselenides	37
1.11.3.	Dialkyldiselenides	38
1.11.4.	Selenols	38
1.11.5.	Selenium halides	39
1.12.	Conclusion · · · · · · · · · · · · · · · · · · ·	39
1.13.	References · · · · · · · · · · · · · · · · · · ·	40
Chapter	r 2 - Experimental	47
2.1.	Atmospheric Pressure Chemical Vapour Deposition	47
2.1.1.	Description of the APCVD Apparatus	47
2.1.2.	Precursors Used	48

2.2.	Sample characterisation	49
2.2.1.	Scanning Electron Microscopy	50
2.2.2.	Energy Dispersive X-ray and Wavelength Dispersive X-ray	50
	Analyses	
2.2.3.	X-ray Photoelectron Spectroscopy	50
2.2.4.	X-ray Diffraction	51
2.2.5.	Raman Microscopy	51
2.2.6.	Superconducting Quantum Interference Device Magnetometry	51
2.2.7.	Thermal Gravimetric Analysis	51
2.2.8.	Transmittance and Reflectance Spectroscopy	52
2.2.9.	Contact Angle Measurements	52
2.3.	References	53
Chapter	3 - APCVD of Group IV and V Selenides	54
3.1.	Introduction	54
3.2.	Titanium Diselenide Films	54
3.2.1.1.	Films from TiCl ₄ and Et ₂ Se ₂ : Reaction Conditions	55
3.2.1.2.	Appearance, Substrate Coverage and Adherence of the Films	55
3.2.1.3.	Scanning Electron Microscopy	55
3.2.1.4.	Energy Dispersive X-ray Analysis	56
3.2.1.5.	X-ray Photoelectron Spectroscopy	56
3.2.1.6.	X-ray Diffraction	57
3.2.1.7.	Raman Microscopy	58
3.2.1.8.	Optical Properties	59
3.2.2.1.	Films from TiCl ₄ and ^t Bu ₂ Se: Reaction Conditions	60
3.2.2.2.	Appearance, Substrate Coverage and Adherence of the Films	60
3.2.2.3.	Scanning Electron Microscopy	61
3.2.2.4.	Energy Dispersive X-ray Analysis	62
3.2.2.5.	X-ray Photoelectron Spectroscopy	63
3.2.2.6.	X-ray Diffraction	63
3.2.2.7.	Raman Microscopy	64
3.2.2.8.	Optical Properties	65

•

3.2.3.	Comparison and Discussion	66
3.3.	Vanadium Diselenide Films	67
3.3.1.1.	Films from VOCl ₃ and 'Bu ₂ Se: Reaction Conditions	67
3.3.1.2.	Appearance, Substrate Coverage and Adherence of the Films	67
3.3.1.3.	Scanning Electron Microscopy	67
3.3.1.4.	Energy Dispersive X-ray Analysis	68
3.3.1.5.	X-ray Diffraction	69
3.3.1.6.	Raman Microscopy	70
3.3.2.1.	Films from [V(NMe ₂) ₄] and 'Bu ₂ Se: Reaction Conditions	70
3.3.2.2.	Appearance, Substrate Coverage and Adherence of the Films	71
3.3.2.3.	Scanning Electron Microscopy	71
3.3.2.4.	Energy Dispersive X-ray Analysis	72
3.3.2.5.	X-ray Photoelectron Spectroscopy	73
3.3.2.6.	X-ray Diffraction	74
3.3.2.7.	Raman Microscopy	75
3.3.2.8.	SQUID	75
3.3.3.	Comparison and Discussion	76
3.4.	Niobium Diselenide Films	78
3.4.1.1.	Films from NbCl ₅ and ^t Bu ₂ Se: Reaction Conditions	78
3.4.1.2.	Appearance, Substrate Coverage and Adherence of the Films	78
3.4.1.3.	Scanning Electron Microscopy	79
3.4.1.4.	Energy Dispersive X-ray Analysis	80
3.4.1.5.	X-ray Photoelectron Spectroscopy	80
3.4.1.6.	X-ray Diffraction	81
3.4.1.7.	Raman Microscopy	82
3.4.1.8.	Mass Spectrometry	84
3.4.2.	Discussion	86
3.5.	Mixed Titanium-Niobium Diselenide Films	87
3.5.1.1.	Films from TiCl ₄ , NbCl ₅ and ¹ Bu ₂ Se: Reaction Conditions	87
3.5.1.2.	Appearance, Substrate Coverage and Adherence of the Films	88
3.5.1.3.	Scanning Electron Microscopy	88
3.5.1.4.	Wavelength Dispersive X-ray Analysis	90
3.5.1.5.	X-ray Diffraction	92

3.5.1.6.	Raman Microscopy	93
3.5.2.	Discussion	95
3.6.	Conclusion ·····	95
3.7.	References	97
Chapter	4 – APCVD of Group VI Selenides	100
4.1.	Introduction	100
4.2.	Molybdenum Diselenide Films	100
4.2.1.1.	Films from MoCl ₅ and ^t Bu ₂ Se: Reaction Conditions	100
4.2.1.2.	Appearance, Substrate Coverage and Adherence of the Films	101
4.2.1.3.	Scanning Electron Microscopy	101
4.2.1.4	Energy Dispersive X-ray Analysis	102
4.2.1.5	X-ray Photoelectron Spectroscopy	103
4.2.1.6	X-ray Diffraction	104
4.2.1.7	Raman Microscopy	105
4.2.1.8	Optical Properties	106
4.2.2.1.	Films from MoCl ₅ and Et ₂ Se: Reaction Conditions	107
4.2.2.2.	Appearance, Substrate Coverage and Adherence of the Films	107
4.2.2.3.	Scanning Electron Microscopy	108
4.2.2.4.	Energy Dispersive X-ray Analysis	109
4.2.2.5.	X-ray Photoelectron Spectroscopy	110
4.2.2.6.	X-ray Diffraction	112
4.2.2.7.	Raman Microscopy	113
4.2.2.8.	Optical Properties	114
4.2.3.	Comparison and Discussion	115
4.3.	Tungsten Diselenide Films	116
4.3.1.1.	Films from WCl ₆ and Et ₂ Se: Reaction Conditions	116
4.3.1.2.	Appearance, Substrate Coverage and Adherence of the Films	116
4.3.1.3.	Scanning Electron Microscopy	117
4.3.1.4.	Energy Dispersive X-ray Analysis	118
4.3.1.5.	X-ray Photoelectron Spectroscopy	119
4.3.1.6.	X-ray Diffraction	120

4.3.1.7.	Raman Microscopy	121
4.3.1.8.	Contact Angle	122
4.3.3.	Discussion	123
4.4.	Conclusion ·····	126
4.5.	References	127
Chapter	5 – APCVD of Tin Selenides	129
5.1.	Introduction	129
5.2.	Tin Selenides Films	129
5.2.1.1.	Films formed on the Top Substrate from $SnCl_4$ and Et_2Se :	130
	Reaction Conditions	
5.2.1.2.	Appearance, Substrate Coverage and Adherence of the Films	130
5.2.1.3.	Scanning Electron Microscopy	130
5.2.1.4.	Wavelength Dispersive X-Ray Analysis	131
5.2.1.5.	X-ray Photoelectron Spectroscopy	133
5.2.1.6.	X-ray Diffraction	134
5.2.1.7.	Raman Microscopy	135
5.2.2.1.	Films formed on the Bottom Substrate from $SnCl_4$ and Et_2Se :	135
	Reaction Conditions	
5.2.2.2.	Appearance, Substrate Coverage and Adherence of the Films	136
5.2.2.3.	Scanning Electron Microscopy	136
5.2.2.4.	Wavelength Dispersive X-Ray Analysis	137
5.2.2.5.	X-ray Photoelectron Spectroscopy	138
5.2.2.6.	X-ray Diffraction	139
5.2.2.7.	Raman Microscopy	141
5.2.2.8.	Optical Properties	142
5.2.3.	Discussion	143
5.3.	Conclusion ·····	144
5.4.	References	146

Chapter	6 - APCVD and Chemical Vapour Synthesis of	
Chromi	um Oxyselenides	147
6.1.	Introduction	147
6.2.	APCVD and Chemical Vapour Synthesis of Chromium	
	Oxyselenides Powders and Films	147
6.2.1.1	Films and Powders formed from CrO ₂ Cl ₂ and Et ₂ Se : Reaction	148
	Conditions	
6.2.1.2.	Appearance, Substrate Coverage and Adherence of the Films and	148
	Powders Produced.	
6.2.1.3.	Scanning Electron Microscopy	149
6.2.1.4	Wavelength Dispersive X-ray Analysis	151
6.2.1.5	X-ray Photoelectron Spectroscopy	152
6.2.1.6	. X-ray Diffraction	154
6.2.1.7	. Raman Microscopy	155
6.2.1.8	. Thermogravimetric Analysis	157
6.2.1.9	SQUID	1 59
6.2.2.	Discussion	163
6.3.	Selenisation of Chromium Oxide Films	164
6.3.1.1.	Films and Powders formed from CrO ₂ Cl ₂ and Et ₂ Se : Reaction	164
	Conditions	
6.3.1.2.	Appearance, Substrate Coverage and Adherence of the Films.	164
6.3.1.3	X-ray Diffraction	165
6.3.1.4	Raman Microscopy	166
6.3.2.	Discussion	167
6.4.	Conclusion · · · · · · · · · · · · · · · · · · ·	167
6.5.	References ·····	169

Chapter	r7 - Conclusions	172
7.1.	APCVD of Group IV and V Selenides	172
7.1.1.	Titanium Diselenide Films	172
7.1.2.	Vanadium Diselenide Films	173
7.1.3.	Niobium Selenide Films	174
7.2.	APCVD of Group VI Selenides	174
7.2.1.	Molybdenum Diselenide Films	174
7.2.2.	Tungsten Diselenide Films	175
7.3.	APCVD of Tin Selenides	176
7.4.	APCVD and Chemical Vapour Synthesis of Chromium	
	Oxyselenides	176
7.5.	Conclusion	177
	List of publications	179

List of Figures and Tables

Chapter 1	- Introduction	23
Figure 1.1	CdI ₂ -type crystal structure. Transition metal atoms are represented	24
	by grey spheres and chalcogenide atoms by yellow spheres.	
Figure 1.2	Crystal structure of 2H-WSe2. Tungsten atoms are represented by	30
	black spheres and selenium atoms by grey spheres.	
Figure 1.3	SnSe crystal structure. Tin atoms are represented by blue spheres	32
	and selenium atoms by yellow spheres.	
Figure 1.4	Magnetic structure of Cr ₂ Se ₃ in the low-temperature and high-	35
	temperature antiferromagnetic phases as drawn by Y. Adachi and	
	co. ⁷⁹ The arrows show the direction of magnetic moments of Cr-	
	atoms.	
Table 1.1	Physical properties of hydrogen selenium.	37
Table 1.2	Physical properties of some dialkylselenides.	38
Table 1.3	Physical properties of some dialkyldiselenides.	38
Table 1.4	Physical properties of some selenols.	39
Table 1.5	Physical properties of some selenium halides.	39
Chapter 2	- Experimental Techniques	47
Figure 2.1	Schematic diagram of an atmospheric pressure chemical vapour deposition rig.	48
Table 2.1	Physical properties of the metal precursors used.	49
Chapter 3	- APCVD of Group IV and V Selenides	54
Figure 3.1	Scanning electron micrographs of a film produced from the	56
	APCVD reaction of TiCl ₄ with Et_2Se_2 at 500 °C.	
Table 3.1	EDAX, XRD and Raman data for the films produced by APCVD	56
	reaction of TiCl ₄ with Et ₂ Se ₂ .	

- Figure 3.2 The XRD pattern obtained for a film deposited from the APCVD 57 reaction of TiCl₄ with Et₂Se₂ at 500 °C. Literature stick pattern for TiSe₂ powder (JCPDS File No. 30-1383) is shown.
- **Figure 3.3** Raman pattern obtained for a film produced from the APCVD 58 reaction of TiCl₄ with Et₂Se₂ at 550 °C.
- Figure 3.4 Raman pattern obtained for a film produced from the APCVD 59 reaction of TiCl₄ with Et₂Se₂ at 550 °C after storage in air for two months.
- Figure 3.5 Transmittance and reflectance of a film deposited from $TiCl_4$ with 59 Et_2Se_2 at 550 °C.
- **Figure 3.6** Scanning electron micrographs of the films produced from the 61 APCVD reaction of TiCl₄ with ${}^{t}Bu_{2}Se$ at 250 600 °C.
- Figure 3.7 Scanning electron micrographs of the side of a film produced from 62 the APCVD reaction of TiCl₄ with ${}^{t}Bu_{2}Se$ at 400 °C.
- Table 3.2EDAX, XRD and Raman data for the films produced by APCVD63reaction of TiCl4 with 'Bu2Se.
- Figure 3.8 Scanning electron micrographs a film produced from the APCVD 64 reaction of TiCl₄ with ¹Bu₂Se at 350 °C (a) and 500 °C (b). Literature stick pattern for TiSe₂ powder (JCPDS File No. 30-1383) is shown.
- Figure 3.9 Raman pattern obtained for a film produced from the APCVD 65 reaction of TiCl₄ with ¹Bu₂Se at 500 °C after storage in air for two months.
- Figure 3.10 Transmittance and reflectance of a film deposited from $TiCl_4$ with 65 ¹Bu₂Se at 400 °C.
- Table 3.3Reaction temperatures, EDAX, X-ray diffraction and Raman data68for the films produced by the APCVD reaction of 'Bu2Se with
VOCl3.VOCl3.
- Figure 3.11 The XRD patterns obtained for the film formed on the glass from 69 the APCVD of VOCl₃ and ^tBu₂Se at 350 °C (a), 450 °C (b) and 600 °C (c). Literature stick pattern for V_{1+x}Se₂ powder (JCPDS File No. 032-1415) is shown.

- Figure 3.12 Raman pattern obtained for the film formed on glass from the 70 APCVD of VOCl₃ and 'Bu₂Se at 250 °C (a) and 500 °C (b).
- Figure 3.13 Scanning electron micrographs of the films produced from the 72 APCVD of $[V(NMe_2)_4]$ and ^tBu₂Se at 400 and 500 °C.
- **Table 3.4**Reaction temperatures, EDAX, X-ray diffraction and Raman data73for the films produced by the APCVD reaction of ${}^{t}Bu_{2}Se$ with $[V(NMe_{2})_{4}].$
- Figure 3.14 X-ray photoelectron spectrum of the V 2p and Se 3d peaks from the 73 surface of a film formed on glass from the APCVD of [V(NMe₂)₄] and 'Bu₂Se at 500 °C.
- Figure 3.15 XRD patterns obtained for the film formed on glass from the 74 APCVD of [V(NMe₂)₄] and ^tBu₂Se at 300 °C (a), 400 °C (b) and 500 °C (c). Literature stick pattern for VSe_{1.97} powder (JCPDS File No. 002-0978) is shown.
- Figure 3.16 Raman pattern obtained for a film produced from the APCVD 75 reaction of [V(NMe₂)₄] with 'Bu₂Se at 400 °C.
- Figure 3.17 Magnetic susceptibility of a film VSe₂ formed from the APCVD of [V(NMe₂)₄] and ^tBu₂Se at 500 °C.
- Figure 3.18 Scanning electron micrographs of the films produced from the 79 APCVD reaction of NbCl₅ with 'Bu₂Se at 300 and 500 °C.
- **Table 3.5**EDAX, Raman and X-ray diffraction data for the films produced80by APCVD reaction of ditertiarybutylselenide with NbCl₅.
- Figure 3.19 XPS spectra of the Nd 3d and Se 3d peaks from the surface of a film deposited from the APCVD of NbCl₅ and 'Bu₂Se at 600 °C. The uppermost solid curves show the experimental data and the dashed lines show a best fit.
- Figure 3.20 XRD patterns obtained for the film formed on glass from the 82 APCVD of NbCl₅ and ^tBu₂Se at 300 °C (a), 400 °C (b) and 500 °C (c). Literature stick pattern for NbSe₂ powder (JCPDS File No. 018-0923) is shown.
- Figure 3.21 Raman pattern obtained for a film produced from the APCVD 83 reaction NbCl₅ with 'Bu₂Se at 600 °C.

- Figure 3.22 Raman pattern obtained for a film produced from the APCVD 83 reaction of NbCl₅ with 'Bu₂Se at 400 °C.
- Figure 3.23 Mass spectrum of the gas produced from the reaction of NbCl₅ with $^{7}Bu_{2}Se$ in the mixing chamber at 275 °C.
- Figure 3.24 Mass spectrum of the gaseous by-product of the APCVD reaction 85 of NbCl₅ with 'Bu₂Se at 600 °C.
- Figure 3.25 Scanning electron micrographs of the films produced from the 89 APCVD of TiCl₄, NbCl₅ and ^tBu₂Se at 550 °C for different compositions.
- Table 3.6WDX and X-ray diffraction data for the films produced by APCVD91reaction of NbCl5 and TiCl4 with 'Bu2Se at 600 °C.
- Figure 3.26 XRD patterns obtained for the films formed on glass from the 93 APCVD of TiCl₄, NbCl₅ and 'Bu₂Se at 550 °C for different compositions: $(TiSe_2)_{0.1}(NbSe_2)_{0.9}$ (a), $(TiSe_2)_{0.2}(NbSe_2)_{0.8}$ (b), $(TiSe_2)_{0.61}(NbSe_2)_{0.39}$ (c), $(TiSe_2)_{0.72}(NbSe_2)_{0.28}$ (d) and $(TiSe_2)_{0.87}(NbSe_2)_{0.13}$ (e). Literature stick patterns for NbSe₂ (black) and TiSe₂ (grey) powders (JCPDS Files No. 018-0923 and 030-1383) are shown.
- Figure 3.27 Raman pattern obtained for the films produced from the APCVD 94 reaction of TiCl₄, NbCl₅ and ¹Bu₂Se at 550 °C for different compositions.

Chapter 4 – APCVD of Group VI Selenides 100

- Figure 4.1 Scanning electron micrographs of the films produced from the 101 APCVD of MoCl₅ and Et₂Se at 500 650 °C.
- Table 4.1 EDAX, Raman, and XRD data for the films produced by APCVD 102 reaction of MoCl₅ with 'Bu₂Se. Position across the substrate: (a) 4 cm from the inlet; (b) 12 cm from the inlet.
- **Figure 4.2** Histogram of the selenium to molybdenum ratio relative to 103 deposition position on the substrate (distance indicates the distance along the substrate as measured from the inlet of the reactor). Films were produced from the APCVD of MoCl₅ and ^{*t*}Bu₂Se at substrate temperatures of 600 °C and 650 °C.

- Figure 4.3 XPS spectra of the Mo 3d and Se 3d peaks from the surface of a 104 film deposited from the APCVD reaction of MoCl₅ and ⁷Bu₂Se at 650 °C. The uppermost solid curves are the experimental data and the dashed lines a best fit.
- Figure 4.4 The XRD patterns obtained for the films formed from the APCVD 105 of MoCl₅ and ^tBu₂Se at 450 °C (a), 550 °C (b), 600 °C (c) and 650 °C (d). Clear circles refer to the 2Hb polytype (JCPDS File No. 015-0029) and filled circles to the 3R form (JCPDS File No. 020-0757). The figure shows the indexing for the 3R polytype only.
- Figure 4.5 Raman patterns obtained for the film formed from the APCVD of 106 MoCl₅ and ${}^{t}Bu_{2}Se$ at 500 °C (a), and 650 °C (b).
- Figure 4.6 Transmittance spectra of a 100 nm film produced at 600 °C from 107 the APCVD of MoCl₅ and ¹Bu₂Se with a deposition time of 1 minute.
- Figure 4.7 Scanning electron micrographs of the films produced from the 108 APCVD of MoCl₅ and Et₂Se at 550 650 °C.
- Table 4.2 EDAX, Raman, and XRD data for the films produced by APCVD 109 reaction of MoCl₅ with Et₂Se. Position across the substrate: (a) 4 cm from the inlet; (b) 12 cm from the inlet.
- Figure 4.8 Histogram of the selenium to molybdenum ratio relative to 110 deposition position on the substrate (distance indicates the distance along the substrate as measured from the inlet to the reactor). Films were produced from the APCVD of diethylselenide at substrate temperatures of 600 °C and 650 °C.
- Figure 4.9 XPS spectra of the Mo 3d and Se 3d peaks from the surface of a 111 film deposited from the APCVD reaction of $MoCl_5$ and Et_2Se at 600 °C. The uppermost solid curves show the experimental data and the dashed lines show best fit.
- Figure 4.10 XPS spectra of the Cl 3p peaks from the surface of a film deposited 112 from the APCVD reaction of MoCl₅ and Et₂Se at 600 °C.

- Figure 4.11The XRD patterns obtained for the films formed from the APCVD113of MoCl5 and Et2Se at 500 °C (a), 550 °C (b), 600 °C (c) and 650°C (d). Clear circles refer to the 2Hb polytype (JCPDS File No.015-0029) and filled circles to the 3R form (JCPDS File No. 020-0757). The figure shows the indexing for the 2H polytype only.
- Figure 4.12 Raman pattern obtained for the film formed from the APCVD of 114 MoCl₅ and Et₂Se at 550 °C (a), 600 °C (b) and 650 °C (c).
- Figure 4.13 Transmittance spectra of a 600 nm film produced at 650 °C from 114 the APCVD of MoCl₅ and Et₂Se with a deposition time of 5 minutes.
- Figure 4.14 Scanning electron micrographs of the films produced from the 117 APCVD of WCl₆ and Et₂Se at 500 650 °C.
- Figure 4.15 Scanning electron micrographs of the side of a film produced from 118 the APCVD of WCl₆ and Et_2Se at 650 °C.
- Table 4.3 EDAX, XRD and Raman data of the films produced from APCVD 119 reaction of WCl₆ with Et₂Se. Flow rates through the WCl₆ bubbler, Et₂Se bubbler and the mixing chamber: (a) 1.5 L.min⁻¹, 0.2 L.min⁻¹, 1.9 L.min⁻¹; (b) 4.0 L.min⁻¹, 0.3 L.min⁻¹, 4.6 L.min⁻¹.
- Figure 4.16 XPS spectra of the Se 3d and W 4f peaks from the surface of a film 120 deposited from the APCVD reaction of WCl₆ and Et₂Se at 650 °C. The uppermost solid curves show the experimental data and the dotted lines show a best fit.
- Figure 4.17 The XRD patterns obtained for the films formed from the APCVD 121 of WCl₆ and Et₂Se at 650 °C (a), 600 °C (b), 550 °C (c) and 500 °C (d). Literature stick pattern for WSe₂ powder (JCPDS File No. 006-0080) is shown.
- Figure 4.18 Raman pattern obtained for the film formed from the APCVD of 122 WCl₆ and Et₂Se at 650 °C.

- Figure 4.19 Water droplets (1 mg) on the tungsten selenide thin films. Left: 123 water droplet on a film at 0° tipping angle; middle: water droplet at a 90° tilt angle; right: water droplet suspended upside down on the film. The water droplets contained a small amount of methylene blue dye to aid visualisation, this was not found to alter the contact angles on the droplet sizes used.
- Figure 4.20 Crystal structure of 2H-WSe₂. The basal planes have a relatively 125 low surface enregy and the the edge faces have a higher surface energy.
- Chapter 5 APCVD of Tin Selenides 129
- Figure 5.1 SEM images of the films produced on the top substrate from the 131 APCVD of SnCl₄ and Et₂Se at 500 °C.
- Figure 5.2 SEM images of the films produced on the top substrate from the 131 APCVD of SnCl₄ and Et₂Se at 500 °C and 550 °C.
- **Table 5.1**Reaction conditions, WDX and XRD data of the films formed onto132the top substrate from the APCVD reaction of SnCl4 with Et2Se.
- Figure 5.3 XPS spectra of the Sn 3d and Se 3d peaks from the surface of a 133 film deposited on the glass top substrate from the reaction of SnCl₄ and Et₂Se at 550 °C for a SnCl₄ : Et₂Se ratio of 1 : 1. The grey lines show the experimental data and the darker lines show a best fit.
- Figure 5.4 The XRD patterns obtained for the films formed on the top 134 substrate from the APCVD of SnCl₄ and Et₂Se at 450 °C (a), 500 °C (b) and 550 °C (c). Literature stick pattern for SnSe₂ powder (JCPDS File No. 023-0602) is showed.
- Figure 5.5 Raman pattern obtained for the film formed on the top substrate 135 from the APCVD of $SnCl_4$ and Et_2Se at 500 °C.
- Figure 5.6 SEM images of the films produced on the bottom substrate from 136 the APCVD of SnCl₄ and Et₂Se at 550 °C and 600 °C for a SnCl₄ : Et₂Se ratios of 1 : 1.
- Figure 5.7 SEM images of the films produced on the bottom substrate from 137 the APCVD of SnCl₄ and diethyl selenide at 650 °C for two different SnCl₄ : Et₂Se ratios: 1 : 1 and 10 : 1.

- **Table 5.2**WDX, Raman and XRD data for the films produced onto the 138bottom substrate by APCVD reaction of $SnCl_4$ with Et_2Se .
- Figure 5.8 XPS spectra of the Sn 3d and Se 3d peaks from the surface of a 139 film deposited on the bottom glass substrate from the reaction of SnCl₄ and Et₂Se at 650 °C for a SnCl₄ : Et₂Se ratio of 10 : 1. The lighter lines are the experimental data and the darker lines a best fit.
- Figure 5.9 The XRD patterns obtained for the films formed on the bottom 140 substrate from the APCVD of SnCl₄ and Et₂Se at 600 °C (a), 625 °C (b) and 650 °C (c). Literature stick pattern for SnSe₂ powder (JCPDS File No. 023-0602) is showed.
- Figure 5.10 The XRD patterns obtained for the film formed on the bottom glass 141 substrate from the APCVD of SnCl₄ and diethyl selenide at 650 °C for the following SnCl₄ : Et₂Se ratios: 1 : 1 (a), 5 : 1 (b), 10 : 1 (c), 20 : 1 (d). Literature stick pattern for SnSe powder (JCPDS File No. 032-1382) is showed.
- Figure 5.11 Raman pattern obtained for the film formed on the bottom substrate 142 from the APCVD of SnCl₄ and Et₂Se at 650 °C for different SnCl₄ : Et₂Se ratios: 1 : 1 (a), 5 : 1 (b), 10 : 1 (c), 20 : 1 (d).
- Figure 5.12 Optical reflection, transmission and absorption spectra for a 100 143 nm film formed on the bottom substrate from the APCVD of SnCl₄ and Et₂Se at 650 °C for a SnCl₄ : Et₂Se ratio of 10 : 1.
- Chapter 6 APCVD and Chemical Vapour Synthesis of
- Chromium Oxyselenides 147
- Figure 6.1 SEM images of the films produced from the APCVD of CrO_2Cl_2 149 and Et_2Se at 600 °C.
- Figure 6.2 SEM images of the nanoparticles produced from the chemical 150 vapor reaction of CrO_2Cl_2 and Et_2Se at 600 °C.
- Figure 6.3 Statistical distribution in the nanoparticles size for the particles 150 formed from CrO_2Cl_2 and Et_2Se at 600 °C.
- **Table 6.1**Reaction conditions, WDX, XRD and Raman data of the films152formed from the APCVD reaction of CrO_2Cl_2 with Et₂Se at 600 °C.

- Figure 6.4 Selected area XPS spectra of the chromium oxyselenide 153 (Cr₂Se_{0.70}O_{2.30}) powder produced at 600 °C from the gas phase reaction of CrO₂Cl₂ and Et₂Se. Top, Cr 2p region; left, O 1s region; right, Se 3d region. The grey lines show the experimental data and the darker lines show a best fit.
- Figure 6.5 XRD pattern obtained for the films formed on glass substrate at 154 600 °C from the APCVD reaction of chromyl chloride and diethylselenide for the following Et₂Se : CrO₂Cl₂ ratios: 0 : 1 (a) and 1 : 1 (b). Literature stick pattern for Cr₂O₃ powder (JCPDS File No. 006–0504) is shown.
- Figure 6.6 XRD pattern obtained for the powders formed at 600 °C from the 155 APCVD reaction of chromyl chloride and diethylselenide for two different Et₂Se : CrO₂Cl₂ ratios: 1.3 : 1 (a), 5 : 1 (b) and 10 : 1 (c). Literature stick pattern for rh-Cr₂Se₃ powder (JCPDS File No. 040–1403) is shown.

ſ

- Figure 6.7 Raman pattern obtained for the film formed on glass substrate at 156 600 °C from the APCVD reaction of CrO₂Cl₂ and Et₂Se.
- Figure 6.8 Raman pattern obtained for Cr₂Se_{0.40}O_{2.60} nanoparticles. 157
- Figure 6.9 Thermogravimetric analysis of the Cr₂Se_{0.70}O_{2.30} particles. 158
- **Figure 6.10** Thermogravimetric analysis of the $Cr_2Se_{2.15}O_{0.85}$ particles. 158
- Figure 6.11 XRD pattern of the powder obtained after the TGA of the 159 Cr₂Se_{0.70}O_{2.30} particles in air. Literature stick pattern for Cr₂O₃ powder (JCPDS File No. 006–0504) is shown.
- Figure 6.12 DC magnetic susceptibility in a measurement field of 10 Oe as a 160 function of temperature for different x in $Cr_2Se_xO_{3-x}$.
- **Figure 6.13** Néel temperature for different x in $Cr_2Se_xO_{3-x}$. 161
- Figure 6.14 Hysteresis loops measured at T = 5, 120 and 300 K for different x 162 in $Cr_2Se_{0.7}O_{2.3}$. A detail of the low field magnetisation is shown below.
- Figure 6.15 XRD pattern obtained for the films obtained before the selenisation 165 process (a), after a 5 minutes selenisation at 650 °C (b), after a 10 minutes selenisation at 650 °C (c).

Figure 6.16	Raman pattern of the films obtained after a 5 minutes selenisation	166
Figure 6.17	at 650 °C in a Et ₂ Se flow of 30 mmol.min ⁻¹ . Raman pattern of the films obtained after a 10 minutes selenisation at 650 °C in a Et ₂ Se flow of 30 mmol.min ⁻¹ .	167
Chapter 7	- Conclusion	172
Table7.1	Summary of the APCVD reactions of TiCl ₄ and selenide precursors.	173
Table7.2	Summary of the APCVD reactions of vanadium precursors with ${}^{t}Bu_{2}Se$.	174
Table7.3	Summary of the APCVD reactions of NbCl ₅ with t Bu ₂ Se.	174
Table7.4	Summary of the APCVD reactions of MoCl ₅ and selenium precursors.	175
Table7.5	Summary of the APCVD reactions of WCl_6 and Et_2Se .	175
Table7.6	Summary of the APCVD reactions of SnCl ₄ and Et ₂ Se.	176
Table7.7	Summary of the APCVD reactions of CrO ₂ Cl ₂ and Et ₂ Se.	177

ţ

Chapter 1 Introduction

1.1 Introduction

The aim of this work was to investigate the chemical vapour deposition (CVD) of a range of metal selenides. The films were synthesised using conventional atmospheric pressure (AP) CVD using a range of commercially available precursors. This introductory chapter describes the structure and properties of the materials which have been produced in thin film form in this work. Chapter 2 describes the experimental techniques and procedures adopted in this thesis. The deposition of metal selenide films is reported in Chapter 3, 4 and 5. The synthesis and characterisation of a new ternary phase chromium oxyselenide is reported in chapter 6. The final chapter discusses the main findings of this work.

1.2 Titanium Diselenide

1.2.1 Structure and Properties of TiSe₂

Titanium diselenide (TiSe₂) belongs to the family of layered transition metal dichalcogenides (MX_2 ; M = Ti, Zr, V, Nb, Ta, Mo, W, Sn...). These compounds adopt a CdI₂-type crystal structure, which consists of two-dimensional covalently bound layers of the type X-M-X (Figure 1.1). The layers are bound to each other by weak van der Waals interactions leading to a stacking sequence X-M-X- \equiv -X-M-X with highly anisotropic properties. The interface between the X-M-X layers has vacant sites that allow intercalation of foreign atoms or molecules. Depending on how the molecular layers stack up, layered transition metal dichalcogenides can have many different crystallographic polytypes.

Figure 1.1 CdI₂-type crystal structure. Transition metal atoms are represented by grey spheres and chalcogenide atoms by yellow spheres.

There is only one known polytype of stoichiometric titanium diselenide (1T-TiSe₂), as in the Se-Ti-Se layers in TiSe₂ always stack without displacement. It crystallises in the P3ml space group with lattice parameters of a = 3.541 Å and c = 5.986 Å. TiSe₂ is known to exhibit a commensurate charge density wave (CDW) transition at T_c = 202 K, which is characteristics of low-dimensional materials. Low-temperature electron-diffraction studies have shown the second-order condensation at 202 K of a 2a₀ x 2a₀ x 2c₀ superlattice. Titanium diselenide is semi-metallic at room temperature and turns into semiconductor after the CDW transitions at low temperature. Apart from TiSe₂, many forms of titanium selenide have been observed in the selenium-titanium system such as, Ti₅Se₈,¹ TiSe, Ti₈Se₉, Ti₃Se₄, Ti₂Se₃, Ti₅Se₈, TiSe₃ and Ti₂Se₉.^{2,3}

1.2.2 Applications of TiSe₂

Due to its layered structure and the weak van der Waals forces between each layer, $TiSe_2$ films have been suggested as lubricating coatings. Transition metal dichalcogenides (MX₂) constitute an important class of inorganic layered compounds; they are good intercalation hosts - intercalation of gas molecules results in a change in

electrical resistance. Due to its small band overlap and low number of carriers, $TiSe_2$ is extremely sensitive to impurities or deviation from stoichiometry. The presence of impurities or deviation from stoichiometry adds a large number of carriers and results in a change in electrical resistance. Therefore, due to the high sensivity to impurities and the layered structure, titanium diselenide films with the right orientation may find application as hosts for gas sensors materials.

1.2.3 Bulk and Thin Film Synthesis of TiSe₂

The most common route to TiSe₂ single and polycrystalline crystals is the chemical vapour transport method.¹³⁶ A powder sintering technique has also been employed to prepare polycrystalline TiSe₂ and nanotubes of TiSe₂.¹³⁴

Several reports detail the deposition of TiSe₂ thin films. Molecular beam epitaxy in a ultrahight vacuum (UHV) chamber has been reported to lead to TiSe₂ films.⁴ Epitaxial growth of the films was achieved on Se-terminated GaAs (111)B substrates. However, the films produced were found to be titanium rich, with the titanium atoms filling the octahedral sites between the Se-Ti-Se sheets.

