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Abstract

Computer simulations of the various phases of ice have been carried out using po

tential methods mid density functional theory. Plane wave DFT and subsequent 

Wamiier transformations of the Kohn-Sham orbitals were used to obtain highly 

localised orbitals, which were treated as molecular orbitals in the calculation of 

molecular multipoles. Using these multipoles it has been shown that the energy dif

ferences, calculated using DFT, between different proton topologies of ice VII and 

Ih are reproduced when the interaction electrostatic potential energy is calculated 

up to terms in (1 / r 6) and thus that the driving force for proton ordering is electro

static. Armed with this knowledge, successful blind predictions, which have been 

experimentally verified, of the proton ordered forms of ice V and XII (ices XIII and 

XIV respectively) have been made using plane wave DFT.

The recently developed TIP6P potential has been modified so as to reproduce the 

correct structure for ice XI, the proton ordered form of ice Ih, and to reproduce the 

DFT energy differences between different hydrogen bonding topologies. Total energy 

calculations, using this potential, show that the surface energy depends strongly 

on the hydrogen bond topology exposed at the surface. In particular surfaces on 

which under-coordinated protons are clustered have high energies. Monte Carlo 

calculations have shown that the hydrogen bond topology adopted by ice, both at 

the surface and in the bulk, depends on the temperature.

A comparison of the structures that are possible to make out of silica and ice 

has been undertaken in the hope that new ice and silica phases can be identified. 

This comparison is possible because both silica and water form the backbones of 

4-connected nets. DFT calculations have shown that the energy maps of the various 

four connec ted nets are very similar for both structures, with any differences arising 

because of the greater flexibility of the O-Si-O angle in silica. Furthermore, this 

analysis has highlighted a number of potential new ice phases and led to the proposal 

of a synthetic route to a new clathrate based on the zeolite framework SGT.
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Chapter 1

Introduction - Ice in nature

Water is a fascinating material, the study of which dates back to the ancient Greeks. 

Its abundance on the planet is the reason that there is life and the Earth’s weather 

is largely a consequence of the coexistence of gaseous, liquid and solid water in the 

atmosphere. Water is also the most common solvent in chemistry and the hydrogen 

bonds that hold the molecules in this liquid together have the same physical origin 

as the forces that hold together the strands in the DNA double helix.

Solid water, ice, is arguably as interesting as the liquid and is unique amongst 

crystalline materials as it is of interest to a community of scientists which includes 

physicists, chemists, geologists, astronomers, engineers and meteorologists [1]. In 

the sections that follow, a brief survey of the importance of ice in the universe 

is undertaken and a description of the contribution that theory can make to an 

understanding of the role of ice in these disparate roles is provided.

1.1 Ice in rivers and lakes

In winter, the surfaces of many rivers and lakes become frozen, while the water 

underneath the ice remains in the liquid state. This occurs because water with 

its free surface at 0°C is stable against convection, because of its maximum in 

density at 4°C, and because ice is less dense than water. The poly crystalline nature
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of the ice that forms has been classified by Michel and Ramseier [2]. They first 

distinguish between the primary layer that forms first, the secondary layer which 

grows underneath the primary layer and the superimposed ice that forms from water 

that floods over the top of the frozen lake or from snow that falls on the surface. 

The three types of primary ice are

•  P i ice - The surface formed by this ice is composed of large platelike grains 

which all have their c-axis oriented perpendicular to the surface but their a- 

axis randomly oriented within the plane. This is the the type of ice that forms 

slowly on still water

•  P2 ice - This ice has a more complex granular structure with needle shaped 

crystals as well as platelets. It is formed when the temperature gradients are 

larger because more crystals are nucleated.

•  P3 ice - This ice forms when the surface is agitated by wind or flow. The 

crystals that form may be needles or platelets and once they form they remain 

in suspension and form a thick layer of slush. This slush can freeze solid 

forming an ice which has random orientations for all its constituent grains.

•  P4 ice - Snow falling on a lake can trigger nucleation and produce an ice sheet 

that is composed of small randomly oriented grains.

Secondary ice grows downwards from the primary ice in long columnar crystals, 

which get larger in width and fewer in number as they grow downwards. The 

structure of the secondary ice is strongly dependent on the nature of the primary 

ice which it grows from and can be classified as one of three types:

•  SI ice - This has the c-axis of all the crystals approximately vertical and forms 

naturally under PI ice.

•  S2 ice - This has the c-axis all lying in the horizontal plane with random 

orientations and forms from P2, P3 or P4 ice.
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•  S3 ice - This is like C2 but the c-axis have a preferred direction in the horizontal 

plane.

It is well established in the theory of crystal growth [3] that crystals grown over 

short timescales adopt morphologies which maximise the surface area of the slowest 

growing faces. Over longer timescales however the crystal converts to a morphology 

which minimises the total surface energy. The morphology which minimises the 

surface energy can now be calculated with relative ease [3]. Furthermore, recent 

work [4] has shown that kinetic Monte Carlo approaches can be used to calculate 

the morphology of crystals grown under kinetic control. Similar simulations for ice 

could help in the understanding of under what conditions PI and P2 ice form.

1.2 Snow and Glaciers

Snowfalls that cover landscapes are composed of ice crystals, air and sometimes 

water and, when it first falls, is typically not very dense. As it lies on the surface 

of the earth however it densifies, eventually forming firn, which is solid ice with 

pores. This increase in density occurs through complex chemical processes akin 

to the sintering of ceramic materials. These processes are driven by the desire to 

reduce the combined ice-vapour and grain-boundary surface energy and may occur 

through mass transfer by diffusion in the surface layer, through the vapour or along 

the grain-boundary. Although early parts of this densification take place in snow 

just lying on the surface, later processes require pressure to occur and take place 

because of the weight of snow cover above. This stage of densification is interesting 

because if the stresses are kept low it can be treated like a normal solid, but if the 

compressive stress exceeds a certain limit the snow undergoes a large irreversible 

change in volume and transforms into a much more compact state with different 

properties.

Once snow has accumulated over a large number of years it forms glaciers which 

can sculpt landscapes through erosive processes. The ice in these glaciers flows over
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the landscapes through complex mechanisms which involve both the plastic deforma

tion of single crystals and deformation along grain boundaries in the polycrystalline 

glacier. The plastic deformation of single crystals is a potential area where simu

lation could provide understanding as it occurs through the motion of hue defects 

within the bulk, which have been studied in MgO and zeolite A using computer 

simulation [5]. In ice the motion of these line defects is affected by the local proton 

topology about the defect as the proton topology [6, 7] must re-order in order for 

the defect to be able to move through the crystal without the formation of further 

defects.

1.3 Ice in the atmosphere

Ice, present in the atmosphere in clouds and in the boundary layer in ice sheets and 

glaciers can provide surfaces for heterogenous catalysis [8] and also has a critical 

role in the physics of clouds and thus the production of weather [9j. A cloud is 

formed when moist air rises in the atmosphere and cools adiabatically, resulting in 

supersaturated water vapour and condensation of water droplets, typically 10 /im in 

diameter. These droplets are so stable that they do not coalesce, fall out of the cloud 

or freeze above about —40°C. However, freezing is commonly triggered by other 

nuclei present in the air and may occur either by the freezing of a droplet or by the 

formation of ice from water vapour. Once frozen the fact that ice has a lower vapour 

pressure than water means that the ice crystals grow by vapour transfer from the 

droplets, eventually becoming heavy enough to precipitate from the cloud and fall to 

the earth as snow or rain. The ice crystals grown from vapour in these clouds have 

a wide variety of different shapes ranging from plate like crystals to prisms, needles 

and beautiful six pointed snow flakes, and again their growth could be studied using 

computer simulations. Furthermore, an important question to meteorologists is the 

nature of ice forming nuclei in clouds and whether the concentrations of these may 

be affected by pollution or controlled by scattering nuclei from aircrafts, which is
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also something that could potentially be investigated with the aid of simulation.

Higher in the atmosphere, in the upper troposphere and tropopause, clouds can 

be formed by the direct condensation of ice crystals from water vapour. Interaction 

of gas-phase species with these clouds has the potential to both promote heteroge

nous chemistry and to scavenge semi-volatile gas-phase species. Furthermore, over 

the poles, during the winter, polar stratospheric clouds (PSCs) can form which have 

highly complex compositions but have been shown to contain a large quantities of 

ice. These clouds can act as catalysts for the processes which are involved of the 

depletion of the ozone layer [10]. The importance of these processes was highlighted 

by the award of the 1995 Nobel Prize for chemistry to P. J. Crutzen, M. J. Molina 

and F. Sherwood Rowland.

1.4 Ice in space

When astronomers refer to ice they are referring not just to solid water but to 

complex mixtures of volatile compounds such as ammonia, carbon monoxide, carbon 

dioxide, methane and nitrogen, which are common in the low-temperature regions 

of the Solar System and are also believed to be constituents of the interstellar dust

[1]. The largest quantities of ice in the Solar System are found in the moons of the 

planets from Jupiter outwards, which have densities that are far smaller than the 

Earth’s moon and are as such believed to be composed of ice together with a small 

amount of silicate rock [11]. It is believed these planets formed by the aggregation 

of material in the nebula that initially surrounded each of the planets and that the 

volatile materials, which make up these planets would only condense in the cooler 

parts of the Solar System - i.e. those parts at a large distance from the sun. The 

moons formed in this way would initially consist of a homogenous mixture of ice 

and rock, which for the larger of these planets, slowly evolved into a planet with 

a rocky core surrounded by ice - the temperature required to undergo this process 

being provided through tidal friction as the rotation of the satellite is brought into
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synchronism with its orbital motion so that the same face is presented to the planet 

at all times.

Modelling the internal structure and temperature distribution of moons com

posed of ice and rock is fundamentally dependent on the the properties of ice, ice 

mixtures or clathrates which are present in the unusual conditions present in these 

bodies [1]. It is possible to establish the pressure in the interior of these planets by 

modelling them as uniform spherical bodies and thus to use lab based experiments 

on ice and clathrates to obtain information on what will be present at the deep 

parts of these planets. For large bodies an analysis of this sort [1] shows that at the 

centre of the planet one is well into the pressure regime when ice VII becomes the 

most stable ice phase. Thus one would expect the core of the planet to be composed 

of ice VII, while at the surface ice Ih would be dominant. In between these two 

extremes all the lower pressure ice phases would be expected to be observed and the 

coexistence of all these phases would be expected to have interesting geophysical 

effects, which may cause the fracturing of the surface.

In the initial condensation of these ice planets the temperature would have been 

so low that amorphous ice would have grown [1]. This would have subsequently 

converted to ice Ic with the release of considerable heat. Ice Ic is metastable so 

would it eventually undergo further phase transitions which would also release heat, 

all of which would greatly effect the heat balance of the evolving moon. It is thus 

important to understand the enthalpy of transition between the various ice phases in 

order to understand the evolution of these planets. It is also important to understand 

the mechanical properties of the various ice phases as the heat generated by the 

phase transitions may cause internal convection and the extrusion of ice from the 

interior of the planet to the exterior in volcanic-type processes. The likelihood of 

these processes and their rate is going to be controlled by the rate at which the ice 

can flow and convert from one phase to another.

Finally, comets are believed to be composed of an aggregate of frozen gasses
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and stony material [1]. These entities have a highly eccentric orbit about the sun, 

spending the majority of their time at great distances from it. For short periods of 

time however they become visible as they come near to the sun and get heated by 

solar radiation, which causes then to emit vapours and dust. Comets form at low 

temperatures and as such the ice within them, when they are initially formed, is 

expected to be amorphous. An interesting question is thus: how much does their 

interior become consolidated or transformed to ice Ic, ice Ih or clathrate hydrates?

1.5 Clathrates Hydrates

Clathrate hydrate materials consist of a three dimensional framework of hydrogen 

bonded water molecules within which are incorporated small numbers of relatively 

inert “guest” molecules, like 0 2, H2, N2, C 0 2, CH4, H2S, Ar, Kr, Xe and some 

hydrocarbons [12]. These “compounds” are not formed by chemical reactions, be

cause there is no chemical interaction between the framework and guest, but instead 

are formed during first order phase transitions. As already mentioned clathrate hy

drates occur in the universe, where there are mixtures of volatile gasses and water. 

In particular clathrate hydrates are believed to be present in the outer parts of 

proto-planetary nebulae and it has been suggested that they are responsible for the 

volatile enrichment, with respect to the Solar abundances, observed in the four gi

ant planets of the Solar System [13]. It is believed that near where these planets 

were later formed volatiles were trapped in the form of hydrates and incorporated 

into planetesimals, which are the smallest bodies that can be attracted into a pro

toplanet’s feeding zone by the force of gravity. Clathrate hydrates are still present 

in the modern day Solar System, one of the most striking examples being, in the 

southern parts of Saturn’s moon Enceladus where there is geyser activity which 

is believed to occur as a result of carbon dioxide, methane and nitrogen being re

leased from clathrate hydrates, which have been exposed to the vacuum of space by 

fractures in the surface of the planet [14].
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Hydrocarbon clathrate hydrates are also found on Earth in the permafrost re

gions and on the seafloor. These structures are believed contain significant amounts 

of methane and as such may be a future energy source. Of greater concern is the 

fact that, if these compounds were to decompose they would release vast quantities 

of methane into the atmosphere with atmospherically devastating consequences, as 

CH4 is a greenhouse gas. However, C 0 2, another greenhouse gas, forms a hydrate 

that is potentially more stable than methane hydrate, which suggests that clathrates 

could be used to capture C 0 2 and store it in a solid form that could be disposed of 

in a landfill site [15].

Ice’s importance in the universe is unquestionable and, as the previous sections 

have highlighted, there is a need for a better understanding of the surface structure of 

ice, the mechanisms by which ice undergoes its phase transitions and the processes by 

which ice deforms and flows. Computer simulation provides tools that will aid in the 

understanding of all these phenomena and can thus greatly enrich our understanding 

of phenomena ranging from critical reactions in Earth’s atmosphere to the processes 

which took place in the birth of the Solar System.
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Chapter 2

The Phases o f Ice

Water and ice have countless anomalous properties, which include: its expansion 

on freezing, its maximum in its density at ~  3.5 °C and its very high dielectric 

constant. Furthermore, ice has a complex phase diagram with at least 15 solid 

crystalline phases. What is most remarkable about water though is that all this 

complexity arises from molecules that consist of only two hydrogen atoms and one 

oxygen. Although these remarkable properties may be attributed to the fact that 

water molecules form hydrogen bonds this observation does not do justice to the 

quantity of research [1 , 2, 3, 4] into water and ice’s structure and properties. What 

it does though is give a starting point from which a more profound understanding 

can be obtained.

2.1 Hydrogen bonds and the structure of ice

In all known ice phases, every oxygen atom sits at the centre of a tetrahedron of 

hydrogen bonds. Furthermore, in all but ice X (the phase formed at the highest 

experimentally attainable pressures) the molecular nature of the water molecules is 

retained - meaning that on the hydrogen bonds the hydrogen atom does not lie on 

the centre of the bond and that about one oxygen two of the hydrogen atoms are 

displaced towards the central oxygen and two displaced away. This arrangement is
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shown schematically in figure 2 .1 :. L,LI
,L I h 1
L L I,

Figure 2.1: Diagram showing schematically one of the Bernal-Fowler allowed hy
drogen bonding topologies. Each oxygen atom donates and accepts two hydrogen 
bonds.

Any structure of ice may be thought of as a 4 connected net with the oxygen 

atoms lying on the vertices of the net and the hydrogen atoms lying on the edges. 

This is much like SiC>2 [5] which can be thought of as a net of four connected silicon 

atoms. Unlike silica however the bonds holding together oxygen atoms in ice are 

hydrogen bonds, which are far weaker than the covalent Si-O-Si bonds that hold 

silica together.

Another important difference between the structure of ice and that of silica is 

the fact that the hydrogen atoms do not lie on the centre of the hydrogen bonds (the 

oxygen atoms lie equidistant from the two silicas that make up the Si-O-Si bond). 

Thus in x-ray and neutron diffraction studies of certain ice phases one observes 4 

possible hydrogen positions for each oxygen atom within the structure. Each of 

these hydrogen positions is assigned an occupancy of one half so that the correct 

overall stoichiometry is retained but the hydrogen bonding disorder is described. 

Bernal and Fowler [1 ] argued that there were only two constraints on the hydrogen 

positions and these constraints have been dubbed the ice rules:

1 . There is only one hydrogen atom per bond.
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2. There are only two hydrogen atoms adjacent to each oxygen.

Pauling [6 ] hypothesized that “under ordinary conditions the interaction of non- 

adjacent molecules is not such as to stabilize any one of the many configurations 

satisfying the above ice rules with reference to the others.” From this approximation 

he then estimated the residual entropy of any ice phase by noting that there are 

6n possible arrangements for all the water molecules (if Bernal-Fowler rule 1 is 

ignored). Each bond within these possible arrangements will then have one of four 

possible arrangements, two hydrogen atoms on it, no hydrogen atoms on it and two 

arrangements with one hydrogen atom on it. As such there is a probability of |  that 

each bond is correctly formed. Thus the total number of Bernal-Fowler rule obeying 

allowed ice configurations, and hence the residual entropy, are given by:

2.2 The phase diagram of ice

As already mentioned ice exists in 15 known crystalline forms. Furthermore, it may

also have one of a number of different solid amorphous forms [2 ] and can form solid

hydrates when crystallised in the presence of small gas molecules [7]. The phase 

diagram is shown in figure 2.2. Several metastable phases of ice are known that are 

not included on this phase diagram (Ic, IV, IX, XII, XIII and XIV) [2].

One of the most important features in the phase diagram is the slope dT/dp  of 

the line representing the equilibrium between two phases, which in classical thermo

dynamics is given by the Clausius-Clapeyron equation [8 ]:

^  =  —  (2.2)
d r  A V  v ’

Where A S  is the difference in the entropies of the two phases and AV is the 

differences between the volumes. On the phase diagram for some of the phase
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Figure 2.2: The phase diagram of water ice (copied from [2]). Dotted lines show 
phase boundaries that have been extrapolated

boundaries the boundary line is almost vertical (eg. Ice V —► VI), suggesting that 

A S  is zero for these transitions. Given that the entropy of any given ice phase can 

be thought of as consisting of two components, the vibrational entropy (which is the 

smaller of the two contributions) and the contribution due to proton disorder, these 

vertical phase boundaries can be understood to result from transitions in which there 

has been no loss of proton disorder. For any sloped boundaries meanwhile, there is 

either a reversion to a proton disordered solid as one crosses the phase boundary or 

a loss of proton disorder.

Whether a phase is proton ordered or disordered provides a very useful way of 

classifying the known ice phases. In fact, the majority of proton ordered phases 

have a corresponding proton disordered phase as is shown in table 2.1. These or

dered and disordered phases have the same underlying oxygen network but different 

arrangements of hydrogen atoms - in the ordered form the arrangement of hydrogen
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Proton disordered form Proton ordered form
Ice Ih Ice XI

- Ice II
Ice III Ice IX
Ice IV -

Ice V Ice XIII
Ice VI -

Ice VII Ice VIII
Ice VII Ice XIV

Table 2.1: The known ice disordered ice phases and their corresponding ordered 
phases.

atoms is periodically repeated throughout the structure.

Phase transitions in ice can be classified as either those that change the oxygen 

network or those that do not change the oxygen network but result in the hydrogen 

positions becoming ordered. These two types of transition are dealt with in more 

depth in the next few sections.

2.3 Order-disorder phase transitions

When one applies an electric field to a disordered phase of ice 3 distinct processes 

occur [2 ]:

1 . The individual molecules are polarised by the field.

2. The ice is polarised by the reorientation of molecules or bonds.

3. If suitable electrodes are present a current flows through the ice.

The first of these phenomena involves displacement of electrons and small dis

tortions of the nuclear positions. All materials exhibit this sort of response to an 

electric field. These second two effects are more interesting however and are due to 

structural features that are unique to ice. Any current one observes in ice is not due 

to the motion of electrons through the system, but is instead due to the motion of 

protons. It is difficult to comprehend how this may occur in ice because the protons
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are bound by relatively strong hydrogen bonds to their lattice sites. Furthermore, 

the only way to change the proton topology and maintain a structure that obeys 

the Bernal-Fowler rules is to reverse the directions of all the hydrogen bonds in a 

6 -membered ring [2]. This process would have a huge activation barrier however and 

would also not change the polarisation of the ice sample and thus not explain the 

observed polarisation of the lattice that occurs when one applies an electric field.

The protonic conductivity of ice is thus attributed to the motion of hydrogenic 

defects through the lattice [2]. There are four types of hydrogenic defect - the 

two protonic defects OH-  and H3 0 +, the Bjerrum D-defect, which consists of two 

hydrogen atoms on a hydrogen bond, and the Bjerrum L-defect, no hydrogen atoms 

on a hydrogen bond. These defects can move through the lattice and thus give 

rise to the observed conductivity. Furthermore, as they move about the hydrogen 

bonding topology will change, which explains how the ice can be polarised by the 

reorientation of molecules.

Ice not in an electric field will also contain these defects but now rather than 

moving about in a correlated way they move randomly about the lattice changing 

the hydrogen bonding topology as they go. The hydrogen bonding topology of a 

disordered ice phase is thus not a constant

At low temperatures some ice phases (eg. ice VII) will no longer show polarisa

tion by the reorientation of molecules or bonds on application of an electric field. 

This suggests that at these low temperatures the hydrogen bond topology becomes 

locked in. Part of the reason for this is that at low temperatures there is not the 

energy to sustain the Bjerrum defects but there is also a thermodynamic reason for 

this phenomenon. The third law of thermodynamics states that for any material 

with a non degenerate lowest energy structure the entropy at 0 K is 0. Further

more, statistical mechanics shows that, in the microcanonical ensemble, the entropy 

is equal to the logarithm of the weight function - i.e. it is related to the number 

of states the system may occupy. As already discussed in section 2.1, Pauling [6 ]
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showed that because there are a large number of hydrogen bonding configurations 

which satisfy the Bernal-Fowler ice rules ice has a residual entropy. By the third law 

though the system must not be able to access all these different hydrogen bonding 

topologies at low temperatures unless they all have the same energy - in other words 

at low temperatures there must be some phase transition which removes the entropy 

due to proton disorder.

Computer simulations [9, 10] have shown that different proton topologies, of a 

given oxygen network, are not degenerate and hence that proton disorder arises 

because there is a Boltzmann distribution of hydrogen bonding topologies. At low 

temperatures one would expect only the lowest energy hydrogen bonding topology 

will be energetically accessible, which will result in the required loss of proton dis

order. This is precisely what is observed in the proton ordering phase transitions 

highlighted in table 2.1. So for instance for ice VII the structure of ice VIII has the 

same oxygen network as ice VII but now the hydrogen atoms axe all locked into one 

topology. Currently there are 5 known proton ordering phase transitions and based 

on the structure of the phase diagram it is believed that it should be possible to 

isolate a proton ordered form of ice VI.

2.3.1 Graph Invariants

A unique, and somewhat overlooked, method for testing any water potential or 

quantum mechanical recipe is to see if it correctly predicts the structure of the proton 

ordered forms of ice phases. One could simulate these transitions directly using low 

temperature Monte Carlo simulations, which exploit some proton topology changing 

move (like the method advocated by Rick [11]), and start from a disordered proton 

topology. This disordered topology would then change to an ordered one over the 

course of the simulation. A simulation like this would be computationally expensive 

however and is, as such, not commonly advocated in the literature [9, 10]. Instead 

theorists assume that it will be possible to describe the structure of the ordered form
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using the unit cell of the disordered form. Using this assumption, the problem then 

becomes one of enumerating all symmetry distinct structures of this small cell and 

calculating their energies. The hydrogen bond topology with the lowest energy will, 

most likely, correspond to the structure of the ordered form.

This enumeration of all symmetry distinct topologies for a given unit cell is a far 

from simple problem. Until recently it was undertaken by determining ail hydrogen 

bonding topologies allowed by the Bernal-Fowler rules and examining the resulting 

structures by eye to identify identical topologies [12]. Recently a new methodology 

for enumerating hydrogen bonding topologies has been developed by Kuo et al. 

[9, 13, 14]. This method starts by recognising that any hydrogen topology can 

be represented by a diagraph, i.e. a graph in which all the vertices of the graph 

(oxygen atoms) are linked by “bonds” which have a direction (in the case of ice from 

hydrogen bond donor to acceptor). If one numbers the oxygen atoms in the unit 

cell, one can then describe the hydrogen bonding topology using a list of pairs of 

ordered “oxygen numbers” (the order representing the direction).

The difference between a graph and a diagraph is simply that in a diagraph the 

bonds have a direction. Thus for any graph with N bonds there are 2N possible 

diagraphs that would exist if the direction of bonds did matter (as each bond can 

point in two possible ways). Rather than specify all these diagraphs manually it is 

useful, for both enumeration and storage purposes, to define one particular diagraph 

as the canonical orientation. Other diagraphs are then represented by binary strings 

in which each bit, or bond variable in the notation of Kuo et al., refers to whether 

or not a particular bond points in the same direction in the diagraph of interest and 

the canonical orientation. Enumerating all the possible diagraphs of an underlying 

graph in this way will always give hydrogen bonding topologies that obey Bernal 

and Fowler’s requirement that every hydrogen bond have one hydrogen. However, 

it neglects Bernal and Fowler’s requirement that each oxygen donates and accepts 

two hydrogen atoms. Nevertheless this method of specifying hydrogen bonding
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topologies is invaluable.

Kuo et al. [9, 13, 14] have exploited the representation of hydrogen bond topolo

gies as diagraphs further in order to distinguish symmetry distinct hydrogen bonding 

topologies. They showed that if one generated the canonical orientation in such a 

way that it belonged to a very high symmetry space group one could apply a pro

jection operator, of the totally symmetric representation of the group, to the bond 

variables and generate an even more compact representation of the hydrogen bond

ing topologies. These “graph invariants” are given by:

The order of these invariants is the number of bond variables used in their gen

eration and this goes from 1 to the number of bonds in the unit cell. The great 

advantage of this representation is the ease with which structures can be compared 

- if any structures have the same values for the invariants then they are symmetri

cally identical. There are as many invariants for a structure as there are hydrogen 

bonds but one need not generate all the possible invariants because two symmetri

cally distinct structures will have different values for their second order invariants, 

which renders the third and higher order invariants redundant.

Kuo et al. [9], based on earlier work which suggested that the energy of an oxygen 

topology can be fitted to a quantity that describes the local geometry, showed that 

the total energy can be fitted to a linear combination of the graph invariants. Unlike 

prior work though, this sum can be timed so that longer ranged structural features 

can be described. However, in all the phase transitions they have studied (ice Ih[9], 

ice VII [9, 15] and ice III [16]) the variation of total energy with proton topology is 

adequately described by invariants that describe the relative orientations of bonds 

separated by, at most, a single hydrogen bond.

(2.3)
a
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2.4 Classifying Oxygen Nets

As already discussed, the oxygen atoms in an ice structure sit on tetrahedral sites 

connected to four other oxygen atoms via hydrogen bonds. This is analogous to the 

situation in siliceous and zeolitic structures but oxygen atoms replace the silicon and 

aluminium atoms, so that the Si-O-Si, Al-O-Si and Al-O-Al bonds are replaced by 

hydrogen bonds. There are many more zeolitic structures than there are ice phases 

and it has proved useful to classify the various silica structures using language from 

the theory of 4-connected nets [17]. A 3-dimensional net can be represented by a 

graph which lists what vertices (oxygen atoms in the case of ice) are linked together 

by edges (hydrogen bonds). However, there are multiple ways one can number the 

vertices and edges and as such multiple ways that the topology of the net can be 

described. To get round this problem, it is useful to introduce the Schlafli symbol 

and coordination sequence which provide a partial characterisation of the topology 

of a net [5]. These are discussed in more detail in the sections that follow.

More important than the Schlafli symbol and coordination sequence though is the 

overall symmetry of the net. Prom crystallography it is known that any 3D periodic 

structure must belong to one of the 230 space groups. Furthermore, if one knows 

the symmetry of the net it is possible to show that vertices and edges lie on points 

that are symmetrically noil-distinct. As such it is possible to specify the network 

by specifying the coordinates of a small number of the vertices and generating the 

remaining vertex positions using the symmetry of the unit cell. Obviously, what 

vertices the edges connect drop out of this treatment and symmetrically equivalent 

vertices will have the same Schlafli symbol and coordination sequence due to the 

symmetry of the cell. This allows networks to be specified simply - for the clathrate 

structure sll (see section 2.6) it is possible to show that there are only 3 symmetry 

distinct vertices amongst the 136 vertices in the unit cell.

39



2.4.1 Schlafli Symbols

As already mentioned a 3-dimensional infinite net can be considered as a infinite 

periodic graph [5]. In graph theory a path is defined as continuous sequences of edges 

and a circuit is defined as a closed path. It proves useful, in the context of discussing 

nets, to introduce the notion of a ring. In any 4-connected net the 4 edges that meet 

at a vertex define six angles and for an angle at vertex, A, defined by edges 1 and 2 

there are an infinite number of circuits starting at A that begin by traversing edge 

1 and finish by traversing edge 2 . The shortest such circuit associated with each 

angle is termed a ring and so at each vertex there are 6  such rings, corresponding to 

each of the six angles at the vertex. The size of each of these rings, specified by the 

number of edges in them, is termed the Schlafli symbol of the vertex. Where there 

are multiple paths of the same length that one can take though the structure the 

number of equivalent length paths is specified by a subscript in the Schlafli symbol.

A net in which all the symmetry non-distinct vertexes have Schlafli symbols 

for which all the subscripts of the ring sizes are 1 is termed a simple tiling. The 

structures of these simple tilings can be decomposed into a space-filling set of face- 

sharing polyhedral cages, so called polyhedral tiles. The shapes of these polyhedral 

tiles can then be described using a symbol that describes the number of faces with a 

particular number of edges, so for instance a tetrahedron is a 34 polyhedron as all 4 

faces have 3 edges. This description of the net as a number of linked polyhedra has 

proved extremely useful - Zwijnenburg et al. [18] has shown that, for simple tilings, 

the energy of a silica phase is a function of the average and standard deviation 

of the sizes of the faces of the constituent polyhedra. Furthermore, thinking of 

nets as linked polyhedra proves useful in visualising the nets and determining the 

relationships between similar nets.
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2.4.2 Coordination Sequences

The second way to describe the topology of the net is to use the coordination se

quence of each symmetry distinct vertex. The first number in the coordination 

sequence is the number of vertices attached to the central vertex. The second is 

then the number of vertices for which the shortest path back to the central vertex 

consists of 2  edges, third is the number of vertices for which the shortest path back 

to the central vertex consists of 3 edges and so on. In general the kth number in this 

sequence is the number of vertices for which the shortest path back to the central 

vertex consists of k edges and the coordination sequence is usually given up to k = 1 0 . 

The coordination sequence is useful as, for some nets (eg diamond and lonsdaleite), 

the Schlafli symbols are identical even though the two nets axe not the same.

2.5 The Phases of ice

Re-examining the phase diagram in figure 2.2 it is possible to see that structure 

of the oxygen network is chiefly controlled by the pressure applied to the system. 

Ice Ih, the form of ice observed at atmospheric pressure, is a very open structure, 

while all other ice phases have denser packings of the water molecules. When ice is 

compressed the hydrogen bonds within it axe shortened, which results in an increase 

in density. However, this shortening of the hydrogen bonds has an energetic cost 

and when this gets too large a phase transition to a structure of higher density 

occurs. In these higher pressure phases the water molecules axe packed more densely 

but the hydrogen bond lengths have similar values to the hydrogen bond lengths 

in ice Ih. This is achieved, for those phases that lie in the centre of the phase 

diagram (II,III,IV,V,XII), by forming a structure in which the oxygen tetrahedra 

axe distorted and the hydrogen bonds axe non-linear. The high pressure phases 

(VI,VII) meanwhile, have structures consisting of interpenetrating nets of water 

molecules and, in the case of ice VII, close contact between non-hydrogen bonded
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oxygen atoms.

In the following sections the structures of the various proton disordered phases 

of ice are discussed. In all cases, except for ice II, the nature of the proton ordered 

form, if known, is discussed in a subsection.

2.5.1 Ice Ih

Ice Ih is isostructural to the rare form of diamond, Lonsdaleite and the dense silica 

phase tridymite [5]. The oxygen network in this structure is shown in figure 2.3(a) 

and its unit cell parameters, oxygen coordinates, Schlafli symbol and coordination 

sequence are given in table 2 .2 .

Ice Ih Hexagonal P 6 3 /mmc a =  4.518 A c =  7.356
Vertices in 4 f 

Schlafli symbol 
Coordination sequence

±(1/3 ,2/3 ,z ; 2/3,1/3,1/2+z), z= l/16  
6 2  6 2  6 2  6 2  6 2  6 2

4 12 25 44 67 96 130 170 214 264

Table 2.2: Structural details for the lonsdaleite net, which is isostructural to the ice 
Ih structure.

(a) Ice Ih (Lonsdaleite Net) (b) Ice Ic (Diamond Net)

Figure 2.3: The structures of ice Ih and ice Ic.

Ice Ih is the most stable phase of ice at atmospheric pressure and as such is the 

most prevalent phase of ice in the atmosphere. Its structure was first studied with 

x-ray diffraction experiments by Dennison [19] and later a structure was proposed 

by Bragg [20]. Barnes [21] later confirmed Bragg’s suggested oxygen positions by 

performing single crystal x-ray diffraction. The locations of the hydrogen atoms
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(namely that they do not lie on the centres of the hydrogen bonds) was only fully 

solved with the advent of neutron diffraction and the experiments of Wollan et al. 

in 1949 [22]. Although Raman spectroscopy [2], prior to this date, had shown that 

the molecules must still be intact in the ice struct me.

