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Abstract

Immune reconstitution following conventional allogeneic 

transplantation is a major determinant of survival. A detailed 

investigation of T and B cell immune reconstitution and clinical 

outcome in 19 patients with myeloma undergoing reduced 

intensity stem cell transplantation using in vivo T cell-depletion 

with alemtuzumab was undertaken. The rate of recovery of 

lymphocyte numbers and function following transplant was studied 

using immunophenotyping with 3-colour flow cytometry and 

intracellular cytokine staining. In addition, T and B cell 

spectratyping were used to study the repertoire of immune 

recovery. The patients in this study experienced delayed T cell 

recovery and T cell receptor spectratype analysis showed a 

reduced repertoire diversity, which improved rapidly following the 

administration of DLI and subsequent conversion to full donor T 

cell chimerism. Post transplant recovery of B cells was also 

significantly delayed. Spectratype analysis of IgH CDR3 repertoire 

revealed a gradual normalisation in spectratype complexity by 6- 

12 months post transplant. There was a high incidence of viral 

infection, particularly CMV reactivation but the regimen related 

mortality was low, perhaps due to the very low incidence of severe 

acute graft-versus-host disease (GVHD). A total of 10 patients 

experienced GVHD. Of these patients, 8 eventually demonstrated 

a disease response alongside clinical evidence of GVHD, 

demonstrating that the graft-versus-myeloma effect is frequently 

obtained at the expense of GVHD. Over 80% of all patients have 

relapsed at a median of 9 months following transplant, suggesting 

that the initially low rate of GVHD has been achieved at the 

expense of the desired graft-versus-myeloma effect.
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Chapter 1. Introduction

1.1. Introduction

Myeloma results from clonal proliferation of idiotypic B lymphocytes, leading to 

accumulation of plasma cells in the bone marrow and accompanied by bone 

destruction and concomitant suppression of normal haematopoiesis. The 

malignant plasma cells may also infiltrate non-haematopoietic tissues, causing 

extramedullary disease. The hallmark of myeloma is the production of 

monoclonal immunoglobulins by the malignant plasma cells, although rarely, 

neither a paraprotein nor Bence-Jones protein (BJP) is produced (non-secretory 

myeloma). This is typically accompanied by a reduction of normal 

immunoglobulin production (immuneparesis). The diagnosis is confirmed by 

examination of the bone marrow, imaging of the skeleton by a skeletal survey or 

magnetic resonance imaging to identify lytic lesions, and identification of 

biochemical disturbances such as hypercalcaemia or critical organ involvement 

such as renal impairment. Myeloma comprises about 1% of all malignant 

disease and 10% of haematological malignancies (Kyle 1990). It has an 

incidence of 40 per million (about 2500 new cases) per annum in the United 

Kingdom. It is characteristically a disease of middle and later life with a median 

age of 65 years at diagnosis. Myeloma is relatively infrequent in younger age 

groups, with an incidence of 0.3% in those under 30 years and 2.2% in those 

under 40 years. There is a slight male predominance and a greater incidence in 

both Black males and females compared with the white population(Blade, et al 

1992).

2.1.1 Normal immunoglobulins

An important component of the humoral arm of adaptive immunity is the 

production of antibodies (immunoglobulins) by terminally differentiated B cells 

(plasma cells) in response to antigenic stimulation. These immunoglobulins 

consist of 2 heavy chains (p, 5, y, ex or £) and 2 light chains (k or X). Only one 

class of heavy chain and one type of light chain are present in any given 

immunoglobulin molecule, and the name is taken from the combination of the 

heavy and light chain designations, for example IgG k or \gAX. Immunoglobulins 

are detected by electrophoresis of serum, where they migrate in the y globulin 

component and consist of a heterogeneous group of molecules whose

9



structural features enable them to bind firmly to a spectrum of foreign antigens. 

This property is due to the presence of approximately 110 residues at the amino 

terminal ends of each light and heavy chain known as the variable region. Not 

every variable residue is equally involved in the process of antigen binding and 

three regions stand out as being ‘hypervariable’ (the so-called complementarity- 

determining regions). The structure and function of this region will be discussed 

in detail in Chapter 6. The remainder of the immunoglobulin molecule, which is 

not involved in antigen recognition is termed the constant region and is identical 

to other immunoglobulin molecules of the same class, subclass and allotype. 

The properties of the major immunoglobulin molecules are shown in Table 1.1.

Properties IgG igA igM igD igE

M olecu lar
w e igh t

150 000 170 000 900 000 180 000 196 000

Subclass IgG 1-4 IgA 1-2 None None None

Light chain 
isotype

K & A K & A K & A K & A K & A

Half-life 21 days 5.8 days 5.1 days 2.8 days 2.3 days

Daily 
synthetic  
rate (m g/kg)

33 24 6.7 0.4 0.02

C om plem ent
fixation

lgG1, lgG3 No Yes Yes Yes

Norm al adu lt 
levels (g/l)

6.5-15.0 0.6-4.0 0.5-3.2

Table 1.1. Properties of the five major immunoglobulin molecules.

The production of immunoglobulin classes does not reach adult levels until after 

the first decade. Because maternal IgG crosses the placenta, neonatal levels of 

IgG are within the normal adult range but fall rapidly to reach their nadir at about 

4-6 months according to the half-life of IgG, and the onset of endogenous 

synthesis. Light chains have a molecular weight of 22 000 daltons and contain
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210-220 amino acids. The variable region is responsible for antigen binding, as 

in the heavy chain, and also the unique thermal solubility of the light chain 

molecule. Two-thirds of serum light chains are k  and one-third X. Light chains 

are synthesised de novo in slight excess by plasma cells. They are catabolised 

by the kidney, and when produced monoclonally in great excess may leak out in 

the urine as so-called Bence Jones protein. This protein is best detected by 

electrophoresis of a concentrated specimen of urine, in which the monoclonal 

molecules from a band.

1.1.2 Monoclonal immunoglobulins

The finding of a monoclonal serum (paraprotein) or urine protein (BJP) is not 

diagnostic of myeloma, because such proteins may be found in a variety of 

conditions, including connective tissue diseases, autoimmune diseases, 

malignant diseases such as lymphomas, amyloidosis, cutaneous disorders such 

as pyoderma gangrenosum and psoriasis, infectious diseases such as infective 

endocarditis, HIV infection, tuberculosis, and as a consequence of treatment 

such as stem cell transplantation and chemotherapy. In the absence of 

abnormal findings to identify a specific cause, the presence of a paraprotein in 

the serum or urine is termed a monoclonal gammopathy of unknown 

significance (MGUS).

Once a serum or urine paraprotein is detected by cellulose acetate or agarose 

electrophoresis, it is further characterised by immunofixation, using specific 

antibodies to the Fc portions of the IgG, IgA, IgM, IgD and IgE immunoglobulin 

molecule or to k  or X light chains to identify the isotype of the paraprotein. 

Thereafter, the monoclonal proteins are quantified by a technique such as 

densitometry, in which the turbidity produced by the antibody-antigen interaction 

in liquid media produces a reduction in light transmission that is proportional to 

the original concentration of antigen (which in this case is the amount of 

immunoglobulin present). Once a serum or urine paraprotein has been 

identified and quantified, the same method is used for sequential quantification 

of the protein to determine response to therapy.

11



1.1.3 The bone marrow in myeloma

Bone marrow infiltration by malignant plasma cells is confirmed by taking an 

aspirate from the bone marrow, as well as a trephine biopsy. Typically, the 

posterior iliac crest is sampled and the diagnosis made based on cytological 

and histological features, including the percentage of plasma cells present. 

Normal plasma cells constitute about 1% of nucleated cells in adult marrow 

aspirates. The cells are typically evenly distributed throughout the red marrow 

with no significant differences between various skeletal sites. The standard 

criterion for diagnosis of myeloma is a plasma cell infiltrate of greater than 10% 

of nucleated cells. Myeloma does not have pathognomonic cytological or 

histological features, but some characteristics may be suggestive of a malignant 

process. These include variation in plasma cell size, nuclear size and shape, 

multinuclearity, the presence of Dutcher or Russell bodies, Mott cells and 

flaming cells. The histotopography of plasma cells is also useful in 

distinguishing between reactive and neoplastic plasma cells (Bartl et al 1988).

In the reactive setting, many typical plasma cells are located around small blood 

vessels, whereas in a malignant plasma cell infiltrate, although there is initial 

random interstitial infiltration among fat and haematopoietic cells, subsequently 

denser aggregates of myeloma cells accumulate along endosteal surfaces and 

around ectatic sinusoids and arteries, eventually forming nodules or sheets 

which replace the haematopoietic and fat tissues.

In addition, immunological characterisation of the plasma cells can demonstrate 

monoclonality by means of antibodies to heavy or light chains. Myeloma cells 

also have a characteristic pattern of antigen expression: CD38+, CD138+, 

CD56+ and cytoplasmic lg+. They have variable expression of CD40, and lack 

of CD19, CD20, CD45 and membrane Ig (Leo, et al 1992).No significant 

correlation has been found between the pattern of surface markers, the M-type 

and clinical stage in myeloma or MGUS.
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1.2 Myeloma -  the disease

1.2.1 Clinical presentation of myeloma

The establishment of the diagnosis of myeloma may rarely follow an incidental 

finding of a paraprotein or raised erythrocyte sedimentation rate (ESR) during 

the investigation of another disorder. It more commonly presents with a 

constellation of symptoms or signs. One of the commonest presenting features 

is bone pain (Kyle, et al 1975), which is usually of insidious onset, although it 

may be more abrupt following a strenuous activity such as lifting which results in 

a fracture of vertebral body or bodies, or a fall, causing the fracture of a long 

bone. Fractures usually occur at sites of lytic bone lesions that are frequent in 

myeloma patients due to the unequal balance between osteoclast and 

osteoblast activity, resulting in a relative increase in bone resorption. This 

process also results in diffuse osteopenia in a fifth of patients, including around 

5% of patients who do not have lytic bone disease. Weakness and fatigue are 

often prominent symptoms and may result from the frequent presence of 

anaemia, which is typically normochromic and normocytic (Kyle 1975). Bone 

marrow infiltration may result in reduced levels of other lineages, with 

concomitant clinical features such as bruising and bleeding due to 

thrombocytopenia. Leucopenia may contribute to a greater incidence of 

infections such as recurrent pneumonia (Barasch, et al 1986), recurrent 

maxillary sinusitis or urinary tract infections. The immunosuppressive features 

of myeloma are discussed in a later section. Less common presenting features 

include neurological symptoms such as loss of sensation or parasthesiae 

(peripheral neuropathy) or more dramatically the effects of spinal cord 

compression due to a fractured vertebra or plasmacytoma extending into the 

spinal canal (Spiess, et al 1988). Renal dysfunction is common in myeloma 

(about a third of patients have an elevated serum urea or creatinine), but 

presenting symptoms such as thirst, polyuria and oedema are relatively 

uncommon. Hypercalcaemia may be a presenting feature of myeloma is 20- 

30% of cases (Kyle 1975, Riccardi, et al 1991). The clinical manifestations of 

hypercalcaemia are extremely variable, ranging from no symptoms to a pre­

coma state accompanied by dehydration that may result from inadequate fluid 

intake or increased fluid excretion. The hyperviscosity syndrome is a group of 

symptoms and signs related to increased blood viscosity due to monoclonal
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immunoglobulins, particularly IgM, but also polymers of IgG and IgA. It may 

rarely be a presenting feature of myeloma, with symptoms such as headache, 

blurred vision, drowsiness, vertigo, tinnitus and ataxia. Its presence is confirmed 

by the finding of a raised plasma viscosity, and if severe, may warrant specific 

management in the form of plasma exchange.

The diagnostic criteria for of myeloma are shown in Table 1.2.

Major Criteria

• Plasmacytosis in tissue
• Bone marrow plasmacytosis >30%
• Monoclonal IgG >35 g/l or IgA > 20 g/l
• Bence Jones protein > 1 g/24h

Minor Criteria

• Bone marrow plasmacytosis 10-30%
• Monoclonal IgG >35 g/l or IgA > 20 g/l
• Osteolytic lesions
• Suppression of normal immunoglobulins

Diagnosis of myeloma can be made if one major and one minor criterion are present. 
Essential minor criteria are either bone marrow plasmacytosis or an ‘M’ component in 
the serum.

Table 1.2. Diagnostic criteria for myeloma according to Durie (1986)

2.2.2 Durie-Salmon staging and clinical course of myeloma

The clinical features of myeloma usually reflect the tumour burden of the 

disease. The Durie-Salmon staging system is widely used to stage the disease 

at presentation. Three stages are described that correspond to the tumour mass 

(Durie 1986).The details of the staging criteria are shown in Table 3. Stage I is 

thought to represent a low tumour mass (<0.6 x 1212 / m2) and Stage III a high 

tumour mass (>1.2 x 1212 / m2), with Stage II reflecting an intermediate tumour 

mass (0.6 -1.2 x 1212 / m2). In addition, the criteria for an asymptomatic stage 

termed smouldering myeloma are shown in Table 1.3.
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Smouldering Myeloma

All the following:

| • Normal FBC
• Serum calcium normal

j  • Paraprotein: IgG <35g/l
| lgA<20g/l

| • BJP <1g/day
| • BM < 20% plasma cells
I •  No evidence of bony or renal disease___________________________

! Stage I

All the following:

! •  Hb >1 Og/dl 
! • Serum calcium normal

• Paraprotein: lgG<50g/l
! lgA<30g/l

• BJP<4g/day
I •  X-ray: Normal or solitary lytic lesion only________________________

Stage II

• Fitting neither Stage I or III_____________________________________

| Stage III

One or more of the following:

! • Hb <8.5g/dl
i • Serum calcium >3mmol/l

• X-ray: Advanced lytic lesions
I • Paraprotein: lgG>70g/l

lgA>50g/l

I •  BJP>12g/day________________________________________________

Subclassification: A = creatinine <180mmol/l; B = creatinine>180mmol/l

Table 1.3. Durie-Salmon Staging System

Typically, the course of the disease is one of relentless progression in the 

absence of treatment. Prior to the introduction of chemotherapy, the median 

survival was 6-9 months (Osgood 1960). The use of chemotherapy has 

improved prognosis such that alkylating agents with or without steroids produce 

a response in half the patients treated and improves the survival in an 

unselected series to 26 months in Stage III patients (Durie and Salmon 1975). A
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number of markers of poor prognosis have been identified and are in regular 

clinical use. These include a raised p2-microglobulin, which is associated with a 

shorter survival, but does not predict response to chemotherapy (Bataille, et al 

1983), a raised C-reactive protein, which is a surrogate marker for IL-6, an 

important growth factor for myeloma cells is also predictive of shorter survival 

(Bataille and Klein 1992). Both markers correlate with tumour burden. More 

recently, cytogenetic analyses have led to the discovery that complete or partial 

deletion of chromosome 13 may be an important adverse prognostic indicator, 

whilst the significance of this finding is less certain when laboratory techniques 

such as interphase cytogenetics using fluorescence in situ hybridisation (FISH) 

are employed (Desikan, et al 2000).

Gene expression profiling (GEP) is increasingly being used to identify genes 

that might play a role in the initiation and progression of myeloma (Zhan, et al 

2003b). This methodology is still in a state of evolution, but preliminary results 

suggest that newly diagnosed myeloma might fall into 4 subgroups. Two of 

these resemble MGUS, whilst the other 2, which also tended to have poor-risk 

features at presentation such as raised p2-microglobulin resemble myeloma cell 

lines. Analysis of GEP signatures have also demonstrated that whilst it is 

possible to differentiate MGUS and myeloma from normal plasma cells, MGUS 

is not distinguishable from myeloma by virtue of the GEP signature (Zhan, et al 

2003a).

2.2.3 Infections in myeloma

Infection is a major cause of morbidity and mortality in myeloma patients. 

Patients with myeloma have 15 times more infections per year than the normal 

population (Twomey 1973). The rate of infection and risk factors for infection 

vary with the stage of the disease as well as other factors such as 

hospitalisation, chemotherapy and neutropenia (Table 1.4).
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At diagnosis Chemotherapy- 
related period

Off-treatment
observation

phase

Phase of disease 
progression

Humoral deficiency Neutropenia, 
humoral deficiency, 
transient cell- 
mediated deficiency

Humoral
deficiency

Humoral and cell- 
mediated complex 
immunodeficiencies

Encapsulated
bacteria
• Streptococcus 

pneumoniae
• Haemophilus 

influenzae
• Neisseria 

meningitidis

\

Bacterial infections
GRAM POSITIVE:
• Staphylococcus 

aureus
• Coagulase- 

negative 
Staphylococcus

• Streptococcus 
viridans

GRAM NEGATIVE:
• Enteric gram 

negatives
• Pseudomonas 

aeruginosa

Viral infections:
• Herpes simplex
• Herpes zoster

Fungal infections:
• Superficial 

infections with 
Candida spp.

• Systemic 
candidiasis

• Disseminated 
aspergillosis with 
prolonged 
neutropenia

Encapsulated
bacteria

Encapsulated
bacteria

Gram negative 
bacteria

Staphylococcus
aureus

Viral infections 

Fungal infections

Table 1.4. Infections in different stages of the disease

The serious infection rate is much higher at disease onset, during periods of 

active disease and in the terminal stages (Goranov 1994, Savage, et al 1982, 

Twomey 1973). The major underlying immune defect inherent to myeloma 

patients is a polyclonal hypogammaglobulinaemia (Jacobson and Zolla-Pazner 

1986). This immunoglobulin deficiency is present in more than 80% of patients 

at the onset of the disease and is often unaltered by therapy (Oken 1984). 

Patients with myeloma also show a decreased antibody response to bacterial 

and viral antigens, suggesting primary humoral immunosuppression (Stoll, et al
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1985). They are particularly susceptible to bacterial infection with encapsulated 

organisms such as Streptococcus pneumoniae and Haemophilus influenzae 

(Kyle 1975).

Non-bacterial causes of infection in myeloma patients are not uncommon (Kyle 

1975). Invasive fungal infections are rare outside the setting of HDT, since 

patients with myeloma rarely experience prolonged periods of severe 

neutropenia. Pneumocystis carinii pneumonia has been reported in myeloma 

patients without other predisposing causes (MacKenzie, et al 1991) and 

cutaneous Herpes zoster, which occurs in 4.5-11 cases per 1000 of the normal 

elderly population, has been reported to occur in 2% of myeloma patients (Kost 

and Straus 1996).

1.3. Treatment of myeloma

1.3.1 Conventional dose chemotherapy

The median survival of a newly diagnosed myeloma patient is about 30 to 36 

months from the start of treatment with standard conventional dose 

chemotherapy, but the course of the disease can be extremely variable. Some 

patients have rapidly progressive, resistant disease to which they may succumb 

within a few months despite treatment with a variety of induction chemotherapy 

regimens. Others present with asymptomatic disease that remains stable for 

several years. The choice of initial cytoreductive therapy depends in part on 

whether the patient is considered suitable for high dose therapy and stem cell 

transplantation (see Section 1.3.2).

The current strategy is to treat secondary organ damage and complications 

such as renal failure and severe infections, in parallel with cytoreductive therapy 

using chemotherapy and/or radiotherapy. The most effective agents in the 

treatment of myeloma are alkylating agents, corticosteroids, radiotherapy, and 

with more recent experience, thalidomide and other biological agents such as 

proteasome inhibitors. For many years, the standard treatment for myeloma has 

been melphalan at a dose of 5-7 mg/m2/day with prednisolone (40 mg/day) for 5 

days each month (MP). This strategy produces an overall response rate of 50%, 

most of which are partial responses; in fact the attainment of complete 

remission (CR), namely the disappearance of the monoclonal protein form urine
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or serum by immunofixation, and normalisation of bone marrow appearances is 

rare with this treatment regimen. The response duration is approximately 18 to 

24 months, before further treatment is needed. Another agent, 

cyclophosphamide given weekly at a dose of 400 mg/ m2 produces similar 

response rate and response duration. Attempts have been made at improving 

the response rate or duration by combining these agents with other 

chemotherapy drugs, such as VMCP/VBAP (vincristine, melphalan, 

cyclophosphamide, prednisolone/ vincristine, BCNU, Adriamycin, prednisolone). 

A meta-analysis of the results of 18 trials involving 3814 myeloma patients 

comparing MP with combination chemotherapy showed no significant difference 

between the two forms of treatment (Gregory, et al 1992). The VAD (vincristine, 

Adriamycin and dexamethasone) regimen was developed as a salvage 

treatment for relapsing or refractory myeloma patients (Barlogie, et al 1984). It 

differs from other treatments in that the vincristine and adriamycin are infused 

continuously via a central venous catheter over 4 days rather than given as 

bolus injections. The rationale for infusion in this way was to kill a greater 

proportion of the more slowly dividing myeloma cells by giving the drugs over a 

longer period. The VAD regimen was found to be more effective than any 

previous regimen in relapsed patients, with a response rate of 40% and a 

survival of over 1 year. Subsequent studies of VAD as first-line therapy showed 

that over 80% respond, with 10-20% achieving a CR. Unfortunately, the 

duration of these responses is not long, lasting 18 months on average, even in 

those achieving CR (Samson, et al 1989). The advantages of the VAD regimen 

include its utility in patients with renal failure, (since none of the component 

drugs are renally excreted), lack of myelosuppression and lack of stem cell 

toxicity, thus permitting subsequent autologous stem cell transplantation. There 

are a number of variations of VAD (termed VAD-type chemotherapy), including 

VAMP (methyl prednisolone instead of dexamethasone), with or without the 

addition of cyclophosphamide, and Z-Dex (the anthracycline idarubicin instead 

of Adriamycin). These regimens are broadly considered to be equivalent in 

terms of efficacy.

19



1.3.2 High dose chemotherapy and autologous stem cell transplantation

A report that high-dose melphalan (HDM) could induce a high response rate 

even in patients refractory to conventional doses of melphalan (McElwain and 

Powles 1983) led to the current standard of consolidating the response 

achieved by conventional dose chemotherapy with a high dose melphalan- 

conditioned autologous stem cell transplant. The global standard for this 

approach is melphalan 200 mg/m2 followed by infusion 2 days later of a 

minimum of 2 x 106 CD34+ cells/ kg (in the case of a peripheral blood stem cell 

harvest) or 2 x 108 mononuclear cells/kg (in the case of a bone marrow 

harvest). HDM/ autologous stem cell transplant produces a 24-75% CR rate and 

a 5 year event free survival of 28%, and overall survival of 3 years (Attal, et al 

1996, Palumbo, et al 1999). Transplant-related mortality (TRM) is around 3-4%, 

mainly due to severe infection with gram-negative bacteria resulting in multi­

organ failure. This procedure requires a 3 to 4 week admission to hospital, 

during which patients require barrier nursing and active treatment of infection 

with broad-spectrum antibiotics as well as blood product support. Early 

haematopoietic regeneration of white blood count, a sustained haematocrit and 

platelet count without transfusion support takes 2-3 weeks.

New treatments are changing the rate and spectrum of infections encountered 

in myeloma patients, including autologous and allogeneic peripheral blood and 

marrow stem cell transplantation following high dose chemo/radiotherapy 

(Barlogie, et al 1995). Neutropenia and/or mucositis associated with high dose 

therapy (HDT) predispose to serious Gram-positive and Gram-negative 

bacterial infections. The infection rate is highest during the transplantation stage 

of HDT (1.3 infections per month), but within 1 month of transplant, the 

incidence of infection returns to levels experienced by non-transplant treated 

groups (1 infection per 9 months) (Donnelly 1995). Urinary tract infections 

caused by Gram-negative bacteria have become more frequent than 

pneumococcal pneumonia in the last 30 years (Rayner, et al 1991), perhaps 

reflecting the greater use of more intensive chemotherapeutic regimens in 

recent years (Alexanian, et al 1994). Reactivation of varicella zoster virus is 

more frequent after autologous transplantation (Schuchter, et al 1989) 

compared to the incidence in the normal population, but reactivation of other
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infections (e.g. tuberculosis, Epstein-Barr virus and herpes simplex virus) do not 

seem to be more frequent.

1.4 Allogeneic stem cell transplantation

The rationale for using allogeneic transplantation is 3-fold. Firstly, the myeloma 

cell is highly sensitive to irradiation and many cytotoxic drugs, which form the 

basis for the conditioning therapy for a transplant procedure. Secondly, high 

dose therapy followed by stem cell rescue has been shown to have curative 

potential in other haematological malignancies such as acute leukaemia and 

chronic myeloid leukaemia. Thirdly, there is increasing evidence for a graft- 

versus-tumour effect in a number of haematological malignancies including 

myeloma (Tricot, et al 1996b, Verdonck, et al 1996). Importantly, as mentioned 

previously, conventional dose chemotherapy and even high dose therapy 

followed by autologous stem cell transplantation is not curative in the treatment 

of myeloma, so other strategies must be sought to improve outcome for young 

patients with this diagnosis.

Until 1998, when the efficacy of reduced intensity (non-myeloablative) 

conditioning regimens were first reported (Slavin, et al 1998), the conditioning 

regimens for allogeneic transplantation were designed to be myeloablative. The 

aim was to utilise the cytotoxicity of the conditioning regimen to kill the myeloma 

cells, and then rescue the patient from prolonged induced bone marrow failure 

by infusing HLA-matched stem cells (a tumour-free stem cell source) derived 

from a donor. This conventional allogeneic transplantation approach can induce 

a CR in 60% of patients and in the one-third that maintain evidence of molecular 

CR, the risk of relapse appears to be very low (Corradini, et al 2003). The 5- 

year survival is about 30% and important prognostic factors for survival are 

female rather than male recipient, early stage of disease at diagnosis 

irrespective of the time of transplantation, to have received only one line of 

treatment before transplantation and to have responsive disease. However,

TRM is between 40-50%, and therefore survival is poorer than with autologous 

transplantation.
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1.4.1 The major histocompatibility complex and HLA typing

In order for a patient to accept stem cells from a donor, there must be tissue 

compatibility (histocompatibility) between donor and recipient (Dickinson and 

Middleton 2005). The Human Leucocyte Antigen (HLA) system is the major 

histocompatibility complex (MHC) of humans. It consists of a cluster of genes 

located on the short arm of chromosome 6 that encode the cell surface 

production of proteins. These antigens are not specific to leucocytes, but are 

present on many tissues play an important role in immune regulation and of 

course tissue and organ transplantation. The HLA system consists of 3 classes 

of closely linked genes.

The class I genes encode the heavy (a) chains of the 6 class isoforms, HLA-A, - 

B, -C, -E, -F and -G molecules. The HLA-A, -B and -C  heavy chain genes are 

highly polymorphic, hence their importance as transplantation antigens. There is 

limited polymorphism exhibited by the other 3 genes. Class I antigens are 

expressed on all nucleated cells.

There are 5 isotypes of class II proteins, namely HLA-DM, -DO, -DP, -DQ and -  

DR. Each class II antigen consists of 2 membrane-inserted glycosylated 

polypeptides designated a (34 kd) and p  (28 kd) and bound together non- 

covalently; the polymorphism of the class II molecules can derive from both a 

and p  chains. HLA-DRB1 is the most polymorphic region and is an important 

transplantation antigen. There is a high degree of polymorphism at both a and p  

chains of HLA-DP and DQ, but little polymorphism at HLA-DM or HLA-DO.

Class II antigens are more restricted than class I in their tissue distribution, 

being found primarily on B lymphocytes, macrophages, monocytes, endothelial 

cells, activated T lymphocytes and Langerhans cells.

In order to determine histocompatibility between donor and recipient, HLA 

typing is performed. In view of the large degree of polymorphism exhibited at 

the HLA loci, it is important to perform DNA typing to uncover all allelic 

differences. Previously, low-resolution serological methods were used to identify 

tissue types. This meant that many mismatches remained ‘hidden’, and led to 

greater degrees of graft-versus-host disease (GVHD) than expected. The

22



inadequacy of serological methods can be demonstrated by the fact that 

although there are 225 described alleles at HLA-A, this is represented by only 

24 serological specificities.

In the patient group within this study, molecular typing for class I and class II 

was used (Shaw, et al 2001). Class I typing was performed by a method known 

as sequence-specific oligonucleotide probes (SSOP) In this method, DNA is 

amplified and then incubated with an oligonucleotide probe (Hao and Xiao 

2002). The probe is designed to detect a particular polymorphic motif. Only if 

the amplified DNA contains the sequence complementary to that of the 

oligonucleotide will it bind the probe. Class II typing was performed using a 

combination of SSOP and sequence-specific primers (SSP). The latter method 

uses sequence-specific primers for the PCR. To distinguish between a set of 

alleles requires a different set of PCRs, the number being at least half of that of 

the alleles to be typed. The HLA type is then inferred from the presence or 

absence of specific bands when the products are run on an agarose gel. If there 

are ambiguous results from SSOP or SSP in class II typing, then a higher 

resolution method, sequence-based typing (SBT) is used. This method employs 

PCR to amplify all the alleles of a locus. The alleles are then sequenced as a 

mixture and analysed using a computer programme that identifies the positions 

of heterozygosity. From the comparisons of the patterns obtained with those 

expected for all combinations of alleles, the programme determines the possible 

tissue types.

The presence of a mismatch at both class I and II is associated with increased 

complications and decreased overall survival following transplantation 

(Petersdorf, et al 1998a). The relative importance of mismatches at individual 

loci remains controversial. For example, matching at FILA-DRB1 and -DQB1 

reduces the risk of acute GVHD and improves survival following unrelated SCT 

(Petersdorf, et al 1998b).

1.4.2 Conditioning therapy

Conditioning regimens have 2 purposes: eradication of disease and eradication 

of the patient’s immune system to permit engraftment. In general, the degree of 

immune suppression is proportional to the intensity of the regimen and
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subsequently to the toxicity of the procedure, so it is important for the intensity 

of the conditioning therapy to be appropriate for the clinical setting in terms of 

the disease being treated and the degree of mismatch between donor and 

recipient. With regard to tumour eradication, the purpose of transplantation is to 

permit intensification of therapy and subsequent curative potential. There are a 

wide variety of conditioning regimens, each with its own set of advantages and 

disadvantages. No single approach has been found to produce a superior 

survival. The use of more intensive regimens may reduce the relapse rate, but 

those benefits may be offset by increasing the rate of lethal complications 

caused by the intensified treatment. Regimens that have been used to condition 

patients with myeloma include cyclophosphamide and total body irradiation 

(TBI), melphalan and TBI, and less commonly busulphan and 

cyclophosphamide and melphalan alone. GVHD prophylaxis measures have 

also varied, and include ciclosporin and / or methotrexate, and T cell depletion 

of the graft with or without other measures (Gahrton, et al 2001). In a recently 

published evidence-based review, no recommendations can currently be made 

about the use of the preferred myeloablative conditioning regimen for allogeneic 

transplantation in myeloma (Hahn, et al 2003).

1.4.3 Sources of stem cells

Stem cells may be procured from a patient or donor in one of 2 ways. Bone 

marrow (BM) itself can be directly harvested by puncture and aspiration of the 

posterior iliac crests under general anaesthesia. Alternatively, cytokines can be 

used to mobilise stem cells in to the peripheral circulation, which can then be 

obtained by leucapheresis. The lymphocyte and monocytes composition and 

function of cytokine-mobilised peripheral blood stem cell harvests (PBSCH) vary 

from that of directly aspirated BM. An 11-fold increase in CD19+ B cells, a 19.4- 

fold increase in CD56+ NK cells, a 16-fold increase in CD3+ cells, a 13-fold 

increase in CD4+ cells and 27.4-fold increase in CD8+ cells have been found 

on cytokine-mobilised PBSCH compared to BM harvests (Korbling, et al 1995). 

These differences in cell content could conceivably impact on immune 

reconstitution as well as the severity of GVHD and even probability of disease 

relapse. In the patient group reported here, BM-derived stem cells were 

obtained from unrelated donors and PBSC were harvested from sibling donors 

following a series of growth factor injections to the donor. The basis for this
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difference is based on the acceptability of administering growth factor injections 

to normal donors. Unit policy was to not administer growth factor injections to 

unrelated donors, whereas sibling donors were consented to receive growth 

factor injections. Whilst PBSC products may be cryopreserved in DMSO and 

infused at a later date, BM-derived products are freshly infused. A minimum of 2 

x 108 mononuclear cells/kg are necessary to ensure engraftment of BM-derived 

stem cells, whereas a PBSCH containing at least 2 x 106 CD34+ cells/kg are 

required.

1.4.4 Toxicity of allogeneic stem cell transplantation

As mentioned previously, the morbidity of allogeneic stem cell transplantation 

increases as the histocompatibility differences between donor and patient 

increases. This morbidity is largely due to alloreactivity, the recognition of self/ 

non-self by the donor and patient immune systems, which are co-mingled 

during transplantation. Alloreactivity increases in proportion to differences in 

histocompatibility and causes graft-versus-host disease (GVHD), in which donor 

alloreactivity dominates or graft rejection if the balance is reversed. However, 

the total absence of alloreactivity (as in syngeneic allo-transplantation) is a 

disadvantage, with a higher rate of relapse due to a lesser graft-versus-tumour 

effect. Thus the success of allogeneic transplantation depends partly on 

effective modulation of alloreactivity. The manifestations and treatment of 

GVHD, and its influence on immune reconstitution are addressed in detail in 

Chapter 7.

The toxicity of allogeneic transplantation also relates to damage to tissues and 

organ damage by the conditioning therapy. The complications that may occur 

within the first 100 days of myeloablative allogeneic stem cell transplantation 

are shown in Table 1.5.
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Complication Frequency of 
occurrence

Clinical manifestations Treatment/ Outcome

Mucositis Universal Painful oral mucosal with
ulceration
Dysphagia
Nausea & vomiting
Diarrhoea
Abdominal distension

Antiseptic mouth care 
Analgesia
Parenteral nutrition and 
fluid replacement 
Treatment of super- 
infection

Pneumonitis 
and carditis

2%
May be related to 
conditioning regimen

Dyspnoea
Cough
Hypoxia

Diuretics for fluid overload
Oxygen
Ventilation

Veno-occlusive 
; disease of the 
! liver

5-50% of patients 
depending on 
conditioning

Poorly understood 
phenomenon
Weight gain/ fluid retention 
Hepatomegaly 
Hepatic pain 
Hyperbilirubinaemia

Careful maintenance of 
fluid and electrolyte 
balance
A variety of empirical 
treatment including 
anticoagulants

I Haemorrhagic 
cystitis

5-50% following 
cyclophosphamide- 
containing 
conditioning

Haematuria of varying 
degree
Bladder spasms 
Urinary obstruction

Symptomatic treatment 
Hydration
Bladder installation of 
aluminium hydroxide, 
silver nitrate or formalin 
Stents
Treatment of viral super­
infection (BK, JC and 
adenovirus

Infections 
• Bacterial Universal Neutropenic fever 

Septicaemia
Broad spectrum antibiotics 
Supportive care for 
haemodynamic instability

• Viral Variable Dependent on viral 
aetiology.
EBV associated
lymphoproliferative
disorder
HSV/ VZV dermatological 
infection or viraemia

Rituximab, EBV-specific 
cytotoxic lymphocytes 
(CTLs)
Aciclovir in high dose

CMV reactivation 
occurs in 50% of 
cases of recipient 
and/ or donor 
seropositivity

CMV reactivation may 
result in persistent fever, 
pneumonitis, gut infection, 
hepatitis, ocular infection

Ganciclovir or foscarnet 
CMV-specific CTLs

• Fungal Variable, 
commonest 
organisms are 
Aspergillus spp., 
and Candida spp.

