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PREFACE

ABSTRACT

The Amazon Basin is the site of the Earth’s largest land-based atmospheric convection centre, and 

acts as a large source of latent heat release, particularly during the summer months when the South 

American Summer Monsoon (SASM) is most developed. Convectional rainfall over the Amazon 

Basin therefore plays a fundamental role in the transport of heat to the higher latitudes, and the 

regulation of global climate. The Pleistocene moisture history o f the Amazon Basin is comparatively 

poorly known. However, sediments from the Amazon Fan have the potential to record a basin-wide 

average of past changes in the effective moisture of the Amazon Basin within single, continuous 

sequences, which accumulate rapidly.

Oxygen isotopes (&180 )  records were measured for five planktonic foraminifera species from ODP 

Site 942 on the Amazon Fan. Data were constrained by an age model constructed around 36 AMS 

radiocarbon dates, which were converted to calibrated calendar ages. Past changes in the outflow of 

the Amazon River were reconstructed by attempting to isolate the relative shift in &l80 942 brought 

about by freshwater-driven changes in salinity in the surface water over the Site. 6 I80 942 records were 

adjusted for fractionation effects associated with changes in global ice volume, however removing the 

sea surface temperature (SST) effect was more problematic.

A6i80 942 data implied that the Amazon Basin was more arid during the glacial stage relative to the 

Holocene. Co-variance with November-December insolation at 10°S implied that this was associated 

with insolation-driven variations in the intensity of the SASM. Particularly high-resolution records 

were measured for the last glacial-interglacial transition. Maximum aridity was reconstructed around 

the onset of the Younger Dryas (YD) in the Northern Hemisphere, after which effective moisture 

levels exhibited an increasing trend thereafter throughout the period, correlating with a warming trend 

in Antarctica. A similarity between the A6I80 942 data and the Vostock ice core temperature record 

(6D) suggests a possible Antarctic forcing over the climate of the Amazon Basin. It was hypothesised 

that Northern and Southern hemisphere temperature gradients exert independent control over the 

northerly and southerly limits of SASM convection over the Amazon Basin.

An isotopic balancing model was used to attempt to semi-quantify the Amazon River outflow. 

Assuming a SST cooling of 2 to 3°C, the Amazon River outflow was modelled to have been reduced 

by up to -30-50% at the YD onset, and by up to -20-30% during the Last Glacial Maximum.

However semi-quantified reconstructions are limited by the assumptions of the model.
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(left), and the extension o f Palaeolake Tauca, labelled on map as “Paleoloake Pocuyu” 

referring to the cumulative basins of Lakes Poopd, Coipasa and Uyuni (Modified from 

Argollo and Mourguiart, 2000).

Figure 4.13: Downcore record of natural y-radiation from the Salar de Uyuni showing 80

effective moisture through time. More positive values indicate increased moisture (after 

Baker et al., 2001a; Fritz et al., 2004).

Figure 4.14: Bulk sedimentary Ti content of Cariaco Basin sediments from ODP Site 1002 81

for the last 14,000 years (three point moving average). Higher Ti content reflects greater 

terrestrial input from riverine runoff, which is interpreted to reflect greater precipitation 

over the Cariaco Basin, and a more northerly position of the ITCZ (modified from Haug et 

al., 2001).
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Figure 4.15: A latitudinal comparison of palaeomoisture records from the Cariaco Basin 84

(Haug et al., 2001); ODP Site 942 on the Amazon Fan (Maslin and Burns, 2000; Maslin et 

al., 2000); Lake Junin in the Peruvian Andes (Seltzer et al., 2000); and the Salar de Uyuni 

on the Bolivian Altiplano (Baker et al., 2001a). Also shown are the GISP2 methane record 

(Brook et al., 1996) and solar insolation at 10°S (Berger, 1978a; Berger, 1978b; Berger 

and Loutre, 1991).

Figure 5.1: An example of a radiocarbon date converted to a calibrated calendar age using 95 

the probability distribution method. A radiocarbon age of 3014 ± 56 l4C kyr BP yields a 

calibrated calendar age range of -3282 -  3438 Cal ka at a probability distribution of one 

sigma.

Figure 5.2: Tuning of shipboard magnetic susceptibility curves to transfer AMS dates 100

from 942C onto the 942B depth scale. Maximum lateral displacement of C Core MS= -6  

cm. Triangles indicate the relative positions of radiocarbon-dated samples.

Figure 5.3: Tuning of shipboard magnetic susceptibility curves to transfer AMS dates 101

from 942C onto the 942A depth scale. No lateral displacement of cores. Triangles indicate 

the relative positions of radiocarbon-dated samples.

Figure 5.4a: Age-depth plot of calibrated radiocarbon dates from ODP 942 with their 102

respective errors (one sigma). Depth scale is that of Core 942B. Connected diamonds 

indicate those samples used in age model, unconnected circles indicate those which were 

excluded. ‘x2’ indicates replicate samples. Dates above the wavy line were calibrated 

using Calib 4.3 (Stuiver and Reimer, 1993). Dates below the wavy line were calibrated 

against the data presented in Beck et al. (2000).

Figure 5.4b: 0-13 Cal kyr BP detail age-depth plot of calibrated radiocarbon dates from 103

ODP 942 with their respective errors (one sigma). Depth scale is that of Core 942B.

Connected diamonds indicate those samples used in age model, unconnected circles 

indicate those which were excluded. ‘x2’ indicates replicate samples.

Figure 5.5: Inter-radiocarbon age sedimentation rates for ODP Site 942. Sedimentation 105

rates are in metres per thousand calendar years. Triangles indicate relative stratigraphic 

position o f radiocarbon-dated samples. tAA/v indicates data plotted off the chart (up to 

~18m Cal kyr'1).

Figure 5.6: Site 942 sedimentation rate plotted alongside the sea level change curve (after 108

Fairbanks, 1989; Shackleton, 1987) illustrating the chronological- and sea level- timing of 

the ‘on/off switch’ in Amazon Fan sedimentation. ‘AAA’ indicates data plotted off the chart 

(up to ~18m Cal kyr'1).
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Figure 6.1: A typical vertical temperature (t°C), salinity (S%o) and density (<j\) profile for 113

the tropical oceans (modified from Bradley, 1999).

Figure 6.2: Map of South America to show relative locations of ODP Site 942 and GeoB 114

3104-1. Dark blue arrows represent the direction of surface ocean currents; light blue 

arrow represents the Amazon River freshwater outflow.

Figure 6.3: From top to bottom: Neogloboquadrina dutertrei A6I80  data from ODP Site 115

942C on the Amazon Fan as a proxy for Amazon River discharge; the Peruvian Lake Junin 

A6180  record of effective moisture; the atmospheric methane record from Greenland Ice 

Sheet Project 2 (GISP2) in parts per billion by volume (ppbv); and summer insolation 
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Figure 6.4: Sequence of sample preparation for ODP Site 942 sediments. 117

Figure 6.5a: Normalised composite 6 I80 942 records for each of the five species measured, 121

plotted against metres below sea floor. Markers indicate individual sample levels. All data 

were normalised against the stratigraphically most recent value to express change relative 

to modem (where modem - 0.0 to 0.01 mbsf).

Figure 6.5b: Normalised composite 6 I80 942 records for each o f the five species measured, 122

plotted against calendar years BP. Individual sample levels are indicated by markers.

Yellow diamonds indicate the relative stratigraphic placement of AMS radiocarbon dates, 
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Figure 6.6a: Composite smoothed 6I80 942 records for each of the five species measured 124

plotted against metres below sea floor. Individual sample levels are indicated by red dots.
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Figure 6.6b: Composite smoothed 6 I80 942 records for each of the five species measured 125
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sample levels are indicated with markers. Yellow diamonds indicate the relative 

stratigraphic placement of AMS radiocarbon dates, with their respective error margins. All 

data were normalised against the stratigraphically most recent value to express change 

relative to modem (where modern = 1 Cal yr BP).

Figure 6.9: Graph of G. sacculifer (sac) 6 180  to illustrate the different system states in the 132

isotopic signal.

Figure 6.10: Composite smoothed A6I80  records for G. ruber, G. sacculifer sp. and N. 133 
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omitted for clarity. Yellow diamonds indicate the relative stratigraphic placement of AMS 
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(-23 to ~21 Cal ka) and Younger Dryas (~ 13 to ~11.5 Cal ka). YD= Younger Dryas;
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relative stratigraphic placement of AMS radiocarbon dates, with their respective error 

margins. All data were normalised against the stratigraphically most recent value to 

express change relative to modem (where modem = 1 Cal yr BP).

Figure 6.13: a comparison between G. ruber A6180 942 and the Bond et al. (2001) stacked 146
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Figure 8.1: Long, continuous regional-scale proxy records from tropical and subtropical 175

South America, stacked in approximate latitudinal order against Cal kyr BP, alongside 

calculated November and December insolation at 10°S (Berger 1978a; Berger 1978b;

Berger and Loutre, 1991). From top to bottom: Cariaco Basin (%Ti; Haug et al., 2001);

Amazon Fan, ODP Site 942 (A6I80 942 G. sacculifer (sac); this study); Lake Junin, Peru 

(A6lsO; Maslin and Bums, 2000; Seltzer et al., 2000); Botuverd Cave, southeast Brazil 

(6lsO; Cruz et al., 2005); Lake Titicaca, Peruvian/Bolivian Altiplano (% benthic diatoms;

Baker et al., 2001b); Salar de Uyuni, Bolivian Altiplano (natural y-radiation; Baker et al.,

2001a). Shaded area denotes the Younger Dryas period as determined by G1SP2 6 I80  

records (Grootes and Stuiver, 1997). The Botuvera Cave record (Cruz et al. 2005) 

monitors relative changes in the source area of precipitation (ppn).

Figure 8.2 : Long, continuous regional-scale proxy records from tropical and subtropical 180

South America, stacked in approximate latitudinal order against Cal kyr BP, alongside 

polar ice core data. From top to bottom: GISP2 ice core (6lsO; Grootes and Stuiver,

1997); Cariaco Basin (%Ti; Haug et al., 2001); Amazon Fan, ODP Site 942 (A6I80 942 G. 

sacculifer (sac); this study); Lake Junin, Peru (A6I80 ; Maslin and Bums, 2000; Seltzer et 

al., 2000); Botuver& Cave, southeast Brazil (6180 ; Cruz et al., 2005); Lake Titicaca, 

Peruvian/Bolivian Altiplano (% benthic diatoms; Baker et al., 2001b); Salar de Uyuni,

Bolivian Altiplano (natural y-radiation; Baker et al., 2001a); Vostok ice core (6D; Blunier,

1998). Shaded area denotes the Younger Dryas period as determined by GISP2 6 I80  

records (Grootes and Stuiver, 1997). The Botuver£ Cave record (Cruz et al. 2005) 

monitors relative changes in the source area of precipitation (ppn).

Figure 8.3: A comparison between &180  records from the Huascardn ice core (A), and 182

Lake Junin (B; Peru). Chronological bias to the Northern Hemisphere in the Huascar&n age 

model may account for the noticeable dissimilarity between the isotopic records from -11 

to -14  ka, which results in relatively more enriched A6180  values around this time (B), 

where A6lsO represents the difference between the two records (modified from Seltzer et 

al., 2000).
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accumulation on the Amazon Fan (-18 m Cal ka'1). The Botuverd Cave record (Cruz et al.
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the southern Ecuadorian Andes (after Moy et al., 2002).
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Chapter  1

1. INTRODUCTION

1.0 B ackground

The Amazon Basin, shown for scale in Figure 1.1, is the largest single source o f  fresh water 

on Earth (M arengo et a l., 2001). The Amazon River drains an area o f  approximately 7 050 

000 km2(Franzinelli and Potter, 1983), with an annual discharge rate in excess o f  6300 km 3 

y r '1 (ca. 0.2 Sv; M eade, 1994). This constitutes approximately 20%  o f  all the w orld’s 

freshwater carried to the oceans (Franzinelli and Potter, 1983).

CENTRAL 
AMERICA
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PARAGUAY
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PACIFIC OCEAN
ARGENTINA

LEGEND

Figure 1.1: A sketch map of South America to show the approximate location and extent of the 

Amazon River drainage basin, shaded in yellow. Other key reference locations are also labelled 

(modified from Houghton Mifflin Company, 2002).

The Amazon region is o f  particular interest to studies o f  palaeoclimatology as it represents a 

large source o f  heat in the tropics, and has been shown to have a significant impact on extra- 

tropical circulation (M arengo et al., 2001). The Amazon Basin is the Earth’s largest and
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m ost intense land-based convection centre (Barry and Chorley, 1995). During the Southern 

H em isphere sum m er, when convection is best developed, the A m azon Basin is one o f  the 

w ettest regions on the planet (M arengo et a l., 2001).

Records o f  continental palaeoclim ate from tropical South A m erica are o f  critical importance 

to the understanding o f  clim ate change throughout the Quaternary. Equatorial regions play a 

fundam ental role in the atm ospheric transport o f  heat to the higher latitudes (Flood et al., 

1995). How ever, the Pleistocene clim ate history o f  the Am azon Basin is com paratively 

poorly known. Until now, Am azon Basin aridity has been largely inferred from highly 

localised and qualitative indicators o f  effective moisture. The relatively few sites that are 

available are w idely dispersed, poorly constrained in time, are often discontinuous, and 

moreover, are frequently open to a wide range o f  interpretation. However, analysing marine 

sedim ents from the Am azon Fan can circum vent these limitations. O xygen isotope (6 lsO) 

records from the A m azon Fan have the potential to record a basin-w ide average o f  past 

changes in the effective m oisture o f  the Amazon Basin within single, continuous sequences 

that can be radiocarbon dated. Furtherm ore, high rates o f  sedim entation have the potential to 

yield records o f  a resolution com parable to the ice core records.

Reconstructions o f  palaeoclim ate for the Amazon Basin are essential for a num ber o f  

reasons:

• Effective m oisture availability is a key physiological control on the distribution o f 

vegetation (C ow ling et al., 2001) and therefore provides a m eans o f  testing the 

Pleistocene tropical rainforest refuge hypothesis {proposed by \Haffer, 1969 #713; 

updated by \Prance, 1987 #715}, which attem pts to explain the im mense diversity 

and species endem ism  o f  the Amazon Basin.

• A m azonian w etlands represent a m ajor source o f  atm ospheric m ethane; thus it has 

been suggested that tropical aridity is the primary control on the reduced glacial 

levels o f  atm ospheric methane as m easured in the ice core records (Brook et al., 

1996).

• Reconstructed levels o f  effective m oisture from within the Am azon Basin can 

provide an indication o f  overall tropical m oisture, and thus tropical atm ospheric 

water vapour, another im portant greenhouse gas.

2
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• Tropical palaeoclim ate records may be able to provide insights into the global 

phasing o f  large-scale clim ate change.

1.2 Aim s and O bjectives

A previously published reconstruction o f the effective m oisture history o f the Amazon Basin 

from O D P Site 942 on the Am azon Fan provided the precursor for this PhD research (M aslin 

and Bum s, 2000; M aslin et a l., 2000). However, these previous reconstructions only detailed 

the last 14 Cal kyr. T he study presented in this thesis attem pts to expand the tim efram e of 

these previous records back through the last glacial cycle, and enhance the sam ple resolution 

o f the records previously published.

The principal aim  o f this study therefore, is to reconstruct a high-resolution record of 

continental palaeoclim ate for tropical South Am erica, for the last 40  Cal ka, using oxygen 

isotope m easurem ents from O D P Site 942 on the Am azon Fan.

This PhD research is im portant, as it constitutes one o f the first long, high-resolution records 

o f the effective m oisture history o f the Am azon Basin.

1.3 Thesis O utline

This thesis can essentially be divided into two parts. The first section provides a review o f  

the existing know ledge, whereas the second part focuses m ore specifically on the 

interpretation o f  data generated by this research. Details o f  the depositional and hydrographic 

setting o f  Site 942 are given in Chapter 2. Chapter 3 provides an overview  o f  the modern 

clim atology o f  tropical South Am erica, whereas previous studies o f  the palaeoclim atology 

are reviewed in C hapter 4. The high-resolution com posite age model for Site 942 is 

described in C hapter 5. Chapters 6 and 7 present interpretations o f  the data generated in this 

study. C hapter 6 explains how Amazon River outflow signal was isolated from the 6 180  

records m easured, and the interpretations o f  the dow n-core record are discussed. Attem pts to 

quantity the past outflow  o f  the Amazon River for selected tim e periods are detailed in 

Chapter 7. C hapter 8 provides a synthesis o f  the palaeoclim ate history o f  tropical South 

America. The 6 180 942 records generated in this study are exam ined in the context o f  large- 

scale clim ate change in tropical South Am erica, and possible m echanism s o f  past climate 

change are discussed. Particular attention is paid to the Last G lacial M axim um , and last 

glacial-interglacial transition periods. The principal findings o f  this research are sum m arised
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in Chapter 9, along with recom m endations for future work. An appendix follows at the end 

o f  the thesis, w hich details all the data discussed.
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Chapter  2

2. STUDY SETTING

2.1 In tro d u c tio n

Site 942 was drilled as part o f  Ocean Drilling Program (ODP) Leg 155, which drilled a total 

o f  17 sites on the Am azon Fan (see Figure 2.1). In total, three holes were drilled at the Site: 

942A, 942B and 942C, spaced approximately 50m apart. Each hole was drilled at a slight 

depth offset to obtain a continuous composite linear sequence for the Site (Flood et al., 1995; 

Shipboard Scientific Party, 1995). Details o f  cores drilled at Site 942 are given in Table 2.1.
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Figure 2.1: Map of Sites drilled from the Amazon Fan during ODP Leg 155. Site 942 is situated to 

the west of the main fan complex (modified from Flood et a l 1995).
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; __ 942 A
. . .  5 '44A4o’N 

Vm,UOU

942 II
5 44.557'N 
49°5.460’W

942 €  
s '44.552'N 
49°5.452’W

W ater Depth (drill pipe 
measurement from sea 53 16.3 m 

level)
5T15.7 in 3348 J  m

Penetration (m) 177 ou 74.00 71.50
Number of cores (inc those 

with no recovery) 8 5

Total length of cored section ^  ^  
(m)

74.00 42.30*

Total core recovered (m) 152.60 56.91 44.03*

Table 2.1: Details of ODP Site 942 on the Amazon Fan, * All details are exactly as quoted in 

(Shipboard Scientific Party, 1995).

In order to fully interpret a palaeoclimate record it is useful to appreciate the local, regional, 

and global setting o f  the study location. The study setting o f  any site is comprised o f  a suite 

o f  environmental parameters, any one o f  which may exert an influence on the proxy record 

analysed. It is also necessary to distinguish the extent to which the proxy record is 

responding to a local, regional or global signal o f  change. Such information will enhance the 

interpretation o f  palaeoclimate data. This chapter will review the depositional and 

hydrographic setting o f  the Amazon Fan, and specific details relating to the setting o f  Site 

942.

2.2 T he  D epositional S etting  o f  the A m azon F an

2.2.1 In tro d u c tio n  to  th e  A m azon F an

The Amazon Fan is the w orld’s third largest modern deep-sea fan (Flood and Damuth,

1987), extending 650-700 km from the continental shelf o ff  northeastern Brazil, as far as the 

Demerara Abyssal Plain at depths o f  4,600-4850 m (Damuth et al,, 1983a; Damuth and 

Kumar, 1975; Damuth et a l,, 1983b; Flood and Damuth, 1987) with the easternm ost portion 

extending over the Ceara Rise (see Figure 2.2). The Fan measures approxim ately 380 km in 

width at the continental shelf, spreading to about 600 km wide at its base, with a longitudinal 

gradient o f  ~ 1 :100 to 1:500 (Damuth and Kumar, 1975; Damuth et a l 1983b). Based on 

m orphology and acoustic characteristics, the longitudinal profile o f  the Amazon Fan is 

com m only subdivided into three different morphological units, characteristic o f  nearly all 

deep-sea fans (see Damuth and Kumar, 1975): the upper fan (shelf break to 2500 -  3000 m); 

the m iddle fan (2500 -  3000 to 4000 -  4200 m); and the lower fan (4000 -  4200 to -4 7 0 0  m; 

Damuth and Flood, 1984; Damuth et al,, 1988; Damuth et al., 1983a; Damuth and Kumar, 

1975; Flood and Damuth, 1987). Details o f  the fan are shown in Figure 2.3.
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Figure 2.2: A sketch map to show the geographical setting of the Amazon Fan in relation to other 

bathymetric features off the coast of Brazil (after Damuth, 1977).
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Figure 2.3: A diagram to show the main features of the Amazon Fan, and its location off the edge of 

the continental shelf, adjacent to the mouth of the Amazon River. Bathymetry is shown in metres. 

‘GR’ denotes gradient (after Damuth et al., 1983b).
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The deposition o f  the Am azon Fan began during the early M iocene (16.5 Ma) in response to 

the Andean orogeny when the Eastern C ordillera o f  the northw est A ndes was uplifted 

(Dam uth and Flood, 1984; Damuth and Kumar, 1975; M anley and Flood, 1988). Such 

m ountain building diverted the flow o f  continental w ater away from  the palaeo-Orinoco 

fluvial system  in northw est A m azonia, which drained north tow ard the Caribbean (Hoorn et 

al., 1995), and aw ay from the proto-Am azon system, which flowed w est toward the Pacific 

Ocean (Lovejoy et a l., 1998). Instead, the active tectonism  forced continental w ater to flow 

toward the A tlantic Ocean in the east, via the newly evolved A m azon River system  (Damuth 

and Flood, 1984; Dam uth and Kumar, 1975). Continental erosion associated with this 

orogeny would have supplied vast quantities o f  sedim ent to the new ly evolved Amazon 

River, which due to lower sea level at this time, would have flowed across the em ergent 

continental she lf (H oorn et al., 1995). At the shelf edge, the A m azon River incised a deep 

canyon into the edge o f  the continental shelf, and deposited sedim ents on the canyon floor, 

spreading out onto the abyssal plain to form the deep sea fan. Consequently the channels 

form a striking feature o f  the fan, with nearly all radiating outward in a single distributary 

system from the A m azon Subm arine Canyon (Dam uth and Kum ar, 1975).

With reference to the m odern setting shown in Figure 2.3, the Am azon Subm arine Canyon 

extends from at least the 50-m isobath on the continental shelf, to a depth o f  approxim ately 

1400-1500 m on the fan (D am uth et a l ,  1983b; Flood and D am uth, 1987). Between the 30- 

and 50-m isobaths on the outer shelf, a network o f  small tributary canyons (up to 150 m o f  

relief) converges to form  w hat is known collectively as the A m azon Canyon (Dam uth and 

Kumar, 1975). Bathym etric studies (Ealey, 1969), seism ic profiles (Dam uth and Kumar, 

1975) (M anley and Flood, 1988), and echogram s (Dam uth and Kumar, 1975) indicate that 

the canyon has a m axim um  relief o f  500-600 m at 1000 m w ater depth, taking the form o f  an 

‘asym m etric V ’ in cross-section, with the southeast wall o f  the canyon being much steeper 

than that o f  the northwest.

2.2.2 Sedim ent Source and Supply

The sedim ents that m ake up the fan are principally supplied by the Am azon River, the 

largest drainage system  in the world, discharging approxim ately 6300 km 3 o f  freshwater into 

the tropical A tlantic each year (ca. 0.2 Sv, where 1 Sv = 106 m 3 s"';M eade, 1994), which 

am ounts to about 15-20% o f  the annual global river discharge into the w orld ’s oceans 

(M uller-K arger et al., 1988). The am ount o f  sedim ent released annually into the Atlantic 

Ocean is approxim ately 1.2 x 109 metric tons (1.2 Gt; M eade, 1985; M eade et al., 1985). 

A lthough for the m ajority o f  its course the Amazon River flows within the lowland basin
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(90% o f  the flow is <2000 m), over 80% o f the sediment it carries originates from the Andes 

(M eade, 1994).

2.2.3 G lacial -  In te rg lac ia l S ed im en tary  Regim e and  the ‘O n-O fF  Sw itch

The Amazon Fan is unique and unusually well structured with num erous channel-levee 

systems because the supply o f  sediment to the fan is controlled by glacio-eustatic changes in 

sea level. Sedim ent is only able to reach the fan during low stands o f  sea level when there is 

increased exposure o f  the continental shelf. The Amazon River flows across the shelf to 

eventually deposit its load o ff the edge o f the shelf break (see Figure 2.4). Sediment becomes 

dispersed onto the fan mainly through the developm ent o f  distributary-channel-levee 

systems, and through turbidity flows (Manley and Flood, 1988).

G lacial/Sea Level Low Stand

direct transport of terrigenous OM across the shelf N
through the Amazon Canyon and deposition on

Tbortour parallel transport of tenigowus /  OMduc to the NBCC?

Latitude

Figure 2.4: Cartoon to illustrate the glacial/sea level low stand deposition of riverine sediments. 

Sediments are transported directly onto the Amazon Fan. OM= organic matter. “NBCC” = NBC = 

North Brazil Current (after Schltinz et al., 1999).

During sea level high-stands when the edge o f  the continental shelf is flooded, the outflow o f  

the Amazon River is focussed relatively further inland. Here, longshore currents transport 

the sediments northwestwards along the coastline where they are deposited on the 

continental shelf, inshore o f  the shelf break (see Figure 2.5). The fan is thus effectively 

deprived o f  terrestrial sediment, and consequently does not accrete during sea level high- 

stands (Damuth and Fairbridge, 1970; Damuth and Kumar, 1975).
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Interglacial/Sea Level High Stand

rclrofkction of the NBCC 
summer and fall

transport of terrigenous OM 
along the coastline and deposition 

on the continental

Latitude

44 W

50° W

42* W
2° S

Figure 2.5: Cartoon to illustrate the interglacial/sea level high-stand deposition of riverine sediments. 

OM= organic matter. “NBCC” = NBC = North Brazil Current. Sediments are entrained in the North 

Brazilian Current and transported northwestwards, away from the fan and deposited on the continental 

shelf. Very little terrestrial material accumulates on the fan (after SchlUnz et al., 1999).

As a consequence, glacial sedimentation is dominantly terriginous with high rates o f  

accumulation (100->5000 cm k a '1), whereas interglacial sedim entation is hemi-pelagic, 

accum ulating at a much slower rate (5-10 cm ka"1; M ikkelsen et al., 1997). Thus, 

sedimentation on the Amazon fan can be described as being ‘sw itched o n ’ during glacial/sea 

level low-stand periods, and ‘sw itched o ff' during interglacial/sea level high-stand periods. 

Marine sedim entation remains continuous throughout, although foram inifera concentrations 

are much higher in interglacial deposits due to the diluting effects o f  enhanced terriginous 

sedimentation during the glacial. The relationship between fan deposition and sea level over 

the last 80 cal kyr is shown in Figure 2.6. According to M illiman et al. (1975), the Amazon 

Fan was ‘switched o n ’ when sea levels were at least 30 m lower than present, whereas 

SchlUnz et al. (1999) suggest that sea level would have to have been 30-50 m lower. Maslin 

et al. (2000) revised this further to suggest that the Amazon Fan sedimentation would only 

have switched on when sea level had fallen by 40-50 m. However the different estimates o f  

change required may be attributed to the different sea-level records used in each account.
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Figure 2.6: A diagram to show the relationship between sea level change and fan sedimentation (after 

Maslin et al., 2000). Sea level change data are those compiled by (McGuire et al., 1997) based upon 

Barbados (Fairbanks, 1989) and Pacific (Shackleton, 1987) data, and are compared against marine 

transgression over the continental shelf (see A-D) described by Milliman et al. (1975) and the 

Amazon River sediment influx (hatching on graph) reconstructed by Maslin et al. (2000).

It has been suggested that only one channel-levee system is active at any one given time 

(Damuth et al., 1988; Damuth et al., 1983a; Damuth et al., 1983b), with the different levee 

complexes being formed during different low stands. In this way, the following model o f  fan 

development has been hypothesised (after Manley and Flood, 1988): as sea level falls, 

sediments previously trapped on the shelf during sea level high-stands would become 

transported directly to the deep sea. The consequent increase in sedimentation would lead to 

the over-steepening o f  slope deposits, thus inducing large-scale sedim ent failures on the 

upper slopes, which in turn would initiate large mass movements and turbidity flows down 

the fan. Furtherm ore, renewed sedimentation and a lowering o f  sea level might destabilise 

some o f  the gas hydrate (by altering the depth o f  some o f  the gas-hydrate-boundary in the 

sediment) which would lead to further mass movements (M aslin et al., 1998; Mclver, 1982). 

These debris flows and turbidity currents would then fill the topographic lows, reducing the 

pre-existing fan topography. With a continued fall in sea level, the Amazon River would 

start to discharge directly into the deep sea, incising a submarine canyon at the shelf break. 

Such a localised focus o f  input o f fluvial sediments would create a single point source for
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turbidity flows, from which large channel-levee system s would evolve, com m only 

bifurcating through avulsion to create a levee complex. D uring these low-stands, slumps, 

debris flows and turbidity currents would continue to develop on other parts o f  the slope, 

although they w ould be m ore localised.

With a subsequent rise in sea level, the more coarsely grained m aterial would be deposited 

relatively further inland, trapped in the aggrading river delta on the shelf, and so sedim ents 

entering the canyon, and reaching the fan will be relatively m ore fine-grained. When sea 

level is at a m axim um  (e.g. during the Holocene), all o f  the river sedim ent will be deposited 

directly onto the river delta on the shelf, and the fan becom es effectively starved o f  sedim ent 

supply, thus rendering it inactive, as it is in the m odern day (D am uth and Flood, 1985; 

Damuth et a l ,  1988; Dam uth and Kumar, 1975). The width o f  the sh e lf has a m ajor control 

on the shutting o ff  o f  sedim ent supply to the deep ocean and thus abyssal fans: the wide 

Amazon sh e lf w ould lead to a rapid seaward transgression o f  the shoreline shutting o ff 

sedim ent supply at the very early stages o f  sea level rise. In com parison, a narrow er shelf, 

such as that o f  the M agdalena River in the Caribbean Sea would cause a much slower 

transgression resulting in a more gradual cessation o f  sedim ent supply, and sedim entation 

would thus continue for longer during a period o f  sea level rise (M cG eary and Damuth, 

1973). O ther factors affecting sedim ent supply would include the depth o f  the shelf edge, the 

volum e and velocity o f  river flow, and the am ount o f  continental erosion.

However, if  the river delta prograded to the shelf break during a sea level high-stand the, fan 

sedim entation could be re-established with further channel levee developm ent. Throughout 

the present interglacial high-stand (-1 0  kyr) however, the m odern A m azon R iver delta has 

prograded only one third the distance across the shelf break (N ittrouer et al., 1986), although 

if  the high-stand persists for an extended time, then the delta may well accrete to the shelf 

edge. Progradation could also be enhanced if the Am azon Canyon cuts further landward 

across the outer she lf (Farre et al., 1983).

However, although this may explain the cyclic pattern o f  deposition observed in both ancient 

and m odem  subm arine fan system s (see for example Droz and Beallaiche, 1985; Feeley et 

al., 1985; M itchum , 1985; M utti, 1985; Mutti and Zuffa, 1985; W eim er and Buffler, 1989), 

attem pts at relating these cycles to changes in sea level has frequently been limited by poor 

age control (M anley and Flood, 1988).
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At tim es, successive channel-levee system s may follow the sam e upstream  path, which gives 

rise to the grouping o f  individual channel-levee units into channel-levee com plexes: the 

Upper, M iddle, Low er and Bottom Levee Com plexes. These occupy geographically distinct 

areas o f  the fan and are com m only separated from each other by m ass-transport deposits and 

flat-lying seism ic reflections (see Figure 2.3; Damuth et al., 1983a; Flood and Piper, 1997). 

Previous workers on the Am azon Fan (Dam uth et al., 1983a; M anley and Flood, 1988) have 

assigned nam es to all the recognised channel-levee system s as shown in stratigraphic order 

in Table 2.2. O f  these, the system s o f  the Upper Levee Com plex were thought to have been 

active during the last 40 kyr (Flood and Piper, 1997).

Upper Levee Complex

Western Central Eastern
fan* fan fan

Amazon I
Brown > (=1)
Aqua I

Purple (= 2)
Blue (= 3)
Yellow (= 4)

Middle Levee Complex 

Lower Levee Complex

Bottom Levee Complex

Orange*

—  - Unit R Debris Flow 

Red

Channel 5*

Channel 6A* 
Channel 6B* 
Channel 6C*

• Debris flow ■

Green
Gold
Lime
Gray

Debris flow —

V'les: *High-resolution seismic data are not available from most of the western fan.
*The age relationship between Orange and Channels 5 and 6A, 6B, and 6C has not 
been clearly delineated from seismic profiles.

Table 2.2: Summary of stratigraphic nomenclature of the Amazon Fan (after Damuth et al., 1983a; 

Flood and Piper, 1997; Manley and Flood, 1988).

2.3 The H ydrographic Setting o f  the Am azon Fan

2.3.1 Introduction

The Am azon Fan is situated beneath the modern trajectory o f  the N orth Brazilian Current 

(NBC), details o f  which are reviewed in the following section.

2.3.2 The North Brazilian Current (NBC)

The western Tropical A tlantic is an important area for global therm ohaline circulation as a 

num ber o f  im portant currents flow in this region. O f these, the NBC is perhaps one o f  the 

m ost important. The m odern NBC is a warm water western boundary current flowing north
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o f  10°S along the Brazilian continental slope (da Silviera et a l., 1994). W estern boundary 

currents are characteristically fast, intense, deep and narrow in their nature (Colling, 2001) 

and results to date docum ent the NBC as transporting 14-18 Sv within the upper 500 m o f 

the water colum n (da Silviera et a l., 1994). In the literature, the N B C  has been referred to by 

a variety o f  nam es (e.g. the North Brazilian Current, N orth Brazilian Coastal Current, 

Brazilian Coastal C urrent), but herein after it shall be referred to as the N orth Brazilian 

C urrent (NBC), the convention em ployed by the FO C A L/SEQ U A L (Program m e Fran9ais 

Ocean et C lim at dans l’A tlantique Equatorial/Seasonal Response o f  the Equatorial Atlantic) 

and W OCE (W orld Ocean C irculation Experim ent) programs.

The N BC is extrem ely significant to studies o f  the Am azon Fan as it is the dom inant ocean 

current influencing the distribution o f  the fresh w ater and sedim ent plum e discharged by the 

Am azon River. The NBC is highly unique in that it is the only known m odern surface water 

current to cross the equator as part o f  the Atlantic m eridional overturning cell (Johns et al., 

1998; M etcalf and Stalcup, 1967; Richardson and W alsh, 1986). It therefore acts as an 

important upper-ocean vector o f  both heat and salinity between the tw o hem ispheres (Flood 

and Piper, 1997). N um erous investigations into the Northern H em isphere fate o f  Amazon 

River water have confirm ed its presence in the Caribbean Sea, (e.g. Borstad, 1982; Bowles 

and Fleischer, 1985; D essier and Donguy, 1993; Deuser et a l., 1988; Froelich et al., 1978; 

Hellw eger and G ordon, 2002; Kelly et al., 2000; M oore et al., 1986; M iiller-K arger et al., 

1988; Signorini et al., 1999; Steven and Brooks, 1972), an area o f  significant importance to 

global oceanography, as shown in Figure 2.7.
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Figure 2.7: Cartoon to illustrate the significance of the North Brazilian Current (NBC) to oceanic 

circulation in the north Atlantic (modified from Colling, 2001). ‘C’ denotes ‘current’.

The plume o f  fresh water flowing out from the Amazon is clearly identifiable in satellite 

imagery o f  backscattered colour radiance (e.g. Figure 2.8), and in distributions o f sea surface 

salinity (e.g. Figure 2.9). Over the Amazon Fan, the modern-day m ixing between waters o f 

the Amazon River and Atlantic Ocean takes place in the ratio 1:5, respectively (Levitus, 

1982).

Figure 2.8: SeaWIFS satellite colour reflectance imagery of the Amazon River plume, shown as black 

and red/y el low/green colours (NASA, 2002).
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Figure 2.9: Map o f sea-surface salinity for the period 24 July to 11 September 1964. Arrows indicate 

the inferred path o f low-salinity Amazon water and major currents (after MUller-Karger et a l 1988).

Lenses o f  low -salinity surface w ater resulting from dilution by the Am azon plum e may 

extend up to 100-120 km offshore, occasionally becom ing detached and thence becoming 

entrained by the local ocean currents (Gibbs and K onwar, 1986; N ittrouer and DeM aster, 

1986). The patterns o f  plum e dispersal may vary from year to year, as shown in Figure 2.10 

(M ttller-Karger et a l., 1988). During sea level low-stands however, the river would have 

discharged directly into relatively deep water and m ixing o f  the river plum e into the coastal 

water m ight have occurred more slowly than at present allow ing m ore extensive freshwater 

lenses to form (F lood et al., 1995). Variations in the strength o f  the N BC may also have 

resulted in locally fresher or saltier surface waters, and evidence for this may be present in 

the oxygen isotope record (Flood and Piper, 1997).

Amoron
m R ivr
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Autumn
Spring

Figure 2.10: Schematic representation of the Amazon River plume as observed in seasonal 

composites of NASA’s Coastal Zone Colour Scanner (CZCS) images for (a) 1979, (b) 1980, and (c) 

1981. Shaded areas show plume extent for June-January, broken lines show plume extent for 

February-May (after MUller-Karger et al., 1988).

Although the size and shape o f  the discharge plume will be influenced by factors such as 

wind forces, the structure o f  the N BC and the seasonal variations in the quantity o f  river 

outflow (D idden and Schott, 1993; Fratantoni et al., 1995; Goni and Johns, 2001; Hellweger 

and Gordon, 2002; Johns et al., 1990; Lenz, 1995), H elw egger and G ordon (2002) calculate 

that it takes around tw o months for water discharged by the A m azon River to reach 

Barbados. The authors also propose that the depth o f  vertical m ixing also increases with 

distance from the m outh o f  the river, being 15 m, 30 m and 45 m depth at 900 km, 1800 km 

and 2600 km distance from the Amazon mouth, respectively.

The cross-equatorial transport o f  the NBC has extrem ely im portant implications for global 

ocean dynam ics and inter-ocean heat transfer (M etcalf, 1968; M etcalf and Stalcup, 1967). 

Such transport will help to balance the southward interhem ispheric transport o f  cold North 

Atlantic Deep W ater and to close the meridional overturning cell o f  the global therm ohaline 

circulation (Fine and M olinari, 1988; Gordon, 1986). It also closes the wind-driven 

equatorial gyre circulation, and feeds a com plex system o f  zonal countercurrents in the 

region (Johns et a l ,  1998). Rivers are im portant variables in oceanography as their
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freshwater affects the sea surface salinity and thus buoyancy o f the surface layer (Hellweger 

and Gordon, 2002). Therefore any variation in the discharge and/or transport o f  Amazon 

River water has the potential to have far-field implications for ocean circulation and global 

climate. This is also o f  significance to reconstructing past regimes, as during glacial times, 

different surface wind patterns combined with narrower shelves may have meant that ocean 

circulation patterns o f  the western equatorial tropical Atlantic could at times have been very 

different from circulation regime observed in the modern day (Flood and Piper, 1997).

2.3.3 O rig ins an d  S tru c tu re  o f  the NBC

The origins and structure o f  the NBC have been a matter o f  great debate in the past literature 

and continue to be a subject o f  ongoing study at the current time. The main components o f 

the NBC system are shown schematically in Figures 2.11 and 2.12, in multi-dimensional and 

planar view, respectively.

Figure 2.11: A schematic diagram of the modem mean upper ocean circulation pattern of the western 

tropical Atlantic Ocean (after Wilson et a l, 1994).
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Figure 2.12: Circulation in the Western Tropical Atlantic in density layers derived from repeated 

sections of water mass properties and current measurements by Meteor sections (green dashed lines) 

and moored arrays (red dots). The Surface layer reaches from the surface to the 24.5 isopycnal, the 

Central layer is defined between the 24.5 and 26.8 isopycnals, and the Intermediate layer from 26.8 

down to 1000 m depth. Numbers are for the transports (in Sv = 106 m3 s '1) of current branches. 

Abbreviated as follows: NBC: North Brazilian Current; NBUC: North Brazil Undercurrent; SEC: 

South Equatorial Current; NEC: North Equatorial Current; GUC: Guyana Undercurrent; NECC: North 

Equatorial Countercurrent; SECC: South Equatorial Countercurrent; NEUC: North Equatorial 

Undercurrent; SEUC: South Equatorial Undercurrent; EUC: Equatorial Undercurrent; NICC:

Northern Intermediate Countercurrent; SICC: Southern Intermediate Countercurrent; EIC: Equatorial 

(Intermediate) Undercurrent (modified from http://www.iftn.uni- 

kiel .de/fb/fb 1 /po 1 /research/woce/woce-ao.html).
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A ccording to a num ber o f  publications (e.g. B ischof et al., 2001; Schott et al., 1995; 

Stramma, 1991; S tram m a et al., 1990), the origin o f  the NBC is considered to be associated 

with the South Equatorial Current (SEC) as it approaches the South A m erican Coast near to 

Cape Sao Roque (Brazil) at around 10°S; although the exact location o f  origin is poorly 

defined due to the com plex m ultiple-branched structure o f  the SEC in this region (da Silviera 

et al., 1994; M olinari, 1982; Peterson and Stramma, 1990; Stram m a, 1991). W here the SEC 

bifurcates at the continental shelf, the southern branch becom es the Brazil Current, which 

peels o ff  tow ard the southw est and m erges with the South A tlantic gyre system  (da Silviera 

et al., 1994; S tram m a et al., 1995). The northern branch m erges with the N orth Brazil 

U ndercurrent (N B U C ) to form the NBC.

