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Abstract

This thesis is concerned with the methods of mean field calculations of the properties of soft matter
systems. The first part deals with the application of mean field density functional theory to fluid
systems containing small numbers of particles. This is relevant to nucleation studies that can be
performed using mean field density functional theory (MFDFT), where the critical clusters that
constitute the transition states for phase transitions can be very small. It is also relevant for studies
of the behaviour of confined fluids such as fluids in nanopores. The problems in applying MFDFT
to small systems are investigated, and modifications to improve the accuracy are identified. These
principles are tested on a highly simplified model system of attractive hard rods in one dimension.
The second part of the thesis investigates the mean field description of interactions in charged colloidal
suspensioné within the primitive (PM) model. The phase behaviour of these systems is discussed.
In particular, the question of whether experimental observations of coexistence between dense and
rarefied phases can be accounted for by mean field theory is discussed. A new approximate method
for solving the nonlinear mean field Poisson-Boltzmann equation in the limit of dilute suspensions is
proposed. This method is applied to the simple case of charged plates, as well as arrays of spherical
colloidal particles. For the latter case, comparisons are made between spherical and cubic Wigner-
Seitz cell geometries.
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Chapter 1

First-order phase transitions and

inhomogeneous fluids

1.1 Introduction

This thesis deals with the application of mean field density functional theory to the calculation of
the equilibrium thermodynamic properties of soft condensed matter systems. The technique of mean
field density functional theory is applied to two very different types of system. In Chapter 3, the
application of this technique to systems containing a small number of particles is investigated. A
number of corrections are proposed to increase the accuracy of mean field density functional theory
when applied to systems containing a small number of particles. Chapters 4-8 deal with charged
colloidal suspensidns. In Chapter 6, a new linearisation scheme is proposed for the solution of the
nonlinear mean field equations in these systems. The technique is tested in Chapters 7 and 8, through
application to well known model systems.

As the underlying motivation of this work is the study of first-order phase transitions, this chapter
gives a brief introduction to first-order phase transitions and in particular fluid-fluid phase coexistence.
Although the calculations in this thesis are entirely equilibrium calculations, the kinetics of first-order
phase transitions is discussed in this chapter, as a motivation for the study of inhomogeneous fluid

systems in general.

1.2 Thermodynamics and statistical mechanics of first-order

phase transitions

1.2.1 Microscopic approach

Phase transitions are ubiquitous in natural as well as many industrial processes. Examples include
rainfall which involves condensation of water vapour, and crystallisation processes that are important
in the synthesis of new materials. First-order phase transitions involve transitions between states that
have different densities and different entropies. The difference in entropy AS has the consequence
that these phase transitions involve a latent heat L = T'AS, such as the heat that must be added to
water to make it boil.

Theoretically, the phase diagram of a system can be constructed using the partition function for
the system. This is used to obtain a thermodynamic potential which is differentiated to construct
equations of state. For a system of identical particles maintained at constant particle number, volume



and temperature (N VT) the classical partition function Z is given by
1
Z= NDIN /dNrexp(-—ﬂU(rN)) (1.1)

where U(rN) is the position-dependent part of the system Hamiltonian, A = h/(2rmkpT)!/? is the
thermal de Broglie wavelength which comes from integrating over the kinetic degrees of freedom in
the system, h is Planck’s constant, m is the mass of the particles and 8 = 1/kgT ( kp is Boltzmann’s
constant and T is the temperature). The corresponding thermodynamic potential is the Helmholtz
free energy defined as

F(N,V\T)=—-kgThhZ (1.2)

First-order phase transitions are characterised by discontinuities in the derivatives of the free energy.
The discontinuity of the derivative with respect to temperature reflects the difference in entropy as
the system changes from one phase to another.

The partition function represents a weighted sum over all possible states a system can occupy. In
most cases this represents an astronomical number of possibilities. For most systems the partition
function Z is impossible to evaluate exactly, and approximate methods need to be used. Because the
partition function Z is a sum over all possible configurations of the system, the quantities derived
from it relate to the equilibrium behaviour of the system in the long-time limit ¢ — oo. In practical
terms this means that such thermodynamic quantities describe the system over timescales that are
long compared to all of the microscopic processes through which the system’s phase space is sampled.

Kinetics versus equilibrium thermodynamics

Even if the partition function for a system could be evaluated exactly, it would not provide very
much information about the kinetics of the phase transitions themselves. This is because the transient
unstable states that occur during a phase transition, make an insignificant contribution to the partition
function Z. To study the kinetics of a system undergoing a phase transition inevitably requires the
introduction of some kind of constraint, that restricts the integral (1.1) to be over regions of the phase
space in which the system has properties of the phase that has become unstable. Such constraints
are hard to impose in rigorous statistical mechanical treatments that take the microscopic partition
function as their starting point [1], however they are naturally built in to more phenomenological
theories of phase transitions, and approximate mean field treatments.

1.2.2 Phenomenological approach

At equilibrium, there are typical configurations that make up the dominating contributions to the
partition function Z. These configurations represent regions in the system’s phase space that it is
most likely to occupy. The general theory of phase transitions due to Landau begins by identifying
a quantity, the order parameter, that characterises the change undergone by a system during a
phase transition. This allows systems to be described on the level of the collective phenomena
involved in phase transitions, rather than the full microscopic phase space of the system. In the
phenomenological approaches, the free energy of a system is expressed in terms of the order parameter.
This introduces an extension of the conventional definition of free energy. Rather than describing a
system at equilibrium, this free energy describes a quasi-equilibrium system constrained to have a
certain value of the order parameter. The constrained free energy is referred to as the Landau free
energy. The equilibrium state of the system is obtained by finding the value of the order parameter
for which the Landau free energy is a minimum.



Phenomenological approaches to kinetics

A feature of the phenomenological approach is that it allows the extrapolation of phases beyond the
regions in which they represent the stable equilibrium state of the system. This means that the
phenomenological approach is also useful in the description of the kinetics of phase transitions.

For systems in which the order parameter is a conserved quantity (such as the density of a fluid
p) phase transitions are accompanied by spatial variations of the order parameter that leave its total
integral over all space unchanged [2]. This is why mean field density functional theory, in which the
free energy of a system is expressed as a functional of a spatially varying density, can be useful in
the description of kinetics of phase transitions. The technique is also useful for the calculation of
equilibrium properties of systems which are spatially inhomogeneous, which is the topic of this thesis.

1.2.3 Phase coexistence in a single-component fluid

The phenomenological approach can be applied to investigate transitions between two fluid states
with different densities, such as the liquid-vapour transition. Under conditions of coexistence, the
equilibrium state of a system may be such that there are two regions with different values of the
order parameter (in this case the fluid density). In each region, the value of the order parameter
is assumed to be homogeneous throughout with the exception of the boundary or interface between
the two regions. The interface consists of a finite region in which the order parameter is spatially
varying. An abrupt change would entail a large free energy cost, but within the Gibbs ‘thin wall’
approximation, the fraction of particles in the interfacial region is considered to be negligible [2].

The first step is to find the free energy of a fluid constrained to have a homogeneous density
throughout. If the constrained free energy per particle f = F/N as a function of the volume per
particle v = V/N' contains an upward bulge (where 8% f/0v? becomes negative), then the fluid can
attain a lower free energy by phase separating into two regions. This is done following the common
tangent construction, or lever rule (see Figure 1.1). A hypothetical homogeneous state with specific
volume vy, can reduce its free energy by separating into a mixture of states with specific volumes v;
and vy. The proportion of particles that will be in each of these states is

V2 — Vo Vo — V1
— ) = ——

ay = y 2=
V2 — 1 V2 — "

(1.3)

~

v, Vo V v

Figure 1.1: Free energy per particle versus volume per particle for a constrained, homogeneous fluid. A system with
volume per particle vo can lower its free energy by separating into two phases with specific volumes v; and va.



In the absence of surface effects, the free energy per particle of the inhomogeneous system will be

f=a1fitaaf (1.4)

where f; and f, are the free energies of the two homogeneous states with specific volumes v; and ve
respectively. These two states are called saturated states, and are assumed to be no different from
the original constrained homogeneous states with specific volumes v; and v,.

The common tangent construction stems from the requirement that at equilibrium the two co-
existing phases must have equal pressures and chemical potentials, that is P, = P and p; = pe.
The pressure is given by P = —gF/3V = —a8f/8v, so equality of pressure implies that tangents
to the f(v) curve at v; and vz must have the same gradient. The chemical potential is defined as
pu = 0F /8N, or alternatively as u = G/N, where G is the Gibbs free energy. The relation between G
and F is G = F + PV, so that u = f + Pv. Therefore y; = po implies

fi—un (g%)vl =fa—v2 (%:’:)v, (1.5)

Since the two gradients in (1.5) are the same by the equal pressure condition, this implies that the
two tangents also share the same intercept on the f-axis.

1.2.4 Thermodynamic stability

The phase separation from a homogeneous phase illustrated above would not occur if the free energy of
the constrained, homogeneous phase did not have the ‘bulge’ as shown in Figure 1.1, where §%f/0v? <
0. This allowed the combination of phases at v; and v, to give rise to a lower free energy than the
homogeneous phase at vo.

This relates to the general concept of thermodynamic stability of a system. A system will be
stable with respect to volume or mechanical fluctuations if the free energy is convex with respect to
the volume V. This is equivalent to the requirement that the isothermal compressibility k7 must be
positive 2F op

1

W = —W = ;}7 > (16)
Related to this is the stability with respect to thermal fluctuations. A system will be stable to thermal
fluctuations if the free energy F is concave with respect to temperature T'. This requires the heat
capacity cy to be positive )

g—sz—:—g-Tg=—%<o (1.7)
where S is the entropy. When a system becomes unstable both of these conditions are violated
simultaneously [1].

1.2.5 Metastability

There are many physical situations in which the kinetic process through which a phase transition
takes place is more important in determining what is observed experimentally than the position of
equilibrium phase boundaries. Phase boundaries are equilibrium properties of a system calculated in
the thermodynamic limit, and represent what occurs over timescales long enough for all microscopic
processes to relax. In reality, surface effects lead to situations in which unstable states persist over
a long period of time despite the system having traversed an equilibrium phase boundary. These
thermodynamically unstable but kinetically stable states are called metastable. If the lifetime of a
metastable state is very long compared with the experimental observation time, a phase transition
will not be observed, and the thermodynamically unstable state will appear to be stable.



critical point

liquid
solid 1

triple point

gas

T

Figure 1.2:  P-T phase diagram of a typical single-component substance, showing one path for the liquid-vapour
transition by varying the temperature at constant pressure. If the system remains liquid at b or vapour at a it is in a
metastable state, and will eventually change to the equilibrium phase.

A well known example of this phenomenon is diamond, which is metastable with respect to
graphite at room temperature and atmospheric pressure. Due to the large activation free energy the
transformation to graphite is never observed under these conditions. Such effects are characteristic
of first-order phase transitions, which are associated with discontinuities in the derivatives of the free
energy.

Metastability occurs because when a phase boundary is traversed it takes thermal fluctuations
of finite magnitude to nucleate small regions of the new phase out of the unstable phase. These
regions then go on to grow and propagate the phase transition through which the system reaches
equilibrium. The rate at which the transition progresses is governed by the rate at which these key
intermediates can form. The intermediates constitute a transition state which is a bottle-neck for the
phase transition.

As an example Figure 1.2 shows the typical phase diagram for a pure, single-component substance.
A vapour at point [b] is cooled down to point [a] in the liquid region. Under the right experimental
conditions, it may remain in the vapour state even at [a] where the equilibrium phase is liquid. The
vapour is then said to be supersaturated. Similarly, a liquid at [a] may be heated up to [b] without
boiling. This would be a superheated liquid. These metastable states can be very delicate, and the
slightest jarring of the container may bring about the transition to stability.

Experimentally, supercooling or superheating of substance cannot be achieved without the removal
of impurities from the system and the avoidance of contact with the walls of a container. For example,
studies on metastable liquid water are often done by immersing the water in oil that acts as a medium
[1]. These measures aim at suppressing heterogeneous nucleation, which in general occurs faster than
homogeneous nucleation. Heterogeneous nucleation occurs when the wall of a container or an impurity
in the system facilitate the formation of the new phase by acting as a substrate, reducing the surface
free energy cost for the formation of the intermediates to the transition. Homogeneous nucleation
requires the intermediates to form in the midst of the system, and is generally a slower process.

The occurrence of metastability has consequences for the experimental determination of phase
boundaries. The possibilities of very long timescales for kinetic processes means that experimen-
tal data may not necessarily be seen to prove or disprove the existence of thermodynamic phase
boundaries under certain experimental conditions. In the study of charged colloidal suspensions for
example, phase separation of a homogeneous phase into dense and rarefied phases typically occurs
over a timescale of days [3].

While this thesis is concerned exclusively with calculations of equilibrium thermodynamic prop-
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erties of systems, some motivation is drawn from the study of kinetics of phase transitions, which is
discussed briefly in Section 1.4.

1.3 Van der Waals Equation of State: example of a mean field

approach

Mean field theories are often used to study phase transitions as they provide approximate methods
to evaluate the free energy F. Because of the approximations inherent in mean field theories, they
usually represent systems that are constrained in the sense described above. Mean field approxi-
mations generally involve neglecting correlations that bring about inhomogeneities in the system on
the microscopic molecular scale. Depending on the level of sophistication, inhomogeneities on longer
lengthscales are also neglected, which equates to treating constrained homogeneous systems.

At the heart of most mean field theories is the replacement of the complicated problem of many
particles interacting with each other, with one in which every particle interacts with an identical
mean field. This allows the partition function (1.1) for N particles to be factored into N identical
single-particle partition functions.

1
ZN = N-!zf' (1.8)

In the case of an ideal gas of N non-interacting particles the single particle pértition function is
21 = A73V, where V is the volume of the system.