Persistent fever
Pneumonitis
Hepatitis

Antifungal therapy: 
fluconazole, itraconazole, 
amphotericin

GVHD See Chapter 7
Table 1.5. Early complications (within 100 days) of allogeneic stem cell 
transplantation
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It is the combination of these morbidities that result in the considerable TRM 

following allogeneic stem cell transplantation. In addition, patients have 

frequently received several lines of prior therapy, which leads to pre-transplant 

organ damage including cardiac and renal function, making them more 

susceptible to the rigors of the post-transplant period. For that reason, other 

strategies have been pursued in order to take advantage of the benefits of 

myeloablative allogeneic transplantation whilst reducing the toxicities. They 

include the use of non-myeloablative conditioning therapy, which causes less 

direct critical organ damage and a more gradual transition to donor 

haematopoietic chimerism.

1.4.5 Reduced intensity conditioned allogeneic stem cell transplantation

Several studies have been performed to assess the efficacy of reduced intensity 

conditioned allogeneic stem cell transplantation (RIT) in myeloma. These 

studies have included patients with refractory disease (Giralt, et al 2002), 

heavily pre-treated patients who received RIT as salvage therapy (Crawley, et 

al 2005), patients with progressive disease who had received prior therapy 

including an autograft (Ando, et al 2005, Badros, et al 2002) and patients who 

have received RIT following an autograft (Kroger, et al 2002). The clinical 

heterogeneity of the patient groups, as well as variations in conditioning 

therapy, including the use of fludarabine, melphalan and ATG in one (Ando, et 

al 2005, Kroger, et al 2002) and melphalan and low dose TBI in another 

(Badros, et al 2002) make the relative efficacy of these various studies difficult 

to compare. Overall, RIT is feasible in myeloma patients, with successful donor 

engraftment and acceptable toxicity. However the effect on long-term disease 

control is still being evaluated.

GVHD and disease recurrence particularly in-patients with refractory or

relapsed disease remain significant obstacles that need to be overcome. Kroger

et al found that day 100 TRM was 11%, and at a median follow-up post

allografting of 13 months, the estimated 24 month OS was 74% and disease-

free survival 56%. In the study by Badros et al, 58% developed acute GVHD

and 61% a CR or near CR. Median OS was 15 months and better in patients

who received the allograft as planned consolidation of a single autograft. The

findings of Giralt et al were a non-relapse mortality of 19% at 100 days and 40%
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at 1 year. Survival at 2 years was estimated to be 30% with progression-free 

survival of 19%.

We have recently reported on the use of RIT, with fludarabine, melphalan and 

CAMPATH-1H (alemtuzumab) as front line therapy for myeloma patients with 

chemosensitive disease (Peggs, et al 2003a). Alemtuzumab is the humanised 

form of the CAMPATH-1 monoclonal antibody (Riechmann, et al 1988), directed 

against the CD52 antigen, which is expressed on more than 95% of 

lymphocytes (T cells more than B cells), monocytes and macrophages, but not 

granulocytes, platelets or erythrocytes (Ginaldi, et al 1998). CAMPATH-1 is 

thought to induce cell death via complement-mediated lysis and antibody- 

dependent cellular cytoxicity (ADCC) (Xia, et al 1993) and has been used with 

useful therapeutic effect in autoimmune disorders (Isaacs, et al 1992), bone 

marrow transplantation (Hale and Waldmann 1994) and lymphoproliferative 

disorders (Bowen, et al 1997, Hale, et al 1988). Alemtuzumab at a dose of 60 

mg over 10 days is known to produce prolonged (> 18 months) depletion of 

CD4+ cells, and a lesser degree of depletion of CD8+ cells, but quicker recovery 

of NK cells and B cells (within 2 to 3 months) following its use in patients with 

rheumatoid arthritis (Isaacs, et al 1992). Another study using alemtuzumab 

intravenously, also in patients with rheumatoid arthritis showed similar results, 

with dramatic effects seen particularly on CD4+ cells, which remained depleted 

(<20% pre-treatment levels) for more than 500 days of follow up (Brett, et al

1996). A further study of patients with low grade lymphoma (Tang, et al 1996) 

was closed prematurely because of marked lymphopenia and an unacceptably 

high frequency of serious viral infections when treated intravenously with 25 mg 

alemtuzumab three times a week.

In our study, although the non-relapse mortality (15%) and acute GVHD rate 

were relatively low compared with conventional myeloablative allogeneic 

transplantation series, disease responses at 6 months post-transplantation were 

modest. Fourteen patients received escalating-dose DLI for 

residual/progressive disease. Three developed acute GVHD and 2 developed 

limited chronic GVHD. Seven demonstrated further disease responses, which 

appeared to be more common in those developing GVHD. Response durations
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were disappointing (5 <12 months) and progression often occurred despite 

persisting full donor chimerism. Two-year estimated overall survival and current 

progression-free survival rates (intention to treat with DLI from 6 months) were 

71% and 30%, respectively. Viral infections were common in this patient group, 

including 10 cases of CMV reactivation, 8 of RSV and 2 systemic adenovirus 

infections. Two others developed shingles shortly after stopping aciclovir 

prophylaxis.

More recently, investigators reported on autologous HCT combined with 

subsequent non-myeloablative allogeneic HCT to maintain the benefits of both 

approaches with acceptable toxicity (Maloney, et al 2003). Fifty-four patients 

with previously treated myeloma, of which half had refractory or relapsed 

disease received melphalan 200 mg/m2 and autologous SCT. Subsequently, 52 

patients received a single fraction dose of 2 Gy TBI and SCT from HLA-identical 

siblings and post-transplant immunosuppression with mycophenolate mofetil 

(MMF) and ciclosporin. Patients experienced medians of 0 days of 

hospitalization, neutropenia, and thrombocytopenia. Sustained engraftment was 

uniform. With a median follow-up of 552 days after allografting, overall survival 

is 78%. Thirty-eight percent of patients developed acute GVHD (grade II in all 

but 4 cases) and 46% chronic GVHD requiring therapy. Tumor responses 

occurred slowly. Thus far, 57% of patients have achieved complete remissions 

and 26% partial remissions for an overall response of 83%. The impact of this 

approach on long term outcome is awaited.

1.5 Assessing disease response to therapy

There are published criteria for assessing response to therapy in myeloma 

patients (Blade, et al 1998). These criteria are defined in Appendix 1, and were 

used throughout this study.
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Chapter 2: Patient characteristics, treatment protocols and clinical 

outcome

2.1 Patient characteristics and chemotherapy treatment

Nineteen patients with myeloma were enrolled in this prospective study of 

immune reconstitution following RIT including 5 women and 14 men. This group 

of patients, with a median age of 47 years (range 34-59 years) is younger than 

the majority of patients with myeloma who have an age of 65 years at diagnosis. 

This reflects the specialist nature of the Centre to which they have been referred, 

namely a tertiary haematology unit which specialises in stem cell transplantation. 

Patient and donor details are summarised in Table 2.1. The disease isotypes 

were as follows: 10 had IgGK, 1 had lgG7, 4 had IgAK, 2 had k  light chain 

myeloma, 1 had X light chain myeloma and 1 had non-secretory disease. All 

patients received VAD-type therapy for initial cytoreduction. The number of 

cycles of chemotherapy ranged from 4 to 7, with a median number of 5 cycles. In 

8 patients, the RIT procedure was upfront, following on from the initial VAD-type 

therapy. The other 11 patients received further lines of therapy prior to their 

allogeneic transplants, consisting of a non-cross reactive regimen, etoposide, 

methylprednisolone, high dose cytarabine and cisplatin (ESHAP) in 5, 

dexamethasone, cisplatin and etoposide (DCE) in 1, and higher dose of 

cyclophosphamide in 3 patients (4g/m2 in 2 patients and 7 g/m2 in 1 patient). Five 

patients had undergone an autograft prior to the allograft. In 2 cases, the 

conditioning therapy was melphalan 200 mg/m2, in 1 case it was melphalan 220 

mg/m2, and in the other 2 it was melphalan 140 mg/m2 and TBI. The most heavily 

pre-treated patient (Patient 16) required a further course of ESHAP after his 

autograft in order to prepare him for allograft. His disease was primary refractory. 

In summary, 42% of this patient group had a single line of prior therapy, 26% had 

2 prior lines of therapy, 16% had 3 prior lines and 16% had 3 or more lines of 

therapy. At the time of allogeneic transplantation, 1 patient was in a complete 

remission, 15 patients had a partial response, 2 had a minor response and 1 had 

progressive disease.
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Patient Age/Sex Isotype Lines of prior therapy 
(including autograft)

Disease 
status at Tx‘

Donor Stem cell 
source

Stem cell dose 
(x10* CD34+ cells/kg)

CMV status 
RID

No. of DLI 
(day given)

1 43/F BJPk 1 PR SIB PB 21.1 Neg/Neg 3 (341, 446, 496)

2 46/F NS 1 PR SIB PB 6.8 Neg/Neg 2 (197, 289)

3 47/M IgGk 2 PR MUD BM 2.3 Neg/Pos 4 (211, 448, 552, 708)

4 40/F igGk 1 PR MUD BM na Pos/Pos 0
5 34/M IgGk 2 MR MUD BM na Pos/Neg 5 (192, 290, 392, 489, 581)

6 44/M igGk 2 PR SIB PB 4.9 Pos/Pos 5 (183, 315, 434, 530, 623

7 55/M IgGk 2 PR SIB PB 3.8 Pos/Neg 5 (185, 283, 364, 458, 555)

8 38/F IgGk 4 (Auto) MR MUD BM na Neg/Pos 1 (140)
9 47/M IgAk 1 PR MUD BM na Neg/Neg 1 (448)
10 58/F igG! 1 PR SIB PB 5.5 Pos/Pos 3 (264, 385, 468)

11 50/M IgAk 2 PR SIB PB 3.6 Pos/Pos 3 (217, 301, 392)

12 53/M IgGk 2 PR MUD BM na Neg/Neg 3 (211, 469, 806)

13 54/M IgAk 3 (Auto) PR SIB PB 1.9 Neg/Neg 2 (196, 285)

14 52/M IgGk 1 PR SIB PB 6.9 Pos/Pos 3 (182, 277, 369)

15 35/M IgAk 3 (Auto) PR SIB PB na Pos/Neg 3 (238, 318, 405)

16 43/M BJP 5 (Auto) PD MUD BM na Pos/Pos 1 (155)

17 47/M IgGk 1 PR MUD BM na Neg/Neg 1 (173)

18 47/M BJPI 1 CR SIB PB 3.6 Neg/Pos 1 (343)

19 59/M igGk 3 (Auto) PR SIB PB 2.7 Neg/Neg 1 (293)

Abbreviations:
PR, partial response; MR, minor response; PD, progressive disease; CR, complete response; NR, No response; BJP, Bence Jones Protein; NS, non-secretory; k, kappa light 
chain; I, lambda light chain; SIB, sibling; MUD matched unrelated donor; PB, peripheral blood; BM, bone marrow; CMV, cytomegalovirus; R, recipient; D, Donor; Neg, CMV 
seronegative; Pos, CMV seropositive; DLI, donor leucocyte infusion/s; na, not available

Table 2.1. Patient and donor details
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2.2 Conditioning regimen, GVHD prophylaxis and anti-infective 

prophylaxis

The conditioning regimen used in this study was designed to be sufficiently 

immunosuppressive to ensure engraftment and at the same time to be non- 

myeloablative, hence reducing the toxicity of the preparative regimen. 

Suppression of the recipient’s immune system was achieved by the use of 

fludarabine, a purine analogue that causes profound and prolonged 

lymphopenia, as well as alemtuzumab (section 1.3.8). The inclusion of 

alemtuzumab was also designed to produce in vivo depletion of the donor T 

cells within the infused stem cell graft with the intention of minimising GVHD 

(section 7.3.1).

The conditioning regimen in this study utilised a total alemtuzumab dose of 

100mg, administered in a schedule of 20mg/day on days -8 to -4 and

2 2 fludarabine 30mg/m /day on days -7 to -3 as well as melphalan 140mg/m on

day -2. The effective in vivo T-cell depletion achieved by this dose of

alemtuzumab, has been confirmed by the demonstration of persisting

lympholytic concentrations of alemtuzumab for approximately 56 days post

transplant when administered as part of this conditioning regimen in 10 patients

with haematological malignancies (Morris, et al 2003).

G-CSF- mobilized peripheral blood stem cells were procured from HLA-identical 

sibling donors in 11 cases, while HLA matched unrelated donors underwent bone 

marrow harvesting under general anaesthetic in 8 cases. On day 0, patients 

received G-CSF-moblised unmanipulated PBSC grafts from their HLA-matched 

siblings or unmanipulated bone marrow grafts from their unrelated donors. GVHD 

prophylaxis consisted of intravenous ciclosporin A, 3mg/kg starting on day -1, 

with a target level of 300 ng/ml. Intravenous Ciclosporin was converted to an oral 

dose when appropriate, and weaned by 3 months post-transplant in the absence 

of GVHD. Antiviral prophylaxis consisted of intravenous aciclovir (250 

mg/m2/day) until engraftment, converting to oral aciclovir (200 mg twice daily) 

prior to discharge. Oral co-trimoxazole (960 mg twice daily) was administered
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daily from day -8  to day -1 as prophylaxis against Pneumocystis carinii infection. 

Nebulised pentamidine was given prior to discharge and then monthly until 

cytopenias no longer precluded the use of prophylactic co-trimoxazole (960 mg 

twice daily on three days per week). Patients at high risk of fungal infection 

received intravenous itraconazole until discharge. Weekly surveillance for 

cytomegalovirus (CMV) was performed by PCR for CMV DNA on whole blood or 

plasma and those testing positive on 2 consecutive weeks were treated with 

intravenous ganciclovir or foscarnet according to institutional protocol.

2.3 Donor leucocyte infusions

In the absence of active GVHD, donor leucocyte infusions (DLI) were 

commenced at 6 months post transplant in patients with residual disease or 

mixed chimerism. CD3+ T cells were administered at a starting dose of 1 x 106 

CD3+ cells/kg at 6 months. Escalating doses were administered at 3 monthly 

intervals (3 x 106, 1 x 107, 3 x 107, and 1 x 108CD3+ cells/kg) in the continued 

absence of GVHD. No patient received glucocorticoids prior to DLI 

administration. A total of 18 patients have received DLI. Sixteen patients 

received a median of 2 DLI (range 1-5) according to protocol. One patient 

received a higher dose (1 x 107 CD3+ cells/kg) at 4.5 months because of 

disease progression, and a second patient received a higher starting dose (3 x 

106 CD3+ cells/kg) at 6 months for progressive disease at this point. One patient 

did not receive DLI due to donor withdrawal.

2.4 Clinical outcome

The patients in this study were followed up for a median of 469 days (range 278 

to 741 days). Details of clinical outcome, including time to neutrophil engraftment, 

infections including viral reactivation, GVHD, disease status and mortality are 

shown in Table 2.2 and clinical grading systems for acute and chronic GVHD in 

Tables 2.3 & 2.4.

Table 2.2. Clinical Outcome

(shown overleaf)
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Patient ANC>0.5
(days)

CMV
reactivation

Other
infections

Acute 
GVHD 

(Site) / (Treatment)

GVHD 
post DLI 
(Site) / 

(Treatment)

Status pre- 
DLI / Best 

response after DLI

No of days to disease 
progression

Outcome, 
Survival in days, 

(Current disease status 
or Cause of death)

1 12 N N N PD/ NC 278 Dead, 522 (PD)
2 23 N PFIII N N PD/ NC 162 Dead, 558 (PD)
3 12 N HHV7

myelitis
N Grade II (s, g), LC(o,s)

(Top steroids)
MR/ PR I - Alive, 708 (PR)

4 10 Y PFIII Grade II (s)
(Top steroids)

N PR/ na 895 Alive, 941 (PD)

5 10 Y N N MR/ PR 538 Dead, 937 (PD)
6 16 Y N N PD/ PR 167 Alive, 1146 (PD)
7 14 Y VZV N N PD/ NC 182 Alive, 1142 (PD)
8 11 N PFIII, HSV N Grade III (s, g, I)

(Top steroids & 
thalidomide)

PD/ NC 126 Dead, 427 (PD)

9 14 N Influenza A, 
VZV

Grade II (s)
(Top steroids)

N PR/ NC 448 Alive, 1097 (PD)

10 11 Y PFIII, HSV, 
TB

N N NC/ NC - Alive, 1055 (SD)

11 13 Y HSV N LC (o, s)
(Top steroids)

PR/CR 637 Alive, 1055 (PD)

12 12 N N LC (o, s)
(Top steroids) 
Grade IV(s, I)

(dacluzimab, infliximab)

NC/PR Alive, 978 (PR)

13 11 N N N PR/PD 702 Dead, 791 (PD)
14 11 Y N N MR/MR 420 Dead, 855 (PD)
15 12 N N N PR/NC 745 Alive, 963 (PD)
16 16 Y RSV N Grade IV (s, g, I)

(iv steroids 
& ATG)

PD/NC 153 Dead, 327 (GVHD)

17 13 N Systemic
adenovirus

Grade I (s)
(Top steroids)

Grade IV (s, I)
(iv steroids 

& ATG)

PD/PR 174 Dead, 303 (GVHD)

18 14 Y RSV Grade I (s)
(Top steroids)

Grade III (I)
(iv steroids)

PD/ PR 259 Dead, 475 (PD)

19 18 N Grade II (s)
(Top steroids)

N PR/PR 287 Alive, 887 (PD)

Abbreviations:
AN O O .5 , absolute neutrophil count >0 5 x 109/L; PFIII, parainfluenza III virus; HHV7, human herpes virus 7; VZV, varicella zoster virus; HSV, herpes simplex virus; TB, tuberculosis; GVHD, graft- 
versus-host disease; s, skin; g, gut; I, liver; o. oral; LC, limited chronic; po, per oral; iv, intravenous; ATG, anti-thymocyte globulin; PD, progressive disease, CR, complete remission; PR, partial 
remission; MR, minimal response; NC, no change, SD, stable disease; na, not applicable 
Table 2.2 Clinical Outcome
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Individual organ system grading:

Skin Gastro-lntestinal Tract Liver Grade

Rash Diarrhoea Bilirubin (pmol/l)

<25% 0.5I 12-20 1

25-50% 1.01 29-50 2

>50% 1.51 >50 3

Desquamation
i

Pain/Ileus Raised AST/ALT 4

Overall grading:

Skin Gastro-lntestinal Tract Liver Grade

1-2 - - I

1-3 1 1 II

2-3 2-3 2-3 III

2-4 2-4 2-4 IV

Table 2.3. Grading of acute graft versus host disease (based on Glucksberg 

criteria, 1974).

Subclinical GVHD_________________________________________________________
______ Histologically positive, but no clinical symptoms_______________________________
Limited chronic G VHD 

Either or both:
Localised skin involvement

 Hepatic dysfunction (due to chronic GVHD)___________________________________
Extensive chronic GVHD___________________________________________________

Either:
Generalised skin involvement 
Or:
Localised skin involvement or hepatic dysfunction due to chronic GVHD or both 
Plus:
Liver histology showing chronic aggressive hepatitis, bridging necrosis or cirrhosis 
O r
Involvement of the eyes (Schirmer’s test <5mm wetting)
Or:
Involvement of minor salivary glands or oral mucosa demonstrated on labial biopsy 
O r
Involvement of other target organ (lung or kidney)

Table 2.4. Classification of chronic GVHD (according to Shulman et al, 1980)
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All patients experienced neutropenic fevers and received broad spectrum 

intravenous antibiotics as per unit protocol. Clinical course throughout the 

neutropenic period was unremarkable in this patient group, and no different in 

character from the unit’s clinical experience with autologous stem cell 

transplantation. All patients engrafted successfully, with a median time to 

neutrophil count > 0.5 x 109/l of 12 days (range 10-23 days). Median hospital stay 

was 23 days (range 17-55 days).

2.4.1 Viral Infections

Infection due to cytomegalovirus (CMV) remains a significant cause of morbidity 

and mortality after allogeneic SCT. After myeloablative allogeneic 

transplantation, 60-70% of patients who are CMV seropositive will experience 

reactivation and without ganciclovir prophylaxis or pre-emptive therapy, 20-30% 

of these will develop end-organ disease (Hakki, et al 2003). In the study 

reported here, CMV reactivation occurred in 9 out of 12 patients (75%), in whom 

either recipient or donor was seropositive prior to transplant, which is 

comparable to the unit’s experience with myeloablative allogeneic 

transplantation. In all cases, reactivation occurred before 100 days post 

transplant. Detection of CMV reactivation was based on weekly molecular 

surveillance of CMV nucleic acid in patient whole blood samples. Patients with 

CMV reactivation (2 consecutive qualitative PCR assays being positive or CMV 

genome copies exceeding 500/ml) received pre-emptive outpatient treatment 

with intravenous ganciclovir 5mg/kg, which was continued until the genome 

copy number by PCR was undetectable. Patients who did not tolerate 

ganciclovir (due to neutropenia or renal impairment) or who failed to respond to 

it received intravenous foscarnet (180 mg/day) instead, until detectable virus 

was eradicated.

Factors that are thought to influence the recovery of CMV-specific CD4+ and 

CD8+ function following transplant include the source of stem cells (BM vs. 

PBSC), age, GVHD, steroid use, conditioning regimens, ganciclovir use, HLA 

matching, circulating CMV antigenaemia, absolute CD4+ and CD8+ cell counts 

and donor CMV serology. In the group of patients reported here, 8 out of the 9 

patients who reactivated CMV were seropositive, whereas only 1 was 

seronegative, but had a seropositive donor (Table 2.5).
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Patient Recipient
CMV
status

Donor
CMV
status

Stem cell 
source

CD8+ 
count at 
3 months

CD4+ 
count at 

3 months

Acute
GVHD

4 + + BM Low Low Grade II

5 + - BM Low Low No

6 + + PB Normal Low No

7 + - PB Low Low No

10 + + PB Low Low No

i 11 + + PB Normal Low No

| 14 + + PB Low Low No

16
I

+ + BM Low Low No

| 18 - + PB Low Low Grade II

Low CD8+ or CD4+ count refers to a value below the normal range. 
Abbreviations:
CMV: cytomegalovirus; BM: bone marrow; PB: Peripheral Blood

Table 2.5. CMV status, stem cell source, CD4+ and CD8+ cell counts and 

incidence of GVHD in patients who reactivated CMV within the first 100 days post 

transplant.

In this study, the source of stem cells did not show a significant association with 

incidence of CMV reactivation. Other studies have shown improved qualitative 

and quantitative T cell restoration after PBSCT compared to BMT, due to the 

higher lymphocyte content of PBSC (Ottinger, et al 1996), although this finding 

was not demonstrated to influence the risk of infectious complications. In the 

present study (refer to section 4.3.2 for full discussion), every patient 

demonstrated persistently low absolute numbers of CD4+ cells (including those 

who did not reactivate CMV), and all but 2 patients who reactivated CMV had 

low absolute numbers of CD8+ cells for up to a year after transplant. This 

prolonged lymphopenia is likely to be due to the alemtuzumab used in the 

conditioning therapy, With regard to acute GVHD, only 2 out of the patients who 

reactivated CMV experienced GVHD (grade II), both of whom responded to 

topical steroids. No patient received systemic steroid therapy within the first 100 

days of transplantation. There was no incidence of CMV end-organ disease in 

this study, and no deaths due to CMV.
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Other documented viral infections included parainfluenza III (PFIII) virus 

infection in 4 patients, herpes simplex virus (HSV) infection in 3, varicella zoster 

virus (VZV) infection in the form of shingles in 2, respiratory syncitial virus 

(RSV) infection in 2 patients and adenovirus, influenza A and human herpes 

virus 7 (HHV7) infection in one patient each. These viral infections occurred in 5 

of the 9 patients who reactivated CMV, and 5 patients who did not. All episodes 

of infection occurred within the first 100 days of transplant. None of these 

infections resulted in significant morbidity, and there were no deaths as a result.

2.4.2 Other infections

One patient (Patient 10) developed tuberculosis (TB) affecting a lymph gland at 

10 months post transplant; she received and has responded to standard anti-TB 

therapy.

2.4.3 Chimerism status and GVHD

Trilineage full donor chimerism was achieved in 15 patients after a median of 9 

months post transplant (range 3-18 months). Of these, 13 patients converted 

after a median of 1 DLI (range 1-4) and 2 converted before receiving DLI. Four 

patients (3 post DLI, 1 pre-DLI) remain mixed chimeras at a median of 12 

months (range 8-18 months) post transplant. The patient who did not receive 

DLI showed trilineage chimerism at 3, 6 and 9 months post transplant. At 12,

16 and 19 months, she had mixed chimerism in the T lineage, before 

spontaneously reverting back to full donor chimerism at 22 months post 

transplant. Throughout this period, she had stable disease, but then showed 

disease progression at 29 months post transplant.

Five patients developed grade l-ll acute skin GVHD post transplant, all of whom 

responded to topical steroid therapy. No patient developed grade lll/IV GVHD 

post transplant. Five out of 18 patients who received DLI developed grade ll-IV 

acute GVHD following DLI, including 2 who had experienced grade I acute 

GVHD post transplant. With regard to stem cell source, 5 out of 8 unrelated 

donor/ bone marrow stem cell recipients experienced some form of GVHD 

following transplant or DLI compared to 2 out of 11 sibling donor/ peripheral 

blood stem cell recipients. Those who experienced up to grade II GVHD of the 

skin following transplant or DLI responded to topical steroid application. Two
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patients with grade III GVHD of the gut and liver following DLI responded to 

thalidomide and intravenous steroids respectively, whilst 2 patients who 

developed grade IV GVHD of the liver following DLI died of their GVHD despite 

treatment with high dose intravenous steroids and ATG. The third patient who 

developed grade IV GVHD of the skin and liver responded to a combination of 

high dose intravenous steroids, infliximab, dacluzimab and reinstitution of 

ciclosporin therapy, and remains in a PR.

The incidence and treatment of GVHD following transplant and DLI in this 

patient group, and its influence on immune reconstitution are addressed in 

detail in Chapter 7.

2.4.4 Disease response

Six patients achieved a PR following transplant. Five of these received DLI, 

resulting in a CR in one case, a further PR in another, no change in 2 patients 

and disease progression despite DLI in 1 patient. One patient did not receive 

DLI due to donor withdrawal, but achieved a PR following transplant and 

maintained this level of response without further intervention until day 895, when 

she showed evidence of disease progression.

Following transplant, 2 patients showed no change (NC) in their disease status, 

one of whom subsequently achieved a PR following DLI administration. Three 

patients had a MR to the transplant, of which 2 achieved a PR and 1 showed NC 

after DLI. Of the 8 patients who showed evidence of PD following the transplant, 

but before DLI, 3 showed NC in disease status after DLI and 2 progressed 

further in spite of DLI, whereas 3 patients achieved a PR following DLI 

administration.

Ten patients experienced GVHD in this study. Out of these 10 patients, 8 

eventually demonstrated a disease response alongside clinical evidence of 

GVHD. This included those with GVHD following transplant (n=5): 3 (patients 4, 

9, 19) had a PR following transplant, whereas 2 (patients 17, 18) initially had 

PD. These 2 patients with PD subsequently went on to show a response to DLI 

(being converted to a PR), accompanied by worsening of their GVHD
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(developing grade III & IV GVHD following DLI). Patient 17 subsequently died of 

GVHD, whereas patient 18 subsequently died from PD. Out of the other 3 

patients, 1 showed a further PR following DLI, another showed no change in 

disease status and the third did not receive DLI due to donor withdrawal. Three 

responding patients developed GVHD for the first time following DLI (patients 3, 

11, 12). In all 3 three cases, the disease response was improved by DLI as well 

as being associated with GVHD. These findings demonstrate that the GVM 

effect is frequently obtained at the expense of GVHD, which can be dangerous 

and life-threatening. The latter may also occur without evidence of the former 

such as the 2 patients (patients 8 & 16) who showed progressive disease 

following transplant in the absence of any GVHD, but went on to develop grade 

III or IV GVHD following DLI, without a demonstrable disease response. One 

subsequently died of GVHD and the other of progressive disease.

On the other hand, 2 patients in this study showed evidence of the GVM effect in 

the absence of clinical demonstrable GVHD (patients 5 & 6). These 2 patients 

showed little or no clinical response to the conditioning procedure/transplant, 

but went on to demonstrate a PR following DLI in the absence of GVHD. In 3 

other patients (patients 13, 14 & 15) , there was evidence of a disease response 

to transplantation in the absence of GVHD, but this response may in part be due 

to the cytoreductive effects of the conditioning therapy rather than a GVM effect 

post transplant.

Overall, 16 patients (84%) have shown evidence of disease progression 

following transplant and/ or DLI after a median of 283 (range 153-895) days. Of 

these, 7 have died from their progressive disease and 7 remain alive on 

thalidomide-containing salvage therapy. Two patients have achieved a PR, and 

1 has stable disease following the transplant/ DLI protocol and continue to show 

freedom from progression at 708, 978 and 1097 days respectively.

2.5 Discussion

The rationale behind the use of reduced intensity conditioning regimens for 

allogeneic transplantation in myeloma is to combine reduction of toxicity with 

the exploitation of an allogeneic graft-versus-myeloma response. In order to
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determine if such strategies have a place in improving the clinical outcome of 

myeloma, a clear understanding of the kinetics and quality of immune recovery 

following such procedures is needed. This novel treatment modality was 

explored in this group of patients because of their relatively young age and 

because many of them had required more than 2 lines of prior therapy to induce 

a degree of remission or had relapsed following previous autograft. The non­

relapse mortality of this regimen was low, confirming its potential applicability in 

patients up to the age of 59 years, an age which is well beyond the limit of 

myeloablative stem cell transplantation.

In keeping with the delayed CD4+ and CD8+ T cell recovery, this patient group 

experienced a high incidence of viral infections, especially CMV reactivation, 

which occurred in 75% of seropositive patients and this was a main source of 

morbidity. However, there was no incidence of CMV end-organ disease or CMV- 

related deaths. In the context of non-myeloablative conditioning, the degree of 

immune impairment and the number of infectious complications post transplant 

is likely to reflect the immunosuppression used, and the incidence and severity 

of GVHD. Thus, while studies on a fludarabine-based low intensity regimen 

reported lower infection-related mortality and CMV disease compared with 

myeloablative conditioning (Giralt, et al 2002) others have found no difference 

between non-myeloablative and myeloablative protocols in the incidence of 

CMV antigenemia requiring treatment or invasive fungal infections (Oh, et al 

2004). The low infection-related morbidity and mortality in our series probably 

reflects the low incidence of post transplant GVHD in this group, as well as the 

reduced toxicity of the conditioning regimen.

Although this report describes clinical and immunological outcome in a patient 

group with a single disease entity, there are heterogeneities within the patient 

group that deserve mention. Eight patients received bone marrow-derived stem 

cells from an unrelated donor (of whom 5 experienced some form of GVHD), 

whereas 11 patients received peripheral blood stem cells from HLA-identical 

siblings (of whom 2 experienced GVHD). The higher incidence of GVHD in 

unrelated donor transplants compared to sibling donor transplants probably 

reflects the greater degree of HLA disparity rather than the stem cell source.
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Although T cell subset recovery was delayed in patients who experienced GVHD 

compared to those that did not, there was no significant difference in clinical 

outcome in terms of infection rate, disease response or survival after transplant 

attributable to stem cell source.

Reduced T cell function post transplant however has critical implications for the 

generation of an effective GVM effect, and may compromise disease control. 

Conversely, less immunosuppressive regimens may achieve more disease 

responses, but at the expense of increased rates of GVHD. The effective in vivo 

T-cell depletion achieved by this alemtuzumab-containing conditioning regimen, 

confirmed by the demonstration of persisting lympholytic concentrations of 

alemtuzumab (Morris, et al 2003) resulted in a low incidence of GVHD, but a 

high rate of disease progression.

In conclusion, this study indicates that this alemtuzumab-containing 

nonmyeloablative preparative regimen results in a low incidence of GVHD, a 

high incidence of viral infections and poor disease control. However, the 

infection-related mortality is low, perhaps due to the reduced toxicity of the 

conditioning regimen, and the low incidence of GVHD. If RIT is to have a place 

in the overall management of patients with MM, conditioning regimens need to 

be developed, that are less immunosuppressive thus allowing the earlier 

recovery of T cell immunity. A detailed analysis of immune reconstitution 

(discussed in Chapters 4, 5 and 6) has been undertaken in this study with the 

intention of providing information about the kinetics of immune recovery and its 

influence on the clinical outcome, including disease response, the incidence of 

infective complications and GVHD.

The influence of immune reconstitution on the generation of a graft-versus- 

myeloma effect will be discussed in more detail in Chapter 7.
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Chapter 3. General Methods and Materials

In this chapter, the general methods and materials employed in the study are 

described. More specialised techniques are described in detail in the chapter 

pertaining to the subject under discussion.

3 .1 1solation of peripheral blood mononuclear cells

Blood samples were obtained from patients prior to transplant, and at 3-month 

intervals thereafter and anticoagulated with ethylenediaminetetraacetic acid 

(EDTA). All the laboratory methods outlined below were carried out using 

peripheral blood mononuclear cells (PBMC) isolated by density gradient 

centrifugation through Ficoll-Paque (Pharmacia, St Albans, UK).

3.2 B, T and NK cell quantification by flow cytometry

PBMC were isolated by density centrifugation and washed and resuspended in 

Hanks/ 2% fetal calf serum (FCS) at a cellular concentration of 5 x 106/ml. 

Monoclonal antibodies (mAbs) specific for CD19, CD3 and CD56 antigens 

conjugated to fluorescein isothiocyanate (FITC) and phycoerythrin (PE) or 

peridinin chlorophyll protein (PerCP) were used to identify B cells, T cells and 

NK cells respectively. T cell subsets were further characterised using three- 

colour flow cytometry to evaluate the expression of CD4 and CD8, and CD45RA 

(naive cells) and CD45RO (memory cells). 50 pi aliquots of PBMC suspension 

were incubated with 5 pi of each antibody for 20 minutes at room temperature 

(or on ice if the incubation time was longer). In the case of identifying CD45RA+ 

and CD45RO+ cells, the volume of PBMC and antibody aliquots were doubled 

to take account of the anticipated lower numbers of these subsets. Following 

incubation with the mAbs, 2 mis of cold phosphate buffered saline (PBS) /0.5% 

bovine serum albumin (BSA)/ 0.02% azide were added; the tubes were then 

spun at 1500 rpms for 5 mins, decanted, blotted and resuspended. Fixation was 

achieved by the addition of 250-300pl 2% buffered paraformaldehyde (PF) 

(PBS/2%PF).

All mAbs were obtained from Becton Dickinson (Oxfordshire, UK). The stained 

and fixed samples were analysed on a Coulter EPICS Elite Flow Cytometer 

(Beckman Coulter, Buckinghamshire, UK) following acquisition of 50000 events 

per sample. The absolute numbers of each phenotypically defined cell type per
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microlitre was determined by multiplying the numbers of lymphocytes per 

microlitre by the percentage of nucleated cells that fell within the appropriate 

gate.