A detailed review  o f  the discussions relating to the structure o f  the NBC is given in Bourles 

et al. (1999). From Cape SSo Roque, the NBC is thought to feed both surface and subsurface 

eastward flows at different latitudes and different depths, where from south to north it 

supplies the N orth Equatorial Countercurrent (NECC) in the surface layer; and the South 

Equatorial U ndercurrent (SEUC), Equatorial Undercurrent (EUC), and N orth Equatorial 

Undercurrent (N EU C) in the undercurrent layer (Cochrane et al., 1979; M etcalf and Stalcup, 

1967). In addition to this, the EUC, NEUC, and the NECC are also fed by Northern 

H em isphere w aters via a cyclonic recirculation o f  the N EC taking place within the 

undercurrent layer to north o f  the NBC retroflection loop, and also via the W estern Boundary 

U ndercurrent (W BU C), a coastally trapped current at the subsurface (Bourl&s et al., 1999; 

Johns et al., 1990; W ilson et al., 1994). The extent to which the N BC feeds these currents 

also varies according to the season, which will thus also influence the nature and extent o f  

interhem ispheric ocean transport.

2.3.4 Interhem ispheric Ocean Transport

Direct interhem ispheric ocean transport typically takes place from around February to June 

(around austral autum n; see Figure 2.13, left) when NBC waters flow directly toward the 

N orthern H em isphere. Early m odels suggested this was in the form o f  a continuous boundary 

flow from south o f  the equator toward the Caribbean Sea (Philander and Panakowski, 1986; 

Picaut et al., 1985). H ow ever later studies have suggested that this is actually via a reversed 

flow o f  the N orthern  Equatorial Counter Current (N E C C '; for details see W ilson et al., 1994) 

which in turn feeds the northerly Guyana Current flowing into the southern Caribbean Sea 

(Johns e ta l.,  1998; M etcalf and Stalcup, 1967; Schott er al., 1998).
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Figure 2.13: A cartoon detailing the main features of the North Brazilian Current (NBCC on figure) 

for the periods February-June (left) and July-January (modified from Maslin et al., 2000) in relation 

to ODP Site 942 on the Amazon Fan. NEC = North Equatorial Countercurrent. NEC = North 

Equatorial Current. Depth contours refer to the relief of the sea floor. Small squares indicate locations 

of other Sites drilled during ODP Leg 155.

From July to January (austral winter to austral summer), the NBC typically turns (retroflects) 

into the eastward-flowing Northern Equatorial Counter Current (NECC) south o f the equator 

(see Figure 2.12, right Flood and Piper, 1997). Inshore o f  the NBC retroflection, there may 

be an enhancem ent in localised upwelling related to the offshore transport o f  water (Muller- 

Karger et al., 1988). This may be associated with a rise in the local seasonal thermocline, as 

suggested by model reconstructions (Ravelo, unpublished, cited in Greig, 1998). However, 

the extent o f  the retroflection remains uncertain. Where Wilson et al. (1994) and Bourl&s et 

al. (1999) suggest that the NBC retroflection is total from June to January, Schott et al. 

(1998; 1995) and Johns et al. (1998) propose the NBC system continues to have a boundary 

flowing com ponent through to boreal spring.

Nevertheless, cross-equatorial transport is in fact a year-round phenomenon as during the 

retroflection period, the NBC frequently closes in on itself to form numerous anticyclonic 

ring eddies (see Figure 2.14). These NBC retroflection rings continue to flow 

northwestwards across the equator, and represent a significant source o f  water to the 

Caribbean Sea (Hellweger and Gordon, 2002; Johns et al., 1998; Johns et al., 1990). On 

average, NBC rings form 5-6 times per year, propagating at 14 km/day, each having a radius
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o f approximately 100-200 km (Goni and Johns, 2001; Johns et al., 1990), and have a 

duration o f  about 100 days (B ischof et al., 2001). Each ring transports ~1 Sv o f  water, which 

is approximately one third o f  the interhemispheric meridional overturning cell (Goni and 

Johns, 2001). NBC rings may be responsible for up to 3-4 Sv o f  direct transport across the 

equatorial tropical gyre boundary (Fratantoni et al., 1995).

Barbados . -

1

Amazon River I

NECC

nSEC

S S f #

V*:,* a

70’W 60"W 50“W 40*W 30°W 20°W
Figure 2.14: A cartoon illustrating the formation of North Brazilian Current Rings during 

retroflection periods (after Goni et al., 2003). NBC = North Brazil Current. NEC = North Equatorial 

Current. NECC = North Equatorial Countercurrent. nSEC/cSEC = northern/central South Equatorial 

Current. CC = Caribbean Current. BC = Brazilian Current.. GC = Guiana Current.

Large spatiotem poral variations in the regional hydrography, coupled with the NBC 

retroflection rings make it very difficult to quantify the mean and seasonal transports and 

water mass-contents o f  the different currents in this region (Didden and Schott, 1993; Johns 

et al., 1998; Johns et al., 1990; Schott et al., 1993). Schmitz and M cCartney (1993) and 

Schmitz (1995) estim ate the modern overturning cell to comprise between 13 and 17 Sv (c.f. 

the G ulf Stream, 31 to 150 Sv; Hogg and Johns, 1995). However, Wilson and Johns (1997) 

estimate that 8 Sv o f  water o f southern origin contribute to the northern Atlantic 

thermohaline cell through the southern passages o f  the Caribbean Sea, via the northwestward 

route along the American coast. Recent studies suggest that after being carried eastward by 

the NBC retroflection and then westward in the North Equatorial Current (NEC), waters o f 

South Atlantic origin must then join the Florida Current in the Northern Hemisphere (M ayer 

and Weisberg, 1993; W ilson and Johns, 1997). Schmitz and Richardson (1991) and Schmitz

23



Ch apter  2

(1995) estim ate the transport o f  southern-origin waters in the Florida C urrent to be 13-14 Sv. 

However W ilson and Johns (1997) also evoke the possibility that the Florida Current may 

not act as a vector o f  South Atlantic water toward the northern high latitudes at all.

2.4 Setting o f  O D P Site 942 on the Am azon Fan

2.4.1 Site Location and Sedim entary Setting

A detailed description o f  O DP Site 942 is given by Shipboard Scientific Party (1995). Site 

942 is located on a crest o f  an abandoned levee to the western side o f  the fan, rising above 

one or more debris-flow  deposits (see Figures 2.1 and 2.14; Damuth et a l ,  1988). This 

former channel is proposed to be associated with the M iddle Levee C om plex (Stage 6). The 

location o f  Site 942 was chosen for its potential to accum ulate hem ipelagic sedim ent with 

minimal rew orking (Shipboard Scientific Party, 1995). A lthough Site 942 is situated o ff the 

main fan com plex itself, it remains close enough to benefit from the high glacial 

sedim entation rates, yet its location is sufficiently isolated from the effects o f  dynamic 

sedim ent transport higher up the fan structure. It also m aintains a strong enough marine 

influence throughout, so as to accum ulate foram inifera in sufficient abundance to permit 

isotope analysis.

west East
Am-Br 931935WMTD941, 933 ;mtdPu k:h5.evee '

Levee ComplexMiddle
Lower— Levee‘ 500Bottom Levee Complex

mass-transport 
deposit 
sandy unit

,  buried calcareous 
mud

0 km 50

Figure 2.15: The location of ODP Site 942 on the Middle Levee Complex, as shown on a cross- 

section through the Amazon Fan (modified from Flood and Piper, 1997).

As shown in Figure 2.16 the levee crest and channel appear to be covered with at least 50 m 

o f  conform able, acoustically stratified sediment, which suggests that the channel has not 

been active for som e period o f  time. About 400 m southeast o f  Site 942 at a depth o f  about 

15 mbsf, the sedim ent is intercalated with a wedge o f  debris- flow m aterial, thought to be 

associated with the W estern Debris Flow. This acts to seism ically obscure the levee so it 

cannot be tied to the other channel-levee systems on the central Am azon Fan (Shipboard 

Scientific Party, 1995), although it has been speculated that the levee o f  Site 942 is 

associated with the purple channel system (Flood et al., 1995).
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Figure 2.16: 3.5-KHz seismic profile illustrating the sedimentary stratigraphy at Site 942 (after 

Shipboard Scientific Party, 1995).

2.4.2 S am pling S tra teg y  and  Sedim ent D escription

Sediments from Site 942A and 942B were subsampled at the Bremen ODP Core Repository 

during January 2001 (see Section 2.1). Isotope data presented in this study from 942C are 

those o f  Greig (1998), M aslin (2000), and Maslin (2000) measured on material previously 

subsampled on-ship in 1994. 942A sediment was continuously subsampled every centimetre 

in one-centim etre thick units (five cubic centimetres [cc]) to a depth o f  0.5 metres below sea 

floor (mbsf). 942B sedim ent was collected at similar one centim etre resolution for the first 

-0 .95  mbsf, and then every three centimetres in two-centimetre thick units (20 cc) thereafter 

to a depth o f  15 mbsf. This sampling regime was devised to take account o f  the switch 

between relatively faster hemipelagic to relatively slow pelagic sedimentation rate near to 

the Pleistocene/Holocene boundary (see Chapter 5). This ‘sw itch’ was clearly evident in the 

Core lithostratigraphy as a marked transition between two distinct units; from glacial-stage 

foraminifera-poor, slight-moderately bioturbated, terriginous clay-rich muds, silts and very 

fine sands (Unit I), to Holocene hemi-pelagic slightly bioturbated, foraminifera-nannofossil- 

rich clays (Unit II). A detailed sediment description can be found in Shipboard Scientific 

Party (1995). N ear to the boundary between these two units was a diagenetic iron-rich crust, 

a feature common across the majority o f  the Amazon Fan (Shipboard Scientific Party, 1995).

2.4.2a Iron-Rich Crust in 942 Sediments

Between 0.70-0.80 mbsf, an iron-rich crust (hereafter referred to as the ‘Fe-crust’) separates 

the terriginous hem ipelagic glacial deposits, from the calcium carbonate-rich sediments o f 

the Holocene. This Fe-crust is not unique to Site 942, and has been found to be an extensive 

occurrence across the Amazon Fan, and adjacent continental rise and abyssal plains o f  the
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western Atlantic. A detailed study and discussion o f  these deposits within the Am azon Fan 

can be found in M cGeary and Damuth (1973).

In addition to separating the two different lithologies, the crust also m arks a sharp change in 

colour and oxidation state within the sediment. The underlying terriginous sedim ents adopt a 

greyish colour and are reduced, whereas those sedim ents lying above are tan in colour and 

oxidised. A ccording to M cGeary and Damuth (1973), the crust form ed as a result o f  the post

glacial rise in sea level (specifically the post Term ination la  [GS1]) that would have cut o ff  

the supply o f  terriginous m aterial to the deep water o ff the continental shelf, and thus the 

Fan. Decaying organic m atter w ithin the deposited sedim ent o f  the fan is thought to have 

reduced the Fe w ithin the terriginous m inerals, which dissolved w ithin the interstitial water, 

and was then expressed upw ards within the sedim ent colum n during com paction. Upon 

reaching the sedim ent-w ater interface, the Fe was re-oxidised, and re-precipitated to form an 

iron-cemented crust within the sediment, since buried by postglacial Holocene pelagic 

deposition (see Figure 2.17).

NORMAL
PELA G IC

SEDIMENTATION

1 2 3 4

Figure 2.17: A proposed sequence of iron-rich crust formation for environments such as the Amazon 

Fan (modified from McGeary and Damuth, 1973).

From analysing 19 piston cores taken from the Am azon Fan, M cGeary and Damuth (1973) 

found that although the position o f  the Fe-crust lay at or near to the Pleistocene-H olocene 

boundary, its location was not isochronous, and varied by as m uch as 30 cm above and 

below the boundary. The authors concluded that the time o f  the crust form ation in any area 

appeared to be dependant upon the ''remoteness o f  that area fro m  sources o f  terriginous 

sedim ent on the South  Am erican continent, m ainly the Am azon R iver’ (M cG eary and 

Damuth, 1973 p. 1204), w ith areas distal from the abyssal plains and the lower continental 

rise having crusts well below the boundary, whereas close to the mouth o f  the Amazon and
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sm aller rivers, the crust lies at or above the boundary. The authors suggested that taking into 

account local pelagic Holocene sedim entation rates (which in their cores were 3 -8  cm k yr'1), 

the crust always seem ed to form within 3000 years o f  the Pleistocene-H olocene boundary, 

and in the m ajority o f  cases, formed slightly below the boundary in response to the rise in 

sea level ju s t prior to the onset o f  the Holocene.

Fe-crusts o f  a com parable age and chem ically sim ilar to those o f  the w estern equatorial 

A tlantic have been found elsew here in a num ber o f  marine sequences, including an area in 

the northw est Pacific O cean, east o f  Japan; the Sierra Leone Basin o ff  western Africa; the 

Ganges abyssal fan in the Bay o f  Bengal; the western M editerranean Sea; the Coral Sea; 

south o f  Hawaii; and the Delgada Fan near to the M endocino Fracture Zone, coastal northern 

California. O thers have been visually identified (although not chem ically constrained) in the 

M isissippi fan in the G u lf o f  M exico; the M agdalene River abyssal fan in the Caribbean Sea; 

a location south o f  Java in the eastern Indian Ocean; the B lake-Baham a O uter Ridge o ff 

southeastern USA; the eastern M editerranean, and possibly o ff  the coast o f  Norw ay (see 

review in M cGeary and Damuth, 1973). It is notable that most o f  these areas with Fe-crusts 

have a sim ilar sedim entary regim e to the Amazon Fan, and in each case the time o f crust 

formation appears to coincide consistently with the Pleistocene-H olocene transition when 

terriginous sedim entation to the deep sea was halted due to post-glacial sea level rise 

(M cGeary and D am uth, 1973).

2.4.2 H ydrographic setting

O f the 17 Sites drilled from the Amazon fan, Site 942 is particularly good for monitoring the 

m odem  outflow  o f  the Am azon River. Analyses o f  surface sedim ents from across the fan 

show that 10% -30%  o f  the diatom s are o f  freshwater origin except at Site 942, where -7 5 %  

o f  the diatom s are freshw ater species (M ikkelsen et al., 1997). This higher percentage 

abundance is likely to reflect the influence o f  the freshw ater plum e discharged by the 

Amazon River, w hich is either being transported northward by ocean currents, or is breaking 

away and m oving offshore. Based upon this analogy, Site 942 therefore has good potential 

for m onitoring Am azon River outflow in the past.

However, where diatom s are relatively concentrated at the surface, in situ  dissolution causes 

a progressive decrease in abundance through the Holocene, to a sustained perm anent absence 

at the transition to the glacial sediments. Therefore the diatom  archive cannot be used to 

identify continental clim ate-driven variations in river discharge or past changes in surface 

circulation. A lternatively, the high abundance o f  freshwater diatom s in the surface sediments
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in Site 942 could be the result o f  a relatively recent northward deflection o f  the Amazon 

freshw ater plum e caused by a more recent change in the prevailing ocean currents (Flood 

and Piper, 1997; M ikkelsen et al., 1997). It is therefore preferable to ‘validate’ palaeoclimate 

data from the Am azon Fan against a variety o f  other palaeoclim ate records from different 

archives and different geographical locations across northern South Am erica. Through 

em ploying such a m ulti-proxy approach, it should be possible to use records obtained from 

ODP Site 942 to attem pt to decipher past environm ental changes for the Am azon Basin.
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3. A REVIEW OF THE MODERN CLIMATOLOGY OF 

THE AMAZON BASIN AND SURROUNDING REGIONS

3.1 Introduction

Amazon R iver sedim ent and water discharge are controlled by continental clim ate, therefore 

it is necessary to understand the modern climate setting o f  the Am azon Basin in order to 

assist interpretations o f  changes in the past. This chapter attem pts to review the modern 

clim ate system  over northern South America, with particular em phasis on the factors 

influencing precipitation over the Amazon Basin.

3.2 The M odern M eteorology o f  the Am azon Basin

3.2.1 Introduction

The Am azon Basin region is home to the largest tropical rainforest on the planet, containing 

30%  o f  the total global biomass (Barry and Chorley, 1995) and up to 60%  o f  the w orld’s 

plant biodiversity, 90%  o f  all prim ate species, 40% o f  all bird species, and 80% o f  all insects 

on the planet (H iscox, 2004). It also represents a m ajor source o f  heat within the tropics and 

has been shown to have a significant impact on extratropical circulation by playing host to 

Earth’s largest and m ost intense land-based convection centre (M arengo et al., 2001). Strong 

thermal convection over A m azonia can frequently produce rainfall in excess o f  40 mm/day 

over a period o f  a week, and over shorter periods, even higher average intensities may be 

experienced. W here 40 mm o f  rainfall in one day releases sufficient latent heat to warm the 

troposphere by 10°C, it is clear that sustained convection at this intensity is capable o f  

fuelling W alker C irculation. This becomes significant during ENSO events (see Section 

3.2.4): during the high phases (La Nifia), air rises over Am azonia, whereas during the low 

phases (El Nifio) the drought over northeast Brazil is intensified (Barry and Chorley, 1995). 

Changes in the intensity o f  convective air moving poleward may also modify Hadley 

Circulation. Due to the conservation o f  angular mom entum, this poleward moving air tends 

to accelerate and strengthen the westerly je t streams, such that correlations have been found 

between A m azonian convective activity and the intensity and location o f  the North 

Am erican je t  stream  (Barry and Chorley, 1995). Any changes in the past m oisture history o f 

the Amazon Basin could therefore have had potentially very significant impacts on tropical 

atm ospheric circulation.

On a regional scale, the Amazon Basin plays a vital role in the hydrological cycle and water 

balance over m uch o f  South America. M odelling studies (e.g. Lenters and Cook, 1997) have
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provided evidence for the relationship between latent heat releases over the Amazon Basin 

and their im pact on upper-tropospheric circulation over South Am erica. During austral 

summer, increased sensible heating o f  the elevated Peruvian-Bolivian Altiplano, combined 

with enhanced latent heat release during frequent convectional thunderstorm s over 

Am azonia, initiate the developm ent o f  a persistent upper tropospheric closed anticyclone, the 

Bolivian High (Lenters and Cook, 1997; M arengo et al., 2001; Vuille, 1999; Zhou and Lau, 

1998), analogous to the situation over Tibet (Barry and Chorley, 1995). The formation o f  the 

Bolivian High is shown in Figure 3.1. The developm ent o f  the B olivian High brings about 

m axim um  cloudiness to central Am azonia (Barry and Chorley, 1995) and stormy 

precipitation typically during afternoon and evening showers (A rgollo and M ourguiart, 2000; 

Garreaud, 1999; Rowe et a l., 2002), becoming increasingly sporadic with distance away 

from the northern part o f  the basin (Argollo and M ourguiart, 2000). To the east and 

downstream  o f  the Bolivian High an upper level cold trough sits o ff  the east coast o f  Brazil; 

this is associated with descending air masses and is part o f  the m echanism s that lead to the 

very low rainfall observed in that region (Barry and Chorley, 1995; M oura and Shukla,

1981).

The developm ent o f  the Bolivian High also influences atm ospheric circulation patterns over 

Am azonia, w here upper tropospheric winds are southerly or southeasterly from Decem ber to 

April, and northwesterly or westerly from May to September. Surface winds (the trade 

winds) are predom inantly northeasterly from Septem ber to April, and southeasterly from 

May to A ugust (Barry and Chorley, 1995; Zhou and Lau, 1998). This should not be confused 

with the annual average surface wind patterns, as by their strong intensity, the northeasterly 

trades would appear to dom inate year-round.
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pfe*»* m PkUHW IV

Figure 3.1: Goddard Earth Observing System-1 (GEOS-1) assimilation o f upper level (200-hPa) 

circulation composite monitoring the formation and decline of the Bolivian High, (a) October to 

November; (b) mid-November to December; (c) December to early February (wet season); (d) early 

February to mid-March; (e) mid-March to end April. H = area of high atmospheric pressure; L = area 

of low atmospheric pressure (modified from Zhou and Lau, 1998).
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Using the re-analysis products o f  both the data assim ilation system  (D A S) with version 1 o f  

the Goddard Earth O bserving System-1 (GEOS-1) and N ational Centers for Environmental 

Prediction (N CEP) m odels, Zhou and Lau (1998) observed that although the easterly trades 

prevail in analyses o f  annual surface wind patterns, there appears to be a seasonal reversal in 

the surface w ind structure during the Southern Hemisphere w inter should the annual mean 

com ponent be rem oved. During Southern H em isphere sum m er the wind anom aly flow 

originates from the sub-Saharan region, and has the effect o f  substantially enhancing the 

easterly trades from  tropical North Atlantic. After crossing the equator, the wind anomaly 

becomes a northw esterly flow along the eastern flanks o f  the Andes, before turning 

clockw ise around the Gran Chaco atm ospheric low pressure system. In Southern Hemisphere 

winter, this situation is clearly reversed (see Figure 3.2). From this change in prevailing wind 

direction, Zhou and Lau (1998) propose that the m odern clim ate o f  South A m erica can be 

described as a m onsoonal system, which they refer to as the South Am erican Summer 

M onsoon.
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* ^ . « - > ^ . ;  «y 7 # ..f ' T̂** * ‘ “"*' x■ ' tvKV«v

J K . 'V t .  £s*S4>-. ..
as<rr*

**-**t>yum>lf*me*^

u*<e*
\V ^

/»  V .»_***.* 4 ■»*»»,-,;. f, '•*■*♦•' V / , .
I D  I  * - H > * » » 1 l

JV •'SV̂  */■*»»*»••*'>•*• *•*<’' * ****i*7t%,%t+t!%i.
*-*•*■*-«•«-*'*-*' 4r* «•* «-♦'*VVĵ y*y7̂ X<i*>--
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Figure 3.2: GEOS-1 and NCEP re-analysis climatology of lower level (900-hPa) wind (m s’1) for (a) 

annual mean, (b) January minus annual mean, and (c) July minus annual mean (modified from Zhou 

and Lau, 1998).

Annual rainfall in northern South Am erica varies greatly, from less than 400 mm in northeast 

Brazil and the Caribbean coast o f  South America, to levels in excess o f  3000 mm in the 

upper w atershed o f  the Rio N egro (M arengo e t a l., 2001). W ithin the A m azon Basin region,
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an area occupying ~7, 050 000 km 2 (M aslin e t al., 2000) three separate centres o f  abundant 

rainfall can be identified (M arengo, 1995): northwest Am azonia, central Am azonia (around 

5° S), and the area close to the mouth o f  the Amazon River near Belem, with annual rainfall 

o f  more than 3600 mm, 2400 mm and more than 2800 mm, respectively (see Figure 3.3). In 

northern and central Am azonia, there is no clear dry season; rainfall is abundant throughout 

the year and at its m axim um  during austral fall (April-June). In southern Am azonia, there are 

distinct wet and dry seasons, with annual rainfall peaking during late austral summer/early 

austral fall (January-M arch). The extremely intense year-round rainfall localised within 

narrow strips alongside the eastern side o f  the Andes is considered to be brought about by 

upglide condensation and a leeside rain shadow effect (Barry and Chorley, 1995) associated 

with the easterly winds as they flow from the evapotranspiration-intense Am azon Basin, up 

and over the Cordilleras. The coastal maximum is brought about by nocturnal convergence 

between the trade winds and the land breeze (M arengo et al., 2001).
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Figure 3.3: Map of the distribution of annual rainfall across the Amazon Basin (modified from 

Marengo, 1995).

The transition between the dry and the wet seasons in A m azonia is fairly rapid, with the wet 

season onset typically occurring within a single month; although at times this may occur 

over a period o f  ju s t five days. A lthough there has been little research into the understanding 

o f  the w et season onset in Am azonia, it has been found that with the exception o f  the 

extrem e northw est region, onset progresses in a southeasterly direction, from near mid- 

Septem ber in the north and west to the beginning o f  O ctober in the southeast (Kousky, 1988; 

M arengo et al., 2 0 0 1). N ear to the mouth o f  the Am azon, the onset o f  the wet season occurs 

alm ost at the end o f  Decem ber. N orth o f  the equator, rainfall is apparently tied to Northern 

Hem isphere sum m er and does not occur until m id-April. As a consequence, the largest 

cum ulative river discharges occur during the early austral winter, shortly after the peak o f  the
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wet season in northern and western Amazonia (See Figure 3.4). The retreat o f  the wet season 

progresses in a northwesterly direction, but moves relatively more slowly and more 

systematically than does the onset (M arengo et al., 2001; M arengo et al., unpublished).
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Figure 3.4: Mean monthly river discharges illustrating the onset of the wet season across different 

parts of the Amazon Basin, measured at (A) Estirao do Repouso, Rio Javari, western Amazonia; (B) 

Porto Velho, Rio Madeira, southern Amazonia; (C) Obidos, Rio Amazonas, near to the mouth of the 

Amazon River; (D) Caracarai, Rio Branco, north of the equator. Monthly averages are calculated for 

the period from January 1928 to March 1996 (modified from Global Runoff Data Centre, 2005).

Veranicos, short drought spells lasting from five to 21 days and typical o f  tropical regions, 

occur between N ovem ber and February during the austral sum m ertim e wet season, and have 

a strong effect on agriculture if  they occur near to the beginning o f  the wet season. Northern 

Am azonia experiences longer more intense veranicos during El Nifio years, as compared to 

short and less intense veranicos during La Nifla years (ibid.).

3.2.2 T em p o ra l O rg an isa tio n  o f R ainfall O ver the A m azon Basin

Previous studies (e.g. Fu et al., 1999; M arengo, 1995; Rao and Hada, 1990) have shown the 

temporal aspect o f  the South American annual rainfall cycle to be controlled largely by the 

sun through its influence on the m eridional displacem ent o f  the meteorological equator (the
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midpoint along the m eridional tem perature gradient, and the boundary between the 

equatorial Hadley cells) and the sea surface tem perature (SST) gradient between the Atlantic 

and Pacific Oceans. These factors may also commonly act as a dom inant control over the 

position o f  the Inter-tropical Convergence Zone (ITCZ); how ever there is debate as to 

whether it actually exists in its characteristic form over the interior o f  northern South 

America. W here many researchers (e.g. Argollo and M ourguiart, 2000; Curtis and 

Hastenrath, 1999; G arcia et al., 1998; Haug et a l ,  2001; Jennerjahn et al., 2004; Maslin and 

Burns, 2000; Seltzer et al., 1998) readily attribute the observed/reconstructed climate o f 

South A m erica to be reflecting the changing migratory nature o f  the ITCZ, an alternative to 

this paradigm is that due to it’s unique situation, the Am azon Basin acts as a large land-based 

convection centre in itself, with the north-south m igration o f  the ITCZ being influential on 

precipitation only near to the continental east coast. Indeed, Barry and Chorley (1995) note 

that within Am azonia, the continuously high tem peratures (24°-28°C) com bined with high 

evapotranspiration rates cause the region to behave at times as if  it were a source o f  maritime 

equatorial air. N evertheless, the seasonal latitudinal changes o f  the ITCZ/m eteorological 

equator may exert a strong control on the atm ospheric pressure cells associated with the 

South Am erican Sum m er M onsoon, and therefore on the overall clim ate o f  South America.

A com parison o f  the hypothesised position o f  the ITCZ/m eteorological equator and the 

coeval zones o f  convection are shown in Figure 3.5.
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Figure 3.5: A cartoon to show the mean position of the ITCZ/meteorological equator (dashed line) 

and the coeval zone of atmospheric convection over tropical South America for January, April, July 

and October (modified from Davison, 1999).
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Between July and Septem ber/O ctober (austral winter through to early austral spring), the 

ITCZ swings to its m ost northerly position, and the South Atlantic subtropical high pressure 

cell expands w estward over the continent causing the low-pressure equatorial trough to fill. 

Stable easterly m T air from the South Atlantic surface invades A m azonia in a shallow (1000- 

2000 m), relatively cool and humid layer, separated from the w arm er and drier air above by a 

strong tem perature inversion and humidity discontinuity. A lthough this shallow airflow 

brings some precipitation in coastal locations, it is particularly arid in drought-prone eastern 

Brazil at this time, and also in central Am azonia as reflected by inland stations such as 

Manaus (Barry and Chorley, 1995). After October, the South A tlantic subtropical high 

pressure cell begins to contract and a continental heat low with strong convection begins to 

establish over the Gran Chaco region o f  the continental interior, m aking the Amazon Basin 

one o f  the wettest regions on Earth (M arengo et a l., 2001; Vuille, 1999). The tem perature 

inversion rises to 3000-4000 m and may break down altogether bringing about heavy 

precipitation, especially during the late afternoon or early evening (Barry and Chorley, 1995) 

giving rise to the October- April rainy season in central and southern Amazonia. However 

dry conditions may prevail from January-M ay, during strong ENSO events when the 

descending branch o f  W alker Circulation covers most o f  Am azonia. In com parison, the 

North Atlantic subtropical high pressure cell is relatively less mobile, but it varies in a more 

com plex m anner, having maximum westward extensions in July and February and m inim a in 

Novem ber and April (Barry and Chorley, 1995; Zhou and Lau, 1998).

The main vector o f  m oisture toward the Amazon Basin is the humid trade winds blowing in 

from the tropical North Atlantic (the location o f the subtropical high) toward the low- 

pressure area associated with the m eteorological equator. These winds are seasonally 

influenced by the form ation o f  the Bolivian High, the sum m ertim e increase in pressure over 

the tropical north A tlantic (Barry and Chorley, 1995) and the m eridional A tlantic-Pacific 

SST gradients (M arengo et al., 2001). It has been suggested (N ogues-Paegle and Mo, 1997) 

that a strong low-level northerly je t east o f  the Andes enhances this flux o f  water vapour and 

heat from the N orth A tlantic across the Amazon, and into the region o f  Paraguay and 

northern Argentina. The trade winds sustain a strong and persistent northeasterly flow from 

the North A tlantic into the Amazon Basin (M arengo et al., 2001), and accordingly the timing 

o f  their transport initiates the onset and intensity o f  the austral sum m er wet season (see 

Section 3.2.1).

W ithin Am azonia, m axim um  sum m er convection is found over the southern region, 

extending to the southeast. This represents the South Atlantic C onvergence Zone (SACZ)
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(for details, see N ogues-Paegle and Mo, 1997). During the w inter m onths, these convection 

bands m igrate toward the Northern Hemisphere (M arengo et a l., 2001), along with a lesser 

defined equatorial low-pressure trough (Barry and Chorley, 1995), and in com bination with a 

SST maxim um, characterise the circulation and determ ine the M ay-Septem ber rainy season 

in northern South A m erica (M arengo et al., 2001). During the w inter m onths (M ay- 

September), near-surface surges o f  cold high-latitude air, known locally as fra igens, 

frequently blow in from the south across southeastern Brazil and the Amazon region, 

som etimes reaching as far north as the equator. They are capable o f  m odifying the 

atm ospheric structure and clim atic conditions considerably as they pass, and may bring 

severe frosts in the coffee-grow ing areas o f  southern Brazil and substantial cooling in the 

Amazon Basin (M arengo et al., 1997). There were six fraigen events recorded in 1992, nine 

in 1993, and 14 such events were reported during the w inter o f  1994 (M arengo et al., 2001).

3.2.3 Spatial O rganisation o f Rainfall O ver the Am azon Basin

Although the tim ing o f  the annual rainfall cycle is largely controlled by the sun, rainfall 

across the different parts o f  the basin is triggered by different m echanism s. Rainfall in 

northern Am azonia is particularly influenced by the meridional SST gradient o f  the tropical 

North Atlantic which affects deep ITCZ-like convection and m oisture transport from the 

Atlantic (M arengo et al., 2001), occasional incursions o f  cold fronts from the Southern 

Hemisphere, and re lief effects (Barry and Chorley, 1995) as well as sea-breeze interactions 

and the inland m ovem ent o f  rain-bringing instability lines originating near the mouth o f the 

Amazon River (M arengo et al., 2001). Such sea-breeze interactions are also particularly 

influential over eastern Amazonia. These m esoscale lines o f  instability form near to the coast 

as a result o f  converging trade winds and afternoon sea breezes, or due to the interaction o f  

nocturnal land breezes with onshore trade winds. Once formed, they move westward in the 

general airflow at speeds o f  about 30 mph (i.e. 50 km h r'1) m oving faster in austral sum m er 

than in winter, and exhibiting a complex process o f  convective cell growth, decay, migration 

and regeneration. Many o f  these instability lines decay after sunset, only reaching 100 km or 

so inland, how ever the m ore persistent instabilities, some o f  which may remain active for up 

to 48 hours, may produce a rainfall maximum about 500 km inland, even reaching as far 

west as the Andes (Barry and Chorley, 1995). Within central A m azonia, surface warming 

leads to diurnal deep convection and rainfall, whereas in south/southeast Brazil, often also 

reaching into western and southern Amazonia, meso- and large-scale convection associated 

with the sum m ertim e penetration o f cold fronts (M arengo et al., 2001) may initiate 

downpours.
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3.2.4 The Influence o f  ENSO  on the Precipitation Regim e over the Am azon Basin

While the principal m oisture source for the Amazon Basin is the tropical Atlantic, there are 

times when signals from the tropical Pacific can be observed. This arises particularly during 

intense low phases o f  ENSO (related to El Nino), such as those o f  1925-26, 1982-83 and 

1997-98, when anom alously suppressed convection and relatively strong subsidence bring 

negative rainfall anom alies to the northern and central parts o f  the Amazon Basin (to date, 

the drought o f  1998 is considered as the most intense o f  the last 118 years). During high 

phases o f  ENSO (La N ina) air rises over Am azonia producing convective rainfall and 

anom alously w et seasons in northern and central Am azonia, as were observed during La 

N ina years o f  1988-89, and 1995-96 (M arengo et al., 2001). ENSO events exert their 

strongest impacts in northern Amazonia, where El Ninos frequently initiate forest fires, and 

anom alously low river levels create problems with national infrastructure (e.g. 

transportation, hydroelectricity generation), while the rainfall regim e in southern Am azonia 

remains relatively unaffected.

3.3 The M odern M eteorology o f  the Altiplano Region

3.3.1 Introduction

Palaeoclim ate records o f  the Altiplano region have been used to infer past variations in 

Amazon Basin m oisture (e.g. Baker et al., 2001a; Baker et al., 2001b; see Chapter 4), so it is 

therefore im portant to consider the modern meteorology o f  this region also.

3.3.2 The M odern M eteorology o f  the Altiplano Region

Between 15°S and 22°S the central Andes divides into the eastern and western cordillera, 

where the intra-m ontane region is occupied by the Altiplano, a vast tectonic plateau o f 

-190 ,000  km 2 in area (A rgollo and M ourguiart, 2000) and 3500-4000 m mean elevation 

(Vuille, 1999). Extending high up into the middle troposphere, the Altiplano acts as a barrier 

dividing low level circulation to the west and east o f  the Central Andes (Rowe et al., 2002; 

Vuille, 1999). To the w est o f  the continent, moist air is trapped below a very stable inversion 

at about 900 hPa; the subsiding air masses o f  the Southeast Pacific Anticyclone bring dry, 

stable conditions creating some o f  the w orld’s driest clim ate along the northern coast o f  

Chile (Vuille, 1999).

Atm ospheric m oisture received by Lake Titicaca originates from the tropical Atlantic Ocean, 

and is recycled as it passes over the Amazonian lowlands to the north and east before it is
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advected onto the Altiplano. Over 80% o f  annual precipitation (350-400m m ) over the 

Altiplano falls during the sum m er months (Decem ber-M arch; Rowe et a l., 2002; Vuille,

1999) coinciding with the formation o f  the upper-level Bolivian High pressure cell (see 

Section 3.2.1), w here the intense solar heating o f  the high plateau surface destabilises the 

boundary layer, inducing deep convection which brings m axim um  cloudiness to the region 

(M arengo et al., 2001), and ultimately releases the moisture from the humid air blowing in 

from the Am azon Basin (Garreaud, 1999). The strength and position o f  this high pressure 

system are considered to be quite variable (Vuille, 1999), however, m odelling studies by 

Vuille et al. (1998) have shown a southward-displaced and strengthened Bolivian High 

pressure system  to be associated with significantly higher precipitation over the southern 

Altiplano. This indicates that the relationship between upper air circulation and rainfall is 

sustained despite its latitudinal displacement.

In addition to the locus and intensity o f  the Bolivian High, the general sum m er circulation 

over the Altiplano is also a com bined function o f the location and magnitude o f  deep 

atm ospheric convection over the Amazon Basin and equatorial A tlantic Ocean, and sea- 

surface tem perature conditions in the tropical Pacific Ocean (Baker et al., 2001a; Rowe et 

al., 2002; Vuille, 1999). Consequently, lower level tropospheric circulation is dominated by 

northerly and northwesterly jet-type flow along the eastern slopes o f  the central Andes, and 

by northeasterly trades to the east and north over the Amazon Basin. However, upper level 

circulation is dom inated by a quasi-stationary anti-cyclone north o f  35° S, a band o f  easterly 

flow near 10° S, and strong cross-equatorial northward flow from 60°-80° W (Rowe et al.,

2002). During the w inter months, strong zonal winds in the upper troposphere (the 

W esterlies) and high pressure in the lower troposphere over the region (Rowe et al., 2002) 

allow only limited sporadic penetration o f humid Am azonian air. This leads to areas o f  

isolated, w eak-intensity rainfall (Argollo and M ourguiart, 2000), thereby bringing aridity to 

the Altiplano (Vuille, 1999).

However between May and September, being most frequent during July-August in the 

Sajama region (V uille and Baumgartner, 1998), occasional outbreaks o f  cold air masses from 

the planetary w est wind zone produce considerable amounts o f  snow; this is especially the 

case when cold air m asses are cut o ff from the general west wind flow and move over the 

Altiplano, destabilising the generally warm er atm ospheric colum n above. Taking into 

account these rare dum ps o f  snow, the low w inter precipitation data from the sparse 

m eteorological netw ork in the area should be interpreted with caution as they may represent 

an underestim ation o f  reality (Vuille and Ammann, 1997). As precipitation episodes over the
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Altiplano are driven by convection, the spatial variability in rainfall is high (Vuille, 1999). 

M ore locally, the presence o f high peaks (> 6000 m asl) in the C ordillera Oriental and the 

orientation o f  certain valleys give rise to a fohn wind phenom enon that disturbs the rainfall 

regime o f  the adjoining region (Argollo and M ourguiart, 2000).

Nevertheles, Vuille (1999) notes that as the precipitation over the Altiplano is episodic in 

nature, it reveals that although solar heating may be a prerequisite, additional forcing is 

required for precipitation actually to occur. An alternative m echanism  for explaining the 

nature o f  precipitation on the Altiplano was recently put forward by Garreaud (1999; 2000) 

who presented a convincing link between the large scale upper-atm osphere easterly winds 

over the A ltiplano during rainy periods, and the regional easterly flow o f  moisture from the 

continental lowlands up and over the Andes towards the Altiplano. His data suggest that the 

large-scale upper level easterly flow brings about turbulent entrainm ent o f  easterly 

momentum over the Andean ridge, thereby accelerating eastw ard upslope flow and moisture 

transport. Conversely, dry periods are related to enhanced westward flow over the Altiplano 

at all levels, thereby advecting dry air from the Pacific region and suppressing any moist air 

advection from the east. So, he argues that it is the intensity o f  easterly m oisture transport 

over the eastern slope o f  the Andes rather than the degree o f  m oist conditions in the 

continental interior that is the main factor in determ ining the m odern intraseasonal 

moisture/rainfall variability on the Altiplano.

Three very large lacustrine basins occupy the vast depression o f  the Altiplano which has 

been filling up since the Tertiary (Argollo and M ourguiart, 2000). To the north lies Lake 

Titicaca (16° S, 69° W) a deep freshwater lake (max. depth 285 m), in fact the largest (8562 

km2, 903 km 3) high altitude (3810 masl) lake in the world, occupying approxim ately one 

seventh o f  the northern Altiplano basin (Argollo and M ourguiart, 2000). The modern lake 

becomes a closed basin when water level drops below 3804 masl (Rowe et al., 2002), 

however at present Lake Titicaca drains via the Rio Desguadero into the southern altiplano 

basins o fP o o p o  (2530 km2) and Coipasa and Uyuni (12,000 km 2). Lake Poopo, is a very 

shallow body o f  w ater near-central on the Altiplano showing meso- or polyhaline conditions 

(the lake dried up completely in 1995), and the salars o f  C oipasa and Uyuni are seasonal 

hypersaline lakes. This latitudinal distribution o f  water bodies reflects the pluviometric 

gradient that exists between the northern and southern parts o f  the region (Argollo and 

M ourguiart, 2000). The mean annual precipitation varies from more than 800 mm around 

Lake Titicaca to less than 200 mm at the southern end o f  the basin, where the mean 

evaporation rate over the entire A ltiplano region is estimated at more than 1500 mm y r '1
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(Grosjean, 1994). This is frequently attributed to the seasonal m igrations in the latitudinal 

position o f  the ITCZ, which reaches the central Andes during austral sum m er between the 

months o f  N ovem ber and April, and is at its most southerly position from M arch-April 

(Barry and Chorley, 1995).

3.3.3 The Influence o f  ENSO on the Precipitation Regim e over the A ltiplano Region

Recent work has focussed on examining the importance o f  the Bolivian High and its 

relationship to the phases o f  the ENSO ocean-atm osphere phenom enon (e.g. Lenters and 

Cook, 1997; Vuille, 1999). Relatively wet summers (DJF) on the A ltiplano have been found 

to broadly correlate with an intensified and southward-displaced Bolivian High, creating 

stronger easterly winds that transport humid Am azonian air onto the northern Altiplano. 

Conversely, dry years are characterised by a w eaker easterly flow, which isolates the 

Altiplano from the Am azonian moisture flux. New evidence based on analysis o f  

m eteorological fields during periods o f  strong oceanic forcing (Rowe et a l., 2002), indicates 

that inter-annual shifts in Altiplano climate modes are primarily forced by SST anomalies in 

the equatorial Pacific Ocean. Dry summers are coincident with El N ino periods (negative 

Southern O scillation Index [SOI] anomalies), whereas wet sum m ers are correlated with La 

N ina (positive SOI anom alies), suggesting that the oceanic SST structure plays an important 

role in forcing atm ospheric circulation over tropical South A m erica on inter-annual 

timescales. Forcing m echanisms that control the regional moisture balance on the timescales 

o f  centuries to m illennia are considered more difficult to characterise, but are probably 

associated with changes in the seasonal distribution and m agnitude o f  insolation that are 

brought about by shifts in the Earth’s orbital parameters.
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4. A REVIEW OF THE 0 TO 40 KA PALAEOCLIMATE 

RECONSTRUCTIONS OF TROPICAL AND 

SUBTROPICAL SOUTH AMERICA

4.1 Introduction to R econstructions o f Paiaeoclim ate

4.1.1 Introduction

The primary aim o f  this study is to reconstruct the effective m oisture history o f  the Amazon 

Basin. It is therefore necessary to review the existing knowledge o f  past clim ate change in 

tropical and subtropical South America. This chapter attem pts to critically review the 

published proxy evidence o f  climate change in northern South Am erica, with particular focus 

on the last glacial m axim um  (LGM ) and the last glacial-interglacial transition (LGIT).