The Van der Waals treatment of a non-ideal gas can be thought of as an example of a mean field
theory. The depé.rtures from ideal-gas behaviour arise due to interactions between the molecules in
the gas. The effect of the repulsive and attractive interactions are treated separately. This is a feature
that carries over into mean field density functional theory discussed in Chapter 2. The effect of the
attractive and repulsive interactions on the free energy are calculated without taking into account the
effects they induce on a completely homogeneous distribution of particles. The repulsive interactions
are approximated to be hard-sphere interactions. These cause a reduction in the volume available to
the molecules. To account for this, the volume is altered to be V — Nb, where b is roughly the volume
taken up by one molecule. The next step is to account for the attractive energy of the particles. If
the particles interact through an attractive pair potential u(r), and the correlations brought about
by this interaction are assumed not to alter the homogeneous distribution of particles, then the mean
interaction between a single pair of molecules is

(Uh) = %/47rr2u(r)dr = —%—?— (1.9

For a system of N particles, there will be (N — 1)N/2 ~ N?/2 pairs, so the mean attractive energy
per particle is (u) = —a(N/V'), which is proportional to the density. The constant « is positive for an
attractive interaction, and characterises the strength of the attractions. The attractive and repulsive
effects are combined to construct a mean field partition function. In the mean field approach, each
particle is taken to interact independently with a mean field that represents the presence of all the
other particles. The mean field single particle partition function is then

7 = :\lg(v — Nb) exp(—B(u)) = /\—la-(V ~ Nb) exp(+paN/V) (1.10)

where the exponent is the mean energy of a particle in the system, and the factor (V — Nb) is the
volume available to a molecule in the system. It can be seen that all local inhomogeneities brought
about by the attractive and repulsive interactions are neglected in this treatment.

Plugging the mean field single particle partition function into (1.8), taking the logarithm and using

11



Stirling’s approximation In N! ~ N(In N — 1), results in the free energy per particle f as a function
of volume per particle v for the Van der Waals fluid

f=—ksTla(—b~° - = (1.11)

The two terms in the free energy have competing effects with particle density. The first term takes
account of the reduction in entropy due to the decrease in the amount of volume available to the
particles as the density increases. The second term is the average attractive energy in the system,
which lowers the free energy as the density increases.
The free energy is then differentiated to obtain the pressure P = —3f/dv, giving the familiar Van
der Waals equation of state
(P + a/v¥)(v —b) = kgT (1.12)

Several isotherms in the P-V plane are shown in Figure 1.3. Under certain conditions, the free energy
has regions in which 82f/8v? becomes negative, indicating that the homogeneous phase becomes
unstable. The critical temperature T is the temperature above which there is no distinction between
the two fluid phases. In this region the fluid density changes continuously without a phase transition.
Below T, the isotherms develop Van der Waals loops, indicating that the homogeneous phases become
metastable and then unstable with respect to phase separation into regions of different densities. The
boundary between these behaviours is mapped out by the isotherm at the critical temperature T' = T,
for which. the pressure has an inflection point at the critical point. At T' = T, the liquid-vapour phase
transition is a second order phase transition.

Coexistence between phases with different densities can be built into the P-V diagram by use
of the Maxwell equal-areas construction. This is equivalent to the common tangent construction in
the f-v plane discussed in Section (1.2.3). The requirement for the coexisting phases to have equal
chemical potentials means that f; — fo = Pj2(va —v;1), where Ps is the pressure of the two coexisting
phases. Since f is negative of the integral of P with respect to v, this translates to

/'"2 P(v)dv = P12(’l)2 - ‘U1) (1.13)

This equation describes the straight line (at constant pressure P) that the subcritical isotherms follow
in the coexistence region. Graphically the requirement is that the areas above and below a horizontal
line cutting through a Van der Waals loop must be equal.

1.3.1 The coexistence region

The equal-areas construction maps out a region of phase coexistence which is demarcated by a bound-
ary called the binodal, labelled b in Figure 1.3. The inner region, demarcated by the spinodal (labelled
s), is the region where 8%f/8v? < 0 or equivalently &P/3V > 0. Inside the spinodal region a homo-
geneous phase is completely unstable, and arbitrarily small fluctuations are sufficient to bring about
formation of regions of the new phase. Metastability occurs for a system that is homogeneous inside
the coexistence region (where the equilibrium state involves phase separation into two different den-
sities), but outside the spinodal region. The closer to the spinodal, the less stable the system is with
respect to density fluctuations. Very close to the phase boundary a homogeneous state consisting of
a single phase may persist for a long time. Closer to the spinodal boundary the lifetime of metastable
states become shorter, and once the spinodal is reached the system becomes completely unstable.
Beyond this point, tiny fluctuations are sufficient to cause the system to separate via spinodal decom-
position (discussed in Section 1.4.2). In between the binodal and the spinodal, the phase transition
proceeds through nucleation of embryos or clusters of the new phase within the metastable homoge-
neous phase. Only clusters of a sufficiently large size have a high probability of growing into larger
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Figure 1.3: Isotherms in the P-V diagram for a Van der Waals fluid. Above the critical temperature Te. isotherms
for a homogeneous fluid remain stable. Below T the isotherms develop Van der Waals loops indicating that an inho-
mogeneous system consisting of two different densities becomes more stable. In the coexistence region the equilibrium
isotherms follow the straight line obtained from the equal-areas construction. The binodal (labelled b) and spinodal
(labelled s) discussed in Section 1.3.1 are also shown.

regions of the new phase. This is because smaller clusters will have a comparatively large surface free
energy cost.

The binodal demarcates an equilibrium phase boundary where a homogeneous phase becomes
thermodynamically unstable, and the equilibrium state is a combination of states with different
densities. A closed system with a uniform density will, given enough time, separate into two regions
with different densities. The spinodal is a non-equilibrium concept as it demarcates a change in the
kinetic process through which the phase transition occurs.

Some qualitative features of the transition may be inferred from Figure 1.3. Above the critical
point, there is no real distinction between the liquid and gaseous states, and the system changes from
a dense to a rarefied fluid continuously. Below the critical point, a transition occurs between one fluid
phase and another with a discontinuity in density. The increasing width of the coexistence region at
lower temperatures, indicates that the density difference between the coexisting phases is larger at
lower temperatures.

It should be noted that the spinodal line obtained in this way is a result of an approximate
calculation whereby a system is not only constrained to be globally homogeneous, but all microscopic
inhomogeneities that result from correlations between the molecules have been neglected. It is also
questionable whether a clear boundary such as the spinodal is an accurate description of realistic
phase transitions [1]. Experimentally it is very difficult to define a clear spinodal boundary as the
rate of formation of critical embryos in the coexistence region has a very strong dependence on
the extent of penetration into the coexistence region. Superheated liquids evolve suddenly from a
condition of relative stability (metastability) to a region in which the new phase is formed rapidly
and spontaneously. This experimentally determined limit is called the superheat limit, and is not a
sharp boundary like the spinodal.

1.3.2 Small systems

In large systems, interface effects can delay the occurrence of a phase transition. The free energy cost
of formation of the interface may be substantial, acting as an activation barrier to the formation of
the stable state. Surface effects influence the kinetics but not the thermodynamics of a system, which
is governed by what happens over long timescales. The Gibbs approach outlined above, inherent in
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the Maxwell or double-tangent construction, involves neglecting the surface between the two phases.
This is justified when the equilibrium thermodynamic behaviour of large systems is required.

When the system itself is small in terms of the number of particles NV, surface effects can make a
substantial contribution to the total free energy, and therefore affect the equilibrium properties of the
system. As a result of surface effects, small systems can violate the stability conditions discussed in
Section 1.2.4. In these situations an exact (unconstrained) evaluation of the partition function results
in regions where the free energy is a concave function of the volume V', and P-V diagrams exhibiting
Van der Waals loops similar to those in Figure 1.3. Under these conditions, phase separation occurs
within a small closed system, but the free energy cost of forming the interface between the phases
causes the free energy to become concave.

Experiments on melting of small sodium clusters [4] have indicated that the heat capacity for such
systems can be negative. Computer simulations of small molecular clusters have also produced P-V
diagrams exhibiting Van der Waals-like loops [5, 6].

1.3.3 Thermodynamic ensembles and potentials

For the purposes of 'calwlating the free energy from a microscopic theory, the microcanonical (NV E),
canonical (NVT) and grand canonical (uVT) ensembles are the most convenient. Evaluation of the
partition function for the Gibbs (constant pressure (NPT')) ensemble is difficult as it requires the
imposition of nontrivial constraints on the microscopic configurations to give the required pressure
[7]. Since temperature T is usually an experimentally controllable variable, we focus mainly on the
canonical and grand canonical ensembles.

The grand canonical ensemble describes the configurations of a system at fixed volume V, tem-
perature T, and chemical potential y. The chemical potential u = 0F/ON regulates flow of particles
between the system and an infinite reservoir with which it is at equilibrium. A change in y therefore
causes a change in the average number of particles in the system (V). The grand partition function
= is a sum over all possible occupancies of the system from N = 0 to infinity

E= Z exp(BuN)Zn (1.14)
N=0

where u is the chemical potential, and Zy is the canonical partition function for a system containing
N particles. The grand potential is given by ! = —kgTIn=. The probability for the system to
contain N particles is given by

W) = ZRONIZN. o op(—p(F - uiV)) (L.15)

where F is the Helmholtz free energy for a system with N particles at volume V' and temperature T'.
The size of fluctuations in particle number, is related to the width of the distribution W (N). This is
proportional to the isothermal compressibility x7

<N2) _ <N>2 = (N):BTK;

T (1.16)
where (N) is the mean number of particles in the system. As discussed before, at a liquid-vapour
phase transition the P-V isotherms become flat so x1 diverges. This indicates that the fluctuations
in particle number for an open system become large at a phase transition, reflecting the large density
fluctuations that occur during the phase transition.

It can be shown [8] that using the grand canonical ensemble, even an approximate treatment in
which a system is constrained to have a homogeneous density throughout, will result in the correct
coexistence isotherms. This is because the grand ensemble explicitly includes fluctuations in the total
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density of the system, which are encoded in the sum over particle number (1.14).

1.4 Kinetics of first-order phase transitions

To illustrate the importance of interface effects, and the correct description of the inhomogeneities
that occur in a system we will consider the kinetics of first-order phase transitions in this section.
The kinetic prbcess through which a system evolves from a phase of one density into a phase with
a different density depends on the details of the inhomogeneities in density that bring about that
change.

1.4.1 Nucleation

As described in Section 1.3.1, in the region between the binodal and spinodal the phase transition
proceeds through the process of nucleation. A homogeneous system in this region is metastable
because it costs a finite amount of free energy to create the nuclei that propagate the phase transition.
Small nuclei have a large surface to volume ratio, and so generally shrink by decaying. However, once
a nucleus of a certain critical size is formed, the free energy cost of forming more surface becomes less
significant than the decrease in free energy of creating the new phase inside the cluster. Clusters of
the new phase larger than the critical size grow spontaneously in a relatively short time. Therefore,
the rate of phase transitions in this region is governed by the rate of nucleation of critical clusters.

Classical Nucleation Theory

As an example, we will consider the condensation of a vapour. In the classical nucleation theory
(CNT), the clusters which are molecular aggregates of the new phase within the mother phase, are
crudely represented as spherical droplets of liquid in contact with the supersaturated vapour. The
interface between the droplet and the vapour is considered to be a well defined sharp surface, and is
taken to have the same properties as a planar interface between the two bulk phases. This is known
as the capillarity approximation. For a macroscopic planar interface between bulk phases, the surface
free energy cost, or surface tension v can be measured experimentally.

The free energy of formation of a cluster is the difference between the free energy of a system
containing the cluster, and a uniform system fully occupied by the supersaturated vapour. The phase
transition is considered to take place for a system at constant pressure P, particle number N, and
temperature T'. The appropriate thermodynamic potential for these constraints is the Gibbs free
energy G. Within the framework of CNT, the free energy of formation of a cluster AG is given by
(9] .

AG = —?WR*"AP + 4w R%y (1.17)

where AP = P,— P, the pressure difference between the bulk liquid and supersaturated vapour. Equa-
tion (1.17) clearly illustrates the competition between the favourable volume free energy (proportional
to R3) and the unfavourable surface free energy cost (proportional to R?). The critical cluster is that
for which AG is a maximum. Clusters larger than this grow spontaneously and propagate the phase
transition. The free energy of formation AG at this point can be considered as an activation barrier
for condensation. The radius of the critical cluster Ry is obtained by setting JAG/OR = 0. This
has the result Ry = 2y/AP. At low supersaturations, when the metastable system is close to the
binodal (and far from the spinodal), the nucleation time is long relative to the relaxation time of the
underlying microscopic processes. Under these conditions the nucleation process can be treated using
equilibrium thermodynamic methods. The rate of formation of critical droplets per unit volume in
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classical nucleation theory is given by
J = Aexp(—AG(Ro)/ksT) (1.18)

There are various forms for the preexponential factor A, the details of which will not be discussed
here. '

Although classical nucleation theory contains the necessary ingredients to describe the competing
effects that influence the rate of nucleation, the inadequate description of the cluster-vapour interface
through the capillarity approximation, and the treatment of the cluster interior as a bulk liquid, make
it quantitatively unreliable in many situations. The exponential dependence of J on the free energy of
formation of the critical cluster AG(Ryp), means that failure to accurately describe the critical cluster
can lead to large errors in predicting the nucleation rate.

1.4.2 Spinodal decomposition

As described in Section 1.3.1, in the spinodal region arbitrarily small density fluctuations lead to
growth of the new phase out of an unstable homogeneous phase. This is in contrast to the metastable
region between the binodal and spinodal where only density fluctuations larger than the critical size go
on to grow spontaneously. This is the difference between nucleation described above, and the process
of spinodal decomposition. The following brief description of this process within the framework of
Cahn-Hilliard theory is adapted from Jones in reference {10].

Even though all density fluctuations regardless of size will grow to propagate the phase transition,
fluctuations of varying sizes grow at different rates. As before, we will consider a transition from a low
density phase to a high density phase. Density fluctuations that conserve the overall density of the
system can be decomposed into sinusoidal contributions characterised in terms of their wavelength.
Long-wavelength fluctuations involve density changes over long distances, and short wavelength fluc-
tuations involve density differences over short distances. Very long-wavelength fluctuations tend to
grow slowly because this requires matter to diffuse over long distances. Very short range fluctuations
do not grow quickly because of the comparatively high ratio of surface to volume they create, which
involves a high free energy cost. Competition between these two effects means that one characteristic
wavelength tends to grow fastest, and dominates the process of spinodal decomposition.