1.2.4 Chemical Vapour Deposition of TiSe₂ Thin Films

There is only one report of chemical vapour deposited titanium diselenide thin films.⁵ McKarns et al. have prepared a series of potential TiSe₂ single-source precursors from titanium tetrachloride and dialkyl diselenides or dialkyl selenides. Treatment of TiCl₄ with dimethyl selenide and diethyl selenide in hexane at 0 °C led to the crystallisation of pure red air stable solids of $[TiCl_4(Se(CH_3)_2)_2]$ and $[TiCl_4(Se(CH_2CH_3)_2)_2]$ respectively. The CVD reaction of the dimethyl selenide adduct was found to be poorly reproducible and only produced titanium selenide films with a poor quality. However, the use of $[TiCl_4(Se(CH_2CH_3)_2)_2]$ as a single-source precursor produced a rose bronze coloured thin film of TiSe₂ at substrate temperatures of 500-600°C. However, after 30 days storage in air, the films became translucent with a very pale orange colour. These TiSe₂ films appeared to be unstable to ambient moisture and slowly degraded to give amorphous Ti-O-Se materials.

1.3 Vanadium Diselenide

1.3.1 Structure and Properties of VSe₂

Vanadium diselenide (VSe₂), which crystallises in the CdI₂-type, is known to be practically impossible to obtain in a perfectly stoichiometric form. It is known that in VSe₂ a small amount of vanadium atoms occupy the octahedral sites between the Se-V-Se sheets. Although the amount x of additional vanadium atoms can be very small, it seems almost impossible to produce a sample without interstitial intercalation of vanadium atoms. The exact formula is thus $V_{1+x}Se_2$ and the real stacking sequence is Se-V-Se-V_(x)-Se-V-Se.

1T-VSe₂ is the only polytype known for vanadium diselenide. It crystallises in the P3ml space group with lattice parameters of a = 3.35 Å and c = 6.12 Å. 1T-VSe₂ is metallic and is known to display remarkable properties, such as an incommensurate charge density wave (ICDW) phase (80 - 112 K) and a commensurate charge density wave (CCDW) phase of $4a_0 \times 4a_0$ (< 80 K). The lattice distortion of 1T-VSe₂ is not free of complications and near the transition temperature the 1T-VSe₂ shows sharp discontinuities in its electrical and magnetic properties. Various superstructures and structural transitions that are probably connected with the non-stoichiometry have also been reported. The phase diagram of the vanadium-selenium system has been fully investigated by Overbay and co-workers,¹³⁵ and apart from the paramagnetic metal VSe₂, many forms of vanadium selenide have been observed such as V₅Se₄, V₅Se₈ and V₂Se₉.

1.3.2 Applications of VSe₂

Like all transition metal dichalcogenides, 1T-VSe_2 has the ability to form intercalation complexes with foreign atoms or molecules incorporated between the VSe₂ layers. 1T-VSe_2 has already been widely studied as a host lattice in chemical and electrochemical intercalation reactions. Electrochemical cells using alkali-metal intercalated VSe₂ as a cathode material have been reported to show good reaction rates.

1.3.3 Bulk and Thin Films Synthesis of VSe₂

Despite a lot of studies that have focused on VSe₂ due to its CDW transition and intercalation properties, the synthesis of VSe₂ thin films or crystals is poorly described in the literature. This is probably due to the fact that stoichiometrically pure VSe₂ is difficult to prepare and the substance is usually metal-rich. VSe₂ single crystals have been prepared by chemical vapor transport, obtained from the elements in an evacuated quartz or silica ampoule heated at 800 °C for 7 days.^{6,7} No chemical vapour deposition route to VSe₂ has been reported to date.

1.4 Niobium Diselenide

1.4.1 Structure and Properties of NbSe₂

Niobium diselenide (NbSe₂) has attracted attention due to its wide range of interesting physical properties, such as the presence of both a charge density wave transition and a superconducting transition. NbSe₂ has many different crystallographic polytypes, for example 2H_a-, 2H_b-, 3R-, 4H_a-, 4H_{d1}- and 4H_{d2}-NbSe₂, the most common being 2H_b-NbSe₂, which crystallises in the P6₃/mmc space group with lattice parameters of a = 3.44 Å and c = 12.55 Å. Depending on the polytype, NbSe₂ shows different physical properties. The polytypes 2H_a- or 2H_b-, and 4H_a-NbSe₂ are superconducting with a transition temperature of T_c = 7.2 K and T_c = 6.3 K, respectively.^{8,9} A charge-density wave is present in all the NbSe₂ polytypes and an incommensurate charge-density wave is present in 2H-NbSe₂ below T_c = 33.3 K. In 2H-NbSe₂, the structure remains incommensurate through the superconducting transition.¹⁰ Even though the phase diagram of the niobium – selenium system is not fully known, many forms of niobium selenide, apart from NbSe₂, have been observed, such as Nb₅Se₄, Nb₃Se₄, NbSe₃ and NbSe₄.^{11,12,13}

1.4.2 Applications of NbSe₂

Similar to most of the transition-metal dichalcogenides, NbSe₂ has been cited for use as an electrical conductor and as a solid lubricant at high temperature. NbSe₂ is also

a good intercalation host. It has been shown that the growth of hydrogen intercalated in H_xNbSe_2 results in changes in the conductivity type from metallic to semiconducting.^{14,15} Therefore, due to this sensitivity to intercalated molecules, niobium diselenide films may find application as hosts for sensor materials.

1.4.3 Bulk and Thin Films Synthesis of NbSe₂

The most common method to grow large single crystals of NbSe₂ is the chemical vapor transport (CVT)^{11,16} of pre-reacted polycrystalline NbSe₂ with iodine as a transport agent. NbSe₂ thin films have been grown using van der Waals epitaxy (VDWE)¹⁷ and pulsed-laser deposition (PLD).^{18,19} No CVD route to NbSe₂ has been reported to date.

1.5 Molybdenum Diselenide

1.5.1 Structure and Properties of MoSe₂

Molybdenum diselenide (MoSe₂), which is isomorphous with MoS₂, crystallises in the P6₃/mmc space group. Two polytypes are known for MoSe₂; hexagonal 2H_b and rhombohedral 3R. These polytypes have identical interlayer structures but different repeat distances between corresponding positions, with the 2H_b form having a doubling, and the 3R form a trebling, of the unit cell *c*-axis. The difference between each polytype is subtle and often mixtures of both can be found in the same crystal. The reported lattice parameters for MoSe₂ are a = 3.296 Å, c = 6.464 Å (× 2) for 2H_b and a = 3.296Å, c = 6.464 Å (× 3) for 3R. Several other forms of molybdenum selenide have been observed, such as amorphous MoSe₃,²⁰ MoSe nanowires,²¹ Chevrel phase (Mo₆Se₈),²² as well as many cluster compounds such as Mo₉Se₁₁.²³

1.5.2 Applications of MoSe₂

Semiconductor MoSe₂, has attracted attention because it is good at absorbing visible light, whilst being transparent at longer wavelengths.^{24,25} Other applications include use as a solid-state lubricant, a cathode material for high energy density

batteries, and as an intercalation host.^{24,26} It has also been reported as one of the most efficient systems for electrochemical solar energy conversion.^{27,28,29} However, due to the difficulties in growing large single crystals, MoSe₂ has not yet found applications in electronic instruments or solar cells. Polycrystalline thin films of MoSe₂, though crystallographically less perfect than a single crystal, do show promising semiconductor properties.²⁴

1.5.3 Bulk and Thin Films Synthesis of MoSe₂

The most common method of growing crystals of $MoSe_2$ is a solid-state reaction between stoichiometric amounts of elemental molybdenum and selenium. Molybdenum diselenide polycrystalline thin films have been grown by electrodeposition,^{30,31} or pulsed electrodeposition, by chemical transport using bromine as a transport agent, and by molecular beam epitaxy,^{32,33} but no CVD route to $MoSe_2$ has ever been reported.

1.6 Tungsten Diselenide

1.6.1 Structure and Properties of WSe₂

Tungsten diselenide (WSe₂) has been reported as a black or grey odourless material with good stability. As for many of the layered transition-metal dichalcogenides, WSe₂ crystallises with the CdI₂-type structure. Only one polytype of stoichiometric WSe₂ has been reported: 2H-WSe₂ (Figure 1.2). 2H-WSe₂ is a semiconductor with a band gap of 1.2 eV. Apart from WSe₂, only the X-ray amorphous WSe₃ has been reported.

Figure 1.2 Crystal structure of 2H-WSe₂. Tungsten atoms are represented by black spheres and selenium atoms by grey spheres.

1.6.2 Applications of WSe₂

Due to its high optical absorption, high resistance against photocorrosion and its band gap near the optimum value (1.6 eV) for high efficiency photoelectrochemical solar cells, tungsten diselenide is an important material in photoelectrochemical conversion and photovoltaic solar energy conversion. Single crystals of WSe₂ have shown a good efficiency in photovoltaic application.³⁴ However, WSe₂ thin films are usually poorly photoconductive and unsuitable for photovoltaic application. The use of nickel coated substrate has allowed the growth of photoconductive WSe₂ thin films.³⁵ Tungsten diselenide has also been cited as a high temperature solid lubricant and as an electrode for rechargeable batteries.¹³⁷

1.6.3 Bulk and Thin Films Synthesis of WSe₂

A number of routes to the growth of tungsten diselenide single crystals have been investigated. The most common being the chemical vapour transport (CVT) technique. Tungsten diselenide thin films can also be obtained by many processes, including chemical vapour deposition. A couple of reports described the preparation of WSe_2 by van der Waals rheotaxy (vdWR).^{36,37} This technique allowed textured WSe_2 films which exhibit optical and electronic properties similar to those of single crystals. Unfortunately the vdWR process is long and requires a series of steps using high temperature (950 °C). Other methods used to grow WSe_2 thin films include high-temperature selenisation of WO₃ films,³⁸ electrodeposition,^{39,40} rf sputtering⁴¹ and solid state reaction between the constituents sequentially deposited in thin film form.⁴²

1.6.4 Chemical Vapour Deposition of WSe₂ Thin Films

A few papers report the CVD of WSe₂ using WF₆ and H₂Se as precursor agents.^{43,44,45} The films grown on different substrates between 300 - 700 °C were reported to be stable and crytalline with a preferential orientation. A platelet microstructure with crystallites of 1 μ m was observed. The optical absorption of the CVD film closely matched that of single-crystal WSe₂.

1.7 Tin Monoselenide

1.7.1 Structure and Properties of SnSe

Tin monoselenide (SnSe) is laminar IV-VI compound, which crystallises with an orthorhombic structure (space group Pbnm) and lattice parameters of a = 4.19 Å, b = 4.46 Å and c = 11.57 Å. Its structure (Figure 1.3) can be described as a distorted NaCl structure where tightly bound double layers of Sn and Se atoms are stacked along the *c*-axis. Each atom is strongly bonded to its three neighbours within its own double layer and only weakly bonded to its three more distant neighbours. The adjacent SnSe double layers are bound by weak van der Waals interactions, giving rise to an intermediate structure between three-dimensional and two-dimensional. This gives to SnSe anisotropic properties such as a lower hole mobility along the *c*-axis. SnSe is a p-type semiconductor with a narrow direct band gap close to 1.0 eV.⁴⁶ It melts at 860 °C and it has a phase transition from the orthorhombic to the cubic at 540 °C.

Figure 1.3 SnSe crystal structure. Tin atoms are represented by blue spheres and selenium atoms by yellow spheres.

1.7.2 Applications of SnSe

SnSe has attracted widespread attention due to its electronic and optical properties.^{47,48,49} It is a promising candidate for solar cell applications.^{50,51} SnSe has also been reported to have numerous applications in memory switching devices,⁵² in holographic recording systems, as an anode material to improve lithium diffusivity or as a cathode in a lithium battery.⁵³

1.7.3 Bulk and Thin Films Synthesis of SnSe

Bulk powders of tin monoselenide have been mostly synthesised by mixing and melting tin and selenium in the required stoichiometric ratio.⁴⁸ Other routes to bulk SnSe material include chemical vapor transport,⁵⁴ solvothermal process⁵⁵ and the Bridgman technique.⁵⁶ Thin film deposition of SnSe has been widely described in the literature. Chemical bath deposition,⁵⁷ electro-deposition,⁵⁸ solid state reaction,⁵⁹ solvothermal technique,⁶⁰ molecular beam epitaxy,⁶¹ vacuum evaporation⁴⁸ and pulsed laser deposition⁶² have been used to grow SnSe thin films.

1.7.4 Chemical Vapour Deposition of SnSe Thin Films

The chemical vapour deposition (CVD) of tin selenide thin films has been investigated yet only SnSe has been reported. Tetramethyltin and hydrogen selenide have been used as dual-source precursors to grow SnSe films.⁶³ While the single-source precursor bis(bis(trimethylsilyl)methyl)tin(IV) selenide $[Sn{CH(SiMe_3)_2}_2(\mu-Se)]_2$ deposited SnSe thin films by low pressure CVD.^{64,65} Pyridineselenolate complexes of tin have been suggested as useful precursors for CVD,⁶⁶ as the bulk thermolysis of $[Sn(2-SeNC_5H_4)_2]$ and $[Sn(2-SeNC_5H_4)_4]$ leads to SnSe and SnSe₂.

1.8 Tin Diselenide

1.8.1 Structure and Properties of SnSe₂

Tin diselenide is an n-type semiconductor and its band gap is near 0.9 eV. SnSe₂ presents a hexagonal CdI₂-type crystal structure characterized by strongly bound twodimensional Sn-Se-Sn sandwiches, which are weakly coupled by van der Waals forces. SnSe₂ has many different crystallographic polytypes the most common being the 2H and 18R.^{67,68}

1.8.2 Applications of SnSe₂

Due to its electronic and optical properties, 48,69,70 SnSe₂ is a promising candidate for solar cell applications. 48,71

1.8.3 Bulk and Thin Films Synthesis of SnSe₂

SnSe₂ crystals have been grown by vapour phase transport using iodine as a transporting medium.^{72,73} However the iodine phase transport incorporates iodine, which affects the structure and properties of the SnSe₂ crystals. SnSe₂ polycrystalline thin films have been prepared using a conventional thermal evaporation of Sn and Se, or SnSe₂ powder⁷⁴ or van der Waals epitaxy.⁷⁵ Layered thin film p/n multi-junctions of SnSe and SnSe₂ have been produced by eutectic transformation.⁷⁶
1.8.4 Chemical Vapour Deposition of SnSe₂ Thin Films

Pyridineselenolate complexes of tin have been suggested as possible precursors for the chemical vapour deposition of $SnSe_2$ thin films.⁶⁶ [Sn(2-SeNC₅H₄)₂] and [Sn(2-SeNC₅H₄)₄] are reported to sublime intact and decompose to SnSe₂ at elevated temperature. However, there is no report of the CVD of SnSe₂ thin films.

1.9 Chromium Sesquiselenide

1.9.1 Structure and Properties of Cr₂Se₃

Chromium sesquiselenide (Cr₂Se₃) has a rhombohedral-type superstructure,⁷⁷ which leads to complex antiferromagnetic arrangements below the Néel temperature T_N = 43 K. At transition temperature T_t = 38 K, Cr₂Se₃ exhibits an interesting order-order magnetic transition. These complex arrangements in the high-temperature antiferromagnetic AF (H) phase between T_N and T_t , and in the low-temperature antiferromagnetic AF (L) phase below T_t have been studied by neutron diffraction (Figure 1.4).^{78,79,80}

A large number of phases have been reported in the chromium-selenium system and comprise Cr_5Se_8 ,⁸¹ $CrSe_2$,^{82,83} $CrSe_3$,^{84,85} and a series of compounds CrSe,^{86,87} Cr_7Se_8 ,⁸⁸ Cr_5Se_6 ,⁸⁹ Cr_3Se_4 ,⁹⁰ and Cr_2Se_3 with the NiAs-type crystal structure, in which chromium vacancies are ordered.

a) AF (L) phase

b) AF (H) phase

Figure 1.4 Magnetic structure of Cr_2Se_3 in the low-temperature and high-temperature antiferromagnetic phases as drawn by Y. Adachi and co.⁷⁹ The arrows show the direction of magnetic moments of the Cr-atoms.

1.9.2 Bulk Synthesis of Cr₂Se₃

 Cr_2Se_3 crystals have been grown by the solid reaction of elemental chromium and selenium in an evacuated quartz or silica tube state at 1000 - 1100 °C⁷⁹ and by the chemical vapour transport technique using iodine as a transport agent.^{91,92}

1.10 Chromium Sesquioxide

1.10.1 Structure and Properties of Cr₂O₃

The insulating chromium sesquioxide (Cr_2O_3) is antiferromagnetic with a Néel temperature of 307.5 K.^{93,94} It has the corundum structure, which consists of an

approximately hexagonal close-packed arrangement of O^{2-} , with two-thirds of the octahedral interstices occupied by Cr^{3+} . Each O^{2-} is thus tetrahedrally coordinated by Cr^{3+} . Apart from Cr_2O_3 , many forms of chromium oxide have been observed in the chormium-oxide-titanium system such as Cr_3O_8 , CrO_2^{95} and $Cr_2O_5^{.96}$

1.10.2 Applications of Cr₂O₃

 Cr_2O_3 has drawn wide interest due to its range of technological applications such as a catalyst in polymerization reactions and solar thermal energy collectors. Chromia thin films have been used as protective films due to their good chemical and wear resistance, and low friction coefficient.^{97,98,99} Titanium substituted chromium oxides, $Cr_{2-x}Ti_xO_3$ have been developed as gas sensors for the detection of combustible and toxic gases at elevated temperatures.^{100,101,102}

1.10.3 Thin Films Synthesis of Cr₂O₃

Thin films of Cr_2O_3 have been prepared using by a large number of methods including sol-gel deposition,¹⁰³ sputtering,¹⁰⁴ oxidation of chromium metal,¹⁰⁵ electrochemical deposition,¹⁰⁶ dip coating¹⁰⁷ and chemical vapour deposition.

1.10.4 Chemical Vapour Deposition of Cr₂O₃ Thin Films

 Cr_2O_3 thin films have been grown by metal-organic and atmospheric pressure CVD using a range of different precursors. The MOCVD of $Cr(acac)_3$,¹⁰⁸ Cr(III) (hexafluoroacetylacetonate), tris(2,2,6,6-tetra-methyl-3,5-heptanedionato) $Cr(III)^{97}$ and the APCVD of $Cr(CO)_6^{109,110}$ and chromyl chloride^{111,112} have been reported to lead successfully to the formation of Cr_2O_3 thin films.

1.11 Chemical Vapour Deposition of Metal Selenides

1.11.1 Hydrogen Selenide

Hydrogen selenide (H₂Se) has been for a long time the most popular selenium precursor for the chemical vapour deposition of numerous selenides. It allows growth at temperatures as low as 300 °C or lower, and has already been successfully used to grow ZnSe,^{113,114} GeSe_y,¹¹⁵ Ga₂Se₃,^{116,117} FeSe,¹¹⁸ In₂Se₃¹¹⁹ WSe₂ and CuInSe₂ thin films.¹²⁰ However, the use of H₂Se in a CVD process is not free of complications. Hydrogen selenide is a very toxic and hazardous gas, its time-weighted average threshold limit value (TLV-TWA) is 0.05 ppm. Moreover the CVD reaction of H₂Se, which is stored in high-pressure cylinder and often mixed with H₂, produces toxic and flammable products.¹²¹ H₂Se starts to decompose above 100 °C and growth using H₂Se includes a serious problem, as a severe gas phase pre-reaction can occur with H₂Se, compromising the compositional uniformity and surface morphology of the films.

	Melting point	Boiling point	Appearance
H ₂ Se	-66 °C	-41 °C	Colourless gas

Table 1.1 Physical properties of hydrogen selenium.

1.11.2 Dialkylselenides

Dialkylselenides are employed primarily in the deposition of ZnSe based alloys^{122,123} although they are also successfully used in other systems such as ZnMgSe,¹²⁴ CdSe,¹²⁵ CuAlSe₂,¹²⁶ CuInGaSe₂ ¹²⁷ and Bi₂Se₃.^{128,129} They are liquid at room temperature (Table 1.2) and are usually stored at atmospheric pressure in small stainless-steel bubblers, which involves less danger of widespread leakage compared with H₂Se. Because of this, metalorganic selenides including, dimethylselenide, diethylselenide, diisopropylselenide and ditertiarybutylselenide have attracted considerable attention as alternative candidates as selenium sources.

Chapter 1 – Introduction

	Boiling point	Appearance	V.P. equation
Se(CH ₃) ₂	57 °C	Clear colourless liquid	$Log_{10}P = 9.872-2224/T(K)$
$Se(C_2H_5)_2$	108 °C	Pale yellow liquid	$Log_{10}P = 8.20-2020/T(K)$
Se(i-C ₃ H ₇) ₂		Pale yellow liquid	$Log_{10}P = 7.88-2074/T(K)$
Se(t-C ₄ H ₉) ₂	164 °C	Clear colourless liquid	$Log_{10}P = 7.87-2040/T(K)$

 Table 1.2 Physical properties of some dialkylselenides.

Due to the thermal stability of dimethylselenide and diethylselenide, high growth temperatures are required (> 450 °C). In contrast, the relatively low thermal stability of the diisopropylselenide, and the low thermal stability ditertiarybutylselenide (onset of decomposition at 150 °C) allow access to very high quality layers at growth temperatures as low as 330 °C.

1.11.3 Dialkyldiselenides

Most of the dialkyldiselenides (Table 1.3) such as dimethyldiselenide and diethyldiselenide have been employed in the deposition of ZnSe based materials.^{130,131} However, they are mainly used in a hydrogen radical enhanced CVD process and their use in common CVD processes is limited.

	Melting point	Boiling point	Appearance
$Se_2(CH_3)_2$	-	156 °C	Clear colourless liquid
$Se_2(C_2H_5)_2$	-	186 °C	Pale yellow liquid
$Se_2(C_6H_5)_2$	60 °C	-	Yellow powder

 Table 1.3 Physical properties of some dialkyldiselenides.

1.11.4 Selenols

Tertiarybutylselenol has also been successfully used for the metalorganic vapour phase epitaxy growth of high quality ZnSe layers.¹³² Growth temperature as low as 280 °C were reported using this volatile selenol. A few other volatile selenols (Table 1.4),

such as methylselenol or ethylselenol, could also be suitable precursors for the CVD of transition-metal selenides, but their growth temperature is usually higher than with the tertiarybutylselenol. A growth temperature of 400 °C is typically required for the MOVPE growth of ZnSe using methylselenol or ethylselenol.

	Boiling point	Appearance	V.P. equation
(CH ₃)SeH	12 °C	Clear colourless liquid	$Log_{10}P = 6.95 - 1060/(T(K) + 38)$
(C ₂ H ₅)SeH	54 °C	Clear colourless liquid	-
(t-C ₄ H ₉)SeH	-	Clear colourless liquid	-

 Table 1.4 Physical properties of some selenols.

1.11.5 Selenium halides

The selenium halides (Table 1.5) could possibly be used for the growth of thin film of selenides by CVD. Germanium selenide thin films have already been synthesised by plasma enhanced CVD using Se_2Cl_2 and $GeCl_4$ in presence of H_2 .¹³³

	Melting point	Boiling point	Appearance
SeCl ₄	205 °C	288 °C	White-yellow crystals
Se ₂ Cl ₂	-85 °C	130 °C	Yellow-brown liquid

Table 1.5 Physical properties of some selenium halides.

1.12 Conclusion

Despite the attention drawn by the metal selenides, only little has been done about the chemical vapour deposition of transition metal diselenides films. In this chapter, the structure and properties of these materials have been summarised. In the next chapter the experimental and analytical methodology is outlined. The APCVD of group IV, V (Ti, V, Nb) and VI (Mo, W) diselenides are described in chapter 3 and 4. Chapter 5 investigates the deposition of tin selenides thin films, while chapter 6 reports the synthesis and characterisation of a new ternary phase chromium oxyselenide.

1.13 References

- [1] M. He, A. Simon, V. Duppel, Z. Anorg. Allg. Chem., 2004, 630, 535.
- [2] T. Hirota, Y. Ueda, K. Kosuge, Mater. Res. Bull., 1988, 23, 1641.
- [3] J. L. Murray, Bull. Alloy Phase Diag., 1986, 7, 163.
- [4] H. Nishikawa, T. Shimada, A. Koma, J. Vac. Sci, Technol. A, 1996, 14, 2893.
- [5] P. J. McKarns, T. S. Lewkebandara, G. P. A. Yap, L. M. Liable-sands, A. L. Rheingold, C. H. Winter, *Inorg. Chem.*, **1998**, *37*, 418.
- [6] R. Guzman, P. Lavela, J. Morales, J. L. Tirado, J. Appl. Electrochem., 1997, 27, 1207.
- [7] F. J. Disalvo, J. V. Waszczak, Phys. Rev. B, 1981, 23, 457.
- [8] D. H. Galvan, S. Li, W. M. Yuhasz, J. H. Kim, M. B. Maple, E. Adem, *Phys. C*, 2003, 398, 147.
- T. Shimada, H. Nishikawa, A. Koma, Y. Furukawa, E. Arakawa, K. Takeshita, T. Matsushita, Surf. Sci., 1996, 369, 379.
- B. M. Murphy, J. Stettner, M. Traving, M. Sprung, I. Grotkopp, M. Muller, C. S. Oglesby, M. Tolan, W. Press, *Phys. B*, 2003, 336, 103.
- [11] C. H. Du, W. J. Lin, Y. Su, B. K. Tanner, P. D. Hatton, D. Casa, B. Keimer, J. P. Hill, C. S. Oglesby, H. Hohl, J. Phys.: Condens. Matter, 2000, 12, 5361.
- [12] H. Haraldsen, Angew. Chem. Int. Ed. Engl., 1966, 5, 51.
- [13] W. W. Fuller, T. M. Tritt, H. A. Hoff, *Phys. Rev. B*, **1990**, *41*, 1671.
- [14] L. M. Kulikov, A. A. Semjonov-Kobzar, M. M. Antonova, A. A. Chechovsky,
 L. G. Akselrud, R. V. Skolozdra, D. Fruchart, J. L. Soubeyroux, J. Alloys Compd., 1996, 244, 11.
- [15] V. A. Makara, N. G. Babich, N. I. Zakharenko, V. A. Pasechny, O. V. Rudenko, V. F. Surzhko, L. M. Kulikov, A. A. Semenov-Kobzar, M. M. Antonova, A. A. Chekhovsky, L. G. Askel-Rud, L. P. Romaka, *Int. J. Hydrogen Energy*, **1997**, 2, 233.
- [16] R. Vaidya, M. Dave, S. G. Patel, A. R. Jani, Indian J. Phys., 2005, 79, 85.
- [17] A. Koma, *Kotai Butsuri*, **1986**, *21*, 620.
- [18] H. Lee, M. Kanai, T. Kawai, *Thin Solid Films*, **1996**, 277, 98.
- [19] A. E. Day, J. S. Zabinski, AIP Conf. Proc., 1993, 288, 601.
- [20] S. P. Cramer, K. S. Liang, A. J. Jacobson, C. H. Chang, R. R. Chianelli, *Inorg. Chem.*, **1984**, 23, 1215.

- [21] F. J. Ribeiro, D. J. Roundy, M. L. Cohen, *Phys. Rev. B*, 2002, 65, 153401.
- [22] M. Sergent, R. Chevrel, J. Solid State Chem., 1973, 6, 433.
- [23] A. Gruettner, K. Yvon, R. Chevrel, M. Potel, M. Sergent, B. Seeber, Acta Crystallogr. B, 1979, B35, 285.
- [24] W. Sienicki, Mater. Chem. Phys., 2003, 68, 119.
- [25] T. J. S. Anand, C. Sanjeeviraja, M. Jayachandran, Vacuum, 2001, 60, 431.
- [26] M. Kristl, M. Drofenik, Inorg. Chem. Commun., 2003, 6, 68.
- [27] H. Tributsch, J. Electrochem. Soc., 1978, 125, 1086.
- [28] S. Chandra, D. P. Singh, P. C. Srivastava, S. N. Sahu, J. Phys D: Appl. Phys., 1984, 17, 2125.
- [29] J. Morales, J. Santos, J. L. Tirado, Solid State Ionics, 1996, 83, 57.
- [30] S. M. Delphine, M. Jayachandran, C. Sanjeeviraja, Mater. Res. Bull., 2005 40, 135.
- [31] S. Chandra, S. N. Sahu, J. Phys D: Appl. Phys., 1984, 17, 2115.
- [32] T. J. Sahaya Anand, C.Sanjeeviraja, M. Jayachandran, Vacuum, 2001, 60, 431.
- [33] C. Hammond, A. Back, M. Lawrence, K. Nebesny, P. Lee, R. Schlaf, N. R. Amstrong, J. Vac. Sci. Technol. A, 1995, 13, 1768.
- [34 G. Prasad, O. N. Srivasta, J. Phys. D: Appl. Phys., 1988, 21, 1028.
- [35] N. Guetari, J. Ouerfelli, J. C. Bernede, A. Khelil, J. Pouzet, A. Conan, Mater. Chem. Phys., 1998, 52, 83.
- [36] T. Tsirlina, S. Cohen, H. Cohen, L. Sapir, M. Peisach, R. Tenne, A. Matthaeus,
 S. Tiefenbacher, W. Jaegermann, E. A. Ponomarev, C. Levy-Clement, Sol. Energy Mater. Sol. Cells, 1996, 44, 457.
- [37] R. Tenne, E. Galun, A. Ennaoui, S. Fiechter, K. Ellmer, M. Kunst, C. Koelzow,
 C. Pettenkofer, S. Tiefenbacher, R. Scheer, H. Jungblt, W. Jaegermann, *Thin Solids Films*, 1996, 272, 38.
- [38] G. Salitra, G. Hodes, E. Klein, R. Tenne, *Thin Solids Films*, 1994, 245, 180.
- [39] S. M. Delphine, M. Jayachandran, C. Sanjeeviraja, Mater. Chem. Phys., 2003, 81, 78.
- [40] J. Jebaraj Devadasan, C. Sanjeeviraja, M. Jayachandran, Mater. Chem. Phys., 2002, 77, 397.
- [41] J. Pouzet, J. C. Bernede, A. Khellil, H. Essaidi, S. Benhida, *Thin Solids Films*, 1992, 208, 252.

41

8

- [42] N. Guettari, J. Ouerfelli, J. C. Bernede, A. Khelil, J. Pouzet, A. Conan, Mater. Chem. Phys., 1998, 52, 83.
- [43] D. E. Miller, Energy Res. Abstr., 1986, 11, 29.
- [44] R. Bourezg, G. Couturier, J. Salardenne, J. Chim. Phys. Physico-Chim Biol., 1991, 88, 2021.
- [45] W.Sienicki, Polish J. of Chem., 1992, 66, 1139.
- [46] Z. Nabi, A. Kellou, S. Méçabih, A. Khalfi, N. Benosman, *Mater. Sci. Eng. B*, 2003, 98, 104.
- [47] Y. Bertrand, G. Leveque, C. Raisin, F. Levy, J. Phys. C: Solid St. Phys., 1979, 12, 2907.
- [48] D. Pathinettam Padiyan, A. Marikani, K.R. Murali, Cryst. Res. Technol., 2000, 35, 949.
- [49] N. Ganesan, V. Sivaramakrishnan, Semicond. Sci. Technol., 1987, 2, 519.
- [50] W. Jaegermann, C. Pettenkofer, O. Lang, R. Schlaf, S. Tiefenbacher, Y. Tomm, *First WCPEC*, **1994**.
- [51] M. R. Aguiar, R. Caram, M. F. Oliveira, C. S. Kiminami, J. Mat. Sci., 1999, 34, 4607.
- [52] Z. Zainal, S. Nagalingam, A. Kassim, M. Z. Hussein, W. M. M. Yunus, Sol. Energy Mater. Sol. Cells, 2004, 81 261.
- [53] M. Z. Xue, J. Yao, S. C. Cheng, Z. W. Fu, J. Electrochem. Soc., 2006, 153, 270.
- [54] A. Agarwal, M. N. Vashi, D. Lakshminarayana, N. M. Batra, J. Mater. Sci.: Mater. Electro., 2000, 11, 67.
- [55] B. Li, Y. Xie, J. Huang, Y. Qian, Inorg. Chem., 2000, 39, 2062.
- [56] A. M. Elkorashy, J. Phys. III, 1991, 1, 1169.
- [57] Z. Zainal, N. Saravanan, K. Anuar, M.Z. Hussein, W.M.M. Yunus, Mater. Sci. Eng., B: Solid-State Mater. Adv. Tech., 2004, B107, 181.
- [58] B. Subramanian, T. Mahalingam, C. Sanjeeviraja, M. Jayachandran and M. J. Chockalingam, *Thin Solid Films*, **1999**, 357, 119.
- [59] D. Tran Quan, Thin Solid Films, 1987, 149, 197.
- [60] Y. Xie, H. Su, B. Li, Y. Qian, Mater. Res. Bull., 2000, 35, 459.
- [61] I. R. Nuriev, E. Y. Salaev, A. K. Sharifova, Ser. Fiz.-Tekh. Mat. Nauk., 1982, 3, 91.

- [62] R. Teghil, A. Santagata, V. Marotta, S. Orlando, G. Pizzella, A. Giardini-Guidoni, A. Mele, Appl. Surf. Sci., 1995, 90, 505.
- [63] H. M. Manasevit, W. I. J. Simpson, J. Electrochem. Soc., 1975, 122, 444.
- [64] I. S. Chuprakov, K. H. Dahmen, J. J. Schneider, J. Hagen, Chem. Mater., 1998, 10, 3467.
- [65] I. S. Chuprakov, K. H. Dahmen, J. Phys. IV: Proc., 1999, 9, 313.
- [66] Y. Cheng, T. J. Emge, J. G. Brennan, Inorg. Chem., 1996, 35, 342.
- [67] B. Palosz, S. Gierlotka, F. Levy, Acta Cryst., 1985, C41, 1404.
- [68] B. Palosz, E. Salje, J. Appl. Cryst., 1989, 22, 622.
- [69] Y. Bertrand, G. Leveque, C. Raisin, F. Levy, J. Phys. C: Solid St. Phys., 1979, 12, 2907.
- [70] N. Ganesan, V. Sivaramakrishnan, Semicond. Sci. Technol., 1987, 2, 519.
- [71] M. R. Aguiar, R. Caram, M. F. Oliveira, C. S. Kiminami, J. Mat. Sci., 1999, 34, 4607.
- [72] G. Domingo, R. S. Itoga, C. R. Kannewurf, Phys. Rev., 1966, 143.
- [73] J. George, C. Valsala-Kumari, Cryst. Res. Technol., 1986, 21, 273.
- [74] D. A. Hady, H. Soliman, A. El-Shazly, M. S. Mahmoud, Vacuum, 1999, 52, 375.
- [75] R. Schlaf, N. R. Armstrong, B. A. Parkinson, C. Pettenkofer, W. Jaegermann, Surf. Sci., 1997, 385, 1.
- [76] M. F. De Oliveira, R. Caram, C. S. Kiminami, J. Alloys Compd., 2004, 375, 142.
- [77] M. Chevreton, E. F. Bertaut, S. Brunie, Bull. Soc. Sci. Bretagne, 1964, 39, 77.
- [78] Y. Adachi, M. Yuzuri, T. Kaneko, S. Abe, H. Yoshida, J. Phys. Soc. Jap., 1994, 63, 369.
- [79] Y. Adachi, M. Ohashi, T. Kaneko, M. Yuzuri, Y. Yamaguchi, S. Funahashi, Y. Morii, J. Phys. Soc. Jap., 1994, 63, 1548.
- [80] S. Ohta, Y. Adachi, T. Kaneko, M. Yuzuri, H. Yoshida, J. Phys. Soc. Jap., 1994, 6, 2225.
- [81] A. W. Sleight, T. A. Bither, *Inorg. Chem.*, **1969**, *8*, 566.
- [82] C. M. Fang, C. F. van Bruggen, R. A. de Groot, G. A. Wiegers, C. Haas, J. Phys.: Condens. Matt., 1997, 9, 10173.
- [83] Y. Yoshida, K. Motizuki, J. Phys. Soc. Jap., 1982, 51, 2107.
- [84] S. J. Hibble, D. A. Rice, M. J. Almond, K. A. Hassan Mohammad, S. P. Pearse, J. R. Sagar, J. Mater. Chem., 1992, 2, 1237.