2.5.1.1 Ice XI

Ice XI has an orthorhombic Cmc2i structure and is the proton ordered form of ice 

Ih. The transition from ice Ih to ice XI occurs in doped ice Ih, and has never been 

observed in pure ice. Ice XI was first discovered by Kawada [23], who noticed that 

the dielectric permittivity of KOH doped ice became very small below about 70 K 

and that there was evidence of a latent heat, seen as a plateau in the temperature

time graph as the doped ice was warmed through this temperature. More precise 

calorimetric experiments [24, 25] were performed later and it was shown that the 

entropy change associated with the transition was dependent on the level of doping 

and the time taken to anneal the sample below the transition temperature. This 

all suggested that full conversion to ordered ice Ih never occurs and as such the 

entropy change is a function of the degree of conversion achieved. The structure of 

ice XI proved difficult to determine as the experimentally observed structure is a 

mixture of the ice Ih structure and the ice XI structure. The structure was finally 

determined by Line, Whitworth and Jackson et al. [26, 27] and is shown in figure 

2.4.

As shown in figure 2.4 all bonds parallel to the c-axis are oriented in the same 

direction, which means that the ordering is ferroelectric along this axis. In the

(0 0 1 ) layers that lie perpendicular to the c-direction the water molecules are all 

aligned ferroelectrically however adjacent layers are aligned anti-ferroelectrically, so 

that there is no overall dipole along the a and b directions. Adjacent (001) layers 

are displaced in opposite directions in a distortion of the lattice that is allowed by 

symmetry.
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Figure 2.4: The orthorhombic Cmc2i crystal structure of ice XI. The arrows on the 
right indicate the directions of small displacements of the layers.

It has proved very difficult to determine the structure of the ordered form of ice 

XI using theoretical methods. Bjerrum [28, 29] was the first to take on this problem; 

he noted that, within the structure of ice, neighbouring water molecules may take 

one of the four possible orientations shown in figure 2.5. He then suggested that 

the ordered form will have the molecules arranged in such a way that the structure 

has only trails configurations of neighbouring water molecules. In this structure he 

proposed suprafacial repulsions between hydrogen atoms will be minimised.

Figure 2.5: Possible hydrogen bonded dimer configuration in ice Ih

The Bjerrum structure however is not the structure of ice XI - ice XI has only h-cis 

and c-trans configurations of neighbouring water molecules. Furthermore, Buch et 

al. [30] and Hirsch and Ojamae[10] have shown that many of the common interatomic 

potentials predict that Bjerrum’s structure will be lower in energy than the true 

structure of ice XI. This highlights a major deficiency in the ability of these methods 

to predict structure versus energy relationship with any precision. Buch et al [30]

(a) h-cis (b) h-trans (c) c-cis (d) c-trans



believe this deficiency is an overestimation, in these potential models, of the amount 

of short-range repulsion. The observation that led to this conclusion was that an 

increase in the van der Waals cutoff and the electrostatic potential cutoff gives rise to 

a reduction in the difference between the energies of ice XI and Bjerrum’s structure. 

This work has since been revisited by Rick [1 1 ] who, in essence, refined the approach 

of Buch to show that the convergence of the lattice sum depends strongly on the size 

of the potential cutoff (as Buch et al. showed) but demonstrated that the problem 

lies in the electrostatic rather than the van der Waals part of the potential. This is 

perhaps to be expected given that van der Waals interactions have a much steeper 

distance dependence than electrostatic forces.

Kuo et al. [9, 14] have used graph invariants to enumerate all possible proton 

topologies for a 8  molecule unit cell of ice XI. They then used these invariants to 

fit an expression for the dependence of the total energy on the hydrogen bonding 

topology. The total energies were calculated using DFT, which correctly predicts the 

ice XI structure as the lowest energy hydrogen bonding topology. Hirsch and Ojamae

[10] performed calculations on the 16 hypothetical unit cells, obtained by Kuo et 

al. [9, 14], using the local orbital based code, DMol3 with the BLYP functional 

and plane-wave based CASTEP [31] program with the PW91 functional. Again the 

structure of ice XI was found to be lowest energy structure. Finally, Cassasa [32] 

have performed periodic Hartree-Fock theory calculations on Bjerrum’s structure 

and found that the true ice XI structure lies lower in energy.

2.5.2 Ice Ic

Ice Ic, also designated cubic ice, is a metastable variant of ice Ih in which the oxygen 

atoms are arranged in the diamond net and is isostructural with the dense silica 

phase cristobalite. The oxygen network in this structure is shown in figure 2.3(b) 

and its unit cell parameters, oxygen coordinates, Schlafli symbol and coordination 

sequence are given in table 2.3.
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Ice Ic Cubic Fd3m a =  6.358 A
Vertices in 8  a 
Schlafli symbol 

Coordination sequence

± ( 1 / 8 ,1 / 8 ,1 / 8 )
6 2  6 2  6 2  6 2  6 2  6 2

4 12 24 42 64 92 124 162 204 252

Table 2.3: Structural details for the diamond net, which is isostructural to the ice 
Ic structure.

As can be seen from tables 2.3 and 2.2 the Schlafli symbols for lonsdaleite and 

diamond sire the same. In fact the difference between these two nets is only visual- 

isable when one takes the 3rd value in the coordination sequence into account.

Cubic ice was first identified by Konig [33], in experiments on vapour deposited 

ice layers. Later experiments have shown that ice Ih is formed above 150 K, cubic ice 

between about 130 K and 150 K and below 130 K the deposited layer is amorphous 

[34]. Furthermore, if ice II and IX are recovered in liquid nitrogen and subsequently 

warmed they converted to cubic ice at 120-170 K before reverting to ice Ih at about 

200 K [35]. On conversion of ice Ic to ice Ih 13 - 50 J mol- 1  is released [36], there is 

no sharp transition though and ice Ih never converts to ice Ic on cooling, suggesting 

that ice Ic is always metastable. Neutron diffraction has confirmed that cubic ice is 

hydrogen disordered [37] and also that ice Ic is highly defective [38], with numerous 

glide type stacking faults. There is some theoretical evidence that in small clusters 

of ice the structure is that of ice Ic [39] and that ice Ih may nucleate via ice Ic [40] 

and hence that ice Ic may be present in the atmosphere.

2.5.3 Ice II

Ice II is a phase of ice that forms at intermediate pressures - it is unique amongst 

ice phases because it is the only one which is proton ordered at all temperatures. 

It is prepared by compressing ice Ih at -60 to — 80 °C or by decompression of ice V 

at — 30 °C. The structure is shown in figure 2.6 and has the unit cell parameters, 

oxygen coordinates, Schlafli symbol and coordination sequence given in table 2.4:

This structure was determined using neutron diffraction by Kamb et al. [41] and
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Ice II Rhombohedral R3 a =  7.78 A a  =  113.1°
6 at f 

6 at f’ 
Schlafli symbol 

Coordination sequence

±(x,y,z ; z,x,y, ; y,z,x) x=0.5225 y=0.2516 z=0.6707 
±(x,y,z ; z,x,y, ; y,z,x) x=0.0204 y=0.8513 z=0.2681
6 62 6 62 6 84
4 12 29 58 88 124 169 222 280 346 419 500 586

Table 2.4: Structural details for ice II.

Figure 2 .6: The ice II structure in [001] projection. Large grey spheres show oxygen 
positions, while the smaller white ones are the hydrogen positions.

is consistent with the structure inferred from x-ray diffraction [42]. It consists of 

roughly co-planar 6 membered rings connected by a more complex arrangement of 

smaller rings, which no longer allows rings in adjacent layers to be aligned to form 

hexagonal channels like in ice Ih. In the net there are two distinct vertex types and 

hence two different environments for water molecules, in which the water molecules 

have HOH angles of 103.2° and 107.6°. Because there are two non-equivalent water 

molecules there are four non-equivalent hydrogen bonds, which is reflected in the 

infrared spectrum, which shows the OH stretch is split into four [43].

The structure of ice II is similar to that of helium hydrate [44], which contains 

up to two helium atoms per unit cell. These helium atoms are incorporated at sites 

between the hexagonal rings of water molecules and act to stabilise ice II.

2.5 .4  Ice III

Ice III is one of a number of phases of similar density, in the central region of the 

phase diagram, that are stable over only a narrow range of conditions or which 

exist only as metastable phases. All the phases known in this region of the phase
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diagram have very complex packings of similar densities. This is perhaps the most 

likely part of the phase diagram in which new phases of ice will be discovered as 

where structures are simple, as in ice Ih or ice VII, there are considerably fewer 

possible packings with similar densities [2, 5].

Figure 2.7: The positions of the oxygen atoms, white circles, in the ice III structure 
shown in the [1 0 0 ] projection.

Ice III itself is the least dense of the high pressure phases of ice. Its structure, 

which is shown in figure 2.7, was determined by Kamb and Prakash [45], and is 

isostructural with the dense silica phase keatite [5]. The unit cell parameters, oxygen 

coordinates, Schlafli symbol and coordination sequence are given in table 2.5.

Ice IIII Tetragonal P4x2x2 a =  6 . 6 6 6  A c =  6.936 A
Vertices in 4 a 

Schlafli symbol 
Coordination sequence

(0.3926,0.3926,0.0)
5 5 52 72 8 2 8 2

4 12 26 48 76 114 152 206 252 318 382 458 544
Vertices in 8  b 
Schlafli symbol 

Coordination sequence

(0.1092,0.3015,0.2858)
5 7 5 7 5 72

4 12 29 50 82 116 156 202 262 320 395 465 543

Table 2.5: Structural details for ice III.

Dielectric measurements [46] have shown that ice III has a high permittivity 

which is characteristic of proton disorder and that this falls off between -65 and 

—108 °C which suggests that there is a proton ordering transition. However, unlike 

the ordering transitions in other ice phases, the transition in ice III is gradual. This 

gradual ordering is possible because the space group symmetry of the disordered
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form does not require any the hydrogen bonds to have two symmetrically equivalent 

hydrogen positions. As such both the ordered form, ice IX, and the disordered form, 

ice III, have the same space group [47] and gill possibilities between full order and 

full disorder are allowed. What is more, neutron diffraction on ice III suggests that 

there is some residual order at high temperatures [48].

Kuo and Singer have performed graph invariant calculations on the ice III /  

IX transitions and have shown that DFT correctly reproduces the structure of the 

proton ordered form [16].

2.5.5 Ice IV

Ice IV is a metastable form of ice that can be formed from the liquid over most of 

the pressure range where ice III, V or VI would be prevalent, so long as appropriate 

conditions are met or a nucleating agent is present [49, 50].

1 )

Figure 2.8: The oxygen positions, white circles, in ice IV.

The structure of ice IV, as determined by Endgelhardt and Kamb [51], consists of 

one continuous oxygen network but some of the hydrogen bonds pass through rings 

in the network, as shown in figure 2.8. The unit cell parameters, oxygen coordinates, 

Schlafli symbol and coordination sequence are given in table 2 .6 :
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Ice IV Rhombohedral R3c a =  7.60 A a = 70.1°
Vertices in 4 c 

Schlafli symbol 
Coordination sequence

(0.53000,0.53000,0.53000)
62 82 62 82 62 82
4 12 31 65 100 141 193 251 319 402 493 584 679

Vertices in 12 f 
Schlafli symbol 

Coordination sequence

(0.11960,0.73960,0.61090)
6  6 2  6  83 6  8g
4 12 31 65 99 139 191 253 324 402 486 582 683

Table 2.6: Structural details for ice IV.

Ice IV appears to be fully proton disordered [2] and no evidence for a proton 

ordering transition has been observed.

2.5.6 Ice V

Ice V has a very complex structure that contains four membered rings. Structural 

data, as determined by Kamb et al. [52], are given in table 2.7 and the oxygen 

positions are shown in figure 2.9:

Monoclinic A2 /a  a =  9.22 A b =  7.54 A c =  10.35 A 0 = 109.2°
Vertices in 4 e 

Schlafli symbol 
Coordination sequence

(0.25,-0.1847,0)
53 8 2  6  6  9 9
4 12 26 54 92 128 196 236 302 374 466 542 654

Vertices in 8  f 
Schlafli symbol 

Coordination sequence

(0.4629,0.0565,0.1544)
4 6  5 6  52 8 2

4 11 25 56 92 129 189 235 304 384 452 546 651
Vertices in 8  f ’ 
Schlafli symbol 

Coordination sequence

(0.2751,-0.3475,0.2477)
4 6  6  8  8  9
4 11 26 53 93 134 180 245 299 378 460 549 642

Vertices in 8  f  ’ 
Schlafli symbol 

Coordination sequence

(0.3993,0.3596,-0.0146)
4 8  4 8  5 82

4 10 23 50 90 131 177 240 305 379 459 538 636

Table 2.7: Structural details for ice V.

Dielectric measurements indicate that ice V is proton disordered [53].

2.5.6.1 Ice XIII

There was evidence from neutron diffraction [54, 48], Raman spectroscopy [55] and 

calorimetry [56] that partial ordering of ice V occurs at low temperatures. Further-
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Figure 2.9: The oxygen positions, white circles, in ice V. The structure is shown in 
the [0 1 0 ] projection.

more, the rate of ordering is enhanced by doping with KOH but until recently it was 

thought that the third law of thermodynamics could be satisfied by transformation 

of ice V to ice II at low temperatures. Finney and Salzmann [57] however, have 

performed experiments with HC1 doped ice V and shown that at low temperatures 

it undergoes a phase transition to a proton ordered form, ice XIII.

2.5.7 Ice XII

Ice XII is a metastable phase of ice that exists within the region of stability of ice V. 

It was first identified by Lobban et al. [58] who also determined its structure using 

neutron powder diffraction of D2 O. This structure is shown in figure 2.10 with the 

details given in table 2 .8 .

Ice XII Tetragonal I42d a =  8.304 A c =  4.024 A
Vertices in 4 a 
Schlafli symbol 

Coordination sequence

(0 .0 ,0 .0 ,0 .0 )
72 72 72 72 8 4  8 4

4 12 36 6 6  106 148 202 268 338 420 510 600 714
Vertices in 8  d 
Schlafli symbol 

Coordination sequence

(0.3643,0.25,0.125)
7 73 73 73 8  4  8 4

4 12 36 60 102 150 206 262 340 416 508 604 712

Table 2.8: Structural details for ice XII.

Ice XII also forms as an impurity phase in high-density amorphous ice [59]. It 

has a simpler structure them ice V but also slightly higher density. This increased
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Figure 2.10: The oxygen positions, white circles, in ice XII. The structure is shown 
in the [0 0 1 ] projection.

density is achieved by distorting the 0 -0 - 0  angles more than they are distorted in 

ice V rather than forming interpenetrating lattices. The structure appears to be 

fully proton disordered.

2.5.7.1 Ice XIV

Finney and Salzmann [57] have synthesised HC1 doped ice XII and shown that this 

undergoes a phase transition to a proton ordered form at low temperatures. This 

structure however retains some proton disorder as there are partial occupancies on 

particular hydrogen positions.

2.5.8 Ice VII

Ice VII has a structure that consists of two independent interpenetrating ice Ic sub

lattices as shown in figure 2 .1 1 . The structural details are given in table 2.9, Schlafli 

symbols will be as for ice Ic because the structure is composed of two interpenetrating 

ice Ic lattices.
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Ice VII Cubic Pn3m a =  3.344 A
vertices in 2 a (1/4,1/4,1/4)

Table 2.9: Structural details for ice VII.

The structure of ice VII was determined using x-rays by Walrafen et al. [60] 

and using neutrons by Kuhs et al. [61]. In it each oxygen has 8  nearest neighbours 

but is only hydrogen bonded to 4 of these. The hydrogen bonds are longer than 

they are in ice Ih as the presence of the non-bonded neighbours pushes the structure 

apart. The neutron data shows that in ice VII the protons are fully disordered and 

that there is some displacement of oxygen atoms off their sites which seems to be 

dependent on the local hydrogen bonding topology. There are 2 models for this 

distortion [61, 62] but both give rise to unphysical features. Kuo and Klein [15] 

have used DFT to try to understand the structure and have shown that perhaps the 

best model for understanding the lattice distortions is to allow the two sub-lattices 

to displace relative to each other in local regions of the structure.

2.5.8.1 Ice VIII

Wallev et al. [63] showed that the Debye relaxation for ice VII disappeared at 

low temperature and so discovered the ordered form of ice VII, which they named 

ice VIII. The transformation from ice VII to ice VIII is easily achieved unlike the 

transformation from ice Ih to XI and the structure of ice VIII has been determined 

using neutron diffraction [61]. The structure is shown in figure 2 . 1 1  which shows 

that the hydrogen on the two sub-lattices are ferroelectrically ordered in opposite 

senses along the (001) direction. As such the structure is overall antiferroelectric.

The reduction in symmetry in going from ice VII to ice VIII allows a small relative 

displacement of the two sub-lattices in the c-direction, which neutron diffraction has 

shown is of the order of 0.2 A. It is distortions like this that Kuo and Klein [15] 

believe are responsible for the movement of the oxygen atoms off their sites in ice 

VII.
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c

Figure 2.11: The structure of ice VIII, the oxygen atoms of the two interpenetrating 
ice Ic sub-lattices are shown open and shaded. Unlike in ice VII these two sub
lattices are slightly displaced, the shaded is displaced in the negative c-direction 
whilst the open one is displaced in the positive c-direction.

Kuo et al. [9] have used graph theory to investigate the transition of ice VII to 

ice VIII. They have shown that DFT correctly predicts the structure of the proton 

ordered form.

2.5 .8.2 Ice X

Hemley et al. [64] have shown that the 0 -0  bond length in ice VII falls off roughly 

exponentially with increasing pressure and that at 8 GPa the 0 -0  bond length in 

ice VII is the same as that in ice Ih. Similar observations have been made for the 

0 -0  bond length in ice VIII, in this structure it is also possible to investigate the 

0 -H bond length, which in contrast to 0-0 remains stable at 0.972 A [65, 66]. This 

observation shows that as the pressure increases the two distinct sites on wliich a 

hydrogen atom sits in ice VII get closer and closer together. Tliis begs the question 

- at very high pressure do the two sites merge and thus does the hydrogen bond 

become symmetric?

Modelling [67, 68] suggests that at high pressures this phase transition will occur. 

Furthermore, Raman scattering [69] and Brillouin scattering [70] experiments sug

gest features which may indicate the presence of a symmetrical ice phase. However, 

no structural data has yet been attained as it is currently not technically possible 

to do neutron diffraction experiments at such high pressures [2].
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2.5.9 Ice VI

Ice VI consists of two interpenetrating edingtonite (EDI) nets [5], much like ice VII 

consists of two interpenetrating diamond nets, as shown in figure 2.12. The two 

EDI nets however, being more complex than the diamond net, avoid the close non

bonded contacts observed in ice VII. The structural details are given in table 2.10 

[71]:

Ice VI Tetragonal P ^ /n m c  a =  6.181 A c =  5.698 A
Vertices in 2 a 
Schlafli symbol 

Coordination sequence

(0.75,0.25,0.75)
4 2  4 2  8 4  8 4  8 4  8 4

4 8  18 32 52 74 100 128 162 204 244 286 340
Vertices in 8  g 
Schlafli symbol 

Coordination sequence

(0.75,0.5295,0.1339)
4 8 3  4 8 3  42 8 4

4 9 19 35 52 72 100 131 163 201 244 290 340

Table 2.10: Structural details for ice VI.

Figure 2.12: The positions of the oxygen atoms, white circles, in the ice VI structure. 
This structure is shown in the [001] projection.

The structure is disordered but unless the extrapolated phase boundaries with 

ice II and ice VIII meet above OK, there should be a proton ordered form of ice VI

[2 ] but the transition is at a temperature where it is difficult for ordering to occur.

55



Both Singer et al. [72] and Kuo and Kuhs [73] have used graph invariants to attempt 

to predict the structure of the ordered form of ice VI. Their DFT calculations show 

that there are two low energy hydrogen bonding topologies that lie very close in 

energy. However, Salzmann has attempted to determine the structure of the proton 

ordered form of ice VI by doping it with HC1 and has found it to be neither of 

Singer’s low energy structures [74].

2.6 Clathrate and Hydrate Materials

Clathrate hydrate materials have a structure which consists of a network of water 

molecules that contains voids. These voids are then filled with gas phase guest 

molecules like noble gases, diatomics of elements from the first row of the p-block 

and small hydrocarbon molecules and their derivatives [7]. These structures have a 

long scientific history - they were first studied by Davy [75] and Faraday [76] and 

later presented a problem to the Lewis-Sidgwick theory of valence because octet 

theory, which neglects the fact that dispersive forces can bind molecules together in 

a solid, cannot predict or explain why stable molecules would combine to form these 

“molecular compounds.”

The structures of the two basic types of gas hydrates were proposed in 1950 

[77, 78, 79]. These two structures are analogous to the silica clathrasils MEP and 

MTN [5] and their structural data is given in table 2.11.

As can be seen from the Schlafli symbols, both these structures are simple tilings 

- MEP is a tiling of 512 and 51262 polyhedra, while MTN is a tiling of 512 and 51264 

polyhedra. The way these polyhedra pack together in these two structures is shown 

in figure 2.13.

Three further gas hydrates have been discovered - one has a hexagonal structure

[80] and is termed sH; it is isostructural to the clathrasil DOH and is a simple tiling 

of 51268, 435663 and 512 polyhedra. The second is called sT [81], is tetragonal and 

is a simple tiling of 425864 polyhedra. The way the polyhedra pack in these two
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Clathrate s i  (M EP)
Cubic Pm3n a = 11.87 - 12.03 A

Vertices at 6  c 
Schlafli symbol 

Coordination sequence

(0,1/2,1/4)
5 5 5 5 6  6

4 12 26 44 64 98 144 172 222 272
Vertices at 16 i 
Schlafli symbol 

Coordination sequence

(0.1826,0.1826,0.1826)
5 5 5 5 5 5
4 12 24 42 67 95 133 177 219 277

Vertices at 24 k 
Schlafli symbol 

Coordination sequence

(0.3098,0.1142,0.0)
5 5 5 5 5 6

4 12 25 42 69 100 129 176 229 277
Clathrate s l l  (M TN)

Cubic Fd3 m a =  17.175 - 17.31 A
Vertices at 8  a 
Schlafli symbol 

Coordination sequence

(1 / 8 ,1 / 8 ,1 / 8 )
5 5 5 5 5 5
4 12 24 36 64 112 132 156 222 264

Vertices at 32 e 
Schlafli symbol 

Coordination sequence

(0.2181,0.2181,0.2181)
5 5 5 5 5 5
4 12 24 39 6 6  103 130 168 216 274

Vertices at 96 g 
Schlafli symbol 

Coordination sequence

(0.0680,0.0680,0.3712)
5 5 5 5 5 6

4 12 25 43 6 8  95 133 177 223 274

Table 2.11: Structural details of the si and sll clathrate structures.

structures is shown in figures 2.14(a) and 2.14(c). The final true clathrate only 

forms when terf-butylamine is used as the guest [82]. It has a unit cell with 156 

water molecules in it and is a simple tiling of 44 54 and 43596273 polyhedra.

The final structure shown in figure 2.14(b) is the way that 4668 polyhedra pack 

together to form the silica structure sodalite. The oxygen positions of HPF6 .6 H2 O 

he on the vertices of the sodalite net [83] but the hydrogen positions are not known, 

so it cannot be stated whether or not this is a true clathrate - it is likely that the 

structure is an anionic guest in a cationic host structure [7].

The 512 polyhedra, is common to both the si and si I structure. It is believed to 

be a favourable structural feature because the 0 -0 - 0  angles within it are between 

108° and 110°. As a result the hydrogen bond network in this cluster does not have 

any large distortions of HOH angles, which would be energetically unfavourable [7]. 

Although it is not possible to form a structure consisting of only 512 polyhedra [5]
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(a) si Clathrate (MEP) (b) sll Clathrate (MTN)

Figure 2.13: Structures of the two most common water clathrates. For clarity all 5 
sided faces are shown in blue, 6 sided faces are shown in green and yellow is used to 
colour the 512 polyhedra.

it is possible to form countless other structures that contain this cage. Jeffrey [7] 

has highlighted 3 such structures, which have been inferred from polyhedral packing, 

but none of these structures has yet been observed. This approach has been justified 

however as recently a new clathrate has been discovered, which is an intergrowth of 

the sH and si I structures [84]. This st ructure was formed when choline hydroxide 

was co-crystallised with tetra-n-propylaminonium fluoride from aqueous solution.

When put under pressure water clathrates can undergo phase transitions to other 

clathrate structures. In general it would seem that clathrates that crystallise in si 

transform as follows [85]:

si -> sll -► sH sO sO’

Whilst those that crystallise in the sll structure transform as follows [85]:

sll sH sT sO 

In these sequences sO and sO’ refer to, so-called, stuffed ice Ih structures. In
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(a) sH Clathrate (DOH) (b) HPF6 hydrate (SOD)

(c) sT Clathrate

Figure 2.14: Structures of the other known water clathrates and hydrates. For 
clarity all 4 sided faces are shown in red, 5 sided faces are shown in blue, 6 sided 
faces are shown in green and yellow is used to colour the 512 polyhedra. n.b. in the 
figure of sH one 512 polyhedra has been excluded to make it clearer.

these structures the guest molecule fills the channels in the ice Ih structure. Other 

stuffed ices have also been observed; in particular helium hydrate and low pressure 

hydrogen hydrate are known to have the water molecules arranged as they would 

be in ice II [86], while at high pressure hydrogen hydrate forms a stuffed ice Ic 

structure, which is much like the ice VII structure with the water molecules in one 

sub-lattice replaced by hydrogen molecules [87].

In clathrate materials the hydrogen atoms are disordered subject to the Bernal- 

Fowler rules. As such, 11011-integer occupancies of hydrogen sites are observed in
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neutron diffraction [88] and there is a dielectric relaxation [89, 90], although in

terestingly the relaxation rate is dependent on the nature of the guest molecules. 

Again, by the third law of thermodynamics one would expect there to be a phase 

transition to a proton ordered form at low temperature and indeed this has been 

observed for clathrates of acetone, trimethyl oxide and tetraliydrofuran when these 

compounds are doped w'ith KOH [91, 92]. However, these transitions are believed to 

be more complex than for the ordering transitions for ice as for lion-spherical guest 

molecules one must take the orientation of the guest molec ule into account [93].

2.7 Modelling Water

From the early days of computer simulation to recent times the study of the static 

and dynamic properties of water molecules in small clusters and condensed phases 

has been a huge area of interest [1,3]. In the following three sec tions a justification 

of the particular methods used in this thesis is providcxl.

2.7.1 Quantum Mechanical Methods

Hartree-Fock calculations on the proton ordering phase transition in ice Ih have 

been carried out bv Cassasa [32]. They have calculated the energies of ice XI and 

Bjerrum’s structure and have found that it the ice XI structure lies lower in energy. 

Density functional methods have also been used and Hirsch and Ojama'jlO], who 

have performed c alc ulations on 16 hypothetic al 8 molecule ice Ih unit cells, using the 

local orbital based code DMol3 (BLYP functional) and the plane-wave based cock' 

CASTEP [31] (PW91 functional) have' shown that both these methods correc tly 

predict, the' struc ture' of ice XI and that both techniques give similar relative energies. 

Kuo ct al. [9. 16, 15] have also used plane wave DFT in all their graph invariant 

work and again found that these techniques predict the correct ordered forms.

Established work in the literature has shown that, although using the LDA 

func tional gives a poor description of the water dimer and liquid water, the GGA
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functionals BLYP and PW91 both reproduce most of the properties of liquid wa

ter equally well [94]. The best description of the properties of liquid water is ob

tained when the RPBE functional (a re-parameterization of PBE [95]) is used [96]. 

Furthermore, both PBE and PW91 give good agreement with experiment for the 

sublimation energy and the volume of ice Ih [97]. Recent work [98], on clusters of 

water molecules ranging in size from dimer to pentamer have shown that many of 

the commonly used density functionals reproduce the MP2 energies of these clusters 

to within 1 kcal mol-1.

2.7.2 Potential Models

There are well over 100 potentials that have been proposed for water [3], the earliest 

was proposed by Bernal and Fowler [1]. It described the water molecule as a rigid 

unit with point charges on the hydrogen atoms and the HOH bisector to describe 

the charge distribution in the gas phase molecule. The van der Waals attraction was 

given by (3/4) Ia 2r~6, where a  is the polarizability and I is the ionisation potential, 

and the short range repulsion was empirically fitted by requiring that all forces be 

equal to zero a when the structure is in its equilibrium geometry. This potential 

was not fitted with computer simulation in mind though and more recent attempts 

to fit water potentials that treat the molecules as rigid bodies were done so that the 

properties of liquid water would be reproduced in computer simulations [99, 100]. 

With the advent of faster computers attempts have been made to fit more trans

ferable water potentials in which polarisation and flexibility are described explicitly 

[101, 102, 103]. These potentials are generally fitted to gas phase' properties* and for 

all their extra expense provide no better description of the condensed phase's than 

the rigid potentials [3].

The most commonly used water potentials are the SPC/E [99] and TIP4P [100] 

models, Buch et al. [30] have' used both these potentials, and a number of others, 

to study the proton ordering phase transition from ice Ih to ice XI. They have
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found that all these predict the wrong structure for the ordered form. Worse still 

Hirsch and Ojamae have performed a comparison of the relative energies, for the 16 

hypothetical ice Ih 8 molecule unit cells, calculated using the COMPASS[104, 105] 

and the flexible SPC [102] potentials with the total energy computed from the first 

principles CASTEP/DMol3 results and shown that the DFT and potential results 

are inversely-correlated.

On the simulation of ice Ih itself, free energy calculations using the SPC model 

[106, 107] predict the melting point of water to be 191 ±  7 K. To resolve this issue 

Nada and van der Eerden [107] have created a new rigid, point charge model (here

after referred to as TIP6P) that was explicitly fitted to ensure that it reproduced:

• The correct densities of ice and water at 273 K

• The correct density of water at 298 K

• The experimental melting point of ice, by ensuring that at 273 K ice and water 

have the same free energies.

Abascal et al. [108] have taken this even further and used free energy calculations 

to refit the TIP4P potential so that it reproduces, as closely as possible, the phase 

diagram of ice.

Studies of the ice surface with molecular dynamics using TIP4P have shown 

unambiguous evidence of the format ion of a liquid layer at the ice surface' at tem

peratures between 190 and 250 K [109]. Above 230 K it was found that the order 

parameters and nobilities of the molecules in the top few layers increased dramati

cally suggesting that these' layers had bexome liquid-like. Furthermore, bertwexui 190 

anel 210 K tlic're was incre'ase'd hydrogen bonding in the' surfac e layc'rs because wa

ter mole'culc's moved closer togc'ther. In the terminating layer, pentagon, heptagon 

and other polygons began to form anel dipotas pointc'd downwards on the surface 

validating the suggestions of the surface charge work [110, 111]. These results are 

questionable because of the low melting temperature of the TIP4P potential. Wake
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[112] has performed similar calculations using the TIP6P potential and shown that 

011 the {0001} surface of ice there are defects in the top bilayer at temperatures from 

240 K upwards and that the number of these defects increases with temperature. 

These defects give rise to surface disorder which was found to take three forms:

• Water molecules were ejected out of the terminal layer and readsorbed to form 

a new layer atop the existing layer.

• Interstitials were created.

• Surface reconstruction was observed with in plane water molecules forming 

polygons other than hexagons.

Furthermore, increased mobility was observed for water molecules on the surface 

and there was a build up of areas of high and low densities of water molecules.

One question Wake's work didn't address however was how the surface energy 

of the initial ideal ice configuration depended on the arrangement of the water 

molecules on the surface as one might suspect that if there are lots of dangling 

hydrogen bonds near to each other on the surface the surface energy will be high 

due to suprafacial repulsions.

2.7.3 Unit cell choice

An issue which must be addressed in performing simulations on disordered ice Ih, 

or any other disordered ice phase, is how to represent an infinitely disordered hy

drogen bonding arrangement in a finite simulation cell. Hayward and Reiniers [113] 

have' addressed this problem by deriving an energy independent protocol of gener

ating bulk configurations. This essentially depends on maximising disorder whilst 

minimising net polarity within the cell. These c ells have been used extensively in 

the literature to simulate both the bulk and surface of ice, where the c onstraint of 

apolaritv is essential. Where these cells have been used, the energy independent 

generation protocol and the zero dipole constraint have not been questioned. In this
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thesis these issues are broached and a new recipe for generating reasonable unit cells 

is proposed.
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Chapter 3

Theoretical M ethods

The foundation of much of theoretical chemistry is statistical mechanical, so rather 

than describe the state of the system using the values of state functions (eg. entropy, 

internal energy, temperature) the state is described using the full set of positions and 

velocities for all its constituents (the position in phase space). The instantaneous 

values of any thermodynamical state function, or quantity of interest, can then be 

calculated from the coordinates and momenta of the part icles in the system [1]. If one

can calculate a phase space probability density (or distribution function) f N(r,p)

which gives the probability of being at any point in phase space it is possible to 

calculate the average of any function of the coordinates and momenta using [1]:

< F >= J  J  F ( r N , p N ) f* (rN , p N )drNdpN (3.1)

Where F  is the observable of interest and the distribution function is normalised. 

It is possible1 to write out the explicit form of f N if one kcx'ps a subset of the 

macroscopic thermodynamic state functions constant, so for instance1 if erne keeps 

the eneagy, volume and number erf molc'cule's constant then the distribution func tion 

is giveai by:

n r . r i - W ' f - V  p .2)

Where 3 is a Dirac delta function, H  is the Hamiltonian for the system and Q
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is the number of microstates that have an energy E.  Alternatively, if one keeps

temperature, volume and number of molecules fixed the distribution function is [1]:

p - H( r , p) / kBT

/wrr(»’w.PN) = - Q ^ y x T  (33)

Here Q is the canonical partition function which is given by [1]:

Q n =  J  . . .  J  e - H(qMkBTd r NdpN (3.4)

The Hamiltonian is the sum of the potential and kinetic energies of the particles 

in the system. Furthermore, in Cartesian coordinates it separates into a momentum 

dependent kinetic part and a coordinate dependent potential part (n.b. this is only 

valid for classical Hamiltonians).