Cahn-Hilliard theory

The description of the process described above necessitates an expression for the free energy of a
system with non-uniform order parameter which is the density in this case. This motivates the idea
of a free energy functional, in which the free energy is expressed as a functional of a spatially varying
order parameter. This kind of theory was first developed by Van der Waals, and subsequently by
Cahn and Hilliard, and by Langer. It also features prominently in the Ginsburg-Landau theory of
phase transitions. The total Helmholtz free energy of an inhomogeneous system is the integral of the
free energy density f over the volume of the system. If the free energy can be expressed in terms
of the local density p(r) in an inhomogeneous system, then it is written as f(p(r)). The total free
energy of the system is then

F= / F(p(x))dr (1.19)

The most basic functionals are obtained by considering an expansion of the free energy density of a
nonuniform fluid about the free energy density of a uniform fluid [11, 12]. This results in a series in
terms of the local density gradients Vp(r). For simplicity, most treatments keep terms only up to
second order in Vp(r), which is valid as long as the density gradients are not too large. The first order
term in terms of Vp(r) can be eliminated by symmetry arguments and the Helmholtz free energy

16



density is then
F(p(x)) = folp(x)) + 5 (Vp(x))® (1.20)

where fd(p) is the Helmholtz free energy of the homogeneous fluid at the local density p(r), and
Vp(r) is the local density gradient. The constant c is a measure of the free energy cost of creating
inhomogeneities in the system. There are various ways of estimating ¢ (which is related to the surface
tension «y) from microscopic or empirical considerations. For the purposes of this section we assume a
functional containing a free energy density of the form (1.20) and see how it is applied to the problem
of spinodal decomposition.

In general, diffusion of material occurs along gradients in chemical potential p, as a system at-
tempts to, reestablish the equilibrium situation of constant chemical potential throughout. In one
dimension, the flux of material J is given by

du(x)
J=-M 1.21
I (1.21)
where M is the is the coefficient for diffusion along a chemical potential gradient. In many familiar
situations, the chemical potential is lower in regions where the density p is lower, which means that
material diffuses from regions of high concentration to regions of low concentration. This results in

Fick’s first law
dp

dz

where D is the diffusion coefficient. Conservation of the total amount of material is given by the

J= (1.22)

continuity equation

dp dJ
- (1.23)
where ¢ is time. The combination of (1.22) and (1.23) yields the diffusion equation or Fick’s second
law N 52
9 _ 0%
o = Pa2 (1.24)

To describe the kinetics of phase transitions, the more general form (1.21) is more useful. During
a phase transition, the chemical potential may be lower in regions of high density. The spatially
varying chemical potential is obtained from the spatially varying free energy density f[p(z)] through
the relation p = 6f/dp. For a simple square-gradient functional of the form (1.20), the functional
derivative reduces to

_ dfo
pw(z) = F7) +c 6:1:2 (1.25)
The flux is then given by
dp %
— 1"
oo (52:22) aan
where f§ = d?fo/dp?. Substituting this J into the diffusion equation gives the Cahn-Hilliard equation
Op _d w0p | &p
6t_dzM<°6 +egh). (1.27)

The problem is simplified by assuming that M,c and f§ spatially uniform and independent of the
local density variations, which results in
0% dp

Op
E—Deﬁ.62+Ma4

(1.28)

where Deg = M f§j is the effective diffusion coefficient. It can be shown that one set of solutions to
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the differential equation (1.28) is given by

p(z,t) = po + Acos(qz) exp [— effq (1 + o—‘i;) t] (1.29)
where po is the mean density of the homogeneous phase, g is the wavenumber of an oscillatory
fluctuation, and A is its magnitude. This shows that a density fluctuation will grow exponentially,
depending on its characteristic wavenumber q. The g-dependent amplification factor R(q) = ¢*(1 +
cq?/f%) in the exponent is plotted in Figure 1.4. It can be seen that fluctuations of characteristic
wavenumber gmax grow fastest, and will dominate the process of spinodal decomposition.

R(@)

e

Figure 1.4: R(q) amplification factor against wavenumber for characteristic fluctuations during spin-
odal decomposition. Fluctuations with wavenumber gmax will grow fastest, and dominate the process.

1.5 Description of inhomogeneous fluids

From the discussion above it can be seen that a good theory for the kinetics of a phase transition
will depend on how accurately microscopic inhomogeneities can be described. Interface effects also
make a large contribution to the equilibrium properties of small systems. These situations require the
description of nonuniform fluids. Mean field density functional theory (MFDFT) provides a method
for doing this. In the next chapter mean field density functional theory will be introduced generally.
In principle, this theory does not require gradients in the density to be small as in the square gradient
theory discussed above. This means MFDFT is applicable to systems away from the critical point
where density gradients are larger. It also has the advantage of being constructed directly from the
molecular interactions in the system, rather than incorporating macroscopic quantities such as the
bulk surface tension. MFDFT is a powerful tool in the treatment of inhomogeneous fluids encountered
when looking at phase transitions or inherently inhomogeneous systems.

After describing the basics of MFDFT applied to fluids in Chapter 2, the application to closed
systems containing small numbers of particles is considered in Chapter 3, where MFDFT is applied
to a simple one-dimensional system consisting of only two interacting particles.

In Chapter 4 the phase behaviour of charged colloidal suspensions is introduced, which is topic of
the second part of this thesis. The microions that govern the effective interactions between charged
colloidal particles comprise an inhomogeneous fluid. Chapters 5-8 deal with the mean field theory of
interactions in charged colloidal suspensions. In Chapter 5 the mean field theory for these interactions
is introduced generally in terms of the Poisson-Boltzmann (PB) equation. In Chapter 6 a new
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linearisation scheme is introduced to tackle the nonlinear PB equation in the limit when the spacing
between macroions is large (a dilute colloidal suspension). This approach is applied to the simple
case of charged plates in Chapter 7 and to an array of spherical particles in Chapter 8.

Since colloidal suspensions have been observed to phase separate, there are also theories that
describe suspensions that are inhomogeneous with respect to the colloid density distribution. The
surface tension between colloidal phases has been calculated [13, 14] in order to be able to describe
the kinetics of the phase separation processes in these systems. We have not touched upon this topic
in this thesis, as our focus is on equilibrium calculations. We study the interactions between the
colloidal particles themselves, which are mediated by an inhomogeneous fluid of smaller, more mobile

microions.
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Chapter 2

Mean field density functional
theory

2.1 Free energy of a single-component fluid

In the absence of external fields, a set of N identical particles comprising a single-component fluid

can be described by the Hamiltonian
N p2
- i N
H= ;=1 5 +U(x") (2.1)

where m is the mass and p; is the momentum of a particle. The first term is the kinetic energy K of
the system. The second term U(r") is the potential energy of the inter-particle interactions, which
depends on the positions of all N particles. If the interactions are assumed to be pairwise, then the
potential energy in the absence of external fields can be recast into

UEN) =) u(r;,ry) (2.2)

i>j

For a system with a fixed number of particles, volume and temperature (NVT), the Helmholtz free

energy is defined as
F(N,V,T)=-kgTlnZ (2.3)

where the partition function Z is

Z= N%ﬁ/exp(—-H/kBT)dedNr (2.4)

The free energy F' can be decomposed into two terms, one being the average energy of the system,
and the second being the entropic contribution

F=(H)-TS (2.5)

where S is the entropy of the system.
The N-particle distribution function of the system is

7™, ) = 7 exp(~H]ksT) (26)

which explicitly depends on the positions and momenta of all the particles. It is clear that the free
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energy F is a functional of f. The entropy is defined as
S ==k [ £V, p")In fN,p)a"ra"p (27)
The free energy (2.5) can be written as
F=/f(rN,pN) (H+kBTlnf(rN,pN)) dVrd"p (2.8)

2.1.1 n-particle distribution functions

In the canonical ensemble the mean kinetic energy (K) is fixed by the temperature T', and the
particle momenta are distributed according to the Maxwell-Boltzmann distribution when the system
is at equilibrium. The integrations over the momenta in the partition function Z, together with the
1/h3N factor result in a constant factor of A3V, where A = h/(2rmkpT)'/? is the thermal de Broglie
wavelength. Of more interest are the spatial degrees of freedom which are distributed according to
the N-particle distribution function p(™)(r"). This is obtained by integrating over all of the particle
momenta in (2.6). The result is

pM (V) = exp(-U/kgT) (2.9)

1
Z A3N
which gives the probability for particles to be located at positions {r"}. By integrating over the
positions of N — n particles, it is possible to obtain a reduced distribution function for n particles in
the system

N!
PP () = ' / o™ (¥ )drp 1. dry (2.10)

(N —n)
which gives the probability of finding any n of the N particles at positions {r"}. The factor in
front of the integral accounts for the fact that identical particles can be exchanged leaving the result
unchanged. Since any n of the N particles could be chosen to construct p(™, the normalisation
condition is
() (ny g _ V!

/p (r™)dr™ = ] (2.11)
The n-particle distribution functions are particularly useful in calculating averages of quantities that
depend on the positions of n particles [15]. Of particular importance are the single particle (or singlet)
distribution function p(!)(r) and the two particle (or doublet) distribution function p‘®(r,r’). For
example if the potential energy is of the pairwise form as in (2.2), then the average potential energy
(U) can be obtained by

wy =1 / o (e, ¥'Yu(r, ')dr' dr (2.12)

If there is an external potential acting on all of the particles V'(r), then the mean energy due to this
potential is

(V) = / oD )V (r)dr (2.13)

Related to the n-particle distribution functions are the n-particle correlation functions defined as

9" = SOy @14)

For the case of n = 2, the pair correlation function g(® (r,r’) relates p)(r) and p®(r,r’)

(2) ’
@ o PY(r,r)
g (r? r ) - p(l) (r)p(l) (r,) (2.15)
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2.2 Density functional theory

2.2.1 The free energy is a unique functional of p(!)(r)

The formal starting point of density functional theory is the statement that the free energy of a
system F is a functional of the equilibrium single particle distribution function p(*)(r). The definition
of pM(r) is

V() = <Z #(ri r)> (216)

where the angled brackets denote weighted averages. Using the N-particle distribution function of
the canonical ensemble this may also be expressed as

pD(r) = g- / exp (—H/kgT) 83(r1 — r)dVrd"p (2.17)

since the N terms in the sum (2.16) are all equivalent.

It is remarkable that the free energy is a functional of p(!)(r) which appears to be much simpler
than the full N-particle distribution function f(r",p”") which explicitly depends on the positions
and momenta of all the particles. Hohenberg and Kohn [16] formulated a variational proof that the
quantum mechanical ground state energy of an inhomogeneous electron fluid is a unique functional
of the electron density n(r). An analogous theorem underlies density functional theory for classical
fluids. This theorem establishes that f(r",p") is a unique functional of p(!)(r). Since the free energy
F is clearly a functional of f(r",p?), it follows that the free energy is also a functional of p()(r).
The proof for this theorem can be found in reference [17]. It is also shown that the equilibrium single
particle distribution function p{(r), is the function that minimises the functional. For a different
distribution function p(r)

FlpW (1)) < Flpa(x)] (2.18)

From now on we will use p(r) to denote single particle distribution functions. This will be used
interchangeably to refer to arbitrary distributions or the equilibrium distribution where appropriate.

Unfortunately, for all but the simplest cases the form of the free energy functional F|[p(r)] is not
known. If it were known, minimisation of the functional with respect to all possible single particle
distribution functions p(r) would yield the free energy F, which would be equivalent to calculating
the system partition function.

The concept of the free energy density functional is useful in formulating approximate theories for
inhomogeneous fluids. This is utilised in mean field density functional theory which will be introduced
in Section 2.6.

2.2.2 Free energy functional for noninteracting particles in an external
potential

One class of systems for which an exact free energy functional F[p(r)] can be found is that of nonin-
teracting ideal gas particles in an external potential. These systems have Hamiltonians of the form

N
H=Y [Ki+V(r:)] (2.19)

i=1
where Kj; is the kinetic energy of the ith particle, and V is an external potential. This kind of system
is particularly simple because there are no particle-particle interactions, and therefore no correlations
between particles. This makes it possible to factorise the partition function into a product of N single
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particle partition functions.
Z =2 (2.20)

where .
7= F/exp(—V(r)/kBT)dr (2.21)

For convenience we introduce a quantity I which is related to z; but has dimensions of volume defined
by 21 = A~31. If Stirling’s approximation is used in approximating In N! for large N, the Helmholtz
free energy can be expressed as

et [ (%) ] e

The equilibrium single particle distribution function p(r) for this system is

ple) = 7 exp(~V (x)/ksT) (2.23)

The average potential energy of the system (V) is

(V)= —]I\—,/V(r) exp(—V(r))dr = /p(r)V(r)dr (2.24)

Since F = (K + V) — TS, the intrinsic free energy which is defined as the free energy excluding the
potential energy due to the external field F — (V) = (K) — T'S is given by

F— (V)= NkgT [m (NT’\S) - 1] - / Ne"—p(I"V@V(r)dr (2.25)

By looking at the definition of p(r), it can be seen that the potential V' (r) can be expressed as

3 N3
V(r) = —kgTInp(r)A\° + kgTIn N (2.26)
This allows the intrinsic free energy in (2.25) to be written as a functional of p(r)
F—U=kgT / p(r) [In(p(r)A%) — 1] dr (2.27)

The total free energy functional is then

F=kgT / p(r) [In(p(r)\®) — 1] dr + / p(r)V (r)dr (2.28)

This is the exact free energy functional for a system of N noninteracting point particles, each ex-
periencing a single particle potential V(r). Even though this system experiences no inter-particle
correlations, it nevertheless possesses inhomogeneity of the particle distribution brought about by the
external single particle potential.

2.2.3 Wide variety of systems studied using DFT

Approximate density functional theories have been used to model a wide variety of interesting systems
that are distinct from simple fluids. Ashcroft [18] pioneered the use of density functional theory for
the study of freezing of liquids. Talanquer and Oxtoby in particular have applied DFT to a very
wide range of phenomena from freezing of liquids [19] to the formation of micelles from amphiphilic
molecules [20].