- [85] S. J. Hibble, R. I. Walton, D. M. Pickup, J. Chem. Soc., Dalton Trans.: Inorg. Chem., 1996, 11, 2245.
- [86] M. Koyama, N. Happo, M. Tamura, J. Harada, T. Mihara, A. Furuta, M. Nakatake, H. Sato, M. Taniguchi, Y. Ueda, J. Electron Spectrosc. Relat. Phenom., 1996, 78, 83.
- [87] L.M. Corliss, N. Elliott, J.M. Hastings, R.L. Sass, Phys. Rev., 1961, 5, 1402.
- [88] T. Kaneko, J. Sugawara, K. Kamigaki, S. Abe, H. Yoshida, J. Appl. Phys., 1982, 53, 2223.
- [89] H. Sato, M. Koyama, K. Takada, H. Okuda, K. Shimada, Y. Ueda, J. Ghijsen,
 M. Taniguchi, J. Electron Spectrosc. Relat. Phenom., 1998, 88, 333.
- [90] M. Behrens, R. Kiebach, W. Bensch, D. Haeussler, W. Jaeger, Inorg. Chem., 2006, 45, 2704.
- [91] K. Sato, Y. Aman, M. Hirai, M. Fujisawa, J. Phys. Soc. Jpn., 1990, 59, 435.
- [92] H. D. Lutz, K. H. Bertram, M. Sreckovic, W. Molls, Z. Naturforsch., 1973, 28, 685.
- [93] T. R. McGuire, E. J. Scott, F. H. Grannis, Phys. Rev., 1956, 102, 1000.
- [94] G. W. Pratt, P. T. Hailey, Phys. Rev., 1963, 131, 1923.
- [95] M. N. Iliev, A. P. Litvinchuk, H. G. Lee, C. W. Chu, A. Barry, J. M. D. Coey, *Phys. Stat. Sol.*, **1999**, 215, 643.
- [96] J. E. Maslar, W. S. Hurst, T. A. Vanderah, I. Levin, J. Raman Spectrosc., 2001, 32, 201.
- [97] G. Carta, M. Natali, G. Rossetto, P. Zanella, G. Salmaso, S. Restello, V. Rigato,
 S. Kaciulis, A. Mezzi, *Chem. Vap. Dep.*, 2005, 11, 375.
- [98] K. P. Lillerud, P. Kofstad, J. Electrochem. Soc., 1980, 127, 2397.
- [99] P. Kofstad, K. P. Lillerud, J. Electrochem. Soc., 1980, 127, 2410.
- [100] P. T. Moseley, D. E. Williams, Sens. Actuators, 1990, B1, 113.
- [101] G. S. Henshaw, D. H. Dawson, D.E. Williams, J. Mater. Chem., 1995, 5, 1791.
- [102] D. E. Williams, Sens. Actuators, 1999, B57, 1.
- [103] S. Mukherjee, A. K. Pal, S. Bhattacharya, J. Phys.: Condens. Matter, 2005, 17, 3385.
- [104] R. C. Ku, W. L. Winterbottom, Thin Solid Films, 1985, 127, 241.
- [105] R. E. Kirby, E. L. Garwin, F. K. King, A. R. Nyaiesh, J. Appl. Phys., 1987, 62, 1400.

- [106] G. P. Halada, C. R. Clayton, J. Electrochem. Soc., 1991, 138, 2921.
- [107] T. S. Sudarshan, J. D. Cross, IEEE Trans. Elect. Insul., 1976, EI-11, 32.
- [108] S. Chevalier, G. Bonnet, J. P. Larpin, Appl. Surf. Sci., 2000, 167, 125.
- [109] V. M. Bermudez, W. J. Desisto, J. Vac. Sci. Technol. A, 2001, 19, 576.
- [110] T. Ivanova, M. Surtchev, K. Gesheva, Phys. Stat. Sol., 2001, 184, 507.
- [111] W. J. Desisto, P. R. Broussard, T. F. Ambrose, B. E. Nadgorny, M. S. Osofsky, *Appl. Phys. Lett.*, 2000, 76, 3789.
- [112] Y. N. Cho, W. J. Desisto, Chem. Vap. Dep., 2003, 9, 121.
- [113] P. Miles, Proc. Symp. Mater. Sci. Aspects Thin Film Syst. Sol. Energy Convers., 1974, 402.
- [114] S. Sritharan, K. Jones, K. M. Motyl, J. Cryst. Growth, 1984, 68, 656.
- [115] B. Cros, Y. Brocheton, M. Ribes, Mater. Manuf. Processes, 1990, 5, 411.
- [116] M. von der Emde, D. R. T. Zahn, T. Ng, N. Maung, G. H. Fan, I. B. Poole, J. O. Williams, A. C. Wright, *Appl. Surf. Sci.*, **1996**, 104, 575.
- [117] N. Maung, G. Fan, T. Tg, J. O. Williams, A. C. Wright, J. Mater. Chem., 1999, 9, 2489.
- [118] X. J. Wu, Z. Z. Zhang, J. Y. Zhang, Z. G. Ju, D. Z. Shen, B. H. Li, C. X. Shan,
 Y. M. Lu, J. Cryst. Growth, 2007, 300, 483.
- [119] K. J. Chang, S. M. Lahn, J. Y. Chang, Appl. Phys. Lett., 2006, 89, 182118.
- [120] S. Duchemin, M. C. Artaud, F. Ouchen, J. Bougnot, A. M. Pougnet, J. Mater. Sci. - Mater. Electron., 1996, 7, 201.
- [121] M. C. Artaud, F. Ouchen, L. Martin, S. Duchemin, *Thin Solid Films*, **1998**, 324, 115.
- [122] H. Mitsuhashi, I. Mitsuishi, M. Mizuta, H Kukimoto, Jpn. J. Appl. Phys., 1985, 24, 578.
- [123] W. S. Kuhn, A. Naumov, H. Stanzl, S. Bauer, K. Wolf, H. P. Wagner, W. Gebhardt, U. W. Pohl, A. Krost, W. Richter, U. Dumichen, K. H. Thiele, J. Cryst. Growth, 1992, 123, 605.
- [124] P. Prete, N. Lovergine, L. Tapfer, M. Berti, S. K. Sinsha, A. M, Mancini, J. Cryst. Growth, 2000, 221, 410.
- [125] U. W. Pohl, R. Engelhardt, V. Turck, D. Bimberg, J. Cryst. Growth, 1998, 195, 569.

- [126] S. Chichibu, S. Shirakata, R. Sudo, M. Uchida, Y. Harada, S. Matsumoto, H. Higuchi, S. Isomura, Jpn. J. Appl. Phys., 1993, 32, 139.
- [127] M. Sugiyama, F. B. Dejene, A. Kinoshita, M. Fukaya, Y. Maru, T. Nakagawa,
 H. Nakanishi, V. Alberts, S. F. Chichibu, J. Cryst. Growth, 2006, 294, 214.
- [128] A. Al Bayaz, A. Giani, M. A. Khalfioui, A. Foucaran, F. Pascal-Delannoy, A. Boyer, J. Cryst. Growth, 2003, 258, 135.
- [129] A. Al Bayaz, A. Giani, A. Foucaran, F. Pascal-Delannoy, A. Boyer, Thin Solid Films, 2003, 441, 1.
- [130] J. Gotoh, H. Shirai, J. Hanna, I. Shimizu, Jpn. J. Appl. Hys., 1991, 30, L1241.
- [131] H. Fujiwara, J. Gotoh, I. Shimizu, New Funct. Mater., 1993, A, 163.
- [132] K. Nishimura, Y. Nagao, K. Sakai, Jpn. J. Appl. Phys., 1993, 32, L428.
- [133] D. Blanc, J. I. B. Wilson, Opt. Eng., 1988, 27, 917.
- [134] J. Chen, Z. Tao, S. Li, X. Fan, S Chou, Advanced Materials, 2003, 15, 1379.
- [135] M. Overbay, T. Novet, D. C. Johnson, J. Solid State Chem., 1996, 123, 337.
- [136] H. P. B. Rimmington, A. A. Balchin, J. Crystal Growth, 1974, 21, 171
- [137] R. Bourezg, G. Couturier, J. Salardenne, F. Lévy, Phys. Rev. B, 1992, 46, 15404.

Chapter 2 Experimental Techniques

This chapter describes the experimental techniques and procedures reported in this thesis. The first section deals with the deposition technique employed in this work. While the second part describes the characterisation apparatus and techniques used.

2.1 Atmospheric Pressure Chemical Vapour Deposition

Chemical Vapor Deposition (CVD) involved chemical reactions which transform gaseous molecules, called precursors, into a solid material, in the form of thin film or powder, on the surface of a substrate.^{1,2} A number of forms of CVD, such as low pressure (LP) CVD, plasma enhanced (PE) CVD, laser (L) CVD, metal-organic (MO) CVD and atmospheric pressure (AP) CVD, are in wide use. These processes differ in the means by which chemical reactions are initiated and progress. CVD has found applications in the areas of integrated circuits, optoelectronic devices, sensors, micromachines, fine metal and ceramic powders and protective coatings.

2.1.1 Description of the APCVD Apparatus

The apparatus and procedure described here was used for the production of all the films described in chapters 3, 4, 5 and 6. Atmospheric pressure chemical vapour deposition (APCVD) experiments were carried out under a nitrogen atmosphere on glass substrates using a horizontal-bed cold-wall APCVD reactor (Figure 2.1). The glass substrate, supplied by Pilkington, was SiO₂ coated to prevent the diffusion of ions from the glass into the film. It was heated by a graphite block containing a Whatman cartridge heater and the temperature of the substrate was monitored by a Pt-Rh thermocouple. The nitrogen (99.99 %) was obtained from BOC and used as supplied. The gas was preheated to 100 °C by being passed along 2 m lengths of coiled stainless steel tubing inside a tube furnace. The precursors were placed into different stainless steel bubblers, which were heated by an external jacket. They were then introduced into the gas streams by passing hot nitrogen through the bubblers. The flow rates of nitrogen through the bubblers, was kept within 0.1 - 4.0 L.min⁻¹, and the flow rate through the mixing chamber were kept constant during all the deposition. The gases in the reaction were made to pass over the heated glass substrate and confined in position by a top plate that was ca. 4 mm above the substrate. After passage through the reaction chamber the gas stream was treated with bleach to destroy the possible presence of H₂Se and vented inside a fume cupboard.

At the end of the deposition, the bubbler line was closed and the substrates were allowed to cool under nitrogen in the reactor. Then the substrates were handled briefly in air before storage in a dry oxygen-free nitrogen atmosphere in a glove box.

2.1.2 Precursors Used

Titanium chloride (TiCl₄), vanadium tetrachloride (VCl₄), vanadium oxychloride (VOCl₃), niobium pentachloride (NbCl₅), tungsten hexachloride (WCl₆), tin tetrachloride (SnCl₄) and Chromyl chloride (CrO₂Cl₂) were obtained from Strem or

	Supplier	Melting point	Boiling point	Temperature for
				V.P. = 200 mm Hg
TiCl ₄	Sigma-Aldrich	-25 °C	135 °C	91 °C
VCl ₄	Sigma-Aldrich	-28 °C	154 °C	104 °C
VOCl ₃	Sigma-Aldrich	-77 °C	126 °C	82 °C
NbCl ₅	Sigma-Aldrich	205 °C	254 °C	202 °C
MoCl ₅	Strem	194 °C	268 °C	-
WCl ₆	Sigma-Aldrich	275 °C	347 °C	282 °C
SnCl ₄	Sigma-Aldrich	-33 °C	114 °C	72 °C
CrO ₂ Cl ₂	Strem	-97 °C	117 °C	75 °C

Sigma-Aldrich. They were used as-supplied without further purification. The vanadium tetrakisdimethylamide $[V(NMe_2)_4]$ was synthesized as described in the literature.³

Table 2.1 Physical properties of the metal precursors used.

Three different selenium precursors were used during this study. Diethyldiselenide (Et_2Se_2), diethylselenide (Et_2Se) and ditertiarybutylselenide ($^{t}Bu_2Se$), which were supplied by Epichem, Strem and Sigma-Aldrich, and used without further purification. Part of the ditertiarybutylselenide used was synthesised following the method developed by Cole-Hamilton and co-workers.⁴ The ditertiarybutylselenide produced showed no difference compared to the commercial sources in the quality and stoichiometry of the films deposited.

2.2 Sample Characterisation

After preparation, the samples were characterized with several techniques, including scanning electron microscopy, energy dispersive X-ray and wavelength dispersive X-ray analyses, X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy and SQUID magnetometry.

2.2.1 Scanning Electron Microscopy

Scanning electron microscopy (SEM) functions by rastering an electron beam over a sample and collecting the secondary electrons emitted. The resulting image can give information about the morphology, uniformity and thickness of the films produced. To get film thickness measurements a fresh edge was made by cleaving the film. The film was then observed edge up. SEM was obtained on a JEOL 6301 instrument with a working distance of 15 mm. Accelerating voltages were between 10 eV and 20 eV depending on the sample. Magnification ranged from \times 1 000 to \times 100 000.

2.2.2 Energy Dispersive X-ray and Wavelength Dispersive X-ray Analyses

Energy dispersive X-ray (EDAX) and wavelength dispersive X-ray (WDX) analyses were used to obtained the stoichiometry and level of contamination within the films. EDAX and WDX were obtained on a Philips XL30ESEM instrument. An accelerating voltage of 20 keV and a working distance of 10 mm was used in EDAX. All elements were standardised relative to cobalt. An accelerating voltage of 7.5 keV and a working distance of 10 mm was used in WDX.

2.2.3 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) was used to determine the relative elemental abundances in the films and detect the level of contamination of the sample. It also provides information on the chemical environment of elements within the sample. In XPS, the sample is placed in the beam of an X-ray source in an Ultra-High Vacuum (UHV) chamber. The X-ray removes core level electrons from the surface of the sample. Ejected electrons from different elements have characteristic kinetic energies.

In this study, XPS was undertaken using a VG ESCALAB 220I XL instrument with using a focused (300 μ m spot) monochromatic Al-K_{\alpha} radiation at a pass energy of 20 eV. An electron flood gun was used to control charging. Scans were acquired with steps of 50 meV. Binding energies were referenced to an adventitious C 1s peak at 284.6 eV. Argon sputtering was used for approximately 1 min in a rastering mode in order to remove surface contamination. Casa XPS software was used for data processing.

2.2.4 X-ray Diffraction

X-ray diffraction (XRD) was used to identify the crystal phase composition of the films deposited. It also allowed us to check the eventual formation of mixture or the presence of secondary phases within the film. The XRD equipment used in this study was a Brucker AX5 B8 diffractometer using monochromated Cu K_{α 1} radiation (K_{α 1} = 1.5406 Å) with a photon energy of 40 keV. The diffractometer used glancing incident radiation (5°). The samples were indexed using Unit Cell software and compared to database standards.

2.2.5 Raman Microscopy

The laser Raman spectrometer used in this study was a Renishaw 1000 Raman spectrometer. It used a 632.8 nm helium–neon laser. The Raman system was calibrated against the emission lines of neon.

2.2.6 Superconducting Quantum Interference Device Magnetometry

The magnetic properties of the films and powders formed were measured using a superconducting quantum interference device magnetometer (SQUID). The samples were ripped from their glass substrate using a ceramic spatula and inserted in gelatin capsule. Direct-current (DC) magnetic susceptibility measurements and hysteresis loops were performed using a commercial SQUID magnetometer (Quantum Design MPMS-XL). The DC magnetic susceptibility was measured in a magnetic field of 10 Oe over a temperature range from 5 K to 350 K.

2.2.7 Thermal Gravimetric Analysis

Thermogravimetric analysis (TGA) continuously records changes in the mass of the materials heated and give indications on the stoichiometry and decomposition pathway of the powders produced. TGA was performed on a Netzsch STA 449C instrument from room temperature up to 1600 °C with a heating rate of 10 °C.min⁻¹.

2.2.8 Transmittance and Reflectance Spectroscopy

Transmittance and reflectance spectroscopy was carried out to determined the optical properties of the coatings. Spectra were were recorded between 300 and 1200 nm by a Zeiss miniature spectrometer. Reflectance measurements were standardised relative to a rhodium mirror and transmission relative to air.

2.2.9 Contact Angle Measurements

Water contact angle of the films were calculated by measuring the diameter of a 1 μ L droplet of water that had been dropped onto the surface of the film.

2.3 References

- [1] K.L. Choy, Prog. Mater. Sci., 2003, 48, 57.
- [2] W. A. Bryant, J. Mater. Sci., 1977, 12, 1285.
- [3] A. Haaland, K. Rypdal, H.V. Volden, R.A. Andersen, J. Chem. Soc., Dalton Trans., 1992, 891.
- [4] D.F. Foster, N.L. Pickett, D.J. Cole-Hamilton, *Polyhedron*, **1999**, *18*, 1329.

Chapter 3 APCVD of Group IV and V Selenides

3.1 Introduction

This chapter describes the APCVD of group IV and V metal selenides. In an attempt to produce titanium selenide thin films, the APCVD reactions of ditertiarybutylselenide, diethyldiselenide and diphenyldiselenide with titanium tetrachloride were investigated at substrate temperatures of 250 - 600 °C. The APCVD of vanadium selenide thin films using three different vanadium precursors, vanadium tetrachloride, vanadium oxychloride and vanadium tetrakisdimethylamide with ditertiarybutylselenide was also studied. Niobium selenide thin films were produced from niobium pentachloride and ditertiarybutylselenide via APCVD at 300 - 600 °C.

Reactions to produce mixed titanium-niobium selenide thin films from the APCVD reaction of titanium tetrachloride and niobium pentachloride with ditertiarybutylselenide were also performed. The APCVD reaction of these three precursors was studied at 550 °C over a wide range of different flow rate conditions.

3.2 Titanium Diselenide Films

A series of films were prepared using titanium tetrachloride TiCl₄ with different selenium sources; ditertiarybutylselenide ^{*t*}Bu₂Se and diethyldiselenide Et₂Se₂. TiCl₄ has been used in a large number of CVD processes and is a good candidate of choice for growing titanium chalcogenides films.^{1,2} The APCVD reaction of TiCl₄ and $[Ti(NMe_2)_4]$ with thiols (^{*t*}BuSH or HS(CH₂)₂SH) has led to the deposition of TiS₂ thin films. However, when using a sulfide ^{*t*}Bu₂S₂, $[Ti(NMe_2)_4]$ failed to produce TiS₂ films. Instead $[Ti(NMe_2)_4]$ was found to decompose to a titanium carbonitride rather than react with the sulfur precursor to form a titanium sulfide film. In contrast the reaction of TiCl₄ with ^{*t*}Bu₂S₂ resulted in the deposition of TiS₃ or TiS₂ films depending on the deposition temperature.³

3.2.1.1 Films from TiCl₄ and Et₂Se₂: Reaction Conditions

The APCVD reaction of titanium tetrachloride TiCl₄ with diethyldiselenide Et_2Se_2 was studied for the temperature range 450 – 600 °C. Deposition times for all experiments was one minute. The TiCl₄ and Et_2Se_2 bubblers were respectively heated to 80 °C and 140 °C. Flow rates of nitrogen through the TiCl₄ bubbler and the Et_2Se_2 bubbler were kept constant at 0.3 L.min⁻¹ and 0.6 L.min⁻¹ respectively, whereas the flow rate through the mixing chamber was 1 L.min⁻¹ for all depositions. These conditions corresponded to a TiCl₄ flow of 2.8 mmol.min⁻¹ and a Et_2Se_2 flow of 5.2 mmol.min⁻¹.

3.2.1.2 Appearance, Substrate Coverage and Adherence of the Films

Films produced from Et_2Se_2 and $TiCl_4$ between 450 and 600 °C had a powdery purple matt appearance, failed the Scotch tape test, and were easily scratched with a steel scalpel. The films were soluble in common organic solvents (eg. isopropanol, dichloromethane, acetone...) and quickly decomposed in nitric acid and bleach. At 450 °C, the films only covered the last 10 cm of the substrate. Whilst at a substrate temperature of 600 °C films were grown across the entire substrate. After two months storage in air, the films became slightly darker.

3.2.1.3 Scanning Electron Microscopy

Scanning electron microscopy of the films grown from Et_2Se_2 and $TiCl_4$ showed a series of plate-like crystallites orientated perpendicular to the substrate (Figure 3.1). The plates were observed to become longer and thicker with increasing deposition temperature.

Figure 3.1 Scanning electron micrographs of a film produced from the APCVD reaction of TiCl₄ with Et_2Se_2 at 500 °C.

3.2.1.4 Energy Dispersive X-ray Analysis

Films produced from the APCVD reaction of TiCl₄ with Et_2Se_2 were all found to have a Ti : Se ratio slightly lower than that expected for TiSe₂. The overall stoichiometry of the films varied from TiSe_{1.9} at 450 °C to TiSe_{1.6} at 600 °C (Table 3.1). EDAX showed that there was no chlorine or carbon in the films deposited from the reaction of TiCl₄ with Et_2Se_2 .

Table 3.1 EDAX, XRD and Raman data for the films produced by APCVD reaction of $TiCl_4$ with Et_2Se_2 .

Deposition temperature	EDAX	XRD; lattice constants in Å	Raman
450 °C	TiSe _{1.9}	1T-TiSe ₂ ; $a = 3.49$ Å, $c = 6.00$ Å	$TiSe_2$; 133 + 197 cm ⁻¹
500 °C	TiSe _{1.9}	1T-TiSe ₂ ; $a = 3.50$ Å, $c = 5.95$ Å	$TiSe_2$; 134 + 198 cm ⁻¹
550 °C	TiSe _{1.8}	1T-TiSe ₂ ; $a = 3.51$ Å, $c = 5.99$ Å	$TiSe_2$; 134 + 200 cm ⁻¹
600 °C	TiSe _{1.6}	1T-TiSe ₂ ; $a = 3.50$ Å, $c = 5.93$ Å	$TiSe_2$; 133 + 198 cm ⁻¹

3.2.1.5 X-ray Photoelectron Spectroscopy

The XPS of a film deposited from the reaction of $TiCl_4$ and Et_2Se_2 at 500 °C revealed the presence of two titanium environments. The stronger peaks correspond to

Ti $2p_{1/2} = 463.6$ eV and Ti $2p_{3/2} = 458.2$ eV of TiSe₂, which compare well with the literature values reported for TiSe₂ (Ti $2p_{1/2} = 462.5$ eV and Ti $2p_{3/2} = 457.5$ eV).⁴ The second titanium environment, with peaks at Ti $2p_{1/2} = 464.8$ eV and Ti $2p_{3/2} = 459.1$ eV, is due to oxide contamination and match the literature values reported for TiO₂ (Ti $2p_{1/2} = 464.7$ eV and Ti $2p_{3/2} = 459.0$ eV).⁵ The oxygen content within the sample was found to decrease after etching the film, which suggests the partial oxidation of the surface of the titanium selenide films. XPS revealed the presence of only one selenium environment in the film.

3.2.1.6 X-ray Diffraction

Figure 3.2 The XRD pattern obtained for a film deposited from the APCVD reaction of $TiCl_4$ with Et_2Se_2 at 500 °C. Literature stick pattern for $TiSe_2$ powder (JCPDS File No. 30-1383) is shown.

The XRD of the films grown from the APCVD reaction of Et_2Se_2 and $TiCl_4$ showed that the reflections matched the reference spectrum for $TiSe_2$ (JCPDS File No. 30-1383). At substrate temperature from 500 to 600 °C, the $TiSe_2$ films showed pronounced preferential orientation with the (001) direction perpendicular to the substrate (Figure 3.2). All the other films produced at lower temperature showed less

preferred orientation. The lattice parameters reported in Table 3.1, were all found to be slightly smaller than the literature lattice parameters for hexagonal TiSe₂ in both bulk and nanotube forms a = 3.54 Å; c = 6.00 Å.^{6,7} Cell parameters have not been reported before for CVD produced TiSe₂, but the smaller cell parameters observed here could be due to the selenium deficiency of the films (Table 3.1). No additional phase, such as TiO₂, was observed by XRD.

3.2.1.7 Raman Microscopy

Raman analysis of the films formed from TiCl₄ and Et₂Se₂ gave the characteristic TiSe₂ Raman pattern, with peaks at 133 cm⁻¹ and at 197 cm⁻¹ (Table 3.1). No evidence of a secondary phase was observed in the as-prepared films (Figure 3.3). However, after two months of storage in air, the films showed the presence of TiSe₂ and TiO₂ (Figure 3.4).⁸ The five well-resolved Raman peaks observed at 143 cm⁻¹ (E_g), 197 cm⁻¹ (E_g), 396 cm⁻¹ (B_{1g}), 514 cm⁻¹ (A_{1g}) and 636 cm⁻¹ (E_g) were assigned to the anatase form of TiO₂.⁹

Figure 3.3 Raman pattern obtained for a film produced from the APCVD reaction of TiCl₄ with Et_2Se_2 at 550 °C.

Figure 3.4 Raman pattern obtained for a film produced from the APCVD reaction of TiCl₄ with Et_2Se_2 at 550 °C after storage in air for two months.

3.2.1.8 Optical Properties

Figure 3.5 Transmittance and reflectance of a film deposited from $TiCl_4$ with Et_2Se_2 at 550 °C.

The optical transmittance of all the films from 400-1200 nm produced was fairly low with a maximum of 15 % at ca. 600 nm (Figure 3.5). The films showed no reflectivity over the entire wavelength range studied.

3.2.2.1 Films from TiCl₄ and ^tBu₂Se: Reaction Conditions

The APCVD reaction of titanium tetrachloride (TiCl₄) with ditertiarybutylselenide (^{1}Bu₂Se) was investigated from 250 °C, the onset of deposition, up to 600 °C. Deposition times for all experiments was one minute. The TiCl₄ and ^{1}Bu₂Se were both heated to 80 °C. Flow rates of nitrogen through the TiCl₄ bubbler and the ^{1}Bu₂Se bubbler were kept constant at 0.3 L.min⁻¹ and 0.6 L.min⁻¹ respectively, and the flow rate through the mixing chamber was 1 L.min⁻¹ for all depositions. These conditions corresponded to a TiCl₄ flow of 2.8 mmol.min⁻¹ and a ^{1}Bu₂Se flow of 5.2 mmol.min⁻¹.

3.2.2.2 Appearance, Substrate Coverage and Adherence of the Films

At deposition temperatures below 300 °C, the films produced from ${}^{7}Bu_{2}Se$ and TiCl₄ were navy blue and highly reflective with a mirror-like appearance. The films had a dark-purple matt appearance at deposition temperatures above 300 °C. They passed the Scotch tape test, however were easily scratched with a steel scalpel. The films were found to be soluble in common organic solvents and were quickly decomposed in nitric acid and bleach. The extent of film coverage was dependent on the deposition temperature. For a deposition temperature between 250 °C and 400 °C, uniform thickness films were grown across the entire length of the substrate. With higher temperatures, the growth profile was concentrated closer towards the leading edge of the substrate such that at a deposition temperature of 600 °C only the first 6 cm of the substrate was coated.

3.2.2.3 Scanning Electron Microscopy

e) 500 °C

f) 600 °C

Figure 3.6 Scanning electron micrographs of the films produced from the APCVD reaction of TiCl₄ with $^{7}Bu_{2}Se$ at 250 – 600 °C.

Scanning electron microscopy of the films grown from ${}^{t}Bu_{2}Se$ and TiCl₄ showed a series of plate like crystallites (Figure 3.6). The plates were observed to become longer and thicker with increasing deposition temperature. Notably at deposition temperatures of 300 °C and above the plates have a degree of texturing with some preferred growth perpendicular to the substrate. The films produced from the APCVD reaction of TiCl₄ with 'Bu₂Se showed the crystal size to increase from ca. 0.5 μ m at 250 °C to 2 μ m at 600 °C. The thickness of the films, determined using cross-sectional SEM, was between 0.3 μ m (250 °C) and 0.7 μ m (600 °C) (Figure 3.7). The faster growth rates and larger particles observed at the highest deposition temperatures are expected from a surface reaction rate limited process. Increase of the deposition temperature involves a faster growth kinetics and a smaller number of nucleation sites, which result in a smaller number of particles seen at the highest deposition temperatures.

Figure 3.7 Scanning electron micrographs of the side of a film produced from the APCVD reaction of TiCl₄ with $^{\prime}Bu_2Se$ at 400 °C.

3.2.2.4 Energy Dispersive X-ray Analysis

EDAX analysis of the films produced at a temperature below 550 °C from the APCVD reaction of TiCl₄ and ^{*t*}Bu₂Se showed that they contained titanium and selenium with a ratio close to the one expected for TiSe₂, with a stoichiometry varying from TiSe_{1.8} at 250 °C to TiSe_{2.1} at 500 °C. Films produced at 600 °C were found to be substoichiometric with a selenium to titanium ratio of 1.5. No chlorine or carbon were detected in the films by the EDAX analysis (Table 3.2).

62

Deposition	EDAX	XRD; lattice constant in Å	Raman
temperature			
250 °C	TiSe _{1.8}	1T-TiSe ₂ ; $a = 3.49$ Å, $c = 5.95$ Å	$TiSe_2$; 133 + 197 cm ⁻¹
300 °C	TiSe _{2.1}	1T-TiSe ₂ ; $a = 3.52$ Å, $c = 5.99$ Å	$TiSe_2$; 134 + 198 cm ⁻¹
350 °C	TiSe _{2.1}	1T-TiSe ₂ ; $a = 3.49$ Å, $c = 6.02$ Å	$TiSe_2$; 134 + 197 cm ⁻¹
400 °C	TiSe _{2.1}	1T-TiSe ₂ ; $a = 3.52$ Å, $c = 5.98$ Å	$TiSe_2$; 133 + 197 cm ⁻¹
450 °C	TiSe _{2.1}	1T-TiSe ₂ ; $a = 3.51$ Å, $c = 6.01$ Å	$TiSe_2$; 133 + 198 cm ⁻¹
500 °C	TiSe _{2.1}	1T-TiSe ₂ ; $a = 3.51$ Å, $c = 6.00$ Å	$TiSe_2$; 133 + 198 cm ⁻¹
600 °C	TiSe _{1.5}	1T-TiSe ₂ ; $a = 3.47$ Å, $c = 5.92$ Å	$TiSe_2$; 134 + 198 cm ⁻¹

Table 3.2 EDAX, XRD and Raman data for the films produced by APCVD reaction of TiCl₄ with ¹Bu₂Se.

3.2.2.5 X-ray Photoelectron Spectroscopy

The XPS of the films deposited from TiCl₄ with ¹Bu₂Se showed that the films were predominantly made of titanium diselenide with a small amount of titanium oxide present. The two strongest peaks observed at 458.5 eV and 463.9 eV correspond to Ti $2p_{3/2}$ and Ti $2p_{1/2}$ of TiSe₂, and the two peaks at 459.3 eV and 465.1 eV correspond to Ti $2p_{3/2}$ and Ti $2p_{1/2}$ of TiO₂. These values compare well with the literature values reported for TiSe₂ (Ti $2p_{1/2} = 462.5$ eV and Ti $2p_{3/2} = 457.5$ eV)⁴ and TiO₂ (Ti $2p_{1/2} = 464.7$ eV and Ti $2p_{3/2} = 459.0$ eV).^{5,10} Only one selenium environment was present in the films with peaks at 53.2 eV and 54.1 eV corresponding to Se $3d_{5/2}$ and Se $3d_{3/2}$ of TiSe₂ (Se $3d_{5/2} = 53.4$ eV and Se $3d_{3/2} = 54.2$ eV).¹¹ The oxygen 1s peak observed at 530.6 eV was observed to be less intense after etching into the film, suggesting that the surface is partially oxidised.

3.2.2.6 X-ray Diffraction

X-ray Diffraction analysis of the films from the APCVD reaction of ${}^{t}Bu_{2}Se$ and TiCl₄ showed all the films to be crystalline and found to match the reference spectrum for TiSe₂ (JCPDS File No. 30-1383). The lattice parameters of all the films produced at

deposition temperature below 500 °C compare well with the literature lattice parameters (Table 3.2). However, the lattice parameters of the films produced at 600 °C (ca. a = 3.47 Å, c = 5.92 Å) were smaller than the one expected for hexagonal TiSe₂ (ca. a = 3.54 Å; c = 6.00 Å).⁶ This could be due to the selenium deficient stoichiometry of the films which had a titanium to selenium ratio of 1 : 1.5.

Figure 3.8 Scanning electron micrographs of a film produced from the APCVD reaction of TiCl₄ with ^tBu₂Se at 350 °C (a) and 500 °C (b). Literature stick pattern for TiSe₂ powder (JCPDS File No. 30-1383) is shown.

3.2.2.7 Raman Microscopy

Raman analysis of the films formed from $TiCl_4$ and ${}^{t}Bu_2Se$, irrespective of the deposition temperature, showed the same pattern (Table 3.2). This was readily identified as the distinctive $TiSe_2$ Raman pattern reported in the literature for the bulk solid with peaks at 133 cm⁻¹ and at 198 cm⁻¹ (Figure 3.9).⁸ No evidence was seen for a secondary phase, such as TiO_2 , which in the anatase phase is an excellent Raman scatterer.⁹

Figure 3.9 Raman pattern obtained for a film produced from the APCVD reaction of TiCl₄ with 'Bu₂Se at 500 °C after storage in air for two months.

3.2.2.8 Optical Properties

Figure 3.10 Transmittance and reflectance of a film deposited from TiCl₄ with ${}^{t}Bu_2Se$ at 400 °C.

The reflectance of all the $TiSe_2$ films was fairly low over the entire wavelength range studied (ca. 10 %). The films showed a high transmittance in the near-IR region (ca. 50 %), while the transmittance measured at 400 nm was only 20 % (Figure 3.10).

