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A b strac t

This thesis is concerned with the methods of mean field calculations of the properties of soft matter 
systems. The first part deals with the application of mean field density functional theory to fluid 
systems containing small numbers of particles. This is relevant to nucleation studies that can be 
performed using mean field density functional theory (MFDFT), where the critical clusters that 
constitute the transition states for phase transitions can be very small. It is also relevant for studies 
of the behaviour of confined fluids such as fluids in nanopores. The problems in applying MFDFT 
to small systems are investigated, and modifications to improve the accuracy are identified. These 
principles are tested on a highly simplified model system of attractive hard rods in one dimension. 
The second part of the thesis investigates the mean field description of interactions in charged colloidal 
suspensions within the primitive (PM) model. The phase behaviour of these systems is discussed. 
In particular, the question of whether experimental observations of coexistence between dense and 
rarefied phases can be accounted for by mean field theory is discussed. A new approximate method 
for solving the nonlinear mean field Poisson-Boltzmann equation in the limit of dilute suspensions is 
proposed. This method is applied to the simple case of charged plates, as well as arrays of spherical 
colloidal particles. For the latter case, comparisons are made between spherical and cubic Wigner- 
Seitz cell geometries.
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Chapter 1

First-order phase transitions and 
inhomogeneous fluids

1.1 Introduction

This thesis deals with the application of mean field density functional theory to the calculation of 
the equilibrium thermodynamic properties of soft condensed m atter systems. The technique of mean 
field density functional theory is applied to two very different types of system. In Chapter 3, the 
application of this technique to systems containing a small number of particles is investigated. A 
number of corrections are proposed to increase the accuracy of mean field density functional theory 
when applied to systems containing a small number of particles. Chapters 4-8 deal with charged 
colloidal suspensions. In Chapter 6, a new linearisation scheme is proposed for the solution of the 
nonlinear mean field equations in these systems. The technique is tested in Chapters 7 and 8, through 
application to well known model systems.

As the underlying motivation of this work is the study of first-order phase transitions, this chapter 
gives a brief introduction to first-order phase transitions and in particular fluid-fluid phase coexistence. 
Although the calculations in this thesis are entirely equilibrium calculations, the kinetics of first-order 
phase transitions is discussed in this chapter, as a motivation for the study of inhomogeneous fluid 
systems in general.

1.2 Therm odynam ics and statistical mechanics of first-order 
phase transitions

1.2.1 Microscopic approach

Phase transitions are ubiquitous in natural as well as many industrial processes. Examples include 
rainfall which involves condensation of water vapour, and crystallisation processes that are important 
in the synthesis of new materials. First-order phase transitions involve transitions between states that 
have different densities and different entropies. The difference in entropy A S  has the consequence 
that these phase transitions involve a latent heat L = T A S ,  such as the heat that must be added to 
water to make it boil.

Theoretically, the phase diagram of a system can be constructed using the partition function for 
the system. This is used to obtain a thermodynamic potential which is differentiated to construct 
equations of state. For a system of identical particles maintained at constant particle number, volume
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and temperature (N V T ) the classical partition function Z  is given by

Z =  JV!A3^  / dNreM~PU{rN)) (1.1)

where U(rN) is the position-dependent part of the system Hamiltonian, A =  h/(2nmkBT) 1̂ 2 is the 
thermal de Broglie wavelength which comes from integrating over the kinetic degrees of freedom in 
the system, h is Planck’s constant, m  is the mass of the particles and /3 =  1 / k BT  ( kB is Boltzmann’s
constant and T  is the temperature). The corresponding thermodynamic potential is the Helmholtz
free energy defined as

F (N ,V ,T )  = - k BT l n Z  (1.2)

First-order phase transitions are characterised by discontinuities in the derivatives of the free energy. 
The discontinuity of the derivative with respect to temperature reflects the difference in entropy as 
the system changes from one phase to another.

The partition function represents a weighted sum over all possible states a system can occupy. In 
most cases this represents an astronomical number of possibilities. For most systems the partition 
function Z  is impossible to evaluate exactly, and approximate methods need to be used. Because the 
partition function Z  is a sum over all possible configurations of the system, the quantities derived 
from it relate to the equilibrium behaviour of the system in the long-time limit t  —> oo. In practical 
terms this means that such thermodynamic quantities describe the system over timescales that are 
long compared to all of the microscopic processes through which the system’s phase space is sampled.

K inetics versus equilibrium  therm odynam ics

Even if the partition function for a system could be evaluated exactly, it would not provide very 
much information about the kinetics of the phase transitions themselves. This is because the transient 
unstable states that occur during a phase transition, make an insignificant contribution to the partition 
function Z.  To study the kinetics of a system undergoing a phase transition inevitably requires the 
introduction of some kind of constraint, that restricts the integral (1.1) to be over regions of the phase 
space in which the system has properties of the phase that has become unstable. Such constraints 
are hard to impose in rigorous statistical mechanical treatments that take the microscopic partition 
function as their starting point [1], however they are naturally built in to more phenomenological 
theories of phase transitions, and approximate mean field treatments.

1.2.2 Phenomenological approach

At equilibrium, there are typical configurations that make up the dominating contributions to the 
partition function Z.  These configurations represent regions in the system’s phase space that it is 
most likely to occupy. The general theory of phase transitions due to Landau begins by identifying 
a quantity, the order parameter, that characterises the change undergone by a system during a 
phase transition. This allows systems to be described on the level of the collective phenomena 
involved in phase transitions, rather than the full microscopic phase space of the system. In the 
phenomenological approaches, the free energy of a system is expressed in terms of the order parameter. 
This introduces an extension of the conventional definition of free energy. Rather than describing a 
system at equilibrium, this free energy describes a quasi-equilibrium system constrained to have a 
certain value of the order parameter. The constrained free energy is referred to as the Landau free 
energy. The equilibrium state of the system is obtained by finding the value of the order parameter 
for which the Landau free energy is a minimum.
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Phenom enological approaches to  kinetics

A feature of the phenomenological approach is that it allows the extrapolation of phases beyond the 
regions in which they represent the stable equilibrium state of the system. This means that the 
phenomenological approach is also useful in the description of the kinetics of phase transitions.

For systems in which the order parameter is a conserved quantity (such as the density of a fluid 
p) phase transitions are accompanied by spatial variations of the order parameter that leave its total 
integral over all space unchanged [2]. This is why mean field density functional theory, in which the 
free energy of a system is expressed as a functional of a spatially varying density, can be useful in 
the description of kinetics of phase transitions. The technique is also useful for the calculation of 
equilibrium properties of systems which are spatially inhomogeneous, which is the topic of this thesis.

1.2.3 Phase coexistence in a single-component fluid

The phenomenological approach can be applied to investigate transitions between two fluid states 
with different densities, such as the liquid-vapour transition. Under conditions of coexistence, the 
equilibrium state of a system may be such that there are two regions with different values of the 
order parameter (in this case the fluid density). In each region, the value of the order parameter 
is assumed to be homogeneous throughout with the exception of the boundary or interface between 
the two regions. The interface consists of a finite region in which the order parameter is spatially 
varying. An abrupt change would entail a large free energy cost, but within the Gibbs ‘thin wall’ 
approximation, the fraction of particles in the interfacial region is considered to be negligible [2].

The first step is to find the free energy of a fluid constrained to have a homogeneous density 
throughout. If the constrained free energy per particle /  =  F / N  as a function of the volume per 
particle v =  V/iV contains an upward bulge (where d2f / d v 2 becomes negative), then the fluid can 
attain a lower free energy by phase separating into two regions. This is done following the common 
tangent construction, or lever rule (see Figure 1.1). A hypothetical homogeneous state with specific 
volume vo, can reduce its free energy by separating into a mixture of states with specific volumes v\ 
and V2 . The proportion of particles that will be in each of these states is

ai V2 — vp 
V2 — V1

a 2 =
vp -  vi 
V2 — Vi

(1 .3 )

f

V

Figure 1.1: Free energy per particle versus volume per particle for a constrained, homogeneous fluid. A system with 
volume per particle vq can lower its free energy by separating into two phases with specific volumes v \  and V2-
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In the absence of surface effects, the free energy per particle of the inhomogeneous system will be

/  =  c * i / i  +  0 :2 /2  ( 1.4)

where /1 and /2  are the free energies of the two homogeneous states with specific volumes v\ and V2 

respectively. These two states are called saturated states, and are assumed to be no different from 
the original constrained homogeneous states with specific volumes v\ and v?.

The common tangent construction stems from the requirement that at equilibrium the two co­
existing phases must have equal pressures and chemical potentials, that is P\ =  P2 and fii = fi2 - 
The pressure is given by P  = —d F / d V  =  —d f /d v ,  so equality of pressure implies that tangents 
to the f (v )  curve at v\ and V2 must have the same gradient. The chemical potential is defined as 
H =  d F / d N , or alternatively as =  G/N,  where G is the Gibbs free energy. The relation between G 
and F  is G =  F  4- PV ,  so that /u =  /  +  Pv. Therefore fi\ = 112 implies

(15)

Since the two gradients in (1.5) are the same by the equal pressure condition, this implies that the 
two tangents also share the same intercept on the /-axis.

1.2.4 Thermodynamic stability

The phase separation from a homogeneous phase illustrated above would not occur if the free energy of 
the constrained, homogeneous phase did not have the ‘bulge’ as shown in Figure 1.1, where d2f / d v 2 < 
0. This allowed the combination of phases at v\ and V2 to give rise to a lower free energy than the 
homogeneous phase at vo.

This relates to the general concept of thermodynamic stability of a system. A system will be 
stable with respect to volume or mechanical fluctuations if the free energy is convex with respect to 
the volume V . This is equivalent to the requirement that the isothermal compressibility kt  must be 
positive

d2F  a p  1 „ . .
a v 2 a v  kt v  > ( ^

Related to this is the stability with respect to thermal fluctuations. A system will be stable to thermal 
fluctuations if the free energy F  is concave with respect to temperature T.  This requires the heat 
capacity cy  to be positive

d2F  d S  Cy . .- —  =  _ _ _  =  _ _  < 0 (1.7)
6 T2 d T T  { }

where S  is the entropy. When a system becomes unstable both of these conditions are violated
simultaneously [1].

1.2.5 M etastability

There are many physical situations in which the kinetic process through which a phase transition 
takes place is more important in determining what is observed experimentally than the position of 
equilibrium phase boundaries. Phase boundaries are equilibrium properties of a system calculated in 
the thermodynamic limit, and represent what occurs over timescales long enough for all microscopic 
processes to relax. In reality, surface effects lead to situations in which unstable states persist over 
a long period of time despite the system having traversed an equilibrium phase boundary. These 
thermodynamically unstable but kinetically stable states are called metastable. If the lifetime of a 
metastable state is very long compared with the experimental observation time, a phase transition 
will not be observed, and the thermodynamically unstable state will appear to be stable.
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p

critical point

liquid
solid

triple point

g a s

T

Figure 1.2: P-T phase diagram of a typical single-component substance, showing one path for the liquid-vapour
transition by varying the temperature at constant pressure. If the system remains liquid at b or vapour at a it is in a 
metastable state, and will eventually change to the equilibrium phase.

A well known example of this phenomenon is diamond, which is metastable with respect to 
graphite at room temperature and atmospheric pressure. Due to the large activation free energy the 
transformation to graphite is never observed under these conditions. Such effects are characteristic 
of first-order phase transitions, which are associated with discontinuities in the derivatives of the free 
energy.

Metastability occurs because when a phase boundary is traversed it takes thermal fluctuations 
of finite magnitude to nucleate small regions of the new phase out of the unstable phase. These 
regions then go on to grow and propagate the phase transition through which the system reaches 
equilibrium. The rate at which the transition progresses is governed by the rate at which these key 
intermediates can form. The intermediates constitute a transition state which is a bottle-neck for the 
phase transition.

As an example Figure 1.2 shows the typical phase diagram for a pure, single-component substance. 
A vapour at point [b] is cooled down to point [a] in the liquid region. Under the right experimental 
conditions, it may remain in the vapour state even at [a] where the equilibrium phase is liquid. The 
vapour is then said to be supersaturated. Similarly, a liquid at [a] may be heated up to [b] without 
boiling. This would be a superheated liquid. These metastable states can be very delicate, and the 
slightest jarring of the container may bring about the transition to stability.

Experimentally, supercooling or superheating of substance cannot be achieved without the removal 
of impurities from the system and the avoidance of contact with the walls of a container. For example, 
studies on metastable liquid water are often done by immersing the water in oil that acts as a medium 
[1]. These measures aim at suppressing heterogeneous nucleation, which in general occurs faster than 
homogeneous nucleation. Heterogeneous nucleation occurs when the wall of a container or an impurity 
in the system facilitate the formation of the new phase by acting as a substrate, reducing the surface 
free energy cost for the formation of the intermediates to the transition. Homogeneous nucleation 
requires the intermediates to form in the midst of the system, and is generally a slower process.

The occurrence of metastability has consequences for the experimental determination of phase 
boundaries. The possibilities of very long timescales for kinetic processes means that experimen­
tal data may not necessarily be seen to prove or disprove the existence of thermodynamic phase 
boundaries under certain experimental conditions. In the study of charged colloidal suspensions for 
example, phase separation of a homogeneous phase into dense and rarefied phases typically occurs 
over a timescale of days [3].

While this thesis is concerned exclusively with calculations of equilibrium thermodynamic prop­
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erties of systems, some motivation is drawn from the study of kinetics of phase transitions, which is 
discussed briefly in Section 1.4.

1.3 Van der W aals Equation of State: exam ple of a mean field 
approach

Mean field theories are often used to study phase transitions as they provide approximate methods 
to  evaluate the free energy F. Because of the approximations inherent in mean field theories, they 
usually represent systems that are constrained in the sense described above. Mean field approxi­
mations generally involve neglecting correlations that bring about inhomogeneities in the system on 
the microscopic molecular scale. Depending on the level of sophistication, inhomogeneities on longer 
lengthseales are also neglected, which equates to treating constrained homogeneous systems.

At the heart of most mean field theories is the replacement of the complicated problem of many 
particles interacting with each other, with one in which every particle interacts with an identical 
mean field. This allows the partition function (1.1) for N  particles to be factored into N  identical 
single-particle partition functions.

Z n  = (1.8)

In the case of an ideal gas of N  non-interacting particles the single particle partition function is 
z\ =  A- 3F, where V  is the volume of the system.

The Van der Waals treatment of a non-ideal gas can be thought of as an example of a mean field 
theory. The departures from ideal-gas behaviour arise due to interactions between the molecules in 
the gas. The effect of the repulsive and attractive interactions are treated separately. This is a feature 
tha t carries over into mean field density functional theory discussed in Chapter 2. The effect of the 
attractive and repulsive interactions on the free energy are calculated without taking into account the 
effects they induce on a completely homogeneous distribution of particles. The repulsive interactions 
are approximated to be hard-sphere interactions. These cause a reduction in the volume available to 
the molecules. To account for this, the volume is altered to be V  — Nb , where b is roughly the volume 
taken up by one molecule. The next step is to account for the attractive energy of the particles. If 
the particles interact through an attractive pair potential u(r), and the correlations brought about 
by this interaction are assumed not to alter the homogeneous distribution of particles, then the mean 
interaction between a single pair of molecules is

(Ui) = ^  J 4ttr2u(r)dr = (1.9)

For a system of N  particles, there will be (N  — l)iV/2 ~  N 2/ 2 pairs, so the mean attractive energy 
per particle is (u) = —a (N /V ) ,  which is proportional to the density. The constant a  is positive for an 
attractive interaction, and characterises the strength of the attractions. The attractive and repulsive 
effects are combined to construct a mean field partition function. In the mean field approach, each 
particle is taken to interact independently with a mean field that represents the presence of all the 
other particles. The mean field single particle partition function is then

Zl = - L ( y -  Nb) exp(~P(u)) = ^ (V -  Nb) exp(+/3aN/V)  (1.10)

where the exponent is the mean energy of a particle in the system, and the factor (V — Nb) is the 
volume available to a molecule in the system. It can be seen that all local inhomogeneities brought 
about by the attractive and repulsive interactions are neglected in this treatment.

Plugging the mean field single particle partition function into (1.8), taking the logarithm and using
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Stirling’s approximation lniV! ~  iV(lniV — 1), results in the free energy per particle /  as a function 
of volume per particle v for the Van der Waals fluid

/  =  —kBT]xi(v — 6) A-3  — — (1 .11)
v

The two terms in the free energy have competing effects with particle density. The first term takes 
account of the reduction in entropy due to the decrease in the amount of volume available to the 
particles as the density increases. The second term is the average attractive energy in the system, 
which lowers the free energy as the density increases.

The free energy is then differentiated to obtain the pressure P  = —d f / d v , giving the familiar Van 
der Waals equation of state

(P + a / v 2)(v — b) =  kBT  (1.12)

Several isotherms in the P-V plane are shown in Figure 1.3. Under certain conditions, the free energy 
has regions in which d2f / d v 2 becomes negative, indicating that the homogeneous phase becomes 
unstable. The critical temperature Tc is the temperature above which there is no distinction between 
the two fluid phases. In this region the fluid density changes continuously without a phase transition. 
Below Tc, the isotherms develop Van der Waals loops, indicating that the homogeneous phases become 
metastable and then unstable with respect to phase separation into regions of different densities. The 
boundary between these behaviours is mapped out by the isotherm at the critical temperature T  =  Tc, 
for which the pressure has an inflection point at the critical point. At T  = TC the liquid-vapour phase 
transition is a second order phase transition.

Coexistence between phases with different densities can be built into the P-V diagram by use 
of the Maxwell equal-areas construction. This is equivalent to the common tangent construction in 
the f - v  plane discussed in Section (1.2.3). The requirement for the coexisting phases to have equal
chemical potentials means that f \  — f 2 = Pu{v2 — Vi), where P i2 is the pressure of the two coexisting
phases. Since /  is negative of the integral of P  with respect to v, this translates to

rv 2
/ P(v)dv =  Pl2 (V2 — Vi) (1-13)

Jv 1

This equation describes the straight line (at constant pressure P) that the subcritical isotherms follow 
in the coexistence region. Graphically the requirement is that the areas above and below a horizontal 
line cutting through a Van der Waals loop must be equal.

1.3.1 The coexistence region

The equal-areas construction maps out a region of phase coexistence which is demarcated by a bound­
ary called the binodal, labelled b in Figure 1.3. The inner region, demarcated by the spinodal (labelled 
s), is the region where d2f / d v 2 <  0 or equivalently d P / d V  > 0. Inside the spinodal region a homo­
geneous phase is completely unstable, and arbitrarily small fluctuations are sufficient to bring about 
formation of regions of the new phase. Metastability occurs for a system that is homogeneous inside 
the coexistence region (where the equilibrium state involves phase separation into two different den­
sities), but outside the spinodal region. The closer to the spinodal, the less stable the system is with 
respect to density fluctuations. Very close to the phase boundary a homogeneous state consisting of 
a single phase may persist for a long time. Closer to the spinodal boundary the lifetime of metastable 
states become shorter, and once the spinodal is reached the system becomes completely unstable. 
Beyond this point, tiny fluctuations are sufficient to cause the system to separate via spinodal decom­
position (discussed in Section 1.4.2). In between the binodal and the spinodal, the phase transition 
proceeds through nucleation of embryos or clusters of the new phase within the metastable homoge­
neous phase. Only clusters of a sufficiently large size have a high probability of growing into larger
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V

Figure 1.3: Isotherms in the P-V diagram for a Van der Waals fluid. Above the critical temperature Tc isotherms 
for a homogeneous fluid remain stable. Below Tc the isotherms develop Van der Waals loops indicating that an inho­
mogeneous system consisting of two different densities becomes more stable. In the coexistence region the equilibrium 
isotherms follow the straight line obtained from the equal-areas construction. The binodal (labelled b) and spinodal 
(labelled s) discussed in Section 1.3.1 are also shown.

regions of the new phase. This is because smaller clusters will have a comparatively large surface free 
energy cost.

The binodal demarcates an equilibrium phase boundary where a homogeneous phase becomes 
thermodynamically unstable, and the equilibrium state is a combination of states with different 
densities. A closed system with a uniform density will, given enough time, separate into two regions 
with different densities. The spinodal is a non-equilibrium concept as it demarcates a change in the 
kinetic process through which the phase transition occurs.

Some qualitative features of the transition may be inferred from Figure 1.3. Above the critical 
point, there is no real distinction between the liquid and gaseous states, and the system changes from 
a dense to a rarefied fluid continuously. Below the critical point, a transition occurs between one fluid 
phase and another with a discontinuity in density. The increasing width of the coexistence region at 
lower temperatures, indicates that the density difference between the coexisting phases is larger at 
lower temperatures.

It should be noted that the spinodal line obtained in this way is a result of an approximate 
calculation whereby a system is not only constrained to be globally homogeneous, but all microscopic 
inhomogeneities that result from correlations between the molecules have been neglected. It is also 
questionable whether a clear boundary such as the spinodal is an accurate description of realistic 
phase transitions [1]. Experimentally it is very difficult to define a clear spinodal boundary as the 
rate of formation of critical embryos in the coexistence region has a very strong dependence on 
the extent of penetration into the coexistence region. Superheated liquids evolve suddenly from a 
condition of relative stability (metastability) to a region in which the new phase is formed rapidly 
and spontaneously. This experimentally determined limit is called the superheat limit, and is not a 
sharp boundary like the spinodal.

1.3.2 Small system s

In large systems, interface effects can delay the occurrence of a phase transition. The free energy cost 
of formation of the interface may be substantial, acting as an activation barrier to the formation of 
the stable state. Surface effects influence the kinetics but not the thermodynamics of a system, which 
is governed by what happens over long timescales. The Gibbs approach outlined above, inherent in
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the Maxwell or double-tangent construction, involves neglecting the surface between the two phases. 
This is justified when the equilibrium thermodynamic behaviour of large systems is required.

When the system itself is small in terms of the number of particles N , surface effects can make a 
substantial contribution to the total free energy, and therefore affect the equilibrium properties of the 
system. As a result of surface effects, small systems can violate the stability conditions discussed in 
Section 1.2.4. In these situations an exact (unconstrained) evaluation of the partition function results 
in regions where the free energy is a concave function of the volume V,  and P-V diagrams exhibiting 
Van der Waals loops similar to those in Figure 1.3. Under these conditions, phase separation occurs 
within a small closed system, but the free energy cost of forming the interface between the phases 
causes the free energy to become concave.

Experiments on melting of small sodium clusters [4] have indicated that the heat capacity for such 
systems can be negative. Computer simulations of small molecular clusters have also produced P-V 
diagrams exhibiting Van der Waals-like loops [5, 6].

1.3.3 Thermodynamic ensembles and potentials

For the purposes of calculating the free energy from a microscopic theory, the microcanonical (N V E ), 
canonical (N V T ) and grand canonical (//VT) ensembles are the most convenient. Evaluation of the 
partition function for the Gibbs (constant pressure (N P T )) ensemble is difficult as it requires the 
imposition of nontrivial constraints on the microscopic configurations to give the required pressure 
[7]. Since temperature T  is usually an experimentally controllable variable, we focus mainly on the 
canonical and grand canonical ensembles.

The grand canonical ensemble describes the configurations of a system at fixed volume V, tem­
perature T, and chemical potential fj,. The chemical potential fi =  d F / d N  regulates flow of particles 
between the system and an infinite reservoir with which it is at equilibrium. A change in /i therefore 
causes a change in the average number of particles in the system (N ). The grand partition function 
E is a sum over all possible occupancies of the system from N  =  0 to infinity

oo
E =  ^ 2  exP(PhN ) Z n  (1.14)

N = 0

where n  is the chemical potential, and is the canonical partition function for a system containing 
N  particles. The grand potential is given by £1 = — IcbT  In E. The probability for the system to 
contain N  particles is given by

W (N )  = —? ^ N) Z n  oc exp(~(3(F -  fiN)) (1.15)

where F  is the Helmholtz free energy for a system with N  particles at volume V  and temperature T. 
The size of fluctuations in particle number, is related to the width of the distribution W(N).  This is 
proportional to the isothermal compressibility kt

(N2) -  (AT)2 =  (N ^ b T Kt  (1.16)

where (N) is the mean number of particles in the system. As discussed before, at a liquid-vapour 
phase transition the P-V isotherms become flat so kt diverges. This indicates that the fluctuations 
in particle number for an open system become large at a phase transition, reflecting the large density 
fluctuations that occur during the phase transition.

It can be shown [8] that using the grand canonical ensemble, even an approximate treatment in 
which a system is constrained to have a homogeneous density throughout, will result in the correct 
coexistence isotherms. This is because the grand ensemble explicitly includes fluctuations in the total
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density of the system, which axe encoded in the sum over particle number (1.14).

1.4 K inetics o f first-order phase transitions

To illustrate the importance of interface effects, and the correct description of the inhomogeneities 
that occur in a system we will consider the kinetics of first-order phase transitions in this section. 
The kinetic process through which a system evolves from a phase of one density into a phase with 
a different density depends on the details of the inhomogeneities in density that bring about that 
change.

1.4.1 Nucleation

As described in Section 1.3.1, in the region between the binodal and spinodal the phase transition 
proceeds through the process of nucleation. A homogeneous system in this region is metastable 
because it costs a finite amount of free energy to create the nuclei that propagate the phase transition. 
Small nuclei have a large surface to volume ratio, and so generally shrink by decaying. However, once 
a nucleus of a certain critical size is formed, the free energy cost of forming more surface becomes less 
significant than the decrease in free energy of creating the new phase inside the cluster. Clusters of 
the new phase larger than the critical size grow spontaneously in a relatively short time. Therefore, 
the rate of phase transitions in this region is governed by the rate of nucleation of critical clusters.

Classical N ucleation Theory

As an example, we will consider the condensation of a vapour. In the classical nucleation theory 
(CNT), the clusters which are molecular aggregates of the new phase within the mother phase, are 
crudely represented as spherical droplets of liquid in contact with the supersaturated vapour. The 
interface between the droplet and the vapour is considered to be a well defined sharp surface, and is 
taken to have the same properties as a planar interface between the two bulk phases. This is known 
as the capillarity approximation. For a macroscopic planar interface between bulk phases, the surface 
free energy cost, or surface tension 7  can be measured experimentally.

The free energy of formation of a cluster is the difference between the free energy of a system 
containing the cluster, and a uniform system fully occupied by the supersaturated vapour. The phase 
transition is considered to take place for a system at constant pressure P,  particle number AT, and 
temperature T.  The appropriate thermodynamic potential for these constraints is the Gibbs free 
energy G. Within the framework of CNT, the free energy of formation of a cluster AG  is given by
[9]

AG =  ~ R 3A P  +  4 tt#27 (1.17)
O

where AP  = Pi—Pv the pressure difference between the bulk liquid and supersaturated vapour. Equa­
tion (1.17) clearly illustrates the competition between the favourable volume free energy (proportional 
to R 3) and the unfavourable surface free energy cost (proportional to R 2). The critical cluster is that 
for which AG is a maximum. Clusters larger than this grow spontaneously and propagate the phase 
transition. The free energy of formation AG at this point can be considered as an activation barrier 
for condensation. The radius of the critical cluster Rq is obtained by setting d A G /d R  =  0. This 
has the result Ro =  27 /A  P. At low supersaturations, when the metastable system is close to the 
binodal (and far from the spinodal), the nucleation time is long relative to the relaxation time of the 
underlying microscopic processes. Under these conditions the nucleation process can be treated using 
equilibrium thermodynamic methods. The rate of formation of critical droplets per unit volume in
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classical nucleation theory is given by

J  = Aex p ( -A G (R o) /k BT)  (1.18)

There are various forms for the preexponential factor A , the details of which will not be discussed 
here.

Although classical nucleation theory contains the necessary ingredients to describe the competing 
effects that influence the rate of nucleation, the inadequate description of the cluster-vapour interface 
through the capillarity approximation, and the treatment of the cluster interior as a bulk liquid, make 
it quantitatively unreliable in many situations. The exponential dependence of J  on the free energy of 
formation of the critical cluster AG(Ro),  means that failure to accurately describe the critical cluster 
can lead to large errors in predicting the nucleation rate.

1.4.2 Spinodal decomposition

As described in Section 1.3.1, in the spinodal region arbitrarily small density fluctuations lead to 
growth of the new phase out of an unstable homogeneous phase. This is in contrast to the metastable 
region between the binodal and spinodal where only density fluctuations larger than the critical size go 
on to grow spontaneously. This is the difference between nucleation described above, and the process 
of spinodal decomposition. The following brief description of this process within the framework of 
Cahn-Hilliard theory is adapted from Jones in reference [10].

Even though all density fluctuations regardless of size will grow to propagate the phase transition, 
fluctuations of varying sizes grow at different rates. As before, we will consider a transition from a low 
density phase to a high density phase. Density fluctuations that conserve the overall density of the 
system can be decomposed into sinusoidal contributions characterised in terms of their wavelength. 
Long-wavelength fluctuations involve density changes over long distances, and short wavelength fluc­
tuations involve density differences over short distances. Very long-wavelength fluctuations tend to 
grow slowly because this requires matter to diffuse over long distances. Very short range fluctuations 
do not grow quickly because of the comparatively high ratio of surface to volume they create, which 
involves a high free energy cost. Competition between these two effects means that one characteristic 
wavelength tends to grow fastest, and dominates the process of spinodal decomposition.

C ahn-H illia rd  th e o ry

The description of the process described above necessitates an expression for the free energy of a 
system with non-uniform order parameter which is the density in this case. This motivates the idea 
of a free energy functional, in which the free energy is expressed as a functional of a spatially varying 
order parameter. This kind of theory was first developed by Van der Waals, and subsequently by 
Cahn and Hilliard, and by Langer. It also features prominently in the Ginsburg-Landau theory of 
phase transitions. The total Helmholtz free energy of an inhomogeneous system is the integral of the 
free energy density /  over the volume of the system. If the free energy can be expressed in terms 
of the local density p(r) in an inhomogeneous system, then it is written as f (p ( r)). The total free 
energy of the system is then

F  = J f ( p ( r ) ) d r  (1.19)

The most basic functionals are obtained by considering an expansion of the free energy density of a 
nonuniform fluid about the free energy density of a uniform fluid [11, 12]. This results in a series in 
terms of the local density gradients Vp(r). For simplicity, most treatments keep terms only up to 
second order in Vp(r), which is valid as long as the density gradients are not too large. The first order 
term in terms of Vp(r) can be eliminated by symmetry arguments and the Helmholtz free energy
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density is then

/(P(*)) =  /o(/>(r)) +  \  (Vp(r))2 (1.20)

where fo(p) is the Helmholtz free energy of the homogeneous fluid at the local density p(r), and 
Vp(r) is the local density gradient. The constant c is a measure of the free energy cost of creating 
inhomogeneities in the system. There axe various ways of estimating c (which is related to the surface 
tension 7 ) from microscopic or empirical considerations. For the purposes of this section we assume a 
functional containing a free energy density of the form (1.20) and see how it is applied to the problem 
of spinodal decomposition.

In general, diffusion of material occurs along gradients in chemical potential p, as a system at­
tempts to reestablish the equilibrium situation of constant chemical potential throughout. In one 
dimension, the flux of material J  is given by

J =  (1.21)
dx

where M  is the is the coefficient for diffusion along a chemical potential gradient. In many familiar 
situations, the chemical potential is lower in regions where the density p is lower, which means that 
material diffuses from regions of high concentration to regions of low concentration. This results in 
Fick’s first law

3 — D t  <’ -22>
where D  is the diffusion coefficient. Conservation of the total amount of material is given by the 
continuity equation

* = - £  <L23> 
where t is time. The combination of (1.22) and (1.23) yields the diffusion equation or Fick’s second 
law

% - °U <■-”>
To describe the kinetics of phase transitions, the more general form (1.21) is more useful. During 
a phase transition, the chemical potential may be lower in regions of high density. The spatially 
varying chemical potential is obtained from the spatially varying free energy density f[p{x)] through 
the relation p = Sf/Sp.  For a simple square-gradient functional of the form (1.20), the functional 
derivative reduces to

dfo , d2P
ti{x) = -rP + c d ^ -  (L25)

The flux is then given by

J — "(tfi+'S) t1'26)
where fH = cPfo/dp2. Substituting this J  into the diffusion equation gives the Cahn-Hilliard equation

dp _  d 
dt dx=  ^ ( j y | + c 8 ) -  (1-27)

The problem is simplified by assuming that M, c and /q spatially uniform and independent of the 
local density variations, which results in

l= D-S +wcS (i-28)
where Des  = M / q is the effective diffusion coefficient. It can be shown that one set of solutions to
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the differential equation (1.28) is given by

p(x, t) = po + A  cos(qx) exp —Desq“(■*$) (1.29)

where po is the mean density of the homogeneous phase, q is the wavenumber of an oscillatory 
fluctuation, and A  is its magnitude. This shows that a density fluctuation will grow exponentially, 
depending on its characteristic wavenumber q. The g-dependent amplification factor R(q) =  q2(l + 
cq2/ fo)  in the exponent is plotted in Figure 1.4. It can be seen that fluctuations of characteristic 
wavenumber qmax grow fastest, and will dominate the process of spinodal decomposition.

R(q)

Figure 1.4: R(q) amplification factor against wavenumber for characteristic fluctuations during spin­
odal decomposition. Fluctuations with wavenumber qmgx will grow fastest, and dominate the process.

1.5 Description o f inhom ogeneous fluids

From the discussion above it can be seen that a good theory for the kinetics of a phase transition 
will depend on how accurately microscopic inhomogeneities can be described. Interface effects also 
make a large contribution to the equilibrium properties of small systems. These situations require the 
description of nonuniform fluids. Mean field density functional theory (MFDFT) provides a method 
for doing this. In the next chapter mean field density functional theory will be introduced generally. 
In principle, this theory does not require gradients in the density to be small as in the square gradient 
theory discussed above. This means MFDFT is applicable to systems away from the critical point 
where density gradients are larger. It also has the advantage of being constructed directly from the 
molecular interactions in the system, rather than incorporating macroscopic quantities such as the 
bulk surface tension. MFDFT is a powerful tool in the treatment of inhomogeneous fluids encountered 
when looking at phase transitions or inherently inhomogeneous systems.

After describing the basics of MFDFT applied to fluids in Chapter 2, the application to closed 
systems containing small numbers of particles is considered in Chapter 3, where MFDFT is applied 
to a simple one-dimensional system consisting of only two interacting particles.

In Chapter 4 the phase behaviour of charged colloidal suspensions is introduced, which is topic of 
the second part of this thesis. The microions that govern the effective interactions between charged 
colloidal particles comprise an inhomogeneous fluid. Chapters 5-8 deal with the mean field theory of 
interactions in charged colloidal suspensions. In Chapter 5 the mean field theory for these interactions 
is introduced generally in terms of the Poisson-Boltzmann (PB) equation. In Chapter 6 a new
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linearisation scheme is introduced to tackle the nonlinear PB equation in the limit when the spacing 
between macroions is large (a dilute colloidal suspension). This approach is applied to the simple 
case of charged plates in Chapter 7 and to an array of spherical particles in Chapter 8.