Each situation necessitates a distinct approximate free energy functional to be constructed which

23



captures the competing energetic and entropic contributions to the free energy. For example, in their
study of crystal nucleation Talanquer and Oxtoby constructed an approximate free energy as a func-
tional of a spatially varying density p(r) as well as structural order parameter m(r). Their study of
micelle formation involved a functional of the inhomogeneous density distributions of the hydropho-
bic pi(r) and hydrophilic pa(r) parts of the amphiphilic molecules, as well as the inhomogeneous
distribution po(r) of the solvent molecules. Density functional theory has also been used to study in-
homogeneous fluids of polar molecules [21], which have been modelled as hard spheres with embedded
dipoles. These studies involved p(r,w) which is a positional and orientational probability distribution
function for the molecules. Charged colloidal suspensions have been modelled [22] using mean field
density functional theory, where the free energy is a functional of the set of distribution functions
Pa(r) for ions of each charged species a. This is discussed Chapter 5, where the connection is made
between MFDFT and the Poisson-Boltzmann mean field theory of charged colloidal suspensions.

2.3 Approximate treatment of fluids: separation of attractive

and repulsive interactions

The starting point for many approximate treatments of fluids is the separation between the attractive
and repulsive forces. The repulsive interactions can be dealt with approximately by treating the fluid
molecules as hard spheres. The Hamiltonian is written as

H=K+)_ [ur(ri,r;) + ¢(ri, r5)] (2:29)
i>j
where the first term is the kinetic energy, ¢(r;,r;) is the attractive portion of the pairwise molecular
interaction, and ugr = ug(|r; — r;|) is the hard sphere interaction defined by

ugp(r)=0 for r>0o
(2.30)
ugp(r)y=o00 for r<o

where o is the diameter of the hard spheres. Due to the nature of the hard-sphere interaction (2.30),
the free energy for this system does not explicitly contain any potential energy terms due to ug(r).
Any configuration for which ug(r) is nonzero for any pair of particles has zero probability, and does
not contribute to the partition function.

Formally, if the form for the free energy functional of the system with purely repulsive interactions
Fjs(p(r)] were known, then the exact free energy functional for the full system could be obtained
through thermodynamic integration [17]. This involves introducing a pair interaction uq(r;, r;) which
is a function of a ‘charging up’ parameter o

Uqa(r1,T2) = ur(ry, ra) + ap(ry, rz) (2.31)

The free energy is then obtained from the free energy of the reference system and a second term
involving an integration over a from 0 to 1.

1
F = Fuulp(o)] + 3 / dov / dr / dr'g@ (r, ')p(r)p(x')b(r, ') (2.32)

where g((f) (r1,r2) is the two-particle correlation function for a system with any given value of o
between 0 and 1. This function is generally not known. In addition to this, Fj, is not known exactly
and has to be approximated.

In principle, the procedure discussed here does not require ug(r) to be the hard-sphere interaction
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or even the repulsive portion of the interaction. If a form of the functional for a reference system is
known, together with a correlation function for all values of a, then the procedure can be applied
generally: In practice, the hard-sphere reference system is frequently used because the nature of the
correlations in a hard-sphere fluid are well understood. For Lennard-Jones fluids, a refinement to the
hard sphere reference system is given by the Weeks, Chandler, Anderson (WCA) approach, whereby
the reference system consists of hard spheres with a temperature-dependent diameter [23].

2.4 The Gibbs-Bogoliubov inequality

The Gibbs-Bogoliubov inequality plays an important role in the development of approximate statis-
tical mechanical theories such as mean field density functional theory. This inequality asserts that
when the free energy of a system with Hamiltonian H is estimated using the distribution of states
from a different (possibly simpler) system with Hamiltonian Hg, then the resulting free energy will
be greater than or-equal to the exact free energy of the system.

To prove this principle, the original Hamiltonian is decomposed into H = Hy + H;, where Hy
corresponds to the Hamiltonian for which the free energy can be formulated. The system’s partition

function is ]

2 = Nipan

/ dNrdVp exp (—(Ho + Hy)/k5T) (2.33)

The distribution of states in the system with Hamiltonian Hj is
1
fo= Za exp(—Ho/kgT) (2.34)

where Zj is the partition function for a system with Hp

1
0 = NN / dNrdNpexp (—Ho/ksT) (2.35)
Dividing (2.33) through by Zj results in
Z
—- = (exp(—H1/kBT))o (2.36)

Zo

where the subscript indicates an average taken over the probability distribution fo. Due to the
convexity property [24] of the exponential function, averages obey the inequality (expa) > exp{a) so
that 7

7, 2 &P (=(H1)o/ksT). (2.37)

Taking logarithms we get
F < Fy + (Hi)o- (2.38)

Now since Fy = (Hp)o — T'Sp, (2.38) can be re-written as
F<(H)—-TSo (2.39)

Where the first term is the average energy of the system, calculated using the distribution of states
in Hp, and the second term contains the entropy of the system Hp.

The usefulness of this principle is that if the system with Hamiltonian Hy contains some sort of
parameter that can be varied, then minimisation of the quantity Fy + (H1)o with respect to this
parameter, will tailor the Hy system that gives the best distribution of states fo to approximate
the free energy of the true system F. This variational principle is exploited in mean field density
functional theory, where the approximate free energy is minimised with respect to all possible single
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particle potentials V(r) in order to find the one that best describes the full system of interacting
particles.

2.5 Mean field theory for fluids

2.5.1 The mean field potential

In the mean field theory of fluids, the Hamiltonian (2.29) is split up into two parts H = Hp + H;
where

N .
Hy=K+ Z up(r; —r;) + Z V(r:), (2.40)
i>j i=1
and N
Hy =Y ¢(ri—1;)— Y V(r:), (2.41)
i>j i=1

The potential V(r) is a single particle potential that cancels out between the two terms and therefore
does not feature in the full Hamiltonian H. The Hamiltonian Hy describes a reference system of
N hard spheres in an external potential V(r). The mean field free energy for the system Fur is
calculated using the probability distribution of states in Hp

Fyr = Fo + (HI)O (2.42)

where Fy is the free energy of the system with Hamiltonian Hp and (Hj)o is the average of H
evaluated using the probability distribution of states in Hy. The external potential V(r) does not
feature explicitly in the full Hamiltonian H, nor is it explicitly in the free energy Far since the
average energy due to this external potential cancels out between the two terms in (2.42). Due to
this cancellation, the free energy of the system can also be written as

Fyrp = Fy — (V)o + <¢)0 = (H)o - TSy (2.43)

where the averages evaluated over the probability of states in Hy are the quantities

N
(V)o = <Z V(ri)>
i=1

The quantity Fo — (V) = (K)o —T'Sp is the intrinsic free energy of a hard-sphere fluid in an external
potential. The last term (¢)o in Equation (2.43) is the average of the attractive energy evaluated in
the distribution of states of the inhomogeneous hard-sphere fluid with Hamiltonian Hyp.

The next task is to formulate a free energy functional for Fjsr. Minimising this functional with

i>j

and  (¢d)o = <Z o(r; — rj)> (2.44)
0

0

respect to p(r), is effectively equivalent to searching for the external potential V(r) that minimises
Fpp. The minimising V' (r) is the mean field potential- the single particle potential that best emulates
the complicated pairwise interactions between the particles. According to the Gibbs-Bogoliubov
inequality, the free energy Fr will lie above the true free energy of the system, and so provides an
upper bound to the free energy F.

2.5.2 The mean field approach seen as a perturbation theory

The approach outlined above may also be viewed as a form of thermodynamic perturbation theory.
As before, the Hamiltonian is split up into H = Hy + H) where Ho=K+Ur+V and H1=¢ -V
(we have used shorthand K, Ug, V, ¢ for the appropriate single particle and pairwise sums). For the
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remainder of this chapter all energies will be given in units of kgT'. The partition function is

1
Z = NN /dNrde exp (—(Hp + Hy)) (2.45)

If H; can be considered to be small for all of the configurations in the integral, then the exponential
in (2.45) may be expanded to first order

1

T

/ dNrdNpexp(—Ho) (1 — Hi) = Zo — (H1)0Zo (2.46)
taking the logarithm of Z, and expanding to first order in (H;}¢ gives the same result as the mean

field free energy Fpr
F~Fy+ (HI)O (2.47)

This shows that the mean field potential V(r) can be interpreted as the single particle potential that
gives rise to a distribution of hard sphere particles optimised to make the perturbative term in this
expansion (Hp)o small

N
(Hi)o = <Z $(ri —1;) =) V(r,-)> (2.48)
0

i>j i=1
2.6 Mean field free energy functional

The next task is to formulate a functional for Fjsr. Even within the mean field approximation,
further approximations need to be made to keep the functionals simple. The functional will be
formulated in two steps. The first step is to obtain F} g, the functional for the intrinsic free energy of
the inhomogeneous hard sphere fluid Fy, = Fy — (V) = (K)o — T'So. The second step is to obtain a
functional for the mean attractive energy in the Hy distribution of states (¢)o.

2.6.1 Approximate functional for the hard sphere fluid in the LDA

The hard-sphere interactions mean that the partition function does not trivially factorise into N
single-particle partition functions as was the case for the ideal gas in an external potential (2.21).
In fact, the hard sphere fluid has non-trivial correlations and even exhibits a phase transition to a
solid phase at high densities. Certain simplifying approximations will be made here, that lead to the
standard functional that is used in many treatments of inhomogeneous fluids.

For a homogeneous hard sphere fluid of uniform density p, a good approximation for the free
energy is given by the Carnahan-Starling formula. This gives free energy density frs = Frs/V as

4n — 392

s (2.49)

frs(p) = p |InpX° —1+

where 7) is the hard sphere packing fraction 7 = (1/6)703p and o is the hard sphere diameter. This
formula is derived from a virial expansion of a uniform hard-sphere system. It accounts for the
correlations in a dilute hard sphere fluid approximately, for the case when the fluid is homogeneous.

The next step involves invoking the local density approximation (LDA) to obtain Fj, for an
inhomogeneous hard sphere fluid. The LDA applies the assumption that (2.49) is valid at every point
in an inhomogeneous fluid of hard-spheres. It is implemented by simply replacing p by a spatially
varying p(r) everywhere in (2.49) to give fr;(p(r)). The free energy density is then integrated to give
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the total intrinsic free energy for the inhomogeneous sphere free fluid

Fhs = / p(r) [m p(r)X3 — 1+ 4”('("1(’2)&:;’:;)(;';(”)) dr (2.50)

Essentially, the LDA corresponds to the assumption that the nature of the correlations in the hard
sphere fluid is unaffected by the inhomogeneity. Note that Fj, is the intrinsic free energy of the hard
sphere fluid, and does not contain (V')q the energy of the potential causing the inhomogeneity.

2.6.2 Attractive energy in the RPA

The second term in equation Fyp is the average attractive energy evaluated in the probability
distribution of states in Ho, which can be written in the form

<Z¢(r, r,)> = ~/dr/dr’ (¢, ¢')p(r)p(r')(r — 1) (2.51)

i>7

where g(2) (r,r') is the two-particle correlation function for the inhomogeneous hard sphere system.
The standard DFT treatment of this contribution involves a further simplification: the random phase
approximation (RPA), according to which the hard sphere correlations in the reference system are

neglected.
98 (x,v)o(r)p(r') = p(r)p(r’) (2.52)

It should be said at this point that since a functional constructed using the LDA and RPA is not
strictly Fyr = Fo + (Hi)o, the variational principle Farr > F no longer necessarily holds. It must
be assumed that the two approximations that lead to the formulation of the functional are valid,
otherwise minimisation with respect to all p(r) may result in a free energy that is lower than the true

free energy.

2.6.3 Optimal distribution function and free energy

Combining the two terms (2.50) and (2.51) that make up Fyr, the final mean field functional is

expressed as

Farlp(e)] = Fualo(e)] + 3 / dr / dr' p(r) (') h(x — ) (2.53)

This functional needs to be minimised with respect to p(r), to find the distribution function that gives
the best approximation to F. To obtain the optimal distribution function, the free energy (2.53) is
functionally differentiated with respect to p(r). For a closed system in the canonical ensemble (NVT),
the minimisation needs to be subject to the constraint that the total number of particles is fixed to
be N

/p(r)dr =N (2.54)

This constraint is imposed through the introduction of a Lagrange multiplier u. The Euler Lagrange
equation for the optimising density profile p(r) is then

Jp(r) [FMF[P(I')] / p(r)dr] =0 (2.55)

We denote the functional derivative of the hard sphere functional § Fy; /6p(r) = dfns/dp(r) = uns[p(r)],
which is a spatially varying chemical potential for the inhomogeneous hard sphere fluid. The Euler-
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Lagrange equation (2.55) becomes
b= nalp@)]+ [ o)8(x =5t (2.56)

The second term on the right hand side may be viewed as an effective single particle potential ¢eg(r)
that takes the place of the pairwise intermolecular attractions in the mean field approach. It is also
worth noting that the two spatially varying terms on the right hand side of (2.56) add up to a spatially
constant u. The Lagrange multiplier is related to the chemical potential of the system. This is always
expected to be constant throughout a system which is at equilibrium.

2.6.4 The grand potential functional

A system in the gfand canonical ensemble (constant (uVT)) is open with respect to exchange of
particles with a reservoir at a chemical potential u. The appropriate thermodynamic potential is the
grand potential Q which is related to F through the Legendre transform Q(u, V,T) = F(N,V,T)—uN.
The grand potential functional can be constructed from the Helmholtz free energy functional (2.53)

Qurlp(r)] = Fur — / p(r)dr (2.57)

where y is now the chemical potential of the system which is at equilibrium with the particle reservoir.
Minimising Qs r[p(r)] with respect to p(r) is somewhat easier than in the canonical ensemble, as p is
a pre-specified constant, rather than being determined by the constraint of constant particle number
(2.54). The equation for the optimal profile is the same as (2.56), but with a fixed u corresponding to
the chemical potential of the reservoir. The total number of particles contained in the optimal density
profile p(r) will be the number that makes the chemical potential of the system have the required
value 4 = OF/ON. This corresponds to the mean number of particles N in a system at equilibrium
with a particle bath at chemical potential u.