3.2.3 Comparison and Discussion

The results show that the selenium precursor used in this work has an effect on the stoichiometry and quality of the films deposited. Films grown from the APCVD reaction of TiCl₄ with Et₂Se₂ were all found to be substoichiometric, with an overall stoichiometry varying from TiSe_{1.9} at 450 °C to TiSe_{1.6} at 600 °C. While the films deposited from 'Bu₂Se were slightly superstoichiometric at deposition temperature between 300 °C and 500 °C (ca. TiSe_{2.1}). The films from either precursor showed a series of plate like crystallites by SEM and gave the same XRD and Raman patterns identified as the 1T-TiSe₂ patterns. Due to their porous nature, the films grown from all different precursors and reaction temperature showed an exceptionally small (ca. 10°) water contact angle. The porous nature of the films also facilitates the hydrolysis of the films by allowing water to diffuse rapidly into the coating, and after a two months storage in air, the films growth from either precursor became slightly darker. No change was observed in the Raman and XRD spectra of the films produced from 'Bu₂Se, indicating that the films are relatively air stable. However, the Raman spectra of the films produced from Et₂Se₂ revealed the formation of TiO₂.

¹Bu₂Se could be considered as a desirable precursor to grow TiSe₂ thin films. Despite Et₂Se₂ having one more selenium atom than ¹Bu₂Se, Et₂Se₂ led to the formation of substoichiometric films at identical flow rates and temperature conditions (ca. 5.2 mmol.min⁻¹) which oxidised in air. The use of Ph₂Se₂ with TiCl₄ was proved to be unsuccessful and did not deposit any films. The presence of the two phenyl groups in Ph₂Se₂ makes it an unsuitable precursor for a CVD process.

3.3 Vanadium Diselenide Films

In an attempt to deposit vanadium diselenide films, ditertiarybutylselenide and range of different vanadium precursors (vanadium tetrachloride, vanadium oxychloride and vanadium tetrakisdimethylamide) were used in an APCVD reaction.

3.3.1.1 Films from VOCl₃ and ^tBu₂Se : Reaction Conditions

The reaction of vanadium oxychloride (VOCl₃) and ditertiarybutylselenide (${}^{1}Bu_{2}Se$) was investigated from 250 °C (the onset of deposition) up to 600 °C. The VOCl₃ and ${}^{1}Bu_{2}Se$ bubblers were heated to 75 °C and 100 °C respectively. The flow rates of nitrogen through the VOCl₃ bubbler and the ${}^{1}Bu_{2}Se$ bubbler were kept constant at 0.3 L.min⁻¹ (1.0 mmol.L⁻¹) and 0.6 L.min⁻¹ (5.5 mmol.min⁻¹), respectively, and the flow rate through the mixing chamber was 2 L.min⁻¹ for all depositions. Deposition time for all experiments was one minute.

3.3.1.2 Appearance, Substrate Coverage and Adherence of the Films

The extent of the film coverage was dependent on the deposition temperature. Only the four first centimeters of the substrate were coated at a substrate temperature of 600 °C, whilst the whole substrate was coated with uniform thickness at 250 °C. This indicates that the deposition is mass transport-limited at the highest temperature. The films produced were dark-blue and reflective. They all passed the Scotch tape test, however they were easily scratched with a steel scalpel. The films were insoluble in common organic solvents but were quickly decomposed in nitric acid and bleach. Moreover, the films were air sensitive and after a few days exposure to air they oxidised, becoming red-orange, to form a vanadium oxide.

3.3.1.3 Scanning Electron Microscopy

At deposition temperatures above 350 °C, the SEM images of the films prior to oxidation show a single type of plate-like crystallite that have grown in an orientation perpendicular to the substrate. This morphology is characteristic of an island growth

mechanism. The long-axis length of the plates varied from ca 50 nm at 350 °C to 200 nm at 600 °C. At 300 °C and below, the films produced were fairly featureless with less distinct islands.

3.3.1.4 Energy Dispersive X-ray Analysis

The EDAX results (Table 3.3) showed that all the films from the reaction of VOCl₃ and ^tBu₂Se contained vanadium and selenium with V : Se ratios close to 1 (ca. 0.9 - 1.2). Moreover, a substantial amount of chlorine was detected in the films (ca. 10-20 atom%). Due to the presence of oxygen in the substrate and subsequent electron breakthrough, the amount of oxygen in the film could not be accurately quantified, however the films do seem to contain significant oxygen-as made. The oxygen content was found to increase and chlorine and selenium content to decrease progressively on storage in air. However the films if handled in a N₂ glove box were indefinitely stable.

Deposition	EDAX	XRD; lattice constants in Å	Raman
Temperature			
250 °C	VSe _{0.7} Cl _{0.3}	-	VO _x
300 °C	VSe _{1.1} Cl _{0.2}	-	VSe_2 / VO_x
350 °C	VSe _{1.2} Cl _{0.1}	1T-VSe ₂ ; $a = 3.32$ Å, $c = 6.04$ Å	VSe_2 / VO_x
400 °C	VSe _{1.1} Cl _{0.2}	1T-VSe ₂ ; $a = 3.29$ Å, $c = 6.10$ Å	VSe_2 / VO_x
450 °C	VSe _{1.2} Cl _{0.1}	1T-VSe ₂ ; $a = 3.31$ Å, $c = 6.08$ Å	VSe_2 / VO_x
500 °C	VSe _{1.1} Cl _{0.2}	1T-VSe ₂ ; $a = 3.29$ Å, $c = 6.09$ Å	VSe_2 / VO_x
550 °C	VSe _{0.9} Cl _{0.2}	1T-VSe ₂ ; $a = 3.29$ Å, $c = 6.08$ Å	VSe_2 / VO_x
600 °C	VSe _{0.8} Cl _{0.2}	1T-VSe ₂ ; $a = 3.24$ Å, $c = 6.02$ Å	VSe_2 / VO_x

Table 3.3 Reaction temperatures, EDAX, X-ray diffraction and Raman data for the films produced by the APCVD reaction of ${}^{t}Bu_{2}Se$ with VOCl₃.

3.3.1.5 X-ray Diffraction

Figure 3.11 The XRD patterns obtained for the film formed on the glass from the APCVD of VOCl₃ and ^tBu₂Se at 350 °C (a), 450 °C (b) and 600 °C (c). Literature stick pattern for V_{1+x}Se₂ powder (JCPDS File No. 032-1415) is shown.

The films formed above 350 °C from the APCVD reaction of VOCl₃ with 'Bu₂Se were all found to be crystalline (Figure 3.11). X-ray diffraction showed that the reflections matched the reference spectrum for hexagonal phase $V_{1+x}Se_2$, with x between 0.02 and 0.13 (JCPDS Files No. 032–1415 and No. 002-0978).¹² A preferential growth orientation along the (001) direction was noticed in these films produced from VOCl₃ and 'Bu₂Se. With an increase in the reactor temperature, the films become more crystalline and more preferentially orientated. At 600 °C, the films produced were highly crystalline with a strong preferential growth along the (001) direction. The indexed cell constants found for the films, a = 3.32 Å and c = 6.10 Å compare well with the literature for hexagonal VSe_{1.96}, a = 3.353 Å and c = 6.101 Å, while they did not match the reported cell constants for VSe_{0.9-1.2}, a = 3.525-3.721 Å and c = 5.979-5.998 Å.¹² This suggests that the vanadium selenide films show a stoichiometry close to VSe₂. No evidence of a secondary phase was observed in XRD. The presence of extra
vanadium from the EDAX analysis can be explained by the co-formation of an X-ray amorphous vanadium oxide or vanadium oxychloride phase.

3.3.1.6 Raman Microscopy

The Raman pattern shown in Figure 3.12 is representative of all films except those deposited at 250 °C. The Raman pattern showed the distinctive band at 205 cm⁻¹ correspondenting to the A_{1g} mode of 1T-VSe₂. Raman analysis of the films also showed the presence of two additional peaks at 250 and 340 cm⁻¹. These two peaks could be assigned to the VO_x (2.0 < x < 2.5) phase.^{13,14} This confirmed the co-formation of a vanadium oxide during the APCVD of the VSe₂ thin films. Raman analysis of the film deposited at 250 °C, did not show the formation of a vanadium selenide, only the presence of the two additional peaks assigned to VO_x were observed.

Figure 3.12 Raman pattern obtained for the film formed on glass from the APCVD of VOCl₃ and 'Bu₂Se at 250 °C (a) and 500 °C (b).

3.3.2.1 Films from [V(NMe₂)₄] and 'Bu₂Se: Reaction Conditions

The reaction of vanadium tetrakisdimethylamide $[V(NMe_2)_4]$ and ditertiarybutylselenide ^tBu₂Se were investigated at substrate temperatures between 250

and 500 °C. The $[V(NMe_2)_4]$ and ¹Bu₂Se bubblers were heated to 130 °C and 90 °C respectively, with a flow rate of nitrogen of 0.5 L.min⁻¹ (vapour pressure data not available) and 2 L.min⁻¹ (8.3 mmol.min⁻¹) respectively. The flow rate through the mixing chamber was kept constant at 1 L.min⁻¹ and the deposition time for the experiments was ten minutes.

3.3.2.2 Appearance, Substrate Coverage and Adherence of the films

During the APCVD reaction of $[V(NMe_2)_4]$ with ^tBu₂Se, deposition was observed on both the top guide plate and the heated substrate. The extent of the film coverage was dependent on the deposition temperature. Only the first ten centimetres of the substrate were coated at a deposition temperature of 500 °C, whereas the whole substrate was coated with uniform thickness at 250 °C. This indicates that the deposition is mass transport-limited at the highest temperature. The films produced from 'Bu₂Se and [V(NMe₂)₄] were dark black matt in appearance. Optical experiments show that the films were highly absorbing in the visible and near IR regions. They passed the Scotch tape test but failed the scratch test (steel, brass). They were insoluble in the common organic solvents and quickly decomposed in diluted nitric acid or diluted bleach. After a one-year storage in air, the thinner parts of the films partially changed colour from black to dark-orange; thus indicating the formation of a vanadium oxide on the surface of the films. However, the films produced from ${}^{t}Bu_{2}Se$ and $[V(NMe_{2})_{4}]$ were found to be much more resistant to oxidation than the ones produced from ¹Bu₂Se and VOCl₃. The films did not show any particular hydrophobicity or hydrophilicity, the contact-angle measurement for water droplets was 35°.

3.3.2.3 Scanning Electron Microscopy

The SEM images for the films deposited between 400 and 500 °C showed a series of hexagonal platelets oriented perpendicular to the substrate (Figure 3.13). The platelets became longer and thicker with increasing deposition temperature. The average length of the platelets was 0.2 μ m for the films deposited at 400 °C and 1 μ m for those formed at 500 °C. This change in platelet size can be related to faster growth kinetics and smaller numbers of nucleation sites at the higher temperatures. For deposition temperature below 300 °C, the SEM images of the films were featureless. Using cross-

sectional SEM, the thickness of the films was determined as being between 0.3 μ m (300 °C) and 0.4 μ m (500 °C).

a) 400 °C

c) 500 °C

Figure 3.13 Scanning electron micrographs of the films produced from the APCVD of $[V(NMe_2)_4]$ and $^{\prime}Bu_2Se$ at 400 and 500 °C.

3.3.2.4 Energy Dispersive X-ray Analysis

EDAX showed that all the films contained vanadium and selenium with a V : Se ratio dependent on the deposition temperature and flow rate conditions. At higher deposition temperature, films with a stoichiometry $VSe_{1.96}$ were formed, whilst at lower temperature the films showed a V : Se ratio slightly higher than that expected for VSe_2 ($VSe_{2.08-2.10}$). The error limit for EDAX system used was ca. 3 atom%, this means that all of the films designated $VSe_{1.9-2.1}$ in Table 3.4 were essentially indistinguishable. The films showed uniformity in composition along the length of the substrate and across its width for any film. No nitrogen was detected in all the films produced, however a substantial amount of carbon was detected in the films (ca. 10 atom%).

Deposition Temperature	EDAX	XRD; lattice constants in Å	Raman
250 °C	VSe _{2.15}	.	VSe ₂
300 °C	VSe _{2.10}	1T-VSe ₂ ; $a = 3.36, c = 6.14$	VSe ₂
400 °C	VSe _{2.08}	1T-VSe ₂ ; $a = 3.34, c = 6.14$	VSe ₂
450 °C	VSe _{2.10}	1T-VSe ₂ ; $a = 3.35, c = 6.14$	VSe ₂
500 °C	VSe _{1.96}	1T-VSe ₂ ; $a = 3.35, c = 6.13$	VSe ₂

Table 3.4 Reaction temperatures, EDAX, X-ray diffraction and Raman data for the films produced by the APCVD reaction of ${}^{t}Bu_{2}Se$ with $[V(NMe_{2})_{4}]$.

3.3.2.5 X-ray Photoelectron Spectroscopy

Figure 3.14 X-ray photoelectron spectrum of the V 2p and Se 3d peaks from the surface of a film formed on glass from the APCVD of $[V(NMe_2)_4]$ and ^tBu₂Se at 500 °C.

The XPS of a film deposited from $[V(NMe_2)_4]$ and ^tBu₂Se at 500 °C shows that there are two vanadium environments present in the film (Figure 3.14). The first environment corresponds to V $2p_{3/2} = 516.7$ eV and V $2p_{1/2} = 523.7$ eV of the vanadium diselenide (V $2p_{3/2} = 516.9$ eV and V $2p_{1/2} = 524.3$ eV).⁴ The second doublet at V $2p_{3/2}$ = 514.8 eV and V $2p_{1/2} = 521.4$ eV is due to oxide contamination and match the reported peaks for the vanadium in V_2O_3 (V $2p_{3/2} = 514.9 \text{ eV}$ and V $2p_{1/2} = 522.0 \text{ eV}$).¹⁵ The selenium peak for the same film shows that there is only one selenium environment present in the films (Figure 3.14). The presence of the two peaks at 54.5 eV and 55.4 eV is due to Se in VSe₂ (Se $3d_{5/2} = 54.3 \text{ eV}$ and Se $3d_{3/2} = 55.1 \text{ eV}$).¹⁶

3.3.2.6 X-ray Diffraction

The XRD data show that all the films grown from $[V(NMe_2)_4]$ and ¹Bu₂Se above 300 °C (Figure 3.14), were crystalline and show a good match with the reported pattern for VSe_{1.97} (JCPDS File No. 002-0978). The crystalline films produced show a preferred growth orientation along the (101) and (110) axis. The lattice parameters, calculated as a = 3.35 Å and c = 6.14 Å, were in good agreement with the reported values for VSe₂, which are a = 3.35 Å and c = 6.12 Å.¹⁷

Figure 3.15 XRD patterns obtained for the film formed on glass from the APCVD of $[V(NMe_2)_4]$ and ^tBu₂Se at 300 °C (a), 400 °C (b) and 500 °C (c). Literature stick pattern for VSe_{1.97} powder (JCPDS File No. 002-0978) is shown.

3.3.2.7 Raman Microscopy

Raman analysis of all films, irrespective of temperature, showed the same pattern. This was readily identified as the distinctive VSe₂ Raman pattern reported in the literature for the bulk solid, with a strong peak at 206 cm⁻¹ (Figure 3.16). This band corresponds to the frequency of the Raman active A_{1g} modes of 1T-VSe_2 .^{18,19} The presence of two shoulders around 250 and 340 cm⁻¹ could match the Raman spectra of the VO_x (2.0 < x < 2.5) phase.¹⁴ After one year in air, no change was observed in the Raman spectra of these films indicating that these films are relatively air stable and only the upper layers of the films are oxidized.

Figure 3.16 Raman pattern obtained for a film produced from the APCVD reaction of $[V(NMe_2)_4]$ with ^tBu₂Se at 400 °C.

3.3.2.8 SQUID

The magnetic susceptibility (χ) of a delaminated film produced from [V(NMe₂)₄] and ^tBu₂Se at 500 °C shows the drop observed near 110 - 115 K in several magnetic studies of VSe₂ (Figure 3.17).^{20,21,22} The drop in χ corresponds to the combination of the onset of the charge density wave (CDW) transition 1T-VSe₂ and the paramagnetic contribution of the excess of vanadium in $V_{1+x}Se_2$. The shape of the Curie tail suggests that the vanadium species intercalated concentration x in 1T-VSe₂ is less than 0.1 %.^{20,23}

Figure 3.17 Magnetic susceptibility of a film VSe_2 formed from the APCVD of $[V(NMe_2)_4]$ and ^tBu₂Se at 500 °C.

3.3.3 Comparison and Discussion

The results show that the vanadium precursor used has a significant effect on the stoichiometry and quality of the films produced. APCVD experiments show that vanadium tetrachloride and vanadium oxychloride were unsuitable precursors for deposition of vanadium selenide thin films. The use of VCl₄ did not deposit a thin film, while VOCl₃ led to vanadium rich films with significant contamination by chlorine and the co-formation of a vanadium oxide. Vanadium tetrakisdimethylamide was found to be a better precursor for the APCVD of vanadium selenide thin films. The films produced from [V(NMe₂)₄] and ^tBu₂Se had a selenium to vanadium ratio close to 2, and XRD and Raman analysis were consistent with the formation of VSe₂. These results can be compared to previous APCVD work on vanadium phosphide using these three

76

different precursors.^{24,25} From a series of attempts using $Cy^{hex}PH_2$ or $(Me_3Si)_3P$, it was found that no reliable film could be produced using VCl₄ and very thin films with limited coverage were produced using VOCl₃. Moreover, the films could be obtained only at the highest temperature (ca. 600 °C) with a V to P ratio between 0.6 and 0.8. On the other hand, APCVD of $[V(NMe_2)_4]$ and $Cy^{hex}PH_2$ led to uniform reflective silver films with a stoichiometry close to the one expected for VP.

Vanadium tetrakisdimethylamide has been used as a precursor to vanadium nitride films. However no nitrogen was observed within the VSe₂ films formed by reaction of ^tBu₂Se and $[V(NMe_2)_4]$. This precursor along with other metal dialkylamides, has the advantage of volatility for CVD studies. It also readily loses the dimethylamide group in dual-source CVD reactions. In the reactions studied here it is tempting to write a simple equation for the process, in which $[V(NMe_2)_4]$ reacts with tertiarybutylselenol (^tBuSeH) to form gaseous dimethylamide (HNMe₂), isobutene (^tC₄H₈) and VSe₂. However, it has not been possible to gather direct evidence for this hypothesis:

$${}^{t}\mathrm{Bu}_{2}\mathrm{Se} \rightarrow {}^{t}\mathrm{Bu}\mathrm{SeH} + {}^{t}\mathrm{C}_{4}\mathrm{H}_{8} \tag{3.1}$$

$$[V(NMe_2)_4] + 2^{t}BuSeH \rightarrow VSe_2 + 4 HNMe_2 + 2^{t}C_4H_8$$
(3.2)

The [V(NMe₂)₄] is a better precursor then VOCl₃ for the formation of VSe₂ films. Although VOCl₃ does function in this role, the product from the CVD seems to be a composite of VSe₂ and a VO_x or VO_xCl_y phase – hence the V=O bond is not completely lost in the process. The vanadium precursor VOCl₃ has been succesfully used in CVD, however, primarily for the formation of oxide films^{14,26,27,28} and oxynitride films²⁹ at temperatures below 650 °C. Nevertheless, temperatures above 800 °C were required when using VOCl₃ to fully eliminate oxygen and produce pure vanadium nitride^{30,31} or vanadium boride thin films.^{32,33}

3.4 Niobium Diselenide Films

In an attempt to deposit niobium diselenide films, niobium pentachloride (NbCl₅) and ditertiarybutylselenide (${}^{t}Bu_{2}Se$) were used in an APCVD reaction. Previous studies have shown that despite its high melting point of 205 °C, NbCl₅ is an efficient CVD precursor and has been used to grow Nb₂O₅ and NbS₂ thin films.^{34,35} Other successful uses of NbCl₅ in a CVD process comprise the deposition of niobium diboride, ³⁶ niobium nitrides,³⁷ and niobium germanium.³⁸

3.4.1.1 Films from NbCl₅ and 'Bu₂Se: Reaction Conditions

Niobium selenide films were produced from the APCVD reaction of niobium pentachloride (NbCl₅) and ditertiarybutylselenide (^{*t*}Bu₂Se) between 250 and 600 °C. During the reaction, the bubbler temperatures and the flow rates were kept constant to 90 °C and 0.5 L.min⁻¹ (67.4 mmol.min⁻¹) for the ^{*t*}Bu₂Se bubbler and to 210 °C and 2.0 L.min⁻¹ (47.8 mmol.min⁻¹) for the NbCl₅ bubbler. The temperature of the mixing-chamber was kept constant at 275 °C and the deposition time was one minute for all the experiments.

3.4.1.2 Appearance, Substrate Coverage and Adherence of the Films

The APCVD reaction of NbCl₅ with 'Bu₂Se led to the deposition of films on both top plate and bottom substrate. The extent of the film coverage was dependent of the deposition temperature. Only the first six centimetres of the bottom substrate were coated at a deposition temperature of 600 °C, indicating a mass transport limited reaction, whilst the whole substrate was coated with uniform thickness at 300 °C. At a deposition temperature above 600 °C, the films produced from 'Bu₂Se and NbCl₅ were dark-green and powdery. They failed the Scotch tape test and the scratch test but were insoluble in the common organic solvents, only slowly decomposed in diluted nitric acid or diluted bleach, and were stable in air. At deposition temperatures below 550 °C, the films had a dark-black matt appearance; they passed the Scotch tape test, but were scratched with a steel scalpel. Due to their porous nature, the films grown from NbCl₅ and 'Bu₂Se at all the different reaction temperatures showed an exceptionally small water contact angle (10°) .

3.4.1.3 Scanning Electron Microscopy

The SEM images for the films deposited at the onset of deposition 300 °C, show *ca.* 0.2 μ m plates in a perpendicular orientation to the substrate (Figure 3.18). The SEM images for the films deposited at substrate temperatures between 400 and 600 °C show a series of hexagonal platelets which become longer and thicker with increasing deposition temperature. The average length of the platelets was 0.2 μ m for the films deposited at 400 °C, up to 0.6 μ m at 600 °C. This change in platelet size can be related to faster growth kinetics and smaller numbers of nucleation sites at the higher temperatures.

a) 300 °C

b) 500 °C

c) 600 °C

Figure 3.18 Scanning electron micrographs of the films produced from the APCVD reaction of NbCl₅ with $^{t}Bu_{2}Se$ at 300 and 500 °C.

3.4.1.4 Energy Dispersive X-ray Analysis

EDAX analysis of the films produced from the reaction of NbCl₅ and ¹Bu₂Se at a deposition temperature of 600 °C showed the Nb : Se ratio expected for NbSe₂ (Table 3.5). No chlorine, carbon or other contamination was found in these films. The films deposited at substrate temperatures below 500 °C were selenium rich with a niobium to selenium ratio of 1 : 2.5 at 350, 450 and 500 °C. This could indicate the formation of NbSe₃ or NbSe₄, or the presence of elemental selenium. No chlorine contamination was found in the films except those produced at the very lowest deposition temperature (ca. 300 °C) - and then it was at trace levels ca. 1 atom%.

Deposition Temperature	EDAX	XRD; lattice constant in Å	Raman
300 °C ·	NbSe _{2.4}	2H-NbSe ₂ ; $a = 3.36$ Å, $c = 12.47$ Å	$182 + 245 + 310 \text{ cm}^{-1}$
350 °C	NbSe _{2.5}	2H-NbSe ₂ ; $a = 3.37$ Å, $c = 12.59$ Å	$183 + 248 + 309 \text{ cm}^{-1}$
400 °C	NbSe _{2.6}	2H-NbSe ₂ ; $a = 3.42$ Å, $c = 12.56$ Å	$184 + 248 + 310 \text{ cm}^{-1}$
450 °C	NbSe _{2.5}	2H-NbSe ₂ ; $a = 3.36$ Å, $c = 12.63$ Å	$183 + 247 + 309 \text{ cm}^{-1}$
500 °C	NbSe _{2.5}	2H-NbSe ₂ ; $a = 3.41$ Å, $c = 12.63$ Å	$183 + 246 + 309 \text{ cm}^{-1}$
600 °C	NbSe ₂	2H-NbSe ₂ ; $a = 3.44$ Å, $c = 12.58$ Å	2H-NbSe ₂

Table 3.5 EDAX, Raman and X-ray diffraction data for the films produced by APCVD reaction of ditertiarybutylselenide with NbCl₅.

3.4.1.5 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy of the film produced at 600 °C from ¹Bu₂Se and NbCl₅ revealed the presence of two different niobium environments in the film (Figure 3.19). The peaks at 203.2 eV and 205.9 eV can be assigned to the Nb $3d_{5/2}$ and Nb $3d_{3/2}$ peaks respectively of niobium diselenide (Nb $3d_{5/2} = 203.4$ eV and Nb $3d_{3/2} = 206.1$ eV).³⁹ Whereas the peaks at 207.3 eV and 210.0 eV can be assigned to the Nb $3d_{5/2}$ and Nb $3d_{3/2}$ peaks of Nb₂O₅ (Nb $3d_{5/2} = 207.6$ eV and Nb $3d_{3/2} = 210.2$ eV).⁴⁰ This data suggest that the surface of the film is partially oxidised. The XPS of the

selenium 3d peak for the same NbSe₂ film shows that there are three selenium environments present (Figure 3.19). The peaks at 52.9 eV and 53.8 eV can be assigned to the Se $3d_{5/2}$ and Se $3d_{3/2}$ peaks respectively of the niobium diselenide. The two doublet peaks at 54.1 eV, 55.0 eV and 54.6 eV, 55.5 eV can be assigned to elemental selenium and selenium dioxide respectively.

Figure 4.19 XPS spectra of the Nd 3d and Se 3d peaks from the surface of a film deposited from the APCVD of NbCl₅ and ^tBu₂Se at 600 °C. The uppermost solid curves show the experimental data and the dashed lines show a best fit.

3.4.1.6 X-ray Diffraction

XRD of the films showed the reflections to match the reference spectrum for 2H-NbSe₂ (JCPDS File No. 018-0923) (Figure 3.20). The films produced at 600 °C were highly crystalline. Interestingly measuring the XRD pattern sequentially from the leading edge of the film until the back of the film showed that the preferred orientation became significantly more pronounced with distance from the reactor inlet. No preferential orientation was noticed in the first centimetre of the coating, the diffraction peaks gave the literature intensity stick pattern. Very strong preferential growth along the (002) direction was shown in the next few centimetres. This preferred orientation effects suggest that depletion in reagents leads to a slightly altered growth mechanism. Notably no preferential orientation was noticed in the films grown at lower substrate temperature. The indexed cell constants found for the films grown at 600 °C, a = 3.44 Å and c = 12.55 Å. The films grown at lower substrate temperatures all matched the literature

diffraction patterns for 2H-NbSe₂ with the anticipated intensities and peak positions, however a detailed analysis of the cell constants indicated that they all tended to have slightly smaller a values than stochiometric NbSe₂.

Figure 3.20 XRD patterns obtained for the film formed on glass from the APCVD of NbCl₅ and ^tBu₂Se at 300 °C (a), 400 °C (b) and 500 °C (c). Literature stick pattern for NbSe₂ powder (JCPDS File No. 018-0923) is shown.

3.4.1.7 Raman Microscopy

Raman analysis of the films produced from NbCl₅ and ${}^{t}Bu_{2}Se$ at 600 °C was identified as the distinctive 2H-NbSe₂ Raman pattern from the literature with a wide peak at 182 cm⁻¹ and a strong peak at 228 cm⁻¹ with a shoulder at 238 cm⁻¹ (Figure 3.21).^{41,42,43}

Raman analysis of the films produced from NbCl₅ and ^tBu₂Se at 400 °C showed two strong bands around 182 cm⁻¹ and 245 cm⁻¹ and a smaller peak at 310 cm⁻¹ (Figure 3.22). This is quite different to that seen for the films grown at higher temperature and could indicate the formation of a new phase. However as the XRD patterns match up to the 2H polytype the difference in the Raman pattern are probably attributable to the excess selenium found by EDAX, which seems to be tolerated within the same structure type.

Figure 3.21 Raman pattern obtained for a film produced from the APCVD reaction NbCl₅ with 'Bu₂Se at 600 °C.

Figure 3.22 Raman pattern obtained for a film produced from the APCVD reaction of NbCl₅ with ${}^{t}Bu_{2}Se$ at 400 °C.

3.4.1.8 Mass Spectrometry

The gaseous by-products of the APCVD reaction of NbCl₅ and ¹Bu₂Se at 600 °C were analysed by mass-spectrometry. ¹Bu₂Se is known to start to decompose at a temperature as low as 150 °C. The dissociation of ¹Bu₂Se starts with a β -elimination mechanism forming the intermediate species tertiarybutylselenol (¹BuSeH) and isobutene (¹C₄H₈).

$${}^{t}\mathrm{Bu}_{2}\mathrm{Se} \rightarrow {}^{t}\mathrm{Bu}\mathrm{SeH} + {}^{t}\mathrm{C}_{4}\mathrm{H}_{8}$$
 (3.3)

Then, 'BuSeH can decompose to release elemental selenium and isobutane $({}^{i}C_{4}H_{10})$ or a second β -elimination mechanism occurs to form H₂Se and ${}^{i}C_{4}H_{8}$.

$${}^{t}\text{BuSeH} \rightarrow \text{Se} + {}^{i}\text{C}_{4}\text{H}_{10}$$
(3.4)

$$^{t}\text{BuSeH} \rightarrow \text{H}_{2}\text{Se} + {^{i}\text{C}_{4}\text{H}_{8}}$$
(3.5)

A wide variety of fragments are produced during the ionisation of ¹Bu₂Se in the mass-spectrometer. The predominant fragments appear at the m/z values 39, 41, 43, 56, 57, 78, 192 and 194. Many of these m/z values overlap with the m/z values of the possible decomposition products like ${}^{i}C_{4}H_{8}$: m = 56, ${}^{i}C_{4}H_{10}$: m = 58, Se: m = 78, H₂Se: m = 80 and ¹BuSeH: m = 137. However, some values such as m/z = 42, 43 (${}^{i}C_{4}H_{10}$) and m/z = 55, 56 (${}^{i}C_{4}H_{8}$) have a weak or no cross sensitivity. The products of the APCVD reaction of NbCl₅ with ¹Bu₂Se give peaks at m/z = 35, 36, 37, 38 (HCl), m/z = 70, 72, 74 (Cl₂) and m/z = 29, 50, 51, 92, 93, 94 (¹BuCl).

Analysis of the gases after passing throught the mixing-chamber at 275 °C (Figure 3.23) revealed that the selenium precursor ${}^{t}Bu_{2}Se$ has started to decompose before entering the reactor chamber. The peaks at m/z = 55, 56 (${}^{i}C_{4}H_{8}$) indicate the dissociation of ${}^{t}Bu_{2}Se$ into ${}^{t}BuSeH$ and ${}^{i}C_{4}H_{8}$. The presence of a peak at m/z = 77 (Se), also indicates that a small amount of the tertiarybutylselenol formed has started to

decompose to elemental selenium and ${}^{i}C_{4}H_{10}$. No indication of a pre-reaction between NbCl₅ and ${}^{t}Bu_{2}Se$ was observed.

Figure 3.23 Mass spectrum of the gas produced from the reaction of NbCl₅ with ${}^{t}Bu_{2}Se$ in the mixing chamber at 275 °C.

The analysis of the by-products of the APCVD reaction of NbCl₅ and ^{*i*}Bu₂Se 600 °C confirmed the formation of ^{*i*}C₄H₈ (m/z = 55, 56) and ^{*i*}C₄H₁₀ (m/z = 42, 43) (Figure 3.24). The intensities of the peaks observed at m/z = 35, 36, 37, 38 (HCl), m/z = 70, 72, 74 (Cl₂) and m/z = 29, 50, 51, 92, 93, 94 (^{*i*}BuCl) indicate that the chlorine is more likely eliminated by forming ^{*i*}BuCl or HCl rather than Cl₂.

Figure 3.24 Mass spectrum of the gaseous by-product of the APCVD reaction of NbCl₅ with ${}^{t}Bu_{2}Se$ at 600 °C.

3.4.2 Discussion

The results show that the APCVD reaction of NbCl₅ and ${}^{t}Bu_{2}Se$ was a suitable route for the formation of niobium diselenide thin films when deposited above 550 °C. Below substrate temperatures of 550 °C, the films grown were all superstoichiometric, with a Nb to Se ratio between 1 : 2.4 and 1 : 2.6. X-ray diffraction, Raman and spot EDX analysis did not detect any free selenium metal in these films, despite this XPS showed the presence of elemental selenium in the films. Furthermore, none of these techniques showed the presence of other niobium selenide phases, such as NbSe₃ or NbSe₄. No other elements were found in the films except for a slight surface oxidation of the first few nanometres of the films. As the films grown at 300 – 550 °C were all exceptionally similar if not the same as the 2H-NbSe₂ polytype by X-ray diffraction, it is logical to assume that the excess selenium is embedded and intercalated within the structure. The interface between the Se-Nb-Se layers is known to have vacant sites that allow intercalation of atoms, thus the formula of the films is NbSe_{2+x} (x = 0.4 - 0.6). The films had a different unit cell size than the literature values with the *a* and *c* axis slightly smaller. Intuitively though one would expect a large increase in the cell parameters with excess selenium incorporation. A further explanation is that an amorphous phase is present with a higher selenium content that does not show up on the XRD, Raman or XPS analysis; however, given the breadth of analysis completed, this seems unlikely. Hence, the lower-temperature films were consistent with the formation of the 2H-NbSe₂ structure with some incorporated selenium. No evidence of any literature reference on this type of material has been reported previously.

Interestingly the Raman patterns were quite revealing and supportive of a similar structure type, having a slightly different pattern to that seen for the films grown at 600 °C, which exactly matched the literature pattern for 2H-NbSe₂. These results can be compared to previous APCVD work on niobium sulfide using niobium pentachloride and 1,2-ethanedithiol.^{3,44} In this case, superstoichiometric NbS_{2.4} films were formed at the lowest substrate temperature (ca. 350 °C and 400 °C). The Raman pattern of these films showed extra peaks at 240 and 544 cm⁻¹, while the peak corresponding to the A_{1g} Raman mode was absent.

3.5 Mixed Titanium-Niobium Diselenide Films

Following the successful use of titanium tetrachloride (TiCl₄) and niobium pentachloride (NbCl₅) with ditertiarybutylselenide (${}^{t}Bu_{2}Se$) to produce titanium diselenide (TiSe₂) and niobium diselenide (NbSe₂) thin films respectively, the APCVD reaction of TiCl₄, NbCl₅ and ${}^{t}Bu_{2}Se$ was studied in an attempt to deposit mixed titanium-niobium diselenide films (Ti_{1-x}Nb_xSe₂).

3.5.1.1 Films from TiCl₄, NbCl₅ and ^tBu₂Se: Reaction Conditions

Titanium-niobium selenide films were produced from the APCVD reaction of titanium tetrachloride TiCl₄, niobium pentachloride NbCl₅ and ditertiarybutylselenide (^tBu₂Se) for different flow rate conditions. During the APCVD reaction, the TiCl₄, NbCl₅ and ^tBu₂Se bubblers were respectively kept constant to 80 °C, 210 °C and 90 °C,

and the temperature of the reaction chamber was maintained at 550 °C. The flow rate through the ^{*t*}Bu₂Se bubbler was kept constant to 2.0 L min⁻¹ (29.3 mmol.min⁻¹), while the range of flow rates of nitrogen through the TiCl₄ and NbCl₅ bubblers was between 0 – 2.0 L min⁻¹. These conditions correspond to a TiCl₄ molar-flow of up to 18.3 mmol.min⁻¹ and a maximum NbCl₅ molar-flow of 48.1 mmol.min⁻¹ (Table 3.6). Deposition times for all experiments was one minute.