For each sample, the tubes were set as shown in Table 3.1:

*PMT2 *PMT3 *PMT4

FITC PE PERCP

TUBE 1 CD3 G1 G1

TUBE 2 G1 CD4 G1

TUBE 3 CD3 CD4 CD8

jTUBE 4
!

CD3 HLADR CD4

TUBE 5 CD19 CD4 CD8

TUBE 6 CD3 CD56 CD8

TUBE 7 CD3 CD14 CD4

TUBE 8 G1 G1 CD4

TUBE 9 G1 G1 CD8

TUBE 10 CD45RA CD45RO CD4

TUBE 11 CD45RA CD45RO CD8

Table 3.1 Lymphocyte subsets phenotype panel 
*PMT= Photo-multiplier tube

3.3 Chimerism analysis

This was undertaken pre-transplant, then at 3-monthly intervals following 

transplant, to determine the pattern of recipient, mixed and donor chimerism 

following transplantation.

3.3.1 Proteinase K digestion: isolation of genomic DNA

Prior to transplant, donor and pre-transplant recipient PBMC were isolated for the 

analysis. Following transplant, recipient PBMC and buffy coat were used. T cell,

B cell fractions were isolated from PBMC by incubation on ice with anti-CD3 and 

anti-CD-19 conjugated beads (Dynal) for 30 minutes at a bead-to-cell ratio of 4:1, 

followed by positive selection using a magnet. The myeloid fraction was obtained 

from buffy coat. Genomic DNA was isolated from the various cell fractions using 

Proteinase K digestion:

The lysis buffer (total volume 1ml) consisted of:

20 mM DTT (400 pi)
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1.7 |jM SDS (200 pi)

50 Mg/ml Proteinase K (200 pi)

VNTR buffer (200 pi).

The VNTR buffer was composed of:

45mM Tris HCI (450 pi)

11mM NH4SO4(110 pi)

6.7 mM 2-mercaptoethanol (134 pi)

4.5 pM EDTA (45 pi)

110 pg/ml BSA (110 pi)

H20  to make volume up to 1ml.

10 pi of PBMC or the isolated cell fractions were added directly to the PCR tubes 

(inclusive of Dyna Beads) at a concentration of 105 cells/tube, together with 10 pi 

of lysis buffer. This mixture was covered with 50 pi of mineral oil to prevent drying 

and incubated at 55°C for 1 hour followed by 5 minutes at 95°c to inactivate the 

proteinase K enzyme.

3.3.2 Microsatellite PCR method

A PCR reaction was then used to amplify microsatellite regions of genomic DNA 

using the following primer sets that flank highly polymorphic short tandem 

repeats on different chromosomes: VWA31 (Perkin Elmer), TH01 (Perkin Elmer), 

F13A1 (Perkin Elmer) and ACPP (forward: ACTGTGCCTAGCCTATACTT; 

backward: AGTGAGCCAAGAGTGCACTA), HUMSTRX1 (forward: 

CTCCTTGTGGCCTTCCAAATGG; backward:

CTTCTCCAGCCCCAAGGAAGTCA) as previously described (Mackinnon, et al 

1992). Primers that gave rise to recipient/ donor-specific peaks were identified 

and used for post-transplantation determination of chimeric status in the different 

cell populations.

Two PCR master mixes were used depending on the primer sets.

The PCR master mix for primers VWA31, TH01, and F13A1 comprised the 

following reagents:

5 pi Geneamp PCR II Buffer (Perkin Elmer)
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3 pi MgCI2, 4 pi, dNTP 

1 pi of each primer

0.2 pi Amplitaq DNA polymerase (Perkin Elmer)

25.8 pi H20  

10 pi DNA.

Cycling conditions were as follows:

Stage 1: 94°C for 3 minutes 1 cycle

Stage 2: 94°C for 45 seconds

54°C for 45 seconds 30 cycles

72°C for 1 minute

Stage 3: 72°C for 1 minute 1 cycle

For the ACPP and HUMSTRX1 primers the reagents used were as follows:

4 pi VNTR Buffer 

10 pi MgCI2

8 pi dNTP 

1 pi of each primer

0.2 pi Amplitaq DNA polymerase (Perkin Elmer)

15.8 pi H20  

10 pi DNA.

Cycling conditions were as follows:

Stage 1: 95°C for 5 minutes 1 cycle

Stage 2: 95°C for 30 seconds

58°C for 30 seconds 30 cycles

72°C for 45 seconds

Stage 3: 72°C for 10 min 1 cycle
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The forward primer of each pair were labelled with either JOE or FAM fluorescent 

dyes. Once the primers and Taq polymerase were thawed they were kept at 4°C. 

The PCR reaction volume was 50 pi. To each microfuge tube, 40 pi of master 

mix were added, followed by 10 pi of each DNA sample. Two drops of mineral oil 

were added and the tubes were centrifuged for 15 seconds at 13000 rpm. 1pl of 

PCR product was denatured in 12 pi of formamide and electrophoresed through 

Performance Optimised Polymer 4 (Perkin Elmer) on an ABI 110 automated 

sequencer (Perkin Elmer) in the presence of Rox 500 size standard (Perkin 

Elmer). Genescan software 2.1 (Perkin Elmer) was used to analyse the data.

Extensive measures were taken to minimize contamination. All samples were 

handled with disposable gloves, which were changed after any spillage and at 

frequent intervals. Preparation of blood samples, DNA extraction, and PCR 

preparation were performed in a laminar flow hood. All reagents and PCR 

reactions were prepared using pipette tips incorporating filters to prevent aerosol 

contamination. The thermal cycler and reaction tubes containing PCR product 

were kept in a separate room from where samples were handled, and separate 

pipettes and racks were used in the PCR-designated room. A negative control 

with no DNA was run with every assay.
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Chapter 4: Recovery of NK cell numbers and T cell subsets and function

4 .1 1ntroduction

Reconstitution of NK and T cell functions is essential to the success of stem cell 

transplantation. Natural killer (NK) cells and T cells play an important role in 

normal innate and adaptive immunity. NK cells are large granular lymphocytes 

that kill tumour cells and virus-infected cells in a non-specific manner; that is, 

they do not require previous sensitisation or the presence of antibody to be 

cytotoxic. Their granules contain pore-forming proteins that can mediate cell 

lysis. NK cells express a number of surface markers, including CD56 and CD16. 

The CD56 antigen is present on approximately 10-25% of peripheral blood 

lymphocytes. It is present on all resting and activated NK cells and 

approximately 5% of CD3+ peripheral blood lymphocytes (Lanier, et al 1986). 

CD3+CD56+ T lymphocytes comprise a unique subset of cytotoxic T 

lymphocytes that mediates non-MHC-restricted cytotoxicity (Lanier, et al 1986). 

So-called natural killer T cells (NKT cells) have been identified in both murine 

and human tissues and may have an important role in immune surveillance and 

regulation (Mendiratta, et al 1997, Yoshimoto, et al 1995). Two subsets have 

been identified to date: one subset expresses CD4 or is CD4 and CD8 double­

negative and also co-expresses the NK marker NK1.1. This population is 

usually found in the liver and thymus and produces large amounts of IL-4 when 

stimulated (Baker, et al 2001). The other subset co-expresses CD8 and NK1.1 

and has a more diverse and variable TCR repertoire (Baker, et al 2001). Little is 

known about the CD8+ population, but the CD4+/ CD4-CD8- population has 

been found to suppress GVHD and is therefore of potential interest in allogeneic 

transplantation (Zeng, et al 1999). More recently, the detailed characterisation 

of NK cell receptors (killer cell immunoglobulin-like receptor (KIR), natural 

cytotoxicity receptors (NCR) and C-type lectins) has contributed to the 

understanding of the graft-versus-disease effect, such that it may become 

possible to manipulate receptor/ligand interactions to prevent disease relapse 

post transplant (Farag, et al 2002).
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4.1.1 T cell development

T cell development in the thymus begins with the lodgement of circulating bone 

marrow-derived stem cells in cortex of the thymus. From the cortex the 

developing thymocytes migrate to the medulla, and finally arrive in the 

peripheral lymphoid system via the lymphatics or veins (Figure 4.1).
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Figure 4.1. The role o f the thym us in T cell development

The thymic environment provides stimuli that are required for the proliferation

and development of thymocytes. Many of these stimuli come from non-lymphoid

cells also found in the thymus, including thymic epithelial cells, bone marrow-

derived macrophages and dendritic cells (DC’s). Major histocompatability

complex (MHC) molecules and cytokines are important for T cell maturation.
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Different classes of MHC molecules are expressed by non-lymphoid thymic 

cells: cortical macrophages, epithelial cells and DC’s express high levels of 

class II; medullary epithelial cells and DC’s express both class I and II; and 

medullary macrophages express high levels of class I molecules. Cytokines, 

such as IL-4, IL-6 are produced by thymic stromal cells and act to stimulate the 

proliferation of immature T cells.

T cell maturation proceeds through sequential stages that mirror T cell receptor 

(TCR) gene rearrangement (Figure 4.2):

Figure 4.2. The stages of gene rearrangement in a: p T cells, (overleaf)
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Figure 4.2 Figure legend. The stages of gene rearrangement in a: (3 T cells. The

sequence of gene rearrangement is shown, together with an indication of the stage at which 

events take place and the nature of the cell surface receptor molecules expressed at each 

stage:

The T cell receptor (TCR) p- chain genes rearrange first in CD4-8- double-negative thymocytes. 

Diversity (D) to joining (J) rearrangements precede variable (V) to DJ rearrangements. The 

productively rearranged gene is expresses initially within the cell and then at low levels on the 

cell surface in a complex with CD3 chains (Panels 2 and 3).

The expression of the TCR p : CD3 complex signals via the tyrosine kinase Lck to the 

developing thymocyte to express CD4 and CD8 and to rearrange the a chain genes as well as 

to halt p chain rearrangement (Panel 4 and 5).

which may defined by the expression of the TCR and CD4 and CD8 co­

receptors or accessory molecules (Blue, et al 1988). Once in the thymus, bone 

marrow-derived committed progenitors do not express TCR, CD3, CD4 or CD8, 

and are termed double-negative (DN) thymocytes. The majority (>90%) of DN 

thymocytes will give rise to ap TCR- rather than yS TCR -expressing, MHC- 

restricted CD4+ and CD8+ cells. At the next stage of maturation, thymocytes 

express both CD4 and CD8 (double-positive, DP, thymocytes). The expression 

of CD4 and CD8 is essential for subsequent selection events and is regulated 

by TCR binding to antigen. The selection of developing T cells is stimulated by 

recognition of antigen-MHC complexes in the thymus and serves to preserve 

cells that recognise foreign peptides presented by self-MHC and to eliminate 

potentially harmful cells (those that recognise ubiquitous self-antigens with high 

avidity and the potential for autoimmunity). Positive selection is the process 

whereby low avidity binding of TCR to self-peptide-MHC complexes stimulates 

thymocyte survival, while lack of binding by TCR leads to cell death. This 

ensures that mature T cells are self-MHC restricted. Positive selection also 

determines class I or class II MHC restriction of T cell subsets, such that CD8+ 

cells are specific for class I and CD4+ cells for class ll-associated peptides 

(Cosgrove, et al 1992). Negative selection is the process by which thymocytes 

whose TCR’s bind with high avidity to self-MHC molecules are killed. The end 

result of these selection processes is that the repertoire of mature cells is self- 

MHC restricted and tolerant to many self-antigens. Cells that successfully 

undergo these selection processes go on to mature into CD4+ or CD8+ (single­

positive) T cells. CD4+ cells acquire the ability to produce cytokines in response
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to subsequent antigen stimulation and to express effector molecules such as 

CD40 ligand that ‘help’ B cells to produce antibody. CD8+ cells on the other 

hand become capable of producing perforins and granzymes that lyse other 

cells.

The rate of T cell development in the thymus is greatest before puberty, after 

which the thymus begins to shrink and the production of new T cells in adults is 

lower. The role of the thymus in T cell reconstitution in adults after stem cell 

transplantation is controversial (Mackall, et al 1995), but Douek et al have 

recently provided evidence for a more substantial contribution to T cell immune 

reconstitution in this setting than was previously thought, using an assay which 

allows accurate measurement of thymic output using TCR excision circles 

(Douek, et al 2000).

4.1.2 Circulating CD3+, CD4+ and CD8+ T cells

The CD3 antigen is present on 61-85% of normal peripheral blood lymphocytes 

and 60-85% of normal thymocytes (Reichert, et al 1991). It consists of a 

complex of proteins, which is stably associated with the TCR on the surface of T 

cells. Ligation of the TCR/CD3 complex by antigen leads to signalling via the 

cytoplasmic tail of CD3 that results in the activation of tyrosine phosphorylation- 

dependent signalling pathways. Support for the role of the CD3 complex in 

signal transduction is strengthened by the observation that mAb to CD3 can 

activate T cells in the absence of antigen-MHC recognition by the TCR 

(Kaneoka, et al 1983). The CD3 complex is also required for the cell surface 

expression of the TCR. CD4 and CD8 molecules also play an essential role in T 

cell activation (see section 4.1.3).

The CD4 antigen is normally found on the surface of 28-58% of peripheral blood 

lymphocytes (Reichert, et al 1991) and 80-95% of normal thymocytes and is 

also present in low density on the cell surface of monocytes and macrophages 

(CD3-CD4+) (Evans, et al 1981). CD4 T cells recognise antigens presented by 

MHC class II molecules. CD4 T cells are mainly cytokine-secreting helper cells, 

and can be divided in to two major types, based on patterns of cytokine 

secretion (see section 4.1.5).
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CD8 is normally expressed on 19-48% of peripheral blood lymphocytes 

(Reichert, et al 1991) and 60-85% of normal thymocytes (Evans, et al 1981). 

The CD8 antigen is also expressed on a subset of natural killer (NK) cells 

(Lanier, et al 1986). CD8 cells recognise antigen presented by MHC class I 

molecules, which are expressed on all nucleated cells. Cytotoxic cells bind to 

the antigen-MHC complex and then kill the infected cell by inserting perforins 

into the cell membrane and injecting granzymes or by binding to the Fas 

molecules to induce apoptosis. In addition to killing infected cells directly, CD8 

cells also produce a number of cytokines, including tumour necrosis factor 

(TNF)-a and INF, and appear to have distinct subsets akin to Th1 and Th2 

subtype of CD4 cells, termed Tc1 and Tc2 cells (Maggi, et al 1994, Salgame, et 

al 1991) but their respective roles remain unclear.

4.1.3 Role of accessory molecules in T cell activation

T cells express several integral membrane proteins other than members of the 

TCR complex, which play a crucial role in antigen recognition and T cell 

activation. These molecules are called accessory molecules and were first 

characterised by the use of mAbs raised against T cells. Unlike the TCR, each 

accessory molecule is identical on all T cells in all individuals and so have no 

capacity to specifically recognise antigens. The majority of these molecules are 

members of the immunoglobulin, integrin and selectin families of proteins. 

Ligand binding to these accessory molecules results in signal transduction that 

is thought to act in concert with signals generated by the TCR-CD3 complex 

due to antigen binding. Another important property of accessory molecules is 

their binding to endothelial cells (EC) and extracellular matrix (ECM) proteins 

and consequent homing of T cells to tissues and the retention of T cells in 

tissues. Table 4.1 shows the properties of the principal accessory molecules of 

T cells.
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Name of 
Molecule

Biochemical
Features

Cellular
Expression

Ligand T cell 
Signalling

CD4 55-kD monomer Class ll-restricted T 
cells

Class II MHC +

CD8 78-kD alpha chain 
32-kD beta chain

Class l-restricted T 
cells

Class I MHC +

CD28 Homodimer of 44- 
kD chains

>90% CD4+ T cells 
50% CD8+ T cells

B7-1 (CD80) and 
B7-2 (CD86)

+

; CTLA-4 
j (CD152)

Homodimer of 33 kD 
chains
May be monomer 
>90% is intracellular

Activated T cells B7-1 (CD80) and 
B7-2 (CD86)

+

CD2 50 kD monomer >90% T cells 
NK cells

Leucocyte
function-
associated
antigen
(LFA)-3 (CD58)

+

CD44 80-200 kD monomer Lymphocytes
Granulocytes

Matrix proteins +

L-
selectin
(CD62L)

150-kD monomer Leucocytes Carbohydrate 
ligands 
on endothelial 
venules

CD40 Homodimer of 44- 
kD chains

B cells
Macrophages 
Endothelial cells 
Dendritic cells

CD40 ligand 
(CD154)

Table 4.1. Principal accessory molecules of T cells.

1. CD4 and CD8. Apart from their important role in selectively binding class II

or class I MHC molecules, CD4 and CD8 participate in the early signalling

events that occur in T cell recognition of peptide-MHC complexes on antigen

presenting cells (APC’s) (Gallagher, et al 1989). These signal-transducing

functions are mediated by a T cell-specific Src family tyrosine kinase called

Lck that is closely associated with the cytoplasmic tails of both CD4 and

CD8 (Kiefer, et al 2002). When a T cell recognises peptide-MHC complexes

by its antigen receptor, simultaneous interaction of CD4 or CD8 with the

MHC molecule brings the co-receptor and its associated Lck close to the
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TCR complex. Lck then phosphorylates tyrosine residues in an important 

conserved sequence motif of the CD3 cytoplasmic domain known as the 

immunoreceptor tyrosine-based activation motif (ITAM), thus initiating the T 

cell activation cascade.

2. CD28 and CTLA-4. CD28 is a membrane protein that transduces signals 

that function together with signals delivered by the TCR complex to activate 

naive T cells. Naive T cells need 2 distinct extracellular signals in order to 

initiate their proliferation and differentiation into effector cells, (Janeway and 

Bottomly 1994) the first of which is provided by binding peptide-MHC to the 

TCR. The second signal for T cell activation is provided by so called 

costimulatory molecules, the best defined being B7-1 (CD80) and B7-2 

(CD86) for T cells (June, et al 1994). These B7 costimulators are expressed 

on APC’s, and are specifically recognised by receptors on T cells, CD28 and 

CTLA-4 (CD152). CD28 is constitutively expressed on>90% of CD4+ T cells 

and 50% of CD8+ T cells. Binding of B7 molecules to CD28 delivers signals 

to the T cells that induce the expression of anti-apoptotic proteins, stimulate 

production of growth factors and other cytokines and promote T cell 

proliferation and differentiation (Linsley and Ledbetter 1993). The second 

receptor, CTLA-4 is structurally homologous to CD28, but expressed on 

recently activated CD4+ and CD8+ cells. Its function is to inhibit T cell 

activation by counteracting signals delivered by CD28, and terminating T cell 

responses (Walunas, et al 1996).

3. CD2. This glycoprotein is present on >90% of mature T cells, 50-70% of 

thymocytes and on NK cells. The principle ligand for CD2 is a molecule 

called leucocyte function-associated antigen-3 (LFA-3), which is expressed 

on a wide variety of haematopoietic and non-haematopoietic cells. CD2 

functions as an intercellular adhesion molecule and a signal transducer.

4. CD40 and CD40 ligand. Initially recognised for its role in B cell activation,

the CD40: CD40 ligand system has been acknowledged as a key pathway

for T cell activation as well (Durie, et al 1994) CD40 is expressed on B cells,

macrophages and DC’s as well as other cell types such as EC’s (Reul, et al

1997). The ligand for CD40 (CD40 ligand or CD154) is expressed on

activated CD4+ cells. Stimulation of CD40 provides important signals for

antibody production and isotype switching by B cells and induces B7

expression on APC’s. Thus the CD40: CD40 ligand system may have an
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important role in T cell co-stimulation. Activation of APC’s through CD40 

also induces the expression of adhesion molecules and inflammatory 

cytokines that participate in T cell activation (Guo, et al 1996).

4.1.4 T cell activation

T cell activation refers to the immune activation of mature T cells in peripheral 

blood, lymphatic system or tissues. During this process, which is initiated by 

MHC-restricted binding of foreign antigen, T cells undergo a sequence of 

genetic and phenotypic changes, which results ultimately in clonal expansion 

and the induction of effector functions (Collins 2000). The antigen specificity of 

the response is dictated by the TCR, and accessory molecules play a crucial 

role in amplifying signals that contribute to T cell activation as stated above. 

Activated T cells then differentiate into effector cells, including the Th1 and Th2 

subsets of CD4+ cells and CD8+ cytotoxic lymphocytes (CTL’s). The 

differentiation of T cells is associated with transcriptional activation of genes 

encoding (1) effector molecules, such as cytokines and CTL granule proteins, 

which are released from the effector cells, and (2) surface molecules such as 

CD40 ligand and Fas ligand that have their own effector functions.

4.1.5 Th1 and Th2 classification of immune responses

The identification of 2 polarised T cell subsets, which produce certain 

combinations of cytokines (Mosmann and Sad 1996) has provided a useful 

framework for understanding immunological processes such as GVHD. This 

polarisation was first described in mouse helper cells, but has since been 

verified in humans and other species.

Type 1 helper (Th1) cells secrete interferon-y (IFN-y). Type 2 helper (Th2) cells 

secrete IL-4, 5, 6 and 10. IL-2 is ubiquitously produced by both Th1 and Th2 

cells at some time during their development, and is not considered an 

exclusively Th1 cytokine. Rather, IFN-y is regarded as the quintessential typel 

cytokine. Another essential type 1 cytokine is IL-12, which is produced by 

antigen presenting cells (APC’s) such as monocytes and dendritic cells, and is a 

powerful inducer of IFN-y production by T cells (Trinchieri 1998). IFN-y also 

promotes the production of IL-12, whilst suppressing IL-4 production, so down 

regulating type 2 cytokines in favour of type 1. IL-10 is the most important Th2
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cytokine. It is produced by T cells and monocytes and is strongly anti­

inflammatory with potent anti-IFN-y and IL-12 effects (Hsieh, et al 1992).

It is now clear that individual T cells may express various combinations of 

cytokines and that the Th1/Th2 paradigm may be a simplification of the reality. 

To date no other phenotypic markers provide definitive classification. Th1 and 

Th2 subsets do show differences in expression of various cytokine receptors, 

but such differences may reflect the activation status of the cells and may not 

be stable. Th1 and Th2 subsets develop from the same precursor, namely 

naive CD4+ T cells (termed Thp) (Rocken, et al 1992). As the maturing T cell 

develops, the genes for several effector cytokines such as IL-4, IFN-y and IL-10 

start to be expressed (Abehsira-Amar, et al 1992). The final response depends 

on external factors including cytokines, chemokines and adhesion molecules 

from other T cells and APC’s. In most cases these stimuli lead to a skewing of 

the response in a Th1 or Th2 direction. This is not always the case; the balance 

of stimuli may result in a clonal T cell population producing both type 1 and type 

2 cytokines (the ThO stage) (Firestein, et al 1989). The ThO stage was initially 

thought to be a transitory stage between Th1 and Th2, but it is now recognised 

that mature antigen-specific differentiated type 0 cells do exist, e.g. cells that 

simultaneously produce IL-10 and IFN-y (Gerosa, et al 1996).

The principal function of Th1 cells is to stimulate phagocyte-mediated defence 

against intracellular microbes. IFN-y produced by Th1 cells enhances the 

microbicidal activities of phagocytes, and the production of opsonising and 

complement-fixing IgG antibodies, which promote phagocytosis of microbes. IL- 

2 secreted by Th1 cells acts as their autocrine growth factor and together with 

IFN-y, stimulates the proliferation and differentiation of CD8+ CTL’s, which kill 

virus and bacteria-infected cells. The principal effector function of Th2 cells is 

IgE and mast cell-mediated immune reactions. These reactions are induced by 

IL-4, IL-5 and IL-13. Th2 cells are responsible for defence against helminthic 

and arthropod infections and for allergic reactions. The antibodies stimulated by 

Th2 cells do not promote phagocytosis or activate complement efficiently. In 

addition, several of the cytokines produced by Th2 cells antagonise the actions 

of IFN-y and inhibit macrophage activation. Th2 cells may therefore function as

59



suppressor cells to control immune responses, particularly inflammatory Th1 

responses.

Of particular relevance to the immunology of allogeneic transplantation is the 

role of the Th1/Th2 paradigm in GVHD (Krenger and Ferrara 1996). There is 

evidence to suggest that acute GVHD (acute GVHD) is the result of Th1 

polarisation, with a critical role for IL-2, whereas chronic GVHD (chronic GVHD) 

may be due to Th2 polarised cells. There are also some studies that suggest 

Th2 cells can inhibit acute GVHD, but evidence for this is conflicting. This 

subject will be discussed in further detail in Chapter 7.

Also of importance in the context of this study is the nature of the immune 

response that prevails in the presence of the myeloma disease state. The 

reasons for the failure of the immune system to eradicate myeloma cells, 

especially in the setting of minimal residual disease remains unclear. Myeloma 

cells may suppress immune responses via mediators such as Fas ligand, 

sMUC-1 and TGF(3 (Cook and Campbell 1999). Myeloma cells can stop the 

initiation of the IL-2 autocrine growth pathway; mitogen or alloantigen induced 

proliferation, and down regulate activated T cell responses to IL-2. Many of 

these responses are regulated by TGF(3. It is possible that myeloma cells turn 

off immune responses that could otherwise eradicate the tumour (Cook, et al 

1999).

4.1.6 Cytokine production by T cells

Fine control of immune reactions by T cells is achieved by the delivery of 

cytokines in appropriate quantities and combinations to the correct target cells. 

T cells are the principal producers of most cytokines as well as the autocrine, 

paracrine or endocrine cellular targets of their actions.

Interleukin-12

Interleukin-12 (IL-12) secreted by activated mononuclear phagocytes and DC’s 

is a pleiotropic cytokine that plays a pivotal role in the induction of a Th1 

response, and hence cell mediated immunity (Paul and Seder 1994). Its other 

immunoregulatory functions include a synergistic action with interleukin-2 (IL-2) 

in augmenting allogeneic CTL responses, LAK activity and interferon-y (IFN-y)
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production by peripheral blood lymphocytes. It may also stimulate IFN-y 

production from NK and T cells directly, increase the lytic activity of NK cells 

and expand activated NK and T cells (Tahara and Lotze 1995).

Tumour necrosis factor-g

Tumour necrosis factor (TNF-a) is the principle mediator of the acute 

inflammatory response to gram negative bacteria and other infectious agents. It 

is responsible for many of the systemic complications of severe infections and is 

produced by macrophages/ monocytes, activated T cells and NK cells. The 

most potent stimulus for TNF-a production by macrophages is bacterial LPS or 

endotoxin augmented by IFN -y secreted by T cells and NK cells in response to 

the same stimulus.

TNF-a acts on vascular EC and leucocytes to stimulate the recruitment of 

neutrophils and monocytes to sites of infection, and activates these cells to 

eradicate microbes. It achieves this by inducing vascular endothelial cells to 

express adhesion molecules, particularly ligands for leucocyte integrins and 

endothelial selectins. This makes the endothelial cell (EC) surface adhesive to 

neutrophils, monocytes and lymphocytes. In addition, TNF-a stimulates EC and 

monocytes to secrete chemotactic cytokines (chemokines), which direct 

leucocyte migration (Murdoch and Finn 2000).

TNF -a has systemic effects when produced in high enough quantities to enter 

the blood stream. It induces fever by increasing prostaglandin synthesis by the 

hypothalamus; it increases synthesis of acute phase proteins by the liver; very 

large concentrations of TNF-a inhibit myocardial and smooth muscle tone, 

causing the clinical syndrome of shock. These systemic effects are frequently 

seen in the post-transplant and other clinical settings related to infection with or 

without an intact immune system.

Interleukin-2

lnterleukin-2 (IL-2) is a growth and differentiation factor for antigen-stimulated T 

cells and is responsible for T cell clonal expansion after antigen recognition. As 

detailed above, T cell activation results in the modulation of the surface
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phenotype and the regulation of the secretion of critical cytokines (Lustgarten, 

et al 1991). IL-2 is the principal cytokine produced by naive CD4+ (Th1) T cells. 

It is also produced to a lesser extent by CD8+ cells together with costimulators, 

which promote transcription of the IL-2 gene. T cell growth and clonal expansion 

is a tightly regulated process and the extent of the proliferative response is 

determined by the concentration of IL-2 and IL-2 receptor (IL-2R) expression on 

the cell surface (Taniguchi and Minami 1993). Production is transient (peaking 

at 8-12 hours after activation) and it acts mainly in an autocrine manner.

IL-2 causes proliferation of antigen-specific cells by the induction of cyclin D and 

cyclin E, proteins that associate with and activate cyclin-dependent kinases.

The kinases phosphorylate and activate a variety of cellular proteins that 

stimulate transition from Gi to the S phase of the cell cycle, thus promoting cell 

cycle progression. IL-2 also promotes cell survival by inducing the anti-apoptotic 

protein Bcl-2. IL-2 also promotes the proliferation and differentiation of other 

immune cells; it stimulates the proliferation of NK cells and enhances their 

cytolytic function producing lymphokine activated killer (LAK) cells. IL-2 is a 

growth factor for B cells and stimulates antibody synthesis. It also contributes to 

the termination of the immune response by making activated T cells sensitive to 

apoptosis by the Fas pathway.

lnterleukin-4

lnterkleukin-4 (IL-4) has important immunoregulatory functions and is the 

signature cytokine of the Th2 subset (Li-Weber and Krammer 2003). In addition 

to Th2 cells, activated mast cells and basophils also produce IL-4. IL-4 acts on 

monocytes and macrophages to change morphology, regulate surface antigen 

expression and to inhibit antibody-dependent cellular cytotoxicity (ADCC). IL-4 

downregulates IL-12 and interferon-y (IFN-y) production, thus favouring the 

development of a Th2 response. IL-4 functions as an autocrine growth factor for 

differentiated Th2 cells. IL-4 also stimulates B cell immunoglobulin heavy chain 

class switching to the IgE isotype, which provides defence against helminthic 

infections, and is the principle mediator of allergic reactions. Evidence that IL-4 

does not play a role in lymphopoiesis come from experiments showing that IL-4- 

deficient mice show normal lymphocyte development and function, but Th2

responses are blocked (Kopf, et al 1993).
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4.1.7 CD45 isoforms: memory and naive T cells

To provide protection against new infectious agents as well as recurrence of 

infections, the immune system maintains separate populations of naive and 

memory cells. In addition, it needs to ensure an appropriate balance of CD4 and 

CD8 cells in both naive and memory pools. Hence analysis of these separate 

populations of T cells is critical to the understanding of immune recovery after 

allogeneic stem cell transplantation.

CD45 (formerly known as the leucocyte common antigen) is expressed on all 

leucocytes and is a protein tyrosine phosphatase (Tonks, et al 1988). Its 

cytoplasmic tyrosine phosphatase domain is thought to play a role in T cell 

activation (Ledbetter, et al 1988). Characterisation of this major lymphocyte 

antigen has shown that the CD45 antigens are a family of molecules that show 

heterogeneity in molecular weight (MW), antigenicity and carbohydrate 

structures (Andersson, et al 1980). Monoclonal antibodies to CD45 can be 

divided into 2 classes: those that recognise common CD45 determinants on all 

isoforms of CD45, and those that recognise a restricted determinant present on 

only a subpopulation of CD45 molecules (CD45R antibodies). When the 

genomic sequence of CD45 was determined (Hall, et al 1988), it was apparent 

that the differences in MW were due to the differential expression of additional 

protein sequences close to the amino terminus of the molecule. Addition of this 

extra protein sequence also resulted in the addition of extra carbohydrate 

structures (Jackson and Barclay 1989) and created new antigenic determinants. 

The protein heterogeneity occurred as a result of alternative splicing of 3 exons 

close to the 5’ end of the gene (Figure 4.3).
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CD45 is a transmembrane tyrosine phosphatase with 3 exons (A, B and C) that 

encode part of its external domain. In naive T cells, high molecular weight 

isoforms (CD45RA) are found that do not associate with either the T cell receptor 

(TCR) or its co-receptors, CD4 and CD3, as shown in Figure A. In memory T cells, 

the variable exons are removed by alternative splicing of CD45 RNA, and this 

isoform (CD45RO) associates with both the TCR and CD4 and CD3 as shown in 

Figure B. This assembled receptor appears to transduce signals more effectively 

than the receptor on naive cells.

Figure 4.3. Expression of CD45R isoforms on naive and memory CD4+ T cells.



These exons, 4, 5 and 6, have been designated A, B and C respectively, and 

the CD45 isoform expressing all three alternatively spliced exons is referred to 

as CD45RABC, whereas the isoform expressing none of them is CD45RO.

Eight different isoforms are possible due to alternative splicing of these 3 exons, 

and 6 have been identified at cDNA level. By expression of individual CD45 

isoforms in non-lymphoid cells, it has been possible to further characterise the 

reactivity of the CD45R mAbs (Streuli, et al 1988). These mAbs recognise 

determinants dependent on the expression of specific exons (A, B or C); thus a 

CD45RA antibody has the potential to recognise all isoforms of CD45 

expressing exon A (CD45RABC, CD45RAB, CD45RA, etc.). The majority of 

CD45R antibodies are thus exon, but not isoform specific. At birth, most T cells 

express the CD45RA isoform (Erkeller-Yuksel, et al 1992). Thereafter, the 

number of T cells expressing the CD45RO isoform increases to reach 50% by 

the age of 10-20 years (Hayward, et al 1989).

Initial studies using CD45R antibodies suggested that specific CD45R epitopes 

might be present on a particular functional T cell population (Bottomly, et al 

1989, Rudd, et al 1987). However further work suggested that isoform 

expression might correlate better with the activation state of the cell (Bell and 

Sparshott 1990). For example, loss of CD45RA and gain of CD45RO was 

shown to occur upon T cell activation, implying that CD45RA reactive isoforms 

were present on naive T cells and that CD45RO was a marker for primed or 

memory T cells (Akbar, et al 1988). The different CD45 isoforms on naive and 

memory T cells may serve to facilitate the interaction of the T cells with APC’s, 

and their activation by antigen. Recent evidence suggests that the CD45RO, 

but not the CD45RABC isoforms form heterodimers with CD4 and CD8 and 

augment TCR signalling phosphorylation events (Dornan, et al 2002). In 

addition, CD45RO preferentially associates with the TCR and enhances T cell 

activation (Leitenberg, et al 1999). One complicating factor is that the loss of 

CD45RA and gain of CD45RO, which occurs on T cell activation, can be 

reversible, particularly in the CD8 subset. Continued monitoring of activated 

cells shows that they can re-express CD45R determinants when these cells 

enter a resting stage and that these determinants can be lost again upon 

reactivation (Faint, et al 2001, Rothstein, efa/1991, Warren and Skipsey 1991)
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4.1.8 In vitro assays of T cell function

There are a several techniques for assessing T cell function and activation in 

vitro. T cells can be stimulated to proliferate in response to polyclonal mitogens 

such as phytohaemagglutinin (PHA), concavalin A (con A) and pokeweed 

mitogen (PWM), or when activated by polyclonal stimuli such as anti-CD3 

antibodies or phorbol 12-myristate 13-acetate (PMA) with calcium ionomycin. 