2.7 Relationship between DFT and the field theoretical ap-

proach

It is worth mentioning the parallels between DFT and the field theoretical approach (FT) in statistical
mechanics. This approach underlies the Landau-Ginzburg model of phase transitions [24], and has
been applied by Langer [25] to formulate a theory for the decay of metastable states, and by Langer
and Turski [26] to vapour condensation specifically. Several authors have discussed various parallels
between the DFT and FT approaches. Evans [11] compared and contrasted the two approaches in the
description of planar liquid-vapour interfaces. Reguera and Reiss [27] discussed the role of fluctuations
in the two approaches. Fluctuations are of particular importance in the study of small systems such
as the molecular clusters that are the precursors to condensation. Barrett [28] made comparisons
between the two approaches and suggested that adaptations need to be made to the DFT treatment
of small molecular clusters to account for fluctuations.

In the field theoretical approach a system is divided into cells of a characteristic lengthscale A.
These cells are large on the microscopic scale, and in the case of a fluid each cell would contain many
molecules, but are small on a macroscopic scale. In this picture p(r) is defined to be the mean density
of particles in a cell centred at r. In other words p(r) is a coarse grained order parameter profile.
The configurational part of the partition function for a system with Hamiltonian H is expressed as a.
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functional integral over all possible ‘patterns’ of the coarse grained order parameter p(r
8T

zZ= / dr exp(~H) = / Dlp(r)] exp (~ Elp(r)]) (2.58)

D[p(r)] denotes functional integration over all possible p(r). E[p(r)] is called the effective Hamilto-
nian describing a system constrained to have the coarse grained order parameter pattern p(r). By
comparing the left and right sides of (2.58) it can be seen that the effective Hamiltonian E[p(r)] is
defined through

exp (~Elp(r)]) = / dr exp(—H)b(p(r) — B(r)) - (2.59)

The delta function allows only those configurations in the integral over the positions d¥r to be
picked up for which p(r) has the required pattern given by p(r) (where p(r) is a function of all of the
molecular positions {r;}). From (2.59) it is clear that the effective Hamiltonian E[p(r)] has properties
of free energy rather than only energy. This is because one given pattern of the coarse grained order
parameter p(r), corresponds to a number of microscopic molecular configurations. A cell centred at
a point r with average density p(r) can have many different configurations of molecules. This means
E|p(r)] contains an entropic contribution as well as an energetic one.

The effective Hamiltonian E[p(r)] is a functional of p(r) and has different forms depending on the
system. In most cases this has to be approximated in some way. Once a form for E[p(r)] is obtained,
the functional integral over D[p(r)] needs to be evaluated. In most cases this cannot be done exactly.
This is where the saddle point approximation in FT comes in, which is also referred to as the mean
field approximation. For a large system, the partition function (2.58) can be approximated by the
contribution from the coarse grained order parameter profile p*(r) that gives the largest contribution
to the functional integral

z= / Dlo(r)] exp (~Elp(r)]) ~ exp (— E[p*(1)]) (2.60)

The ‘mean field’ profile p*(r) will be the one that minimises the effective Hamiltonian functional
E|[p(r)], and therefore makes the largest contribution to the partition function. The free energy of the
system in this approximation is then just E[p*(r)], which is the free energy of a system constrained
to exhibit the optimising coarse grained order parameter profile p*(r). Systematic improvements to
this estimate can be made by adding the contributions of fluctuations dp(r) about the optimising
profile p*(r) to the partition function Z [24]. This approach of adding fluctuations has also been
used in various treatments of the effective interactions in colloidal suspensions [29, 30, 31, 32|, where
it has been shown that the mean field Poisson-Boltzmann equation corresponds to a saddle point
approximation in a field theoretical representation of the free energy.

The free energy functional F[p(r)] in DFT and the effective Hamiltonian E[p(r)] in FT have
very distinct definitions. If the exact form of a DFT free energy functional F[p(r)] for a system
were known, then the minimising density profile p(r) would be the true equilibrium single particle
distribution function, which is equivalent to a weighted average of the density profile over all possible
microscopic configurations. The coarse grained order parameter p(r) used in FT corresponds to a
restricted subset of all microscopic configurations. The optimising distribution function p*(r) that
minimises the effective Hamiltonian E is just the most likely order parameter profile. The equilibrium
single particle distribution function p(r) would be obtained from FT by performing a weighted average
of p(r) over all possible profiles.

p0) = 3 [ Dlpte)lote)exp (= Blp(e)) (2:61)

While the exact free energy F is a convex function of volume V, the free energy obtained from
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the mean field or saddle point approximation in FT E[p(r)*] is not necessarily convex because-it
represents a system that is constrained to exhibit a certain coarse grained density profile p(r)*.

The mean field approximation together with other approximations used to formulate the free
energy in both FT and DFT make the two treatments become very similar. The two functionals
E[p(r)] and F[p(r)] even take the same form in various treatments [27). The question discussed
extensively in the literature [11, 27, 28] is what subset of microscopic configurations of the true
partition function Z are included in the different approximate functionals used in DFT and FT
approaches. The nature of the mean field approximation may be different in the two treatments,
however ultimately it involves the neglect of certain configurations in the partition function that are
brought about by microscopic correlations between particles in the system.

Evans [1:1] argued that in the case of a planar interface between liquid and vapour phases, the
square gradient free energy functional proposed by Van der Waals includes contributions to the free
energy from long wavelength density fluctuations perpendicular to the interface known as capillarity
fluctuations. He stated that field theoretical treatments that utilise the same functional and then add
the effects of such fluctuations to the mean field profile are not consistent.

When the number of particles is small, deviations from mean field behaviour are large due to
the increased importance of fluctuations. In the next chapter, the application of mean field density
functional theory to systems containing a small number of particles will be considered.
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Chapter 3

Application of Mean field denSity

functional theory to small systems

3.1 Introduction

Small systems consisting of less than 100 particles exhibit unusual thermodynamic behaviour as a
result of surface effects and the relative importance of fluctuations compared with larger systems.
Examples of small systems include fluids confined to nanopores, which have been found to exhibit
extremely rich phase behaviour [6], small metallic or semiconductor clusters that form quantum dots,
and molecular clusters that can be isolated and studied in jets. In addition to this, small molecular
clusters often characterise important transition states in phase transitions such as the condensation of
vapours. In this situation, the embryos of the new phase or critical clusters whose formation governs
the rate of the phase transition, can have sizes of less than 10 molecules.

Mean field density functional theory has been applied extensively over the past 20 years, to study
the condensation of vapours [33, 9, 23, 34, 28, 35]. There are two main approaches. The approach
of Oxtoby and Evans [9] involves treating an open system in the grand canonical ensemble. Using
a free energy functional of the form (2.53), and employing an iterative procedure to find solutions
to the Euler-Lagrange equation (2.56), they found that under the right conditions inhomogeneous
density profiles corresponding to saddle-points in the functional space arise out of the procedure.
These stationary solutions persisted for a few iterations before ultimately disappearing to be replaced
with homogeneous density profiles corresponding to the stable global minima. The saddle point
solutions were interpreted as critical clusters, the growth or evaporation of which are equally likely.
The free energy difference between these clusters and the homogeneous vapour gives the free energy
of formation of critical clusters that determine the nucleation rate.

The objection has been made that saddle point solutions are irrelevant. For given external con-
ditions (say temperature and chemical potential) the system has a unique free energy and grand
potential, and it is only the minimised free energy from the MFDFT approach that can be taken as
an approximation to the free energy of an actual system. To counter this objection, it was shown by
Talanquer and Oxtoby [23] that the metastable solutions in an open system (fixed chemical poten-
tial 4) can be mapped onto stable solutions of a closed system (with fixed N), for which the use of
MFDFT to obtain the equilibrium solution is justified. Closed systems had been studied earlier in
this context by Lee, Telo da Gamma and Gubbins [33].

Contributions to the free energy of a fluid that are negligible on a macroscopic scale become crucial
on a more microscopic scale [6]. These contributions include surface effects, translational motion and
especially fluctuations. Mean field theories are expected to be less successful in treating small systems
due to the importance of fluctuations.
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There has been relatively little work on validating MFDFT against other approaches. Lee et.
al. [33] compared MFDFT results with molecular dynamics simulations for systems with N ranging
from 100 to 30,000 particles. Reguera et. al. [6], compared results of MFDFT with Monte Carlo
calculations for clusters of 80 argon atoms, with a discussion of the differences in density profiles and
system pressures. .

In this chapter a simple system is considered for which the exact free energy is available for
comparison with MFDFT calculations [36]. The model system consists of just two interacting hard
rods in one dimension. Exact calculations are possible since a small number of molecules is considered.
On the other hand, this requires care to be taken in the application of the standard MFDFT approach,
as inconsistencies arise when it is applied to systems containing small numbers of particles. The
reduced diméhsionality and small number of particles means that the problems in applying MFDFT
should be most severe.

One dimensional hard-rods were studied by Percus, who derived an exact functional for the free
energy of hard rods in an external potential V(r) [37]. He also studied sticky hard rods [38], which
have an infinitesimally short range attractive interaction between neighbouring rods. The rods studied
in this chapter have an attractive interaction with a finite range. The system also differs from that
studied by Percus due to the small number of particles considered. We pay particular attention to
the finite size effects, and their consequences for the application of the standard approximate mean
field density functional theory frequently applied to fluids.

3.2 Exact free energy of a simple model system

The model system consists of two hard rods each of length b, free to move on a line of length R,
with periodic boundary conditions. The rods interact through a pair potential ¢(r12) where r3 is
the separation of the rod centres. The partition function is

R R
7= %’72 / dry / dryexp(=U(r1,72)/k8T) (3.1)
Q 0

where v = (2rmkgT)'/2/h is the inverse thermal de Broglie wavelength (m is the rod mass and h is
Planck’s constant), kp is Boltzmann’s constant, T is the temperature, and U(r;,r2) is the potential
energy of the system: r) and r, are the positions of the centres of the rods.

The potential energy U(r1,72) can be separated into an attractive potential ¢(r; —r2), and a hard
sphere (or in this one-dimensional case hard rod) repulsive potential ug(r; —r2). Due to the periodic
boundary conditions, the rods interact with each other and with periodic images. For the attractive
potential we assume a form

o(r) = —aexp(—Ar) (3.2)

For simplicity, we limit the range of this interaction so that there are only two terms in the exponent,
an interaction between rod 1 and rod 2, and between rod 1 and the closest periodic image of rod
2. Further contributions to the interaction energy are neglected. The short range repulsive potential
ug(r; — r2) takes the form of a hard sphere interaction in one dimension:

ug(ry —r2) =0 when |r; — T2| > b
(3.3)
ug(ry — rz) = oo when |r1 — r2| <b

This repulsive interaction restricts the configurations that make a nonzero contribution to the partition
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function, which reduces to Z = y2RI/2 where

R-b a a
= —— exp(— — -AMR - 4
I /b drg exp (kBT exp(—Arq) + *oT exp(—A(R rz))) (3.4)
The free energy is F' = —kgT'In Z, but for convenience we focus on an excess free energy, obtained

by subtracting the free energy of two non-interacting point particles for which I = R:

v2RI/2

Fox=F — Fq = —kgT (m AR

) = kT In(R/I) (3.5)
The integral I can be calculated numerically once the parameters are specified. The distances R, 73,
band XA~! are taken to be dimensionless multiples of some length scale Ry. The energies a and Fey
are expressed in terms of the energy scale kgT. To illustrate the qualitative differences between the
interacting case and the noninteracting case, Figure 3.1 shows the full free energy (in arbitrary units)
versus R of a system of two interacting particles (o = 5, b= 1, A = 0.5) as well as the free energy of
an ideal gas of noninteracting particles (@ = 0 and b = 0). The free energy against volume curve for
the interacting particles displays loop behaviour that is characteristic for small systems [5, 6]. Due to
the short range repulsive and attractive forces the difference between the two curves becomes smaller
for large R.

10 , , . I . T "

— interacting particles a=5.0, b=1.0 A=0.5
- -~ ideal gas =0, b=0 1

Free energy (arbitrary units)
’ =
==
|

Figure 3.1: Comparison between the free energies of two non-interacting point particles and two interacting hard
rods, as a function of ring circumference R. The difference between the two defines the excess free energy Fex.

3.3 Mean field density functional theory

3.3.1 The standard free energy functional

To construct a mean field free energy functional for this model system, we follow the recipe laid out in
Chapter 2. As is the case for many approximate treatments of fluids, the mean field theory involves the
separation of the attractive and repulsive forces. The mean field approximation introduces an external
single particle potential V'(r), tailored to mimic the effect of the pairwise attractive interactions. The
mean field potential effectively facilitates the treatment of attractive interactions as a perturbation
on the hard sphere system.
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Following the mean field recipe, the Hamiltonian of the system is written [28]
H =K + Ho + H;. (3.6)

where K is the kinetic energy part of the Hamiltonian, and Hp is the potential energy of the mean

field reference Hamiltonian N

Hy = ZUR("'i -r;)+ Z V(r:) (3.7)
i>j i=1
where ug is the hard sphere repulsive interaction potential. The ¢ > j denotes a sum over all pairs of
particles. The Hamiltonian K + Hy describes a reference system of N hard rods in a single particle
mean field potential V' (r). The additional part of the Hamiltonian H; is

N
H1 = Z(b(’l‘i - T‘j) - Z V(’I‘i) (38)
i=1

i>j

where ¢(r) is the attractive interaction potential. In mean field theory this contribution, which
contains the attractive energy, is calculated using the distribution of states in the reference system
K + Hy. The mean field free energy of the system is then given by

Fyr = Fo+ (Hi)o (3.9)

where Fy = —kpT ln Z is the free energy of the reference system, with partition function
AN
Zo = N derexp(—Ho/kBT) (3.10)

The second term in Fpp contains the average attractive energy estimated using the probability
distribution of states in the reference system. Spatial integrations are over the entire ring of length R.
The free energy depends on the choice made for the mean field potential V(r). However, as discussed
before, the average of V' (r) cancels out between the two contributions in equation (3.9), allowing the

free energy to be rewritten as

Fyr = Fp + <Z o(r; — r,-)> (3.11)
0

i>j

where Fj, is the free energy of the reference system minus the contribution due to the mean field
potential, and the second term contains the average of the pairwise attractive interactions in the
ensemble of the reference system.