H(p,q)  = K(p)  +  V (q) (3.5)

^  e - H( p , q) / kBT  =  e - K ( p ) / k BT e - V ( q ) / K BT

Thus equation 3.4 becomes:

Qn = J  e- K(l,)/kBTdp J  e - v(qVkBTdq (3.6)

The first of the two integrals in the above equation is solvable; however, the 

second is not. It is called the configurational integral, Z,\, and most of the effort 

in computer simulation is directed towards calculating approximate value's for this 

integral. This is usually done by replacing the integral with a sum over a number 

of state's anel averaging o v c t  tlie'in. In later parts (se'ction 3.4) there is a disc ussion 

of how one goc\s about selecting a se'iisible set. of points, but the first problc'm to be 

addressed is how one e ale ulatc's the potential energy from the particle coordinate's.
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3.1 Calculating the potential energy

111 quantum mechanics the wavefunction for the system contains all the physical 

information about the system. Sadly however, the wavefunction is not measurable 

and can only be obtained by solving the time dependent Schrodinger equation. It is 

trivial to show7 that for time independent potentials the space and time dependent 

parts of the Schrodinger equation c an be separated. Solution of the time dependent 

partial differential equation gives rise to a time dependent phase factor, which is 

multiplied by the solution of the differential equation given below:

HV =
^  h2

where H = ~ — V 2 + V(x)  (3.7)
2m

Where 'I' is the wavefunction, H  is the Hamiltonian and E  is the total energy. 

Multiplying both sides of equation 3.7 by the complex conjugate of ^  and integrating 

over all space (assuming the wavefunction is normalised) gives:

H[V] =< V\H\* > = E < * \ * >

H{V} =< > = E  (3.8)

The energy calculated using this functional is called the expectation value. The 

Variational Theorem states that any estimate of the ground state energy will always 

lie above1 the actual energy of the ground state. This means that the most accurate 

ground state wavefunction will be the one that minimises the value of the expectation 

value of the energy. To minimise the expectation value it is useful to express the 

wavefunction, as a linear combination of of a complete set of orthonormal basis 

functions because these basis functions and any linear combination of them wall 

belong to a vector space. This is to say because the set of func tions share certain 

properties with a complete set of position vectors they can be treated in an analogous
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fashion. Using this analogy the Variational Theorum can be re-expressed in terms 

of the functional derivative below:

(3.9)
e

In the above equation u is a function that is analogous to a unit vector. If one 

is at a true minimum of the functional then this equation will hold regardless of the 

direction in which u points. Using Lagrange multipliers to constrain the solutions 

of equation 3.9 to be orthonormal recaptures equation 3.7 but, more importantly, 

the Variational Principle can be used to derive approximate wavefunctions.

For an atom containing one electron, equation 3.7 is solvable as the potential is 

simply proportional to (1/r), where r is the distance between the electron and the nu

cleus. For any system containing more than 2 bodies though this equation becomes 

impossible to solve analytically and for this reason it is necessary to make approx

imations. Typically the first approximation to be made is the Born-Oppenheinier 

approximation [2], which assumes that the positions of nuclei are fixed. So the wave

function for the electrons is calculated in the static electric potential arising from 

the nuclei in their fixed arrangement.

3.1.1 Hartree-Fock Theory

Hartree-Fock theory [3, 4, 5, 6, 7] begins by assuming that the true wavefunction, 

'F, of a multi electron system is similar in form to the electronic wavefunction that 

would be obtained if electron-electron interactions were neglected, 4/q. That is to say 

that 4̂ 0 is a solution of:

This equation separates into a set of n one electron equations, with solutions

H °\£° =  E°^°

where H°
47re077

(3.10)
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0n {x n )- ^  can then be expressed as a product of of all these one-electron wave- 

functions but this treatment leads to a wavefunction that is symmetric with respect 

to exchange of particle labels, which violates the Pauli principle. To resolve this 

spin is introduced, the 1 electron wavefunctions are replaced by spin-orbitals and 

the products of the wavefunctions are replaced by Slater determinants. Now 'I'o is 

given by:

d>i{xi) 0 2 ( ® i )  ••• < M * i )

0l(x2) o2(x2) ... 0 n ( x  2 )

0 i (Xn ) 02(Xn ) . . .  0n {Xn )

An N electron wavefunction can be expanded in a series of N-particle Slater 

determinants and there are inultideterminant methods that give a wavefunction as 

a sum of Slater determinants. Hartree-Fock however is not one of these; instead it 

assumes that the wavefunction is given by only one Slater Determinant. Physically 

this approximation means that the theory does not account for electronic correlation 

effects like dispersion, which leads to iinderbinding in solids and molecules.

A11 expec tation value for the energy, including electron-electron terms, for any 

given Slater Determinant can be obtained bv calculating the expectation value of 

the multi-electron Hamiltonian. Thus the variational theorem (equation 3.9) can 

be applied and the conditions for a minimum in the functional established. This 

treatment- gives N equations in terms of N one electron wavefunctions which are 

given by:

N

—  An0n{T 1)

4>k{r2) * 0n(r2)
dr2 '^*x 0n(r1) -  J  dr2'rKX' "Ttv' *■' 0k(ri)

r 12

where h(r) N  + V(r) (3.11)

Where rV2 — |^i — t 2\ und V (r ) is the value of the external potential at r. These
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equations must be solved self consistently as the energy depends on the values of 

the wavefunctions and assume that the space part of the electronic wavefunction is 

independent of the spin part. The first integral in this equation is the electrostatic 

repulsion between electrons and the second is the, so-called, exchange interaction.

3.1.2 Density Functional Theory

A wavefunction is a 3N dimensional function, thus storage of the function in the 

memory of a computer is a considerable problem. One resolution to this problem is 

the Hohenberg-Kohn theorem [8] which states that there is a one to one mapping 

between the ground state energy of a system and the electron density. In other 

words it is possible to write a functional for the energy in terms of the electronic 

density of the system. To prove this statement one must prove that:

• Different potentials lead to different ground states.

• Different ground states give rise to different electron densities.

The Hohenberg-Kohn theorem only proves that the density functional exists. It 

does not give the form of the true density functional and as such one must derive 

approximate functionals. Kohn and Sham [9] developed a method as follows; they 

first imagined a system of non-interacting electrons with the same ground state 

density, p(r), and energy as the system of interest (the system of interest does 

of course contain interacting electrons). The non-interacting system is accurately 

represented bv a Slater Determinant, the one electron orbitals, 0„(r), of wiiicii 

satisfy:

The Hohenberg-Kohn theorem proves that the potential on the system of non

interacting electrons, V3, can’t be the same as the external potential on the system

(3.12)
n
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of interacting electrons, V , and that the wavefunctions for the non-interacting and 

interacting systems are not necessarily the same. Applying the variational principle 

(equation 3.9) the energy of the system of non-interacting electrons is equal to the 

minimum in the following functional:

Ea =  (<P \Ta +  V,\Q) (3.13)

Where Ta corresponds to the kinetic energy part of equation 3.12 (— 2 ^ 7  V2). To

solve this functional derivative the minimum is searched for in two stages. In the

first the minimum energy Slater determinant is searched for holding the electron 

density constant, i.e. the following functional is minimised:

Es =  Ts\p(r)\ +  j  d rV8(r)p(r) (3.14)

Next a minimisation of the functional with respect to the electron density is 

performed using a Lagrange multiplier to constrain the number of electrons. This 

corresponds to solving the following equation:

Sp(r) /  drVa(r)p(r) — Es J  drp(r) = 0

=  ~ v ’ { r ) + E ‘ (3 -15)

The energy of the system that includes interaction between electrons is given by 

the following functional:

E\p{r)\ =  Ta\p(r)\ + \ J J  drdr'̂ ^Z~p + J  d rV (r)p (r) +  Exc\p(r)\ (3.16)

Here Exc\p(r)\ is a functional that takes into account the difference between the 

kinetic energy fimctional for the non-interacting system and the equivalent func

tional for the interacting system. The minimum in the functional derivative, again
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holding the total number of electrons fixed, is:

d rV(r)p(r)d rd r

The energy, Es, in equation 3.15 must be equal to the energy, E, in equation 3.17

densities and thus must have identical ground state energies. Prom this equality we 

thus obtain:

This combined with equation 3.12 provides a method for self consistently calcu

lating the energy of the system.

The exact form of Exc\p(r)\ is not known so approximations have to be introduced 

to calculate this quantity. The simplest approximation for Exc\p(r)] is given below:

Where exc(p(r)) is the exchange correlation energy density at point r  and is 

only a function of the density. This approximation is called the Local Density Ap

proximation (LDA) and works surprisingly well, particularly for systems where the 

electron distribution is approximately homogenous like nearly-free electron metals. 

It works less well for systems with inhomogeneous electron distributions, like atoms, 

largely because of the spurious self-interaction term which arises because, unlike in 

Hartree-Fock theory, exchange is not treated exactly [10].

Another commonly used approximation is the Generalised Gradient Approxi

mation (GGA) which is very similar to LDA except that the exchange correlation 

density function depends on the density and the local gradient of the density. There

because of the Hohenberg-Kohn theorem - these two systems have identical electron

(3.18)

(3.19)
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are a variety of GGA functionals [10] which are widely used in chemistry. These are 

of near equal computational expense to LDA but provide a much improved descrip

tion of exchange and correlation at short range, albeit with a tendency to slightly 

underestimate binding energies.

The final class of functionals used in this work include an exact exchange contri

bution from Hartree-Fock or a mixture of Hartree-Fock and LDA or GGA [11, 12,13]. 

These, so called, exact exchange functionals are the most accurate functionals avail

able to DFT because DFT introduces a spurious self-interaction because of its inac

curate treatment of exchange, which is removed by the introduction of Hartree-Fock 

exchange. What is more, this mixing of methods gives rise to a functional that is 

more accurate than Hartree-Fock because of the inclusion of local correlation ef

fects. This increase in accuracy comes however with quite a substantial increase in 

computational cost over the LDA and GGA functionals.

3.1.3 Basis Sets

A difficulty has been neglected - so far the recipes suggested will work well for atoms, 

for which it is easy to solve the HF /  KS equations numerically, but for molecules 

such numerical solution is not feasible. To resolve this the spatial wavefunctions are 

expanded in a set of 3D basis functions as below:

M

ipi = (3-20)
j = 1

where the CjjS are a set of undetermined coefficients. To obtain the true electronic 

wavefunction one would require an infinite number of such basis functions but in 

practice this is computationally impossible, so a finite basis set is employed, which 

gives rise to an error termed the basis-set truncation error. Use of basis functions 

converts equations 3.11 and 3.18 into matrix equations which have to be solved for 

the coefficients c^. There are many different basis functions that can be used but
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this work uses only two varieties that are described below:

3.1.3.1 Gaussian Basis Sets

Gaussian basis sets can be used for clusters or periodic systems; the functions used 

here are Gaussian functions centred on the atoms in the system. These Gaussians 

are of the form:

Oijk(r -  r c) =  (x -  xcY(y -  yc)j (z -  2 c)fce" a | r - r c | 2  (3.21)

Here (xc, yc, zc) axe the Cartesian coordinates of the centre of the gaussian, the 

i, j  and k are non negative integers and a  is a positive exponent. If i = j  — 

k — 0  the gaussian is an s-type gaussian, while if i +  j  +  k = 1 the gaussian is 

p-type, or for i +  j  +  k = 2 the gaussian is d-type and so on. The main advantage 

of Gaussian basis sets is that any product of two Gaussians at different centres 

is a single Gaussian function centred at a point between the two centres, which 

makes all the two electron integrals required for Hartree-Fock and DFT very easy 

to compute. One big disadvantage of Gaussian basis sets or any localised basis set 

is the basis set superposition error (BSSE). This results because atoms that interact 

have overlapping basis functions and thus an atom can “borrow” basis functions 

from nearby atoms, effectively increasing its basis set. Hence, because of BSSE the 

description of the basis set on an atom depends on the geometry of the system.

Gaussian basis sets are constructed by performing atomic SCF calculations to 

optimise the exponents (a) for the basis functions. These basis sets, complete with 

the optimised exponents, can then be used in calculations on molecules. The sim

plest basis sets are termed minimal basis sets, these have one linear combination of 

Gaussian functions to describe each of the occupied orbitals of of the atom of inter

est. So for a single water molecule one would have a basis set with 2Hls orbitals 

and one basis function for each of the Is, 2 s, 2 px, 2 py and 2 p2 orbitals of oxygen. 

Complexity is then added in two ways: one can have double zeta or triple zeta basis
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functions, where each orbital is described by 2 or 3 linear combinations of Gaussians 

respectively, or additional linear combinations of Gaussians which describe orbitals 

which are unoccupied in the atom can be added so that an accurate description of 

polarisation in molecules is provided. Adding orbitals in this way is termed adding 

polarisation functions.

3.1.3.2 Plane Wave Basis Sets

In a periodic system there are an infinite number of electrons but Bloch’s theorem 

states that the wavefunction must be periodic in order to satisfy the symmetry of 

the lattice:

* i A r ) = uj (r)eik 'r  

where U j ( r  + 1) =  U j ( r ) (3.22)

In this equation k  is a wavevector confined to the first Brillouin Zone, the vector 

1  denotes the addition of some integral number of each of the lattice vectors and 

hence Uj(r) is a function that has the same periodicity as the potential - in this case 

the periodicity of the lattice. As U j ( r ) is periodic it can be expanded in a Fourier 

series [14]:

uA r ) =  Y  cj ,G e'G r
G

=> *>,k(r) =  Y C],Ge'G 'Ve'k 'T
G

=►«**(»•) =  Y c3,k+G ^ k+G)r  (3-23)
G

In this equation the c. fc+Q  are the expansion coefficients and the wavevectors

G  are such that the plane waves are commensurate with the lattice. In principle the

number of G  vectors and k  vectors should be infinite but the values of the wave

function at two points in reciprocal space are identical if those points are sufficiently
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close. Thus the wavefunction can be calculated at a finite number of k-points. Fur

thermore, because the energy of a free electron with a wavevector (k G)  has an 

energy of Ec =  h the size of a plane wave basis set can be specified with

one parameter, a cutoff energy. Our basis set then contains all the plane waves 

whose “energies” are less than this cutoff. This is one advantage of plane waves, as 

unlike local orbital schemes, if one wishes to increase the size of the basis set it is 

simply a matter of increasing a single parameter rather than placing a whole new 

set of functions into the system. Furthermore, for plane waves there is no basis set 

superposition error.

Problematically, the curvature of the wavefunction is very large near nuclei and 

it is necessary to use a large number of plane waves to describe the wavefunction in 

these regions correctly. To sidestep this issue the core region is often treated using 

a pseudopotential, which replaces the real potential, within a core region of radius 

rc with an effective potential. Modern pseudopotentials are constructed from first 

principles, such that the continuity of the wavefunctions and their first derivatives 

across the core boundary is preserved and the valence orbital eigenvalues are the 

same as those in an all electron calculation on the atom [14].

Throughout this thesis plane waves are used in simulations of periodic solids 

whilst Gaussians are used in simulations of clusters. To perform a cluster calculation 

using a plane wave code one would have to put the cluster in a simulation box, which 

would be repeated throughout space. This box would have to be large enough that 

repeats of the cluster in adjacent boxes would not interact with the cluster in the 

central box. For plane waves the size of the basis set is dependent on the size of 

the simulation box and hence cluster simulations with plane wave codes are very 

computationally expensive.
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3.2 Analysing the electronic wavefunction

The discussion above refers only to wavefunctions. The wavefunction does not de

scribe the system in terms of bonds or molecules. This is because in reality these 

are solely human ideas that make chemistry easier to understand. In the interests of 

understanding what is going on it would be useful to obtain information from wave

functions about the electron density on particular molecules. Furthermore, it would 

be useful if one could break down the QM energy into components describing the 

amount of exchange, electrostatic force, correlation and short range repulsion. The 

first issue then is that one must first develop a method of partitioning the charge 

density between molecules.

3.2.1 Maximally Localised Wannier Functions

Unlike the Kohn-Sham orbitals obtained from DFT calculations using Gaussian 

basis sets, which can be thought of as atomic or molecular orbitals, the Kohn-Sham 

orbitals output by plane wave quantum simulations are difficult to interpret in terms 

of atoms and molecules because it is unclear how to partition the electron density. 

However, one can perform a Wannier transformation of the wavefunctions using a 

unitary matrix, U.
j

'wn(r ) =  ^ 2  >  (3 -24)
m= 1

Where the sum from 1 to J  runs over all the Kohn-Sham states 4>m. There 

is considerable flexibility in the choice of U , the unitary matrix, used to yield the 

Wannier function. In this work U is chosen so that the Wannier function spread, as 

calculated using equation 3.25, is minimised. This minimisation is carried out in an 

iterative procedure.

j  j

Q = ^ [ <  0n |r2 |0n > — < 0n|r|0n > 2] =  ^ ( <  r 2 >n ~^n)  (3.25)
n=l n=l

This procedure outputs a set of orbitals of low spread, so called maximally lo
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calised Wannier Functions [15], which have centres lying near molecular or atomic 

centres, which can be interpreted as molecular /  atomic orbitals [16].

3.2.2 The electrostatic expansion

Having obtained descriptions of molecular orbitals it would be useful to have simple 

prescriptions to break down the energy into its constituent components. Calculating 

the amounts of exchange, short range repulsion and correlation is far from trivial 

but there are simple recipes for calculating the electrostatic interaction energies 

between molecules /  atoms, which rely on the electrostatic expansion. The Born 

interpretation of quantum mechanics states that, if the wavefunction is normalised, 

then the charge density at any point is given by:

p(r) =  |* (r)|2 (3.26)

Where N  is some normalisation constant and 'I' is the electronic wavefunction. 

The electric field due to a static charge distribution is given by Coulomb’s Law:

E ( r ) - i / l ' , ( r ' )<lr'  (3 27)

Here T is a unit vector which points from r f to r  and % is the distance between r '  

and r. This integral, which is taken over all space, is a vector function and is thus 

difficult to handle, however if the charges axe not moving then it is a vector function 

whose curl is equal to zero at every point and as such it is equal to the gradient of 

some scalar. The scalar field whose grad is the electric field is called the potential 

and for a static charge distribution is given by:

^ ( r ) =  f  -p( i t,)dTt (3.28)47re0 J i

It is possible to calculate i using the law of cosines, where 6 here is the angle
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between the position vectors r  and r ':

i2 =  r 2 +  (r')2 -  2 rr' cos O' = r2 1 +  f - )  - 2 f - ) c o s 0 '
\  r J \ T J

=> i =  r ( l  +  e)5 

where e =  ( — ) ( - — 2cos0' )  (3.29)

If the point of interest is well outside the charge distribution then e is small and 

one may take a binomial expansion for \  thus:

( 3 -3 0 )

Substituting in for e and collecting together like powers of ( r '/r )  one obtains:

1 _  1 
i r

(  r' \  Af (  r' \  2 3 cos2 6' — 1 /  r' \  3 5 cos3 O' — 3 cos O'
1+ 7 cos* + 7 ---- 2-----+ 7--- 2------- + -

(3.31)

Pleasingly, the coefficients of the powers in the above equation are equal to the 

Legendre polynomials and thus equation 3.27 for the electrostatic potential can be 

rewritten:
1 1 C

V(r) = 4 ^  ^  ^ T )  J  {r')nPn{cos6')p(r')&T' (3.32)

Here the Pn are the various Legendre Polynomials and the equation is the mul

tipole expansion. The first term is called the monopole (q), the second the dipole 

(/i), the third the quadrupole (0), the fourth the octupole (Q) and the fifth the 

hexadecapole (£). Typically two schemes are used to describe multipoles, the first 

expresses them in terms of spherical harmonics and the second in terms of Cartesian 

tensors. The Cartesian tensors for the first 5 terms in the multipole expansion are
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given below (the Einstein summation convention is used throughout) [17]:

Q

Pa

Oa0

J  p ( r ) d r  (3.33)

J  p(r ) rQd r  (3.34)

 ̂J  P(r)[2rar 0 - r 26a(3]dr  (3.35)

ttafr =  ̂J  P(r)[15rar0ry -  Zr2(ra8fr + +  r7<5a/3)]dr (3.36)

~  y*p(r)[105rary3r7r5 +  3 r4((5aj9(57(5 +  (5a7d>(j + (5a(s(5/37) (3.37)

-  15r2(rar /3(57<5 +  rar7<^ +  rarsS^  +  r ^ S as +  rprsS^ +  r7r55a/3)]dr

These multipoles can be easily obtained from the Wannier functions described 

in section 3.2.1. Furthermore, electrostatic expansions can be calculated from the 

wavefunctions obtained from calculations using Gaussian basis sets (this process is 

described in section 3.2.3).

Two point charges separated by a distance r  have a potential energy of 2ĵ - 

atomic units. As equation 3.32 shows this is equal to the potential at r  due to the 

monopole q\ multiplied by the value of the charge at r  (i.e. ^ )- A point dipole 

is charge neutral and thus it follows from the sentiment expressed in the previous 

sentence that the dipole multiplied by the electric potential at a point will be equal 

to zero. However, the dipole multiplied by the value of the gradient of the potential 

is non-zero. From this rather simplistic proof we can assert that a multipole of 

rank n interacts with the nth derivative of the electric potential. It is thus possible 

to calculate interaction tensors between a monopole and a rank n multipole by
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differentiating (1 //?), the first five of these are given below [17]:

T  =  i  (3.38)

T a = V aT  = ^  (3.39)
nr

T a =  Vo.T’j =  (3.40)

T “ =  V0 T ^  =  - ^ ( 1 5 ^ ^ , ^  -  m 2( R J 0-, + R ^ ,  + H,6a/j)\ (3.41)

T°ihs =  VaT ^ s =  -^-{lOSRaRpflyRs +  3 R \S a0SlS +  SaiS0S + 8^6^)]  (3.42)
i]

-  15 R2(RaR

T “^ *  =  V aT ^ Sc = -^n [Q4bRaR?R yRsR€ + 15Rl(Re6a^ s  + RtSaySffi (3.43)
ij

H“ Hê CkŜ fi'y "I” "I" ^^ac^/37 “t" "I” ^ck 7̂ ĉ /?J ^a^je^/37

"4“ ĵ3̂ aĉ 7<5 4" ye "t" *̂ 7̂ ck/3̂ c ~4~ *̂ŷ &€̂ /38 ”1”

"f f / 2a -̂ ^3 &y<5 4 i?a -^y ^ _l_ ■̂'Ot ̂ 7  ^ /3(5

I -/?q -̂ (5 f̂fy 4 RfiRsy (̂Qf̂ "4" ,̂ /3̂ 7̂ Ĉ Ck(5 4 j3Rs“̂ 6

Rather conveniently it can be shown that the potential energy of interaction 

between a rank n multipole and a rank k multipole is simply given by the concate

nation of the rank k multipole, the rank n multipole and the rank (n+k) interaction 

tensor [17].

The multipole expansion also provides a convenient method for describing the 

distortions of a charge distribution that occur when it is introduced into a crystal.

As established above a rank n multipole interacts with the nth derivative of the

electric potential, so it can be expressed as a convergent power series in the nth

derivative of the electric potential [18] - i.e. for the dipole and quadrupole:

Va = Va +  OLapSJ pV  +  +  ... (3.44)

#a/3 — ^a/3 +  a a/37<5V 7 V,jK +  -/3a^7 <5ĉ V7 V<51KVcV^F +  ... (3.45)
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3.2.3 Distributed Multipole Analysis

The electrostatic expansion for the electric potential converges at all points outside 

the charge distribution of interest, in other words there is a sphere of convergence 

outside of which the multipole series converges. One method commonly used to 

shrink the size of the sphere of convergence is to use distributed multipoles, so 

rather than having one molecular multipole expansion one has multiple expansions 

situated at various sites about the molecule (usually the atoms and the centres 

of bonds). Stone [19] has developed a way of calculating site multipoles directly 

from the density matrix calculated using a quantum mechanics code which employs 

Gaussian basis sets. He first notes that the total electron density is given by:

P(r ) = ' 5 2 ct M r ) cu<l>u(r ) = ^2ptu4>t(r )4>u(r) (3.46)
tu tu

And that the overlap of two primitive Gaussian functions centred at A  and B  

is a Gaussian centred at P , which is given by:

=  oiA + P B
a  +  0 y ’

Thus the charge density can be rewritten as:

P(r ) = ^ 2 ~ P tu f t ( r - A ) fu( r - B ) e x p  ( - - ^ - ^ { A -  B f  \ exp( - ( a  + 0 ){ r - P )2)

(3.48)

Where f t (r — A ) is a homogenous polynomial in the Cartesian components of 

( r  — A )  as described in section 3.1.3.1. Each term in the above expansion can be 

expanded as a multipole expansion, with the charge, dipole and quadrupole in them
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given by:

q =  - N  J ptuFtu(r -  P )  e x p (-(a  + (3)(r -  P )2)dr (3.49)

Pa =  - N  J  PturaFtu(r -  P )  exp (—(a +  0)(r -  P )2)dr (3.50)

Oap = - N  J Ptu(3rar/3 -  Sa0r 2)Ftu(r -  P )  x (3.51)

e x p (-(a  +  /3)(r — P )2)dr

N  =  exp ( — ( A - B ) ‘
V a  + 0 K 

F tu ( r - P )  =  f t(r  -  A ) f u(r -  B )

So the first step in creating the distributed multipole representation is to con

vert every element in the density matrix from a Gaussian function into a multipole 

expansion. In and of itself this is not that useful but it is relatively easy to convert 

a multipole expansion centred at rj to a multipole expansion centred at the origin 

(s) using the equations below:

Qs =  Qj

Ps ,a  — QjrJ ,a +  Pj »<*

@s,a(3 =  (3r,j,Q7’'jt0  6 a0 Vj ) q j  -\- 3rj,apj ,(3 ^aPPj ‘ (3.52)

Where qj, pj and 6j are the charge, dipole and quadrupole of the multipole 

expansion centred at tj. It is thus easy to see that this equation can be used is 

to generate molecular multipoles from the “distributed multipole” representation of 

the density matrix obtained using equations 3.49, 3.50 and 3.52. More useful though 

is to use this equation to shift the multipoles generated using equations 3.49, 3.50 

and 3.52 onto the nearest site of interest on the molecule (usually atoms and bond 

centres) and thus generate a compact representation of the charge density with a 

small sphere of convergence.
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3.3 Classical Interaction Potentials

So far, other than a digression about obtaining electrostatic information from quan

tum mechanical calculations, the discussion of calculation of energy for a given 

structure has focused on techniques based on quantum mechanics. These meth

ods, although accurate, have one major disadvantage - they are computationally 

expensive and as such they are not feasible if one wishes to probe a large amount 

of configuration space or if one wishes to study large systems. In these scenarios 

an alternative classical methodology can be employed. These methods rely on the 

observation that for any system the potential energy may be divided into terms 

depending on the coordinates of individual atoms, pairs, triplets, etc [20]:

v2(r i,r j)  +  £ £  £  V3(r<,r3-,rfc)
i i j > i  i j > i  k > j > i

+ £ £ £  £  V4 (r< ,rJ- ,r fc, r £) +  . . .  (3.53)
i j > i  k > j > i  l > k > j > i

The functions in this expression, that are used to describe the dependence of 

the potential energy on the various coordinates, contain variable parameters that 

can be fitted to the results of quantum mechanics calculations or to experimental 

observables. Furthermore, this series is convergent and so none of the potential 

models used in this thesis employ anything higher than terms in quadruplets. In 

fact most potentials incorporate the effects of 3 and higher body terms into the 

two body interaction and neglect the first term thus providing a description of the 

dependence of the potential energy on the atomic or molecular coordinates purely 

in terms of the separation of atoms.

Commonly for water potentials the vibrational degrees of freedom of the water 

molecules are neglected and only the interaction between water molecules is de

scribed. The interaction of two water molecules is described by distributing charge 

(or multipole) centres about the water molecules to approximately reproduce the 

charge density of the water molecules. These point charges then interact with the
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point charges on a neighbouring water molecule through Coulomb’s law. The short 

range repulsion due to orbital overlap at small separations is typically described 

using some rapidly decaying function like an exponential or a (A /r12) function and 

dispersion forces are described using a (B /r 6) function, which mimics the rate of de

cay of the lowest order dispersive interaction, the dipole induced dipole interaction 

[20].

3.3.1 The Shell Model

As mentioned above the forces due to the triples and quadruples in equation 3.53 

are often incorporated, by the way the potential is fitted, into the two body terms. 

An alternative more accurate, but more computationally expensive, way of incor

porating these higher order terms is to use a shell model. These models still rely 

only on a sum over all the distinct pairs of particles in the system but incorporate 

functions that describe the effect that the higher body terms have on the magnitude 

of the two body interaction by explicitly describing polarisation. Induced multipoles 

are described by adding extra degrees of freedom to the model - for dipoles these 

degrees of freedom have a self energy given by \oi\ii\2 and the total energy of all the 

induced dipoles in the system is:

As electronic relaxation is much faster than atomic motion one would expect that 

the dipolar energy will be at a minimum at all times. Hence, one way to perform 

simulations using this model involves the minimisation of the dipolar energy, either 

self consistently or using a minimisation algorithm [20], whenever the atoms are 

moved. In molecular dynamics, an alternative approach is commonly used, the 

shell is given a fake mass and these equations are incorporated directly into the 

Hamiltonian [20].
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Most commonly only dipoles are described in this way although the method is

more, if the dipole is represented by two charges connected by a spring, so that the 

self energy becomes a harmonic term in the length of the spring, a more powerful 

description of the electronic distortions is provided.

molecules. If one wishes to model bulk systems one has to introduce periodic bound

ary conditions - i.e. periodically repeat the box and all its constituent particles 

throughout space. Within this supercell, either the minimum image convention is 

used to calculate the total energy, so each particle interacts with the N-l (N=number 

of particles in simulation cell) nearest particles to it in the supercell, or the supercell 

is generated explicitly [1, 20].

If one has a large enough simulation box, periodic boundary conditions and the 

minimum image convention would be enough to describe the fully periodic system 

because the energy of interaction of two molecules decays with distance. For rapidly 

decaying functions like (1 /r6) this is sufficient. However, for electrostatic interac

tions, that have a (1/r) dependence on the interatomic separation, the decay is far 

too gentle and a technique called the Ewald sum [22, 23], which exploits the peri

odicity of the system, has to be employed. With periodic boundary conditions the 

potential energy of interacting of point charges can be written as:

Here the sum over all n  is over all simple cubic lattice points (n  =  (nxL , nyL, nzL )) 

and represents the shape of the basic box and the prime indicates that for n  = 0 

the i = j  term is omitted. In the Ewald sum a screening distribution with equal

general and has been extended up to quadrupoles by some workers [21]. Further-

3.3.2 The Ewald Sum

So far the above discussion has applied to simulating small clusters of atoms or

(3.55)
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magnitude but opposite sign to the point charge of interest and width k is added at 

every point charge. In most implementations this distribution is given by:

Pi(r ) = -^ /2 exP(~K2r2) (3-56)

This distribution screens the interaction between neighbouring point charges and 

as such makes all the interactions short ranged. To reduce the overall potential back 

to that for the original set of point charges a cancelling distribution is added. This 

distribution has the same shape but opposite sign to the screening distribution and 

is summed in reciprocal space - i.e. it is the sum of the Fourier transforms of each 

cancelling distribution. The resulting sum is then transformed back into real space 

and added to the part summed in real space. However, because it was summed in 

reciprocal space, the periodic repeats of the screening distributions are included and 

the long range parts of the electrostatic interaction are recovered. One important 

correction must be included, the recipe as described so far includes the interaction 

of the cancelling distribution centred at r* with itself, so this self term must be 

subtracted.

The width of the screening distribution, /c, used in the Ewald sum controls the 

amount of the material summed in real space. The remainder is then summed in 

reciprocal space. This parameter is typically chosen so that the contents of the 

central unit cell axe treated in real space and contribution of periodic repeats of the 

unit cell are treated in the reciprocal space sum. In practice this is done by selecting 

a value of k  s o  that the Gaussian is fully decayed within half the shortest box length 

of the simulation cell.

The Ewald sum can, and has, been generalised so that it can be used with 

dipoles, quadrupoles and higher order multipoles [24] and there is also a Ewald sum 

for systems that are only periodic in 2 directions [25]. Furthermore, where one has 

charges distributed throughout a molecule there is a Ewald sum which performs an 

intermolecular Coulomb subtract [26].
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3.3.3 Quantum Mechanics /  Molecular Mechanics

The above discussion about calculating the energy highlights a dilemma in all sim

ulation work: Most systems of interest are too large to be studied using quantum 

chemical calculations but it is difficult to be certain of the verity of any potential 

based approach if one is working on a system to which the potential wasn’t fitted. 

QM /  MM provides an attractive method of avoiding these issues by allowing one 

to model certain parts of the system with QM approaches and other parts with a 

molecular mechanical forcefield. This is particularly useful for systems into which 

a small localised perturbation has been introduced, as obviously the area near the 

perturbation can be modelled with QM, whilst surrounding areas, which are largely 

unaffected by the perturbation, can be treated with a forcefield, fitted to reproduce 

the properties of the unperturbed system. These sorts of hybrid schemes have been 

applied with great success to the study to study catalytic processes on surfaces [27] 

and to study the reactions of proteins [28].

The many ways of implementing QM/MM schemes have been recently reviewed 

by Lin and Truhler [29] but in this work, the embedding method from QUASI (the 

Quantum Simulation in Industry project) was used. This works by creating a cluster, 

which is then divided up into a series of concentric regions each of which is treated 

using a different level of approximation (see figure 3.1). This is all implemented 

in ChemShell [27] which allows one to use “GAMESS-UK” to simulate quantum 

regions [30] and GULP [31] to simulate classical regions.

To generate the cluster one first performs an optimisation of the periodic, un

perturbed structure using an accurate molecular mechanics forcefield. The finite 

cluster is then generated by cutting out a sphere of crystal and distributing point 

charges around the sphere so that the infinite Madelung potential is reproduced in 

the active region. The cluster is then divided into regions - the most central region
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MM fixed

MM active

Interface

( QM  ̂
r̂egion \J

region 2

region 3

region 4

+
Figure 3.1: Diagram showing the regions of the cluster in QM/MM calculations. 
Red line indicates the boundary between active region and fixed region and the plus 
signs indicate the locations of the point charges in region 5.

