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Abstract

The spectrum of diseases caused by mitochondrial dysfunction is very broad and 

encompasses the archetypal mtDNA mutation diseases, mutations of nuclear 

genesencoding mitochondrial proteins (including those of the oxidative phosphorylation 

system), and a variety predominantly neurodegenerativediseases in which the primary 

cause of mitochondrial dysfunction remains undefined.

The last two decades have seen an explosion in our understanding of the archetypal
i

mitochondrial disorders. Attention has now focused on the nuclear encoded 

mitochondrial disorders. Furthermore, nuclear factors may be of significance in the 

pathogenesis of the archetypal disorders associated with mitochondrial DNA mutations. 

These conditions are typified by their clinical diversity and poor phenotype-genotype 

correlation. One of several potential explanations for this is that nuclear genes determine 

the fate of mtDNA mutations, or that secondary mtDNA mutations have a modulating 

effect upon the expression of the primary mutation.

In this thesis I have sought to address several aspects of the biochemical and clinical 

features of mitochondrial diseases. In chapter 3 cell cybrids have been used to study the 

role of the nuclear genome on the biochemical expression of mtDNA mutations in an 

attempt to understand potential influences on phenotypic expression. An extension of this 

was the use of xenomitochondrial cybrids to analyse nuclear-mitochondrial interactions 

and thre function of the respiratory chain. At the biochemical/clinical interface, skeletal 

muscle from patients with focal dystonia has been used as a model to investigate the role 

that mitochondrial dysfunction might play in this movement disorder. Finally, the clinical 

role of therapy for mitochondrial disorders has been investigated in the context of 

Friedreich’s ataxia (FRDA). Existing rating scales have been assessed and new ones 

developed to lay a firm foundation for evaluating disease-modifying therapies. These 

have been piloted in a long term intervention trial for FRDA.
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1 INTRODUCTION

Our understanding of the role of mitochondria in human disease has expanded 

exponentially in the last 25 years. Mitochondria were first described in 1856, however it 

was not until 1946 that Albert Lehninger, Eugene Kennedy and others identified 

mitochondria as the major site of energy metabolism within the cell. Mitochondrial DNA 

(mtDNA) was identified in 1963 and the human mtDNA sequence was published in 

19811. Subsequently the mtDNA sequence of many other species has been determined, 

revealing a high degree of conservation between mammals .

There is now good evidence that mitochondria are the ancestors of free living, oxygen
/

metabolising (i.e. aerobic) purple bacteria that were engulfed by ancestral eukaryotic 

anaerobic cells approximately 1.5 billion years ago. They typically measure 2 x 0.5 pm. 

As a consequence of their endocytic origins mitochondria are enclosed by both a 

relatively permeable outer membrane, and a relatively impermeable inner membrane. The 

outer membrane is permeable due to the abundant presence of porin, a transmembrane 

protein with a large pore. It is this inner membrane folded into numerous cristae that is 

the site of the mitochondrial respiratory chain. Like bacteria, mitochondria contain their 

own genome, ribosomes, and tRNAs. However, in order to function fully they rely upon a 

close symbiotic relationship between the nuclear and mitochondrial genome. The nuclear 

genome contributes the vast majority of mitochondrial proteins

Initially it was believed that disease caused by mitochondrial dysfunction would prove 

fatal in utero. However, a rapidly expanding number of diseases caused by mutations in 

mtDNA have been identified, and more recently diseases caused by mutations in nuclear 

genes have been found to have mitochondrial dysfunction at the centre of their 

pathogenesis. In a number of instances this is because the responsible mutation lies in a 

nuclear encoded mitochondrial protein.
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Over the last decade mitochondrial biology has expanded into the fields of ageing, 

oxidative stress, and programmed cell death. These organelles now occupy a cornerstone 

of human biology.