The mean field potential V(r) appears neither in the full Hamiltonian in equation (3.6), nor
explicitly in the free energy Farr given by equation (3.11). The dependence on V(r) is hidden in
the weighting of configurations in the (...)¢ averages and in the entropic contribution to Fj. The
main purpose of V(r) is to mimic the effect of the attractive interactions. This approximation is best
when the perturbative contribution to equation (3.9) is small. This is achieved by choosing V (r) to
minimise the free energy Fasr. The Bogoliubov inequality [24] ensures that the free energy calculated
in this way will not lie below the true free energy of the system with Hamiltonian H.

Both terms on the right hand side of equation (3.11) may be regarded as functionals of the reference
system single particle distribution function or density profile p(r), defined by

N
p(r) = <Z o(ri — ")> - Zﬁo% / drexp(—Ho/kT)é(r1 — 7). (3.12)
i=1 0 )
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This is itself a functional of the mean field potential V(r), so the minimisation of the free energy
Fyr with respect to the mean field potential may be done with respect to the density profile if Fyrp
is expressed as a functional of p(r). This was the observation made by Barrett in his interpretation
of the standard density functional approach [28].

Next, a density functional representation of the free energy Fasr for the two-rod system needs to
be found. The term F}, is the intrinsic free energy of an inhomogeneous fluid of non-attractive hard
rods. Percus [37, 38] developed an analytical functional for this, which is exact for the case when the
number of particles N is large. It will be shown that this treatment breaks down for the case when
N = 2. For the purposes of this study we employ the local density approximation (LDA), since this
is the standard practice for developing MFDFT in higher dimensions, where exact solutions are not

available.

Approximate functional for the intrinsic free energy of the reference system

The first step is to find an expression for the free energy of a homogeneous system of hard rods. By
setting a = 0 in the partition function obtained in the preceding section, we get the exact free energy
of two non-interacting hard rods

F, = —kgTIn (%QR(R - 2b)) (3.13)

The homogeneous one-particle density is p = 2/R so we can rewrite this as

2 1
and extract the free energy density
fo=Fu/R=kgTpln(2— L (3.15)
TR T BEEP Ry RO )2 '

The next step is to write the free energy, in the local density approximation, as a functional of a
spatially varying single-particle distribution function p(r) :

_ [ _[F (2 1
= [ totear = [ katoo)in (22 i) (316)

This is the intrinsic free energy of the system with Hamiltonian Hp, that is to say the contribution

due to the interactions between the rods and the mean field has been subtracted. It is clearly a
functional of p(r).

Approximate functional for the mean attractive energy

The second term in equation (3.11) is the average attractive energy evaluated in the probability
distribution of states in Hp, which can be written in the form [15]

T — 1T __]_' R R / (2) ! —7
<Z¢(. :)>0—2/0 dr/o dr'p®) (r, ") (r — 1) (3.17)

>j

where p@(r,7') is the two-particle distribution function of hard rods in the reference system. As
discussed in Chapter 2, the standard DFT treatment of this contribution employs a further simplifi-
cation: the random phase approximation (RPA), which involves neglect of correlations in the hard-rod
reference system.

PO (r,r') = p(r)p(r’) (3.18)
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Combining the two terms, the functional expression for Fjsr is then

. R T 1
Fup = /0 drkpTp(r)In (pfy) (2(1 - bp(r)))*/?

The free energy is now explicitly a functional of the reference system single-particle density profile
p(r). Minimising equation (3.19) with respect to p(r) is equivalent to choosing the V(r) which best
mimics the attractive interactions. The optimal V(r) can be reconstructed from the optimal density
profile if required, though there are difficulties which will be discussed in Section 3.3.3.

The minimisation is achieved by solving the Euler-Lagrange equation associated with equation
(3.19)

R R
) + % /0 dr /0 drhp(r)p(r)p(r —r')  (3.19)

un(p(r)) = p — / pr")(r —1')dr’ (3.20)

where pp(p(r)) = dfn/dp(r) is given by

ko [ o0 bl
un(p(r)) = kTl (7 20 bp(r)))l/z) +ksT (2(1 ~5p(r)) + 1) (3.21)

The Lagrange multiplier 4 is adjusted to ensure that the density profile p(r) satisfies the normalisation

constraint

/ p(r)dr =2 (3.22)
The free energy of the system is then obtained by substituting the profile that satisfies equation (3.20)
into the original free energy functional (3.19).
Comparison with Percus functional

It is worth comparing the intrinsic chemical potential of the inhomogeneous hard rod fluid pp to the
exact formula obtained by Percus [38]

P _ p(r) " p(r')dr’
unlpOl/Ee = 1n (1 - p(r’)dr’) i /"" (1 o M p(r")dr”) 0

Setting p(r) to a constant p, this equals

_ P bp
wll/keT =1 (20 ) + 12 (3.24)

For a homogeneous fluid, the formula (3.21) derived above should be exact. Substituting a homoge-
neous density p into (3.21), and eliminating additive constants, this gives

b
un(p(r))/kpT = In ( o b”p)l ,2) i) (3.25)

The difference between the Percus formula (3.24) and the LDA formula (3.25) with p(r) = p arises
because the Percus formula was derived in the thermodynamic limit, while our result is for the case
when N = 2.

3.3.2 Method of solution

There is a standard iterative approach to solving the integral equation (3.20) for p(r). A trial profile
is inserted into the right hand side, and a new profile is generated by inverting the function up(p).
For an open system with fixed u this procedure leads ultimately to a free energy minimising profile,
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but if the initial profile is chosen suitably, then a metastable saddle point solution may emerge and
remain effectively unchanged for many iterations.

For a closed system such as the one studied here, the constraint (3.22) for a fixed number of
particles needs to be imposed on the solution. This is achieved by updating p at each iteration
so that the normalisation condition is satisfied. This method is employed by Lee et. al. [33] and
Talanquer and Oxtoby [23] to control the normalisation for closed systems. The Euler-Lagrange
equation is altered to

pr(p(r)) = —kgTIn (% / dr exp ((—ph,c = Pest)/ kBT)> —Ger (3.26)
where
best(r) = / o()o(r — 1')dr’ (3.27)
and
ph,e(r) = pr — kT In(p(r)/7) (3.28)

The first term on the right hand side of equation (3.26) is the appropriate value of ;2 appearing in
equation (3.20), to ensure normalisation. The density profile generated from this procedure is then
inserted into the free energy functional, equation (3.19), to obtain the MFDFT estimate of the free
energy of the system.

3.3.3 Higher order contributions to p(r)

The density profile that emerges from the above procedure will clearly be different from the exact
single-particle density profile of the system, which we denote by pg(r) for clarity. Under certain
conditions, the mean field density profile will be spatially varying. This occurs when the mean
field free energy Far is lower for a spatially varying single particle distribution, corresponding to a
reference system with a spatially varying V(r). On the other hand, the single-particle density profile
pm(r) in the real system is given by

pu(r) = %% / dVr exp(—(Ho + Hy) /KT)d(ry — ), (3.29)

where Z is the exact partition function. Due to the translational symmetry of the Hamiltonian
H = K + Hy + H;, this profile should be uniform.

As discussed in Section 2.5.2, the mean field approach may be viewed as a thermodynamic per-
turbation of the free energy of the system with Hamiltonian H = Hp + H; about the reference
Hamiltonian Hy. The reference density profile p(r) can be considered as the zeroth order approxima-
tion to pg(r) in an expansion in H;. To check the validity of this approach, higher order contributions
to pg can be computed by expanding the exp(—H;/kT) factor in equation (3.29). For example the
first order density profile is given by

N [dNrexp(—Ho/kT)(1 — Hy/kT)6(r — 1)
J dNrexp(—Ho/kT)(1 — H1/kT)

pr(r) = (3.30)

This can be calculated approximately, using the random phase approximation and the zero order

density profile p(r):

() ~ p(r) [1- -;—(N —1)(N=2)N"2L; + (N-1)N" 1, — (N = 1)N~! fdr'¢(r —r')p(r') /KT + V (r) /kT]

1- -21-(N - 1)N_1I1 + I
(3.31)
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Figure 3.2: The zeroth (solid line) and first order density (dotted line) density profiles for the b = 0.1 case, and the
difference between them’(dash-dotted line), according to the perturbative expressions given in section 3.3.3.

where

I = /dr’dr"¢(r' —7"p(r")p(r") /KT, (3.32)

and
I = / dr'V () p(r') /KT (3.33)

One problem here is that the mean field V(r) appears explicitly in equation (3.31). The inversion
of the zeroth order profile p(r) to give V(r) is difficult, and also incomplete, since the mean field is
necessarily uncertain up to a constant. However, we proceed using two approximations. First, hard
sphere repulsions are neglected so we can use the point-particle formula V(r) ~ —kT'lnp(r) + C
where C is the arbitrary constant. Second, we fix the unknown constant by demanding that the
perturbative second term in equation (3.9), evaluated using the approximate V'(r), vanishes. Once
this is imposed, the first order density profile reduces to

pr(r) = plr) [1 RpLL) / dr'$(r — ")p(r")/KT — In p] (3.34)

in which I, is now the integral in equation (3.33) with V(r) replaced by —kT In p.

This result is still spatially varying. Indeed any expansion of equation (3.29) to finite order, and
employing approximations to calculate the corrections, will lead to a density profile with spatial varia-
tion. Figure 3.2 shows a spatially varying density profile and the first order correction obtained using

" the procedure described. It can be seen that the correction is small, indicating that the perturbation
expansion inherent in Fysp is valid.

The loss of translational symmetry is caused fundamentally by the need to choose an arbitrary
location in space for the centre of the mean field potential well. By choosing a particular location,
we obtain an inhomogeneous reference system single-particle density profile p(r). This is the inter-
pretation of Barrett [28]. The breakage of translational symmetry is associated with an undesirable
error in the free energy. The MFDFT approach should be amended to take this effect into account.
This will be addressed in Section 3.3.4.

3.3.4 Modifications for small systems
Small N effects

In applying MFDFT to small systems, several crucial modifications to the standard development
should not be overlooked. These modifications are necessary to take account of finite size effects that
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become increasingly important as the number of particles becomes small.

The first .two corrections take us back to the random phase approximation (RPA) in equation
(3.18). The correct relationship between the two-particle distribution function p(®(r,r’), and a prod-
uct of two single particle distribution functions p(r)p(r’) is given by

P (r,r') = g(r,r")p(r)p(r'), (3.35)

where g(r,7’) is the pair correlation function for the reference system. In the RPA, this function is
set to unity irrespective of the positions 7 and 7’. We will make corrections to this approximation in
several stages.. The first correction results from consideration of the normalisation condition for an
n-particle distribution function:

R
/0 d"rp™ (") = (—J\TJ'V—'T)' (3.36)

For the case of n = 2 (the two-particle distribution function) the right hand side of equation (3.36) is
equal to N(N — 1). On the other hand, the one-particle distribution functions are normalised to N,
giving N? for the integral of the product p(r)p(r’). Therefore the RPA approximation g = 1 should
be replaced by the more accurate form g = (N — 1)/N, and equation (3.18) becomes

N-1
N

P (r,r') ~ p(r)o(r'). (3.37)

It is clear that this correction is only important for small N, but in the case of N = 2 it introduces
a substantial correction factor of 1/2. We have employed this correct normalisation in the derivation
of equation (3.31) already.

A second modification of equation (3.18) addresses the neglect of spatial correlations between the
two rods within the RPA. This will have consequences on the estimate for the attractive energy in
the system (¢)o. The most severe consequence of this is that the RPA fails to remove the attractive
energy due to overlapping configurations of rods i.e. when |r —7/| < b. This leads to a substantial
overestimation of the magnitude of the cohesive energy in the system. An approximate way to take
account of this is to construct a correlation function from a pair of step functions

g(r, ") < O(lr — 1’| —b) O(R—|r —1'| - b) (3.38)

where ©(z) = 0 for z < 0 and unity otherwise. Now g(r,r’) is explicitly zero for overlapping hard rod
configurations, and equation (3.18) is modified to

Py~ (T ) (725 Pe O =+ =) BR=Ir=r1=8) (339

An extra factor of R/(R — 2b) has been inserted to ensure that p(® remains normalised for ho-
mogeneous profiles despite the exclusion of 2b from the available volume in the system. This pair
distribution function is exact for a homogeneous fluid of two hard rod particles, however it is an ap-
proximation when an inhomogeneous external field is present giving rise to an inhomogeneous density
profile. It is also an approximation when N > 2, as non-trivial hard rod correlations exist beyond
|r — r'| > b even for a homogeneous system. The correlations in one-dimensional hard rod fluids are
described in reference [39] for systems with large N.
Taking these corrections into account, the MFDFT free energy function is now written

R R R
Fprr =/0 drkgTp(r)In (p:‘) o —blp(r))1/2) +%/0 dr/o dryp@ (r,r)(r —r')  (3.40)
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employing the two-particle distribution function from equation (3.39).

Centre of mass translation

The final correction we need to consider deals with the breakage of translational symmetry by the
mean field potential utilised in MFDFT, which gives rise to an inhomogeneous distribution of the
centre of mass of the system. A dynamical mode of the system, namely the motion of the centre of
mass, is incorrectly described, which affects the free energy.

This issue has been the subject of some controversy in the literature. Talanquer and Oxtoby [23]
have assumed that when MFDFT is applied to a system in a closed volume, the free energy obtained
includes the full translational free energy for the centre of mass of the system within that volume.
Simulations by Reguera et. al. [6], on the other hand, indicate that density profiles obtained from
MFDFT correspond closely to a system modelled by Monte Carlo simulation with a fixed centre of
mass. We take the view of Barrett [28], that the MFDFT approach limits the translational motion
of the centre of mass of the system to a certain volume around the centre of the mean field potential
well. For system sizes of a few tens of particles, this is a small volume compared with the extent of
the profile itself, and so this interpretation is consistent with the observations made by Reguera et.
al. [6]. However, the centre of mass is not fixed: it may be regarded as tethered to the midpoint of
the mean field potential, and undergoing quasi-harmonic oscillations about it.