Alternatively, the activation response to a specific antigen, such as CMV may 

be measured. The readout assays for cell proliferation or cytokine production 

utilise one of several techniques, such as limiting dilution analysis (LDA), which 

measures the frequency of lymphocytes for a specific antigen, an enzyme- 

linked immunoassay (ELISA)-based assay for detecting cytokine-producing 

cells (ELISPOT), reverse-transcription (RT)-PCR, in situ hybridisation (ISH), 

and intracellular cytokine staining (ICCS). LDA and ELISPOT assays are 

laborious procedures that require high levels of technical expertise but give 

limited information about the nature of activated cells and their abilities to 

simultaneously secrete multiple cytokines.

ICCS combines immunofluorescent staining with multiparameter flow cytometry 

and has a number of advantages over the other techniques. By this method, 

cytokine expression is characterised at the level of the single cell, and the 

resulting analysis provides information on both the frequency of cytokine- 

producing cells as well as the cytokine production by individual cells.

Multicolour flow cytometric analysis enables the simultaneous detection of the 

light-scattering characteristics (forward- and side-scatter) of cells as well as 

their cytokine profiles and cell surface. In this way, the analysis enables the 

characterisation of individual cytokine-producing cells. These characteristics 

may define a cell’s activation status, lineage or subset identity, or its capacity to 

bind other cells and tissues or home into sites of inflammation. Another 

important advantage of multicolour flow cytometry is that it permits the high- 

resolution analysis of particular cell types (as defined by the chosen 

parameters) within heterogeneous cell populations without the need for 

laborious cell-separation procedures. Since flow cytometry is a high throughput 

technique, large numbers of cells from different cell samples can be quickly 

analysed and compared resulting in statistically significant results. This was felt 

to be an important advantage in studying T cell function in stem cell transplant
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recipients, who frequently have low T cell numbers. There are a number of 

important pitfalls, however. Permeabilisation frequently causes high 

autofluoresence and many antibodies that usually bind well to their target in 

other conditions do not work well when cells are permeabilised and/or fixed. 

Some cytokines seem to be expressed at low levels and appear as a 

continuous shoulder on a histogram of fluorescence, instead of being a well- 

separated bimodal distribution. Thus careful use of appropriate positive and 

negative controls is of paramount importance. Some of these factors are 

addressed in the later section on optimisation of the technique for this study.

4.2 SPECIAL METHODS

Isolation of peripheral blood mononuclear cells and quantification of CD3, CD4 

& CD8 subsets, including naive and memory subsets, and NK cell numbers by 

immunophenotypic analysis are described in Chapter 3, General Methods.

4.2.1 T cell function by intracellular cytokine staining and 3-colour flow 

cytometry

Interleukin (IL)-2, IL-4 and T N F -a  production was assessed in the CD4 and CD8 

subsets of 5 control subjects and 6 patients.

Since there is little or no spontaneous cytokine production in resting 

lymphocytes, PBMC were stimulated with PMA and calcium ionomycin to 

induce cytokine production. This was done in the presence of a protein 

secretion inhibitor to increase the amount of intracellular cytokine, which would 

otherwise be secreted out of the cell, beyond detection. Following incubation 

with surface mAbs, the cells are fixed and permeabilised and incubated with 

cytokine-specific mAb. Then 3-colour flow cytometry was used to determine the 

percentage of cytokine-secreting cells.

Optimisation of conditions for cell stimulation

A number of optimisation steps were required. They were adapted from 

technical reviews of this methodology (Collins 2000, Pala, et al 2000).

1 Duration of incubation with protein transport inhibitor +/- PMA & 

ionomycin. Cell stimulation in the presence of protein secretion inhibitors 

for longer than 24 hours can lead to cell death. Cell death has 2 major
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consequences: DNA strands are released from dead cells, leading to 

clumping, and death of the most activated cells will affect the analysis. It is 

therefore important to optimise the incubation time with these reagents in 

order to capture maximal cytokine production together with minimal cell 

death. Initial studies utilising a propidium iodide (PI) and annexin-V staining 

assay to quantify the degree of cell death in the presence of the stimulants 

and the protein secretion inhibitor monensin were performed.

2. The Annexin-V-Fluos assay: Annexin-V is a calcium-dependent

phospholipid-binding protein with high affinity for phosphatidylserine (PS). It 

is suited to detecting apoptotic cells, since it acts as a sensitive probe for PS 

exposure in the outer leaflet of the cell membrane, which is exposed upon 

apoptosis of the cell (Vermes, et al 1995). Since PS is also exposed in 

necrotic cells, a means to distinguish between apoptotic and necrotic cells 

needs to be utilised. PI is a DNA stain; it binds to exposed DNA following 

cell necrosis. The test cell suspension of 1 x 106/ml cells was washed in 

PBS. The cells were incubated with Annexin-V-Fluos (Annexin-V-Fluos, 

Roche) in a buffer containing PI, according to the manufacturer’s 

instructions. This assay was performed on the test cells prior to incubation 

with PMA, ionomycin and monensin. Then the cell suspension was divided 

in 2, and one aliquot incubated with monensin alone, and the other with 

monensin plus PMA and ionomycin. The Annexin-V-Fluos assay was then 

performed after a 16-hour incubation. As seen in Figure 4.4a, prior to 

incubation with monensin and/or stimulants, 84.5% of cells are annexin-V 

and Pl-negative, and hence viable, while 8.4% are annexin-V positive but Pl- 

negative (apoptotic), 7.1% are Pl-positive and/or annexin-V positive 

(necrotic).
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Figure 4.4a.The Annexin-V Fluos Assay prior to incubation with monensin and 

/or stimulants.

This demonstrates that 84.1% of cells are annexin-V and propidium iodide negative and hence 

viable.

The cells that were incubated with monensin, but not the stimulants showed 

61.3% viability, and those incubated with both the stimulants and monensin 

showed 58.4% viability (Figure 4.4b on next page).
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Figure 4.4b. The Annexin-V Fluos Assay following incubation with monensin, 

with or without the stimulants, PMA and ionomycin.

The 2 panels show similar cell viability in both situations, demonstrating that the inclusion of 

monensin does not adversely affect cell viability.
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In conclusion, this viability assay showed that the monensin on its own 

reduced cell viability to the same extent as in combination with the 

stimulants PMA and ionomycin. Overnight (16 hour) incubation was selected 

as this optimised cytokine production without compromising cell viability.

3. Use of 24-well plate for incubation. During the course of developing the 

assay, it was found that incubating the cells at a concentration of 1 x 106/ml 

in separate wells of a 24-well plate greatly reduced the degree of clumping 

compared to using a flask.

4. Protein transport inhibitor. Monensin is an ionophore that disrupts ion 

gradients across cell membranes that are necessary for protein transport. 

Brefeldin A (BFA) acts at an earlier step by blocking vesicular transport from 

the endoplasmic reticulum to the Golgi apparatus. The choice of protein 

transport inhibitor depends on optimisation of the technique for the 

requirements of the study. BFA preferentially enhances the detection of 

T N F -a , whereas monensin enhances the detection of IL-4. With regard to 

lymphocyte marker expression following activation, surface CD4 expression 

was significantly downregulated; however, less downregulation was 

observed with BFA treatment than with monensin treatment (O'Neil- 

Andersen and Lawrence 2002). BFA was thus selected as the protein 

transport inhibitor for this study and as it is reported as being less cytotoxic 

than monensin, the viability assay was not repeated.

5 Downregulation of surface markers. Staining of surface molecules was 

performed before fixation and permeablisation in this study to avoid their 

destruction by these processes. However, another difficulty that is caused by 

the activation protocol, particularly the use of PMA and ionomycin is loss of 

CD4 staining and to a lesser extent CD8 (Nakayama, et al 1993) and CD3 

(Telerman, et al 1987). In this study, CD4 staining was most affected. To 

overcome this, a FITC-conjugated mAb (Multi-Clone™ CD4, Becton 

Dickinson, Oxfordshire, UK) against 2 non-cross-blocking epitopes (Leu-3a 

and Leu-3b) on the CD4 molecule was used (Hennessy, et al 2001). This 

enabled successful co-assessment of CD4 expression and cytokine 

expression in PMA- and ionomycin stimulated cells.
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Optimised method for ICCS

PBMC from patients and controls were washed twice in PBS with 0.1% bovine 

serum albumin (BSA) and resuspended at a concentration of 1 x 106 cells/ml in 

RPMI-1640 supplemented with 10% fetal calf serum (FCS), streptomycin and 

penicillin. After overnight stimulation in a 24-well plate with PMA, 5 ng/ml) and 

ionomycin (75 ng/ml) in the presence of brefeldin-A (10 ng/ml, GolgiPlug™, 

BDPharMingen, Oxfordshire, UK), stimulated cells were washed twice in PBS 

with 0.1% BSA and incubated with mAbs against CD3, CD8 and Multi-Clone™ 

CD4 (Becton Dickinson, Oxfordshire, UK) at4°C for 15 minutes. After washing 

in PBS with 0.1% BSA and 0.1% azide, the cells were fixed and permeabilised 

according to the manufacturer’s protocol (Cytofix/ Cytoperm™ Kit, 

BDPharMingen, Oxfordshire, UK) followed by incubation for 30 minutes in the 

dark at 4°C with antibodies specific for IL-2, IL-4 and TNFa. Species-specific 

isotype-matched antibodies (BDPharmingen, Oxfordshire, UK) were used as 

controls then resuspended in PBS with 0.1% BSA and 0.1% azide. The stained 

and fixed samples were analysed on a Coulter EPICS Elite Flow Cytometer 

(Beckman Coulter, Buckinghamshire, UK) following acquisition of 50 000 events 

per sample, and absolute numbers of cells calculated as described in general 

methods.

4.3 RESULTS

The reference ranges employed for CD3+, CD4+, CD8+ and CD56+ 

lymphocyte subsets were adopted from Reichert et a/’s work on the distributions 

of lymphocyte populations (Reichert, et al 1991). Those for CD45RA and RO 

subsets were taken from Bisset et al (Bisset, et al 2004).

4.3.1 NK-cell reconstitution

NK cells (CD56+) were within normal limits, when first measured at 3 months 

post transplant (median 179 cells/pil, range 18-560 cells/jil), in the all but one 

patient, whose count was normal when measured at 6 months. Thereafter, NK 

cell levels remained normal or high throughout the period of follow up (median 

539 cells/pl, range 373-994 cells/pl at 12 months) as shown in Figure 4.5.
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Figure 4.5. CD56+ cell recovery.

Cell numbers are given in absolute numbers per microlitre of blood. Individual as well as median 

values (given as line graph) are shown at 3 monthly intervals post-transplantation. The normal 

range is 50-600 cells per microlitre, indicated by the grey box.

4.3.2 Recovery of T cell subsets

Median CD3+ cells numbers gradually rose with time post-transplant, but 

remained below the normal range for up to 21 months, with just 17% of patients 

in the normal range at 6 months (n=18), 25% at 12 months (n=12), 36% at 15 

months (n=11) and 43% at 18m (n=7). (Figure 4.6)
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Figure 4.6. CD3+ cell recovery.

Cell numbers are given in absolute numbers per microlitre of blood. Individual as well as median 

values (given as line graph) are shown at 3 monthly intervals post-transplantation. The normal 

range is 600-3200 cells per microlitre, indicated by the grey box.

The majority of CD3+ cell recovery was accounted for by an increase in CD8+ 

cell numbers. By 6 months, 33% of patients (n=18) had normal CD8+ cell 

numbers, rising to 42% at 12 months (n=12) and 57% at 18 months (n=7) (Figure 

4.7a).
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Figure 4.7a. CD8+ cell recovery.

Cell numbers are given in absolute numbers per microlitre of blood. Individual as well as median 

values (given as line graph) are shown at 3 monthly intervals post-transplantation. The normal 

range is 120-350 cells per microlitre, indicated by the grey box.

Both naive (CD45FRA) and memory (CD45RO) subsets of CD8+ cells showed 

similar recovery, in parallel with increasing overall CD8+ cell numbers. At 12 

months, 42% of patients had normal CD8+ CD45RA+ numbers and 33% had 

normal CD8+ CD45RO+ numbers (Figure 4.7b).
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Figure 4.7b. CD8+CD45RA+ and CD8+ CD45RO+ cell recovery.

Median values per microlitre of blood are shown for CD8+CD45RA+ cells (Normal range 42- 

360 cells per microlitre) and CD8+CD45RO+ cells (Normal range 72-377 cells per microlitre).
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In contrast, CD4+ cells showed much slower recovery, with median cell numbers 

remaining well below the normal range (400-1600 cells/pl) up to 21 months post 

transplant: 64 cells/pl (range 18-148 cells/jil) at 6 months, 153 cells/pl (range IQ- 

480 cells/pil) at 12 months and 158 cells/pl (range 4-302 cells/pl) at 18 months 

(Figure 4.8a).
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Figure 4.8a. CD4+ cell recovery.
Cell numbers are given in absolute numbers per microlitre of blood. Individual as well as median 

values (given as line graph) are shown at 3 monthly intervals post-transplantation. The normal 

range is 400-1600 cells per microlitre, indicated by the grey box.

Both naive (CD4+ CD45RA+) and memory (CD4+ CD45RO+) subsets were 

depressed, although this was more marked in the naive subset. The median 

CD4+ CD45RA+ cell count for the entire follow up period was 20 cells/pil (range 

2-46 cells/pl, normal range 84-761 cells/pl) and that for the CD4+ CD45RO+ 

subset was 54 cells/jul (range 25-119 cells/pl, normal range 247-807 cells/pl) as 

shown in Figure 4.8b.
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Figure 4.8b. CD4+CD45RA+ and CD4+ CD45RO+ cell recovery.
Median values per microlitre of blood are shown for CD4+CD45RA+ cells (Normal range 84-761 

cells per microlitre) and CD4+CD45RO+ cells (Normal range 247-807 cells per microlitre).

Of interest, patient 10 who reactivated TB at 6 months post transplant showed a 

dramatic fall in her recovering CD4+CD45RA+ cell count (from 77 cells/pl at 6 

months to 3 cells/pil at 9 months) with a concomitant rise in her CD4+CD45RO+ 

cells (from 1 cell/pl at 6 months to 235 cells/pl at 9 months). CD8+cells were 560 

cells/jul for CD45RA+and 1523 cells/jul for CD45RO+ cells at 9 months post 

transplant. Thereafter, her CD4+CD45RA+ cells remained below 14 cells/pl up to 

15 months post transplant, with continued elevation of the CD4+CD45RO+ 

subset and both CD8+ subsets (Figure 4.9).
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Figure 4.9. Recovery of naYve and memory subsets of CD4+ and CD8+ cells in 

patient 10.
Absolute values for naive (CD45RA+) and memory (CD45RO+) subsets of CD4+ and CD8 + 

cells are shown where available for each time point.

This pattern of T cell recovery occurred in conjunction with DLI, and hence may 

reflect transfer of donor immunity, followed by peripheral expansion of TB- 

specific memory T cells.

4.3.3 Effects of T lineage chimeric status, GVHD and disease status on T 

cell subsets.

1. T lineage chimeric status. There was no correlation between CD3+, 

CD4+ or CD8+ cell numbers on T cell lineage chimeric status.
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2 GVHD. T cell subset recovery was assessed in the 10 patients who 

experienced GVHD either after transplant and/ or after DLI and compared 

to those patients who did not have GVHD (n=9). Median CD3+, CD4+ and 

CD8+ cell numbers were lower in patients with GVHD than in those 

without (Figure 4.10). At the 12 month timepoint, using the Mann-Whitney 

test, this was not a significant finding (p=0.21, p=0.47 and p=0.37 

respectively).
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Figure 4.10. Effect of GVHD on CD3+, CD4+ and CD8+ cell recovery
Median values of CD3+, CD4+ and CD8+ cells are shown for 10 patients with GVHD and 9 

patients without GVHD. At the 12 month timepoint, using the Mann-Whitney test, there was no 

significant effect of GVHD on CD3+, CD4+ and CD8+ cell recovery (p=0.21, p=0.47 and p=0.37 

respectively)

Of the 9 patients who had GVHD, only 1 had CD3 numbers within the 

normal range, but 6 out of 10 patients without GVHD had normal CD3 

numbers.

80



3. Disease status post transplant. Nine patients with progressive disease 

and 10 patients with responding/ stable disease were assessed at 12 

months post transplant. Figure 4.11 shows that disease status had no 

influence on CD3+ or CD4+ cell recovery. Patient numbers were too small 

for statistical analysis.
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Figure 4.11. Effect of progressive disease on CD3+ and CD4+ cell recovery.

Median values are shown for CD3+ cells, and CD4+ cells in 9 patients with progressive disease 

(PD) and 10 patients with responding or stable disease (Other) post transplant. The numbers 

were too small for statistical analysis in this sample.

4.3.4 Cytokine production by T cells

This was analysed in 6 patients at 6 to 20 months post transplant and 5 age- 

matched controls using PBMC stimulated with PMA and calcium ionomycin. 

Results are shown in Figure 4.12.
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Figure 4.12. Intracellular cytokine production by CD4+ and CD8+ cells.
In each case, the y-axis represents the percentage of cells showing positivity for the cytokine of 

interest. Data regarding IL-2, IL-4 and TNF-alpha secretion for 5 normal controls is shown on 

the left column, and that for 6 patients is shown in the right column. The median values are 

shown by black dots, connected with a black line.

The proportion of CD4+ cells producing IL-2, T N F a  and IL-4 in patient samples 

was comparable to that in controls. In the patient group, 24% (range 10.1- 

50.8%) of CD4+ cells produced IL-2, compared to 30.4% (range 11.5-62.7%) in 

the control group. There were similar findings for T N F a  production by CD4+ 

cells: 34% (16.2-65.4%) in the patient group and 30.8% (24.1-45.6%) in the 

control group. IL-4 production by CD4+ cells was lower in the patients (8%, 

range 2.2-15.9%) and controls (1%, range 0.4-6.5%).

Similarly, the percentage of cytokine-producing CD8+ cells was also 

comparable between patients and controls. In the patient group, 9% (range 0.9- 

22.5%) of CD8+ cells produced IL-2, compared to 12.2% (range 3.9-40%) in the
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control group. There were similar findings for TNFa production by CD8+ cells: 

33% (13-77.6%) in the patient group and 16.5% (9.1-36.5%) in the control 

group. IL-4 production by CD8+ cells was also lower in the patients (4.5%, 

range 0.9-16.8%) and controls (0.9%, range 0.4-7%).

There was no difference in results of cytokine measurements done before 

versus those done after 12 months post-transplant. Overall, these results 

indicate that the recovering T cell population, though reduced in number, is 

functionally normal in terms of cytokine production. It is worth noting, however, 

that the actual number of cytokine-producing cells, particularly in the CD4+ 

subset will be lower than that of normal controls, because of markedly reduced 

cells numbers. In all cases of patients and control subjects, more CD4+ cells 

were positive for IL-2 rather than IL-4 production, possibly due to a greater 

abundance of Th1 than Th2 cells. Apart from this observation, it was not 

possible to draw any conclusions about the relative frequencies of Th1 & 2 or 

Tc1 & 2 subsets.

4.4 DISCUSSION

In summary, while NK cell numbers recovered rapidly following RIT, the 

recovery of T cell numbers especially the CD4+ subset and most prominently 

the naive (CD4CD45RA+) compartment was markedly delayed. Recovery of 

CD8+ cell was also delayed, but to a lesser degree. The proportion of mitogen- 

stimulated cytokine-producing cells was comparable in patients and control 

subjects.

Reconstitution of the lymphoid system after myeloablative allogeneic stem cell 

transplantation (ASCT) has been extensively studied, and comprehensively 

reviewed by Storek and Witherspoon (Storek 2000). Since nonmyeloablative 

conditioning regimens are relatively novel, there are fewer reports of immune 

recovery in this setting. There are few data on T cell recovery and the evidence 

is conflicting, largely owing to the varied conditioning regimens used. One study 

of T cell subset recovery found that T cell recovery was rapid and comparable 

following RIT as well as T cell depleted myeloablative transplants, with marked 

skewing of T cell repertoire (as shown by TCR spectratyping- refer to Chapter 5 

for results related to the present study) following TCD myeloablative transplant
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but not after RIT (Bahceci, et al 2003). Another group found that 

CD4+CD45RA+ and CD4+CD45RO+ T cell recovery was significantly lower in 

the RIT group (conditioned with the purine analogue cladribine, busulphan & 

antithymocyte globulin) compared with myeloablative transplant group, but this 

did not translate into an increased incidence of infection (Saito, et al 2003). 

Significantly, neither of these groups employed alemtuzumab in their 

conditioning regimen.

The present study addresses NK and T cell recovery in patients with myeloma 

undergoing RIT using an alemtuzumab-containing regimen which importantly 

has acceptable toxicity. The rate and quality of T cell recovery is an important 

determinant of the toxicity of a conditioning regimen and the incidence of 

infective complications. Myeloma itself is associated with an intrinsic immune 

dysregulation, with evidence of phenotypic and functional changes in T cells, B 

cells, macrophages and NK/LAK cells (Lauria, et al 1984). Previous studies 

have shown that CD4 cell counts are low in myeloma patients, and that this is 

associated with advanced clinical stage and a shorter survival (San Miguel, et al 

1992). It is possible therefore that these intrinsic immune defects would 

influence the reconstitution of the immune system following allogeneic 

transplantation.

NK (CD56+) cell recovery in this study is comparable to data from myeloablative 

immune reconstitution studies. Normal NK cell numbers are reported to occur 

within 1 month of transplant, regardless of donor type and patient age, (Small, 

et al 1999) or stem cell source, (Ottinger, et al 1996) although another study 

found delayed recovery in patients with grade ll-IV acute GVHD (Fujimaki, et al 

2001). In this study, NK cells were measured at 3 months post transplant, and 

showed that all but one patient had normal levels despite the incidence of acute 

GVHD in 5 of them.

The profound and prolonged CD4+ T cell lymphopenia seen in this study is

comparable to that reported in recipients of myeloablative allogeneic peripheral

blood stem transplants (Shenoy, et al 1999) and myeloablative allogeneic bone

marrow transplants (Fujimaki, et al 2001). For example, in a study of patients

undergoing T cell depleted myeloablative transplantation, CD3+CD4+ cell
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recovery was delayed for up to and even beyond a year after transplant and 

was particularly marked for the CD4+CD45RA+ (naive) subset(Small et al

1999). In fact Fujimaki et al found that CD3+CD4+ cells remained below the 

normal range up to 5 years after myeloablative ASCT, including the 

CD4+CD45RA+ subset, although the memory subset (defined by the 

CD4+CD29+ phenotype) recovered to normal levels within 2 years post 

transplant.

In contrast, CD3+CD8+ cell numbers are reported to return to normal levels 

from 3 to 6 months post transplant following myeloablative transplantation in 

most series (Fujimaki, et al 2001, Shenoy, et al 1999). The rise in memory 

CD3+CD8+ cells occurs faster than naive CD3+CD8+ cells (Storek, et al 1995). 

In the present study, recovery of CD3+CD8+ cells took somewhat longer with 

nearly 60% of the patients had normal CD3+CD8+ cell numbers by 18 months. 

Recovery of CD8+CD45RA+ and CD45RO+ cells occurred in parallel. 

Reconstitution of the T cell compartment occurs via 2 pathways (Storek 2000). 

One pathway is thymus-dependent, in which naive T cells that are the progeny 

of engrafted stem cells are produced in the recipient’s thymus. These cells have 

a CD45RA phenotype and a diverse TCR repertoire (discussed in detail in 

Chapter 5) (Dumont-Girard, et al 1998).The earlier pathway of reconstitution, 

however, is the result of expansion of mature T cells that were co-transfused 

with the graft. These T cells express the CD45RO phenotype and have a limited 

TCR repertoire (Roux, et al 1996). The peripheral expansion of infused donor 

memory T cells probably accounts for the early recovery in CD8+ cells in this 

study. As mentioned previously, T cell activation leads to a switch from 

expression of the CD45RA to the CD45RO isoform. This pattern of expression 

following activation is maintained in the CD4+ subset but CD8+CD45RO+ cells 

can revert back to the CD45RA phenotype (Faint, et al 2001). It is likely 

therefore that the majority of the recovering CD8+ population post transplant 

comprises memory T cells, irrespective of their CD45R phenotype (Heitger, et al 

1997). On the other hand, CD4+ cells, once activated, retain expression of the 

CD45RO phenotype. Hence CD4CD45RA can be reliably taken to represent 

naive thymus-derived CD4+ cells. In the present study, such cells remained at 

very low levels for up to 21 months post transplantation, indicating that during
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this time, regenerating T cells are derived mainly form the oligoclonal expansion 

of CD4CD45RO+ cells co-transfused with the graft.

The functional status of recovering T cells, assessed in this study by 

intracellular cytokine production in response to mitogenic stimulation showed 

good recovery despite low cell numbers. Cytokine production in response to 

mitogen stimulation was proportionally within normal limits for both CD4+ and 

CD8+ subsets in the patient group, although whether this predicts for normal 

responses to antigenic challenge in vivo remains unclear. In addition, the 

absolute number of cytokine-producing cells was much reduced, particularly in 

the CD4+ subset. Previous studies of lymphoproliferative responses to antigens 

and polyclonal stimuli have shown subnormal responses both early and late 

post-transplant, with inferior responses seen after bone marrow versus 

peripheral blood stem cell transplantation (Ottinger, et al 1996, Shenoy, et al 

1999, Talmadge, et al 1996). Others have shown that T cell proliferative 

responses to mitogens were positive in almost all patients tested after ASCT, 

but responses to antigenic stimulation were reduced (Maury, et al 2001) and the 

proliferative response to PHA, and HSV and VZV was similar in BM and PB 

stem cell recipient groups (Storek, et al 2001). Cytokine production by cytokine 

mRNA expression and intracellular cytokine staining by flow cytometry has also 

been studied. Shenoy et al found that cytokines including IL-2, IL-4 and TNF-a 

were strongly upregulated and easily detected in all allogeneic stem cell 

transplant recipients in response to stimulation with PHA (Shenoy, et al 1999). 

Another study showed that T cell function in peripheral blood mononuclear cells 

is depressed despite high levels of cytokine mRNA expression, and suggested 

that high levels of type 2 cytokines (IL-4 and IL-10) may contribute to the 

immune dysfunction seen after high dose therapy and PBSCT (Singh, et al

2000). There are few reports on T cell function after nonmyeloablative 

conditioned ASCT.

The prolonged depression of T ceil numbers, but relative preservation of T cell

function seen in this study is may be due to the significant degree of T cell

depletion caused by the humanised monoclonal antibody alemtuzumab, which

would not otherwise affect T cell function. Alemtuzumab is directed against the

CD52 antigen and is abundantly expressed on most peripheral blood
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lymphocytes (Hale, et al 1990). The dose of alemtuzumab used in this 

conditioning regimen exceeds that used to treat a variety of disease states in 

which prolonged lymphopenia and a high incidence of infections has been 

reported (Isaacs, et al 1992, Tang, et al 1996). The present study demonstrates 

a relatively low incidence of GVHD, accompanied by a high incidence of viral 

infections. This is in keeping with the prolonged lymphopenia found in this 

study. Further studies are planned to de-escalate the dose of alemtuzumab 

used in this conditioning regimen, with a view to offsetting the delay in 

lymphocyte recovery however, whether this can be achieved without a 

concomitant increase in GVHD and/or graft rejection remains to be established.
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Chapter 5: Evaluation of T cell VB repertoire post transplant by T cell 

receptor spectratyping 

5.1 1ntroduction

The diversity of T cell antigen receptors in an individual determines both the 

response to antigenic challenges from the external environment and the 

response to self-antigens. It therefore plays a critical part in determining 

immune competence and may also be important in determining susceptibility to 

a range of diseases resulting from immune activation. Several methods are 

used to assess T cell repertoire, including monoclonal antibodies and flow 

cytometry, and molecular techniques. Together, these techniques have 

provided information on normal T cell repertoire patterns as well as alterations 

caused by common infections and antigenic challenge. Skewing of T cell 

repertoire may be associated with pathological states, such as infections, 

autoimmune diseases and stem cell transplantation.

To some extent, the T cell repertoire must reflect previous exposure to antigenic 

stimuli. Conserved responses to a range of viral pathogens such as influenza, 

EBV and CMV are likely to have substantial effects over time in moulding the T 

cell repertoire. In addition to such external antigenic stimuli, the selection of T 

cells during maturation and development in the thymus is also driven by 

antigenic selection. Thymic selection, both positive and negative, is driven by 

MHC-peptide combinations. High affinity binding of the T cell receptor (TCR) to 

self antigens bound to MHC molecules leads to negative selection in the 

thymus. Low affinity binding to self MHC imparts a survival signal and hence 

leads to positive selection.

5.1.1 The T Cell Receptor

The TCR is a transmembrane heterodimeric molecule, which recognises 

peptide presented by HLA class I or II molecules. Greater than 90% of T cells 

have receptors composed of an a  and a p chain, with the remainder bearing a y 

and a 6 chain (Hall and Lanchbury 1995). Mature a  and p chains result from the 

productive rearrangement of variable (V), diversity (D) (p chain only), joining (J) 

and constant (C) region segments, which are encoded as non-contiguous 

elements within the germline. Diversity of the TCR is generated by random
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combination of V, (D), J and C region segments; nibbling of junctional V, (D) 

and J regions; and the addition of nontemplate nucleotides which give rise to N 

region diversity (Kimura, et al 1987). The V regions of the TCRa and TCRp 

chains contain short stretches of sequences where the variability between 

different TCRs is concentrated, and these form the hypervariable or 

complementarity-determining regions (CDRs), of which the third hypervariable 

region (which forms CDR3) contains the most sequence variability (Liu, et al 

1995). The 3 CDRs in the a chain are juxtaposed to 3 similar regions in the p 

chain to form the part of the TCR that specifically recognises peptide-MHC 

complexes. In some TCRs, parts of all 3 CDR loops make contact with the MHC 

molecule, whereas in others recognition of the MHC molecule is mainly the 

function of CDR1 and CDR2, while CDR3 makes contact with the peptide. The 

p chain V domain contains a fourth hypervariable region, which does not appear 

to participate in antigen recognition but is the binding site for microbial products 

called superantigens. Ultimately the specificity of the T cell is determined by the 

pairing of permitted a and p chains while cell survival is dictated by thymic 

selection events.

The 76 TCR is a second type of diverse CD3-associated heterodimer expressed

on a small subset of ap-negative T cells (Yoshikai, et al 1987). T cells

expressing the 7 6  TCR are a lineage distinct from the more numerous ap-

expressing, MHC-restricted T cells. The percentages of 76  T cells vary widely in

different tissues, but overall less than 5% of all T cells express this form of TCR.

The functions of 7 6  T cells and the question of what the 76  TCR recognises

remain largely unresolved. 76  T cells do not recognise MHC-associated peptide

antigens and are not MHC restricted. The majority of 7 8  T cells do not express

CD4 or CD8 . The limited diversity of the 7 6  T cells in many tissues suggests that

the ligands for these receptors are invariant and conserved. It is possible that 76

T cells recognise antigens that are frequently encountered at epithelial

boundaries between the host and the external environment. Thus they may

initiate immune responses to a small number of common microbes at these

sites, before the recruitment of antigen-specific ap T cells. The TCR 8 locus is

embedded in the TCRa gene in between Vu and Ju. The joining of V„ to Ju

completely deletes the TCRS gene on that chromosome. There is evidence that
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T C R a  rearrangement occurs only if initial TCRS rearrangement fails to produce 

a viable transcript (Livak, et al 1995). How the rearrangement of TC R S influence 

T C R a  expression is not clear. Mice lacking yS T  cells have little or no 

immunodeficiency and only a modest increase in susceptibility to infections by 

intracellular bacteria.

5.1.2 TCR gene rearrangement in the course of T cell maturation

T cell maturation with regard to surface molecule expression was addressed in 

detail in Section 4.1.1. Here, the process of TCR gene rearrangement that 

occurs during T cell maturation will be discussed. The mechanisms by which 

TCR germline DNA is rearranged to form functional receptor genes appear to 

be similar to those used in immunoglobulin gene (IgH) rearrangement. Similar 

recognition signal sequences (RSS) have been found flanking each V, D and J 

segment in TCR and IgH germline DNA. All TCR gene rearrangements follow 

the 12/23 joining rule found in IgH rearrangement. Both pre-B and pre-T cells 

express recombination activating genes (RAG-1 and RAG-2). As with the IgH 

genes, rearrangement of TCR genes also exhibits allelic exclusion, such that 

the rearrangement of one allele is inhibited, once a productive rearrangement 

occurs for the other allele.

Although TCRs are encoded by far fewer V gene exons than immunoglobulin 

molecules, a number of features contribute to generating even greater diversity 

in the TCR (Davis and Bjorkman 1988). Although the number of V gene 

segments is just 75 for the a  chain and 25 for the p chain (compared to 300 for 

the IgH chain), there are greater numbers of J gene segments (50 for T C R -a  

and 12 for TCR-p, compared with 6 for the IgH chain), making the possible 

combinations after combinatorial V-J or V-D-J joining in the region of 1015 for «p 

TCR, versus 1011 for IgH. Other mechanisms, such as N region diversification 

and junctional diversity are similar for both TCR and IgH gene rearrangement.

In developing cells destined to express a p  TCRs, the p chain locus undergoes 

recombination before the a  chain locus. Dp-to-Jp rearrangements are followed 

by Vp -to-DJp rearrangements. Up to the point of Dp-to-Jp rearrangement, the 

thymocyte is CD4-CD8- (double negative) and resides in the subcapsular zone
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of the thymic cortex. Once Vp -to-DJp rearrangement occurs, the thymocyte 

remains CD4-CD8-, but now expresses the productively rearranged p chain 

gene initially in the cytoplasm and later on the surface of the cell as a 

heterodimer with pTa, where pTa is a surrogate a  chain. The genomic 

sequences between the rearranged elements are deleted during the 

rearrangement process. Poly-A tails are added to consensus polyadenylation 

sites located at the 3’ end of the Cp RNA and the sequences between the VDJ 

and C RNA are spliced out to form mature mRNA in which VDJ segments are 

juxtaposed to either of the two C genes (Cr> 1 and Cp 2). The cell now becomes 

CD4+8+ (double positive) and moves towards the thymic medulla, but still 

remains in the cortex at this point. This is the site and timing of positive 

selection. Negative selection occurs next, as the cell approaches the 

corticomedullary junction of the thymus. Translation of the mRNA gives rise to 

the nascent polypeptide, which after processing and glycosylation becomes the 

functional TCR chain.

The steps in a chain gene rearrangement are similar to those in the p chain 

gene. Because there are no D segments in the a  locus, rearrangement consists 

solely of the joining of V and J segments. Unlike in the p chain locus, where 

production of the protein suppresses further rearrangement, there is little or no 

allelic exclusion in the a  chain locus. Therefore, productive TCRa 

rearrangement may occur on both chromosomes, and if this happens, the T cell 

will express two a  chains. In fact, up to 30% of mature peripheral T cells do 

express two different TCRs, with different a  chains but the same p chain. The 

functional consequence of this dual receptor expression is unknown. The 

process of p chain gene rearrangement is depicted alongside a  chain gene 

rearrangement in Figure 5.1a and b respectively.