1.1 MITOCHONDRIAL FUNCTION -BIOCHEMISTRY

Mitochondria are the site of numerous metabolic pathways including the Kreb cycle, fatty 

acid p oxidation, and amino acid pathways. In fact all pathways of fuel oxidation except 

glycolysis are located within mitochondria. These organelles are also involved in the 

cellular homeostasis of calcium, the protection of the cell from damage caused by 

reactive oxygen species generated during oxidative phosphorylation, and necrosis and 

apoptosis. These multiple functions are intricately interconnected.

In aerobic organisms, all energy yielding metabolic pathways culminate in oxidative 

phosphorylation. Five discrete protein-lipid complexes, embedded in the mitochondrial 

inner membrane, orchestrate this final stage of cellular respiration to generate adenosine 

triphosphate (ATP) the universal currency of energy (Fig 1.1). The process of oxidative 

phosphorylation is encompassed by the chemiosmotic theory proposed in 19613. Reduced 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) 

formed during glycolyisis, fatty acid p oxidation, and the Kreb cycle are oxidised to 

NAD+ and FAD. NADH and FADH2 are energy rich molecules because each contains a 

pair of electrons that have a high transfer potential. The donated electrons are passed 

through a series of electron donors and electron acceptors that include quinoid structures 

(flavin mononucleotide, FAD, and ubiquinone (coenzyme Qio), and transition metal 

proteins (iron-sulphur clusters (Fe-S), hemes, and protein bound copper). Electrons are 

transferred to molecular oxygen via a chain of enzyme complexes in a series of 

oxidation/reduction reactions. These are driven by differences in the redox potential 

between the electron donor and acceptor. The free energy of these reactions is linked to 

the pumping of protons from the mitochondrial matrix, across the inner mitochondrial 

membrane, to the intermembrane space. A pH gradient and a transmembrane electrical 

potential is thus generated. The flow of these protons back to the matrix through complex
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V, the final complex of the mitochondrial respiratory chain, is linked to the 

phosphorylation of adenosine diphosphate (ADP) to ATP 4(Fig 1.2). The transmembrane 

electrical potential is also used to drive the electrophoretic importation of nuclear DNA 

encoded proteins across the mitochondrial membranes. The proton gradient also serves to 

drive the transport of ions across the inner mitochondrial membrane 5.

The ATP generated by this process is used to meet energy demands in the mitochondrial 

matrix, or is transported to the cytosol in exchange for ADP by the adenine nucleotide 

translocator (ANT) the most abundant protein of the inner membrane. If OXPHOS is 

impaired cells become reliant on glycolysis for their supply of ATP. In order to 

regenerate NAD from NADH, pyruvate is converted to lactate via lactate dehydrogenase;. 

Glycolysis is a far less efficient ATP synthesis pathway than OXPHOS. Catabolism of a 

single glucose molecule via the glycolytic pathway generates four ATP molecules, 

whereas catabolism via OXPHOS will generate twenty-six. ATP produced by fatty acid 

metabolism comes entirely from OXPHOS 6.
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Figure 1.1

The five complexes of the mitochondrial respiratory chain are located in the 

mitochondrial inner membrane, (coutesy of M Cooper)

The Mitochondrial Respiratory Chain

Succinate CoQ Ubiquinol
reductase cytochrome

reductase

Complex NADH CoQ 
reductase

Cytochrome c ATP synthase 
oxidase

H+H+ H+H+

Inner membrane
ETF

Matrix

NAD FADH, FAD FAD̂  ^

NAD] TCA
Cycle

ADP + Pi i p  ATP 

H+B-Oxidation Fatty acids
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Figure 1.2

The five complexes of the mitochondrial respiratory chain are shown. Nuclear encoded 

(clear hexagons) and mitochondrial DNA encoded (coloured hexagons) combine to form 

these multimeric complexes. A proton gradient is generated and the flow of these protons 

back to the matrix through complex V, the final complex of the mitochondrial respiratory 

chain, is linked to the phosphorylation of adenosine diphosphate (ADP) to ATP. (CoQ = 

coenzyme Q; H* = protons; cyt c = cytochrome c; e" = electrons; roman numerals refer to 

the mitochondrial respiratory chain complexes) (from AHV Schapira with permission)
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1.2 THE BIOCHEMISTRY OF OXIDATIVE PHOSPHORYLATION

As described above electrons are transferred from NADH to O2 through the complexes of 

the mitochondrial respiratory chain. These are complex I (NADH-CoQ reductase), 

complex III (ubiquinone cytochrome c reductase), and complex IV (cytochrome oxidase). 