Over the recent decades, global clim ate change from the LGM to the current interglacial has 

been the subject o f  rigorous investigation. By contrast, however, relatively few data are 

available covering these periods from the northern and central parts o f  South Am erica 

(Clapperton, 1993). As a consequence, the paucity o f  proxy records from these regions 

dictates that com paratively little is known o f the past clim ate history o f  South Am erica since 

the LGM, especially as many o f  the records lack com pleteness back to this period, and are 

often highly localised in their spatial representation. N evertheless, the increasing am ount o f 

data that has been em erging over recent years is m aking it possible to begin constructing a 

continuous large-scale post-glacial clim ate history, based upon the integrated records o f  

multiple proxies from different regions.

4.1.2 L im itations to Paiaeoclim ate Reconstruction

Ongoing limitations continue to inhibit the developm ent o f  paiaeoclim ate reconstructions 

from South America. One o f  the major restraints is the difficulty in acquiring good 

chronological control. This is particularly an issue surrounding the LGIT and LGM periods, 

the precise tim ing and identification o f  which remain uncertain in the tropics, particularly for 

the LGIT. In consequence, inter-comparisons o f  tropical and extratropical clim ate change 

proxies are am biguous. The chronological placem ent o f  the LG IT and LGM are critical 

when attem pting to establish the nature and tim ing o f  clim atic events in the tropics relative to 

their analogous counterparts in the higher latitudes. The tim ing o f  these clim ate stages are 

also essential prerequisites to investigate any potential leads and lags in clim ate change over 

geographical space and their associated teleconnections.
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A good exam ple is the deglacial climate reversal (DCR) docum ented within the glacial stage 

records from the Huascaran and Sajama Andean ice cores (Thom pson et al., 2000). Lack o f 

dateable material in the ice cores between 11 and 19 ka has weakened the chronological 

constraints o f  the LGM  and LGIT. Much debate has focussed on w hether the DCR should be 

correlated to the Y ounger Dryas (YD) period in NW  Europe as shown in Figure 4.1, or 

whether it should instead be correlated with the Antarctic Cold Reversal (ACR) in the 

Southern H em isphere as shown in Figure 4.2. M ethane-synchronisation between the central 

Antarctic Byrd and V ostock records and the Greenland GRIP record suggest the ACR to 

have preceded the YD by at least ~1 .8 kyr, and be in fact synchronous with the Bolling- 

Allerod warm period in Greenland. This implies that A ntarctica was warm during the YD 

(Blunier et a l., 1998; Blunier et a l., 1997). However, Steig et al. (1998) found the isotopic 

signal at the coastal Antarctic Taylor Dome site to have changed in parallel with the YD, 

rather than with the ACR recorded in central Antarctica. It is also possible that Taylor Dome 

records a regional feature o f  Antarctic sea surface tem perature, possibly related to the YD 

(Raynaud et a l., 2000). The stratigraphy used in the Steig et al. (1998) work has also been 

questioned (M ulvaney et al., 2000). To date, the debate remains ongoing, illustrating the 

highly com plex nature o f  the global interactions involved, some o f  which are yet to be fully 

understood.
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Figure 4.1: Diagram to illustrate the 

effects o f tuning the Sajama and 

Huascar&n Andean ice core records to 

the sequence of Northern Hemisphere 

climate change. I4C cal dates, the 518Oatm 

match points, and the time interval over 

which 5l8Oice was matched to that in the 

GISP2 core are shown along the top 

(modified from Thompson et al. 2000).

Figure 4.2: Methane-synchronised 

isotope records of the Greenland GRIP, 

and Antarctic Vostock and Byrd Station 

ice cores to show the relative timing of 

the Antarctic Cold Reversal and the 

Younger Dryas period (Blunier et al., 

1997), together with the increase in 

atmospheric C 0 2 record from Byrd 

(modified from Raynaud et al., 2000).

Sajama, Bolivia
GISP2 |  V O ..  match

1,C dates (calibrated) 

(match with GISP 2)
H uascaran,
Peru

GISP2, Greenland

Guliya, W. China

Byrd, Antarctica

Vostok, Antarctica

54



C hapter  4

Although the Huascaran and Sajam a ice caps both sit in the Southern Hem isphere, they each 

have 11-19 ka age models that have been tuned to a Portuguese marine core and the GISP2 

polar ice core, respectively (Thompson, 2000; Thom pson et al., 1998; Thom pson et al.,

2000). This forcible synchronisation o f the DCR in the ice core 5 lsO with the YD event has 

the effect o f  artificially ascribing a Northern Hemisphere control over the clim ate at these 

sites. Should however, the DCR be actually correlated with the ACR instead, this has the 

overall effect o f  m aking the ice core ages between 11 and 19 ka -1 .8  kyr relatively older in 

reality (thus m aking those dates used in the published age m odel -1 .8  kyr too young). 

Therefore great caution should be taken when com paring the tim ing o f  LGM  and LGIT 

climatic events apparent within the Huascaran and Sajam a ice cores with other climate 

records, on both a regional and global scale.

Care m ust also be taken to ensure that the event in the record being dated has been correctly 

identified. A case example is the discussion o f  possible inter-regional lagtimes surrounding 

the global sequence o f  deglaciation after the LGM, as discussed by Seltzer et al., (2002), and 

Clarke (2002). Lake records from Lakes Titicaca and Junin in tropical South Am erica 

suggest that the tim ing o f  maximum Andean late Pleistocene glaciation was broadly 

synchronous with the global LGM, 21 Cal ka (Seltzer et al., 2002). However, com paring 

these data w ith polar ice core data and the record o f  glaciation from Ow ens Lake, California, 

Seltzer et al. (2002) propose that deglacial warm ing in tropical South A m erica actually 

preceded the rapid deglacial warm ing in the northern high latitudes by several thousand 

years (see Figure 4.3). This prompted the authors to speculate that the w arm ing in the tropics 

could even have acted as the trigger for the global deglaciation.
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Lake Junin, 
Peru

Lake Titicaca 
NE981 PCin the —*► 

Tropical 
Andes

Lake Titicaca 
NE985PC

Byrd Station, 
Antarctica

9

GRIP, Greenland
15 20 25 30
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Figure 4.3: Paiaeoclimate records from tropical and subtropical South America compared to the polar 

ice core records, which suggest that deglacial warming in tropical South America preceded the 

deglacial warming in the northern high latitudes by several thousand years (modified from Seltzer et 

a l, 2002). It should be noted that the GRIP timescale quoted by Seltzer et al. (2002) has since been 

revised to match the GISP2 chronology back to 40 ka (Johnsen et al., 2001) and so is now no longer 

younger than the GISP2 for ages >15 kyr BP as shown in this figure. Data shown are magnetic 

susceptibility records from Lake Junin, Peru (A) and Lake Titicaca (B and C); and 6 ,8Ojce ice core 

records from Byrd Station, Antarctica (D) and GRIP, Greenland (E).
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However C lark (2002) argued that the Owens Lake data from the Sierra N evada was 

inappropriate for com parison with Lakes Titicaca and Junin due to the highly contrasting 

sedimentary regim es between the lakes o f  the two regions. At Lakes Junin and Titicaca, 

nearby LGM  glaciers provided the lakes with a constant supply o f  glaciogenic sediment. 

Once these glaciers retreated however, moraine-dam m ed lakes acted as huge sediment traps 

acting to am plify the deglacial sedimentary signals o f  the dow nstream  lakes. By contrast, 

Clark (2002) notes that the retreat o f  the Sierran glaciers did not produce such sedim ent 

trapping and so continued to receive glaciogenic input throughout the time that its watershed 

was glaciated. C lark (2002) proposes that the tropical South Am erican lake records be 

instead com pared to direct indictors o f  the tim ing o f  ice m argin fluctuations.

Indeed several such records from western North Am erica show N orthern Hemisphere 

deglaciation to have occurred simultaneously with that o f  the tropical Andes. These are 

shown by black data points and grey shading, respectively, in Figure 4.4. Sim ilar ages o f 

glaciation have also been suggested for sectors o f  the British, Scandinavian and Laurentide 

Ice Sheets, coincident with high latitude warming and increased Northern Hemisphere 

summer insolation (for further details, see 2002 and references cited therein). This therefore 

supports a high-latitude forcing o f  the deglaciation. How ever it should also be noted that 

these exam ples o f  early deglaciation might also have arisen through changes in the local 

water budgets o f  the individual regions (Seltzer et al., 2000).
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Figure 4.4: Diagram from Clark (2002) to show the synchroneity of deglaciation between the 

Northern Hemisphere and tropical Andes. The vertical grey box represents the timing of tropical 

deglaciation established in Seltzer et al. (2002). (A) GISP2 record of atmospheric methane. Black 

markers show the relative ages (with errors) of deglaciation of five glacier systems in western North 

America (no vertical scale). WR = Wind River Mountains, Wyoming; SN = Sierra Nevada Mountains, 

California; OM = Olympic Mountains, Washington; CIS = southern margin of the Cordilleran Ice 

Sheet, Fraser Lowlands, British Colombia; YIC = northern outlet glacier of the Yellowstone Ice Cap. 

Wyoming. (B) Smooth curves: midmonth insolation at 60°N (June) and 30°S (December). Jagged 

curves: GISP2 oxygen isotope record, presented at lower and higher-resolutions. (C) Oxygen isotope 

record from Byrd Station, Antarctica, displayed on the GISP2 timescale. For more details about how 

this diagram was constructed, please refer to Clark (2002).

Further caveats to South Am erican clim ate reconstruction have arisen where, in the absence 

o f  other evidence, A m azon Basin paiaeoclimate has been inferred indirectly from proxies 

used principally for other variables such as vegetation (e.g. Behling and da Costa, 2001; 

Behling et al., 1998; e.g. Bush and Colinvaux, 1990; Ledru et al., 2001; Velez et a l ,  2003).
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Information pertaining to both palaeovegetation and clim ate has usually been derived from 

the same set o f  palaeodata, therefore circular argum ents are an inherent problem (M ayle et 

al., 2004). In recent tim es however, a growing body o f  independent clim ate proxies from a 

variety o f  terrestrial and marine archives have enabled more reliable inferences to be made. 

Nevertheless, vegetation records still remain the most abundant archive o f  South American 

paiaeoclim ate data, but in light o f  the other records becom ing available, the pollen spectra 

can be further interpreted with greater understanding.

Although it is possible to reconstruct past clim ate with relative ease for regions such as the 

Altiplano (Argollo and M ourguiart, 2000; Baker et al., 2001a; Baker et a l., 2001b; Rowe et 

a l ,  2002; Servant and Servant-ViIdary, 2003), it is more difficult to achieve for the Amazon 

Basin as scarcer published data are currently available -  to date, for example, there are only 

six com plete pollen records from A m azonia which extend back to the LGM  (M ayle et al., 

2004). This arises in part from the fact that many proxy records are discontinuous, either due 

to sedim entary hiatuses that punctuate the stratigraphic record (e.g. lake desiccation), or due 

to the effects o f  processes operating only at specific clim ate intervals (e.g. speleothem 

growth during humid periods, sand dune accretion during arid periods). In spite o f  this, 

insights into South Am erican paiaeoclimate can be inferred from a cum ulative variety o f  

sources, which are reviewed in this chapter.

4.2 Palaeotem perature R econstructions o f the Am azon Basin

Information on past tem perature changes within the Amazon Basin has been inferred from a 

variety o f  sources: CLIM A P (1976; 1981) originally estim ated LGM  tropical cooling o f  2 

°C, although this is now commonly considered to be rather conservative (IPCC, 2001); 

alkenone data (Bard et al., 1997; W olff et al., 1998) suggest a 3°C LGM  cooling o f  tropical 

sea-surface tem peratures (SST) relative to m odem , whereas coral- (Beck et al., 1997; 

Guilderson e t a l ,  1994; Harris and Mix, 1999) and planktonic foram inifera (M ix et al.,

1999) -based tropical SST reconstructions and analyses o f  noble gas concentrations in 

Brazilian groundw ater (Stute et al., 1995) show a m aximum LGM  tropical cooling o f  5°C; 

Brazilian palynological data (e.g. Behling, 2002; Behling and Negrelle, 2001; Bush et al., 

1990; e.g. Liu and Colinvaux, 1985) suggest a cooling o f  3-7°C; kaolinite-bound oxygen 

(5180 )  and hydrogen isotopes (5D) in palaeosols from the Colom bian Bogota basin (M ora 

and Pratt, 2001) suggest an LGM  cooling o f  5 to 7°C; and high altitude ice core records from 

the Andes (Thom pson et al., 1998; Thom pson et a l ,  1995; Thom pson et al., 2000) show 

tem peratures to have been up to 8-12°C lower during the LGM  and DCR, although the LGM 

interpretation has since been reassessed to be more in the region o f  3°C, with a similar
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cooling also likely for the DCR (for more details see Pierrehum bert 1999). Snowlines 

(Clapperton, 1993) and treelines (van der Hammen, 1974) are considered to have descended 

1000 m or more, and m ontane vegetation may have expanded to lower elevations (e.g. Bush 

and Colinvaux, 1990; Bush et al., 1990; Colinvaux et al., 1997; e.g. Colinvaux et al., 1996; 

Haberle and M aslin, 1999; Liu and Colinvaux, 1985) also suggestive o f  lower temperatures. 

M arine pore w ater and benthic foram iniferal 6 lsO (Schrag et al., 1996) also support an LGM 

cooling in the tropical regions (~4°C in tropical deepwaters), although these signals are also 

likely to be influenced by changes in deep ocean circulation.

However, in a com prehensive synthesis o f  LGM terrestrial paiaeoclim ate data, Farrera et al. 

(1999) concluded that tropical cooling was in fact far from spatially uniform, even in the 

tropical lowland regions and therefore large-scale extrapolated interpretations based upon 

individual sites should be made with caution. In this case, there remains little empirical 

paiaeoclimate data that provides actual tem perature inform ation for the spatial majority o f 

the LGM Am azon Basin, although it is generally assumed that the basin cooled in the region 

o f  ~3-5°C during the m ost recent cold stages.

At present, a sim ilar synthesis o f  data for the LGIT has yet to be com piled, although it is 

assumed that the spatial variability o f  past tem perature within the tropics would be o f  at least 

a sim ilar nature to the LGM. Many climate records confirm  the existence o f  a prom inent 

deglacial clim ate reversal (DCR) in the tropical Andes ju st before the final w arm ing into the 

early Holocene, for exam ple Andean ice core 5 lsO (Thom pson et al., 1995; Thompson et al.,

2000); pollen data from Lagoa do C afo, northern Brazil (Ledru et al., 2001) and Ecuadorian 

Am azonia (Bush et al., 1990); climate data from Lake T iticaca (e.g. Baker et al., 2001a; 

Baker et al., 2001 b; Rowe et al., 2002) and the Amazon Fan (M aslin and Burns, 2000;

Maslin et al., 2000), although the exact tim ing and thus interhem ispheric synchroneity o f  this 

event remains under discussion, however (see Section 4.1.2 above).

By far the m ost detailed records o f  trends in low-latitude South Am erican tem perature 

change can be resolved from the Andean ice cores. To date, four significant ice caps have 

been drilled in the tropical Andes: Huascaran, Quelccaya, Coropuna, and Sajam a (in 

latitudinal order; see Figure 4.5). A num ber o f  other cores have been drilled (e.g. llimani, 

Bolivia; Chim borazo, Ecuador; Pucahirca, Copap, Caullaraju and Hualcan, all in Peru) 

although these have either not been analysed in such great detail, have not been published, or 

only cover relatively short periods. Records from Q uelccaya reach back only as far as the 

m id-Holocene (Thom pson et al., 1985), however the Huascaran and Sajam a cores have been
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shown to extend back to the -2 0  ka and -2 5  ka, respectively (Thom pson et a l., 1998; 

Thompson et a l., 1995; Thompson et al., 2000). Records from Coropuna drilled in 2003 are 

yet to be assigned a chronology, but may extend back through the Holocene (L. G. 

Thompson, personal com m unication 2003). Clim ate as far back as the last glacial stage 

(LGS) can therefore be inferred from the Huascaran and Sajam a ice core records.

80* A

PERU Huascaran

Sajama

C oropuna

Figure 4.5: A map to show the locations of the ice cores drilled to date in the Tropical Andes. 

Huascardn Col (9°07’ S, 77°37'W, elev. 6048 m)

Quelccaya Ice Cap (13°56’ S, 70°50’ W, elev. 5670 m)

Coropuna Ice Cap (15° 32’ S, 72° 39' W, elev. 6450 m)

Nevado Sajama (18°07’ S, 68°53’ W, elev. 6642 m) 

(http://researchnews.osu.edu/archive/quelcoropics.htm [accessed 04.06.04])

Data from the Huascaran (Peru) and Sajama (Bolivia) ice cores are shown in Figures 4.6 and 

4.7, respectively, and have been reviewed in detail in a num ber o f  publications (e.g. 

Thompson et al., 1998; e.g. Thom pson et al., 1995; Thom pson et al., 2000).
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Figure 4.6: 5 l80 , nitrate and insoluble dust concentrations from the Huascar&n ice core, Peru 

(modified from Thompson et al., 2000).
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Figure 4.7: 5 l80 , nitrate and insoluble dust concentrations from the Sajama ice core, Bolivia 

(Thompson et al., 2000).

b180  data from the Huascaran ice cap (Thom pson et al., 2000; see Figure 4.6) reveal that the 

isotopically coldest ice was deposited during the LGS, after which there was progressive 

warming trend, punctuated by the DCR, toward the Holocene. The isotopically warm est ice 

was laid down during the early Holocene, after which time, the tem perature in the Andes has
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steadily cooled. Superim posed on this declining Holocene trend were m inor centennial-scale 

oscillations in 5 ,sO, the coolest time coinciding with the Little Ice Age. During the last -2 0 0  

years, 5 lsO has increased markedly, with 20th Century values being the isotopically warmest 

for the last 6 kyr (Thom pson et al., 2000).

Interestingly, in the Sajam a record the warming at -1 5 .5  ka is far m ore pronounced relative 

to that in the Huascaran data, and culm inates with the isotopically w arm est period at -14 .3  

ka, rather than in the early Holocene (see Figure 4.7). Thereafter, the DCR is equally obvious 

in the Sajam a record, however the underlying trend in the H olocene data is o f  slight 

warming, albeit in an oscillatory fashion.

However, it is im portant to consider that the 8 lsO signal may not be solely responsive to 

changes in tem perature alone, but may also reflect the isotopic values o f  precipitation, which 

may have varied between the different latitudinal locations o f  Huascaran and Sajama. This 

may also explain the differences in the isotopic ranges o f  the two datasets between modern, 

early H olocene and LGM  values shown in Table 4.1 (see also Section 4.3.6a for discussion 

on ice core clim ate data interpretation).

Modern (0 1  ka) Early Holocene Last Glac ial M O D E RN -  LC,M EH - LGM
(EH) Maximum (LGM) (%,>> (%<,}
(6.8 10.0 ka) (18.0 21.2 ka)

Sajama (Bolivia) -16.8 -16.7 -22.1 5.4 5.4
Huascaran (Peru) -18.5 -16.6 -22.9 4.4 6.3
GlSP 2  (Greenland) -35.0 -34.6 -39.7 4.7 5.1
Guliya (W. China) -14.4 -13.1 -18.5 4.1 5.4
Byrd (Antarctica) -32.8 -33.9 -40.5 7.6 6-6
Vostok (Antarctica) -441 (-56.4) -436 (-55.7) -472 (-60.2) 3.9 4.5
Vostok (21-24.2 ka) -479 (-61.1) 4.8 5.4

Table 4.1: A comparison of average 5I80  values for various time intervals and for different ice cores. 

Vostock measurements are in 5D with comparable 6I80  values shown in parenthesis (modified from 

Thompson et al., 2000; see also references therein).

4.3 Palaeom oisture R econstructions o f  the Am azon Basin

In com parison to palaeotem perature, palaeoprecipitation is a highly com plex variable to 

reconstruct. As detailed in Chapter 3, precipitation at any given locality in Am azonia is 

driven by a com bination o f  both tropical and extra tropical factors, which have varying 

relative influences over different geographical regions o f  the continent. Therefore past 

precipitation is likely to have been far from spatially uniform across such a large and diverse 

watershed as the Am azon Basin.
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Potentially, the past m oisture history o f  the Amazon Basin can been reconstructed from a 

num ber o f  proxy variables from a variety o f sources. These include records sited both 

proximal and distal to the Basin, including geom orphological and geological features, lake 

deposits (sedim entology and palaeoecology), marine sedim ents, speleothem s, and ice cores. 

However each o f  these different archives possesses its own set o f  limitations. For this reason, 

it becomes practical to review each type o f  palaeom oisture archive individually.

Colinvaux and De O liviera (2000) hypothesise that in order for a reconstruction to be valid, 

the proxy used m ust m eet a set o f  three ‘validation criteria’:

1. The proxy m ust have been identified correctly;

2. The proxy m ust require a clim ate or environm ent that is significantly different from 

the recent past;

3. The proxy m ust have a proven chronology.

Colinvaux and De O liviera (2000, p353) also note m ost im portantly that...

“The com mon denom inator in these and other stipulations o f  P leistocene aridity in the 

Am azon is the hypothesis o f  ice-age aridity itse lf The argum ents become circular and by 

semantic trick gain quasi-parsimony. An explanation fo r  a [feature] that relies on 

Pleistocene aridity is believable: it matters not that no correlation is established or that 

alternative explanations exist. Thus a fa lse  paradigm  is born. ”

M any inferences o f  m oisture variability, especially those derived from indirect methods, 

should therefore be regarded speculatively, as they are only suggestive in part, and present 

no definitive evidence for aridity. Each o f  the groups o f  proxy variables reviewed in this 

chapter will be assessed according to these three validation criteria.

4.3.1 M orphological O bservations

Despite the considerable scarcity o f  LGM records for the Am azon Basin, aridity has been 

inferred from studies o f  ancient palaeodune systems, speculations about the ‘origins’ o f  

white sands in soil sequences, buried stonelines, fossil evaporite deposits in river terraces, 

arkosoic sands in buried fan deposits, and sedim entary hiatuses in lake cores, each o f  which 

are reviewed against the three validation criteria in Table 4.2.
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V alidation Criteria
Morphological proxy 
cited as evidence for 

glacial aridity
Site 1) Identified properh? : c*'m a*c j 3 ) solid chronolog\?1 1 different from now ? <•' A f e r i f ••

Valid
proxy? Example references

Fossil sand dunes
(identified in field and 
from remote sensing
data).

Northeast Brazil 
(Bahia State); 
Pantanal region of 
Central Brazil; llanos 
(Orinoco).

X ?

Questionable, except those of 
Bahia State.

A? X

Bahia State system 
active during 
Holocene. Difficult to 
date.

No. Barreto et a l, 1997; Boggiani 
and Coimbra, 1995; Clapperton, 
1993; Filho et al., 2002; 
Klammer, 1982; Latrubesse and 
Nelson, 2001; Tricart, 1974.

4 Aeolian’ white sand 
deposits in soils.

Between Rivers 
Negro and Branco, 
northwestern Brazil.

X

Not representative of aeolian 
activity, but probably podsols 
associated with the low pH of 
the blackwater system.

X ?

Site possibly under 
an edaphic control.

Difficult to date.
No. Ab'Saber, 1982; M.L. da Costa, 

personal communication to K. 
Suguio, cited in Clapperton, 
1993; Colinvaux et al., 2000.

Buried stone lines. Near Manaus. X

Are more likely in situ
concretions.

X

Most likely of Tertiary 
age.

No. Ab’Saber, 1982; Clapperton, 
1993; Irion et al., 1995.

Evaporite deposits
(gypsum and 
aragonite concretions) 
in river terraces.

Lower Rio Acre. X

Most likely associated with 
marine incursion associated 
with the building o f the 
Andes.

X X

Identification based 
upon one AMS date of 
55 kyr B P .  Most likely 
to be of Miocene age.

No. Kronberg et al., 1991;
M. Rasaninen, personal 
communication, cited in 
Colinvaux and De Oliveira, 
2000.

Arkosoic sands 
(unweathered 
plagioclase) in
submarine delta 
deposits.

Amazon Fan. A X

Could have been 
weathered from the 
Andes and carried 
directly out to sea.

A

Radiocarbon dated.
No. Damuth and Fairbridge, 1970: 

Irion, 1976; Irion et al.. 1995; 
Meade et a l,  1985; Milliman et 
a l, 1975.

‘Gaps’ in sedimentary
sequences
(see Section 4.33).

e.g. Lake Pata. X

Highly dependant upon 
precision of radiocarbon 
dating and stratigraphic 
correlation o f dated samples 
to the boundaries of 
hypothesised ‘gaps’.

X

Questionable 
environmental 
significance o f ‘gap’ 
in record.

A

N.B. only if ‘gap' 
exists!

No. Colinvaux and De Oliveira, 
2000; Ledru et a l,  1998.

Table 4.2: A review of the morphological evidence for palaeomoisture in the Amazon Basin.
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With reference to Table 4.2, o f  all the proxies reviewed, it seem s that not one o f  them fulfils 

the three validation criteria, so cannot be used individually as direct evidence for past 

moisture changes in the Amazon Basin. However, these proxy data can provide 

supplem entary evidence to support the inferences made from other archives, and thus 

provide valuable contributions to composited m ultiproxy investigations.

4.3.2 Palaeoecological Records

By far the m ost abundantly studied climate archives in the Am azon Basin are lake sediments, 

o f  which it has been estim ated that there are at least 100,000 km 2 o f  lakes and swam ps in the 

modern A m azon Basin (Flood et al., 1995). However, despite their relative abundance, 

com paratively few lake records have been studied, with these records often being highly 

fragmentary and older records being increasingly difficult to source. Therefore LGM records 

are rather scarce, and highly sought after as a result. Such records com m only have poor 

chronological control (Colinvaux, 1989), however should enough organic m atter be present, 

and any 14C reservoir effects be known, it is possible to use radiocarbon dating to assign a 

chronology.

Past moisture changes have frequently been reconstructed from fossil organic m atter 

(principally pollen assem blages, but also m acrofossils and biom arkers) contained within both 

lake and marine sedim ents, whereby an ecosystem switch from rainforest to savannah has 

been implied to represent a transition from moist to arid climates. In addition, the 

presence/absence o f  key indicator species o f  known ecological tolerance can be used to 

hypothesise about past moisture conditions. Much o f  this work is also associated with 

investigating the clim atic resilience o f  the Amazon rainforest through the last glacial cycle.

The ‘P leistocene Refuge H ypothesis’, first put forward by H affer (1969), and developed 

further by Prance (1987) suggests that during glacial stages, the Amazon Basin experienced 

extreme drying such that, com bined with lower tem peratures and p C 0 2  levels, the C4 

pathway o f  photosynthesis became more efficient for prim ary production. Consequently, 

tropical grasses out-com peted their C3 counterparts, thereby restricting the rainforest to 

isolated pockets within discrete areas o f  the Amazon Basin. The refuge hypothesis requires 

an entire biom e shift from forest to savannah to be plausible (Colinvaux and De Oliveira, 

2000).
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The evidence presented to test the Pleistocene Refuge Hypothesis has been discussed and 

reviewed extensively in the literature (Colinvaux and De O liveira, 2000; Colinvaux et al., 

2000; H ooghiem stra and van der Hammen, 1998; M ayle et al., 2004).

However, rigorous investigation into the LGM Am azon Basin vegetation is somewhat 

limited by the paucity o f  available records. To date, there are only very few significant long 

pollen records that extend back through the LGM, from within the actual Amazon Basin 

itself, for example: Laguna El Pinal (4°08’N, 70°23’W; Behling and Hooghiem stra, 1999); 

Laguna Lom a Linda (3°18’N, 73°23’W; Behling and Hooghiem stra, 2000); Lake Pata 

(0°16’ N, 66°41’ W; Bush et al., 2002; Colinvaux et a l ,  1996); C aqueta River (0°44’S, 

72°04’W; Urrego, 1994; Urrego, 1997); Ca?6 Lake (2°58’S, 43°25’W; Sifeddine eta l.,

2003); Carajas (6°20’S, 50°25’W; Absy et al., 1991; Sifeddine et al., 2003); Katira Creek 

(9°S, 63°W; Absy and van der Hammen, 1976; van der Hamm en, 1972; van der Hammen, 

1974; van der Hammen and Absy, 1994); Laguna Bella V ista (13°37’S, 61°33’W; Burbridge 

e ta l., 2004; M ayle et a l ,  2000); and Laguna (14°28’S, 61°04’W; Burbridge et al., 2004; 

Mayle et a l ,  2000).

O f the studies discussing and supporting the refuge hypothesis however, only records from 

very m arginal sites relative to the modern rainforest, particularly the extrem e southwest, can 

provide substantial evidence for savannah expansion/ m igration o f  forest ecotone boundaries 

(Colinvaux et a l ,  2000; M ayle et a l ,  2004; Mayle et al., 2000). These include Katira Creek 

in Rondonia (Absy and van der Hammen, 1976; van der Ham m en, 1972; van der Hammen, 

1974; van der Ham m en and Absy, 1994), and the Noel K em pff M ercado N ational Park 

(Laguna Bella V ista and Laguna Chaplin; M ayle et al., 2000) in the extrem e southwestern 

edge o f  the m odern forest; and Laguna El Pinal in the Colom bian savannahs o f  the Llanos 

Orientales (Behling and Hooghiemstra, 1999), and C a90 Lake (Sifeddine et a l ,  2003) at the 

opposite end borders o f  the Basin.

The two records from deeper within the Amazon Basin, from Carajas (often the classic 

citations in defence o f  savannah encroachment) and the C aqueta River, have since been 

reinterpreted as responding to strong local edaphic control (H ooghiem stra and van der 

Hammen, 1998; Colinvaux and De Oliviera, 2002) and their use as evidence in support o f  

the Pleistocene Refuge Hypothesis is now regarded as controversial.

However interpretations o f  clim ate based upon vegetation reconstructions alone m ust be 

hedged with caveats due to the potential circular argum ents that arise from reconstructing
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two separate, yet sim ultaneously interdependent signals from the same dataset. There is also 

the flawed frequent assum ption that climate is the only im portant environm ental control over 

species distributions. In reality, vegetation responds to a com plex interplay o f  a range o f 

climatic and environm ental factors, both on a local and regional scale; and the sensitivity o f 

vegetation to one particular param eter may vary according to the boundary conditions o f  

another/others. For example, it has been dem onstrated by ecophysiological experiments 

(Cowling and Sage, 1988; Policy et a l., 1993), and dynam ic vegetation modelling (e.g. 

Cowling et a l ,  2001) as well as palaeorecords o f  stable carbon isotope (Street-Perrott et al., 

1997) that tem perature and atm ospheric C 0 2 have an important role to play in controlling 

plant physiology, and therefore are vital in determ ining the sensitivity o f  the rainforest to 

changes in effective moisture. In light o f  these new findings, the persistence o f  forest at a site 

being taken to imply m oist conditions may not therefore represent a fair climatic 

interpretation o f  the data.

Vegetation response as a proxy for aridity also carries additional com plexities as the 

vegetation may not necessarily be responding to changes in average annual precipitation per  

se (assum ing it to be the principle driver), but rather to critical changes in the length o f  the 

annual dry season: Pollen analyses (Bush, 2000; Bush et a l ,  2002) have suggested that a 

critical threshold in annual precipitation o f  2000 mm y r '1 exists, whereby below this level, 

forests become m ore open and fragmented. Therefore, so long as the wet season provides 

>2000 mm o f  precipitation, the dry season could be as much as four to five months in 

duration with as little as 100 mm o f  rain before there is a noticeable change in the forest 

structure (Bush et al., 2002). Should the annual dry season exceed four-five months, the 

rainforest cannot be sustained ecologically. (M aslin, 2004; Sternberg, 2001). Consequently, 

savannah grasslands will have a competitive advantage and therefore dominate. Depending 

upon w hether these thresholds are breached, it implies that pollen signals could be rather 

immune to changes in the precipitation regime over a site, as a record showing continuous 

forest cover need not necessarily preclude that the local clim ate transitioned from being 

mildly seasonal, to having a more prolonged or more intense dry season (Bush et a l ,  2002), 

and/or indeed that there was a general reduction in precipitation associated with lower lake 

levels reconstructed (e.g. Bush et a l ,  2002; Sifeddine et a l ,  2001).

However, any palaeoecology-based reconstruction is heavily reliant upon the assumption 

that the environm ental ranges o f  the plant populations are known accurately, not to mention 

that the clim ate inform ation has been interpreted correctly from the palaeoecological data. 

The latter is particularly an issue where deciphering a regional signal o f  change from a local
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signal o f  change, for example at the Carajas Plateau (Absy et al., 1991; Hooghiem stra and 

van der Ham m en, 1998; van der Hammen and Absy, 1994) where the interpretation o f the 

vegetation signal over the site, previously hypothesised to be clim atically controlled, has 

since been challenged and reinterpreted to be edaphically controlled (Colinvaux et al., 2000).

In terms o f  m eeting the three validation criteria, two are m et w ith relative comfort, whereby 

the proxy can be identified properly1*, and where possible can be assigned to the late 

Pleistocene period through radiocarbon dating3. Although identifiable plant populations 

require a clim ate significantly different from the recent past2, this is only once certain 

climatic thresholds have been breached, and so therefore the second criterion can really only 

apply to clim atically marginal sites, as those which are insensitive will merely buffer any 

climate signal. The m eeting o f  this criterion is also strongly dependant upon the accurate 

interpretation o f  the palaeoecological data. Nevertheless, the possibility that all three criteria 

can be met validates the palaeoecological archive as a proxy for reconstructing past moisture 

in the context o f  this study.

4.3.3 Inorganic Sedim entary Lake Records

O f the glacial lowland lake sediments that have been recovered from the Amazon Basin, a 

number o f  LGM  records appear to be highly oxidised im plying lower w ater levels 

(Colinvaux et al., 1996). A significant num ber o f  lowland lakes lack LGM sedim ents 

altogether, suggesting that lakes may have completely desiccated during this period (Servant 

e ta l., 1993; Sifeddine et al., 2001; van der Hammen, 1974; van der Hammen and Absy, 

1994). Indeed, a study o f  age models in lowland lake studies w ent as far to suggest that the 

LGM  is represented by a hiatus at all known lowland lake sites (Ledru et al., 1998), although 

the re-dating o f  a num ber o f  these proposed hiatuses has led to this view being challenged 

(Colinvaux et al., 2000).

A succession o f  very thin layers o f  sand and organic m atter within LGM  sedim ents from 

Caco Lake, M aranhao State, northern Brazil (Sifeddine et al., 2003) suggests that the glacial 

climate o f  this region was predominantly dry, but interrupted by short humid phases. 

Conflicting evidence comes from a cluster o f  lakes (Lakes Pata, Verde and Dragao) on an 

inselberg in northwestern Brazil (Bush et al., 2002) however, w here relatively depleted 

sedimentary K + concentrations imply the LGM  to have been relatively humid (although still

* Numbers refer sequentially to the three validation criteria detailed at the beginning of Section 4.3, 

and shall be referred to this way hereafter where appropriate.
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below modern levels), which is further supported by a com plete lack o f  charcoal in the LGM 

sediments (M. Bush, unpublished data, cited in Mayle et al., 2004). During the Late 

Pleistocene, evidence o f  rapid lake-level rise and forest expansion at Caco Lake suggest the 

climate becam e progressively wetter, although the early Holocene was characterised by 

lower moisture availability and a distinct dry period until 7 Cal ka (Hansen et a l., 2003; 

Sifeddine et a l., 2003). This initial dryness is supported by evidence o f  water level 

transgression at Lake Silvana, southeastern Brazil shortly before - 8  14C kyr BP (Rodrigues- 

Filho et al., 2002), and the formation o f  Lago Calado, near M anaus, central A m azonia -7 .7  

14C ka (Behling et al., 2001). Similar moistening throughout the H olocene is also seemingly 

evident at Lake Pata (Bush et al., 2002). However, inferences about sea-level change from 

Lago Crispim, northern Brazil (eastern Amazonia) suggest that sea level was higher during 

the early Holocene, and did not start to regress until - 7  I4C ka. This implies that regional 

water tables could also have been higher about the time o f  increasing water level at these 

lakes (Behling and da Costa, 2001). In addition, it is interesting to note that this period is 

hypothesised to correspond with the onset o f  the El N ino-Southern Oscillation (ENSO) 

phenomenon in South Am erica (M artin et al., 1993; Moy et al., 2002; Rodbell et al., 1999).

Outside o f  the Amazon Basin, authigenic calcite-based oxygen isotope (5 lsO) studies o f 

effective m oisture at Lake Junin in the Peruvian high Andes for the last 14 kyr (Seltzer et al., 

2000) reveal rem arkable correspondence to the A5180  outflow reconstruction from ODP Site 

942 on the Am azon Fan (see Figure 4.8, and Section 4.3.4 below; M aslin and Burns, 2000; 

M aslin et al., 2000). Lake Junin is considered to share the tropical Atlantic as a common 

moisture source with Am azonia, and assuming that the isotopic change is not related to 

factors such as changes in either tem perature or the 6 180  o f  precipitation, the record implies 

that the clim ate becam e progressively drier through the LGIT, reaching maximum aridity 

during the time corresponding to the YD. Thereafter it becam e progressively wetter through 

the Holocene to the modern day.
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Figure 4.8: A comparison of proxy records for effective moisture in tropical South America from 

Lake Junin (Peruvian Andes), and ODP Site 942C on the Amazon Fan (modified from Maslin and 

Bums, 2000). A6I80  = 6 I80  measured at ODP Site 942, corrected for global ice volume and sea 

surface temperature. For details of how A6,80  was derived, see Maslin and Bums (2000).

With respect to the validation criteria, whether or not the proxy can be identified correctly1 is 

questionable, particularly where attempts have been made to infer past aridity from 

‘identified’ sedim entary hiatuses. This also illustrates the difficulties involved with obtaining 

chronological control3 for lake sediments, which may limit the extent to which the third 

validation criterion may be met. However, in the contexts where the proxy is more easily

m easured/identified1, such as fluctuations in lake level, independent o f  sea level-related
1 8

changes in the water table, and 6 O records o f  effective moisture, it is possible to use the 

records as proxies for past m oisture2. Furthermore, where a chronology can also be assigned3 

to these proxies, all three validation criteria can be satisfied.

4.3.4 M arin e  G eochem ical R ecords

Using techniques referred to in the previous sections, Amazon Basin aridity has largely been 

inferred from highly localised and qualitative indicators o f  effective moisture. However,
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Using radiocarbon-dated planktonic foram inifera A5I80  to m onitor variations in salinity over 

ODP Site 942 on the Am azon Fan, Maslin and Burns (2000) and M aslin et al. (2000) 

produced the first ever sem i-quantified reconstruction o f  effective m oisture within the 

Amazon Basin for the last 14 Cal ka (see Figure 4.8). The authors hypothesised that during 

the LGIT, particularly -1 2 -1 3 .5  Cal ka, the outflow o f  the Am azon River was reduced to at 

least 60% o f  the m odem  value. This implies significant aridity within the Amazon Basin, 

notably at a tim e coincident with the YD prom inent in northwest Europe. Such late glacial 

aridity also happens to correlate well with the rapid rise in atm ospheric m ethane revealed by 

polar ice core records, providing strong support to the notion o f  its possible origin in tropical 

wetlands. Thereafter throughout the Holocene, the Amazon discharge continues a steady 

progression toward m odern values.

W hat was particularly remarkable about this record was its strong resem blance to a sim ilar 

A6180  signal from Lake Junin in the Peruvian high Andes (see Section 4.3.3 above), another 

gauge o f  effective m oisture in equatorial South America, and the high-resolution %Ti and 

%Fe records obtained from ODP Site 1002 in the Cariaco Basin (Haug et al., 2001), a 

recorder o f  continental runoff from Venezuela (either directly into the Cariaco Basin, or via 

the Orinoco River; see Section 4.3.7b). Such resemblance between the records gives 

credence to the ODP 942 record as having the potential to m onitor past clim ate over 

Amazonia, and indeed northern South Am erica for at least the past 14 Cal ka. This thesis 

attempts to continue and expand upon the record published by Maslin and Bum s (2000).

W here reconstructions o f  South American climate exist from other marine records (e.g. Arz 

et al., 1998; A rz et al., 1999; Behling et al., 2000; Behling et al., 2002; Harris and Mix,

1999; Ruhlem ann et al., 2001; Showers and Bevis, 1988), these are o f  much lower resolution 

over longer periods, and are also relatively more qualitative.

Assuming the ODP 942 A6180  is purely a record o f  effective m oisture in the Amazon Basin, 

it is potentially able to fulfill all three o f  the validation criteria, whereby it can be identified 

correctly1, requires a clim ate that is significantly different from the recent past2, and can be 

assigned a chronology 3.

4.3.5 Speleothem  Records

To date, very few speleothem  records are available which represent the Am azon Basin, m ost 

likely arising from the difficulties (geographical and political) in accessing suitable sites in 

the field. H owever, speleothem s provide highly valued clim ate records as out o f  all the
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archives available they can potentially yield data at some o f  the highest available temporal 

resolution (relative to lake and marine sediments, for example), with chronological control 

provided by uranium -series dating.

In central w est Brazil, a short late Holocene record from Joao A rruda Cave, M ato Gross do 

Sul State reveals a trend o f  increasing rainfall for the last 3.8 kyr, with a higher recurrence o f  

drier events recorded between 3.8-2.5 ka than the later part o f  the record (Bertaux et al., 

2002).