Figure 5.1a. TCR p chain gene recombination and expression

(page 95)

Figure 5.1b. TCR a chain gene recombination and expression

(page 96)
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Figure 5.1a and b

Figure Legend. TCR p and a chain gene recombination and expression.

The sequence of recombination and gene expression events is shown for the TCR (3 chain 

(Figure 1a) and TCR a chain (Figure 1b). In the example shown in Figure 1a, the variable (V) 

region of the TCR (3 chain is encoded by exons V ^ l, D(i1 and the third exon in the J,,1 cluster. 

The constant (C) region is encoded by C;!1. Unused V and J genes between the rearranged V 

and J genes are deleted. In the example shown in Figure 1 b, the V region of the TCR a chain is 

encoded by VU1 and the second exon in the Ju cluster. Other abbreviations used include D, 

diversity; enh, enhancer; J, joining; TCR, T cell receptor.

Only T cells specific for peptides bound to self MHC molecules mature in the 

thymus. Cells that fail positive selection die in the thymus; it is estimated that 

95% of thymocytes die because they are not rescued by a signal received from 

their TCR. The expression of CD4 and CD8 on mature cells is also determined 

by positive selection in the thymus. Thymic cortical epithelial cells form a web of 

processes that make close contacts with the double positive T cells undergoing 

positive selection and, at these sites of contact, TCRs cluster together with 

MHC molecules. MHC class II molecules are required for CD4 T cell 

development and MHC class I for CD8 T cell development. It appears that 

survival signals delivered by thymic cortical epithelial cells are essential for 

positive selection to occur, while the recognition of MHC molecules, which are 

optimally expressed on cortical epithelial cells is required to ensure the 

specificity of positive selection. Negative selection ensures that T cells specific 

for self antigens are deleted in the thymus. While thymic cortical epithelial cells 

mediate positive selection, several different cell types most importantly bone 

marrow-derived macrophages and dendritic cells mediate negative selection. 

These professional antigen presenting cells present self antigens and T cells 

responding to such self peptides are eliminated in the thymus.

5.1.3 The VB T cell repertoire

The World Health Organisation (WHO) standards for TCR nomenclature are 

used in this study (WHO 1995). The 64 TCRBV segments are grouped into 25 

families based on >75% nucleotide sequence identity (Wei, et al 1994).

Families are numbered sequentially (e.g. TCRBV1 etc.) Some families have 

more than one member and are designated BV6.1 and BV6.2, for example. 

Germline genes of the TCRBV chain are located on chromosome 7q, and a
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cluster of six orphan genes is found on chromosome 9 (Robinson, et al 1993). 

The D, J and C segments are located at the 3’ end of the TCRBV gene 

complex.

There are a number of molecular methodologies for the study of the human 

TCR repertoire, including V region PCR, 5’ PCR, adapter PCR, RNAse 

protection assays, anchor PCR and inverse PCR. These methods are 

cumbersome in the number of PCR reactions and gels needed for complete 

analysis of TCRBV repertoires. In addition, monoclonal antibodies against V 

regions can be usefully employed to monitor fluctuations in T cell numbers, and 

activation states. In the past, an incomplete panel of antibodies against all BV 

regions limited the use of this method in analysing the TCRBV repertoire, but 

more recently an increased number of TCRBV-specific mAb has become 

available, improving the potential for immunostaining-based TCR analysis 

(Muraro, et al 2000). However, this method does not distinguish between a 

monoclonal and polyclonal expansion of T cells, and fails to provide information 

on the composition of each BV family. This technique also requires a minimum 

number of T cells, whereas PCR can amplify TCR transcripts even from a single 

cell (Kurokawa, et al 1999).

Maslanka et al developed, and later refined a method for the molecular analysis 

of TCR BV region usage profiles, known as T cell spectratyping, which can 

delineate the composition of the T cell repertoire, indicate which BV families are 

involved in immune responses and provide individual profiles for each BV family 

(Maslanka, et al 1995). As a marker of sequence diversity, the TCR p chain also 

exhibits variability in length of its CDR3 region due to deletions and N 

nucleotide additions, which occur during genetic recombination (Davis and 

Bjorkman 1988). The T cell spectratyping method analyses this variability in 

CDR3 length, for each BV family and hence gives an overall measure of TCR 

diversity. This method has been employed in this study to study the evolution of 

TCR repertoire following RIT and the impact of clinical events and therapeutic 

interventions thereof.
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5.1.4 Recovery of T cell repertoire following allogeneic stem cell 

transplantation

The outcome of ASCT is strongly influenced by the rate and quality of immune 

reconstitution. The alloresponses of donor lymphocytes create the balance 

between the desired graft-versus-disease effect versus GVHD, and can induce 

a significant morbidity and mortality through direct tissue damage. Post 

transplant the T cell compartment is reconstituted via 2 pathways (Dumont- 

Girard, efa/1998, Mackall, efa/1995, Mackall, et al 1997). Initially, there is 

antigen-driven peripheral expansion of a limited number of mature T cells that 

have been co-transfused with the graft, leading to a population with a TCR 

repertoire of limited diversity (Mackall, et al 1993, Roux, et al 1996). These 

mature T cells with a limited TCR diversity can be maintained in the periphery 

for up to 10 to 20 years. Subsequently, a thymus-dependent pathway produces 

T cells that have a very diverse TCR repertoire (Dumont-Girard, et al 1998).

This mechanism involves selection of graft-derived precursor cells in the thymus 

(Collins, et al 1996). The contribution of peripheral expansion is particularly 

prominent when the function of the thymus is impaired. Because thymic function 

decreases with increasing age, thymic-dependent T cell reconstitution is 

thought to be most effective in paediatric ASCT recipients as reflected by 

delayed recovery of especially CD4+ T cells in adult ASCT recipients (Storek, et 

al 1995). The contribution of the thymus to T cell immune reconstitution in 

adults is not precisely known, but studies such as that by Dumont-Girard et al 

have suggested that thymic recovery post transplant does occur and contributes 

to the restoration of T cell recovery. More recently, studies using TCR excision 

circles (TRECs) to identify recent thymic emigrants post transplant have 

provided evidence for a significant role of the thymus in T cell reconstitution of 

in adults (Douek, et al 2000), particularly in the absence of chronic GVHD 

(Weinberg, efa/2001).

5.2 Special Methods

Blood samples were obtained from patients pre transplant, and then at 3 

monthly intervals following transplant, including prior to and following DLI. The 

technique for isolation of peripheral blood mononuclear cells is described in 

Chapter 3, General Methods.
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5.2.1 T cell receptor CDR3 spectratyping

RNA was extracted from PBMC using Ultraspec RNA (BiotecX Laboratories, 

Houston, USA) according to the manufacturer’s protocol. Complementary DNA 

(cDNA) was generated from 1 pg of RNA in a 20 pi reaction using random 

hexanucleotide primers for reverse transcription with reverse transcriptase 

(Superscript, GibcoBRL, Paisley, UK). Each of 21 functionally rearranged TCRBV 

gene subfamilies was amplified across the CDR3-encoding regions using 23 BV 

subfamily-specific primers described previously by Maslanka et al (Maslanka, et 

al 1995) (omitting BV23 as this gave only weak product signals), and a 

fluorescent dye-conjugated (FAM, Perkin Elmer, Cambridge, UK) BC region- 

specific primer. BV primers were combined in duplex PCR reactions as follows: 

BV5.1 and 1; BV2 and 12; BV13 and 3; BV4 and 5.3; BV8 and 7; BV9 and 14; 

BV11 and 20; BV17 and 15; BV16 and 21; BV24 and 22. BV18, BV6.1 and BV6.2 

were used unpaired. Hot start PCR amplifications were performed in a total 

volume of 20 pi containing Genamp PCR buffer (Perkin Elmer), 2 mM MgCI2, 0.2 

mM each dNTP, 1 mM of each primer and 1 pi cDNA. After a 5-minute 

denaturation step at 95°C, 0.5 U of Amplitaq DNA polymerase (Perkin Elmer) 

was added. Optimal cycling conditions were 95°C for 30 seconds, 58°C for 30 

seconds and 72°C for 45 seconds, for 30 cycles, followed by a final extension at 

72°C for 5 minutes. One microlitre of PCR product was denatured in 12 pi 

formamide in the presence of 0.3 pi Tamra 500 size standard (Perkin Elmer) and 

electrophoresed through Performance Optimized Polymer 4 (Perkin Elmer) on an 

ABI 310 automated sequencer (Perkin Elmer). Genescan software 2.1 (Perkin 

Elmer) was used to analyse the data. Data on peak sizes and areas were then 

exported directly to Excel spreadsheets for further analysis.

5.2.2 TCR repertoire diversity score

A number of systems have been devised to describe TCR diversity quantitatively 

and/ or qualitatively. There has been little consensus as to the most appropriate 

method. Some methods score the spectratype on the number of discrete peaks 

present per BV family (‘complexity score’) (Wu, et al 2000). Others have defined 

a normal spectratype as consisting of at least 6 peaks spaced 3 nucleotides apart 

without any gaps (Verfuerth, et al 2000). Orsini et al calculated Z scores’ using 

means and standard deviations for the utilisation of BV gene segments in normal
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subjects as a reference value against which patient data were compared (Orsini, 

et al 2000 ).

The present study involved the examination of large numbers of spectratypes 

from 19 patients obtained at multiple intervals post transplant. It was felt that a 

robust and reproducible system was needed to convert the visual data obtained 

in each spectratype (number of peaks, Gaussian distribution of peaks or the 

degree of skew or oligoclonality present) into statistical data that would 

accurately represent the evolution of the TCR repertoire. A novel scoring system 

was therefore devised to represent overall TCR repertoire diversity as derived 

from 23 BV spectratypes obtained for each timepoint per patient and termed the 

TCR diversity score (Peggs, et al 2003b). Spectratypes were produced for 12 

normal adults. Numerical data from 4 spectratype parameters (peak number, 

peak area, kurtosis and skew) were recorded. Peak areas were converted to 

percentages of total peak area for each given BV subfamily to allow comparison 

between samples. For each BV family, the maximum possible score was four, 

making the maximum possible overall score 92 (23 x 4) for complete analysis. 

One point was deducted for each of the following: peak number < 6 ; 2 or more 

peaks showing a peak area > 3sd above the mean value; 1 or more peaks 

showing a peak area > 10% above the mean value; skew and kurtosis values 

both > 3sd outside the mean values. Using this diversity scoring system, normal 

adult samples scored a median of 80 (range 69 to 8 6 ). A similar analysis was 

carried out for patient spectratypes.

5.3 Results

Diversity scores were calculated for 16 patients pre-transplant, and at 3 monthly 

intervals post transplant. Results are shown in Figure 5.2.
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Figure 5.2. Median TCR diversity scores following transplant.
Median TCR diversity scores are shown in red prior to transplant, then at the timepoints 

indicated. Individual TCR diversity scores are shown as grey dashes. At each time point, the 

number of patients analysed is indicated. The normal range is indicated by a grey box.

Pre-transplant diversity scores were available in 11 patients and were below the 

normal adult range in 8 of them (median 56, range 26 to 78). Analysis of pre­

transplant subfamily spectratype profiles and scores showed no relationship with 

myeloma isotype, prior therapy or previous autograft. In addition, there was no 

over- or under-representation of specific subfamilies. At 3-6 months following 

transplant, but before the administration of DLI, more than 90% of the patients’ 

scores (median 55, range 38-77) remained below the normal adult range (69-82). 

Thereafter there was a trend to improvement in the median diversity score, and a 

greater overlap with the normal range. At 12 months post-transplant, 

approximately two thirds of patients remained below the normal range. 

Representative spectratypic profiles for patients 2 and 9 are shown in Figure 5.3 

(next page). While many BV families show no or few representative members 

early after transplant, there is a tendency to a Gaussian pattern beyond the 9 

month timepoint.
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Figure 5.3. BV spectratype profiles in patients 2 and 9
The recovery of a Gaussian pattern in representative examples of BV family pairs is shown at 6 

months (A) and 9 months (B) post transplant for patients 2 and 9.
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5.3.1 Effect of GVHD, stem cell source, donor type and disease status

Although oligoclonal patterns arose following transplant in some patients, there 

was no clear correlation with other parameters:

1. GVHD. Figure 5.4 shows the diversity scores for all 16 patients analysed, 

divided into 2 groups: those who had no GVHD at any stage, and those 

who developed acute or chronic GVHD after transplantation or DLI 

administration. It can be seen that there is no influence of the presence or 

absence of GVHD on TCR diversity score recovery.

5 40

j VHD ana TCR D i^ rs ity  Score

12m

M onths post transplant

Figure 5.4. Effect of the presence or absence of GVHD on TCR diversity scores
TCR diversity scores are shown for 16 patients. Patients are divided in to 2 groups: those with 

acute or chronic GVHD at any time after transplant or DLI administration are shown as dashes. 

Those without GVHD are shown as circles. At the 9 month timepoint, the effect of GVHD on 

TCR diversity score did not show significance (p=0.54 using the Mann-Whitney test).

2. Stem cell source. In this transplant protocol, the donor type determined 

the stem cell source. Sibling donors provided peripheral blood stem cells 

by apheresis whereas matched unrelated donors provided bone marrow 

stem cells. Figure 5.5 is a plot of diversity scores according to stem cell 

source, and shows no influence of this parameter on diversity score 

recovery.
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Figure 5.5. Effect of stem cell source on TCR diversity score
Data is shown for 16 patients at 3 monthly intervals. Patients who received peripheral blood 

stem cell transplants from sibling donors are shown as black squares, and those who received 

bone marrow transplants from matched unrelated donors are shown as open circles.

3. Disease status. Disease status post transplant did not alter the overall 

score in individuals.

5.3.2 Effect of T lineage chimeric status and donor leucocyte infusions

Table 5.1a shows the number of patients who received DLI, together with the 

proportion who were mixed or full donor chimeras in their T cell lineage at each 

time point, as well as the median diversity scores and ranges. Table 5.1b shows 

diversity score data for each patient, complete with an indication of when patients 

converted to full donor T lineage chimerism and whether or not they had received 

DLI at each time point. The majority (12 of 15 evaluable) of patients showed 

mixed chimerism in the T cell lineage at 6 months; at this time point, the median 

TCR diversity score was 55. By 15 months, by which time 14 out of 16 patients 

had received DLI, the median diversity score had risen to 63 (n=13), suggesting a 

possible effect of DLI on TCR repertoire. At this time, 6 patients had persistent 

mixed chimerism in at least one cell lineage and had lower diversity scores 

(median 60, range 49-71) compared with 4 patients who were full donor in all cell 

lineages (median 6 8 , range 45-76, p<0.05). This suggests that the administration
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of DLI, and conversion to full donor T cell chimeric status may positively influence 

the restoration of TCR repertoire.
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T cell chimeric status TCR Diversity Score

Timepoint DU in: Mixed Full donor Data available in: Median Range Data available in:

Pre 0 56 26-78 11

3-6 m 0 12 3 15 55 38-77 12

9m 12 8 8 16 65 25-78 16

12m 14 5 9 14 63 33-70 13

15m 14 5 5 10 9 45-76 10

18m 15 2 2 4 65 59-71 3

21m 15 2 0 2 64 57-70 2

Table 5.1a. T lineage chimeric status post transplant and TCR diversity scores
Data is shown for the specified timepoints. The proportion of patients who received DLI at each timepoint is indicated in the second column. The proportion of 

patients who were mixed chimeras or showed full donor chimerism is shown in columns three and four, and the median and range of TCR diversity scores in the fifth 

and sixth columns, together with an indication of the number of patients assessed.
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Patient pre Tx 3-6m 9m 12m 15m 18m 21m

1 60 42 76
2 57 54 71
3 51 29 64
4 65 63 49 70
5 43 38 59 57 45 59 57
6 56 64 48
7 65 53 59 60 49 64
8 1 74 41 78
9 53 46 67 67 69 71
10 44 " 45 67 46 60
11 58 4? 74 68 68
12 72 56 71 69 76
13 78 77 54 63
14 41 73 70
15 26 62 73 33
16 35 41 25

Median
score 56 55 65 63 66 65 64

Table 5.1b. TCR diversity scores and T lineage chimeric status per patient, and the effect of DLI administration.
Data are shown for each of 16 patients, (who had a minimum of 3 analyses of their TCR repertoire by spectratyping) and the TCR diversity score at each timepoint. 

Chimeric status is also indicated: blue shading indicates mixed T cell chimerism and grey shading indicates full donor T cell chimerism. Red numbers indicate a 

score calculated prior to DLI administration, and black numbers indicate post DLI scores. Median TCR diversity scores are shown in the last row.
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Patient 10, who reactivated TB 6 months post transplant, showed pronounced 

oligoclonality in individual spectratypes, at 6 and 8 months post transplant (Figure 

5.6). Her diversity score at 6 months was 56. She received DLI soon after the 8 - 

month timepoint. Thereafter, her diversity score fell to 45 at 3 months post DLI, 

with persistently oligoclonal spectratypes, and then rose to 60 at three months 

after her second DLI. However, oligoclonal spikes persisted in spite of receiving 

the second DLI.

B V  1 5 / 1 7B V 2 /  12 A

JL
ABV

n A
B V 7,' 8

. vA
W j\__ 'TV.A

The persistence of oligoclonal spikes in representative BV family pairs at 6 months (A) and 9 

months (B) post transplant is shown for patient 10 who reactivated TB 6 months post transplant.

Figure 5.6. BV spectratype profiles in patient 10 

5.3.3. TCR repertoire and T cell phenotype.

The size of the CD4+CD45RA+ cell compartment is a reliable indicator of the 

reconstitution of naive thymus-derived CD4+ cells, as discussed in Section 4.4. 

The relationship between TCR repertoire (expressed as the diversity score) and 

CD4+CD45RA+ cell numbers was therefore assessed, both overall using 

median values (Figure 5.7a) and individually in 4 patients (patients 4, 5, 9 and
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11, Figure 5.8), who had sufficient follow up data for correlation purposes. For 

comparison, median values of CD4+CD45RO+ cells were also plotted against 

TCR diversity score (Figure 5.7b).

Figure 5.7a
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Figure 5.7b
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Figure 5.7. TCR diversity score and CD4+CD45R+ subset recovery
Median CD4+CD45RA+ cell numbers (Figure 5.7a) or CD4+CD45RO+ cell numbers (Figure 

5.7b) are plotted with median TCR diversity scores to illustrate the relationship between 

CD4+CD45R+ subset recovery and T cell repertoire recovery.
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| I I D̂LÎ  | | I140

120

100

7-8m 9 -10m 11-12m  

Months post transplant
22-25m

Figure 5.8. TCR diversity score and CD4+CD45RA+ cell recovery in individual 

patients.

TCR diversity scores and absolute CD4+CD45RA+ cell numbers are shown at the timepoints 

indicated for 4 patients following transplantation. Where administered, donor lymphocyte 

infusions are indicated by an arrow.
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There was a gradual, parallel increase in both median CD4+CD45RA+ cell 

numbers and TCR diversity score throughout the 21 month period of follow up. 

The recovery of CD4+CD45RA+ cells and diversity score studied in more detail 

in 4 individuals, of who 3 received DLI at the times indicated in Figure 5.8.

Again there is a gradual rise in individuals’ diversity scores with time. This rise 

appears to be augmented by the administration of DLI in patients 5, 9 and 11.

5.4 Discussion

In summary, pre-transplant diversity scores were below the normal adult range 

in the majority of evaluable patients, although there was no association with 

myeloma isotype, prior therapy or previous autograft. Throughout the first 6 

months post transplant and before the administration of DLI, T cell repertoire 

was restricted as reflected by oligoclonal spectratype profiles and 

correspondingly low TCR diversity scores, with >90% of patients’ scores below 

the normal adult range. Thereafter, there was a trend to improvement in the 

median diversity score with gradual emergence of more Gaussian profiles in 

many BV families. Mixed T lineage chimeric status, which was present in the 

majority of patients at 6 months post transplant, prior to DLI administration, was 

associated with low diversity scores. Following DLI administration, there was a 

gradual conversion to full donor status accompanied by an increase in the 

diversity score, and by inference T cell repertoire.

Numerous studies have explored the nature and kinetics of immune recovery 

following myeloablative allogeneic transplantation, with particular emphasis on 

T cell repertoire. Various factors have been explored, including the influence of 

T cell depletion (TCD), peripheral blood versus bone marrow stem cells, effect 

of patient age and GVHD. Varying methodologies and scoring systems have 

been employed in different studies, making comparison of the results more 

difficult. An earlier study from our group looked at patients with chronic myeloid 

leukaemia who had received myeloablative conditioning and TCD grafts 

(Verfuerth, et al 2000). We showed using TCR spectratyping, that T cell 

repertoire is skewed in the early post-transplant phase, with oligoclonality in the 

first 3-6 months after transplant followed by a gradual trend towards more 

normal patterns by 12 months. In one-third of patients, the spectratype pattern
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took 2 to 3 years to normalise, and in two-thirds some abnormality persisted 

even after several years. Half of the patients who received donor leukocyte 

infusions (DLI) showed no change in T cell repertoire after DLI, about a fifth 

showed an improvement, but a third showed a more restricted pattern after DLI 

(Verfuerth, et al 2000). Another study using similar methodology looked at the 

effect of T cell depletion and found that the T cell repertoire was more restricted 

in recipients of TCD grafts than unmanipulated grafts (Roux, et al 1996). Similar 

results have been found using immunofluorescent methods (Gaschet, et al 

1995, Villers, et al 1994). Wu et al used spectratyping to show that the 

reconstitution of a normal TCR repertoire following myeloablative TCD 

allogeneic BMT in adults is related to haematopoietic chimerism: complete 

donor chimerism was strongly correlated with the restoration of a diverse TCR 

repertoire, whereas persistent recipient haematopoiesis was associated with a 

restricted repertoire (Wu, et al 2000).

Nonmyeloablative regimens are designed to provide sufficient

immunosuppression to achieve donor engraftment rather than eradicate the

underlying malignancy by direct chemo/radiotherapy-induced cell-kill. There are

few studies exploring the recovery of TCR repertoire following nonmyeloablative

transplantation. Friedman et al have shown that recovery of a normal TCR

repertoire was more rapid following nonmyeloablative than fully ablative SCT in

the unrelated donor setting (Friedman, et al 2001). A study of adult recipients of

nonmyeloablative umbilical cord blood stem cell transplantation showed that the

TCR repertoire was markedly more diverse and robust compared with the

repertoire in those receiving myeloablative regimens (Chao, et al 2002). The

more rapid restoration of the T cell repertoire after nonmyeloablative

transplantation reported in these 2 studies may relate to the reduced transplant-

related acute toxicity. A number of mechanisms contribute to the reduced

toxicity seen after nonmyeloablative procedures. Engraftment occurs more

quickly after nonmyeloablative conditioning, with a median of 11-15 days to

neutrophil recovery (>0.5 x 109/l) in different studies (Giralt, et al 1997, Khouri,

et al 1998, Slavin, et al 1998). This minimises the duration of the risk period for

severe bacterial infections and their potential contribution to acute tissue

damage in the immediate post transplant period. Mucositis is frequently absent,

and veno-occlusive disease (VOD) is infrequent and exclusive to busulphan-
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containing regimens (Barrett and Childs 2000). The reduction in the extent of 

tissue damage due to nonmyeloablative conditioning regimens abrogates the 

so-called ‘cytokine storm’ that is seen in myeloablative transplantation, in which 

inflammatory cytokines are released from damaged host tissues. These 

cytokines, including IL-1 and TNF-a upregulate the expression of adhesion 

molecules and host MHC antigens, and enhance recognition of the host tissue 

by mature donor T cells. On recognition of alloantigens, donor Th1 cells are 

activated and secrete IL-2 and IFN-y, which recruit other T cells, cytotoxic T 

cells, NK cells, monocytes and macrophages (Via and Finkelman 1993). 

Subsequently, mononuclear cells primed by Th1 cells secrete more TNF-a and 

IL-1, which induce cellular damage or apoptosis, and restart the cycle of 

inflammation. Thus, in myeloablative transplantation, inflammatory and 

alloreactive immune processes serve to drive the oligoclonal expansion of 

memory T cells, leading to persistent skewing of the TCR repertoire.

The conditioning regimen in this study differs from the studies cited above in 

that it results in profound and prolonged TCD caused by alemtuzumab. As a 

result the recovery of CD4+CD45RA+ T cells was markedly delayed, with levels 

well below normal in the first year post transplant. Despite this, the spectratype 

profiles for most BV families, and the calculated diversity scores showed good 

recovery, the former with a greater tendency to the Gaussian by 9 months post 

transplant. The notable exception was patient 10, who had reactivation of TB 

infection at 6 months post transplant. In this patient, expansion of TB-reactive T 

cell clones, particularly following the administration of DLI, led to persistent 

skewing of many of her spectratype profiles, including BV 8 , BV16 and BV17. It 

is possible that expanded TB-specific memory T cells occupied peripheral 

niches, thus preventing their repopulation by thymus-derived naive CD45RA+ 

cells. Flence in this patient, the pattern of T cell recovery more closely 

resembles that seen in recipients of myeloablative regimens, where severe 

infections and GVHD lead to oligoclonal expansion of reactive T cell clones and 

hence a more prolonged skewing of the T cell repertoire.

In summary, despite the prolonged T cell depletion caused by this

alemtuzumab-containing regimen, detailed analysis of T cell repertoire showed

that although oligoclonal patterns predominated in the early post transplant
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period, in the absence of the major toxicities of severe infections and severe 

acute GVHD seen in conventional allogeneic regimens, this group of patients 

demonstrated a fairly rapid restoration of normal TCR repertoire.
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Chapter 6: B cell reconstitution: Circulating CD19 numbers, 

immunoglobulin levels and immunoglobulin heavy chain gene 

spectratype analysis

6.1 introduction

B cells play an important role in the defence against microorganisms. The main 

mechanism is via humoral immunity and the generation of antibodies against 

specific infectious antigens. Secreted antibodies are the effector molecules of 

humoral immunity, and the differentiation of B cells from antigen- recognising to 

effector cells involves a change in immunoglobulin expression from the 

membrane to the secreted form. Like B cell proliferation, antibody synthesis and 

secretion in response to protein antigens are stimulated by CD40-mediated 

signals and helper T cell-derived cytokines such as IL-2, IL-4 and IL-5, which 

activate transcription factors that enhance the transcription of immunoglobulin 

genes and therefore immunoglobulin synthesis. Interleukin-6 , which is produced 

by macrophages, T cells, and many other cell types, is a growth factor for 

antibody-producing B cells that have already differentiated. Within lymphoid 

tissue, antibody-secreting cells are found mainly in extrafollicular sites, such as 

the red pulp of the spleen and the medulla of the lymph nodes. These cells also 

migrate to the bone marrow and at 2 to 3 weeks after stimulation by antigen, the 

bone marrow may be a major site of antibody production. Many of the antibody- 

secreting B cells differentiate into plasma cells that are morphologically distinct 

B cells committed to abundant antibody production. Secreted antibodies enter 

the circulation, but antibody-producing cells do not circulate actively. Antibodies 

in the blood and interstitial fluids bind antigens to initiate the effector phase of 

the humoral immune response. Memory B cells enhance the immune response 

to previously encountered antigens in the secondary immune response.

6.1.1 B Cell Development

In numans, the first cells to display cell surface antigens that mark commitment to 

the B lineage are detected in the fetal liver at approximately 8 weeks of gestation. 

B cell production ceases at this site in late pregnancy. Subsequently, B cells are 

also produced in the red marrow, and this production continues throughout adult 

life. Pro-B cells do not express H or L chains, since they have not yet begun the 

V(D)J gene rearrangement process that is the hallmark of B lymphocytes and is
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an obligate step in antigen receptor expression (Kuehl 1983). Although cellular 

differentiation along the B lineage pathway is most realistically viewed as a 

continuum, it can be divided into discrete developmental stages. The expression 

of surface Ig identifies the B cell stage. The earliest cell that synthesises a 

detectable IgG gene product (pre-B lymphocyte) contains cytoplasmic p heavy 

chains composed of variable (V) and constant (C) regions and is found only in 

haematopoietic tissues such as the bone marrow and fetal liver. This cell does 

not express functional, fully assembled membrane IgM, since surface expression 

requires synthesis of both heavy and light chains. Thus pre-B cells cannot 

recognise or respond to antigen. At the next identifiable stage in B cell 

maturation, k  or k light chains are also produced. These form a complex with p 

heavy chains, and then the assembled IgM molecules are expressed on the cell 

surface, where they function as specific receptors for antigens. IgM-bearing B 

cells that are recently derived from marrow precursors are called immature B 

lymphocytes because they do not proliferate and differentiate in response to 

antigens. Once a B cell expresses a complete heavy or light chain, it cannot 

produce another heavy or light chain containing a different V region. Having 

acquired the ability to produce complete Ig molecules, and therefore specificity, B 

cells migrate out of the bone marrow and enter the circulation and lymphoid 

tissues.

The survival and function of newly formed B cells is initially dependent on the 

specificity of their immunoglobulin heavy chain gene. Autoreactive B cells can be 

eliminated or rendered tolerant (‘anergised’) at this stage of development. Mature 

B cells that survive negative selection co express p and 6 heavy chains in 

association with the original k  or k light chain and therefore produce both 

membrane and IgM and IgD. Such cells are responsive to antigens and receive T 

cell help in their encounter with antigen. Mature B cells which encounter cognate 

antigen become activated B lymphocytes. Activated B cells proliferate and 

differentiate, producing an increasing proportion of their Ig in a secreted form and 

progressively less in a membrane-bound form, ultimately as plasma cells. Some 

of the progeny of activated B cells undergo heavy chain class (isotype) switching 

and begin to express Ig heavy chain classes other than p and 5 (e.g. y, a and s). 

Some of the antigen-activated B cells do not develop into antibody secretors, but
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instead acquire the ability to survive for long periods of time as memory B cells 

that are available for anamnestic responses to recall antigens. Memory cells 

survive for weeks or months apparently without antigenic stimulation, and actively 

circulate between the blood, lymph and lymphoid organs. They are capable of 

mounting rapid responses to subsequent introduction of antigen.

The B cell developmental process can be usefully tracked using monoclonal 

antibodies against different cluster of differentiation (CD) molecules. A 

subpopulation of pre-B cells expresses CD34, also found on early 

haematopoietic cell precursors, including the haematopoietic stem cell. The 

earliest B cell progenitors express CD10, the common acute lymphoblastic 

leukaemia antigen. They also express CD19, which is found throughout the B 

lineage except in terminally differentiated plasma cells. The CD20 pan-B cell 

marker arises somewhat later as pre-B cells initiate Ig gene rearrangement.

CD40 is expressed throughout B cell development except in terminally 

differentiated plasma cells, its ligand (CD40L) is expressed on activated helper T 

cells. The interaction of CD40 with CD40L is the conduit for T cell help, and the 

promotion of isotype switching. The sequential expression of cell surface 

molecules and intranuclear terminal deoxynucleotidyl transferase (TdT) 

expression during B lymphocyte maturation is schematically represented in 

Figure 6.1.
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Figure 6.1. Expression of nuclear, cytoplasmic and surface markers during B cell 
development
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6.1.2 Generation of antibody diversity and the B cell repertoire

The primary antibody repertoire consists of all the antibodies that an individual 

can produce in response to the first exposure to different antigens. It is 

determined by the number of B cell clones (estimated to be > 109 in each 

individual) that exist prior to antigen exposure and express membrane Ig 

molecules with distinct specificities for antigens. Diverse repertoires of antibody 

genes are generated during B cell development (Tonegawa 1983). The diversity 

of B cell repertoire may be studied by molecular biological techniques that can be 

used to illustrate a complex or oligoclonal repertoire (Figure 6.2).
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Figure 6.2. Generation of B cell repertoire diversity and its study using PCR- 
based methodology
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This diversity is achieved by 4 main processes (Calame 1985). Firstly, 

combinatorial rearrangement of variable (VH), diversity (DH) and joining (JH) 

segments (of which there are 100+, 15 and 6 genes respectively) for the heavy 

chain gene and variable (VL) and joining (JL) segments for the light chain gene. 

Secondly, the addition of N-nucleotides and P-nucleotides by TdT provides 

junctional diversity, and leads to the generation of a hypervariable segment of the 

immunoglobulin heavy chain known as the third complementarity-determining 

region (CDR3), which is unique. Thirdly, as part of the recombination process 

itself, diversity can be introduced at the joints between the different gene 

segments. Finally, somatic hypermutation is a process whereby high-frequency 

point mutations are introduced into the variable regions of expressed light chain 

and heavy chain genes, resulting in increased affinity of antibodies for antigen, 

and impart a survival advantage to the B cells producing those antibodies. This 

process, which occurs in the germinal centres of lymphoid follicles leads to 

affinity maturation of the humoral immune response, by generating antibodies 

with increasing capacity to bind antigens and thus combat persistent or recurrent 

antigens. Persistent or repeated stimulation by T cell-dependent antigens leads 

to an increasing numbers of mutations in the immunoglobulin genes of germinal 

centre B cells. Some of these mutations will generate high-affinity antibodies, but 

many of these mutations may result in a decline or even loss of antigen-binding. 

Therefore the next crucial step in the process of affinity maturation is the 

selection of useful high-affinity B cells. Follicular dendritic cells in the germinal 

centres display antigens and the B cells that bind these antigens are rescued 

from programmed cell death and selected to survive. Memory B cells typically 

bear high-affinity antigen receptors and immunoglobulin molecules of switched 

isotypes more commonly than do naive B cells. This enables them to produce 

large quantities of isotype-switched high-affinity antibodies on secondary 

exposure to antigen.

Thus, within 4 to 7 days of antigen exposure, some of the activated B cells

migrate deep into the lymphoid follicle and begin to proliferate rapidly, forming the

germinal centre. The doubling time of these germinal centre B cells, also called

centroblasts, is estimated to be 6 to 12 hours, so that within 5 days a single

lymphocyte may give rise to almost 5000 progeny. Each fully formed germinal

centre contains cells derived from only one or a few antigen specific B cell
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clones. The progeny of the proliferating cells in the germinal centre are smaller 

cells, known as centrocytes, which undergo differentiation and selection 

processes outlined in Section 6.1.1. and above. The formation of germinal 

centres depends on the presence of helper T cells and the interaction between 

CD40 and CD40L and is therefore only observed in antibody responses to helper 

T cell-dependent protein antigens.

6.1.3 The immunoglobulin heavy chain variable region (VH) gene families

Human VH segments can be divided into 6 main families: VH1 to VH6 on the basis 

of nucleotide homology of 80% or above (Berman, et al 1991). VH gene family 

usage in the normal adult B cell repertoire is proportional to the number of 

functional germline genes within each VH family (Rettig, et al 1996). For example, 

the Vh3 family is the largest VH family with approximately 22 functional members 

that account for 50 to 60% of rearrangements in the normal adult repertoire 

(Gokmen. et al 1998). The VH2 family on the other hand has just 3 functional 

members, and contributes proportionately less (approximately 4-5% of 

rearrangements) to the normal adult repertoire (Brezinschek, et al 1995). A 

different situation occurs in the VH repertoire of fetal and neonatal B cells as 

compared to adult B cells. B cell responsiveness to different antigens is 

programmed and appears at different points of ontogeny (Klinman and Linton

1988). Different repertoire restrictions also characterise subpopulations of adult B 

cells defined by their anatomical localisation and/or by their expression of various 

surface markers (Andrade, et al 1989. Freitas, et al 1990, Jeong and Teale

1989).