Electrons from FADH2 are transferred through complex II (succinate dehydrogenase 

ubiquinone oxidoreductase) to complex III.

1.2.1 Complex I: fNADH dehydrogenase ubiquinone oxidoreductase)

This enzyme has two major domains, a hydrophobic horizontal arm buried in the 

mitochondrial inner membrane, and a vertical arm containing the peripheral membrane 

proteins of the complex projecting into the matrix. The whole enzyme consists of 42 

subunits. Of these 7 are encoded by mtDNA all of which lie within the horizontal arm. 

This also contains a single 2Fe-2S cluster and mobile coenzyme Q 10. The vertical arm 

contains the site of NADH binding, FMN, and three 4Fe-4S clusters and tightly bound 

coenzyme Q 1 0 6.

NADH binds to complex I and transfers its two high potential electrons to the flavin 

mononucleotide (FMN) prosthetic group to generate a reduced form FMNH2 . Acceptance 

of one electron generates a semiquinone intermediate. Electrons are then transferred to a 

second type of prosthetic group within complex I (a series of Fe-S clusters ) before being 

shuttled to coenzyme Q 10.

1.2.2 Iron sulphur clusters

Iron sulphur clusters within iron-sulphur proteins (non heme iron proteins) are critical for 

a large number of reduction reactions in biological systems. They can exist as several 

varieties: 1) Fe-S: a single iron atom linked to the sulfhydryl group of four cysteine 

residues of a protein 2) 2Fe-2S: two iron atoms and two inorganic sulfides, in addition to 

four cysteine residues 3) 4Fe-4S: four iron atoms, four inorganic sulfides, and four
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cysteine residues. The iron atoms in these clusters cycle between the reduced (Fe2+) and

oxidised (Fe3+) state. Complex I contains both 2Fe-2S and 4Fe-4S types of Fe-S clusters
6

1.2.3 Ubiquinone fCoenzvme O)

Coenzyme Q is found ubiquitously in biological systems. In the mitochondria respiratory 

chain it serves to carry electrons from complex I to III and II to III, and from the 

oxidation of fatty acids and branched chain amino acids via the flavin linked 

dehydrogenases. A long isoprenoid tail containing five carbon units makes this quinone

strongly hydrophobic so that it diffuses rapidly within the hydrocarbon core of the
)

mitochondrial inner membrane. The number of isoprene units varies between species, the 

most common form in mammals if 10 units (coenzyme Qio). Ubiquinone is reduced to a 

free radical semiquinone anion by the reduction of a single electron. This enzyme bound 

intermediate is reduced by the acceptance of a second electron to form ubiquinol (QH2).
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Oxidized Fe-S

NADH
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Figure 1.3: Ubiquinone / Ubiquinol reactions.

The flow of two electrons from NADH to QH2 leads to four protons being pumped across 

the inner mitochondrial membrane. Coenzyme Q 10 may also plays a role as an antioxidant
7 8and membrane stabiliser ’ .

1.2.4 Complex II (succinate dehydrogenase ubiquinone oxidoreductase)

In the citric acid cycle succinate is oxidized to fumarate by succinate dehydrogenase with 

the reduction of FAD to FADH2 . This enzyme is part of complex II and, like the other 

OXPHOS enzymes, resides in the mitochondrial inner membrane. Following the 

oxidation of FADH2 electrons are transferred to the Fe-S clusters of complex II, and then 

via coenzyme Q to thecytochrome b of complex III. Complex II consists of four subunits 

all encoded by nuclear genes. The free energy change of the catalysed reaction is small 

and therefore this enzyme does not translocate protons.