A very long (210 kyr) com posite record has recently been published from a num ber o f  long 

speleothems and travertine deposits collected from caves in northern Bahia state, 

northeastern Brazil (W ang et al., 2004; Wang et al., 2003b; W ang et al., 2003a). This region 

is presently semiarid, so speleothem deposition does not presently occur, thus delineating 

any dated subsam ple as a time when climate must have been w etter than present. Analyses o f 

U-series sam ple ages reveal that all speleothems grew during glacial periods, implying that 

in this particular region, the LGM climate o f  the area was more humid than modern times. 

Wang et al. hypothesise that this can be explained by a southern displacem ent o f  the 

Intertropical Convergence Zone (ITCZ) during glacial times bringing increased rainfall to 

the region.

This is corroborated by long (116.2 ka) speleothem records collected from southeastern 

Brazil (Cruz et a l ,  2005). The authors hypothesise that the 6 180  signal m easured from 

Botuver& Cave serves as a proxy for shifts in the amount, and source region o f  precipitation 

(Amazon Basin versus Atlantic Ocean), and thereby records shifts in atm ospheric circulation 

and convective intensity over South America. Relatively depleted glacial 6 I80  values imply 

that precipitation was sourced from the Amazon Basin. However, the authors attribute this 

to a southerly displacem ent o f  the Southern Hemisphere Sum m er M onsoon, rather than to 

convectional rainfall associated with the ITCZ. Nevertheless, both system s are driven by 

meridional shifts in the m eteorological equator (see Chapter 3, Section 3.2.1).

Relatively long Peruvian speleothem records for the last 25 kyr, am ongst the first ever 

studied from the Andes, are also currently being analysed (V onhof et al., 2003). To date, no 

published data are currently available, although preliminary 6 ,80  data reveal a clear shift to 

drier conditions at ~ 4 kyr BP, with distinct decadal variation over the last 5 kyr.

Nevertheless, this requires replication in other Am azonian speleothem  records before firm 

conclusion can be drawn.
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As for the lake and marine geochemical records, speleothem -based clim ate reconstructions 

are able to fulfil all three o f  the validation data in that the proxy used (6 lsO) can be identified 

properly1, speleothem  records are able to m onitor environm ents significantly different from 

the recent past2, and they can be assigned age models via uranium -series dating3.

4.3.6 Extrapolations o f  C lim ate Information From M ore D istal Regions

Due to the inherent difficulties o f  reconstructing precipitation in the Amazon Basin, a 

number o f  studies have attempted to reconstruct Am azonian paiaeoclim ate from adjacent 

regions, including the Altiplano to the south, and the Cariaco Basin to the north.

4.3.6a South o f  Am azonia: the Altiplano

Attempts have been made to infer Amazonian paiaeoclimate from the Altiplano region (e.g. 

Baker et al., 2001 a; Baker et al., 2001 b; Thompson et al., 1998; Thom pson et al., 2000) 

where in contrast to the Amazon Basin, climate on the Altiplano is predominantly 

hypothesised to have been much wetter during the LGM. Evidence from the Altiplano comes 

in the form o f  Andean ice core records, and lake records including those from Lake Titicaca 

and the palaeolake salt flats o f  Uyuni and Coipasa. How ever due to the vast geographical 

distance between the Altiplano and the Amazon Basin, and the com plex nature o f  the South 

American clim ate regime, any large-scale extrapolations from such distal and individual sites 

should be m ade with caution. This limitation also serves to exceed any o f  those that arise 

through evaluation via the three validation criteria, as even if a proxy from these regions 

were to satisfy all three assessments, it would become obsolete by contextual default if  it 

should not be reflecting the climate o f  the Amazon Basin. For this reason, the criteria-based 

evaluation o f  proxy records from sites distant to the Amazon Basin will not be performed, 

and any inferences m ade about Amazon Basin climate from these proxies should be viewed 

with caution.

i) Ice Core Evidence

Details o f  the Andean tropical ice cores are given in Section 4.2, with data from the

Huascaran and Sajam a ice cores shown respectively in Figures 4.6 and 4.7. As discussed 

previously, difficulties associated with the Sajam a age model m ean that although the 

existence o f  glacial ice can be confirmed, no independent dates can be ascribed to the core 

between 11.5 -  24 Cal ka. O f the proxy records available from tropical ice cores, some o f  the
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more widely used palaeom oisture archives include insoluble dust, atm ospheric nitrate 

concentrations ( [N 0 3‘]), and the snow accumulation reconstruction. Pollen records entrapped 

within the ice can also be used as an indirect proxy for moisture (see Section 4.3.2).

One o f  the striking features o f  the Huascaran record is the 200-fold increase in insoluble dust 

concentrations in the LGS ice relative to the Holocene. This is indicative o f  a much more 

turbid LGS atm osphere, implying higher glacial atm ospheric aridity and thus lower 

precipitation. A tm ospheric [N 0 3 ], thought to originate from tropical rainforests and forest 

soils, is also reduced by three to four times in the LGS, and pollen concentrations are 

virtually negligible supporting a cold, sparsely vegetated environm ent with low pollen 

production. Interestingly, insoluble dust and [NO-f] are not suppressed in the Huascaran 

record during the Y ounger Dryas period, although the pollen concentrations were still 

reduced relative to the Holocene (Thompson et al., 2000). It should also be considered, 

however, that such changes in aerosol concentrations may have arisen equally through 

changes in the atm ospheric circulation regime during the LGS.

Thompson et al. (2000) ascribed the lack o f LGS dustiness in the Sajam a ice core (eight 

times less than Huascaran) to its proximal location to the Altiplano, where there is evidence 

for the existence o f  large regional palaeolakes during the LGS (e.g. Servant and Fontes,

1978; Servant et al., 1995; Sylvestre et al., 1999) implying a m oister glacial clim ate regime 

over the Altiplano (see Figure 4.9). This is also supported by relatively high glacial snow 

accum ulation a tN ev ad o  Sajama, where LGM ice thickness m easures an im pressive 28 

metres. Details o f  accum ulation are shown in Figure 4.10, where glacial stage accumulation 

is much higher relative to the Holocene, although it should be noted that the periods o f 

maximum accum ulation occur either side o f  the LGM.
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Figure 4.9: The Location of the Sajama ice cap in Bolivia in relation to modem lakes (black) and salt 

flats (white). Dark grey areas represent the areas covered by palaeolakes during the LGS (modified 

from Thompson et a l, 1998).
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Figure 4.10: Snow accumulation record from the Sajama ice core (modified from Thompson et al., 

1998).

Similarities between the 5lsO data from Huascaran and Sajam a (see Table 4.1 and Figures 

4.6 and 4.7) have led Thompson et al. (2000) to strongly speculate that both ice cores have 

shared the tropical A tlantic as a common moisture source since the LGS, and this assumption 

has been frequently held in subsequent interpretations o f  South Am erican paiaeoclimate. 

However, the interpretation o f a drier glacial clim ate over Huascaran, and a wetter glacial 

regime over the Sajam a presents an inconsistency in this premise, as should they share a 

moisture supply, they should in theory reflect sim ilar climate signals. Yet in their same
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paper, Thom pson et al. also cite the hypothesis that during glacial times, regardless o f  mean 

tem perature, a decreased tropical latitudinal tem perature gradient within the low to 

subtropical latitudes may weaken Hadley Circulation and bring about a dichotomy in the 

climate regim es over the Altiplano and Amazon Basin regions (Rind, 1988). Contrary to 

what the authors prom ote therefore, the two ice cores may have at times had independent 

moisture sources. Thus, great care m ust be taken when com paring these ice core data to other 

proxy records from South Am erica as the assumed consistent, com m on moisture source 

between the two ice core records remains rather speculative.

ii) Lake Records

Lake Titicaca is considered to be a reliable gauge o f  A ltiplano precipitation. In the present 

day, it is a virtually closed basin, therefore its water level, chem ical com position, and biota 

are particularly sensitive to changes in modern precipitation (Baker et al., 2001b).

M ultiproxy analysis o f  long sedim ent cores recovered from the deep portions o f  Lake 

Titicaca reveal it to have been a deep, fresh, and continuously overflow ing lake from —26-15 

Cal ka (Baker et al., 2001b; Cross et al., 2001; Rowe et al., 2002), implying that the LGM 

Altiplano was much w etter relative to the present (see Figure 4.11).
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Figure 4.11: Chemical, isotopic, and biotic analyses of sediments from Lake Titicaca, where more 

elevated data generally signifies higher lake level or fresher water (modified from Baker etal., 

2001b). Data are presented from three cores, represented by grey, blue and black curves. (A) relative 

abundance of benthic diatoms; (B) relative abundance of planktonic freshwater diatoms; (C) weight 

percentage calcium carbonate; (D) relative abundance of saline diatoms; (E) 6I3C of total organic 

carbon; (F) January insolation at 15"S. For more details, see Baker et al. (2001b).

This is supported by evidence for the contem poraneous presence o f  large palaeolakes on the 

central Altiplano, formed from the overflow o f  Lake Titicaca, draining via the Rio 

Desaguadero into the m odem  southern Altiplano basins o f  Lake Poopo, and the Salars o f  

Coipasa and Uyuni (Servant and Fontes, 1978). The evidence for the existence o f  these, and 

even older, palaeolakes on the Altiplano has been well summarised (e.g. Clapperton, 1993). 

The youngest, ‘C oipasa’ was a shallow palaeolake, radiocarbon-dated to have existed 

between 11.5 and 13.4 Cal ka (Servant et al., 1995), coincident with the YD cold event in the
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northern high latitudes. The youngest deep palaeolake, ‘Tauca’ (see Figure 4.12) occupied 

the southern Altiplano basin from -1 3  to -1 8  Cal ka (Servant et al., 1995; Sylvestre et al.,

1999) and attained a maximum depth o f 140m (Bills et al., 1994). The existence o f  an older 

deep palaeolake, ‘M inchin’, has been inferred from two radiocarbon dates o f -3 0  and -3 2  

Cal ka from shells within outcropping sediments (Servant and Fontes, 1978).
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Figure 4.12: Sketch maps to show the main lacustrine basins of the modem Altiplano (left), and the 

extension of Palaeolake Tauca, labelled on map as “Paleoloake Pocuyu” referring to the cumulative 

basins of Lakes Poop6, Coipasa and Uyuni (Modified from Argollo and Mourguiart, 2000).

However, more recent studies, based on the high-resolution down-core logging o f  natural 

gamma (y)-radiation from deep bore holes drilled from the Salar de Uyuni (Baker et al., 

2001a) have suggested that the presence o f palaeolake Tauca may have extended as far back 

as 26 Cal ka (see Figure 4.13). Lacustrine muds have much greater values o f  natural y- 

radiation than do salt deposits, so the proxy serves as a sensitive measure o f  changing 

effective moisture through time. Within this record, radiocarbon-dated salt deposits from 

-12.9-14.5 Cal ka implying arid conditions coincident with the time o f  the Bolling-Allerod 

interstadial (or Antarctic Cold Reversal), are preceded by a continuous sequence o f 

lacustrine muds between -14.9-26.1 Cal ka, which are thought to be those o f  Palaeolake 

Tauca. These dates extend to much older periods than those previously published, although 

they correspond very well with the lake level data from Lake Titicaca (Baker et al., 2001a). 

A second m ajor lake sequence is interpolated to have occurred prior to 38.1 Cal ka, with
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deeper sam ples lying beyond the current extent o f  radiocarbon dating. Baker et al. (2001a) 

attribute this deeper sequence to be that o f  Lake Minchin, also m aking it older than 

previously believed.
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Figure 4.13: Downcore record of natural y-radiation from the Salar de Uyuni showing effective 

moisture through time. More positive values indicate increased moisture (after Baker et al., 2001a; 

Fritz et al., 2004).

4.3.6b North o f  Amazonia: the Cariaco Basin

The Cariaco Basin, an anoxic marine basin on the northern shelf o f  Venezuela, is located at 

the northern edge o f  the annual latitudinal range o f  the ITCZ, and is thus an area that is 

highly sensitive to clim ate change (Haug et al., 2001; Hughen et al., 2000; Peterson et al.,

2000). The annual movem ent o f the ITCZ imposes a clear wet and dry season on the region, 

with rainfall variations affecting the riverine delivery o f terriginous material to the basin and 

surrounding shelf (Peterson et al., 2000). Sediments collect in the basin in distinct laminated 

couplets, with dark-coloured terriginous grain-rich layers being deposited during the 

sum m er/autum n wet season when the ITCZ lies nearly overhead, and light-coloured 

biogenic-rich layers being deposited during the windy winter/spring dry season, when the 

ITCZ is located further south and beyond the catchm ent area o f  the rivers which drain into 

the Cariaco Basin (Hastenrath and Greischar, 1993). Changes in the relative abundance o f 

terriginous m aterial can therefore be hypothesised to reflect latitudinal changes in the 

northerly limit o f  the ITCZ through time, and from this, it is in theory possibly to extrapolate 

climate data for the Amazon Basin.

By far the m ost detailed record published to date from the Cariaco Basin is that o f  Haug et 

al. (2001). In their 14,000-year high-resolution record, shown in Figure 4.14, the percentage 

o f bulk sedim entary titanium (% Ti) serves as a simple chemical proxy for the input o f  

terrestrially derived material, providing a direct m easure o f  rainfall and runoff from the local 

watersheds (Hastenrath and Greischar, 1993; Peterson et al., 2000).
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Figure 4.14: Bulk sedimentary Ti content of Cariaco Basin sediments from ODP Site 1002 for the last 

14,000 years (three point moving average). Higher Ti content reflects greater terrestrial input from 

riverine runoff, which is interpreted to reflect greater precipitation over the Cariaco Basin, and a more 

northerly position of the ITCZ (modified from Haug et al., 2001).

The %Ti record implies the wettest conditions o f  the last 14 kyr to have occurred from 10.5 

to 5.4 ka during the Holocene “thermal maxim um ”, whereas the most arid clim ates occurred 

during the YD period, and the late Holocene. These results also com pare well to other proxy 

records from the Cariaco Basin (see Haug et al., 2001), and also com pare well to the inverse 

Amazon Basin palaeom oisture records from Lake Junin and ODP Site 942 on the Amazon 

Fan (see Figure 4.8 and Sections 4.3.3 and 4.3.4 above).

4.3.7 S u m m ary  o f the P alaeom oistu re  R econstruc tions fo r th e  A m azon Basin

In addition to the morphological evidence summarised in Table 4.2, the other evidence 

reviewed in this chapter is summarised in Table 4.3 below.
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Validation Criteria
Proxy cited as 

evidence for aridity Site
1) Identified 
properly ?

2) Require climate 
different from now?

3) Solid 
chronology? Valid proxy? Examples of References i

Paiaeoecological
records.

Various. Z  9
Only applies to 
climatically marginal 
sites, and depends upon 
accurate interpretation 
of data.

Z  2
Only when the 
record can be 
radiocarbon 
dated.

Yes. (Absy et a l,  1991; Bush. 2000; Budt et
al., 2002; Colinvaux and De Oliveira, 
2000; Hooghiemstra and van der 
Hammen, 1998; Sifeddine et al, 2001;
van der Hammen and Absy, 1994).

Inorganic
sedimentary lake 
records.

e.g. Caco Lake,
Lake Pata, Lake 
Silvana, Brazil; 
Lake Junin, Peru.

V?
Only where the 
proxy is easily 
measured (e.g. 
isotopes).

A
Does not apply to sites 
affected to sea level- 
related changes in the
water table.

V?
Only when the 
record can be 
radiocarbon 
dated.

1 t«J .
Is site- 
dependent.

(Bush et al., 2002; Rodrigues-Filho et
al., 2002; Servant et al., 1993; Sifeddine 
et al, 2001; Sifeddine et al., 2003; van 
der Hammen, 1974; van der Hammen 
and Absy, 1994).

Marine geochemical 
records.

ODP Site 942, 
Amazon Fan.

x/ Z
Assuming the isotopic 
change is driven by 
changes in Amazon 
River outflow.

Z Yev (Maslin and Burns, 2000; Maslin et al,
2000).

Speleothem records. Central west, and 
northeastern Brazil; 
Peruvian Andes.

■/ A Z Ypc I  C j • (Bertaux et al, 2002; Wang et al, 2004;
Wang et al, 2003b; Wang et al, 2003a).

Extrapolations of 
climate from more 
distal regions.

e.g. Lake Titicaca; 
Salar de Uyuni; 
Salar de Coipasa; 
Cariaco Basin.

V Z z . Questionable 
due to the 
distal nature 
of the 
records.

(Baker et al, 2001a; Baker et a l, 2001b; 
Haug et al., 2001; Peterson et al, 2000; 
Servant and Fontes, 1978; Servant et a l, 
1995; Sylvestre et al, 1999; Thompson
et a l, 1998; Thompson et al, 2000).

T able 4.3: A summary of the proxy evidence for palaeomoisture in the Amazon Basin.
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4.4 Sum m ary o f  G lacial and LGIT Palaeoclim ate Records from Tropical and 

Subtropical South Am erica

In summary, although there remains little empirical palaeoclim ate data that provides actual 

tem perature inform ation for the majority o f  the LGM Amazon Basin, the current published 

palaeodata suggest that glacial tem peratures in the Amazon Basin were suppressed in the 

region o f  ~3 to 5°C, and this is likely to also have been the case also for the YD/LGIT 

period.

Despite the wide variety o f  clearly identifiable proxy evidence available for the 

reconstruction o f  past moisture availability, individual reconstructions are frequently limited 

by factors such as poor chronological control, and where the proxy may be responding to a 

number o f  dynam ically interacting variables. However the cum ulative multiproxy evidence 

suggests that cold stage climates were relatively arid for the majority o f  the Amazon Basin, 

and northern South America. Opposing scenarios are suggested from cave records in 

northeastern Brazil (W ang et al., 2004; Wang et al., 2003b; W ang et al., 2003a), and for the 

Altiplano region (e.g. Baker et al., 2001a; Baker et al., 2001b; e.g. Cross et al., 2001; Rowe 

et al., 2002), which dem onstrates the complex heterogeneous clim ate system operative over 

South America. This can be illustrated by com paring the available long continuous records 

in latitudinal order, which clearly shows a dichotomy in the clim ate regim es between 

northern and central South Am erica (see Figure 4.15).

However, perhaps the m ost major limitation o f  reconstructing the glacial moisture history o f  

the Amazon Basin is the actual paucity o f  data itself that extends back through the last 

glacial stage. M any o f  these records are also highly fragm ented, poorly age-constrained, and 

qualitative in nature, and the extent to which they may be reflecting a local environmental 

signal is also questionable. This dem onstrates the value o f  records from the Amazon Fan, as 

not only are they long, continuous, and can be well-dated, but they have the potential to 

provide sem i-quantitative reconstructions o f climate for the area represented by the whole o f  

the A m azon Basin river catchment.
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Cariaco Basin (ODP 1002)
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Figure 4.15: A latitudinal comparison of palaeomoisture records from the Cariaco Basin (Haug eta l., 

2001); ODP Site 942 on the Amazon Fan (Maslin and Burns, 2000; Maslin etal., 2000); Lake Junin in 

the Peruvian Andes (Seltzer etal., 2000); and the Salar de Uyuni on the Bolivian Altiplano (Baker et 

al., 2001a). Also shown are the GISP2 methane record (Brook et al., 1996) and solar insolation at 

10°S (Berger, 1978a; Berger, 1978b; Berger and Loutre, 1991).
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5. ODP SITE 942 COMPOSITE AGE MODEL

5.1 Age M odel Construction Using AM S 14C dates

5.1.1 Conversion o f  AM S Radiocarbon Dates to Calibrated C alendar Years

A total o f  41 accelerator mass spectrometry (AM S) radiocarbon ( l4C) dates were measured 

on samples from ODP Site 942. O f these dates 36 were used to construct the age model, o f  

which three dates were duplicate measurements o f  three different samples. For these three 

samples, the calibrated age used in the model was determined by taking an average o f  the 

two dates m easured, and so a total o f  33 age horizons were used in the model. I4C dates were 

measured on both multiple- and mono-species foraminiferal sam ples taken from cores 942B 

(last glacial stage [LGS]) and 942C (Holocene and LGS), as detailed in Table 5.1. 942C 

samples were m easured at the Leibniz Labor fur A lterbestim m ung und Isotopenforschung, 

Kiel University in 1997-98 (Durham, 1997; Greig, 1998; M aslin et al., 2000), and 942B 

samples were analysed at the Center for Accelerator Mass Spectrom etry, Lawrence 

Livermore N ational Laboratory (LLNL) in 2002. Each sample m easured for AI4C was 

corrected for isotope fractionation through normalization, using 6 13C values measured on the 

same samples.

I4C dates up to 20,260 14C yr BP were converted to calibrated calendar years (Cal yr BP) with 

the com puter program me Calib 4.3 (Stuiver and Reimer, 1993), using the IntCal98 marine 

calibration curve (Stuiver et al., 1998). For radiocarbon dates older than 20,260 14C yr BP 

that are beyond the current capabilities o f  Calib 4.3, conversion to calendar years was 

performed using the data presented in Beck et al. (2001). This method is not as effective as 

using statistical software, and produces dates o f more questionable precision and accuracy, 

with noticeably large error margins. However with the data available at present, it is not 

possible to resolve these calendar dates further. For further discussion, see (Bard et al., 2004; 

Hughen et al., 2004).

Although a com ponent o f  the 14C pool above Site 942 may be o f  terrestrial origin, and thus 

have a different reservoir effect than the marine l4C com ponent, it is not possible at present 

to gauge the extent o f  this pool for each o f the individual AM S dates. Therefore the samples 

were assumed to be 100% marine carbon, and were calibrated using the IntCal98 marine 

calibration curve (Stuiver et al., 1998).

The maximum and m inim um  calendar age ranges for each sam ple were determ ined in Calib

4.3 by calculating the probability distribution o f  the sam ple’s true age, as this is considered
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to be a more stable estim ate o f  sample age than the intercepts method (Telford et al., 2004). 

The one-sigm a range o f  the probability distribution was selected as the error term in the 

radiocarbon ages was fixed at the one-sigm a level. Single sample ages were selected by 

taking the m edian o f  the probability distribution. An example o f  a radiocarbon date 

converted to a calibrated calendar age is given in Figure 5.1.
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3 0 1 4 + / -5 6
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1 a n d  2 s ig m a

0040
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Figure 5.1: An example of a radiocarbon date converted to a calibrated calendar age using the 

probability distribution method. A radiocarbon age of 3014 ± 56 l4C kyr BP yields a calibrated 

calendar age range of -3282 -  3438 Cal ka at a probability distribution of one sigma.

5.1.2 Accounting for the M arine Reservoir Correction at O DP Site 942

The marine calibration in Calib 4.3 incorporates a tim e-dependent global ocean radiocarbon 

reservoir correction o f -4 0 0  years (Stuiver and Reimer, 1993; Stuiver et al., 2005). However 

the marine reservoir effect is not constant throughout the global ocean, and may vary 

considerably over relatively short distances, for example by hundreds o f  years along the 

western coast o f  North America (Reimer and Reimer, 2005, and references therein). To 

accom m odate these local effects, the difference (AR) in reservoir age between the local 

region o f  interest and the average global ocean reservoir m ust be determ ined. Unfortunately 

at the present time, there is little available information regarding possible local or regional 

reservoir effects o f  the tropical Atlantic Ocean in the im mediate vicinity o f  the Amazon Fan. 

However a possible analogous setting is located further south along the Brazilian coast o f  

Santa Catarina State (Nadal de Masi, 1999). Site #663 (38°E, 16°S) in the M arine Reservoir 

Correction Database associated with Calib 4.3 (Reim er and Reim er, 2005) is located within a
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similar oceanic current setting to the Amazon Fan, so may be exposed to comparable oceanic 

influences. The abundance o f marine shellfish material at archaeological settlements in this 

region implies that local coastal waters have been highly productive (Eastoe et al., 2002). 

M arine productivity is also high over the Amazon Fan, in response to the high nutrient 

loading o f  the Amazon River discharge plume. High rates o f  marine productivity are thought 

to increase the rate o f  C 0 2 drawdown, therefore the local surface water AI4C pool may 

become relatively more enriched, reducing the local reservoir effects. Furthermore, the 

discharge o f  the Amazon River often creates extensive lenses o f  low-salinity surface water 

(see Chapter 2, Section 2.3.2), which could inhibit the vertical mixing with deeper waters 

that contain more ‘ancient’ carbon. In this way, the local surface water radiocarbon reservoir 

could be dim inished even further. Eastoe et al. (2002) compared radiocarbon ages from a 

number o f  lagoon and open ocean sites from the coast o f  Santa Catarina State, Brazil 

(including Site #663 in the M arine Reservoir Correction Database). The lagoon samples did 

not appear to differ from those o f  the open ocean. Some o f  their data suggested no clear 

difference between the lagoon samples and the interpreted AI4C o f  the atmosphere, with the 

same samples overlapping the range o f the open ocean samples. For these reasons, it was 

decided that Site #663 in the M arine Reservoir Correction Database would be an appropriate 

analogy to the Amazon Fan, and so radiocarbon ages measured for ODP Site 942 were 

converted to calibrated radiocarbon years, incorporating a local marine reservoir correction 

determined by data from this location (Nadal de Masi, 1999; Reim er and Reimer, 2005).

Should the AR value assumed in the age model be too great however, it would bias all the 

calibrated calendar ages presented here toward being too old. For example, when calibrated 

using a AR value o f  -464 with an uncertainty o f  40, 1622 ± 4 1  I4C ka is equivalent to -1 590- 

1730 Cal kyr BP (one sigma). Assuming there were to be no AR to be applied, the same date 

would be equivalent to -1140-1240 Cal kyr BP (one sigma), i.e. a difference o f -450-490  

years. Clearly such a difference in the choice o f  AR will have im portance to the 

interpretation o f  the data generated by this research, particularly when exam ining and 

comparing the duration and timing o f  climatic events within the Site 942 records. However, 

although it is possible that the AR value selected may be too excessive, there is equally a 

lack o f  data to suggest otherwise (Reimer and Reimer, 2005). It should also be considered 

that the AR may have varied through time (see Section 5.2.3), although at present it is 

difficult to establish if, and by how much this might have been. Until such information about 

the local marine reservoir can be established, a parsimonious, yet sem i-inform ed approach is 

therefore to assum e that AR has been constant throughout the duration o f  the record, and is 

that o f  -464 years, with an uncertainty o f  40 years.
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5.1.3 Sam ple Reproducibility

It was unfortunately not possible to measure samples from exactly the same levels in the 

Cores at both AMS facilities to assess the between-laboratory variation. However the 

transition between the two datasets at 3.52 to 3.98 m bsf (942B depth scale) does not appear 

to be anomalous. It is difficult to assess possible between-laboratory variation from the 

younger sam ples m easured due to variations in sample type which may give rise to 

fractionation effects, and also due to plateau effects in the radiocarbon production curve. 

W ithin-laboratory reproducibility was verified by replicating sample m easurem ents at 7.13 

and 7.60 m bsf (942B) for samples measured at LLNL, and 5.50 m bsf (942C) for samples 

measured at Kiel. A lthough the sample at 7.60 m bsf implied excellent laboratory 

reproducibility at LLNL, it was omitted from the final age model due to possible diagenetic 

alteration/contamination (C. W eyhenmeyer, personal com m unication 2002). Details o f  the 

samples m easured are given in Table 5.1.
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10.13 5.28 942 t KIEL Mixed 850 26927 620 575 MnoO 1600 1600 2 Greig (1998)
10.42 5.50 i KIEL % 5ft 27799 ^7? 534 32800 2600 2600 2 Greig (1998)
10.42 5.50 c KIEL ♦ ♦ $ '27234 433 411 32800 2600 2600 2 Greig (1998)
10.62 5.70 942 c KIEL * Mixed 850 27910 738 <576 33600 1800 3400 2 Greig (1998)
12.00 7.00 942 c KIEL Mixed 1274 31753 1155 1010 35950 3050 3050 2 Greig (1998)
13.27 8.28 942 L KIEL * Mixed 1035 (33490 1740 1430 38000 4000 4000 2 Greig (1998)
14.37 9.30 942 KIFIJLN.. A  X —/  J L j * Mixed 1300 39550 2060 1640 42600 1900 1900 2 Greig (1998)

Table 5.1 continued: Details of samples measured for radiocarbon dating. Asterisks (*) denote where data is unknown. Data in bold indicates B-Core samples; 

grey shading denotes samples not used to construct age model ‘m bsf denotes metres below sea floor. "Calibration datasets used: (1) Stuiver et al., (1993; 

version 4.3); (2) Beck et al. (2001). ‘G. sacc. ’ denotes the foraminiferan species Glohigerinoides saccuhfer (sp); ‘P. ohliq7 denotes the foraminiferan species 

Pulleniatina obliquiloculata. ‘ l a '  denotes one sigma.



Ch apter  5

5.2 Splicing T ogether the  A-B-C C ores

5.2.1 Splicing o f D atasets Using S h ip b o ard  M agnetic Susceptib ility  R ecords

Individual age-depth models were constructed for each Core, which enabled their respective 

palaeoenvironmental datasets to be spliced into a com posite on the basis o f  their 

chronologies (as depth was not constant between each site). This also facilitates the 

incorporation o f  further radiocarbon dates, and the splicing o f  additional related datasets 

should they arise.

The relative stratigraphic position o f  each 14C age in each Core was determ ined by tuning 

clearly distinguished events in the applicable shipboard down-core magnetic susceptibility 

(M S) profiles which are assumed to be broadly consistent between the cores which are 

spaced only 50m apart (see Chapter 2, Section 2.1). The relative depth o f  the switching 

between terrestrial and hemi-pelagic fan deposition at the Pleistocene-Holocene boundary 

was also a useful marker horizon. The depth o f  the diagenetic iron crust relative to the 

Pleistocene-Holocene boundary was seen to vary between the three lithostratigraphies and 

therefore not used as a reference. This is typical o f  the Amazon Fan where this feature has 

been found not to be isochronous, even across short distances (M cGeary and Damuth, 1973). 

The m aximum vertical displacement required to tune the 942C to 942B MS was ~6 cm. No 

displacement was required to tune the 942A and 942C Cores. The tuning o f the C-to-B Cores 

and the C-to-A Cores are shown in Figures 5.2 and 5.3, respectively.

o>

30

AAA A  AA

30 6 9 12 15

942B Mag Sus  

—-9 4 2 C  Mag S u s  

A AMS Date

m bsf

Figure 5.2: Tuning of shipboard magnetic susceptibility curves to transfer AMS dates from 942C onto 

the 942B depth scale. Maximum lateral displacement of C Core MS= ~6 cm. Triangles indicate the 

relative positions of radiocarbon-dated samples.
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m bsf

Figure 5.3: Tuning of shipboard magnetic susceptibility curves to transfer AMS dates from 942C onto 

the 942A depth scale. No lateral displacement of cores. Triangles indicate the relative positions of 

radiocarbon-dated samples.

5.2.2 C a lib ra ted  A ge-D epth Plot o f O D P 942

A composite age-depth plot o f  all calibrated AMS dates from the 942 record is shown in 

Figure 5.4. Figure 5.4a displays the age-depth profile for 0 to 40 Cal kyr BP, and the 0 to 13 

Cal kyr BP portion o f  the profile is shown in greater detail in Figure 5.4b. The depth-scale 

presented is that o f  942B as it represents the longest, m ost complete sequence o f  the three 

Cores.
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0

x2 (see  Figure 5.4b)

5

Calib 4.3
x2 a

Beck et a/, 2001

10

15
20 30 40 50100

Age (Cal kyr BP)

Figure 5.4a: Age-depth plot of calibrated radiocarbon dates from ODP 942 with their respective 

errors (one sigma). Depth scale is that of Core 942B. Connected diamonds indicate those samples 

used in age model, unconnected circles indicate those which were excluded. ‘x2’ indicates replicate 

samples. Dates above the wavy line were calibrated using Calib 4.3 (Stuiver and Reimer, 1993). Dates 

below the wavy line were calibrated against the data presented in Beck et al. (2000).
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0  T

KH

0 10
Age (Cal kyr BP)

Figure 5.4b: 0-13 Cal kyr BP detail age-depth plot of calibrated radiocarbon dates from ODP 942 

with their respective errors (one sigma). Depth scale is that o f Core 942B. Connected diamonds 

indicate those samples used in age model, unconnected circles indicate those which were excluded. 

‘x2’ indicates replicate samples.
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As can be seen from Figure 5.4, the majority o f  the dates are consistently older with depth. 

Four dates appear anomalous however, and they were excluded from the age model (see also 

Table 5.1). The dates o f  11,993 Cal yr BP (942B, 0.82 mbsf) and 11,064 Cal yr BP (942C

0.97 mbsf) may have been diagenetically altered, as they correspond to the sedimentary iron 

crust, and an apparent short-lived dissolution event, where species other than Pulleniatina 

obliquiloculata  were removed from the record, respectively. The dates o f  4690 Cal yr BP 

(942C, 1.52 mbsf), and -20 ,800  Cal yr BP (942B 7.60 mbsf) appear to be anomalously 

young, however. One reason for this could be contamination with ‘younger’ carbon (i.e. with 

higher 14C), which may arise through factors including in-situ sedim entary reworking (e.g. 

bioturbation, turbidites), or through errors in sample handling. Contam ination with ‘younger’ 

carbon can have considerable effects on the measured age o f  the sample. Table 5.2 shows the 

effects o f  contam ination by modern carbon, whereas the effects o f  more ancient younger 

carbon would be to a lesser extent.

True age (years) 1% ‘m odern’ 
contamination

5% ‘m odern’ 
contamination

.10% ‘modern’ 
contamination

600 540 160 Modem
1000 910 545 160
5000 4870 4230 3630
10000 9370 8710 7620

Infinitely old 36600 24000 18400

Table 5.2: The effect of contamination by modem carbon on the true radiocarbon age of a sample 

(after Lowe and Walker, 1997, p246).

Modern contam ination is very likely to explain such a stratigraphically offset date o f  4690 

Cal yr BP at ~ 1 .5 m bsf (942B 1.52 mbsf; 942C, 1.47 mbsf). It may also have been a factor in 

the anomalous date o f 20,800 Cal yr BP at 7.60 m bsf (942B), a double-m easured sample, 

although to a much lesser extent. Bioturbation may also have been an influence, although 

visual inspection o f  the cores at this level did not reveal heavy indication.

Discrepancies in the radiocarbon dates may also have arisen through changes in the overall 

reservoir effect acting on the carbon pool over Site 942 at a given m om ent in the past. In the 

modern day, the m ixing ratio o f  waters over Site 942 is 1:5 (A tlantic:A m azon) so the 

Amazon River contributes approximately 17% to the total surface water. At the same time, it 

will also contribute l4C-containing dissolved inorganic carbon (DIC). 80 to 90% o f  DIC in 

the Amazon River is bicarbonate (Richey et al., 1991), the form o f  carbon scavenged by 

foraminifera to build their tests (Erez, 2003). However, terrestrial l4C is affected by a very
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different carbon reservoir to oceanic 14C. Studies have found that the amount o f  DIC in the 

Amazon River varies in direct proportion to outflow (e.g. Richey et al., 1991). The effects o f  

variations in river discharge with respect to the contribution o f  terrestrial ,4C to the Site 942 

bicarbonate pool will therefore be amplified. For example, should Amazon River outflow be 

reduced by half, the proportion o f freshwater mixed over Site 942 would fall to -8 .5% ; 

however the relative amount o f  terrestrial ,4C contributed to the radiocarbon pool would be 

<8.5%. Should such a change in the terrestrial bicarbonate input be significant to the overall 

14C pool over Site 942, it may therefore influence the local reservoir effect. This would 

introduce bias to the foraminiferal A14C measured, and thus affect the calculated radiocarbon 

age o f  the sample.

5.3 Sedim entation  R ate O ver O D P Site 942

5.3.1 T he Pleistocene-H olocene Sedim entary  Regim e O ver Site 942

The sedimentation rate for ODP Site 942 is shown in Figure 5.5, and summarised in Table 

5.3. The depths indicated are those o f  942B, as this is the most stratigraphically complete o f  

the records.
AAA

2

- 1 8  m Cal kyr

aa
E

a: 1
c
o

A AA A AA

■a
Sr>

0
0 10 20 3 0 4 0

Age (Cal kyr BP)

Figure 5.5: Inter-radiocarbon age sedimentation rates for ODP Site 942. Sedimentation rates are in 

metres per thousand calendar years. Triangles indicate relative stratigraphic position of radiocarbon- 

dated samples. ‘AAA’ indicates data plotted off the chart (up to ~18m Cal kyr'1).

The sedim entation rate as produced by the composite age model can be used to assess the 

integrity o f  the dates selected. As shown in Figure 5.4, sedimentation rates at Site 942 vary
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throughout the entire record between 0.06 and 18.00 metres per thousand calendar years (m 

Cal ky r'1). Holocene sedimentation is consistently lower than glacial stage rates, ranging 

from 0.06 to 0.13 m Cal k y r'1, typical o f  pelagic environm ents, indicating that fan deposition 

was ‘switched o f f  throughout this period. Holocene sedim entation rates increase toward 

modern, especially from -3 .3  Cal ka to the present.

Amazon Fan sedim entation was ‘switched o n ’ during the cold stages, when the terriginous 

sediment load o f  the river is transported directly to the fan (Dam uth and Fairbridge, 1970; 

Damuth and Kumar, 1975). The last glacial maximum is marked by a gradual fall in 

sedimentation rates from 0.33 to 0.23 m Cal k a '1, although juxtaposed levels are not 

significantly elevated relative to the rest o f  the glacial stage.

M aximum cold stage sedimentation took place in approxim ately four stages: 38 to 33.6 Cal 

ka; 28.8 to 27.35 Cal ka; 18.12 to 16.61 Cal ka; and 15.53 to 11.74 Cal ka. Sedimentation 

was particularly high during the latter o f  these stages, corresponding to the Lateglacial 

Interstadial and Younger Dryas. Within this period o f  elevated sedim entation, two discrete 

peaks o f  up to -  1.5 m k yr'1 and even more notably -18 .33  m k y r'1 arise from 14.85 to 13.81 

and 12.8 to 12.7 Cal ka, respectively. As shown in Figure 5.5, this latter peak is constrained 

by four AMS radiocarbon dates, which also place it chronologically around the onset o f  the 

Younger Dryas (after M angarud et al., 1974). The rigorous dating also implies that the 

increased sedim entation is a true feature o f the sedimentary regim e o f  Site 942. As turbidites 

are not considered to have been a feature over the Site during these periods, it is likely that 

these two peaks represent alluvial phases when the active channel o f  Amazon River 

discharge was in closer proximity to Site 942. This is supported by a notable coincident 

increase o f  organic detritus within the sediment. Therefore it is hypothesised that the 

Amazon River was actively discharging at least in part, over the western fan com plex during 

these later stages o f  the glacial period.
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942B depth 
(mbsf) Cal yr BP ,J (m Cal ka )

942B depth 
(mbsf) Cal yr BP SR

(m Cal ka'1)

0.00 0 5.58 16610
4/ 0.13 0.43

0.21 1680 6.23 18120
4/ 0.10 4/ 0.23

0.37 3350 6.58 19610
4/ 0.06 4/ 0.32

0.52 5880 7.08 21170
4" 0.06 4/ 0.23

0.63 7710 7.13 21390
vU 0.06 4/ 0.26

0.74 9700 7.20 21660
4/ 0.08 4/ 0.33

0.85 11140 7.95 23960
4̂ 0.07 4/ 0.26

0.89 11740 8.35 25500
4/ 0.27 4/ 0.16

0.93 11890 8.65 27350
4' 0.46 4/ 0.48

1.30 12700 9.25 28600
4̂ 18.33 4/ 0.50

1.85 12730 9.35 28800
4/ 12.50 4/ 0.28

2.10 12750 10.13 31600
4/ 16.60 4/ 0.24

2.93 12800 10.42 32800
4/ 0.58 4/ 0.25

3.52 13810 10.62 33600
4, 1.48 4/ 0.59

3.98 14120 12.00 35950
4/ 1.23 0.62

4.88 14850 13.27 38000
* 0.59 4/ 0.24

5.28 15530 14.37 42600
4/ 0.28 4/ 0.24 (inferred)

Table 5.3: Sedimentation rates (m ka'1) calculated between each age horizon for Site 942. Figures in 

boxes emphasise periods of extreme sediment accumulation. SR = sedimentation rate.
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5.3.2 C hronological an d  Sea-Level T im ing o f the ‘O n/O ff Sw itch’ in Fan Deposition

The extreme transition in sedimentation at the end o f  the Pleistocene marks the ‘switching 

o f f  o f  sea-level controlled fan deposition (Milliman et al., 1975) as relative sea level rose 

into the Holocene, following the melting o f  glacial ice, starving the fan o f  its sediment 

supply (see Chapter 2, Section 2.2.2). According to M illiman et al., (1975), fan deposition 

was ‘switched on ’ when sea level fell to 30 metres below modem. Durham (1997) and 

M aslin et al. (2000) revised this figure to 40 -  50 metres below m odem . However, the most 

recent dating o f sediments from ODP Site 942 presented here suggest that this transition 

apparently took place at ~ 1 1.74 Cal ka. According to reconstructions, sea level at this time 

was nearer to 60 metres below present (see Figure 5.5; Fairbanks, 1989; Shackleton, 1987).

AAA
A A A  /A A A  A A A AA T 2A A A

Ea>
1
E 40
*o
2
(0
e
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E
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120
200 10 30 40

Age (kyr)

Figure 5.6: Site 942 sedimentation rate plotted alongside the sea level change curve (after Fairbanks, 

1989; Shackleton, 1987) illustrating the chronological- and sea level- timing of the ‘on/off switch’ in 

Amazon Fan sedimentation. ‘AAA’ indicates data plotted off the chart (up to ~18m Cal kyr'1).

5.4 S um m ary

The key points can be summarised as follows;

• 41 AMS radiocarbon dates were measured on mixed- and mono-species foram inifera 

samples from ODP Site 942, o f  which 36 were used to construct the age model 

(including three replicated samples).