To make this clearer, consider a one dimensional closed system of length R, containing N particles
interacting through a pair potential U (r; —r;). With suitable periodic boundary conditions that avoid
boundary effects, the probability distribution for the position of the centre of mass pc(Rcm) should
be uniform. Now, p.(Rcm) is the expectation value of the operator

N
1
p(Rem) = 6 (-ﬁ >ori- Rcm) (3.41)
i=1
SO
1 N
pc(Rcm = Z N' /dN ') (N Z’I‘i — Rcm) e—(Ho+H1)/k3T (342)
i=1

where Z is the exact partition function. Transforming to centre of mass coordinates r; = r; — Rem,
Pc(Rem) becomes

pelBem) = 5 20 / d" ’6( )e“”"“"’/k”- (3.43)

The Hamiltonian H = Hy + H; is unchanged by this transformation of coordinates since it depends
only on particle separations, and with the correct boundary conditions the integration limits remain
unchanged. We can therefore see that the right hand side of equation (3.43) does not depend the
value of R, resulting in a distribution p. that does not depend on position.

As we have seen, in MFDFT the aim is to find the optimal form of the effective mean field potential
V(r) in the Hamiltonian Hp to mimic the effect of the attractive interactions in H;. The density
* profile p(r) is the single particle distribution function corresponding to the reference system described
by Hy with this form of V(r). The MFDFT approximation to the distribution of the centre of mass
is determined by taking the trace of the operator 5(R.n,) in the reference ensemble, which we write
as

pg(Rcm)= /d” J(Nzr, Rcm) exp | ~——— z:uﬂ(r1 r,)+ZV(r,)

>7
(3.44)
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Converting to the centre of mass coordinates r} = r; — Rem, We get

N
P2(Rom) = /dN 'S (ZN )exp( T (}:uR(r -)+ZV(T§+Rcm))>

i>j i=1

(3.45)
The integrand now does depend upon R, as a result of the spatial dependence of the mean field
potential V(). Consequently the centre of mass distribution p? is spatially varying: we are more
likely to find the centre of mass in some parts of the system than in others. This remains the case to
higher order in perturbation theory, along the lines described in section 3.3.3. This unphysical result
is an artifact of the mean field approximation, and will lead to an underestimation of the entropy
of the system. Correcting this error is possible by changing the way the centre of mass dynamical
degree of freedom is treated [40, 41]. In this treatment we do this by means of an approximate, ad
hoc procedure after the optimal mean field density profiles are obtained.

We begin by writing the reference partition function Zy as

Zo= f dNr dNpexp(—(K + Hy)/kgpT) (3.46)

hNN'

where the p; are the particle momenta. This can be expressed with the insertion of integrations over
the centre of mass position R., and momentum P,:

N
1
Zo = /dRcmchm NN /d”rde é (ﬁ ;ri - Rcm) (Zp, ) exp(—(K + Hy)/kgT)
(3.47)
or

Zo= / ARemdPemX(Rem, Pom) (3.48)

which defines a distribution function for the centre of mass degrees of freedom X(Rem, Pem), which is
related to p2(Rem) through

1
p(c)(Rcm) = 70 /X(Rcm’ Pcm)chm- (3.49)

Equation (3.48) may be cast instead in the form

1
== / APy dRom exp(— Hott (Roms Pom) /k5T) (3.50)

where Heg is an effective Hamiltonian controlling the dynamics of the system centre of mass. In order
to describe the freedom of motion of the centre of mass correctly we will replace this Hamiltonian
with that of a free particle. The corrected partition function is

Z! = Z,
0" “OT 4R exp(—Uet (Rem) /k5T)

(3.51)

where U (Rcm) is the effective potential in the effective Hamiltonian Heg, that causes the centre of
mass to be constrained. The origin R,,, = 0 is chosen to lie at the centre of the mean field potential
and we can choose U (0)=0. Therefore the probability of finding the centre of mass at R.m, = 0 is

1
f dR.m exp("’Ueﬂ' (Rcm)/kBT)

pg(O) = hLZo /chm exp(_Heﬁ(()’ Pcm)/kBT) = (352)
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and we can write the ratio of the two partition functions as

% _ [ dBor
Zy - decm exp(“Ueﬂ‘(Rcm)/kBT)

=p(0)R (3.53)

which is in agreement with similar corrections suggested in the literature [40, 41]. The associated
shift in reference free energy is given by

AF = —kgTn (p2(0)R) . (3.54)

This free energy correction may be evaluated using the optimum single particle density profile
p(r) obtained from the Euler-Lagrange equation. We return to equation (3.44) which we write in the

form

N
PRem) = 377 [ @ 8 (%Z —Rcm) PN () (3.55)

i=1
where p(V) is the N-particle distribution function. By employing the random phase approximation,
we can proceed in terms of the single-particle density profile p(r).

N
M) = ST otr) (3.56)
i=1

so p2(0) is given by
1 i 1 &
220 = 5 [ @1 T8 | 5 2o (357)
i=1 i=1

which is readily calculable. For the case of N = 2, the result is simply

R0 =3 / drip(ra)p(—r) = 3 / dr1p%(r1) (3.58)

with the final form being a consequence of symmetry. A better approximation would be to use the
more appropriate version of the RPA given in equation (3.39), but we will stick to the simplest form
for the evaluation of this contribution to the free energy.

For general N, we can evaluate the integral in equation (3.57) by using the integral representation
of the Dirac Delta function

§(z) = (2m)~! /oo dw exp (twz) (3.59)
in which case oo
R0 =Nem™ [ dwpw/N) (3.60)
where p is given by
@) = [ plr) expliar)ir. (3.61)

The translational free energy correction AF is therefore calculable, and should be added to the mean
field free energy estimate Fisr in cases when translational motion of the centre of mass of the system
makes a significant contribution to the system free energy. This will clearly be the case for systems
with small N.

3.4 Comparison between exact and MFDFT free energy

The performance of MFDFT can be assessed by comparing the MFDFT excess free energy with
the exact result obtained from numerical integration of the partition function in equation (3.1).
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Calculations are performed here for two finite rod lengths 6 = 0.1, » = 0.01 and also point-like
particles b = 0 in dimensionless units. For each rod length, equilibrium density profiles are found by
solving the Euler-Lagrange equation (3.26), and the MFDFT free energy calculated for a range of
‘volumes’ R. This is then compared to the MFDFT free energy for a homogeneous density distribution
p = 2/R, and to the exact free energy.

Homogeneous profiles are expected to be the solutions to the Euler-Lagrange equation as AR —>0,
since in this limit, the spatial dependence in the attractive interaction vanishes, and it has the same
effect as adding a constant potential to the system. It can be shown that the functional in equation
(3.40) provides the exact free energy of the system in this limit. The error compared with the exact

free energy increases with A and a, as shown in Figure 3.3.

% error

Figure 3.3: Percentage error of MFDFT free energy for a homogeneous profile as a function of the potential well
depth at contact cco, and inverse interaction range parameter A. For this plot 5 = 0.1 and R = 5.0.

For this study, the parameters were adjusted to give a reasonably short range interaction, with
considerable strength. The depth of the attractive potential energy well at contact (i.e. when the rod
centres are separated by b) has been set to 4>@#) = —OfcgT, and the parameter 1/A, which determines
the length scale ofthe attractive interaction, has been set to unity. In Figure 3.4 the excess free energy
Fex is plotted against R for three different rod sizes, using various MFDFT approaches as well as
direct evaluation of the partition function.

The MFDFT free energies obtained by finding inhomogeneous optimal density profiles lie closer
to the exact free energy than for the homogeneous density profiles, though there remains a large
discrepancy. At small volumes (R ~ 3 for 5= 0 and b= 0.01, and R ~ 5 for b= 0.1) the difference
in free energy associated with the homogeneous and optimal inhomogeneous density profiles becomes
very small, and eventually the homogeneous solutions to equation (3.26) become optimal. A similar
development is expected at very large R, when the ‘vapour’is very rarefied, however this limit is not
observed in our calculations due to the large magnitude of 4>b).

The small rod lengths 6 = 0 and 6 = 0.01 give rise to more pronounced inhomogeneous density
profiles than the larger rods 6= 0.1, as is illustrated in Figure 3.5, and also display bigger difference
between the homogeneous and inhomogeneous profile MFDFT free energies.

It can be seen from Figure 3.4 that the MFDFT free energies always he above the exact free energy.
For homogeneous density profiles neither LDA nor RPA approximations are made in the functional
(3.40), and it becomes an exact representation of the reference system /. In this case, the Bogoliubov

xIt should be noted that for the case when N > 2, the functional (3.40) does involve the RPA (but not the LDA)

even when profiles are homogeneous. This is because the more complicated hard rod correlations for N > 2 have not
been accounted for by the approximate two-particle distribution function (3.39).
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inequality ensures that the MFDF'T free energy lies above the exact free energy. The large discrepancy
between the exact free energy and the MFDFT free energy for homogeneous profiles is due to the
inadequacy of the homogeneous mean field representation of the system. This may also be seen as
a breakdown of the perturbation expansion (3.9). The mean field V(r), which in the homogeneous
case is just a constant potential, is supposed to emulate the effect of attractive interactions ¢(r — ')
in order to make (H?/2)o and higher order moments of H; as small as possible. This does not seem
to be accurate for the cases considered. As we are in a regime in which the interaction strength o
is large, and the range 1/ is finite, an inhomogeneous mean field and therefore an inhomogeneous
density profile is expected to do better. However in this case there will also be an implicit error due
to the LDA and RPA in the functional.

In order to Quantify the error due to the LDA for inhomogeneous density profiles, a numerical
investigation has been carried out in which the free energy of two hard rod particles in an external
harmonic potential was calculated exactly and compared with the free energy calculated using the
LDA approximation (3.16). This system is of the same form as the reference system with Hamiltonian
K + Hy, but with an a priori known form of external potential

V(r) = (2)2 (3.62)

where o determines the curvature of the external potential and can be adjusted to give density
profiles of different widths. Depending on the value of o, the profiles will have different values for the
expectation value of the mean square displacement (r2) of the rods from the well minimum. It was
found that the LDA performs extremely well up to high potential well curvature. Figure 3.6 shows the
percentage error in the free energy calculated within the LDA compared with the exact free energy,
against mean square displacement (r2) of the resulting profiles. The parameters b=0.1and R=5
were used, which corresponds to the highest packing fraction used in this study of attractive hard
rods. The results on the test system indicate that the LDA error is negligible in the parameter ranges
for which inhomogeneous profiles were obtained in this study.

From this result we can deduce that for inhomogeneous profiles, the difference between the MFDFT
results and the exact free energy can be attributed to the mean field approximation, in which the
correlations due to the attractive interaction are not properly taken into account. There is also an
error due to the RPA approximation in the evaluation of (H;)o, since the hard-sphere correlations in
the inhomogeneous system have only been taken into account approximately.

The discrepancy between the exact and MFDFT free energy is due to the unsuitability of a mean
field treatment for a system of low dimensionality, consisting of very few strongly interacting particles.
For such a system large fluctuations or deviations from mean field behaviour are expected.

The correction AF for translational motion of the system centre of mass is significant for all three
rod sizes. The profiles become narrower for smaller b, indicating that the mean field potential V (r) is
narrower, leading to stronger confinement of the centre of mass. This gives rise to a larger free energy
correction factor for narrower profiles. It should be noted that once the translational correction AF
is made, the Bogoliubov inequality is no longer valid regardless of the LDA and RPA approximations,
since the confinement of the system centre of mass, the effect we are attempting to correct, is an
inherent part of the Hy reference system which includes an external field.

A numerical study on three profiles for b = 0.1,0.01,0 with R = 5.0 was carried out to evaluate
the first order density profile p;(r) given by equation (3.31). This revealed that p;(r) is similar to
p(r) but is slightly flatter, as would be expected. This is illustrated in Figure 3.2 for the case of
b = 0.1. The free energy calculated from the resulting first order profiles did not vary significantly
from the original zeroth order free energy obtained using the p(r) profiles.
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Figure 3.4: Excess free energy F.r versus ‘volume' R for attractive rods with length b = 0.1 (top graph), b = 0.01
(middle graph), and point particles b = 0 (bottom graph). The excess free energy is calculated exactly (solid line), and
in three different variants of MFDFT. The dashed line results from inserting a homogeneous density profile p = 2/R
into equation (3.26), the free energy functional incorporating the modifications to the random phase approximation.
The squares show the same free energy evaluated using the optimal inhomogeneous density profile. This free energy
lacks the translational correction AF described in equation (3.54), and the substantial change that this introduces
is shown by the further shift to the values shown by circles. For most values of R, inhomogeneous density profiles
are favoured, but homogeneous profiles become more favourable for smaller R. The translational correction greatly
improves the agreement between the MFDFT and exact free energies.
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Figure 3.5: The optimal inhomogeneous density profiles for the three cases described in Figure 3.4 for R = 5. Note
that the smaller rods are described by a more peaked profile, and consequently a narrower mean field potential.
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Figure 3.6: Percentage error in the free energy calculated within the LDA for a system of two particles in a harmonic
external potential. This system has a Hamiltonian of the form H = K + Ug + V(r), where V(r) = (r/a)?. Rod size
b = 0.1 and volume R = 5.0 have been chosen for evaluation of the LDA, and the free energy compared with exact
integration of the partition function.
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3.5 Summary

We have investigated how well a mean field density functional theory performs in a very simple case
of two attractive hard rods on a ring. Mean field theories are expected to be less successful in treating
small systems due to the importance of fluctuations: they are better suited as a description of large
systems. Reguerra and Reiss point out [27] that the neglect of certain fluctuations in MFDFT may be
useful in the application to nucleation theory. This is because it allows MFDF'T to capture stationary
states of a system that do not correspond to equilibrium states, as for example the formation of
critical molecular clusters in a condensing vapour. In this study the focus was on how well MFDFT
can estimate the equilibrium free energy of a closed system, so this neglect of fluctuations represents
a shortcoming highlighted in the difference between the MFDFT and exact free energies.

The standard MFDFT functional should be modified to deal with finite size effects. Two modi-
fications involve "chénges to the random phase approximation, used to estimate the interaction free
energy. The first is the need to ensure normalisation of the two-particle distribution function when it
is replaced by a product of single distribution functions. The second correction is to prevent the in-
clusion of forbidden configurations with overlapping hard rods. Failure to remove these configurations
leads to a substantial overestimation of the cohesive energy.