The pattern of reconstitution of cellular subsets and serum immunoglobulins post

transplantation has raised the question of whether the immune deficiency state

seen in this situation could be explained by restriction in utilisation of Ig genes.

Several studies have therefore addressed the question of expression of VH genes

post transplantation. Fumoux et al found that Vh gene family usage is decreased

twofold to threefold post transplant, compared to normal adults, and is

compensated for by transient overexpression of VH4, VH5 and VH6 (Fumoux, et al

1993) They and others went on to conclude that VHgene family usage

recapitulated fetal B cell ontogeny (Storek, et al 1993) on the basis of relative

overuse of VH gene families such as V h 6 .  Subsequently, Raaphorst found that V h
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repertoire analysis during reconstitution following transplantation could not clarify 

whether early post-transplant repertoire follows a fetal pattern, since VH usage 

frequencies are poor markers of development owing to the overall similarity of 

fetal and adult VH repertoires. In addition, he argued that VH usage frequencies 

determined after transplant may not reflect actual recombination frequencies 

because (oligoclonal) expansions are frequent at this stage (Raaphorst 1999).

6.1.4 Consequences of B cell immunodeficiency

There are more than 70 recognised primary immunodeficiency states, which are 

the result of genetically mediated abnormalities in the development or function of 

the immune system. Five major categories of primary immune deficiency states 

are recognised by the World Health Organisation (WHO): deficient antibody 

production (eg Bruton's agammaglobulinaemia, hyper IgM syndrome, selective 

IgG deficiency), deficient antibody production combined with defective cellular 

immune responses (eg common variable immunodeficiency, severe combined 

immunodeficiency, adenosine deaminase deficiency), immunodeficiencies 

associated with other defects (eg Wiscott-Aldrich syndrome, Di George 

syndrome, ataxia telangectasia), deficient complement production and defects of 

phagocyte function. Bruton’s disease is the prototype for primary humoral 

immunodeficiencies. It is characterised by a virtual absence of serum 

immunoglobulins of all classes and clinically, and recurrent pyogenic infections 

dating from early childhood. Affected males are well during the first 6-12 months 

of life because of the protection afforded by the passive transfer of maternal 

antibodies Thereafter, they experience recurrent pyogenic infections of the upper 

and lower respiratory tracts, sinuses, middle ears and skin, usually due to 

encapsulated bacteria.

Transplant recipients are susceptible to infection by pyogenic encapsulated 

bacteria due to absence of protective opsonising antibodies (Storek 2000). The 

post transplant state is also complicated by the impairment of multiple host 

protective mechanisms. For example T cell-dependent antibody responses to 

recall antigens (e.g. tetanus toxoid, diphtheria toxoid, polio vaccine, measles 

virus, hepatitis B surface antigen) are not detectable early after transplantation 

(Saxon, et al 1986, Wimperis, et al 1986), but can usually be elicited late (>1 

year) (Storek and Saxon 1992). A recent study has elucidated some of the
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factors influencing B cell lymphopoiesis following allogeneic transplantation 

(Storek. et al 2001). These authors found that the number of B cell precursors in 

the marrow on days 30 and 80 post transplant were at least 4-fold lower in 

patients with grade ll-IV acute GVHD, compared to those with grade 0-I acute 

GVHD. In addition, the presence of extensive chronic GVHD reduced B cell 

precursor frequency by 18-fold. The number of B cell precursors was not affected 

by CD34 cell dose, source of stem cells (marrow or PB), donor age or patient 

age. An understanding of the kinetics of recovering humoral immunity following 

this alemtuzumab-containing conditioning regimen is important to the effective 

implementation of prophylaxis and management of infection in the recipients, 

including a programme of active and passive immunisations.

This study of B cell recovery focussed on:

1. Recovery of B cell numbers, using the CD19 surface marker.

2. Serum immunoglobulin levels.

3. B cell repertoire, using a RT-PCR-based method to assess usage of 2 

selected immunoglobulin heavy chain gene variable region families (VH2 and 

Vh3).

4. An assessment of B cell chimeric status

5. The influence of persistent disease post transplant, GVHD and DLI on the 

above parameters.

6.2 Special Methods 

6.2.1 Serum immunoglobulin levels

Serum immunoglobulins were measured by immunoturbidimetry on an Integra 

700 analyser (Roche).

6.2.2 Immunoglobulin heavy chain gene (IgH) CDR3 spectratyping using 

fluorescent dye-labelled primers

Several methodological developments have contributed to the understanding of 

the V region repertoire. The application of PCR-based techniques (Feeney 1992, 

Gu. et al 1992) allowed the detailed analysis of individual gene sequences that 

has been of particular importance in the analysis of junctional diversity. This 

study utilises a modification of a RT-PCR-based method (White 1998) to 

determine VH gene diversity after transplantation.
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The method used agarose gel electrophoresis to identify first round and nested 

PCR products. Oligonucleotide primers with a fluorescent dye label were used 

in the nested step, and the products analysed by Genescan software 2.1 on an 

ABI 310 automated sequencer (Perkin Elmer). By this method, a typically 

diverse repertoire is characterised by 15-18 peaks separated from each other 

by 3 base pairs. Each peak corresponds to a specific CDR3 length. The peaks 

often show a Gaussian distribution in intensity (particularly in the IgM isotype), 

in which peak height correlates with the total amount of CDR3s of that length 

present (Figure 6.3). Following antigenic stimulation, this pattern becomes 

skewed by the presence of large peaks representing CDR3's of a particular 

size, and by inference, specificity.
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Figure 6.3. Example of cord blood VH3 spectratypes for IgM, IgA and IgG 

isotypes.
The IgM isotype demonstrates the most Gaussian distribution, followed, in this case by the IgA 

and IgG isotypes

The Vh2 and VH3 families were selected in order to analyse patient usage of

two differently represented VH families following transplant compared to that of

normal controls. The spectratyping method outlined below was used to study B
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cell repertoire complexity in 8 patients at 6, 9, 12, 15 and 18 months post 

transplant and 8 age-matched normal controls.

6.2.3 RNA extraction and RT-PCR.

RNA was extracted from PBMC using Ultraspec RNA (BiotecX Laboratories, 

Houston, USA) according to the manufacturer’s protocol. Complementary DNA 

(cDNA) was generated from 1 ug of RNA in a 20 ul reaction using random 

hexanucleotide primers for reverse transcription with reverse transcriptase 

(Superscript, GibcoBRL, Paisley, UK).

6.2.4 Spectratyping. Two VH gene families (VH2 and VH3) were amplified across 

the CDR3-encoding regions in an isotype-specific manner using VH/ constant 

region primer combinations (Oswel, Southampton, UK):

V h2: CAGATCACCTTGAAGGAGTCTGGTCCT (forward) or 

V h3 GAGGTGCAGCTGGTGGAGTCTGGGGGAG (forward) and 

IgM: TTTGTTGCCGTTGGGGTGCTGGAC (reverse),

IgA: CTGGGCAGGGCACAGTCACATCCT (reverse) and 

lgG1: ACGGTGGGCATGTGTGAGTTTTGT (reverse)

in separate 50 ul PCR reactions containing Genamp PCR buffer II (Perkin 

Elmer), 1.5 mM/l MgCI2, 0.2 mM/l each dNTP, 1 mM/ of each primer and 2 ul of 

cDNA. After a 3-minute denaturation step at 95°C, 0.5 U of Amplitaq DNA 

polymerase (Perkin Elmer) was added. Optimal cycling conditions were 94°C for 

30 seconds, 60°C for 30 seconds and 72°C for 2 minutes, for 30 cycles, followed 

by a final extension at 72°C for 5 minutes. 2 ul of PCR product was subjected to 

a run-off reaction using a nested fluorescent FAM-conjugated JH primer (0.1 

mM/l) (TGAGGAGACGGTGACCAKGGTBCCHTGGCCCC, Oswel,

Southampton, UK) in a 20 pi reaction containing Genamp PCR buffer II (Perkin 

Elmer), 1.5 mM/l MgCI2, and 0.2 mM/l each dNTP. The hot start and cycling 

conditions were as described above, except that the number of cycles was 12 

rather than 30.

1 pi of PCR product was denatured in 12 pi formamide in the presence of 0.4 pi 

Tamra 500 size standard (Perkin Elmer) and electrophoresed through 

Performance Optimized Polymer 6 (Perkin Elmer) on an ABI 310 automated
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sequencer (Perkin Elmer). Genescan software 2.1 (Perkin Elmer) was used to 

analyse the data.

6.2.5 Optimisation of IgH spectratyping

A number of optimisation steps were undertaken to ensure reliability and 

reproducibility and to identify limitations of the assay. These experiments were 

carried out on a control subject’s peripheral blood mononuclear cells:

1. Sensitivity. RNA extraction was performed from cell suspensions of varying 

concentrations, to ensure that the technique would be sufficiently sensitive to 

analyse samples from patients post transplant, who frequently had low 

lymphocyte counts. The PBMC concentrations used were 1 x 106/ml, 2 x 

106/ml, 5 x 106/ml and 10 x 106/. Actual CD19+ cell numbers were not taken 

into account, since they would be a fixed proportion of the PBMC cell aliquots. 

RNA extraction was carried out according to the manufacturer’s protocol, 

followed by RT-PCR as described in Chapter 2. Spectratype analysis was 

then performed as outlined above for the IgA isotype of the VH2 family and the 

IgM isotype of the VH3 family. The result of this optimisation step for VH2 A 

and Vh3 M are shown in Figure 6.4. At a cell concentration of 1 x 106/ml, the 

Vh2 IgA spectratype shows relative over-representation of some peaks and 

under-representation of others, due to the low cell concentration. This effect is 

less marked at a cell concentration of 2 x 106/ml, in which the spectratype 

shows better-defined peaks. The optimum cell concentration appeared to be 

1 0 x 1 06/ml, with clear definition of peaks 3 base pairs apart. This optimisation 

step demonstrated that it is possible to obtain a spectratype profile from a cell 

concentration as low as 1 x 106/ml, but this is at the expense of optimal peak 

definition. Similar results were obtained for the VH3 IgM isotype, although 

overall the spectratypes were less affected by the differences in cell 

concentrations due to the greater usage of this VH family in the normal 

repertoire. Based on these preliminary experiments, 5-10 x 106/ml PBMC 

were used for IgH spectratype analysis whenever possible.
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Figure 6.4. Optim isation of MNC concentration used for RNA extraction.

A cell concentration of 10 x 106/ml demonstrates optimal peak definition, more clearly seen in 

the Vh2A spectratype compared to the VH3M spectratype, owing to the greater usage of the 

Vh3M family in the repertoire.
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2. Reproducibility. The entire procedure, including isolation of mononuclear 

cells, RNA extraction, RT-PCR reaction and first round and nested PCR 

reactions was carried out on 2 separate samples from the same subject to 

ensure the reproducibility of the technique. The results confirmed this to be 

the case, with virtually identical spectratype profiles being obtained in the 

different experiments.

3. Temporal stability of cDNA. First round and nested PCR reactions were 

carried out on the same cDNA sample at different time points to ensure 

temporal stability of the sample for the purposes of this assay. Subsequently, 

cDNA samples if stored at 4°C could be analysed several weeks apart and 

yield identical spectratypic profiles.

4 Use of different dilutions of the first round product. The first round PCR 

reaction was carried out on a control sample of cDNA obtained from 5 x 106 

cells, to identify whether better definition of peaks could be obtained if the first 

round product is diluted. The first round products were thus subjected to the 

nested PCR step in the following concentrations: neat, 1 in 2, 1 in 5, 1 in 10 

and 1 in 20. The results for VH2/ IgA and VH3/ IgM, shown in Figure 6.5 show 

that the peak heights obtained following denaturation in formamide and 

electrophoresis in the ABI 310 sequencer were proportional to the degree of 

dilution, but were not otherwise affected. There was no advantage to be 

obtained from diluting the first round product, so it was decided to use it 

undiluted in the analysis of patient samples.
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Figure 6.5. Use of different dilutions of first round product.
This example of the optimisation step of determining whether dilution of the first round product 

yielded better peak definition shows this not to be the case. The only change seen is that peak 

height varied proportionately to the degree of dilution of first round product.
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6.2.6 IgH spectratype complexity.

The measure of complexity used to analyse IgH CDR3 spectratypes was based 

on peak number (which was recorded for each spectratype) and spectratype 

appearance (near-Gaussian versus oligoclonal). An IgH CDR3 spectratype was 

defined as near-Gaussian if the peak heights showed an unequivocally normal 

distribution, with no peak in the tails of the distribution exceeding its more central 

neighbour in height. Oligoclonality was defined as any spectratype showing a 

non-Gaussian distribution by these criteria.

6.2.7 Chimerism analysis by microsatellite PCR technique.

Refer to Chapter 2, General Methods.

6.3 Results

6.3.1 CD19+ cell recovery

In all patients, circulating CD19+ cells recovered gradually throughout the period 

of follow up (up to 21 months) post transplant. Absolute and median CD19+ cell 

numbers are shown in Table 6.1.
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Time after transplant
Patient 3-4m 6m 9m 12m 15m 18m 21m

1 110 9 23

2 2*4 6 14 16 ...... 5

3 12 80 137 29

4 0 3 4 32 39 130 87

5 3 49 202 36 180

6 9 23 34 67 103

7 2 12 11 32 38 48 23

8 34 87 105

9 49 21 27 248 48 65

10 1 134 3S" 97 102

11 16 31 90 29

12 -4 '''' Q 38 53 26

13 36 35 35 49

14 " 56 165 382 44

15 13 17

16 3 8

17 1 12 18

18 69 2 * 2 , ,

n= 15 18 16 10 8 4 3

Median 12 37 35 60 33 65 55

Min 0 3 4 14 9 5 23

Max 156 214 391 248 102 180 87

Table 6.1. CD19+ cell numbers
Absolute numbers (per microlitre of peripheral blood mononuclear cells) of CD19+ cells are 

shown for each patient at 3 monthly intervals post transplant The normal range is 120-600 cells 

per microlitre CD19+ counts that fall within the normal range are printed in red, and those 

below the normal range in black Minimum, maximum and median values are also shown, 

together with the number of patients analysed at each time point.

Just 13% (n=15) of patients at 3 months had normal CD19+ cell numbers, rising 

to 31% of patients at 6 months and 29% at 9 months. The proportion of patients 

with normal CD19+ cell numbers at 12 months post transplant (n=12) fell to 17%, 

rising once more to 29% at 18 months (n=7). The levels of CD19+ cells fluctuated 

throughout the period of follow up, such that no single patient maintained normal
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CD19+ cell numbers when followed up serially. Overall, median CD19+ cell 

numbers remained below normal for up to 21 months post transplant (Figure 6.6).
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Figure 6.6. CD19+ cell recovery.
Cell numbers are given in absolute numbers per microlitre of blood. Individual as well as median 

values (given as line graph) are shown at 3 monthly intervals post-transplantation. The normal 

range is 120-600 cells per microlitre. indicated by the blue box.

CD19+ cell recovery was also assessed in the context of disease status, the 

presence of GVHD, B lineage chimeric status and DLI:

1. Influence of disease status. Eighteen patients were evaluated at 12 

months post transplant for their disease status. Nine patients had 

progressive disease, and 9 had responding disease at this time point. 

There was no difference in CD19+ cell recovery between the 2 groups of 

patients, suggesting that the presence of progressive disease does not 

affect CD19+ cell recovery (Figure 6.7a).
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Effect of progressive disease on CD19+ cell recovery
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Figure 6.7a. CD19+ cell recovery and progressive disease

Median CD19+ cell numbers are shown for 9 patients with progressive disease (PD, blue line) 

and 9 patients with responding or stable disease (Other, pink line) at the timepoints indicated.

This was confirmed by analysis of individual patients’ CD19+ cell recovery, as 

illustrated in Figure 6.7b.
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Figure 6.7b. CD19+ cell numbers in individual patients according to disease status post 

transplant

(figure legend overleaf)
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Figure 6.7b CD19+ cell numbers in individual patients according to disease status 

post transplant 

Figure Legend:
The absolute CD19+ cell count is shown for each timepoint in individual patients 1, 2, 5, 6. 9 &

13 who had progressive disease (PD. blue lines) post transplant, as indicated by a rising 

paraprotein Although the CD19+ cell count fell in Patients 1 and 2 following the onset of 

disease progression, this is not seen in Patients 5, 9 and 13, whose counts continued to rise 

despite a rising paraprotein Patient 6 had disease progression at 6 months post transplant, but 

this was reversed by the administration of donor lymphocyte infusions (DLI); his CD19+ cell 

count continued to rise thereafter In contrast, patients 3. 4. 7. 10, 11 & 12 had a stable or falling 

paraprotein throughout the period indicated in the graphs (pink lines). Only patients 4 & 7 show 

a steady rise in CD19+ cell counts in this group of responders.

Although the CD19+ cell count fell in Patients 1 and 2 following the onset of 

disease progression, this is not seen in Patients 5, 9 and 13, whose counts 

continued to rise despite a rising paraprotein. Patient 6 had disease progression 

at 6 months post transplant, but this was reversed by the administration of donor 

lymphocyte infusions (DLI); his CD19+ cell count continued to rise thereafter. In 

contrast, patients 3. 4, 7, 10, 11 & 12 had a stable or falling paraprotein 

throughout the 18 month follow up period. Only patients 4 & 7 show a steady rise 

in CD19+ cell counts in this group of responders.

2. Effect of GVHD. There was no difference in CD19+ cell recovery in 9 

patients who experienced GVHD after transplant or DLI versus 9 patients 

who had no GVHD at any stage. (Figure 6.8)
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Effect of GVHD on CD19+ cell recovery
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Figure 6.8. CD19+ cell recovery and GVHD

Median CD19+ cell numbers are shown for 9 patients who experienced GVHD following 
transplant or DLI administration (blue line) and 9 patients who did not experience GVHD at any 

stage following transplant (pink line).

3. Influence of B lineage chimeric status and DLI. Neither B lineage 

chimeric status nor the administration of DLI influenced the rate of CD19+ 

cell recovery.

6.3.2 B lineage chimeric status

When B lineage chimeric status was assessed, 16 of 19 patients converted to full 

donor B lineage chimerism within 6 months of transplant. Of the 3 patients who 

remained mixed B lineage chimeras at 6 months, 1 converted to full donor B 

lineage chimerism within a month of receiving DLI, another showed full donor B 

lineage chimerism at 8 months prior to receiving DLI, and the other remained a 

mixed chimera in the B lineage in spite of receiving 2 DLl’s.

6.3.3 Immunoglobulin levels

Immunoglobulin levels were interpreted in the context of disease status since 

immune paresis is a well-known accompaniment of active myeloma. Levels were 

measured at 6, 9, 12 and 18 months post transplant and correlated with the trend
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in serum or urine monoclonal protein, chimeric status, the presence of GVHD and 

incidence of infection.

Overall, 58% of patients had normal levels of IgM at 6 months (n=19) post 

transplant, versus 33% with normal levels of IgG and 47% with normal levels of 

IgA at this time point. By 12 months (n=17), this had risen to 88% for IgM and 

37% for IgG, but fallen to 40% for IgA. At 18 months, 50% of patients (n=10) had 

normal IgM. IgG and IgA levels. (Table 6.2)
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Table 6.2. Immunoglobulin levels
Normal (blue shading) or low (yellow shading) levels of IgA, IgG and IgM are shown at 6, 9,12 and 18 months post transplant. A grey box indicates no measurement due to insufficient 
follow up time or death. In the second row for each patient, the trend of the paraprotein (PP), the presence of graft-versus-host disease (GVHD), & current use of chemotherapy 
(CHEMO) are indicated. The number of patients analysed at each timepoint and the percentage with normal immunoglobulins (Ig's) is shown in the smaller table. Proven (non-CMV) 
viral infections are indicated in the far-right column (HHV7, Human herpes 7; VZV, varicella zoster; PFIII, parainfluenza III; HSV, herpes simplex; Adeno, adenovirus; RSV, respiratory 
syncytial virus; Inf A, influenza A virus).

138



1. Influence of disease status. When individual patients’ immunoglobulin 

levels were assessed in conjunction with disease status, it was found that 

there was no correlation between active disease, as indicated by a rising 

paraprotein (PP) and serum immunoglobulin level. 29% of patients with a 

falling PP had normal IgA levels, 43% had normal IgG levels and 100% 

had normal IgM levels. There were similar findings for those with a stable 

PP (33%, 50% and 83% respectively). Of the 3 patients with a rising PP, 2 

each had normal IgA and IgM levels, but none had normal IgG levels 

(Table 6.3a), although it is difficult to draw firm conclusions as the number 

of patients is small.

PP trend n=

Number of patients with normal Ig levels 
at 12 months (%)

IgA IgG IgM

Down (Responding
disease) 7 2 (29%) 3 (43%) 7 (100%)
Stable (Plateau) 6 2 (33%) 3 (50%) 5 (83%)
Up (Progressive disease) 3 2 (66%) 0 2 (66%)

Table 6.3a. Immunoglobulin levels and disease status
Data is shown for patients at 12 months post transplant The proportion of patients with normal 

Ig levels is shown, together with the percentage of the number of patients with a downward, 

stable or upward trend in the paraprotein (PP)

2. Effect of GVHD. All 7 patients with GVHD post DLI, when assessed at 9 

months post transplant had persistently low levels of IgG and IgA but 43% 

of patients had normal levels of IgM. Those patients without GVHD (n=12), 

had significantly higher levels of IgA, IgG and IgM (33%, 50% and 83% 

respectively) (Table 6.3b).

Number of patients with normal Ig levels 
at 9 months (%)

IgA IgG IgM

GVHD n=
Present 7 0 0 j 3 (43%)
Absent 12 4 (33%) 6 (50%) ..... 10 (83%)

Table 6.3b. Immunoglobulin levels and GVHD
Data is shown for patients at 9 months post transplant. The proportion of patients with normal Ig 

levels is shown, for patients with and without GVHD.

139



3. Influence of viral infections. The correlation between IgG and IgA levels 

and the incidence of viral (non-CMV) infections was assessed. Out of 11 

patients who experienced proven non-CMV viral infections post transplant, 

64% had subnormal IgG and IgA levels versus 50% of 8 patients who did 

not have proven non-CMV viral infection. For IgM, the levels were normal 

in 73% of patients with non-CMV viral infections and in 75% of those 

without (Table 6.3c).

Non-CMV viral
Number of patients with normal Ig levels 

at 9 months (%)
infection n= IgA IgG IgM

Present 11 4 (64%) 4 (64%) 8 (73%)
Absent 8 4 (50%) 4 (50%) 6 (75%)

Table 6.3c. Immunoglobulin levels and non-CMV viral infections
The proportion of normal immunoglobulin levels is shown for 11 patients who had proven non- 

CMV viral infection and the remaining 8 patients who did not, when assessed at 9 months post 

transplant

4 Influence of B cell chimeric status. There was no correlation between 

immunoglobulin level recovery and B lineage chimeric status.

6.3.4 IgH CDR3 repertoire by spectratyping: complexity and spectratype 

appearance

Prior to transplantation, patient IgH CDR3 spectratype complexity was reduced in 

terms of peak number compared to that of normal controls in both VH2 andVH3 

families. This may have been due to an effect of disease status or pre-transplant 

therapy, although there was no direct correlation between complexity and the 

actual number of lines of prior therapy. The reduction in spectratype complexity 

(their less-Gaussian nature) was more marked in the VH2 family, as would be 

expected in this less well-represented family. In addition, the IgA and IgG isotype 

spectratypes were frequently non-Gaussian, which is in keeping with the cellular 

composition that they represent namely heterogeneous populations of different 

clonal expansions at different stages of expansion or contraction.

Following transplant, there was a steady improvement in spectratype complexity,

reflected by an increase in median peak number in both Vh families across the
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isotype spectrum. Data (median peak number and range together with the 

proportion of subjects showing a Gaussian appearance) for the different VH 

families and IgM, IgG and IgA isotypes in patients and controls are shown in 

Table 6.4.
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Table 6.4. IgH Spectratype complexity.
Median spectratype peak number and range and the proportion of subjects with a Gaussian 

spectratype appearance are shown for 8 patients and 8 control subjects for the different VH 

families and IgM, IgA and IgG isotypes. The number of patients analysed at each timepoint is 

indicated in the 3ra row of the table

Normal control subjects had fewer peaks per VH2 family spectratype for all three 

isotypes (lgM> lgG> IgA) than that for the VH3 family, as would be expected. In 

addition, the normal controls showed a low incidence of Gaussian appearance 

across both VH families in all isotypes, except VH3/ IgM, in which 75% of normal 

subjects showed a Gaussian distribution. By 6 months post transplant in the 

patient group, complexity of all isotypes of the VH2 family had reached similar 

levels to normal controls, and remained at this level irrespective of the presence 

of GVHD (in 3 of 8 patients) and disease status (1 CR, 2 SD, 5 PD). The trend 

towards normality for the VH3 family for all isotypes post transplant was slower, 

despite the larger contribution of this family to the overall repertoire. The median 

peak number in all isotypes increased with time, but remained below that of 

normal subjects throughout the period of follow up. There was no correlation
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between IgH CDR3 spectratype complexity and stem cell source, donor type, 

GVHD or B lineage chimeric status.

For both VH2 and VH3 families, the IgM spectratypes, reflecting a larger B cell 

population in a more steady state showed a continuing trend towards a Gaussian 

distribution with time, reflecting normalisation of B cell repertoire post transplant. 

In contrast, the IgG & IgA spectratypes often remained non-Gaussian throughout 

the period of follow up, a finding that does not detract from a normalisation of B 

cell repertoire, given that they represent cellular populations of a heterogeneous 

nature. Representative examples of the change in IgH CDR3 spectratype 

complexity following transplantation are shown in Figure 6.9.
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Figure 6.9. IgH spectratype profile complexity

Ig M  IgA IgG
V h-  Family 

6 mouths

9 months
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V h3 Family 

6 months

9 months

12 months

18 months

A representative example of isotvpe-specific IgH CDR3 spectratype profiles is 
shown at the post-transplant time-pomts indicated. The IgM isotypes in both 
families show a progressively Gaussian distribution following transplant 
Following antigenic stimulation the patterns in the IgA and IgG isotypes 
demonstrate skewing due to the presence of large peaks representing CDR3's 
of a particular size

6.4 Discussion

This study has examined the kinetics of CD19+ cell recovery and 

immunoglobulin production as well as the usage of 2 immunoglobulin heavy 

chain gene VH families following transplant in patients who have received a 

significantly lymphocyte-depleting (alemtuzumab-containing) conditioning 

regimen prior to allogeneic stem cell reinfusion. The non-myeloablative nature 

of the conditioning therapy is also of particular relevance, with the reduced
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incumbent tissue damage and hence lower acute toxicity and rate of acute 

GVHD, as well as the possible influence of mixed B cell chimeric status on the 

recipients’ B cell immune recovery.

The kinetics and quality of B cell recovery following myeloablative 

transplantation are well documented: B cells are undetectable or low for the first 

2 months after stem cell transplantation, and then rise to normal or supranormal 

levels by 1 to 2 years after transplant (Small, et al 1990, Storek, et al 1993). The 

rise in B cell numbers is faster in those without chronic GVHD compared to 

those with chronic GVHD. This may be due to the direct effect of GVHD and or 

its treatment on B cell development in the bone marrow (Storek, et al 1996). 

Early recovery is quicker following allogeneic PBSCT compared to BMT 

(Ottinger, et al 1996, Roberts, et al 1993, Talmadge, et al 1996), possibly due to 

the high content of B cells in PBSC allografts. Subsequently, the rise in B cells 

appears to be slower after allogeneic PBSCT than BMT.

B cell reconstitution in this study showed protracted B lymphopenia compared 

to other studies, probably due to the lymphocyte-depleting effect of 

alemtuzumab, but the rate of recovery of immunoglobulin levels was similar to 

that following myeloablative allogeneic transplantation. Neither stem cell source 

nor GVHD incidence affected recovery of B cell numbers in this cohort.

Following T-replete myeloablative transplantation, most circulating lymphocytes 

are of donor origin by 1 to 2 months, whereas a variable degree of mixed 

lymphoid chimerism is seen post T-cell-depleted myeloablative transplantation 

(Lapointe, et al 1996, Roux, et al 1992). All circulating B cells are of donor origin 

at several months to years after T-replete grafting (Korver, et al 1987). 

Interestingly, this concurs with the results of this study of T-depleted grafting, in 

which the majority of patients (16 out of 19) converted to full donor B lineage 

chimerism within 6 months of transplant, and 2 converted to full donor chimerism 

within 1 and 8 months of receiving DLI. Only one patient continued to show 

mixed B lineage chimerism after receiving 2 DLl’s.

Serum immunoglobulin levels usually show an initial fall post myeloablative

allogeneic transplantation followed by recovery within months (for IgM and IgG)
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to years (for IgA) (Fujimaki, et al 2001, Velardi, et al 1988). In this study, 

approximately 60% of patients had normal IgM levels by 6 months post 

transplant, rising to 90% by 12 months. However normalisation of IgG and IgA 

levels was slower in this study, with subnormal levels seen more frequently in 

patients with GVHD and non-CMV viral infections. However, caution needs to 

be exercised when using immunoglobulin levels as surrogate markers of 

humoral immunity since post transplant immunoglobulins are frequently 

composed of autoantibodies or non-specific oligoclonal antibodies (not directed 

against post transplant infectious agents) (Gerritsen, et al 1996, Hebart, et al 

1996). In addition, in this cohort of patients, persistent underlying disease may 

influence immunoglobulin levels post transplant. For a more complete analysis 

of B cell immunity, therefore, IgH CDR3 spectratyping was undertaken to study 

B cell repertoire in this study.

Early studies of VH gene family usage after conventional allogeneic stem cell 

transplantation suggested that B cell reconstitution appeared to recapitulate 

fetal ontogeny (Fumoux, et al 1993, Storek. et al 1993). More recent studies 

have failed to confirm this, and suggest that the period of B cell 

immunodeficiency after stem cell transplantation may be due to factors other 

than a reversal to a fetal stage of development, such as absence of somatic 

hypermutation (due to a maturational arrest in B cell differentiation), delayed 

isotype-switching and clonal dominance (Gokmen, et al 1998, Raaphorst 1999, 

Suzuki, et al 1996). These studies later showed that early post-transplant usage 

of VH segments by B cells is restricted, but beyond 6 months post transplant 

increasing diversity is seen, similar in extent to normal adults (Nasman and 

Lundkvist 1996, Storek, efa/1994).

The two VH families selected for study in this patient group were designed to

provide an overview of B cell reconstitution, by assessing usage of a well-

represented (Vh3) and less well-represented (VH2) VH family, rather than the

nature of recapitulation. In addition, it is important to note that the novel

(fluorescent) method used in this study differs from other studies, which

employed agarose gel electrophoresis to identify the spectratype profile. In

contrast to previous studies, which used visual appearance of spectratype

bands to assess B cell repertoire, a scoring system was used to analyse
145



spectratype data in this study. Irrespective of low B cell numbers there was 

improvement of spectratype complexity with time. This improvement was more 

pronounced in the less represented VH2 family, where this was apparent by 6 

months post transplant. The VH3 family on the other hand showed complexity 

that was below that of normal controls throughout the follow up period. This 

latter finding is unexpected since the VH3-expressing cells are more frequently 

occurring, and would therefore be expected to return to a Gaussian pattern 

more quickly.

In summary, CD19+ B cells are slow to recover following this nonmyeloablative 

preparative regimen, irrespective of majority conversion to full donor B lineage 

chimeric status. This finding is likely to be related to the marked lymphocyte- 

depleting effect of alemtuzumab. Normal immunoglobulin levels were found in 

half of the patients by 18 months although recovery appeared to be delayed by 

the presence of GVHD. Non-CMV viral infections were more common in 

patients with low levels of IgG and IgA. B cell repertoire increased with time 

following transplantation in terms of spectratype complexity in the IgG, IgA and 

IgM isotypes of the VH2 and VH3 families, although only the IgM isotype showed 

a tendency to become more Gaussian with time.
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Chapter 7: Graft-versus-host disease, graft-versus-myeloma effect, donor 

lymphocyte infusions and effect on immune reconstitution 

7.1 1ntroduction

Allogeneic stem cell transplantation was initially designed to deliver lethal doses 

of chemotherapy and radiotherapy in the treatment of malignant diseases. 

Myeloma is a disease that does show a dose-response relationship to 

chemotherapy and radiotherapy, so there is a rationale for dose-intensification 

strategies. However, although long-term remission is achievable (Corradini, et 

al 1996, Tricot, et al 1996a) allogeneic stem cell transplantation for myeloma 

has a high procedural mortality and late relapses continue to occur in survivors.

There is evidence in several diseases that high dose therapy does not eradicate 

the malignancy but the therapeutic benefit of allogeneic transplantation is 

largely related to an associated immune-mediated graft-versus-malignancy 

(GVM) effect (Baron and Storb 2004). Thus the nonmyeloablative regimens 

have been developed to reduce the dose intensity and toxicity of the 

conditioning regimen, whilst attempting to harness a GVM effect.

7.2 Graft-versus-host disease

GVHD is classically divided into 2 syndromes: that occurring within the first 100 

days of transplant (acute GVHD) and that occurring later in the post-transplant 

period (chronic GVHD). In the setting of donor lymphocyte infusion (DLI) 

administration following the initial transplant procedure, there is an added facet 

to the interpretation of GVHD. Patients may develop de novo acute or chronic 

GVHD following DLI, regardless of any GVHD that they experienced following 

the initial transplant procedure.

7.2.1 Acute GVHD: pathophysiology

A number of interrelated processes are involved in the development of acute

GVHD, which is thought to occur in 3 phases. In the first phase, conditioning of

the patient, designed to ablate or cytoreduce the disease as well as induce

acceptance of the donor graft by immunosuppression, results in host tissue

damage and release of pro-inflammatory cytokines, including IL-1 and TNF-a.

Total body irradiation (TBI) and high dose chemotherapy predictably results in

damage to host tissues, which are also vulnerable to the effects of the
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underlying disease, infections and previous therapies. In particular, TBI and 

certain intensive conditioning regimens such as cyclophosphamide and 

melphalan induce a potent combination of intestinal endothelial apoptosis and 

epithelial cell damage (clinically seen as mucositis), resulting in the entry of 

microbial immunostimulatory molecules into the systemic circulation. These 

molecules and the cytokines released, induce a cascade of activation events, 

including increased expression of adhesion molecules, co-stimulatory 

molecules and MHC molecules, which serves to amplify the second phase of 

the process (Reddy and Ferrara 2003). The toxicity of these conditioning 

approaches often outweighs the cytoreductive benefits against the disease and 

has led to an attempt to de-intensifying the conditioning therapy while placing 

greater emphasis on immunosuppression (reduced intensity conditioned 

transplants, RIT).