Since colloidal suspensions have been observed to phase separate, there are also theories that 
describe suspensions that are inhomogeneous with respect to the colloid density distribution. The 
surface tension between colloidal phases has been calculated [13, 14] in order to be able to describe 
the kinetics of the phase separation processes in these systems. We have not touched upon this topic 
in this thesis, as our focus is on equilibrium calculations. We study the interactions between the 
colloidal particles themselves, which are mediated by an inhomogeneous fluid of smaller, more mobile 
microions.
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Chapter 2

Mean field density functional 
theory

2.1 Free energy o f a single-com ponent fluid

In the absence of external fields, a set of N  identical particles comprising a single-component fluid 
can be described by the Hamiltonian

f f = E ^ + ^ rW) (2J)
i =  1

where m  is the mass and p* is the momentum of a particle. The first term is the kinetic energy K  of 
the system. The second term U(rN) is the potential energy of the inter-particle interactions, which 
depends on the positions of all N  particles. If the interactions are assumed to be pairwise, then the 
potential energy in the absence of external fields can be recast into

u(rN) = '52u(rhrj) (2-2)
i > j

For a system with a fixed number of particles, volume and temperature (N V T ), the Helmholtz free 
energy is defined as

F(N ,V ,T )  = - k BT \ n Z  (2.3)

where the partition function Z  is

z  =  J f l J  e M - H / k BT)dNpdNr  (2.4)

The free energy F  can be decomposed into two terms, one being the average energy of the system, 
and the second being the entropic contribution

F  — (H) — T S  (2.5)

where S  is the entropy of the system.
The AT-particle distribution function of the system is

f ( r N , p N) = exp ( ~ H / k BT)  (2.6)

which explicitly depends on the positions and momenta of all the particles. It is clear that the free
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energy F  is a functional of / .  The entropy is defined as

S = - k B J  f ( r N, p N) ln f {rN, p N)dNrdNp  (2.7)

The free energy (2.5) can be written as

F  = J  f ( r N, pN) (H + kgTln f ( r N, p N)) dNrdNp  (2.8)

2.1.1 n-particle distribution functions

In the canonical ensemble the mean kinetic energy (K) is fixed by the temperature T, and the 
particle momenta are distributed according to the Maxwell-Boltzmann distribution when the system 
is at equilibrium. The integrations over the momenta in the partition function Z,  together with the 
1 / h 3N factor result in a constant factor of X~3N, where A =  /i/(27rmfcsT)1//2 is the thermal de Broglie
wavelength. Of more interest are the spatial degrees of freedom which are distributed according to
the N -particle distribution function p^N\ r N). This is obtained by integrating over all of the particle 
momenta in (2.6). The result is

p W (r" )  =  ex p ( -U /k BT)  (2.9)

which gives the probability for particles to be located at positions {r^}. By integrating over the 
positions of N  — n  particles, it is possible to obtain a reduced distribution function for n particles in 
the system

p(n)(rn) =  J  p(N)(rN)drn+1....drN (2.10)

which gives the probability of finding any n of the N  particles at positions {rn}. The factor in 
front of the integral accounts for the fact that identical particles can be exchanged leaving the result 
unchanged. Since any n of the N  particles could be chosen to construct p^n\  the normalisation 
condition is

/  P(" V ) * »  =  p v ^ j !  <2-U >

The n-particle distribution functions are particularly useful in calculating averages of quantities that 
depend on the positions of n particles [15]. Of particular importance are the single particle (or singlet) 
distribution function p ^ ( r )  and the two particle (or doublet) distribution function p ^ ( r ,  r '). For 
example if the potential energy is of the pairwise form as in (2.2), then the average potential energy 
(U) can be obtained by

([/) =  i y  p(2)(r,r,)ti(r,r,)dr/dr (2.12)

If there is an external potential acting on all of the particles V'(r), then the mean energy due to this 
potential is

(V) = J  p^(r )V {r)dr  (2.13)

Related to the n-particle distribution functions are the n-particle correlation functions defined as

q(n)t n\ _______ ______________  (2 14)
9 ( ’ Pm ( r 1)Pm ( r 2)....pW(Tn) ^  >

For the case of n =  2, the pair correlation function <7̂ ( r ,  r ')  relates p^^(r) and p ^ ( r, r ')

am (r r>) -  Pm ( r y )  (2 15)9 T̂' T ) -  pW(r)pm(r' ) 1 5)
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2.2 D ensity functional theory

2.2.1 The free energy is a unique functional of p ^ ( r)

The formal starting point of density functional theory is the statement that the free energy of a 
system F  is a functional of the equilibrium single particle distribution function p ^ ( r ) .  The definition 
of p ^ ( r )  is

p(1)(r ) =  ^ ^ £ 3(r< “  r )^  (2-16)

where the angled brackets denote weighted averages. Using the iV-particle distribution function of 
the canonical ensemble this may also be expressed as

p(1)(r) =  e x p ( - H / k B T ) S 3(ri - r ) d NrdNp  (2-17)

since the N  terms in the sum (2.16) axe all equivalent.
It is remarkable that the free energy is a functional of p ^ ( r) which appears to be much simpler 

than the full iV-particle distribution function f ( r N , p N) which expficitly depends on the positions 
and momenta of all the particles. Hohenberg and Kohn [16] formulated a variational proof that the 
quantum mechanical ground state energy of an inhomogeneous electron fluid is a unique functional 
of the electron density n(r). An analogous theorem underlies density functional theory for classical 
fluids. This theorem establishes that f ( r N , p N) is a unique functional of p ^ ( r ) .  Since the free energy 
F  is clearly a functional of f ( r N , p N), it follows that the free energy is also a functional of p ^ (r ) .  
The proof for this theorem can be found in reference [17]. It is also shown that the equilibrium single 
particle distribution function p^^(r), is the function that minimises the functional. For a different 
distribution function px(r)

F b (1)W ] < - F k W ]  (2.18)

From now on we will use p(r) to denote single particle distribution functions. This will be used 
interchangeably to refer to arbitrary distributions or the equilibrium distribution where appropriate.

Unfortunately, for all but the simplest cases the form of the free energy functional F[p(r)] is not 
known. If it were known, minimisation of the functional with respect to all possible single particle 
distribution functions p(r) would yield the free energy F,  which would be equivalent to calculating 
the system partition function.

The concept of the free energy density functional is useful in formulating approximate theories for 
inhomogeneous fluids. This is utilised in mean field density functional theory which will be introduced 
in Section 2.6.

2.2.2 Free energy functional for noninteracting particles in an external 
potential

One class of systems for which an exact free energy functional F[p(r)] can be found is that of nonin­
teracting ideal gas particles in an external potential. These systems have Hamiltonians of the form

N

H  =  X ] [ i f i  +  V(ri)] (2.19)
1=1

where Ki  is the kinetic energy of the ith  particle, and V  is an external potential. This kind of system 
is particularly simple because there are no particle-particle interactions, and therefore no correlations 
between particles. This makes it possible to factorise the partition function into a product of N  single
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particle partition functions.

(2-20)TV!
where

zi = ^  J  exp(—V (r) /kBT)dr  (2.21)

For convenience we introduce a quantity I  which is related to z\  but has dimensions of volume defined 
by =  A-3 / .  If Stirling’s approximation is used in approximating In TV! for large TV, the Helmholtz 
free energy can be expressed as

F  = N k BT In (2 .22)

The equilibrium single particle distribution function p(r) for this system is

p(r) =  y  exp( -V (r ) / kBT)  (2.23)

The average potential energy of the system (V) is

(V) = j  J  F (r)exp(—V(r))dr =  J  p(r)V(r)dr (2.24)

Since F  = {K + V) — TS ,  the intrinsic free energy which is defined as the free energy excluding the 
potential energy due to the external field F  — (V) =  (K ) — T S  is given by

F  — (V) = N k BT  In -  i] -  J  N e x ^ ~ V ^ , V(r)dr  (2.25)

By looking at the definition of p{r), it can be seen that the potential V(r) can be expressed as

V(r) =  -fcBTln^(r)A 3 +  kBT In ( - ^ (2.26)

This allows the intrinsic free energy in (2.25) to be written as a functional of p(r)

F - U  = kBT  J p{r) [ln(p(r)A3) -  l] dr (2.27)

The total free energy functional is then

F  = kBT  J  p(r) [ln(p(r)A3) -  l] dr +  J  p(r)V(r)dr  (2.28)

This is the exact free energy functional for a system of TV noninteracting point particles, each ex­
periencing a single particle potential V'(r). Even though this system experiences no inter-particle
correlations, it nevertheless possesses inhomogeneity of the particle distribution brought about by the
external single particle potential.

2.2.3 W ide variety of system s studied using DFT

Approximate density functional theories have been used to model a wide variety of interesting systems 
that are distinct from simple fluids. Ashcroft [18] pioneered the use of density functional theory for 
the study of freezing of liquids. Talanquer and Oxtoby in particular have applied DFT to a very 
wide range of phenomena from freezing of liquids [19] to the formation of micelles from amphiphilic 
molecules [20].

Each situation necessitates a distinct approximate free energy functional to be constructed which
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captures the competing energetic and entropic contributions to the free energy. For example, in their 
study of crystal nucleation Talanquer and Oxtoby constructed an approximate free energy as a func­
tional of a spatially varying density p(r) as well as structural order parameter m (r). Their study of 
micelle formation involved a functional of the inhomogeneous density distributions of the hydropho­
bic pi(r) and hydrophilic p2 (r) parts of the amphiphilic molecules, as well as the inhomogeneous 
distribution po(r) of the solvent molecules. Density functional theory has also been used to study in­
homogeneous fluids of polar molecules [21], which have been modelled as hard spheres with embedded 
dipoles. These studies involved p(r, u)  which is a positional and orientational probability distribution 
function for the molecules. Charged colloidal suspensions have been modelled [22] using mean field 
density functional theory, where the free energy is a functional of the set of distribution functions 
pa(r) for ions of each charged species a. This is discussed Chapter 5, where the connection is made 
between MFDFT and the Poisson-Boltzmann mean field theory of charged colloidal suspensions.

2.3 Approxim ate treatm ent o f fluids: separation of attractive 
and repulsive interactions

The starting point for many approximate treatments of fluids is the separation between the attractive 
and repulsive forces. The repulsive interactions can be dealt with approximately by treating the fluid 
molecules as hard spheres. The Hamiltonian is written as

H  = K  +  [u/j(ri, rj) +  (f>(n, r*)] (2.29)
i> j

where the first term is the kinetic energy, 4>{ri, r j ) is the attractive portion of the pairwise molecular 
interaction, and u r  =  — r^l) is the hard sphere interaction defined by

u r { t )  = 0  for r > a
(2.30)

u r ( t )  =  o o  for r < a

where a is the diameter of the hard spheres. Due to the nature of the hard-sphere interaction (2.30),
the free energy for this system does not explicitly contain any potential energy terms due to u r { t ) .

Any configuration for which u r { t )  is nonzero for any pair of particles has zero probability, and does 
not contribute to the partition function.

Formally, if the form for the free energy functional of the system with purely repulsive interactions 
F)ia[p(r)] were known, then the exact free energy functional for the full system could be obtained 
through thermodynamic integration [17]. This involves introducing a pair interaction ua(ri, r j )  which 
is a function of a ‘charging up’ parameter a

U a(ri,r2) = t i f l ( r i , r 2) + a 0 ( r i , r 2) (2.31)

The free energy is then obtained from the free energy of the reference system and a second term 
involving an integration over a  from 0 to 1.

F  = F/»a[p(r)] + \ J q da J  dr y * d r '^ 2)( r ,r ') /9(r)p(r/) ^ ( r ,r /) (2.32)

where <7« ( r i , r 2) is the two-particle correlation function for a system with any given value of a  
between 0 and 1. This function is generally not known. In addition to this, Fhs is not known exactly 
and has to be approximated.

In principle, the procedure discussed here does not require u r { t )  to be the hard-sphere interaction
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or even the repulsive portion of the interaction. If a form of the functional for a reference system is 
known, together with a correlation function for all values of a, then the procedure can be applied 
generally. In practice, the hard-sphere reference system is frequently used because the nature of the 
correlations in a hard-sphere fluid are well understood. For Lennard-Jones fluids, a refinement to the 
hard sphere reference system is given by the Weeks, Chandler, Anderson (WCA) approach, whereby 
the reference system consists of hard spheres with a temperature-dependent diameter [23].

2.4 The G ibbs-Bogoliubov inequality

The Gibbs-Bogoliubov inequality plays an important role in the development of approximate statis­
tical mechanical theories such as mean field density functional theory. This inequality asserts that 
when the free energy of a system with Hamiltonian H  is estimated using the distribution of states 
from a different (possibly simpler) system with Hamiltonian Ho, then the resulting free energy will 
be greater than or equal to the exact free energy of the system.

To prove this principle, the original Hamiltonian is decomposed into H  =  Ho +  H \ , where Hq  

corresponds to the Hamiltonian for which the free energy can be formulated. The system’s partition 
function is

z  = / dNr d " p e x p ( ~ ( H 0 + I h ) / k BT)  (2.33)

The distribution of states in the system with Hamiltonian Ho is

fo = J -  e x p ( -H 0/ k BT)  (2.34)
Zo

where Zq  is the partition function for a system with Hq

z o =  J  dNTdN pexp ( - H o / k BT)  (2.35)

Dividing (2.33) through by Zq  results in

=  (exp(-ifi/fcBT ))0 (2.36)
Zo

where the subscript indicates an average taken over the probability distribution fo. Due to the 
convexity property [24] of the exponential function, averages obey the inequality (exp a) > exp(a) so 
that

| - > e x p ( —(H i )oA bT ). (2.37)
Z q

Taking logarithms we get
F  < F0 +  (ffi)o. (2.38)

Now since Fo =  (Ho)o — T S q, (2.38) can be re-written as

F < ( H ) o - T S 0 (2.39)

Where the first term is the average energy of the system, calculated using the distribution of states 
in Ho, and the second term contains the entropy of the system Ho.

The usefulness of this principle is that if the system with Hamiltonian Ho contains some sort of 
parameter that can be varied, then minimisation of the quantity Fo +  ( # 1)0 with respect to this 
parameter, will tailor the Ho system that gives the best distribution of states fo to approximate
the free energy of the true system F . This variational principle is exploited in mean field density
functional theory, where the approximate free energy is minimised with respect to all possible single
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particle potentials V(r) in order to find the one that best describes the full system of interacting 
particles.

2.5 M ean field theory for fluids

2.5.1 The mean field potential

In the mean field theory of fluids, the Hamiltonian (2.29) is split up into two parts H  =  Ho + H \  

where
N

Ho = K  + Y,UR(Ti - r j ) + ' £ i n n ) ,  (2-40)
i> j  t= l

and
N

f li  =  £ > ( r 4 -  r,) -  £  V(r4), (2.41)
i > j  i= l

The potential V  (r) is a single particle potential that cancels out between the two terms and therefore 
does not feature in the full Hamiltonian H .  The Hamiltonian Ho  describes a reference system of 
N  hard spheres in an external potential V(r). The mean field free energy for the system F m f  is 
calculated using the probability distribution of states in Ho

F m f  = Fo  +  W )o  (2.42)

where Fo  is the free energy of the system with Hamiltonian Ho  and (-Hi)o is the average of H i  

evaluated using the probability distribution of states in Ho.  The external potential V(r) does not 
feature explicitly in the full Hamiltonian H ,  nor is it explicitly in the free energy F m f  since the 
average energy due to this external potential cancels out between the two terms in (2.42). Due to 
this cancellation, the free energy of the system can also be written as

F m f  = F0 -  ( V )0 +  (cf>)o =  W o  -  T S 0 (2.43)

where the averages evaluated over the probability of states in Ho  are the quantities

W °  =  ( ^ ( r i) ) and W o =  \ Y l ^ ri ~  r J') ) (2-44)
\ i =  1 /  0 \ i > j  /  o

The quantity jFo — (V)o =  ( K ) o  — T S o  is the intrinsic free energy of a hard-sphere fluid in an external 
potential. The last term ((f))o in Equation (2.43) is the average of the attractive energy evaluated in 
the distribution of states of the inhomogeneous hard-sphere fluid with Hamiltonian Ho.

The next task is to formulate a free energy functional for F m f -  Minimising this functional with 
respect to p(r), is effectively equivalent to searching for the external potential V(r) that minimises 
F m f .  The minimising V (r) is the mean field potential- the single particle potential that best emulates 
the complicated pairwise interactions between the particles. According to the Gibbs-Bogoliubov 
inequality, the free energy F m f  will he above the true free energy of the system, and so provides an 
upper bound to the free energy F .

2.5.2 The mean field approach seen as a perturbation theory

The approach outlined above may also be viewed as a form of thermodynamic perturbation theory. 
As before, the Hamiltonian is split up into H  =  Ho +  Hi  where Hq = K  + U r  +  V  and H\ = (f> — V  
(we have used shorthand K, U r , V, (f> for the appropriate single particle and pairwise sums). For the
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remainder of this chapter all energies will be given in units of ksT .  The partition function is

Z =  N il™  j d" rd" P exP H f f o  +  Hi)) (2.45)

If Hi  can be considered to be small for all of the configurations in the integral, then the exponential 
in (2.45) may be expanded to first order

Z  -  /  dNrdNp exp(-Ho)  (1 -  H i) =  Z„ -  (ffi)oZo (2.46)

taking the logarithm of Z , and expanding to first order in ( # 1)0 gives the same result as the mean 
field free energy Fm f

F ~ F 0 + (tfi)o (2.47)

This shows that the mean field potential V  (r) can be interpreted as the single particle potential that 
gives rise to a distribution of hard sphere particles optimised to make the perturbative term in this 
expansion (-Hi)o small

(H1)o = i j 2 < K r i - r j ) - ' £ , V ( r i ) \  (2.48)
\ i > j  i= 1 /  o

2.6 M ean field free energy functional

The next task is to formulate a functional for Fm f • Even within the mean field approximation, 
further approximations need to be made to keep the functionals simple. The functional will be 
formulated in two steps. The first step is to obtain Fhs , the functional for the intrinsic free energy of 
the inhomogeneous hard sphere fluid Fhs = Fo — (V) =  (K)o — TSo. The second step is to obtain a 
functional for the mean attractive energy in the Ho distribution of states {(j>) o.

2.6.1 Approximate functional for the hard sphere fluid in the LDA

The hard-sphere interactions mean that the partition function does not trivially factorise into N  
single-particle partition functions as was the case for the ideal gas in an external potential (2.21). 
In fact, the hard sphere fluid has non-trivial correlations and even exhibits a phase transition to a 
solid phase at high densities. Certain simplifying approximations will be made here, that lead to the 
standard functional that is used in many treatments of inhomogeneous fluids.

For a homogeneous hard sphere fluid of uniform density p, a good approximation for the free 
energy is given by the Carnahan-Starling formula. This gives free energy density fhs =  Fha/ V  as

fhs(p) = P
i 4?/ — 3?72In p \  — 1 H——------ 2̂"

( t - v Y
(2.49)

where rj is the hard sphere packing fraction 77 =  ( l / 6)7r<r3p and a  is the hard sphere diameter. This 
formula is derived from a virial expansion of a uniform hard-sphere system. It accounts for the 
correlations in a dilute hard sphere fluid approximately, for the case when the fluid is homogeneous.

The next step involves invoking the local density approximation (LDA) to obtain Fhs for an 
inhomogeneous hard sphere fluid. The LDA applies the assumption that (2.49) is valid at every point 
in an inhomogeneous fluid of hard-spheres. It is implemented by simply replacing p by a spatially 
varying p(r) everywhere in (2.49) to give fhs(p(r)). The free energy density is then integrated to give
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the total intrinsic free energy for the inhomogeneous sphere free fluid

4r?(p(r)) -  3rj2(p(r))Fhs = J  p(r) In p(r)A3 -  1 +
(1 -  v(p(r))Y

dr (2.50)

Essentially, the LDA corresponds to the assumption that the nature of the correlations in the hard 
sphere fluid is unaffected by the inhomogeneity. Note that Fhs is the intrinsic free energy of the hard 
sphere fluid, and does not contain (V)o the energy of the potential causing the inhomogeneity.

2.6.2 Attractive energy in the RPA

The second term in equation F m f  is the average attractive energy evaluated in the probability 
distribution of states in Ho, which can be written in the form

~  rJ‘)^  = \ J dr f  dr'0o2)(r >r Op(r )p(r ')0 (r  ~  r ') (2-51)

where g ^  (r, r ')  is the two-particle correlation function for the inhomogeneous hard sphere system. 
The standard DFT treatment of this contribution involves a further simplification: the random phase 
approximation (RPA), according to which the hard sphere correlations in the reference system are 
neglected.

g<2, ( r ,r ')p ( r )p ( r ')« p (r)p (r ')  (2.52)

It should be said at this point that since a functional constructed using the LDA and RPA is not 
strictly F m f  =  Fo 4- ( # 1)0 > the variational principle F m f  > F  no longer necessarily holds. It must 
be assumed that the two approximations that lead to the formulation of the functional are valid, 
otherwise minimisation with respect to all p(r) may result in a free energy that is lower than the true 
free energy.

2.6.3 Optimal distribution function and free energy

Combining the two terms (2.50) and (2.51) that make up F m f ,  the final mean field functional is 
expressed as

F M f [ p { t ) \  =  Fhs [p(r )] +  ^ J  dr J  dr'p(r)p(r')<f>(r -  r ')  (2.53)

This functional needs to be minimised with respect to p(r), to find the distribution function that gives 
the best approximation to F . To obtain the optimal distribution function, the free energy (2.53) is 
functionally differentiated with respect to p(r). For a closed system in the canonical ensemble (N V T ), 
the minimisation needs to be subject to the constraint that the total number of particles is fixed to 
be N

p(r)dr =  N  (2.54)/■
This constraint is imposed through the introduction of a Lagrange multiplier p. The Euler Lagrange 
equation for the optimising density profile p(r) is then

<5p(r)
FM f [p (t )\ -  g, J p ( r ) d r = 0 (2.55)

We denote the functional derivative of the hard sphere functional 6Fha/8p{ r) =  dfhs/dp(r) = Phs[p( r)], 
which is a spatially varying chemical potential for the inhomogeneous hard sphere fluid. The Euler-
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Lagrange equation (2.55) becomes

p = Ph*[p(r)] + J  p{r')<f>{T-r')dr' (2.56)

The second term on the right hand side may be viewed as an effective single particle potential 0eff(r) 
that takes the place of the pairwise intermolecular attractions in the mean field approach. It is also 
worth noting that the two spatially varying terms on the right hand side of (2.56) add up to a spatially 
constant p. The Lagrange multiplier is related to the chemical potential of the system. This is always 
expected to be constant throughout a system which is at equilibrium.

2.6.4 The grand potential functional

A system in the grand canonical ensemble (constant (pVT))  is open with respect to exchange of
particles with a reservoir at a chemical potential p. The appropriate thermodynamic potential is the
grand potential fi which is related to F  through the Legendre transform fi(/x, V, T)  =  F(N,  V, T ) —pN.  
The grand potential functional can be constructed from the Helmholtz free energy functional (2.53)

fiM fb(r)] =  FMf  ~ P  J p ( r ) d r  (2.57)

where p  is now the chemical potential of the system which is at equilibrium with the particle reservoir. 
Minimising Q . m f  b(r)] with respect to p{ r) is somewhat easier than in the canonical ensemble, as p  is 
a pre-specified constant, rather than being determined by the constraint of constant particle number 
(2.54). The equation for the optimal profile is the same as (2.56), but with a fixed p  corresponding to 
the chemical potential of the reservoir. The total number of particles contained in the optimal density 
profile p ( r) will be the number that makes the chemical potential of the system have the required 
value p  =  dF /dN .  This corresponds to the mean number of particles TV in a system at equilibrium 
with a particle bath at chemical potential p.

2.7 Relationship between D FT  and the field theoretical ap­
proach

It is worth mentioning the parallels between DFT and the field theoretical approach (FT) in statistical 
mechanics. This approach underlies the Landau-Ginzburg model of phase transitions [24], and has 
been applied by Langer [25] to formulate a theory for the decay of metastable states, and by Langer 
and Turski [26] to vapour condensation specifically. Several authors have discussed various parallels 
between the DFT and FT approaches. Evans [11] compared and contrasted the two approaches in the 
description of planar liquid-vapour interfaces. Reguera and Reiss [27] discussed the role of fluctuations 
in the two approaches. Fluctuations are of particular importance in the study of small systems such 
as the molecular clusters that are the precursors to condensation. Barrett [28] made comparisons 
between the two approaches and suggested that adaptations need to be made to the DFT treatment 
of small molecular clusters to account for fluctuations.

In the field theoretical approach a system is divided into cells of a characteristic lengthscale A. 
These cells are large on the microscopic scale, and in the case of a fluid each cell would contain many 
molecules, but are small on a macroscopic scale. In this picture p ( r) is defined to be the mean density 
of particles in a cell centred at r. In other words p ( r) is a coarse grained order parameter profile. 
The configurational part of the partition function for a system with Hamiltonian H  is expressed as a
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functional integral over all possible ‘patterns’ of the coarse grained order parameter p(r)

Z =  j  dNrexp(—H) — J  V[p(r)]exp(-E[p(r)}) (2.58)

V[p(r)] denotes functional integration over all possible p{r). E[p(r)] is called the effective Hamilto­
nian describing a system constrained to have the coarse grained order parameter pattern p(r). By 
comparing the left and right sides of (2.58) it can be seen that the effective Hamiltonian E[p{r)] is 
defined through

exp (—£[p(r)]) =  J  dNrexp(-H)S(p(r)  - p ( r ) )  (2.59)

The delta function allows only those configurations in the integral over the positions dN r  to be 
picked up for which p(r) has the required pattern given by p(r) (where p(r) is a function of all of the 
molecular positions jr*}). From (2.59) it is clear that the effective Hamiltonian E[p(r)] has properties 
of free energy rather than only energy. This is because one given pattern of the coarse grained order 
parameter p{r), corresponds to a number of microscopic molecular configurations. A cell centred at 
a point r  with average density p(r) can have many different configurations of molecules. This means 
E[p(r)] contains an entropic contribution as well as an energetic one.

The effective Hamiltonian E[p{r)] is a functional of p(r) and has different forms depending on the 
system. In most cases this has to be approximated in some way. Once a form for E[p(r)] is obtained, 
the functional integral over X>[p(r)] needs to be evaluated. In most cases this cannot be done exactly. 
This is where the saddle point approximation in FT comes in, which is also referred to as the mean 
field approximation. For a large system, the partition function (2.58) can be approximated by the 
contribution from the coarse grained order parameter profile p* (r) that gives the largest contribution 
to the functional integral

z  = J  £>[p(r)] exp (—£[p(r)]) ~  exp (-£[p*(r)]) (2.60)

The ‘mean field’ profile p*(r) will be the one that minimises the effective Hamiltonian functional 
E[p{r)], and therefore makes the largest contribution to the partition function. The free energy of the 
system in this approximation is then just E[p*(r)], which is the free energy of a system constrained 
to exhibit the optimising coarse grained order parameter profile p*(r). Systematic improvements to 
this estimate can be made by adding the contributions of fluctuations Sp(r) about the optimising 
profile p*(r) to the partition function Z  [24]. This approach of adding fluctuations has also been 
used in various treatments of the effective interactions in colloidal suspensions [29, 30, 31, 32], where 
it has been shown that the mean field Poisson-Boltzmann equation corresponds to a saddle point 
approximation in a field theoretical representation of the free energy.

The free energy functional F[p(r)] in DFT and the effective Hamiltonian i£[p(r)] in FT have 
very distinct definitions. If the exact form of a DFT free energy functional F[p(r)] for a system 
were known, then the minimising density profile p(r) would be the true equilibrium single particle 
distribution function, which is equivalent to a weighted average of the density profile over all possible 
microscopic configurations. The coarse grained order parameter p(r) used in FT corresponds to a 
restricted subset of all microscopic configurations. The optimising distribution function p*(r) that 
minimises the effective Hamiltonian E  is just the most likely order parameter profile. The equilibrium 
single particle distribution function p(r) would be obtained from FT by performing a weighted average 
of p{r) over all possible profiles.

P(r ) =  ^  J  ̂ [P(r)]p(r)exp(-F;[p(r)]) (2.61)

While the exact free energy F  is a convex function of volume V,  the free energy obtained from
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the mean field or saddle point approximation in FT E[p(r)*] is not necessarily convex because it 
represents a system that is constrained to exhibit a certain coarse grained density profile p(r)*.

The mean field approximation together with other approximations used to formulate the free 
energy in both FT  and DFT make the two treatments become very similar. The two functionals 
£[p(r)] and F[p(r)] even take the same form in various treatments [27]. The question discussed 
extensively in the literature [11, 27, 28] is what subset of microscopic configurations of the true 
partition function Z  are included in the different approximate functionals used in DFT and FT 
approaches. The nature of the mean field approximation may be different in the two treatments, 
however ultimately it involves the neglect of certain configurations in the partition function that are 
brought about by microscopic correlations between particles in the system.

Evans [11] argued tha t in the case of a planar interface between liquid and vapour phases, the 
square gradient free energy functional proposed by Van der Waals includes contributions to the free 
energy from long wavelength density fluctuations perpendicular to the interface known as capillarity 
fluctuations. He stated that field theoretical treatments that utilise the same functional and then add 
the effects of such fluctuations to the mean field profile are not consistent.

When the number of particles is small, deviations from mean field behaviour are large due to 
the increased importance of fluctuations. In the next chapter, the application of mean field density 
functional theory to systems containing a small number of particles will be considered.
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Chapter 3

Application of Mean field density 
functional theory to small systems

3.1 Introduction

Small systems consisting of less than 100 particles exhibit unusual thermodynamic behaviour as a 
result of surface effects and the relative importance of fluctuations compared with larger systems. 
Examples of small systems include fluids confined to nanopores, which have been found to exhibit 
extremely rich phase behaviour [6], small metallic or semiconductor clusters that form quantum dots, 
and molecular clusters that can be isolated and studied in jets. In addition to this, small molecular 
clusters often characterise important transition states in phase transitions such as the condensation of 
vapours. In this situation, the embryos of the new phase or critical clusters whose formation governs 
the rate of the phase transition, can have sizes of less than 10 molecules.

Mean field density functional theory has been applied extensively over the past 20 years, to study 
the condensation of vapours [33, 9, 23, 34, 28, 35]. There are two main approaches. The approach 
of Oxtoby and Evans [9] involves treating an open system in the grand canonical ensemble. Using 
a free energy functional of the form (2.53), and employing an iterative procedure to find solutions 
to the Euler-Lagrange equation (2.56), they found that under the right conditions inhomogeneous 
density profiles corresponding to saddle-points in the functional space arise out of the procedure. 
These stationary solutions persisted for a few iterations before ultimately disappearing to be replaced 
with homogeneous density profiles corresponding to the stable global minima. The saddle point 
solutions were interpreted as critical clusters, the growth or evaporation of which are equally likely. 
The free energy difference between these clusters and the homogeneous vapour gives the free energy 
of formation of critical clusters that determine the nucleation rate.

The objection has been made that saddle point solutions are irrelevant. For given external con­
ditions (say temperature and chemical potential) the system has a unique free energy and grand 
potential, and it is only the minimised free energy from the MFDFT approach that can be taken as 
an approximation to the free energy of an actual system. To counter this objection, it was shown by 
Talanquer and Oxtoby [23] that the metastable solutions in an open system (fixed chemical poten­
tial n) can be mapped onto stable solutions of a closed system (with fixed N ), for which the use of 
MFDFT to obtain the equilibrium solution is justified. Closed systems had been studied earlier in 
this context by Lee, Telo da Gamma and Gubbins [33].

Contributions to the free energy of a fluid that are negligible on a macroscopic scale become crucial 
on a more microscopic scale [6]. These contributions include surface effects, translational motion and 
especially fluctuations. Mean field theories are expected to be less successful in treating small systems 
due to the importance of fluctuations.
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There has been relatively little work on validating MFDFT against other approaches. Lee et. 
al. [33] compared MFDFT results with molecular dynamics simulations for systems with N  ranging 
from 100 to 30,000 particles. Reguera et. al. [6], compared results of MFDFT with Monte Carlo 
calculations for clusters of 80 argon atoms, with a discussion of the differences in density profiles and 
system pressures.

In this chapter a simple system is considered for which the exact free energy is available for 
comparison with MFDFT calculations [36]. The model system consists of just two interacting hard 
rods in one dimension. Exact calculations are possible since a small number of molecules is considered. 
On the other hand, this requires care to be taken in the application of the standard MFDFT approach, 
as inconsistencies arise when it is applied to systems containing small numbers of particles. The 
reduced dimensionality and small number of particles means that the problems in applying MFDFT 
should be most severe.

One dimensional hard-rods were studied by Percus, who derived an exact functional for the free 
energy of hard rods in an external potential V'(r) [37]. He also studied sticky hard rods [38], which 
have an infinitesimally short range attractive interaction between neighbouring rods. The rods studied 
in this chapter have an attractive interaction with a finite range. The system also differs from that 
studied by Percus due to the small number of particles considered. We pay particular attention to 
the finite size effects, and their consequences for the application of the standard approximate mean 
field density functional theory frequently applied to fluids.

3.2 Exact free energy of a simple m odel system

The model system consists of two hard rods each of length 6, free to move on a line of length R , 
with periodic boundary conditions. The rods interact through a pair potential <t>(r\2) where r i2 is 
the separation of the rod centres. The partition function is

Z = \ 72 /  dri [  dr2exp( -U(r i , r2) /kBT)  (3.1)
^  Jo Jo

where 7  =  (27nnkBT ) 1̂ 2/ h  is the inverse thermal de Broglie wavelength (m is the rod mass and h is 
Planck’s constant), kB is Boltzmann’s constant, T  is the temperature, and U(r\ ,r2) is the potential 
energy of the system: 77 and r2 are the positions of the centres of the rods.

The potential energy U(r\ ,r2) can be separated into an attractive potential (f){r\ —r2), and a hard 
sphere (or in this one-dimensional case hard rod) repulsive potential u r ( t \  —r2). Due to the periodic
boundary conditions, the rods interact with each other and with periodic images. For the attractive
potential we assume a form

(f>{r) =  — aexp(—Ar) (3.2)

For simplicity, we limit the range of this interaction so that there are only two terms in the exponent, 
an interaction between rod 1 and rod 2, and between rod 1 and the closest periodic image of rod 
2. Further contributions to the interaction energy are neglected. The short range repulsive potential 
ur{t\ — r2) takes the form of a hard sphere interaction in one dimension:

ur {ti — r2) =  0 when |ri — r2\ > b
(3.3)

Wij(r 1 — r2) = 00  when \r\ — r2\ < b 

This repulsive interaction restricts the configurations that make a nonzero contribution to the partition
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function, which reduces to Z  =  j 2R I / 2  where

I  =  lb  dr2 exp (j b̂T  exp(_Ar2) + exp(_A(jR ~ r2))) (3-4)

The free energy is F  = —fc^TlnZ, but for convenience we focus on an excess free energy, obtained 
by subtracting the free energy of two non-interacting point particles for which I  = R:

Fex = F  -  Fid =  - k BT  Tin t q p f y  =  kBT \ a ( R / I )  (3.5)

The integral I  can be calculated numerically once the parameters are specified. The distances R, r 2, 
b and A-1  are taken to be dimensionless multiples of some length scale R q. The energies a  and Fex 
are expressed in terms of the energy scale ksT .  To illustrate the qualitative differences between the 
interacting case and.the noninteracting case, Figure 3.1 shows the full free energy (in arbitrary units) 
versus R  of a system of two interacting particles (a =  5, b — 1, A =  0.5) as well as the free energy of 
an ideal gas of noninteracting particles (a: =  0 and 6 =  0). The free energy against volume curve for 
the interacting particles displays loop behaviour that is characteristic for small systems [5, 6]. Due to 
the short range repulsive and attractive forces the difference between the two curves becomes smaller 
for large R.
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Figure 3.1: Comparison between the free energies of two non-interacting point particles and two interacting hard 
rods, as a function of ring circumference R. The difference between the two defines the excess free energy Fex.