(region 1) is modelled using quantum mechanics with a Hamiltonian given by:

Htotal HqM "I- -H q m /M M ,electro “I” HQM/MM,non-electro (3.57)

This equation is the sum of a QM Hamiltonian, which has be dealt with in 

the sections above on DFT and Hartree-Fock, and some QM/MM Hamiltonian. 

Finding an explicit form for the QM/MM Hamiltonian is non-trivial, although it is 

reasonable to divide it into two components:

1. An interaction with the point charges that describe the charge distributions 

on the MM molecules. This electrostatic interaction can of course distort the 

electron density causing polarisation which is why it is dealt with separately.

2. A non-electrostatic interaction between the MM molecules and the QM molecules. 

In QUASI these contributions to the energy are modelled using the same sim

ple distant dependent functions used to model these interactions in the MM 

forcefield.

94



Region one is surrounded by region 3 in which the atoms interact through the 

MM forcefield or by an additional interface region, region 2, which is then surrounded 

by atoms that interact through the MM forcefield. This interface is used to make 

the transition from QM to MM description of the interactions less harsh. When 

optimising all molecules in the active region (regions 1,2 and 3) are free to move 

but in the surrounding regions (regions 4 and 5) the molecules axe held fixed. The 

“molecules” in these two regions only interact through the electrostatic interaction 

with the molecules in the active region so only point charges are present in them. 

The difference is that, whereas in region 4 these point charges are distributed as 

they would be in a periodic crystal of molecules, in region 5 the point charges are 

simply distributed on a sphere.

3.4 Moving atoms about

The business of calculating the potential energy has now been covered and we now 

need a method for selecting reasonable points for calculating the ensemble averages 

discussed at the start of this chapter. Three of the most commonly used methods 

are described below:

3.4.1 Lattice Minimisation

The potential energy surface contains many minima of varying depths and at OK, 

the static limit, the system will be at a minimum. Furthermore, even at higher 

temperatures the structure will only be oscillating about a minimum, all of which 

makes the structures at these minima very important in determining the properties 

of materials. Thus, one important simulation technique is to minimise the potential 

energy of the system to estabhsh what the nearest local minimum is for a given 

starting structure. One crude way to do this is to run molecular dynamics (see 

section 3.4.2) at a very low temperature. In this approach, however, 'th e  system 

still has some kinetic energy and hence the system is not truly probing the static,
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0 K, structure. Therefore, it is often more appropriate to use numerical recipes 

specifically designed to minimise N dimensional functions to minimise the energy 

of the system and hence obtain the 0 K structure. These minimisation strategies 

work by doing a sequence of line-searches for minima until all the gradients of the 

function are close to zero [20].

3.4.2 Molecular dynamics

Molecular dynamics allows one to produce real trajectories for the atoms in the 

system and so to replace ensemble averages with time averages. Trajectories are 

obtained by integrating Newton’s second law of motion, which of course assumes 

that the constituent atoms /  molecules can be thought of as classical particles. 

For many body systems the exact integration of Newton’s second law of motion is 

impossible and so the integration has to be discretized in some way. In this work 

the Verlet Leapfrog [32] algorithm is used, which calculates new velocities at the 

half time step from the current acceleration and then updates the positions using 

these new velocities:

v(t + -S t)  

where a(t) 

r( t  +  St)

v(t — ^ St) +  Sta(t)

F (t)
m

r(t) +  v(t +  i St)St
Li

(3.58)

(3.59)

(3.60)

The following flow chart shows how a typical molecular dynamics (eg DLJPOLY

[33]) code works:

Input initial 

structure

\ f \ rl I Calculate 1 ]

J  I Forces J  I

Move atoms using 

Newtons Laws

repeat N times 3
HOutput final

structure

At the start of the simulation the atoms are assigned random velocities according
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to the Maxwell-Boltzmann distribution for the temperature of interest.

3.4.2.1 Rigid bonds

As already discussed in section 3.3 a common way to treat intramolecular forces is 

to assume that they are independent of the surroundings the molecule finds itself 

in - i.e. to treat molecules as rigid entities-. In molecular dynamics this is a useful 

approximation because intramolecular vibrations are very rapid and thus short time 

steps are required to get accurate integration of the equations of motion and any 

purely classical treatment of bond vibration is questionable. Furthermore, it is rea

sonable as long as the amplitude of vibration is small compared with the molecular 

dimensions.

For a water molecule fixing the bond lengths and angle results in a reduction 

in the number of degrees of freedom from 9 to 6. These 6 degrees of freedom can 

be divided into the 3 translational degrees of freedom of the centre of mass, which 

can be treated using the maths of the previous section, and 3 rotational degrees of 

freedom [34], which require a reformulation of Newton’s Laws, in which forces are

replaced by torques, and linear momenta by angular momenta:

Ti =  £ ( ^  -  r<) x /ia  =  E  x (3-61)
a  a

and r  =  ^  (3.62)
dt

with L a — Iapup (3.63)

Where is the vector connecting the centre of mass to the site at a, f i a is the 

force on that site and Iap is a rank 2 tensor called the moment of inertia, which is 

given by [35, 36]:

Iap =  m(8apr2 -  rar0) (3.64)

In recasting Newton’s laws of motion as equations describing rotational motion 

the position vectors are replaced by vectors that give the orientation of the molecule
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- i.e. the relation between an axis system fixed in space and one fixed with respect 

to the body. In the case of a water molecule the 3 vectors that provide a body 

frame are the HOH bisector, the cross product of the two OH vectors and the cross 

product of these two vectors. Any unit vector e may be expressed in either the 

body-fixed or space-fixed frames and one may convert from body-fixed vector to the 

corresponding space-fixed vector using the rotation matrix A.

eb = A.e8 (3.65)

The nine components of the rotation matrix, which completely defines the molec

ular orientation, axe the direction cosines of the body-fixed axis vectors in the space- 

fixed frame. These quantities may be expressed in terms of the three Euler angles 

<(> (angle of rotation about the z axis), 6 (angle of rotation about the x axis) and ip 

(another angle of rotation about the z axis but one that occurs after the first two 

rotations) [34]:

A  =

^ cos <p cos ip — sin (p cos 0 sin ip sin <p cos ip -I- cos <p cos 6 sin ip sin 0 sin ip ^ 

— cos <p sin ip — sin (p cos 6 cos ip — sin (p sin ip +  cos <p cos 0 cos ip sin 6 cos ip 

 ̂ sin <p sin 6 — cos 0 sin# cos# ^

One can link the values of the time derivatives in the bond-fixed and space-fixed 

frameworks and thus derive equations of motions in terms of the three Euler angles. 

But these equations diverge whenever 6 approaches 0 or n because the angles <p 

and ip are then identical. This can be resolved by using quaternion parameters as 

generalised coordinates [37, 38] - where a quaternion is a set of four scalar quantities 

(<7o,<7i,Qz)i which satisfy the constraint:

9o +  9i +  92 +  93 =  1 (3.66)

There are multiple ways to use these to define the molecular orientation but the
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most convenient choice, in the Euler angle convention, is to define [34]:

6 4>+ i)
qo = cos

2
cos

2
6 <f>-Xl)

qi = sin
2

COS
2

e <j>-  xj)
q2 = sin

2
sin

2
6 4>+ ^

qz = cos
2

sin
2

(3.67)

The rotation matrix then becomes

 ̂ Qo + Qi ~  Ql ~  Qz + qoqz)

\

2f e q2 -  qoqz) qo ~  q\ + ql ~  q\

2 ( ^ 3  +  qoq2 ) 2(^93 -  m i )

2(9iqz -  qoqz)

^ (m z  +  m i )  

q l - q l ~ q i  + ql )

and the equations of motion for the molecules can be written in terms of the 

quaternions as:

< a ^qo 

qi 

q2

V 93 )

( \ 
qo - q \  -q 2  - q z

qi qo —qz q2

q2 qz qo - q i

\  qz -<t2 qi qo )

This set of first order differential equations contain no unpleasant singularities 

and can be solved using a Verlet Leapfrog algorithm [39]. This algorithm stores the 

values of L 8(t — \S t) and Q(t), while the values of the torques, r 8(t) are calculated 

from the instantaneous positions and orientations. These quantities can be used to 

calculate L 8(t) and then, because the angular velocity in the body-fixed frame can 

be calculated from the angular momentum, Q (t +  \8t) can be calculated:

Q (t +  2 ^ Q(t) + \ Q m

(3.68)

(3.69)
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The values from these two equations provide an estimate of Q(t +  which

makes transformations from space-fixed to body-fixed angular momentums and the
•  _____ 

calculation of Q at the half time step possible. This result is used in the second of

the main algorithm equations, given below, to calculate Q(t +  ^6t) from the value

of L*(t +  ^6t), which is calculated in the first step:

i* ( t  +  i<5t) =  £*(t -  1st) + <5fr*(t) (3.70)

Q(t 8t) — Q(t) -f- StQ(t -8t) (3.71)

This algorithm is implemented in DL_POLY_2 [33].

3.4.2.2 Selecting an ensem ble

The molecular dynamics methods discussed so far would sample trajectories in the 

NVE ensemble. Ideally though one wishes to do obtain trajectories in which pressure 

and temperature are kept constant, which would better represent the conditions 

under which experiments are undertaken. In order to apply these constraints a 

model is required that exchanges energy /  volume between the system and some

external “energy bath” /  “volume bath” using some type of thermostat /  barostat.

Therm ostating The instantaneous temperature of a system can be calculated 

from the momenta of the particles within that system [1]:

T  =  3N kB ?  2m>i—1

A simple method to control the temperature of the system is thus to rescale 

the velocities by a factor of ^ /(T /T ), which ensures that they are lying on the 

Boltzmann distribution of velocities for the temperature T  [1]. This rescaling can 

be applied at every time step or every N time steps, in which case T  is replaced 

by ^  7* ^last N) and is invaluable for setting T during the equilibration phase £40j.
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However, the equations solved are not the true equations of motion of the system

[41] and during the production run this is a far too brutal method to control the 

temperature. Berendsen [42] suggested that instead of simply rescaling the velocities 

in one time step the system be brought back to the appropriate temperature in a 

time r , which can be adjusted by the user until any strange behaviour resulting from 

the velocity rescaling disappears:

Pi -  f t  x  +  (3 .7 3 )

Berendsen et al. [42] have shown that this works very well for water when 

t =  0.4ps. This method still does not generate true NVT trajectories because 

the constant temperature constraint is not been incorporated into the Hamiltonian. 

Nonetheless, this method proves very useful for the purposes of changing state and 

equilibrating.

Barostating Much like for temperature, instantaneous pressures can be calculated

[1]. However, instantaneous pressure rescaling introduces catastrophic errors into the 

dynamics of the system and as such all pressure rescaling is done in some user defined 

relaxation time. Pressure is a second order tensor and as such one can implement 

the cell shape changes in an isotropic or anisotropic manner. In the isotropic case

[42]:

1 v—'  r —'  . .
V  =  ——------ —  2_^ 2_^ rij*ij Instantaneous pressure (3.74)

* j

x  = 1 - P t ^ ( P - V )
tp

r —» x l^ r  V  —► y V  Rescale cell lengths and volume 

While in the anisotropic case, the cell vectors are rescaled so the instantaneous

101



pressure and scaling factor must both be second order tensors [33]:

N kBT  1 ^  r-^  
=  y  3 y  2 ^  2Lj

i j
(3.75)

p
(3.76)

(3.77)Pa/3 * ‘HotpHotp

For liquids it is reasonable to use the isotropic scheme. However, for solids, and 

especially defects in solids, one must use an anisotropic scheme.

3.4.3 Monte Carlo

For any point in the space of our system (x) one can calculate the probability of 

being at that point P(x), using equation 3.1, and the value of some property F(x). 

Taking a number of points in phase space and summing the values of P(x)F (x) gives 

a classical expectation value for the property, F, using a technique known as simple 

sampling. This does not work very well though because the majority of phase space 

is taken up by high energy configurations, while the system would be expected to 

occupy only low energy configurations, which would not necessarily be generated 

in the sampling procedure. If configurations could be generated with a probability 

according to the Boltzmann distribution this problem would be resolved but it is 

impossible to generate random numbers on such a complex probability distribution. 

Instead, if one could generate a new configuration from the old configuration using 

some transition function w(xn\xn+i) such that:

•  Stationary distribution - f  w(xn\xn+i)P(xn+i) = P{xn)

• and process is ergodic - i.e. the system will visit the whole of phase space 

during an infinite amount of time regardless of where it starts.

Then if w(xn\xn+i ) was sampled for long enough P (xn), the limiting probabil

ity distribution, would be sampled and so accurate ensemble averages would be
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calculated.

If the condition known as detailed balance (3.78) is required of w(xn\xn+i) then 

the fact that the distribution P (xn) is stationary is implied. Furthermore, w(xn\xn+i) 

can be split up into two components [1] 7r, which represents the probability that the 

configuration is generated and A, which represents the probability that the move 

to the newly generated configuration is accepted. Then detailed balance can be 

re-expressed in terms of relationships between the ratios of these components:

w{xn\xn+1)P{xn+i) = w(xn+i\xn)P (xn) (3.78)

set w(xn|xn+i) =  7r(xn\xn+1)A(xn\xn+i) (3.79)
A{xn+\|xn) 7r(xn\xn+i)P(xn+i)
i4(xn|xn+i) 7r{xn+i\xn)P(xn)

(3.80)

If 7r(xn|xn+i) =  7r(xn+i|xn) then the acceptance probability is just the ratio of 

the Boltzmann probabilities of being in each state. Which leads to the Metropolis 

Condition [1]:

A(3W i|an) = P(*n+l) e-E(x„+I)/kBT Q -AE/kgT ,o RU
A{xn\xn+l) P (i„ )  Q e - W “>T ■ >

=>vl(in+i|xn) =  e~AE/kBT if A E  > 0 (3.82)

=*► A (xn+i\xn) =  1 if A E  < 0

The flow chart below details how this is in incorporated in a typical Monte Carlo 

code

Input initial 

structure 

and energy

|—  revert to previous structure [ False

( \  \  rrandom I Calculate I A 

move I new energy I
v  J  v  J

Apply metropohs 

condition

'------------------------ keep new structure

In this work Monte Carlo simulations are used to evaluate averages over differ

ing proton topologies and the random moves are performed using an algorithm first
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implemented by Rick [43], which is illustrated in figure 3.2. Monte Carlo calcula

tions are used rather than molecular dynamics as proton topology changing moves 

are rare events and are, as such, unlikely to be sampled during the timescale of the 

average molecular dynamics simulations.

Figure 3.2: Diagram showing the operation of the Rick algorithm. Step one : a 
closed loop is found in the structure. Step two : all bonds in the loop have their 
orientation changed.

Figure 3.3: Diagram showing the extensions allowed to the Rick algorithm in this 
work.

The algorithm generates valid hydrogen bonding configurations by first selecting 

a water (j ) at random. One of the four intermolecular hydrogen bonds surrounding 

it is then selected, which is of course attached to a further water molecule (k ). If 

the hydrogen bond j-k  is a donor to k then one picks one of the two hydrogen 

bond donors projecting out from fc, otherwise one picks one of the two acceptors 

sticking out from k. This process is repeated till the path one has taken through 

the hydrogen bonding network meets itself; i.e. until a closed loop is found, then
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the algorithm changes the orientation of every single bond in the loop.

The algorithm has been extended in this work to work with surfaces - now, as 

well as loops, any path that starts and ends with bonds dangling from a surface can 

have the orientations of all bonds in them changed as shown in figure 3.3.
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Chapter 4

Order-Disorder Phase Transitions

As already discussed in the introduction, although many ice phases are proton dis

ordered at ambient temperatures, they can undergo a phase transition to a proton 

ordered form at low temperatures. In this chapter an attempt is made to under

stand the driving force of the proton ordering transitions and then, from the insight 

obtained, the structures of recently discovered proton ordered ice phases were pre

dicted.

4.1 Ice Ih

As discussed in section 2.5.1.1 the proton ordering transition in ice Ih has been 

extensively studied using both potentials and ab initio approaches. The work here 

expands on the literature work in two ways:

1. the work of Hirsch and Ojamae[l] is repeated, with an improved basis set and 

the RPBE, LDA and PW91 functionals.

2. an analysis of the electrostatic multipoles of the 16 reference hypothetical unit 

cells using the maximally localised Wannier function scheme developed by 

Aguado and Madden[2] is reported.
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4.1.1 Total energy calculations

As described in section 2.7.1, Hirsch and Ojamae[l] have reported the total energies 

of 16 symmetry nonequivalent 8 molecule unit cells calculated using total energy 

DFT calculations. They reported a slight difficulty in converging the differences in 

energy between differing proton topologies with basis set size and so their plane wave 

DFT calculations have been repeated but with an increased plane-wave cutoff and 2 

additional functionals. This was done to test whether minima are acutely sensitive 

to basis set effects and the exchange-correlation terms respectively, with the different 

functionals providing the insight into how sensitive the energy differences are to the 

recipe used to calculate the exchange and correlation energies. Furthermore, these 

calculations were conducted with CASTEP version 3.1 [3], which uses a full BFGS 

approach to cell (and co-ordinate) optimisation as opposed to older versions, which 

only used first derivatives to establish minima.

0.120.12

0.1

* 0.08 0.08

SI 0.06 fc 0.06

a  0.04

®  0.02

0.02 0.04 0.06 0.08 I
PW91 relative energies / kcal mol

0.1
,-i

0.12 0.06 0.08 0.120.02 0.1’ 0.04
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(a) RPBE functional (b) LDA functional

Figure 4.1: Correlation between the relative optimised energies of the 16 different 
symmetry distinct 8 molecule ice Ih unit cells calculated using the PW91, RPBE 
and LDA functionals. All energies are given relative to that of ice XI.

The energies of the 16 isomorphs were calculated using the PW91 [4, 5] and 

RPBE [6] GGA functionals, which use functions of the local density and the gradient 

of the density to describe exchange and correlation, and with the LDA functional, 

which uses an exchange correlation function that is a function of only the electron 

density. A plane-wave cutoff of 550 eV was used and a 6x3x3 Monkhorst-Pack grid of
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k-points. This large plane-wave cutoff was employed because of the poor convergence 

of the energy differences for lower cutoffs. The trend in energy differences is identical 

to that reported previously [1] and all the functionals predict the correct structure for 

ice XI in agreement with experiment and previous DFT [1] and Hartree-Fock work

[7]. (This is particularly surprising for LDA, which is known to overbind the water 

dimer because it has an inadequate description of exchange and correlation.) The 

different functionals have different recipes for estimating the exchange-correlation 

energy, so the strong correlation between the relative energies, calculated using the 

various functionals, suggests that, although the way exchange and correlation are 

parametrised may affect the absolute energies, it does not greatly effect the relative 

energies of the various ice configurations.

The energy differences calculated for these ice unit cells are all less than 0.15 kcal 

mol-1, and one might question whether or not DFT can accurately predict such small 

energy differences. However, the total number and composition of species in each 

cell is identical, the cell volumes are almost identical and, in this work, the number 

of plane waves in the basis set is automatically extended when the cell expands 

to ensure consistent integration conditions. Furthermore, because the separations 

between water molecules sire nearly constant in all the cells the same part of the 

intermolecular attractive and repulsive potentials are sampled. So, although DFT 

might not reproduce the absolute energies, it will reproduce relative energies because 

in the calculations of these quantities any errors, intrinsic in the method, will cancel.

Obviously, in discussing the relative stability of these configurations relative 

energies is only half the story. To obtain true estimates of the relative stabilities one 

requires information on the entropies of these systems and as such information on 

their zero point energies (ZPE). Calculation of reliable zero point energies for these 

different configurations would be difficult and computationally expensive. However, 

given that the zero point energy will be dominated by the OH stretching vibration, 

whose frequency decreases with increasing hydrogen bond length, and the fact that
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the hydrogen bond lengths in all these structures are very similar, one might expect 

that ZPE would have little or no effect on the relative stabilities of different hydrogen 

bonding topologies.

4.1.2 Electrostatic analysis

As discussed in section 3.1.2, the total energy calculated in DFT is the sum of the 

kinetic energy of the electrons, electrostatic interactions, exchange interactions and 

correlation interactions. In the previous section it was shown that the relative ener

gies are independent of the exchange correlation functional employed, which suggests 

that it is not these terms that are responsible for these energy differences. Further

more, the kinetic energy of the electrons calculated in DFT assumes that there is no 

interaction between electrons and so is likely to be only dependent on the number of 

electrons present. This all suggests that the energy differences are due to differences 

in the electrostatic energies. As discussed in section 3.2.1 and 3.2.2, it is possible to 

calculate the electrostatic contribution to the total energy by performing a Wannier 

transformation on the Kohn-Sham orbitals output by CASTEP and then treating 

the resulting Wannier functions as atomic orbitals, which can be used to calculate 

multipoles. This has been implemented in CASTEP by Aguado and Madden [2] for 

systems composed of ions. With only a small modification this code can be used to 

calculate the molecular multipoles in ice.

The first step of Aguado and Madden [2] algorithm generates a set of Wannier 

functions with centres at:

£  K ^ U )
Om mn>

where =  < (f)i \et^rnT\4>j >

In this equation Mnm = _ the normalised projection of the nth reciprocal
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lattice (6n) vector on the rath real space vector (um). The O indicates that it is the 

imaginary part of the logarithm that is of interest and the are overlap integrals 

between the various Kohm-Sham orbitals (</>»).

In the work of Aguado and Madden each Wannier function is assumed to be an 

atomic orbital of the ion whose nuclei lies closest to its centre. This approach will 

not work for water because all the electron density about the hydrogens would be 

transferred to the oxygen leading to a highly unphysical distribution of the charge 

density. Admittedly it would be possible to solve this problem using a DMA scheme 

rather than the Wannier function scheme implemented here, however to perform a 

DMA analysis it is imperative that one uses either a Slater type or Gaussian type 

basis set, CASTEP meanwhile is a plane wave code though and so DMA analysis is 

not possible.

To resolve this problem the code was rewritten so that the Wannier functions are 

assumed to represent the molecular orbitals and thus are assigned to molecules. The 

locations of molecules are established by first calculating the two hydrogen nuclei 

nearest to a given oxygen nuclei. These three atoms together make up a water 

molecule, whose center of mass can be calculated. The Wannier functions are then 

assigned to the molecule whose centre of mass lies closest to its Wannier function 

centre.

The second critical difference between this molecular Wannier function approach 

and the approach favoured by Aguado and Madden is in the calculation of multi

poles. In the work of Aguado and Madden the ionic multipoles are calculated using 

the nuclei as the origin so, because the nucleus lies at (0,0,0), it makes no contri

bution to terms in the multipolar expansion higher than the monopole. Meanwhile, 

in the molecular version of the code the nuclei don’t lie at the origin (the origin 

in these calculations is the centre of mass) and so the charges on nuclei have to be 

included when calculating dipoles, quadrupoles, etc... Furthermore, because the two 

Is electrons are not treated explicitly but are modeled using a pseudopotential, the
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charge on the oxygen nucleus is equal to +6. This pseudising of electrons assumes 

that the core electrons are distributed evenly on a small sphere surrounding the 

oxygen nucleus and thus at the distance of interest their effect can be reproduced 

by a multipole expansion containing only monopolar terms.

The Wannier function approach is general but it is costly to calculate the spread 

functional if one has many Appoints and so it would be convenient if these calculations 

could be done at the Gamma point. The original unit cell has lengths of of 4.380, 

7.167, 7.207 A in a, 6, and c cell axes respectively, leading to poor sampling in 

the a axis direction if T point sampling is enforced. This poor sampling leads 

to substantial deviations in the energy differences from the multi Appoint results. 

However, it was found that the multi Ar-point results could be reproduced by a 

gamma point calculation on a supercell with an a-axis double the length of that 

used in the multi Appoint calculations, see figure 4.2.

o 0.12

0.1

£? 0.08

0.06

0.04

0.02 0.04 0.06 0.08 I
PW91 relative energies / kcal mol

0.1 0.12

Figure 4.2: Correlation between the PW91 27 k-point energies of the 8 molecule cell 
and the energies obtained from the 16 molecule (2x1x1) gamma point calculation. 
All energies are given relative to the energy of the ice XI structure.

The maximum deviation between the energy differences calculated for the 2x1x1 

supercell (gamma-point) and the smaller cell with 6x3x3 Appoints is 0.011 kcal mol-1 . 

Therefore, because this energy difference is far smaller than the energy differences 

between different proton topologies, for computational efficiency, these supercells 

were used in the Wannier function calculations. Figure 4.3 shows an example of the 

Wannier functions generated using this technique.
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Figure 4.3: Low density isosurfaces of two of the Wannier functions from a calcula
tion on a 64 molecule cell of ice. The light and dark shading indicates the phase of 
the wavefunction.

Xantheas et al. [8, 9] have shown that the electric field around water clusters and 

in ice Ih is strongly affected by multipoles up to the hexadecapole terms. For this 

reason multipoles up to the hexadecapole have been calculated and the potential 

energy has been calculated up to the 6th order in the electrostatic expansion terms 

using the equation below [10] (see section 3.2.2 for the definitions of the terms used 

in this equation):

B .BaA

(4.2)
1

TafaSt( +  ^ # f/3 ^ 7 < 5 c  ~
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The calculated energies up to the various orders in this expression are shown 

in figure 4.4. The 1/i?3 term (the dipole-dipole interaction) is calculated using the 

Ewald Sum with metallic, “tin foil”, boundary conditions. This ensures that any 

macroscopic dipoles are cancelled by dipoles induced in the metal surrounding the 

cluster of ice, so the cluster has 110 overall dipole. All the other terms are much 

shorter ranged and so a direct sum is used to calculate them.
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Figure 4.4: Total energies relative to that of ice XI for the 15 symmetrically distinct 8 
molecule unit cell configurations of ice Ih. The lines are there only to make the data 
clearer to visualise. Configuration 0 is the structure of ice XI and configuration 
1 is Bjerrum’s predicted ice XI structure. The black fine represents the PW91 
result, red line the electrostatic interaction energy up to terms in l//? 3, green fine 
the electrostatic interaction energy up to terms in 1/i?4, blue line the electrostatic 
interaction energy up to terms in 1/i?5 and violet fine the electrostatic interaction 
energy up to terms in 1/i?6. The multipolar energies have been uniformly scaled to 
be compatible with the DFT energies.

There is excellent agreement between the purely electrostatic description of en

ergy differences and the full DFT energy differences for ice Ih, but only when terms 

up to 1 /r6 in the expansion axe considered. However, the value of the potential 

energy, obtained from the electrostatic potential energy calculation, must be scaled 

by a factor of 60. Why this scaling is required is unclear - one suggestion is that is 

due to the absence of the dielectric constant; although the dielectric model is an idea 

from continuum modeling and so should be unnecessary for molecular scale mod
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els. Another suggestion is that the electrostatic expansion of the potential energy 

is not fully converged but this does not explain the apparent match in the energies 

calculated from DFT and electrostatics. This is an subject that requires further 

investigation.

The 1 /r3 component of the electrostatic energy (which is that due to dipole- 

dipole interactions) is strongly inversely-correlated with the true total energy differ

ences. This explains why many interatomic potential models fail to correctly predict 

the structure of ice XI as they are fitted to reproduce the dipolar properties and 

they neglect these higher order terms.

The obvious question at this stage is why is it necessary to have such an accu

rate description of the charge density if one wishes to describe the energy differences 

between different proton topologies? Previous studies [11, 12] have focused on the 

failure of potentials to reproduce the structure of ice XI. They have shown that at 

short range the electrostatic interactions in potentials stabilise Bjerrum’s structure 

[13, 14] (1) whilst at longer ranges these interactions stabilise the true ice XI struc

ture (0). As has been shown though, in all probability, these potentials are only 

reproducing the terms in 1 / r 3 in the electrostatic expansion and so it was decided to 

examine the distance dependence of the difference in each term of the electrostatic 

interaction energy for configurations 0 and 1. This was done by simply changing 

the value of the cutoff distance and calculating an energy, the results are shown in 

figure 4.5.

This analysis shows that the dipole-dipole interaction converges very slowly, 

which agrees with the finding of Buch et al. [11] and Rick [12]. Furthermore, 

at short range it stabilises configuration 1, whilst at longer range it stabilises con

figuration 0 so that overall the dipole-dipole contribution to the energy difference 

between structures is rather small. As such higher order multipolar terms, which 

decay more rapidly than the dipole-dipole interaction, become important. The fact 

that the majority of the energetic contribution from these steeply distant dependent
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Figure 4.5: Distance dependence of difference in energy between configurations 0 and 
1 as a function of radial cutoff for the various terms in the electrostatic expansion.

terms is from short ranged terms helps explain why the graph invariant approach 

of Singer et al. [15], which fits the energy to very local geometric features, works so 

well.

It would be interesting to note whether or not molecules surrounded by different 

proton configurations are polarised differently - in other words whether molecules 

with different surroundings have different values for their dipole, quadrupole etc... 

In order to make this comparison however it is necessary to rotate the multipoles 

from the cell frame, which they are output in, into the body fixed frame whose axes 

are the bisector of the HOH angle a, the cross product of the two OH vectors (5 

and the cross product of these two vectors a  x (5. Rotation from one frame to the 

other can then be done using the following equations, which are derived from the 

definition of a Cartesian tensor [16]:
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Where in these equations A  is the rotation matrix, given below, which is calcu

lated by taking the scalar products of the two sets of basis vectors.

i b.ic j b i c k b.ic

A = i b. j c j b j c k b. j c

i b.kc j b.kc k b.kc

These rotations have been done on all the molecular multipoles in all the unit 

cells and it has been found that the components of multipoles in different locations 

within the cell and in differing unit cells are all very similar. This analysis generates a 

vast amount of data so only the magnitudes of the multipoles are reported here. The 

average magnitude and the the standard deviation of the molecular multipoles in 

each of the 16 symmetry distinct unit cells is given in table 4.1. N.B. A multipole can 

be written as a linear combination of spherical harmonic functions. The magnitude 

of a multipole is defined, using this scheme, as the square root of the sum of the 

squares of the coefficients of the spherical harmonics.

Table 4.1 shows that the mean magnitudes of the multipoles in the different unit 

cells are all very similar. Furthermore, the standard deviations about these means 

are very small suggesting that all the multipoles at different sites are similar and as 

such differences in the extent of polarisation on molecules in different sites are not 

responsible for the energetic differences.

The driving force for proton ordering in ice Ih can thus be understood as a purely 

electrostatic phenomenon. This is not to say that hydrogen bonding is primarily
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/z /  Debye 6 /  Debye A Q /  Debye A2 f  /  Debye A3
Mean a Mean a Mean <7 Mean a

0 3.604 0.001188 4.587 0.09576 4.225 1.649 4.983 0.008368
1 3.620 0.003133 4.565 0.03336 3.359 0.466 5.324 0.287
2 3.615 0.000077 4.563 0.04135 3.434 0.435 5.268 0.297
3 3.611 0.000707 4.568 0.02911 3.401 0.479 5.118 0.281
4 3.611 0.000841 4.577 0.03104 3.411 0.436 5.149 0.269
5 3.619 0.003642 4.556 0.03382 3.497 0.431 5.322 0.286
6 3.618 0.000214 4.566 0.04111 3.392 0.467 5.266 0.283
7 3.613 0.002494 4.570 0.03666 3.282 0.461 5.116 0.268
8 3.606 0.002494 4.576 0.03666 3.930 1.553 5.057 0.292
9 3.607 0.008858 4.571 0.06625 4.127 1.608 5.107 0.221
10 3.609 0.011840 4.576 0.08107 3.643 1.318 5.136 0.160
11 3.619 0.003754 4.562 0.03617 3.527 0.412 5.295 0.290
12 3.618 0.003092 4.563 0.04063 3.501 0.447 5.299 0.289
13 3.609 0.010720 4.581 0.08071 3.661 1.313 5.136 0.417
14 3.607 0.009449 4.570 0.06694 4.128 1.612 5.108 0.224
15 3.613 0.003793 4.572 0.03559 3.399 0.459 5.115 0.270

Mean 3.612 0.007824 4.570 0.05554 3.620 1.038 5.175 0.274

Table 4.1: Average multipole magnitude and standard deviations of those magni
tudes for each of the 16 proton ordered ice Ih unit cells studied in this work. The 
final fine in the table gives the average and standard deviation of all the multipoles 
in all the phases taken together.

due to electrostatic terms, rather that the differences in energy of structures with 

identical oxygen sub-lattices but with different hydrogen bonding networks are due 

to variations in the electrostatic interactions.

4.1.3 Energy and Symmetry

In the previous section it was shown that the forces responsible for the proton or

dering in ice Ih are very short ranged in nature. This observation has been exploited 

by Hirsch and Ojamae [1] and by Kuo et al [15], who have both fitted the energy 

to local topological features in the proton topology as discussed in section 2.3.1. 

This suggests a way of finding ordered forms in other phases because the low energy 

structures will have the same low energy fragment repeated throughout the cell. In 

other words the low energy structures will have a small asymmetric unit which is re

peated throughout the unit cell using the symmetry operations of its space group to
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Figure 4.6: Figure showing how the energies of the ice Ih unit cells depend on the 
symmetry of the structures. The solid black lines represents the highest and lowest 
energy structures, both of which have two molecules in the asymmetric unit. Each 
point represents a symmetry distinct proton topology (the position on the x axis 
is arbitrary). The black dots are the other structures with 2 molecules in their 
asymmetric unit, the red circles those with 4 molecules in their asymmetric unit 
and the green dots those with 8 molecules in the asymmetric unit.

generate the remaining water molecules. Obviously the higher the space group sym

metry the smaller the asymmetric unit and so one would expect any proton ordered 

form to have the highest possible space group for which a valid proton topology can 

be generated. Furthermore, because the highest energy (least favourable) structure 

will contain the least favourable asymmetric unit repeated throughout the cell, it 

would also be expected to belong to the highest symmetry space group.