3.5.1.2 Appearance, Substrate Coverage and Adherence of the films

The APCVD reaction of TiCl₄, NbCl₅ with ${}^{1}Bu_{2}Se$ at 550 °C led to the deposition of dark-purple to dark-green films depending on the flow rate conditions. For a NbCl₅ to TiCl₄ molar-flow ratio greater than 48.1 mmol.min⁻¹ : 1.8 mmol.min⁻¹, the films produced were mostly dark-green, whilst films grown for smaller ratios were dark-purple. The growth profile of the films was concentrated towards the leading edge of the substrate, indicating a mass transport limited reaction. The extent of the films produced failed the Scotch tape test and were easily scratched with a steel scalpel. They were found to be soluble in common organic solvents and quickly decomposed in nitric acid and bleach.

3.5.1.3 Scanning Electron Microscopy

Scanning electron microscopy of the films grown from TiCl₄, NbCl₅ with ¹Bu₂Se showed the presence of two different morphologies in the films (Figure 3.25). The first morphology, which was composed of 1 μ m plate like crystallites orientated perpendicularly to the substrate, was predominant for the highest NbCl₅ to TiCl₄ molar-flow ratio conditions. The second morphology observed in the films, was composed of longer and thicker plates which appeared brighter by SEM. The average length of the platelets was 2 μ m, notably the plates had also a degree of texturing with some preferred growth perpendicular to the substrate. As the NbCl₅ to TiCl₄ molar-flow ratio decreased, the proportion of large and bright plates was observed to increase. This morphological segregation in the films is likely to indicated the co-formation of TiSe₂ and NbSe₂ rather than the mixed compounds Ti_{1-x}Nb_xSe₂. Considering that the smallest plates were predominant for the highest concentrations of NbCl₅ entering the reaction

Chapter 3 – APCVD of Group IV and V Selenides

chamber, and the biggest plates for the lowest concentrations of NbCl₅ entering the reaction chamber, the smallest plates would likely be composed of NbSe₂ and the biggest ones, appearing brighter by SEM, to be TiSe₂. These plates have been previously observed while studying the APCVD reactions of TiCl₄ with 'Bu₂Se and NbCl₅ with 'Bu₂Se. At 600 °C, the APCVD reaction of NbCl₅ and 'Bu₂Se produced 0.6 μ m plates-like crystallites of metallic NbSe₂, which are similar in size and shape to the 1 μ m platelets produced here. The APCVD reaction of TiCl₄ and 'Bu₂Se produced similar 2 μ m plates at 600 °C as the one observed here. Moreover, the TiSe₂ plates are expected to appear brighter by SEM than the NbSe₂ plates, as TiSe₂ is semimetallic and NbSe₂ is metallic. This was later confirmed by point WDX analysis.

a) TiSe₂ (87%) / NbSe₂ (13%)

b) TiSe₂ (72%) / NbSe₂ (28%)

c) TiSe₂ (61%) / NbSe₂ (39%)

d) TiSe₂ (50%) / NbSe₂ (50%)

Figure 3.25 Scanning electron micrographs of the films produced from the APCVD of TiCl₄, NbCl₅ and ${}^{t}Bu_{2}Se$ at 550 °C for different compositions.

Figure 3.25 Scanning electron micrographs of the films produced from the APCVD of TiCl₄, NbCl₅ and [']Bu₂Se at 550 °C for different compositions.

3.5.1.4 Wavelength dispersive X-ray analysis

Wavelength dispersive X-ray analysis of the films showed that they all contained titanium, niobium and selenium with a ratio that depended on the flow rates conditions used (Table 3.6). Spot analysis of the biggest and brightest plates observed by SEM confirmed that they were composed of TiSe₂, while the smallest plates were composed of NbSe₂. The overall stoichiometry of the film could then be written as (TiSe₂)₁. $_x(NbSe_2)_x$ rather than Ti_{1-x}Nb_xSe₂. Change of flow rates conditions during the deposition allowed mixtures of TiSe₂ and NbSe₂ in different concentrations. The NbCl₅ to TiCl₄ molar-flow ratio of 48.1 mmol.min⁻¹ : 0.9 mmol.min⁻¹ led to the formation of films with the following composition (TiSe₂)_{0.1}(NbSe₂)_{0.9}, while a NbCl₅ to TiCl₄ molar-flow ratio of 36.1 mmol.min⁻¹ : 7.4 mmol.min⁻¹ produced (TiSe₂)_{0.87}(NbSe₂)_{0.13}.

Table 3.6 WDX and X-ray diffraction data for the films produced by APCVD reaction of NbCl₅ and TiCl₄ with ${}^{t}Bu_{2}Se$ at 600 °C.

Gas Phase Ratio TiCl ₄ : NbCl ₅		EDAX		XRD; lattice constant in Å	
TiCl ₄	NbCl ₅	TiSe ₂	NbSe ₂		
2 L.min ⁻¹	0 L.min ⁻¹	100 %	0%	1T-TiSe ₂ ; $a = 3.51$ Å, $c = 6.00$ Å	
18.3 mmol.min ⁻¹	0 mmol.min ⁻¹	100 %	0 %	-	
0.8 L.min ⁻¹	1.5 L.min ⁻¹	87 <i>0</i> 2	12 0%	1T-TiSe ₂ ; $a = 3.52$ Å, $c = 5.98$ Å	
7.4 mmol.min ⁻¹	36.1 mmol.min ⁻¹	0/ 70	13 %	2H-NbSe ₂ ; $a = 3.41$ Å, $c = 12.58$ Å	
0.7 L.min ⁻¹	1.5 L.min ⁻¹	70 <i>0</i> .	20 M	1T-TiSe ₂ ; $a = 3.50$ Å, $c = 5.99$ Å	
$6.4 \text{ mmol.min}^{-1}$	36.1 mmol.min ⁻¹	12 70	20 %	2H-NbSe ₂ ; $a = 3.41$ Å, $c = 12.60$ Å	
0.6 L.min ⁻¹	1.5 L.min ⁻¹	61 0%	20 %	1T-TiSe ₂ ; $a = 3.51$ Å, $c = 6.00$ Å	
$5.5 \text{ mmol.min}^{-1}$	36.1 mmol.min ⁻¹	01 %	37 %	2H-NbSe ₂ ; $a = 3.41$ Å, $c = 12.60$ Å	
0.5 L.min ⁻¹	1.5 L.min ⁻¹	50.07	50 %	1T-TiSe ₂ ; $a = 3.51$ Å, $c = 6.00$ Å	
4.6 mmol.min ⁻¹	36.1 mmol.min ⁻¹	30 %	50 %	2H-NbSe ₂ ; $a = 3.44$ Å, $c = 12.61$ Å	
0.4 L.min ⁻¹	1.5 L.min ⁻¹	11 0%	56.0%	1T-TiSe ₂ ; $a = 3.51$ Å, $c = 5.98$ Å	
$3.7 \text{ mmol.min}^{-1}$	36.1 mmol.min ⁻¹	44 %	50 %	2H-NbSe ₂ ; $a = 3.42$ Å, $c = 12.58$ Å	
0.3 L.min ⁻¹	1.5 L.min ⁻¹	38 0%	67 %	1T-TiSe ₂ ; $a = 3.50$ Å, $c = 5.99$ Å	
2.8 mmol.min ⁻¹	36.1 mmol.min ⁻¹	50 10	02 10	2H-NbSe ₂ ; $a = 3.44$ Å, $c = 12.59$ Å	
0.3 L.min ⁻¹	2 L.min ⁻¹	33 0%	67 %	1T-TiSe ₂ ; $a = 3.49$ Å, $c = 5.99$ Å	
2.8 mmol.min ⁻¹	48.1 mmol.min ⁻¹	55 10	01 70	2H-NbSe ₂ ; $a = 3.44$ Å, $c = 12.60$ Å	
0.2 L.min ⁻¹	2 L.min ⁻¹	20.0%	80 <i>m</i>	1T-TiSe ₂ ; $a = 3.52$ Å, $c = 6.00$ Å	
1.8 mmol.min ⁻¹	48.1 mmol.min ⁻¹	20 %	80 %	2H-NbSe ₂ ; $a = 3.41$ Å, $c = 12.58$ Å	
0.1 L.min ⁻¹	2 L.min ⁻¹	10 %	00 %	1T-TiSe ₂ ; $a = 3.50$ Å, $c = 5.99$ Å	
$0.9 \text{ mmol.min}^{-1}$	48.1 mmol.min ⁻¹	10 %	90 %	2H-NbSe ₂ ; $a = 3.44$ Å, $c = 12.58$ Å	
0 L.min ⁻¹	2 L.min ⁻¹	0 07-	100 0	-	
0 mmol.min ⁻¹	48.1 mmol.min ⁻¹	0 %0	100 %	2H-NbSe ₂ ; $a = 3.43$ Å, $c = 12.58$ Å	

3.5.1.5 X-ray Diffraction

XRD analysis of the films produced from the APCVD reaction of TiCl₄, NbCl₅ and 'Bu₂Se showed the presence of two phases. The reflections observed matched the reference spectrum for 1T-TiSe₂ (JCPDS File No. 30-1383) and 2H-NbSe₂ (JCPDS File No. 18-0923). 1T-TiSe₂ being the major phase observed for the richer films in titanium, and 2H-NbSe₂ when the films were niobium rich (Figure 3.26). The lattice parameters (Table 3.6) of the TiSe₂ and NbSe₂ phases observed in all the films produced compared well with the corresponding literature lattice parameters of 1T-TiSe₂ (a = 3.54 Å; c =6.00 Å) and 2H-NbSe₂ (a = 3.44 Å; c = 12.55 Å) indicating that it is very unlikely that Nb or Ti are incorporated within each others lattice. No preferential orientation was noticed in the 1T-TiSe₂ phase of the $(TiSe_2)_{1-x}(NbSe_2)_x$ films, this compares well with the XRD pattern observed during the APCVD reaction of TiCl₄ and 'Bu₂Se. However the preferred orientation of the 2H-NbSe₂ phase in $(TiSe_2)_{1-x}(NbSe_2)_x$ was quite different to the one observed in pure NbSe₂ thin films. While the APCVD reaction of NbCl₅ and ^tBu₂Se produced NbSe₂ thin films strongly orientated along the (002) direction, the NbSe₂ crystals showed preferred orientation along the (002), (101), (102) and (106) directions.

Figure 3.26 XRD patterns obtained for the films formed on glass from the APCVD of TiCl₄, NbCl₅ and ^tBu₂Se at 550 °C for different compositions: $(TiSe_2)_{0.1}(NbSe_2)_{0.9}$ (a), $(TiSe_2)_{0.2}(NbSe_2)_{0.8}$ (b), $(TiSe_2)_{0.61}(NbSe_2)_{0.39}$ (c), $(TiSe_2)_{0.72}(NbSe_2)_{0.28}$ (d) and $(TiSe_2)_{0.87}(NbSe_2)_{0.13}$ (e). Literature stick patterns for NbSe₂ (black) and TiSe₂ (grey) powders (JCPDS Files No. 018-0923 and 030-1383) are shown.

3.5.1.6 Raman Microscopy

Raman analyses of the films produced from TiCl₄, NbCl₅ and 'Bu₂Se at 550 °C showed different patterns for the different flow rates conditions used.

Figure 3.27 Raman pattern obtained for the films produced from the APCVD reaction of TiCl₄, NbCl₅ and 'Bu₂Se at 550 °C for different compositions.

The Raman patterns observed for the films produced from TiCl₄, NbCl₅ and ¹Bu₂Se at 550 °C were found to be strongly related to the flow rates conditions used. The peak observed at 200 cm⁻¹ for $(TiSe_2)_{0.87}(NbSe_2)_{0.13}$ was assigned to 1T-TiSe₂ (Figure 3.27a). This peak became weaker as the percentage of TiSe₂ in the films decreased and could not be observed for the films mostly composed of NbSe₂ (Figure 3.27b-d). The peaks around 182 cm⁻¹, 220 cm⁻¹ and 235-238 cm⁻¹ were identified as the distinctive 2H-NbSe₂ Raman pattern. These peaks were observed to be more intense as the percentage of NbSe₂ detected by WDX increased. No evidence was seen in the films for an additional phase - such as the superstoichiometric NbSe_{2+x} (x = 0.4 - 0.6) observed during the APCVD of NbCl₅ and ¹Bu₂Se below 550 °C.

3.5.2 Discussion

SEM, spot-WDX, XRD and Raman analyses indicated that the APCVD reaction of TiCl₄ and NbCl₅ with ¹Bu₂Se at 550 °C formed multiphase films. The TiSe₂ and NbSe₂ crystals grew separately during the CVD process rather than forming a mixed niobium-titanium selenide (Ti_{1-x}Nb_xSe₂). This segregation of the two phases was clearly observed by SEM. Other CVD reactions involving TiCl₄ have been reported to form multiphase films. The CVD reaction of TiCl₄ with SiH₂Cl₂, C₄H₁₀ and H₂ led to Si-Ti-C multiphase materials (SiC and TiSi₂, Ti₃SiC₂ or TiC).^{45,46} While studies have shown the possibility to produce multiphase composites films such as AlN + BN + TiN, BN + TiN, BN + TiB₂, BN + TiB₂ + TiN, and TiB₂ + TiN, from the CVD reaction of TiCl₄, BCl₃, AlCl₃, NH₃ and H₂.⁴⁷ Ti_{1-x}Nb_xO₂ thin films have been reported by metal-organic chemical vapour deposition using titanium tetraisopropoxide [Ti(OCH(CH₃)₂)₄] and pentaethoxy niobium [Nb(OC₃H₅)₅].⁴⁸

3.6 Conclusion

APCVD provides a convenient route to $TiSe_2$, VSe_2 and $NbSe_2$ thin films. The APCVD reaction of $TiCl_4$ and Et_2Se_2 or ${}^{t}Bu_2Se$ led to the formation of films composed of plate-like crystallites orientated parallel to the substrate. ${}^{t}Bu_2Se$ was identified as a better precursor as it gave films with a better stoichiometry and quality. Moreover,

unlike previous single-source routes to this material, the TiSe₂ films produced were stable in air for prolonged periods.

The APCVD of VSe₂ thin films is highly sensitive to the vanadium source used and vanadium tetrachloride and vanadium oxychloride were found to be unsuitable precursors. APCVD reaction of $[V(NMe_2)_4]$ and ^tBu₂Se provides a convenient route to vanadium diselenide films on glass. Between 300 and 500 °C, the films were crystalline with a preferential growth either along (101) or the (110) direction. SEM showed that the films were composed of plate-like crystallites that were orientated parallel to the substrate and EDAX analysis showed a vanadium to selenium ratio close to 1 : 2. Raman analysis was also consistent with the formation of VSe₂.

Niobium selenide films were deposited on glass from the APCVD reaction of NbCl₅ and 'Bu₂Se. Between 300 and 500 °C, the films were crystalline and selenium rich with a niobium to selenium ratio of 1 : 2.5. The films produced at a deposition temperature of 600 °C showed exactly the Nb : Se ratio expected for NbSe₂. No chlorine, carbon or other contamination was found by the EDAX in these films. The films produced at 600 °C were highly crystalline with a preferential growth either along (101) or the (002) direction. The NbSe₂ films were stable in air, insoluble in the common organic solvents, and were only slowly decomposed in nitric acid. The APCVD reaction of TiCl₄ and NbCl₅ with 'Bu₂Se formed mixed NbSe₂-TiSe₂ composites rather than a solid solution Ti_{1-x}Nb_xSe₂.

3.7 References

- [1] C. J. Carmalt, I. P. Parkin, E. S. Peters, *Polyhedron*, 2003, 22, 1263.
- [2] S. A. O'Neill, R. J. Clark, I. P. Parkin, N. Elliott, A. Mills, Chem. Mater., 2003, 15, 46.
- [3] E. S. Peters, Ph.D Thesis, 2004, University of London.
- [4] C. Webb, P. M. Williams, *Phys. Rev. B*, **1975**, *11*, 2082.
- [5] S. O. Saied, J. L. Sullivan, T. Choudhury, *Vacuum*, **1988**, *38*, 917.
- [6] P. Bernusset, *Rev. Chim. Min.*, **1966**, *3*, 135.
- [7] J. Chen, Z. L. Tao, S. L. Li, x. B. Fan, S. L. Chou, Adv. Mater., 2003, 15, 1379.
- [8] G. A. Freund, R. D. Kirby, *Phys. Rev. B*, **1984**, *30*, 7122.
- [9] J. Zhu, J. Zhang, F. Chen, M. Anpo, *Mater. Lett.*, 2005, 59, 3378.
- [10] A. Turkovic, D. Sokcevic, Appl. Surf. Sci., 1993, 68, 477.
- [11] S. Gunst, A. Klein, W. Jaegermann, Y. Tomm, H. J. Crawack, H. Jungblut, Ionics, 2000, 6, 180.
- [12] E. Roest, L. Gjertsen, Z. Anorg. Allg. Chem., 1964, 328, 299.
- [13] D. Barreca, L. E. Depero, E. Franzato, G. A. Rizzi, L. Sangaletti, E. Tondello, U. Vettori, J. Electrochem. Soc., 1999, 146, 551.
- [14] T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernadou, J. Mat. Chem., 2002, 12, 2936.
- [15] B. Horvath J. Strutz, J. Geyer-Lippmann, E. G. Horvath, Z. Anorg. Allg. Chem., 1981, 483, 181.
- [16] M. Shenasa, S. Sainkar, D. Lichtman, J. Electron. Spectrosc. Relat. Phenom., 1986, 40, 329.
- [17] A. H. Reshak, S. Auluck, *Phys. B*, **2004**, *349*, 310.
- [18] G. V. Kamarchuk, A. V. Khotkevich, V. M. Bagatsky, V. G. Ivanov, P. Molinie,A. Leblanc, E. Faulques, *Phys. Rev. B*, 2001, 63, 073107.
- [19] N. Nagaosa, E. Hanamura, *Phys. Rev. B*, **1984**, *29*, 2060.
- [20] F. J. DiSalvo, J. V. Waszczak, Phys. Rev. B, 1981, 23, 457.
- [21] A. H. Thompson, B. G. Silbernagel, J. Appl. Phys., 1978, 49, 1477.
- [22] A. H. Thompson, B. G. Silbernagel, Phys. Rev. B, 1979, 19, 3420.
- [23] L. F. Schneemeyer, A. Stacy, M. J. Sienko, Inorg. Chem., 1980, 19, 2659.
- [24] C. S. Blackman, C. J. Carmalt, S. A. O'Neill, I. P. Parkin, K. C. Molloy, L. Apostolico, J. Mat. Chem., 2003, 13, 1930.

- [25] C. S. Blackman, C. J. Carmalt, S. A. O'Neill, I. P. Parkin, K. C. Molloy, L. Apostolico, *Chem. Vapor Dep.*, 2004, 10, 253.
- [26] M.N. Field, I.P. Parkin, J. Mat. Chem., 2000, 10, 1863.
- [27] T.D. Manning, I.P. Parkin, Polyhedron, 2004, 23, 3087.
- [28] M. Seman, J. Marino, W. Yang, C.A. Wolden, J. Non-Cryst. Solids, 2005, 351, 1987.
- [29] G.S. Elwin, I.P. Parkin, Chem. Vapor Dep., 2000, 6, 59.
- [30] A. Leonhardt, K. Bartsch, M. Schoenherr, E. Wolf, M. Seidler, Ger. (East), 3 pp. CODEN:GEXXA8; DD288629, 1991.
- [31] A. Leonhardt, M. Seidler, E. Wolf, M. Schoenherr, A. Zetzsche, H. Mai, Ger. (East), 3 pp. CODEN:GEXXA8; DD288628, 1991.
- [32] H. Mikami, C.J. Zhou, S. Takahashi, T. Sato, K. Shimakage, Shigen to Sozai, 1992, 108, 808.
- [33] H. Mikami, C.J. Zhou, S. Takahashi, T. Sato, K. Shimakage, Shigen to Sozai, 1994, 110, 313.
- [34] S. O'Neill, I. P. Parkin, R. J. H. Clark, A. Mills, N. Elliott, J. Mater. Chem., 2003, 13, 2952.
- [35] C. J. Carmalt, E. S. Peters, I. P. Parkin, T. D. Manning, A. L. Hector, Eur. J. Inorg. Chem., 2004, 22, 4470.
- [36] S. Motojima, K. Sugiyama, Y. Takahashi, J. Cryst. Growth, 1975, 30, 233.
- [37] T. Takahashi, H. Itoh, T. Yamaguchi, J. Cryst. Growth, 1979, 46, 69.
- [38] Y. Tanaka, T. Asano, K. Tachikawa, Proc. Int. Conf. Vac. Metall., 1982, 1, 46.
- [39] M. K. Bahl, J. Phys. Chem. Solids, 1975, 36, 485.
- [40] D. Briggs and M. P. Seah (eds) Practical Surface Analysis-Auger and X-ray photoelectron spectroscopy, 1999, Wiley, Chicester.
- [41] J. C. Tsang, J. E. Smith, M. W. Shafer, Phys. Rev. Lett., 1976, 37, 1407.
- [42] C. M. Pereira, W. Y. Liang, J. Phys. C: Solid State Phys., 1982, 15, L991.
- [43] C. M. Pereira, W. Y. Liang, J. Phys C: Solid State Phys., 1985, 18, 6075.
- [44] C. J. Carmalt, E. S. Peters, I. P. Parkin, T. D. Manning, A. L. Hector, Eur. J. Inorg. Chem. 2004, 22, 4470.
- [45] M. Touanen, F. Teyssandier, M. Ducarroir, J. L. Derep, Mater. Sci. Eng., 1991, A147, 239.

- [46] M. Maline, M. Ducarroir, F. Teyssandier, R. Hillel, R. Berjoan, F. J. J. Van Loo,
 W. Wakelkamp, Surf. Sci., 1993, 286, 82.
- [47] T. S. Moss, J. A. Hanigofsky, W. J. Lackey, J. Mater. Res., 1992, 7, 754.
- [48] Y. Gao, Thin Solid Films, 1999, 346, 73.

Chapter 4 APCVD of Group VI Selenides

4.1 Introduction

This chapter describes the APCVD of group VI metal selenides. Molybdenum diselenide thin films were produced from the APCVD reaction of molybdenum pentachloride with ditertiarybutylselenide or diethylselenide. Tungsten diselenide thin films were produced from tungsten hexachloride and diethylselenide.

4.2 Molybdenum Diselenide Films

Two series of films were prepared using molybdenum pentachloride with two different selenium sources; ditertiarybutylselenide and diethylselenide. Other possible molybdenum precursor include $[Mo(CO)_5]$,¹ $[Mo(CO)_6]$,² MoF_6 ,³ and MoO_2Cl_2 .⁴ However MoCl₅ was chosen following its successful use in the past to grow molybdenum metal,⁵ molybdenum carbides,⁶ molybdenum nitrides,⁷ molybdenum disilicide,³ molybdenum phosphide⁸ and molybdenum disulfide.⁹

4.2.1.1 Films from MoCl₅ and ^tBu₂Se: Reaction Conditions

The APCVD reaction of molybdenum pentachloride (MoCl₅) with ditertiarybutylselenide (^tBu₂Se) was investigated from the onset deposition temperature, 450 °C, up to 650 °C. The ^tBu₂Se and MoCl₅ bubblers were heated to 90 °C and 255 °C respectively. Flow rates of nitrogen through the ^tBu₂Se bubbler and the MoCl₅ bubbler were kept constant at 2 L.min⁻¹ for all depositions. For each experiment the flow rate through the mixing chamber was 6 L.min⁻¹ and the deposition time was one minute. These conditions corresponded to a MoCl₅ flow of 40.2 mmol.min⁻¹ and a ^tBu₂Se flow of 29.3 mmol.min⁻¹.

4.2.1.2 Appearance, Substrate Coverage and Adherence of the Films

Films produced from the APCVD of MoCl₅ and 'Bu₂Se were brown in appearance and visually reflective. The films were adherent and passed the Scotch tape test, however they were easily scratched with a steel scalpel. They were air and water stable, insoluble in common organic solvents, but were decomposed in nitric acid and bleach. At a deposition temperature of 450 °C, the films only covered the last 6 cm of the substrate. With higher deposition temperatures, the growth profile expanded closer to the leading edge of the substrate such that at substrate temperatures of 550 °C and above, films of 100 nm thickness were grown across the entire substrate.

4.2.1.3 Scanning Electron Microscopy

450 °C

Figure 4.1 Scanning electron micrographs of the films produced from the APCVD of $MoCl_5$ and tBu_2Se at 450 – 650 °C.

The SEM images show that the films grown from $MoCl_5$ and ${}^{7}Bu_2Se$ have a 'crazy-paving' type morphology (Figure 4.1) indicative of an island growth type mechanism. This is a consequence of stronger interactions between atoms of the film, rather than interactions between the film and the substrate. The size of the clusters increased with temperature; from 100 nm at 450 °C to 200 nm at 600 °C.

4.2.1.4 Energy Dispersive X-ray Analysis

Table 4.1 EDAX, Raman, and XRD data for the films produced by APCVD reaction of $MoCl_5$ with ^{*t*}Bu₂Se. Position across the substrate: (a) 4 cm from the inlet; (b) 12 cm from the inlet.

Deposition	EDAX	XRD; lattice constant in Å	Raman
Temperature			
550 °C (a)	MoSe _{1.8} Cl _{0.2}	2H- & 3R-MoSe ₂ ; $a = 3.29$ Å, $c = 6.51$ Å	MoSe ₂
600 °C (a)	MoSe _{2.0}	2H- & 3R-MoSe ₂ ; $a = 3.29$ Å, $c = 6.41$ Å	MoSe ₂
650 °C (a)	MoSe _{1.8}	2H- & 3R-MoSe ₂ ; $a = 3.29$ Å, $c = 6.46$ Å	MoSe ₂
450 °C (b)	MoSe _{1.7} Cl _{0.3}	2H- & 3R-MoSe ₂ ; $a = 3.30$ Å, $c = 6.52$ Å	MoSe ₂
500 °C (b)	MoSe _{1.9} Cl _{0.2}	2H- & 3R-MoSe ₂ ; $a = 3.29$ Å, $c = 6.52$ Å	MoSe ₂
550 °C (b)	MoSe _{1.8} Cl _{0.2}	2H- & 3R-MoSe ₂ ; $a = 3.30$ Å, $c = 6.49$ Å	MoSe ₂
600 °C (b)	MoSe _{1.3}	2H- & 3R-MoSe ₂ ; $a = 3.28$ Å, $c = 6.48$ Å	MoSe ₂
650 °C (b)	MoSe _{1.4}	2H- & 3R-MoSe ₂ ; $a = 3.28$ Å, $c = 6.50$ Å	MoSe ₂

EDAX analysis shows that the stoichiometry of the films produced from $MoCl_5$ and ${}^{7}Bu_2Se$ is closely related to the deposition temperature and the position of the films along the substrate. It was observed that a temperature of 600 °C or more is required to avoid chlorine incorporation. Below this temperature, the films contained from 5 to 10 atomic percent of chlorine and was slightly substoichiometric with a molybdenum to selenium ratio varying from $MoSe_{1.7}$ to $MoSe_{1.9}$ (Table 4.1). Above 600 °C, films with the expected stoichiometry for $MoSe_2$ were deposited on the leading edge of the substrate. However the last few centimetres of these films were found to be substoichiometric (ca. $MoSe_{1.3}$ and $MoSe_{1.4}$). These changes in the selenium concentration along the substrate (Figure 4.2), are due to the fast depletion of the selenium precursor over time within the reactor.

Figure 4.2 Histogram of the selenium to molybdenum ratio relative to deposition position on the substrate (distance indicates the distance along the substrate as measured from the inlet of the reactor). Films were produced from the APCVD of MoCl₅ and ^{*t*}Bu₂Se at substrate temperatures of 600 °C and 650 °C.

4.2.1.5 X-ray Photoelectron Spectroscopy

The XPS of a film deposited from MoCl₅ and 'Bu₂Se at 600 °C revealed the presence of two molybdenum environments in the film (Figure 4.3). The stronger peaks observed at 228.8 and 231.8 eV correspond to the Mo $3d_{3/2} = 231.7$ eV and Mo $3d_{5/2} = 228.5$ eV of molybdenum diselenide.¹⁰ The second molybdenum environment in the films is due to oxide contamination. The identified peaks at 233.1 and 235.7 eV for the molybdenum oxide matched the literature values reported for molybdenum in MoO₃ (Mo $3d_{3/2} = 235.7$ eV and Mo $3d_{5/2} = 232.5$ eV).¹¹ The oxygen content within the samples was found to decrease markedly (to less than 5 %) with longer sputtering times. This, together with the fact that the smoother, less porous films showed less oxygen content, indicates that the oxidation seen in some films is due to transport of the

samples and is not inherent in the CVD process. The selenium peak for the same film shows that there is only one selenium environment present in the films (Figure 4.3). The fitted curves show the presence of the two peaks at 54.1 eV and 55.0 eV which are due to Se $3d_{5/2}$ and Se $3d_{3/2}$ peaks of the molybdenum diselenide (Se $3d_{3/2} = 54.9$ eV and Se $3d_{5/2} = 54.0$ eV).¹⁰

Figure 4.3 XPS spectra of the Mo 3d and Se 3d peaks from the surface of a film deposited from the APCVD reaction of MoCl₅ and ^tBu₂Se at 650 °C. The uppermost solid curves are the experimental data and the dashed lines a best fit.

4.2.1.6 X-ray Diffraction

XRD of the films produced from MoCl₅ and ^{*t*}Bu₂Se show that they were all crystalline with a mixed stacking of $2H_{b}$ - and 3R-type layers (JCPDS File Nos. 015-0029 and 020-0757).¹² This mixture of both polytypes is often known to be found in the same crystal. These polytypes have identical interlayer structures and only differ by their repeat distances between corresponding positions, with the $2H_{b}$ form having a doubling, and the 3R form a trebling, of the unit cell *c*-axis. The lattice parameters reported in Table 4.1, which do not show any multiplication of the *c*-axis, are in good agreement with the reported values for MoSe₂, a = 3.296 Å, c = 6.464 Å (× 2) for $2H_{b}$

and a = 3.296 Å, c = 6.464 Å (× 3) for 3R. The films deposited from MoCl₅ and ^tBu₂Se were all found to be preferentially orientated along (002) or (003) (Figure 4.4).

Figure 4.4 The XRD patterns obtained for the films formed from the APCVD of MoCl₅ and ^tBu₂Se at 450 °C (a), 550 °C (b), 600 °C (c) and 650 °C (d). Clear circles refer to the 2H_b polytype (JCPDS File No. 015-0029) and filled circles to the 3R form (JCPDS File No. 020-0757). The figure shows the indexing for the 3R polytype only.

4.2.1.7 Raman Microscopy

The films deposited from MoCl₅ and ¹Bu₂Se gave the characteristic MoSe₂ Raman pattern,¹³ with bands at 148 cm⁻¹ (E_{1g}), 245 cm⁻¹ (A_{1g}), 286 cm⁻¹ (E_{2g}), 289 cm⁻¹ (E_{1u}) and 325 cm⁻¹ (A_{2u}) (Figure 4.5).

Figure 4.5 Raman patterns obtained for the film formed from the APCVD of MoCl₅ and ${}^{t}Bu_{2}Se$ at 500 °C (a), and 650 °C (b).

4.2.1.8 Optical Properties

The transmittance of the 100 nm thick films produced from $MoCl_5$ and ${}^{t}Bu_2Se$ was fairly low; between 400 - 500 nm (approximately 20 %), but quickly increased to approximately 50 % at the longest visible wavelength and near-infrared region. It is clear that increasing the thickness of the films results in a lower transmittance. For a thickness of 500 nm, the films showed almost no transmission at all in the visible region, but increased to approximately 20 % in the IR region (Figure 4.6).

Figure 4.6 Transmittance spectra of a 100 nm film produced at 600 °C from the APCVD of MoCl₅ and 'Bu₂Se with a deposition time of 1 minute.

4.2.2.1 Films from MoCl₅ and Et₂Se: Reaction Conditions

The APCVD reaction of molybdenum pentachloride (MoCl₅) with diethylselenide (Et₂Se) was studied for the range 500 – 650 °C. The Et₂Se and MoCl₅ bubblers were heated to 70 °C and 255 °C, respectively. Flow rates of nitrogen through the Et₂Se bubbler, MoCl₅ bubbler and mixing chamber were kept constant at 0.2 L.min⁻¹, 1 L.min⁻¹ and 2.2 L.min⁻¹, respectively, and the deposition was for either 2 or 5 minutes. These conditions corresponded to a flow of MoCl₅ of 20.0 mmol.min⁻¹ and of Et₂Se of 2.9 mmol.min⁻¹. Longer deposition times were required, as the APCVD reaction of MoCl₅ and Et₂Se failed to produce thick and uniform films after a one minute deposition.

4.2.2.2 Appearance, Substrate Coverage and Adherence of the Films

Films produced from the APCVD of $MoCl_5$ and Et_2Se were brown in appearance and visually reflective. The films were adherent and passed the Scotch tape test, however they were easily scratched with a steel scalpel. They were air and water stable, insoluble in common organic solvents, but were decomposed in nitric acid and bleach.

4.2.2.3 Scanning Electron Microscopy

The SEM images of the films produced above 600 °C from the APCVD of Et_2Se and MoCl₅ show a needlelike morphology (Figure 4.7). The needles, from 4 µm at 600 °C to 10 µm at 650 °C, are orientated perpendicular to the substrate and are made up of a series of clusters. The clusters are all intergrown and their size increases with temperature, from 100 nm at 600 °C to 200 nm at 650 °C. At lower deposition temperatures (ca. 550 °C) the number of rod-shaped particles increases and the rods themselves get shorter and thinner (ca. 500 nm).

550 °C

600 °C

650 °C

Figure 4.7 Scanning electron micrographs of the films produced from the APCVD of MoCl₅ and Et₂Se at 550 - 650 °C.

The thickness of the films produced from $MoCl_5$ and Et_2Se , measured at 5 centimetres from the inlet of reactor, had values in the region of 200 nm to 600 nm, with

a two to five minute deposition time. The film thickness did not change measurably with substrate temperature provided the substrate was above the onset deposition temperature (ca. 500 °C). The films were grown with uniform thickness on the first six centimetres of the substrate. On the rest of the substrate films were thinner, tailing off to a thickness of ca. 10 - 20 nm at the back end of the substrate (ca. 15 cm from inlet). This, together with the relative insensitivity of the film thickness to deposition temperature, indicates a mass transport-limited reaction.

4.2.2.4 Energy Dispersive X-ray Analysis

Table 4.2 EDAX, Raman, and XRD data for the films produced by APCVD reaction of $MoCl_5$ with Et_2Se . Position across the substrate: (a) 4 cm from the inlet; (b) 12 cm from the inlet.