3.3 M ean field density functional theory

3.3.1 The standard free energy functional

To construct a mean field free energy functional for this model system, we follow the recipe laid out in 
Chapter 2. As is the case for many approximate treatments of fluids, the mean field theory involves the 
separation of the attractive and repulsive forces. The mean field approximation introduces an external 
single particle potential V(r), tailored to mimic the effect of the pairwise attractive interactions. The 
mean field potential effectively facilitates the treatment of attractive interactions as a perturbation 
on the hard sphere system.

interacting particles a=5.0, b=1.0 X=0.5 
ideal gas a=0, b=0
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Following the mean field recipe, the Hamiltonian of the system is written [28]

H  = K  + H0 + H i. (3.6)

where K  is the kinetic energy part of the Hamiltonian, and Ho is the potential energy of the mean 
field reference Hamiltonian

N

H ° =  S  UR(Ti ~ V ^
i > j  i= l

where u r  is the hard sphere repulsive interaction potential. The i  >  j  denotes a sum over all pairs of 
particles. The Hamiltonian K  H q describes a reference system of N  hard rods in a single particle 
mean field potential V(r). The additional part of the Hamiltonian Hi  is

N
ff. = £ > ( > • , - r , ) - £ V ( r O  (3.8)

i > j  i= l

where <j>{r) is the attractive interaction potential. In mean field theory this contribution, which 
contains the attractive energy, is calculated using the distribution of states in the reference system 
K  Hq. The mean field free energy of the system is then given by

F m f  =  Fo +  {H\)q (3.9)

where Fo =  — kRTlnZo  is the free energy of the reference system, with partition function

N  p

Zo = W. dNreM - H o / k BT)  (3.10)

The second term in F m f  contains the average attractive energy estimated using the probability
distribution of states in the reference system. Spatial integrations are over the entire ring of length R.
The free energy depends on the choice made for the mean field potential V(r). However, as discussed 
before, the average of V(r)  cancels out between the two contributions in equation (3.9), allowing the 
free energy to be rewritten as

F m f  =  Fh  +  /  ^  0 ( r <  —  r , - )  \  (3-11)
\ i > 3  /  o

where Fh  is the free energy of the reference system minus the contribution due to the mean field 
potential, and the second term contains the average of the pairwise attractive interactions in the 
ensemble of the reference system.

The mean field potential V(r)  appears neither in the full Hamiltonian in equation (3.6), nor 
explicitly in the free energy F m f  given by equation (3.11). The dependence on V(r)  is hidden in 
the weighting of configurations in the (•.. )o averages and in the entropic contribution to Fh- The 
main purpose of V (r ) is to mimic the effect of the attractive interactions. This approximation is best 
when the perturbative contribution to equation (3.9) is small. This is achieved by choosing V(r)  to 
minimise the free energy F m f • The Bogoliubov inequality [24] ensures that the free energy calculated 
in this way will not lie below the true free energy of the system with Hamiltonian H.

Both terms on the right hand side of equation (3.11) may be regarded as functionals of the reference 
system single particle distribution function or density profile p(r), defined by

P(r ) = = J r exP(—-^°/^bT)8{ t i -  r). (3.12)
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This is itself a functional of the mean field potential V(r),  so the minimisation of the free energy 
F m f  with respect to the mean field potential may be done with respect to the density profile if F m f  

is expressed as a functional of p(r). This was the observation made by Barrett in his interpretation 
of the standard density functional approach [28].

Next, a density functional representation of the free energy F m f  for the two-rod system needs to 
be found. The term Fh is the intrinsic free energy of an inhomogeneous fluid of non-attractive hard 
rods. Percus [37, 38] developed an analytical functional for this, which is exact for the case when the 
number of particles N  is large. It will be shown that this treatment breaks down for the case when 
N  =  2. For the purposes of this study we employ the local density approximation (LDA), since this 
is the standard practice for developing MFDFT in higher dimensions, where exact solutions are not 
available.

Approxim ate functional for the intrinsic free energy of the reference system

The first step is to find an expression for the free energy of a homogeneous system of hard rods. By 
setting a  =  0 in the partition function obtained in the preceding section, we get the exact free energy 
of two non-interacting hard rods

Fh = - k BT \ n ( ^ R ( R - 2 b ) \  (3.13)

The homogeneous one-particle density is p = 2 /R  so we can rewrite this as

Fh 2kBT \n  (2(1 _  2 ) (3-14)

and extract the free energy density

A  =  Fh/ R  =  kBTpln  (2(i _ 1M )1/S)  (3.15)

The next step is to write the free energy, in the local density approximation, as a functional of a 
spatially varying single-particle distribution function p(r) :

Fh =  j f  A W r ) ) *  =  j f W j l n  ( ^ (1 _ 6; (r)))1/2)  (3-16)

This is the intrinsic free energy of the system with Hamiltonian H o, that is to say the contribution 
due to the interactions between the rods and the mean field has been subtracted. It is clearly a 
functional of p(r).

Approximate functional for the mean attractive energy

The second term in equation (3.11) is the average attractive energy evaluated in the probability 
distribution of states in H o, which can be written in the form [15]

MTi “  =\JQ dr JQ drV(2)(r, r')(f>(r -  r ')  (3.17)

where p(2)(r ,r ')  is the two-particle distribution function of hard rods in the reference system. As 
discussed in Chapter 2, the standard DFT treatment of this contribution employs a further simplifi­
cation: the random phase approximation (RPA), which involves neglect of correlations in the hard-rod 
reference system.

p(2) (r, r ')  «  p(r)p(r') (3.18)
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Combining the two terms, the functional expression for Fm f  is then

FMF = l  drkBTp{r) In ^  _  t j,(r)))1/a )  + l J 0 dr i  dr'2p(rMr')4(r -  r') (3.19)

The free energy is now explicitly a functional of the reference system single-particle density profile 
p ( r ) .  Minimising equation (3.19) with respect to p ( r )  is equivalent to choosing the V ( r )  which best 
mimics the attractive interactions. The optimal V (r) can be reconstructed from the optimal density 
profile if required, though there are difficulties which will be discussed in Section 3.3.3.

The minimisation is achieved by solving the Euler-Lagrange equation associated with equation 
(3.19)

Ph(p(r)) = P -  J  p{r')4i(r -  r')dr' (3.20)

where ph(p(r)) =  d f h / d p ( r )  is given by

Ph(p(r)) = kBT \a  ( ---------^ ^  +  kBT  (  +  l )  (3.21)(2(1 — bp{r))) * J  \2(1 — bp{r)) J

The Lagrange multiplier p  is adjusted to ensure that the density profile p{r) satisfies the normalisation 
constraint

J  p ( r ) d r  =  2 (3.22)

The free energy of the system is then obtained by substituting the profile that satisfies equation (3.20) 
into the original free energy functional (3.19).

Comparison w ith Percus functional

It is worth comparing the intrinsic chemical potential of the inhomogeneous hard rod fluid ph to the 
exact formula obtained by Percus [38]

p l W W  =  in +  f  f f l f  (3.23)
V1 ~  Ir P(r )dr J  Jr~b ( !  “  I r> p(r")dr"J

Setting p(r) to a constant p, this equals

ph[p]/kBT  = l n ( T^ )  +  i ^ -  (3.24)

For a homogeneous fluid, the formula (3.21) derived above should be exact. Substituting a homoge­
neous density p into (3.21), and eliminating additive constants, this gives

M P(r))/kBT  = in +  2^  (3-25)

The difference between the Percus formula (3.24) and the LDA formula (3.25) with p(r) = p arises 
because the Percus formula was derived in the thermodynamic limit, while our result is for the case 
when N  =  2.

3.3.2 M ethod of solution

There is a standard iterative approach to solving the integral equation (3.20) for p(r). A trial profile 
is inserted into the right hand side, and a new profile is generated by inverting the function ph{p)- 
For an open system with fixed p  this procedure leads ultimately to a free energy minimising profile,
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but if the initial profile is chosen suitably, then a metastable saddle point solution may emerge and 
remain effectively unchanged for many iterations.

For a closed system such as the one studied here, the constraint (3.22) for a fixed number of 
particles needs to be imposed on the solution. This is achieved by updating p  at each iteration
so that the normalisation condition is satisfied. This method is employed by Lee et. al. [33] and
Talanquer and Oxtoby [23] to control the normalisation for closed systems. The Euler-Lagrange 
equation is altered to

Ph(p(r)) =  - k BT  In Q  J  dr exp ( {-ph,c ~  <£eff)/ kBT)^j -  (f>es  (3.26)

(f>es(r) = J  p{r')(j)(r -  r')dr' (3.27)
where

and
Ph,c(r ) = P h -  kBT\n(p{r) /j )  (3.28)

The first term on the right hand side of equation (3.26) is the appropriate value of p appearing in 
equation (3.20), to ensure normalisation. The density profile generated from this procedure is then 
inserted into the free energy functional, equation (3.19), to obtain the MFDFT estimate of the free 
energy of the system.

3.3.3 Higher order contributions to p(r)

The density profile that emerges from the above procedure will clearly be different from the exact 
single-particle density profile of the system, which we denote by /9jj(r) for clarity. Under certain 
conditions, the mean field density profile will be spatially varying. This occurs when the mean 
field free energy Fm f  is lower for a spatially varying single particle distribution, corresponding to a 
reference system with a spatially varying V(r).  On the other hand, the single-particle density profile 
p#(r) in the real system is given by

pH(r) =  f  ̂  / > r e x p ( - ( f f 0 +  f l i ) /kT)S (n  -  r), (3.29)

where Z  is the exact partition function. Due to the translational symmetry of the Hamiltonian 
H  =  K  +  Ho +  H i , this profile should be uniform.

As discussed in Section 2.5.2, the mean field approach may be viewed as a thermodynamic per­
turbation of the free energy of the system with Hamiltonian H  =  Ho +  Hi  about the reference 
Hamiltonian Ho. The reference density profile p(r) can be considered as the zeroth order approxima­
tion to PH(r) in an expansion in H\.  To check the validity of this approach, higher order contributions 
to ph can be computed by expanding the exp(—H i /kT )  factor in equation (3.29). For example the 
first order density profile is given by

_ N  J  dNr exp(-ffo/K T)(l -  fli/KT)<S(r -  r ,)
M r )  =  S d Nr e M ~ H o / k T ) ( l - H 1/kT )   (3'30)

This can be calculated approximately, using the random phase approximation and the zero order 
density profile p(r):

p(r) [1 -  £(JV -  1 ) (N  -  2)N~2h  +  (N  -  1 ) ^ %  -  {N -  1 ) N ~ 1 f  drf(f)(r -  r ')p(r' )/kT  +  V(r)/kT]  
Pl(r) ^  l - ^ N - ^ N - ' h + h

(3.31)
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Figure 3.2: The zeroth (solid line) and first order density (dotted line) density profiles for the b = 0.1 case, and the 
difference between them (dash-dotted line), according to the perturbative expressions given in section 3.3.3.

where

and

Ii = J  dr'dr"<j)(rr — r")p(r')p(r")/kT, 

I2 = J  dr'V(r')p(r')/kT.

(3.32)

(3.33)

One problem here is that the mean field V(r ) appears explicitly in equation (3.31). The inversion 
of the zeroth order profile p(r) to give V (r) is difficult, and also incomplete, since the mean field is 
necessarily uncertain up to a constant. However, we proceed using two approximations. First, hard 
sphere repulsions are neglected so we can use the point-particle formula V(r ) ~  — kT In p(r) +  C 
where C is the arbitrary constant. Second, we fix the unknown constant by demanding that the 
perturbative second term in equation (3.9), evaluated using the approximate V(r), vanishes. Once 
this is imposed, the first order density profile reduces to

Pi(r) «  p(r) 1 -
_ ! t  (n - i )

N 2 1 N  2 N
J  dr'<f)(r — r' )p{r' )/kT — lnp (3.34)

in which I 2 is now the integral in equation (3.33) with V(r) replaced by — kT  In p.
This result is still spatially varying. Indeed any expansion of equation (3.29) to finite order, and 

employing approximations to calculate the corrections, will lead to a density profile with spatial varia­
tion. Figure 3.2 shows a spatially varying density profile and the first order correction obtained using 
the procedure described. It can be seen that the correction is small, indicating that the perturbation 
expansion inherent in Fm f  is valid.

The loss of translational symmetry is caused fundamentally by the need to choose an arbitrary 
location in space for the centre of the mean field potential well. By choosing a particular location, 
we obtain an inhomogeneous reference system single-particle density profile p(r). This is the inter­
pretation of Barrett [28]. The breakage of translational symmetry is associated with an undesirable 
error in the free energy. The MFDFT approach should be amended to take this effect into account. 
This will be addressed in Section 3.3.4.

3.3.4 M odifications for small systems 

Sm all N  effects

In applying MFDFT to small systems, several crucial modifications to the standard development 
should not be overlooked. These modifications are necessary to take account of finite size effects that
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become increasingly important as the number of particles becomes small.
The first two corrections take us back to the random phase approximation (RPA) in equation 

(3.18). The correct relationship between the two-particle distribution function p ^ ( r , r ' ) ,  and a prod­
uct of two single particle distribution functions p(r)p(r') is given by

P{2) (r , r ')  =  g(r, r f)p(r)p(r'), (3.35)

where g(r, r') is the pair correlation function for the reference system. In the RPA, this function is 
set to unity irrespective of the positions r and r '. We will make corrections to this approximation in 
several stages. The first correction results from consideration of the normalisation condition for an 
n-particle distribution function:

fR 1\J\L <3-36>
For the case of n =  2 (the two-particle distribution function) the right hand side of equation (3.36) is 
equal to N ( N  — 1). On the other hand, the one-particle distribution functions are normalised to N,  
giving N 2 for the integral of the product p(r)p(r'). Therefore the RPA approximation g =  1 should 
be replaced by the more accurate form g = (N  — 1 )/iV, and equation (3.18) becomes

p(2)(r,r') «  ^ p ( r ) p ( r ' ) .  (3.37)

It is clear that this correction is only important for small N,  but in the case of N  =  2 it introduces 
a substantial correction factor of 1/2. We have employed this correct normalisation in the derivation 
of equation (3.31) already.

A second modification of equation (3.18) addresses the neglect of spatial correlations between the 
two rods within the RPA. This will have consequences on the estimate for the attractive energy in 
the system ((f)) o. The most severe consequence of this is that the RPA fails to remove the attractive 
energy due to overlapping configurations of rods i.e. when |r — r’\ < 6. This leads to a substantial 
overestimation of the magnitude of the cohesive energy in the system. An approximate way to take 
account of this is to construct a correlation function from a pair of step functions

g(r,r') oc 0 ( |r  — r'\ — b) Q(R — |r — r '| — b) (3.38)

where O(z) = 0 for 2 <  0 and unity otherwise. Now g(r, r') is explicitly zero for overlapping hard rod 
configurations, and equation (3.18) is modified to

p(2)(r, r ') «  ( i? — 2b)  ~  r '\ ~  ^  e (R  ~  \r ~  r '\ ~  6) (3>39)

An extra factor of R / ( R  — 2b) has been inserted to ensure that p ^  remains normalised for ho­
mogeneous profiles despite the exclusion of 26 from the available volume in the system. This pair
distribution function is exact for a homogeneous fluid of two hard rod particles, however it is an ap­
proximation when an inhomogeneous external field is present giving rise to an inhomogeneous density 
profile. It is also an approximation when N  > 2, as non-trivial hard rod correlations exist beyond 
|r — r'\ > b even for a homogeneous system. The correlations in one-dimensional hard rod fluids are 
described in reference [39] for systems with large N.

Taking these corrections into account, the MFDFT free energy function is now written

Fdft  =  1  d r k B T p ( r )  In ( ^  (2(l _  ^ (f))1/3 )  +  \  /  d r /  d r^< 2> (r,r '),« r -  r ')  (3.40)
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employing the two-particle distribution function from equation (3.39).

Centre of mass translation

The final correction we need to consider deals with the breakage of translational symmetry by the 
mean field potential utilised in MFDFT, which gives rise to an inhomogeneous distribution of the 
centre of mass of the system. A dynamical mode of the system, namely the motion of the centre of 
mass, is incorrectly described, which affects the free energy.

This issue has been the subject of some controversy in the literature. Talanquer and Oxtoby [23] 
have assumed that when MFDFT is applied to a system in a closed volume, the free energy obtained 
includes the full translational free energy for the centre of mass of the system within that volume. 
Simulations by Reguera et. al. [6], on the other hand, indicate that density profiles obtained from 
MFDFT correspond closely to a system modelled by Monte Carlo simulation with a fixed centre of 
mass. We take the view of Barrett [28], that the MFDFT approach limits the translational motion 
of the centre of mass of the system to a certain volume around the centre of the mean field potential 
well. For system sizes of a few tens of particles, this is a small volume compared with the extent of 
the profile itself, and so this interpretation is consistent with the observations made by Reguera et. 
al. [6]. However, the centre of mass is not fixed: it may be regarded as tethered to the midpoint of 
the mean field potential, and undergoing quasi-harmonic oscillations about it.

To make this clearer, consider a one dimensional closed system of length R , containing N  particles 
interacting through a pair potential U (ri—rj ). With suitable periodic boundary conditions that avoid 
boundary effects, the probability distribution for the position of the centre of mass pc(RCm) should 
be uniform. Now, pc(RCm) is the expectation value of the operator

p(Rcm) =  8 ^  ^ 2  Ti ~  (3-41)

so

PciRcm) = ~  J  d N r  Rem)  (3.42)

where Z  is the exact partition function. Transforming to centre of mass coordinates r'i = r i ~  i?cm, 
Pc(Rcm) becomes

Pc(R ,m) = ^ . l d N r’ S ( £  i ^ )  ■ (3-43)

The Hamiltonian H  = Ho -f Hi  is unchanged by this transformation of coordinates since it depends 
only on particle separations, and with the correct boundary conditions the integration limits remain 
unchanged. We can therefore see that the right hand side of equation (3.43) does not depend the 
value of Rcmi resulting in a distribution pc that does not depend on position.

As we have seen, in MFDFT the aim is to find the optimal form of the effective mean field potential 
V(r) in the Hamiltonian Ho to mimic the effect of the attractive interactions in Hi.  The density 
profile p(r) is the single particle distribution function corresponding to the reference system described 
by Ho with this form of V(r).  The MFDFT approximation to the distribution of the centre of mass 
is determined by taking the trace of the operator p(Rcm) in the reference ensemble, which we write 
as

PciRcm) = J  d N r  S ^  -  R cm^ exp

(3.44)
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Converting to the centre of mass coordinates r[ —r{ — R cm, we get

P°c {Rcm) =  J d Nr' S ^  ^ r '^ j  exp ^Z u*(r> _ T'i> + H y(r< + ̂
‘ (3.45)

The integrand now does depend upon R cm, as a result of the spatial dependence of the mean field 
potential V(r). Consequently the centre of mass distribution pQc is spatially varying: we are more 
likely to find the centre of mass in some parts of the system than in others. This remains the case to 
higher order in perturbation theory, along the lines described in section 3.3.3. This unphysical result 
is an artifact of the mean field approximation, and will lead to an underestimation of the entropy 
of the system. Correcting this error is possible by changing the way the centre of mass dynamical 
degree of freedom is treated [40, 41]. In this treatment we do this by means of an approximate, ad 
hoc procedure after the optimal mean field density profiles are obtained.

We begin by writing the reference partition function Zq as

Zo =  y t j j f f  dNr dNpexp(—(K  + H0) /kBT)  (3.46)

where the pi are the particle momenta. This can be expressed with the insertion of integrations over 
the centre of mass position R Cm and momentum Pcm:

Zo =  J d R cmdPcmj J ^  J d Nr d Np Kcmj S ~ P c ^ j e x p (- ( tf  +  H0) /kBT)

(3.47)
or

Z0 =  J  dRcmdPcmx(Rcm, Pcm ) (3-48)

which defines a distribution function for the centre of mass degrees of freedom x(Rcm»Pcm), which is 
related to p^(Rcm) through

Pc(^cm) =  ~g~ J  x{Rcm, Pcm)dPCm- (3.49)

Equation (3.48) may be cast instead in the form

J  dPcmdRcm exp( Heff(Rcm, PCm)/^b T)  (3.50)

where Heg is an effective Hamiltonian controlling the dynamics of the system centre of mass. In order 
to describe the freedom of motion of the centre of mass correctly we will replace this Hamiltonian 
with that of a free particle. The corrected partition function is

__ <7 _______________ f  dRcm_______________  /„  p.. \

0 ° J d R e n exp{-Uta(Rcm)/kBT) K ;

where Ueg(RCm) is the effective potential in the effective Hamiltonian that causes the centre of 
mass to be constrained. The origin R cm =  0 is chosen to lie at the centre of the mean field potential 
and we can choose C/eff(0)=0. Therefore the probability of finding the centre of mass at R cm =  0 is

p“(0) = ik ldPcm exp(-ff«ff(°’ = 5dRcm̂v(̂ s(Rcm),kBT) (3-52)
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and we can write the ratio of the two partition functions as

Z ' o ____________________ f d R c m ________________  f t  53')

Zo S d R a m ^ M -U ^ { R c m ) /k BT) PcK J K ' *

which is in agreement with similar corrections suggested in the literature [40, 41]. The associated 
shift in reference free energy is given by

AF  = - k BT In (p°(0)R) . (3.54)

This free energy correction may be evaluated using the optimum single particle density profile
p ( r ) obtained from the Euler-Lagrange equation. We return to equation (3.44) which we write in the
form

P°c(Rcm) = Y l  J d N r S { j j T , ^ - R ^ )  f>{N)(rN) <3'55)

where p ^  is the iV-particle distribution function. By employing the random phase approximation, 
we can proceed in terms of the single-particle density profile p ( r ) .

PW (rN) = - j ^ U p i n )  (3-56)
t=l

so />c(0) ^  given by

POA0) = - ^ [ d Nr-[[p(ri) s U j 2 r A  (3.57)
*= 1 \  j  = 1 /

which is readily calculable. For the case of N  =  2, the result is simply

P°c( °) = \J ̂ i p ( n ) p ( - r i )  = Ĵ d r i p 2 { n )  (3.58)

with the final form being a consequence of symmetry. A better approximation would be to use the 
more appropriate version of the RPA given in equation (3.39), but we will stick to the simplest form 
for the evaluation of this contribution to the free energy.

For general N , we can evaluate the integral in equation (3.57) by using the integral representation 
of the Dirac Delta function _

/oo
d w  exp (i w x ) (3.59)

-OO

in which case

where p is given by

/OO

dw pN (w/N)  (3.60)
-OO

p{q) =  /  p(r) exp(iqr)dr. (3.61)

The translational free energy correction AF  is therefore calculable, and should be added to the mean 
field free energy estimate Fm f  in cases when translational motion of the centre of mass of the system 
makes a significant contribution to the system free energy. This will clearly be the case for systems 
with small N.

3.4 Comparison between exact and M FD FT  free energy

The performance of MFDFT can be assessed by comparing the MFDFT excess free energy with 
the exact result obtained from numerical integration of the partition function in equation (3.1).
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Calculations are performed here for two finite rod lengths 6 =  0.1, b =  0.01 and also point-like 
particles b =  0 in dimensionless units. For each rod length, equilibrium density profiles are found by 
solving the Euler-Lagrange equation (3.26), and the MFDFT free energy calculated for a range of 
‘volumes’ R. This is then compared to the MFDFT free energy for a homogeneous density distribution 
p =  2/ R ,  and to the exact free energy.

Homogeneous profiles are expected to be the solutions to the Euler-Lagrange equation as AR  —> 0, 
since in this limit, the spatial dependence in the attractive interaction vanishes, and it has the same 
effect as adding a constant potential to the system. It can be shown that the functional in equation
(3.40) provides the exact free energy of the system in this limit. The error compared with the exact 
free energy increases with A and a , as shown in Figure 3.3.

%

Figure 3.3: Percentage error of MFDFT free energy for a homogeneous profile as a function of the potential well 
depth at contact cco, and inverse interaction range parameter A. For this plot b =  0.1 and R  =  5.0.

For this study, the parameters were adjusted to give a reasonably short range interaction, with 
considerable strength. The depth of the attractive potential energy well at contact (i.e. when the rod 
centres are separated by b) has been set to 4>(b) =  — lOfcgT, and the parameter 1/A, which determines 
the length scale of the attractive interaction, has been set to unity. In Figure 3.4 the excess free energy 
Fex is plotted against R  for three different rod sizes, using various MFDFT approaches as well as 
direct evaluation of the partition function.

The MFDFT free energies obtained by finding inhomogeneous optimal density profiles lie closer 
to the exact free energy than for the homogeneous density profiles, though there remains a large 
discrepancy. At small volumes (R  ~  3 for b =  0 and b =  0.01, and R ~  5 for b =  0.1) the difference 
in free energy associated with the homogeneous and optimal inhomogeneous density profiles becomes 
very small, and eventually the homogeneous solutions to equation (3.26) become optimal. A similar 
development is expected at very large R,  when the ‘vapour’ is very rarefied, however this limit is not 
observed in our calculations due to the large magnitude of 4>{b).

The small rod lengths 6 =  0 and 6 =  0.01 give rise to more pronounced inhomogeneous density 
profiles than the larger rods 6 =  0.1, as is illustrated in Figure 3.5, and also display bigger difference 
between the homogeneous and inhomogeneous profile MFDFT free energies.

It can be seen from Figure 3.4 that the MFDFT free energies always he above the exact free energy. 
For homogeneous density profiles neither LDA nor RPA approximations are made in the functional
(3.40), and it becomes an exact representation of the reference system l . In this case, the Bogoliubov

xIt should be noted that for the case when N  >  2, the functional (3.40) does involve the RPA (but not the LDA) 
even when profiles are homogeneous. This is because the more complicated hard rod correlations for N  >  2 have not 
been accounted for by the approximate two-particle distribution function (3.39).

error
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inequality ensures that the MFDFT free energy lies above the exact free energy. The large discrepancy 
between the exact free energy and the MFDFT free energy for homogeneous profiles is due to the 
inadequacy of the homogeneous mean field representation of the system. This may also be seen as 
a breakdown of the perturbation expansion (3.9). The mean field V(r),  which in the homogeneous 
case is just a constant potential, is supposed to emulate the effect of attractive interactions 0 (r — r') 
in order to make ( # 1/ 2)0 and higher order moments of Hi  as small as possible. This does not seem 
to be accurate for the cases considered. As we are in a regime in which the interaction strength a  
is large, and the range 1/A is finite, an inhomogeneous mean field and therefore an inhomogeneous 
density profile is expected to do better. However in this case there will also be an implicit error due 
to the LDA and RPA in the functional.

In order to quantify the error due to the LDA for inhomogeneous density profiles, a numerical 
investigation has been carried out in which the free energy of two hard rod particles in an external 
harmonic potential was calculated exactly and compared with the free energy calculated using the 
LDA approximation (3.16). This system is of the same form as the reference system with Hamiltonian 
K  + Ho, but with an a priori known form of external potential

V(r) =  0 2 (3.62)

where a  determines the curvature of the external potential and can be adjusted to give density 
profiles of different widths. Depending on the value of <r, the profiles will have different values for the 
expectation value of the mean square displacement (r2) of the rods from the well minimum. It was 
found that the LDA performs extremely well up to high potential well curvature. Figure 3.6 shows the 
percentage error in the free energy calculated within the LDA compared with the exact free energy, 
against mean square displacement (r2) of the resulting profiles. The parameters b =  0.1 and R  =  5 
were used, which corresponds to the highest packing fraction used in this study of attractive hard 
rods. The results on the test system indicate that the LDA error is negligible in the parameter ranges 
for which inhomogeneous profiles were obtained in this study.

From this result we can deduce that for inhomogeneous profiles, the difference between the MFDFT 
results and the exact free energy can be attributed to the mean field approximation, in which the 
correlations due to the attractive interaction are not properly taken into account. There is also an 
error due to the RPA approximation in the evaluation of ( # 1)0» since the hard-sphere correlations in 
the inhomogeneous system have only been taken into account approximately.

The discrepancy between the exact and MFDFT free energy is due to the unsuitability of a mean 
field treatment for a system of low dimensionality, consisting of very few strongly interacting particles. 
For such a system large fluctuations or deviations from mean field behaviour are expected.

The correction AF  for translational motion of the system centre of mass is significant for all three 
rod sizes. The profiles become narrower for smaller b, indicating that the mean field potential V (r ) is 
narrower, leading to stronger confinement of the centre of mass. This gives rise to a larger free energy 
correction factor for narrower profiles. It should be noted that once the translational correction AF  
is made, the Bogoliubov inequality is no longer valid regardless of the LDA and RPA approximations, 
since the confinement of the system centre of mass, the effect we are attempting to correct, is an 
inherent part of the Ho reference system which includes an external field.

A numerical study on three profiles for b = 0.1,0.01,0 with R  =  5.0 was carried out to evaluate 
the first order density profile pi(r) given by equation (3.31). This revealed that pi(r) is similar to 
p(r) but is slightly flatter, as would be expected. This is illustrated in Figure 3.2 for the case of 
b =  0.1. The free energy calculated from the resulting first order profiles did not vary significantly 
from the original zeroth order free energy obtained using the p(r) profiles.
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Figure 3.4: Excess free energy Fex versus ‘volume’ R  for attractive rods with length b =  0.1 (top graph), b =  0.01 
(middle graph), and point particles 6 =  0 (bottom graph). The excess free energy is calculated exactly (solid line), and 
in three different variants of MFDFT. The dashed line results from inserting a homogeneous density profile p =  2/R  
into equation (3.26), the free energy functional incorporating the modifications to the random phase approximation. 
The squares show the same free energy evaluated using the optimal inhomogeneous density profile. This free energy 
lacks the translational correction A F  described in equation (3.54), and the substantial change that this introduces 
is shown by the further shift to the values shown by circles. For most values of R,  inhomogeneous density profiles 
are favoured, but homogeneous profiles become more favourable for smaller R. The translational correction greatly 
improves the agreement between the MFDFT and exact free energies.
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Figure 3.5: The optimal inhomogeneous density profiles for the three cases described in Figure 3.4 for R =  5. Note 
that the smaller rods are described by a more peaked profile, and consequently a narrower mean field potential.
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Figure 3.6: Percentage error in the free energy calculated within the LDA for a system of two particles in a harmonic 
external potential. This system has a Hamiltonian of the form H =  K  +  U r  +  V(r), where V(r) =  ( r / a ) 2 . Rod size 
b =  0.1 and volume R  =  5.0 have been chosen for evaluation of the LDA, and the free energy compared with exact 
integration of the partition function.
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3.5 Summary

We have investigated how well a mean field density functional theory performs in a very simple case 
of two attractive hard rods on a ring. Mean field theories are expected to be less successful in treating 
small systems due to the importance of fluctuations: they are better suited as a description of large 
systems. Reguerra and Reiss point out [27] that the neglect of certain fluctuations in MFDFT may be 
useful in the application to nucleation theory. This is because it allows MFDFT to capture stationary 
states of a system that do not correspond to equilibrium states, as for example the formation of 
critical molecular clusters in a condensing vapour. In this study the focus was on how well MFDFT 
can estimate the equilibrium free energy of a closed system, so this neglect of fluctuations represents 
a shortcoming highlighted in the difference between the MFDFT and exact free energies.

The standard MFDFT functional should be modified to deal with finite size effects. Two modi­
fications involve changes to the random phase approximation, used to estimate the interaction free 
energy. The first is the need to ensure normalisation of the two-particle distribution function when it 
is replaced by a product of single distribution functions. The second correction is to prevent the in­
clusion of forbidden configurations with overlapping hard rods. Failure to remove these configurations 
leads to a substantial overestimation of the cohesive energy.

The final effect concerns the loss of translational symmetry due to the introduction of a mean field 
potential. This means that the free energy associated with the motion of the system centre of mass 
is not correctly treated, and for small systems, the error can be substantial. This loss of symmetry 
remains even if higher order terms are included in the evaluation of the density profile. The problem 
is resolved by the replacement of the effective Hamiltonian controlling the motion of the centre of 
mass. The correction to the free energy can be evaluated directly using the density distribution in 
the reference hard sphere system, and is added to the MFDFT free energy once an optimal density 
profile (or equivalently mean field potential V(r)) has been found.

The modifications lead to substantial changes in the MFDFT free energy. The free energies 
obtained from MFDFT were compared with exact values, which are easy to compute for the small 
system studied. The modification to the translational contribution to the free energy appears to 
be particularly important for the system studied. As expected, the correction is greatest when the 
optimal density profile departs most strongly from homogeneity.

We expect these various factors to be important in calculations of the free energy of small molecular 
clusters frequently made in nucleation studies using mean field density functional theory.
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Chapter 4

Phase behaviour of charged 
colloidal suspensions: experiment 
and theory

4.1 Introduction to  colloidal suspensions

4.1.1 Brief description of colloidal systems

The term colloid refers to a general class of complex systems containing inhomogeneities on length- 
scales between lOnm-lOOOnm consisting of matter of one phase dispersed in another. Colloids can 
be classified generally by the states that make up the dispersed phase and dispersion medium. In 
this thesis we are concerned with solid particles dispersed in liquids which are known as sols or dis­
persions. There are also colloids consisting of solid or liquid particles in gases (aerosols), liquids in 
liquids (emulsions), gases in liquids (foams). In addition to this there are solid-,liquid-, gas- in solid 
colloids known as solid dispersions, solid emulsions and solid foams.

In this study we are interested in suspensions of solid particles dissolved in polar solvents. In 
these systems, there is a large asymmetry in size between the solid particles and the molecules of 
the surrounding solvent. Depending on the specific system of interest, different types of interactions 
may be important, giving rise to different phenomena. These interactions include hydrodynamic, 
electrostatic and steric effects.

The study of colloids [42] as a scientific discipline dates back to the 1840s. The earliest studies 
were of solid in liquid colloids, and in the 1850s Michael Faraday made extensive studies of colloidal 
gold sols. The term colloid was coined in 1861 by Thomas Graham. Graham deduced that the low 
diffusion rate of colloidal particles implied the particles were fairly large- at least lnm  in diameter. 
He also deduced that the particles must have an upper size limit to prevent them from sedimenting 
under gravity which he set to approximately 1 pm. This range of lengthscales is still used in the 
definition of colloids today.

Colloidal sols can be broadly classed into two categories lyophobic and lyophilic colloids. Lyopho- 
bic or solvent-hating colloids are inherently unstable, and will eventually fall out of dispersion by 
aggregating. Lyophilic or solvent-loving colloids axe stable and remain dispersed in solvent indef­
initely. Aggregation of lyophobic particles occurs due to strong attraction at short range. These 
attractions are Van der Waals type interactions, and are sufficiently strong that when two particles 
meet, thermal agitation is not sufficient to separate them.