• Although a component o f  the 14C pool above Site 942 may be o f terrestrial origin, 

radiocarbon dates were calibrated to Calendar years BP assuming a difference from 

the global marine reservoir correction (AR) o f  -464 years, with an uncertainty o f  40
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years. It is also assumed that AR was constant throughout the duration o f  the record. 

Care m ust be taken when interpreting the proxy records however, as should AR have 

been over assumed, the calibrated calendar ages assigned to the cores may be too 

old.

• Date horizons were stratigraphically placed in each o f  the three cores from Site 942 

by tuning the shipboard magnetic susceptibility curves. Separate age models were 

reconstructed for each core. Isotope datasets for each core were merged on the basis 

o f  their chronologies to form composite records for Site 942.

• Sedimentation rates vary from -0 .0 6  m k a '1 in the Holocene, to -18 .88  m ka '1 at the 

onset o f  the Younger Dryas. The last glacial maximum is marked by a gradual fall in 

sedim entation rates from 0.33 to 0.23 m Cal k a '1. M axim um  sedim entation arose 

during the Lateglacial Interstadial and Younger Dryas, where a large peak in 

sedim entation (18.33 m Cal ka '1) coincides approxim ately with the onset o f  the 

Younger Dryas.

• Elevated sedimentation rates during the Lateglacial Interstadial and Younger Dryas 

suggest that the Amazon River was discharging over the western fan com plex during 

this interval. This is supported by a coincident increase in sedimentary terrestrial 

detritus.

• Radiocarbon data in this study suggest that fan deposition ceased at -1 1 .7 4  Cal ka, 

when sea level was -6 0  m below present (Fairbanks, 1989; Shackleton, 1987), 

which is greater than previous estimates.
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6: OXYGEN ISOTOPE RECORDS FROM ODP SITE 942 

ON THE AMAZON FAN

6.1 Introduction to Reconstructing Amazon River Outflow Using 6 18Q Records

Assuming there has been a continuous Amazon River freshw ater influence over Site 942 on 

the Amazon Fan, variations in past river outflow can be inferred from down-core 

reconstructions o f  sea surface salinity (SSS). SSS will fluctuate in response to the varying 

freshwater outflow o f  the Amazon River, which is assumed to reflect the coeval effective 

moisture availability (precipitation-evaporation) in the Amazon Basin. Although diatom 

concentrations are abundant within the surface sediments o f  Site 942, down-core assemblage 

reconstructions o f  salinity are severely limited due to active dissolution within the deeper 

levels (see Chapter 2, Section 2.4.2). Consequently, the diatom archive cannot be used to 

reconstruct a SSS record from Site 942.

It is possible, however, to monitor SSS using oxygen isotopes m easured on planktonic 

foram inifera (518O pik), which inhabit depths near to the sea surface and will thus isotopically 

record the influence o f  the Amazon River freshwater plume (e.g. Maslin and Burns, 2000; 

Maslin et a l., 2000).

As discussed extensively in the literature (see overviews in e.g. Bradley, 1999; Lowe and 

Walker, 1997; W illiams et al., 1998), additional to species-specific vital effects (e.g. 

associated with a species’ depth habitat), 5 18O pik is principally a function o f  the combined 

isotopic fractionation effects o f  global ice volume (GIV), sea surface tem perature (SST), and 

sea surface salinity (SSS), i.e.

5 18Opik = /  (S '8Ooiv + 6 i8 0 Ss t  + S l8Osss); 

the latter o f  which, at surface levels, will be affected by dilution with freshwater. The typical 

relationship between 5 180 ,  tem perature and salinity in the tropical oceans is illustrated in 

Figure 6.1.
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Figure 6.1: A typical vertical temperature (t°C), salinity (S%o) and density (cr,) profile for the tropical 

oceans (modified from Bradley, 1999).

Freshwater is isotopically more depleted than its oceanic counterpart. M odem Amazon 

River water has an average S180  value o f  - 5%o (Grootes, 1993; Thom pson et a l ,  2000), 

whereas the average tropical Atlantic signal is + l % o  (Arz et al., 1998; Arz et a l ,  1999; 

Maslin, 1998). 6 180 942, a planktonic record, will thus register a com bination o f  these two 

isotopic signals, blended in proportions equivalent to the am ount o f  each water mass mixed 

over Site 942. Should the volume o f  Amazon River outflow increase, more isotopically light 

water will be mixed over the site, and 6 180 942 will consequently become relatively more 

depleted (6 lsO values become more negative). Similarly, a decrease in Amazon River 

outflow will be reflected in 6 I80 942 as a relative enrichm ent (6 lsO values become more 

positive). The outflow o f  the Amazon River can therefore be inferred by isolating the relative 

shift in surface water 6 180  brought about by Amazon freshwater-driven changes in surface 

salinity over Site 942 (6 ,80 Amazon)-

Several studies have concluded that water density (a function o f  tem perature and salinity) is 

o f  prime importance to individual foraminiferal species, however (e.g. Emiliani, 1954; 

Emiliani, 1969; Hecht and Savin, 1972). Consequently, the sam e species may be found in 

different areas living at different depths, but in water o f  the same tem perature and salinity.

As freshwater-driven changes in salinity over Site 942 vary through time, the foram inifera 

may therefore m igrate up and down through the water colum n to maintain a constant density

S%  o /
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environment. Clearly such vertical migrations could result in isotopic signals o f  freshwater 

dilution that are considerably less than those changes actually occurring in the water column. 

6 18Opik-derived estimates o f  freshwater-driven changes in salinity from ODP Site 942 on the 

Amazon Fan should thus be considered as potentially conservative.

M aslin and Bums (2000) and Maslin et al. (2000) inferred 518C>Amazon by comparing the 

planktonic 6lsO record from 942C to that o f  Geo B -3104-1 (Arz et al., 1999) located o ff the 

southeast coast o f  Brazil; south o f  the Amazon River mouth, and hence oceanically 

‘upstream ’ o f  the freshwater dilution effects o f  the Amazon River freshwater plume (see 

Figure 6.2).

90 80 TO 60 50 40

Cariaco Basin

Amazon Fun 
OOP 942

Huascaran Icc Cor i p  G " - V 
Lake Junin

Lake Tlticaca*
T\o

Southern Bolivian Altiplano

r

mean position of modem ITCZ January 
mean position ot modem ITCZ July

o  m m  iooo

Figure 6.2: Map of South America to show relative locations of ODP Site 942 and GeoB 3104-1. 

Dark blue arrows represent the direction of surface ocean currents; light blue arrow represents the 

Amazon River freshwater outflow.

With the same ocean currents thought to be operating over these two core locations, the 

authors hypothesised that each record would therefore record the same background surface- 

water marine isotope signal ( 6 I8 0 Atia n tic ) . Consequently, M aslin and Bum s (2000) and M aslin 

et al. (2000) proposed that the difference between the isotopic records o f  the two sites 

(A8 O) would provide a crude reflection o f changes in the Amazon River freshwater
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Amazon Fan (942C)

Methane (GISP2)

Insolation 10°S

Enhanced

Reduced

More

Precipitation

influence over Site 942 (i.e. 6 l8OAmazon)- The resultant A6,80 942c reconstruction o f  Amazon 

River outflow is shown in Figure 6.3, alongside a similarly constructed record o f  effective 

moisture from Lake Junin in the Peruvian high Andes (see Maslin and Burns, 2000). The 

correspondence between these two independent records implies that A6l80 942c is an effective 

method for reconstructing the past moisture history o f  the Am azon Basin (see Chapter 4, 

Section 4.3.4).
Radiocarbon dates

I

0 2 4 6 8 10 12 14
Calendar ka

Figure 6.3: From top to bottom: Neogloboquadrina dutertrei A6lsO data from ODP Site 942C on the 

Amazon Fan as a proxy for Amazon River discharge; the Peruvian Lake Junin A6180  record of 

effective moisture; the atmospheric methane record from Greenland Ice Sheet Project 2 (GISP2) in 

parts per billion by volume (ppbv); and summer insolation changes at 10°S (modified from Maslin 

and Bums, 2000).

The method employed by Maslin and Burns (2000) and M aslin et al. (2000) to isolate the 

freshwater-driven change in salinity over Site 942 was effectual in the context o f  the 

respective studies, as the SI80942C and 6 ,8OGe0B3io4-i records were o f  com parable temporal 

resolution. The present study however, has considerably enhanced the sam pling density o f  

6 180 942 m easurements, far in excess o f  any other records currently available from the study 

region and surrounds. To use the comparatively low-resolution 6 l8O Ge0B 3104-01 as a proxy for 

6 lsOAtlantic would thus com prom ise the higher resolution o f  new data presented here. It
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becomes necessary therefore, to isolate 6l80Amazon from the com posite 6 1 *0 9 4 2  record in this 

study by alternative means.

6.2 6 >8Q M ethodology for This Study

6.2.1 Sample Preparation

Details o f  sedim ent sam pling were given in Chapter 2, section 2.4.2. Samples from 942A 

and 942B were prepared according to the sequence laid out in Figure 6.4. Care was taken to 

use only distilled water throughout the preparatory process. This was to avoid any potential 

residues/diagenetic alteration by chemical dispersants that may alter the chemistry o f  the 

foram inifera tests. Care was also taken not to expose the sam ples to very high tem peratures, 

which may also cause diagenetic modification o f  the 6 I80  signal.
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"T O P S  hes&42A a n d S 4&B

I

FIN

Subsample from ODP core repositorysWash sample through a 63 pm selve using distilled 
water, retaining the fine fraction in a beaker

Leave to settle until supernantant liquid is clear

COARSE FRACTION

Carefully decant supernatant liquid and 
dry sediment in warming cabinet at 60 °C

Dry in warming cabinet at 60 °C

I
Sub-divide into smaller fractions by dry seiving: 

212-249 pm; 250-299pm;
300-354 pm; >355 pm

Archive desiccated sediment

j :

Pick samples
z

Stable isotope analysis 
(aim for 30 individuals)

AMS radiocarbon dating 
(aim for 600-1000 individuals)

NIGL UMASS LLNL

I 1
Automated common add bath VG Isocarb 

+ Optima mass spectrometer
Automated Carbonate Prep System (Kiel III) linked 
to a Finnigan Delta XL+ ratio mass spectrometer

Figure 6.4: Sequence of sample preparation for ODP Site 942 sediments.



C h a p t e r  6

6.2.2 F o ram in ife ra  Species A nalysed in This S tudy

Oxygen isotope measurements were obtained from five planktonic foram inifera species, 

representative o f  different depths from within the surface water column. The depth habitats 

represented range from near surface, to thermocline levels. Com parative analyses o f such 

species may therefore help to distinguish the Amazon River outflow signal from background 

noise in the final interpretation o f the isotope values. Details o f  each species measured are 

given in Table 6.1. The sac and non-sac forms o f  G. sacculifer were counted separately, and 

referred to in this study as G. sacculifer (sac) and G. sacculifer (non-sac), respectively.

Species Details Image

Globigerinoides 

ruber (white; 

d'Orbigny, 1839)

Near surface-dwelling species, living in the mixed layer 

(upper 25 m). White forms belong to the dominating 

species in tropical and subtropical planktonic 

foraminifera. Suggested calcification depth: 0-50 m.

Globigerinoides 

sacculifer (sac and 

non sac forms) 

(Brady)

Abundant in tropical water masses. Has a very broad 

tolerance for salinity. Some forms of G. sacculifer 

develop a distinct sac-like chamber in their terminal stage 

(lower image). Correlations between relative abundances 

of sac and non-sac forms, and relations with selected 

physical parameters do not suggest significant differences 

in the ecology of both forms.

Suggested calcification depth: 0-50 m.

W ’■ " ’ V ’'’ •: *3 
W

Neogloboquadrina 

dutertrei (d'Orbigny, 

1839)

Tropical seasonal thermocline species, living in a wide 

range of tropical and subtropical environments. Known 

to occur near the deep chlorophyll maximum. Thought 

to calcify at a constant temperature.

Suggested calcification depth: 50-100 m.

/■ ■’ x- s’ - ■ ■

Globorotalia 

truncatulinoides 

(d'Orbigny, 1839)

A typical subtropical species, which occurs over a broad 

range of sea surface temperatures and salinities. A deep- 

dwelling species (200-500 m), which ascends to 

shallower depths during its reproduction period in winter. 

Suggested calcification depth: 200-500 m.

Table 6.1: Details of foraminifera species analysed for 6180  (after Anand et al., 2003; Bradley, 1999; 

Hilbrecht, 1996; Ravelo and Fairbanks, 1992).
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6.2.3 Stable Isotope Analysis for This Study

For stable isotope analysis, up to 30 individuals o f  each species were picked from the 300- 

354 pm size fraction o f  the sample, except G. ruber, which was picked from the 250-299 pm 

fraction. Care was taken to avoid broken, dirty-looking/physically altered, and juvenile 

specimens that could introduce noise to the isotopic signal. Sample analysis was carried out 

at two facilities according to Table 6.2. In some cases, dilution effects associated with high 

accumulation rates o f  terrestrial sediment (e.g. ~1.5 m Cal k a '1 from -1 3 .8  to 14.1 Cal ka) 

resulted in very low sedimentary foraminifera concentrations. For these samples, fewer 

individuals were analysed, although no samples o f  fewer than five individuals were 

measured. It should be noted however, that variations in sample size may be a significant 

source o f  variability in measurement data (Trauth, 1995).

Core Sample Details Laboratory

942A Early Holocene

Stable Isotope Laboratory, Department of Geosciences, 

University of Massachusetts, Amherst, USA 

(Finnigan Delta XL + ratio mass spectrometer)

942B
Holocene and last 

glacial/interglacial transition

Stable Isotope Laboratory, Department of Geosciences, 

University of Massachusetts, Amherst, USA 

(Finnigan Delta XL + ratio mass spectrometer)

942B Last glacial maximum

NERC Isotope Geosciences Laboratory (NIGL), UK 

(Automated common acid bath VG Isocarb + Optima 

mass spectrometer)

Table 6.2: Details o f  d 180  sample analyses at different laboratories.

Samples m easured at NIG L were manually homogenised by using a m ortar and pestle to 

crush the foram inifera to a powder. Homogenised sub-sam ples o f  60pg were loaded into 

thimbles to be analysed in the mass spectrometer. Samples m easured at UM ass were 

homogenised by the Automated Carbonate Prep System (Kiel III) linked to the mass 

spectrometer. Analytical sample reproducibility errors were <0.07%o at each facility, based 

on replicate m easurem ents o f  within-run laboratory standards, calibrated against standards 

from the International Atomic Energy Agency National Bureau o f  Standards. All 6 lsO values 

were measured in %o, and expressed as deviations relative to the V ienna Pee Dee Belemnite 

standard, where:

(  ( \ 8 r \ / \ 6 r \ \  \

(5180,sample

(l8o/16o)
V /  sample j

(18o/'6o)
standard

x1000% o
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The data obtained from each facility were harmonised against each other by comparing the 

8 lsO m easurem ents o f  the laboratory sample standards, and applying a correction factor 

where appropriate. The harmonisation was also cross-checked by exam ining inter-laboratory 

replicate sample data from each o f  the Cores.

Data from each Core were spliced together using the Core-specific age models (see Chapter 

5) as the depth below sea floor will not necessarily be consistent between the cores. The 5 180  

records from 942A and 942B were also spliced to the 942C 5 I80  record from the previous 

studies (M aslin and Bums, 2000; Maslin et a l ,  2000), again using the down-core 

chronologies.

All composited data were normalised to zero against the stratigraphically most recent sample 

for each species, to express relative isotopic deviation from ‘m odern’ (where modern is 1 Cal 

yr BP or 0.0-0.01 mbsf). This also helps to minimise the between-species ‘vital effects’ 

associated with individual species o f  planktonic foram inifera calcifying at different rates o f  

disequilibrium with the surrounding seawater (e.g. Deuser, 1987; Erez and Luz, 1982; 

Shackleton et al., 1973). However, there is evidence that the vital effect o f  a species remains 

constant through time (Duplessy et al., 1970). By norm alising all the species to zero at the 

most recent sample, therefore, the isotopic records from each species become more directly 

comparable.

6.3 High Resolution 6 18Q Records from ODP Site 942

6.3.1 High Resolution d lsO Records

The normalised com posite 8 lsO records o f the five species m easured for 

in Figure 6.5, both against depth (a), and Calendar years BP (b). Species 

relative order o f  depth habitat, from the shallowest to the deepest.

Site 942 are shown 

are plotted in

1 2 0
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Figure 6.5a: Normalised composite 6180 942 records for each of the five species measured, plotted 

against metres below sea floor. Markers indicate individual sample levels. All data were normalised 

against the stratigraphically most recent value to express change relative to modem (where modem = 

0.0 to 0.01 mbsf).
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Figure 6.5b: Normalised composite 6180 942 records for each of the five species measured, plotted 

against calendar years BP. Individual sample levels are indicated by markers. Yellow diamonds 

indicate the relative stratigraphic placement of AMS radiocarbon dates, with their respective error 

margins. All data were normalised against the stratigraphically most recent value to express change 

relative to modem (where modem = 1 Cal yr BP).
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6.3.2 Smoothed Isotope Data

Data in Figures 6.5a and b display marked variation, particularly in the 0 to 16 Cal ka (0.0 to

5.4 mbsf) portion o f  the record. This arises from a combined function o f  high sampling 

density, and varying sample size. M aximum sample variability is found within the -1 2  to 15 

Cal ka (0.9 to 5.28 mbsf) portion o f  the record, which coincides with elevated sedimentation 

rates (see Chapter 3, Section 6.3). During this interval, faunal bioturbation will be less 

efficient at sm oothing the record, as would be the case for periods o f  lower sedim ent 

accumulation, such as during the upper 0 to 0.95 m bsf (0 to 10 Cal ka) portion o f  the record. 

As a result, the data appear relatively more ‘noisy’, displaying high frequency variability.

It is possible to smooth the signal to reduce the noise and reveal the underlying trends more 

clearly, however. Fluctuations in the 0 to 16 Cal ka (0.0 to 5.4 m bsf) data were reduced by 

using a moving average (MA) function in M icrosoft Excel (M icrosoft Corporation, 2004), 

which calculates the value o f  a sample by averaging the value o f  that sample and those o f  the 

stratigraphically juxtaposed levels, within a pre-defined sam pling window. For example, the 

‘sm oothed’ isotopic value o f  a sample calculated using a five point MA calculation would be 

an average o f  the sample in question, plus the next two samples lying stratigraphically 

above, and below (i.e. totalling five samples). Due to the variations in stratigraphic sampling 

density, the 0 to 12 Cal ka (0.0 to 1.0 mbsf) portion o f  the record was smoothed using a 

three-point MA, the 12 to 16 Cal ka (1.0 to 5.4 mbsf) section sm oothing using a five point 

MA. The 16 to 40 Cal ka (5.4 to 13.8 mbsf) part o f the record was not sm oothed as it was 

already o f  relatively low sampling density, and the underlying trend was already apparent. 

The normalised, smoothed 6 l80 942 record is shown in Figures 6.6a and b.

123



C h a p t e r  6

12

0

2

o

•8

z

G. ruber

* j  '■ '" V

2

G. Sacculifer {non sac)

- J  ^ ' r

V  -

A’ dutertrei

4 ^ 4 . .  a W - t  y y M2

G. truncatulinoides

■2

/0

0 4 8 12

Metres Below Sea Floor

Wetter

(coder)
Drier

G. sacculifer (sac) Wetter

(coder)
Drier

Wetter
(warmer)

V s

(coder)
Drier

Wetter
(warmer)

(cooler)
Drier

Wetter
(warmer)

t
(coder)
Drier

Figure 6.6a: Composite smoothed 6I80 942 records for each o f the five species measured plotted 

against metres below sea floor. Individual sample levels are indicated by red dots. All data were 

normalised against the stratigraphically most recent value to express change relative to modem (where 

modem = 0.00 to 0.01 mbsf).

1 2 4



C h a pt e r  6

10 20 30 40
• o 1 » . I AMS0-0 o o 1 # 1o o o o o o oo  o o o o  o  o_■JiL- 1 ' r-» t I

-o- o ----- »
o

o

2

0

G ruber W etter

t
* /  W / A A ' "~ I

(coder)
Drier

G. sacculifer (sac) W etter

t

G. Sacculifer (non sac)

(coder)
Drier

W etter

(coder)
Drier

W etter

(coder)
Drier

W etter

(coder)

Drier

X. dutertrei

G. truncatulinoides

Cal kyr BP

Figure 6.6b: Composite smoothed 6180 942 records for each o f the five species measured plotted 

against Calendar years BP. Individual sample levels are indicated by red dots. Yellow diamonds 

indicate the relative stratigraphic placement of AMS radiocarbon dates, with their respective error 

margins. All data were normalised against the stratigraphically most recent value to express change 

relative to modem (where modem = 1 Cal yr BP).

125



C h a pt e r  6

6.3.4 Iso lating  the  6 , 8 0 A m a z o n  Signal from  th e  5 , 8 0 9 4 2  R ecord

As mentioned in Section 6.1, it is not possible to use the same method as Maslin and Bums 

(2000) and Maslin et a l  (2000) to isolate 6 l8OAmazon- Therefore alternative m ethods must be 

sought to remove the surface water 8 18Omarine signal from the 5 ,80 942 record. The principal 

components o f  the background 5 18Omarine signal are made up o f  the combined effects o f  GIV, 

SST and the background salinity o f  the surface ocean currents (surface ocean salinity,
1 o

‘SOS’). One such method o f  isolating 8 OAmazon would be to remove these individual 

components independently.

Although data in Figures 6.5 and 6.6 suggest that the isotopic signal varies within a range o f

~0%o to ~2-2.5 %o, a significant majority in the range o f the 8180 942 data can be attributed to

changes in GIV. At the time o f  the last glacial maximum (LGM ), for example, the expansion
18o f global ice sheets is calculated to have affected global 8 O levels by as much as +1 .25%o 

(Fairbanks, 1989; Shackleton, 1987). This ‘global ice volum e’ (GIV) effect will be constant 

across each o f  the five species measured.

Fortunately, it is possible to account for the GIV effect in 6180 942 using published, 

radiocarbon dated, glacio-eustatic sea level change data, from which the associated 8 18Ogiv 

has been inferred (e.g. Fairbanks, 1989; Shackleton, 1987). 6 ,8Ogiv inferred from global sea 

level change data is given in Figure 6 .7 . The smoothed 8180 942 record, which has been 

corrected for changes in ice volume (A8180 942), is shown in Figure 6.8.

Glacio-Eustatic Sea Level Change
0.0

-25

±  0.5

CT) -50 CT)

-75

-100

1.5 -125
0 5 10 15 20 25 30 35 40

Cal kyr BP

Figure 6.7: Glacio-eustatic sea level change and associated change in 8180 , as a proxy for the global 

ice volume effect (after Fairbanks, 1989; Shackleton, 1987).
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Figure 6.8: Composite smoothed A6180 942 records for each o f the five species measured, with the 

global ice volume effect removed, plotted against Calendar years BP. Individual sample levels are 
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radiocarbon dates, with their respective error margins. All data were normalised against the 

stratigraphically most recent value to express change relative to modem (where modem = 1 Cal yr 

BP).
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It is important to note that the radiocarbon dates used in the Site 942 age model were 

converted to calibrated calendar ages using a AR value o f  -464 years, with an uncertainty o f 

40 years (see Chapter 5, Section 5.1.2). Should the AR value be proven to be otherwise, thus 

changing the calibrated calendar years timescale for the Site 942 proxy records, this will 

have implications for the calculation o f A5I80 942. Furthermore, the calculation o f  A5180 942 is 

also dependant upon the assumption that the calendar age chronology o f  the 5 180 G iv  has been 

established confidently. All interpretations o f  the data presented hereafter are based upon the 

calendar age model discussed in Chapter 5, and the calculation o f  A6I80 942 stated above. 

However, it should be considered that should the AR value used in either the Site 942, or 

S 18O g i v  age models be proven to be different, it might result in either the over/under

estimation o f  AS180 942itself, and/or the over/under-estimation o f  the chronology o f  A6180 942 

(see Chapter 5, Section 5.1.2).

6.4 Q ualitative Interpretations o f  Amazon River O utflow from A 618O ô

6.4.1 How to Interpret the A 8,80 942 Record

Shifts in A5180 942 could be forced by a number o f  individual drivers. All other factors 

remaining equal, drivers include:

1. A change in volume o f  Amazon River water reaching Site 942 only;

2. A change in 5 l80 Amazon only;

3. A change in sea surface temperature (SST) over the site only;

4. A change in surface ocean salinity (SOS) over the site only;

5. A combination o f any o f the above.

O f the scenarios presented, the most likely driver o f  the 8 I80 942 signal will be a com bination 

o f  these factors.

Changes in the isotopic composition o f  Amazon River water will impact 5 180 942 accordingly. 

All other factors remaining equal, an increase in the volum e o f  relatively depleted Amazon 

River water mixed over the Site will force a further depletion in 8 180 942. Conversely, a 

decrease in the volum e o f Amazon River w ater mixed over Site 942 will bring about a 

relative enrichm ent in 5 ,80 942.

SST and background SOS have yet to be accounted for in the A5180 942 record, however. For 

example it is thought that the tropical sea-surface tem peratures cooled by up to 5°C during 

the glacial (e.g. G uilderson et al., 1994), which would represent a surface ocean isotopic
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shift o f  ~l%o (Craig, 1965; Epstein et al., 1953). In order to remove accurately the SST 

effect from the A6I80 942 signal, a detailed corresponding record o f  SST is required. 

Unfortunately, there are no such good quality, high-resolution records available for the 

hydrographic setting over the Amazon Fan. Although SST records are available for the 

Amazon Fan region, they either lack integrity, are o f  too coarse a resolution, or are o f  

questionable precision (e.g. Arz e ta l., 1998; e.g. Arz et al., 1999; Greig, 1998). Where SST 

records also exist for the tropical Atlantic (e.g. Billups and Spero, 1996; Hastings et al.,

1998; Min et al., 1995; Mix et al., 1999; Niebler et al., 2003; Riihlemann e ta l.,  2001; W olff 

eta l., 1998), they are considered to be too widely interspaced from which to 

interpolate/exrapolate stratigraphic records o f  enough accuracy and/or resolution for the 

purpose o f  this study. Furthermore, with the lack o f  com parable detailed resolution records, 

it is also very difficult to establish the isotopic effects o f  natural variation in the salinity o f  

the prevailing ocean currents operational over ODP Site 942. Such variation in SOS may 

arise from changes in the overall salinity o f  the water mass (e.g. due to changes in the 

precipitation-evaporation rates in a source area), or to changes in the precipitation- 

evaporation regime over the course o f  the ocean current, which may affect the dilution o f  the 

surface waters. Therefore with the data available to date, it is unfortunately not possible to 

account for down-core variations in SST and SOS in A6180 942. However changes in SOS 

alone are likely to have only a minor impact on the isotopic record relative to other driving 

factors (W illiam s et al., 1998, Chapter 7). The majority o f  the shift in A6I80 942 therefore, 

will be a result o f  changes in the isotopic signal and /or volum e o f  Amazon River outflow, 

and SST effects over Site 942.

Nevertheless, the hypothesised 6 180 G iv  derived from glacio-eustatic sea level change records 

is regarded to be a conservative estimate. In this way some (but not all) o f  the isotopic 

effects associated with SST and SOS may inadvertently be accounted for. Therefore, despite 

the limitations, it should still remain possible to use these A6I80 942 data to m ake qualitative 

assessments o f  the past variations in Amazon River discharge, albeit to a limited extent. 

W ithout actual down-core records o f  SST however, speculations o f  past Amazon River 

outflow should be made with caution, as SST effects may further influence the isotopic 

record beyond the excess isotopic range accounted for by the conservative estimates o f 

S18Ogiv-
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6.4.2 General Com parisons Between A 6,80 942 Records o f  D ifferent Species

O f the data presented in Figures 6.5, 6.6 and 6.8, the isotope signals o f  G. ruber, G. 

sacculifer sp. and N. dutertrei all appear to follow sim ilar trends. After correction for ice 

volume (see Figure 6.8), these four species’ records fluctuate within the range o f  0%o to ~1- 

1.5%o, with the am plitude o f  variation progressively increasing with depth from the sea 

surface. This increase in range is most likely to be reflecting isotopic fractionation effects 

associated with the depth stratification o f  the species, where gradients o f  variables such as 

temperature and salinity will vary. It may also reflect the differing seasonality o f  the life 

cycles between the individual species, where calcification o f  the foram inifera’s test is 

isotopically recording seasonal variation in surface ocean 6 ,sO.

Although the G. truncatulinoides record at times bears certain resem blance to the signals 

measured on the other species (e.g. between -11 .5  and 14 Cal ka), overall, the signal is very 

different. The G. truncatulinoides record appears to be fractionated to a different order o f 

magnitude than the other four species, with normalised ice-volume-corrected values ranging 

between 0%o and 2.25%o. This is a reflection o f the much deeper depth-habitat o f  G. 

truncatulinoides compared to the other species measured (see Table 6.1). At deeper levels,

G. truncatulinoides is thus relatively more isolated from the isotopic effects o f  the Amazon 

Freshwater plume at the ocean surface. The dissimilarity between the G. truncatulinoides 

S180  record and those o f  its relatively more shallow-dwelling counterparts would imply that 

the signal could be influenced more strongly by environm ental variables, such as 

thermocline structure, rather than by the dilution effects o f  Amazon River water. Although 

the G. truncatulinoides record may provide valuable information for reconstructing changes 

in the past regional vertical ocean structure, it will be difficult to isolate freshwater-driven 

shifts in surface ocean salinity from its 6 lsO signal.

Consequently, it is therefore more difficult to use A6180 942 from G. truncatulinoides to 

monitor the am ount o f  Amazon fresh water mixed over Site 942 com pared to other species 

measured in this study. Furthermore, G. truncatulinoides was also relatively less abundant in 

the sediments, and compared to other species measured, sam ple sizes were more variable. 

Variations in sample size can contribute to considerable noise within an isotopic signal 

(Trauth, 1995), thus the G. truncatulinoides 6 lsO record is com paratively less reliable than 

those o f  the other species..

Slight dissim ilarity is also noted between the N. dutertrei records, and those o f  G. sacculifer 

sp. and G. ruber, especially in the glacial-Holocene amplitude, and for the period -19 .5  to
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-17 .5  Cal ka. Greig (1998) noted that the relative abundance o f  N. dutertrei was greater in 

glacial sedim ents com pared to the Holocene. N. dutertrei is thought to calcify at a constant 

temperature in the Atlantic Ocean (Ravelo and Fairbanks, 1992), preferentially  residing 

near the therm ocline (H ilbrecht, 1996). Increased nutrient supplies at the chlorophyll 

maximum, coincident with the maximum thermal gradient, lead to marked increases in 

species abundance when the seasonal thermocline is in the photic zone (Ravelo and 

Fairbanks, 1992). This implies that the thermocline may have shallowed during the glacial 

period, allowing cooler, nutrient-rich waters to be nearer the surface, within the photic zone, 

becoming ecologically more favourable for N. dutertrei. Calcification would therefore have 

taken place at a shallower depth in the water column, where S180  may have been relatively 

more depleted due to the mixing o f  Amazon River water in the upper water column. 6 lsO 

incorporated into the glacial tests o f  N. dutertrei may thus have been more depleted relative 

to Holocene times, when calcification took place at deeper levels. Care should be taken when 

attempting to interpret changes in Amazon River outflow from N. dutertrei S l80 942 records, 

as the signal may also be recording changes in the species’ ecological habitat. Nevertheless, 

information o f  changes in the thermocline structure may yield useful information for the 

interpretation o f  the other 6 I80 942 records.

O f the A&l80 942 records that are considered to be recording variability in Amazon River 

outflow, the m ajor trend apparent within these species’ records is that o f  a transition between 

different states within the system. This is illustrated by Figure 6.9, which shows the A6180  

record for G. sacculifer (sac), where solid horizontal lines indicate a transition between two 

relatively steady states. From 40 to ~18 Cal ka, isotope data fluctuate around a relatively 

more enriched mean value (glacial state), whereas from ~12 to 0 Cal ka, isotopic data 

fluctuate about a mean that is relatively more depleted (Holocene state). A tri-part oscillatory 

transition arises between these two elements o f  the system (last glacial-interglacial 

transition).
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Figure 6.9: Graph of G. sacculifer (sac) S,80  to illustrate the different system states in the isotopic 

signal.

The divisions between these system states within the A8i8C>942 record coincide approximately 

with the defined climatic stages o f  the late Quaternary (after Blunier et al., 1998; Blunier et 

al., 1997; Mangerud e ta l.,  1974; 14C ages calibrated using CALIB 5.0.1; Stuiver et al., 

2005):

• Last glacial period, Greenland Stadial-2: 40 to -1 5  Ca ka ( -4 0  to -1 5  ,4C ka);

• Lateglacial Interstadial (Bolling/Allerod interstadial event, Greenland Interstadial-1; 

Northern Hemisphere); Antarctic Cold Reversal (ACR; Southern Hemisphere): -1 5  

to -1 3  Cal ka (-13  to -11  14C ka);

• Younger Dryas stadial event, Greenland Stadial-1: -1 3  to -11 .5  Cal ka (-11 to -1 0  

14C ka);

• Holocene: -11 .5  Cal ka to present (10 14C ka to present).

The G. ruber, G. sacculifer sp. and N. dutertrei isotope records from ODP Site 942 can be 

subdivided into these periods, as shown in Figure 6.10, and discussed accordingly. The 

glacial-Holocene amplitude will also be discussed.
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respective error margins. All data were normalised against the stratigraphically most recent value to 
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approximating to the last glacial maximum (-23 to ~21 Cal ka) and Younger Dryas (~ 13 to ~11.5 Cal 

ka). YD= Younger Dryas; ACR= Antarctic Cold Reversal; LGIT= Last Glacial-Interglacial 

Transition.
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6.4.3 Interpretations o f  the G lacial-Holocene Am plitude in A 6,80 942

With reference to the G. ruber, G. sacculifer sp. and N. dutertrei A6 I8C>942 records shown in 

Figure 6.10, Holocene stage isotopes recorded by all o f  the species are more depleted 

relative to the glacial stage values. This may reflect isotopic variance associated with the 

switch between glacial and interglacial climate modes. In the case o f  N. dutertrei, this may 

also represent a shallowing o f the thermocline during the glacial period (see Section 6.4.2, 

above).

Should this isotopic difference be a result o f  changes in Amazon River discharge, it would 

imply that during the glacial, less Amazon River water was being m ixed over Site 942. This 

may have resulted from a diversion o f Amazon River away from Site 942, or from a 

reduction in actual outflow, arising from a reduction o f  effective m oisture in the Amazon 

Basin. A lternatively, or 6 180 Amazon was less depleted relative to Holocene values. However, it 

is likely that the relatively depleted A5I80 942 glacial values may have arisen through a 

combination o f  these factors.

During the glacial period, lower sea level resulted in the Amazon River discharging directly 

onto the Amazon Fan (see Chapters 2 and 5). Therefore out o f  the entire 40 Cal kyr record 

presented, it is speculated that the locus o f  Amazon River outflow would have been most 

proximal to Site 942 during the time o f the last glacial, especially during the LGM , when sea 

levels were at their relative lowermost. Therefore the glacial record will potentially represent 

the tim e when Am azon River outflow was at its greatest influence over Site 942. I f  the NBC 

retroflection was enhanced at this time however, as supported by evidence for a shallowing 

o f  the therm ocline, Amazon River water may have been advected away from Site 942, 

particularly if  the NBC retroflection was relatively further south. It is speculated however, 

that Site 942 would still have been situated within the influence o f  the Amazon River plume, 

as num erous equator-ward moving ring eddies would have continued to have broken away 

from the eastward retroflection. Nevertheless, there would have been a potential net 

reduction o f  Amazon River water transported over Site 942, as the ring eddies are less 

efficient vectors o f  water relative to cross-equatorial ocean currents (see Chapter 2, Section 

2.3.4).

However, changes in the volume o f  Amazon River outflow may also have been an important 

feature o f  the glacial period. In the modern day, Amazon freshw ater mixes with tropical 

Atlantic w ater over the Amazon fan in the ratio 1:5 (Am azon:A tlantic; Levitus, 1982). 

Therefore should less Amazon water be mixed over the Site, the oceanic isotope signal
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would become a relatively much more dominant influence, and lead to a relative enrichment 

in A5^ 0942.

Furthermore, a reduction in Amazon River outflow would imply increased effective aridity 

in the Amazon Basin. The 5 lsO o f precipitation falling within the Amazon Basin could also 

become relatively enriched due to a reverse ‘am ount’ effect, which could bring about an 

overall enrichm ent in the 5 180  o f  Amazon River water.

It has been estimated that glacial temperatures in the Amazon Basin were up to 5°C cooler 

than present, (e.g. Colinvaux et al., 1996; Farrera et al., 1999; Liu and Colinvaux, 1985;

Stute et al., 1995; see Chapter 4, Section 4.2). Although this would have led to a depletion in 

&lsOAmazon by ~l%o (Dansgaard, 1964), should precipitation within the Amazon Basin have 

decreased, some o f  this isotopic change may be cancelled out by a reverse ‘am ount effect’ 

(Grootes, 1993; Grootes et a l ,  1989; Thompson et a l ,  2000). The am ount effect arises due 

to the initial preferential precipitation o f the heavier isotope; therefore 6 lsO will become 

increasingly depleted during periods o f intense rainfall (Grootes et al., 1989). W ith a 

reduction in rainfall, a reverse amount effect will impact 6 l8O Amaz0n, whereby the reduced 

amount o f  w ater precipitated will be relatively more enriched in 6 lsO. For example, the 

relationship between monthly averages o f rainfall am ount and 5 l8Oprecip for M anaus, Brazil, 

indicates that a 50% reduction in precipitation would bring about an associated enrichm ent in 

S180 Precip o f  ~2%o (International Atomic Energy Agency, 1992; M aslin and Burns, 2000). 

Therefore, despite cooler temperatures, &180Amazon could have become relatively more 

enriched during glacial times.

Given the scale o f  the proportion o f  Amazon River water relative to Atlantic water 

incorporated into the mixing ratio, the isotopic difference in the glacial A5180 942 record could 

therefore have been driven by increased aridity (decreased effective m oisture) in the Amazon 

Basin. Increased aridity would be marked by a reduction in river discharge, and a possible 

enrichm ent in the 6lsO o f  Amazon water, should the reverse am ount effect have influence 

the 8 ,80  o f  Amazon Basin precipitation.

The A818C>942 records have yet to be corrected for SST, however, which were cooler during 

the glacial stage. Cooler SSTs will account for some o f  the glacial enrichm ent observed in 

A6 ,80942. The extent o f  glacial cooling in the western tropical Atlantic remains controversial, 

with estimates ranging from 0°C to >5°C (e.g. Billups and Spero, 1996; CLIM AP Project 

M embers, 1981; Dtirkoop et al., 1997; Guilderson et al., 1994; Hastings e t a l ,  1998; Min et
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al., 1995; M ix e ta l.,  1999; N iebler et al., 2003; Riihlemann e ta l.,  2001; W olff e ta l., 1998). 

According to the palaeotem perature estimates o f  Epstein et al. (1953) and Craig (1965), this 

implies that SST cooling o f  ~5°C could account for up to ~+l% o o f  the glacial stage 

A8I8C>942, which is a significant majority o f  the glacial-Holocene am plitude within each 

individual species’ dataset.

Clearly, the SST effect would be o f lesser impact with reduced estim ations o f  glacial 

cooling: The sm aller the glacial SST effect in the A5 ,80942 signal, the greater the proportion 

o f  the isotopic depletion in A5180 942 that must be accounted for by changes in the volume 

and/or isotopic signature o f  Amazon River water. Therefore it could be deduced that the 

colder the glacial SST, the less aridity is required in the Am azon Basin to attain the A8180 942 

records measured. Conversely, should SST cooling have been relatively minimal, the 

Amazon Basin m ust have been much more arid in order to attain the same A6180 942 records 

measured. Down-core estimations o f  SST are therefore o f  great im portance for deducing past 

variations in Amazon River outflow, and thus the effective moisture history o f  the Amazon 

Basin from A5180942 records. Interpretations o f  Amazon River outflow and the associated 

effective m oisture history o f the Amazon Basin should therefore also consider the isotopic 

effects o f  SST that are yet to be removed from the A8 ,80942 signal.

6.4.4 Interpretations o f  the Glacial Records (40 to -1 5  Cal kyr)

Unfortunately, the lack o f  foraminifera-specimens in glacial sedim ents between -2 3  and 

-21 .5  Cal ka (-7 .7  to -7 .1  mbsf; -2 3  to -21 Cal ka; -7 .7  to -6 .9  m bsf in the N. dutertrei 

record) creates a gap in the isotopic record (marked by hatched lines in the corresponding 

Figures). This is approximately coincident with the LGM , considered to have occurred at this 

time in other records from tropical South America (e.g. Baker et al., 2001a; Baker et al., 

2001b; Cross et al., 2001; Seltzer et al., 2002). Sediment accum ulation rates are not 

excessively high so as to dilute the marine flux o f CaCC>3 during this period (see Chapter 5, 

Section 6.3.1). Instead, sediment accumulation rates are relatively low (-0 .2 6  to -0 .3 3  m/ka' 

'), comparable with other periods in the record when foram iniferal concentrations were not 

compromised. Showers and Bevis (1988) also noted a lack o f  foram iniferal tests in LGM 

sediments from the three sites they investigated on the Amazon Fan, suggesting it is a fan- 

wide phenomenon.

The lack o f  foram inifera in LGM sediments at Site 942 could be explained by a rise o f  the 

local lysocline and calcite compensation depth (CCD) at this time. During the sea level low
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stand o f  the LGM , the flux o f  organic material carried by the Amazon River would have 

discharged directly onto the fan. As a result, this would have caused an increase in the 

amount o f  total organic carbon in the upper ocean, and thus an associated rise in the CCD 

(W illiams et a l , 1998). Although no isotope data are available for the LGM exactly, it is 

speculated that intervening LGM 6 lsO values would be o f  at least a sim ilar enrichm ent as 

those data m easured across all species during the glacial period, both prior to and 

immediately following the LGM.