Deposition	EDAX	XRD; lattice constant in Å	Raman
Temperature			
500 °C (a)	MoSe _{1.7} Cl _{0.3}	2H- & 3R-MoSe ₂ ; $a = 3.30$ Å, $c = 6.47$ Å	MoSe ₂
550 °C (a)	MoSe _{1.7} Cl _{0.3}	2H- & 3R-MoSe ₂ ; $a = 3.29$ Å, $c = 6.51$ Å	MoSe ₂
600 °C (a)	MoSe _{2.0} Cl _{0.2}	2H- & 3R-MoSe ₂ ; $a = 3.29$ Å, $c = 6.37$ Å	MoSe ₂
650 °C (a)	MoSe _{2.0}	2H- & 3R-MoSe ₂ ; $a = 3.28$ Å, $c = 6.45$ Å	MoSe ₂
500 °C (b)	MoSe _{1.7} Cl _{0.3}	2H- & 3R-MoSe ₂ ; $a = 3.24$ Å, $c = 6.48$ Å	MoSe ₂
550 °C (b)	MoSe _{1.8} Cl _{0.3}	2H- & 3R-MoSe ₂ ; $a = 3.27$ Å, $c = 6.47$ Å	MoSe ₂
600 °C (b)	MoSe _{2.1} Cl _{0.1}	2H- & 3R-MoSe ₂ ; $a = 3.27$ Å, $c = 6.42$ Å	MoSe ₂
650 °C (b)	MoSe _{2.1}	2H- & 3R-MoSe ₂ ; $a = 3.30$ Å, $c = 6.45$ Å	MoSe ₂

EDAX analysis of the films produced from the APCVD reaction of $MoCl_5$ and Et_2Se above 600 °C, shows that they contained molybdenum and selenium with a Mo : Se ratio close to the one expected for $MoSe_2$ (Table 4.2). At lower deposition temperatures, the films were found to be substoichiometric (ca. $MoSe_{1.7}$). Except for the first few centimetres of the substrate, which were substoichiometric, all of the films showed a good uniformity in composition along the length of the substrate and across their width (Figure 4.8). It was found that a deposition temperature of 650 °C was

required to produce chlorine and carbon free films. At deposition temperatures of 600 °C and below, the films contained from 3 to 10 atomic percent of chlorine.

Figure 4.8 Histogram of the selenium to molybdenum ratio relative to deposition position on the substrate (distance indicates the distance along the substrate as measured from the inlet to the reactor). Films were produced from the APCVD of $MoCl_5$ and diethylselenide at substrate temperatures of 600 °C and 650 °C.

4.2.2.5 X-ray Photoelectron Spectroscopy

The X-ray photoelectron spectroscopy of a film deposited from the APCVD reaction of MoCl₅ and Et₂Se at 600 °C shows that there is only one molybdenum environment and one selenium environment in the film. The peaks of Mo $3d_{3/2} = 231.7$ eV, Mo $3d_{5/2} = 228.7$ eV, and Se $3d_{3/2} = 54.9$ eV, Se $3d_{5/2} = 54.0$ eV (Figure 4.9) all correspond to that reported for molybdenum diselenide (Mo $3d_{3/2} = 231.7$ eV, Mo $3d_{5/2} = 228.5$ eV and Se $3d_{3/2} = 54.9$ eV, Se $3d_{5/2} = 54.0$ eV).¹⁴ No chlorine contamination was found in the film by XPS within the detection limit of the instrument.

Figure 4.9 XPS spectra of the Mo 3d and Se 3d peaks from the surface of a film deposited from the APCVD reaction of MoCl₅ and Et₂Se at 600 °C. The uppermost solid curves show the experimental data and the dashed lines show best fit.

XPS of a film deposited at 600 °C shows the presence of chlorine, which correlated with the EDAX results. The Cl 2p peak is spread between 199 - 202 eV and is rather broad and ill defined (Figure 4.10). The Mo 3d and Se 3d peaks for the same sample shows the presence of only one molybdenum environment and one selenium environment in the film, suggesting that the chlorine is not directly bound to molybdenum. It is possible that the chlorine present in the film is intercalated within the MoSe₂ structure as the material is known to be a good intercalation host. No carbon was detected in any of the films indicating that the carbon from the precursor did not contaminate the films.

Figure 4.10 XPS spectra of the Cl 3p peaks from the surface of a film deposited from the APCVD reaction of MoCl₅ and Et₂Se at 600 °C.

4.2.2.6 X-ray Diffraction

The XRD data of the films produced from MoCl₅ and Et₂Se show that all the films were crystalline with a mixed stacking of 2Hb- and 3R-type layers (JCPDS File Nos. 015-0029 and 020-0757). By comparison with previous findings, the ratio of 2Hb : 3R was estimated to be about 85 : 15 in virtually all runs.¹² The lattice parameters shown in Table 4.2, are in good agreement with the reported values for MoSe₂, a = 3.296 Å, c = 6.464 Å.¹⁵ The films grown at and below 600 °C showed no preferred growth orientation, whereas the films produced at 650 °C were strongly orientated along the (002) axis for the 2Hb polytype or (003) axis for 3R polytype (Figure 4.11).

Figure 4.11 The XRD patterns obtained for the films formed from the APCVD of $MoCl_5$ and Et_2Se at 500 °C (a), 550 °C (b), 600 °C (c) and 650 °C (d). Clear circles refer to the 2Hb polytype (JCPDS File No. 015-0029) and filled circles to the 3R form (JCPDS File No. 020-0757). The figure shows the indexing for the 2H polytype only.

4.2.2.7 Raman Microscopy

The Raman pattern obtained for the films deposited from $MoCl_5$ and ${}^{t}Bu_2Se$ gave the characteristic $MoSe_2$ Raman pattern (Figure 4.12).¹³ The bands at 150, 241, 286, 289 and 320 cm⁻¹ were respectively assigned to the E_{1g} , A_{1g} , E_{2g} , E_{1u} and A_{2u} modes.

Figure 4.12 Raman patterns obtained for the films formed from the APCVD of MoCl₅ and Et₂Se at 550 °C (a), 600 °C (b) and 650 °C (c).

4.2.2.8 Optical Properties

Figure 4.13 Transmittance spectra of a 600 nm film produced at 650 °C from the APCVD of MoCl₅ and Et₂Se with a deposition time of 5 minutes.

The MoSe₂ films produced from MoCl₅ and Et₂Se had a very low transmission in the visible, which increased significantly in the near-IR region. For a thickness of 600 nm, the films showed no transmission at all in the visible region, but increased to approximately 20 % in the infrared region (Figure 4.13).

4.2.3 Comparison and Discussion

The results show that the selenide precursor used has a significant effect on the quality of the $MoSe_2$ films formed. When ditertiarybutylselenide was used as a precursor, the stoichiometry of the films formed was found to dramatically vary along the substrate. While at 600 °C and above, films with a stoichiometry close to that of $MoSe_2$ were deposited on the leading edge of the substrate. The last few centimetres of the same films were found to be substoichiometric (ca. $MoSe_{1.3}$ and $MoSe_{1.4}$). These changes in the selenium concentration along the substrate, can be assigned to the fast depletion of the ditertiarybutylselenide over time within the reactor. Furthermore XPS of the films showed evidence of the formation of an oxide of molybdenum (MoO₃).

The diethylselenide proved to be a more effective precursor for making molybdenum diselenide films. Films grown in this system gave a more uniform and complete coverage of the substrate. Above 600 °C, films with the expected stoichiometry for $MoSe_2$ were grown along the entire substrate. XPS shows there is only one molybdenum environment and one selenium environment present in the films, also there was no evidence of surface oxidation.

The flow rate conditions used for the two selenium precursors were quite different. This is due to the fact that these conditions were found to give the best coverage of the substrate after trial experiments. In the case of diethylselenide, the Et₂Se to MoCl₅ relative molar gas flow ratio was 1.3 mmol.L⁻¹.min⁻¹ : 9.1 mmol.L⁻¹.min⁻¹ (ca. 1 : 6.9), while the ^{*t*}Bu₂Se to MoCl₅ relative molar gas flow ratio was 4.9 mmol.L⁻¹.min⁻¹ : 6.7 mmol.L⁻¹.min⁻¹ (ca. 1 : 1.3) in the ditertiarybutylselenide case. Thus, much less selenium precursor was used in the diethylselenide reactions, as the relative molar gas flow of selenium precursor used was around a fifth of that in the ditertiarybutylselenide reactions. However, the films produced from ditertiarybutylselenide were found to be selenium deficient despite the larger amount of selenium precursor provided to the

system. This, together with the better quality and stoichiometry of the films produced from diethylselenide, makes the diethylselenide a superior precursor for the growth of molybdenum diselenide thin films.

4.3 Tungsten Diselenide Films

A number of different tungsten precursors, such as WF_6 ,¹⁶ [W(CO)₆],¹⁷ WOCl₄¹⁷ and WCl₆, have been investigated in CVD processes, the most extensively used and most suitable being tungsten hexachloride. WCl₆ has been succesfully used to grow metallic tungsten,¹⁸ tungsten carbide,¹⁹ tungsten nitride,²⁰ tungsten oxide,²¹ tungsten silicide²² and tungsten sulfide thin films.¹⁷

4.3.1.1 Films from WCl₆ and Et₂Se: Reaction Conditions

The APCVD reaction of tungsten hexachloride (WCl₆) with diethylselenide (Et₂Se) was studied over the temperature range 250 – 600 °C for two different flow rate conditions. The WCl₆ and Et₂Se bubblers were heated to 260 °C and 70 °C respectively. Flow rates of nitrogen through the WCl₆ bubbler and the Et₂Se bubbler were kept within $1.5 - 4.0 \text{ L.min}^{-1}$ (10.4 – 27.7 mmol.min⁻¹) and 0.2 – 0.3 L.min⁻¹ (2.9 – 4.4 mmol.min⁻¹), the flow rate through the mixing chamber was between 1.9 and 4.6 L.min⁻¹ for all depositions. Deposition time for all experiments was one minute.

4.3.1.2 Appearance, Substrate Coverage and Adherence of the Films

Depositions were only noted at temperatures in excess of 450 °C. At substrate temperatures of 500 °C and above, a matt black film was formed that passed the Scotch tape test. The films were however easily scratched with a steel scalpel. The films were insoluble in common organic solvents but were quickly decomposed in dilute nitric acid and bleach, yielding H₂Se. The films were air and water stable. The extent of film coverage was dependent on the deposition temperature. For a deposition temperature of 500 °C, films of uniform thickness were grown across the entire length of the substrate. With higher deposition temperatures, the growth profile was concentrated closer

towards the leading edge of the substrate, such that at a deposition temperature of 650 °C only the first 6 cm of the substrate was coated.

4.3.1.3 Scanning Electron Microscopy

500 °C

550 °C

600 °C

650 °C

Figure 4.14 Scanning electron micrographs of the films produced from the APCVD of WCl₆ and Et₂Se at 500 – 650 °C.

Scanning electron microscopy images of the films produced at 650 °C, irrespective of the flow rate conditions, show grains which exhibit several very thin needles with lengths of a few hundred nanometres. Conversely, the SEM images of the films deposited at 550 °C and 600 °C show fewer- thicker needles with lengths of approximately a hundred nanometers. The SEM images of all the films show either plate-like or needle–like crystallites, which seem to be largely orientated perpendicular or radially, away from the substrate (Figure 4.14).

The thickness of the films deposited from the APCVD of WCl₆ and Et₂Se, determined using cross-sectional SEM (Figure 4.15), did not change measurably with substrate temperature. The average thickness of the films for a one minute deposition time was 300 nm.

Figure 4.15 Scanning electron micrographs of the side of a film produced from the APCVD of WCl₆ and Et₂Se at 650 °C.

4.3.1.4 Energy Dispersive X-ray Analysis

EDAX analysis of the films produced from the APCVD of WCl₆ and Et₂Se showed that all of the films contained tungsten and selenium with a W : Se ratio that depended on the deposition rate and flow conditions (Table 4.3). At higher temperatures films with a stoichiometry WSe_{2.5} were formed whilst at 500 °C films with stoichiometry WSe_{1.5} were deposited with no chlorine or carbon detected. Furthermore, oxygen levels within the films were virtually undetectable (typically 1 atomic percent). The films showed uniformity in composition along the length of the substrate and across its width for any one film by both wide area (ca. $10 \times 10 \mu m$) and point EDAX analysis.

Table 4.3 EDAX, XRD and Raman data of the films produced from APCVD reaction of WCl₆ with Et₂Se. Flow rates through the WCl₆ bubbler, Et₂Se bubbler and the mixing chamber respectively were: (a) 1.5 L.min⁻¹, 0.2 L.min⁻¹, 1.9 L.min⁻¹; (b) 4.0 L.min⁻¹, 0.3 L.min⁻¹, 4.6 L.min⁻¹.

Deposition Temperature	EDAX	XRD; lattice constant in Å	Raman
500°C (a)	WSe _{1.6}	2H-WSe ₂ ; $a = 3.26$ Å, $c = 12.84$ Å	WSe ₂
550°C (a)	WSe _{1.6}	2H-WSe ₂ ; $a = 3.26$ Å, $c = 12.84$ Å	WSe ₂
600°C (a)	WSe _{1.7}	2H-WSe ₂ ; $a = 3.27$ Å, $c = 12.84$ Å	WSe ₂
650°C (a)	WSe _{1.7}	2H-WSe ₂ ; $a = 3.27$ Å, $c = 12.82$ Å	WSe ₂
500°C (b)	WSe _{1.8}	2H-WSe ₂ ; $a = 3.26$ Å, $c = 12.84$ Å	WSe ₂
550°C (b)	WSe _{1.9}	2H-WSe ₂ ; $a = 3.27$ Å, $c = 12.82$ Å	WSe ₂
600°C (b)	WSe _{2.4}	2H-WSe ₂ ; $a = 3.26$ Å, $c = 12.84$ Å	WSe ₂
650°C (b)	WSe _{2.6}	2H-WSe ₂ ; $a = 3.26$ Å, $c = 12.86$ Å	WSe ₂

4.3.1.5 X-ray Photoelectron Spectroscopy

The XPS of a film deposited from WCl₆ and Et₂Se at 650°C shows that there are two tungsten environments present in the film (Figure 4.16). The stronger peaks at 31.9 and 34.0 eV correspond to the W $4f_{7/2} = 32.0$ eV and W $4f_{5/2} = 34.2$ eV peaks of tungsten diselenide.²³ The second tungsten environment is due to oxide contaminations, which were both detected only at the surface of the sample (ca. 10 atomic percent). The observed peaks for the tungsten oxide at 35.7 and 37.8 eV matched the reported values for WO₃ (W $4f_{7/2} = 35.7$ eV and W $4f_{5/2} = 37.9$ eV).²⁴ The selenium peak for the same film shows that there is only one selenium environment present in the films. The presence of the two peaks at 54.0 eV and 54.9 eV are due to selenium in WSe₂ (Se $3d_{5/2} = 54.1$ eV and Se $3d_{3/2} = 55.0$ eV).²³

Figure 4.16 XPS spectra of the Se 3d and W 4f peaks from the surface of a film deposited from the APCVD reaction of WCl₆ and Et₂Se at 650 °C. The uppermost solid curves show the experimental data and the dotted lines show a best fit.

4.3.1.6 X-ray Diffraction

The XRD data on the films grown from WCl₆ and Et₂Se between 500 and 650 °C showed that all the films were crystalline and matched with the reported pattern for 2H-WSe₂ (JCPDS File No. 006-0080). The lattice parameters shown in Table 4.3 are in good agreement with the reported values for WSe₂; a = 3.32 Å and c = 12.80 Å.²⁵ The films produced at temperatures above 550 °C showed no preferred growth orientation. However, the film produced at 500 °C were strongly orientated along the (002) axis (Figure 4.17). A small reflection present in all the XRD patterns of the WSe₂ films at 20 = 24.9° is attributed to WO₃.²⁶

Figure 4.17 The XRD patterns obtained for the films formed from the APCVD of WCl₆ and Et₂Se at 650 °C (a), 600 °C (b), 550 °C (c) and 500 °C (d). Literature stick pattern for WSe₂ powder (JCPDS File No. 006-0080) is shown.

4.3.1.7 Raman Microscopy

Raman analysis of all films formed from the APCVD of WCl₆ and Et₂Se, irrespective of temperature or flow rates, showed the same pattern (Figure 4.18). The principle bands were at 180 cm⁻¹ with a double peak around 250 - 256 cm⁻¹; these bands correspond to the frequencies of the Raman active A_{1g}, E_{2g} and E_{1g} modes respectively, of the 2H-WSe₂ polytype.²⁷

Figure 4.18 Raman pattern obtained for the film formed from the APCVD of WCl₆ and Et₂Se at 650 °C.

4.3.1.8 Contact Angle

The water contact angle measurements for the CVD prepared tungsten selenide films show that the films were highly hydrophobic for all the deposition temperatures with values in the range $135 - 145^{\circ}$. The contact angle was lowest (135°) for the films formed at 500 °C and increased with substrate deposition temperature to 145° for the film deposited at 650 °C. The contact angle measurements were consistent across the whole coated glass, and did not change on weekly inspection over a period in excess of two months.

Tilting experiments show that the water droplets cling to the surface of the film despite the highly hydrophobic character of the films. Indeed small droplets of water (1 mg) remain rounded with a tipping angle of 90° and do not roll or even slide at this acute angle. The surface can even be tipped upside down and the water droplets remain adhered to the surface (Figure 4.19). In fact the droplets evaporate instead of moving across the surface. This is exceptional as very hydrophobic films typically have extremely low tipping angles of a few degrees before the droplet slides off of the

surface. Furthermore large water droplets of 50 mg and above in size remain stationary on the surface at the 90° tilt angle.

Figure 4.19 Water droplets (1 mg) on the tungsten selenide thin films. Left: water droplet on a film at 0° tipping angle; middle: water droplet at a 90° tilt angle; right: water droplet suspended upside down on the film. The water droplets contained a small amount of methylene blue dye to aid visualisation, this was not found to alter the contact angles on the droplet sizes used.

4.3.2 Discussion

The sticky hydrophobicity, as referred to by Quéré,²⁸ of the tungsten diselenide films prepared by the APCVD reaction of WCl₆ with Et₂Se has been described by Wenzel's theory.²⁹ In the Wenzel model, the liquid droplet retains contact at all points with the rough surface of a hydrophobic solid. To minimise the surface contact with the hydrophobic film, the droplet will increase its contact-angle, enhancing the hydrophobic property of the film. The droplet being impaled into the porosity, strongly sticking to the surface and gives the material its sticky hydrophobic behaviour.

The Wenzel model is in contrast to the Cassie-Baxter model where the water droplets do not penetrate the surface porosities.³⁰ In the Cassie-Baxter case, the drops rest partially on air contained in the porosity and the peaks of the film protrusions, which lead to a more hydrophobic state and a slippery surface, typically showing a low tip angle before the droplets slide across the surface. Hence the films produced here are best described by Wenzel theory, which suggests that it is the surface microstructure

that is dominating the materials behaviour – as contact angles greater than 125° have not been reported for a flat surface. It is well known that the roughness or texture of a film can influence the contact angle of a water droplet at its surface. To date, an unpatterned material has never been reported before this work with a contact angle higher than 125° . While the contact angle of a micro-textured material, typically mechanically constructed groves or pillars, can jump to above 150° .

The exceptionally high contact angles of the films prepared here suggest extreme roughness, which is confirmed by the SEM pictures of the films which show needle like points radiating away from the surface. Other layered transition metal disulfide and diselenide thin films, such as TiS_2 ,³¹ WS₂,¹⁷ NbS₂,³² TiSe₂, have been prepared by CVD methods in the past. The water contact angles of these films was typically between 5° and 100°. Usually the films produced have a plate like microstructure - often orientated perpendicular to the substrate as observed in Chapter 3 during the APCVD reaction of 'Bu₂Se with TiCl₄, [V(NMe₂)₄] or NbCl₅ – or exhibit a rod shaped structure as showed previously by the films produced from MoCl₅ with Et₂Se or 'Bu₂Se. None of the CVD prepared films have ever shown a microstructure that resembles the one produced here for WSe₂ and indeed the rough spiky surface produced here is probably the primary reason for the high hydrophobicity. Furthermore this extreme roughness accounts for why the water droplets do not slide down the surface even when exposed to very large tipping angles.

It is also possible that the layer structure exhibited by tungsten diselenide enhances the sticky hydrophobic character of the films (Figure 4.20). The WSe₂ structure consists of two-dimensional strongly bound layers of Se-W-Se, which are weakly bound to each other leading to the following stacking sequence Se-W-Se- \Box -Se-W-Se. Due to this structural arrangement, the basal planes of WSe₂ have a relatively low surface energy, which enable the layers to shear easily and give WSe₂ its lubricant properties. The basal planes, because of their low surface energy, are expected to be hydrophobic. The edge faces of the WSe₂ layers obtained by rupture of chemical bonds have a higher surface energy and are more likely to be hydrophilic. Moreover, the edge faces could be partly oxide terminated, forming hydrophilic WO₃ as suggested by the XRD and XPS results.³³ It could be considered that the WSe₂ layers are made of two different materials with different properties. The basal planes of the layers being hydrophobic, giving to the film its hydrophobic behaviour, while the edge faces of the layers are hydrophilic and give to the film its sticky properties.

Figure 4.20 Crystal structure of 2H-WSe₂. The basal planes have a relatively low surface energy and the edge faces have a higher surface energy.

Compared to previously reported adhesive hydrophobic films,³⁴ the films prepared here were made in a single processing step and do not have a low surface energy polymer coating. Furthermore the surfaces are extremely resistant to water sliding and very large water droplets of 50 mg or more remain stationary on the surface even with a tip angle of 90°. For Jiang's work, however, droplets in excess of 8 mg move across the surface at these tilt angles. This very sticky hydrophobic property could readily be used as surfaces for biological micropipetting and assay where recovery of material from the surface is enhanced from a hydrophobic plate. However the use of a metal selenide surface for such a purpose, with a potential associated toxicity issue, may limit application. Classically very hydrophobic surfaces have found a wide range of applications such as self-cleaning glass or in inkjet printing devices. This is not the case for the tungsten selenide films reported here because the water droplets do not move across the surface architecture has been described as an ideal theoretical surface for making highly rough hydrophobic surfaces. By coating the film with a low surface energy polymer, the water droplets would have minimal contact points with the surface and the film would become super hydrophobic. Nature has produced many such hydrophobic surfaces - for example lotus leaves have numerous small spiky protrusions on the leaf surface which are covered in a wax like substance and are examples of slippery hydrophobic surfaces.

4.4 Conclusion

Molybdenum diselenide thin films have been deposited on glass substrate from the APCVD of molybdenum pentachloride and diethylselenide or ditertiarybutylselenide. At lower deposition temperatures some chlorine was incorporated into the MoSe₂, seemingly as part of a solid solution. At higher substrate temperatures stoichiometric MoSe₂ was formed. The form of selenium precursor was important in determining the product growth morphology and the rate of film growth. The molybdenum diselenide films do show useful functional properties, being highly absorbing in the region of the visible spectrum, but significantly transparent at longer wavelengths. Such films could find application as optical filters or in solar-cell applications.

Tungsten diselenide films have been deposited on glass substrate from the APCVD reaction of tungsten hexachloride and diethylselenide. The films did not contain any chlorine contamination, were stable in air and insoluble in common organic solvents. Films grown above 550 °C show grains which exhibit many very thin needles that matched the reported pattern for 2H-WSe₂. The films grown at 500 °C show plate crystallites orientated perpendicular to the substrate. This perpendicular orientation is confirmed by the XRD pattern, which shows preferred growth orientated along the (002) axis. All the films produced, irrespective of the deposition temperature, were highly hydrophobic with values in the range 135 – 145°. They were not quite in the class of material that would be described as super-hydrophobic, as this requires a contact angle in excess of 150°, however they are significantly more hydrophobic than a wide range of commercially made polymer coatings. The fact that these can be made by CVD opens up many possibilities for patterned substrates, simply by using a masking technique.

126

4.5 References

- K. A. Gesheva, T. Ivanova, A. Iossifova, D. Gogova, R. Porat, J. Phys. IV, 1999, 9, 1999.
- [2] J. S. Cross, G. L. Schrader, Chem. Vap. Dep., 1993, 2, 59.
- [3] N. Patibandla, W. B. Hillig, J. Mater. Synth. Process., 1994, 2, 93.
- [4] E. E. Chain, B. O. Seraphin, *Thin Solid Films*, **1985**, *123*, 197.
- [5] N. Yoshikawa, A. Kikuchi, S. Taniguchi, *Chem. Vap. Dep.*, **1998**, *6*, 241.
- [6] J. Lu, U. Jansson, Thin Solid Films, 2001, 396, 53.
- [7] S. L. Roberson, D. Finello, R. F. David, Surf. Coat. Technol., 1998, 102, 256.
- [8] C. S. Blackman, C. J. Carmalt, T. D. Manning, S. A. O'Neill, I. P. Parkin, Chem. Vap. Dep., 2003, 9, 10.
- [9] I. Endler, A. Leonhardt, U. Konig, H. van den Berg, W. Pitschke, V. Sottke, Surf. Coat. Technol., 1999, 120, 482.
- [10] J. C. Bernede, J. Pouzet, Z. K. Alaoui, Appl. Phys., 1990, 51, 155.
- [11] O. M. Hussain, K. S. Rao, Mater. Chem. Phys. 2003, 80, 638.
- [12] M. S. Silverman, *Inorg. Chem.* **1967**, *6*, 1063.
- [13] T. Sekine, M. Izumi, T. Nakashizu, K. Uchinokura, E. Matsuura, J. Phys. Soc. Jpn., 1980, 49, 1069.
- [14] D. F. Foster, N. L. Pickett, D. J. Cole-Hamilton, Polyhedron 1999, 18, 1329.
- [15] R. Bichsel, F. Levy, Thin Solid Films, 1984, 116, 367.
- [16] C. M. Melliar-Smith, A. C. Adams, R. H. Kaiser, R. A. Kushner, J. Electrochem. Soc., 1974, 121, 298.
- [17] C. J. Carmalt, I. P. Parkin, E. S. Peters, *Polyhedron*, 2003, 22, 1499.
- [18] C. M. Melliar-Smith, A. C. Adams, R. H. Kaiser, R. A. Kushner, J. Electrochem. Soc., 1974, 121, 298.
- [19] M. Fitzsimmons, V. K. Sarin, Surf. Coat. Technol., 1995, 76, 250.
- [20] M. Nagai, N. Hirano, S. Omi, Jpn. J. Appl. Phys., 2000, 39, 4558.
- [21] C. S. Blackman, I. P. Parkin, Chem. Mater., 2005, 17, 1583.
- [22] F. Trincat, J. L. Regolini, J. Mercier, D. Bensahel, Appl. Phys Lett., 1991, 59, 3291.
- [23] R. Tenne, E. Galun, A. Ennaoui, S. Fiechter, K. Ellmer, M. Kunst, Ch. Koelzow, Ch. Pettenkofer, S. Tiefenbacher, R. Scheer, H. Jungblut, W. Jaegermann, *Thin Solid Films*, **1996**, 272, 38.

- [24] D. Briggs and M. P. Seah (eds) *Practical Surface Analysis-Auger and X-ray* photoelectron spectroscopy, **1999**, Wiley, Chicester.
- [25] S. Benhida, J. C. Bernede, J. Pouzet, A. Barreau, *Thin Solid Films*, 1993, 224, 39.
- [26] ICDD powder diffraction file 20-1324.
- [27] D. G. Mead, J. C. Irwin, *Can. J. Phys.*, **1977**, 55, 379.
- [28] D. Quéré, A. Lafuma, J. Bico, Nanotechnol., 2003, 14, 1109.
- [29] R. N. Wenzel, Ind. Eng. Chem., 1936, 28, 988.
- [30] A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 1944, 40, 546.
- [31] C. J. Carmalt, I. P. Parkin, E. S Peters, *Polyhedron*, 2003, 22, 1263.
- [32] C. J. Carmalt, T. D. Manning, I. P. Parkin, E. S Peters, A. L. Hector, J. Mater. Chem., 2004, 14, 290.
- [33] R. Azimirad, N. Naseri, O. Akhavan, A. Z. Moshfegh, J. Phys. D: Appl. Phys., 2007, 40, 1134
- [34] M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li, L. Jiang, Adv. Mater., 2005, 17, 1977.

Chapter 5 APCVD of Tin Selenides

5.1 Introduction

In this chapter, the APCVD of tin monoselenide and tin diselenide is described. Films were obtained by the APCVD reaction of tin tetrachloride with diethylselenide. Deposition was observed on both the top substrate and the bottom substrate, which is quite common in CVD, but normally only the heated bottom substrate is analysed in detail. However in this set of experiments both plates were analysed as this gave some important insights into the reaction chemistry and also enabled a variety of different growth microstructures to be investigated. The top substrate was not directly heated in these experiments and was between 75 - 100 °C colder than the bottom substrate. All temperature values given in this chapter are for actual measured temperatures on either the bottom substrate or top substrate. At a bottom substrate temperature below 550 °C, no films were formed on the bottom substrate, whereas, a film was deposited onto the top substrate for a temperature as low as 350 °C. Moreover, the films deposited on the bottom substrate and the films deposited on the top substrate were found to be very different in their composition, morphology and appearance.

5.2 Tin Selenides Films

Atmospheric pressure CVD reactions of tin tetrachloride with diethylselenide were studied on glass substrates at 350 - 650 °C. Tin tetrachloride was chosen following its successful use in CVD processes. Tin phosphide,¹ tin oxide² and tin sulfide thin films^{3,4} with negligible chlorine incorporation have previously been prepared using SnCl₄.

5.2.1.1 Films formed on the Top Substrate from SnCl₄ and Et₂Se : Reaction Conditions

Tin tetrachloride (SnCl₄) and diethylselenide (Et₂Se) were placed into two different stainless steel bubblers, which were heated to 70 °C by an external jacket. They were both introduced into the gas streams by passing hot N₂ through the bubblers. Flow rates of nitrogen through the SnCl₄ bubbler and the diethyl selenide bubbler were kept within 0.2 - 4.0 L.min⁻¹ (2.6 - 58.6 mmol.min⁻¹) and the flow rate through the mixing chamber was kept constant to 6 L.min⁻¹ for all depositions. Deposition time for all experiments was one minute.

5.2.1.2 Appearance, Substrate Coverage and Adherence of the Films

At 350 °C and above a reflective silver-black film composed of large plate-like crystals formed on the top substrate. All the films passed the Scotch tape test, however the films could be scratched with a steel scalpel. The films were insoluble in common organic solvents and were only slowly decomposed in dilute nitric acid and bleach. The films were air and water stable. The extent of the film coverage was dependent on the deposition temperature. Only the last five centimeters of the top substrate were coated at a deposition temperature of 400 °C, whilst the whole top substrate, apart from the first two centimeters, was coated with uniform thickness at 550 °C.

5.2.1.3 Scanning Electron Microscopy

The pronounced layer character of SnSe_2 was observed by scanning electron microscopy of the films deposited on the top substrate at 400 – 500 °C (Figure 5.1). Images of the films showed plate-like crystallites, which became surprisingly smaller with increasing deposition temperature, while the lengths varied from ca 80 µm at 500 °C to 10 µm at 550 °C (Figure 5.2). Notably, for all the deposition temperatures, the plates have a degree of texturing with some preferred growth perpendicular to the substrate. Using cross-sectional SEM, the thickness of the films was determined to be close to 10 µm.

Chapter 5 – APCVD of Tin Selenides

a) 500 °C (1 : 1) Figure 5.1 SEM images of the films produced on the top substrate from the APCVD of $SnCl_4$ and Et_2Se at 500 °C.

b) 550 °C (1:1)

Figure 5.2 SEM images of the films produced on the top substrate from the APCVD of $SnCl_4$ and Et_2Se at 500 °C and 550 °C.

5.2.1.4 Wavelength Dispersive X-ray Analysis

Wavelength dispersive X-ray analysis showed that all of the films contained selenium and tin with a Sn : Se ratio that depended on the deposition rate and flow conditions (Table 5.1). Under identical flow rate conditions (1 : 1; $Et_2Se : SnCl_4$), the Sn : Se ratio in the film decreased with decreasing deposition temperature. At the highest temperatures (525 - 550 °C), films with the expected stoichiometry for SnSe₂ were formed whilst at 400 °C films with an overall stoichiometry SnSe_{1.5} were deposited. Nevertheless, the large size of the crystals observed by SEM allowed us to perform spot analysis on the crystals and showed they had the expected stoichiometry of SnSe₂

(Figure 5.1). This result indicates the possible formation of a secondary phase such as tin monoselenide (SnSe).

For identical deposition temperatures, the Sn : Se ratio of the films was found to be directly related to the diethylselenide concentration in the gas phase (Table 5.1). At 550 °C and at identical flow rate conditions (1 : 1), films with the expected stoichiometry for SnSe₂ were formed. The use of a higher amount of tin (IV) chloride than diethylselenide going through the reactor (ca. 10 : 1 to 20 : 1) led to the formation of films with an overall stoichiometry that layed between $SnSe_{1.76}$ and $SnSe_{1.58}$. No chlorine was detected within the films, while the presence of trace amounts of carbon (ca. 1 atomic percent) was revealed by WDX. The films showed uniformity in composition along the length of the top substrate and across its width for any one film.

Table 5.1 Reaction conditions, WDX and XRD data of the films formed on the top substrate from the APCVD reaction of $SnCl_4$ with Et_2Se .