A very wide range of systems can be classified as colloidal suspensions, ranging from paints and 
toothpaste to protein solutions. Broadly speaking a dispersion of colloid sized particles may come
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about in two ways. One way is that it is dispersed as a polymolecular aggregate, which is the case 
with silver and gold chloride particles. This is also the case for association colloids such as micelles 
formed from amphiphilic molecules. The second alternative is that the molecules themselves are 
macromolecules that are large enough to count as colloidal paxticles, which is the case with DNA or 
proteins. Such macromolecules are usually lyophilic.

4.1.2 Stabilisation of lyophobic colloids

There are two main methods of stabilisation for lyophobic colloids. Steric stabilisation involves coating 
the colloidal particles with polymeric molecules that are lyophilic and cause short range repulsions 
between the particles. The reduction in the available phase space for the polymer coils when particles 
approach each other causes a decrease in entropy, which results in an effective repulsion between the 
particles.

The second method of stabilisation is to coat the particles with ionisable salt groups. These 
groups preferentially dissociate, causing the particles to carry an overall surface charge. The chem­
ical similarity of the coatings, means that the particles will carry the same sign of charge, giving 
rise to electrostatic repulsion between the particles. Michael Faraday used this method to produce 
suspensions of gold particles that have remained stable to this day [42].

In this study we are particularly interested in phenomena in charged colloidal suspensions. A 
typical system [43] consists of polystyrene sulphate spheres of diameter 650nm dispersed in deionised 
water. The spheres can be synthesised with a large number of ionisable sulphate salt groups chemically 
bonded to their surfaces. These groups dissociate in water, each leaving a single negative charge bound 
to the sphere’s surface, and a compensating positive charge in solution. The resulting surface charge 
densities on the spheres are typically of the order 10-3 —10-2 electron charges per square nanometre. 
This means that the spheres or macroions are highly charged, each carrying around 103 —104 electron 
charges. The hydrated counterions generally form neutralising clouds around the macroions referred 
to as double-layers [42], that screen the bare Coulomb interactions between the large particles

4.1.3 DLVO theory of colloidal stability

The classic theory of charged colloidal suspensions formulated by Derjaguin, Landau, Verwey and 
Overbeek (DLVO) in 1948 [44] expresses the effective interaction between large colloidal particles as 
the sum of a repulsive electrostatic term that takes the form of a screened Coulomb (Yukawa) poten­
tial, and an attractive Van der Waals interactions between the particles. The repulsive electrostatic
interaction, which has a relatively long range, stabilises the colloids against coagulation due to shorter 
range van der Waals attractions which would otherwise cause irreversible coagulation of the particles.

The repulsive electrostatic interaction in the DLVO theory is derived using the linear Debye-Hiickel 
approximation [45] in the mean field Poisson-Boltzmann theory which will be discussed in more detail 
in Chapter 5. Debye-Hiickel theory was originally formulated to describe the interactions between 
microions in an electrolyte in the absence of the large, highly charged macroions present in a colloidal 
suspension. These microions are smaller and carry significantly less charge than the macroions referred 
to in the context of DLVO theory, and it is questionable whether a linear response treatment is valid 
when macroions are present in the system. In this theory, the electrostatic interaction between a pair 
of colloidal particles separated by a distance r, and carrying a charge Z  is

v  = Z 2*? f  exp kq \  2 exp(-Kr)
47re \  1 +  «a /  r

where a is the radius of the particles, e is the absolute dielectric permittivity of the solvent and k 
is the inverse Debye screening length A£>. The potential Vr  is an effective electrostatic interaction
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between two charged macroions that is mediated by the microions. The inverse screening length « 
depends on the concentration of microions in the suspension. For the case where only one species of 
microion is present, the inverse screening length is given by

k2 =
47re22 n

eksT
(4.2)

where n is the mean density of microions, z is their valency, e is the elementary electron charge, ks  is 
Boltzmann’s constant and T  is the temperature. From (4.2) it can be seen that the Debye screening 
length decreases with microion density as Xd oc l/y /n .  In the DLVO theory the mean microion 
concentration n is taken to be constant with respect to the separations between the macroions.

The attractive interaction in the DLVO theory results from Van der Waals interactions. The 
attraction between two identical spheres consisting of atoms which interact through Van der Waals 
interactions is obtained from Hamaker theory [46] , and is given by

VA =  -
H_
12

+ +  2 1 n ( l  - a 2 / r 2 ) (4.3)

where H  is the Hamaker constant, which depends on the material the colloidal spheres are made of, 
as well as the intervening medium between the particles. The general shape of the overall interaction 
Vd l v o  =  Vr  4- Va  is plotted below for two different salt concentrations.

>

o
flocculation

Figure 4.1: DLVO interaction potential between a pair of colloidal macroions. The full curve corresponds to a high 
concentration and the dashed curve to a low salt concentration. The secondary minimum responsible for flocculation 
is visible for the case with a higher salt concentration. Adapted from Knott [47].

DLVO theory asserts that the screened electrostatic repulsion stabilises the suspension against 
coagulation due to the strong Van der Waals interaction at short range. When the salt density 
is increased sufficiently, the repulsive interaction becomes more short ranged due to the enhanced 
screening, and the barrier to the primary minimum is overcome which leads to coagulation. This 
salting-out phenomenon was studied by Faraday. At intermediate salt densities a shallower secondary 
minimum appears. This secondary minimum, which is shallow relative to the thermal energy in the 
system, is responsible for the phenomenon of flocculation, the formation of a low density aggregate 
that is easily re-dispersed.
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4.2 Experim ental observations of inhom ogeneous phase be­
haviour

The relatively large size of colloidal particles enables a wide range of experimental techniques to be 
used to study them. Colloidal particles can be imaged directly using optical microscopes [43, 48, 49], 
and scattering experiments to probe the structure of the suspensions are performed using lasers [50] 
or using small-angle X-ray scattering (SAXS) [51]. The low diffusion rate of colloidal particles also 
allows them to be tracked dynamically using time-resolved digital microscopy [43, 48, 52].

The formation of ordered structures in suspensions of latex spheres was observed as early as 
the 1950s [53]. Subsequent studies showed these structures coexisting with disordered phases [54]. 
Monovoukas and Gast found transitions between BCC and FCC structures, as well as the liquid-solid 
transitions [55].

The formation of ordered structures is compatible in principle with a purely repulsive pairwise 
interaction such as the Yukawa potential (4.3). Robbins et. al. studied the phase diagram of Yukawa 
fluids extensively by means of computer simulations [56, 57], and found them to display liquid-solid 
and solid-solid phase transitions. These transitions are driven by changes in the particle density (which 
would correspond to the macroion density in a colloidal system) as well as the inverse screening length 
k (which in a colloidal system would be related to the mean density of microions).

Another example of a phase transition in a system in the absence of attractive interactions is that of 
hard-sphere crystallisation [10, 58]. A hard sphere system confined to a volume V  can be characterised 
by the volume- or packing fraction 0 which is the volume of one sphere divided by V. In hard sphere 
systems it is found that at a volume fraction of 0 =  0.494 there is an abrupt transition to a crystal 
with a volume fraction of 0 =  0.545. If a system is prepared at an intermediate volume fraction 
the system will separate into two coexisting phases. This transition occurs at packing fractions well 
below the maximum attainable packing fraction for random close packing of hard spheres which is 
around 0 =  0.63 and maximum packing fraction of a regular close packed structure 0 =  0.7404. The 
transition is entropically driven, and results from the fact that the volume available to the spheres 
when they are packed into a crystal is larger than at random packing. Phase coexistence in the 
hard sphere and repulsive Yukawa systems occurs between phases that do not differ substantially in 
density.

There is experimental evidence that attractive interactions exist in charged colloidal systems that 
have a much longer range than the Van der Waals interactions. Grier showed [43] that charged 
colloidal particles with packing fractions as low as 0 =  0.01 can order into crystals. The mean sepa­
ration between macroions of radius a = 330nm at this packing fraction corresponds to approximately 
3000nm. The Van der Waals interaction contributes less than 0.01 k s T  to the interaction potential 
between two polystyrene microspheres immersed in water separated by more than lOOnm [43], and so 
is negligible at these packing fractions. Grier’s study found that colloidal crystals persist for longer 
than expected in the absence of confinement if they had purely repulsive interactions. Prom the obser­
vation of metastable crystallites, he also deduced that the surface tension between the solid and liquid 
phases is much higher than would be expected for a purely repulsive interaction. This behaviour was 
attributed to an effective attractive interaction between the colloidal particles when they are near a 
container wall, but there is also evidence that effective attractions occur far from container walls.

Experiments showing the coexistence between phases with substantially different colloid densities 
add to the evidence for the existence of long range attractions between charged macroions. In 1979 Ise 
et. al. found evidence for the coexistence between solidlike and a very dilute gaslike phase in dilute 
suspensions of sodium polyacrylate [51]. The same effect was seen with highly charged latex spheres 
[59]. The coexistence behaviour was only observed for suspensions in which the particles carry a very 
high surface charge (~  10-3 — 10-2 electron charges per nm2), and the salt density in the electrolyte
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is as low as a few fiM  (which equals about 10-7 — 10~6 ions per nm“ 3).
Subsequent studies [60, 50, 61, 62, 63, 3] have found voids in liquidlike phases. These voids 

are indicative of a very low density gaslike phase, so that the observations may be interpreted as 
coexistence between dense and dilute fluid phases. Homogeneous fluids were observed to separate 
into dense liquidlike and rarefied gaslike phases over timescales of hours to days. This behaviour 
occurs at densities much lower than the range of densities for which flocculation due to the secondary 
minimum in the DLVO potential occurs. Reentrant behaviour was observed [50] with respect to 
the salt concentration of the electrolyte in the sense that the fluid remains homogeneous at lower 
and at higher salt concentrations but phase separates at intermediate salt concentrations. Palberg 
and W urth [64] disputed the claim that the observations correspond to equilibrium phenomena such 
as phase coexistence, and argued that the phase separation seen by Aurora et. al. correspond to 
nonequilibrium phenomena that result from a gradient in salt concentration in the system.

Unless the experiments mentioned above are flawed or have been misinterpreted they point to 
the existence of some form of long range interaction that is not covered by the DLVO theory. The 
inhomogeneous phase behaviour is difficult to explain otherwise.

Two more experimental observations are worth pointing out in this context. Matsuoka et. al. 
investigated the nearest neighbour macroion separation as a function of salt concentration and found 
that it first increased with increasing salt concentration, then decreased after passing through a 
maximum, indicating that the crystal density passed through a minimum [65]. When the surface 
groups on the macroions are acidic, then the concentration of base in the electrolyte determines 
the amount of charge titrated on the macroions. This allows control of the charge carried by the 
macroions. By varying the concentration of NaOH in suspensions, Yamanaka et. al. found a solid- 
liquid phase transition which was reentrant with respect to the macroion surface charge for a given 
salt density and macroion density [66].

4.3 Theoretical approaches

4.3.1 Discrepancy between DLVO theory and observations

The coexistence between dense and rarefied phases is not compatible with purely repulsive Yukawa 
interactions of the Debye-Hiickel theory. Van der Waals attractions calculated within Hamaker or 
Lifshitz [42, 67] theory cannot account for this behaviour, as these interactions are too weak at the 
inter-particle separations for which coexistence behaviour is observed. The discrepancy between the 
DLVO theory and experimental observations leaves open a range of possibilities for the development 
of a theory to explain the phase behaviour described above. One such possibility is the existence of 
effective electrostatic attractions between the like-charged macroions induced by the microions, which 
are not captured by the the theory leading to the repulsive term in the DLVO theory.

4.3.2 The Prim itive Model

There are several layers of complexity that have been shed on the way to formulation of the elec­
trostatic repulsion term in the DLVO theory. The first level concerns the approximations in the 
so-called primitive model (PM), which is described in more detail in Chapter 5. This essentially 
involves neglecting the details of the effect of the solvent molecules on the microions and macroions in 
the system. Within the PM, the solvent is treated as a continuum (albeit with an adjusted dielectric 
permittivity to account for the polarity of the solvent), and so plays the role of a passive ‘spectator’ 
phase in the system [68]. This means that solvent polarisation and solvation-shell effects that play 
an important role in the phase behaviour of systems containing much smaller particles (compared 
to colloidal macroions), such as charged Ceo molecules [69], are not included within the PM. The
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neglect of solvent molecularity means that depletion effects that give rise to effective short-range in­
teractions between colloidal particles [70], as well as solvent impurity effects are neglected. It should 
also be noted that hydrodynamic forces [42] that can mediate short-range interactions between col­
loidal particles are neglected, as they are inherently kinetic in nature, and therefore do not affect the 
equilibrium thermodynamic behaviour thought to be responsible for the observed phenomena.

4.3.3 Idealised geometry and other simplifying factors

Theoretical treatments using the PM usually make use of additional approximations to make the 
problem theoretically tractable. These include assumptions that the macroions are monodisperse in 
terms of size and have an idealised spherical geometry with little or no variation from one macroion to 
the next. The macroions are also usually assumed to be identical with respect to the amount of charge 
carried. In most treatments, the surface charge on the macroions is assumed to be homogeneously 
spread over the macroion surface.

Although some theories attempt to account for the variation of the total amount of surface charge 
carried by the macroions with external conditions [71, 72, 47], most assume that the amount of surface 
charge remains fixed with changes in salt density and macroion density over the relevant parameter 
ranges.

4.3.4 Mean field approximation

After the PM approximation together with the geometrical and monodispersity approximations have 
been made, the next major step in many theories involves a mean field approximation to describe 
the microions. There are different types of mean field theory, but the basic ingredient is the ne­
glect of microion-microion correlations. In the mean field treatments, correlations brought about by 
long-range electrostatic interactions between the microions are neglected. There are also correlations 
due to forces with much shorter range, such as the repulsive 1 /r12 interaction of the Lennard-Jones 
potential [70], however these will be less relevant at low macroion packing fraction and microion 
concentration. The Poisson-Boltzmann theory is a mean field theory in which the microions experi­
ence the electrostatic field due to the macroions together with a mean field due to all of the other 
microions. The approximations involved in formulating the mean field theory are less valid when the 
concentration of microions is high and the microion-microion spacings are small.

The Poisson-Boltzmann theory can be derived from a more complete field theory in which microion- 
microion correlations are included [29, 30, 31, 32]. Computer simulations have also pointed to the 
importance of such correlations [73, 74], especially when the microions are multivalent. However, for 
spherical macroions it has been found that although these correlations can induce effective attrac­
tions between like-charged macroions, these attractions are short ranged and therefore negligible at 
the low densities for which the inhomogeneous phase behaviour has been observed in experiments. 
There are other systems with different geometries such as charged cylinders [75, 32] (sometimes used 
as a model for DNA molecules) and charged plates [76, 32, 77] , in which electrostatic correlations 
induce attractions that are long ranged. In these cases too, the microion correlation effects are par­
ticularly important when the microionic species are multivalent [76]. For a review on correlations in 
electrostatic systems see reference [78].

4.3.5 Debye-Hiickel approximation

The next approximation applied to many Poisson-Boltzmann treatments is to linearise the Poisson- 
Boltzmann equation. This is referred to as the Debye-Hiickel approximation. The Poisson-Boltzmann 
equation is a differential equation for the mean field electrostatic potential, and contains terms that 
are nonlinear in this potential. Linearisation about a constant value of the mean field potential is

54



only valid when the spatial variations in the potential are small compared to k sT .  This translates 
to the requirement that the spatial modulations in the mean microion density are small. The Debye- 
Hiickel approximation was originally proposed for the description of solutions containing microions 
only, and not the highly charged macroions encountered in colloidal suspensions which bring about 
greater spatial variations in the microion density.

4.3.6 Modified Poisson-Boltzmann theories

Several authors have produced theories based on modifications of the linearised Poisson-Boltzmann 
theory used in the DLVO formulation. These theories suggest the possibility that long-range effective 
attractions of electrostatic origin are obtainable within the approximations of the PM and mean field 
theory.

Van Roij, Dijkstra and Hansen (RDH) [22, 68] developed a mean field density functional theory for 
which the minimising microion distributions satisfy the linearised PB equation. Their approach lead 
to phase diagrams in the <j) — na plane (0 is the colloid volume fraction, ns is the mean salt density) 
that displayed solid- liquid- and gaslike phases, as well as coexistence between dense and rarefied 
phases. In addition to the pairwise repulsive interaction between macroions in the DLVO potential 
(4.3), the free energy contained terms that were independent of macroionic positions but depended 
on the macroion density. These structure-independent but state-dependent terms were responsible 
for driving the coexistence between phases of different density. Others had pointed to such ‘volume 
terms’ previously [79]. It should also be said that the earliest treatment based on modified Poisson- 
Boltzmann theory that contained effective electrostatic attractions was developed by Sogami and Ise 
[80], although their use of the Gibbs free energy G as the relevant thermodynamic potential was 
disputed [81].

Knott and Ford developed a theory based on linearised PB equation and constructed phase di­
agrams displaying dense and rarefied phases [47, 82]. Warren developed a theory [83] based on 
Debye-Hiickel theory resulting in similar phase diagrams.

The phase diagrams calculated in these three modified PB treatments shared certain qualitative 
features in that they displayed coexistence only at very low salt density, and also showed the coexis­
tence region in the <f) — n s plane to become smaller with decreasing macroion charge. This is in line 
with the experimental observations described in Section 4.2.

Im p o rtan ce  o f volum e d ependen t inverse screening  leng th  n

An important ingredient in all of the linearised Poisson-Boltzmann theories described above is that 
they allow the inverse screening length k, which depends on the density of microions, to vary with 
macroion density. This effect causes regions of higher macroion density to have a higher density of 
microions, which means that the electrostatic forces are more effectively screened. This mechanism 
may provide a cohesive contribution to the effective interactions between the particles even when the 
pairwise interactions between particles are repulsive.

Dijkstra and van Roij [84] showed this mechanism leads to vapour-liquid coexistence for point-like 
Yukawa particles. Despite demonstrating the importance of a density dependent «, this treatment 
missed out two important contributions to the free energy. Firstly the entropy of the microions did 
not depend on the change in inhomogeneity of the density distribution as screening is enhanced but 
only on the overall microion density, and secondly the macroion-microion energy (sometimes referred 
to as the self-energy of a macroion due to the presence of microions) was not included.

Another demonstration of this mechanism was provided by Lowen and Allayarov [85]. They used 
computer simulations on a triangular arrangement of macroions to demonstrate that 3-body interac­
tions contribute a cohesive force to the effective interaction between the macroions. By approximately
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evaluating a leading order correction to the truncated mean field free energy expansion about mi­
croion density distribution functions, they arrived at 3-body interactions as a natural extension to the 
linearised theory. In their theory, the local density modulations that arise in the vicinity of a macroion 
have an effect on the effective interaction with nearby macroions, but only when density modulations 
are taken beyond first-order. This may be seen as the ‘local’ equivalent to the many-body effects 
described by the modified linear PB theories, where the interaction between macroions is influenced 
by the ‘global’ density.

The volume dependence of k, as well as the volume terms in the RDH treatment, can be viewed 
as many-body effects in that they depend on the density of macroions and therefore depend on the 
simultaneous position of several macroions rather than being the sum of pairwise interactions. The 
Wigner-Seitz cell model which will be outlined in the next chapter is an alternative method by which 
effective many-body interactions may be included.

Theories based on the volume dependence of k may provide a clue as to why the phase separation 
phenomena are only observed at low salt densities. If the salt density is too high, then k will not be 
strongly affected by the macroion density.

4.3.7 Problems with linearised theories

The linear PB theories are hampered by the problem that the coexistence phenomena are observed for 
highly charged spheres, which means that they occur beyond the limit of validity of the linearisation 
approximation. The linearised equations are not able to describe systems with large inhomogeneities 
in the mean field electrostatic potential and microion density distributions. Although Warren [83] 
states that the phase separation phenomena occur in the linear regime, work by some authors [86, 87] 
on spherical Wigner-Seitz cells (for which numerical solution of the full nonlinear PB equations 
is tractable without linearisation [88]) has suggested that the coexistence phenomena predicted by 
linearised PB theories may be spurious, and result from failure of the linearisation approximation.

One method that attempts to re-introduce nonlinear effects into the linearised PB treatment is 
by means of ‘renormalisation’, whereby oppositely charged microions very close to the macroionic 
surface are said to ‘condense’ onto the particle, giving it an effective charge that is significantly 
lower than the original charge. The lower macroionic surface charge means that the inhomogeneities 
in electrostatic potential are smaller, making the system more amenable to linearisation. Diehl et. 
al. developed a renormalisation theory [89] in which the free energy is minimised with respect to 
the number of ‘condensed’ microions. The conclusion drawn from this study was that counterion 
condensation stabilises the system against phase separation for a salt-free system, with a weak phase 
separation occurring when salt is added to the system. One disadvantage of the renormalisation 
theories is that it is not clear whether the reduction in entropy due to the tight confinement of the 
condensed counterions is properly accounted for.

In this thesis, we attempt to develop a different approach to capture the nonlinear screening 
properties of the Poisson-Boltzmann equation. This is based on a linearisation of the PB equation 
about the mean field distributions of widely separated macroions. The framework of this linearisation 
approach is laid out in Chapter 6, and is then applied to a system of two charged parallel plates in 
Chapter 7, and to a colloidal suspension of spherical particles in Chapter 8. The next chapter deals 
generally with the mean field theory of the effective interactions in charged colloidal suspensions.
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Chapter 5

Mean field theory of charged 
colloidal suspensions

5.1 The prim itive m odel of electrolytes and colloidal suspen­
sions

The simplest representation of electrolytic solutions is the primitive model (PM) [45], in which the 
molecular nature of the solvent is neglected. In this model, the solvent is treated as a continuous 
medium with a bulk dielectric constant e =  eoer, where eo is the permittivity of free space, and er is 
the relative permittivity of the solvent. The dielectric constant is chosen to account for the response 
of the solvent to electric fields. This is particularly important for polar solvents such as water for 
which er is approximately 78 at room temperature [42]. Within this approximation, an electrolyte 
consists of charged ions moving inside a continuous medium. The microions are modelled either 
as hard-sphere particles containing a point charge at the centre, or in even simpler cases simply as 
charged point particles.

Charged colloidal suspensions also contain particulate species of macroions. In the simplest mod­
els, these are represented as impenetrable hard-spheres with a uniform surface charge. The spheres 
are taken to have the same dielectric permittivity as the solvent, so that dielectric image effects can 
be neglected. Inhomogeneities in shape and surface charge are neglected within this framework. In 
addition, the particles are assumed to be monodisperse. These approximations will be better for some 
systems than others. The silica and latex spheres used in experiments by Yoshida [3] for example 
have a polydispersity in diameter of between 2% — 6%. For suspensions of proteins irregularities in 
size and shape will be more significant.

All macroions axe considered to carry an identical surface charge Z. The dissociation of surface 
groups that gives rise to charge Z  on the macroions may vary depending on the experimental con­
ditions. Theoretically it depends on the difference in free energy between the hydrated and bound 
states of the surface groups. As a first approximation Z  is kept fixed (irrespective of changes in the 
system volume or other parameters) and identical for all macroions.

Overall a suspension will be charge neutral, so that

JVZ +  £ 9< =  0 (5.1)
i

N  is the number of macroions, and is the charge on the ith microion. A subset of the microions 
originates from the dissociation of the surface groups on the macroions- these are the counterions which 
have the opposite charge to the macroions. In addition to this, a suspension will contain positive
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and negative microions resulting from the dissolution of salt. All microions will be considered to be 
similar in the sense that the counterions will be equivalent to salt ions of the same charge, with the 
remaining salt ions being different only in the sign of their valency.

The effective Hamiltonian for a colloidal suspension in the primitive model is a function of the 
macroion positions and momenta {R n ,P n} and the microion positions and momenta { r * , p i } .  It 
consists of the kinetic energy of macroions K f , kinetic energy of microions K m , the electrostatic 
potential energy of macroion-macroion interactions, microion-microion interactions and microion- 
macroion interactions. In addition to this there is the hard-sphere interaction between macroions, 
and macroions and microions, which makes it impossible for macroions to overlap or the microions 
to penetrate into the interiors of the macroions. In what follows subscripts F  refer to the macroions, 
and M  to microions. Writing the Hamiltonian for the primitive model as a sum of the macroion 
and microion kinetic energies ( K f  and K m  respectively) together with the macorion-macroion Vf f , 

micorion-microion Vm m  and macroion-microion Vm f  potential enegies, gives

H p m  =  K p  +  K m  +  Vf f  +  Vm m  +  Vm f  ( 5 . 2 )

It should be noted that since the microions and macroions axe bathed in a solvent, Hp m  cannot be 
thought of as the Hamiltonian of a closed system for which energy is conserved, but rather as an 
effective Hamiltonian of a system in contact with a heat bath. This heat bath will absorb any latent 
heats resulting from transitions between phases of different macroionic order or density. Since water 
has a high heat capacity, we can be confident that the temperature will remain constant after such 
transitions.

Hp m  results as a consequence of integrating out the solvent degrees of freedom from an ‘original’ 
Hamiltonian H , comprising of

H  = K f + K m  + V$f  + v £ m +  V&F + K ,  + V„ +  V,M +  V,F (5.3)

where VFF, V ^ M and V ^ F contain the interactions in vacuo (with dielectric constant eo for the elec­
trostatic interactions), and K a,Vas, Vsm , K f  are the solvent kinetic energy, solvent-solvent, solvent- 
microion and solvent-macroion interaction energies respectively. For a closed system with energy Eo, 
the microcanonical probability distribution of states can be written [15]

P({ri, Pi}, { R n ,  P n } , ( r a, p a } )  =  const S(H -  E0) (5.4)

A trace over solvent positions and momenta is assumed to result in a canonical distribution for the 
colloidal degrees of freedom

T ra [p({ri, Pi}, { R n ,  P „ } ,  {ra, p a } )]  =  ^  e x p (- tfPM({ri, Pi}, ( R n ,  P n} ) /k BT) (5.5)

Where T ra denotes an integral over positions and momenta of all the solvent molecules, H p m  is the 
primitive model effective Hamiltonian, kp is Boltzmann’s constant, T  is the temperature, and Z  is 
the corresponding canonical partition function. Since most experiments on colloidal phase transitions 
are done at room temperature, T  is approximately 300AT.

Clearly, the dynamics of the macro and microions are not governed by Hpm, as the solvent degrees 
of freedom have been integrated out. The primitive model Hamiltonian Hpm  is required to calculate 
the thermodynamic, equilibrium behaviour of the colloidal suspension. The important assumption in 
the PM is that the interactions of the solvent with the micro and macroions are correctly accounted 
for through the relative dielectric permittivity in the electrostatic interactions in Vf f , Vm m  and Vm f -

There are situations in which the molecular nature of the solvent is very important, especially
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when the dissolved particles are very small [69], or when the spacing between particles contains room 
for only a few solvent particles [90]. The approximation is also problematic near the surface of a highly 
charged macroion. The strong electric field near such a surface causes the polar solvent molecules 
nearby to have strongly preferential orientations. This severely reduces the dielectric permittivity near 
the surface. This is exacerbated by the high density of counterions in the vicinity of the surface. The 
dissolved microions are typically surrounded by a solvation shell of preferentially orientated water 
molecules. The high density of counterions near a charged surface restrict the orientations of the 
solvent molecules even more and cause a further reduction of the permittivity. In addition to this, the 
high density of ions near a charged surface means that the typical distance between the ions becomes 
comparable to their diameter which is typically ~  3 — 6A, so that the short-range repulsion becomes 
important.

Some treatments of charged surfaces in water attempt to take account of these molecular effects 
by treating a thin layer near the surface (which contains a large number of counterions) separately, so 
that a more diffuse layer beyond this can be treated within mean field theory. This somewhat arbitrary 
construct is called the Stern layer [67], in which the charged surface and a layer of counterions are 
treated as a capacitor. The permittivity of the solvent inside this layer is strongly reduced compared 
to the bulk. For water this is typically taken to be of the order of er «  6 — 32.

For the purposes of this study, the PM approximations are assumed to be valid even near highly 
charged surfaces. Solvent effects such as the overlap of hydration shells between two microions 
are neglected. A uniform dielectric permittivity for water is assumed throughout, and microion 
molecularity is neglected.

5.2 Adiabatic potential for macroions: m apping to  a one- 
com ponent system

Since the mass of the macroions is much larger than the mass of the microions, the assumption can 
be made that the motion of macroions is adiabatically cut off from the motion of the microions. 
The macroions move so slowly compared with the microions, that for each macroionic configuration 
the microions can be considered to have reached thermodynamic equilibrium. This requires that 
Tp »  t m , the relaxation time of the microions to be much shorter than that of the macroions.

For the purposes of calculating the equilibrium thermodynamic properties of a colloidal suspen­
sion, this criterion does not have to be satisfied, as timescales do not feature in the equilibrium 
thermodynamic description of a system. However, the construction of an effective Hamiltonian for 
the macroionic degrees of freedom only, is useful as a first step towards calculating the equilibrium free 
energy of a colloidal suspension. An adiabatic effective Hamiltonian for the macroions i / eff({Rn, P n}) 
is formed by performing a weighted sum over all possible microionic configurations.

exp ({Rn, P„})] =  T rM [exp [-/3HPM ( fo , p»}, {R„, P n})]] (5.6)

The trace over M  is over all microionic positions and momenta and H p m  = K p  +  K m  +  Vff  +  
Vm m  +  Vm f - The resulting effective Hamiltonian consists of

=  A>({Pn}) +  Vf f ({R«}) +  FM({Rn}) (5.7)

where Fm {{Rn}) is the free energy of the microions, for a given set of fixed macroionic positions. 
The Helmholtz free energy Fm  is obtained from the trace over microionic positions and momenta

exp[—/?Fm({Rti})] =  TrM [exp[—@(Km  +  Vm m  +  Vm f )]] (5.8)
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This is the same trace as that performed in (5.6). Since the macroions are fixed during the trace, the 
terms involving only macroions K p  and Vf f  may be factored out of (5.6), leaving the trace (5.8).

The macroion-macroion interaction V f f  together with Fm produce an effective many-body po­
tential for the macroions V eS  =  Vf f  +  Fm that depends on all of the macroionic positions { R n } -  

The resulting effective Hamiltonian for the one-component system of macroions is

({Rn}, {Pn}) =  J 2  H  +  K 'ff({ R 4 )  (5-9)

where M  is the mass of a macroion. It is this Hamiltonian from which the thermodynamic behaviour 
of the suspension may be calculated, which is the topic of the next section.

5.3 Therm odynam ics and phase stability o f a suspension

In theory, the thermodynamic behaviour of the colloidal suspension within the primitive model is 
derived from the free energy of macroions Fp with the effective one-component Hamiltonian H eS in 
Equation (5.9). This free energy involves a trace over all possible macroionic configurations Trp

exp [-/?*>] =  T r p  [exp [-/3H'e  ({R„}, {Pn})]] (5.10)

The free energy Fp is the equilibrium free energy of a system of macroions interacting through an 
effective potential mediated by microions. As discussed in Chapter 1, the stability of a uniform 
phase with respect to phase separation can be inferred from the free energy of a hypothetical system 
constrained to be of uniform density and order corresponding to the phase in question. Here we 
are interested in finding out whether a system with a uniform colloidal density 77̂  is unstable with 
respect to phase separation into two coexisting phases with substantially differing densities, say 
7)fl and t?fg- The criterion for this is that the isothermal compressibility XTc of the constrained, 
homogeneous system becomes negative making it thermodynamically unstable

XTc

V  is the volume of the system and Pc is the pressure of the constrained system defined as

f t  =  - ^ w  (5-12)

The free energy Ff c refers to the Helmholtz free energy of the constrained system of macroions with 
uniform density, which is given by

FFc =  {Heft)c — T S C (5.13)

where the subscript c denotes the ensemble of macroionic configurations corresponding to a restricted 
uniform macroionic phase. Theoretically Fpc would be obtained by taking the trace in (5.10) over an 
ensemble of constrained macroionic configurations corresponding to the uniform phase in question.

As discussed in Chapter 4, various experiments and theoretical treatments point toward coexis­
tence between dilute fluid phases with substantially denser fluid as well as solid phases. This indicates 
that a theoretical treatment should account for both fluid and crystalline phases of various macroionic
densities. Knott [47] found that the configurational entropy Sc associated with macroionic positions
in the fluid phase makes a negligible contribution to Fpc. The dominant terms in Fpc are a result of 
the strong electrostatic interactions, as well as the entropy of the microions which are typically of the 
order of 103 — 104 times more numerous than the macroions. Therefore both solid and fluid phases 
were represented using a perfect lattice of static macroions.
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Van Roij and co-workers (RDH) took account of macroion motions approximately using simplified 
fluid and solid reference systems in conjunction with the Gibbs-Bogoliubov inequality [68]. The free 
energy evaluated using the reference system ensemble was minimised with respect to one or more 
parameters characterising the reference system, in order to obtain the best possible estimate to Fpc- 
Uniform FCC and BCC solid phases were estimated within the Einstein model, with the Einstein 
phonon frequency u>o and mean square displacement of macroions as variational parameters. The 
liquid phase was approximated using an uncharged hard-sphere liquid reference system, with the 
hard sphere diameter d (or equivalently the reference system system packing fraction <j>ref) as the 
variational parameter. This scheme enabled the authors to produce solid-liquid-gas phase diagrams 
for colloidal suspensions, which exhibited fluid-fluid and fluid-solid coexistence with large density 
differences. Under some conditions fluid-solid coexistence was found to be preempted by a metastable 
fluid-fluid phase transition following a roughly similar contour in the na <̂f> plane. In other words, even 
though the equilibrium phase diagram exhibits solid-fluid phase coexistence, a hypothetical fluid-fluid 
coexistence covering roughly the same region in na — </> space is seen if only fluidlike configurations 
for the macroions are used to calculate Fpc•

This indicates that the mechanism underlying phase transitions between phases with significantly 
different densities is qualitatively independent of the configurational entropy of the macroions, so that 
solid and liquid phases are broadly interchangeable for the purposes of finding out whether this kind 
of coexistence occurs. MC simulations performed by RDH also indicate that the difference in free 
energy between solid and fluid phases of the same packing fraction <f> are very small (less than I k s T  
per macroion), again supporting the assertion that it is not differences in macroionic entropy that 
cause fluid-fluid or fluid-solid coexistence between phases of substantially different densities.

For these reasons, calculations of Fpc for the constrained, homogeneous density system can be 
performed on a perfect lattice of macroions. Neither lattice vibrations nor configurational disorder for 
fluidlike phases have to be considered. This greatly simplifies the problem to the calculation of Fpc 
for a perfect lattice of macroions interacting through V'eff({Rn}) at different homogeneous densities 
tjf .

5.4 Mean field description of the microions

5.4.1 Mean field density functional theory

Within the approximation laid out above, the constrained free energy Fpc consists of the free energy of 
microions F m  and the macroion-macroion potential energy Vf f  for a perfect static lattice of macroions 
with a uniform density rjp- The entropy and kinetic energy of the macroions are neglected. We will
drop the subscript F  and refer to Fc as the free energy of the homogeneous system of macroions
arranged in a perfect lattice.