1.2.5 Complex III (ubiquinone-cvtochrome c oxidoreductase)



Complex III is the second of the three proton pumps of the respiratory chain. It catalyses 

the transfer of electrons from QH2 to cytochrome c, a water-soluble protein loosely 

associated with the inner membrane. This is linked to the pumping of protons across the 

inner mitochondrial membrane. Due to its lower thermodynamic driving force the 

transfer of one electron pumps only two protons, making it half as effective as complex I. 

Complex III contains cytochromes b and cj, an iron sulphur protein, and 11 polypeptide 

subunits only one of which is encoded in mtDNA. The prosthetic group of all three of 

these cytochromes is iron-protoporphyrin IX (i.e. the same heme as found in myoglobin 

and haemaglobin). QH2 transfers one of its electrons to the Fe-S cluster of complex III. It 

then passes to cytochrome c\ and then cytochrome c. The second electron, now residing 

in a semiquinone (Q '), is transferred through the two heme groups of cytochrome b. Th^ 

different polypeptide microenvironments of each of these creates different electron 

affinities. The cytochrome b pathway enables the complex to efficiently funnel electrons 

from the two electron carrier QH2 to the one electron carrier cytochrome c 6.

1.2.6 Cytochromes

These are electron transferring proteins that contain a heme prosthetic group. Their iron 

atoms oscillate between the reduced ferrous (Fe2+) and oxidised ferric (Fe3+) state during 

electron transfer. Cytochrome c has been extremely well characterised since its high 

water solubility has made it easy to isolate. It consists of 104 amino acids and a 

covalently attached heme group. It is able to interact with both its oxidase and reductase 

through the strong electrostatic charges generated by its cluster of lysine side chains 

around the heme crevice on the face of the protein. Cytochrome c is present in all 

organisms that have mitochondrial respiratory chains. The cytochrome c of any species 

will interact with the cytochrome oxidase of any other species. Cytochrome c has 

remained highly conserved over the 1.5 billion years since the mitochondrial symbiotic 

relationship began, with 26 of the 104 residues remaining unchanged over this time.
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1.2.7 Complex IV (cytochrome c oxidase)

Complex IV consists of 13 polypeptide subunits, three encoded by mtDNA. It catalyses 

the transfer of four electrons from reduced ferrocytochrome c to molecular oxygen to 

form H2O. Complex IV consists of a protein backbone bound by two copper containing 

prosthetic groups, and two non-covalently attached heme A groups (a and a3).

Molecular oxygen is an ideal terminal acceptor of electrons, because its high affinity for 

electrons generates a large thermodynamic driving force for OXPHOS, and in contrast to 

other strong electron acceptors (e.g. F2) it reacts very slowly unless catalysed. However, 

partial reduction leads to the generation of superoxide anions. Complex IV reduces
2 1 j

molecular oxygen, via peroxy intermediates, between the Fe and Cu ions of its hemfe 

a3-Cue centre located in the mitochondrially encoded subunit I. This provides a strong 

reducing environment designed to prevent the release of partially reduced moieties. Four 

protons are translocated when a pair of electrons flows through the oxidase 9.

1.2.8 Complex V (ATP synthase)

Complex V phosphorylates ADP via a mechanism that differs from the synthesis of ATP 

during glycolysis. The latter occurs via high energy intermediates (e.g. 1,3-

biphosphoglycerate). Complex V consists of a 378 kDa FI unit of an o ^ y S s  subunit 

composition. This can act as an ATP synthase or an ATP hydrolase. It is attached to and 

transverses the inner membrane by a Fo stalk unit that acts as the proton channel. The role 

of the proton gradient is not to form ATP but to release it from the ATP synthase 10.

ATP and ADP do not cross the inner mitochondrial membrane freely, but rely upon a 

specific transport protein, adenine nucleotide translocator. The translocase is abundant 

accounting for 14% of inner mitochondrial membrane proteins.

The main factor regulating the rate of OXPHOS is the level of ADP. This regulation is 

called respiratory control. The level of ADP also affects the rate of the citric acid cycle.
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Therefore the system is designed so that electrons do not flow from fuel molecules to O2 

unless there is a requirement for ATP synthesis 6.