The GIV-corrected records presented in Figures 6.8 and 6.10 contain varying amounts o f  

noise in the data. The G. ruber A5I80 942 signal is the sm oothest for the glacial portion o f  the 

record. This is surprising given that it is the shallowest-living o f  the species measured, and 

so is m ost likely to be isotopically affected by the num erous freshw ater lenses that break o ff 

from the Am azon discharge plume (Flood and Piper, 1997). The degree o f  noise within the 

data appears to increase with the depth habitat o f the species m easured, possibly suggesting 

an increasingly stronger isotopic response to factors other than freshwater-driven changes in 

salinity, with depth from the surface. Overall however, the glacial A6180 942 records are more 

depleted relative to Holocene values. The potential relevance o f  this glacial-Holocene 

amplitude was discussed in Section 6.4.3, above.

Within the 40 to -1 8  Cal ka A6I80 942 records for G. ruber, G. sacculifer  sp. and N. dutertrei, 

clear oscillation-like fluctuations can be seen, varying within a range o f  ~0.5%o. Between 40 

and -2 7  Cal ka, two distinct fluctuations are apparent in all four species records, with a 

periodicity o f  - 6  to 7 Cal ka. Between -2 7  and 18 Cal ka, two quasi-periodic oscillations are 

arguably apparent in the G. ruber record, but o f  - 4  to 5 Cal ka duration. The extent to which 

the same two oscillations, or maybe a single oscillation o f  longer-duration also feature in 

each o f  the two G. sacculifer sp. and N. dutertrei records is difficult to confirm due to the 

paucity o f  samples around the time o f  the LGM.

According to calculations o f  the 6 180-tem perature relationship (Craig, 1965; Epstein et al., 

1953), fluctuations within a range o f  ~0.5%o could represent variations in SST o f  - 2  to 

2.5°C. However should these variations be attributed to changes in the am ount o f  Amazon 

River water mixed over the site, it would imply there were alternating periods o f  enhanced 

and reduced freshwater input, according to whether A6180 942 was relatively depleted or 

enriched, respectively. Reduced freshwater input may represent a decrease in Amazon River 

discharge (thus a reduction in the effective moisture availability in the Amazon Basin), or the 

increased transportation o f  the Amazon River discharge plum e away from Site 942 by
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surface ocean currents. Unfortunately, without SST data, it is unclear to what extent these 

oscillations m ight be related to the amount o f  Amazon River water mixed over Site 942.

The tim ing and nature o f  these variations in the data may correspond to the ‘Bond C ycles’ 

o f  clustered ‘Dansgaard-Oeschger’ events observed in polar ice core records (Bond et al., 

1993; Bond and Lotti, 1995; Dansgaard et a l , 1993). Heinrich Events (HE), occurring at the 

culmination o f  these cycles, were centred around -3 8 , -2 5 .6  and -1 7  Cal ka (-27 .6 , -2 1 .4  

and -1 4 .7  14C ka, respectively; Maslin, 1995). The most recent HE (H i) may be coeval with 

the marked depletion in A6,80 942 at -17 .5  Cal ka, although low sam ple resolution and error 

margins in the 942 age model make it difficult to confirm the relative placem ent o f  the other 

HEs in the A5180 942 records.

Between - 1 9 . 4  and - 1 7 . 9  Cal ka, there is a period o f  marked depletion (—0.9% o) in the N. 

dutertrei record, where some o f the most depleted values o f  the entire record are measured. 

As highlighted on Figure 6 .1 0 , this isotopically depleted phase is exclusive to the N. 

dutertrei record. From - 1 7 .9  to - 1 7 .5  Cal ka, there is a marked re-enrichm ent o f  comparable 

magnitude from ~ 0 .35% o , to near glacial-stage values o f - 1 .35% o (i.e. ~ + l% o ). W here 

relative isotopic depletion is a feature o f  the other records about this time, it is only very 

minor in com parison, and neither is there a comparative period o f  enrichm ent at the term inus 

o f  this stage. The N. dutertrei signal is clearly being influenced by a factor that is not 

affecting the other species’ records. The similarity between the other three records from 

species o f  shallower depth habitat would imply that the isotopic shift in the N. dutertrei 

record is not related to either SST, or the volume o f  Amazon River water reaching Site 9 4 2 . 

This may represent a change in the ecological habitat o f  N. dutertrei therefore, possibly 

indicating a shallowing o f  the thermocline between - 1 9 .4  and - 1 7 . 9  Cal ka (see Section 

6 .4 .2 ) .

The interval between -17 .5  to -1 5  Cal ka, the end o f  the glacial stage is marked by a general 

trend o f  depletion within the A6180 942 records. This period is approxim ately coincident with 

the Oldest Dryas period (14.5 to -1 3  l4C ka; Bradley, 1999), and also corresponds to a 

warming trend observed in the 6D signal from the Vostock ice core record, prior to the onset 

o f  the ACR (Blunier et al., 1998; Blunier et al., 1997). By -16 .25  Cal ka, isotopic values 

measured on G. sacculifer sp. are comparable to those o f  the Holocene. From this initial 

peak in the A8180 942 trend, records for N. dutertrei and G. sacculifer sp. enrich briefly for a 

period o f -5 0 0  to 700 Cal yr, respectively. This is approxim ately coincident with M eltwater 

Pulse la (M W P -la , m idpoint 13 l4C ka; Mix, 1987; M ix and Ruddiman, 1985; or 15 to 15.5
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Cal ka; 14C ages calibrated using CALIB 5.0.1; Stuiver et al., 2005). Relatively minor 

coincident enrichm ent is noted in the G. ruber record, although it is not pronounced enough 

to punctuate significantly the underlying trend o f  depletion. Following M W P-la, A8180 942 

values continue to show a depleting trend toward the Lateglacial Interstadial.

If  the freshwater effects o f  the Amazon River forced this progressively more negative trend, 

it would imply that an increasing amount o f  Amazon water was reaching the site during the 

Oldest Dryas. However, climatic amelioration about this time is likely to have driven a 

coincident warm ing o f  SST, which could account for a proportion o f  this isotopic depletion 

observed in the A5180 942 record.

6.4.5 Interpretations o f the ~15 to ~13 Cal ka Records

As can be seen clearly in Figure 6.10, in the early stages o f  the Lateglacial Interstadial, 

A6180 942 measured on G. ruber and G. sacculifer sp. attain some o f  the most isotopically 

depleted values o f  the last 40 Cal ka. Although there is a coincident negative excursion in the 

N. dutertrei record about this time, measured A6180 942 values continue to remain relatively 

more enriched than those measured for the Holocene. Should the G. ruber and G. sacculifer 

sp. records be reflecting freshwater driven changes in salinity over the site, it would imply 

that the volum e o f  Amazon River water being mixed in the overlying w ater column was 

comparable to that o f  the modern day.

It should also be noted that the relative depletion in the A5I80 942 record coincides with a 

marked increase in the sedimentation rate (SR) over the Site, and the appearance o f  plant 

matter in the lithostratigraphy (see Chapter 5, Section 5.3.1). This was hypothesised to have 

arisen from enhanced fan deposition within the vicinity o f  Site 942 (shown by blue shading 

in Figure 6.11). An increase in sediment discharge over the western fan com plex could imply 

that the Amazon River freshwater plume was more directly influential over Site 942 at this 

time, whereby a greater amount o f  Amazon water was mixed over Site 942 relative to the 

unit volum e discharged. This could therefore have the effect o f  biasing the isotope signal to 

more negative values, regardless o f  the amount o f  water discharged. However, the extent to 

which this isotopic depletion represents either a change in the relative influence o f  the 

Amazon River freshwater plume and/or a change in the outflow volum e remains unclear.
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Figure 6.11: A comparison between sedimentation rates and G. sacculifer (sac) A6lsO at ODP Site 

942. Blue and yellow shading denotes the Lateglacial Interstadial and Younger Dryas periods, 

respectively.

Thereafter, throughout the Lateglacial Interstadial, A518C>942 records for all species oscillate 

about a more enriching trend toward the Younger Dryas. These oscillations correlate 

approximately with the three subdivisions defined within the Lateglacial Interstadial (after 

Mangerud et al., 1974; 14C ages calibrated using CALIB 5.0.1; Stuiver et al., 2005);

• Bolling, -1 5  to -  13.9 Cal ka (-13 to -1 2  ,4C ka);

• Older Dryas, -13 .9  to -13 .7  Cal ka (-1 2  to -11 .8  14C ka);

• Allerod, -13 .7  to -  13 Cal ka (-11.8  to -11 ,4C ka).

Although the Lateglacial Interstadial was generally apparent in the Northern Hemisphere as 

a warm phase, Antartctica may have been experiencing cooler climates at this time, during a 

stage referred to as the Antarctic Cold Reversal (Blunier et al., 1998; Blunier et al., 1997; 

see discussion in e.g. Maslin et al., 2001; Sagnotti et al.).

Assuming A6,80942 is reflecting the amount o f  isotopically depleted fresh water reaching Site 

942, the progressive trend to more positive values implies an overall reduction in the amount 

o f fresh water mixed over the Site. However, the SR also appears to vary with these climatic 

stages. Although the resolution o f  changes in SR is relatively low, limited by the down-core 

stratigraphic frequency o f AMS dates measured, SR remains relatively elevated throughout 

the Bolling and Older Dryas (oscillating directly with A6180942), but then diminishes into the
1 X

Allerod. The oscillations in A5 0 942 coupled with variations in SR throughout the 

Lateglacial Interstadial imply that the isotopic signal was driven at least in part by changes in
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the relative influence o f  the Amazon River freshwater plume. Consequently, the transition in 

the A6180 942 signal during the early Allerod could have been biased to apparently more 

positive values, due to a coincident reduction in the influence o f  the Amazon plume relative 

to the Bolling and Older Dryas. This therefore may not necessarily imply such a marked 

decrease o f  Amazon Basin effective moisture, which may have already been relatively 

reduced throughout the interstadial. Elucidating the Amazon River outflow for the 

Lateglacial Interstadial is therefore complicated by potentially coincident changes in the 

regime o f  the Amazon River discharge plume, and cannot readily be determ ined from 

A6180942 alone.

Toward -1 3  Cal ka, m ost species’ isotopes appear to be relatively enriched, except for G. 

ruber, for which there is a relative depletion. Unsmoothed isotope data from G. ruber 

(Figure 6.5a) suggest that this relative depletion in the G. ruber record is not an artefact o f  

noise in the record. Assum ing that the isotopic signals are m onitoring the mixing between 

Amazon and Atlantic water over Site 942, this discrepancy between the species’ records 

could therefore imply that the vertical zone o f  the m ixing was restricted to a shallower depth 

in the water column at this time.

6.4.6 Interpretations o f  the -1 3  to -11  Cal ka Records

A8,80 942 records for the period 13 to 11.5 Cal ka are shown in greater detail in Figure 6.12. 

As the core material was sampled down-core on a linear basis, a short-lived phase o f  high 

sedim ent accum ulation (-12 .5  to -18 .3  m k a '1) between -1 2 .8  and -1 2 .7  Cal ka has yielded 

a corresponding isotope record o f  high temporal resolution. This portion o f  the record is 

constrained by five AMS radiocarbon dates. A6,80 942 records from 13 to 12.5 Cal kyr are 

also shown in even greater detail in Figure 6.12 (right).
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Figure 6.12: 13 to 11.5 Cal ka composite smoothed A6lsO records, for G. ruber, G. sacculifer sp. and 

N. dutertrei. Individual sample levels are shown with markers. The 13-12.5 Cal ka period is shown in 

more detail on the right. Yellow diamonds indicate the relative stratigraphic placement of AMS 

radiocarbon dates, with their respective error margins. All data were normalised against the 

stratigraphically most recent value to express change relative to modern (where modem = 1 Cal yr 

BP).

In this section o f  the A8180 942 records, there is noticeable sequence in the isotope 

stratigraphy. From -1 3  to -12 .8  Cal ka, the G. ruber signal becomes progressively more 

enriched, whereas the other species’ records remain at relatively positive, but with a minor 

coincident depletion. Between -1 2 .8  and -12 .76  Cal ka however, G. ruber and G. sacculifer 

sp. A5180 942 records exhibit a noticeable enrichment, where isotope values are am ongst the 

most positive measured over the last 40 Cal ka. An oscillation is noticeable in the two G. 

sacculifer sp. records, but not so clearly in the G. ruber signal. This could perhaps be
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attributed to the near-surface depth habitat o f G. ruber, where it is more exposed to the 

depleting effects o f  the Amazon River freshwater lens. The N. dutertrei signal appears to 

trend in the opposite direction, however.

Relative to the m odem  day, the enrichment observed in the -1 2 .8  to -1 2 .7 6  Cal ka-section o f  

G. sacculifer sp. A5180 942, exceeds l% o. If  driven by tem perature alone, this would imply a 

SST cooling o f  >~5°C (Craig, 1965; Epstein et al., 1953), which is far in excess o f  

reconstructed tropical SST cooling around this time (e.g. Billups and Spero, 1996; Diirkoop 

e ta l., 1997; M ix et al., 1999; Riihlemann et al., 2001). This implies that a proportion o f  the 

enrichm ent is caused by a reduction in the volume o f  Amazon River water mixed over Site 

942.

From -1 2 .7 6  to 12.7 there is an isotopic depletion within all records, with a small positive 

excursion recorded in all species at -12 .73  Cal ka, except for G. sacculifer (sac). A second 

m inor positive excursion is noted in all A5180 942 records at -12 .7 1 , except in the N. dutertrei 

signal where the excursion appears to be negative. Thereafter, from -1 2 .7  to -1 2 .4  Cal ka, 

there is a depletion in the G. sacculifer sp. and G. ruber A5180 942 signals, although the N. 

dutertrei signal becomes more positive. As the synchroneity o f  isotopic shifts is similar 

across all species, it does not suggest that such oscillations have arisen as an artefact o f  how 

the data was smoothed. They must therefore be monitoring changes in the isotopic regime 

over Site 942. The opposing signal o f  N. dutertrei may have arisen through changes in the 

depth habitat o f  the species, implying that the therm ocline depth may have been highly 

variable about this time (see Section 6.4.2).

Overall, should the G. ruber and G. sacculifer sp. A6180 942 be m onitoring the outflow o f  the 

Amazon River, the relatively enriched A8lsO values o f  from -1 2 .8  to -1 2 .7  Cal ka would 

imply that the river was considerably reduced in volum e relative to the m odem  day. This 

would imply a reduction in the effective moisture o f  the Am azon Basin. Sedimentation rates 

over Site 942 can support such a hypothesis. As shown in Figure 6.11, the sedim entation rate 

peaks sharply between 13 and 12.7 Cal ka, where accum ulation at Site 942 reached levels as 

high as ~18m Cal k a '1. This sedimentation peak is constrained by four AMS radiocarbon 

dates. Should the Amazon River discharge have been dim inishing throughout this time, as 

suggested by the A5180 942 record, the river would have had increasingly less energy available 

to transport its load. It would consequently have deposited sedim ent either in the floodplain, 

or relatively further inland on the exposed Amazon delta. This sedim entary regim e could 

potentially have been enhanced during the annual dry season. The onset o f  the wet season,
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and thus enhanced discharge (although still relatively reduced), could have subsequently 

debouched large volumes o f  this sediment, and have transported it out to the Atlantic, 

suspended in the Amazon freshwater plume. In this way, it is possible to account for a 

reduced freshwater discharge signal, yet a record o f  enhanced sedim ent supply over Site 942. 

Episodic periods o f  deposition/debauchm ent have been observed within the Amazon 

floodplain, where they are related to alternating periods o f  drought and flood associated with 

ENSO variability (e.g. Aalto et al., 2003). Enhanced sedimentation over Site 942 at this time 

may also imply that the hydrographic setting was such that the Amazon River plume was 

discharging over the western fan complex, or that ocean currents were steering the trajectory 

o f  the plum e toward Site 942.

The Younger Dryas (YD) stadial, as inferred from Northern Hemisphere records, is marked 

on Figure 6.11 as a band o f  yellow shading. The YD chronozone is defined as the period 

between 11 and 10 l4C ka (M angerud et al., 1974), which when calibrated, places it around 

13 to 11.5 Cal ka (Stuiver et al., 2005). Assuming records at Site 942 are m onitoring the 

outflow o f  the Amazon River, the marked peak in sedim entation coupled with a positive 

excursion in the A6180 942 across all species suggests the onset o f  a b rief period o f  

pronounced aridity at -1 2 .8  Cal ka; which may coincide with the cooling associated with the 

onset o f  the YD in northwest Europe.

However, M aslin and Burns (2000) suggested that the YD featured at a later stage in 

Amazon Fan record, between -1 2 .4  and -1 1 .9  Cal ka (see Figure 6.2). This positive 

excursion is clearly identifiable in all o f  the enhanced resolution species’ records o f  this 

study, but is less pronounced in the G. ruber signal. This may represent a shallowing o f  the 

freshwater-m ixed layer, although G. ruber A6,80 942 values are still relatively enriched at this 

time, suggestive o f  lesser depletion by fresh water. W hile this positive oscillation in the 

A6180 942 records at -1 2 .4  to -1 1 .9  Cal ka falls within the tim efram e ascribed to the YD 

stadial, the longer, higher resolution, and more chronologically constrained data presented in 

this study suggest that it was not the most isotopically enriched stage within this period.

The end o f  this ‘w ithin-Y D ’ oscillation at -11 .78  Cal ka, is marked by an obvious negative 

excursion in the G. ruber and G. sacculifer sp. records. Isotope values m easured for this 

stage are am ongst the most negative o f the entire record. This excursion is not apparent in 

the N. dutertrei record, however, suggesting it impacted the isotopic signal relatively higher 

up in the w ater column (or there was a change in the ecological habitat o f  N. dutertrei). 

Assuming A6180 942 was not recording a short-lived warm ing o f  SST, it may reflect the
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depleting influence o f  the Amazon River outflow, either by an increase in the volume o f  

freshwater reaching the site, or even a depletion o f the d l80  value o f  Amazon River water 

itself. It is interesting to note, however, that this also appears to be the time corresponding to 

when terrestrial sedimentation ceased at Site 942, and fan accum ulation switched ‘o f f  (see 

Figure 6.11).

6.4.7 Interpretations o f the Holocene Records (-11  Cal ka to Present)

Throughout the Holocene, the isotope signals for all species fluctuate about relatively more 

depleted values relative to the glacial period. This may be related to changes in the amount 

o f  Amazon River freshwater mixing over Site 942, or to glacial-interglacial changes in SST, 

or a combination o f  the two (see Section 6.4.3).

Across all species records shown in Figure 6.10, a slight positive excursion in A8180 942 

between -1 0 .8  and -1 0 .6  Cal ka coincides approximately with M eltw ater Pulse lb  (MW P- 

lb , m idpoint 9.5 14C ka; Mix, 1987; Mix and Ruddiman, 1985; or -1 0 .8  to -1 0 .6  Cal ka; l4C 

ages calibrated using CALIB 5.0.1; Stuiver et al., 2005). Thereafter, between the early- and 

mid-Holocene, records take on a slightly concave (positive) trend. This period is broadly 

simultaneous with the Holocene ‘thermal m axim um ’ (HTM ), associated with wetter 

conditions in Africa (COHM AP Members, 1988; deM enocal et a l ,  2000a; deM enocal et al., 

2000b). I f  A5180 942 were monitoring the outflow o f  the Amazon River at this time, it would 

imply that there was a decrease in Amazon Basin effective m oisture (i.e. increased aridity) 

coeval with a humid phase in Africa. From the HTM to the present, A8180 942 values become 

progressively depleted, which may reflect a progressive increase in effective m oisture in the 

Amazon Basin from the mid-Holocene to the modern day. SSTs are also likely to have 

varied throughout this time, however, and may thus account for some o f  the trend observed 

in the A5180 942.

It should also be noted that A5180 942 values appear to oscillate throughout the Holocene. 

Although more noticeable in the G. ruber and G. sacculifer  (sac) records, all species’ records 

appear to ‘pulse’ about a quasi-periodic cyclicity o f -1 5 0 0  to 2000 years, particularly after 

- 7  to 7.5 Cal ka, approximately coincident with the proposed onset o f  increased ENSO 

activity in northern South Am erica (M artin et al., 1993; M oy et a l ,  2002; Rodbell et al., 

1999). M uch attention has been focussed recently on quasi-cyclic ‘D ansgaard-O eschger’-like 

trends in Holocene concentrations o f  drift-ice deposits in the N orth Atlantic, identified by 

Bond et al. (2001). These trends were purported to relate to variations in the surface winds
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and surface hydrography o f  the subpolar North Atlantic region, associated with millennial- 

scale changes in solar output. Evidence upon which this hypothesis is based remains 

controversial, however (see discussion in Maslin et al., 2003). Upon comparison, assuming a 

robust chronology for each dataset, the records o f  A6,80 942 and drift-ice deposit 

concentrations do not appear to directly co-vary, although some similarity is noted from ~2.6 

Cal ka to present (see Figure 6.13). An equivalent m agnitude o f  change in drift-ice debris 

concentrations between the early and late Holocene is not noted in the A6180 942 record, 

however.
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Figure 6.13: a comparison between G. ruber A&l80 942 and the Bond et al. (2001) stacked record of 

drift-ice deposits expressed as a percentage of ice-rafted lithic grains in the 63 to 150 pm size range 

(modified from Maslin etal., 2003).

6.5 Summary o f the Qualitative Interpretations o f the A 618Oo^ records

The key points can be summarised as follows:

• 6isO was measured on five foraminifera species representative o f water colum n 

depths ranging from the surface, to the therm ocline and sub-thermocline: G. ruber; 

G. sacculifer (sac); G. sacculifer (non sac); N. dutertrei; and G. truncatulinoides.

• 6i80 942 values were ‘corrected’ for global ice volum e effects by using 6 180 Giv 

inferred from sea level change curves (Fairbanks, 1989; Shackleton, 1987). A5180 942
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data were normalised against the stratigraphically most recent sample to express 

isotopic shifts relative to modern, and minimise the vital effects between the species. 

The calculation o f  A5180 942 is based upon the assum ption that the calendar age 

chronologies o f  8 , 8 0 9 4 2  and 6 i 8 0 G i v  have been established correctly.

• It was not possible to incorporate a correction for SST effects into A5180 942 due to 

the paucity o f  reliable, comparably high-resolution SST estim ates from the region. 

However, SST estimates are essential to isolate the shift in 5 180 942 associated with 

freshwater-driven changes in salinity over the Amazon Fan.

• A lack o f  foram inifera in LGM sediments is ascribed to a tem porary rise in the 

lysocline and CCD.

• A deep depth-habitat, combined with the effects associated with small sample size 

measurem ents mask the Amazon water-driven isotopic changes in the G. 

truncatulinoides 5 I80 942 records. It is therefore difficult to use A5180 942 from G. 

truncatulinoides to monitor the amount o f  Amazon fresh w ater mixed over Site 942.

• The glacial-interglacial amplitude in the N. dutertrei A8,80 942 is m arkedly less that 

that o f  G. ruber and G. sacculifer sp. records. N. dutertrei A5I80 942 values also co- 

vary in opposition to the G. ruber and G. sacculifer signals. N. dutertrei 5 180 942 is 

thought to be influenced by changes in the depth habitat o f  the species, associated 

with vertical migrations o f  the thermocline.

• Relatively enriched glacial A5I80 942 values may imply reduced mixing o f  Amazon 

freshw ater over Site 942. If  this were reflective o f  Am azon River discharge, it would 

suggest a reduction o f effective moisture (precipitation-evaporation) in the Amazon 

Basin. However, the isotopic enrichment may also have been driven by cooler SSTs, 

or increased transport o f  Amazon River water away from Site 942 by surface ocean 

currents.

• Quasi-periodic oscillations in the glacial A6180 942 records may be related to Bond 

Cycles and Heinrich Events, however large errors associated with the radiocarbon 

dates make this difficult to confirm. W ithout SST records, it is also difficult to 

determ ine to what extent these ‘oscillations’ are driven by Amazon freshwater mixed 

over Site 942.
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• There is a notable depletion in all species’ A6180942 records at ~ 17.5 Cal ka, 

coincident with the onset o f  the Oldest Dryas, and a period o f  warm ing in 

Antarctica.

• The Lateglacial Interstadial/ACR is a period marked by increasing enrichm ent in 

A6180942 values. Should this be driven by changes in Amazon River outflow, it 

would imply that the Amazon Basin had relatively low levels o f  effective moisture at 

this time. Enhanced sedimentation rates coincident with this period also imply that 

the Amazon River plume was discharging directly over the W estern Fan Complex, 

and therefore more proximal to Site 942.

• A sharp positive excursion arises in all isotope records at -1 2 .8  to -1 2 .7 6  Cal ka, 

coincident with a sharp peak in sedimentation rates (~18 m k a '1). This is 

hypothesised to mark a period o f very reduced Am azon River discharge, where 

sedim ents deposited inland during the dry season are debauched during the wet 

season and transported in the plume toward Site 942. These features in the isotopic 

and sedim ent stratigraphy o f 942 may be coeval with rapid cooling associated with 

the onset o f  the Younger Dryas in northwest Europe.

• Based upon the shorter, lower-resolution A6l80942c record, M aslin et al. (2000) and 

M aslin and Burns (2000) hypothesised that the positive isotopic oscillation between 

-1 2 .5  and 12 Cal ka was equivalent to the YD. This, however, is not the isotopically 

m ost depleted portion o f the record. The tim ing o f  this oscillation coincides with a 

warm ing phase in Antarctica (e.g. Blunier et a l., 1998; B lunier et al., 1997).

• A negative excursion at -11 .78  Cal ka coincides with cessation o f  terrestrial 

deposition at Site 942. This may therefore reflect changes in fan-related 

hydrography, rather than a meltwater discharge from the Andes, as suggested by 

Maslin et al. (2000) and Maslin and Bum s (2000).

• M W P -la  and MWP-1 b are apparent in the A6I80942 records as a positive excursions 

from -1 5 .5  to -1 5  Cal ka, and -1 0 .8  to -1 0 .6  Cal ka, respectively.

• Overall, Holocene A6I80 942 values are depleted relative to the glacial, and become 

relatively m ore depleted to the present day. This may be representative o f  a

148



Chapter  6

progressive increase in the amount o f  Amazon water mixed over Site 942, however 

warm er SSTs may also account for a portion o f  the depletion in the signal.

• A6I80942 displays a relative enrichment during the Holocene ‘thermal m axim um ’.

Should A618C>942 serve as a proxy for effective moisture in the Amazon Basin, it 

would imply that there was increased aridity in the Amazon Basin, coincident with a 

relatively humid phase in Africa (COHM AP M embers, 1988; deM enocal et a l ,  

2000a; deM enocal et al., 2000b).

• Quasi-periodic oscillations in Holocene A6180 942 data, particularly after ~7 Cal ka 

appear to be relatively dissimilar to the ‘D ansgaard-O eschger’-type cycles observed 

within stacked records o f  drift-ice debris in the N orth Atlantic, although some 

covariance is noted for the last ~2.6 Cal kyr. However, the trend may be related to 

the onset o f  ENSO activity over South Am erica (M oy et al., 2002; Rodbell et al., 

1999).
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7: SEMI-QUANTITATIVE RECONSTRUCTION OF 

PAST CHANGES IN AMAZON RIVER OUTFLOW

7.1 Introduction

At the present time, Amazon and Atlantic waters mix over O D P  Site 9 4 2  in the ratio 1 :5 

(Levitus, 1 9 8 2 ). The average isotopic signal o f the Amazon w ater is -5%o (Grootes, 1 9 9 3 ; 

Thompson et a l ,  2 0 0 0 ) ,  whereas the average tropical A tlantic signal is + l% o  (Arz et a l ,

1998; Arz et a l ,  1999; Maslin, 1998). Consequently, 6 180 942 will be com prised o f  a 

combination o f  these two isotopic signals, blended in proportion to the m ixing ratio over the 

Site 942. The m odem  fresh water-mixing scenario over Site 942 can therefore be expressed 

as:

S l80,42 = (1 X 8 l80 Amazon ) + (5 X 6 l80 Atla„t,c) 

i.e. 6 I80 , «  = (1 x -5%o) + (5 x + l% o ) = 0%o

Clearly, the freshwater mixing ratio will change should the relative proportions o f  each water 

mass vary at a given time. However, providing the 5 18O Amaz0nand 6 ,8 0 Atiantic are known 

variables (or can be realistically assumed), it should be possible to infer the relative 

proportions o f  each water mass mixed from the resulting 6 180 942. Should the am ount o f 

freshwater m ixed over Site 942 be directly proportional to the outflow o f  the Amazon River, 

it should therefore be possible to estimate past variations in freshw ater discharge, relative to 

the modern day. This semi-quantified estimation should also serve as a proxy for effective 

moisture in the Am azon Basin. However, such quantitative estim ations should also be 

viewed with caution due to the assumptions made in the model, as discussed throughout this 

chapter.

7.2 Q uantifying the Isotopic Fractionation Effects

When attem pting to semi-quantify past changes in the outflow o f  the Amazon River, M aslin 

et al., (2000) and M aslin and Bum s (2000) utilised the down-core A6180 942c record 

calculated from 6 l80 942c -  S18Ogcob 3104-1 to serve as a proxy for b^O^azon (see Chapter 6, 

Section 6.1). However, in using this method to remove the com bined ‘m arine’ isotopic 

effects o f  GIV, SST and background surface ocean salinity (SOS) from the record, it was 

assumed that the relative fractionation effects o f  these variables would be m anifested in 

equal proportions over the two sites at any given time period, regardless o f  the non-‘m arine’- 

fractionated continental freshwater isotopic inputs at Site 942. The only impact on both the
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freshwater and the Atlantic com ponents o f  6 180 942 signal should be SST effects, as 

fractionation would have occurred after the freshwater m ixing has taken place.

Figure 7.1 illustrates the estimated m odem  hydrographic scenario in the surface waters over 

Site 942. Under the m odem  mixing scenario, the Atlantic Ocean contributes approxim ately 

5/6 o f  the surface water over Site 942, and the Amazon River approximately 1/6 (Levitus,

1982). Assuming a constant m ixing ratio, it would imply that a change in 6 l80 Atiantic will 

impact only 83% (5/6) o f  the total 6 180 942. At GeoB 3104-1 however, a change in 6 ,sOAtlantic 

would impact the entire 6 l8 0 GeoB 3104-1 value, as the signal is assum ed to be 100% marine. 

Therefore the fractionation effects associated with each com ponent o f  the water mass at Site 

942 will only influence 6 180 942 in direct proportion to the am ount o f  each com ponent mixed. 

This is o f  significance when accounting for past GIV fractionation effects impacting 

6 180 Atlantic* which constitute relatively large shifts in 6 lsO (e.g. ~1.2%o during the LGM; 

Fairbanks, 1989; Shackleton, 1987; see Chapter 6, Section 6.3.4, and Figure 6.7). As the 

GIV effects would not have been constant between the two sites, the method em ployed by 

M aslin et al. (2000) and Maslin and Bums over-com pensates for the GIV effects impacting 

A6180 942. The isolation o f  the freshwater-driven shift in 6 lsO is therefore not as 

straightforward as previously assumed.

A m azon
River
M o d e rn

1/6
B a s i n g  
HA Effe'J'

T ropical \  
A tlantic \

M o d e rn

Figure 7.1: Factors influencing the tropical Atlantic and Amazon River components o f the S180 942 

signal, as well as those influencing the overall 6180 942 (‘RA Effect’ = Reverse Amount Effect; ‘GIV’ 

= Global Ice Volume; ‘SOS’ = Surface Ocean Salinity; ‘SST’ = Sea Surface Temperature).
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Similarly, any factors affecting the freshwater com ponent o f  the isotopic signal will only 

influence 6 180 942 in direct proportion to the amount o f  Amazon River water mixed in the 

water column. W ith reference to Figure 7.1, The freshwater com ponent o f  the 6180 942 signal 

(5 lsOAmazon) will be influenced by factors fractionating the 6 lsO o f  precipitation, including 

Amazon Basin tem perature (Dansgaard, 1964), and a reverse ‘am ount’ effect (see Section 

6.4.3; Grootes, 1993; Grootes et al., 1989; Thompson et al., 2000). Amazon Basin 

palaeotem perature data can be obtained from published records (see Chapter 4, Section 4.2) 

and the associated fractionation effects can be calculated using d 180-tem perature equations 

(e.g. Craig, 1965; Epstein et al., 1953). The relationship between monthly averages o f 

rainfall am ount and S18OpreciP for Manaus, Brazil, indicates that a 50% reduction in 

precipitation would bring about an associated enrichm ent in 6 18OpreciP o f ~2%o (International 

Atomic Energy Agency, 1992; Maslin and Burns, 2000). It should therefore be possible to 

account for the reverse amount effect in 6 180 Amazon through an iterative process.

Other factors influencing 6 180 Amazon will be the initial isotopic signature o f  precipitation, 

which will be influenced by factors such as the source location o f  the water vapour (Vuille et 

al., 2003a; Vuille et al., 2003b), the altitude o f  droplet form ation (Dansgaard, 1964), and the 

extent o f  recycling o f  precipitation across the Amazon Basin (Salati et al., 1979). However, 

identifying the provenance o f  the precipitation at the tem poral, spatial and altitudinal 

resolution required by this study is currently beyond the capabilities o f  current available 

palaeo-reconstructions; whether implied from proxy records, or from m odelling experiments.

A final factor to consider will be the fractionation effects associated with precipitation 

directly over the Site 942. Changes in the precipitation regim e directly over the site will alter 

the salinity o f  the surface ocean, and thus fractionate the isotopic signal. As for SST effects, 

the precipitation effects will be incorporated into the whole o f  the 6 ,80 942 signal. However at 

Site 942 where there is a strong riverine freshwater influence, it will be extrem ely difficult to 

distinguish the dilution effects o f  riverine water from those o f  overhead precipitation. For 

individual time slices, it may be possible to infer such effects from proximal records 

sufficiently isolated from riverine influence (e.g. the Ceara Rise; Diirkoop et al., 1997). 

However, such extrapolations should be made with caution due to the high spatial variability 

o f  precipitation within a given area, not to mention isotopic differences associated with the 

different hydrographies at each location.

Such distinctions between the different isotopic fractionation effects o f  the freshwater and 

marine w ater m asses o f  Site 942 are o f  relatively lesser im portance when m aking qualitative
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assessments o f  Amazon River outflow. Nevertheless, they become o f  increasingly greater 

significance when formulating a mathematical model to sem i-quantify Amazon River 

outflow from the varying freshwater and marine com ponents o f  the 6 180 942 record. However, 

a new m athem atical Am azon River outflow model can be developed which attempts to 

account for the relative proportions o f  different isotopic fractionation effects in 6 l80 942.

7.3 Construction o f  the Amazon River Outflow M odel

The past outflow o f  the Amazon River, expressed as a percentage relative to m odem  flow 

(where modern = 100%), can be quantified using the algebraic equation detailed below, 

variables o f  which are defined in Table 7.1.

Part 1: calculating A6I80 942 t-kyr

A<518a 942 ( .t-k y r ) d  OAmazon ( t -kyr )  X I +
X ,

cl8/\
^ A t la n t ic  ( t - k y r )

O t- 1 )

i.e. for ‘m odem ’ (assum ed 100% outflow)

a <518o ,942(/) ^  OAmazon ( t )  X I +
X.

A 6 180 942(/) = |(518Ot o ( 0  x - j  + \d™0Atlantic{t) x 6

°  U Atlantic ( t )  X
( x - 1 )

x  7 

(6 - 1) '

A d'*0,942(0 1-5% 0  X +  ( l % 0  X -
6 6

A a l80 942(() =  0 %o

Part 2: Calculating percentage change in outflow relative to modern

% change in outflow {t_kyr) =
1 'change' in AS 0 942 N

'original' A<5lsO,942

x 100

i.e.:

% change in outflow (t_kyr) =
/  A /S * ^ f)  A /S 180  \

942 Q;6 m ixing ( t - k y r )  ~~ ^ 9 4 2 ( t - k y r )

* c 18/^    a , s
942 0:6 mixing ( t- k y r )  942 1;5 mixing ( t- k y r )  j

xlOO
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Variable Name Description
AS18Ot.kvr A5i80  at time t-kyr
A518Oi;5 t-kyr

1 sAS O o f  1:5 (Am azon:Atlantic) m ixing over 942 at time 
period in question (i.e. equivalent o f ‘m odern’ 100% 
outflow )

A518Oo:6 t-kyr A8lsO o f 0:6 (Am azon:Atlantic) m ixing over 942 at time 
period in question (i.e. 8 180 Atiantic)

b OAtlantic t-kvr 8 O o f the Atlantic at the time period in question
?18r>O '-'Amazon t-kyr

188 O o f the Amazon River w ater at the time period in 
question

t-kyr Time period in question
x:y M ixing ratio o f  waters over Site 942, Am azon:Atlantic

Table 7.1: Definition o f  variables used in the Amazon River outflow model.

The integrity o f  the model was validated against a series o f  hypothetical scenarios where all 

input and calculated variables were already known. Given that the isotopic boundary 

conditions will differ under previous climate regimes, it is first necessary to calculate the 

AS180  value representative o f 100% river outflow for the new time period investigated. This 

‘100% outflow ’ would represent modern-day outflow within the context o f  the different 

isotopic regim es being reconstructed. Modelled outflow can then be calculated relative to 

‘100% outflow ’, and expressed as a percentage o f ‘m odern flow ’.

7.4 Variables Used in the Refined Outflow M odel

Until there are reconstructions o f  sufficient resolution for variables such as local SST and 

Amazon Basin tem perature, continuous down-core sem i-quantitative reconstructions o f  past 

Amazon River outflow are not possible. However, data exists for the LGM, and the YD to 

allow these tim e-slices to be modelled (see Chapter 4, Section 4.2). It is speculated that 

sim ilar clim atic conditions would have prevailed during the Antarctic Cold Reversal (ACR), 

although this is uncertain. Nevertheless, it is still possible to attem pt to reconstruct the ACR 

using these assumed climatic variables.

Published clim ate variable data for the LGM and YD reconstructions and their relative 

isotopic effects are sum m arised in Table 7.2. These data were used to ‘adjust’ the relevant 

isotopic input variables accordingly (i.e. normalised 5 I80 942, m odern 6 180 Amazon, and modem 

6 lsOAtlantic)- The extent o f  glacial cooling in the western tropical A tlantic in the region o f  the 

Amazon Fan has been a subject o f  long-standing debate in the literature, however, with 

considerable variation in the published estimations. Therefore it was necessary to run the
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model under a variety o f  SST scenarios to investigate the relative effects o f  different SST 

cooling estim ates on modelled Amazon River outflow. All calculations were based on the 

m odem  mixing ratio o f  1 :5 (Amazon:Atlantic) and modern isotopic signatures o f  -5%o and 

+ l% o  for the Amazon and Atlantic, respectively (see above). Tem perature fractionation 

effects were calculated using the equations o f  e.g. Craig (1 9 6 5 ) ,  and Epstein (1 9 5 3 ) .  The 

reverse am ount (RA) effect on 6 lsOAmazon was determ ined by initially running the model with 

no RA effect. The model output was used to derive the RA effect by an iterative process, 

which was input back into the model, and output values were re-calculated.

Climatic

Variable

Isotopic Effect on

6 180 942//618OAtlantic/6' ̂ Amazon
References

GIV Effect Y D : + 0 .9 4  %o 

A C R : + 0 .9 9  %o 

LG M : + 1 .2 0  %o

(Fairbanks, 1989; Shackleton, 1987)

SST 0 to 2°C cooling 

= +0 to +0.46 %o

(e.g. Billups and Spero, 1996; CLIMAP Project 

Members, 1981; Dtirkoop et al., 1997).

2 to 4°C cooling 

= +0.46 to +0.92 %o

(e.g. Arz et al., 1998; Arz et al., 1999; Hastings 

et al., 1998; Min et al., 1995; Mix et al., 1999; 

Niebler et al., 2003; RUhlemann et al., 2001; 

Wolff et al., 1998).

4 to 5 °C cooling 

-+ 0 .92  to +1.15 %o

(e.g. Guilderson et al., 1994).

Amazon Basin

Temperature

Effect

4 to 5°C cooling 

= -l% o

(e.g. Colinvaux et al., 1996; Dansgaard, 1964; 

Farrera et al., 1999; Liu and Colinvaux, 1985; 

Pierrehumbert, 1999; Rind and Peteet, 1985; 

also see Chapter 3Stute et al., 1995)

Reverse Amount 

Effect (derived 

through an 

iterative process)

Variable, based on 

reduction of 50% modern 

precipitation

= ~+2%o

(e.g. Grootes, 1993; International Atomic 

Energy Agency, 1992; Maslin and Bums, 2000; 

Thompson et al., 2000)

Table 7.2: Published palaeoclimate variables and their associated isotopic fractionation 

effects.

The G. sacculifer sp. 6 180 942 records were selected for the outflow  calculation. The G. 

sacculifer sp. records appear to be sufficiently isolated from the num erous freshwater lenses 

that formed at the surface, and the depth habitat o f  the species is thought to have remained 

relatively consistent throughout the downcore record, relatively unaffected by changes in the 

depth o f  the therm ocline. The two records measured on this species also compare well to
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each other, confirm ing that variations in the isotope signals are relatively unaffected by 

noise. § 18C>942 data used in the model calculations were based on average values for the time 

periods represented. This also helps to address the chronological issues arising from the 

choice o f  marine reservoir correction used to calibrate the radiocarbon dates in the age model 

for Site 942 (see Chapter 5, Section 5.1.2).

Although no isotope data exists for the actual LGM, 8 180 942 values used in the model were 

inferred averages for the time period 21 to 22 Cal ka. YD 5 180942 values selected represent 

average values during the isotopically most enriched stage from -1 2 .9  to 12.7. ACR 5 180 942 

values selected represent the isotopically enriched period from -1 3  to -1 3 .5  Cal ka. M odel 

calculations were perform ed using M icrosoft Exel 2005 for Apple M acintosh (M icrosoft 

Corporation, 2004).