Fc =  Fm  + Vf f  (5-14)

This section is concerned with the evaluation of Fm ({R»i})- This is the Helmholtz free energy of a 
system of microions interacting with a fixed set of macroions located at positions {Rn}- So it is the 
Helmholtz free energy of a system with the Hamiltonian

H m { { Pi, I"*}; (Rn}fixed) =  K m  +  Vm m  +  Vm f  (5.15)

Clearly this is the Hamiltonian of a many body system, for which the partition function cannot be 
evaluated exactly. For this reason most approaches to this problem are variations on mean field 
theory. A mean field theory along the fines of Chapter 2 can be developed for the microions. In this 
framework, the microions are modelled as non-interacting point particles in an external mean field
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potential. Microion-microion correlations are neglected within this approximation.
To begin with, we will consider an idealised system containing only counterions of a single species 

earring a charge q. The free energy is expressed as a functional of the single particle probability 
distribution function for these microions p{r). The kinetic and entropic contribution to the free 
energy for this class of distribution functions is given (as in Section 2.2.2) by

{ K m )o - T S 0 = kBT  j p{r)[log{p{r)\3) -  l)dr (5.16)

Where 0 denotes the probability distribution function of the mean field ensemble corresponding
to the distribution function p(r), and A is the thermal de Broglie wavelength of the microions
h/^TrmkBT)1/ 2, where m  is the mass of a microion.

One component of the macroion-microion interaction Vm f  is a hard-sphere interaction that pre­
vents the microions from penetrating the macroions. Therefore the integral in (5.16) and all subse­
quent configurational integrals are restricted to be over the available space for the microions, exclud­
ing the regions inside the macroions. Restricting the integrals in this way means the only remaining 
component in Vm f  is the electrostatic interaction.

The next task is to evaluate the mean potential energy contributions {Vm f )o and {Vm m )o us­
ing the trial probability distribution p(r). Since the trial probability distributions are based on 
non-interacting particles inside an external potential, there are no correlations in the two-particle 
probability distribution function, so that the pair distribution function reduces to

p(2)( r i , r 2) =  p(2)( r i , r 2)p(ri)p(r2) =  p (ri)p (r2) (5.17)

where g(2\ r \ ,  r 2) is the pair correlation function and equals unity for the trial ensemble, in which cor­
relations between the particles are neglected. As a result of this simplification, averages of quantities 
that depend on the positions of pairs of particles such as Vm m  > are evaluated as

{Vm m )o =  y  J  dr J  dr'p(r)p(r')G(r -  r ')  (5.18)

where G{r  — r ')  is the electrostatic Green’s function satisfying the Poisson equation

V 2G(r -  r ')  =  -i<S3(r -  r ')  (5.19)

The mean macroion-microion interaction {Vm f )o is given by

{Vm f ) o = q J  drp{r)^F {r) (5.20)

where V'f(f) is the electrostatic potential due to all of the macroions. In this model, we consider all 
of the macroions to be identical, with a smooth surface charge density cr = Z/Aira2 (Z  is the total 
charge carried by a macroion and a is the macroion radius). The charge distribution due to a single 
macroion centred at R n is represented using a spherical delta function as

n i(r  -  R n) =  a<J(|r -  R„| -  a) (5.21)

The electrostatic potential ippir) can be expressed in terms of the total macroionic charge distribution

ipp{r) =  J  d r ' n p ^ G i r  -  r ')  (5.22)
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where the total macroionic charge distribution np(r)  is the sum over all macroions (labelled n)

n H r ) =  n i (r  “  R n) (5-23)
n

Combining these terms, the mean field free energy of the microions is expressed as

f m [p (r)] =  J  kBTp{r)[log(p{r)X3) -  l)dr +  y  J  dr J  dr'p(r)p(r')G(r -  r')

+ q  J  d r  J  d r ' p ( r ) n F { r ' ) G ( r  — r')
(5.24)

As mentioned previously, all integrals are understood to be over the volume outside of the colloidal 
spheres.

The free energy (5.24) is functionally differentiated in order to find the p(r) that minimises it, 
and hence gives the best possible approximation to the true free energy. A Lagrange multiplier p to 
constrain the total number of microions and ensure charge neutrality is required. The optimal density 
profile satisfies

F -  li f  (irp(r)l =  kg T  log{p(r)A3) - q 2 [  dr'p(r')G(r -  r ')
,  (5-25)

— Q d r ' n F ( r ' ) G ( r  — r')  — p  =  0

Sp( r)

The second term is (0m (r))o5 the average electrical potential at r due to microions, evaluated within 
the mean field ensemble. The third term is the electrostatic potential due to the fixed macroions
0ir(r). Equation (5.25) for the optimal profile may be written as

P(r) = 3̂ exp \(3 (p -  q (ipM(r))0 -  90f(r))] (5.26)

The average potential due to microions (0M(r))o is a functional of p(r), and (5.26) is a non-linear
equation for the self-consistent density profile satisfying

P(r ) =  ^3 exP p { p ~ q  J  G(r -  r')p(r')dr' -  qipF(r)̂ (5.27)

5.4.2 The Poisson-Boltzmann equation

The Poisson-Boltzmann approach is an alternative representation of the equation for the mean field 
distribution of microions. Instead of solving for an optimal mean field density distribution of microions 
p(r) as in (5.27), the objective in the PB approach is to solve for the total mean field electrical potential

0  =  (0m( r))0 +  0 f (  r) (5.28)

For a fixed configuration of microions, the electrostatic potential satisfies the Poisson equation

V20 M(r) =  ~ “ P(r ) (5.29)

where the hats indicate that the quantities relate to particles at fixed positions. It can be shown that
this relation holds for thermal averages. For averages taken over the mean field ensemble the result
is

V 2(0m (r))0 =  -y p (r )  (5.30)
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where p(r) is the optimising mean field distribution function. Equation (5.26) may be written in 
terms of (ipM{r))0 ^

V2(V>m(r))o =  exp \/3(p -  q r))0 -  q$F(r))] (5.31)

The fixed macroion electrostatic potential is related to the fixed macroionic charge distribution 
through the Poisson equation

VVjp(r) =  — “ ttj?(r) (5.32)

The equation satisfied by the total mean field potential (5.28) is

V2^(r)  =  -  -  (qn0 exp[-/? q V>(r)] +  nF{r)) (5.33)

where the normalisation constant no =  exp(/5/i)/A3 has been introduced. This is the nonlinear 
Poisson-Boltzmann equation that has to be solved to find ip(r), which is equivalent to finding the 
density distribution that minimises the functional (5.24).

5.4.3 M ultiple microionic species

The mean field Helmholtz free energy (5.24) may be generalised to account for the presence of dif­
ferently charged species of microion. This situation arises for example when salt is added to the 
deionised solution containing the colloidal suspension. We introduce pi(r), the probability distribu­
tion for microions carrying charge <fc. Each species of microion may have a different mass, so the 
thermal de Broglie wavelength (which depends on mass) for species i is denoted by A*. Fm is now a 
functional of the full set of distribution functions ( p i ( r ) }

^M[{pi(r)}] J  pi(r)[log(pi(r)\?)-l]dr + q i Y ^ q j ^  J  dr J  dr'pi(r)pj(r')G(r -  r')

qi J  dr J  dr’pi{r)nF{r')G{r -  r')

(5.34)

where the sums in i , j  run over all of the different microionic species. Generalising to account for 
multiple species, the average mean field potential due to all of the microions is

(^m (r))0 =  5 3 ^  f  dr'pj{r')G{r -  r ')  (5.35)
j

The potential due to the fixed charges ipF(r) remains the same, so that (5.34) may be expressed as

* i i f [ { p * ( r ) } ]  =  [ k B T  J P i ( r ) l l ° 9 ( p i ( r ) A ? ) - l ] d r + y  J p i ( r ) ( i p M ( r ) ) o d r  +  qi J m  r ) ipF ( r ) d r \

(5.36)
A functional derivative with respect to p»(r) is taken to find the optimal distributions. Lagrange 
multipliers pi that regulate the number of microions of each species i are introduced, and total mean 
field potential at r  is again defined as r) =  (ipM(r))o +  i>F(r)

Spi(  r )
Fm - P i J  d rp i (  r ) =  kBT  log(pi(r)Xi) +  qt V>(r) -  Pi = 0 (5.37)

64



The profiles satisfying this condition are

P i ( r )  =  ^3 exP I P & i  ~  Q M r ))l (5 -38)

or
pi(r) = noiexp[-f3qiip{r)] (5.39)

where no* =  exp(/?/^)/A?. The form of no* must be chosen to ensure the correct abundance of ions of 
each species. Equation (5.39) represents a set of coupled equations (one for each microionic species 
i), with each pi contributing to the total mean field potential r) through (5.35).

The Poisson-Boltzmann approach utilises the relationship between the total electrostatic potential 
ip(r)  and the total (microionic and macroionic) charge density. The microionic contribution to the 
charge density which we denote by p(r) couples all of the profiles pi together

p(r) =  (5-40)
i

Using (5.40) as the total microionic contribution to the charge density, the Poisson-Boltzmann equa­
tion is generalised to f

V 2ip{r) =  n°* exP [ ~ ^ ^ ( r ) ]  +  n F (r)^  (5.41)

The charge on a microion of species i may be written as qi = e Zi where e is the elementary 
charge of the electron and zi is the valency of microion species i. For convenience, we introduce the 
dimensionless reduced potential $  =  eip/ksT  and change the macroion charge density n F (r)  to a 
number density through n F ( r )  —> n F / e .  In terms of these quantities the PB equation can be rewritten 
as

V2$(r) =  -47d B noi exP [ -2i$ (r )] +  n F(r)^  (5.42)

where Ib is the Bjerrum length Ib  =  e2/A-neksT. This is the length at which the potential energy
between two elementary charges (in a medium with dielectric permittivity e) equals their thermal
kinetic energy. With e =  78eo, and T  =  300K , Ib = 0.72 nm.

5.4.4 Salt content of a suspension

The concentration of ions in electrolytes greatly affects the collective electrostatic interactions in the 
system. A high concentration of ions enhances the screening capability of the solution. The Debye 
screening length A# quantifies the lengthscale on which a charge is effectively screened within the 
linear Debye Hiickel theory [45]. The inverse Debye screening length k = 1/Xd is defined as

k2 = AtcIb ^ 2  zi Uoi (5.43)
i

This indicates that the screening length is proportional to the inverse square root of the total ionic 
concentration in the electrolyte. A higher concentration of ions noi enhances screening, so that the 
electrostatic potential of a charge in the electrolyte is screened over a shorter distance. Even the 
purest deionised solvent will contain a small number of salt ions, which will reduce the screening 
length from that of a suspension containing only the counterions dissolved from the surfaces of the 
colloidal particles.

So far we have only said that the number of ions of each species is regulated by a Lagrange 
multiplier /i*. However there are two distinct physical situations that will determine the form of pi.
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The system may be in contact with a large reservoir of electrolyte containing a fixed concentration 
of salt, or it may be closed containing a fixed number of salt ions. These two situations give rise 
to the grand canonical and canonical ensemble for the microions respectively. The grand-canonical 
ensemble is sometimes referred to the semi-grand canonical ensemble [86] in this context, to indicate 
that the system is open to microion exchange with a reservoir but with the number of macroions in 
the system remaining fixed.

For the case of the grand canonical ensemble, fa is the chemical potential of the species i inside 
an infinite salt bath. When the system reaches equilibrium with the bath, the chemical potential 
for species i in the system must equal the chemical potential inside the bath fa. In the canonical 
ensemble, fa takes a form that ensures that the number of ions of species i equals the fixed amount 
present in the closed system.

In the grand canonical ensemble, where the number of microions in the system is not fixed, the 
Helmholtz free energy F  is not the correct thermodynamic potential for the microions. It is replaced 
by the grand potential t t({fa},  V, T), which is related to F({Ni} ,  V , T)  through the Legendre transform

«({/*}, V, T)  =  F ({ K } ,  V , T ) - J 2  WW (5*44)
i

where fa is the fixed chemical potential of species i in the reservoir, and Ni is the mean number of 
i-ions in the system when it is at equilibrium with the reservoir.

The mean field theory presented here neglects microion-microion correlations. Since these cor­
relations are expected to be stronger for higher valency microions [73], we restrict ourselves to the 
case of univalent z = ±  1 microions in this study. N\Z\  counterions result from dissolution of surface 
groups from the N  macroions. From now on we will take the macroionic charge to be negative Z  < 0, 
though this choice is arbitrary. The N\Z \  counterions (of valency z =  +1) are joined by N s additional 
z = +1 ions, and N a coions (with z = — 1) resulting from the presence of N s dissolved salt particles 
in the system. In both ensembles the system must be charge neutral overall so that the total number 
of positive microions in the system is N+ = N\Z\  + N s while the total number of negative microions 
is N - = N a.

5.4.5 Charge neutrality

In both thermodynamic ensembles, the suspension must satisfy overall charge neutrality

^ 2  /  « i ( r - R n ) d r  +  5 3  f ziPi(r)dr = 0 (5.45)
n i

This constraint may be imposed through the use of an additional Lagrange multiplier [86] fai, to 
ensure overall charge neutrality, so that the Euler-Lagrange equation (5.37) is changed to

6
Spi( r )

Although fat and fa are clearly interrelated, they have distinct roles. The electroneutrality Lagrange 
multiplier fat enforces overall charge neutrality, while fa ensures the correct abundance of each 
species of ion either through straightforward normalisation for the canonical ensemble of ions, or by 
maintaining equilibrium with a salt bath at chemical potential fa for the grand canonical ensemble 
of ions. For a system containing two species of microion z = ±1, the constraint on the number of 
microions can be imposed by either a Lagrange multiplier for each species p±, or one for the number 
of salt particles fa  and one to impose charge neutrality fat.

In terms of the Poisson-Boltzmann equation, the charge neutrality condition takes the form of

Fm - V i J  drpi(r) -  fat J  dr ̂  Zipi( r) =  log(pi(r)Xi) -I- Z i  ($(r) -  f a t )  - f a  = 0 (5.46)
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conditions on the mean field potential 4>(r). Gauss’s Theorem relates the total charge in the system 
to the flux through a bounding surface. If the total charge in the volume V  is zero, then the net flux 
through the surface S  enclosing it must also be zero

f V $ d s  =  [ V 2$dV  (5.47)
Js  Jv

where 5  is a surface bounding the volume V, ds = nds and n  is a vector perpendicular to the surface 
element ds.

In certain, simplified geometries, the charge neutrality condition translates to simple boundary 
conditions on <3>(r). As an example consider a single spherical colloidal particle with radius a, carrying 
charge Z, located at the centre of a spherical volume of radius R. The particle is immersed in an 
electrolyte containing an excess of counterions that neutralise the charge on the macroion. For the 
system to be charge neutral, the charge density distribution of microions must satisfy

R
ZiPi(r)dr =  - Z  (5.48)

Now we assume a spherically symmetric charge distribution, so that any electrostatic field is purely 
in the radial direction, and the electrostatic potential depends only on the radial coordinate r, so 
that 4>(r) =  4>(r). Integrating the microionic charge density given by the PB equation between radial 
positions r = a and r = R, and requiring the total microionic charge to satisfy (5.48), results in

4tt R 2—  
dr

-47m 2^  
r = R  d r

= 4ttIb Z  (5.49)

where Z  is the total amount of surface charge divided by e (i.e. the valency of the macroion). If 
condition (5.45) is met, then the field at R  and beyond must vanish

dr
=  0 (5.50)

r=R

inserting this in (5.49) gives the boundary condition at r = a

dr
=  -47t/s <7 (5.51)

which relates the gradient of the potential at the surface of the macroion to the surface charge density 
a =  Z/47ra2. If the boundary conditions (5.50) and (5.51) are met by the potential satisfying the 
Poisson-Boltzmann equation, then the charge neutrality condition is satisfied.

The simple relationship between charge neutrality and the gradient of the potential is a result of 
the simple, spherically symmetric geometry in this example. In general the form of the boundary 
condition will be more complicated.

5.5 The W igner-Seitz cell model

5.5.1 Symmetry and periodicity of the mean field distribution of microions

The Hamiltonian for microions in the primitive model is given in Equation (5.15). More explicitly, 
for the case of a salt-free suspension containing univalent (z =  +1) counterions only, this takes the 
form

N Z
#Af({Pt,ri}; { R n } f ix e d )  = Ki + $F(r») +  ^ w ( r j  -  rj)

j =li = l

N Z
(5.52)
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Ki is the kinetic energy of the ith  microion, u(r* — r )̂ is the Coulomb interaction between two 
microions, and 3>jp(ri) is the Coulomb potential of a microion at r* due to the surface charge on all 
of the macroions. From now on energies will be given in units of k sT .

We have established that it suffices to calculate the free energy of a perfect lattice of static 
macroions to estimate Fpc for various packing fractions. The microionic contribution Fm  requires 
the solution of the mean field equation for the optimal distribution of microions

(5.53)

with the appropriate electrostatic potential $p (r) due to macroions centred at lattice sites {Rn}iattice-
The next step is to assume that the optimising density profile of microions will have the same 

symmetry inherent in the geometry of the fixed macroions. In other words the mean field distribution 
p(r) and potential $(r) will have the same symmetry as ^^(r). Distributions with a lower symmetry 
are expected to result in a higher free energy, and are therefore not the optimising mean field solutions.

With this assumption p(r) turns into a periodic function that is invariant with respect to lattice 
translations p(r +  L) =  p(r), where L is a lattice vector x. This means a solution for p(r) can be 
restricted to lie within a single Wigner-Seitz (W-S) cell of the lattice [91]. This cell is a regular poly­
hedron reflecting the point group symmetry of the lattice of macroions, containing a single macroion 
at the centre [92, 93]. The volume of each cell is the system volume divided by the total number 
of macroions Vw = V /N  which is equivalent to Vw = I/rjp the inverse of the macroionic number 
density.

The Wigner-Seitz cell concept ties in with the condition of local or mesoscopic charge neutrality. 
It is assumed that the most likely solution for p(r) is one that creates charge neutral regions on the 
length scale of the macroionic spacings. This is expected to be the case because the formation of 
charged regions would be energetically and entropically unfavourable. This behaviour is expected in 
an exact statistical mechanical treatment of the system as well: the configurations that contribute 
most to the canonical partition function are those that split the system up into charge neutral regions 
that interact weakly with each other. Therefore the W-S cells are charge neutral, with each cell 
containing the correct number of excess counterions to neutralise the charge on one macroion.

The W-S cell treatment is clearly a mean field concept. In a computer simulation of a system 
with many fixed macroions arranged in a lattice, we would expect there to be a net charge in the 
different cells at any given instant. Geometrically, this could be thought of as deformations of the 
charge neutral volumes about the macroions. However on average, the geometry of the neutralising 
volumes is expected to be identical about each macroion- namely the W-S cells.

An inherent feature of the mean-field theory is the neglect of microion-microion correlations. This 
means local microscopic fluctuations due to microion-microion correlations axe neglected. In addition 
to this, long-wavelength fluctuations of the microionic distribution functions on the length scale of the 
W-S cells are excluded too. Some fluctuations about the mean-field solution may make a substantial 
contribution to the partition function, with the result that the mean field approximation to the free 
energy will not be accurate. Correlations between microions on the length-scale of the W-S cells can 
be imagined in which for example adjacent cells contain a small excess charge of opposite signs. The 
fluctuations could even be on a longer length-scale with groups of adjacent cells containing excess 
charge.

The W-S cell model introduces an additional approximation in that microion-macroion correlations 
between cells are neglected in addition to the microion-microion correlations. Situations can be 
imagined in which the microion distribution about a macroion in a charge neutral W-S cell is skewed

lrTo be precise, the additional assumption that the number of macroions is large has been introduced. The invariance 
holds for the case of an infinite lattice. If the number of macroions is sufficiently large, distortions due to finite size of 
the colloidal crystal can be neglected.

p(r) =  A 3 exp \p — J  G(r — r')p(r')drf — $ p (r)
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and breaks the symmetry. This would set up dipole or higher order multipole fields emanating from 
the cell. Correlations between cells could bring about asymmetries in adjacent cells. These effects 
are neglected in the W-S cell model, as well as most field theories that do not involve W-S cells.

Despite the neglect of inter-cell correlations in the W-S cell model, it is important to recognise 
that inter-cell interactions are inherent within the model. The microions in a cell are confined to 
the cell by virtue of their interactions with the microions and macroions in the surrounding cells. 
The W-S cell construction constrains the form of the mean field electrostatic potential 4>(r) and 
microion distribution function p(r) as a result of interactions with an infinite lattice of identical cells 
surrounding it.

The interactions between the cells manifest themselves in boundary conditions on the mean field 
potential 4>(r) on the cell boundary. This is a typical feature of electrostatic problems: the interaction 
of a bounded region with its surroundings is encoded in the boundary conditions of the electrostatic 
potential on the surface enclosing the region [94]. In the W-S cell treatment, the symmetry and 
periodicity imposed on the mean field potential, means that the flux out of each cell boundary 
exactly cancels with the flux into the cell from all of the identical adjacent cells in the lattice. This 
means that on the W-S cell boundary, the mean field potential must satisfy

V $ • n  =  0 (5.54)

where n  is a unit vector perpendicular to the cell boundary. It is important to note that conditions 
for periodicity, symmetry and charge neutrality are interrelated, and the combination of all three 
gives rise to the condition (5.54) on the W-S cell boundary. It is impossible to construct an infinitely 
periodic lattice of W-S cells containing a net charge. It is equally impossible to have an infinite, 
periodic lattice consisting of cells with electrostatic fields of a different symmetry to the lattice. In 
both of these cases, when the infinite cell limit is taken, electrostatic fields build up at the outer 
boundaries of the lattice, breaking the periodicity property.

A mean field potential 4>(r) that satisfies (5.54) on the boundary of the W-S cell, implicitly 
accounts for inter-cell interactions with an infinite set of identical cells in the lattice. The W-S cell 
treatment replaces the problem of a lattice containing many macroions and their respective microions, 
into one of a single macroion with microions in a W-S cell with the appropriate boundary conditions 
to account for the interactions with microions and macroions in all other cells. Using this approach, 
the electrostatic energy per macroion of the infinite lattice Uei /N  where Uei = Vm m  +  Vf f  +  Vm f  
may be calculated from the charge distribution and electrostatic potential within a single W-S cell. 
The same is true for the mean field free energy Fm -

5.5.2 Simple cubic geometry

A comparatively easy lattice structure to deal with is the simple cubic (SC) lattice [92], which possess 
a high degree of symmetry. If the spacing between macroions centred at lattice sites is D, the volume 
of each cell is Vw =  D3. The lattice sites are described by the position vectors R /mn =  / r i+ ra r 2+ n r3, 
where rj., r 2, r 3 are lattice vectors which may be taken to be Di, Dj, D k  for this geometry, and I, m, n 
are integers.

The Wigner-Seitz cell for this geometry is a cube with sides of length D. For the cell centred 
at the origin (with I = m  = n = 0), the faces of the cubic cell are composed of the x — y planes 
at z = ± D /2 , the x  — z planes at y = ± D /2  and the y — z  planes at x  =  ± D /2 .  The boundary 
conditions satisfied by the mean field potential at the faces of the W-S cube are

V $ ( ± £ > / 2 , y , 2 ) - l = | 5 =  0 (5.55)
x = ± D / 2
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and
V*(®, ±£>/2, z) • j  =  = 0  (5.56)

d V  y = ± D /2

and
V $(x, y, ±£)/2) • k  =  - -  = 0  (5.57)

0,2 z= ± D /2

These boundary conditions are direct reflection of the symmetry and periodicity imposed on the mean 
field potential $ (r) in the W-S treatment.

The mean field potential $ (r) and distribution of microions p(r) are assumed to possess the 
full symmetry of the simple cubic structure of macroions, and the respective macroionic electrostatic 
potential For the SC geometry, this corresponds to the full octahedral group O, which contains
48 symmetry operations (24 operations which take a cube onto itself, together with the inversion 
operation I) [93]. These symmetry conditions may be expressed as

$ (s • r) =  $(r) (5.58)

and
p{s • r) =  p{r) (5.59)

where s are any of the operations that make up the symmetry group of the lattice. These may 
be expressed as matrix operators that take a point r  in the cell to a different point within the cell 
r ' =  s • r. By construction, the function 4>/r(r) also satisfies these symmetry conditions.

The high degree of symmetry in the simple cubic W-S cell, allows us to focus on a small irreducible 
portion of the cell, that corresponds to l/48 th  of the cell volume, in the solution of the mean field 
equations.

Experimental observations of colloidal crystals show that these systems tend to crystallise into 
close-packed BCC or FCC lattice structures. These structures have lower symmetries than the SC 
structure, so for convenience we restrict ourselves to the SC lattice structure.

5.5.3 Spherical approximation

An appreciable simplification is brought about if the W-S cells, which are regular polyhedra for a 
colloidal crystal, are approximated as being spherical. In this case the W-S cell is taken to be a 
spherical volume with radius R  and volume Vw =  (4/3)7tR 3, containing a single macroion at the 
centre. The microion distribution p(r) and the mean field potential $ (r) follow the symmetry of the 
cell, and turn into radially symmetric functions p(r) and 4>(r) depending only on the radial distance 
from the centre of the cell r.

This allows the PB equation to be converted into an ordinary differential equation (with r  being 
the only variable) as opposed to a partial differential equation. The boundary conditions satisfied by 
4>(r) are those in equations (5.50) and (5.51). If results from the spherical approximation are to be 
compared to those from a SC W-S cell of the same volume, then a radius of R  — (3/47r)1/3!) «  0.62D 
must be taken, where D  is the length of the sides of the SC W-S cube.

It should be noted that although the spherical W-S cell geometry can be seen as an approximation 
to a cubic W-S cell, in situations where the macroions are in a positionally disordered (liquidlike) 
state, the spherical W-S cell may actually be more appropriate. In this situation a spherical W-S cell 
may be interpreted as representing the ‘average’ environment arround one macroion in the disordered 
system.

70



5.6 The Boundary D ensity Theorem

5.6.1 Pressure of a suspension from a single W igner-Seitz cell

The stability of a homogeneous phase with respect to phase separation can be deduced from the 
pressure Pc of a constrained homogeneous system. In the W-S cell mean field theory, the free energy 
per macroion of the system f c =  Fc/ N  is obtained from the free energy of microions and a macroion 
within a single W-S cell. The pressure Pc is the derivative of f c with respect to the cell volume Vw

8FC _  d f c
Pc~ a v ~  dvw ( 5 - 6 0 )

This pressure is related to the osmotic pressure which is the difference between the pressure of a 
solution and a pure solvent, but we refer to it simply as the pressure.

For the simple cubic cell the volume is Vw =  D3 and the differential dVw = 3D2dD, so that the 
pressure is

Pc = ~ U P d D  5̂'61^
For the spherical approximation, Vw =  (4/3)7ri?3 and dV = AttR2, s o  the pressure is

Pc = _ 4ttR 2 dR  5̂’62^

Due to the specific form that the free energy functional f c takes within mean field theory, specific 
cancellations occur between the entropic and energetic terms that give rise to particularly simple 
expressions for Pc. This result is given by the Boundary Density Theorem (BDT), which relates Pc 
to the density of microions at the W-S cell boundary.

The BDT is valid for systems containing one or several species of microion, and systems that are 
open or closed with respect to a salt bath. In addition to this, similar results can be obtained for 
different W-S cell geometries. In order to illustrate the nature of the cancellations clearly, we will 
first derive the BDT for a salt-free system in the spherical W-S cell approximation. Subsequently we 
will show how the result can be extended to open and closed systems containing salt, and finally to 
the simple cubic W-S cell geometry.

5.6.2 Salt-free system  in the spherical approximation

In the spherical approximation the W-S cell is a sphere of radius R , containing a single macroion 
of radius a and charge Z. The macroion is positioned at the centre of the W-S cell. For a closed, 
salt-free system, there will also be N\Z \  neutralising univalent counterions. The boundary conditions 
satisfied by the mean field potential 4>(r) are (5.50) and (5.51).

For a static lattice of macroions, Fc consists of the free energy of the microions Fm  and Vff  the 
macroion-macroion potential energy. The entropy and kinetic energy of the macroions are neglected. 
The free energy per macroion is given by

f c = [  p ( r )  ( l n p ( r ) A 3 —  l)  d r  +  i  [  ( p( r )  4- n F (r ))  ( p ( r ' )  +  nF (r')) G ( r  -  r ' ) d r ' d r  (5.63) 
J w  1 J w

W  indicates integration over the volume of the W-S cell, excluding the interior volume of the central 
macroion. The double integral on the right is the total electrostatic energy per macroion Uei / N  where 
Uei =  Vm m  +  Vf f  +  Vm f -

In the spherical geometry, the distribution of microions and the total mean field potential are 
assumed to be spherically symmetric, so p ( r )  =  p ( r )  and 4>(r) =  $ (r). The integrations in (5.63) are 
best done in spherical coordinates using the volume element d r  =  r2 sin 9drdQd<t>.  When taking the
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derivative with respect to the cell radius R in (5.62) it is important to account for the R-dependence 
of the upper limit of the integral over r in (5.63). Taking the derivative of f c with respect to R, and 
subsequently performing some of the integrations over dr' and some of the angular integrals results 
in

^  =  4ttR2p(R)A3 (In p(R)A3 -  l)  +  lnp(r)dr

+  47rR2 (p(R) + nF(R)) $(R) + Jw ( %  + $ (r )dr
(5.64)

where
$ (r) =  J  (p(r') +  nF(r')) G (r — r')dr' (5.65)

Clearly n F(R) =  0 since there is no macroionic charge at the cell boundary, and dnF/d R  is also 
zero since the macroionic distribution is assumed to be fixed with respect to changes in R. We now 
substitute p(r) =  no exp(—4>(r)), which results in the cancellation of some of the terms originating 
from the entropic and energetic portions of f c to give

^  =  -47rR2p(R) +  In n0
^ R 2 p (R )+ I w m dT,

(5.66)

The term in the square brackets can be identified as the derivative of the total microionic charge, 
which for this case is fixed at N\Z\  to conserve charge neutrality

Using (5.67) in (5.66) and substituting the outcome into (5.62) gives the result that the pressure 
equals the density of microions at the W-S cell boundary

Pc = p{R) (5.68)

in units of kFT  per unit volume.

5.6.3 System  containing fixed amount of salt

A similar result is obtained for a system with N a dissolved salt particles per macroion in addition to 
the \Z\ counterions. Each salt particle dissolves into one univalent coion z =  — 1 and one univalent 
counterion z =  +1. We take the mass of all of the microions, and therefore the respective thermal de 
Broglie wavelengths, to be the same. The free energy in this case is

f c =  [  P + ( r) (Inp+ (r)A3 -  l)+ P -( r )  (lnp_(r)A3 -  l)  d r + i  [  ( p ( r ) +  n F (r)) (p(r') +  n F (r ' ) )  G ( r  -  r ' )dr 'o  
J w  1 J w

( 5 . 6 9 )

where p  in the energy term is the charge density distribution p  =  p +  — p_ . The optimal distributions 
of positive and negative microions are

P± =  n 0±  e x p ( = F $ )  ( 5 . 7 0 )
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where the normalisation factors no± =  A 3 exp(/i±) fix the number of microions of each species. 
Taking the derivative with respect to R  results in similar cancellations, with the result

^  =  - 4 n R 2 (p+(R) + /9_(R))+lnno+ 4irR?p+(R) +  j  +'nn a -  47rR 2p-(R ) +  J  — - d r

W (5.71)
Again, the terms in the square brackets are identified with derivatives of the total number of microions 
of each species. Since these are fixed with respect to changes in volume in the closed system, the final 
result is

Pc = p+(R) + p-(R)  (5.72)

The pressure equals the total density of microions at the W-S cell boundary.

5.6.4 System  in contact with salt reservoir

As discussed in Section 5.4.4, for a system which is open with respect to exchange of microions with 
a salt reservoir, the required thermodynamic potential for the microions is the grand potential

n M(p+ ,P - , V, T) = Fm (N+, JV_, V, T) -  p +N+ -  p _ N -  (5.73)

p± are the chemical potentials of the microions in the salt bath, and N±  is the mean number of ions 
of each species in the system at equilibrium with the salt bath.

For this situation, the semi-grand canonical ensemble (number of microions is variable, while the 
number of macroions is fixed) the free energy per macroion is f c — Qm + Vf f  which is just the 
Legendre transform of the functional (5.69)

f c(p,+ ,p-.,r}c,T )  =  f c(N+,N-,r)c,T )  -  p+ f p+(r)dr -  p -  [ p-(r)dr  (5.74)
Jw  Jw

Now the optimal density profiles p± ( r )  contain the normalisation factors no± =  A-3 exp(p±) with 
p± fixed at the salt bath chemical potentials. When the derivative d f c/d R  is taken at fixed chemical 
potentials p±, the terms subtracted from f c in (5.74) exactly cancel those in the square brackets in 
(5.71) leaving the result for the pressure unchanged

Pc = p+(R) + p .(R )  (5.75)

5.6.5 Simple cubic W igner-Seitz cell geometry

To illustrate that a similar result for the pressure is obtained in the cubic geometry, we will go back 
to the salt-free scenario. As before, the simple cubic W-S cell consists of a cubic cell with sides of 
length D , containing a central spherical macroion with radius a, carrying charge Z. In this geometry 
the integrations over the W-S cell are performed using cartesian coordinates as follows

p r D / 2  p D / 2  p D/ 2
dr = dx dy I dz©(|r| — a) (5.76)

JW J-D/2 J-D/2 J-D/2

To ensure the region inside the spherical colloidal particle is exluded, a unit step function 0(x) has 
been introduced for which 0(rr) =  1 if x > 0 and 0(x) =  0 otherwise.

When taking the derivative of / c, the symmetry of the SC geometry comes into play. The In­
dependence of the integration limits in x, y, z  will each give rise to two terms in the derivative (one from 
the lower and one from the upper limit). If the symmetry of the mean field distribution follows the 
SC symmetry of the macroionic field, then p(r) and 4>(r) are invariant under all of the relevant point- 
group symmetry operations. One consequence of this is that p(r) and <£(r) will look the same on each
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face of the cubic W-S cell boundary. In other words, integrals over the W-S cell boundary involving 
p(±D/2, y, z ), p(z, ± D / 2, z ) and p(x, y, ± D / 2) will all be equivalent, giving rise to 6 identical terms. 
When taking the derivative of f c with respect to D, we group all of the identical terms as a 6-fold 
multiple of the term obtained from the integration over the cubic face at x  — +D/2  in the y — z 
plane.

f l f  i  r D / 2 r D / 2 r

dI5 = 6  X 2 J  D /2 dy J  D/2 d zp (D / 2' y ’ (ln 2)A3 “ 1) + /w dr ln P'oj)
p D / 2  r D /2

+  6 x -  /  dy dzp (D /2 ,y ,z )$ (D /2 ,y ,z )  +
1 J - D / 2  J - D / 2

Substituting the optimal density profile p(r) =  no exp(—$(r)) into the functional, finding the usual 
cancellations, and setting the derivative of the total number of microions with respect to D to zero, 
we get

Q f  r D / 2  r D / 2
= 3 dy dzpiD/2,y, z) = 3D2(p)8utf (5.78)

aU J-D/2 J-D/2

where the angled brackets denote the average of the microionic density over one face of the W-S cell. 
This gives the nice result that the pressure is given by the mean density of microions at the W-S cell 
boundary

Pc — (p)surf (5.79)

As for the spherical W-S cell, this result may be generalised to systems containing a fixed amount of 
salt or to systems in contact with a salt reservoir, in which case (5.79) is generalised to

Pc = (p+ + p~) surf (5.80)

In the next chapter, a new linearisation scheme for the PB equation will be introduced. This will 
be applied in the subsequent chapters to calculate pressures using the BDT.