1.3 MITOCHONDRIAL DNA

The human nuclear genome of three billion base pairs contains within it only 

approximately 30,000 genes. The human mitochondrial genome is small by comparison, 

consisting of 16,569 base pairs arranged in a covalently closed, double stranded, circular 

molecule. Cells contain hundreds of mitochondria, and each of these mitochondria 

contains multiple copies of mtDNA located in the matrix n .
I

A diagram of the human mtDNA molecule is shown in figure 1.4. It encodes 13 

polypeptides, all of which are subunits of the MRC, 22 tRNAs, and 2 rRNAs 1>12’13. The 

two strands of the mtDNA duplex have different base compositions, and this allows the 

identification of a light (L) and a heavy (H) chain. The H strand contains most 

information, encoding 12 polypeptides, 2 rRNAs, and 14 tRNAs.

MtDNA has a number of features that distinguish it from nuclear DNA. Some genes 

overlap, and intergenic sequences are absent or limited to only a few base pairs. In this 

absence of introns, non-coding regions are limited primarily to the displacement or D- 

loop which plays a central role in the regulation of replication and transcription. In 

replicating cells this region contains a triple helix due to the binding of a short DNA 

strand to the L strand causing displacement of the H strand. Mitochondrial tRNA and 

rRNA genes are small, and termination codons of most protein genes are generated post 

transcriptionally 14.
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Figure 1.4

Map of the human mitochondrial genome, showing the 13 polypeptide-coding genes, and 

24 protein synthesis genes (12S and 16S ribosomal RNAs and 22 transfer RNAs (1-letter 

amino-acid code). OH = origin of replication of Heavy strand. Numbers refer to base 

pairs and those in bold print show common mutation sites, (from n )
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1.3.1 MtDNA replication

Mammalian mtDNA maintenance and propogation is wholly dependent upon nuclear 

encoded proteins, only a few of which have been identified to date. Replication of 

mammalian mtDNA has long ben recognized as unusual. The identification of 

intermediates containing long stretches of partially single stranded DNA led to the 

proposal of a strand asynchronous asymmetrical model (75 Clayton 1982), which 

stipulates two sites of initiation of DNA synthesis, one for each strand, which lie far 

apart. Synthesis of the leading H-strand starts at a point Oh in the major non-coding 

region, and proceeds two thirds of the way around the molecule, displacing the original fj 

strand, and then exposes the origin point of replication of the light strand Ol. DNA 

synthesis of the L strand then commences (77 Wong 1985).

More recently, an alternative synchronous model has been proposed (78 Holt 2000). In 

this model replication starts from a single poion at or near O h ,  and proceeds 

unidirectionally (5’—>3’) with the formation of short Okazaki fragments on the lagging 

strand (79 Kurosawa 1975). These two models may represent the two extremes of a 

single system, with the prevelant system depending upon the cellular environment (78 

Holt 2000).

DNA triplex moieties exist at the displacement or D-loop region. The third strand is 

approximately 0.5 kb long and arises from Oh (75 Clayton 1982). D-loop DNA synthesis 

appears to be preceded by the formation of an RNA primeroriginating at the L strand 

promotor (82 Kandg 1997 (81 Gillum 1978). D loops are thought to represent aborted 

replication intermediates, and most if not all are degraded. Termination of leading strand 

DNA synthesis is poorly understood, but may involve Termination Associated Sequences 

(TAS) in the major non-coding region (80 Doda 1981). The continuation of H strand 

synthesis beyond TAS is thought to mark a dedicated replication event.
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1.3.2 MtDNA transcription

The light and heavy mtDNA strands each have one major site for the initiation of 

transcription (ITLand IThi) located approximately 150 bp apart within the D-loop. These 

sites are embedded within a promoter element (HSP and LSP) that, with their upstream 

cis-acting enhancer elements, are critical for transcription. ITl and IThi function 

independently. A second initiation site for H strand transcription (ITH2) located at np 638 

in the tRNAphe gene may exist15.

Two /nms-acting proteins are known to be involved in transcription initiation. 