This idea is supported by, and the basis of, Kuo et a/.’s graph invariants [15] (see 

section 2.3.1). A graph invariant is a projection operator of a high symmetry space 

group - given that Kuo et al only ever use totally symmetric projection operators 

of bond variables to generate their graph invariant functions and that the energy is 

fitted to the value of the graph invariants suggests low and high energy structures 

will be those with a high symmetry. To test this assertion figure 4.6 shows the 

energies of the various structures vs the number of molecules in their asymmetric 

units. As can be seen the lowest and highest energy' structures are amongst the 

structures that have the smallest asymmetric units.

Kuo and Klein [IT] have also noted that the extent to which the lattice relaxes
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during optimisation is dependent on the symmetry of the initial structures hydro

gen bonding topology, with structures of higher symmetry relaxing more than those 

of lower symmetry. This observation can be understood by considering the high 

symmetry structures as a set of repeats of some asymmetric unit. If, during opti

misation, there is a structural distortion within the asymmetric unit, then this can 

occur throughout the cell if the cell is composed of repeats of the asymmetric unit. 

By contrast, if the cell is not composed of repeats of one small asymmetric unit, 

in other words if it is of lower symmetry, then any structural distortions may be 

suppressed because different parts of the structure wish to distort differently. By 

this argument then one may observe that, for geometry optimisations, the highest 

energy (least favourable) structure may not have the same symmetry as the lowest 

energy structure. For single point energy calculations though, one would expect this 

observation to always be true.

4.2 Ice VII

The observation that electrostatic forces drive the proton ordering of ice Ih begs 

the question - is this true in other ice phases? Particularly those that order spon

taneously without dopants. Ice VII, a very high pressure form of ice, which was 

discussed in section 2.5.8 has a proton ordering transition to ice VIII, which goes 

without dopants present. To test whether this transition goes because of electrostatic 

forces 3 randomly oriented ice VII, 8 molecule unit cell structures were generated. 

Optimisations of these structures and the structure of ice VIII were then performed 

in CASTEP using the PW91 functional, a plane-wave cutoff of 550 eV and a 6x6x4 

Monkhorst-Pack grid. Then a further single point gamma point calculation, from 

which Wannier functions were obtained, was performed on a 2x2x1 supercell of each 

of the structures so that there was comparable sampling along each of the axes. 

Figure 4.7 shows the electrostatic energy calculated up to the various orders in this 

multipolar expansion.
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Figure 4.7: Total energies relative to that of ice VIII for the 3 random ice VII cells 
generated. Again lines are in only to make the figure easier to interpret. Configura
tion 0 is the structure of ice VIII and the black line represents the PW91 result, red 
line the electrostatic interaction energy up to terms in 1/i?3, green line the electro
static interaction energy up to terms in 1/i?4, blue line the electrostatic interaction 
energy up to terms in 1/i?5 and violet line the electrostatic interaction energy up to 
terms in 1/i?6. The multipolar energies have been uniformly scaled to be compatible 
with the DFT energies.

Again it would seem that the energy differences seem to only depend on the 

electrostatic component of the potential energy but, whereas for ice Ih the energies 

only converged on the DFT results when terms up to 1 /r6 were taken into account, 

now the energy is converged once terms in 1 /r5 have been reached. Again though 

some scaling is required although the scaling factor here is only 6 as opposed to the 

larger value that was required for the ice Ih energies.

A similar analysis of the multipolar components, akin to that performed on the 

ice Ih multipoles, has been performed and the results are shown in table 4.2:

Again the multipoles in different locations within the unit cell and in different 

unit cells are very similar in magnitude. However, the multipoles in ice VII are 26% 

smaller than those in ice Ih. Thus the arrangement of oxygens in the structure has 

a strong effect on the amount of polarisation of the water molecules.

In conclusion, in a given ice phase (oxygen network) all the water molecules,
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fj, /  Debye 6 /  Debye A Q /  Debye A2 f  /  Debye
Mean <7 Mean o Mean a Mean a

Ice VIII 2.999 0.00001 4.006 0.00002 3.516 0.527 5.061 0.00005
1 3.024 0.0006009 3.975 0.008762 4.122 0.587 4.914 0.442
2 3.025 0.003721 3.971 0.01206 3.921 0.863 4.942 0.398
3 3.025 0.002853 3.968 0.01307 3.900 0.909 4.975 0.338

Total 3.018 0.01121 3.980 0.1832 3.865 0.772 4.973 0.347

Table 4.2: Average multipole magnitude and standard deviations of those magni
tudes for each of the 4 proton ordered ice VII unit cells studied in this work. The 
final fine in the table gives the average and standard deviation of all the multipoles 
in all the phases taken together.

regardless of the hydrogen bonding topology surrounding them, are polarised by the 

same amount and thus have very similar multipoles. In contrast, two ice structures 

with different oxygen networks have water molecules that are polarised by different 

amounts. This suggests that in parametrising a potential to reproduce the whole of 

the water phase diagram one would need to include a large number of polarisation 

terms.

4.3 Ice XII - determination of ice XIV

Finney and Salzmann [18] have recently carried out work on proton ordering transi

tions in ice XII and ice V. By doping these ices with HC1 and cooling, they managed 

to extract two new ice phases, ices XIII and XIV. Prior to their publications they 

issued a challenge to blind predict the structure of these two new ordered phases. 

The work in section 4.1.3 showed that the ordered form would be expected to be 

one of the structures of the highest symmetry space group so the problem of pre

dicting ordered forms becomes one of enumerating possible proton topologies for a 

small unit cell and then calculating their symmetries. Optimisations with density 

functional theory can then be done to establish which of the structures is the low

est energy and hence the ordered form. Furthermore, because the driving force for 

proton ordering transitions is primarily electrostatic, as shown in sections 4.1.2 and 

4.2, one can have confidence in the verity of any predictions made with DFT.
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It was decided to take on the ice XII proton ordering transition first because it 

is a simpler structure. The enumeration was achieved by borrowing from the work 

of Kuo et al. [15] and realising that any ice structure is a graph and can as such 

be represented as a set of finked vertices, instead of the full set of coordinates of all 

the atoms. This list of finked vertices was worked out by first calculating the four 

nearest neighbours to each oxygen, which gives a fist in which every bond in the 

structure is listed twice so the following code was used to delete all the repeats:

! Loop over all oxygens 
n = l
do j=l,nmol
! Loop over four neighbours 

do k=l,4
! Establish whether or not bond has already been found 

found=. false, 
do m =l,n—1

if ((canon(m,l).eq.j).and.(canon(m,2).eq.hydsphere(j,k))) found=.true. 
if  ((canon(m,2).eq.j).and.(canon(m,l).eq.hydsphere(j,k))) found=.true. 

end do
! If not found add to canon array, 

if  (.not.found) then 
if  (n.gt.nmol*2) then 

write(6,*)"Problems in  canonical -  found too many bonds" 
stop 

end if
canon(n,l)=j
canon(n,2)=hydsphere2(j ,k) 
n=n+l 

end if  
end do 

end do

In this code hydsphere is an N dimensional array that lists the four nearest 

oxygen atoms to each oxygen and canon is the final list of the 2N pairs of oxygen 

atoms that make up the hydrogen bonds (N is the number of water molecules). As 

discussed in section 2.3.1 any hydrogen bonding configuration can be represented 

by a diagraph of the graph that represents what oxygens are connected - i.e. in 

a hydrogen bonding topology the hydrogen bonds must be given a direction. This



direction is represented within the program by a further 2N dimensional array called 

hbonds, whose elements have a value - h i  if hydrogen bond j  points from canon(j,l) 

to canon(j,2) or a value of -1 if it points from canon(j,2) to canon(j,l). This hbonds 

array, if written out in full, is simply a binary string which makes enumeration of 

all topologies very simple - now one need only convert every number in the range 0 

to 22N-1 to a binary string and test whether the corresponding hydrogen bonding 

configuration obeys the Bernal-Fowler [19] ice rules, which is done by the code below:

nperms=2 * * (nmol* 2) 
do j=0,nperms— 1 

strucno=j
! Generate binary string from number 

do k=l,nmol
hbonds(k)=int(strucno/binar(k)) 
if  (hbonds(k).eq.l) then 

strucno=strucno -  binar (k) 
else if  (hbonds(k).eq.O) then 

hbonds(k)=-l 
end if 

end do
! Test if  structure obeys Bernal Fowler ice rules 

ncoord(:)=0 
coord=0 
do j = l tnmol*2 

ncoord(canon (j, 1))=ncoord(canon (j, 1))+hbonds (j) 
ncoord(canon(j, 2))=ncoord(canon(j, 2))—hbonds (j) 

end do
! Each value of ncoord should be zero if  valid structure 
trial=0 
do j=l,nmol 

trial=trial+abs(ncoord(j)) 
end do
if (trial.eq.O) then 

! Code to output valid structure 
end if 

end do

The positions of the hydrogens in the structure are then obtained by using the 

directions of the two donor hydrogen bonds on each oxygen to generate a body fixed 

axis system for every molecule.



The process discussed so far is not as sophisticated as that of Kuo et al. [15] 

and as such generates a vast number of structures, because symmetrically equivalent 

structures are not automatically deleted. However, one symmetry is easily spotted 

in this representation - namely if the two structures are represented by hbonds arrays 

that axe related by multiplication of all the elements by - 1  then they are equivalent. 

That is to say, if one takes a structure and reverses the directions of all the hydrogen 

bonds then this second structure is symmetrically equivalent to the first. Thus rather 

than counting from 0 to 2N — 1 (where N is the number of hydrogens) one need only 

count as far as 2N~l — 1 as the 2N~l binary strings between 2N~l and 2 ^  — 1 can all 

be generated by taking a binary string in the range 0  to 2 N _ 1  — 1 and multiplying 

by - 1 .

Applying the above approach to a 12 molecule ice XII unit cell generates 346 

possible structures. The symmetries of all these structures were calculated using 

FINDSYM [20] and it was found that of the 346 structures 258 have PI symmetry, 

8  have P2 symmetry, 72 have P2i symmetry and 8  have P2i2i2i symmetry. P2i2i2i 

is the highest symmetry of these space groups and so these 8  structures were opti

mised in CASTEP using the PW91 functional and 2x2x4 Monkhorst Pack grid of 

fc-points and a plane wave cutoff of 500 eV. When these calculations are performed 

there are only 4 distinct energies (see table 4.3), which suggests that each structure 

has been generated twice. The reason each structure is generated twice using this 

procedure is that the asymmetric unit of the disordered ice XII structure has S4 point 

group symmetry and, as such, 4 symmetry operations. All valid hydrogen bonding 

topologies do not have the same symmetry as the disordered structure, although, if 

one takes an arbitrary hydrogen bonding topology and applies the symmetry oper

ations of the disordered structure, one generates a hydrogen bonding topology that 

is symmetrically equivalent.

The energy difference between configuration numbers 3 and 4, whose structures 

are shown in figure 4.8, is very small. They feature subtly different hydrogen-bond
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Configuration number Energy /  kcal mol 1 E - E(ice XIV) /  kcal mol"1
1 -10865.948 0.189
2 -10865.987 0.15
3 -10866.094 0.043

4 (ice XIV) _ -10866.137 0.0

Table 4.3: Energies of the 4 P2i2x2i 12 molecule unit cells of ice XII.

networks along [001]. In the lowest energy state (4) the interatomic O-H distance 

parallel to [001] is 1.750 A whilst the separation alternates between 1.713 and

1.716 A in the higher energy structure (3), which suggests that the energy difference 

between these two networks is due to a reduction in suprafacial intermolecular proton 

repulsion in configuration 4.
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Figure 4.8: Structures of the two low energy P2i2i2i structures generated. The one 
on the right is the lowest energy configuration (4), while the one on the left is the is 
the slightly higher energy configuration (3). The molecules highlighted indicate the 
differences in the hydrogen bonding topology between the two structures.

A tentative suggestion that configuration 4 corresponds to the experimental ice 

XIV structure was made [21] but, because of the extremely small energy difference 

between configurations 3 and 4, it was also suggested that regions of configuration 3 

may be present. An apparent mixture of configurations 3 and 4 is precisely what is 

observed in experiments. Using Salzmami et aVs [18] labeling convention (see table
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x y z occupancy
01 0.0059(3) 0.2568(5) 0.1304(7) 1.0000
02 0.6308(3) 0.0078(3) 0.2485(7) 1.0000
03 0.2525(4) 0.8858(3) 0.0063(6) 1.0000
D4 0.0557(7) 0.3284(7) 0.9845(1) 0.407(3)
D5 0.5275(5) 0.8410(4) 0.4684(1) 0.620(4)
D6 0.0920(2) 0.2056(3) 0.2671(6) 1.0000
D9 0.7895(3) 0.9679(3) 0.8954(7) 1.0000
D ll 0.7340(3) 0.4630(3) 0.3225(6) 1.0000
D12 0.4111(4) 0.5790(5) 0.3625(1) 0.593(3)
D13 0.9018(8) 0.1018(7) 0.8552(2) 0.380(4)
D15 0.8472(3) 0.3248(3) 0.4010(6) 1.0000

Table 4.4: Fractional coordinates for ice XIV (80 K and ambient pressure) as deter
mined by Salzmann et al. [18]. Numbers in parentheses are statistical errors of the 
last significant digit.

4.4) the difference between configurations 3 and 4 is that in configuration 4 the H5 

and H12 sites are occupied, while in configuration 3 the H4 and H13 site are occupied 

instead. The experimental spacegroup is P2i2i2i and the unit cell parameters are: 

a=8.3499(2) A b=8.1391(2) A c=4.0825(l) ATo resolve strain in the fit, the H5:H4 

and H12:H13 sites were assigned fractional occupancies of ~0.6:0.4 as shown in table 

4.4.

In section 4.1.3 it was demonstrated that the highest symmetry proton topology 

contained amongst their number the topologies with the highest and lowest energies. 

Furthermore, the physical origin of this phenomenon was ascribed to the repetition 

of some low /  high energy asymmetric unit about these high symmetry structures. 

In Ice XII the fact that there are two low energy structures suggests that there are 

two distinct low energy features - namely those features involving (using the labeling 

convention of Salzmann discussed above) H4, H5, H12 and H13 and those features 

involving the remaining part of the hydrogen bonding network. That is to say, 

permuting the H4, H5, H12 and H13 part of the network has a far smaller effect on 

the energy than any other sort of permutation. This suggests that there should be 

a number of lower symmetry structures that consist of a mixture of configurations 

3 and 4 with an energy intermediate between those of configurations 3 and 4. In
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other words there are 2 symmetrically equivalent hydrogen bonding topologies, one 

of which has hydrogens on the H4 and H12 sites, while the other has hydrogens on 

H5 and H13, that should have energies lying between those of configurations 3 and 

4. These structures have been generated and found to have a symmetry of P2i and 

a relaxed energy, calculated using CASTEP, of -10866.101 kcal mol-1 - 0.036 kcal 

mol-1 above configuration 4 and 0.007 kcal mol-1 below that of configuration 3.

Experiments [18] have shown that the cooling rate influences the likelihood of 

the proton ordering transition, which is as expected - if the system is cooled too fast 

then all kinetic energy is lost before the potential energy barrier to the transition has 

been overcome. This raises a question though. If one delicately controls the cooling 

rate could one influence the occupancies of H4, H5, H12 and H13 in ice XIV? These 

calculations suggest that the system can happily have hydrogens in all these four 

sites down to ~20 K and at this temperature it seems unlikely that there will be 

enough kinetic energy to overcome any potential energy barriers. Thus adjusting 

the cooling rate is unlikely to yield the ability to control hydrogen site occupancies.

To the best of our knowledge the proton ordering transition in ice XII is the 

first observation of an ordering transition where the ordered form observed consists 

of a mixture of proton topologies. In ice Ih the ordered form is ferroelectric, so no 

pure ice XI crystals have been made, but within the domains the crystal consists 

of a single proton topology. Why exactly ice XII forms this mixed ordered form is 

unclear but may be that the barrier to this final stage of transition is too large or it 

may be a geometric consequence of having these ID chains of water molecules.

4.4 Ice V

As mentioned in the previous section Finney and Salzmann [18] have also found a 

proton ordered form of ice V. Ice V has a monoclinic unit cell of 28 molecules and here 

lies the problem with predicting the structure using the techniques used to predict 

the ordered form of ice XII - according to Pauling’s rule [22] there are approximately
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85,200 possible structures for a unit cell containing 28 water molecules. Not only is 

this too many structures to run through FINDSYM, it is too many to store on local 

computational resources! However, by the logic of section 4.1.3, the ordered form 

will consist of some small asymmetric unit repeated throughout the cell according 

to the symmetry operations of some relatively high symmetry group. Thus if one 

could first find what molecules formed this asymmetric unit one could generate all 

the high symmetry structures by generating all valid hydrogen bonding topologies 

of the asymmetric unit using the methods described in the previous section. These 

asymmetric units could then be repeated about the cell using the operations of the 

space group and the resulting structures tested to see if they obeyed the Bernal- 

Fowler ice rules.

To identify the smallest possible asymmetric unit that can be repeated about 

the cell to produce Bemal-Fowler rule obeying structures the space group of the 

disordered ice V structure was examined. Ice V has the space group A2 i /a i and 

an asymmetric unit consisting of 4 oxygens, 14 hydrogens (each hydrogen with an 

occupancy of 0.5) and 6 hydrogen bonds - 5 of which connect symmetrically non

equivalent oxygen atoms and 1 which connects oxygen number 1 to a symmetric 

repeat of oxygen 1. It is this last bond that is problematic because there is a mirror 

plane in the center of it. Obviously, a hydrogen bond can’t have a mirror plane 

in its center as to have one would necessitate having two hydrogens on the bond. 

If, in this bond, atom a donates a hydrogen to atom b the symmetry operations of 

the group will generate a hydrogen bond in which atom b donates a hydrogen to 

atom a. The other bonds by contrast are straightforward to deal with as they form 

part of the asymmetric unit. Thus one can simply generate a list of the oxygen 

atoms, in the asymmetric unit, that are linked together by hydrogen bonds and 

then generate all the oxygen positions by repeating the asymmetric unit according 

to the symmetry operations of the space group. Finally, then one takes the list of 

oxygens connected by hydrogen bonds obtained in the first step and, if for instance,
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the first hydrogen bond connects oxygens 1 and 2 then one takes every instance of 

a symmetric repeat of an oxygen 1 and connects it to every instance of a symmetric 

repeat of an oxygen 2. If the bonds are assigned a direction, then one can enumerate 

over possible asymmetric units using the methods discussed in the previous section. 

However, this does not deal with the problematic bonds that connect symmetric 

repeats and generates hydrogen bonding networks that, for ice V, are 8 hydrogen 

bonds short of the required number. This problem was resolved though, for ice 

V, by enumerating all possible topologies which have the same orientations of the 5 

bonds connecting different oxygen atoms in the asymmetric unit but any orientation 

for the remaining 8 bonds. This generated 8 structures, the space groups of which, 

found using FINDSYM [20], were either, P2i/c, or the lower symmetry Pc.

The space group of the ordered form of ice V is thus likely to be P2i/c  for the 

reasons described in the previous section and it is possible to create an asymmet

ric unit of ice V within this space group, which contains 6 water molecules and 12 

hydrogen bonds none of which connect oxygens to their symmetric repeats. Thus 

every possible arrangement of hydrogen bonds, with P2i/c symmetry can be gener

ated by generating every possible arrangement of hydrogen bonds in the asymmetric 

unit, propagating this asymmetric unit about the lattice using the symmetry oper

ations and testing whether or not the resulting structure obeys the Bernal Fowler 

rules. Using this scheme for generating hydrogen bonding structures gives 2048 bi

nary strings that correspond to structures which may or may not obey the Bernal 

Fowler rules. When the Bernal-Fowler ice rules are applied it is found that only 

35 of the hydrogen bonding topologies with P2i/c symmetry obey these rules. In 

all probability this procedure generates structures that are symmetric repeats but 

optimisations of all these structures were performed using CASTEP [3] (gamma 

point, PW91 functional [4, 5], 550 eV cutoff) regardless. The energies obtained are 

shown in figure 4.9, which shows that there is a clear global minimum and this is 

the experimentally observed structure ordered form of ice V - ice XIII. Furthermore,
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Figure 4.9: Energies, relative to that of ice XIII of all possible P2x/c  hydrogen 
bonding topologies of ice V.

this figure also shows which structures are likely to be symmetrically identical as 

there are a number of structures with very similar energies (for example structures 

0 and 1).

Figure 4.9 shows that the energy differences between ice XIII and many of the 

other ice V hydrogen bonding topologies is lower than 0.043 kcal mol-1, which is the 

energy difference between the lowest energy ice XII topology and the second highest 

topology. This adds weight to the suggestion that it is something peculiar to the ice 

XII structure that prevents its full conversion to the lowest energy hydrogen bond

ing topology as the experimentally observed ice XIII consists of a single hydrogen 

bonding topology.

4.5 Ice II

Plane wave DFT has proved to be very successful in predicting the structures of 

ordered forms of ice phases. In this thesis and elsewhere [1, 15, 17, 23] it has been 

shown that it correctly predicts the ordered forms of ice Ih, ice VII, ice XII, ice V
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Figure 4.10: Energies, relative to that of ice II of gill possible hydrogen bonding 
topologies of a disordered 12 molecule ice II unit cell. Black crosses are those 
structures that have PI symmetry, red P-l symmetry, blue R-3 symmetry and green 
triangles axe those structures with R3 symmetry.

and ice III. This suggests that it can be used as a useful predictive tool in the study 

of other ice and hydrate phases.

As discussed in section 2.5.3 ice II is the only known phase of ice that has no 

proton disordered form - ice II is proton ordered at all temperatures. Why this might 

be the case can be investigated using plane wave DFT. Furthermore, the feasibility 

of a new, proton disordered, ice phase, that has the same oxygen network as ice II, 

can be investigated. This was achieved, in this work, by enumerating all possible 

proton topologies of ice II using the same technique that was used to enumerate all 

the possible structures of ice XII. This generates 273 possible structures of which 4 

have the same space group as ice II, R-3, 5 have R3 symmetry, 16 have P-l symmetry 

and 246 have PI symmetry. All these configurations were optimised using gamma 

point calculations in CASTEP [3] (PW91 functional, 500 eV cutoff) the results of 

which are shown in figure 4.10.

From figure 4.10 the second lowest energy topology lies 0.1 kcal mol-1 in energy 

above that of ice II. By contrast the second highest configuration of ice Ih lies only
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0.025 kcal mol-1 above the energy of ice XI. Thus it is suggested that ice II is ordered 

at all temperatures because the energy of the proton ordered form is so much lower 

than any other topology. Hence, the occupations of the higher energy topologies is 

negligible. To add weight to this suggestion the ice III lies only 0.106 kcal mol-1 

higher in energy than ice II [24] according to the TIP4P/ice potential [25] which was 

fitted so as to best reproduce the phase diagram of ice. The bulk of the entropic 

difference between ice II and ice III is going to be due to the introduction of proton 

disordering, which would be expected to lower the free energy gap between ice III 

and ice II. Thus one would expect that conversion to ice III is going to always be 

preferable to proton disordering in ice II.

There is one additional thing to note from 4.10 namely that the highest energy 

(least favourable) structure no longer has the same space group as the lowest energy 

structure. This is due to the effects of lattice relaxation in the optimisation, which 

was discussed in section 4.1.3.

4.6 Conclusions

In this chapter it has been shown that DFT predicts the correct structure for all the 

proton ordered phases for which proton ordering transitions have been observed. 

This success appears to be due to the fact that all that is necessary to describe 

these transitions is a highly accurate representation of the electrostatic interaction. 

In other words changing the proton topology seems to have a negligible effect on the 

magnitudes of the exchange and correlation interactions.

Another important result is that a recipe has been provided by which the struc

tures of the proton ordered forms of materials, which undergo proton ordering tran

sitions can be predicted. This recipe works by noting that the forces responsible for 

proton ordering are short ranged and as such the asymmetric units in the proton 

ordered structures are small so the symmetry of the structure is high. Thus one 

need only calculate the energies of the highest symmetry proton topologies when
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searching for proton ordered forms.

The range of energies different proton topologies topologies seems to be depen

dent on the particular ice phase of interest, the largest range of energies being in ice

II. This range of energies is interesting as its magnitude may affect the magnitude 

of the configurational entropy, as it may become more difficult to occupy the higher 

energy levels. Thus one would expect ice V and XII to have lower entropies than 

ices Ih and VII.
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Chapter 5 

A new potential for ice Ih

There are many interesting properties of ice that one may wish to simulate that 

either take place on very long timescales or that require the use of very large unit 

cells. For instance one may wish to simulate phase transitions, which would take 

place on very long timescales (milliseconds, seconds or even longer), or one may 

wish to simulate liquids and as such have need of large supercells to take account 

of the medium range order. For these applications molecular dynamics approaches 

based on DFT axe impractical and so it is necessary to find some approximate 

potential that correctly describes the energetics. There axe well over 100 water 

potential models that have been fitted [1]. However, few of these are fitted to 

reproduce the properties of ice and many of the commonly used water potentials fail 

to correctly predict the structure of the proton ordered form of ice Ih, ice XI [2, 3]. 

Most potentials are instead developed for liquid water, for which DFT is impractical 

because of the large periodic repeat cells required to allow for the medium range 

structural order. In this chapter an attempt is made to find a potential that correctly 

reproduces the structure of ice XI and then the resulting potential is used to study 

the ice Ih (0001) surface.
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5 . 1  L i t e r a t u r e  P o t e n t i a l s
As described in section 2.7.2, Hirsch and Ojamae [3] have performed DFT and inter- 

molecular potential calculations on the 16 symmetry distinct 8 molecule ice Ih unit 

cells [4]. For the DFT calculations they used the local orbital based code DMol3 

(BLYP functional) and the plane-wave based CASTEP [5] (PW91 functional), while 

for the intermolecular potentials they used the the COMPASS and SPC forcefields. 

They found that the relative energies calculated using the intermolecular potentials 

are inversely-correlated with the energies calculated using DFT. To test other poten

tials, optimisations using GULP [6] (TIP6P, COS/G2 and COS/G3) and tinker [7] 

(AMOEBA) were run of these 16 ice Ih structures using a number of other literature 

potentials, see figure 5.1:
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Figure 5.1: Relative energies of the 16 symmetry distinct 8 molecule ice Ih unit cells 
calculated using a variety of empirical potentials. The black dotted line is the DFT 
results (PW91, 27 k-point), the red line is TIP6P, the green line is AMOEBA, the 
blue line is COS/G2 and the purple line is COS/G3.

In this work, the water potentials tested represented a range of the available wa

ter potentials which are commonly used. The potential derived by Nada and van der 

Eerden[8], hereafter referred to as TIP6P, was selected because it was specifically fit
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ted to properties of ice, in particular the melting point. The COS/G2 and C0S/G3

[9] potentials are 4 site potentials with a core and shell located on the bisector of 

the hydrogen bond. They are set up with the geometry of the monomer (COS/G2) 

and the ideal tetrahedral geometry (COS/G3). Then the position of the site on the 

bisector, the point charge on the bisector and the point charges on the hydrogen 

atoms are fitted to the values of the dipole and quadrupole of the water monomer, 

while the polarizability and van der Waals parameters are fitted so as to best repro

duce the density of liquid water at room temperature and pressure and the heat of 

vaporisation. The AMEOBA [10] potential has point dipoles and quadrupoles on 

the hydrogen atoms and the oxygen. Dipole polarizability is explicitly treated via 

mutual induction of dipoles at atomic centres.

Figure 5.1 shows that as for COMPASS and SPC [3] the COS/G2, COS/G3 

and AMOEBA potentials are inversely-correlated with the DFT results. Mean

while, there is almost no energy difference between the various structures when 

their energies are calculated using the TIP6P potential. It is thus clear that the 

literature empirical potentials are not capturing some critical feature of the interac

tion between molecules, or rather that they are overestimating the energy of some 

interaction which should, in fact, destabilise configurations.

The most successful potential for reproducing these energy differences is the 

recently parametrised TIP4P/ice potential [11] as can be seen in figure 5.2. This 

potential is a reparametrisation of the TIP4P potential, that was fitted to best 

reproduce the ice phase diagram. However, although the potential does find the 

correct minimum energy hydrogen bonding topology the maximum is not correctly 

reproduced. Furthermore, the absolute magnitudes of the energy differences are not 

reproduced.

The fact that conventional literature potentials do not capture the energy differ

ences between different proton ordering topologies is perhaps unsurprising; our own 

work [12] (see section 4.1.2) has shown that these energy differences depend on terms
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Figure 5.2: Relative energies of the 16 symmetry distinct 8 molecules ice 111 unit 
cells calculated using the PW91 functional (dotted black line), the TIP6P potential 
(red line) and the TIP4P/ice potential (blue line).

up to (1/r6) in the multipole expansion and that, different ice phases have different 

values for the molecular multipoles. As such, to reproduce the energy differences 

between different proton arrangements found using density functional theory with a 

plane wave basis set would require a potential that contained terms that described 

the polarisation of all multipoles up to and including the hexadecapole. No water 

potential has yet been derived that includes terms that describes polarisation at this 

level of theory. Although it would be possible to fit such a potential using Drude 

oscillators [13] or fluctuating charges [14] to describe the multipolar polarizability, 

the resulting potential would be hugely computationally expensive. An alternative 

approach is to add some simple empirical term to a well tested potential so that the 

potential correctly reproduces energy differences between various hydrogen bonding 

configurations.
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5 . 2  A u g m e n t a t i o n  o f  t h e  N a d a  a n d  v a n  d e r  E e r d e n  
p o t e n t i a l

Rigid water potentials are the most computationally inexpensive potentials because 

intramolecular vibrations are ignored in the equations of motion. As such one need 

only consider the 3 rotational and 3 translational degrees of freedom and, because of 

the absence of intermolecular vibrational motion, larger time-steps may be employed 

in molecular dynamics. Furthermore, introducing flexibility and polarizability in the 

potential do not give a dramatically improved description of the properties of liquid 

and solid water [1]. For these reasons, it was decided to augment, what was at 

the time, the most computationally cheap of the potentials tested in the previous 

section - the TIP6P potential [8]. This potential has the added advantage that it 

was fitted to reproduce the melting temperature, which is critical if one wishes to 

get structure/energy/temperature relationships of surfaces correct. TIP6P has 6 

point charges distributed as shown in figure 5.3 and Lennard-Jones interaction sites 

on the oxygen and hydrogen positions.

L site

Figure 5.3: The locations of the sites in the TIP6P potential, which are added to 
better reproduce the charge density about the molecule.

Turning to the modification of the TIP6P potential; Hirsch and Ojamae[3] showed 

that the energy (calculated using DFT) of a given proton configuration of ice Ih could 

be fit to an equation of the form:
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E(conf) =  Eq +  cm(h-trans) +  (5n{ c-cis) (5.1)

That is to say that hypothetical configurations that contain a large proportion of 

h-trans and c-cis arrangements of neighbouring water molecules have higher energies 

than those that contain large proportions of h-cis and c-trans arrangements (see 

figure 2.5). When the energy is calculated using a potential like COS/G2 or COS/G3 

though, it is those hydrogen bonding configurations that contain a large proportion 

of h-trans and c-trans arrangements of neighbouring water molecules that have low 

energies, which suggests that potentials incorrectly predict the h-trans configuration 

to be lower energy than the h-cis configuration. Based on this observation a term 

that stabilises the h-cis and c-trans configurations was developed, which has the

form of an intermolecular torsional potential (see equation 5.2) between the OM 

vectors on adjacent water molecules and around the OO vector.

E t  =
B

cos4 <f> (5.2)(Ro^Ro,)* (Ro^-Ro, ) 4J
This term was chosen to mimic the effect of the higher order multipoles, so the 

leading distant dependent part goes as — (1 /r4) term like the dipole quadrupole 

interaction. The (1 /r8), meanwhile, is arbitrary and included simply to ensure that 

the term is repulsive at short separations. The cosine is raised to the fourth power 

so that the spread of angles for which this term has any effect is small and maximal 

for <f> equals 0° and 180°, as it would be in the h-cis and c-trans configurations 

respectively.

The values of A and B  in the torsional potential were fitted to first ensure that 

the distance dependent part is at a minimum when the distance between adjacent 

water molecules has the bulk ice value. This was achieved by rewriting equation 5.2 

in e-cr form (see equation 5.3) and setting the value of cr, the separation at which 

the potential energy minima will lie, to the average ice 0 -0  separation, e, the depth 

of the minimum, was then adjusted manually until the best fit to the data from
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CASTEP was achieved. The final values of the potential parameters are given in 

table 5.1.

E t  =  €
R o k — R o j

cos4 <f> (5.3)

Lengths and angles

*OH /  A 0.980 HOH /  deg. 108.00

tom /  A 0.230 LOL /  deg. 111.00

tol /  A 0.8892 MOH /  deg. 54.00

Point Charges

Oh /  e 0.477 Qm /  e -0.866

Ql /  e -0.044 Qo /e 0.0

Lennard Jones Parameters

eoo /  k& K 85.9766 °oo  /  A 3.115

coh /  ks  K 34.5471 <?OH /  A 1.894

chh /  ks  K 13.8817 &HH /  A 0.673

Torsional Term

A /  eV  A8 8.530

£  /  eV A4 0.298

Table 5.1: The values of the potential parameters for the augmented TIP6P poten
tial.

The initial fitting procedure was done using GULP [6] optimisations, using very 

stiff harmonic springs (k ~  10000 eV) to represent the rigid bonds and angles. 

Woodley [15, 16] has shown that this treatment of rigid bonds in optimisation codes 

does not necessarily work because if, for example, a hydrogen is rotating about an 

oxygen it should travel along a circular path in order to ensure that the OH bond 

length remains constant. Within GULP though the moves used in the minimisation 

algorithm [17, 18] do not move atoms along curved paths but instead move them 

on straight paths in the direction of the force on the atom of interest. Returning 

to the hydrogen rotating about the oxygen the force on the hydrogen will act in
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a direction tangential to the circular path which the hydrogen should be travelling 

along. If GULP attempts to move the atom along this tangential path the OH bond 

will stretch which will, because of the gigantic force constant, drastically increases 

the energy of the system. The large spring constants on the rigid units can thus 

prevent the motion of the hydrogen atoms completely and thus prevent the system 

from finding the minimum in the potential energy. For optimising ice structures this 

approximation can be justified as it is believed that the structure input is relatively 

close to the minimum energy structure and thus only a small amount of rotation 

is needed to get the structure to the potential energy minimum (this has been 

shown in the literature [3] and is also evident from our own CASTEP calculations). 