Deposition	Gas	s Phase Ratio SnCl ₄ : Et ₂ Se	WDX	XRD; lattice constant in Å
temperature				
400 °C	1:1	4.8 mmol. L^{-1} : 4.8 mmol. L^{-1}	SnSe _{1.47}	SnSe_2 ; $a = 3.77$ Å, $c = 6.06$ Å
425 °C	1:1	4.8 mmol. L^{-1} : 4.8 mmol. L^{-1}	SnSe _{1.70}	SnSe ₂ ; $a = 3.77$ Å, $c = 6.07$ Å
450 °C	1:1	4.8 mmol. L^{-1} : 4.8 mmol. L^{-1}	SnSe _{1.72}	SnSe ₂ ; $a = 3.77$ Å, $c = 6.07$ Å
500 °C	1:1	$4.8 \text{ mmol.L}^{-1}: 4.8 \text{ mmol.L}^{-1}$	SnSe _{1.77}	SnSe ₂ ; $a = 3.77$ Å, $c = 6.06$ Å
525 °C	1:1	4.8 mmol. L^{-1} : 4.8 mmol. L^{-1}	SnSe _{2.07}	SnSe ₂ ; $a = 3.78$ Å, $c = 6.07$ Å
525 °C	2:1	$4.0 \text{ mmol.L}^{-1}: 8.0 \text{ mmol.L}^{-1}$	SnSe _{1.86}	SnSe ₂ ; $a = 3.77$ Å, $c = 6.06$ Å
550 °C	1:1	$4.8 \text{ mmol.L}^{-1}: 4.8 \text{ mmol.L}^{-1}$	SnSe _{2.02}	SnSe ₂ ; $a = 3.78$ Å, $c = 6.06$ Å
550 °C	5:1	$1.6 \text{ mmol.L}^{-1} : 8.0 \text{ mmol.L}^{-1}$	SnSe _{2.07}	SnSe ₂ ; $a = 3.77$ Å, $c = 6.06$ Å
550 °C	10:1	$0.8 \text{ mmol.L}^{-1} : 8.0 \text{ mmol.L}^{-1}$	SnSe _{1.76}	SnSe ₂ ; $a = 3.76$ Å, $c = 6.07$ Å
550 °C	20:1	$0.4 \text{ mmol.L}^{-1} : 8.0 \text{ mmol.L}^{-1}$	SnSe _{1.58}	SnSe ₂ ; $a = 3.77$ Å, $c = 6.07$ Å

5.2.1.5 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy of the film formed at 550 °C at a 1 : 1 SnCl₄ to Et₂Se ratio showed a single environment for the Sn and Se atoms in the films with Sn $3d_{5/2} = 486.6 \text{ eV}$, Sn $3d_{3/2} = 495.0 \text{ eV}$ and Se $3d_{5/2} = 54.3 \text{ eV}$, Se $3d_{3/2} = 55.1 \text{ eV}$ (Figure 5.3). These values correspond to those reported for SnSe₂ (Sn $3d_{5/2} = 486.2 \text{ eV}$, Sn $3d_{3/2} = 494.9 \text{ eV}$ and Se $3d_{5/2} = 54.1 \text{ eV}$, Se $3d_{3/2} = 55.0 \text{ eV}$).⁵ No obvious peaks for tin oxides, tin monoselenide, elemental tin or elemental selenium were observed indicating good purity of the as-synthesized product and confirming the stoichiometry measured by WDX (ca. SnSe_{2.02}).

Figure 5.3 XPS spectra of the Sn 3d and Se 3d peaks from the surface of a film deposited on the glass top substrate from the reaction of SnCl₄ and Et₂Se at 550 °C for a SnCl₄ : Et₂Se ratio of 1 : 1. The grey lines show the experimental data and the darker lines show a best fit.

5.2.1.6 X-ray Diffraction

The XRD data show that all of the films were crystalline and showed a good match with the reported pattern for SnSe_2 (JCPDS File No. 023-0602). The lattice parameters are calculated as a = 3.77 Å and c = 6.07 Å (Table 5.1), which are in reasonable agreement with the reported values for SnSe_2 (a = 3.81 Å and c = 6.14 Å).⁶ All the films produced were strongly orientated along the (001) axis parallel to the substrate plane (Figure 5.4). The films deposited at the lower temperatures (450 °C) were shown to be more crystalline than the ones deposited at higher temperatures (550 °C). This compares well with the SEM micrographs (Figure 5.2), which shows larger plates at 450 – 500 °C, than at 550 °C. Notably no secondary phase such as tin monoselenide was detected by powder diffraction.

Figure 5.4 The XRD patterns obtained for the films formed on the top substrate from the APCVD of SnCl₄ and Et₂Se at 450 °C (a), 500 °C (b) and 550 °C (c). Literature stick pattern for SnSe₂ powder (JCPDS File No. 023-0602) is showed.

5.2.1.7 Raman Microscopy

Raman analysis of all films deposited on the glass top substrate, irrespective of temperature or flow rates, showed the same pattern (Figure 5.5). The sharp intense peak observed at 185 cm⁻¹ was identified as the frequency of the Raman active A_{1g} mode of SnSe₂.^{7,8} Raman microscopy did not reveal the presence of any secondary phase in the films produced on the top substrate.

Figure 5.5 Raman pattern obtained for the film formed on the top substrate from the APCVD of SnCl₄ and Et₂Se at 500 °C.

5.2.2.1 Films formed on the Bottom Substrate from SnCl₄ and Et₂Se : Reaction Conditions

The APCVD reaction of tin tetrachloride (SnCl₄) and diethylselenide (Et₂Se) on the bottom substrate was investigated from the onset temperature, 550 °C, up to 650 °C. The SnCl₄ and Et₂Se bubblers were heated to 70 °C. Flow rates of nitrogen through the SnCl₄ bubbler and the diethyl selenide bubbler were kept within 0.2 - 4.0 L.min⁻¹ (2.6 -58.6 mmol.min⁻¹) and the flow rate through the mixing chamber was kept constant to 6 L.min⁻¹ for all depositions. Deposition time for all experiments was one minute.

5.2.2.2 Appearance, Substrate Coverage and Adherence of the Films

Films produced from the APCVD of diethylselenide and $SnCl_4$ at 550 – 600 °C on the bottom substrate had a silver-black appearance. The films passed the Scotch tape test but were easily scratched with a steel scalpel. Like the films produced on the top substrate, the films were insoluble in common organic solvents but were slowly decomposed in nitric acid and bleach. At a substrate temperature of 650 °C, the films only covered the last 12 cm of the substrate and at 550 °C, only the last 8 cm. This indicates that the deposition is surface-reaction rate limited.

5.2.2.3 Scanning Electron Microscopy

The SEM images for the films deposited on the bottom substrate at 550 - 600 °C (Figure 5.6) showed a morphology similar to the films deposited on the top substrate (Figure 5.2), with plate-like crystallites orientated perpendicularly from the substrate. In contrast the SEM micrographs for the films deposited at 650 °C show a series of hexagonal platelets orientated parallel to the substrate (Figure 5.7).

b) 600 °C (1:1)

Figure 5.6 SEM images of the films produced on the bottom substrate from the APCVD of $SnCl_4$ and Et_2Se at 550 °C and 600 °C for a $SnCl_4$: Et_2Se ratios of 1 : 1.

The hexagonal plates formed at 650 °C were observed to become longer and thicker with increasing $SnCl_4$ to Et_2Se gas phase ratio (Figure 5.7). The average length

of the platelets was found to be comprised between 10 μ m and 40 μ m depending on the flow rates. The stacked layered structure of SnSe can be clearly seen in Figure 5.7.d.

d) 650 °C (10 : 1)

Figure 5.7 SEM images of the films produced on the bottom substrate from the APCVD of $SnCl_4$ and diethyl selenide at 650 °C for two different $SnCl_4$: Et_2Se ratios: 1 : 1 and 10 : 1.

5.2.2.4 Wavelength Dispersive X-ray Analysis

The films produced at a deposition temperature of 650 °C with a ratio of $SnCl_4$: diethyl selenide of 5 : 1 (1.6 mmol.L⁻¹ : 8.0 mmol.L⁻¹) or higher 20 : 1 (0.4 mmol.L⁻¹ : 8.0 mmol.L⁻¹) showed the Sn : Se ratio expected for SnSe by WDX (Table 5.2). The films grown at lower temperature or with a lower $SnCl_4$ / Et₂Se ratio were selenium rich with a tin to selenium ratio between 1.2 and 1.7. This intermediate stoichiometry could indicate the co-formation of SnSe and SnSe₂. Carbon (ca. 1 atomic percent) was detected within the films, whilst no chlorine or other contamination was found by WDX.

Deposition				
Temperature		WDX	XRD; lattice constant in Å	Raman
Ratio SnCl ₄ : Et ₂ Se				
550 °C	1:1	-	-	-
600 °C	1:1	SnSe _{1.72}	SnSe ₂ ; $a = 3.77$ Å, $c = 6.07$ Å	SnSe ₂
625 °C	1:1	SnSe _{1.48}	SnSe ₂ ; $a = 3.78$ Å, $c = 6.06$ Å	SnSe ₂
625 °C	2:1	SnSe _{1.21}	SnSe; $a = 11.53$ Å, $b = 4.07$ Å, $c = 4.28$ Å SnSe ₂ ; $a = 3.78$ Å, $c = 6.06$ Å	SnSe SnSe ₂
650 °C	1:1	SnSe _{1.34}	SnSe ₂ ; $a = 3.78$ Å, $c = 6.05$ Å	SnSe ₂ SnSe
650 °C	5:1	SnSe _{1.05}	SnSe; $a = 11.48$ Å, $b = 4.09$ Å, $c = 4.25$ Å SnSe ₂ ; $a = 3.75$ Å, $c = 6.07$ Å	SnSe SnSe ₂
650 °C	10:1	SnSe _{1.02}	SnSe; $a = 11.52$ Å, $b = 4.06$ Å, $c = 4.28$ Å (001) SnSe ₂	SnSe -
650 °C	20:1	SnSe _{0.99}	SnSe; $a = 11.50$ Å, $b = 4.07$ Å, $c = 4.26$ Å (001) SnSe ₂	SnSe -

Table 5.2 WDX, Raman and XRD data for the films produced onto the bottom substrate by APCVD reaction of $SnCl_4$ with Et_2Se .

5.2.2.5 X-ray Photoelectron Spectroscopy

The XPS of the film deposited on the bottom substrate from $SnCl_4$ and Et_2Se at 650 °C (10 : 1) shows that only one tin environment and one selenium environment

(Figure 5.8) were present in the film. The two doublets at 485.8 and 494.3 eV, and at 53.5 eV and 54.4 eV were attributed respectively to Sn and Se in SnSe (Sn $3d_{5/2} = 485.7$ eV, Sn $3d_{3/2} = 494.2$ eV and Se $3d_{5/2} = 53.7$ eV, Se $3d_{3/2} = 54.5$ eV).^{9,10} No obvious peaks for tin oxides, tin diselenide, elemental tin or elemental selenium were observed indicating high purity of the as-synthesized product.

Figure 5.8 XPS spectra of the Sn 3d and Se 3d peaks from the surface of a film deposited on the bottom glass substrate from the reaction of $SnCl_4$ and Et_2Se at 650 °C for a $SnCl_4$: Et_2Se ratio of 10 : 1. The lighter lines are the experimental data and the darker lines a best fit.

5.2.2.6 X-ray Diffraction

The XRD data show that all the films deposited on the bottom substrate were crystalline. For a SnCl₄ : Et₂Se ratio of 1 : 1, all the films show a good match with the reported pattern for SnSe₂ (JCPDS File No. 023-0602). The indexed cell constants given in Table 5.2 and calculated as a = 3.77 Å and c = 6.06 Å are in good agreement with the reported values for SnSe₂.¹¹ The films were strongly orientated along the (001) axis (Figure 5.9).

Figure 5.9 The XRD patterns obtained for the films formed on the bottom substrate from the APCVD of SnCl₄ and Et₂Se at 600 °C (a), 625 °C (b) and 650 °C (c). Literature stick pattern for SnSe₂ powder (JCPDS File No. 023-0602) is showed.

The XRD patterns of the films produced at 650 °C with a higher amount of tin (IV) chloride than diethyl selenide going through the reactor (ca. 5 : 1 to 20 : 1) shown in Figure 5.10, match the reported pattern for SnSe (JCPDS File No. 032-1382). The calculated lattice parameters (Table 5.2), a = 11.50 Å, b = 4.07 Å, c = 4.26 Å, are in good agreement with the reported values for SnSe.¹² The SnSe films showed pronounced preferential orientation parallel to the substrate plane along the (400) direction for the highest SnCl₄ : Et₂Se ratios. This preferential growth is observed in the SEM pictures where layers seem to stack upon each other along the *c*-axis. The small reflection present in all the XRD patterns of the SnSe films at $2\theta = 14.8^{\circ}$ is attributed to the (001) reflection of SnSe₂. The presence of this SnSe₂ peak within the orthorhombic SnSe patterns has been previously observed.⁶ The intensity of this peak suggests that SnSe is the major phase present in these samples, indeed this is confirmed by WDX which shows Sn : Se ratios close to unity.

Figure 5.10 The XRD patterns obtained for the film formed on the bottom glass substrate from the APCVD of SnCl₄ and diethyl selenide at 650 °C for the following SnCl₄ : Et₂Se ratios: 1 : 1 (a), 5 : 1 (b), 10 : 1 (c), 20 : 1 (d). Literature stick pattern for SnSe powder (JCPDS File No. 032-1382) is showed.

5.2.2.7 Raman Microscopy

Raman analysis of the films deposited on the bottom substrate show strong variations depending on the flow rate conditions and deposition temperature. For deposition temperature below 650 °C, the Raman spectrum irrespective of flow rates, showed the SnSe₂ pattern with the sharp intense peak of the A_{1g} mode at 185 cm⁻¹ (Figure 5.5). At 650 °C, in addition to the SnSe₂ peak at 185 cm⁻¹, two peaks were observed at 131 cm⁻¹ and 149 cm⁻¹ (Figure 5.11). These two peaks, which correspond to the A_g Raman active mode of SnSe, were found to increase with the gas phase SnCl₄ : Et₂Se reactant ratio.¹³ Whereas the band associated with the SnSe₂ phase was seen to have almost disappeared.

Figure 5.11 Raman pattern obtained for the film formed on the bottom substrate from the APCVD of SnCl₄ and Et₂Se at 650 °C for different SnCl₄ : Et₂Se ratios: 1 : 1 (a), 5 : 1 (b), 10 : 1 (c), 20 : 1 (d).

5.2.2.8 Optical Properties

Optical measurements on all the films produced (SnSe, SnSe₂ and SnSe - SnSe₂), either on the top substrate or bottom substrate, show that they were exceptionally absorbing in the visible and near IR regions. The transmittance and reflectance of films, even as thin as 100 nm, was near 0 % from 400 - 1100 nm (Figure 5.12). This property of exceptionally high absorbtivity explains the interest of this material for solar cell applications.

Figure 5.12 Optical reflection, transmission and absorption spectra for a 100 nm film formed on the bottom substrate from the APCVD of SnCl₄ and Et₂Se at 650 °C for a SnCl₄ : Et₂Se ratio of 10 : 1.

5.2.3 Discussion

The results show that the morphology and stoichiometry of films formed from the APCVD reaction of SnCl₄ with Et₂Se are strongly dependent on the substrate's position. For films formed on the top substrate, the measured temperatures were some 100 °C lower than the corresponding film grown on the bottom substrate. Films formed with an onset of deposition at 350 °C on the top substrate, significantly lower than those for the bottom substrate which had an onset for deposition of 600 °C. One explanation for this is that gas-phase nucleation is important in the early part of the reaction and that the particles formed are repelled from the heated bottom substrate to the unheated cooler top substrate - in effect they bounce off the boundary layer formed at the bottom substrate, ties in well with this observation. Perhaps small amounts of nucleated gas phase particles offer an attractive nucleation point for further film growth. However the morphology seen by SEM of the films formed on the top substrate does not show any formation of gas phase particles, where rounded edges and islands often predominate.¹⁴ The very large size of the SnSe₂ crystals formed on the top substrate could mask or actually absorb these nucleated islands. Notably the SnSe₂ phase showed a much larger size and crystallinity at lower deposition temperatures, this is unusual as fast crystal growths are usually seen at elevated temperatures. The marked change in size from ca 70 to 20 micron sized from 500 to 550 °C is probably a consequence of the number of nucleation sites that were generated on the surface. At lower deposition temperatures presumably fewer nucleation sites are present and the crystallites can acquire more precursor and grow larger. However at higher deposition temperature, many more nucleation sites are present and the crystallites have more competition for precursor, and although they have a higher density in terms of number of crystallites per unit area of the film they themselves are significantly smaller.

The amount of selenium found in the films on the top substrate was directly related to temperature and flow rate conditions (Table 5.1). Hence at lower temperature it seems that insufficient Et_2Se is available, perhaps because at this temperature insufficient C-Se bonds are broken. If given enough precursor the favored product on both the top substrate and bottom substrate seems to be $SnSe_2$, indeed this product shows up prominently in both the XRD and Raman results. The orientation of the films on either the top substrate or bottom substrate was related to the phase formed - $SnSe_2$ always formed crystallites perpendicular to the substrate and the SnSe films always parallel to the substrate.

5.3 Conclusion

Tin monoselenide and tin diselenide films were deposited on glass from the APCVD reaction of diethyl selenide and SnCl₄. All the films produced were crystalline and adherent. EDAX, Raman, XRD and XPS analysis performed on these films show the ability of CVD to produce pure SnSe, mixed SnSe-SnSe₂ phases or pure SnSe₂ thin films by modification of the deposition conditions. SnSe films were obtained at 650 °C on the bottom substrate with a SnCl₄ to Et₂Se ratio superior to 10. XRD show preferred growth orientated along the (400) axis parallel to the substrate. This preferential growth orientation could be observed on the SEM pictures where layers seem to be stack upon each other along the *c*-axis. SnSe₂ films were obtained at 625 - 650 °C on the top substrate; they were black-silver in appearance and composed of big adherent plane

crystals. SEM pictures showed plate-like crystallites orientated perpendicular to the substrate and XRD showed that the films were strongly orientated along the (001) axis parallel to the substrate plane. All the films produced were stable in air and were insoluble in common organic solvents. The CVD route developed here to $SnSe_2$ and SnSe is compatible with photovoltaic device manufacture, as such the high absorbtivity of these films could prove useful as a solar absorbtion element in a photovoltaic stack.

5.4 References

- [1] R. Binions. C. J. Carmalt, I. P. Parkin, Proc. Electrochem. Soc., 2003, 2, 1426.
- [2] N. Ghoshtagore, J. Electrochem. Soc., 1978, 125, 110.
- [3] A. Ortiz, J. C. Alonso, M. Garcia, J. Toriz, Semicond. Sci. Techn., 1996, 11, 243.
- [4] L. S. Price, I. P. Parkin, A. M. Hardy, R. J. H. Clark, G. Thomas, K. C. Molloy, *Chem. Mater.*, **1999**, 11, 1792.
- [5] F. Mirabella, B. A. Parkinson, J. Ghijsen, *Phys. Stat. Sol.*, 2004, 1, 372.
- [6] K. Bindu, P. K. Nair, Semicond. Sci. Technol., 2004, 19, 1348.
- [7] D. Walsh, S. Jandl, J. Y. Harbec, J. Phys. C: Solid St. Phys., 1980, 13, L125.
- [8] A. J. Smith, P. E. Meek, W. Y. Liang, J. Phys. C: Solid St. Phys., 1997, 10, 1321.
- [9] R. B. Shalvoy, G. B. Fisher, P. J. Stiles, *Phys. Rev. B*, 1977, 15, 1680.
- [10] C. D. Wagner, J. F. Moulder, L.E. Davis, W. M. Riggs, Handbook of X-Ray Photoelectron Spectroscopy, Perking-Elmer Corporation; Physical Electronics Division; Eden Prairie, Minnesota, 1979.
- [11] N. Ganesan, V. Sivaramakrishnan, Semicond. Sci. Technol., 1987, 2, 519.
- [12] Y. Xie, H. Su, B. Li, Y. Qian, *Mater. Res. Bull.*, 2000, 35, 459.
- [13] H. R. Chandrasekhar, R. G. Humphreys, U. Zwick, M. Cardona, *Phys. Rev. B*, 1976, 15, 2177.
- [14] K. L. Choy, Prog. Mater. Science, 2003, 48, 57.

Chapter 6

APCVD and Chemical Vapour Synthesis of Chromium Oxyselenides

6.1 Introduction

This chapter describes the APCVD and chemical vapor synthesis of the new ternary compound chromium oxyselenide. The existence of chromium oxysulfide,^{1,2,3} chromium sulfoselenide.4,5 chromium sulfotelluride^{6,7,8,9,10} and chromium selenotelluride^{11,12} has been known for a long time and a large number of studies have focused on their magnetic and crystallographic properties. However, the formation of a chromium oxyselenide has not been reported. Several other oxyselenides of transitionmetals have been observed in the past, ^{13,14,15,16} however little is known about their properties. A large number of rare-earth-transition metal oxyselenide have been synthesised. It is possible to form chromium-lanthanum or chromium-cerium oxyselenide by mixing (LaO)₂Se or (CeO)₂Se with Cr₂Se₃ at 1000 °C in ampoules sealed under vacuum.^{17,18} In this chapter the synthesis and characterisation of a new solid solution in the system $Cr_2O_3 - Cr_2Se_3$ is reported.

6.2 APCVD and Chemical Vapour Synthesis of Chromium Oxyselenides Powders and Films

The APCVD and gas-phase reaction of chromyl chloride (CrO_2Cl_2) with diethyl selenide (Et₂Se) was investigated over the range of temperature 400 – 600 °C. CrO_2Cl_2 has been already widely used in CVD to produce Cr_2O_3 and CrO_2 thin films,^{19,20} and mixed-metals oxide films such as $Cr_{2-x}Ti_xO_3^{21}$ and $V_{1-x}Cr_xO_2$.²² The APCVD reaction of (CrO_2Cl_2) with a sulfide precursor has been investigated in the past, however the reaction of (CrO_2Cl_2) and H₂S produced amorphous and non-uniform films with a stoichiometry varying from $CrS_{0.70}Cl_{0.65}O_{0.07}$ to $CrS_{0.64}Cl_{0.34}O_{2.21}$.²³ Other chromium precursors used in CVD included CrO_3 ,²⁴ [Cr(CO)₆],²⁵ [Cr[(C₆H₅)C₃H₇)₂],²⁶

 $[Cr(C_5H_7O_2)_3]$,²⁷ Cr(III)(hexafluoroacetylacetonate) and tris(2,2,6,6-tetra-methyl-3,5-heptanedionato) chromium(III).²⁸

6.2.1.1 Films and Powders formed from CrO₂Cl₂ and Et₂Se : Reaction Conditions

Chromyl chloride (CrO₂Cl₂) and diethylselenide (Et₂Se) were placed into two different stainless steel bubblers, which were heated by an external jacket to 75°C and 70°C respectively. Both precursors were introduced into gas streams by passing hot N₂ through the bubblers. Flow rates of nitrogen through the CrO₂Cl₂ bubbler and Et₂Se were kept within 0.1 – 4.0 L min⁻¹ (1 – 60 mmol.min⁻¹) and the flow rate through the mixing chamber was between 2.0 and 5.0 L min⁻¹ for all depositions. The reaction was studied over the temperature range of 400 – 600 °C. All deposition times were one minute.

6.2.1.2 Appearance, Substrate Coverage and Adherence of the Films and Powders Produced.

At reaction temperatures below 550 °C and irrespective of the flow rates, thin films of chromia were grown from CrO₂Cl₂ and Et₂Se across the entire length of the substrate. The films were hard, strongly adherent to the glass and had the characteristic green colour of Cr₂O₃. This is not surprising, as chromyl-chloride is known to be a common precursor for chromia deposition.^{29,30,31,32} At 600 °C, the APCVD reaction of CrO₂Cl₂ with Et₂Se was found to be strongly dependent on the molar gas flows. For low $Et_2Se : CrO_2Cl_2$ ratios (under 14.7 mmol.min⁻¹ : 10.9 mmol.min⁻¹), the films produced were similar to the ones produced at lower temperature. With an increase of the Et₂Se relative gas flow, the films formed were greyish with a weak hardness. They passed the Scotch tape test, however they were easily scratched and removed from the substrate with a steel scalpel. The films were insoluble in common organic solvents but were slowly decomposed in dilute nitric acid and bleach. The films were air stable and water stable. Above a $Et_2Se : CrO_2Cl_2$ ratio of 1.35 : 1 (14.7 mmol.min⁻¹ : 10.9 mmol.min⁻¹), no films were formed while the formation of a fine black powder was observed at the surface of the glass substrate. The particles formed were air and water stable, insoluble in common organic solvents but were quickly decomposed in dilute nitric acid and bleach. The amount of particles collected on the substrate after each one minute run varied from 5 to 20 mg. More powder was anticipated to be produced during the APCVD reaction, however due to the non-adherence of the fine particles formed; part of it was probably flushed away by the required high flow rate through the reactor.

6.2.1.3 Scanning Electron Microscopy

Scanning electron microscopy (SEM) images of the films formed at 600 °C with a Et₂Se to CrO_2Cl_2 gas phase ratio inferior to 1.3 : 1 showed a series of crystals which become longer and larger with a decrease in the concentration of selenium precursor in the gas phase (Figure 6.1). The size of the crystals observed varied from 1-2 µm when using CrO_2Cl_2 only, to 100-500 nm when deposited from an equi-molar flow of CrO_2Cl_2 and Et₂Se. No secondary phase was observed by SEM.

 Cr_2O_3

Cr2O2.90Se0.10

Cr₂O_{2.80}Se_{0.20}

Figure 6.1 SEM images of the films produced from the APCVD of CrO_2Cl_2 and Et_2Se at 600 °C.

Chapter 6 – APCVD and Gas Phase Formation of $Cr_2Se_{3-x}O_x$

SEM images of the powders formed at 600°C with a Et_2Se : CrO_2Cl_2 ratio superior to 1.35 : 1 showed a large number of spherical nanoparticles (Figure 6.2). This spherical and agglomerated morphology is consistent with gas phase formation. The gas phase precipitation is used to produce extremely fine powders as observed here. Increase of the Et_2Se relative gas flow didn't show any change in the size or shape of the nanoparticles. The mean size of these gas phase synthesised nanoparticles was 100 nm, while the size distribution varied from 25 to 300 nm (Figure 6.3). Once again, no secondary phase was observed by SEM.

Figure 6.2 SEM images of the nanoparticles produced from the chemical vapour reaction of CrO_2Cl_2 and Et_2Se at 600 °C.

6.2.1.4 Wavelength Dispersive X-ray Analysis

Energy and wavelength-dispersive X-ray analysis (EDX / WDX) showed that the films and the powders produced at 600 °C and above contain chromium, oxygen and selenium in a ratio that strongly depend on the flow rate conditions used. The stoichiometry of the adherent films formed from Et_2Se and CrO_2Cl_2 was determined to vary from Cr_2O_3 to $Cr_2O_{2.8}Se_{0.2}$, while the stoichiometry of the particles produced from the same precursors varied from $Cr_2Se_{0.3}O_{2.7}$ to $Cr_2Se_{2.2}O_{0.8}$ (Table 6.1). In both cases, the chlorine level was found to be less than an atom%. Point WDX analysis on the powders showed disparity in the stoichiometry of the particles from a unique APCVD run. This heterogeneity in composition was more strongly observed with the oxygenrich particles; with a particle's stoichiometry varying from $Cr_2Se_{0.3}O_{2.7}$ to $Cr_2Se_{0.7}O_{2.3}$ for an overall stoichiometry of the powder between $Cr_2Se_{0.3}O_{2.7}$ and $Cr_2Se_{0.5}O_{2.3}$. The selenium-rich particles were found to show a better homogeneity in their stoichiometry.

$Et_2Se: CrO_2Cl_2$	EDX / WDX	XRD ; lattice constants	c/a	Raman
Reference [33]	Cr ₂ O ₃	Cr_2O_3 ; $a = 4.939$ Å, $c = 13.627$ Å	2.76	Cr ₂ O ₃
0:1	Cr ₂ O _{3.00}	Cr_2O_3 ; $a = 4.981$ Å, $c = 13.652$ Å	2.74	Cr ₂ O ₃
1:1	$Cr_2O_{2.90}Se_{0.10}$	Cr_2O_3 ; $a = 4.937$ Å, $c = 13.675$ Å	2.77	Cr ₂ O ₃
1:1	$Cr_2O_{2.85}Se_{0.15}$	Cr_2O_3 ; $a = 4.928$ Å, $c = 13.602$ Å	2.76	Cr ₂ O ₃
1:1	$Cr_2O_{2.80}Se_{0.20}$	Cr_2O_3 ; $a = 4.988$ Å, $c = 13.664$ Å	2.74	Cr ₂ O ₃
1.3 : 1	$Cr_2Se_{0.30}O_{2.70}$	Cr_2Se_3 ; $a = 6.204$ Å, $c = 17.096$ Å	2.756	225 cm ⁻¹
2:1	$Cr_2Se_{0.40}O_{2.60}$	Cr_2Se_3 ; $a = 6.231$ Å, $c = 17.315$ Å	2.779	225 cm ⁻¹
5:1	$Cr_2Se_{0.50}O_{2.50}$	Cr_2Se_3 ; $a = 6.271$ Å, $c = 17.354$ Å	2.767	225 cm ⁻¹
10 : 1	$Cr_2Se_{0.70}O_{2.30}$	Cr_2Se_3 ; $a = 6.266$ Å, $c = 17.452$ Å	2.785	225 cm ⁻¹
20 : 1	$Cr_2Se_{1.50}O_{1.50}$	Cr_2Se_3 ; $a = 6.237$ Å, $c = 17.595$ Å	2.821	225 cm ⁻¹
40 : 1	$Cr_2Se_{2.15}O_{0.85}$	Cr_2Se_3 ; $a = 6.248$ Å, $c = 17.649$ Å	2.825	225 cm ⁻¹
Reference [34]	Cr ₂ Se ₃	Cr_2Se_3 ; $a = 6.250$ Å, $c = 17.280$ Å	2.765	Cr ₂ Se ₃

Table 6.1 Reaction conditions, WDX, XRD and Raman data of the films formed from the APCVD reaction of CrO_2Cl_2 with Et₂Se at 600 °C.

6.2.1.5 X-ray Photoelectron Spectroscopy

XPS spectra of as-prepared powder (Figure 6.4) confirm the presence of three elements - chromium, oxygen and selenium in the same ratio as found from WDX analysis ($Cr_2Se_{0.7}O_{2.3}$). Only one environment was observed for each of the element present in the powder; $Cr 2p_{1/2} = 585.3 \text{ eV}$, $Cr 2p_{3/2} = 576.2 \text{ eV}$; O 1s = 531.5 eV; Se $3d_{3/2} = 55.1 \text{ eV}$ and Se 3d = 54.0 eV. The chromium environment for the $2p_{3/2}$ peak is intermediate between that of Cr_2O_3 at 576.6 eV and Cr_2Se_3 at 574.6 eV and indicative of Cr(III).^{35,36} The oxygen 1s environment showed a narrow full width half maximum peak at 1.7 eV – indicative of a single environment and a binding energy shift consistent with an oxide and matching that in chromium oxide 530.8 eV.³⁷ The selenium $3d_{3/2}$ peak matched that found in Cr_2Se_3 at 54.0 eV.³⁵

Figure 6.4 Selected area XPS spectra of the chromium oxyselenide ($Cr_2Se_{0.70}O_{2.30}$) powder produced at 600 °C from the gas phase reaction of CrO_2Cl_2 and Et_2Se . Top, Cr 2p region; left, O 1s region; right, Se 3d region. The grey lines show the experimental data and the darker lines show a best fit.

6.2.1.6 X-ray Diffraction

X-ray diffraction showed that all the adherent films produced from CrO_2Cl_2 and Et_2Se were crystalline, and show a good match with the reported patterns for hexagonal Cr_2O_3 (JCPDS File No. 006–0504) and CVD prepared chromia coatings.³⁸ The evaluated lattice parameters (Table 6.1) are in good agreement with the reported ones for hexagonal Cr_2O_3 a = 4.939 Å, c = 13.627 Å. No evidence of another chromium oxide - such as CrO_2 - or a chromium selenide phase was found by XRD (Figure 6.5).

Figure 6.5 XRD pattern obtained for the films formed on glass substrate at 600 °C from the APCVD reaction of chromyl chloride and diethylselenide for the following $Et_2Se : CrO_2Cl_2$ ratios: 0 : 1 (a) and 1 : 1 (b). Literature stick pattern for Cr_2O_3 powder (JCPDS File No. 006–0504) is shown.

The powders produced from the gas phase reaction of CrO_2Cl_2 and Et_2Se were confirmed to be a single phase by X-ray diffraction (Figure 6.6). XRD data shows that all the powders were crystalline and compared well with the reported pattern for rhombohedral Cr_2Se_3 (JCPDS File No. 040-1403). The diffraction peaks are almost comparable to the stick pattern for rhombohedral Cr_2Se_3 found in the literature. However, the (116) peak was appreciably weaker and broader. The cell constants of the particles calculated in the hexagonal lattice were found to be slightly different than the one reported for Cr_2Se_3 ; a = 6.250 Å, c = 17.280 Å (Table 6.1). The lattice parameters were found to increase with selenium to oxygen ratio x in the $Cr_2Se_xO_{3-x}$ particles. For the lowest and highest concentration of selenium in the powders, the cell constants were respectively calculated as a = 6.204 Å, c = 17.096 Å and a = 6.248 Å, c = 17.649 Å. The axial ratio c/a was also found to increase with x, as shown in Table 6.1.

Figure 6.6 XRD pattern obtained for the powders formed at 600 °C from the APCVD reaction of chromyl chloride and diethylselenide for two different Et_2Se : CrO_2Cl_2 ratios: 1.3 : 1 (a), 5 : 1 (b) and 10 : 1 (c). Literature stick pattern for rhombohedral Cr_2Se_3 powder (JCPDS File No. 040–1403) is shown.

6.2.1.7 Raman Microscopy

Raman spectroscopy of all films, irrespective of their green or grey colour showed the same pattern (Figure 6.7). This was readily identified as the distinctive Cr_2O_3 Raman pattern reported in the literature with peaks at 307, 350, 524, 551 and 610

cm^{-1.39} The most intense band at 551 cm⁻¹ corresponds to the frequency of the Raman active A_{1g} modes, while the other are of the E_g symmetry. No evidence was seen for a secondary phase, such as CrO₂ or Cr₂Se₃.^{40,41}

Figure 6.7 Raman pattern obtained for the film formed on glass substrate at 600 °C from the APCVD reaction of CrO_2Cl_2 and Et_2Se .

Raman analysis of the powders formed from the gas phase reaction of CrO_2Cl_2 and Et_2Se revealed a weak and broad peak around 225 cm⁻¹ (Figure 6.8). The absence of the bands for Cr_2O_3 and CrO_2 , which are excellent Raman scatterers, confirms that no chromium oxide was formed during the APCVD reaction of CrO_2Cl_2 and Et_2Se .

Figure 6.8 Raman pattern obtained for Cr₂Se_{0.40}O_{2.60} nanoparticles.

6.2.1.8 Thermogravimetric Analysis

The thermogravimetric analysis (TGA) of the particles formed from the gas phase reaction of CrO_2Cl_2 and Et_2Se confirmed the results obtained by WDX. The TGA of the $Cr_2Se_{0.7}O_{2.3}$ particles (Figure 6.9) showed a gradual increase of the weight (+24 %) between 60 °C and 420 °C, in which $Cr_2Se_{0.7}O_{2.3}$ oxidized to give $Cr_2(SeO_4)_{0.7}O_{2.3}$. The weight loss (-8 %) observed from 420 °C to 550 °C correspond to the decomposition of $Cr_2(SeO_4)_{0.7}O_{2.3}$ in Cr_2O_3 and SeO_2 by losing O_2 . The second weight loss measured as 36 % corresponds to the sublimation of all selenium in the form of SeO_2 .^[42] The same reaction are observed to occur during the TGA of the $Cr_2Se_{2.15}O_{0.85}$ particles (Figure 6.10). The $Cr_2Se_{2.15}O_{0.85}$ particles gradually oxidized to form $Cr_2(SeO_4)_{2.15}O_{0.85}$, corresponding to a mass gain of 46 %. The particles then decomposed to Cr_2O_3 and SeO_2 at 405 °C. The loss of O₂ resulted in a weight loss of 11 %, and the sublimation of SeO₂ in total mass loss of 82 %.