Mitochondrial transcription factor A (mtTFA) is a 25 kDa protein that confers selectivity 

on the binding of the second factor, an RNA polymerase, to the HSP and LSP 16. The 

major part of mtTFA consists of two DNA binding motifs that bind to the upstream
17enhancer regions to ensure that transcription proceeds in the correct direction . MtTFA 

may also induce conformational changes in the DNA that influence the access of RNA 

polymerase to the DNA 18, and be involved in the maintenance of mtDNA levels. 

Homozygous mtTFA knock-out mice are non-viable, and heterozygotes exhibit mtDNA

depletion, a quantitative defect of mtDNA 19. A further factor, mtTFB, with similarities to
20known RNA modifying enzymes, has been identified . Further trans-acting factors 

probably remain to be discovered.

The L strand is transcribed as a single polycistronic precursor 21. A dual H strand 

transcription initiation model has been proposed to explain the observation that the rate of 

transcription of rRNAs is greater than that of the mRNAs encoded on the H strand l5. 

This proposes that transcription is initiated infrequently from ITh2 resulting in 

transcription of the whole H strand, whereas IThi more frequently initiates transcription 

but is terminated at the 3’ end of the 16S rRNA gene. The latter results in transcription of 

both rRNA genes, plus tRNAphe and tRNAVal. A mitochondrial transcription termination 

factor (mtTERM) has been identified that has specificity for a tridecamer sequence within 

the tRNALeu(UUR) gene, and is the mechanism by which transcription of this shorter 

transcript is terminated 22. The DNA binding capacity of mtTERM is mediated by its
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three leucine zipper motifs and two basic domains 23. The exact mechanism of mtTERM 

is unclear. There is evidence that an additional factor may be necessary for termination 

activity. MtTERM may also inhibit L strand replication, but its role here is again unclear, 

because no L strand encoded genes are present downstream of this site 24. 

Polyadenylation of mitochondrial mRNAs and rRNAs, by an as yet unidentified enzyme, 

serves to stabilize the transcripts 25. This is achieved despite the lack of upstream 

polyadenylation signals like those found in nuclear mRNAs.

1.3.3 Mitochondrial DNA translation

The majority of mitochondrial genes are separated by tRNA genes, and their secondary 

structure is believed to provide punctuation marks for the transcription of mtDNA 14. 

Excision of tRNAs is achieved by a 5’ mtRNaseP and a 3’ tRNA precursor processing 

endonuclease 26. Some tRNA genes overlap, and may therefore be transcribed in a
77shortened form, with missing residues added later . Various other tRNA post- 

transcriptional modifications are required to ensure cloverleaf folding , and proper 

codon recognition 29. Efficient aminoacylation of tRNAs is dependent upon the 3’ 

addition of CCA by a nuclear encoded ATP(CTP)tRNA specific nucleotidyltransferase 

(mtCCA) located on chromosome 3p25.1 30. Other nuclear encoded enzymes, the 

aminoacyl tRNA synthetases, are responsible for charging mitochondrial tRNAs and their 

related amino acids. This group of enzymes catalyses the activation of amino acids and 

their subsequent linkage to tRNA molecules. At least one enzyme exists for each amino 

acid, and the reactions with both the tRNA and the amino acid are highly specific 31. In­

built mechanisms ensure a low error rate, for instance the enzyme for isoleucine will 

hydrolyse valine, which differs by only one methylene group, if it is bound inadvertently. 

Interaction with the tRNA is via the anticodon itself for some aminoacyl-tRNA 

synthetases, for others the recognition site resides in the 3’ acceptor stem, and for others 

recognition is via multiple determinants. ATP drives the reaction. Carboxyl group of 

amino acid is joined to the 3-hydroxyl terminus of the tRNA.
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The attachment of amino acids to tRNA molecules achieves two objectives. Firstly, the 

amino acids by themselves are not able to recognise the mRNA codons, and secondly this 

reaction activates the carboxyl group of the amino acid thus enabling the otherwise 

thermodynamically unfavorable reaction of peptide bond formation between the carboxly 

group of one amono acid and the hydroxyl group of another. The mitochondrial genome 

contains two tRNAScr (tRNASer<AGY) and tRNASer(UCN)), and two tRNAu " (tRNAUu<CUN) 

and tRNAUu(UUR)). A single enzyme performs sery lation of both tRNA species. This is 

despite the fact that they share no sequence motifs and differ structurally, with the 

tRNASer(AGY) lacking the entire dihydrouridine loop containing arm 2.