To ensure that treating the rigid units as harmonic springs has not affected the

sa
•a

0.05

Configuration number

Figure 5.4: Relative energies for the 16 symmetry distinct 8 molecule ice Ih unit 
cells calculated using the PW91 functional (black line) and the augmented TIP6P 
(red line). All energies are given relative to the energy of ice XI.

optimised structure too greatly an “optimisation” using the newly fitted potential 

with DLJPOLY.2 [19], a true rigid body code, was carried out. DL_POLY_2 though 

is incapable of doing potential energy optimisation using an advanced minimisation 

algorithm like BFGS or RFO as it is a molecular dynamics code, so instead molecular
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dynamics at very low temperature, and thus small kinetic energy, was carried out 

until the value of the potential energy was constant. The potential now predicts the 

correct structure for ice XI and a reasonable fit to the DFT energies can be obtained 

as shown in figure 5.4.

5.2.1 Encoding the torsional potential

The new torsional term was not included in the database of potential types available 

to either GULP [6] or DLJPOLY_2 [19] and as such both codes needed to be modified 

to support this new potential function. Calculating the contribution torsion makes 

to the potential energy is straightforward and is just a matter of encoding equation 

5.2. The forces on each site due this torsional potential are then given by:

B

/ m[° j / k = 4

cos4 <f> (5.4)

Jo, = 4

{ R 0 k - R o j Y  
A B

sin <j> cos3 d>V d  , <f> (5.5)
" M o .j/k

( R o k -  R o j ) 8 ( R o k - # o * ) 4_
sin (f> cos3

+ cos4 <p

fo„ =  4

4B(Ro„ -  R q, ) 8A(Ro„ -  R o ,)
. ( R o t - R o t ) 6 ( R o k - R o , ) 10 

A B
_(Rok -  Roj)* (R0k - R 0i) \ sin <)> cos </*Rok*

— COS4 <t> 4B (R ok - R o i )  8A(Rok — R o j) 
_ ( R o k ~ R o i )6 ( R o k - R o i ) 10

(5.6)

(5.7)

The cosine of <f> can be calculated using [20]:

A  B
cos</> =  ^  (5.8)

where A  = F  x G  and B  = H  x G  

with F  = R Moj -  Rq. G = Rq. x Rq. H  = R o k -  R Mok
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and similarly the sine may be calculated using [21]:

sin <f> = B x A . G
(5.9)

The only thing remaining that needs to be calculated are the derivatives of 0 

with respect to each of the atomic coordinates, which are given by [21]:

Although the torsional term is notionally four-bodied, it acts between two rigid

the maximum torsional energy at this separation is -0.00161 eV and as such any 

discontinuity in the potential energy is extremely small in comparison to the total 

energy fluctuations and is not expected to affect structural accuracy. The short 

ranged nature of this interaction is again believed to mirror the short rangedness of 

the higher order terms in the electrostatic expansion, which arises because of their 

steep distance dependence.

The objective of this work was to derive a potential that is capable of predicting 

the lattice energy of ice with reasonable precision, which previously was not possible 

because, as discussed earlier, potentials were unable to reproduce the structure of 

ice XI and the energy differences between different hydrogen arrangements in ice

(5.10)

(5.11)

(5.13)

(5.12)

bodies and thus it is only necessary to do a double loop to evaluate forces. Fur

thermore, because it is short ranged in this work a cutoff of 3.5 A is used because

5.3 Monte Carlo of Bulk Ice
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Ih. As such there has been no attempt to ensure that simulations of proton disor

dered ice Ih have been started with hydrogen arrangements that are energetically 

reasonable. Instead, Hayward and Reimers [22] derived an energy independent pro

tocol of generating bulk configurations which works by maximising disorder, whilst 

minimising net polarity within the cell. This seems a sensible approach as surface 

energy will not converge if the bulk underneath it has a dipole and one wouldn’t 

want to describe a structure that is known to be proton disordered using a highly 

ordered arrangement of hydrogens. However, it is not known whether or not the 

requirement of small multipole moments has a large energetic cost or if the Hay

ward and Reimers simulation cells are even thermally accessible hydrogen bonding 

topologies for any given temperature. Given that a potential has been fitted which 

is capable of reproducing the subtle energy differences between differing hydrogen 

bonding topologies it follows that one ought now to be able to easily answer these 

questions.
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Figure 5.5: Correlation between relative energies calculated using the PW91 func
tional and only the torsional part of the augmented TIP6P potential. All energies 
axe given relative to the energy of the structure of ice XI.

Proton topology change is a very long time scale process and thus not one that 

is sampled in conventional MD. If one wished therefore to carry out molecular dy
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namics simulations on bulk ice one must input a starting structure which is an 

energetically reasonable proton topology. As discussed in section 3.4.3, in Monte 

Carlo simulations one may use any random move prior to applying the Metropolis 

condition. So one may move the system using the Rick [23] algorithm, which was 

discussed in section 3.4.3, and as such change the proton topology. One may also 

impose conditions of zero dipole by rejecting any move that results in a net dipole, 

using criterion C2 of Hayward and Reimers [22], which works by noting that there 

are 24 possible orientations a water molecule can adopt in ice. As such, if the total 

number of each of the orientations is the same, there will be no net dipole in the cell. 

In calculating the potential energy it is useful to note that, for the newly modified 

TIP6P, it is the sum of the pure TIP6P energy and the additional torsional term. 

As shown in figure 5.1 the energy differences, calculated using the pure TIP6P po

tential, between the various 8 molecule ice Ih unit cells are less than 0.01 kcal mol-1 

and thus one can neglect the pure TIP6P parts of the potential energy and use 

just the difference in the torsional energy when applying the Metropolis Condition. 

This makes the Monte Carlo calculations computationally very inexpensive. Figure

5.5 shows the strong correlation between the energy differences calculated using the 

PW91 functional and the differences between total torsional energy for the various 

configurations.

One initial, quick test that can be carried out to ensure whether or not the 

Hayward and Reimers [22] cells have reasonable energies is to calculate their total 

torsional energies and compare it with the values of a similarly sized cell composed 

of ice XI and one composed of the maximum energy structure (configuration 6). 

Obviously if the structure lies too close to the maximum energy structure then it 

throws suspicion on its energetic accessibility. This has been done for Hayward 

and Reimers’ [22] 360 molecule unit cell (22.53531 A x 23.41938 A x 22.08000 A 

) which, has a total “torsional” energy of -0.7311 eV. Meanwhile a 360 molecule 

unit cell, of the same dimensions composed of configuration 1 has an energy of -

148



1.8720 eV and a supercell based upon configuration 6 has an energy of -0.1141 eV. 

The Hayward and Reimers cell thus has an energy that is just under half of the 

maximal energy, implying that maximal disorder biases the configurational search 

to produce structures that have an energy equitable with the mean energy of the 

16 hypothetical structures. This is unsurprising as the Hayward and Reimers cell, 

with its maximal disorder, would be expected to be of space group PI and, as was 

discussed in section 4.1.3, P I structures usually have an equal mixture of high and 

low energy structural features and as such have energies that lie equidistant from 

the energies maximum and minimum energy proton topologies.

Monte Carlo (MC) calculations at 0.001 K were run starting from the Hayward 

and Reimers [22] cell with and without the C2 constraint. Without the C2 constraint 

an MC run of 500000 steps was performed, and the system evolved to a configuration 

with energy -1.87168 eV, which is very close to the energy of the system consisting 

of only the true, ferroelectric ice XI structure suggesting that at low temperatures, 

without the C2 constraint the simulation is finding the true global minimum en

ergy hydrogen bonding topology. Meanwhile, with the constraint a simulation was 

performed in which 108 configurations were generated of which 914302 had zero net 

dipole and the final energy reached was -0.96265 eV. The discrepancy between the 

final energies in the two simulations shows that at these low temperatures requiring 

the cell to have zero dipole prevents the structure from moving from the high energy 

structure to lower, more energetically reasonable structures.

Similar MC simulations were done at 100K and it was found that without any 

constraints the lowest energy reached during the run was -0.8773522 eV, whilst with 

the constraint the lowest energy reached was -0.8578554 eV. It can thus be concluded 

that constraining the system to have zero dipole is a valid approximation at higher 

temperatures.

The observation that at high temperatures imposing a constraint of zero dipole 

gives energetically reasonable structures suggests that low temperature MC in which
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the constraint of zero dipole is applied can be used to generate reasonable, proton 

disordered, unit cells for use in molecular dynamics simulations. At low tempera

tures however, the simulations show that assuming the system has no overall dipole 

can no longer provide a reasonable description of the structure. This is perhaps un

surprising though given that the ordered form of ice Ih is ferroelectric. One question 

remains which is, at what temperature is it reasonable to start using the Hayward 

and Reimers’ unit cells to perform simulations? As already discussed the difference 

in energy between the Hayward and Reimers’ cell and a cell of pure ice XI is 3.169 

x 10-3 eV per molecule, which corresponds to a temperature of ~  37K. By contrast 

the energy difference between the cell of all ice XI and the cell of all configuration 6 

(the global maxima) corresponds a temperature of 57 K, while the energy difference 

between a cell of all ice XI and the lowest energy zero dipole structure found in this 

work corresponds to a temperature of 29 K.

A unit cell of 2880 water molecules has been generated using this technique, 

which was initially constructed by replicating the low energy 360 molecule cell, 

output from the 0.001 K zero dipole MC run, in a 2x2x2 supercell. 108 configurations 

were generated, of which 111313 had zero net dipole and the final structure had an 

energy of -7.7085 eV, -0.007 eV lower than the starting structure. This miniscule 

energy difference suggests that energetically reasonable unit cells can be generated 

by forming a supercell of a highly proton disordered structure. That is to say that 

requiring the system to have translational symmetry on the order of 20 A within 

its hydrogen bonding network does not impose a disastrous energetic constraint on 

the system.

5.4 Ice surfaces

As mentioned in section 2.7.2 there has been no systematic study of whether or not 

the proton topology at an ice surface affects its surface energy. This seems especially 

pertinent given that Wake’s [24] recent work, discussed in section 2.7.2, shows that

150



there is little or no surface disorder on the (0001) surface unless one is close to the 

melting temperature.

It is known from experiment that the (0001) surface is one of the most mor

phologically important surfaces in ice. This plane contains the bilayers of water 

molecules and as such can be cleaved in one of two ways - either a bilayer is cleaved 

or one can cleave between bilayers. Cleaving between bilayers is preferable because 

only (N/2) hydrogen bonds are broken as opposed to the (3N/2) hydrogen bonds 

which must be broken if a bilayer is cleaved through (here N is the number of water 

molecules in a bilayer). CASTEP [5] calculations (PW91 functional 550 eV cutoff, 

6x3x1 MP grid) on a slab of ice XI 2 bilayers thick backs this conclusion, as cleaving 

between bilayers gives rise to a surface energy of 0.618 J m-2, while cleaving through 

a bilayer gives rise to a surface energy of 1.282 J m~2. N.B. These are not converged 

surface energies as the substrate contains a dipole perpendicular to the surface and 

so the surface energy depends on the thickness of the slab.

5.4.1 Validating the modified TIP6P potential for surfaces

Although it is possible to study surfaces using density functional theory, it reduces 

the length and time scales over which simulations can be performed. Ideally then 

one would wish to study surface structure, and how proton topology affects surface 

energy, using the newly modified TIP6P potential. However, there is no guarantee 

that this potential will correctly describe how the surface energy depends on the 

arrangement of hydrogens at the surface. To test its ability to describe surfaces, test 

calculations were carried out using CASTEP [5] (PW91 functional 550 eV cutoff, 

6x3x1 MP grid) and using the modified TIP6P (low temperature molecular dynamics 

in DL_POLY_2 [19] using Hautman-Klein Ewald sum). These calculations were 

carried out on a slab of ice, formed by taking a single unit cell of ice Ih and removing 

its periodicity in the (0001) direction /  introducing a large vacuum gap between 

adjacent slabs. Slabs with different topologies were formed by taking the 16 unit
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Configuration Number

Figure 5.6: The surface energy of a bilayer of each of the 8 molecule symmetry 
distinct ice Ih unit cells calculated using CASTEP (black line) and using the modified 
TIP6P potential.

cells defined in the Hirsch and Ojamae paper [3] and making one slab for each of these 

topologies. The surface energies of these various structures were then calculated by 

taking the energy of the slab and subtracting the energy of the bulk material. The 

results of these calculations are shown in figure 5.6 (N.B. Again the energies in figure

5.6 are not true surface energies as they will not all converge with slab thickness 

because of dipoles perpendicular to the surface.)

The surface energies in figure 5.6 fall into two narrow energy bands, either ~0.6 

J in-2 or ~0.4 J m~2 and where DFT predicts the lower of these two energies the 

potential calculations are in agreement. Although the potential slightly overesti

mates this energy difference and does not exactly reproduce all the fine details of 

the distribution it still does an acceptable job of describing the bilayer energies.

Performing MD simulations with the Hautmann Klein 2D Ewald sum is con

siderably slower than doing the same calculations with the normal 3D Ewald sum. 

If one simply expands the lattice parameter in the direction perpendicular to the 

surface of interest, thereby introducing a large vacuum gap into the simulation cell,
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Figure 5.7: Tests on convergence of the surface energy.

one can then use the 3D Ewald sum to model surfaces, as long as there is no dipole 

perpendicular to the surface. To ensure that enough vacuum was introduced into 

the cell single point energies were calculated as a function of size of vacuum gap, 

for the 2nd of the 16 symmetrically distinct 8 molecule unit cells, which has zero net 

dipole. The results of these calculations are shown in figure 5.7(a) and show that a 

vacuum gap of at least 10 A is required to converge the surface energy.

A further consideration when performing surface calculations is to ensure that the 

two surfaces of the slab axe not interacting and hence the surface energy is converged 

with slab thickness. To test that the surface energy is converged with respect to slab 

thickness optimisations (MD at 0.01 K using DLJPOLY_2 and a 1 fs timestep) have 

been carried out on slabs of configuration 2 with 72 water molecules per bilayer. To 

test whether the surface energy is well converged the difference, in eV per molecule, 

between the system consisting of n bilayers and the system consisting fo n+2 energy 

bilayers is calculated as shown in figure 5.7(b), which shows this quantity, and hence 

the surface energy, is well converged once the system is 4 bilayers thick.

5.4.2 The effect of proton topology on surface energy

Section 5.4.1 showed that the surface energy does indeed appear to depend on the 

hydrogen bonding topology at the surface, although only two surface terminations
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Figure 5.8: Surface energies of the 8 surfaces generated by cutting the 768 molecule 
Hayward and Reimers unit cell, given in order of increasing energy.

were compared and hence the findings are by no means definite as a more exhaustive 

investigation may prove this result not to be general. In a real crystal of ice Ih two 

adjacent bilayers will be finked by hydrogen bonds which will have one of (N2/4) 

possible hydrogen bonding configurations (where N is the number of molecules in 

the bilayer). This structural diversity will be sampled in the Hayward and Reimers 

cells because there are multiple bilayers and as such multiple bilayer linkages. Thus 

one way to generate surfaces with different hydrogen bonding topologies is to cut 

a Hayward and Reimers cell between the first and second bilayer and calculate the 

surface energy, then to cut it between the second and third and so on... However, 

one disadvantage with this scheme is that the surface energy obtained is an average 

over two distinct surfaces because there is no mirror plane between bilayers and as 

such the top surface of the crystal will have a different hydrogen bonding topology to 

the bottom face. Thus one could theoretically have one very high energy surface and 

one very low energy surface and end up with an intermediate value for the average 

surface energy. Nevertheless, an analysis of the surface energies of the 8 different 

possible surface terminations in the Hayward and Reimers [22] 768 molecule cell 

has been carried out using MD at 0.01 K with a 1 fs timestep in DL_POLY_2 [19]. 

Figure 5.8 shows the surface energies calculated.
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These calculations show that, although there is a variation in surface energy for 

the various different possible surface topologies it is not as large as the variation in 

surface energy observed amongst the bilayers (see figure 5.6). The difference in en

ergy between the highest and lowest energy slabs investigated here is approximately 

equal to the energy of 5 hydrogen bonds, which is a substantial energy difference.

Figure 5.9: Schematic diagram of the (0001) surface of ice, which shows that around 
every site (red dot) there is a dangling proton there are a further 6 sites (blue dots) 
which may also have a dangling proton.

As discussed in section 5.2, Hirsch and Ojamae [3] have shown that the energy, 

calculated for a cell of bulk ice, can be fitted to a linear combination of the number 

of h-cis and c-trans conformers of neighbouring waters, which raises the question - 

is there a similar way to fit the surface energy to features of the hydrogen bonding 

topology at the surface? The energetic cost of forming a (0001) surface will be dom

inated by the breaking of the (AT/2) hydrogen bonds that link the two previously 

connected bilayers. This bond breaking is going to result in the formation of hy

drogens that stick out of the surface, so called dangling hydrogens. The number of 

dangling hydrogens formed during any surface forming event is going to be constant 

but one might imagine that the surface energy would depend on the arrangement 

of these dangling hydrogens on the surface. If the dangling hydrogens axe clustered 

the energy will be high because of repulsive forces between dangling atoms. On the

(0001) surface of ice, each site at which a dangling hydrogen may sit is surrounded
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Figure 5.10: Fraction of dangling hydrogens with each coordination number on each 
of the surfaces generated from the Hayward and Reimers unit cell. In the main 
graph the black line gives the total fraction with 0 or 1 neighbours, the red line 
gives the fraction with 2 or 3 neighbours and the green line gives the fraction with 
4,5 or 6 neighbours. In the inset the blue line gives the fraction with 4 neighbours, 
the purple line the fraction with 5 and the pink line the fraction with 6.

by 6 similar sites, see figure 5.9. Thus one may take a particular dangling hydrogen 

and count how many of the six surrounding hydrogen sites are occupied and obtain a 

dangling hydrogen coordination number. If this is done for all the hydrogen sites on 

a surface one can obtain a convenient measure of the extent to which the hydrogens 

are clustered on the surface. There is evidence from the bilayer calculations (section 

5.4.1) that surfaces where the hydrogens are clustered will be high in energy, as 

for the high energy bilayers each dangling hydrogen is surrounded by six hydrogen 

atoms, whilst the low energy bilayers have all their dangling hydrogen surrounded 

by only two hydrogens. An analysis of the extent clustering has been carried out on 

the Hayward and Reimers surfaces cell and the results are shown in figure 5.10.

Figure 5.10 shows that, in all the surface topologies investigated, the majority 

of dangling hydrogen bonds are surrounded by 2 or 3 neighbours and that for the 

first 5 configurations, which all have very similar surface energies, the proportions
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of each coordination number are roughly constant (configuration 3 seems to be 

an exception to this rule as there is a marked increase in the fraction of dangling 

hydrogen bonds with a coordination of 4 but this is accompanied by a large decrease 

in the number of dangling hydrogen bonds with a coordination number of 3 and a 

corresponding increase in the number with coordination number 2). Meanwhile for 

the last three configurations, which all have markedly higher surface energies, the 

fraction of dangling hydrogens with 4,5 or 6 neighbours increases dramatically, while 

the number with 0 or 1 neighbours falls off. It would thus seem that clustering of 

dangling protons on the surface gives rise to surfaces with high surface energies.

5.4.3 Monte Carlo on surfaces

Using the Rick algorithm [23], with the extensions to the allowed moves described 

in section 3.4.3, it is possible to perform Monte Carlo over the allowed surface 

hydrogen bonding topologies. If this is done at low temperature hydrogen bonding 

topologies that give rise to low energy surfaces can be generated. An 110000 step 

Monte Caxlo simulation has been carried out at 0.01 K. The energy as a function 

of simulation “time” in this simulation is shown in figure 5.11(a), along with the 

fraction of dangling bonds with each coordination number 5.11(b).

Figure 5.11 shows that there some correlation between the changes in the total 

energy and the changes in the structure of the surface. It would appear that over 

the course of the simulation the number of dangling hydrogens with 1 neighbour 

decreases while the fraction with 2 increases. However, the energy change over the 

course of the simulation is very small which suggests that the simulation was started 

with a highly favourable proton topology at the surface. This seems reasonable 

given that in the previous section it was shown that it is the larger clusters (4, 5 or 

6 neighbours) which make noticeable differences to the surface energy.

The lowering in energy observed in figure 5.11(a), which is not correlated with 

the surface structure change, is probably due to energy lowering effects in the bulk,
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Figure 5.11: Results for Monte Carlo simulation at 0.01 K. In the right pane the 
change in the surface structure is shown; in this figure the black line is the fraction 
of dangling hydrogen with one neighbour and the red line is fraction of dangling 
hydrogens with 2 neighbours.

that is to say those effects that make the structure more like ice XI, the lowest 

energy proton topology for bulk ice. This is confirmed by examining the torsional 

energy over the course of the simulation - the reduction of which is responsible for 

roughly half the drop in energy.

Figure 5.11(a) shows, rather worryingly, that the energy of the system is not 

converged with respect to simulation time. It seems as if the simulation is stuck, 

which is evidenced by the frequency of acceptance of 3.5 x 10-2. This acceptance 

frequency was found to fall over the course of the simulation and by the end is 

equal to 4.983 x 10-4. At OK the most favorable bulk ice Ih topology is the ice XI 

structure. However, the ice XI structure has a very high energy (0001) surface (see 

section 5.3) because all the dangling hydrogen bonds are clustered on one of the 

two surfaces of the crystal. As such one might expect there will be a competition 

between the formation of ordered ice XI in the bulk and some lower energy proton 

topology at the surface or that during the transition to ice XI the morphology of 

the crystal changes such that the (0001) surface is not present. This is the subject 

of further investigations that are ongoing.

The uneven distribution of dangling hydrogen atoms at the surface suggests that 

the distribution of charge over the surface is not going to be even. In particular one
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would expect that in regions where there axe dangling hydrogen atoms the surface 

will be positively charged. As such the water molecules with dangling hydrogens 

in these regions may be more acidic, because it becomes more favourable to loose 

the dangling hydrogen atoms because of the repulsions they experience from their 

near neighbours. Also, because of the charge in the areas where dangling hydrogen 

bonds are clustered, these regions might be expected to provide interesting sites for 

binding and heterogenous catalysis. As such it would be interesting to see whether or 

not at higher temperatures a greater fraction of high coordination number dangling 

hydrogen bonds are observed. To this end Monte Carlo calculations at the range of 

temperatures ice is found in the atmosphere (190 K - 270 K) have been carried out. 

50000 steps of Monte Carlo were performed at 190 K, 210 K, 230 K, 250 K and 270 K 

and it was found that as the temperature was increased so the acceptance ratio was 

increased. However, even at the highest temperature the acceptance ratio was only 

0.316, suggesting that there a large number of possible surface configurations that 

are energetically inaccessible and also justifying the use of Monte Carlo to select a 

sensible starting proton configuration for any surface simulation. To establish the 

extent to which the temperature affects the extent of clustering of hydrogens on 

the surface the locations of each dangling bonds and the number of the six possible 

hydrogen sites surrounding the central dangling bond has been calculated for each 

proton topology visited during the MC simulation. This quantity has then been 

averaged over the entire simulation run, as can be seen in figure 5.12.

Figure 5.12, shows that as one increases the temperatures the fraction of dangling 

hydrogens with the higher “coordination numbers” increases, while the fraction of 

dangling hydrogens with 2 or 3 neighbours decreases. It would seem from the data 

on the dangling hydrogens with 0 or 1 neighbours that these low “coordination 

number” hydrogens can only exist in structures where there are also hydrogens with 

high coordination number (i.e 4, 5 or 6 neighbours). At lower temperatures the 

system compensates for the introduction of the high energy dangling hydrogens (i.e.
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Figure 5.12: Fraction of dangling hydrogens with the various different numbers of 
neighbors as a function of temperature.

those with 4, 5 or 6 neighbours) by introducing large numbers of these low energy 

dangling hydrogens (those with 0 or 1 neighbours), while at the highest temperatures 

this is not necessary.

5.5 Molecular dynamics

The next step in this work would be to use the reasonable surface topologies, ob

tained from the Monte Carlo, as start points for molecular dynamics simulations, 

which would allow one to model the effects that temperature has on the surface 

structure and to explore the correlated events. Faraday [25] proposed that the sur

face of ice was liquid-like, and simulations of this sort would allow one to establish 

whether or not this is true. The original TIP6P potential is particularly suited to 

the study of surface pre-melting because, unlike the TIP4P or SPC potential, it 

reproduces the correct melting point of ice. Prior to using the modified TIP6P po

tential to model surfaces though it is necessary to test whether or not introduction 

of the torsional term has introduced any problems into the potentials description of 

the dynamical structure of ice and water.
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5.5.1 Liquid Water

To assess whether the additional torsional term added to the potential causes any 

deviation in the dynamical water structure a molecular dynamics simulations was 

carried out with the modified TIP6P was performed on a water box containing 768 

water molecules. A timestep of 1 fs was used to integrate the equations of motion 

with the velocity Verlet algorithm. The cells were first equilibrated in the NPT 

ensemble for 5 ps using temperature rescaling at every step, before being run on for 

a further 380 ps in the NPT ensemble at 300 K using the Berendsen algorithms to 

control the pressure and temperature. The total energy as a function of simulation 

time is shown in figure 5.13

-200
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g -300
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20
Simulation time / ps

-400.

Figure 5.13: The black line gives the total energy as a function of simulation time 
for a molecular dynamics simulation of 768 water molecules interacting through the 
modified TIP6P potential. The red line gives the results of a similar simulation 
which used the unmodified TIP6P

The simulation was started off from a configuration output from an equilibrated 

unmodified TIP6P calculation. Clearly the potential introduces some dramatic per

turbation to the structure, which from the radial distribution function appears to 

be a drastic over-structuring of water.

161



5.5.2 Ice Ih

It was hoped that by performing a molecular dynamics simulation of ice Ih some 

insight into what causes the dramatic deviations observed in the water simula

tions. Thus a 300 ps molecular dynamics simulations of ice Ih starting from the 

432 molecule Hayward and Reimers [22] ice Ih configuration was carried out. In this 

simulation the system was equilibrated for 0.5 ps before being run on at 200 K using 

the Berendsen algorithm to control the temperature and the Berendsen anisotropic 

barostat to control the pressure. Figure 5.14(a) shows the variation of the total 

energy as a function of time in these simulations.
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Figure 5.14: The variation of the total energy and total volume as a function of 
simulation time for a simulation of ice Ih.

Figure 5.14(a) shows that there is first a drop in the energy and this then settles 

down into what appears to be a periodic fluctuation in the total energy. Similar 

behavior has been observed for the cell volume in this simulation 5.14(b) but this 

is not the source of the energy fluctuations as there are similar fluctuations in total 

energy during similar constant volume simulations. A reasonable explanation for 

this fluctuation is that there is a relatively low energy vibrational mode that is 

active in ice at these temperatures that causes neighbouring water molecules to 

rotate relative to each other as shown in the figure 5.15.

With the torsional term present the restoring force on this phonon will not just 

act to return molecules to the equilibrium torsional angle, but will also cause the
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Figure 5.15: A visual illustration of the phonon which the potential describes very 
poorly. This is believed to cause the problems encountered in the molecular dynam
ics simulations.

two oxygen atoms to move together or move apart. In all probability it is these 

additional forces that give rise to the problems observed in the dynamical model of 

the structure.

5 . 6  C o n c l u s i o n s
A new potential has been fitted that provides a good description of the dependence 

of the potential energy on the hydrogen bonding topology. This potential reproduces 

the energy differences between topologies that are observed in DFT. The work car

ried out with this potential has highlighted the importance of taking in to account 

the proton topologies when one performs simulations of bulk ice Ih at low tempera

tures and, more interestingly, the subtle effect that surface proton topology has on 

the surface energy. With regard to the surface it has been shown that clustering of
I

dangling hydrogen atoms at the surface leads to high energy surface terminations. 

Monte Carlo simulations have shown that the concentration of these high energy, 

clustered, dangling hydrogen bonds on the surface is very low and that as such it is 

important to consider the surface proton topology when performing simulations of 

the surface of ice.

The failure of the potential to describe derivatives though means that one can 

not use the potential to investigate the dynamics of the low energy surface proton
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topologies generated. Given how well the potential reproduces the dependence of 

the energy of the surface energy calculated with density functional theory though, 

it may be possible to use the potential to generate a viable surface proton topology 

that could then be run on using ab initio molecular dynamics methods to obtain a 

good description of the surface of ice Ih.
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Chapter 6

Structural analogies between ice, 

carbon, silica and zeolites

That there are structural analogies between dense ice phases, siliceous materials, 

water clathrates and zeolites is well known [1] - all are composed of tetrahedral 

units that share vertices and thus form infinite 4-connected nets. These tetrahedra 

can pack in a wide variety of ways to give numerous different nets and a wide variety 

of solid phases - there are 15 known phases of ice [2], 7 dense silica phases [3] and 

a staggering 170 known zeolite topologies [4]. However, even this large number is 

only a tiny fraction of the set of mathematically possible infinite 4-connected nets 

which can be obtained from tiling theory [5, 6, 7].

Clearly the variety of nets possible which a particular combination of chemical 

elements can crystallise into provides insight into the nature of the interatomic /  

intermolecular interactions in these substances, as it is these which will control the 

position of the local minimum on the potential energy surface, at which each possible 

net will find itself. These minima can correspond to structures which are stable or 

metastable and can as such provide an upper bound on the energy of metastable 

structures and hence provide a compass for exploring the rest of 4-connected net 

space for potential new structures in the synthesisable territory for the particular 

element combination of interest.
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There have been numerous attempts to understand the synthesisable territory for 

silica and pure silica zeolites. Early studies [8] showed that there was good agreement 

between the energies obtained from simple interatomic potential calculations and 

those obtained from calorimetry and hence provided the compass for an exploration 

of 4-connected net space. This was then followed by work which used these potentials 

to pick out potential new zeolite structures from the vast databases of possible 4- 

connected nets and work [9] which has attempted to establish what the low and 

high energy structural features in any given net are and use this insight to search 

the vast number of hypothetical structures. However, there seem to be far fewer 

studies in the literature on the synthesisable region for ice and clathrate materials 

- i.e. what structures is it possible to synthesise from H20  building blocks. In this 

chapter this is attempted by taking known zeolite structures deleting the oxygen 

atom and replacing the silicon atoms by water molecules in a sort of isomorphic 

transformation. Comparisons are then made between Si02 and water’s synthesisable 

landscapes using data mining, which shows that the size of these territories can be 

explained using simple intuitive models for the differences in the intermolecular and 

intramolecular interactions of Si02 and water. These models are then used to guide 

experimental efforts to synthesise new materials and also used to make predictions 

about the boundaries of the synthesisable zone for other materials which form 4- 

connected nets.

Density functional theory has been used throughout this chapter to study the 

relative energies of the various possible ice and clathrate phases as investigations of 

the effect proton arrangement has on the energy of the system have been carried out 

and, as shown in section 5.1, interatomic potential calculations are not sufficient to 

capture the sensitive energetics of proton ordering.
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6.1 Diamond and Lonsdaleite - a comparison with 

Carbon

Perhaps the most well known 4-connected net is the diamond net, which is the 

same net that forms the framework in the dense silica phase cristobalite and the 

metastable ice phase, ice Ic. Closely related to this net is the lonsdaleite net, which 

is the backbone of a rare allotrope of carbon, the rare dense silica phase tridymite 

and the lowest pressure form of ice, ice Ih. These two structures are shown in figure 

6 . 1.

(a) Lonsdaleite Net (b) Diamond Net

Figure 6.1: The diamond and lonsdaleite nets.

It is interesting to note that, whereas for carbon the structure composed of the 

diamond net is the more common form, for ice it is the structure based on the 

lonsdaleite net that is more commonly observed. The implication is that diamond is 

a lower energy net for structures composed of carbon, whereas for ice the lonsdaleite 

net is preferred. The reason why this should be the case is not at all clear and makes 

one question whether this is a true thermodynamic effect. However, the calculations, 

reported in table 6 .1 , show that this is clearly the case but also that the energy 

differences between these two phases are small for carbon, ice and silica, which is also 

to be expected given the similarity of the two nets. In table 6 . 1  the carbon energies 

are calculated using the PBE functional implemented in CASTEP 3.0 [10] with a 

450 eV cutoff (at this value the energy difference is converged to lxlO - 2  kJ mol-1)
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and a Appoint spacing of 0.05 A 1 (for which the energy difference is converged to 

0.002 kJ mol-1). The ice energies have the lowest energy proton topology for the net 

of interest and are calculated using the PW91 functional implemented in CASTEP

[10] with grids of 6x6x3 Appoints and 6x3x3 Appoints for ice Ic and Ih respectively 

and a 500 eV cutoff. For completeness the energies of the silica phases were also 

calculated using the Sanders Leslie Catlow [11] interatomic potential with GULP

[12]. This potential was used rather than DFT because simulations [8 , 13] have 

shown that it reproduces the available experimental thermochemical data [14] as 

well as more computationally expensive DFT calculations.

Diamond Net Lonsdaleite Net
Name Energy /  kJ mol 1 Name Energy /  kJ mol 1

Carbon Diamond 0 . 0 Lonsdaleite 2.4522
Ice Ice Ic 0.1709 Ice Ih 0 . 0

Silica Cristobalite 0 . 0 Tridymite 0.2418

Table 6.1: The energies, relative to the net of lower energy, for the structures of 
carbon, ice and silica that have the diamond and lonsdaleite nets as the backbones 
of their structures.