The final effect concerns the loss of translational symmetry due to the introduction of a mean field
potential. This means that the free energy associated with the motion of the system centre of mass
is not correctly treated, and for small systems, the error can be substantial. This loss of symmetry
remains even if higher order terms are included in the evaluation of the density profile. The problem
is resolved by the replacement of the effective Hamiltonian controlling the motion of the centre of
mass. The correction to the free energy can be evaluated directly using the density distribution in
the reference hard sphere system, and is added to the MFDFT free energy once an optimal density
profile (or equivalently mean field potential V'(r)) has been found.

The modifications lead to substantial changes in the MFDFT free energy. The free energies
obtained from MFDFT were compared with exact values, which are easy to compute for the small
system studied. The modification to the translational contribution to the free energy appears to
be particularly important for the system studied. As expected, the correction is greatest when the
optimal density profile departs most strongly from homogeneity.

We expect these various factors to be important in calculations of the free energy of small molecular
clusters frequently made in nucleation studies using mean field density functional theory.
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Chapter 4

Phase behaviour of charged
colloidal suspensions: experiment

and theory

4.1 Introduction to colloidal suspensions

4.1.1 Brief description of colloidal systems

The term colloid refers to a general class of complex systems containing inhomogeneities on length-
scales between 10nm-1000nm consisting of matter of one phase dispersed in another. Colloids can
be classified generally by the states that make up the dispersed phase and dispersion medium. In
this thesis we are concerned with solid particles dispersed in liquids which are known as sols or dis-
persions. There are also colloids consisting of solid or liquid particles in gases (aerosols), liquids in
liquids (emulsions), gases in liquids (foams). In addition to this there are solid-,liquid-, gas- in solid
colloids known as solid dispersions, solid emulsions and solid foams.

In this study we are interested in suspensions of solid particles dissolved in polar solvents. In
these systems, there is a large asymmetry in size between the solid particles and the molecules of
the surrounding solvent. Depending on the specific system of interest, different types of interactions
may be important, giving rise to different phenomena. These interactions include hydrodynamic,
electrostatic and steric effects.

“The study of colloids [42] as a scientific discipline dates back to the 1840s. The earliest studies
were of solid in liquid colloids, and in the 1850s Michael Faraday made extensive studies of colloidal
gold sols. The term colloid was coined in 1861 by Thomas Graham. Graham deduced that the low
diffusion rate of colloidal particles implied the particles were fairly large- at least 1nm in diameter.
He also deduced that the particles must have an upper size limit to prevent them from sedimenting
under gravity which he set to approximately 1um. This range of lengthscales is still used in the
definition of colloids today.

Colloidal sols can be broadly classed into two categories lyophobic and lyophilic colloids. Lyopho-
bic or solvent-hating colloids are inherently unstable, and will eventually fall out of dispersion by
aggregating. Lyophilic or solvent-loving colloids are stable and remain dispersed in solvent indef-
initely. Aggregation of lyophobic particles occurs due to strong attraction at short range. These
attractions are Van der Waals type interactions, and are sufficiently strong that when two particles
meet, thermal agitation is not sufficient to separate them.

A very wide range of systems can be classified as colloidal suspensions, ranging from paints and
toothpaste to protein solutions. Broadly speaking a dispersion of colloid sized particles may come
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about in two ways. One way is that it is dispersed as a polymolecular aggregate, which is the case
with silver and gold chloride particles. This is also the case for association colloids such as micelles
formed from amphiphilic molecules. The second alternative is that the molecules themselves are
macromolecules that are large enough to count as colloidal particles, which is the case with DNA or
proteins. Such macromolecules are usually lyophilic.

4.1.2 Stabilisation of lyophobic colloids

There are two main methods of stabilisation for lyophobic colloids. Steric stabilisation involves coating
the colloidal particles with polymeric molecules that are lyophilic and cause short range repulsions
between the particles. The reduction in the available phase space for the polymer coils when particles
approach each other causes a decrease in entropy, which results in an effective repulsion between the
particles.

The second method of stabilisation is to coat the particles with ionisable salt groups. These
groups preferentially dissociate, causing the particles to carry an overall surface charge. The chem-
ical similarity of the coatings, means that the particles will carry the same sign of charge, giving
rise to electrostatic repulsion between the particles. Michael Faraday used this method to produce
suspensions of gold particles that have remained stable to this day [42].

In this study we are particularly interested in phenomena in charged colloidal suspensions. A
typical system [43] consists of polystyrene sulphate spheres of diameter 650nm dispersed in deionised
water. The spheres can be synthesised with a large number of ionisable sulphate salt groups chemically
bonded to their surfaces. These groups dissociate in water, each leaving a single negative charge bound
to the sphere’s surface, and a compensating positive charge in solution. The resulting surface charge
densities on the spheres are typically of the order 10~3 — 10~2 electron charges per square nanometre.
This means that the spheres or macroions are highly charged, each carrying around 103 — 10 electron
charges. The hydrated counterions generally form neutralising clouds around the macroions referred
to as double-layers [42], that screen the bare Coulomb interactions between the large particles

4.1.3 DLVO theory of colloidal stability

The classic theory of charged colloidal suspensions formulated by Derjaguin, Landau, Verwey and
Overbeek (DLVO) in 1948 [44] expresses the effective interaction between large colloidal particles as
the sum of a repulsive electrostatic term that takes the form of a screened Coulomb (Yukawa) poten-
tial, and an attractive Van der Waals interactions between the particles. The repulsive electrostatic
interaction, which has a relatively long range, stabilises the colloids against coagulation due to shorter
range van der Waals attractions which would otherwise cause irreversible coagulation of the particles.

The repulsive electrostatic interaction in the DLVO theory is derived using the linear Debye-Hiickel
approximation [45] in the mean field Poisson-Boltzmann theory which will be discussed in more detail
in Chapter 5. Debye-Hiickel theory was originally formulated to describe the interactions between
microions in an electrolyte in the absence of the large, highly charged macroions present in a colloidal
suspension. These microions are smaller and carry significantly less charge than the macroions referred
to in the context of DLVO theory, and it is questionable whether a linear response treatment is valid
when macroions are present in the system. In this theory, the electrostatic interaction between a pair
of colloidal particles separated by a distance r, and carrying a charge Z is

_ Z%? (exp /ca)2 exp(—~r)

Vr = .
R dme \ 1+ Ka r (41)

where a is the radius of the particles, € is the absolute dielectric permittivity of the solvent and &
is the inverse Debye screening length Ap. The potential Vg is an effective electrostatic interaction

50



between two charged macroions that is mediated by the microions. The inverse screening length
depends on the concentration of microions in the suspension. For the case where only one species of

microion is present, the inverse screening length is given by

dme?2n
2 _
= kgT (4.2)

where n is the mean density of microions, z is their valency, e is the elementary electron charge, kg is
Boltzmann’s constant and T is the temperature. From (4.2) it can be seen that the Debye screening
length decreases with microion density as Ap « 1/4/n. In the DLVO theory the mean microion
concentration n is taken to be constant with respect to the separations between the macroions.

The attractive interaction in the DLVO theory results from Van der Waals interactions. The
attraction between two identical spheres consisting of atoms which interact through Van der Waals

interactions is obtained from Hamaker theory [46] , and is given by

H 02 a2 2, 9
VA——-E [;—2-+m+21n(1—a /%) (4.3)

where H is the Hamaker constant, which depends on the material the colloidal spheres are made of,
as well as the intervening medium between the particles. The general shape of the overall interaction
Vorvo = Vg + V4 is plotted below for two different salt concentrations.
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Figure 4.1: DLVO interaction potential between a pair of colloidal macroions. The full curve corresponds to a high
concentration and the dashed curve to a low salt concentration. The secondary minimum responsible for flocculation

is visible for the case with a higher salt concentration. Adapted from Knott [47].

DLVO theory asserts that the screened electrostatic repulsion stabilises the suspension against
coagulation due to the strong Van der Waals interaction at short range. When the salt density
is increased sufficiently, the repulsive interaction becomes more short ranged due to the enhanced
screening, and the barrier to the primary minimum is overcome which leads to coagulation. This
salting-out phenomenon was studied by Faraday. At intermediate salt densities a shallower secondary
minimum appears. This secondary minimum, which is shallow relative to the thermal energy in the
system, is responsible for the phenomenon of flocculation, the formation of a low density aggregate

that is easily re-dispersed.
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4.2 Experimental observations of inhomogeneous phase be-

haviour

The relatively large size of colloidal particles enables a wide range of experimental techniques to be
used to study them. Colloidal particles can be imaged directly using optical microscopes [43, 48, 49,
and scattering experiments to probe the structure of the suspensions are performed using lasers [50]
or using small-angle X-ray scattering (SAXS) [51]. The low diffusion rate of colloidal particles also
allows them to be tracked dynamically using time-resolved digital microscopy [43, 48, 52].

The formation of ordered structures in suspensions of latex spheres was observed as early as
the 1950s [53]. Subsequent studies showed these structures coexisting with disordered phases [54].
Monovoukas and Gast found transitions between BCC and FCC structures, as well as the liquid-solid
transitions [55]. -

The formation of ordered structures is compatible in principle with a purely repulsive pairwise
interaction such as the Yukawa potential (4.3). Robbins et. al. studied the phase diagram of Yukawa
fluids extensively by means of computer simulations [56, 57], and found them to display liquid-solid
and solid-solid phase transitions. These transitions are driven by changes in the particle density (which
would correspond to the macroion density in a colloidal system) as well as the inverse screening length
 (which in a colloidal system would be related to the mean density of microions).

Another example of a phase transition in a system in the absence of attractive interactions is that of
hard-sphere crystallisation [10, 58]. A hard sphere system confined to a volume V' can be characterised
by the volume- or packing fraction ¢ which is the volume of one sphere divided by V. In hard sphere
systems it is found that at a volume fraction of ¢ = 0.494 there is an abrupt transition to a crystal
with a volume fraction of ¢ = 0.545. If a system is prepared at an intermediate volume fraction
the system will separate into two coexisting phases. This transition occurs at packing fractions well
below the maximum attainable packing fraction for random close packing of hard spheres which is
around ¢ = 0.63 and maximum packing fraction of a regular close packed structure ¢ = 0.7404. The
transition is entropically driven, and results from the fact that the volume available to the spheres
when they are packed into a crystal is larger than at random packing. Phase coexistence in the
hard sphere and repulsive Yukawa systems occurs between phases that do not differ substantially in
density.

There is experimental evidence that attractive interactions exist in charged colloidal systems that
have a much longer range than the Van der Waals interactions. Grier showed [43] that charged
colloidal particles with packing fractions as low as ¢ = 0.01 can order into crystals. The mean sepa-
ration between macroions of radius ¢ = 330nm at this packing fraction corresponds to approximately
3000nm. The Van der Waals interaction contributes less than 0.01kgT to the interaction potential
between two polystyrene microspheres immersed in water separated by more than 100nm [43], and so
is negligible at these packing fractions. Grier’s study found that colloidal crystals persist for longer
than expected in the absence of confinement if they had purely repulsive interactions. From the obser-
vation of metastable crystallites, he also deduced that the surface tension between the solid and liquid
phases is much higher than would be expected for a purely repulsive interaction. This behaviour was
attributed to an effective attractive interaction between the colloidal particles when they are near a
container wall, but there is also evidence that effective attractions occur far from container walls.

Experiments showing the coexistence between phases with substantially different colloid densities
add to the evidence for the existence of long range attractions between charged macroions. In 1979 Ise
et. al. found evidence for the coexistence between solidlike and a very dilute gaslike phase in dilute
suspensions of sodium polyacrylate [51]. The same effect was seen with highly charged latex spheres
[59]. The coexistence behaviour was only observed for suspensions in which the particles carry a very
high surface charge (~ 1073 — 10~2 electron charges per nm?), and the salt density in the electrolyte
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is as low as a few uM (which equals about 10~7 — 10~¢ ions per nm™3).

Subsequent studies [60, 50, 61, 62, 63, 3] have found voids in liquidlike phases. These voids
are indicative of a very low density gaslike phase, so that the observations may be interpreted as
coexistence between dense and dilute fluid phases. Homogeneous fluids were observed to separate
into dense liquidlike and rarefied gaslike phases over timescales of hours to days. This behaviour
occurs at densities much lower than the range of densities for which flocculation due to the secondary
minimum in the DLVO potential occurs. Reentrant behaviour was observed [50] with respect to
the salt concentration of the electrolyte in the sense that the fluid remains homogeneous at lower
and at higher salt concentrations but phase separates at intermediate salt concentrations. Palberg
and Wiirth [64] disputed the claim that the observations correspond to equilibrium phenomena such
as phase coexistence, and argued that the phase separation seen by Aurora et. al. correspond to
nonequilibrium phenomena that result from a gradient in salt concentration in the system.

Unless the experiments mentioned above are flawed or have been misinterpreted they point to
the existence of some form of long range interaction that is not covered by the DLVO theory. The
inhomogeneous phase behaviour is difficult to explain otherwise.

Two more experimental observations are worth pointing out in this context. Matsuoka et. al.
investigated the nearest neighbour macroion separation as a function of salt concentration and found
that it first increased with increasing salt concentration, then decreased after passing through a
maximum, indicating that the crystal density passed through a minimum [65]. When the surface
groups on the macroions are acidic, then the concentration of base in the electrolyte determines
the amount of charge titrated on the macroions. This allows control of the charge carried by the
macroions. By varying the concentration of NaOH in suspensions, Yamanaka et. al. found a solid-
liquid phase transition which was reentrant with respect to the macroion surface charge for a given
salt density and macroion density [66].

4.3 Theoretical approaches

4.3.1 Discrepancy between DLVO theory and observations

The coexistence between dense and rarefied phases is not compatible with purely repulsive Yukawa
interactions of the Debye-Hiickel theory. Van der Waals attractions calculated within Hamaker or
Lifshitz [42, 67] theory cannot account for this behaviour, as these interactions are too weak at the
inter-particle separations for which coexistence behaviour is observed. The discrepancy between the
DLVO theory and experimental observations leaves open a range of possibilities for the development
of a theory to explain the phase behaviour described above. One such possibility is the existence of
effective electrostatic attractions between