7.5 Am azon R iver O utflow M odel Results

The input variables and model output for G. sacculifer (sac) and G. sacculifer (non sac) are 

sum m arised in Tables 7.3 and 7.4, respectively. Model results for both species are 

summarised in Table 7.5.
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o YD 12.9-12.7 1.85 1.00 . -3°C 0.69 0.94 59 -41

£ YD 12.9-12.7 1.85 1.00 - -4°C 0.92 0.94 76 -24
YD 12.9-12.7 1.85 1.00 - -5‘C 1.15 0.94 94 -6
YD 12.9-12.7 1.85 1.00 2.79 -2°C 0.46 0.94 59 -41

■ s i YD 12.9-12.7 1.85 1.00 2.10 -3°C 0.69 0.94 74 -26
YD 12.9-12.7 1.85 1.00 1.40 -4‘C 0.92 0.94 87 -13

YD 12.9-12.7 1.85 1.00 0.71 -5“C 1.15 0.94 97 -3

ACR 13-13.5 1.82 1.00 - -2°C 0.46 0.99 47 -53
o ACR 13-13.5 1.82 1.00 _ -3°C 0.69 0.99 65 -35

Si ACR 13-13.5 1.82 1.00 - -4°C 0.92 0.99 82 -18
ACR 13-13.5 1.82 1.00 - -5°C 1.15 0.99 99 -1

ts ACR 13-13.5 1.82 1.00 2.71 -2”C 0.46 0.99 64 -36
ACR 13-13.5 1.82 1.00 2.02 -3‘C 0.69 0.99 79 -21

* s
ACR 13-13.5 1.82 1.00 1.33 -4‘C 0.92 0.99 90 -10
ACR 13-13.5 1.82 1.00 0.64 -5‘C 1.15 0.99 100 0

LGM 21-22 1.80 1.00 - -2‘C 0.46 1.20 63 -37
o <G LGM 21-22 1.80 1.00 . -3‘C 0.69 1.20 80 -20
z  «

a LGM 21-22 1.80 1.00 - -4‘C 0.92 1.20 97 -3
LGM 21-22 1.80 1.00 - -5°C 1.15 1.20 113 13

ts LGM 21-22 1.80 1.00 2.07 -2’C 0.46 1.20 77 -23
*13 LGM 21-22 1.80 1.00 1.40 -3‘C 0.69 1.20 88 -12

LGM 21-22 1.80 1.00 0.72 -4‘C 0.92 1.20 98 -2
LGM 21-22 1.80 1.00 0.05 -5’C 1.15 1.20 106 +6

Table 7.3: Am azon R iver outflow model input variable, and output data for G. sacculifer 

(sac).
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YD 12.9-12.7 -2°C 
YD 12.9-12.7 -3°C 
YD 12.9-12.7 -4°C 
YD 12.9-12.7 -5°C

59 -41 
74 -26 
87 -13 
97 -3

47 -53 
65 -35 
79 -21 
90 -10

53 -47 
69 -31 
83 -17 
94 -6

ACR 13-13.5 -2°C 
ACR 13-13.5 -3”C 
ACR 13-13.5 -4°C 
ACR 13-13.5 -5“C

64 -36 
79 -21 
90 -10 
100 0

49 -51 
66 -34 
80 -20 
91 -9

57 -43 
72 -28 
85 -15 
95 -5

LGM 21-22 -2“C 
LGM 21-22 -3'C 
LGM 21-22 -4°C 
LGM 21-22 -5°C

77 -23 
88 -12 
98 -2 
106 +6

65 -35 
78 -22 
90 -10 
99 -1

71 -29 
83 -17 
94 -6 
103 +3

Table 7.5: Summary o f  Amazon River outflow model output for G. sacculifer (both sac 

forms).

With reference to Table 7.5, the model produces sim ilar statistics for each o f  the G. 

sacculifer species, although G. sacculifer (sac) reconstructions are more conservative, 

associated with the relatively more depleted S l80 942 input data. The model output suggests 

that the extent o f  SST cooling in the tropical Atlantic is a crucial variable in the calculation 

o f  the Am azon River outflow model. The greater the extent o f  SST cooling, the sm aller the 

modelled change in Am azon River outflow. However, this does not imply that tropical 

Atlantic SST is forcing Amazon River outflow, as the ‘relationship’ is an artefact o f  the 

isotopic balance between the fractionation effects com prising 6 180 942.

Should LGM SSTs have cooled by 5°C, as suggested by G uilderson et a l  (1994), the model 

output suggests that there was little change in Amazon River outflow , possibly even an 

increase. This im plies that the Amazon Basin was potentially as humid as the m odem  day, if 

not slightly more. However, this is in conflict with sedim entary palaeoclim ate 

reconstructions, which suggest that the Amazon Basin was relatively more arid during 

glacial tim es (see Chapter 4).
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The majority o f  glacial tropical Atlantic SST reconstructions have centred around a more 

conservative cooling o f  between 2 and 3(-4)°C. Sim ilar cooling was hypothesised from 

GeoB 3104-1 records (Arz et al., 1998; Arz et al., 1999), and is further supported by the 

coarse resolution SIM M AX SST reconstruction at Site 942 (Greig, 1998). Glacial SST 

cooling o f  2-3°C yields an approximate 20 to 30% reduction in Amazon River outflow, 

relative to modern flow (averaged from both species). Should YD SSTs have cooled by a 

sim ilar am ount during the YD, Amazon River outflow is reconstructed to have reduced by 

approxim ately 20 to 50 %. This implies that the Am azon Basin was relatively more arid 

during the hypothesised YD (-1 2 .9  to -1 2 .7  Cal ka) than during the LGM.

Lack o f  tropical Atlantic SST data and reconstructions o f  tem perature within the Amazon 

Basin during the ACR makes it difficult to assess the modelled change in Amazon River 

outflow for these time periods. However, should continental and sea surface tem peratures 

have been cooler, Amazon River outflow would have been reduced. M ore data is clearly 

required to enable reconstructions for the time period corresponding to the ACR.

Interestingly, if  the refined model is run with 6 I80 942 values corresponding to the section o f 

the record assum ed by M aslin et al. (2000) and Maslin and Burns (2000) to represent the YD 

(-12 .4  to -1 2  Cal ka), the predicted reduction in Amazon River outflow relative to modern is 

10 to 21% (with a SST cooling o f  2 to 3 °C ). This is considerably less than the 40 to 50% 

reduction initially hypothesised by Maslin et al. (2000) and M aslin and Burns (2000) for this 

time period, and therefore implies that effective m oisture in the Amazon Basin was less 

depleted in the later stages o f  the YD, relative to the onset. Furtherm ore, this prediction was 

computed around a b rief period o f  isotopically more enriched values, so the model 

predictions should be regarded as conservative.

The input variables and model output for G sacculifer (sac) and G. sacculifer (non sac) for 

the period -1 2 .4  to -1 2  Cal ka are summarised in Tables 7.6 and 7.7, respectively. Model 

results for both species are sum m arised in Table 7.8.
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"YD" 12.4-12 -2°C 
"YD" 12.4-12 -3’C 
"YD" 12.4-12 -4”C 
"YD" 12.4-12 -5°C

88 -12 
98 -2 
106 6 
113 13

74 -26 
87 -13 
97 -3 
105 +5

81 -19 
92 -8 
101 1 
109 9

Table 7.8: Summary of Amazon River outflow model output for G. sacculifer (both sac forms), for 

the time period 12.4 to 12 Cal ka.

7.6 Lim itations o f  the Am azon River Outflow M odel

Despite the fact that it has been able to reconstruct past changes in Amazon River outflow, 

the model is based on a num ber o f  assumptions that may not reflect reality. For example, as 

the model is based on the m odern-day freshwater mixing ratio, it assum es that the am ount o f  

freshwater m ixed over Site 942 has always varied in direct proportion to the Am azon River 

discharge. The m odel is therefore unable to account for changes in the mixing ratio brought 

about by other factors such as variations in surface circulation, or in the trajectory o f  the 

Amazon River freshw ater plume. The model also assum es that the isotopic value o f  

precipitation has not changed independently o f  the Amazon Basin tem perature, and reverse 

amount effects. The isotopic value o f precipitation may have varied in the past due to 

changes in w ater vapour source, for example (Vuille et a l., 2003a; Vuille et al., 2003b). The 

model is also highly dependant upon the quality o f  the input variables, as dem onstrated by 

the range o f  m odelled Amazon River outflow arising under different SST regimes. However, 

further refinem ent o f  the model to improve the resolution o f  the Am azon River outflow 

reconstruction is limited by the palaeodata currently available.
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7.7 S u m m ary

The key findings can be summarised as follows:

• The extent o f  SST cooling in the tropical Atlantic is a crucial variable in the refined 

Am azon River outflow model. The greater the extent o f  SST cooling, the sm aller the 

modelled change in Amazon River outflow.

• M odel predictions assuming a SST cooling o f  ~5°C imply that Amazon River 

outflow was greater than modern levels. This is in conflict to glacial stage proxy- 

based palaeoclim ate reconstructions from the Am azon Basin.

• Assum ing a SST cooling o f  2 to 3°C, the Am azon River outflow is predicted to have 

reduced by ~30 to -5 0 %  at the speculated YD onset, and by -2 0  to -3 0 %  during the 

LGM. Should SST have been similar at the time o f  the ACR, outflow is predicted to 

have reduced by -1 5  to -45% . However, these sem i-quantified reconstructions are 

limited by the assumptions used in the model.

• I f  the model is run for the time period assumed by M aslin et al. (2000) and Maslin 

and Bum s (2000) to represent the YD (-1 2 .4  to -1 2  Cal ka), outflow  is predicted to 

have reduced by -1 0  to 20%. Not only is this considerably less than previous 

predictions, but it also implies that the Amazon Basin was relatively humid in the 

YD relative to the LGM , although still more arid relative to the present day. 

Furthermore, outflow was calculated about a positive excursion in the A6,80 942 

record, therefore the model predictions for this period should be regarded as 

conservative.
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8: SYNTHESIS AND DISCUSSION

8.1 Introduction

Data m easured in this study have provided a continuous, chronologically constrained high- 

resolution record o f  A m azon Basin palaeoclimate for the last 40 Cal ka. It is hypothesised 

that the A6180 942 record is m onitoring past changes in the m ixing ratio o f  riverine and marine 

waters over Site 942 on the Amazon Fan. Should it be assum ed that the proportion o f  fresh 

water m ixed over the site varies in direct proportion to the outflow  o f  the Amazon River, 

A5180 942 can thus serve as a proxy for the effective m oisture history o f  the Amazon Basin 

(where effective m oisture is equal to precipitation minus evaporation). However, the extent 

to which the effective m oisture history o f  the Amazon Basin is representative o f  the past 

precipitation regim e is less certain.

For example, Cow ling (2004) hypothesises that the am ount o f  w ater discharged by the 

Amazon R iver will be more a reflection o f the intensity at which precipitation is recycled 

eco-physiologically by the Amazon Rainforest, rather than the actual am ount o f  rainfall that 

has fallen. Cow ling (2004) suggests that the recycling o f  precipitation is largely controlled 

by the canopy density o f  the forest (related to rainforest productivity), where the leaf area 

index (LA I) will determ ine the am ount o f  water transpired, and the surface area available for 

rainfall interception, both o f  which will return the water to the atm osphere (Costa and Foley, 

1997). Cowling (2004) tested this hypothesis by calculating a series o f  mass balance 

equations, incorporating the effects o f  modelled past variations in Am azon rainforest canopy 

density, for the ‘Y ounger D ryas’ scenario proposed by M aslin et al. (2000) and M aslin and 

Burns (2000). It was concluded that by incorporating biospheric recycling into the equation, 

the calculations o f  the reduction in Amazon River outflow by M aslin et al. (2000) and 

Maslin and Burns (2000) were considerably overestim ated by up to 50%. However, the 

refined Am azon R iver outflow model o f  this study proposes that for this same period, river 

discharge was reduced by just 10 to 21%, relative to m odern (with a SST cooling o f  2 to 3°C; 

see Chapter 7; Section 7.5), which is com parable to the independently calculated estimations 

o f  Cowling (2004). Therefore the A6180 942 records may provide an indication o f  past changes 

in Amazon R iver outflow  after all. W here past variations in LAI may have been influential 

to the past outflow  o f  the Am azon River, such information cannot easily be derived from the 

palaeoecological record. Past changes in LAI m ust therefore be derived from model 

sim ulations, w hich may not necessarily reflect reality should the model be too simplistic (P. 

Cox, personal com m unication, 2002).
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Should A5180 942 be m onitoring Amazon Basin effective moisture and river outflow, the 

signal it records will be an average o f the entire drainage basin. The Amazon Basin occupies 

~7 050 000 km2 (Franzinelli and Potter, 1983), and is com prised o f  a series o f  sub-basins 

which feed the main river in varying relative proportions. As discussed in Chapter 3, 

precipitation at any given locality in Am azonia is driven by a com bination o f  both tropical- 

and extra-tropical factors. Therefore rainfall is unlikely to be spatially uniform across such a 

large, diverse area as the Amazon Basin, so the effective moisture is also likely to vary 

across the watershed. In this way, variations in effective moisture between the different sub

basins may introduce a regional bias to the overall Amazon R iver discharge signal.

However, w ithout an abundance o f  continuous, well-dated palaeoclim ate reconstructions 

from sufficiently representative quadrats within the Amazon Basin, a possible regional bias 

in Am azon River outflow inferred from A618C>942 will be difficult to determine. As discussed 

in Chapter 4, palaeoclim ate records from the Amazon Basin are relatively sparse, 

particularly for the glacial period, and are frequently discontinuous, or are representative o f  

discrete tim e-slices. Records often also lack good chronological control. The majority o f  

palaeoclimate data from within the Amazon Basin is derived from the palaeoecological 

record, although it is often difficult to determ ine whether the data are m onitoring a local 

versus a regional signal o f  change. In addition, where palaeoclim ate inform ation has been 

derived indirectly through palynological reconstructions, circular argum ents present an 

inherent limitation. However, non-ecological palaeoclim ate evidence may provide useful 

information for the interpretation o f  the A618C>942 record (see follow ing Sections).

Furthermore A6180942 from the Amazon Fan can also be com pared to other large-scale 

palaeoclimate reconstructions from tropical South Am erica, w hich indicate m ore regional 

signals o f  change. Com parison between these data, records o f  solar insolation and polar ice 

core records may yield significant insights into the causal m echanism s o f  tropical climate 

variability. This chapter will attem pt to synthesise the current available palaeoclimate 

information inferred for tropical South America, and exam ine the A6 lsO record from Site 

942 on the Amazon Fan in the context o f  the dynam ic workings o f  the tropical palaeoclim ate 

system that are currently hypothesised.

8.2 Com parison o f A 6180<m? to O ther Proxy Records From  T ropical and Subtropical 

South Am erica

8.2.1 Com parison to Proxy Records From W ithin the Am azon Basin

Relatively enriched A5,80 942 records from the Amazon Fan imply an overall reduction in 

Amazon R iver discharge during the last glacial relative to the Holocene and present day.
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This suggests that effective m oisture in the Am azon Basin was reduced, indicating a 

relatively drier glacial climate. This is supported by inorganic sedim entary lake records from 

within the Am azon Basin which imply lower water levels, or even com plete desiccation 

during the last glacial maximum (LGM; e.g. Colinvaux et al., 1996; Ledru et al., 1998; 

Servant et al., 1993; Sifeddine et al., 2001; Sifeddine et al., 2003; van der Hammen, 1974; 

van der Ham m en and Absy, 1994). Lake evidence from northw estern Brazil indicates that 

the glacial clim ate o f  this region was relatively humid however, although lake levels were 

still below m odern levels (Bush et al., 2002). Various m orphological proxies o f  glacial 

aridity in the A m azon Basin have also been presented, although they are o f  questionable 

integrity (see Chapter 3, Table 4.2).

A618C>942 evidence o f  increasing Amazon Basin effective moisture through the Holocene is 

supported by the formation o f lakes in central and eastern A m azonia (Behling and da Costa, 

2001; Behling et al., 2001). Despite the paucity o f  proxy evidence from within the Amazon 

Basin, the m ajority supports the effective m oisture history inferred from A6 I80942 records 

from the Am azon Fan.

8.2.3 Com parison to Large-Scale Proxy Records from Tropical and Subtropical South  

America

Much longer, m ore continuous records exist from outside the Am azon Basin, and are shown 

stacked in approxim ate latitudinal order in Figure 8.1, alongside the A6,80 942 record from the 

Amazon Fan, and calculated sum m er insolation at 10°S (Berger, 1978a; Berger, 1978b; 

Berger and Loutre, 1991). Details o f these proxy records are given in Table 8.1.
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♦■Figure 8.1 (previous page): Long, continuous regional-scale proxy records from tropical and 

subtropical South America, stacked in approximate latitudinal order against Cal kyr BP, alongside 

calculated November and December insolation at 10°S (Berger 1978a; Berger 1978b; Berger and 

Loutre, 1991). From top to bottom: Cariaco Basin (%Ti; Haug et al., 2001); Amazon Fan, ODP Site 

942 (A6180 942 G. sacculifer (sac); this study); Lake Junin, Peru (A6lsO; Maslin and Bums, 2000; 

Seltzer et al., 2000); Botuvera Cave, southeast Brazil (6lsO; Cruz et al., 2005); Lake Titicaca, 

Peruvian/Bolivian Altiplano (% benthic diatoms; Baker et al., 2001b); Salar de Uyuni, Bolivian 

Altiplano (natural y-radiation; Baker et al., 2001a). Shaded area denotes the Younger Dryas period as 

determined by GISP2 6 180  records (Grootes and Stuiver, 1997). The Botuvera Cave record (Cruz et 

al. 2005) monitors relative changes in the source area of precipitation (ppn).

Site Proxy Length of 
Record References

Cariaco Basin %Ti
Indicator of continental 
runoff

0 to -14  Cal ka (Haug et al., 2001)

Amazon Fan (ODP 
Site 942)

A6180 942
Indicator of Amazon River 
outflow and Amazon Basin 
effective moisture

0 to -40  Cal ka (This study)

Lake Junin 
(Peru)

A6I80
Indicator of effective 
moisture

0 to -17  Cal ka (Maslin and Bums, 
2000; Seltzer et al., 
2000)

Botuverd Cave 
(SE Brazil)

S180
Indicator of precipitation 
source and South American 
Summer Monsoon intensity

0 to >40 Cal ka (Cruz et al., 2005)

Lake Titicaca
(Peruvian/Bolivian
Altiplano)

% Benthic diatoms 
Indicator of lake level

0 to -31 Cal ka (Baker et al., 2001b)

Salar de Uyuni 
(Bolivian Altiplano)

Natural y-radiation 
Indicator of wet/dry climate

0 to >40 Cal ka (Baker et al., 2001 a)

Table 8.1: Details of long, continuous regional-scale proxy records from tropical and subtropical 

South America.

With reference to Figure 8.1, the long large-scale palaeoclim ate records from tropical and 

subtropical South A m erica correspond well to each other. This suggests that A6180 942 from 

the Am azon Fan is recording a regional signal o f  change that is likely to be forced by the 

climate system  operating over South A m erica throughout the duration o f  the record (40 Cal 

kyr). However, palaeom oisture records from the Altiplano appear to trend in opposite 

directions to those further north: when the Amazon Basin is relatively more arid, the 

Altiplano appears to be relatively wet, and vice versa. The B otuvera Cave speleothem record 

(Cruz et al., 2005), w hich m onitors changes in the source area o f  precipitation, implies that 

periods o f  relatively increased aridity in the Amazon Basin coincide with a more Atlantic- 

sourced precipitation source over the cave location. W hen A5,80 942 is relatively more
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depleted however, over-cave precipitation is advected southeastw ards from the relatively 

more hum id Am azon Basin.

Trends in the data appear to follow precessional-driven insolation at 10°S. A close adherence 

to precessional insolation was also found within long (170 ka) lake sequences (Bush et a l., 

2002), and speleothem  records (W ang et a l., 2004; W ang et a l., 2003b; W ang et al., 2003a) 

from northeastern Brazil. The records presented in Figure 8.1 bear particular resem blance to 

10°S insolation values calculated between N ovem ber and Decem ber, which is coincident 

with the form ation o f  the Bolivian High over the Altiplano region (Lenters and Cook, 1997; 

M arengo et al., 2001; Vuille, 1999). This marks the developm ent o f  the South American 

sum m er m onsoon (SA SM ) system over tropical South Am erica, and is associated with 

intense convection over the Amazon Basin at the boundaries o f  the Hadley cell at the 

m eteorological equator (Zhou and Lau, 1998; see Chapter 3, Section 3.2.1).

8.3 Interpretation o f  C lim ate From Large-Scale Proxy Records from Tropical and 

Subtropical South A m erica

M axim a in solar insolation during Southern Hem isphere sum m er result in a m aximum 

southward displacem ent o f  the SASM , and consequently intensified convective activity over 

the Am azon Basin. It is hypothesised that convective activity will become further intensified 

with a coincident progressive increase in solar radiation over the Altiplano, strengthening the 

formation o f  the Bolivian High. The Holocene records displayed in Figure 8.1 support this 

interpretation. A6180 942 records from the Am azon Fan imply a gradual increase in Amazon 

Basin effective m oisture throughout the Holocene, coincident with an insolation-driven 

southward displacem ent o f  the SASM. A6lsO data from Lake Junin also suggest a coincident 

increase in effective m oisture (M aslin and Burns, 2000; Seltzer et al., 2000). Furthermore, 

evidence from Lake T iticaca (Baker et al., 2001b) and snow accum ulation at N evado Sajama 

(Thom pson et al., 1998; see C hapter 4, Figure 4.10) also imply a steady increase in available 

m oisture sourced from the Amazon Basin throughout the Holocene. The Botuvera Cave 

Holocene record also indicates a relative increase in the am ount o f  Amazon Basin-sourced 

m oisture throughout the H olocene (Cruz et al., 2005). Further evidence for the 

intensification o f  Am azon Basin convective activity throughout the Holocene comes from 

the Cariaco Basin. Precipitation over the Cariaco Basin is strongly influenced by the mean 

latitudinal position o f  the Intertropical Convergence Zone (ITCZ; Haug et al., 2001). The 

%Ti record, a m easure o f  continental runoff, displays a strong correlation to solar insolation, 

and is hypothesised to record the gradual insolation-driven southward shift o f  the ITCZ 

through the Holocene. Insolation-driven changes in the latitude and intensity o f  the SASM
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and Hadley cell convection therefore present a plausible hypothesis for the observed 

variation in the clim ate reconstructions from tropical and subtropical South America.

In addition to solar insolation, the long-term mean location and latitudinal boundaries o f  

convective activity associated with the SASM and the Hadley cells will also be determ ined 

by the latitudinal position o f  the m eteorological equator. During the cold stages, steeper 

tem perature gradients between the pole and the tropics in the Northern Hemisphere would 

have m aintained the m eteorological equator to a position south o f  that dictated by insolation 

forcing alone. Therefore at the time o f  the LGM, although insolation would have forced a 

mean position approxim ately equivalent to that o f  the late Holocene, cold Greenland 

tem peratures would have forced the m eteorological equator further south. In this way, the 

northerly boundary o f  convective activity over the Am azon Basin would have been restricted 

to a relatively m ore southerly position. Evidence suggests that the wind systems became 

more zonal at this tim e, as cooler tem peratures would have weakened Hadley cell intensity 

(e.g. Lorenz et al., 1996). This is supported by the relatively more depleted N. dutertrei 

A6,80942 in this study, and also by assem blage abundance records (Greig, 1998), which 

imply a shallow ing o f  the therm ocline during the glacial, possibly forced by increased wind 

stress. A m ore southerly restricted zone o f  convection activity coupled with w eaker Hadley 

cell and SASM  intensity would have reduced the am ount o f  convective precipitation over the 

Amazon Basin relative to today. This is confirmed by A6,80 942 records from the Amazon 

Fan, which propose a reduction in glacial river outflow relative to modern, despite sim ilar 

insolation forcing. Data from the Altiplano, however, imply that conditions were wetter 

during the glacial stage. Nevertheless, m odelling studies suggest that in response to the more 

zonal wind system , there was an increased eastward penetration o f  South Atlantic and/or 

Pacific Ocean-sourced m oisture toward the Altiplano (H ostetler and Mix, 1999).

A shaded area on Figure 8.1 suggests the portion o f  the palaeoclim ate records corresponding 

to the Y ounger Dryas (YD) period, as defined by GISP2 6 lsO records (Grootes and Stuiver, 

1997), and based upon the Site 942 calendar age m odel discussed in Chapter 5. During the 

YD, insolation forcing would have placed the m eteorological equator in a southerly position 

over tropical South Am erica. Furtherm ore, the onset o f  the YD would have further steepened 

meridional tem perature gradients in the northern hem isphere, which would have further 

enhanced the southward forcing o f  convective activity. In this way, it is hypothesised that the 

spatial extent o f  the convection activity over the Am azon Basin was reduced. Cooler 

tem peratures would also have weakened Hadley cell intensity. It is predicted that together, 

this would have had the effect o f  weakening the convection associated with the SASM,
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thereby reducing effective m oisture in the A m azon Basin to levels even less than those o f  the 

LGM. This is confirm ed by the positive excursion in the A6t80 942 data from the A m azon 

Fan. The results o f  the A m azon River outflow  m odel also corroborate the hypothesis o f  a 

greater reduction in A m azon Basin effective m oisture relative to the LGM . Furtherm ore, 

data from B otuvera C ave support a w eakening o f  the SA SM  and relatively m ore arid 

Amazon Basin, as the 6 lsO im plies a shift tow ard a m ore A tlantic precipitation source. Data 

from Lake Junin and the Cariaco Basin also imply a relative decrease in effective m oisture 

over tropical South A m erica at this tim e (H aug et a l., 2001; M aslin et a l ,  2000; Seltzer et 

a l ,  2000). As predicted from  a southerly-displaced SASM , and w eakened Hadley cell 

intensity, data from the A ltiplano suggests a relative increase in m oisture coincident with the 

YD (Baker et a l , 2001 a; B aker et a l , 2001 b).

8.3 C om parison o f  AS^Oc^? R ecords W ith Polar Ice C ores: Possible Inter-H em ispheric  

Drivers for T ropical South A m erican Palaeoclim ate

Follow ing the onset o f  the YD, 6 lsO in the G reenland ice core records (e.g. Grootes and 

Stuiver, 1997) imply a m inor am elioration in tem perature. H ow ever, A5180 942 values from 

the Am azon Fan becom e significantly m ore depleted. Should A5,80 942 be m onitoring 

effective m oisture, this would imply that that the A m azon Basin was becom ing increasingly 

w etter through the YD. Such a trend would also be apparent even if  the calendar age scale o f 

the Site 942 records w as found to be biased tow ard older ages, as a result o f  the AR value 

used in the calibration o f  the radiocarbon dates (see C hapter 5). Furtherm ore, superim posed 

on this depleting trend is a m arked positive excursion in the A8lsO record between -1 2 .4  and 

-1 1 .9  Cal ca. It is speculated that the tem perature changes observed in the G reenland ice 

core record cannot be inferred to have forced the m agnitude o f  change observed in A 5'80  on 

the Am azon Fan. H ow ever, it has been hypothesised that N orthern  and Southern Hem isphere 

clim ate were out o f  phase at this tim e (e.g. B lunier et a l ,  1998; B lunier et al., 1997; 

Broecker, 1998). F igure 8.2 displays the sam e palaeoclim ate proxies shown in Figure 8.1, 

but also com pares the polar ice core records.
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+  Figure 8.2 (previous page): Long, continuous regional-scale proxy records from tropical and 

subtropical South America, stacked in approximate latitudinal order against Cal kyr BP, alongside 

polar ice core data. From top to bottom: GISP2 ice core (6180; Grootes and Stuiver, 1997); Cariaco 

Basin (%Ti; Haug et al., 2001); Amazon Fan, ODP Site 942 (A6180942 G. sacculifer (sac); this 

study); Lake Junin, Peru (A6180; Maslin and Bums, 2000; Seltzer et al., 2000); Botuvera Cave, 

southeast Brazil (6180; Cruz et al., 2005); Lake Titicaca, Peruvian/Bolivian Altiplano (% benthic 

diatoms; Baker et al., 2001b); Salar de Uyuni, Bolivian Altiplano (natural y-radiation; Baker et al., 

2001a); Vostok ice core (6D; Blunier, 1998). Shaded area denotes the Younger Dryas period as 

determined by GISP2 6180 records (Grootes and Stuiver, 1997). The Botuvera Cave record (Cruz et 

al. 2005) monitors relative changes in the source area of precipitation (ppn).

Data presented in Figure 8.2 clearly demonstrate that the positive excursion in the A5180 942 

record between -1 2 .4  and 11.9 Cal ka is coincident with a peak in warm tem peratures in 

Antarctica. Furtherm ore, other trends in the A5180 942 record from the Amazon Fan appear to 

co-vary with the Antarctic tem perature record. Marked features in the Vostock 5D record are 

hi-lighted on Figure 8.2 with dotted lines. According to the ice core chronology o f  Blunier et 

al. (B lunier et al., 1997), periods o f  warming in Antarctica (e.g. from -1 8 .5  to -1 5  Cal ka) 

correspond to relative depletions in the A6I80 942 record, implying an increase in Amazon 

Basin effective moisture. An episode o f increasing aridity in the Am azon Basin inferred 

from a relative enrichm ent in A5I80 942 corresponds to the Antarctic Cold Reversal. The co- 

variance between the A6180 942 record from the Amazon Fan, and V ostok 8D is strongly 

suggestive o f  an Antarctic forcing o f  the Amazon Fan A8I80 942 signal. Even if  the 

chronological scale o f  the A6180 942 were to be adjusted, for exam ple to com pensate for 

variations in the marine radiocarbon reservoir (see Chapter 5), the co-variation with the 

Antarctic tem perature record would still be apparent, regardless o f  whether the time scale o f 

Site 942 was shifted to slightly younger, or slightly older.

It is hypothesised that this tropical-Antarctic teleconnection may arise through the impact o f  

Antarctic tem perature changes on the latitudinal position o f  the m eteorological equator. 

Antarctic tem peratures will thus influence limits o f  the southerly penetration o f  the SASM 

and Hadley cell into the Amazon Basin. Throughout the YD therefore, steep tem perature 

gradients in the Northern H em isphere would displace the m eteorological equator to a more 

southerly position than that dictated by insolation. However, increasingly warm er 

tem peratures in A ntarctica would reduce the tem perature gradient in the Southern 

Hemisphere, and enhance this southward forcing. It is speculated that the net result would be 

a deeper penetration o f  the SASM into the Amazon Basin, and a coincident increase in
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Amazon Basin effective moisture. The higher resolution A5I80 942 data from the Amazon Fan

presented in this study support such a hypothesis.

An Antarctic clim ate forcing over tropical South Am erica has im plications for the 

interpretation o f  the Sajam a and Huascaran tropical ice core records. As their chronologies 

between 12 and 19 ka have been tuned to GISP2 and a Portuguese marine core, respectively, 

their signals will be inherently biased toward a Northern Hem isphere signal (Thompson, 

2000; Thom pson et a l ,  1998; Thompson et al., 1995; Thom pson et al., 2000). In this 

respect, the deglacial climate reversal observed in the 5 180  signal may represent the 

Antarctic Cold Reversal. The re-tuning o f these age m odels to an Antarctic forcing may 

reconcile the difference observed between the Huascaran and Lake Junin 8 lsO records 

between ~ 1 1 and -1 4  ka which forces more positive values in the A6,80  calculation, used as

proxy for effective m oisture in the Lake Junin catchm ent (see Figure 8.3; Seltzer et al., 

2000).

Figure 8.3: A comparison between 5180  records from the Huascaran ice core (A), and Lake Junin (B; 

Peru). Chronological bias to the Northern Hemisphere in the Huascaran age model may account for 

the noticeable dissimilarity between the isotopic records from ~11 to ~14 ka, which results in

Nevado Huascaran (9*S)

0 2 4 6 8 10 12 14 16 18

Age (ka)

relatively more enriched A5I80  values around this time (B), where A5I80  represents the difference 

between the two records (modified from Seltzer et al., 2000).
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8.4 Com parison o f  Tropical South Am erican Palaeoclim ate Records for the Onset o f  

the Y ounger Drvas

It was hypothesised in Chapter 6 that the large increase in sedim entation rate coincident with 

a marked enrichm ent in A5180942 between -1 2 .8  and -1 2 .7  Cal ka was representative o f  the 

onset o f  the YD. Figure 8.4 details the same palaeoclimate records as in Figure 8.2, but in 

greater detail for the period between -1 5  and -1 0  Cal ka. Shading indicates the period o f 

enhanced sedim entation over Site 942, the tim ing o f  which is constrained by four AMS 

radiocarbon dates (see Chapter 5, Section 5.3.1, Figure 5.5, Tables 5.1 and 5.3). However the 

exact tim ing o f  this ‘event’ in calendar years is dependant upon the marine radiocarbon 

reservoir correction applied during the calibration exercise (see Chapter 5, Section 5.1.2).

Figure 8.4 (next page): -10 to -15 ka detail. Long, continuous regional-scale proxy records from 

tropical and subtropical South America, stacked in approximate latitudinal order against Cal kyr BP, 

alongside polar ice core data. From top to bottom: GISP2 ice core (Sl80 ; Grootes and Stuiver, 1997); 

Cariaco Basin (%Ti; Haug et al., 2001); Amazon Fan, ODP Site 942 (A6180 942 G. sacculifer (sac); this 

study); Lake Junin, Peru (A6I80 ; Maslin and Burns, 2000; Seltzer et al., 2000); Botuvera Cave, 

southeast Brazil (S180 ; Cruz et al., 2005); Lake Titicaca, Peruvian/Bolivian Altiplano (% benthic 

diatoms; Baker et al., 2001b); Salar de Uyuni, Bolivian Altiplano (natural y-radiation; Baker et al., 

2001a); Vostok ice core (6D; Blunier, 1998). Shaded area indicates the time of rapid sediment 

accumulation on the Amazon Fan (-18 m Cal

ka'1). The Botuvera Cave record (Cruz et al. 2005) monitors relative changes in the source area of 

precipitation (ppn).
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With reference to Figure 8.4, assuming each o f  the datasets have reliable age models, the 

tim ing o f  enhanced sedimentation at Site 942 compares well with the depletion in GISP2 

5 lsO, which supports the hypothesis that it is coeval with the onset o f  the YD in the Northern 

Hemisphere (assum ing the associated chronologies are accurate). Aside from the Cariaco 

Basin data, other palaeoclimate data shown are o f  relatively low tem poral resolution. 

However, assum ing each record has a relatively reliable chronology, the majority o f  signals 

imply some form o f  excursion around -1 2 .8  to -1 2 .7  Cal ka. M ost noticeable, is the 

relatively rapid decrease in %Ti in the Cariaco Basin record (H aug et a l., 2001). Evidence o f 

such possible synchronous excursions within the data may therefore purport to the 

m anifestation o f  the YD onset in tropical and subtropical South Am erican palaeoclimate 

records.

8.5 Com parison o f  the H olocene A 618O q̂  Am azon Basin Effective M oisture Record  

with Records o f  ENSO Variability

Quasi-periodic oscillations in the A5180 942 records, particularly those m easured on G. ruber , 

imply that the outflow o f  the Amazon River was variable throughout the Holocene. The 

apparent onset o f  these ‘cycles’ may coincide with the onset o f  increased ENSO frequency 

over tropical South Am erica (M oy et a l., 2002; Rodbell et a l. , 1999). Figure 8.5 com pares 

the A6180 942 record measured on G. ruber to the reconstruction o f  ENSO frequency from 

Laguna Pallcacocha in the southern Ecuadorian Andes. The chronology for the Laguna 

Pallcacocha record was derived indirectly through stratigraphic tuning to another core, and 

through assum ing a bi-modal sedimentary regime during which accum ulation was constant 

for each mode o f  ENSO, regardless o f  intensity. Therefore the age model may contain errors 

(C.M. M oy, personal com m unication). Consequently, the A8180 942 record may vary in phase 

with ENSO variability. This is a plausible hypothesis given that sufficient heat is released 

over Am azonia to drive W alker Circulation (Barry and Chorley, 1995). However at present, 

it is unclear as to whether positive excursions in A5180 942 coincide with enhanced or reduced 

ENSO frequency. The tie lines placed on Figure 8.5 were determ ined on the observation that 

isotopically more depleted values in the late Holocene were coincident with an apparent 

reduction in ENSO frequency.

In the modern day, ENSO exerts its strongest impact over northern Am azonia, where low 

phases (El N ino) are associated with anomalously low river levels. Should the A5180 942 

record be m onitoring variation in ENSO frequency, it therefore presents the possibility o f  a
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biasing in the record toward Northern Amazonia. However, past variations in the 

meteorological equator may have shifted this biasing to elsewhere within the Amazon Basin.

1 .5

4 0

ENSO
band

i AJ \/. :

Cal kyr BP
, 18,

W etter
( w a r m e r )

*  1
(cooler)
Drier

Figure 8.5: A comparison o f the G. ruber A b 0 942 record o f effective moisture in the Amazon Basin 

against the reconstruction o f ENSO frequency from Laguna Pallcacocha in the southern Ecuadorian 

Andes (after Moy et a l 2002).

8.6 C o m p ariso n  o f th e  A 618Qg.i? A m azon B asin E ffective M o istu re  R ecord  w ith  R ecords 

o f A tm o sp h eric  M ethane

A record o f  past variations the effective moisture history o f  the Amazon Basin provides an 

opportunity to assess the extent to which the tropics m ight contribute to atm ospheric 

m ethane concentrations. Figure 8 . 6  shows a com parison o f  the G. sacculifer  A8 18C>942 

Amazon Basin effective moisture record and the GISP2 global atm ospheric m ethane record 

(Brook et al., 1996). Shading indicates the tim ing o f  the YD, as defined by GISP2 5 180  

(Grootes and Stuiver, 1997). The higher-resolution and more chronologically constrained 

Amazon Basin effective moisture record from the Am azon Fan implies that there is little 

relationship with global m ethane during the YD or glacial stages, even if  the age model for 

Site 942 were found to be biased to too old/young by up to 400 years (see Chapter 5, Section 

5.1.2). Throughout the H olocene however, both records appear to co-vary. This may imply 

that the tropical contribution o f  atm ospheric m ethane is relatively more significant when 

sum m er insolation is at m axim a over tropical South America, and thus convection over the 

Amazon Basin would be intensified.
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9. CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER WORK

9.1 C onclusions

This research has contributed an insight into the palaeoclim atology o f  the Am azon Basin 

over the last 40 kyr. The principal aim o f  this research was to use m arine sedim ents drilled 

from ODP Site 942 to reconstruct a record o f  continental palaeoclim ate for the Amazon 

Basin. Assum ing the isotope records from Site 942 have m onitored a signal o f  Amazon 

River discharge, these data were used as a proxy to imply the effective m oisture history o f  

the Am azon Basin. D ata presented in this thesis have extended and further developed the 

earlier published records from Site 942 (M aslin and Burns, 2000; M aslin et al., 2000). An 

enhanced age m odel for the Site has produced a highly constrained record o f  tropical climate 

change throughout the last glacial-interglacial transition (LGIT). Furtherm ore, the improved 

chronological constraints on the sedim ent stratigraphy have provided insights into the 

depositional regim e o f  the Amazon Fan.

The principal findings o f  this research are as follows.

1. D ow n-core A6lsO records from Site 942 imply the Am azon Basin was relatively 

more arid throughout the last glacial, relative to the m odern day. Reduced effective 

m oisture levels are also implied for the Younger Dry as (YD), although the high- 

resolution data presented in this study suggest that the Am azon Basin was becoming 

increasingly more humid post-onset. This is in contradiction to previously published 

hypotheses (M aslin and Burns, 2000; M aslin et al., 2000).

2. The 0-40 Cal ka A6180 942 record produced in this study com pares well to other long

term records o f  past clim ate change from tropical and subtropical South America. 

Analogous trends betw een these records dem onstrate a particular correspondence to 

precessionally driven changes in solar insolation at 10°S. There is a particular 

accordance to N ovem ber-D ecem ber insolation forcing. This tim ing is coincident 

with the m odern-day developm ent o f  the Bolivian High pressure cell, which initiates 

the onset o f  the South Am erican sum m er m onsoon (SA SM ) system over the 

Am azon Basin. A6180 942 records may therefore be m onitoring a record o f  insolation- 

forced variations in the intensity o f  the SASM over tropical South America. A 

gradual insolation-forced enhancem ent o f  the SASM  can account for the 

progressively increased levels o f  effective m oisture implied from the early Holocene
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to the m odem  day. However, it is hypothesised that variations in the tropical 

tem perature gradients will govern the northern and southern limits o f  convection 

over tropical South America. Therefore the A6180 942 records may be monitoring the 

com bined effects o f  both the intensity and the extent o f  the SASM.

3. Trends in the effective moisture reconstruction com pare well to records o f  past 

tem perature variation in Antarctica (Blunier et al., 1998; B lunier et al., 1997). It is 

hypothesised that tropical tem perature gradients in the Southern Hemisphere govern 

the southern extent o f  the SASM over tropical South America. This can help to 

explain the proposed relatively more arid conditions in the Amazon Basin 

reconstructed for the LGM, despite a sim ilar increased sum m er insolation forcing to 

the late Holocene (which would dictate an enhancem ent in the SASM). During the 

LGM , steeper tem perature gradients in the Southern H em isphere would have 

restricted the southerly penetration o f  the SASM  into South America, bringing more 

arid conditions to the Amazon Basin, relative to the late Holocene.

4. A rigorous sam pling strategy through the LG IT has yielded a detailed record 

spanning the tim efram e coincident with the Y ounger Dryas period in the Northern 

Hemisphere. M oreover, this section o f the record is well constrained by densely 

spaced AM S radiocarbon ages. The significantly enhanced resolution o f  the A6,80  

records from Site 942 have demonstrated that the positive excursion between -1 2 .4  

and -1 1 .9  Cal ka was not the most isotopically enriched portion o f  the record, as 

previously assum ed (M aslin and Bums, 2000; M aslin et al., 2000). Assum ing the 

im proved chronology devised in this research is correct, it has determ ined that 

tim ing o f  the m ost enriched isotopic values within this section o f  the record is not 

coincident with the onset o f  the YD. Instead, it represents a within-YD oscillation in 

the A5180 942 record, following a period o f  w arm ing in the southern high latitudes. It 

is hypothesised that this b rief warm ing phase in A ntarctica (asynchronous to 

tem peratures inferred from G reenland) perm itted a m ore southerly penetration o f  the 

SASM , and thus moisture, into the Amazon Basin at this time.