The relative stability of these two phases are reversed when one isomorphically 

transforms from ice to carbon is far from obvious, although one difference between 

ice and carbon is that ice is a molecular solid whereas all the atoms in carbon are 

joined by strong covalent bonds. However, this discussion of chemical bonding is 

somewhat heretical given that within the framework of quantum mechanics there is 

no distinction between covalent and ionic bonding, let alone inter and intramolecular 

interactions. As section 4.1.2 showed, a discussion of the interaction between water 

molecules often provides useful insight into the nature of the structure directing 

effects in ice phases. Section 4.1.2 also showed that the representation of water 

molecules as overall charge neutral molecular multipole expansions is reasonable, 

which suggests that the leading term in the interaction of water molecules is going 

to be the, orientation dependent, dipole-dipole (1/r3) interaction. By contrast, 

carbon consists of spherical, charge neutral carbon atoms, whose only interaction
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Figure 6.2: The dipolar interaction energies of diamond and lonsdaleite nets with 
dipoles arranged as they would be in a number of symmetrically distinct hydrogen 
bonding topologies. Each point represents a symmetry distinct proton topology 
(the position on the x axis is arbitrary). Red dots mark the energies of dipoles 
arranged on the vertices of the lonsdaleite net while black dots are dipoles arranged 
on the diamond net. The black and red lines indicate the lowest energy topology of 
diamond and the highest energy topology of lonsdaleite respectively.

will be through the distant dependent short range repulsive interaction and, at 

longer ranges, dispersive forces. One might suspect therefore that any simple distant 

dependent function would stabilise the diamond net over the lonsdaleite one, whereas 

the introduction of orientational dependence in the interatomic forces will stabilise 

lonsdaleite.

To test this assertion diamond and lonsdaleite nets were set up so that all the 

bond lengths were equal to 1 A and the “energy” of this net was then calculated 

using a fictitious lennard-jones function, which had <j, the distance to the potential 

minimum, set as 1 A and a value for e of 0 .1  eV. The energy of the hypothetical dia

mond net, calculated using this potential, was found to equal -0.3110 eV molecule- 1  

whereas the energy of the lonsdaleite net was -0.3098 eV molecule-1. This agrees 

with what was expected for simple distant dependent functions.

Performing a comparison of the dipolar electrostatic potential energies for these
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two nets is far less straightforward as each dipole can have one of six possible ori

entations corresponding to the six possible orientations a water molecule may have 

in the net. To resolve this issue calculations of the dipolar potential energy for nets 

composed of unit dipoles 1 A apart arranged to represent the 16 possible ice Ih 8  

molecule unit cells and the 45 possible ice Ic 8  molecule unit cells were carried out. 

It was found that amongst the ice Ic calculations many structures had the same 

energy, which meant they were probably symmetrically identical. These repeats 

were eliminated from figure 6.2 for clarity, which left only the 7 cubic ice topologies 

shown. As can be seen although the vast majority of possible topologies of the two 

nets have similar energies the lonsdaleite net has a number of topologies that are 

lower energy than the diamond ones and the highest energy topology is one based 

on the diamond net.

Table 6 . 1  also showed that the cristobalite is lower energy than tridymite and 

thus that the situation for silica seems to be much like that for carbon - namely Si-Si 

distant dependent interactions stabilise the diamond net over the lonsdaleite net. 

This is problematic however given the phase diagram in figure 6.3 which shows that 

the tridymite structure forms at lower temperatures than the cristobalite structure. 

This model though has neglected the effect the oxygens have on the relative stability 

of these two phases. In both cristobalite and tridymite there are temperature driven 

phase transitions, which result in a change in the symmetry of the system. These 

transitions do not affect the positions of the silicon atoms and have been shown to 

occur due to the freezing out of normal modes as temperature is lowered [15]. Thus 

to understand the relative stability of cristobalite and tridymite one is likely to need 

a model that includes the effects that the oxygen atom motions have on the entropy 

of the system.
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6.2 Dense silica and ice phases

As already discussed silica is another material that forms structures based on 4- 

connected nets and, what is more, the synthesisable territory for silica is far larger 

than that for carbon. Currently there are about 50 possible nets that can be made 

using only silica but only 6  are not metastable and so appear on the phase diagram 

shown in figure 6.3 [3j. Amongst these 6  phases there are four distinct 4-connected 

nets, cristobalite (diamond), tridymite (lonsdaleite), coesite and a-quartz. Further

more, there is also a known metastable silica phase called moganite which is a twin 

of two quartz lattices, the structural details of which, along with those of the coesite

and quartz structures axe given in table 6 .2 .

a -Q uartz
Trigonal P3i21 a =  4.913 A b =  5.405 A

Vertices at 3 a (0.5299,0.0,0.3333)
Schlafli symbol 6  6  6 2  6 2  8 7  8 7

Coordination sequence 4 12 30 52 80 116 156 204 258 318 384 458 536
Coesite

Monoclinic C2 /c  a =  7.173 A b =  12.328 A c =  7.175 A 0  =  1 2 0 .0 °
Vertices at 8  f (0.359,0.3916,0.4274)

Schlafli symbol 4 6  4 6  8  92

Coordination sequence 4 10 22 47 83 125 171 215 288 349 415 518 591
Vertices at 8  f’ (0.4934,0.1577,0.4596)
Schlafli symbol 4 8  4 97 6  8

Coordination sequence 4 10 23 47 83 127 174 221 276 356 428 494 603
M oganite

Monoclinic C2 /c  a =  13.518 A b =  4.670 A c =  8.385A P =  129.041°
Vertices at 4 e (0.0,0.94606,0.75)
Schlafli symbol 4 4 6 2  6 2  8 2  82

Coordination sequence 4 10 24 40 64 90 120 160 200 244 300 354 412
Vertices at 8  f (0.16410,0.27726,0.14526)

Schlafli symbol 4 8 6 6  6  6  6

Coordination sequence 4 11 24 41 62 90 122 157 200 247 296 354 416

Table 6.2: The structural details of the dense silica phases a-quartz, coesite and 
moganite.

The phase diagram for silica is far less complex than that of water (figure 2.2) 

as silica phases are stable over much broader temperature and pressure ranges than
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Figure 6.3: The phase diagram of silica.

water phases. This is probably because the bonds between silicas axe strong covalent 

Si-0 bonds and as such the barrier to any phase transition, which will involve bond 

breaking, is higher than the transition barriers between ice phases, which are held 

together by weaker hydrogens bonds.

To investigate the differences between the ice and silica synthesisable territories 

the energies of all silica phases, ice phases and phases of ice and silica but com

posed of silica and ice respectively were calculated (N.B. some of the ice phases 

are isostructural with silica phases - in particular ice III to keatite [1] and ice VI 

to stishovite). All the ice calculations were done using the PW91 functional, im

plemented in CASTEP [10], at the gamma point with a 500 eV cutoff. The silica 

calculations were done using GULP [12] and the Sanders-Leslie-Catlow interatomic 

potential [11]. The results of these calculations are shown in figure 6.4 - in this fig

ure the energies are plotted against the framework density, which is defined as the 

number of H2 O /  SiC>2 “molecules” in the unit cell divided by the unit cell volume,
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in Angstroms, and multiplied by 1000.

To generate ice structures that obeyed the Bernal Fowler rules from a knowledge 

of the oxygen positions a computer program was written. In essence this program 

worked much like those used in section 4.3 to generate all allowed topologies of 

a given hydrogen bonding phase. Again an array that gave the directions of all 

hydrogen bonds was used to represent the structure but now for each structure 

generated the difference between the number of hydrogen bond donors and acceptors 

on each oxygen was calculated and the magnitudes of these quantities summed. In 

an ideal structure this number should be equal to zero so this quantity was used as 

the “energy” in a Monte Carlo routine that only allowed downhill moves.

The first point of note about figure 6.4 is that the range of energies the structures 

have is very similar in both structures, which is contrary to what one might have 

expected given that ice is held together by hydrogen bonds whilst silica is held 

together by covalent bonds. Also the densities of the ice structures are considerably 

higher than their silica counterparts - this is unsurprising though given that SiC>2 

units are considerably larger than water molecules. Turning to the ice map, the 

energies of the structures increases in line with what one would expect from the 

phase diagram. The exception to this is ice II, which has a higher energy than one 

would expect but then again this structure is proton ordered and would as such be 

expected to have a lower entropy than the other, disordered, structures.

In ice all the phase transitions which change the oxygen network are pressure 

driven, which helps explain the correlation between energy and density for these 

phases. The density can be increased by contracting the lattice and shortening all the 

hydrogen bonds. This contraction has an energetic cost however that increases with 

the amount of contraction, which becomes problematic when there is a large amount 

of contraction and this cost is very high. These high costs can be circumvented 

however by changing the lattice so that the equilibrium hydrogen bonds lengths can 

be maintained but in a denser structure. Turning to figure 6.4(a) one can see that
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Figure 6.4: The energies of all the nets of the known ice and silica phases. Blue 
crosses are those phases which axe known for ice, black that are known for silica only 
and red those structures observed in both materials. Error bars in the ice figure, if 
shown, show the range of energies different hydrogen bonding topologies found by 
sampling of multiple configurations.
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the metastable phase ice IV has a similar density but higher energy than ice II and 

ice V. This observation perhaps goes someway to explaining ice IV’s metastability 

- it does not form because a structure of similar or higher density (ice II or ice 

V) can be formed at lower energetic cost in the pressure regime at which ice III 

becomes unstable. Prom figure 6.4(a) the situation will probably be similar for any 

ice structure based on coesite, namely if it can be realised it will be metastable and 

occur somewhere within the regime of stability of ice V. The situation looks more 

promising for ice structures based on a-quartz and moganite, these structures fie at 

lower energy than ice III and as such may be expected to form. However, the fact 

that ice III only exists in a small region of the phase diagram above ice II, which 

is proton ordered and thus has low entropy, may explain why these phases have 

never been observed experimentally. Bernal and Fowler [16] compared the X-ray 

scattering curve of liquid water and that of a-quartz and showed that there were a 

number of similarities between them and that dissimilarity arose due to motion of 

the water molecules which made the liquid appear more like a close packed structure. 

The calculations performed here would appear to support this assertion and suggest 

that an a-quartz like ice structure would be metastable over the liquid.

For silica the situation is slightly different. The phase diagram for silica has 

both pressure driven (a-quartz —> coesite —> stishovite) and temperature driven 

(a-quartz —► tridymite —» cristobalite) phase transitions. The temperature driven 

phase transitions are to structures of lower density, while the pressure driven ones 

take the system to higher density. The pressure driven phase transitions in silica 

have proved difficult to study using both experimental and theoretical methods be

cause of the large number of metastable phases that silica exhibits and its propensity 

to amorphise when placed under pressure. Recent theoretical work [17], which used 

metadynamics to study the a-quartz-stishovite phase transition, has shown that 

during the transitions the system goes through 3 distinct structural phase transi

tions. Furthermore, this work also shows that on application of pressure coesite can
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be transformed to an as yet unknown phase of silica and that the investigation of 

the quartz-coesite and coesite-stishovite phase transitions is very difficult. As such, 

silica analogues of the ice structures could possibly be intermediates in these phase 

transitions or metastable phases that form when the crystallisation conditions are 

unusual.

Prom figure 6.4(b) the silica phases appear to be clustered in four density ranges, 

in the first of these are the high temperature structures, tridymite and cristobalite. 

The second contains a-quartz and moganite, the third coesite, ice V, ice II, ice XII 

and keatite and finally the fourth contains stishovite and ice IV. In the second of 

these regions quartz is the lowest energy structure and so it comes as no surprise that 

it is the most stable phase at low pressures. In the third region coesite is the lowest 

energy structure and again this tallies with what one might expect from the phase 

diagram. Although, given that keatite is a rare metastable form of silica, one might 

expect that silica structures based on the ice V and ice II structure, which, according 

to this work, have lower energies than keatite might also exist as metastable phases. 

By contrast it seems unlikely that it would be possible to synthesise silica structures 

with the same framework as ice IV and ice XII as these he at such high energy 

relative to the most stable phase with a similar density.

6.3 Clathrates

As discussed in section 2.6 ice forms inclusion compounds with small gas molecules 

that are isostructural with certain known zeolite structures [1]. There are far fewer 

known clathrate structures than there are known zeolite frameworks because it is 

not currently possible to use templates with structure directing effects to synthesise 

exotic cages in clathrates. In this section and the next an attempt is made to under

stand the structure driving effects in clathrates and thus from the zeolite structural 

database [4] to predict the structures of, as yet unknown, clathrates.

The energies of the known clathrates were calculated using CASTEP [10] with
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Figure 6.5: Fragment of the optimised structure of the hydrate framework of HPF6. 
Despite the absence of the guest molecule the structure of the cages is preserved. 
Examination, by eye, of the bond highlighted B shows that there are bent hydrogen 
bonds in this structure.

the PW91 functional at the gamma point and using a 500 eV cutoff. In these 

calculations the cages are unfilled but none the less the structure finds a minimum 

in the potential energy in which the structures of the cages are conserved, see figure 

6.5. The energies of the empty structures obtained are shown in figure 6.6 against 

the framework topology.

The range of energies the clathrate structures have is very small as is their range 

of densities. Furthermore, unlike the dense phases, where all the pressure induced 

phase transitions took the system to a structure of higher framework density, here the 

pressure induced phase transition from the si I structure to the sH structure, which 

is observed for clathrates, would take one to a system of lower framework density. 

Based on these two observations the guest-guest and framework-guest interactions 

clearly have a huge effect on the structure.

The framework-guest interaction has been modelled by van der Waals and Plat- 

teeuw [18], who attempted to predict gas hydrate equilibrium pressures. Their model 

was based on the equality between the chemical potentials of the hydrate phase, H, 

and a coexisting water phase, 7 r, which could be ice, liquid water or a mixture of 

both.
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Figure 6.6: The energies of the known clathrate structures calculated using density 
functional theory. The energies given are for a random hydrogen bonding topology 
and empty cages. The red structure is the hypothetical hexagonal packing of the 
sll clathrate, discussed by Jeffrey in Inclusion Compounds volume 1.

A/** =  f i t  ~  fJ'w =  ~  AC =  A /4, (6.1)

In this equation //£ is the chemical potential of the metastable empty hydrate 

lattice. Using statistical mechanics it is then possible to show that the difference 

between the chemical potential of the empty and filled hydrate lattices is given by:

Ag ( T ,  P) = - R T Y ] vm ln(l -  Qmj) (6.2)
m j

Where vm is the number of cages of type m  per water molecule in the hydrate 

lattice and Qmj is the fraction of the cages of type m  that are occupied by guest 

j.  If one assumes that there is one guest molecule per cage then Qmj is given by a 

Langmuir adsorption relation.

@ fj* p \  _   Cml(T)f l (T,  P )   .
j 1 + E i Cmj(T) f j (T,P)
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where f i (T,P)  is the fugacity of guest I and Cmi is the Langmuir constant. To 

calculate the value of Cmi, van der Waals and Platteeuw assumed that the cage 

was spherical, which made the calculation of the interaction between guest and cage 

more straightforward. Subsequent work has shown that for large guest molecules 

this approximation breaks down and it becomes important to use the explicit posi

tions of water molecules [19], include the interaction with the guest with its second 

coordination sphere [2 0 ], the guest-guest interaction [2 0 ] and the fact that the guest 

present will affect the sizes of the cages present [21]. A refinement of this model [22] 

includes all these factors and also include terms that allow the cages to distort to 

accommodate different sized guest molecules. This refined model has been used to 

study the phase behaviour of multiple and single component clathrate hydrates but 

can also be used to make qualitative assertions about these interactions as is done 

throughout the following two sections.

6.3.1 The guest-guest interaction

Simulations on the formation of type I methane hydrate [23] have shown that these 

materials do not nucleate via a labile cluster mechanism, in which the guest causes 

the formation of an cage-like structure in it hydration sphere, but instead the 

clathrate cages grow as order develops in the arrangement of the guests. Clearly 

then during the initial nucleation the guest-guest interaction has a huge effect on the 

structure that is formed. However, these simulations also show that methane hy

drate initially nucleates in a structure that resembles the type II structure, so clearly 

at some later point the structure changes to minimise the energy of the structure and 

it is this minimisation that controls the final structure adopted. At this stage one 

would expect that the guest-guest interaction would give the smallest contribution 

to the energy of the system and as such have the smallest effect on the final struc

ture adopted. None the less for the sll and sll_h structure this interaction almost 

certainly has a strong structure directing effect. The second of these structures is
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a hypothetical structure suggested by Jeffrey [24, 25] as a likely candidate for new 

clathrate materials. It consists of an alternative packing of the cages present in the 

sll structure and, as figure 2.13 shows, has an energy that is almost identical to that 

of the sll structure. Furthermore, because the two structures have an identical set 

of cages one would expect the framework-guest interaction to be almost the same in 

both.

Figure 6.7: The 51264 cage which is present in both the si and sll_h structures. On 
this figure the locations of the 4 C3 axis have been marked to indicate that this 
polyhedron has the same symmetry as a regular tetrahedron.

In examining the positions of the centres in the cages a realisation was had about 

these two structures - both structures are composed of 512 and 51264 cages but can 

be better understood by just examining the way the larger cages pack together. The 

51264 cage has the same symmetry as a regular tetrahedron, as shown in figure 6.7. 

As such in the sll and sll_h nets the centres of these cages lie on the positions at 

which one finds the vertices in the diamond and lonsdaleite nets respectively, see 

figure 6 .8 .

The si I structure always has the small guest molecules in the 512 cages and larger 

guests in the 51264 cage [24]. The guest-guest interactions will be dominated by the 

interactions between the large guest molecules because the strength of intermolecular 

interactions is dependent on the molecular size. From the arguments expressed 

in section 6.1 one would thus expect the sll structure to be observed. However,
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(a) sll clathrate (b) sILh clathrate

Figure 6.8: The arrangements of the 51264 polyhedra in sll and sll_h (the 512 polyhe- 
dra have been omitted for clarity). These polyhedra have the syimnetries of a regular 
tetrahedron and these two packings thus correspond to diamond and lonsdaleite like 
packings of these polyhedra.

again from the arguments expressed in section 6.1, if the large guest molecule has a 

large dipole one might expect orientation dependent interaction between dipoles will 

stabilise the sll_h structure. Nobody has managed to isolate this structure as a single 

phase, although it has been observed as a stacking defect in samples of a hydrate of 

tetrahydrofuran (THF) [26, 25]. This molecule has a substantial dipole, which from 

the analysis provided in section 6.1, would provide a favourable interaction between 

the molecules in the 51264 cages of the sIIJi structure.

6.3.2 The framework-guest interaction

The framework-guest interaction clearly makes a difference to the structure because 

the cell parameters are dependent on the particular guest [24, 27]. Furthermore, 

given that the empty cage structures do not form, the guest is clearly involved in 

the formation of the cages, the particular cages formed and thus the structure which 

condenses for a given guest [23]. In section,6.3 where the van der Waals Platteeuw 

theory was discussed, it was shown that current theories on the thermodynamics of



hydrate formation are based on obtaining equality between the chemical potential in 

the hydrate and the chemical potential of some coexistent water phase. Furthermore, 

within these models the role of the guest is simply to provide some configurational 

entropy to stabilise the hydrate. The calculation of the framework guest interaction 

energies, as has been studied before [28, 27], is undertaken here in order to justify 

the use of the methods, developed in this section, for the discovery of potential 

guest molecules for new hypothetical clathrate phases. Only qualitative assertions 

are made about the stability of the lattices because the role of lattice distortions are 

neglected, which Holder et al. [21, 29, 30] have shown are important.

The cages observed in the different structures, their point group symmetries and 

the ratios of the lengths of their rotation axis are shown in figure 6.9. As this figure 

shows all of the observed cages have a very high symmetry and, excluding the oblate 

51262 cage, have the roughly same extents in the three dimensions of space. The 

simplest model for the host guest interaction is to assume that guest molecules are 

hard spheres and that the cage swells such that the water molecules which form the 

cage lie on the surfaces of these “guest spheres.” This model goes some way towards 

explaining the high symmetry and roughly equal extent in all directions - one would 

expect the water molecules to arrange themselves around the central sphere such as 

to minimise the amount of empty cage. Thus, if one expands the size of the guest 

molecule, the cage must swell in order to fit in the guest. This swelling clearly has 

an energetic cost which is, in all probability, is related to the lengths of the hydrogen 

bonds. As such one expects it will be more energetically costly to fit large guest 

molecules into small cages and this cost will put an upper bound on the size of guest 

that can fit into a given cage. Experimentally, in only the si structure, and only 

for the smallest guests, can there be occupation of all the cages by the same species 

- in all other clathrate structures different cages are occupied by a different sized 

guests. To better understand why this is the case the cages were all set up so that 

their hydrogen bonds all had unit lengths. Then the distance between the centre of
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(a) 51 2  cage - Id (si, sll and (b) 51262 cage - T>ed (si) (c) 51264 cage - T<* (sll)
sH)

(d) 51268 cage - D ( s H ) (f) 425864 cage - D2/1 (sT)(e) 435663 cage - D3 h (sH)

51262 cage
red : 1.0 green : 0.692

51268 cage
red : 1.0 green : 0.830

435663 cage
red : 0.864 green : 1.0

425864 cage
red : 1.0 green : 0.845 blue : 0.706

Figure 6.9: Figure showing the shapes, symmetries and spatial extents of the cages 
observed in the known clathrate structures. Lines of the same colour indicate dis
tances that must be equal by symmetry. The table gives the ratios of the non
equivalent lengths to each other.
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Cage symbol Guest radius 5 ratio
512 1.363 1.0

51262 1.441 1.057
51264 1.654 1.213
51268 1.790 1.313

435663 1.300 0.954
425864 1.285 0.942

Table 6.3: The largest guest molecule that can fit into a cage if all the hydrogen 
bonds that make it up have unit length.

the cage and the closest of the surrounding water molecules was used to calculate 

the ratios between the sizes of guests that can fit in the various cages. This analysis 

is presented in table 6.3.

If guests really do behave like hard spheres then the ideal structure for a clathrate 

with only one type of guest would be one in which all the cages are spherical and of 

the same size. This structure is impossible to form though but as table 6.3 shows 

one can form a structure, si clathrate, in which all the cages have very similar sizes. 

Furthermore, this is the structure Weaire and Phelan have shown has the smallest 

surface area for a space-filling arrangement of cells of equal volume [31, 32] and as 

such is the most stable structure for a monodisperse dry foam. One would expect 

that a clathrate would attempt to minimise the amount of surface area and so this 

adds weight to this explanation as to why it is only this structure which forms 

clathrates in which all the cages are occupied. Table 6.3 also suggests that to form 

the sll and sH structures requires two guests, a small one to fit in the 512 and 435663 

cages, which both have similar sizes, and a large one to fit in the 51264 or 51268 cage. 

The particular structure adopted will depend on the size of the larger guest with 

big guest molecules favouring sH over sll.

The structure directing effects of templates on zeolites have been studied com

putationally by Lewis et al. [33]. In the course of their work they have written a 

piece of software, called ZEBEDDE, which can be used to calculate the interaction 

between silica framework structures and templates lying with in them. ZEBEDDE, 

in the mode in which it has been used in this work, works by randomly translating,
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rotating and distorting template molecules in the cages to anneal the total energy 

of the system. This energy is the sum of the intramolecular energy, which is the 

repulsion dispersion interaction between the guest molecule and the framework, and 

the intermolecular energy of the template. At the heart of the energy calculating 

routines of ZEBEDDE is the pcff forcefield [34] which contains terms for the inter

action of water molecules with anything - as such this code can be easily used to 

investigate the framework-guest interaction in clathrates. This is precisely what has 

been done in this work - the optimised structures from CASTEP for the si, si I and 

sH clathrates have been loaded into ZEBEDDE, a guest molecule has been placed 

into one of the cages and the interaction between guest and framework has been 

calculated by allowing the structure to anneal at 0 K. The results for loading of the 

512 cage in si, sll and sH are shown in figure 6.10.

E lhan*

Figure 6.10: The framework-guest interactions for various guest molecules in the 512 
cages of the si, sll and sH clathrate structures.

Figure 6.10 shows there is a minimum in the framework-guest energy when the 

guest is argon and this is the case for all three clathrate structures. This minimaum 

corresponds to the point when the water molecules are sat at a distance from the 

guest which is as close to the minimum in the repulsion dispersion potential of the
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guest as possible. For guests which have this minimum in their potential at a shorter 

distance the dispersive interaction between guest and framework is reduced, while for 

guests which have this minima at greater distances the repulsive interaction between 

guest and framework is increased. Figure 6.10 also shows that the discrepancies 

between the framework-guest energies in these three different structures are small, 

which suggests that the 512 cage has a similar size in all these structures and that 

it is the interaction of the guest with its first hydration sphere that is the dominant 

factor in determining the framework-guest energy of the system.

Table 6.3 showed that the 512 and 435663 cages have very similar sizes. One 

may ask therefore - why is it that the 512 cage is so much more common amongst 

the known clathrates? Is it that the framework-guest interaction is larger for 512 

cages because they are more symmetric or just that the 435663 is a more unstable 

cage? Figure 6.11 shows that the framework-guest interactions for guests in the 

435663 cage are, with the exceptions of hydrogen sulfide and ethane, all slightly less 

negative than the corresponding framework-guest interaction for the 512 cage. This 

slight discrepancy is not enough to stabilise 512 over 435663 so it seems likely that it 

is the energetic cost of forming the 435663 cage that makes it less common than the 

512 cage. One further interesting point is that in the synthesis of the sH clathrate 

hydrogen sulfide [35] is used as a help gas. That is to say the hydrogen sulfide is 

used to fill the smaller cages in the structure. The analysis presented here would 

seem to suggest that the choice of hydrogen sulfide may be important as this guest 

has a greater interaction with the 435663 cage, which is present in sH, than the 512 

cage.

The analysis presented in table 6.3 and what is known about the synthesis of 

clathrate structures suggests that the particular structure the system adopts is de

pendent on the size of the largest guest molecule present. The largest guest molecule 

will of course sit in the largest cage in the structure so one can understand how 

different guest molecules affect the structure adopted by calculating the framework-
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Figure 6.11: The framework-guest interactions for various guest molecules in the 
435663 cage of the sH clathrate structure.

guest interaction of various guests placed in the largest cages of the si (51262), sll 

(51264)and sH (51268) structures. This analysis is presented in figure 6.12.

Figure 6.12 shows, perhaps unsurprisingly, that for the smallest guests the 51262 

cage of the si structure has the most favourable framework-guest interaction. This 

situation changes for intermediate sized guests wrhen the 51264 cage of sll becomes 

most stable and then changes again for the largest guests for wliich the 51268 cage of 

sH is most stable. Remarkably, given the simplicity of the model, the minimum in 

the framework-guest interaction energy for the sH cage falls on one of the molecules 

that has been used to synthesise this cage [35]. However, the crossovers between 

different structural regimes are not quite in the right places, suggesting that a more 

sophisticated model is required if this is to be reproduced.

Klauda and Sandler [22] have developed a model that allows one to investigate 

how the clathrate structure that is formed from water and a mixture of methane 

and ethane depends on the mole fraction of ethane present. They find that for low 

mole fractions of ethane the sll structure is the stable phase. This can be under

stood qualitatively from by examining the framework-guest interaction energies for



□  sH

Figure 6.12: The frainework-guest interactions for various guest molecules in the 
largest cages of the si, sll and sH structures.

methane and ethane in the 512, 51262 and 51264 cages calculated in figures 6.10 and 

6.12. The sll structure consists of a 2:1 mixture of 512 and 51264 cages, while si 

consists of a 3:1 mixture of 51262 and 512 cages. From figure 6.10 ethane does not 

fit well into the si cages, thus for high fractions of ethane one would expect si to 

form in preference to sll because the number of 512 cages is smaller and so there are 

more sites into which the ethane molecules can fit. For low mole fractions of ethane 

though, the sll structure can be adopted with the ethane molecules in the large 

51264 cages and methane molecules in the 512 cages, which they fit into comfortably.

The analysis presented in this section proves that ZEBEDDE can provide a useful 

tool for finding suggested guest molecules which could be used to synthesise novel 

new clathrate hydrates. Furthermore, it suggests that one under utilised method for 

discovering new clathrates may be to use a combination of smaller guest molecules 

to stabilise small cages and large guest molecules to stabilise large cages and thereby 

increase the ratio between the different sized cages in the structures.
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6.4 Ice zeolites

There are only a handful of structures known for water clathrates but the situation 

is vastly different for zeolites, which have an atlas of structures [4], which includes 

silicates, aluminosilicates and alumino-phosphates. This leads one to question - axe 

there any structures within this atlas which may form the framework of a new stable 

water clathrate? Equally one may also ask why is there such a contrast between 

the vast structural diversity observed in zeolite chemistry and the relatively small 

number of structures which clathrate hydrates adopt?

To answer this question a number of zeolite framework structures were taken 

from the atlas of zeolite framework types [4] and, using the program discussed in 

section 6.2, valid hydrogen bonding topologies were generated for each of these nets. 

Each structure thus generated was optimised, at the gamma point, in CASTEP 

[10], with full anisotropic cell relaxation allowed and a plane wave cutoff of 500 eV. 

The energies of each topology plotted against the final framework density is shown 

in figure 6.13. The largest of these structures has 136 water molecules and a unit 

cell lengths of 16.5 A . As such it was necessary to run such calculations on the 

national super computer resource, HPCx, on up to 128 processors. For the very 

large unit cells it is no longer feasible to optimise in PI, so for these structures the 

generator program was used in tandem with findsym [36]. A script was written that 

ran the generator program and then ran findsym on the output. This process was 

repeated a few thousand times and the highest symmetry structure generated was 

optimised with CASTEP, using its symmetry to lower the computational cost of the 

calculation.

Figure 6.13 shows that the majority of the zeolite framework types selected make 

poor clathrates because their ice forms have high energies. It also shows that the 

energy of the system appears to be related to the dimensionality of the channel 

system present in the structure, which is almost certainly a consequence of the 

more general tendency for the energy to increase with decreasing framework density

190



20

15

3

I  1° 
8
?tu

5

20 25 30 35
Framework density /1000  A 1

Figure 6.13: Energies, relative to that of ice XI, of the hypothetical clathrate struc
tures based on zeolite topologies vs their framework topologies. The red line is the 
energy of the clathrate structure based on sodalite, which forms the backbone of the 
hydrate of HPF6 and is the highest energy structure that we are aware forms. The 
colours indicate the dimensionality of the channel system, red are OD, blue are ID, 
green are 2D and black are 3D.

as it does for siliceous materials. Figure 6.13 shows that there are a number of 

potentially synthesisable new clathrate hydrates that lie either lower in energy than 

HPF6 hydrate or just slightly higher, which all contain either OD, ID or 2D channel 

systems. The systems with channel systems that have dimensionalities greater than 

O, like VET see figure 6.14, are of particular interest because there are currently 

no known clathrates which have channel systems like these. A potential problem 

in forming channels in hydrate systems is that, unlike in silica, the guest molecule 

plays a key role in increasing the activation barriers to framework collapse. In 

other words the guest molecules have to be large enough to fill the pores in the 

structure. In channel systems there must be parts of the channel in which the guest 

is not present as bringing guests too close together in the channels would cause 

hugely unfavourable repulsive interactions between guest molecules. In zeolites the 

framework is maintained in these regions by the strong Si-O-Si bonds but in ice it
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Figure 6.14: The arrangement of the water molecules in the hydrate framework 
based on VET. Observe the 12-ring channels that run through the structure.

is questionable whether the hydrogen bonds would be strong enough to hold the 

channels open in these regions and prevent collapse of the structure.

Figure 6.13 shows that the DDR and SGT frameworks have lower energies than 

the SOD framework, which is currently highest energy framework for which there is 

a hydrate structure known. As such these structures are of particular interest and 

are discussed at greater length in section 6.4.1.

Calculations of the energies of all the known zeolite topologies, with all the T 

sites occupied by silicon atoms, have been performed by Zwijnenburg [9] using the 

Sanders-Leslie-Catlow potential [11]. They observe a energy map that is very similar 

to that observed for clathrates structures, which begs the question: are the energies 

for the pure silica zeolites and the hypothetical water clathrates correlated? Figure 

6.15 seems to suggest that for most structures they are with a number of marked 

exceptions, namely the majority of the dense ice and silica phases and the known 

clathrate structures.

Zwijnenburg [9] has shown that the energy of pure silica zeolites, with frameworks
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Figure 6.15: Correlation between the relative energies of pure silica and ice like 
structures. Black crosses are hypothetical zeolite structures, red crosses are dense 
silica phases, green crosses known clathrate phases and blue crosses are the dense 
ice phases. The energies are shows relative to the lowest energy phases at 0 K.

that are simple tilings (see section 2.4.1), is correlated with the average face size 

in the structure and the standard deviation of the face size distribution. Given 

the correlation between the pure silica zeolite energies and hypothetical clathrates 

one would expect a similar findings for zeolite like structures composed of water 

molecules. However, many of the zeolite structures and dense structures investigated 

in this work are not simple tilings and thus the calculation of face size distributions 

is not possible. The TTT angle, where T is the position of the vertices (O in ice and 

Si in pure silica zeolites) in the net, is correlated with the face size as all the faces 

in a simple tiling are regular polygons, thus small faces will have small TTT angles 

while larger faces will have larger TTT angles. Thus one might expect that the 

energy of a simple tiling will be correlated with the mean and standard deviation of 

the distribution of TTT angles in the structure. The advantage of these quantities is 

that, unlike the face size distributions, it is possible to calculate these quantities for 

simple tilings and non-simple tilings and thus see if the rule Zwijnenburg suggested
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extends from simple to non-simple tilings. The analysis for the ice structures is 

shown in figure 6.16.

15

6  10

106 108 110 112
Average TTT angle / degrees Standard deviation of TTT angle / degrees

(a) Mean (b) Standard deviation

Figure 6.16: Dependence of energy on the mean and standard deviation of the TTT 
angle.

As can be seen from figure 6.16 there is a clear minimum for the energy versus 

average TTT angle, which corresponds to ice XI, and the energy rises steeply if one 

moves away from that minimum. Meanwhile, the energy is clearly correlated with 

the standard deviation of the TTT angle much as was expected. This explains the 

correlation between the silica and ice energies - clearly for both these systems there 

is an energetic cost for distorting the TTT angle.