/Jw dT®§D  w  oD

(5.77)
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Chapter 6

New linearisation scheme for dilute 
suspensions

6.1 Introduction

The non-linear nature of the mean field integral and corresponding Poisson-Boltzmann differential 
equations makes finding solutions very challenging. Numerical techniques for these equations usu­
ally involve cumbersome iterative procedures that become computationally expensive for all but the 
simplest geometries. These techniques require a good initial guess for the solution in order for conver­
gence to be efficient, and a poor initial guess might not converge at all. For these reasons it is often 
attractive to look for some kind of limiting principle that allows the equations to be linearised. In 
some cases this may even enable the equations to be solved analytically. Otherwise, the huge arsenal 
of relatively simple and efficient techniques for solving linear equations can be applied [95].

The traditional linearisation of the PB equation is the Debye-Hiickel (D-H) approximation, which 
was initially intended for electrolytic solutions containing microions without the highly charged, large 
macroions present in colloidal suspensions. In this approximation the mean field potential is linearised 
about a constant value. This approximation is good as long as deviations from this constant potential 
are not too large throughout the system. This will be the case if the charge carried by the macroions 
|2f| is not very large, and if the distance between them is small compared to the Debye screening length 
Ajd- These situations give rise to mean field potentials and density distributions with comparatively 
small spatial inhomogeneities.

As discussed in Chapter 4, phase coexistence is typically observed for very dilute suspensions 
of highly charged macroionic particles with |Z| ~  103 — 104, containing a low density of salt. The 
diluteness means that even the ‘high density’ phase has a packing fraction that is typically no higher 
than 0 ~  0.1. This packing fraction corresponds to a macroion separation of approximately 4 macroion 
radii a. The low salt density on the other hand means that Ad may be large. However, even in the low 
salt density regime the salt density is of the order of a few pM , corresponding to screening lengths of 
the order of \ d ~  300nm/  yJrTa (where the salt concentration ns has units of pM ).  This means that 
for particles with a =  lOOnm, even a Ip M  salt concentration will give rise to screening lengths that 
are smaller than the macroion spacings. In the low density phase of a phase separated suspension the 
macroion spacings will correspond to many screening lengths.

This suggests that in the regime in which colloidal suspensions phase separate, spatial inhomo­
geneities in p(r) and 4>(r) are expected to be large, and the D-H approximation is expected to fail. 
This has caused several authors [86, 96, 87] to call into question conclusions drawn from theoretical 
treatments based on the linearised PB equation [80, 22, 82, 83, 68].

The approximations underlying the primitive model and mean field treatment are pushed hardest
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when \Z\ is large and Ajr> is small. The high density of microions in these situations means that 
microion correlations (neglected in the mean field approximation) and solvent effects (neglected in
the PM approximations) become important. Nevertheless, several authors have produced theoretical

or whether such coexistence is inherent in the mean field theory of colloidal suspensions.
Here we propose a new linearisation based on the use of a superposition of mean field potentials 

for isolated macroions as a reference potential. This linearisation is expected to be successful for 
dilute suspensions for which rjp is small, and the macroionic separations are large compared to the 
screening length Ad -

6.2 N ew  linearisation scheme

6.2.1 Charge neutral sectors

We focus on the limit of a dilute colloidal suspension where the macroion density rjp is small, and 
the spacing between the fixed macroions at positions {Rn} is large in comparison with the Debye 
screening length Ad- Although the presence of salt is important in this limit as it has the effect of 
decreasing the screening length, the equations will be derived for a salt-free suspension for clarity. As 
discussed in Chapter 5, the optimising mean field distribution of microions is expected to give rise 
to regions that are charge neutral on the length scale of the macroionic spacings. Anticipating that 
the most likely solution to the mean field equations is one that creates charge neutral regions, we 
proceed with the mean field treatment of the dilute colloidal suspension by splitting it into N  charge 
neutral sectors, one for each macroion labelled n. We choose the macroion labelled as n =  1 to be 
centred at the origin. Each sector is a charge neutral volume with a macroion centred at Rn along 
with neutralising microions. For the idealised salt-free case, each sector contains \Z\ counterions. For 
each sector n we define the distribution of microions pn(r) within that sector

phase diagrams based on the linearised PB equation, displaying coexistence in this regime. It is 
important to establish whether this is a result of the failure of the D-H linearisation approximation,

p( r) =  pn( r) if r  G Sn (6 .1)

where Sn defines the space containing all points in the nth sector. For a salt-free system containing 
N  macroions in total, overall normalisation dictates

(6.2)

and charge neutrality of each sector requires

pn{r)dr = \Z\ V n (6.3)(6.3)

In a similar vein we denote the part of the total macroion charge distribution n^(r) that lies in the 
nth sector by nn(r). Since all of the macroions are identical we may say nn(r) =  n i(r  — Rn), where 
ni(r) is the charge distribution for a macroion centred at the origin, and R „ is the position vector to 
the centre of the nth  cell.

Now the free energy functional F m [p (r)] in (5.24) is split up into contributions from within each
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cell Sn and the inter-cell interaction energy.

Fm [p (*)] =  ^ 2  f  Pn{r) [(lnpn(r)A 3 -  1) +  i  [  pn(r')G(r -  r')dr' +  j  nn(r')G{r -  r')dr' 
n J  Sn L J Sn J  Sn

+  f  pn^ \ \ j  Pm(r')G(r -  r ')d r '+  f  nm(r')G{r -  r')dr'
n m^n n *- Sm Sm

dr

In more compact notation

fm  =  ^22 ^Mn ^ 2  ^ 2 ^nm
n  n  m ^ n

(6.4)

(6.5)

Taking the functional derivative of Fm  with respect to the microion distribution in the nth cell gives 
the equation for the optimising pn(r) within Sn

P n (r) =^3 exP \fJL~ Js P n ( r ' ) G ( r ' ~ r)dr' ~ Js nn(r')G{r' -  r)dr'

-  ^ 2  (  [  Pm(r')G(r' -  r)dr' +  f  nm(r')G(r' -  r)dr'^ 
Sm J Sm /  .

(6.6)

The inter-cell interactions couple the mean field equations for the N  sectors. As a result, the optimal 
pn in sector n depends on the pm in every other sector.

We define $ n(r) to be the electrostatic potential due to the total charge distribution inside the nth 
sector. It is important to note that while pn (r) is defined for r  in Sn , 4>n(r) is defined as the potential 
at r  in any sector anywhere in the system, due to charge in the nth  sector. The corresponding 
Poisson-Boltzmann equation is

V2$ n(r) =  - 47rZj5 I n0 exp -$ n (r )  -  ^ 2
m/n

+  m ( r - R „ ) (6.7)

where the normalisation constant to ensure the correct number of microions is no =  exp(p)/A3. The 
second derivative V24>n(r) is related to the total (macroionic and microionic) charge density in the 
nth cell through

V2$„(r) =  -471-Zb (pn(r) +  m (r  -  R„)) (6.8)

Even if 4>n (r) is nonzero beyond Sn, the charge density V2$ n(r) =  0 if r  is not in Sn.

6.2.2 Sym metry and periodicity: Wigner-Seitz cells

If the identical macroions are positioned at lattice sites, the macroionic charge distribution will have 
the translational property nm(r) =  nn(r — Rnm), where Rnm is a translation vector from the centre 
of the nth cell to the centre of the mth cell.

If the approximation is made that the microionic mean field takes the same symmetry as the 
field due to the fixed macroions, then the mean field potential in each charge neutral sector will be 
equivalent. In this case the charge neutral sectors correspond to Wigner-Seitz cells discussed in Section 
5.5. The microionic charge distribution then possess the periodicity property pm(r) =  pn(r — Rnm)- 
With this assumption, Equation (6 .6) becomes

A3pn(r) =exp L -  f  pn (r')G(r' -  r)dr' -  [  nn(r')G(r' -  r)dr'
L JSn Js «

Of  r  M  (6*9)
pn(r ' -  RnnOGtr' -  r)dr' +  / nn(r' -  R „m)G (r' -  r)dr' J 

^m Jsm J .
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Alternatively all of the integrals may be performed over a single W-S cell Sn as follows

X3pn(r) = e x p L  — f  pn(r')G(r '-  r )d r '-  [  nn(r')G (r' -  r)dr‘
L J s n J sn

-  J Z  (  [  Pn{r')G{r' + K nm - r ) d r '+  [  nn(r')G (r' +  R „m -  r)dr,N\
Js»

(6.10)

This is a reassertion of the fact that the W-S cell approximation reduces the multi-cell problem to a 
single cell problem with appropriate boundary conditions. Equation (6.10) may be re-written as

(6 .11)A3p„(r) =  exp L  -  f  pn(rf)Gg{r' -  r)dr' -  f  nn(r')Gg(r ' -  r)dr'
L J sn J s n

where the generalised Green’s function Gg(r  — r') is

Gg{r' -  r) =  G(r ' -  r) +  ^  G{r ' +  R n m  -  r) (6 12)
m

The generalised Green’s function [94] contains one component to account for charge within the cell, 
and a second component representing charge outside the W-S cell. The second component, which 
satisfies the Laplace equation inside the cell, imposes the required conditions on the W-S cell boundary 
to account for all of the surrounding cells. This is the same approach that underlies the method of 
images for the electrostatic potential near conducting surfaces.

6.2.3 Infinitely dilute suspension: the isolated macroion

When t)f —* 0 each sector becomes infinite in extent, and the interaction between sectors vanishes. 
The free energy then consists of independent contributions

Fm  =  ^  F\fn
n

Each Fmti is equivalent, and for the infinite sector centred at the origin Fmi is given by 

fV iM r ) )  = J  Pi(r) (lnpi(r)A3 —l) +  i  /pi(r')G(r -  r')dr'+  /iii(r')G(r -  r')dr'

(6.13)

dr (6.14)

where the integrals extend over all space, reflecting the infinite volume of the sectors in this limit. 
The optimal profile, denoted Pi°^(r) in this limit, satisfies

(6.15)A3^ 0)(r) =  exp ^  -  J p f \ r ' ) G { r  -  r')dr' -  J r n ( r ' ) G ( r  -  r')drf 

The corresponding Poisson-Boltzmann equation is

V2$ i0)(r) =  - 47t/b (noexp | - $ i 0)(r)] + n i( r ) ) (6.16)

Since the macroions are spherical and possess a uniform surface charge density <r, the distribution of 
microions p(r) and mean field potential 4>(r) in the infinite-dilution limit are expected to be spherically 
symmetric. The boundary conditions on the mean field potential for the cell centred at the origin 
4>i°^(r) are

dr = —47t Ib v (6.17)
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and

d* 1 } =  0 (6.18)
dr ♦oo

As discussed in Chapter 5 the constant no =  exp(/z)/A3 is related to the charge neutrality condition 
and to the constraint on salt ions in the system. In the hypothetical salt-free case, p can be chosen 
in order to set a desired zero for the potential $(r). Since the number of counterions in the salt-free 
case is finite \Z\, the concentration of counterions far away from the macroion in an isolated system 
must tend to zero. This requires either 4>(r) —> oo as r  —» oo, or alternatively p  —> —oo as the volume 
per macroion tends to infinity, allowing for the choice 4>(r) —> 0 as ?— > oo which is more convenient. 
For an open system in contact with a salt bath, the density far away from an isolated macroion will 
tend to the salt bath density rib.

6.2.4 Approximate solutions for dilute suspensions

We will now focus on finding approximate solutions to equation (6.10) for situations in which the 
macroionic density is low, so that the cells are very large, and the density profiles pn resemble those 
for completely isolated macroions in effectively infinite cells pn^ ■

The crudest approximation in this regime is to solve (6.15) for a single, isolated macroion (in an 
infinite volume) and use the resulting distribution function (r) to estimate the free energy of a 
system with finite cells. This would be done by plugging p ^  (r) into the free energy functional (6.4), 
where the integration limits for each sector extend only over the finite cell volumes Sn

+ E E  <6'19)
n n m^n

where P n \r )  =  p ^ ( | r  — R n |)- We do not expect this isolated-cell approximation to be very successful 
even for relatively low macroion densities. One deficiency is that the normal derivative of at 
the nth cell boundary will not be zero unless the cell volume is infinite, whereas an exact solution 
to (6.10) possesses zero field perpendicular to the cell boundaries. In addition to this, the charge 
neutrality condition for the cells would be violated, as the neutralising charge in pn  ̂ extends over all 
space.

To improve on this approximation, the isolated-cell solution Pn°^(r) is inserted into equation (6.6). 
This can be thought of as the next iteration of the self-consistent field procedure for solving the mean 
field equations. The resulting density profile is given by

*3PnHr ) = exp |p  -  J p ^ i r ^ G i r '  -  r)dr' -  J n n(r')G(r' -  r)dr'

/  r r \  "] (6.20)
-  5 3  yjP m  (r')G(r' -  r)dr' +  y n m(r/)G(r/ -  r)dr 'j

where the integrals extend over all space. The exponent corresponds to a superposition of mean field 
potentials, each satisfying the Poisson-Boltzmann equation for an isolated macroion in infinite cell 
centred at different R „. Writing the exponent in terms of potentials (6.20) can be re-written as

^3Pn)(r ) =  exp
m^n

(6 .21)

Unlike pn°^(r), the charge distribution Pn^(r) is not spherically symmetric, but possesses the symmetry 
and periodicity of the underlying macroionic lattice. This is also true for superposition of potentials 
in the exponent. As a result, the perpendicular gradient of the superposition of potentials at the W-S
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cell boundary is zero, even when the cells are finite.

6.2.5 Linearisation scheme in the dilute limit

Although pn^ is not a solution to the self-consistent mean field equation (6 .6), it serves as a good
reference distribution about which to linearise the free energy functional for a dilute suspension. A
linearisation of the optimal density profile in

A ( r ) = p ( r ) - (3(1)(r) (6.22)

is related to a linearisation of the mean field potential in

e(r) =  * ( r ) - £ $ < , 0>(r) (6.23)
n

in the Poisson-Boltzmann approach. Note that this e is not the dielectric permittivity.

Differential equation approach

Substituting 4>(r) from (6.23) into the PB equation gives

^ 2  V2$ i0)(r) +  V 2e(r) =  -4 td B f  ̂  exp
n  \

* * - 5 > g » ( r ) - € ( r ) +  nF(r) (6.24)

In the dilute suspension limit, the sectors are large, and the deviation e will be small, so the exponential 
in (6.24) can be linearised about the superposition of potentials.

^ V 2$ i0)(r) +  V2e(r) =  -4 td B ^ ^ 1  - e ( r ) ^ exp +  nF(r) I (6.25)

which is a linear differential equation for e(r). The deviation of the exact microionic charge density 
from the superposition of charge densities from the isolated solutions pn^ is defined by

V2e(r) =  —47rZsA/9(r) (6.26)

or equivalently
Ap(r) = p(r) -  pa(r) (6.27)

where pa is defined as the superposition of microionic charge densities from the isolated solutions

p .w  =  E - ' ’«0)w  t6-28)
n

Microionic and macroionic contributions to the potential and charge density

The isolated solutions may be decomposed into a macroionic and a microionic portion, 
giving rise to macroionic nFn and microionic charge densities p ^  for isolated systems centred at {Rn}. 
These two portions satisfy the equations

■ F n

and

=  - 47riBn ,( r  -  Rn) (6.29)

(6.30)
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in the regions containing macroions and microions respectively. The macroionic charge distribution is 
contained in the solution for isolated systems through the boundary condition (6.17) at the macroion 
surface. The charge distribution npn(r) corresponds to the uniform surface charge on the macroions 
<r, which is assumed not to be altered by the presence of other macroions in a finite-volume system. So 
it is only the microionic portion of the charge distribution which needs to be altered in the description 
of a finite density system.

The charge density pa refers only to the superposition of microionic contributions, and may be 
written as

ps(r) =  - 47tZj3 ^ 2  V2$ i0)(r) -  n F(r) (6.31)
71

Note that while the exact charge density for sector n and therefore V2$ n =  —47tIsPn is zero outside of 
Sn, the charge densities for infinite sectors V2$n°  ̂ =  —47rIb Pu * are non-zero beyond their respective 
Sn, since the isolated solution extends over all space.

Integral equation approach

It is tempting to say that the linearisation carried out about the superposition of potentials in e(r) 
is equivalent to a linearisation in the density profile deviation Ap(r) defined in (6.27). Actually the 
linearisation is equivalent to a linearisation in the density deviation A(r) defined in (6.22). This
linearisation is consistent with an expansion of the free energy functional Fm [p^  +  A] to second
order in A{r) /  p^l\ r ) .

FM[pW{r) +  A(r)] ~  J  p(1)(r) [ln (p (1)(r)A3) -  l] dr +  J  ln (p (1)(r)A3)  A (r)dr + ^ J  

+ i  J  J  (p (1)(r) +  A (r)) (p (1)( r ) + A ( r ') )  G(r -  r ')d r 'd r+

J d r  (p (1)(r) +  A (r)) $ f ( r )  +  O ( a /p (1))

(6.32)

To find the optimising profile, the functional derivative with respect to A(r) is taken. The constraint

/ [  A( r) + pw (r)]dr + Z  = 0 (6.33)

is imposed by introducing a Lagrange multiplier 7 . Adding p ^ ( r )  to the equation for the optimising
A(r) results in a linear integral equation for optimising profile p(r) =  p ^ ( r )  +  A(r)

p(1)(r) +  A(r) =  p(1)(r) 1 +  7  — ln p ^(r)A 3 — J  ^ p ^ (r )  +  A (r')^ G (r — r ')d r ' — $f(i*) (6.34)

To show that is equivalent to the PB expansion in (6.25), we substitute p =  p ^  + A  = pa + Ap  into 
(6.34). Since

= /  p* (r')G (r _ r^dr>+ ®Fn (r) (6-35)

and
e(r) =  J  Ap(r')G(r — r ')d r ' (6.36)

cancellations occur between the logarithmic term and the integral involving pa, so that in terms of 
Ap and pa Equation (6.34) becomes

pa(r) +  Ap(r) = p(1)(r) [1 +  7 -  p  -  c(r)] (6.37)
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which is the same as the microionic portion of Equation (6.25) if the constant \i — 7 is absorbed into 
e(r).

6.2.6 Charge neutrality and boundary conditions

The PB equation (6.25) must give rise to charge neutral cells. In the cell labelled n — 1, the only 
source of macroionic charge is nF =  n i(r). This is correctly contained in the total electrostatic 
potential for the isolated system centred at the origin 3>^(r). Since the macroions corresponding 
to isolated potentials centred at the other cells do not lie anywhere within S \,  writing the PB 
equation in terms of microionic and macroionic contributions to the charge density gives

V2$g> +  V2$ ff i  +  I ^ V 2®SS)„ + V 2e =  - 4 ^ B^ e x p  ( l - e f r ) ) - ^ ^ !  (6.38)
n ^ l  n  . '  '

Since the macroion charge density in cell n =  1 is

=  -4 n lBn F1 (6.39)

the macroionic terms cancel, leaving an equation for the microionic charge densities

+  £  V2< > n +  V2e =  -4 * lB±  exp / x - ^ < 0)(r) ( l  -  e(r)\  
•> 1̂ «  ' '

(6.40)
n^l

The mean field potential for an isolated system with a macroion centred at the origin 4>^(r) gives 
rise to a neutralising microion distribution over an infinite volume

/•p{? \ r ) d r  = - Z  (6.41)

where the integral is over all space. An integral over the finite volume corresponding to the n =  1 
cell volume Sn results in a deficient number of counterions, leading to a non-neutral cell.

However if we take the finite cell n =  1 and look at the function pa(r) i.e. the superposition of 
microionic charge densities from isolated solutions centred at lattice sites of an infinite lattice, we 
see that the tails of all n ^  1 charge distributions penetrate the n =  1 cell and compensate for the 
deficiency f p ^ \ r ) d r =  f ^ 2 p ^ ( r ) d r  = - Z  (6.42)

J Jsi n

Microions cannot penetrate the interiors of the colloidal particles, so the true solution must have 
V2$  =  0 inside the colloidal sphere centred at the origin. The system is split up into the inner region 
Ri  comprising the inner volume of the colloidal particle, and the outer region R 0 comprising the rest 
of the W-S cell. The linearised PB equation (6.40) is satisfied in R 0 for dilute suspensions, but in the 
inner region Ri  we require

V2€ =  - ^ V 2$£>n in R i  (6.43)
n

The exclusion of charge density in the inner volume Ri  through (6.43) means that the superposition
of charge densities p8 will no longer be sufficient to neutralise the W-S cell as in Equation (6.42). If
the amount of charge ’removed’ from the inner volume is Q i, then

-4 tt lBQ i=  f V2edr = — [  (6.44)
jRi J Ri „

the deviation V2e =  —4nlBAp  needs to account for this amount of microion charge to neutralise the
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W-S cell in the outer region. The amount of charge represented by e in the outer region Qa is given

by
- 4 td BQ0 = [  V2edr = + [  V v 2^ 0)dr (6.45)

J R0 J Ri ji

The total amount of charge represented by e over both regions adds up to zero so Qa +  Qi =  0 
An equivalent statement of this condition is that the superposition of potentials satisfies

£ v # g » - n  =  0
n

on the W-S cell boundary. This is a result of symmetry, periodicity of the superposition of potentials 
and the charge neutrality of the respective superposition of charge densities within each cell. Since 
the exact solution of the PB equation also satisfies the condition V4> • n  =  0 on the cubic boundary, 
it must be true that Ve • n  =  0 on the boundary. This is a restatement of the fact that e(r) 
possesses the symmetry and periodicity of the lattice, and that the total amount of charge described 
by V2e =  —47r/sA p in one cell, including the inner region, is zero.

6.2.7 System at equilibrium with a salt reservoir

The formalism for the new linearisation scheme was developed in the previous two sections for a 
salt-free system for simplicity. Here we adapt the equations to apply to a system that is open with 
respect to a salt reservoir containing positive and negative microions. Salt is particularly important 
in the regime of interest here, since a higher concentration of microions enhances screening causing 
a reduction of the screening length Ad- In practice, an open system is simpler to handle than the 
finite salt or zero salt case since the depletion of the total amount of salt complicates solution of 
the PB equations, due to the additional inter-dependence between the Lagrange multiplier fi and the 
mean field potential 4>. As discussed in Chapter 5, for a system in contact with a salt-reservoir this 
Lagrange multiplier is replaced by the chemical potential of ions in the bath fib which is constant 
with respect to changes in the system. An additional complication that is avoided in the salt bath 
system is the divergence of either fi or $  as the system becomes infinite, as discussed at the end of 
section 6.2.3.

The salt bath can be thought of an ideal gas containing a uniform density of positive and 
negative microions. The total density of microions in the charge neutral salt bath will be 2n^. The 
chemical potential of positive and negative microions in the reservoir is fixed at fib =  In n^A3 (if the 
masses of the two species are assumed to be the same, they share the same de Broglie wavelength 
A). As the volume per macroion in the system Vw becomes large, the density of both positive and 
negative microions far away from any macroions tends to rib, which is the density of both species 
inside the bath. The zero of the electrostatic potential $  will be chosen to tend to zero at the W-S 
cell boundary as the volume per macroion Vw becomes large or rjf —> 0 .

D ifferential eq u a tio n  approach

The linearisation follows the same principle as for the salt-free case. The mean field potential is 
linearised in e(r) about the superposition of isolated potentials. The isolated system with a macroion 
centred at the origin satisfies the differential equation

V2$i°^ =  8'KUblB sinh<&i°^(r) — 4nlBni(r) (6-47)

subject to the same boundary conditions as for the salt free case (6.17) and (6.18).

(6.46)
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We introduce shorthand notation for the superposition of potentials

S'(r) =  2 < 0)(r) (6.48)
n

$  = S  + e is substituted into the PB equation

V25  +  V2e =  87r/j3n{,sinh(5 (r) +  e(r)) — 47r/snir(r) (6.49)

where rib =  exp(/ib)/A3, and pb is the chemical potential of positive and negative microions in the
salt bath. If the spacing between macroions is large, the W-S cells become large, and the deviation 
from S{r) will be small. Linearising the PB equation in e gives

V 2#  -1- V2e ~  87r/B^fe^sinhS'(r) +  e(r) cosh£(r)^ — 47r/Briir(r) (6.50)

Which is a linear differential equation for c(r) in terms of the functions •

In teg ra l equa tion  approach

As was the case for a salt-free system, it can be shown that this is equivalent to a linearisation about 
a charge density distribution p ^  = p+^ — p^}. For a system open with respect to a salt reservoir, 
this is obtained from an expansion to second order of the microion grand potential Cl\i{Pb, V,T) in 
the deviations A± — p± — p ± \

ft =  5 1  J  [ln (/9i1)(r ) /n b) -  *] dr + J ln A i(r)dr +  i  J  ~ ^ dr

+ i  /  /  (p(1)(r) +  A (r)) (p (V )  +  A (r '))  G(r  -  r')dr'dr (6*51)

+  J  J  (p(1)(r ) +  A (r )) n F{r')dr'dr +  0 (A ±/p£ ))3

Taking functional derivatives with respect to A± and setting them to zero, we obtain the optimising 
functions

( i )A±(r) =  p± -  ln / nbj T  j  (P(1)(r') +  A ( r ' ) )  G(r  -  r ' ) d r '  =p $f(i*) ±  Pel (6.52)

These equations are coupled together through the charge density A =  A+ — A _ . Substituting the 
quantities p =  p^> +  A =  pa +  Ap, we get the equation

pa +  Ap =  p(1) -  ( p ^  +  pLX))  | y  Ap(r')G (r -  r')dr' -  pel (6.53)

or
ps +  Ap =  p(1) -  ( p ^  +  p ^ )  (c(r) -  pel) (6.54)

which is the same as the microionic portion of (6.50) when pei is absorbed into e(r).

6.2.8 Constant contribution to the reference potential

To improve the linearisation scheme, the reference potential S(r) is altered to S(r) — p ^ \  by the 
introduction of a constant p ^ \  making e(r) =  4>(r) — S(r) -F p ^ \  This constant is chosen in an 
attempt to eliminate constant contributions to e(r), making the linearisation more effective. This will 
be particularly important for colloidal suspensions at higher density, when the mean field potential
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is relatively flat and a large constant correction to S(r) will be required. The constant is chosen 
to satisfy

/  2nb smh(S(r) — f $ ) d r  = Z  (6.55)

In other words, this makes the reference charge density p ^ ( r) contain the full amount of microionic 
charge. This has the consequence that e(r) satisfies

J  e ( r )  c o s h ( S ( r )  -  i J $ ) d r  =  0  ( 6 . 5 6 )

The boundary conditions on e(r), which are related to the charge neutrality condition, are unaffected 
by the introduction of this constant.

In the next two chapters the new linearisation approach outlined here will be applied to two 
systems and compared to results obtained from the traditional linearisation schemes. In Chapter 7 
the PB equation is solved for the one-dimensional problem of charged plates in an electrolyte and in 
Chapter 8 it is solved for arrays of spherical colloidal particles.
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Chapter 7

The planar geometry: charged 
parallel plates

7.1 One-dimensional colloids

A simplified model for colloidal suspensions arises when the colloidal ‘particles’ take the form of 
charged plates. Arrays or stacks of charged plates aligned in parallel have been used as models for 
various clays and gels [42, 97], and Poisson-Boltzmann theory has been used to attempt to explain 
the stability and swelling behaviour of these materials. It has been argued [98, 99, 100, 101, 102] that 
the electrostatic component of the effective interaction between such plates, calculated within mean 
field theory, gives rise to an effective attraction between the plates that reproduces the behaviour 
of these systems under experimental conditions. There has been significant controversy surrounding 
these theories [103, 104, 105, 106].

The effective interaction between stacks of charged plates depends on the delicate balance between 
the forces acting on the plates from the inner region in between the plates and from the outer region 
on either side of the stack of plates. In this chapter a system consisting of two parallel, like-charged 
plates is used as a test system for the new linearisation scheme for the Poisson-Boltzmann equation 
proposed in the last chapter. Only microions residing in the inner region between the plates will be 
considered, with a view to finding out how well the new linearisation scheme can reproduce results 
obtained from solution of the nonlinear PB equation.

The planar geometry is particularly convenient because if the parallel plates possess a uniform 
surface charge, and are sufficiently large so that edge effects can be neglected, there is translational 
symmetry of the electrostatic field due to the plates in the planar direction. If the mean field microionic 
charge distribution possess this symmetry, then variation of the electrostatic field occurs only in the 
perpendicular direction, which reduces the problem to a one-dimensional one. If the plates are 
orientated in the y — z direction, then variation of the electrostatic potential occurs only in the 
x-direction.

There are some peculiarities of electrostatics in the one-dimensional planar geometry. An arbitrary 
fixed distribution of charge that possesses the appropriate symmetry is described by p(r) =  p(x), 
where p{x)dx is the amount of charge per unit area in a slab of thickness dx oriented in the y — z 
plane located at x. The potential due to this charge distribution 4>(x) satisfies the one-dimensional 
Poisson equation

=  t7-1)

where Is  is the Bjerrum length Z& = e2/(ekBT). Note that in this chapter the definition of Ib is 
different by a factor of 47r for convenience. With e =  76eo and T  ~  300A" this corresponds to about
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9.2nm. The Green’s function for the potential at x  due to a slab containing one charge per unit area 
located at x'  is

G ( x - x , ) =  - I b ^ \ x - x ' \ / A q (7.2)

where Ao is one unit area. Unlike the familiar 3-dimensional geometry, the interaction potential due 
to a slab of charge does not fall off with distance but diverges linearly. The field due to a slab of charge 
on a test slab (containing one unit of charge per unit area) remains constant with distance, and the 
force on the test slab does not diminish as it moves further away. This behaviour is a consequence of 
the assumption that the slabs have sufficiently large dimensions compared with any lateral distances 
in the system so that edge effects can be neglected. The Green’s function (7.2) is only valid in the 
finite domain in which the planar slab size is sufficiently large so that edge effects may be neglected 
and the slabs appear infinite.

Screening is the only mechanism by which the field due to a slab of charge can be diminished. 
Because the fields do not fall off with distance in this geometry, screening is also extremely effective. 
If we consider a slab possessing a surface charge +cr per unit area, and an adjacent one of the opposite 
sign —a, then the field on either side of these slabs will be zero. In other words the screening is 100% 
effective and there is no ‘dipole’ field due these two slabs. The planar geometry does not permit 
dipole or any higher order multipole fields, so there is no mechanism for the interaction between 
charge neutral regions.

7.1.1 Importance of non-mean field effects neglected in this treatment

Guildbrand et. al. performed extensive Monte-Carlo simulations [107, 42] of the two-plate system 
in the 1980s. The system simulated in their work makes use of the primitive model approximation 
for the solvent, but goes beyond the treatment outlined here in two important respects. First of all 
the finite size of the microions was included in their treatment, and it was shown that at small plate 
separations and high microion concentrations the hard-sphere correlations between the microions 
play an important role in the effective interaction between the plates. The second important result 
from their simulations, is that the mean field approximation for the electrostatic microion-microion 
interactions breaks down for the case when the microions have high valency i.e. \z\ > 1 and when the 
plates are highly charged. This has the dramatic effect of reversing the sign of the force between the 
plates, causing attractions between like charged plates.

As mentioned in Section 7.1, within the symmetry of the planar geometry there is no means of 
interaction between two charge neutral regions. The mean field treatment always places the same 
number of microions in the left and right halves of the system S l  and S r . Therefore, there is no 
direct interaction between the two halves within the mean field treatment. In reality instantaneous 
electrical fields go from S l to S r  since charge will move between the two sectors, and at any given 
instant there may be more charge on one side than the other. It is only the average, mean field 
distribution that is equal in both sectors. Jonsson and Wennerstrom [76] have proposed this as the 
mechanism for the attractions observed in the simulations.

A different approach taken by Lau and Pincus [32, 108, 77] is to say that in reality there will be 
instantaneous fluctuations that break the planar symmetry. For a system of highly charged plates, 
they consider a thin layer near each plate containing the surface charge of the plates together with 
‘condensed’ microions. The layers belonging to the two plates then undergo correlated plasmon 
fluctuations in the plane, giving rise to an effective attractive interaction between the plates.

Despite the peculiarities and the failure of the mean field approximation, the planar geometry 
serves as a good testing-ground for colloidal mean field theories because the nonlinear Poisson- 
Boltzmann equation can be solved without too much difficulty. Here we will investigate how the 
ideas of the new linearisation scheme for dilute colloidal suspensions proposed in Chapter 6 may be
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put into practise for a simple test model in the planar geometry consisting of two identical like-charged 
parallel plates.

7.2 Two charged parallel plates

7.2.1 A simple model system

The model system consists of two uniformly charged parallel plates oriented in y — z planes, both with 
the same surface charge density of a < 0 electron charges per unit area. We choose the coordinate 
system so that the central plane in between the plates is at x =  0 , with the plates located at 
x — ±D /2 .  As with colloidal suspensions, the plates are immersed in an electrolytic solution of 
microions dissolved in a polar solvent. For now we only consider the inner region between the plates 
and ignore the outer regions. The plates are sufficiently large so that edge effects can be neglected. 
The mean field microion distribution is assumed to have the same symmetry as the field due to the 
charged plates, so that variation of p and $  occurs only in the x-direction. Since this symmetry 
prescribes that any patch of area in the y — z  plane for a given x is equivalent to any other, the main 
system parameters are quantified per unit area in the y — z plane.

o oo >
O O

o o
o o

oo
O O

O O O O

O O o o

Figure 7.1: Schematic of the two-plate system after Lau [32]

The microions are taken to be univalent, and for simplicity counterions and microions arising from 
the dissolution of salt are assumed to be equivalent. The system may either contain a fixed amount 
of salt, or be in contact with a salt reservoir at fixed chemical potential. If there are Na dissolved 
salt particles per unit area in the system (either as a fixed quantity or through contact with the salt 
bath), then there will be N -  =  N s negative, and N+ =  Na +  2|cr| positive microions per unit area to 
conserve charge neutrality.

7.2.2 Adiabatic potential and force between the plates

The aim here is to obtain an adiabatic potential for the parallel plates as a function of plate separation 
Veff(D), by integrating over the microionic positions and momenta for a fixed plate separation D. 
It was shown in Chapter 5 that for a closed system (containing a fixed number of microions), the 
effective potential consists of the interaction between the fixed macroions Vf f  and the Helmholtz free 
free energy of the microions Fm for a given configuration of the macroions.
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In the planar geometry the plate-microion interaction energy Vm f  contributes to the effective 
potential, but there is no relevant plate-plate contribution Vf f - This is because the field due to 
the two plates cancels out exactly in the inner region for all D ,  so Vf f  is just a constant that is 
independent of D .  The effective potential consists only of the Helmholtz free energy of the microions 
in between the plates F m ( D ,  N ± , T ) ,  which contains the plate-microion interaction energy Vm f ? the 
microion-microion interaction energy Vm m  as well as a contribution from microion entropy.