Protein synthesis is initiated by N-formyl methionyl, formed by the post-transcriptiona) 

action of methionyl-tRNA transformylase on methionyl-tRNA. Mitochondrial protein 

synthesis is considered to follow the classical model of protein synthesis as first described 

for E.coli. Thus during the first step this initiato tRNA will bind to the ribosomal P 

(peptidyl) site, while the other two sites for tRNA molecules, the aminoacyl (A) site and 

the exit (E) site, remain empty. Protein synthesis then proceeds in an amino to carboxyl 

direction by the sequential addition of amino acids to the carboxyl end of the growing 

peptidyl chain. One mitochondrial translation initiation factor has been identified (mtIF-
T92) on chromosome 2pl6-pl4 . It belongs to a family of GTPases that are molecular 

switches capable of alternating between an active (mtIF-2.GTP) and inactive (mtlF- 

2.GDP) conformation. It promotes the binding of N-formylmethionyl tRNA to the small 

ribosomal subunit in a GTP and mRNA-dependent reaction 33.

Mitochondrial ribosomes inhabit the matrix, and half of the population is attached to the 

inner mitochondrial membrane 34. They differ from ribosomes in the cytosol, but share a 

number of features with prokaryotic ribosomes. They have a low RNA, and high protein 

content. There are 29 mitochondrial ribosomal proteins (MRPs) in the small ribosomal 

subunit, and 48 in the large 35,36. Some are homologous to those found in E.coli. Others 

are apparently unique proteins, and some of these have previously been identified as pro- 

apoptotic proteins (death associated protein-3, and PDCD9), thus implicating 

mitochondria in cellular apoptotic signaling pathways 37 38. Some MRPs exist as several
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isoforms that may influence the decoding properties of the ribosome. The ribosomal 

population is therefore heterogeneous 38.

Mitochondrial mRNAs have limited ribosomal binding abilities, lacking the mechanisms 

used for this in the cytosol and in prokaryotes. Mitochondrial translational efficiency is 

low and may be a consequence of this 39. The small ribosomal unit binds mRNA tightly. 

This involves approximately 400 nucleotides but is a sequence independent process. This 

may explain why the shortest open reading frames of human mtDNA (ATPase 8 and 

NDL4) are both part of overlapping genes.

After initiation, elongation begins with the binding of an aminoacyl tRNA to thq 

ribosomal A (aminoacyl) site. Elongation of the mRNA product is facilitated by a number 

of elongation factors. The genes for several of these have been identified in humans (EF- 

Tu on chromosome 16pl 1.2, EF-Ts on chromosome 12q 13-q 14, EFG1 on chromosome 

3q35.1-q26.2 and EFG2 on chromosome 5ql3) 40'42. The process of translation 

elongation in E.coli is better established, and the human system is believed to be 

essentially similar. At the ribosomal A site mtEF-Tu forms a ternary complex with the 

correct amino-acyl-tRNA as determined by the codon. GTP is then hydrolysed, and EF- 

Tu.GDP leaves the ribosome. EF-Ts, the nucleotide exchange factor, replaces the GTP on 

EF-Tu to allow elongation to continue. Peptide bond formation is catalysed by the large 

ribosomal subunit, and the EF-G (like EF-Tu a GTPase), promotes the translocation of 

the tRNAs at the A and P sites to the P and E sites respectively. The mRNA is moved to 

expose the next codon to the A site. The deacylated tRNA is released from the site 43.