In silica, the Si-O-Si bonds are bent whereas the hydrogen bonds in ice like struc

tures are straight, as such a-quartz is the lowest energy structure for silica, whilst 

ice XI (lonsdaleite) is the lowest energy structure for ice. When ice is compressed 

it forms ice phases in which the hydrogen bonds are not straight, leading to the 

question - can the differences in the energetics observed for ice and silica be put 

down the fact that the energetic cost of bending hydrogen bonds is greater than 

that required to bend Si-O-Si bonds?

Figure 6.17 shows the energy is inversely-correlated with the average OHO angle, 

which adds weight to the suggestion that the hydrogen bond in ice like structures is 

less flexible that the Si-O-Si bond.

An analysis of the HOH angle reveals that in these structures this angle never
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Figure 6.17: The energy vs the average OHO angle for all of the phases of ice studied 
in this work. The black crosses are the hypothetical phases, blue crosses are dense 
ice phases, red crosses are dense silica phases and green crosses are the known water 
clathrates.

distorts by more than 10° from the gas phase HOH angle and thus one can obtain a 

very good estimate for how bent the hydrogen bonds will be in the optimised struc

ture by simply setting up a structure in which all the water molecules with their gas 

phase geometries. This combined with the fact that in ice one is attempting to min

imise the standard deviation for the TTT angles could provide an inexpensive way 

of searching hypothetical zeolite framework databases for potential new clathrate or 

hydrate structures.

6.4.1 DDR and SGT

Earlier in the above section it was noticed that amongst the low energy and hence 

possibly synthesisable hypothetical clathrate hydrate structures the DDR and SGT 

frameworks had the lowest energies. As such these structures merit some further 

investigation.

Figure 6.19 shows that both SGT and DDR are simple tilings with more complex 

structures than the currently known water clathrates. Furthermore, they appear to
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(a) SGT (b) DDR

Figure 6.18: The arrangements of the water molecules in the large cages of the DDR 
and SGT structures.

be composed of cages that are considerably more asymmetric and contain a greater 

proportion of energetically unfavourable four rings. Most importantly though, these 

two structures have larger cages than any of the currently known clathrate hydrate 

structures and so have the potential to store large gas molecules. The arrangement 

of water molecules in the large cages of these structures are shown in figure 6.18.

SGT is composed of 4356 cages and 51268 (NB this cage has a different symmetry 

to the 51268 cage in sH), while DDR is composed of alternating layers of 512 cages and 

435661 and 435126183 cages. The shapes of these cages, their point group symmetries 

and the ratios of their principal dimensions are shown in figure 6.20.

Figure 6.20 shows that, much like was the case for the known clathrate structures, 

the cages in SGT are pseudospherical - in fact the 51268 cage in SGT is more spherical 

than the 51268 cage in the sH structure. However, for DDR the situation is different 

as both the 435126183 cage and the 435661 cage are highly non-spherical.

It is possible to make pure silica versions of both the DDR and SGT structures 

using a template molecule. One might hope therefore that it would be possible to 

use a similar sort of templating to form clathrate hydrate structures based on these

196



(a) SGT (b) DDR

Figure 6.19: The way polyhedra pack in the SGT and DDR structures. For clarity 
all 4 sided faces are shown in red, 5 sided faces in blue, 6 sided faces in green, 8 
sided faces in grey and all 512 polyhedra are shown in yellow.

two frameworks. One must be careful in selecting templates for clathrates however 

that they do not form hydrogen bonds because, whereas for silica hydrogen bonding 

from guest to framework and subsequent incorporation of the guest molecule into 

the framework is far less favourable than the formation of strong covalent bonds, 

for ice guest-framework hydrogen bonds will be equally, and in some cases more, 

favourable to hydrogen bond formation in the framework itself. In practice this 

means avoiding suggesting amines and alcohols as guest molecules.

To begin the process of template design an analysis of the cages present in these 

two structures and the ratios of their sizes to the 512 cage was carried out. The 

results of this analysis are given in table 6.4 along with a reminder of the sizes of 

the cages present in the known clathrates.
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(b) 51268 cage - C2v (SGT)(a) 4356 cage - C2v (SGT)

(c) 4S5126183 cage - C 3v (d) 435661 cage - C3v (DDR)
(DDR)

4356 cage
red : 0.857 green : 0.995 blue : 1.0

5l268 <cage
red : 1.0 green : 0.946

435126183 cage
red : 1.0 green : 0.746

435661 cage
red : 0.665 green : 1.0

Figure 6.20: Figure showing the shapes, symmetries and spatial extents of the cages 
in the SGT and DDR structures. Lines of the same colour indicate distances that 
must be equal by symmetry. The table gives the ratios of the non-equivalent lengths 
to each other.
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Cage symbol Guest radius 512 ratio
Cages in SGT

4 3 5 6 1.111 0.815
51268 1.820 1.335

Cages in DDR
435126183 1.796 1.318

435661 0.834 0.612
512 1.363 1 . 0

Cages in known clathrates
r l2O 1.363 1 . 0

51262 1.441 1.057
51264 1.654 1.213
5l26B 1.790 1.313

4 35 663 1.300 0.954
425864 1.285 0.942

Table 6.4: The largest guest molecule that can fit into the cages of DDR, SGT and 
the known clathrates if all the hydrogen bonds that make it up have unit length.

Table 6.4 shows that both the SGT and DDR structures contain cages that 

are larger than the cages present in the currently known clathrates and also cages 

that are considerably smaller than those in the known clathrates. As such it is 

unlikely that these structures will form if only one guest molecule is present as 

the different sized cages will need different sized molecules within them to stabilise 

them. ZEBEDDE [33] can be used to investigate what guests fit into the various 

cages in these structures. First and foremost the small cages (SGT: 4356 and DDR: 

435661) because the size of molecules available only has a lower bound, namely 

hydrogen. Figure 6.21 shows the framework-guest interactions for various different 

guest molecules in these cages.

Figure 6.21 suggests that only hydrogen will fit in the smallest cage of SGT, but 

that there are perhaps a few more options for the small cage of DDR. The framework- 

guest interactions for all the molecules in these cages though are considerably less 

negative than if they were placed in the larger 512 cage (see figure 6.10). This 

presents a potential problem, although this may be resolved if the framework-guest 

energy of whatever is placed in the larger cages is very favourable.

The DDR structure is of particular interest because it has both the properties
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Figure 6.21: The framework-guest interactions for various guest molecules in the 
4356 cage of SGT and the 435661 cage of DDR.

of a clathrate and the properties of a zeolites with an extended channel system [37]. 

Furthermore, figure 6.21 has already shown that the smallest cages in the structure 

are going to form more easily than those in SGT. As well as the small cage this 

structure contains two further types of cage, 512 cages and 435126183 cages. The 

guest molecules that fit in the 512 cages in other clathrate structures were discussed 

in figure 6.10 and as figure 6.22 shows the guests that fit well in this cage in the 

DDR structure are almost identical to those that fit in this cage in other structures. 

However, the guests have lower binding energies in the 512 cage of DDR than they 

do in the 512 cages of other structures, which suggests that in the DDR structure 

the 512 is larger than it would be in the known clathrates or slightly distorted.

Having established what guests fit in the small cages in these structures leaves 

only the guests in the large cages to investigate. As table 6.4 shows the large 

435126183 cage of DDR and the 51268 cages of sH and SGT can fit similarly sized 

largest guest molecules. This assertion is backed up by the analysis presented in 

figure 6.23 which shows that the butane is the straight chain alkane that fits most 

comfortably in the large cages in sH and DDR. For SGT the situation is more com-
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Figure 6.22: The framework-guest interactions for various guest molecules in the 512 
cages of the DDR structure.

plex as pentane and butane have very similar framework-guest energies, probably 

because there is more space for pentane to distort and thereby reduce its length in 

this cage.

Figures 6.20 and 6.9 show that the large cages in sH, SGT and DDR all have 

different syimnetries - in particular SGT and sH both contain 51268 cages that differ 

only in the arrangement of the faces and hence their symmetry. It was wondered 

whether the symmetry of the guest molecule would direct the structure of the cage 

that formed around it - namely whether or not structures in which the cage and 

guest had the same symmetry would have favourable guest framework interaction 

energies. Figure 6.24 shows the results of a test of this assertion in which different 

n-substituted butanes were placed in the large cages of sH, DDR and SGT.

Figure 6.24 shows that rather than the higher symmetry structures stabilising 

the 51268 cage of sH over that of SGT, as one would expect if the symmetry of the 

guest controlled the symmetry of the cage, the opposite is the case. The reason for 

this is obvious if one examines the shapes of the cages, wliich are given in figures 

6.20 and 6.9. It is simply that the 51268 cage in SGT has a greater extent in the
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Figure 6.23: The framework-guest interactions for various straight chain alkane guest 
molecules in the 51268 cages of sH and SGT and in the 435126183 cage of DDR.

directions perpendicular to the principal axis of this cage, it is Tatter”, than the 

51268 cage in sH. As such the more substituted “fatter” butane molecules fit better 

in the SGT cage than they do in the sH cage, as figure 6.20 shows. Adamantane 

is a “fat” molecule and as such would be expected to have a high guest framework 

interaction with the large cage of SGT and smaller interactions with the large cages 

of DDR and sH. Figure 6.25 confirms that this to be the case mid in fact proves 

that adamantane is the most promising candidate for the formation of the SGT 

framework.

Figure 6.24 shows that DDR, although never the most stable cage for any given 

molecule, prefers to contain molecules that are “fat” at one end and “thinner” at 

the other, like 2,2-dimethyl butane. This again makes sense when one examines the 

shape of the cage, which is tapered having a large extent perpendicular to its C3 

axis at its base and a smaller extent at its top, as shown in figure 6.20. Numerous 

attempts have been made to find an appropriately shaped guest molecule to fit into 

this cage but this has proved highly problematic. From the ZEBEDDE calculations 

carried out it appears that the large cage in DDR has a width that is intermediate



Figure 6.24: The framework-guest interactions for various n-substituted butanes in 
the 435126183 cage of DDR and 51268 cages of the sH and SGT clathrate hydrate 
structures.

between those of the sH and SGT structures. Figure 6.24 shows that 2,2-dimethyl 

butane is guest molecule that best fits in the 51268 cage of sH. Therefore one might 

expect that if one could increase the sizes of the methyl substituents attached to the 

second carbon of this chain one would find that these new larger guests would fit 

most favourably into the large cage of DDR, while increasing the size of the methyl 

substituents further would create molecules which fit best in the large cage of SGT. 

Two ways of increasing the size of the methyl groups were attempted:

1. The carbon at the two position was replaced by a silica and one of the methyls 

attached to it was replaced by fluorine, which lengthened the Si-C bonds 

thereby making the base of the molecule larger.

2. Some or all of the hydrogens were replaced by larger fluorine atoms

All the molecules attempted were found to have more favourable framework-guest 

interactions with the large SGT cage than the large DDR cage, which suggests that 

the window of molecular sizes for which the 435126183 cage of DDR is the most stable 

cage that will form about is very small. Furthermore, even if a suitable molecule
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Figure 6.25: The framework-guest interaction for adamantane in the 435126183 cage 
of DDR and 51268 cages of the sH and SGT clathrate hydrates structures.

were to found to fit in the large cage the stabilisation afforded to the structure 

from this interactions may not be enough to counter act the destabilising effect of 

having molecules in the smaller cages in this structure rather than the small cages 

in other structures, with which they interact more strongly (see figures 6.22 and 

6.21). By contrast it seems more likely that the large difference between the binding 

energy of adamantane in the 51268 cage of SGT with the binding energy energy of 

this molecule 51268 cage in DOH will be enough to counter act the effect of having 

hydrogen molecules in the small 4356 cages.

6 . 5  C o n c l u s i o n s
This chapter has shown that comparing the chemistry of different species which 

form four connected nets can provide insights into the inter-atomic interactions in 

these different structures and can provide a method for predicting new structures. 

In particular it has been shown that the diamond net is stabilised by isotropic 

repulsive forces between atoms, but the introduction of a dipole on the species at
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the vertices can begin to stabilise the lonsdaleite net. This proves important, not 

just for understanding the dense phases, but also for understanding the reason that 

the si I clathrate is more stable than the alternative version which has the same cages 

hexagonally packed and provides a possible clue as to how to form this new clathrate 

structure. There are other known zeolite structures which, when one examines 

the positions of the centres of the cages, can be seen to be structurally similar to 

dense phases - for instance FAU is structurally similar to diamond. Perhaps an 

understanding of the reason for the stability of the dense structure can provide 

insight into why these zeolite structures are favourable, while other hypothetical 

structures are not.

Through comparison of the energies of similar nets composed of SiC>2 and water it 

has been shown that the energetic landscapes for these two materials are very similar 

and that any difference is due to the fact that hydrogen bonds are considerably less 

flexible than Si-O-Si bonds. Furthermore, it seems likely, from the comparison 

of the relative energies of different possible 4-connected nets for water and silica, 

that the reason ice forms fewer structures than silica is not that the local minima 

corresponding to more exotic four connected nets are inaccessibly high in energy for 

ice but rather the energetic barriers to collapse of these nets are higher for the silica 

based structures.

Finally, on the clathrates the work presented here seems to suggest that the 

empty cage structures do correspond to local minima in the potential energy sur

face. Experimental work [24] shows that the lattice parameters for the clathrate 

structures typically only vary by only about 2 A on changing the guest present in 

the cages, which suggests each of these structures only has a limited number of 

cage sizes for which the structure is stable. What is more, the DFT values for the 

lattice parameters for each of these structures is close to what one observes for the 

experimental lattice parameters. This observation suggests a way new clathrate 

structures may be designed - one first examines the available hypothetical zeolite
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structural databases for simple tilings which contain mostly five and six rings. One 

then optimises these structures in CASTEP and measures the size of the various 

cages within them - one can then use ZEBEDDE to calculate what are appropriate 

guest molecules for the new structure.
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Chapter 7

Conclusions and future work

Although there have been individual conclusions for each of the results chapters in 

this thesis, here they are brought together in order that general themes and any 

future direction for the work may be reflected on. Three broad areas have been 

addressed:

1. Studies on proton ordering phase transitions in disordered ice phases.

2. A study on how proton topology affects surface and bulk energy in ice Ih.

3. A comparison of known and hypothetical ice and silica structures.

In the studies of proton ordering phase transitions plane wave DFT calculations 

and subsequent Wannier transformations have shown that the energy differences 

between different proton topologies are largely due to electrostatic effects. Further

more, the proton ordering in ices V and XII have been investigated using DFT, 

which has correctly predicted the structures of the ordered forms of ices V and XII 

(ices XII and XIV respectively). Finally, the energy difference between ordered ice 

II and its proton disordered analogues have been calculated. These energy differ

ences are larger than they are in any of the other investigated ice phases, which 

suggests that ice II has no proton disordered analogue because the energy required 

to uexcite” the proton topology is too large.
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At first glance, there seems to be little else that can be done to investigate 

proton ordering transitions - between this work and the work of Kuo et. al. [1, 

2, 3, 4, 5] all the known phases of ice, except ice IV, have been studied and the 

structures of their ordered forms predicted. However, there are also proton ordering 

transitions in clathrate materials [6] and given the size of the unit cells for some of 

the known clathrate structures these present a gigantic problem for theory. From 

this work one one way to attem pt to solve this problem would be to use plane 

wave DFT calculations and subsequent Wannier transformations to obtain molecular 

multipoles for the water molecules present in these structures and then to use these 

multipoles and the electrostatic expansion to search through the vast number of 

possible hydrogen bonding topologies for the lowest energy topology. It would be 

interesting to find out, using these calculations, whether the ordered form for a 

clathrate is dependent on the guest molecule present or if the proton ordering forces 

the guest to adopt a particular orientation in the cage. The methods used for finding 

low energy proton topologies may also prove useful in predicting ground states in 

systems which have frustrated magnetism.

In predicting the ordered forms of proton disordered structures the thermody

namic driving force for proton ordering have been investigated. In order to better 

understand the transitions one should also investigate the kinetic boundaries to the 

transitions, which may provide clues as to why dopants, such as HC1 or KC1, must 

be present for the transitions in ices Ih, V and XII to occur, while in ices III and 

VII dopants are surplus to requirements.

Proton ordering transitions involve a change in the proton topology within the 

structure, which as discussed in earlier parts of this thesis, is also the rate limiting 

step in electrical conduction in these materials. Furthermore, when a line defect 

moves through crystal of ice the surrounding proton topology must change so that 

no additional defects are introduced. As a result the rate of proton topology change 

can also affect the rates of fine defect motion and hence the rates of slip and glide
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in ice crystals. Proton topology change occurs through the motion of point defects 

like Bjerrum defects, OH-  ions, H3 0 + ions, vacancies and interstitials. An in depth 

study of the structure and dynamics of these defects, in each of the known ice phases, 

would provide great insight into the behaviour of ice.

In chapter 5 a new potential was fitted, which allowed an investigation of the 

dependence of the potential energy on the hydrogen bonding topology to be carried 

out. This investigation has shown that, in simulations of bulk ice at very low 

temperatures, one must take account of these effects but that at most temperatures 

relevant to the atmosphere one can neglect the bulk proton topology. The most 

important conclusions from this chapter is that changing the proton topology at 

the surface can have a substantial effect on the surface energy, with surfaces which 

contain more clustering of dangling hydrogen bonds having greater energies. As 

such if one wishes to have a good description of the surface of ice Ih one must ensure 

that an energetically sensible hydrogen bonding topology for the surface is selected. 

This result has implications for any simulation of the surface of ice, be it a study 

of what are the most favourable morphologies for ice crystals or a study of surface 

reactivity.

The work presented in this thesis is limited by the potential used, which does 

not correctly reproduce the dynamic structure. It is important that new potentials 

for ice should correctly reproduce both the dynamics of the liquid and solid and the 

dependence of the energy on the proton topology. Given that the energy differences 

between different bulk proton topologies is small, ensuring that the bulk proton 

topology is a low energy one is probably not important at temperatures relevant to 

the E arth’s atmosphere. As such one, somewhat unsatisfactory, solution to this lack 

of a potential may be to use either the TIP6P [7] potential or TIP4P/ice [8] potential 

to simulate surfaces and hope that, although these potentials do not reproduce the 

DFT energy differences between different bulk proton topologies, they will reproduce 

the energy differences between surfaces with different proton topologies. Another
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is to use density functional theory to find a low energy structure - although this is 

much more computationally expensive than using a potential. However, this cost 

may be avoidable if one used the graph invariant software developed by Kuo et. al.

[3] to fit the surface energy, calculated using DFT, to local structural features in the 

hydrogen bonding topology. Even so once a low energy hydrogen bonding topology 

for the surface has been found further studies are limited because DFT must be 

used - so only processes that occur on relatively short time and length scales can be 

investigated.

Another thing the work with potentials has highlighted is the need for better 

potentials to describe ice. Amongst the many water potentials in the literature 

there are comparatively few that have been fitted with the properties of ice in mind 

- the exceptions to this seeming to be the TIP4P/ice and TIP6P potentials. New 

ice potentials would allow one to perform free energy calculations which would give 

more insight into the probability of forming the new ice phases predicted in chapter 

6, provide a computationally inexpensive way of studying the defects and allow one 

to study the surface of ice.

In the final major theme of this work the phases that can be made using ice and 

silica have been compared. This work has suggested the possibility of new dense 

ice phases, which would be expected to be observed in the centre of water’s phase 

diagram where there is the greatest potential for the discovery of new phases, and 

also a number of potential new silica or zeolite structures. Investigations of zeolite 

structures, but made out of water, has shown that most of the energies of these 

structures are correlated with the energies of the analogous pure silica zeolites, with 

any differences being a result of the difference in flexibility between the OHO angle 

and the O-Si-O angle. Finally, potential new clathrate phases, which have larger 

cages and can thus hold larger guest molecules than any of the currently known 

clathrates, have been identified and Zebedde has been used to investigate potential 

guest molecules for these structures.
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To extend this work an investigation of the free energies of these new ice, silica 

and clathrate phases must be carried out. Recent work on ice [8] and silica [9] has 

used potentials to calculate phase diagrams for these two systems and it would be 

hoped that, similar free energy calculations could be used to provide clues as to 

what temperature and pressure regimes these new structures will be found in.

Clathrates are hugely interesting materials that present a real challenge to the

oretical understanding. Interesting work could be carried out using molecular dy

namics to establish how the guest molecules move about in the cage and extend the 

current understanding of how clathrate materials form. Certainly the work with 

Zebedde could be extended and the stability of different guest molecules in different 

cages could be established. Ideally, if one could also find a way of describing how 

the energy of the framework varied as the cages swell to incorporate larger guest 

molecules or contracted as a response to external pressure one could obtain, not 

only an understanding of why particular guest molecules and combinations of guest 

molecules form different clathrates, but also of the pressure driven phase transitions 

that are observed in gas clathrates.
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Appendix A  

A QM-MM m ethod for ice

In order to undergo the phase transitions discussed in chapter 4 there must be a 

change in the proton topology of the system. Furthermore, processes like line defect 

movement and electrical conductivity require proton topology changes to occur [1 ]. 

These changes are believed to occur through the motion of point defects about the 

lattice, which makes the study of point defects in ice an important area of research. 

Experimental studies of defects are very difficult as the concentration of defects in 

bulk materials is very small. Theoretical studies, by contrast, are straightforward 

as defects can be introduced by simply moving atoms in the input file. However, 

in all calculations on defective systems large numbers of atoms must be used and 

so pure quantum mechanical approaches become unfeasible. Potentials meanwhile 

are generally fitted to reproduce the bulk system and assume that water molecules 

can be treated as rigid unpolarisable entities. As such potentials will not neces

sarily correctly reproduce the structure around a defect. These twin problems can 

been effectively side stepped by adopting the hybrid quantum mechanical-molecular 

mechanical approach described in section 3.3.3 [2] and describing the area near* the 

defect using quantum mechanics and the bulk like surroundings using a potential. It 

was hoped that in this project the QUASI model could be used to study defects in 

ice using QM-MM approaches. However, this work has proved highly problematic, 

hence its relegation to an appendix in this thesis, not least because QUASI was
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Vacancy energy /  kcal mol 1

Molecules in QM region Config 1 Ice XI
5 29.56 28.39
18 33.23 30.30
27 33.91 28.05

Table A.l: Vacancy energies for different hydrogen bonding topologies and different 
QM region sizes, calculated using the TIP 6 P potential to describe the MM molecules.

initially designed with the simulations of metallic and ionic solids in mind rather 

than molecular systems.

The first modification made to the method was to adjust the construct routine 

so that the interfaces between regions did not cut through covalent bonds, so the 

interaction between molecules in the MM regions could be described using the TIP6 P 

potential. In the quantum region an augmented TZVPP basis set [3, 4] was used with 

the B3LYP functional [5], which reproduces the dipole of an isolated water molecule 

well. A calculation of the vacancy energy for two distinct proton bonding topologies 

(ice XI and Hirsch and Ojamae configuration number 1 ) was attempted using this 

model and gave the results in table A.I. For reasons which will be become clear 

later the numbers quoted in this table are for single point energies of the defective 

and undefective structures. One reason for this however is that within ChemShell 

optimisation of the full active region is not possible because there is no rigid body 

optimisation software.

As table A.l shows the energy difference between the two proton topologies shows 

a strong dependence on the size of the QM region, which is clearly an unphysical 

effect. This was believed to be occurring because of a mismatch in the dipoles 

in the the QM and MM regions. It is easy to adjust the value of the dipole on 

the MM molecules by adjusting the values of the point charges on the sites of the 

potential. This has been done, the results are shown in figure A.l, to ascertain 

what effect making these changes has on the energy difference between the two 

proton topologies for a five molecule QM region. Changing the values of the point 

charges obviously changes the balance between attractive and repulsive forces in the
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MM dipole / Debye

Figure A.l: The effect the value of the MM dipole has on the energy difference 
between the vacancy energies calculated for two different proton topologies. The 
minima in this curve corresponds to the point where the QM and MM dipoles are 
matched.

potential so the potential is no longer physically accurate and thus any forces arising 

from it are questionable so optimisation is not possible. What the potential does 

provide however is a description of the electrostatics, which will act to polarise the 

electron distribution in the QM region.

Figure A.l seems to suggest that if the MM dipole has the correct value this 

discrepancy will disappear and that one option for fitting the electrostatic terms 

in the potential would be to minimise this energy difference. To do this however, 

would require a lot of calculations, so an alternative solution to this problem was 

sought. GAMESS-UK [6 ], the program Chemshell uses to do the QM part of the 

calculation, has implemented within it the DMA scheme described in section 3.2.3

[7]. This suggests that one approach to matching the electrostatics in the MM and 

QM region would be to use the output from DMA analysis on the molecules in the 

QM region to fit the potential in the MM region. That is to say that one could 

perform a calculation with some initial MM potential and obtain multipoles using 

DMA. The multipoles so obtained, could then be used to refit the MM potential 

and this process could be repeated until self convergence was achieved. Software to 

do exactly this was developed, with the average charge and dipole on the oxygen
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Vacancy energy /  kcal mol 1

Molecules in QM region Config 1 Ice XI
5 29.75 30.51
18 31.93 31.51
27 32.80 30.12

Table A.2: Vacancy energies for different hydrogen bonding topologies and different 
QM region sizes, calculated using an electrostatic potential that has been fitted on 
the fly to the QM electrostatics.

and hydrogen positions of the molecules of the QM region being used to fit the 

charges on a pair of closely separated point charges at each atomic position. After 

this fitting process was undertaken a vacancy energy was calculated for each of the 

two topologies of interest - the results of these calculations are given in table A.2.

As table A.2 shows the size of the QM region still has an effect 011 the difference 

in vacancy energy between the two topologies. However, the increase in this energy 

difference as a function of QM region size is far smaller than it was when the TIP 6 P 

potential was used to describe the MM region. This suggests that this approach is a 

sensible one although there is still much that must be done before a detailed study 

of defects in ice can be undertaken.

Bibliography

[1 ] V. F. Petrenko and R. W. Whitworth. Physics of ice. OUP, (1999).

[2] P. S. et. al. J. Mol Struc-Theochem, 632, 1 (2003).

[3] A. Schafer, C. Huber and R. Ahlrichs. J. Chem. Phys., 1 0 0 , 5829 (1994).

[4] A. Sokol. Personal communication, (2006).

[5] P. Stephens, F. Devlin, C. Chabalowski and M. Frisch. J.Phys.Chem., 98, 11623 
(1994).

[6 ] Gamess-uk, (1980). GAMESS-UK is a package of ab initio programs written by 
M.F. Guest, J.H. van Lenthe, J. Kendrick, and P. Sherwood, with contributions 
from R.D. Amos, R.J. Buenker, H. van Dam, M. Dupuis, N.C. Handy, I.H. 
Hillier, P.J. Knowles, V. Bonacic-Koutecky, W. von Niessen, R.J. Harrison, A.P. 
Rendell, V.R. Saunders, K. Schoffel, A.J. Stone and D. Tozer.

217



[7] A. Stone and M. Alderton. Molecular Physics, 50, 1047 (1985).

218



A ppendix B

Outline o f new  programs

During the course of this PhD a number of new computer programs have been 

created. All these programs have been written in Fortran 90 and a brief outline of 

each of them and their purposes are given below:

B .l  Electrostatic Energy

A program called electro has been written to calculate the potential energy of in

teraction of the multipoles output from the Wannier function analysis performed 

in CASTEP. These multipoles are output in the cell frame so the potential energy 

can be calculated directly from them. The program creates a supercell, the size of 

which is specified by the user, of the multipoles input and calculates the potential 

energy up to order ( 1 / r 6) in the electrostatic expansion. As a large supercell is used 

and the system need only do one iteration a direct sum is used to calculate the 

potential energy of interaction of all the terms in the multipolar expansion of higher 

order than the dipole-dipole interaction. The dipole-dipole interaction meanwhile is 

calculated using a Ewald sum.
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B.2 Multipole Rotation

A program called multipole_rotate has been written to rotate the multipoles output 

from CASTEP from the cell frame into the body fixed frame so that the values of 

multipoles on different molecules can be compared. The body fixed frame used in 

this code has as its axis the HOH bisector, the cross product of the two OH vectors 

and the cross product of these two vectors. An additional add on code has been 

written to take the multipoles output, in the body fixed frame, and calculate their 

average magnitude and the standard deviation of their magnitude.

B.3 Generate

This program takes in the positions of the vertices of an infinite 4 connected net 

and generates a hydrogen bonding topology that obeys the Bernal-Fowler rules. 

It requires an input file called coordinates.dat, which gives the value of the cell 

constants, a, b, c, a, f t , 7  on the first line and has an empty second line followed 

by the positions of all the vertices in the unit cell in fractional coordinates. This 

program is run by issuing the command:

./generate.x

Once this command has been issued it asks the user for the number of vertices 

in the unit cell, whether the user wishes to generate all possible hydrogen bonding 

topologies for the net given (although this feature only works for nets with small 

number of vertices) and for a random number. If the user chooses not to enumerate 

all structures the final structure is output to the file coordinates.gin, whereas if all 

topologies are output a large number of fort files, containing all the structures, are 

output.
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B.4 Monte Carlo with hydrogen bonding topol

ogy changing moves

Two versions of this software have been written, the first was designed for bulk 

systems and the later is for surfaces. There are two principal differences between 

these two codes:

1. The surface version uses the full modified TIP6 P potential in the calculation 

of the energy, whereas the bulk version only uses the torsional part of the 

modified TIP 6 P.

2 . The surface version of the code allows the additional topology changing de

scribed in section 3.4.3.

A slight limitation of both these codes is that only orthorhombic simulation cells 

can be used. Both codes require two input files, monte.inpt and coordinates.dat, 

the first of which contains the simulation parameters and the second the cell lengths 

and coordinates.

Within both these codes two representations of the structure are used - the first 

is a representation of the coordinates of all the atoms, while the second tells which 

oxygens axe connected and the directions of the connections. The first of these 

representations is used in the energy evaluation routines, while the second is used 

for the parts of the program that deal with the topology changing moves and also 

to store the configuration at each time step.

In the surfaces code it is necessary to constrain the system so that there is zero 

dipole perpendicular to the surface. This constraint is applied by giving each and 

every molecule a unit dipole parallel to its HOH bisector and summing the dipoles 

on all the molecules - if there is a net dipole perpendicular to the surface the move 

is then rejected out right. Finally, the Ewald sum in the surfaces code is a 3D Ewald 

sum and a vacuum gap between surfaces of 2 0  A is used to ensure that there is no 

interaction between adjacent slabs.
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B.5 Programs for use in QM-MM

As discussed in appendix A the hybrid QM-MM method developed during the course 

of this work relies on using the DMA method to fit the charges on the MM atoms. A 

code called dma_avmults has been developed to obtain multipole from the GAMESS- 

UK output and change the potential parameters in the input files for chemshell. This 

code first reads in the site dipoles from the .pirn file output by GAMESS-UK, rotates 

them from the cell frame to the body frame and calculates averages. It was found 

early on that all dipoles had a negligible component out of the plane, the oxygen 

dipole lay along the HOH bisector, the charges on the two hydrogens were equal and 

that the dipole on the second hydrogen was given equal to the dipole on the first 

hydrogen reflected in the plane parallel to the HOH bisector. As such constraints of 

zero dipole in certain directions and the symmetries described above were applied 

to the average values of the dipoles obtained from GAMESS-UK.

The second step in the fitting process was to use the obtained values of the 

dipoles to refit the the model. The model represents each dipole as a pair of closely 

separated point charges so that overall there were six point charges in the model. 

The first three of these point charge lie on the elemental site and have components 

due to the monopole due to it being the positive end of the dipole. The second 

charge lies a distance d away along the dipole vector and has a charge of —q, where 

q is given by:

(B.l)

Once this fitting procedure has been completed the input file for Chemshell is 

rewritten and the charges and all site positions are updated.
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Appendix C

Details on M ethods

C .l DFT calculations - CASTEP

All the DFT calculations were performed in CASTEP. Details of kpoint sampling, 

exchange correlation functional choice and the plane wave cutoff in these calculations 

has been detailed in the text. A sample input is provided below, as can be seen in all 

these calcalations the SCF tolerance was set at 0.0000005 eV and the optimisation 

tolerances were set as the input shows. Ultra soft pseudo-potentials were used 

throughout.

task : GeometryOptimization 
xcJunctional : PW91 
spin.polarized : false 
opt_strategy : Speed 
page_wvfns : 0

cut _off.energy : 550.0000000000 
grid .scale : 1.7500000000 
finite_basis_corr : 2  

elec.energy_tol : 0.0000005000 
max_scf_cycles : 1 0 0  

fix.occupancy : false 
metals_method : dm 
mixing-scheme : Pulay 
mix_charge_amp : 0.5000000000 
mix_charge_gmax : 1.5000000000 
mixJiistoryJength : 2 0  

nextra.bands : 4
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smearing_width : 0.1000000000 
geom_energy_tol : 0.0000050000 
geom_force_tol : 0.0100000000 
geom_stress_tol : 0.0200000000 
geom_disp_tol : 0.0005000000 
geom_max_iter : 100 
geom_method : BFGS 
fixed _npw : false 
calculate_stress : true 
popn.calculate : true 
popn.bond-cutoff : 3.0000000000 
pdos_calculate_weights : false 
num_dump .cycles : 0

An input for one of the Wannier function calculations which was performed in 

CASTEP is given below:

task : Wannier Functions 
continuation default 
gridjscale 1.75 
calculate_stress false 
wannier_spread_type Resta 
wannier_min_algor sd 
wannier .print .cube 3 
wannier_sd_step 0.05 
waimier_max_sd_steps 100000 
wannierJon_moments .true, 
wannier Jon _r max 1.00

C.2 Molecular dynamics - DLPOLY
Molecular dynamics calculations were performed using DLPOLY and a sample CON
TROL file is given below.

temp 0.01 
pressure 0.001013 
steps 20000 
equilibrium 2000 
scale every 1 steps 
timestep 0.001 
print 10
ensemble nst berendsen 0.005 0.05 
cutoff 10 
delr 0.5
ewald precision 1.0000E-5
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job time 14400000 
close time 14000000 
traj 0 500 0 
finish

All the programs created during the course of this work and the inputs and 
outputs for computational chemistry codes are available from the author in a zipped 
tar file.
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