In the second phase of this 3-step model, exposed host antigens are presented 

by antigen presenting cells (APCs) in the form of an HLA-DR-peptide complex 

to the donor T cells. Although antigens may be presented by either host-derived 

APCs or donor-derived APCs, there is evidence for a predominance of the host- 

derived APC pathway in the pathogenesis of acute GVHD due to both minor 

and major histocompatibility mismatches (Reddy and Ferrara 2003). Host- 

derived dendritic cells are the most potent APCs in this process, being activated 

by inflammatory cytokines such as TNF-a and IL-1, microbial products such as 

LPS entering the circulation and cells that are undergoing necrosis as a result of 

conditioning therapy. This leads to donor T cell activation, proliferation and 

differentiation and further amplification of the immune response by enhanced 

cytokine secretion and expression of HLA.

T cell activation results in rapid intracellular biochemical events that result in 

transcription of genes encoding various cytokines and their receptors (Ho and 

Glimcher 2002).Th1 cytokines (section 4.1.5) are preferentially produced during 

the course of acute GVHD, with a critical role for IL-2 in the amplification of the 

immune response against alloantigens. IL-2 is produced by donor CD4+ cells, 

and has been the target of therapeutic strategies aimed at controlling GVHD, 

including ciclosporin and tacrolimus which inhibit IL-2 production and anti-IL-2

monoclonal antibodies (daclizumab) that target the IL-2 receptor (section 7.2.2).
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Interferon-y (IFN- y) is another critical cytokine in the second phase of acute 

GVHD. IFN- y is produced in large amounts by T cells, resulting in the 

upregulation of adhesion molecules, chemokines, MHC and associated antigen 

presenting molecules. IFN- y both facilitates antigen presentation and 

influences the development of GVHD in the Gl tract and skin as well as 

resulting in GVHD-mediated immunosuppression following transplant (Teshima 

and Ferrara 2002).

Although the pathogenesis of acute GVHD has been linked to Th1 polarisation 

of activated donor T cells (Ferrara 1994), the evidence for this is incomplete and 

contradictory. Whilst the Th1 phenotype appears to amplify the cytokine storm 

and correlate with acute GVHD in one study (Fowler and Gress 2000), early 

inducement into the Th1 phenotype by the administration of exogenous 

cytokines appears to attenuate GVHD in another (Reddy, et al 2001). Other 

studies have failed to show the beneficial effects of Th2 polarisation on acute 

GVHD (Murphy, et al 1998). Thus the so-called Th1/Th2 paradigm, may be an 

oversimplification of cytokine-related functions, which are interrelated and 

pleiotropic.

Phase 3 of acute GVHD is termed the cellular and inflammatory phase. This is 

the efferent phase, referring to the processes that are followed through after 

initiation by the effector cells and cytokines. The effector cells are cytotoxic T 

cells (CTLs) and NK cells, which use a variety of mechanisms to lyse or kill 

cells, including the Fas/ Fas ligand and perforin/ granzyme pathways (Kagi, et al 

1994, Russell and Ley 2002). The effector cytokines include TNF-a and IL-1, 

produced by monocytes and macrophages after stimulation by microbial 

products like LPS, which leak through the skin or intestinal mucosa as a result 

of the conditioning therapy or GVHD. TNF-a is crucial to the pathophysiology of 

gastrointestinal GVHD and is also an important effector cytokine in the skin and 

lymphoid organs (Hattori, et al 1998). Specific blockade of the TNF-a receptor 

by a monoclonal antibody is a potential clinical strategy in the treatment and 

prevention of acute GVHD (section 7.2.2). IL-1 is the other major 

proinflammatory cytokine that has important effector functions in this phase of 

acute GVHD, particularly in the spleen and skin (Abhyankar, et al 1993).
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7.2.2 Acute GVHD: clinical features, grading and treatment

The clinical features of acute GVHD vary from a mild self-limiting condition 

requiring no treatment, to a severe and fatal disorder. The initial manifestation is 

usually a skin rash with or without a fever and influenza-like symptoms. The 

rash is usually found on the extensor surfaces of the limbs, the face and neck, 

and palms and soles. It may be localised or extensive, and may become 

confluent in more extensive cases, with the development of frank epidermolysis 

and bulla formation. If acute GVHD affects the gut, the most frequent 

manifestation is diarrhoea, accompanied by abdominal cramps, nausea and 

anorexia. The condition may progress to affect the whole gut with severe fluid, 

electrolyte and blood loss. Liver GVHD is usually the last to develop, typically 

beyond 40 days from transplant. It may be a manifestation of a progressive 

GVHD process or an isolated manifestation in the absence of or following the 

resolution of skin and gut GVHD. Pancytopenia and continued immune 

deficiency tend to reflect the severity of the process.

A firm diagnosis of acute GVHD can be difficult to make on clinical or 

histological grounds. No single feature is diagnostic, and usually the diagnosis 

is made on clinical grounds following exclusion of other possible explanations 

for the clinical findings. There are several systems for grading acute GVHD 

using clinical and histological criteria (Glucksberg, et al 1974, Thomas, et al 

1975a, Thomas, et al 1975b). The Gluckberg system for clinical grading of 

acute GVHD is shown in Table 2.3.

Once established, the treatment of acute GVHD is determined by the severity of 

the condition. Asymptomatic patients may not need treatment. Patients with a 

localised rash often respond to topical steroid application. Systemic treatment is 

indicated if the patient is constitutionally ill with an extensive rash, or if 

involvement of the gut or liver is suspected. High dose methyl prednisolone at a 

dose of 2mg/kg/day is administered intravenously for 3-5 days, with a gradual 

dose reduction thereafter in the face of response, which occurs in the majority 

of patients. If acute GVHD persists in spite of high dose methyl prednisolone, it 

is regarded as refractory, and many patients have a poor prognosis. Fewer than 

30% of patients with acute GVHD> grade III will survive, and many patients 

progress to chronic GVHD. Anti-thymocyte globulin (ATG) is commonly used as
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first-line therapy for steroid-resistant acute GVHD. ATG is a polyclonal antibody 

whose primary target is surface antigens on T lymphocytes. The result of its use 

is the elimination of antigen-reactive T lymphocytes in the peripheral blood and 

alteration of T cell function. However, data on its efficacy are limited. In a study 

of 58 patients with steroid-resistant acute GVHD (Khoury, et al 2001), horse 

ATG was administered as first-line therapy, a median of 9 days (range, 3 to 39) 

after initiation of methyl prednisolone. Improvement was observed in 30% of 

patients treated with ATG. Skin disease was more likely to improve with ATG 

(79%), while progression of gut and liver acute GVHD was observed in 40% 

and 66% of patients, respectively. Despite initial improvement, 52 patients 

(90%) died a median of 40 days after ATG therapy from progressive acute 

GVHD and/or infection (74%), ARDS (15%), or relapse (11%). Only six patients 

(10%), three of whom had acute GVHD limited to the skin at the time ATG was 

administered, are long-term survivors. The study concluded that initial 

improvement of steroid-refractory acute GVHD occurs with ATG in a minority of 

patients, there are few long-term survivors and the treatment is associated with 

a high rate of major infective complications (Khoury, et al 2001). Furthermore 

ATG is associated with severe and prolonged lymphocyte depletion, but this is 

not associated with a higher efficacy in the treatment of GVHD.

Owing to the poor results of treating refractory acute GVHD with ATG, other 

immunomodulating agents have been tried in the treatment of acute GVHD. The 

administration of daclizumab, a humanized antibody that binds to the CD25 Tac 

receptor for IL-2, has recently been reported to produce response rates of 29% 

and 47%, respectively, using two different time schedules of antibody 

administration (Anasetti, et al 1994, Blaise, et al 1995). In another study 

(Willenbacher, e/a/2001), 16 patients with steroid-resistant acute GVHD 

received daclizumab at a dose of 1 mg/kg on days 1-5 and once a week 

thereafter until day 28 or 1 mg/kg on days 1 and 2, followed by one dose per 

week thereafter for 28 days. Twelve patients suffered from grade lll-IV acute 

GVHD and 4 patients from extensive chronic GVHD. Responses were observed 

in 9 patients (6 acute, 3 chronic GVHD). Fourteen out of 16 patients acquired 

infections during daclizumab treatment and 3 deaths were infection-related. 

Thus competitive inhibition of interleukin 2-dependent lymphocytes by
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daclizumab demonstrates some beneficial effects in the treatment of graft- 

versus-host disease.

Another agent, infliximab, a chimeric human/mouse antibody that binds to 

soluble and membrane forms of TNFa has been used to treat refractory acute 

GVHD. In a study by Kobbe et al (Kobbe, et al 2001) 4 patients with grade lll-IV 

steroid-refractory acute GVHD received the monoclonal antibody treatment. All 

patients had severe intestinal involvement in addition to skin and/or liver 

disease and had received treatment with high-dose steroids for a median of 11 

days (range 5-17) in addition to Ciclosporin (4) and mycophenolate mofetil 

(MMF) (3). Infliximab (10 mg/kg) was given once a week until clinical 

improvement. In 3 out of 4 patients a complete resolution of diarrhoea and 

significant improvement of skin and liver disease were observed. Two patients 

are reported to be alive >200 days after therapy, of which one has limited 

chronic GVHD. Two patients died, one of progressive malignant disease without 

GVHD and one of refractory GVHD. Thus infliximab may have activity as single 

agent in the treatment of acute GVHD.

7.2.3 Acute GVHD in the present study

In the present study, 5 patients developed grade l-ll acute skin GVHD post 

transplant, all of which responded to topical steroid therapy. No patient 

developed grade lll/IV GVHD post transplant. Five patients developed grade II- 

IV acute GVHD following DLI, including 2 who had experienced grade I acute 

GVHD post transplant. With regard to stem cell source, 5 out of 8 unrelated 

donor/ bone marrow stem cell recipients experienced some form of GVHD 

compared to 2 out of 11 sibling donor/ peripheral blood stem cell recipients. 

Those who experienced up to grade II GVHD of the skin following transplant or 

DLI responded to topical steroid application. Two patients with grade III GVHD 

of the gut and liver following DLI responded to intravenous steroids, whilst 2 

patients who developed grade IV GVHD of the liver following DLI died of liver 

failure despite treatment with high dose intravenous steroids and ATG. The third 

patient who developed grade IV GVHD of the skin and liver proved to be 

steroid-refractory, but responded fully to a combination of infliximab, daclizumab 

and reinstitution of ciclosporin therapy, and remains well and in a PR from his 

myeloma 1 year later.
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7.2.4 Chronic GVHD: pathophysiology

The evidence that chronic GVHD is a disease of Th2-polarised activation is 

more consistent than that for Th1-polarisation in acute GVHD. There is however 

limited understanding of the pathophysiological processes leading to chronic 

GVHD because of the paucity of satisfactory animal models and studies in 

human subjects (Kansu 2004).

As discussed in section 4.1.1, the thymus plays a critical role in preventing the 

development of autoimmunity by generating T cells that are non-responsive to 

self antigens. T cells that express high affinity for self-peptides undergo 

programmed cell death (negative selection) within the thymus, such that >98% 

of these cells are never released in to the periphery. On the other hand, 

thymocytes with low affinity receptors for self-antigens undergo positive 

selection, survive and migrate out of the thymus into peripheral lymphoid 

organs, where they target foreign antigens.

Following transplantation, the development of chronic GVHD may result from 

the disruption of T cell ‘education’ by the thymus gland, which is invariably 

damaged by the conditioning therapy. As a result of this dysregulation of T cell 

development and concurrent loss of negative selection’, autoreactive T cell 

clones may survive and ultimately cause release of autoreactive T cells in to the 

periphery. This results in an impairment of T cell homeostasis and self­

tolerance, expansion of autoreactive T cells and promotion of autoimmunity.

In addition, the polarisation of donor cells in a Th2 direction results in Th2-type 

cytokine release which causes polyclonal activation of B lymphocytes and 

autoantibody production against self-antigens. Organ-specific autoimmunity 

results from B cell hyperreactivity and production of autoantibodies with 

specificity against target organs such as joints, skin, eyes, liver & gut mucosa.

The main pathological feature is the development of collagen deposition,

sclerosis and atrophy of the dermis of the skin with resultant scaling

erythroderma, depigmentation or hyperpigmentation, nail dystrophy and

alopecia of varying degrees. The exocrine glands may be affected by a similar

process, resulting in a sicca syndrome. In the Gl tract, mucosal ulceration,

lichen planus lesions, pancreatic insufficiency malabsorption and weight loss
153



may occur. Patients with chronic GVHD may develop a restrictive-obstructive 

bronchiolitis, recurrent chest infections, intrahepatic biliary obstruction, cirrhosis 

and liver failure. Musculoskeletal involvement may lead to restriction of joint 

movement, fascial sheath constriction and limb ischaemia. A particularly serious 

complication associated with chronic GVHD is immunodeficiency, leading to 

susceptibility to a wide range of opportunistic infections and frequently with a 

fatal outcome. Atrophy of the lymphoid system and hyposplenism are common. 

Antimicrobial prophylaxis against Pneumocystis carinii, CMV and 

Pneumococcus pneumoniae is crucial in the presence of ongoing chronic 

GVHD. The bone marrow may also be affected, with cytopenia due to 

decreased marrow function or autoimmune destruction of circulating blood cells. 

As shown in Table 2.4, chronic GVHD (Shulman, et al 1980) is is classified as 

either limited or extensive. Apart from classifying chronic GVHD according to 

the extent of organ involvement, it can also be classified according to its pattern 

of onset: progressive chronic GVHD evolves without a hiatus from active acute 

GVHD, quiescent chronic GVHD evolves after a period of treated, responsive 

acute GVHD and de novo chronic GVHD arises in patients who never 

experienced acute GVHD at all.

7.2.5 Chronic GVHD: clinical features, grading and treatment

Although chronic GVHD is defined as GVHD occurring after 100 days of 

transplantation, clinical and histological features typical of chronic GVHD may 

occur as early as 30 days following transplantation, and may overlap with acute 

GVHD. Chronic GVHD may develop directly from acute GVHD or may follow a 

period of quiescence after acute GVHD, or indeed may occur in the absence of 

prior acute GVHD. Chronic GVHD typically occurs within 18 months of the 

transplant procedure, but may occasionally occur as late as 2 or years after 

transplantation. The clinical manifestations and treatment of chronic GVHD has 

been thoroughly reviewed (Ratanatharathorn, et al 2001) and frequently 

resemble autoimmune disorders associated with cellular and humoral defects of 

immunity. It frequently presents as a multiorgan process such as SLE, 

scleroderma or rheumatoid arthritis. Chronic GVHD occurs in 60-80% of long­

term survivors of allogeneic stem cell transplantation, and its incidence is likely 

to rise due to the increasing availability of unrelated donors and the greater 

inclusion of older patients in nonmyeloablative transplant programmes. It may
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be lethal in 20-40% of affected patients, despite aggressive drug therapy to 

curtail the process (Kansu and Sullivan 2000).

Risk factors for the development of chronic GVHD include a history of prior 

acute GVHD, HLA disparity between recipient and donor, the use of non T cell- 

depleted stem cells, male recipients of female donors, older age of recipient or 

donor, and the use of certain conditioning agents such as busulphan (Ochs, et 

al 1994). The effect of stem cell source (PB vs. BM) on the risk of developing 

chronic GVHD is controversial, with earlier studies suggesting a greater risk 

with PB source but others showing no difference (Bensinger, et al 2001).

The treatment of chronic GVHD is complicated by the diversity of organ 

involvement, the chronic nature of the illness and the haematological and 

immune dysfunction associated with the condition. Whilst patients with local 

chronic GVHD may not need specific treatment, those with extensive disease 

do require treatment to reduce the chance of progression to a more advanced 

or progressive form of the disease which can have irreversible effects on the 

structure of tissues and organs. Patients whose chronic GVHD progresses from 

prior acute GVHD which has never abated are more likely to receive steroid 

therapy and other immunosuppressive measures, but are less likely to respond 

to these measures. By contrast, those who develop chronic GVHD de novo or 

after an interval from resolved acute GVHD are more likely to respond to 

therapy with steroids, ciclosporin or tacrolimus. Numerous other agents have 

been explored, including thalidomide, hydroxychloroquine, extracorporeal 

phototherapy, UVB and PUVA. Whilst cutaneous involvement may respond to 

these measures, visceral chronic GVHD rarely does. Recently studies of 

infliximab have shown promise, with high response rates even for lung 

involvement (Couriel, efa/2004).

7.2.6 Chronic GVHD in the present study

In the present study, there were 3 patients affected by chronic GVHD, all to a 

local extent affecting the skin (Table 2.4). In two cases, the chronic GVHD 

occurred de novo following DLI. In both cases, topical steroid application was 

effective. One affected patient was aged 50 years and the other was 53 years, 

and one received PBSC from his sibling whereas the other received BMSC from
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an unrelated donor. The second patient (Patient 12) went on to develop grade 

IV acute GVHD of the liver following his third DLI, which was delayed to allow 

his prior local chronic GVHD to fully settle. He subsequently responded to a 

combination of daclizumab and infliximab as discussed previously. In the third 

case, chronic GHVD ensued from acute GVHD following DLI, and has required 

multiple admissions to hospital to control flare-ups using high dose intravenous 

steroids. In all the patients in this study, there was a profound and persistent 

reduction of CD4+RA+ and CD4+RO+ cells up to 18 months of follow up. 

CD8+RA+ and RO+ cell recovery was somewhat superior in the patient group 

overall, but there was no patient-specific association between cell counts and 

the incidence of GVHD, acute or chronic. The lymphocyte counts of the 3 

patients affected by chronic GVHD were no different from the rest of the group. 

Overall, the incidence of chronic GVHD was lower than that previously reported 

in allogeneic transplantation.

7.3 Prevention o f GVHD

GVHD remains a major cause of morbidity and mortality after allogeneic stem 

cell transplantation. Pharmacological immunosuppression has been employed 

for many years in the preventive strategy against GVHD in the setting of 

myeloablative transplants. Methotrexate down-regulates T cells by inhibiting 

cellular proliferation; mycophenolate mofetil (MMF) inhibits purine synthesis; 

ciclosporin and tacrolimus suppress IL-2 secretion by blocking calcineurin 

activity; daclizumab reduces T cell responsiveness by blocking the IL-2 receptor 

(Willenbacher. et al 2001). Inspite of these pharmacological approaches, 

moderate-to-severe acute GVHD occurs in 25-60% of matched related 

transplants and 45-70% of matched unrelated transplants (Gale, et al 1987). 

Acute GVHD also remains a significant complication of the reduced intensity 

approach (Giralt, et al 1997, Khouri, et al 1998).

The majority of allogeneic transplantation procedures use HLA-matched donors, 

so it is likely that minor histocompatibility antigens (mHA) contribute to the 

development of acute and chronic GVHD. These antigens are polymorphic 

proteins encoded in the genome that are presented to T cells in the context of 

HLA, with a consequent MCH-restricted immune response. Minor 

histocompatibility antigens that are ubiquitously expressed on all tissues are
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thought to be associated with the pathogenesis of both GVHD and GVM, 

whereas mHA that are restricted to haematopoietic cells (such as HA-1, HA-2, 

HB-1 and BCL2A1) may be responsible for mediating GVM (Kircher, et al 2004, 

Marijt. et al 2003). Thus it should be possible to prevent GVHD by avoiding 

minor mismatches between donor and recipient (Mutis 2003).

7.3.1 T Cell depletion

Apart from pharmacological immunosuppression which results in blockade of T 

cell function, other approaches have been tried to minimise the incidence of 

GVHD. Pharmacological approaches have their limitations, both in terms of 

effectiveness and inherent toxicities, such as renal toxicity in the case of 

ciclosporin and mucositis in the case of methotrexate. Absolute T cell depletion 

as opposed to blockade of T cell function is an alternative and highly effective 

way of preventing GVHD, with the added benefit of reducing the need for 

excessive pharmacological immunosuppression and its inherent toxicities. This 

may be performed ex vivo, by depleting the graft of T cells before infusion, or in 

vivo, by administering T cell depleting agents as part of the conditioning 

therapy.

Ex vivo techniques have relied upon negative selection of T cells from the graft 

by physical separation (density gradient fractionation, soyabean lectin 

agglutination and E-rosette depletion and counterflow elutriation) or antibody- 

based purging using antithmocyte globulin (ATG) or monoclonal antibodies 

against target antigens on T cells (Ho and Soiffer 2001).

In the present study, T cell depletion was achieved in vivo by the administration 

of alemtuzumab at a dose of 20 mg/day for 5 days (section 2.2) together with 

fludarabine and melphalan as part of the conditioning regimen. Just 5 patients 

developed grade l-ll acute skin GVHD post transplant, all of which responded to 

topical steroid therapy. No patient developed grade lll/IV GVHD post transplant. 

We have previously reported in an overlapping group of patients, that this 

protocol results in a low incidence of GVHD, but at the expense of a durable 

response. Both of these factors are likely to be attributable to the alemtuzumab 

used in the conditioning schedule of the transplant (Peggs, et al 2003a). This is 

in contrast to the results of a study by a Spanish group, using an otherwise
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received identical conditioning with fludarabine and melphalan but without 

alemtuzumab. They found that their use of ciclosporin and methotrexate as 

GVHD prophylaxis rather than alemtuzumab resulted in an acute GVHD rate of 

45.1% (compared to 21.7% in the group of patients receiving an identical 

fludarabine/melphalan regimen but with alemtuzumab) and 66.7% rate of 

chronic GVHD compared to 5% in the alemtuzumab group (Perez-Simon, et al 

2002). Interestingly, there was no significant difference between disease 

response, event free survival or overall survival between the 2 groups, but there 

was a significantly increased incidence of CMV reactivation in the alemtuzumab 

group (85% vs. 24%). However, patients in the alemtuzumab group did require 

DLI to achieve similar responses to those in the methotrexate group. These 

findings suggest that the degree of T cell depletion is an important consideration 

in the development of conditioning regimens for allogeneic transplantation from 

several points of view including risk of GVHD, risk of infection and disease 

response.

The precise degree of T cell depletion needed to prevent GVHD is not known, 

and is likely to vary between donor-recipient pairs, depending on the differences 

in minor antigen matching. On average, an unmodified marrow graft contains 

approximately 1 to 5 x 107 cells/kg of recipient body weight. The incidence of 

GVHD increases with T cell dose, as demonstrated in a study that showed a 

45% incidence of GVHD in recipients who received a T cell dose of 1 x 106 

cells/kg compared to a 22% incidence when the T cell dose was reduced to 0.5 

x 106 cells/kg (Wagner, et al 1988), and abolition of GVHD when extensive T 

cell depletion was performed to a CD3+ cell dose of 3 x 104 cells/kg (Aversa, et 

al 1998). However, whilst a 3 to 4-log depletion of donor T cell almost 

completely eliminates GVHD, it is also associated with an increase in graft 

rejection, disease relapse (Horowitz, et al 1990) and delayed immune recovery 

with consequent increased infection rates (Chakraverty, et al 2001).

Thus, although fewer patients succumb to the effects of GVHD in T cell 

depleted transplants, this advantage is offset by a number of disadvantages, 

including an increase in graft failure, higher relapse rates, delayed immune 

reconstitution, increased risk of posttransplantation lymphoproliferative disease,

and increased incidence of CMV reactivation (Ho and Soiffer 2001).
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Prior to T cell depletion, graft failure was uncommon, occurring in up to 5% 

patients compared to reports of an incidence of 50-70% in T cell depleted 

transplants (Patterson, et al 1986). Graft failure can occur in 3 patterns: failure 

of initial engraftment, partial or full engraftment followed by graft rejection within 

a few weeks of transplant and delayed graft failure that happens months after 

the initial transplant. Early graft failure is thought to occur due to direct 

immunological rejection of the graft by host haematopoietic cells that have 

survived the conditioning process. This has been demonstrated by the finding of 

host T cells with donor-specific cytotxicity in patients at the time of graft 

rejection (Voogt. et al 1990). Viral infections such as CMV or human herpes 

virus -6 (HHV-6) may also contribute to failure of the graft, possibly due to an 

increased incidence of viral infections following T cell depleted transplantation 

and the concurrent delayed immune reconstitution that occurs in this setting 

(Small, et al 1999). The exact pathophysiology of graft failure remains unclear. 

Mixed lymphoid and myeloid chimerism is more common after T cell depleted 

transplantation and may contribute to graft failure (Bertheas, et al 1991). In 

order to counteract the perceived threat by residual host T cells to causing graft 

rejection, early strategies focussed on dose intensification of the myeloablative 

conditioning, such as the inclusion of high doses of cytarabine, thiotepa and 

anthracyclines or total nodal irradiation. These strategies have led to a 

reduction in graft rejection, but at the expense of increased regimen-related 

toxicity (Kurisu, et al 1991, Schaap, et al 1997). Particularly relevant to the 

present study is the alternative strategy of using monoclonal antibodies such as 

ATG or CAMPATH-1 against host immune cells at the time of transplantation 

(also discussed in section 2.2). The results of early animal studies were later 

repeated in human subjects with the achievement of simultaneous host and 

donor T cell depletion by CAMPATH-1 antibodies that reduced the incidence of 

graft failure without compromising GVHD prophylaxis (Hale and Waldmann 

1994). Importantly, there was no case of graft failure or rejection in the present 

study.

Other problems that arise following T cell depletion include delayed immune 

reconstitution and a consequent increase in opportunistic infections. This 

complication was prominent in the present study, but the increased incidence of

viral infections did not translate into an increase in mortality (Section 2.4.1).
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Also showing increased prevalence in the T cell depleted setting are the so- 

called post transplant lymphoproliferative disorders (PTLD), often EBV-driven 

that have been reported in up to 30% of T cell depleted transplant recipients 

(Shapiro, et al 1988). PTLDs are thought to arise from infected donor T cells 

that are co-transfused with the graft, but it may be possible for this condition to 

arise in recipients of EBV-seronegative donor grafts. When such a complication 

arises, clinically presenting as a lymphoma, DLI has been used to induce EBV- 

specific cytotoxicity against the PTLD cells (Papadopoulos, et al 1994). To date 

there have been no incidences of PTLDs in the patient group in the present 

study.

There has, however been a high incidence of disease progression/ relapse in 

the present study. This represents the other principal disadvantage of T cell 

depleted transplantation. In the present study, 16 patients (84%) have shown 

evidence of disease progression following transplant and/ or DLI after a median 

of 283 (range 153-895) days. This finding is in keeping with the higher incidence 

of disease relapse seen after T cell depleted transplants in other diseases, 

including acute myeloid and lymphoblastic leukaemia and chronic myeloid 

leukaemia (summarised in (Ho and Soiffer 2001).

Since these earlier studies, attempts have been made to refine the technique of 

T cell depletion by depleting only selective subsets of T cells in order to retain 

the benefits of T cell depletion while reducing the disadvantages. These 

approaches will be discussed further in Chapter 8.

7.4 Graft-versus malignancy effect

Confirmation of an immune-mediated GVM effect in myeloma patients has 

come from reports of the successful use of donor leukocyte infusions (DLI) to 

treat patients relapsing from allogeneic transplantation (Lokhorst, et al 1997, 

Tricot, et al 1996b, Verdonck, et al 1996). In order to achieve successful 

disease eradication without excessive toxicity, the goal is to induce a GVM 

effect in the absence of significant (>grade 2) GVHD. GVM frequently occurs 

coincidentally with GVHD, but the converse is also true. Many patients achieve 

a GVM response (i.e. disease remission due to DLI) without developing GVHD. 

This may be due to the different target antigens involved in each process, or the
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greater sensitivity of malignant cells compared to normal tissues to a common 

immunological mechanism (Champlin, et al 2000). GVM may also be mediated 

by immune reactivity against specific haematopoietic targets such as minor 

histocompatibility antigens restricted to haematopoietic tissues (Bonnet, et al 

1999, Clave, et al 1999, Mutis, et al 1999). Overexpressed or abnormally 

expressed cellular constituents could also serve as target antigens or 

malignancy-specific targets for GVM.

In the present study, a total of 10 patients experienced GVHD (Table 7.1).
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Patient GVHD  
post transplant

Disease status 
post transplant

GVHD  
post DLI

Best
response after DLI

(Im proved) disease response  
accom panied by GVHD?

3 N o M R Acute Grade II 
& Lim ited Chronic

P R YES (follow ing DLI)

4 Acute Grade II P R No Did not rece ive  D LI YES (following transplant)

8 N o P D A cute G rade III N o C h a n g e N o

S Acute Grade II P R N o N o C h a n g e YES (following transplant)

1 1 No P R Lim ited Chronic C R YES (following DLI)

12 No N C Lim ited Chronic
(fo llow ing  D L I# 1 )

A cute G rade IV
(fo llow ing  D L I# 2 )

P R

P R

YES (following DLI) 

YES (following DLI)

16 N o P D Acute G rade IV N o C h a n g e No

1 7 Acute Grade I P D Acute Grade IV P R YES (following DLI)

18 Acute Grade 1 P D Grade III P R YES (following transplant)

19 Acute Grade II P R No F u rth er P R YES (following both)

Table 7.1. Association of GVHD with disease response following transplant or 

DLI.
Of the ten patients who experienced GVHD following transplant and/or DLI, 8 showed evidence 

of disease response accompanied by the presence of GVHD, whereas 2 patients showed no 

disease response despite evidence of GVHD.

Abbreviations GVHD, graft-versus-host disease: DLI, donor lymphocyte infusions; CR, 

complete response: PR, partial response; MR, minor response; NC, no change; PD, progressive 

disease

Out of these 10 patients, 8 eventually demonstrated a disease response 

alongside clinical evidence of GVHD. These included 5 patients with GVHD 

following transplant and 3 patients who developed GVHD for the first time
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following DLI in whom the disease response was improved by DLI as well as 

being associated with GVHD. These findings demonstrate that the GVM effect is 

frequently obtained at the expense of GVHD. Alternatively, the latter may occur 

without evidence of the former such as in 2 patients in this study who showed 

progressive disease following transplant in the absence of any GVHD, but went 

on to develop grade III or IV GVHD following DLI, without a demonstrable 

disease response. On the other hand, 2 patients in this study showed evidence 

of the GVM effect in the absence of clinical demonstrable GVHD (Table 7.2).

GVHD  
post transplant

Disease status  
post transplant

GVHD  
post DLI

Best
response after DLI

Dem onstrated clinical 
response?

N P D N N o C h a n g e No

N P D N N o C h a n g e N o

N M R N P R Yes (Im proved by DLI)

N P D N P R Yes (following DLI)

N P D N N o C h a n g e No

N N o C h a n g e N N o C h a n g e No

N P R N P D Yes (follow ing transplant)

N M R N M R Yes (following transplant)

N P R N N o C h a n g e Yes (following transplant)

Table 7.2. Relationship of disease response to transplant and DLI in the absence 

of GVHD.
Five out of 9 patients who did not show clinical evidence of GVHD following transplant or DLI, 

nevertheless demonstrated disease response following transplant (n=3), DLI (n=1) or sequential 

response after both transplant and DLI (n=1). This included 2 patients who showed an 

improvement in response following DLI, after an initial MR (Patient 5) and PD (Patient 6). This 

demonstrates that a GVM effect may occur in the absence of GVHD.

Abbreviations: GVHD. graft-versus-host disease; DLI, donor lymphocyte infusions; CR, 

complete response; PR, partial response; MR, minor response; NC, no change; PD, progressive 

disease.
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These 2 patients showed little or no clinical response to the conditioning 

procedure/ transplant, but went on to demonstrate a PR following DLI in the 

absence of GVHD. In 3 other patients, there was evidence of a disease 

response to transplantation in the absence of GVHD, but this response may in 

part be due to the cytoreductive effects of the conditioning therapy rather than a 

GVM effect post transplant. Thus for myeloma, there is no conclusive evidence 

that the occurrence of GVHD is predictive of an effective GVM response. This 

may be due to a failure to identify the appropriate effector T cell subsets that are 

involved in these different processes.

7.4.1 Improving allogeneic immune reconstitution to promote GVM

In patients with haematological malignancies, reconstitution of the allogeneic 

immune system following stem cell transplantation may be accompanied by the 

development of immunity to residual tumour cells that have not been eliminated 

by the conditioning therapy. Strategies to enhance and accelerate immune 

reconstitution and hence the GVM effect include rapid withdrawal of 

immunosuppression (Libura, et al 1999), the administration of cytokines 

(Collins, et al 1997, Kolb, et al 1993) and the administration of DLI; this latter 

method has been successful in the setting of myeloma, demonstrated by the 

high response rates achieved by the administration of DLI in patients with 

relapse (Lokhorst, et al 1997, Tricot, et al 1996b, Verdonck, et al 1996). In 

addition, the optimal intensity of conditioning therapy remains uncertain as does 

the optimal post-transplant immunosuppressive strategy. Excessive 

conditioning or immunosuppression may blunt a GVM effect as well as GVHD 

and result in higher relapse rates. The timing and dose of DLI also remain 

unclear and under investigation.

The objective of DLI administration is to enhance cellular immune function 

following allogeneic transplantation because cellular immunity is usually 

severely depressed for 6 months and takes up to 18 months to recover. The 

initial rise in absolute numbers of CD3+ T cells is not matched by the much 

slower pace of recovery of T cell receptor diversity, as assessed by TCR 

spectratyping (Bellucci. et al 2002) as confirmed in this study (Chapter 5, 

section 5.3). Following allogeneic transplantation, relapse occurs in host-
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derived cells, whereas residual normal haematopoiesis and immunity remain 

donor-derived. Infused donor lymphocytes are therefore not subjected to 

rejection, but may in fact induce acute GVHD. Anti-tumour effectors proliferate 

in vivo following infusion and may eradicate residual malignant cells and host- 

derived haematopoietic cells once they reach a critical threshold level.

A recent study of the immunological effects of prophylactic DLI following 

myeloablative allogeneic stem cell transplantation for myeloma (Bellucci, et al

2002) demonstrated that planned infusion of CD4+ cells 6 months after 

transplant improved reconstitution of donor T cells, promoted complete donor 

chimerism and enhanced anti-myeloma activity. Similarly, a study of T cell 

depleted allogeneic transplantation for refractory myeloma demonstrated that 

subsequent DLI administration produced a disease response in 50% of patients, 

but also induced GVHD in 63% of the group (Huff, et al 2003). Our group has 

recently reported the results of the administration of dose-escalated DLI 

following RIT (in an overlapping group of patients with those in the surrent 

study) and demonstrated that 63% of patients with myeloma responded to DLI 

that were given for mixed chimerism, residual or progressive disease, (Peggs, 

et al 2004). GVHD did occur and was more common in the unrelated donor 

cohort and occurred at lower T cell doses than in the sibling donor cohort but 

neither the incidence of GVM nor GVHD were predictable on the basis of 

chimerism studies. In the present study, there was no demonstrable relationship 

between the incidence of GVHD whether acutely after transplant or following 

DLI administration and the level of NK cells or indeed any other T cell subset.

7.4.2 GVM mechanisms

An important reason for limited progress in successfully harnessing the GVM 

effect is an incomplete understanding of the mechanisms involved. It is useful to 

think of the GVM process as consisting of an afferent arm, in which host tumour 

antigens are presented to donor cells and an efferent arm in which donor 

effector cells induce immunological reactions against host tumour cells.