5. A period o f  m arked enrichm ent, and a coincident surge in sedim ent accum ulation 

imply extrem e aridity in the Amazon Basin between -1 2 .8  and -1 2 .7  Cal ka. This 

period is constrained by four AMS radiocarbon ages, and corresponds well to the 

tim ing o f  the onset o f  the YD, as determ ined by 6 lsO records from the GISP2 ice 

core (Grootes and Stuiver, 1997), and a calendar age chronology for Site 942
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assum ing a constant AR value o f  -464 ±40. M odel predictions suggest the Amazon 

River outflow at this time was less than that predicted for the LGM (30 to 50% 

reduction com pared to 20 to 30% reduction, respectively). It is hypothesised that 

steeper tropical tem perature gradients at the onset o f  the YD, coupled with summer 

insolation minim a, would have weakened, and reduced the extent o f  the SASM over 

the Am azon Basin. The subsequent climatic am elioration in Antarctica, coupled with 

increasing sum m er insolation on the Altiplano can provide a plausible explanation 

for the overall trend o f  increasing Amazon Basin effective moisture levels 

reconstructed thereafter, throughout the YD. It is proposed therefore, that the 

A5,80942 data produced in this thesis provide evidence for the existence o f  northern 

and southern high latitude-tropical teleconnections at the time o f  the YD.

6. The ‘YD onset’ in the A6180 942 stratigraphy (as determ ined by the calendar age 

chronology) may also be manifested in the other large-scale palaeoclim ate records 

from tropical and subtropical South America. However, except for the Cariaco Basin 

record (Haug et a l ,  2001), relatively low data resolution makes this difficult to 

confirm  at present.

7. Sim ilarities between the Holocene A6180 942 signal and proxy records o f  ENSO 

frequency (M oy et al., 2002) are suggestive o f  a possible relationship. This is 

plausible given that precipitation across the A m azon Basin is strongly influenced by 

m odern day ENSO activity. However, the relationship between trends in A6180 942 

and ENSO frequency remains unclear, as it is difficult to determ ine the nature o f  the 

phasing between the two records.

8. The improved chronology and sample resolution o f  this study has produced a more 

detailed record o f  the LGIT. As a consequence, it has enabled the hypothesised 

relationship between the extent o f  tropical wetlands and atm ospheric methane 

records to be exam ined in more detail. However, the m ore tightly constrained A6lsO 

records for the LG IT do not imply a phased relationship between changes in tropical 

South A m erican m oisture and global atm ospheric m ethane, regardless o f  a shift o f  

±400 years in the calendar chronology at Site 942.

9. The accum ulation o f  sedim ents on the Am azon Fan takes place only during periods 

o f  low sea level, when the continental shelf is exposed, and the Am azon River 

extends out to the shelf break. During sea level high-stands, the edge o f  the
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continental shelf is flooded, and sedimentary deposition is focussed relatively further 

inland (Dam uth and Fairbridge, 1970; Damuth and Kum ar, 1975). Consequently, the 

switch between these two depositional states is m arked in the stratigraphic record by 

a transition from predominantly terriginous, to predom inantly hem ipelagic sediment. 

H igh-resolution dating about the lithostratigraphic boundary o f  these two sediment- 

types suggest that deposition o f  terrestrial sedim ent ceased on the fan ~ 1 1.74 Cal ka. 

A ccording to records o f  sea level change (Fairbanks, 1989; Shackleton, 1987), and 

assum ing the Site 942 age chronology is reliable, data produced in this study imply 

that fan sedim entation was switched ‘o n ’ only when sea levels were lower than 

~60m  below  present. This is up to 30m lower than previous suggestions (M aslin et 

al., 2000; M illim an et a l ,  1975).

9.2 R eco m m en d a tio n s fo r F u r th e r  W o rk

In addition to contributing to a more detailed understanding o f  tropical South American 

palaeoclim ate, this research has highlighted the requirem ent for necessary further 

investigation. N ot only is this intended to develop specifically the record produced from the 

Am azon Fan, but it may also enhance the interpretation o f  other existing palaeoclimate 

records both from the tropical and extra-tropical regions. From the data presented in this 

thesis, further research is recom m ended as follows.

1. This study attem pted to provide a quantified record o f  past changes in Amazon River 

outflow. However, the lack o f  good quality sea surface tem perature (SST) records 

for the Am azon Fan inhibited a down-core reconstruction. The m odelling work 

dem onstrated the significance o f  SST estim ates to the approxim ation o f  Amazon 

River outflow , using isotopic balancing models. C ooler SST estim ates imply that 

less o f  the isotopic shift in A8,80 942 signal m ust be forced by freshwater-driven 

changes in salinity. SST is a critical variable to the inference o f  the Amazon Basin 

m oisture history from the A8180 942 records in this study. Detailed SST profiles will 

also enable the A m azon River outflow m odel to be applied down-core, producing a 

continuous sem i-quantitative reconstruction o f  Am azon River outflow that can be 

com pared to other large-scale palaeoclim ate records. Therefore it is recommended 

that estim ations o f  dow ncore sea surface tem perature be obtained for the Amazon 

Fan region.
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2. The A6180942 records produced in this study are assum ed to record changes in the 

relative proportions o f  Amazon River and tropical A tlantic Ocean w ater mixed over 

Site 942. It is assum ed that the proportion o f  Am azon River water ‘entering’ the 

AS180942 signal will vary directly with the am ount o f  w ater discharged. However, the 

m ixing ratio over the site may also be influenced by local hydrographic factors, such 

as changes in the retroflection regime o f  the N orth Brazil Current (NBC). M oreover, 

changes in the vertical hydrography o f  the site (e.g. therm ocline depth) may also 

influence the extent to which the Amazon O utflow  signal is being isotopically 

recorded. Detailed reconstructions o f  the hydrographic regim e specific to Site 942 

would therefore provide valuable interpretations o f  the continental palaeoclimate 

record produced in this study. Furthermore, the N BC is the only known m odem  

surface water current to cross the equator, and acts as an extrem ely im portant vector 

o f  heat and salinity between the two hem ispheres (Johns et al., 1998; M etcalf and 

Stalcup, 1967; Richardson and W alsh, 1986). Therefore, variations in the outflow o f  

the Am azon River may have implications for clim ate change further afield, (e.g. the 

Caribbean). Reconstructions o f  the palaeoceanography, specifically the NBC 

retroflection, will thus provide valuable additional inform ation to assess the extent to 

which the effects o f  climate change in tropical South A m erica may be transferred 

around the world.

3. The identification o f  an apparent Antarctic forcing on the clim ate o f  the Amazon 

Basin presents an exciting direction for tropical palaeoclim ate research. It therefore 

suggests that existing records may have to be re-exam ined, particularly those which 

have chronologies tied to Northern Hem isphere records, such as the Andean Ice 

cores (e.g. Thom pson, 2000; Thom pson et al., 2000). In order to com pare these 

records to the A6180 942 data from this study, it is recom m ended that their respective 

age m odels be re-tuned to a Southern Hem isphere forcing.

4. The possible discovery o f  the onset o f  the YD in the A6I80942 data is also significant, 

as it may enable the determ ination o f  possible leads and lags between tropical 

clim ate change and that which occurs in the northern and southern high latitudes. It 

is recom m ended that this proposed YD onset ‘event’ be sought in other large-scale 

proxy records from South America, and where possible, improve the resolution o f  

the data about this period.
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5. The tentative relationship between inferred Amazon River outflow and ENSO 

frequency may imply that there is a regional bias in the ASI80942 signal. Global 

clim ate m odel reconstructions o f river drainage may be able to provide further 

insight to the interpretation o f  the A6180 942 record.

6. To further investigate the tim ing o f  climatic events identified from the Site 942 

records, it is necessary to establish the extent o f  the local difference in radiocarbon 

reservoir age (AR) between the Amazon Fan region o f  the western tropical Atlantic, 

and the average global reservoir. It would also be extrem ely valuable to determine 

the extent to which AR m ight have varied in the past. Such information would allow 

the proxy records obtained from the Amazon Fan to be com pared to other global 

clim ate records with greater confidence.

9.3 R efe rences

Blunier, T., Chappellaz, J., Schwander, J., Dallenbach, A., Stauffer, B., Stocker, T.,
Raynaud, D., Jouzel, J., Clausen, H. B., Hamm er, C. U., and Johnsen, S. J. (1998). 
A synchrony o f  Antarctic and Greenland clim ate change during the last glacial 
period. Nature  384, 739-743.

Blunier, T., Schwander, J., Stauffer, B., Stocker, T., D allenbach, A., Indermiihle, A.,
Tschum i, J., Chappellaz, J., Raynaud, D., and Barnola, J.-M. (1997). T im ing o f  the 
A ntarctic Cold Reversal and the atm ospheric C 0 2 increase with respect to the 
Y ounger Dryas event. G eophysical Research Letters 24, 2683-2686.

Damuth, J. E., and Fairbridge, R. W. (1970). Equatorial A tlantic deep-sea arkosic sands and 
ice-age aridity in tropical South America. G eological Society o f  A m erica Bulletin , 
189-206.

Damuth, J. E., and Kumar, N. (1975). Amazon Cone: M orphology, sedim ents, age, and 
growth pattern. G eological Society o f  Am erica Bulletin  86, 863-878.

Fairbanks, R. G. (1989). A 17,000 year glacio-eustatic sea level record: influence o f  glacial 
m elting rates on the Y ounger Dryas event and deep-ocean circulation. Nature  362, 
637-642.

Grootes, P. M ., and Stuiver, M. (1997). Oxygen 18/16 variability in Greenland snow and ice 
with 103 to 105-year tim e resolution. Journal o f  G eophysical Research  102, 26455- 
26470.

Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C., and Rohl, U. (2001).
Southward M igration o f  the Intertropical Convergence Zone Through the Holocene. 
Science  293, 1304-1308.

Johns, W. E., Lee, T. N ., Beardsley, R. C., Candela, J., Lim eburner, R., and Castro, B.
(1998). Annual cycle and variability o f the N orth Brazil Current. Journal o f  Physical 
O ceanography  28, 103-128.

196



C h a p t e r  9

M aslin, M. A., and Burns, S. J. (2000). Reconstruction o f  the Am azon Basin effective 
m oisture availability over the past 14,000 years. Science  290, 2285-2287.

Maslin, M. A., Durham , E., Burns, S. J., Platzman, E., Grootes, P., Greig, S. E. J., Nadeau, 
M. J., Schleicher, M., Pflaumann, U., Lomax, B., and Rim ington, N. (2000). 
Palaeoreconstruction o f  the Amazon River freshw ater and sedim ent discharge using 
sedim ents recovered at site 942 on the Amazon Fan. Journal o f  Quaternary Science
15,419-434 .

M etcalf, W., and Stalcup, M. C. (1967). Origin o f  the Atlantic Equatorial Undercurrent.
Journal o f  G eophysical Research  72, 4959-4975.

M illim an, J. D., Summ erheyes, C. P., and Barretto, H. T. (1975). Quaternary sedimentation 
on the Am azon continental margin: a model. G eological Society o f  Am erica Bulletin  
86 ,610-614 .

M oy, C. M ., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M. (2002). Variability o f  El 
N ino/Southern Oscillation activity at m illennial tim escales during the Holocene 
epoch. Nature  420, 162-165.

Richardson, P. L., and W alsh, D. (1986). M apping clim atological and seasonal variations o f  
surface currents in the tropical Atlantic using ship drift data. Journal o f  Geophysical 
Research  91, 10537-10550.

Shackleton, N. J. (1987). Oxygen isotopes, ice volum e and sea level. Q uaternary Science 
Reviews 6, 183-190.

Thom pson, L. G. (2000). Ice core evidence for clim ate change in the Tropics: implications 
for our future. Quaternary Science Reviews 19, 19-34.

Thom pson, L. G., M osley-Thom pson, E., and Henderson, K. A. (2000). Ice-core
palaeoclim ate records in tropical South A m erica since the Last G lacial M aximum.
Journal o f  Quaternary Science 15, 377-394.

197



A pp e n d ic e s

APPENDIX: ISOTOPE DATA

Appendix 1: G. ruber
Ca

l 
yr 

B
P

De
pt

h 
(m

bs
f)

G.
 r

ub
er

 5
18

0

G.
 r

ub
er

 
5I

80
 

(n
or

m
al

is
ed

)

Sm
oo

th
ed

 
G.

 r
ub

er
 

51
80 

(n
or

m
al

is
ed

)

51
80 

(G
IV

 
ef

fe
ct

)

G.
 r

ub
er

 
A5

18
0 

(5
I80 

- 
GI

V 
ef

fe
ct

)

G.
 r

ub
er

 A
51

80
 

(n
or

m
al

is
ed

)

Sm
oo

th
ed

 
G.

 r
ub

er
 

A5
18

0 
(n

or
m

al
is

ed
)

1.00 0.00 -2.04 0.00 0 0.00 -2.04 0.00 0
177.84 0.02 -1.77 0.27 0.15 0.00 -1.77 0.27 0.15
266.26 0.04 -1.85 0.19 0.14 0.00 -1.86 0.18 0.14
354.68 0.05 -2.08 -0.04 0.11 0.01 -2.08 -0.04 0.10
443.11 0.07 -1.88 0.16 0.10 0.01 -1.89 0.16 0.09
531.53 0.08 -1.87 0.17 0.17 0.01 -1.88 0.17 0.17
619.95 0.09 -1.86 0.19 0.11 0.01 -1.87 0.17 0.10
708.37 0.10 -2.06 -0.02 0.14 0.01 -2.07 -0.03 0.12
796.79 0.11 -1.80 0.24 0.15 0.01 -1.81 0.23 0.14
885.21 0.12 -1.81 0.24 0.21 0.01 -1.82 0.22 0.20

973.63 0.13 -1.88 0.16 0.11 0.01 -1.89 0.15 0.10
1062.05 0.14 -2.10 -0.06 0.10 0.01 -2.11 -0.07 0.08
1120.00 0.14 -1.86 0.18 0.03 0.02 -1.88 0.16 0.01

1150.47 0.15 -2.09 -0.05 0.06 0.02 -2.10 -0.06 0.05

1238.89 0.16 -1.98 0.06 0.03 0.02 -2.00 0.04 0.01

1327.32 0.17 -1.98 0.06 0.07 0.02 -2.00 0.05 0.05

1415.74 0.18 -1.97 0.07 0.13 0.02 -1.99 0.05 0.11

1504.16 0.19 -1.79 0.26 0.09 0.02 -1.81 0.23 0.06

1592.58 0.20 -2.11 -0.07 0.12 0.02 -2.13 -0.09 0.10

1679.00 0.21 -1.87 0.17 0.11 0.02 -1.89 0.15 0.09

1681.00 0.21 -1.82 0.22 0.19 0.02 -1.84 0.20 0.16

1785.38 0.22 -1.88 0.16 0.19 0.03 -1.91 0.13 0.16
1887.75 0.23 -1.87 0.17 0.14 0.03 -1.89 0.15 0.11

1889.75 0.23 -1.96 0.08 0.28 0.03 -1.99 0.05 0.25

1994.13 0.24 -1.47 0.58 0.42 0.03 -1.50 0.55 0.39

2097.50 0.25 -1.42 0.62 0.45 0.03 -1.45 0.59 0.42

2098.50 0.25 -1.90 0.15 0.31 0.03 -1.93 0.11 0.27

2202.88 0.26 -1.89 0.15 0.00 0.03 -1.92 0.12 -0.03

2306.25 0.27 -2.34 -0.30 0.05 0.04 -2.38 -0.34 0.02

2307.25 0.27 -1.73 0.31 0.06 0.04 -1.76 0.28 0.03

2409.63 0.28 -1.86 0.18 0.08 0.04 -1.90 0.14 0.04

2410.63 0.28 -2.29 -0.25 0.06 0.04 -2.33 -0.29 0.02

2411.63 0.28 -1.79 0.25 0.12 0.04 -1.83 0.21 0.09

2515.00 0.29 -1.67 0.37 0.28 0.04 -1.71 0.34 0.24

2516.00 0.29 -1.84 0.21 0.24 0.04 -1.87 0.17 0.20

2618.38 0.30 -1.90 0.15 0.17 0.04 -1.94 0.10 0.13



A pp e n d ic e s

Oh
CQi—

U De
pt

h 
(m

bs
f) O

To
OJ
2

b G.
 r

ub
er

 S
180

 
(n

or
m

al
is

ed
)

Sm
oo

th
ed

 
G.

 r
ub

er
 

5I
80 

(n
or

m
al

is
ed

)

S1
80 

(G
IV

 
ef

fe
ct

)

G.
 r

ub
er

 A
S 

18
0 

(S
l80

- 
GI

V 
ef

fe
ct

)

G.
 r

ub
er

 A
81

80
 

(n
or

m
al

is
ed

)

Sm
oo

th
ed

 
G.

 r
ub

er
 

AS 
18

0 
(n

or
m

al
is

ed
)

2619.38 0.30 -1.87 0.17 0.16 0.04 -1.91 0.13 0.12
2620.38 0.30 -1.88 0.16 0.20 0.04 -1.92 0.12 0.16
2723.75 0.31 -1.78 0.27 0.21 0.04 -1.82 0.22 0.17
2724.75 0.31 -1.84 0.20 0.24 0.04 -1.88 0.16 0.20
2828.13 0.32 -1.77 0.27 0.28 0.04 -1.82 0.23 0.24
2932.50 0.33 -1.66 0.38 0.33 0.05 -1.71 0.33 0.28
3035.88 0.34 -1.71 0.33 0.30 0.05 -1.75 0.29 0.26
3141.25 0.35 -1.84 0.20 0.32 0.05 -1.89 0.15 0.27
3244.63 0.36 -1.63 0.41 0.40 0.05 -1.68 0.36 0.35
3245.63 0.36 -1.46 0.58 0.48 0.05 -1.51 0.53 0.43
3349.00 0.37 -1.58 0.46 0.58 0.05 -1.64 0.40 0.53
3350.00 0.37 -1.34 0.70 0.56 0.05 -1.40 0.64 0.50
3686.33 0.39 -1.53 0.51 0.47 0.05 -1.58 0.46 0.42
3687.33 0.39 -1.84 0.20 0.34 0.05 -1.89 0.15 0.29
3855.00 0.40 -1.73 0.31 0.28 0.05 -1.78 0.26 0.24
4024.67 0.41 -1.70 0.34 0.39 0.04 -1.74 0.30 0.35
4192.33 0.42 -1.52 0.52 0.43 0.04 -1.56 0.48 0.39
4193.33 0.42 -1.62 0.43 0.43 0.04 -1.66 0.39 0.38
4362.00 0.43 -1.71 0.33 0.34 0.04 -1.75 0.29 0.30
4530.67 0.44 -1.78 0.26 0.30 0.05 -1.83 0.21 0.25
4698.33 0.45 -1.73 0.32 0.28 0.06 -1.78 0.26 0.23
4699.33 0.45 -1.77 0.27 0.32 0.06 -1.82 0.22 0.26
4868.00 0.46 -1.68 0.36 0.31 0.06 -1.74 0.30 0.25
5035.67 0.47 -1.75 0.29 0.34 0.06 -1.81 0.23 0.28
5036.67 0.47 -1.68 0.36 0.29 0.06 -1.74 0.30 0.23
5204.33 0.48 -1.83 0.22 0.32 0.06 -1.88 0.16 0.26

5205.33 0.48 -1.65 0.39 0.31 0.06 -1.71 0.33 0.25
5374.00 0.49 -1.71 0.33 0.27 0.06 -1.77 0.27 0.21

5541.67 0.50 -1.96 0.08 0.20 0.06 -2.02 0.02 0.14

5542.67 0.50 -1.86 0.18 0.18 0.06 -1.92 0.12 0.12

5710.33 0.51 -1.75 0.29 0.30 0.07 -1.82 0.22 0.24

5711.33 0.51 -1.60 0.44 0.54 0.07 -1.67 0.37 0.47

5879.00 0.52 -1.15 0.89 0.57 0.07 -1.23 0.81 0.50

5880.00 0.52 -1.65 0.39 0.55 0.07 -1.73 0.31 0.47

6046.36 0.53 -1.68 0.36 0.43 0.09 -1.77 0.27 0.33

6211.73 0.54 -1.50 0.54 0.43 0.12 -1.62 0.42 0.31

6212.73 0.54 -1.67 0.38 0.48 0.13 -1.79 0.25 0.35

199



A pp e n d ic e s

Ca
l 

yr 
B

P

De
pt

h 
(m

bs
f) O

Toi—UJO3L.
d G.

 r
ub

er
 5

180
 

(n
or

m
al

is
ed

)

Sm
oo

th
ed

 
G.

 r
ub

er
 

6I
80 

(n
or

m
al

is
ed

)

51
80 

(G
IV

 
ef

fe
ct

)

G.
 r

ub
er

 A
61

80
 

(5
,8

0
- 

GI
V 

ef
fe

ct
)

G.
 r

ub
er

 A
51

80
 

(n
or

m
al

is
ed

)

i Sm
oo

th
ed

 
G.

 r
ub

er
 

A8
18

0 
(n

or
m

al
is

ed
)

6379.09 0.55 -1.51 0.53 0.45 0.14 -1.65 0.39 0.31
6545.45 0.56 -1.60 0.44 0.45 0.14 -1.74 0.30 0.31
6711.82 0.57 -1.67 0.37 0.42 0.14 -1.80 0.24 0.28
6878.18 0.58 -1.61 0.43 0.47 0.13 -1.74 0.30 0.34
7043.55 0.59 -1.42 0.62 0.50 0.12 -1.54 0.50 0.38
7044.55 0.59 -1.58 0.46 0.55 0.12 -1.70 0.34 0.43
7209.91 0.60 -1.48 0.56 0.53 0.12 -1.60 0.44 0.41
7210.91 0.60 -1.48 0.56 0.56 0.12 -1.60 0.44 0.43
7377.27 0.61 -1.49 0.55 0.65 0.14 -1.63 0.41 0.52
7542.64 0.62 -1.18 0.86 0.63 0.16 -1.34 0.70 0.48
7543.64 0.62 -1.57 0.47 0.73 0.16 -1.72 0.32 0.56
7709.00 0.63 -1.19 0.85 0.66 0.18 -1.37 0.67 0.48
7710.00 0.63 -1.40 0.64 0.71 0.18 -1.58 0.46 0.53
7890.91 0.64 -1.39 0.65 0.65 0.19 -1.59 0.45 0.46
8071.82 0.65 -1.38 0.66 0.67 0.21 -1.59 0.45 0.47
8206.50 0.65 -1.33 0.71 0.59 0.22 -1.55 0.49 0.38
8252.73 0.66 -1.64 0.41 0.57 0.22 -1.86 0.18 0.34
8433.64 0.67 -1.45 0.59 0.58 0.24 -1.69 0.35 0.35
8455.25 0.66 -1.30 0.74 0.59 0.24 -1.54 0.50 0.35
8614.55 0.68 -1.60 0.44 0.75 0.25 -1.85 0.19 0.48
8952.75 0.69 -0.98 1.06 0.78 0.32 -1.29 0.75 0.48
8976.36 0.70 -1.22 0.82 0.84 0.32 -1.54 0.51 0.52
9157.27 0.71 -1.41 0.64 0.73 0.33 -1.74 0.30 0.40
9338.18 0.72 -1.31 0.73 0.66 0.35 -1.66 0.38 0.31
9450.25 0.73 -1.43 0.61 0.68 0.37 -1.80 0.24 0.31
9519.09 0.73 -1.35 0.69 0.70 0.38 -1.73 0.31 0.30
9699.00 0.74 -1.24 0.80 0.81 0.44 -1.68 0.36 0.39
9700.00 0.74 -1.11 0.93 0.79 0.44 -1.55 0.49 0.34
9830.91 0.75 -1.40 0.64 0.84 0.48 -1.88 0.16 0.35
9961.82 0.76 -1.10 0.94 0.77 0.52 -1.63 0.41 0.25
10091.73 0.77 -1.31 0.73 0.82 0.54 -1.85 0.19 0.28
10092.73 0.77 -1.26 0.78 0.82 0.54 -1.80 0.24 0.28
10223.64 0.78 -1.08 0.97 0.81 0.55 -1.62 0.42 0.26
10353.55 0.79 -1.35 0.69 0.81 0.56 -1.91 0.13 0.26

10354.55 0.79 -1.26 0.78 0.85 0.56 -1.82 0.22 0.29

10485.45 0.80 -0.96 1.08 0.85 0.57 -1.53 0.51 0.28
10615.36 0.81 -1.35 0.69 0.78 0.58 -1.94 0.10 0.20

200



A p p e n d ic e s

Ca
l 

yr 
B

P

De
pt

h 
(m

bs
f) O

to
<D-D
S-.

Q _ . .. G.
 r

ub
er

 
5I

80
 

(n
or

m
al

is
ed

)

Sm
oo

th
ed

 
G.

 r
ub

er
 

5,
80 

(n
or

m
al

is
ed

)

I 5I
80 

(G
IV

 
ef

fe
ct

)

G.
 r

ub
er

 
A

51
80 

(5
180

- 
GI

V 
ef

fe
ct

)

G.
 r

ub
er

 A
S 

18
0 

(n
or

m
al

is
ed

)

Sm
oo

th
ed

 
G.

 r
ub

er
 

AS 
180

 
(n

or
m

al
is

ed
)

10616.36 0.81 -1.47 0.57 0.79 0.58 -2.05 -0.01 0.20
10747.27 0.82 -0.93 1.11 0.82 0.60 -1.54 0.50 0.22
10877.18 0.83 -1.26 0.78 0.94 0.63 -1.89 0.15 0.32
10878.18 0.83 -1.10 0.94 0.85 0.63 -1.73 0.32 0.21
11008.09 0.84 -1.21 0.83 0.99 0.66 -1.87 0.17 0.34
11009.09 0.84 -0.85 1.19 0.91 0.66 -1.51 0.53 0.25
11139.00 0.85 -1.32 0.72 1.02 0.69 -2.00 0.04 0.34
11140.00 0.85 -0.90 1.14 0.91 0.69 -1.58 0.46 0.21
11439.00 0.87 -1.19 0.85 1.02 0.73 -1.92 0.12 0.31
11440.00 0.87 -0.97 1.07 1.03 0.73 -1.70 0.34 0.29
11739.00 0.89 -0.88 1.16 1.00 0.75 -1.63 0.41 0.26
11740.00 0.89 -1.27 0.77 1.00 0.75 -2.02 0.02 0.25
11776.50 0.90 -0.97 1.07 0.74 0.75 -1.72 0.32 -0.01
11777.50 0.90 -1.66 0.38 0.78 0.75 -2.42 -0.37 0.02
11851.50 0.92 -1.15 0.89 0.73 0.76 -1.92 0.12 -0.03
11889.00 0.93 -1.12 0.92 0.99 0.77 -1.89 0.15 0.22
11894.29 0.94 -0.87 1.17 1.09 0.77 -1.64 0.40 0.32
11897.82 0.95 -0.86 1.18 1.14 0.77 -1.63 0.41 0.36

11955.68 0.96 -0.98 1.06 1.15 0.78 -1.76 0.28 0.37
12043.24 1.00 -0.84 1.20 1.12 0.79 -1.63 0.41 0.33

12059.00 1.01 -0.89 1.15 1.10 0.79 -1.69 0.36 0.30

12108.92 1.03 -1.05 0.99 1.10 0.79 -1.85 0.19 0.29

12196.49 1.07 -0.96 1.08 1.11 0.80 -1.76 0.28 0.29

12284.05 1.11 -1.02 1.03 1.12 0.83 -1.85 0.19 0.30

12299.00 1.12 -0.75 1.29 1.11 0.84 -1.59 0.45 0.30

12349.73 1.14 -0.79 1.25 1.13 0.86 -1.64 0.40 0.20

12415.41 1.17 -1.01 1.03 1.15 0.88 -1.89 0.15 0.30

12499.00 1.25 -1.34 0.70 1.22 0.91 -2.25 -0.21 0.30

12546.76 1.23 -0.39 1.65 1.24 0.92 -1.31 0.73 0.35

12634.32 1.27 -0.66 1.38 1.31 0.94 -1.60 0.44 0.33

12699.00 1.30 -0.48 1.57 1.32 0.94 -1.42 0.63 0.46

12701.09 1.32 -1.03 1.01 1.30 0.94 -1.97 0.07 0.35

12704.36 1.38 -0.65 1.39 1.22 0.94 -1.59 0.45 0.28

12704.45 1.40 -0.92 1.12 1.20 0.94 -1.86 0.18 0.22

12706.55 1.42 -1.03 1.01 1.25 0.94 -1.97 0.07 0.28

12707.18 1.45 -0.77 1.27 1.30 0.94 -1.71 0.33 0.42

12709.82 1.48 -0.71 1.33 1.34 0.94 -1.65 0.39 0.39

201



A p p e n d ic e s

Ca
l 

yr 
B

P

De
pt

h 
(m

bs
f) O

T o

<u
jO
3

d G.
 r

ub
er

 5
I80

 
(n

or
m

al
is

ed
)

Sm
oo

th
ed

 
G.

 r
ub

er
 

5i
80 

(n
or

m
al

is
ed

)

5!
80 

(G
IV

 
ef

fe
ct

)

G.
 r

ub
er

 
A6

18
0 

(5
18

0 
- 

GI
V 

ef
fe

ct
)

G.
 r

ub
er

 
A

81
80

 
(n

or
m

al
is

ed
)

Sm
oo

th
ed

 
G.

 r
ub

er
 

A5
18

0 
(n

or
m

al
is

ed
)

12709.91 1.50 0.04 2.08 1.33 0.94 -0.90 1.14 0.39
12712.55 1.53 -1.09 0.95 1.36 0.94 -2.03 0.01 0.40
12715.27 1.58 -1.00 1.04 1.32 0.94 -1.94 0.10 0.46
12718.00 1.63 -0.74 1.30 1.24 0.94 - 1 . 6 8 0.36 0.27
12718.09 1.65 -0.41 1.63 1.18 0.94 -1.35 0.69 0.18
12720.73 1 . 6 8 -0.92 1.12 1.18 0.94 - 1 . 8 6 0.18 0.26
12723.55 1.75 -1.52 0.52 1.24 0.94 -2.46 -0.42 0.27
12726.18 1.78 -0.60 1.44 1.28 0.94 -1.54 0.50 0.36
12728.91 1.83 -0.72 1.32 1.36 0.94 - 1 . 6 6 0.38 0.39
12729.00 1.85 0.06 2.11 1.46 0.94 - 0 . 8 8 1.17 0.53
12732.40 1 . 8 8 -0.80 1.24 1.58 0.94 -1.74 0.30 0.64
12736.40 1.93 -0.82 1.22 1.59 0.94 -1.76 0.28 0.75
12737.33 1.95 -0.01 2.03 1.59 0.94 -0.95 1.09 0.55
12740.40 1.98 -0.20 1.85 1.56 0.94 -1.14 0.91 0 . 6 6

12748.40 2.08 -0.93 1.11 1.52 0.94 -1.87 0.17 0.64

12751.81 2.13 -0.25 1.79 1.41 0.94 -1.19 0.85 0.45
12754.82 2.18 - 0 . 8 8 1.16 1.37 0.94 -1.82 0.22 0.32

12757.83 2.23 -0.99 1.06 1.38 0.94 -1.93 0.12 0.53

12760.84 2.28 -0.85 1.19 1.42 0.94 -1.79 0.25 0.47

12763.86 2.33 -0.52 1.52 1.50 0.94 -1.46 0.58 0.58

12766.87 2.38 -1.11 0.93 1.54 0.94 -2.05 -0.01 0 . 6 6

12769.22 2.46 -0.24 1.80 1.56 0.94 -1.18 0 . 8 6 0.57

12769.88 2.43 -0.43 1.61 1.59 0.94 -1.37 0.67 0.61

12772.89 2.48 -0.34 1.70 1 . 6 6 0.94 -1.28 0.76 0.78

12775.90 2.53 -0.33 1.71 1.69 0.94 -1.27 0.77 0.77

12779.90 2.59 -0.27 1.77 1.59 0.94 -1.21 0.83 0.69

12785.52 2.69 -0.28 1.76 1.48 0.94 -1.22 0.82 0.48

12787.95 2.73 -0.85 1.20 1.35 0.94 -1.79 0.26 0.46

12790.96 2.78 -1.36 0 . 6 8 1.28 0.94 -2.30 -0.26 0.30

12791.13 2.79 -0.46 1.58 1.25 0.94 -1.40 0.64 0.26

12793.98 2.83 -1.06 0.98 1.23 0.94 -2.00 0.04 0.36

12796.75 2.89 -0.47 1.57 1.21 0.94 -1.41 0.63 0.25

12796.99 2 . 8 8 -0.37 1.67 1.18 0.94 -1.31 0.73 0.21

12885.59 2.98 - 0 . 6 6 1.38 1.09 0.95 -1.60 0.44 0.18

13056.78 3.08 -0.80 1.24 1.09 0.96 -1.76 0.28 -0.02

13142.37 3.13 -0.82 1.22 1.10 0.97 -1.78 0.26 0.22

13227.97 3.18 -1.35 0.69 1.20 0.97 -2.32 -0.28 0.20

2 0 2
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13246.05 3.20 -0.65 1.39 1.24 0.97 -1.62 0.42 0.27
13313.56 3.23 -0.75 1.30 1.34 0.98 -1.72 0.32 0.32
13399.15 3.28 -0.44 1.61 1.41 0.98 -1.42 0.62 0.51
13411.62 3.30 -0.54 1.50 1.47 0.99 -1.53 0.52 0.45
13484.75 3.33 -0.39 1.65 1.48 0.99 -1.38 0.66 0.49
13570.34 3.38 -0.90 1.14 1.49 1.00 -1.90 0.14 0.52
13577.20 3.40 -0.52 1.52 1.47 1.00 -1.52 0.53 0.46
13741.53 3.48 -0.28 1.76 1.44 1.00 -1.29 0.75 0.44
13742.77 3.49 -0.82 1.23 1.42 1.01 -1.83 0.22 0.42
13846.20 3.58 -0.44 1.60 1.34 1.01 -1.45 0.59 0.36
13850.43 3.58 -1.02 1.02 1.33 1.02 -2.04 0.00 0.21
13884.13 3.63 -0.77 1.27 1.31 1.02 -1.80 0.25 0.37

13914.40 3.69 -1.02 1.02 1.34 1.02 -2.05 -0.01 0.29

13917.83 3.68 0.01 2.05 1.36 1.02 -1.01 1.03 0.29

13951.52 3.73 -0.85 1.19 1.41 1.03 -1.88 0.17 0.42

13970.20 3.78 -0.99 1.05 1.45 1.03 -2.01 0.03 0.45

13985.22 3.78 -0.15 1.89 1.44 1.03 -1.18 0.86 0.40

14018.91 3.83 -0.84 1.21 1.48 1.03 -1.87 0.18 0.39

14032.20 3.86 -0.22 1.82 1.52 1.03 -1.25 0.79 0.55

14052.61 3.88 -0.94 1.11 1.58 1.03 -1.97 0.08 0.53

14086.30 3.93 -0.16 1.88 1.57 1.03 -1.19 0.85 0.56

14120.00 3.98 -0.24 1.80 1.55 1.03 -1.27 0.77 0.54

14207.50 4.03 -0.72 1.32 1.48 1.03 -1.75 0.29 0.48

14245.00 4.07 -0.31 1.73 1.43 1.03 -1.34 0.70 0.33

14295.00 4.08 -1.25 0.79 1.39 1.03 -2.28 -0.24 0.39

14350.00 4.13 -0.91 1.14 1.36 1.03 -1.94 0.10 0.38

14383.33 4.18 0.05 2.10 1.33 1.03 -0.98 1.07 0.22

14450.00 4.28 -0.74 1.30 1.36 1.03 -1.77 0.27 0.29

14483.33 4.33 -1.09 0.95 1.41 1.03 -2.13 -0.09 0.49

14516.67 4.38 -0.93 1.11 1.40 1.03 -1.97 0.07 0.35

14550.00 4.43 0.11 2.15 1.35 1.04 -0.93 1.11 0.27

14616.67 4.53 -0.65 1.39 1.33 1.04 -1.68 0.36 0.32

14650.00 4.58 -1.10 0.94 1.26 1.04 -2.14 -0.10 0.30

14783.33 4.78 -0.86 1.18 1.14 1.04 -1.90 0.14 0.05

14816.67 4.83 -1.01 1.04 1.04 1.05 -2.05 -0.01 -0.07

14850.00 4.88 -1.11 0.94 1.01 1.06 -2.16 -0.12 -0.03

14935.00 4.93 -1.23 0.81 1.03 1.06 -2.29 -0.25 -0.03

203



A p p e n d ic e s

i

o
00

Ca
l 

yr 
B

P

De
pt

h 
(m

bs
!) OOQ

6 0
U-

Z3

d G.
 r

ub
er

 S
180

 
(n

or
m

al
is

ed
)

Sm
oo

th
ed

 
G.

 r
ub

ei
 

8l
sO 

(n
or

m
al

is
ed

)

<L>
>
3
o

~Lo G.
 r

ub
er

 A
51

80
 

(5
1 

GIV
 

ef
fe

ct
)

G. 
ru

be
r 

A
81

80
 

no
rm

al
is

ed
)

Sm
oo

th
ed

 
G.

 r
ub

er
 

i8
18

0 
(n

or
m

al
is

ed
^

15020.00 4.98 -0.88 1.16 1.04 1.06 -1.94 0.10 -0.03
15105.00 5.03 -0.87 1.18 1.08 1.06 -1.93 0.11 0.01
15190.00 5.08 -0.98 1.06 1.12 1.06 -2.04 0.00 0.09
15275.00 5.13 -0.90 1.14 1.14 1.06 -1.96 0.08 0.07
15360.00 5.18 -0.82 1.22 1.15 1.06 -1.88 0.16 0.08
15445.00 5.23 -0.98 1.06 1.18 1.06 -2.04 0.00 0.12
15530.00 5.28 -0.80 1.24 1.23 1.06 -1.86 0.18 0.17
15710.00 5.33 -0.80 1.24 1.27 1.06 -1.85 0.19 0.21
15890.00 5.38 -0.69 1.35 1.29 1.06 -1.74 0.30 0.19
16430.00 5.53 -0.51 1.54 1.54 1.14 -1.64 0.40 0.18
16610.00 5.58 -0.97 1.08 1.08 1.17 -2.14 -0.09 0.27
16726.15 5.63 -0.72 1.32 1.32 1.19 -1.92 0.13 0.37
17190.77 5.83 -0.26 1.78 1.78 1.16 -1.42 0.62 0.39
17306.92 5.88 -0.10 1.94 1.94 1.15 -1.25 0.79 0.59
17423.08 5.93 -0.37 1.67 1.67 1.15 -1.52 0.52 0.73
17655.38 6.03 0.05 2.09 2.09 1.19 -1.14 0.90 0.78
17771.54 6.08 -0.03 2.01 2.01 1.20 -1.24 0.80 0.76
17887.69 6.13 0.07 2.11 2.11 1.22 -1.15 0.89 0.82
18003.85 6.18 -0.12 1.92 1.92 1.24 -1.36 0.68 0.75
18120.00 6.23 0.05 2.09 2.09 1.24 -1.19 0.85 0.75
18332.86 6.28 -0.26 1.78 1.78 1.23 -1.49 0.55 0.71
18545.71 6.33 -0.03 2.01 2.01 1.21 -1.24 0.80 0.71
18971.43 6.43 -0.19 1.85 1.85 1.17 -1.36 0.68 0.68
19184.29 6.48 -0.20 1.84 1.84 1.16 -1.37 0.67 0.72
19397.14 6.53 -0.21 1.83 1.83 1.16 -1.36 0.68 0.65
19610.00 6.58 -0.15 1.89 1.89 1.15 -1.29 0.75 0.60
20390.00 6.83 -0.39 1.65 1.65 1.19 -1.58 0.46 0.60
20702.00 6.93 -0.41 1.63 1.63 1.21 -1.62 0.42 0.54
20858.00 6.98 -0.13 1.91 1.91 1.22 -1.36 0.69 0.49
21014.00 7.03 -0.44 1.60 1.60 1.23 -1.67 0.37 0.51
21170.00 7.08 -0.30 1.74 1.74 1.22 -1.52 0.52 0.55
21390.00 7.13 -0.25 1.79 1.79 1.22 -1.48 0.57 0.56
21660.00 7.20 -0.23 1.82 1.82 1.22 -1.44 0.60 0.67
22886.67 7.60 -0.17 1.87 1.87 1.11 -1.28 0.76 0.75
23040.00 7.65 -0.01 2.03 2.03 1.13 -1.14 0.90 0.83
23346.67 7.75 0.00 2.04 2.04 1.14 -1.14 0.90 0.84
23500.00 7.80 0.03 2.07 2.07 1.10 -1.07 0.97 0.80
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Cal yr BP

Depth (mbsf)

G. truncatulinoides 
5180

G. truncatulinoides 
5i80  (normalised)

Smoothed G. 
truncatulinoides 6I80  
(normalised)

5180  (GIV effect)

G. truncatulinoides 
A6180 (5i80  - GIV 
effect)

G. truncatulinoides 
A5i80  (normalised)

Smoothed G. 
truncatulinoides A5180  
(normalised)
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Cal yr BP

Depth (mbsf)

G. truncatulinoides 
5I80

G. truncatulinoides 
8 I80  (normalised)

Smoothed G. 
truncatulinoides 5I80  
(normalised)

5180  (GIV effect)

G. truncatulinoides 
A5180 (8I80  - GIV 
effect)

G. truncatulinoides 
A5180  (normalised)

Smoothed G. 
truncatulinoides A5180  
(normalised)
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