V°S(D) = Fm (D ,N ± ,T) (7.3)

The mean field functional for F m ( D ,  N ± , T )  is

Fm (D, N ± , T ) = J 2  [ Pi(x ) (ln (Pi(x )^3) ~  !) dx +  \  f  p(x)p(x')G(x -  x')dx'dx 
i=± J

4- J  p{x)np{x')G{x — x')dx'dx
(7.4)

where the charge density is defined by p =  p+ — p~ , A is the thermal de Broglie wavelength of the 
microions (which are all taken to have the same mass), and Fm is in units of k s T  per unit area. The 
first term is the kinetic term containing the kinetic energy and the entropy of the microions, the second 
term is the mean microion-microion interaction energy, and the third term is the mean plate-microion 
interaction energy. For a system that is open with respect to salt particles, the adiabatic potential 
is given by the grand potential of the microions Q,m(D, P b , T ) ,  which is related to Fm through the 
Legendre transform

^ M ( F > , p b , T )  =  F m ( D , N ± , T )  — P b N +  — P b N -  (7.5)

where pb is the chemical potential of microions in the salt bath, and N±  are the mean number of 
microions of each species when the system is at equilibrium with the salt bath. If the salt particles 
are considered to be ideal gas particles in the salt bath, then the chemical potential is related to the 
density of particles of each species in the reservoir rib through pb =  In rib A3.

The pressure, which is the force per unit area acting on the plates, is given by the derivative of 
the appropriate free energy with respect to D

P  = 8Fm
dD

and P  = 8Q.M
NS,D dD (7.6)

Hb,D

for a closed and open system respectively. In the planar geometry, the boundary density theorem 
(BDT) discussed in Chapter 5 has the result that the derivative of the free energy with respect to 
plate separation D  is related to the total mean field density of microions in the mid-plane between 
the two plates. The result, which is the same for open and closed systems, is that the pressure is 
given by the density of microions at x  =  0

P  = p+(0) + p-(0) (7.7)

in units of k s T  per unit volume.

7.2.3 Poisson-Boltzmann equation

With the charged plates located at x  =  ± D / 2, the fixed charge distribution is represented using two 
delta functions as

np{x) = aS(x +  D /2 ) +  <t S ( x  — D/2)  (7.8)
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The general Poisson-Boltzmann equation for this system may be written as

d2$(x)
dx2

=  21b Uq sinh ($(x) -  pei) -  lBnp(x)  (7.9)

where no =  exp(^)/A3 is the normalisation constant that regulates the amount of salt in the system, 
and pei ensures charge neutrality. As discussed before, no and p  take different forms depending 
on whether the system is open or closed with respect to microions. The electroneutrality Lagrange 
multiplier pei is related to the choice of zero for the potential $(x). If the choice is made that 
mid-plane potential $(0) —► 0 as D  —> oo, then pei = 0 .

Boundary conditions

As with the 3-dimensional geometry the symmetry and charge neutrality imposed on the mean field 
charge distribution dictate boundary conditions on <3>(x). The solution is assumed to be symmetrical 
about x  =  0, so that the mean field distribution of microions places —a  microions per unit area in the 
left half of the system S l  with the same number in right half of the system S r . This symmetry is a 
consequence of the mean field approximation in which microion-microion correlations are neglected, as 
well as microion-macroion correlations between the two halves of the system. This symmetry, which 
simultaneously imposes charge neutrality on both halves of the system gives the boundary condition 
at x = 0

d$> n _
—  = 0  (7.10)
dx x=o

The second boundary condition relates the gradient of the potential at the surfaces to the surface 
charge density. The overall charge neutrality condition for the system is

/ (p+(x) — p~(x) -f u f (x )) dx =  0 (7-11)

where the total charge distribution is related to $(x) through V2<I> =  —ls(p+ — p~ + u f ). Applying 
Gauss’s theorem tells us that the field (which is the derivative d$/dx)  just outside the system on 
either side of the plates at x  = ± (D /2  +  <5) where 8 is a small distance, must be zero. By integrating 
over two Gaussian surfaces that just enclose the charge on the plates and none of the microionic 
charge i.e. x  =  —D/2 — 8 —► —D /2  +  8 and x  =  D /2  — 8 —> D/2  +  8, where 8 —> 0 is an infinitesimal 
quantity, we get boundary conditions at x = ± D /2  that relate the field at either plate to the surface 
charge density

d<f>
=  ± lBi7 (7.12)

dx ± D / 2

The three equations in (7.10) and (7.12) make up two boundary conditions, since the two in (7.12) 
imply (7.10) by symmetry, or equivalently (7.10) with one of the equations in (7.12) implies the second 
one. The boundary conditions (7.12) account for the fixed charge distribution on the surface of the 
plates, and allow us to solve the PB equation in the inner region x  = —D /2  +  8 to D/2 — 8, in which 
there is no macroion charge np(x) =  0 .

System  in contact w ith salt bath

For a system in contact with a salt bath, the Poisson-Boltzmann equation for the inner region (ex­
cluding the plates) is

= (7-13)

where k2 = 2lpno. In this situation, the constant no in (7.9) takes the form rib = exp(/i*,)/A3 where rib
and p,b are the density and chemical potential of positive and negative microions in the salt reservoir.
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We have taken the charge-neutrality Lagrange multiplier to be p ei = 0 , which corresponds to the 
choice that

$(0) —> 0 as D  —> oo (7-14)

When the plate separation becomes large, the mid-plane region tends to charge neutrality. Instead of 
having an excess of positive microions to neutralise the charge on the plates, the density of positive 
and negative microions at x =  0 tend towards equality as the plates move further apart. In terms of 
the microion charge density, this implies

p(0) =  —2Zsrife sinh ($(0) -  Pel) —► 0 or $(0) —> pei (7-15)

In this limit, both the positive and negative ion densities in the mid-plane region p± (0) tend towards 
rib, the density of ions in the salt bath.

The nonlinear PB equation (7.13) for the optimising mean field potential $(x) may be solved 
subject to the boundary conditions above, in terms of elliptic functions. The details of this solution 
can be found in reference [101]. Taking account of the symmetry about x  = 0 imposed by the 
boundary condition (7.10), the form of the potential is

$(x) =  21n
V k s a { ^ + K m ' k) .

(7.16)

the parameter fc, which appears as the modulus of the elliptic functions, is defined as the exponential 
of the potential at the mid-plane k =  exp $(0). This parameter is a measure of the plate separation 
and tends to unity as D  gets large. The function sn(a, k) is Jacobi’s elliptic function defined as 
sin(am(a, fc)) where the Jacobi Amplitude am(o, k) is the inverse of an elliptical integral of the first 
kind F[0 , k]

am k\, k) = <f> (7.17)

where
F[<t>,k]= I * — J L = =  (7.18)

y  1 — fc2sin2(0)

The function K(k) = F (tt/ 2, k) is a complete elliptic integral of the first kind.
Given this form of $(x), which is symmetrical about x  =  0, the second boundary condition (either 

one of the two equations in (7.12)) needs to be imposed to ensure representation of the correct amount 
of surface charge on the plates. Taking the derivative of $(x) with respect to x  at x  = +D /2 , the 
second boundary condition becomes

1 ( f f + * « • * )  dn Qg f f +  * (* ) .* )  _  Isa

where cn(a, k) =  cos(am(a, k )) and dn(a, k ) =  y l  — k2 sin2(am(a, fc)). For a given set of k, D, cr, this 
equation needs to be solved to find the value of fc =  exp$(0) for which the potential $(x) satisfies 
the boundary condition (7.12).

Equation (7.19) has to be solved numerically, however we point out some qualitative features 
here. The higher the surface charge density on the plates a, the more negative $(0) will be, and 
therefore the smaller fc. As kD  —> oo, fc tends to a maximum value of unity, corresponding to 
$(0) =  0. A key feature of solutions to the nonlinear PB equation is that fc also has a minimum 
possible value. To understand this, we note that the solution for $(x) contains a sinusoidal function 
sn(a, fc) =  sin(am(a, fc)). The maximum of the potential 4>(x) occurs at x =  0, when the argument 
of the sin function is am(AT(fc)) =  tt/2. For a physically reasonable solution we do not expect the
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Figure 7.2: <j / k in units of l g l against fc for two plates separated by kD  =  1.5. The full curve is for an exact solution 
of the PB equation, the dotted curve corresponds to a traditional linearisation about the average of the potential (<t>) 
discussed in Section 7.3.

argument of sin to exceed n  when x  reaches x  =  D/2. Since am(2K(k),k)  =  7r, this imposes a 
constraint on k , D  and k

T S < m  (7'20)
so the smallest permissible value kmin satisfies

  k £)
y/kmin K(kmin) = ^

When k — kmin , the denominator in (7.19) is zero, corresponding to an infinite surface charge 
density a  or an infinite Debye screening length Ad =  l/« - For a given plate separation kD, the 
solution saturates as the charge on the plates becomes very large. For highly charged plates k can be 
approximated by kmin.

This feature of the nonlinear solution is absent in the traditional linearisation approximation, and 
is what motivates the so-called ‘renormalisation’ approaches, whereby a colloidal particle carrying 
surface charge a is represented as a renormalised particle carrying a smaller effective charge a *. The 
renormalisation approach is an attempt to introduce features of nonlinearity into the linearised so­
lution. From Figure 7.2 it can be seen that a traditional linearisation (which will be discussed in 
Section 7.3) for a system of two plates carrying charge density a  generally has the same value of $(0) 
as a nonlinear solution with significantly higher charge density. With the exception of some treat­
ments that go beyond the primitive model (PM) approximations [109], there has been little progress 
in developing a theory that prescribes a systematic way of choosing a* that allows a traditionally 
linearised solution to reproduce nonlinear results.

Figure 7.3 shows the grand potential Q and pressure P  against plate separation in screening 
lengths k D  for various ratios of |cr|/ k . The force between the plates is always repulsive, and for a 
given k D  is higher for larger values of |cr|//c. In both cases the infinite plate separation limit 
and Pqo have been subtracted, so that zero corresponds to the grand potential and pressure when the 
plates are far apart. The solutions can be seen to saturate for large |cr|//c as expected from Figure 
7.2.
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Figure 7.3: (a) Q (in k s T l ^ 3) vs. kD  evaluated using exact solutions to the PB equation for various \ c t \ / k  and (b) 
the corresponding pressure P  (in vs k D.  Note that zero in these plots corresponds to the D  —*• oo limit, where
the pressure is Poo =  2n s ,  the pressure in the salt bath.

Closed system  containing a fixed amount o f salt

For a closed system containing a fixed number N s of positive and negative salt ions per unit area, the 
parameter no =  exp(^)/A3 takes a more complicated form than for an open system. The number of 
negative ions is N _ =  N s and by charge neutrality the number of positive ions is N+ — N s +  2|cr|, 
where both N a and cr are now fixed quantities for all D. The fixed-salt condition can be expressed in 
terms of an integral of the total microion density distribution p+(x) +  p -  (x) =  2no cosh $  (x)

rD/ 2
2JVS +  2|a| =  / 2no cosh <&{x)dx (7.22)

J-D/2

.D / 2  

-D/2

If N3 is constant, then 2N s +  2 |cr| is fixed for all D, which requires

Na +  \cr\
n0 — n /9 (7.23)

I - D / 2  COŜ  $ ( x ) d x

This form of no converts the non-linear PB equation (7.9) into an integro-differential equation.
Solving the PB equation with this form of no self-consistently is difficult, due to the complex 

interdependence between $  and no. The solution for the fixed n& treated above can be used in 
an iterative numerical procedure to solve the integro-differential Poisson-Boltzmann equation for a 
system containing a fixed amount of salt. This involves choosing a value rib, finding a solution $(x) 
of the form (7.16) through numerical solution of the boundary-condition equation (7.19), and then 
integrating the density profiles to get no from (7.23). This value of no is then used as the rib for the 
next iteration. The procedure is converged when the rib put into $(x) and the no calculated from 
it are the same to within numerical error. This procedure was found to converge relatively quickly 
requiring a few dozen iterations to converge . For the remainder of the chapter we will deal with the 
open system at constant chemical potential for simplicity.
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7.3 Traditional linearisation schemes

7.3.1 Linearisation about a constant potential

The concept of the traditional linearisation schemes in the application of Poisson-Boltzmann theory is 
to linearise the mean field potential $  about a constant value. The original Debye-Hiickel treatment 
is a linearisation in deviations about $  =  0 (or value of the potential far away from any macroions
given by however subsequent treatments [86, 96, 87, 82] have suggested that the average of the
potential throughout the system ($) may provide a better linearisation point, especially when the 
separation between colloidal particles (or in this case plates) is small.

If the deviations of the mean field potential from a constant value, say C  are small, then the PB 
equation may be linearised in the deviations A $ =  $  — C  giving the linear differential equation

V2A $ ~  k2 sinh(C') -I- k2 cosh(C')A$ (7-24)

which may be written as
V2A $ ~  A  +  B A $  (7.25)

The boundary conditions on <£(x) are dictated by charge neutrality and symmetry, and since in this 
approximation $(x) =  C  +  A $ (x )  the boundary conditions on A $ are

dA$ . d,A$ 
=  0 and

   dxX = Udx

The general solution to (7.25) subject to boundary conditions (7.26) is

=  ±Zi*<T (7.26)
x=± D /2

= „lB coshjVBx) _  A 
V '  y/B8mh(y/BD/2) B

where A /B  =  tanhC  and B  =  k,2 cosh C.

Debye-Hiickel Linearisation

When the constant potential is taken to be zero C  =  0, then A =  0  and B  =  k 2 s o  the solution 
becomes

1 ,2 ,1

It has been shown [86, 96] that the traditional linearisations are consistent with quadratic expansions 
of the free energy about deviations in the density distributions of the microions about constant values. 
It follows that the pressure P, which is the derivative of the free energy (the Helmholtz free energy F  
for a closed system and the grand potential ft for an open system) with respect to D, consistent with 
this expansion, is also expanded to second order in these density deviations. For the D-H linearisation, 
where C =  0 , the quadratic expansion of the pressure gives

P  =  2„b ( l  +  lA ^ (O ))  =  2ns  ( l  + I  ( ~ g ^ ) 2)  (7.29)

Linearisation about the Donnan potential

An alternative scheme mentioned above involves linearisation of PB equation in deviations from the 
average of the mean field potential ($). This quantity determines the chemical equilibrium between 
the salt bath and the system, known as Donnan equilibrium, so (4>) is referred to as the Donnan 
potential. In this treatment the constant c is taken to be the Donnan potential, so the mean field
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potential is written as $  =  ($) +  A4> where (<E>) is defined as

($) =  ~  J  ${x) dx  (7.30)

The integral runs from x = — D /2 to x  = +D/2. It follows that the integral of the deviation from 
the mean potential is zero

J  A ${x)dx = 0 (7.31)

This has the consequence that if the linearised microionic charge density

p =  —2rib (sinh($) +  A $ cosh(4>)) (7.32)

is integrated over the system volume (from x  =  —D/2  to x  =  +JD/2), only the first term contributes.
The charge neutrality requires the total microionic charge to equal — 2a

J  p(x)dx = —2a (7.33)

This provides a relation between the mean potential (4?) and the mean microionic charge density in 
the system —2a/D,

2a
2nbsinh($) =  —  (7.34)

In this scheme, the solution to the linearised PB equation A4> given in Equation (7.27), has parameters
A  =  /c2sinh(4>) and B  =  k2 cosh(4>). Substituting the relation for (4>) in (7.34) into these expressions
gives

A = ^  (7.35)

and

B
=  “ V 1 +  ( I z O  (736)

The linearised solution then takes the form

^  =  sinh-1  ( +  ^ B e c A i ^ S z )  _  2 H s  { }
\ k*D J V B sinh(V B D /2)  D B  K >

Prom these expressions it can be seen that A4> in this scheme approaches that in the D-H linearisation 
in the limit of D  —> oo, since ($) —> 0, A  —> 0 and B  —» «2.

The pressure is given by a quadratic expansion of the total microion density at x  = 0 about 
2nBCOsh($), which is given by

P  = 2rib ^1 -I- ~A4?2(0)^ cosh($) +  2nfcA$(0) sinh($) (7.38)

7.3.2 Failure of traditional linearisation schemes

The traditional linearisation schemes generally fail when deviations from the constant A4> =  $  — C  

are too large to justify the expansion. The consequence is that the traditionally linearised mean 
field potentials $(ar) have a significantly higher amplitude than the exact solution to the nonlinear 
PB equation. Screening in the nonlinear system is generally more effective, and occurs over shorter 
distances than in the linearised case. Figure 7.6 is a comparison between mean field potentials obtained 
from the two traditional linearisation schemes (D-H, and linearisation about the Donnan potential) 
with the exact nonlinear solution $  for |cr|/« =  2 and \a\/n — 10 for several plate separations k D .

It can be seen that the linearisations work better for the smaller of the two ratios \a\/n. For small
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Figure 7.4: Comparison between the exact and linearised average of the mean field potential (<£>) that forms the 
reference potential in 4>Donn- The ratio |ct| / k has been taken to be 10.

|o|/ie=5

— P,

a?
4c

G

-5-

-10 8 102 4 60
kD

Figure 7.5: Logarithm of the relative error in pressure, for the two traditional linearisation schemes. The formula 
used is error=ln|P0 — P\ — ln(P  — Poo), where Pa is the pressure obtained from the approximate scheme, P  is the 
pressure obtained from the nonlinear PB equation, and Poo =  2rq, is the pressure as the plates move infinitely far apart.

separations k D ,  linearisation about the Donnan potential is effective. This is because when k D  <  1 
the mean field potential $  is quite homogeneous since the distances are too short for significant 
screening to take place. In this regime the average ($) is significantly smaller than zero, which 
is why the D-H linearisation breaks down for small k D .  Figure 7.6 shows that despite appearing 
to reproduce the general shape of $  better than the D-H linearisation, the linearisation about the 
Donnan potential does worse at estimating the mid-plane potential $(0) for large k D .  For large k D  

the potential near the mid-plane is close to zero, so the deviation A 4? for the D-H linearisation is 
small. In the $Donn linearisation, the error due to failure of the linearisation approximation is spread 
throughout the system, and is reflected in the estimate of (4>) (see figure 7.4).

This shortcoming in the linearisation about the Donnan potential, leads to a dramatic failure in 
the calculation of the pressure P  between the plates at large plate separations k D .  Figure 7.5 shows 
the logarithm of the relative error in pressure P  calculated from the two traditional linearisation 
schemes for |cr|//c =  5 as a function of plate separation. Whereas the D-H linearisation fails at 
small plate separations and becomes better with increasing kD, the linearisation about the Donnan 
potential gives an increasingly bad estimate of the pressure at large plate separations.
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Figure 7.6: Comparisons between solutions to the PB equation obtained from the two traditional linearisation schemes 
$ d h  and <f>Donn with exact solutions of the nonlinear PB equation. The $Donn curves sire not visible in the plots for 
small plate separations kD  =  1 as they are very close to the exact potential in this limit.
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7.4 The isolated charged plate: Guoy-Chapman theory

The isolated system consists of a single charged plate in electrolyte containing counterions. This 
system is one of the earliest applications of the mean field Poisson-Boltzmann approach and was 
developed by Guoy in 1910 and independently by Chapman in 1913 [42]. This system can be thought 
of as the limit of the two-plate system when D —* oo. The left and right hand plates would then be 
effectively isolated, with solutions extending over semi-infinite half spaces x  > —D/2  and x < +D/2.

As before, a system is considered in which the electrolyte contains salt ions, and which is open 
with respect to a salt reservoir containing positive and negative microions at chemical potential fib- 
Each isolated plate has a negative surface charge density a. For later convenience we will look at two 
isolated plates, one located at x  =  —D/2  with the charged surface at x  =  —D /2+ 8  and the associated 
microions residing in the semi-infinite x  > —D/2  region, and a second located at x  =  +D/2  with the 
charged surface at x  =  D /2 — 5 with microions in the x < D/2  region. The two solutions are denoted 

and respectively.
The PB equation for the microions in this situation is the same as that in (7.13) but with a 

different set of boundary conditions. The boundary conditions on the two solutions at the plate 
surfaces axe

(0)

dx
=  — Ibct and

d$ (o)

—D / 2 dx =  Ib & (7.39)
+ D / 2

The second boundary condition on the isolated solutions $ ^ r  *s t'katt derivatives vanish at points 
infinitely far from the plates

d$ (0)

dx
. d&g)

=  0 and — —
►+oo dx

=  0 (7.40)

The solutions for and 0 ^  can be expressed in terms of elementary functions, and are given by 
[99]

1 +  exp (—k {+x +  D/2)) A
1 — exp (—k (dtx +  D/2)) A

where
A  =  tanh r  sinh' 

2
•i ( l s i \

\ 2 k J_

(7.41)

(7.42)

From the hyperbolic tangent in (7.42) it follows that the isolated-plate solution shares the feature of 
the two-plate solution in that it saturates as the surface charge density a  becomes large.

KX

Figure 7.7: Guoy-Chapman solution to the PB equation for an isolated plate located at x = 0 with negative surface 
charge density a  =  —2. The salt bath density is ng l f  =  0.5 and inverse screening length k =  1. Shown are the density 
distribution of positive microions p+,  negative microions p_, and the charge density p  =  p+ — p_ in units of l^3, as 
well as the electrostatic mean field potential in kgT.  Note that p±  tend to raj, =  0.5 as D  gets large.
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7.5 Application of the new linearisation schem e for large plate 
separations

7.5.1 Charge neutral sectors

In the two-plate system, the charge neutral regions or sectors consist of the left and right half of the 
space in between the plates. The symmetry imposed on the solution to the PB equation in Section 
7.2.3 was that it must have mirror symmetry about the x  =  0 plane. The sectors are defined by the 
spaces Sl where —D /2  <  x  < 0 and Sr where 0 <  x <  D /2  1. Sl ,r  take the roles of the charge 
neutral sectors or cells referred to in Chapters 5 and 6.

As discussed in Section 7.1, in the planar geometry there are no dipole or higher multi-pole fields, 
so at the mean field level there is no electrostatic field from Sl in Sr  and vice versa. The effect of the 
mean field electrostatic interactions between the two sectors is to confine the microions and create two 
finite, symmetrical, charge neutral halves of the system. At the mean field level there is no difference 
between a system consisting of two charged plates located at x  =  ± D /2, and a single charged plate 
located at either x  =  ± D / 2  together with a charge neutral wall at x  =  0 [42]. These systems would 
both share the boundary condition (7.10) at x  =  0 and each satisfy one of the boundary conditions 
(7.12) at x = ±.D/2  but not the other.

Exact solutions to the PB equation within each sector $ l ,r (x ) will differ from their isolated 
counterparts $ ^ R(x) in that the corresponding charge distributions are nonzero only within the
finite sectors Sl ,r  rather than extending infinitely.

7.5.2 Linearisation of the Poisson-Boltzmann equation

As the plate separation D  becomes large, the solutions to the PB equation for the two-plate system 
$ l ,r {x) will start to resemble $ ^ R(x). In this regime, the linearisation scheme outlined in Chapter 
6 can be applied.

As before, the solution to the PB equation for the total electrostatic mean field potential is 
expressed as

$  =  $ i0) +  $<,0 )- ^ ; ) + £  (7.43)

Substituting this $(x) into the Poisson-Boltzmann equation for the inner region (7.13) and linearising
in the deviations e(x) gives a linear differential equation for e(x)

y 2$W  _|_ +  V2e(x) =  k 2 sinh +  e(x)n2 cosh (7-44)

Since $ ^ r ( x) satisfy PB equations for the isolated plate situations, we can substitute the charge 
distributions V 24>^jj =  —Ib P ^r  — «2s in h $ ^ i? to give

V 2e{x) = k2 sinh f e 0) +  +  e(x)n2 cosh
v y v 7 (7.45)

—k2 sinh — k2 sinh

This type of linearisation corresponds to an expansion of the microionic density distributions about

p(± \ x )  = nbexp [ t  ( $ l \ x) +  $ /? (* ) -  Z ^ ) ]  (7*46)

The constant yf î is intended to make the linearisation more effective by accounting for a constant 
component in the difference between the 4>(:r) and the superposition +  4>^. To achieve this, ^

1 These regions include an infinitesimal region beyond the left and right plates so that the surface charge on the plates
represented delta functions is picked up by the integrals i.e. S l  where —D /2  — 8 <  x <  0 and S r  where 0 <  x <  D / 2 + 8
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Figure 7.8: The constant contribution p f f  to the reference potential against plate separation k D  for \< j \ / k  =  
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Figure 7.9: Construction of the reference potential for the new linearisation scheme: this plot shows the exact <f>,
the isolated potentials the superposition <1>̂  +  and the shifted superposition — /x^  which acts
as the reference potential in the new linearisation scheme. The horizontal line is {4»ijn), the constant about which the 
PB is linearised in the traditional Donnan linearisation scheme discussed in Section 7.3. The energy scale is in units 
of k s T .  The parameters are (a) \<r\Ib / k  =  15, k D  =  2.5 (b) \<t \Ib / k  =  15, k D  =  5 (c) |<r|Zb/« =  1> k D  =  2.5 (d) 
|o"|Zb/« =  1, k D  — 5. The superposition and shifted superposition are barely visible in (b) and (d) due to their close 
vicinity to the exact curve.
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is chosen so that an integral of the reference charge density p^l\ x )  over the system (from x = —D/2  
to D /2) provides the total amount of microionic charge —2a. This corresponds to

/4! * = ln

where a± are the averages

•% +  y / i i? ) 2 + 4nba +a -
2 ribCt+

=  -  ln I T  +  \ / ( i f ) 2 +  ^ l a + a -  
2 n^ci-

(7.47)

a± = ^exp(=F($L0) +  *!r }) ) /  = ~d  J  exP(T($L0) +  $!r ))dx (7-48)

Figure 7.8 shows against plate separation k D  for various values of \ a \ /n .  The choice of f j $  in 
the reference potential has the consequence that the integral

J e ( x )  cosh — //gj^ dx = 0 (7.49)

Figure 7.9 shows how the reference potential is constructed from and p f f .  Exact solutions
of the mean field potential 4> are shown for comparison. For the larger plate separation k D  =  5 the 
difference between and $  is barely visible, and the contribution of is insignificant.

7.5.3 Boundary conditions

The boundary conditions on 4>(a;) were discussed in section (7.2.3), and are dictated by the symmetry 
imposed on the mean field distribution about x  =  0 and the charge neutrality condition. These 
boundary conditions prescribe boundary conditions on the solution for e(x) in the linear PB equation 
(7.44).

The gradient of the potential 3>(a;) at x  =  0 is zero. The superposition S  =  <&^\x) +  3>^(rr) 
possesses the correct symmetry and will have zero gradient at x  =  0 since

(o)

dx
d$ (0)

x = 0 dx
(7.50)

x = 0

The deviation potential e(x) must have the same symmetry, which requires the solution to the linear 
differential equation to satisfy

= 0 (7.51)
de
dx x = 0

The second boundary condition follows from (7.51) combined with the charge neutrality condition. 
An integral over the total microionic charge distribution must result in a net total of —a electron 
charges per unit area in S l  with the same amount in S r . In other words an integral over S r  from 
x  =  0 to x  = D /2  gives

rD /2

.
V 2$dx  =  +Ib & (7.52)

Substituting $  =  — p (e\’ +  e and using (7.50) and (7.51) we get.(0) .,(1)

(o)

dx +-
x=£>/2 dx +

x= £>/2

de
dx — ho-

x = D /2
(7.53)

Since the isolated solution satisfies the correct boundary condition at the right-hand plate

d$ (o)

dx =  Ib &
x = D / 2

(7.54)
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the condition for charge neutrality requires

de
dx

d $ (0)

x = D / 2 dx x = D /2

This boundary condition relates to the amount of charge contained in Ap, where

V 2e =  —/jsAp

(7.55)

(7.56)

The amount of charge contained in Ap is the amount of charge ‘cut out’ from the superposition of 
isolated charge distributions ps =  p ^  +  pf^  due to the fact that the two-plate system is finite. This 
is analogous to Q a = —Qi,  the charge due to the superposition pa inside a spherical colloidal particle, 
discussed in Chapter 6. The solution to the PB equation for an isolated plate located at x = —D/2  
gives the isolated distribution of microions p f/\x )  extending to x  —> oo. Over the infinite interval 
x > —D /2  this contains sufficient excess charge to neutralise the plate — a

f .

but over the finite interval

/

- D / 2 

D /2

p ^ \x ) d x  = —a

P i \ x ) d x  =  —a — Q0
D /2

in terms of derivatives

d$ (o)

dx
d$ (0)

x —D /2 dx x = - D / 2
— Ib  ( O’ Q o )

(7.57)

(7.58)

(7.59)

Since the isolated solution satisfies the correct boundary condition at x  =  —D /2

d$ (0)

dx — Ib Qo
x —D /2

(7.60)

and equivalently for the solution

d$
dx = —Ib Qc

x = - D / 2

so that we require

and therefore

where

rD/2

J - D / 2
A p(x)dx = 2 Qc

de
dx

Ib Qo =  ^ dx

— -^Ib Qo
x = ± D / 2

4nAexp(KD)

(7.61)

(7.62)

(7.63)

(7.64)
x = d / 2  exp(2kD) -  A 2

and A  was given in (7.42). Figure 7.10 shows QG/M  against kD  for various \cf\/k. Clearly Qo 
diminishes to zero as the plate separation becomes large. It can also be seen that for a given kD , 
a lower fraction Q0/\cr\ of the microion charge is ‘cut out’ from the isolated solution p ^  for higher 
|<t|/k indicating that the microions are comparatively closer to the plates for higher values of |cr|/«.
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Figure 7.10: Ratio of the amount of charge Q o  represented by the deviation potential e and the charge on the plates 
a, as a function of plate separation kD, for a variety of ratios of \(t \ / k  =  1,5,10,15

7.5.4 Properties of the deviation potential

Figure 7.11 shows typical solutions e(x) obtained from numerical integration of the linearised PB 
equation (7.45) for a variety of plate separations kD  with the ratio |cr|/« =  15. Exact evaluations 
of the deviation potential $  — — fJ$)  are als° plotted on the same graph. The small
differences between these solutions and exact evaluations reveal that the linearisation is successful for 
a range of k D .  Figure 7.12 shows the ‘amplitude’ e(0) — e ( D / 2) for several |cr|/«. It can be seen that 
even for large |cr|/« this quantity is relatively small, which is what makes this linearisation scheme 
successful.

For small plate separations k D  «  1 the size of the deviation potential e is generally small. In 
this regime, the mean field potential 4>, as well as the superposition <E>̂0) +  are relatively flat 
or constant between x =  —D / 2  and D/2 .  The constant ^  ensures that the reference potential 

— p.g}'*, which will be nearly flat in this regime, is at the correct level making e small. The 
amplitude of the deviation e then increases to a maximum near k D  ~  1, and then begins to fall as 
k D  gets large.
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Figure 7.11: The deviation potential e =  $  -  +  <t>  ̂ -  ( $ )  for 19 different plate separations kD ranging
between 0.1 and 9.6 and with \(t \ / k  — 15 . Exact solutions to the nonlinear equation are in red, and numerical solutions 
to the linearised PB equation (7.44) are in black. The small difference means that the curves are nearly completely 
overlapping with the exception of some intermediate kD.
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Figure 7.12: Amplitude of the deviation potential e(0) — e(D/2) as a function of k D  for various |cr|/«.

7.5.5 Linearised grand potential and pressure

Once the linearised PB equation (7.45) has been solved to obtain the linearised deviation potential 
e(x), this is used to estimate the pressure between the plates P.

The pressure is the derivative of the grand potential Cl with respect to D. In this linearisation 
scheme, the grand potential has been expanded to second order in density deviations A± = p± — p a ­
using the BDT, an expression for the pressure consistent with this expansion is obtained, which 
corresponds to a second order expansion of the density of microions at x  = 0

P  =  2nt cosh (V LO,(0) +  $ ^ ( 0 )  -  /i™ ) ( l  +  ^e2(0) )  +  2nt sinh ( $ i0)(0) +  $*'(()) -  /4 P ) e(°)

(7.65)
As D —* oo the pressure tends towards P00 = 2n*,, which is the pressure in the salt reservoir.

7.5.6 Approximation to  the linearised equation

In shorthand notation, the linearised PB equation (7.45) is re-written as

V2e(x) =  M (x)e(x) -t- N (x)  (7.66)

Although this equation is linear in e(x), it contains a spatially varying coefficient M (x) and an 
inhomogeneous term N (x), making it difficult to solve analytically.

As a first approximation, we solve this equation by replacing these terms with constants, resulting 
in a simple approximate equation for eA(x). The constants are chosen to be the average values of the 
functions

(M) = k2 ^cosh ^  ^ (7.67)

and
(N) =  k2 ^sinh — s i n h — sinh<&2? ^  (7.68)

The approximate solution eA(x) then takes the form

fA = I s Q o c o s H ^ m x ) ------
v W )s in h (v W )I > /2 )  (M)

Clearly this approach suffers a similar deficiency to the traditional linearisation scheme in that the 
large inhomogeneities brought about by a high surface charge a  will not be represented adequately, 
since the functions M (x) and N (x)  are expected to be very inhomogeneous in the limit of large |cr|
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and large kD. As D  increases, N (x)  becomes small since the difference between the reference charge 
density p^  and the superposition p ^  +  p ^  diminishes in this limit.

This new linearisation scheme has similarities with a traditional linearisation about a constant 
potential, but with a spatially varying inverse screening length y /M (x)  and a ‘source term’ N(x) 
that extends throughout the system. In the linearisation about the Donnan potential the effective 
screening length depends on the plate separation, but is constant throughout the system. The new 
linearisation scheme reproduces features of the nonlinear PB equation, in that the screening near 
a highly charged surface is more effective than far away from it. This allows the new scheme to 
reproduce the correct behaviour of the system in the D —> oo limit. The approximate treatment 
involving eA(x) will clearly not be as successful in doing this, but it does have the advantage of 
employing spatially varying reference potential that reproduces the correct D —* oo behaviour.

7.6 Comparison between estim ates of pressure

In this section the various methodologies for approximating the pressure P  between the plates will be 
compared. Figure 7.13 shows the logarithm of the relative error in pressure of the various approximate 
schemes discussed in this chapter

P a  ~ Perror =  ln
P - P n

(7.70)

where Pa is an estimate of the pressure produced from one of the approximate methods, P  is the 
pressure obtained from exact solution of the nonlinear PB equation, and Pqo (denoted P& in the figure) 
is the pressure in the salt bath 2rib which is the limit of P  when D  —* oo.

The line denoted Pt b  is the error in pressure from numerical solutions of the PB equation within 
the new linearisation scheme. The solutions obtained for e(x) were used in Equation (7.65) to obtain 
the pressure consistent with this linearisation. The line denoted Pref refers to an estimate of the 
pressure based on the reference potential alone i.e. when e =  0, and indicates to what extent the 
reference potential is able to reproduce the exact pressure without the need for further calculation. 
Ptbcc is the error in the pressure estimate when the approximate ansatz eA in equation (7.69) is used 
rather than a full solution to the linearised PB equation.

As expected, between P t b ,  Pref and P t b c c  the numerical solution ( P t b )  consistently performs 
best. For small values of |<t|/k the approximate solution P t b c c  improves on the pressure estimated 
from the reference potential alone Pref, but tends to the Pref error for large k D .  For larger \<?\/k , the 
improvement through the use of eA is largely insignificant.