Within the afferent pathway, the target antigens of the GVM response remain 

poorly defined. The frequent co-existence of GVHD and GVM suggests that 

these targets may be shared by malignant cells and host tissues, particularly
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the skin, gut and liver. Given the differences in incidence of GVHD and GVM 

however, it may be that although the target antigens are shared, the sensitivity 

to the effects of to the effector mechanisms may be greater in tumour cells 

compared to visceral cells. The way that antigen is presented may also affect 

the eventual immune response. MHC class I and II molecules are involved in 

the presentation of cellular antigens to donor T cells. These cellular antigens 

include minor histocompatibility antigens that may be tissue restricted or widely 

distributed, normal protein sequences that are over-expressed or aberrantly 

expressed by malignant cells or unique tumour-specific peptides. There is 

evidence in the pathogenesis of GVHD that antigen presentation by host APCs 

as opposed to donor APCs is important (Shlomchik 2003) and in time similar 

evidence may emerge in the pathogenesis of GVM.

The relative contributions of different GVM effector populations, which are often 

interrelated, also remain poorly defined. Also, it is likely that any susceptibility to 

the GVM process will be influenced by the proliferation rate of the tumour as 

well as the phenotype of the tumour and its intrinsic ability to stimulate anti­

tumour T cells (Barrett, et at 2003). Numerous studies in both murine models 

and human cell lines have identified a link between GVHD, GVM and virtually 

every T cell subset; CD4+, CD8+and NK cells have all been implicated as 

mediators of GVM (Champlin, et al 1999). Even B cells have been recently 

implicated in the pathogenesis of tumour immunity, via antibody responses 

generated against tumour-associated antigens (Bellucci, et al 2005).

A recent study in a murine model has confirmed that the use of CD4+CD25+ T 

cells may facilitate donor engraftment in the absence of GVHD (Hanash and 

Levy 2005), following an earlier study that looked at the same subset (Edinger, 

et al 2003). CD25 represents the IL-2 receptor (IL-2R) a chain and when 

CD4+CD25+ T cells are selectively infused, they abrogate GVHD without 

affecting GVM, by suppressing the early expansion of alloreactive donor T cells 

and IL-2R a chain expression by these cells. The CD4+CD25+ subset (also 

termed regulatory T cells or Tregs) is thought to be essential for the induction and 

maintenance of tolerance to self antigen, for the prevention of autoimmune 

disease (Sakaguchi, et al 1995) and regulating the homeostasis of the 

peripheral T cell pool (Annacker, et al 2001, Murakami, et al 2002). With regard
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to the CD8* subset, antigen-specific CD8+ T cells have been reported to reach 

frequencies as high as 10% of the circulating T cell repertoire following DLI, and 

although a short-lived phenomenon is associated with tumour (in this case 

leukaemia) regression (Marijt, et al 2003).

NK cells are lymphocytes critical to host defence against infectious pathogens 

and malignant transformation through the release of cytokines as well as direct 

cell lysis. Earlier studies suggestive of useful anti-tumour activity of NK cells 

have been given more emphasis by a better understanding of NK cell biology in 

recent years (Farag. et al 2002). There is evidence of NK activity in the setting 

of myeloma, including a study which demonstrated that NK cells recognise and 

kill myeloma cells both in cell lines and fresh bone marrow samples from 

myeloma patients to varying degrees, but not CD34 positive stem cells or 

peripheral blood mononuclear cells, which were resistant under similar 

experimental conditions (Frohn, et al 2002).

7.5 Discussion

In conclusion, although there is evidence to support the use of adoptive cellular 

therapy following stem cell transplantation for myeloma, as yet, the correct 

immunological balance has not been achieved in favour of a GVM effect. The 

major challenge that remains is the separation of the GVHD effect from the 

GVM effect. A number of strategies have been employed, and their 

effectiveness is likely to be improved by a better understanding of the 

mechanisms involved. The balance may depend on cell dose or removing cell 

populations with a propensity to induce GVHD or the administration of suicidal 

(e.g. herpes virus thymidine kinase-transduced) lymphocytes, followed by killing 

the donor lymphocytes using ganciclovir. Also attempted has been the 

administration of cloned or selected cells with antitumour effects which may 

augment the GVM process without inducing GVHD. Ex vivo depletion of 

alloreactive T cells is another way of minimising GVHD whilst conserving a 

GVM effect. These and other approaches will be further explored in Chapter 8, 

which will discuss future directions to be considered in optimising this 

immunological balance.
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Chapter 8: Conclusions and future directions

8 .1 1ntroduction

The objective of this study was to document and investigate immunological 

recovery following allogeneic stem cell transplantation in the novel setting of 

reduced intensity conditioning and alemtuzumab-induced in vivo T cell 

depletion, and the role they play in the generation of a GVM effect. This was 

carried out in a group of patients with a disease that remains incurable for all 

but a small proportion of the few individuals who survive the rigours of 

myeloablative allogeneic transplantation. The apparent achievement of a long 

term remission in these patients with this otherwise fatal illness drives continued 

interest in the further development of allogeneic stem cell transplantation. The 

assumption is that the long-term suppression of the myeloma clone would result 

from an optimum balance of GVM and GVHD.

As previously mentioned, the rationale for the conditioning approach used in 

this study was to reduce toxicity by lowering the intensity of the preparative 

chemotherapy, and also to achieve a more controlled approach to the induction 

of a GVM effect, using T cell-depletion with subsequent, escalated DLI, whilst 

monitoring patients for evidence of GVHD. Indeed, within the first 100 days of 

transplant, mortality and morbidity in this cohort of patients was acceptable, 

given the older age group that underwent the procedure. In contrast to 

myeloablative regimens, despite the high incidence of viral infections and CMV 

reactivation, there was a no case of CMV disease and a low infection-related 

mortality in this study. In fact overall, in this patient group there was a 

surprisingly low incidence of opportunistic infections. This may be due in part to 

the concomitantly low incidence of GVHD in this group (approximately half of 

the patient group were affected by grades l-ll GVHD) an effect also probably 

attributable to the T cell-depleting properties of alemtuzumab. Delayed T cell 

recovery following alemtuzumab-containing conditioning was found to be 

comparable to that of myeloablative protocols. B cell recovery was delayed 

even compared to myeloablative protocols, particularly in terms of CD19+ cell 

numbers, but B cell repertoire recovered well. The main disadvantage of this 

regimen was the high relapse rate seen in this patient group, suggesting that
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the GVM effect was abrogated by the in vivo T cell depleting properties of 

alemtuzumab.

Numerous studies are ongoing to optimise the balance between the desired 

GVM effect and the unwanted GVHD effect that contributes significantly to 

patient mortality and morbidity following allogeneic transplantation. They involve 

different strategies, including variations in the approach to conditioning the 

patient prior to transplant to achieve an adequate cytotoxic effect against 

residual tumour cells with limited host toxicity, variations in the approach to T 

cell-depletion and GVHD-prophylaxis, manipulation of specific subsets of 

lymphocytes within the stem cell inoculum either in vivo or in vitro. In this 

chapter, some of these novel strategies will be discussed in more detail.

8.2 Conditioning regimens

Since the conclusion of the study which is the subject of this thesis, despite 

continued efforts worldwide, there has not been any single major advance in the 

development of more effective conditioning regimens for allogeneic stem cell 

transplantation in myeloma. There has been an accumulation of smaller, more 

subtle developments, which continue to add to the body of clinical evidence. 

Thus, myeloablative allogeneic transplantation is generally offered to patients 

up to the age of 45 years if there is a HLA-identical sibling donor and up to the 

age of 40 years if the donor is a matched unrelated one. Recent data have 

emerged about the superiority of melphalan and TBI as conditioning therapy for 

myeloablative transplants over cyclophosphamide and TBI, yielding CR rates of 

65% and 47% respectively, no difference in non-relapse mortality, and relapse 

rates of 37% and 81% respectively at 5 years (Hunter, et al 2005). In other 

respects, data on the subject of other varieties of conditioning regimens remains 

inconclusive (Gahrton, et al 1995).

The current position of RIT in myeloma is far from certain. It has been shown to 

be a technically feasible procedure with acceptable non-relapse mortality rates 

even in patients with a higher incidence of co-morbidities. But the evidence for 

curative potential is not yet forthcoming with current approaches. The most 

promising approach to date is the tandem autologous transplant / RIT 

procedure, which aims to exert a GVM effect at a time when a state of minimal
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residual disease has been achieved by the conditioning therapy for the initial 

autologous transplant. This would seem more likely to be successful given the 

limited success of using RIT as first-line consolidation or salvage therapy 

(Thomson and Peggs 2005). In one study of tandem autologous transplant /RIT, 

54 patients received induction therapy followed by a melphalan 200 autograft 

and then a planned HLA-matched sibling RIT conditioned with 200 cGy TBI at a 

median of 62 days later (Maloney, et al 2003). Overall survival at a median of 

552 days was 78% with a TRM of 17% and extensive chronic GVHD in 46%. 

Twenty five (52%) of the 48 patients who did not achieve CR following the 

autograft went on to achieve CR following the following the allograft, and the 

estimated progression free survival at 2 years is 55%. Another study of the 

tandem approach reported the outcome of a fludarabine, melphalan and ATG- 

conditioned RIT following induction therapy and a melphalan 200 autograft in a 

smaller number of patients (17). Complete remission was seen in 72% following 

the RIT and the estimated PFS at 2 years was 56% (Kroger, et al 2002). 

However, this approach in high risk patients seems less robust. An IFM study 

enrolled patients with poor risk features such as raised p2microglobulin and 

chromosome deletion (del (13) or (17)) by FISH analysis, to receive an ATG- 

containing RIT transplant following a melphalan autograft if they had an HLA- 

matched sibling donor or a second tandem autograft (Facon, et al 2001, Moreau

2003). No advantage of the autologous/RIT approach has been observed in 

follow up to date (the survival rate at 3 years is 50% in both groups), implying 

that inclusion of the RIT cannot, at least with the conditioning therapy that was 

used, salvage this poor risk group. This observation has been confirmed by 

another study showing a high risk of relapse (relapse rate of 77%; overall 

survival of 18% at 2 years) in the RIT setting in patients with the presence of 

chromosome 13q- (Kroger, et al 2004).

Interestingly, the Stanford group has recently published the results of a study of

a novel approach to conditioning using total lymphoid irradiation (TLI, 10 doses

of 80 cGy each over 11 days) plus ATG in 37 patients with lymphoid malignancy

or acute leukaemia (Lowsky, et al 2005). This regimen was used in these

subjects following evidence for a low GVHD rate in the preclinical murine

setting, in which TLI was found to offer protection against acute GVHD by

preferentially sparing host NK T cells, which became the main source of host IL-
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4. As discussed in section 4.1.6, IL-4 downregulates IL-12 and interferon-y (IFN- 

y) production, thus favouring the development of a Th2 response and functions 

as an autocrine growth factor for differentiated Th2 cells; Th2 polarisation tends 

to protect against acute GVHD. In the reported clinical study, the investigators 

found a marked increase in the production of IL-4 by donor CD4+ cells after 

transplantation as opposed to IL-4 production by CD4+ cells in normal control 

subjects and a reduced incidence of GVHD (3%) compared to RIT conditioned 

with TBI or chemotherapy alone. This apparently abrogating effect on the 

incidence of GVHD was contributed to (particularly in the patients with lymphoid 

malignancy) by the direct anti-tumour effect of the TLI on residual tumour cells 

in the host’s lymphoid tissues. TLI also has the advantage of causing less tissue 

damage than TBI and reducing the propensity towards the so-called cytokine 

storm that heralds the onset of acute GVHD.

Thus although advances such as these need to be developed further, attention 

is also being focussed on issues other than conditioning, in order to improve the 

outcome of allogeneic stem cell transplantation, and include some 

developments that have only become possible due to advances in molecular 

technology, as will be discussed below.

8.3 Disease-related characteristics: Recent advances in the identification 

and significance o f prognostic factors

8.3.1 Influence of prognostic factors

Apart from age and stem cell source, the nature of the disease itself poses 

considerable challenges when deciding on treatment options. Myeloma is a 

disease with considerable heterogeneity in clinical outcome. Survival of patients 

can vary from a few months to more than a decade following diagnosis and 

treatment (Greipp, et al 2005). As well as the variation in myeloma related end- 

organ damage (such as renal failure and lytic disease) at presentation, the 

clinical course of the disease varies considerably from patient to patient.

Staging systems such as the Durie-Salmon system link reduced survival with 

high tumour burden at diagnosis, but more recently, important advances have 

been made in determining the role of specific prognostic factors in the course of 

the disease (San Miguel and Garcia-Sanz 2005). With the advent of novel
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therapies for myeloma, such as thalidomide, its analogue, lenalidomide and the 

proteasome inhibitor, bortezomib, the role of intensified treatment in the form of 

allogeneic stem cell transplantation as opposed to the use of these agents in 

the management of myeloma patients is under closer scrutiny than ever. These 

agents have shown significant activity against the disease (Jagannath 2005, 

Rajkumar 2005, Richardson, et al 2003)and have considerably lower toxicity. 

Thus their use may be more appropriate than stem cell transplantation in 

selected patients.

High serum levels of p2-microglobulin and C-reactive protein and low serum

levels of albumin, atypical plasma cell morphology and high proliferative activity

have long been recognised as having a negative impact on survival (Bataille, et

al 1992, Greipp, et al 1993, Jacobson, et al 2003). In reality, however, only p2-

microglobulin, C-reactive protein and serum albumin levels are routinely

measured, and none of them are sufficiently discriminatory to dictate the

intensity or selection of treatment. Certain cytogenetic abnormalities are also

recognised prognostic factors at presentation. Deletions/monosomy of

chromosome 13, non-hyperdiploidy and certain balanced translocations (which

include the immunoglobulin heavy chain locus (IgH) at 14q32) such as t(4; 14)

and t(14; 16) have a strong negative impact on prognosis (Fonseca, et al 2004).

Only a limited number of centres routinely perform cytogenetic analysis in

myeloma patients. One of the main reasons for this is the low likelihood of

obtaining cells in metaphase from bone marrow samples owing to the low

proliferative rate of plasma cells. With the advent of techniques such as

interphase fluorescent in situ hybridisation (FISH), it has been possible to

improve the yield of the genetic characteristics of the disease. Recently, further

study has elucidated the relative importance of these cytogenetic abnormalities

as studied by conventional cytogenetics, metaphase FISH and interphase FISH

(Dewald, et al 2005). It was found that the poorest prognosis (median survival of

12.7 to 13.9 months) is associated with the 13q- abnormality, t(4; 14), t(14; 16),

or 17p- when detected with metaphase analysis or t(4; 14) or t(14; 16) seen with

interphase FISH. In contrast, patients with no abnormality on conventional

cytogenetics, metaphase or interphase FISH, or t(11; 14) without t(4; 14),

t(16; 16) , 17p- or 13q- were found to have median survivals of 45 months and

55.3 months respectively. Interestingly, patients who demonstrated 13q- or 17p-
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without t(4; 14) or t(14; 16) on interphase FISH were found to have an 

intermediate median survival of 33.9 months. As these molecular techniques 

become more routinely available, it should become possible to carry out studies 

of therapy that is risk-stratified according to the prognostic markers identified at 

diagnosis. Thus patients with poor prognosis genetics, with the exception of 

those for whom targeted therapies, eg., FGFR3 inhibitors for those with t(4; 14), 

are coming on line, could be offered allogeneic stem cell transplantation 

exploring new and experimental protocols.

8.3.2 Gene expression profiling and myeloma

Techniques such as gene expression profiling (GEP) are set to further advance 

the understanding of the influence of genetic abnormalities on the course of the 

disease. Already, results are emerging that demonstrate that this technique can 

distinguish between normal plasma cells and MGUS / myeloma plasma cells, 

although so far GEP has not been as successful in distinguishing between 

MGUS, which remains an indolent, pre-malignant condition in the majority of 

cases and myeloma (Kyle, et al 2002). This finding could be regarded as 

counter-intuitive, since myeloma is regarded as malignancy characterised by 

genomic instability that increases as the disease progresses. If MGUS already 

possesses the genetic hallmarks of malignancy, it is surprising that it rarely 

converts into overt myeloma, suggesting that other influences such as changes 

in the bone marrow microenvironment or failure of immune surveillance may 

play an important role in the progression of the disease. It is currently possible, 

in specialised laboratories, to identify IgH translocation status, chromosomal 

ploidy, deletion of chromosome 13 and other high-risk genetic signatures using 

a single GEP platform. Some investigators have begun to study such prognostic 

profiles in the setting of tandem autologous stem cell transplantation 

(Shaughnessy, et al 2005). Other investigators have proposed a risk-adapted 

therapy model, based on a comprehensive GEP-based prognostic classification 

system (Hideshima, et al 2004): patients with t(11; 14) [cyclin D1] or t(6; 14) 

[cyclin D3] are classified as translocation classification (TC) 1 and respond well 

to therapy; TC2 and TC3 express cyclin D2 due to an identifiable mechanism 

such as trisomy 11 or an unknown mechanism and lack IgH translocation and 

have an intermediate prognosis; patients in TC4 possess t(4; 14) 

[FGFR3/MMSET] and express high levels of cyclin D2. TC5 patients have
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t( 14; 16) [c-maf\ and express cyclin D2. The patients who fall in to categories 

TC4 and TC5 have a shortened survival irrespective of treatment with standard 

or intensive therapy. As further data from such studies emerge, we may be 

able to assign specific therapies to different TC groups.

GEP also has the scope to predict the response of myeloma to specific drug 

treatments, by defining the genetic signatures of drug responsiveness and 

resistance. Preliminary results show that it is possible to predict the response 

to VAD, bortezomib, thalidomide and lenalidomid by segregating patients on the 

basis of the GEP of their disease (Barille-Nion, et al 2003, Barlogie, et al 2004, 

Shaughnessy and Barlogie 2003).

Thus an important direction for future study in the management of myeloma is 

the continued development of reliable and valid prognostic models and models 

of predicted drug efficacy based on GEP, in order to develop a stratified 

approach to the utility and order of application of different modalities of 

treatment. The use of novel therapies prior to or following stem cell 

transplantation could be planned on the basis of the genetic signature of the 

disease in individual patients. This approach will rely upon the development of 

large scale clinical trials to ensure the statistical significance of the various 

therapeutic subgroups that emerge.

8.4 Improving host and donor compatibility: the role of non-HLA encoded 

antigens

Apart from older patient age, the availability of an HLA-identical stem cell donor 

remains the principal limitation to offering allogeneic stem cell transplantation to 

myeloma patients. As discussed in Chapter 7, the incidence of GVHD following 

allogeneic transplantation is generally lower in sibling donor compared to 

unrelated donor transplants. Since the chance of having an HLA-identical 

sibling donor is 1 in 4 (assuming availability of a sibling), the current study also 

included patients who would receive stem cells from unrelated donors. Eleven 

patients received sibling donor-derived peripheral blood stem cells, whereas 8 

received bone marrow stem cells from unrelated donors, and there was 

evidence of a higher incidence and severity of acute and chronic GVHD in the 

unrelated donor group. However, this finding was not statistically significant.
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Even when an HLA-identical match is found using the state-of-the-art molecular 

techniques discussed in section 1.4.1, the incidence of GVHD and GVM 

remains unpredictable following allogeneic transplantation, making it difficult to 

accurately counsel patients and indeed to facilitate their decision-making about 

the risks of proceeding to transplant.

As previously discussed in Chapter 7, the triggering and promoting or 

ameliorating mechanisms for acute and chronic GVHD are complex and 

incompletely understood. Whether the immune response is triggered by an 

infective or inflammatory stimulus, the immune system exhibits a number of 

phenomena such as redundancy and pleiotropism, up/down-regulation of 

cellular and cytokines responses or internalisation of cell surface receptors and 

adhesion molecules following activation, that contribute to the complexity of the 

situation. However, continued immunological and molecular research is 

promoting a better appreciation of the various mechanisms involved. For 

example, although major HLA-compatibility remains the principal consideration 

when selecting stem cell transplant donors, the sequencing of the human 

genome has revealed that numerous non-HLA-encoded single nucleotide 

polymorphisms (SNPs) and minor histocompatibility antigens (mHag) are also 

of relevance in this setting (Dickinson, et al 2004).

This section will focus on non-major HLA genetic influences over the outcome 

of allogeneic stem cell transplantation. These include cytokine gene 

polymorphisms (CGPs), mHags and genes thought to be involved in the 

response to infection and drug metabolism.

8.4.1 Cytokine gene polymorphisms

Cytokines have long been known to be critical in the initiation and promotion of 

acute GVHD which occurs in between 30 and 80% of recipients of HLA-identical 

sibling grafts, despite the use of ever more sophisticated GVHD prophylaxis. T 

cells also play a crucial role, as outlined in section 7.2.1, but there is a greater 

understanding that cytokines have the capability to induce the 

pathophysiological changes associated with acute GVHD as well as other 

complications of allogeneic transplantation such as pneumonitis and veno- 

occlusive disease of the liver in their own right (Holler, et al 2000, Reddy and
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Ferrara 2003). The amount of cytokine produced or the density of receptor 

expression in response to a stimulus can be influenced by polymorphisms that 

occur within or adjacent to the regulatory sequences of cytokine/ receptor 

genes. These polymorphisms are inherited and so there are low or high 

producers of cytokines in the normal population. These inherited differences 

have implications for recipients and donors involved in stem cell transplantation 

and are likely to contribute to the clinical outcome of the transplant. Important 

cytokine/ receptor genes in this respect include the TNF-a gene on 

chromosome 6, the TNF receptor (TNFRI and TNFRII) on chromosome 12p13, 

the IL-10 gene on chromosome 1, the IL-6 gene on chromosome 7p21, the IFN- 

y gene on chromosome 12q24, the IL-1 gene on chromosome 2, the TGF-(31 

gene on chromosome 19q 13 and the TGF p -1 receptor gene on chromosome 

3p22 (Dickinson, et al 2004). A variety of gene polymorphisms in the form of 

nucleotide substitutions, repeat microsatellites and variable number tandem 

repeats (VNTR) have been characterised in recipients and donors and linked to 

the incidence and severity of acute and chronic GVHD following allogeneic 

transplantation. In some cases, pro-inflammatory cytokine production (such as 

TNFa, IL-6I and L-1) is up-regulated and in others, anti-inflammatory cytokines 

(such as IL-10) are down-regulated. However, the actual effect of these genetic 

differences may be ameliorated by certain associated influences such as 

polymorphisms in neighbouring genes or the dual properties of certain 

cytokines, such as IL-10 which is thought to have both pro- and anti­

inflammatory properties. In addition, the possession of certain HLA antigens by 

recipient/ donor (such as HLA-A3, which is associated with higher risk of GVHD 

and HLA-DR1, which is associated with a lower incidence) may override the 

influence of CGPs. As well as this, the gene frequencies in different ethnic 

groups may account for differences in the influence of certain polymorphisms in 

different populations. Finally, interpretation of the influence of CGPs is also 

affected by the myriad of conditioning and GVHD prophylaxis regimens in use, 

as well as the disease type being studied.

Thus whilst the rationale for including CGPs in the recipient/ donor matching 

profile appears to be justifiable, further study is needed before these non-HLA 

encoded genes can be used to dictate clinical practice.
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8.4.2 Minor Histocompatibility antigens

Since HLA-identical siblings are matched for major histocompatibility antigens, 

the GVHD that occurs in the setting of sibling donor transplantation must arise 

as a result of other mismatches. mHags are peptides derived from intracellular 

proteins of restricted polymorphisms encoded by autosomal or Y chromosomal 

genes and presented by HLA molecules. Five minor histocompatibility antigens, 

HA-1, 2, 3, 4, and 5, that are recognized by T cells in association with the major 

histocompatibility antigens HLA-A1 and A2 have been previously characterised 

(Goulmy. et al 1996). A mismatch of minor histocompatibility antigen HA-1 has 

been found to be associated with GVHD in adult recipients of allogeneic bone 

marrow from HLA-identical donors, raising the possibility that prospective HA-1 

typing may improve donor selection and identify recipients who are at high risk 

for GVHD. More recently, HLA class II restricted mHags have also been 

characterised and associated with GVHD (Vogt, e ta /2002). The contribution of 

donor/recipient sex disparity has also been found to be relevant, in that male 

recipients of female sibling grafts who received allogeneic transplants for 

haematological malignancies were found to have the highest incidence of 

GVHD and the lowest rate of relapse (Randolph, et a /2004). This effect was 

attributed to mHag encoded or regulated by genes in the Y chromosome. 

Further evidence for this effect has been forthcoming from another study that 

found that B cell as well as T cell responses are relevant in the setting of female 

to male allogeneic transplantation, with the demonstration of antibody 

responses to DBY, a model H-Y minor histocompatibility antigen (mHA) in a 

male patient with chronic GVHD (Zorn, et al 2004).

Tissue expression of some mHags, such as HA-1 and HA-2 is limited to 

haematopoietic cells, raising the possibility of targeting them 

immunotherapeutically using either ex vivo generated mHag HA-1 and HA-2- 

specific cytotoxic lymphocytes or DLL This has been done by investigators who 

treated HA-1 and/or HA-2 positive acute leukaemia patients who relapsed 

following transplant with DLI from their HA-1 and/or HA-2 negative donors 

(Marijt, et al 2003). Subsequently, HA-1- and HA-2-specific CD8+ cells were 

found in the peripheral blood of the recipients, associated with complete donor 

chimerism and complete remission of the leukaemia.
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It is hoped that further understanding of the role of mHags and other non-HLA 

encoded antigens in the GVHD/ GVM effect may in the future lead to a greater 

predictive power and a more sophisticated risk index for GVHD, to be used 

alongside the existing risk factors such as gender, age and CMV status.

8.5 Depletion of specific lymphocyte subsets

Mature donor T cells that are co-transfused with the stem cell graft have both 

beneficial and negative effects. Their presence in the inoculum facilitates stem 

cell engraftment, contributes to the protection of the recipient from opportunistic 

infections as well as the all-important GVM effect. However, these cells also 

induce immune-mediated tissue damage in the recipient, resulting in GVHD. 

Depletion of this donor T cell population from the graft has not resulted in an 

improvement in overall survival, due to the resultant increase in opportunistic 

infections, increased graft rejection rates and higher frequencies of disease 

relapse (Champlin, et al 2000).

Thus attention has switched to strategies that might enhance the GVM effect by 

removing selected T cell populations with a propensity to induce GVHD from the 

inoculum. For example CD8-depletion may allow GVM-polarised effectors to 

play a more central role in the post transplant period (Champlin, et al 1990). An 

alternative approach is to use suicidal (herpes virus thymidine kinase- 

transduced) lymphocytes which can be killed using ganciclovir, thus 

ameliorating the GVHD process (Bonini, et al 1997). Also attempted has been 

the administration of cloned or selected cells with antitumour effects which may 

augment the GVM process without inducing GVHD, provided these effectors 

are devoid of anti-host activity (Rooney, et al 1995). Ex vivo depletion of 

alloreactive T cells is another way of minimising GVHD whilst hopefully 

conserving a GVM effect (Cavazzana-Calvo, et al 1994). Alloreactive T cells 

can be stimulated in a mixed lymphocyte culture (MLC) and then be removed by 

treating the cells with an immunotoxin that targets activation antigens such as 

the IL-2 receptor. The remaining cells retain reactivity against infectious agents 

and possibly residual malignancy, whilst having a reduced potential to induce 

GVHD. So far, none of these strategies has proved singularly reliable or 

practical enough to be widely applicable to allogeneic transplantation for 

myeloma or indeed other haematological malignancies.
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8.5.1 CD4+CD25+ Regulatory T cells: modulators of immune tolerance and 

alloreactivity

A particular subset of T cells, termed regulatory T cells (Treg) has become the 

focus of renewed interest in the setting of allogeneic transplantation (Edinger, et 

al 2003). These cells are CD4+ cells that constitutively express the a-chain of 

the IL-2 receptor (CD25). They play an important role in the maintenance of 

self-tolerance, control of autoimmunity, regulation of T cell homeostasis, 

modulation of the overall immune response against infectious agents and 

tumour cells (Bluestone and Abbas 2003) and allogeneic grafts (Waldmann, et 

al 2004). They are thymus-derived cells that preferentially express molecules 

such as CTLA-4, glucocorticoid-induced TNF receptor family-related gene 

(GITR) and forkhead/winged helix transcriptional regulator (Foxp3) and make 

up 5-10% of the T cell pool in peripheral blood and lymphoid organs (Hoffmann, 

et al 2005). This group of cells is also distinct from its CD4+CD25- counterparts 

in functional terms: their most characteristic features are anergy and an inherent 

suppressive activity. Their anergic state (impaired proliferative response to 

standard T cell stimuli) is not, however absolute: they require antigen-specific 

activation via their TCR in order to gain their suppressive function; once 

activated, they suppress the proliferation and cytokine production of co-cultured 

CD4+ and CD8+ that have been activated non-specifically by antigen.

The ability of Treg cells to suppress the proliferative response of conventional 

CD4+ cells was first demonstrated in a mixed lymphocyte reaction, following 

stimulation by MHC-mismatched MNCs. These findings prompted further 

studies of GVHD prevention in animal models, which showed that 

transplantation of purified donor Treg cells into completely or partially 

mismatched recipients did not induce signs of GVHD even when large numbers 

of T cells were used. As well as this, neither residual host Treg cells in the setting 

of RIT nor donor Treg within the graft interfered with stem cell engraftment, but 

instead facilitated immune reconstitution and the development of full donor 

chimerism.
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8.5.2 The use of CD4+CD25+ cells in the clinical setting

The replication of results seen in the murine setting in humans has proved 

difficult. Human stem cell grafts vary in composition with respect to numbers 

and function of CD4+ and CD8+ cells and furthermore, the co-expression of 

CD4 and CD25 may be insufficient to reliably identify the Treg subset in humans. 

This was a finding of Stanzani et al, who quantitated the co-expression of CD25 

on CD4+ and CD8+ cells in 60 donor grafts infused into sibling recipients and 

examined the incidence of GVHD (Stanzani, et al 2004). They found that the 

incidence of GVHD was significantly higher in recipients of grafts that contained 

higher numbers of CD4+ cells co-expressing CD25 than those who did not. It is 

clear that currently accepted markers of Treg cells, which are also expressed on 

activated T cells do not correctly identify the subset of interest. The other 

possibility that needs to be considered is that there may be functional 

differences in the identified subset, perhaps owing to the activation of these 

cells during the mobilisation or collection process, the current method of choice 

for stem cell procurement.

Some investigators have examined Foxp3, a key regulatory gene required for 

the development and function of Treg cells as a potentially more-specific marker 

of Treg cells, but to date have not found a difference in the relative FoxpS mRNA 

expression between controls and transplant recipients, regardless of GVHD 

status, time following transplantation or degree of lymphopenia (Meignin, et al 

2005).

The other problem is the isolation of sufficient numbers of antigen-specific and 

functional Treg cells to make cell-based therapy feasible. Current methods used 

for expansion have proved inefficient, the expanded cells lose their inhibitory 

potential over time, or the degree of purification needed to overcome the co­

expansion of CD4+CD25- cells ex vivo remains beyond reach (Hoffmann, et al 

2004). The use of rapamycin in the culture system may be a way of 

preferentially expanding CD4+CD25+ cells, as demonstrated more recently 

(Battaglia, et al 2005).

Finally, monitoring Treg survival and function in humans post transplant will also

be hampered by the lack of standardised identification markers and functional
180



assay systems. It also remains to be seen whether the clinical setting of HLA- 

matched transplantation will be rigourous enough to induce the induction of Treg 

cell suppressive function in the same way that it has done so in mis-matched 

murine models.

8.6 Conclusions

Continued systematic study of these and other potential strategies is needed to 

further the development of the optimum immunological balance between GVHD 

and GVM following allogeneic stem cell transplantation. Given the complexity of 

the mechanisms involved, it is unlikely that a one size-fits-all approach will work, 

but rather patient/donor and myeloma-specific characteristics will need to be 

taken into account to develop a tailored approach to myeloma therapy that 

incorporates appropriate use of immunological and novel therapies. A more 

rational therapeutic aim might be to achieve long-term disease control rather 

than a cure per se.
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APPENDIX 1 RESPONSE CRITERIA (EBMT 1998)

Complete Response (CR)

Requires all of the following:

■ Absence of the original monoclonal paraprotein in serum and urine by 

routine electrophoresis and by immunofixation, maintained for a minimum 

of 6 weeks. The presence of oligoclonal bands consistent with oligoclonal 

immune reconstitution does not exclude CR.

■ <5% plasma cells in a bone marrow aspirate and also on trephine bone 

biopsy, if biopsy is performed. If absence of monoclonal protein is sustained 

for 6 weeks it is not necessary to repeat the bone marrow unless the patient 

had non-secretory myeloma

■ No increase in size or number of lytic bone lesions on radiological 

investigations, if performed (development of a compression fracture does 

not exclude response)

■ Disappearance of soft tissue plasmacytomas.

Patients in whom some, but not all, the criteria for CR are fulfilled are classified

as PR, providing the remaining criteria satisfy the requirements for PR.

Partial Response (PR)

Requires all of the following:

■ >50% reduction in the levels of the serum monoclonal paraprotein, 

maintained for a minimum of 6 weeks

■ Reduction in 24 hour urinary light chain excretion either by >90% or to 

<200mg/24 hours, maintained for a minimum of 6 weeks.

■ For patients with non-secretory myeloma only: >50% reduction in plasma 

cells in a bone marrow aspirate and on trephine biopsy, if biopsy is 

performed, maintained for a minimum of 6 weeks.

■ 50% reduction in the size of soft tissue plasmacytomas (by radiology or 

clinical examination).

■ No increase in size or number of lytic bone lesion on radiological 

investigations, if performed (development of a compression fracture does 

not exclude response)
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Patients in whom some, but not all, of the criteria for a PR are fulfilled are 

classified as MR, provided the remaining criteria satisfy the requirements for 

MR.

Minimal Response (MR)

Requires all of the following:

■ 25-49% reduction in the level of the serum monoclonal paraprotein 

maintained for a minimum of 6 weeks

■ 50-89% reduction in 24-hour urinary light chain excretion, which still 
exceeds 200mg/24 hours, maintained for a minimum of 6 weeks.

For patients with non-secretory myeloma only:

■ 25-49% reduction in plasma cells in a bone marrow aspirate and on 

trephine biopsy, if biopsy performed, maintained for a minimum of 6 weeks

■ 25-49% reduction in the size of soft tissue plasmacytomas (by radiology or 
clinical examination)

No increase in the size or number of lytic bone lesions, lesions on radiological

investigations, if performed (development of a compression fracture does not

exclude response).

No Change (NC)

■ Not meeting the criteria of either minimal response or progressive disease

Plateau

■ Stable values (within 25% above or below value at time response is 

assessed) maintained for at least 3 months

Progressive Disease (PD)

Require one or more of the following:

■ >25% increase in the level of the serum monoclonal paraprotein, which 

must also be an absolute increase of at least 5g/L and confirmed by at least 

one repeated investigation.

■ >25% increase in 24 hour urinary light chain excretion, which must also be 

an absolute increase of at least 200mg/24 hours and confirmed by at least 

one repeated investigation.
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■ >25% increase in plasma cells in a bone marrow aspirate or on a trephine 

biopsy, which must also be an absolute increase of at least 10%.

■ Definite increase in the size of existing bone lesions or soft tissue 

plasmacytomas (development of a compression fracture does not exclude 

continued response and may not indicate progression)

■ Development of hypercalcaemia (corrected serum Ca>11,5mg/dL or 

2.8mmol/L) not attributable to any other cause
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