Figure 6.9 Thermogravimetric analysis of the Cr₂Se_{0.70}O_{2.30} particles.

Figure 6.10 Thermogravimetric analysis of the Cr₂Se_{2.15}O_{0.85} particles.

The product of the decomposition of the particles, which had the characteristic colour of Cr_2O_3 , was confirm to be Cr_2O_3 by XRD and Raman (Figure 6.11).

Figure 6.11 XRD pattern of the powder obtained after the TGA of the $Cr_2Se_{0.70}O_{2.30}$ particles in air. Literature stick pattern for Cr_2O_3 powder (JCPDS File No. 006–0504) is shown.

6.2.1.9 SQUID

The dc magnetic susceptibility (χ) as a function of temperature (Figure 6.12) was measured for different x in Cr₂Se_xO_{3-x} particles formed from the gas phase reaction of CrO₂Cl₂ and Et₂Se. All the powders from the range of composition Cr₂Se_{0.3}O_{2.7} to Cr₂Se_{2.15}O_{0.85} showed a peak below 50 K. The large particle size (100 nm) precludes the possibility of this being due to a superparamagnetic blocking transition,⁴³ and the substitution of oxygen with selenium is unlikely to generate any frustrated magnetic states. We therefore attribute the peak to an antiferromagnetic ordering temperature transition. The shape of the curves was similar to the one obtain for pure Cr₂Se₃.¹² However the Néel temperature measured for all the powders produced was found to be lower than the one reported for Cr₂Se₃ (ca. T_N = 43 K), and much lower than that of Cr₂O₃ (T_N = 307 K). These results suggest that the new materials have somewhat different magnetic properties compared to their parent compounds.

Figure 6.12 DC magnetic susceptibility in a measurement field of 10 Oe as a function of temperature for different x in $Cr_2Se_xO_{3-x}$.

In the chromium oxyselenide powders containing the lowest amount of selenium (ca. 0.3 to 0.5), a series of humps can be observed between 50 K and 350 K. This could

indicate the presence of a small amount of one or several secondary phases such as chromium monoselenide. $Cr_{1-x}Se$ with x between 0 and 0.17 are known to form a series of NiAs-type structured compounds with a Néel temperature varying from 280 K to 83 K.⁴⁴ As observed by spot-WDX analysis previously, the chromium oxyselenide powders reported in this thesis containing the lowest amount of selenium showed disparity in the stoichiometry of the particles from a unique APCVD run. This heterogeneity in stoichiometry could confirm the formation of a small amount of one or several secondary phases.

All the $Cr_2Se_xO_{3-x}$ powders produced from the gas phase reaction of CrO_2Cl_2 and Et_2Se showed an antiferromagnetic ordering with a Néel temperature varying with the selenium percentage in the particles (Figure 6.13). The Néel temperature was observed to vary from 20 K for $Cr_2Se_{0.3}O_{2.7}$, through a minimum of 11 K for $Cr_2Se_{0.7}O_{2.3}$, to 25 K for $Cr_2Se_{2.15}O_{0.85}$.

Figure 6.13 Néel temperature for different x in Cr₂Se_xO_{3-x}.

Figure 6.14 Hysteresis loops measured at T = 5, 120 and 300 K for different x in $Cr_2Se_{0.7}O_{2.3}$. A detail of the low field magnetisation is shown below.

The variation of magnetization of the $Cr_2Se_{0.7}O_{2.3}$ nanoparticles with magnetic field H data shows a symmetrical hysteresis loop with a coercive field of 360 Oe and a remanence of 0.064 emu/g at 5 K, whereas the coercivity and remanence at 120 and 300 K are negligible (Figure 3.14). This indicates that the $Cr_2Se_{0.7}O_{2.3}$ nanoparticles exhibit weak ferromagnetism below the Néel temperature. This ferromagnetic behaviour of

antiferromagnetic nanoparticles has been described by Néel and can be explained by the non-compensation of the two magnetic sublattices at the surface of the nanoparticles.^{45,46} Perfectly antiferromagnetic nanoparticles do not exist and as the particle size is reduced, a net magnetic moment is observed due to the imbalance of spins 'up' and 'down' at the surface. No superparamagnetism was considered to be present due to the particles size (above 25 nm).

6.2.2 Discussion

The characterization data are all consistent with the formation of a hitherto unknown solid solution of $Cr_2Se_{3-x}O_x$ rather than the formation of two intimately mixed phases of Cr₂O₃ and Cr₂Se₃. The SEM analysis of either the Cr₂Se_{3-x}O_x films or powders produced from the APCVD or gas phase reaction of CrO₂Cl₂ and Et₂Se showed a single type of morphology. Spherical and agglomerated particles were observed rather than two types of crystallite. The WDX and EDX analysis showed that the films had a stoichiometry between Cr_2O_3 and $Cr_2Se_{0,2}O_{2,8}$, while the powders had a stoichiometry varying from $Cr_2Se_{0.3}O_{2.7}$ to $Cr_2Se_{2.15}O_{0.85}$. The films and powders, except the powders with an overall stoichiometry varying from Cr₂Se_{0.3}O_{2.7} to $Cr_2Se_{0.5}O_{2.3}$, were homogeneous to spot analysis with the same elemental formulation across the surface. The X-ray diffraction patterns showed a single-phase material for all the $Cr_2Se_{3-x}O_x$ films or powders produced. All the films produced had the hexagonal Cr_2O_3 structure, while the powders crystallise with the rhombohedral Cr_2Se_3 structure. Cr₂O₃ is known to be crystalline when prepared by CVD at 400 °C and adopt an adhesive film with angular crystallites.^{30,47,48} Moreover, reaction of Et₂Se and CrO₂Cl₂ at deposition temperatures from 450 - 600 °C produced a crystalline green chromium oxide films. It was only at 600 °C and above that a chromium oxyselenide phase formed- by gas phase nucleation that "snowed" onto the surface to form a poorly adherent film that could be readily collected. The XPS analysis for the chromium oxyselenide showed only a single chromium environment rather than two well separated peaks for the oxide and selenide, furthermore the quantification of the element abundances matched the WDX analysis. The thermal gravimetric analysis results also correlate well with the elemental formula. The Raman pattern does not show any chromium oxide (corundum) in the powder but is consistent with a layered metalselenide type structure. Furthermore the magnetic properties of the new material are unlike either Cr_2Se_3 or Cr_2O_3 , which although both are antiferromagnets have Néel temperatures of 43 and 307 K respectively. Hence there is strong evidence for the formation of a new chromium oxyselenide phase.

6.3 Selenisation of Chromium Oxide Films

The selenisation of APCVD prepared chromium oxide (Cr_2O_3) thin films using diethylselenide (Et_2Se) as a selenium source and N₂ as a carrier gas was studied. Et₂Se has been already successfully used in a selenisation process to prepare CuInSe₂ and CuInGaSe₂ thin films.^{49,50} Et₂Se, which is a less-hazardous selenium source than H₂Se, has been reported to have a higher decomposition rate than H₂Se gas or elemental selenium vapour.⁵¹

6.3.1.1 Films and Powders formed from CrO₂Cl₂ and Et₂Se : Reaction Conditions

The chromia film precursors were prepared by APCVD using chromyl chloride at 500 °C. The Cr₂O₃ APCVD films produced had a shine green appearance and were all found to be crystalline. They showed the distinctive XRD and Raman pattern of Cr₂O₃. Thickness of the film precursors was approximately 1 μ m. The films were selenised using pyrolytically decomposed Et₂Se for 10 min in a quartz tube reactor at atmospheric pressure. The selenisation temperature, Et₂Se bubbler and N₂ carrier gas flow rate were 650 °C, 80 °C and 2 L.min⁻¹, respectively. These conditions correspond to a Et₂Se flow of 30 mmol.min⁻¹.

6.3.1.2 Appearance, Substrate Coverage and Adherence of the Films

The films produced from the selenisation of Cr_2O_3 films became partly grey silver, while some other parts stayed green and unchanged. They passed the Scotch tape test, and were hardly scratched and remove from the substrate with a steel scalpel. The films formed were air stable and water stable, insoluble in common organic solvents but were quickly decomposed in dilute nitric acid and bleach.

6.3.1.3 X-ray Diffraction

X-ray diffraction of the grey silver films produced after being heated in a stream of Et₂Se at 650 °C compare well with the reported pattern for rhombohedral Cr₂Se₃ (JCPDS File No. 040-1403). No secondary phase (Cr₂O₃) was observed, indicating the total selenisation of Cr₂O₃ (Figure 6.15). XRD of the films prepared with shorter selenisation times showed the distinctive patterns for hexagonal Cr₂O₃ (JCPDS File No. 006–0504) and for rhombohedral Cr₂Se₃ (JCPDS File No. 040-1403), indicating only a partial selenisation of Cr₂O₃. The evaluated lattice parameters of both phases in the composite films produced (Cr₂O₃ a = 4.929 Å, c = 13.634 Å, and Cr₂Se₃ a = 6.255 Å, c= 17.299 Å) were in good agreement with the reported ones for hexagonal Cr₂O₃ a =4.939 Å, c = 13.627 Å, and rhombohedral Cr₂Se₃ a = 6.250 Å, c = 17.280 Å. No evidence of an other phase was observed in XRD.

Figure 6.15 XRD pattern obtained for the films obtained before the selenisation process (a), after a 5 minutes selenisation at 650 °C (b), after a 10 minutes selenisation at 650 °C (c).

6.3.1.4 Raman Microscopy

Raman spectroscopy of the films obtained after a 5 minute selenisation showed the Cr_2O_3 Raman pattern reported in the literature with peaks at 307, 350, 524, 551 and 610 cm⁻¹. The presence of two additional broad peaks at 207 and 250 cm⁻¹ was also observed (Figure 6.16). By using a lower laser intensity during the Raman analysis, which consequently was not going deeper in the film, it was possible to determine that the upper layers of the film was the source of these two additional peaks. The Raman analysis of the films obtained after a 10 minute selenisation process showed three bands at 172, 214 and 241 cm⁻¹ (Figure 6.17). None of the Cr_2O_3 bands were observed.

Figure 6.16 Raman pattern of the films obtained after a 5 minutes selenisation at 650 °C in a Et₂Se flow of 30 mmol.min⁻¹.

Figure 6.17 Raman pattern of the films obtained after a 10 minutes selenisation at 650 °C in a Et₂Se flow of 30 mmol.min⁻¹.

6.3.2 Discussion

The selenisation of Cr_2O_3 precursors using Et_2Se as a selenium source led to the formation of Cr_2Se_3 thin films. The films produced had a grey silver appearance and were adherent to the substrate. XRD and Raman analysis show that pure Cr_2Se_3 films were formed during the selenisation process.

6.4 Conclusion

The characterization of the films and powders formed from the APCVD or gas phase reaction of CrO_2Cl_2 and Et_2Se confirm the formation of an unknown solid solution of $Cr_2Se_{3-x}O_x$ rather than the formation of two intimately mixed phases of Cr_2O_3 and Cr_2Se_3 . $Cr_2Se_{3-x}O_x$ adopts the hexagonal Cr_2O_3 structure for a stoichiometry between Cr_2O_3 and $Cr_2Se_{0.2}O_{2.8}$, and the rhombohedral Cr_2Se_3 structure for a stoichiometry varying from $Cr_2Se_{0.3}O_{2.7}$ to $Cr_2Se_{2.15}O_{0.85}$. Magnetic studies showed that all the $Cr_2Se_{3-x}O_x$ compounds formed with the rhombohedral Cr_2Se_3 structure had an antiferromagnetic ordering with a Néel temperatures lower than the expected one for Cr_2Se_3 (ca. 43 K). Despite the formation of the new solid solution $Cr_2Se_{3-x}O_x$ over the range Cr_2O_3 to $Cr_2Se_{2.15}O_{0.85}$, the APCVD reaction of CrO_2Cl_2 and Et_2Se didn't allow the growth or formation of pure Cr_2Se_3 even for extremely high Et_2Se to CrO_2Cl_2 gas phase ratio. However, the selenisation of APCVD prepared Cr_2O_3 thin films using Et_2Se as selenium source led to the formation of adherent Cr_2Se_3 thin films.

6.5 References

- [1] S. S. Batsanov, L. M. Doronina, N. V. Podberezskaya, Zh. Struk. Khim., 1964, 154, 624.
- [2] S. S. Batsanov, L. M. Doronina, Ser. Khim., 1968, 9, 2155.
- [3] V. N. Ikorskii, S. S. Batsanov, Neorg. Mater., 1972, 8, 1858.
- [4] L. M. Doronina, V. S. Filatkina, S. S. Batsanov, Neorg. Mater., 1967, 3, 1696.
- [5] V. N. Ikorskii, L. M. Doronina, S. S. Batsanov, Zh. Struk. Khim., 1968, 9, 143.
- [6] S. S. Batsanov, L. M. Doronina, Neorg. Mater., 1966, 2, 491.
- [7] V. N. Ikorskii, Neorg. Mater., 1973, 9, 938.
- [8] M. Yuzuri, T. Yusuki, J. Magn. Magn. Mater., 1986, 54, 923.
- [9] Y. Adachi, M. Yuzuri, T. Kaneko, S. Abe, J. Magn. Magn. Mater., 1990, 90, 153.
- [10] M. Yuzuri, Y. Adachi, T. Kaneko, H. Yoshida, S. Abe, J. Magn. Magn Mater., 1995, 140, 151.
- [11] M. Yuzuri, K. Segi, Phys. B+C: Phys. Condens. Matt. + Atom., Mol. Plasma Phys., 1977, 86, 891.
- [12] S. Ohta, Y. Narui, Y. Sakayori, J. Magn. Magn. Mater., 1997, 170, 168.
- [13] H. Fonzes-Diacon, Compt. Rend., 1900, 130 1025.
- [14] H. Fonzes-Diacon, Compt. Rend., 1900, 131, 556.
- [15] K. H. Schmidt, A. Mueller, Spectrochim. Acta, Part A, 1972, 28, 1829.
- [16] K. S. Lee, Y. U. Kwon, J. Kor. Chem. Soc., **1996**, 40, 379.
- [17] V. V. Tien, N. H. Dung, Compt. Rend., 1981, 293, 933.
- [18] S. Barnier, C. Julien, *Mater. Res. Bull.*, **1995**, *30*, 225.
- [19] W. J. Desisto, P. R. Broussard, T. F. Ambrose, B. E. Nadgorny, M. S. Osofsky, Appl. Phys. Lett., 2000, 76, 3789.
- [20] Y. N. Cho, W. J. Desisto, Chem. Vap. Dep., 2003, 9, 121.
- [21] G. A. Shaw, I. P. Parkin, D. E. Williams, J. Mater. Chem., 2003, 13, 2957.
- [22] P. Merenda, N. Sol, J. Cryst. Growth, 1977, 40, 195.
- [23] A. M. E. Hardy, Ph.D thesis, 2002, University of London.
- [24] A. F. Mota, A. J. Silvestre, P. M. Sousa, O. Conde, M. A. Rosa, M. Godinho, Condens. Matter, 2006, 1, 6.
- [25] P. M. Sousa, A. J. Silvestre, N. Popovici, O. Conde, Condens. Matter, 2006, 1, 17.

- [26] F. Maury, D. Oquab, R. Morancho, J. Nowak, J. Gauthier, Proc. of the Tenth Int. Conf. on Chem. Vap. Dep., 1987, 1213.
- [27] H. Chbihi, Mater. Manuf. Processes, 1991, 6, 469.
- [28] G. Carta, M. Natali, G. Rossetto, P. Zanella, G. Salmaso, S. Restello, V. Rigato,
 S. Kaciulis, A. Mezzi, *Chem. Vap. Dep.*, 2005, 11, 375.
- [29] A. Anguelouch, A. Gupta, G. Xiao, D. W. Abraham, Y. Ji, S. Ingvarsson, C. L. Chien, Phys. Rev. B: Condens. Matt. and Mater. Phys., 2001, 64, 180408/1.
- [30] I. P. Parkin, M. N. Field, J. Phys. IV: Proc. of the Twelfth Eur. Conf. on Chem. Vap. Dep., 1999, 1, 387.
- [31] W. J. DeSisto, P. R. Broussard, T. F. Ambrose, B. E. Nadgorny, M. S. Osofsky, *Appl. Phys. Let.*, **2000**, *76*, 3789.
- [32] Y-N Cho, W. J. DeSisto, Chem. Vap. Dep., 2003, 9, 121.
- [33] T. R. McGuire, E. J. Scott, F. H. Grannis, Phys. Rev., 1956, 102, 1000.
- [34] Y. Adachi, M. Yuzuri, T. Kaneko, S. Abe, H. Yoshida, J. Phys. Soc. Jpn., 1994, 63, 369.
- [35] E. Agostinelli, C. Battistoni, D. Fiorani, G. Mattogno, M. Nogues, J. Phys. Chem. Solids, 1989, 50, 269.
- [36] C. D. Wagner, in *Pratical Surface Analysis Second Edition*, Vol. 1 (Eds: D.Briggs, M.P.Seah), WILEY, Salle-Sauerlander, **1990**, 606.
- [37] I. Ikemoto, K. Ishii, S. Kinoshita, H. Kuroda, M. A. A. Franco, J. M. J. Thomas, Solid State Chem., 1976, 17, 425.
- [38] S. Chevalier, G. Bonnet, J. P. Larpin, Appl. Surf. Sci., 2000, 167, 125.
- [39] J. Mougin, T. LeBihan, G. Lucazeau, J. Phys. Chem. Solids, 2001, 62, 553.
- [40] M. N Iliev, A. P. Litvinchuk, H. G. Lee, C. W. Chu, A. Barry, J. M. D. Coey, *Phys. Stat. Sol.*, **1999**, 215, 643.
- [41] J. E. Maslar, W. S. Hurst, T. A. Vanderrah, I. Levin, J. Raman Spectrosc., 2001, 32, 201.
- [42] S. M. Grigorovich, A. V. Novoselova, Y. M. Ukrainskii, Neorg. Mater., 1975, 11, 2125.
- [43] L. Néel, Compt. Rend., 1961, 252, 4075.
- [44] M. Kanichi, K. Tahahiko, J. Sci., Ser. A-II, 1965,28, 47.
- [45] L. Néel, J. Phys. Soc. Jpn., 1962, 17, 676.
- [46] L. Néel, Low Temp. Phys., 1962, 1961, 411.

- [47] A. Anguelouch, A. Gupta, G. Xiao, G. X. Miao, D. W. Abraham, S. Ingvarsson,Y. Ji, C. L. Chien, J. Appl. Phys., 2002, 10, 7140.
- [48] W. J. DeSisto, P. R. Broussard, T. F. Ambrose, B. E. Nadgorny, M. S. Osofsky, Appl. Phys. Let., 2000, 76, 3789.
- [49] T. Yamamoto, M. Nakamura, J. Ishizuki, T. Deguchi, S. Ando, H. Nakanishi, S.
 F. Chichibu, J. Phys. Chem. Solids, 2003, 64, 1855.
- [50] M. Sugiyama, F. B. Dejene, A. Kinoshita, M. Fukaya, Y. Maru, T. Nakagawa,
 H. Nakanishi, V. Alberts, S. F. Chichibu, J. Cryst. Growth, 2006, 294, 214.
- [51] S. F. Chichibu, M. Sugiyama, M. Obasmi, A. Hayakawa, T. Mizutani, H. Nakanishi, T. Negami, T. Wada, J. Cryst. Growth, 2002, 243, 404.

Chapter 7

Conclusions

In this final chapter, the results of all reactions carried out in this thesis are summarised and discussed.

7.1 APCVD of Group IV and V Selenides

7.1.1 Titanium Diselenide Films

Titanium diselenide thin films have been deposited by the APCVD reaction of TiCl₄ and Et₂Se₂ or ¹Bu₂Se over a range of temperatures (Table 7.1). The APCVD reaction of TiCl₄ and Et₂Se₂ or ¹Bu₂Se led to the formation of films composed of platelike crystallites orientated parallel to the substrate. The films from either precursor gave the same XRD and Raman patterns identified as the 1T-TiSe₂ patterns. No change was observed in the Raman and XRD spectra of the films produced from ¹Bu₂Se, indicating that the films are relatively air stable. However, the Raman spectra of the films produced from Et₂Se₂ revealed the formation of TiO₂. The stoichiometry of the film deposited below 550 °C from either precursors was close to the one expected for TiSe₂. However, at substrate temperature above 550 °C the films produced were all found to be substoichiometric with an overall stoichiometry varying from TiSe_{1.6} to TiSe_{1.5}. The use of Ph₂Se₂ with TiCl₄ was proved to be unsuccessful and did not deposit any films. The results identified ^{'Bu₂Se as a better precursor for the deposition of TiSe₂ thin films as it gave films with a better stoichiometry and quality.}

Titanium Precursor	Selenium Precursor	Deposition temperature	Product
TiCl ₄	Et ₂ Se ₂	450 – 550 °C	1T-TiSe ₂
TiCl ₄	Et ₂ Se ₂	550 – 600 °C	Selenium deficient TiSe ₂
TiCl ₄	^t Bu ₂ Se	250 – 500 °C	1T-TiSe ₂
TiCl ₄	^t Bu ₂ Se	550 – 600 °C	Selenium deficient TiSe ₂
TiCl ₄	Ph ₂ Se ₂	200 – 650 °C	No film deposited

Table 7.1 Summary of the APCVD reactions of TiCl₄ and selenide precursors.

7.1.2 Vanadium Diselenide Films

The APCVD reaction of VCl₄, VOCl₃ or $[V(NMe_2)_4]$ and ¹Bu₂Se was investigated over a range of temperatures (Table 7.2). The results show that the vanadium precursor used has a significant effect on the stoichiometry and quality of the films produced. Vanadium tetrachloride and vanadium oxychloride were found to be unsuitable precursors for the CVD of VSe₂ thin films. The use of VCl₄ did not deposit a thin film, while VOCl₃ led to vanadium rich films with significant contamination by chlorine and the co-formation of a vanadium oxide. Vanadium tetrakisdimethylamide was found to be a better precursor for the APCVD of vanadium selenide thin films. The films produced from $[V(NMe_2)_4]$ and ¹Bu₂Se were composed of plate-like crystallites that were orientated parallel to the substrate. EDAX analysis showed a vanadium to selenium ratio close to 1 : 2. XPS, XRD and Raman analysis were also consistent with the formation of VSe₂. APCVD reaction of $[V(NMe_2)_4]$ and ¹Bu₂Se provides a convenient route to vanadium diselenide films.

Vanadium Precursor	Selenium Precursor	Deposition temperature	Product
VCl ₄	^t Bu ₂ Se	250 – 650 °C	No film deposited
VOCl ₃	'Bu ₂ Se	250 – 650 °C	VSe _x O _y Cl _z
[V(NMe ₂) ₄]	^t Bu ₂ Se	300 – 500 °C	1T-VSe ₂

Table 7.2 Summary of the APCVD reactions of vanadium precursors with 'Bu₂Se.

7.1.3 Niobium Selenide Films

The results show that the APCVD reaction of NbCl₅ and ^{*i*}Bu₂Se was a suitable route to the formation of niobium diselenide thin films when deposited above 550 °C. The films produced were composed of plate-like crystallites orientated perpendicular to the substrate. XPS, XRD and Raman analysis were consistent with the formation of 2H-NbSe₂. Below substrate temperatures of 550 °C, the films grown were all superstoichiometric, with a Nb to Se ratio between 1 : 2.4 and 1 : 2.6.

Table 7.3 Summary of the APCVD reactions of NbCl₅ with 'Bu₂Se.

Niobium Precursor	Selenium Precursor	Deposition temperature	Product
NbCl ₅	′Bu ₂ Se	300 – 550 °C	Selenium rich NbSe ₂
NbCl ₅	^t Bu ₂ Se	550 – 650 °C	2H-NbSe ₂

7.2 APCVD of Group VI Selenides

7.2.1 Molybdenum Diselenide Films

Molybdenum diselenide films were deposited on glass from the APCVD reaction of $MoCl_5$ and Et_2Se or ${}^{t}Bu_2Se$ (Table 1.4). Above 600 °C, $MoSe_2$ thin films free of contamination were deposited from either of the selenium precursors. XPS, XRD and Raman analyses confirmed the formation of a mixture of the two polytypes 2H- & 3R-MoSe₂. The films produced from Et_2Se and $MoCl_5$ showed a needlelike

morphology. The needles were orientated perpendicular to the substrate and are made up of a series of clusters. While the films grown from $MoCl_5$ and ${}^{1}Bu_2Se$ have a 'crazypaving' type morphology. EDAX showed that the selenide precursor used has a significant effect on the quality of the $MoSe_2$ films formed. When ditertiarybutylselenide was used as a precursor, the stoichiometry of the films formed was found to dramatically vary along the substrate. The diethylselenide proved to be a more effective precursor for making molybdenum diselenide films. Films grown in this system gave a more uniform and complete coverage of the substrate.

Molybdenum Precursor	Selenium Precursor	Deposition temperature	Product
MoCl ₅	^t Bu ₂ Se	450 – 550 °C	MoSe _x Cl _y
MoCl ₅	^t Bu ₂ Se	600 – 650 °C	2H- & 3R-MoSe ₂
MoCl ₅	Et ₂ Se	500 – 600 °C	MoSe _x Cl _y
MoCl ₅	Et ₂ Se	650 °C	2H- & 3R-MoSe ₂

Table 7.4 Summary of the APCVD reactions of MoCl₅ and selenium precursors.

7.2.2 Tungsten Diselenide Films

Tungsten diselenide films have been deposited on glass substrate from the APCVD reaction of WCl₆ and Et₂Se. All the films produced, irrespective of the deposition temperature, were highly hydrophobic with values in the range $135 - 145^{\circ}$. Despite of the highly hydrophobic character of the films, tilting experiments show that the water droplets cling to the surface of the film. This sticky hydrophobicity of the films was linked to the morphology of the films. The fact that these can be made by CVD opens up many possibilities for patterned substrates, simply by using a masking technique.

Tungsten	Selenium	Deposition	Product
Precursor	Precursor	temperature	
WCl ₆	Et ₂ Se	500 – 650 °C	2H-WSe ₂

Table 7.5 Summary of the APCVD reactions of WCl₆ and Et₂Se.

7.3 APCVD of Tin Selenides

Tin monoselenide and tin diselenide films were deposited on glass from the APCVD reaction of and SnCl₄ and Et₂Se. The results show that the morphology and stoichiometry of films formed from the APCVD reaction of SnCl₄ with Et₂Se were strongly depend of the substrate's position and flow rates conditions used. By modification of the deposition conditions, pure SnSe, mixed SnSe - SnSe₂ phases or pure SnSe₂ thin films were produced. The CVD route developed here to SnSe₂ and SnSe is compatible with photovoltaic device manufacture, as such the high absorbtivity of these films could prove useful as a solar absorbtion element in a photovoltaic stack.

1 able 7.6 Summary of the APC VD reactions of SnCl ₄ and El	he APCVD reactions of SnC	l ₄ and Et ₂ Se
---	---------------------------	---------------------------------------

Tin	Selenium	Deposition	Product
Precursor	Precursor	temperature	
SnCl₄	Et ₂ Se	400 – 650 °C	SnSe ^{Or} Mixed SnSe - SnSe ₂ ^{Or} SnSe ₂

7.4 APCVD and Chemical Vapor Synthesis of Chromium Oxyselenides

The APCVD reaction of CrO_2Cl_2 and Et_2Se above 600 °C led to the formation of an unknown solid solution of $Cr_2Se_{3-x}O_x$. $Cr_2Se_{3-x}O_x$ adopts the hexagonal Cr_2O_3 for a stoichiometry between Cr_2O_3 and $Cr_2Se_{0.2}O_{2.8}$, and the rhombohedral Cr_2Se_3 structure for a stoichiometry varying from $Cr_2Se_{0.3}O_{2.7}$ to $Cr_2Se_{2.15}O_{0.85}$. Magnetic study showed that all the $Cr_2Se_{3-x}O_x$ compounds formed with the rhombohedral Cr_2Se_3 structure had an antiferromagnetic ordering with a Néel temperatures lower than the expected one for Cr_2Se_3 (ca. 43 K). Despite the formation of the new solid solution $Cr_2Se_{3-x}O_x$ over the range Cr_2O_3 to $Cr_2Se_{2.15}O_{0.85}$, the APCVD reaction of CrO_2Cl_2 and Et_2Se didn't allow the growth or formation of pure Cr_2Se_3 even for extremely high Et_2Se to CrO_2Cl_2 gas phase ratio.

Chromium Precursor	Selenium Precursor	Deposition temperature	Product
CrO ₂ Cl ₂	Et ₂ Se	400 – 550 °C	Cr ₂ O ₃
CrO ₂ Cl ₂	Et ₂ Se	600 – 650 °C	Cr ₂ Se _{3-x} O _x

Table 7.7 Summary of the APCVD reactions of CrO₂Cl₂ with Et₂Se.

7.5 Conclusion

The APCVD reactions of 'Bu₂Se with TiCl₄, VOCl₃, [V(NMe₂)₄] or NbCl₅, respectively led to the deposition of titanium selenide, vanadium selenide and niobium selenide thin films at temperatures as low as 250 °C. The films produced showed good uniformity in composition along the substrate for all the deposition temperatures investigated. Molybdenum selenide films were also produced from the reaction of [']Bu₂Se with MoCl₅. However depositions were only noted at temperatures in excess of 450 °C. EDAX analysis of the films deposited at 600 °C showed that films with the expected stoichiometry for MoSe₂ were deposited on the leading edge of the substrate. However the last few centimetres of these films were found to be substoichiometric (ca. $MoSe_{1,3}$ and $MoSe_{1,4}$). These changes in the selenium concentration along the substrate are attributed to the fast depletion of the selenium precursor over time within the reactor. The 'Bu₂Se, which starts to decompose at 150 °C, is rapidly depleted compare to MoCl₅ which require high deposition temperatures. This leads to a non uniformity of the stoichiometry of the films along the substrate. The use of Et_2Se was investigated as it was considered and confirmed to be a more appropriate selenium precursor with metal chloride precursors requiring higher deposition temperatures. The MoSe₂ thin films produced at 600 °C from Et₂Se and MoCl₅ showed a good uniformity in composition along the length of the substrate and across their width. The APCVD reaction of Et₂Se
with WCl_6 or $SnCl_4$ allowed to produce tungsten diselenide, tin monoselenide and diselenide films with a good uniformity.

APCVD provides a convenient route to TiSe₂, VSe₂, NbSe₂, MoSe₂, WSe₂, SnSe and SnSe₂ thin films. The films produced and described in this thesis belongs to the family of layered metal dichalcogenides (MX₂; M = Ti, V, Nb, Mo, W, Sn), except the tin monoselenide films as tin selenide has two stable oxidation state. The structure of the MX₂ compounds consists of two-dimensional covalently bound layers of the type X-M-X, which are bound to each other by weak van der Waals interactions leading to a stacking sequence X-M-X- \Box -X-M-X with highly anisotropic properties. The layered structure of these materials was clearly observed in most of the films produced. The TiSe₂, VSe₂, NbSe₂, WSe₂ and SnSe₂ thin films were composed of plate-like crystallites. The plates grown in ab-plane and were orientated perpendicularly to the substrate.

The new ternary phase $Cr_2Se_{3-x}O_x$ was synthesised by gas phase precipitation and chemical vapour deposition. Primarily used to prepare ultra fine powder, the gas phase precipitation of particles occurs when the temperature and supersaturation of reactive gas are sufficiently high. The gas phase reaction of CrO₂Cl₂ with Et₂Se above 600 °C led to the formation of stable fine particles for a gas phase ratio $Et_2Se : CrO_2Cl_2$ greater than $1.35 : 1 (14.7 \text{ mmol.min}^{-1} : 10.9 \text{ mmol.min}^{-1})$. The particles formed, which were then deposited onto the heated substrate, had a stoichiometry varying from $Cr_2Se_{0.3}O_{2.7}$ to $Cr_2Se_{2.15}O_{0.85}$. For a Et₂Se to CrO_2Cl_2 ratio lower than 1 : 1, films with a stoichiometry between Cr₂O₃ and Cr₂Se_{0.2}O_{2.8} were deposited on the glass substrate. $Cr_2Se_{3-x}O_x$ adopts the hexagonal Cr_2O_3 structure for a stoichiometry between Cr_2O_3 and $Cr_2Se_{0.2}O_{2.8}$, and the rhombohedral Cr_2Se_3 structure for a stoichiometry varying from $Cr_2Se_{0.3}O_{2.7}$ to $Cr_2Se_{3.8}$ Magnetic studies showed that all the $Cr_2Se_{3-x}O_x$ compounds formed with the rhombohedral Cr₂Se₃ structure had an antiferromagnetic ordering with a Néel temperatures lower than the expected one for Cr_2Se_3 (ca. 43 K). The gas phase precipitation and chemical vapour deposition of CrO₂Cl₂ and Et₂Se is the only route to $Cr_2Se_{3-x}O_x$.

List of Publications

N. D. Boscher, C. J. Carmalt, R. G. Palgrave, I. P. Parkin, Atmospheric pressure chemical vapour deposition of SnSe and SnSe₂ thin films on glass, Accepted for publication in *Thin Solid Films*, 2007.

N. D. Boscher, C. J. Carmalt, A. Garcia Prieto, Q. A. Pankhurst, R. G. Palgrave, I. P. Parkin, Synthesis and characterisation of chromium oxyselenide ($Cr_2Se_{0.7}O_{2.3}$) formed from chemical vapour synthesis: a new antiferromagnet, *European Journal of Inorganic Chemistry*, **2007**, (29), 4579-4582.

N. D. Boscher, C. S. Blackman, C. J. Carmalt, I. P. Parkin, A. Garcia Prieto, Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films, *Applied Surface Science*, **2007**, 253(14), 6041-6046.

A. Mills, M. Crow, J. Wang, I. P. Parkin, N. Boscher, Photocatalytic Oxidation of Deposited Sulfur and Gaseous Sulfur Dioxide by TiO₂ Films, *Journal of Physical Chemistry C*, **2007**, 111(14), 5520-5525.

N. D. Boscher, C. J. Carmalt, R. G. Palgrave, J. J. Gil-Tomas, I. P. Parkin, Atmospheric pressure CVD of molybdenum diselenide films on glass, *Chemical Vapor Deposition*, **2006**, 12(11), 692-698.

N. D. Boscher, C. J. Carmalt, I. P. Parkin, Atmospheric pressure chemical vapor deposition of NbSe₂ thin films on glass, *European Journal of Inorganic Chemistry*, **2006**, (6), 1255-1259.

N. D. Boscher, C. J. Carmalt, I. P. Parkin, Atmospheric pressure CVD of TiSe₂ thin films on glass, *Chemical Vapor Deposition*, **2006**, 12(1), 54-58.

N. D. Boscher, C. J. Carmalt, I. P. Parkin, Atmospheric pressure chemical vapor deposition of WSe₂ thin films on glass-highly hydrophobic sticky surfaces, *Journal of Materials Chemistry*, **2006**, 16(1), 122-127.