The traditional linearisations, denoted by P d h  and Pbonm perform badly with the exception of 
the smallest values of |cr|/«. At very small values of ( k D  < 1), the plate separation is too small for 
significant screening to occur so the potential $  is very homogeneous. In this regime the linearisation 
about the Donnan potential performs better than the DH linearisation, as the potential takes a 
significantly lower value than 4? =  0. However at large k D ,  when $(x) is close to zero over a 
significant portion of the system, the linearisation about the Donnan potential provides poor pressure 
estimates. The failure in estimating (4>) correctly (see Figure 7.4) causes the relative error for the 
Poonn estimate to become increasingly large as k D  increases.

The cusps seen in the error curves for P ref , P t b c c  and the change in curvature of P t b  are a result 
of a change in sign of the error in the pressure estimates. This change in sign occurs because the 
reference potential — p£i contains the constant p f f .  The reference potential gives an
underestimate of the pressure at small k D  and then an overestimate for larger plate separations k D .  

The superposition of isolated potentials on its own underestimates the pressure for all
plate separations. The constant introduces a nonmonotonic difference between the exact and 
approximate pressures, but it also makes the linearisation more effective.
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In summary, the new linearisation scheme was applied to a one-dimensional two-plate system. 
Numerical solution of the newly linearised differential equation reproduces the nonlinear solution to 
the PB equation accurately. An approximation to the linearised solution eA(x) performs reasonably 
well. It enhances the accuracy relative to an estimate based on the reference potential -f —/ .$  
for small plate separations, and tends to the same result for large plate separations. Both of these 
approaches (numerical solution for e and approximation by eA) reproduce the pressure more accurately 
than the traditional linearisation schemes over the entire volume range. The Donnan linearisation 
scheme fails at large plate separations, and the Debye-Hiickel scheme fails for small plate separations. 
Both traditional linearisations perform less well for larger ratios of \ct\ / k .
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Figure 7.13: Logarithmic relative error for various approximations to the excess pressure P  — Pb (where Pb =  Poo) 
against plate separation k D .  The key relates each line to one approximate pressure estimation method Pa . P?b refers 
to a numerical solution of the new linearisation scheme, PrBcc the approximate solution to the new linearisation, 
P ref is the pressure calculated using the reference potential alone, P d - h  is for the Debye-Hiickel
linearisation about $  =  0 and Poonn is a linearisation about the Donnan potential ($ ). The upward turn in the error 
for P t b  at |<t|/k =  0.1 for large k D  is a due to numerical errors as a result of the small numbers involved.
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Chapter 8

Suspension of spherical particles

8.1 Introduction

In this chapter the new linearisation scheme outlined in Chapter 6 will be applied to the calculation 
of thermodynamic properties of colloidal suspensions in three dimensions. The system, which was 
described in Chapter 5, consists of a perfect lattice of identical spherical colloidal particles. The 
particles carry a fixed uniform surface charge, and are suspended in a polar solvent containing a low 
concentration of univalent microions which are taken to be in the grand ensemble. Calculations will 
be done on spherical W-S cells as well as simple cubic W-S cells so that comparisons can be made 
between them.

For comparative purposes, the same parameters as those in [87] are used. These parameters 
translate to macroions of radius a =  133 nm carrying between Z  =  100 — 3500 electron charges 
corresponding to surface charge densities of a  =  4.4 x 10-4  — 1.6 x 10-2  nm-2 . The salt bath 
concentration is taken to be n\> =  3.6pM  or 2.17 x 10- 6nm-3 . This equates to around 21 salt ions 
in a volume equal to the volume of one macroion Vf =  (4/ 3)7ra3. The resulting screening length is 
Ad = 160nm. As in previous calculations, the temperature is taken to be around T  = 30OK and the 
relative permittivity of water e =  76, resulting in the Bjerrum length Ib  =  0.72 nm.

These calculations may be seen as an investigation into the relevance of the W-S cell geometry. 
The W-S cell geometry determines the symmetry imposed on the mean field potential 4>(r) and 
distribution functions p±(r). By choosing the W-S cell to have the same geometry as the macroions, 
the spherical W-S cell achieves the considerable simplification of making the solution of the mean 
field equations a one-dimensional problem. Solving the mean field equations for a cubic W-S cell 
with a spherical macroion at its centre is significantly harder. In the PB formulation this requires the 
solution of a nonlinear partial differential equation.

In Section 8.2 the new linearisation technique is applied to spherical W-S cells, where comparisons 
are made to the exact solution of the PB equation. This system has been studied extensively in the 
literature, for example in references [88, 87]. In section 8.3, the method will be applied to solving the 
PB equations for spherical macroions in simple cubic W-S cells. Systems in which the macroions and 
their surrounding W-S cells have different geometries are less well studied in the literature.

Comparisons between spherical and cubic W-S cell geometries were made by Groot [110] using 
Monte Carlo (MC) simulations. This means that microion-microion correlations were included that 
are neglected within mean field theory. The spherical cell simulated by Groot also differs from the 
the W-S cell model in mean field theory because the boundary condition for the electrostatic field to 
vanish on the W-S cell boundary was not enforced (though the integral over the entire boundary will 
have been zero due to charge neutrality). This means that the spherical cell simulated by Groot did 
not correctly account for interactions between W-S cells beyond the confinement effect. The cubic cell
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simulated by Groot included these interactions through the use of periodic boundary conditions, and 
the Ewald summation technique for the evaluation of the long-range electrostatic interactions. These 
simulations over-represented correlations between neighbouring cells by making all of the microionic 
configurations in the entire lattice identical for every MC configuration. The simulations also have
the disadvantage of only being able to handle low-valency macroions (with a maximum charge of
Z  ~  500) due to the computational expense of increasing the number of degrees of freedom.

8.2 Spherical W igner-Seitz cell

8.2.1 Poisson-Boltzmann Equation

In the spherical W-S cell approximation, the Poisson-Boltzmann equation reduces to an ordinary 
differential equation. In the microionic region the PB equation is

d 2$  2 #  to in■3-5-+  - —  =  k2 sinh $ (r) (8.1)
dr1 r dr

with boundary conditions

= 0 (8.2)
dr

d$
=  —47Hbct and —dr r= R

where a  is surface charge density of the macroion, and R  is the W-S cell radius for a system with a 
volume fraction <j> =  a3/R 3.

8.2.2 Exact numerical solution

Equation (8.1) is a nonlinear ordinary differential equation. The two boundary conditions (8.2) at 
r = a and r = R  make this a two-point boundary value problem [95]. Solutions are obtained by 
iteratively solving an initial value problem with the gradient specified at r  =  a as in (8.2) and a guess 
for the value of the surface potential 4»(a) =  M. The correct value of M  will result in a solution 4>(r) 
that satisfies the second boundary condition in (8.2), which requires gradient at r  =  R  to vanish.

Since the macroionic charge has been taken to be negative Z  < 0, the microionic charge density 
within the W-S cell will generally be positive p > 0, becoming smaller towards the boundary of the 
cell. As the volume of the W-S cell increases, the microionic charge density at the W-S cell boundary 
p(R) tends to zero. The mean field electrostatic potential $  satisfying the PB equation (8.1) and its 
second derivative V2$  will be negative within the W-S cell, whilst the first derivative is greater than 
or equal to zero. As R  —» 0 0  the potential at the W-S cell boundary $>(R) tends to zero, which is a 
consequence of our choice that the constant p ei =  0.

Values of the surface potential M  above a critical value lead to solutions for which diverges to 
+ 0 0  for large r. Values below this critical value lead to potentials for which 4?(r) diverges to —00 as 
r  increases, but with 4>(r) passing through a maximum at which the derivative d&/dr is zero. The 
critical value of M  is the surface potential for an isolated macroion in an infinitely large W-S cell, 
and corresponds to the surface potential for the isolated solution $(°)(a). Values of M  lower than 
this give solutions for finite W-S cells. The radius at which $  is a maximum corresponds to the W-S 
cell radius R. Smaller (more negative) values of M  give rise to smaller cell radii R.

To obtain numerical solutions to the nonlinear PB equation our strategy is to sweep through 
different values of M  from a minimum value up to the maximum M  = <&(°)(a). For each of these 
values, the initial value problem is solved numerically. From these solutions the radius r = R  for 
which d$/dr  =  0 is obtained, which is the W-S cell radius the solution corresponds to. This method 
avoids the iterations necessary to find solutions for R  specified a priori, and provides solutions for a
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range of R.

8.2.3 The isolated macroion

As the volume fraction goes to zero, the W-S cell volume and radius tend to infinity, and $(r) 
tends towards the solution for an isolated macroion As long as the surface charge density
cr on the spherical macroion is uniform, the solution for an isolated macroion is expected to be 
spherically symmetric, and can be regarded as the limit of the solution for a spherical W-S cell with 
infinite volume. Solutions to the nonlinear PB equation for isolated macroions are required because 
they are used to construct the reference potential about which the PB equation is linearised in the 
new linearisation scheme proposed in Chapter 6, for both the spherical and non-spherical W-S cell 
geometries.

To obtain the solution to the nonlinear PB equation for an isolated macroion, iterative solution 
of the initial value problem described above is employed to find the critical value M  =  $(°)(a). A 
solution with this value of the surface potential and the gradient at r = a specified as in (8.1) is the 
solution of the PB equation for an isolated macroion <&(°)(r).

The numerical solution is obtained up to a large radius Ro, where the potential is very close to 
zero. Beyond this point, a linearised ansatz can be used to give $(°)(r) at arbitrarily large radii. A 
sphere with the large radius Ro, will contain most of the microionic charge required to neutralise the 
charge Z  carried by the macroion. This sphere is then like a very slightly charged large particle with 
radius Ro. The amount of charge contained in the sphere Z*  is obtained from the gradient of the 
numerical solution at R q

dr =  (8-3)
r=Ro

The radius Ro has been chosen to be sufficiently large so that Z* is very small, and $>(°\Ro) is close 
to zero. This allows the use of the Debye-Hiickel solution for radii beyond R q

,(0) / % = tBZ*exp(-K(r-flo)) (8 4)'  (1 +  «J2o)r

8.2.4 New linearisation scheme

In Chapter 6 a new linearisation scheme for the PB equation was introduced for a lattice of colloidal 
particles. The Poisson-Boltzmann equation was linearised about a reference potential consisting of 
the superposition of potentials 5(r) given by

S(r) =  £ $ ( ? >  (8.5)
n

where the are (spherically symmetric) solutions to the PB equation for an isolated macroion 
carrying surface charge density a, centred at the nth lattice site. The reference potential (8.5) has 
the property that the normal derivative of S  on the surface of the corresponding W-S cell boundary 
vanishes.

The analogue to this reference potential in the spherically symmetric geometry is obtained by 
taking

S(r) =  $<°> (r) +  $ (0) (2R  -  r) (8.6)

where the first term is the isolated solution centred within the W-S cell, and $(°)(2i2 — r) takes 
the place of the superposition of the isolated solutions centred at all of the other cells in an infinite 
lattice. The superposition (8.6) satisfies one of the boundary conditions in (8.2), namely that the 
gradient at r  =  R  vanishes. The gradient of S' at r  =  a is different from the required gradient which
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is a consequence of the difference between the amount of microionic charge contained in the correct 
solution $  and in the reference potential S.

dS
dr

d$W
=  —A-kIbct +  Qi where Qi =  — dr (8.7)

r=2 R - a

As described in Chapter 6, a constant f j $  is subtracted from S  to make the reference potential more 
effective. This constant has the property of making the reference charge density satisfy

[  2ri6sinh(5(r) — p $ )d r  = Z  (8.8)
J W o

where the integral is over the outer region of the W-S cell.
To proceed with the linearisation, the right hand side of equation (8.1) is expanded to first order 

in the deviations e = $  — S  + p $

I r *  + r  ^  ~  K2sinh(5(r) -  p $ )  +  ($ (r) -  S(r) +  p f f 'j  k2 cosh (S(r) -  p (ej}) (8.9)

where 4>(r) satisfies the boundary conditions (8.2). This linear ordinary differential equation in terms 
of <£(r) can be solved numerically using standard methods without much difficulty. The numerical 
solution for the isolated macroion $ ^ ( r )  is used as input for the construction of S(r) — before 
solving for the linearised potential 4>(r).

8.2.5 Traditional linearisations

In the traditional linearisation schemes the PB equation (8.1) is solved by linearising $  in deviations 
A4> from a constant potential. In the Debye-Hiickel (D-H) linearisation scheme, the potential is 
expanded about $  =  0. This is the limit of $  far away from the macroion in the low density limit if 
the constant pei has been set to zero. In an alternative scheme $  is linearised about the mean of the 
potential (or the Donnan potential) ($). von Griinberg et. al. [87] showed that while the linearisation 
about the Donnan potential performs better at high packing fractions <f), it leads to spurious negative 
compressibilities for low </> when the charge on the macroions is large.

The D-H linearisation proceeds by expanding the right hand side of (8.1) to first order in $

V2$  ~  k2$  (8.10)

This equation is solved subject to the boundary conditions (8.2), giving the solution

$ d h {t ) =  - A ' K l s Z a 2

where

exp(-zcr) exp(+ «r)‘ 
A ------------------h JD-------------- (8.11)

A — exp(«(a -|- 2R))(kR  — l ) r  and B  = exp(/ca)(/ci2 4- l ) r  (8.12)

and
p   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ _ _ _ _ _ _ _  / g  2 3 " )

(«a +  1)(/cjR — 1) exp(2kR) — («a — 1 )(kR  4-1) exp(2/ca)

The linearisation about the Donnan potential ($) is obtained by expanding (8.1) in the deviations
-  ($)

V2A $ ~  k2 sinh($) +  A $ k2 cosh($) (8-14)
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By introducing a new effective screening length «2 =  k2 cosh($), this equation is rewritten as

V^A$ ~  R tanh($) +  R2A # (8.15)

Since ($) is a constant, A $ must satisfy the same boundary conditions as $  given in (8.2). The 
solution is given by

$Donn(r) =  ($) -  tanh($) -  AirlsZa

where A  and B  are the same as A  and B  but with k replaced by R

j exP ( -n r )  ^ exp (+/cr) 
r r

(8.16)

8.2.6 Pressure and compressibility comparisons

Figure 8.1 shows comparisons between various calculations of the excess pressure and its derivative as 
a function of packing fraction 0. Within the mean-field theory applied here, the pressure is given by 
the boundary density theorem discussed in Chapter 5. This relates the pressure to the total microion 
density at the W-S cell boundary P  — p+(R) +  p~(R). The pressure of microions in the salt bath is 
Pb — 2rib, and a dimensionless excess pressure can be defined as P/2nb — 1.

The derivative of the pressure with respect to <f> is related to the isothermal compressibility x  
through dPfd<f> =  (?7/x ) -1 > where

X -1 =  w f £  (8.17)

rjf is the macroion density.
Estimates based on the Debye-Hiickel linearisation and the new linearisation scheme described in 

Section 8.2.4 are compared to results from exact numerical solutions to the nonlinear PB equation in 
Figure 8.1 . The Donnan linearisation was omitted since von Griienberg [87] pointed out that this 
gives spurious results for low packing fractions. Also shown for comparison is the pressure calculated 
using the reference potential S  — p $  alone.

What can be seen is the failure of the D-H linearisation, with the exception of the low density and 
low surface charge regime. The new linearisation scheme succeeds in following the exact solutions 
closely for the range of parameters shown here. Even for the largest volume fraction (f> =  0.6 corre­
sponding to a W-S cell radius of R  =  1.2a, deviations from the exact pressure and compressibility are 
negligibly small. It can also be seen that the deviation potential e =  $  — 5 + p $  makes an important 
contribution to the pressure calculations, especially for higher <f> and for large \Z\ when the pressure 
calculated using the reference potential S  — p $  deviates significantly from the exact potential.

8.2.7 Salt content

None of the results in Figure 8.1 display a negative compressibility, indicating that for the parameters 
used, phases with a homogeneous density remain stable. This feature will persist for the fixed salt 
problem as well. However, the P-V  diagram is expected to be qualitatively different for this case. 
For the calculations shown here (at fixed chemical potential pb) the number of salt particles Ns in 
the system varies with volume. Figure 8.2 shows the ratio of salt particles to macroion charge NS/\Z\ 
as a function of volume for the three cases studied in Section 8.2.6.

Solution of the exact nonlinear PB equation for the fixed salt problem is difficult due to the 
interdependence between no and $. Numerically this requires a doubly iterative routine to find 
solutions for a given cell radius R  and quantity of salt particles N a. For each volume, this requires 
finding the value of the Lagrange multiplier p  for which the number of particles is Na. Using the 
new linearisation scheme, this can be done more efficiently as only one set of iterations is required 
to ensure the correct number of salt particles. Using the linearised equation, we have implemented a
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scheme whereby for a given value of no =  A-3  exp(/i), the correct cell radius R  was obtained to ensure 
the correct quantity of salt in the system. The initial results however, did not display qualitatively 
different behaviour to the results in Section 8.2.6. Further studies are planned to investigate the 
fixed-salt scenario in more detail.

8.3 Simple cubic W igner-Seitz cell

8.3.1 Geometry and symmetry

To extend the new linearisation method to a non-spherical geometry, it will be applied here to the 
calculation of pressure versus packing fraction for a simple cubic lattice (SC) of macroions. The 
simple cubic lattice (described in 5.5.2) has a geometry with a high degree of symmetry, and as such 
is not too dissimilar from the spherical geometry. It should also be pointed out that colloidal crystals 
tend to form close packed structures rather than a SC geometry. Nevertheless, the SC lattice is used 
here for simplicity.

With lattice spacing D , the system consists of macroions centred at sites described by the position 
vectors R /mn =  l?i +  m r2 +  n r3 , where r i , r 2 , r 3 are lattice vectors of length D  which we take to 
point in the i, j  and k directions respectively, and Z,m, n are integers. The W-S cell is a cube with 
sides of length D  containing a single macroion at its centre. As discussed in 5.5.2, the mean field 
potential 3>(r) and distribution of microions p±(r) in this geometry possess the full symmetry of the 
octahedral group O , which contains 48 symmetry operations.

8.3.2 Poisson-Boltzmann equation

In this geometry it is convenient to use Cartesian coordinates. The PB equation in the microionic 
region may be written as

d2$  d2$  d2$  2 • /QIC*
V  8 ?  =  '  sm h$(r) (8.18)

Since the microions are not able to penetrate the macroions, the inner region must satisfy

V2$  =  0 for r < a (8.19)

The periodicity and charge neutrality conditions prescribe that the electric field vanishes at the W-S 
cell boundary, so

V $  • n  =  0 (8.20)

at the W-S cell boundaries, where n  is a vector perpendicular to the W-S cell boundary (this equation 
is given in expanded form in equations 5.55-5.57).

8.3.3 New linearisation scheme

The new linearisation scheme was introduced in Chapter 6. The first step is to construct the super­
position of potentials S{r) for isolated macroions positioned at the lattice sites R /mn-

S(r) — ^  $ <0)(|r — R/mnl) (8.21)
l ,m ,n

where is the spherically symmetric solution for an isolated macroion centred at the origin.
As before, in order to make the linearisation more effective a constant / i ^  is obtained which 

satisfies equation (8.8). The reference potential then consists of S(r) — f i ^ . The PB equation (8.18)
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is linearised about this to give an equation for the deviation potential e =  $  — S  +  f i ^

Qfte (Pt d2t
h + w * + h ^ p ^ ) + F { r )  (8-22)

where the functions P (r) and F(r) are defined as

P (r) =  k2 cosh(5(r) — ) $ )  (8.23)

and
F (r) =  k2 sinh(5(r) -  n ^ )  -  «2s in h $ (0)(|r -  R imn|) (8.24)

0 , 0,0

1 Equation (8.22) is a linear partial differential equation for e(r), and takes the place of the nonlinear 
PB equation when the proposed linearisation approximation is valid, which occurs for large k D .

For the inner region r  < a, $  satisfies the Laplace equation in (8.19), so e(r) must satisfy

V2e =  — £  K2 sinh$™ „ (8.25)
0 ,0,0

It will be convenient to extend the definitions of P (r) and F (r), so that Equation (8.22) becomes
(8.25) in the inner region. This means that when r < a, P  — 0 and F  is given by the right hand side
of (8.25).

In Chapter 6 it was also found that the boundary condition on e(r) at the W-S cell boundary is 
that the normal derivative vanishes

Ve • n  =  0 (8.26)

where n  is a vector perpendicular to the boundary.

8.3.4 M ethod of solution

In the model employed here, the macroions are assumed to reside at the sites of a perfect, infinite 
lattice. The mean field equations are assumed to give rise to a potential $ (r) and distribution of 
microions p±(r) that possess the periodicity and symmetry of this lattice. The function e(r) must 
have both of these properties in common with 4>(r) and p±(r) .

The periodicity motivates searching for a solution to (8.22) in Fourier space. Expanding e(r) in
a Fourier series, ensures that it possesses the periodicity required. The symmetries that must be
satisfied by e(r) require certain terms in the Fourier series to have the same Fourier coefficient. A 
Fourier series may be constructed by employing a set of basis functions Eimn(r) in which such terms 
have been grouped together

Eimn(r) = c o s[^ /x ]  cos[^-my] cos [ j^n z\+

r27r . r27r, . r2n 1
cos[— nx\ cos[— ly\ cos[— m zj+

r27T . r27T . .27T, .
cos[— mx\ cos[— ny\ cos[— lz\+

2n 2 °  2 °  <8-27>
cos[— Ix] cos[— ny] cos[— mz]+

r27r , t2ir . r27T, ,
cos[— nx\ cos[— my\ cos[— lz\+

r2?r 27r 27r
cos[— mx\ cos[— ly\ cos[— nzj

1Note that ^ (r) and P (r) are the names given to these functions in this context, and they do not denote free energy
or pressure.
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These functions are invariant under all 48 point group symmetry operations belonging to the octa­
hedral group O. They also possess the correct periodicity, making each W-S cell invariant under 
translations by lattice vectors R jmn. The boundary condition (8.26) is implicitly satisfied by the 
functions Eimn. It is also clear that this basis is orthogonal so that

Ei mn (r)E, ,m,nt(r)dr oc Su>$ mm' $nn' (8.28)

where Sij is the Kronecker Delta. The constant of proportionality varies for different combinations of 
Imn.

The solution to the linearised differential equation (8.22) is expanded in this basis

<« = E  A‘ mn Ei mn (r) (8.29)
l>m>n> 0

where the summation runs only over the irreducible volume of reciprocal space defined by I > m > n > 
0, reflecting the built-in symmetry of the Eimn functions. A solution e(r) to the linearised differential 
equation must now be found in terms of the coefficients Aimn• This is done by substituting (8.29) 
into the differential equation (8.22), which gives

-  E  {^m n + P (r ))A lmnE lmn (T )= F (v)  (8.30)
l>m>n> 0

where the reciprocal vector is defined as k/mn =  (27r/D )(/,m , n).
To proceed, the W-S cell volume is discretised into a set of evenly spaced points denoted by r ijk

where the indices i , j ,  k determine the position of the points in the x ,y ,z  directions respectively. It
can be shown that the functions Eimn(r) are orthogonal over discrete points evenly spaced over the 
periodicity interval (the W-S cell), so that a relation analogous to the integral relation (8.28) is valid 
for a sum over the discrete points 2

E £ ‘ mn (*"ijk)El>mini{Yijk) oc 5ui$mm' &nn' (8.31)
ijk

This property allows equation (8.30) to be converted into a set of linearly independent simultaneous 
equations for the unknown coefficients Aimn

~  }   ̂ fefmn d" P{rijk)) Ajmni£jmn(r ijk) =  Efoijk) (8.32)
l>m>n>0

A new indexing system is introduced in which one integer i is assigned to each of the discrete points 
in real space and one integer j  is assigned to each point in reciprocal space k imn. Equation (8.32) 
is then written as

-  E  03 + ̂ ( r «)) A jE j (ti) = F (ti)  (8.33)
j

or in more compact form

- Y ,  03 + p«) Ai E 'i = Fi <8-34)
j

If the number of evenly spaced points in real space is taken to equal the number of points for which 
coefficients are sought in reciprocal space Npt, then a non-trivial solution for the Aimn can be found. 
In fact, to get the correct number of independent equations, the Npt real-space points r ijk must lie

2The phenomenon of Aliasing may occur in a discrete Fourier series [111, 112], whereby higher frequency terms
emulate lower frequencies. This means that arguments such as I, V in the Kronecker Deltas of (8.31) should be replaced
by I, V ±  2qNpta where q is an integer.
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within an irreducible volume of the W-S cell such a s x > y > z > 0 .  Defining the matrix M  as 
Mij  =  — (k? +  Pi) E i j , (8.34) may be written as the matrix equation

M  - A  = F  (8.35)

where A  and F  are column vectors with components Aj  and Fi  as in (8.34). A solution to the simul­
taneous equations provides the Fourier coefficients Aimn, and is obtained by numerically inverting M  
to give

A  =  M ~ 1 • F  (8.36)

A solution e(r), together with the superposition of potentials S(r) is plotted in Figure 8.3 for packing
fraction <f> =  0.1 and the same system parameters as used in the case of spherical W-S cells.

Convergence

For this approach to be effective, the series for e(r) given in (8.29) must converge after a finite number 
of terms. If the index I runs from 0 to Npt, then there will be N t  = (Npt + l)(N pt+2)(Npt+3)/6  terms 
in the series, corresponding to the number of reciprocal lattice vectors k*mn for which I > m > n  > 0. 
Obtaining a solution e(r) is numerically challenging, since the number of points N t  increases rapidly 
with Npt, which in turn increases the size of the matrix M  which has dimensions N t  x  N t -  This puts 
a limit on the computational feasibility of the approach.

The main obstacle to convergence comes from the discontinuity at the spherical boundary r  =  a, 
where the equation for e(r) changes. The spherical boundary is incommensurate with the cubic grid 
on which the points Tijk are defined, and a sufficient number of points must be taken to accurately 
resolve the curved boundary. This difficulty is an inherent feature of any treatment for which the 
macroionic and W-S cell geometries are different.

For our purposes, convergence is defined by the requirement that the pressure P  changes negligibly 
when the number of points Npt is increased. For the parameters used in this study, it was found that 
Npt between 15 and 20 was sufficient to achieve convergence.

8.3.5 Comparisons between pressure in the spherical and cubic geometries

In Section 5.6.5, the Boundary Density theorem was extended to the cubic geometry with the result 
that the pressure P  is given by

P  =  (p+ +  P-)surf (8.37)

where the average is over the W-S cell boundary or surface. Plugging solutions e(r) into this equation, 
and keeping terms up to second order in e(r), the pressure P  corresponding to the linearised PB 
equation is obtained. Figures 8.4-8.6 show the dimensionless excess pressure against packing fraction 
calculated in this way, for three different values of Z. Also shown on these plots is the pressure for 
spherical W-S cells of the same packing fraction, obtained from solutions to the nonlinear Poisson- 
Boltzmann equation. It can be seen that for low packing fractions, pressures from the spherical and 
cubic W-S cells are very similar. Deviations occur at higher packing fractions, especially for the 
more highly charged spheres with Z  =  —1000 and Z  =  —3500. It is not entirely clear whether these 
deviations arise from failure of the linearisation approximation employed in obtaining e(r) for the 
cubic W-S cells, or if they represent a genuine difference between the spherical and cubic W-S cells. 
Using the new linearisation scheme, it was shown in Figure 8.1 that for the case of spherical W-S 
cells the linearisation approximation holds up to very high packing fractions, even for the most highly 
charged colloidal particles Z  =  —3500. This does not necessarily mean that the linearisation scheme 
works over the same range of parameters for cubic W-S cells. To illustrate this, Figure 8.7 shows e(r) 
and the full potential 4>(r) for cubic and spherical W-S cells at two different packing fractions. The
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potentials are plotted against distance from the centre of the cell r, and in the cubic case they are 
plotted for various directions denoted by Miller indices in brackets. It can be seen that for a given 
packing fraction, the deviation potential in the cubic geometry has larger values in certain directions 
than in the spherically symmetric geometry. This indicates that the linearisation is likely to start 
breaking down at lower packing fractions for cubic W-S cells than spherical ones.

8.4 Summary

In this chapter the new linearisation technique was applied to a system consisting of identical, spherical 
colloidal particles carrying a high amount of surface charge, arranged in a lattice. This method 
enabled efficient solution of the PB equation for cubic as well as spherical W-S cell geometries. In 
the spherical case, comparison with exact solutions to the nonlinear PB equation revealed that the 
method is reliable even at high packing fractions. A comparison between the spherical and cubic 
W-S cells was made by examining curves of pressure against packing fraction for the two cases. This 
revealed that the mean field thermodynamic behaviour in the two geometries is very similar. At high 
packing fractions the two approaches appear to differ for the most highly charged macroions. It is 
not clear whether this is a result of the linearisation approximation in the cubic case. Further studies 
will be required to resolve this question.

In both the spherical and cubic W-S cell geometries, the compressibility remained positive for the 
parameters used. This is consistent with the findings of von Griinberg, van Roij and Klein [87] that 
for the case of open systems, the nonlinear PB equation does not lead to instability of homogeneous 
phases. Although the behaviour will be qualitatively different due to the effect of salt density on the 
screening behaviour, the stability with respect to phase separation is expected to persist for a closed 
system containing a fixed amount of salt. The increased efficiency of the new linearisation technique 
means that it can be applied to the fixed salt case without too much computational difficulty. The 
increased range of validity as compared with the traditional linearisation schemes makes this approach 
more reliable, especially for systems with highly charged macroions.

For the spherical W-S cells, the extent to which the reference potential alone could reproduce the 
P-V  characteristics was also investigated. Under certain conditions, this approach may be advanta­
geous as it requires minimal further calculations beyond solution of the PB equation for an isolated 
macroion. This approach may be useful in situations where the traditional linearisations fail and 
obtaining an exact solution is unfeasible or difficult. One potential application of this approach is for 
the calculation of properties of disordered dilute suspensions of highly charged macroions, for which 
an exact or even a linearised solution to the PB equations is difficult to obtain. The superposition of 
isolated mean field potentials will automatically possess some of the features expected from solutions 
to the PB equation.

Another potential application of this approach is the calculation of 3-body interactions in charged 
colloidal suspensions. Lowen and Allahyarov [85] showed within the framework of a traditional lin­
earisation scheme (about a constant microion density) that for a triangular arrangement of macroions, 
triplet interactions make a cohesive contribution to the effective potential between macroions. In their 
theory, triplet interactions occur as a correction to the free energy expansion, when cubic terms in 
the inhomogeneous microion distribution functions are included. This correction is calculated using 
the density distribution obtained from the quadratic expansion i.e. from the linearised theory. The 
cohesive effect of the 3-body interactions was shown to be stronger for more highly charged macroions. 
The drawback of the theory is that the linearised solutions, from which the correction is calculated, 
are not accurate for highly charged macroions. Several years later, van Roij et. al. [114] used finite 
element methods to calculate 3-body potentials from solutions to the nonlinear PB equation. These 
calculations confirmed that 3-body interactions are attractive, and become more cohesive for larger
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Z  and longer screening lengths.
Recent work by van Roij et. al. [113] involving simulations that included the 3-body potential 

obtained by van Roij et. al. previously [114], has highlighted the effect of 3-body interactions on the 
phase diagram of charged colloidal suspensions. Chatterji et. al. [115] have also performed simulations 
recently in which 3-body interactions were investigated by explicit simulation of the microions.

The expansion method proposed in Chapter 6 could be useful in developing an expansion similar to 
that of Lowen and. Allahyarov, but which is applicable to larger Z, for which the triplet interactions 
are more cohesive. The 3-body interactions are essentially a result of enhanced screening of two 
macroions in the vicinity of a third macroion. The approach proposed in Chapter 6 has the essential 
ingredients required to reproduce this effect.
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Figure 8.1: Dimensionless excess pressure and compressibility: comparison between various approximations and exact 
numerical solutions to the nonlinear Poisson-Boltzmann equation for a spherical W-S cell. Plots on the left display 
excess pressure P / 2 n b  — 1 vs. packing fraction 4>, and plots on the right show the derivative of the pressure, which 
gives (7?/x)-1  where r j f  =  < /̂(47ra3/3) is the macroion density, and x  is the isothermal compressibility. The three rows 
of graphs axe for macroion charge Z  =  —3500, —1000, —100 respectively. The macroion radius is a  — 133 nm and the 
salt reservoir density is 3.6/xM.
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Figure 8.2: Ratio of salt particles in the system to macroion charge N S/ \ Z \  as a function of volume 1/0, for three 
values of macroion charge \Z \  =  100,1000,3500.

Figure 8.3: Cross-sectional plots in the x  — y  plane of the potentials S ( r) (top row) and e(r) (bottom row) for z  =  0  
(left column) and z  =  —D / 2  (right column). The parameters used here were Z  — —3500, a  — 133nm, with packing 
fraction 0 =  0.1 and W-S cell cube length D  — 461.9n m .  The spatial dimensions are in n m  and the energy axis is in 
units of fcsT. The diagrams on the topmost row illustrate the geometry of the system and show the planes for which 
the potentials are plotted in the two columns.
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Figure 8.6: Pressure vs. packing fraction for a spherical (line) and simple cubic (points) W-S cell. The macroion 
valency is Z  =  —100
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Concluding remarks

In this thesis, the application of mean field density functional theory to the description of the thermo­
dynamic properties of inhomogeneous fluids was studied. In Chapter 3 the question of the applicability 
of MFDFT to systems containing a small number of particles was investigated. It was found that 
certain corrections to the standard approach in MFDFT are important. These corrections account for 
errors due to large N  approximations in the standard MFDFT functionals, the inclusion of forbidden 
configurations of the hard-sphere reference system due to the random phase approximation (RPA), 
and the confinement of the centre of mass by an inhomogeneous mean field potential. These correc­
tions were tested on the extreme case of a one dimensional system containing just two particles, in 
which correlation effects are expected to be strong. Nevertheless a reasonable degree of approximation 
was achieved when the relevant corrections to the standard MFDFT approach were made.

The observation of inhomogeneous phase behaviour in charged colloidal suspensions was reviewed 
briefly in Chapter 4. The application of mean field theory to these systems was discussed in Chapter 5. 
In Chapter 6 a new linearisation scheme for dilute colloidal suspensions was derived in both the integral 
equation and differential equation formulations. The application of this method to one-dimensional 
and three-dimensional systems was investigated in Chapters 7 and 8 respectively. Although the 
new linearisation method required numerical solution in all cases studied, the increased efficiency as 
compared with solution of the nonlinear PB equation make it a useful method, especially in more 
complicated geometries. No phase instability was found for homogeneous systems that were open 
with respect to a salt reservoir. This feature is expected to persist for fixed-salt systems. The 
method introduced here can be applied to this case, due to the reduced computational requirements 
compared with solving the nonlinear PB equation, and the increased range of validity compared with 
linearisations about a constant mean field potential. Further studies are planned for calculations on 
fixed-salt systems.

Additional studies are also planned for the application of the linearisation scheme proposed and 
tested here to different geometries of charged macroions. One such case involves disordered arrays 
of macroions for which solution of the full nonlinear problem is difficult. We also plan to develop an 
expansion based on the technique laid out in Chapter 6 , to obtain expressions for the effective 3-body 
interactions between colloidal particles (as discussed at the end of Section 8.4) in terms of numerical 
solutions of the nonlinear PB equation for isolated macroions.
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