The initiator moves to the ribosomal E (exit) site before leaving the ribosome. The 

process is repeated as a new aminoacyl-tRNA binds to the now vacant A site. The whole 

process is powered by the hydolysis of GTP. Termination of translation requires several 

release factors (RF) that recognise and bind to stop codons at the A site, resulting in 

hydrolysis of the bond between the polypeptide chain and the tRNA at the P site. Other 

RFs serve to release the mRNA. The two ribosomal subunits then dissociate 44. A single
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putative human mitochondrial RF has been identified on chromosome 13q 14.1-q 14.3
45,46

1.3.4 Transfer RNA molecules

tRNAs are small ribonucleic acids, present in all organisms to ensure ribosome- 

dependent protein biosynthesis. More than 4300 sequences are documented including 

prokaryotic, eukaryotic-cytosolic, eukaryotic-chloroplastic, and eukaryotic-mitochondrial 

molecules 47. It is primarily the canonical tRNAs (bacterial and eukaryotic cytosolic 

tRNAs) that have been studied in most detail. Current knowledge encompasses structural 

features (including their cloverleaf secondary structure, conserved sets of primary 

elements, tertiary interactions, and L-shaped three dimensional structure), and functional 

aspects (including recognition of aminoacyl tRNA synthetases, translation initiation or 

elongation factors, and ribosomal proteins). In contrast, mitochondrial tRNAs are 

structurally and functionally more diverse, and less well understood than the canonical 

tRNAs 48’49.

The mitochondrial genetic code differs from the standard code in a number of ways. As a 

result mitochondria need only 22 tRNAs instead of the predicted 32 tRNAs to translate 

all codons. All known tRNA molecules are single chains of between 73 and 93 

ribonucleotides and molecular weight of approximately 25 kD. Other common features 

are that the 5’ end is always phosphorylated and the terminal residue is usually pG. At the 

3’ end the final residues are CCA, with the relevant amino acid attaching to the 3’ 

hydroxyl group of the terminal Adenosine. Approximately half of the nucleotides are 

base paired to form double helices. In this way all tRNA sequences can be written in a 

cloverleaf pattern. This uniform structure allows them all to interact with the same 

ribosomes, mRNAs and elongation factors. There are five groups of bases that are not 

base paired. The 3’ CCA terminal region, the TPC (ribothymidine, pseudouricil, 

cytosine) loop, the DHU loop containing several dihydrouracil residues, the anticodon 

loop, and an extra arm that contains a variable number of residues. Most bases in non­

helical regions participate in unusual hydrogen-bonding interactions, usually between
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non-complementary bases. The anticodon loop consists of seven bases that conform to 

the pattern: - 5’ pyrimidine - pyrimidine - X - Y - Z -  modified uridine -  variable base -  

3’. The tRNALeu(UUR) molecule is shown in figure 1.5.

Each tRNAs contain between 7 and 15 unusual bases. These are formed by enzymatic 

modification of A U C and G, and include Inosine (I), pseudouridine (VF), dihydrouridine 

(UH2), ribothymidine (T), and methylated derivatives of Guanosine and Inosine. 

Methylation inhibits the formation of certain base pairings and thus makes the base 

available for alternative interactions that may be of importance to the stability of the 

molecule. Methylation can also alter the hydrophobicity of regions of the tRNA and 

thereby alter the interaction with synthetases, ribosomal proteins, and folding and otheif 

mechanisms. Other modifications can have an effect on codon recognition.

The first tRNA base sequence was established by Holley in 1965 50. This was the yeast 

alanine tRNA, a 76 ribonucleotide chain. The three dimensional structure of yeast 

tRNAphe was established in 1974 by x-ray crystallography 51. They were shown to be “L” 

shaped structures with the two arms of the “L” formed by two double helix segments. 

This structure places the CCA terminus at one end of the “L”, and the anticodon loop 

approximately 80 A0 away at the other end of the “L”. This large distance may be 

functionally important to allow the molecule to accomplish its two separate tasks of 

recognising both the correct mRNA codon, and the correct aminoacyl tRNA synthetase. 

The DHU and TT'C loops lie at the comer of the “L”.

Codon recognition is achieved by base pairing with the tRNA anticodon. The amino acid 

in the aminoacyl-tRNA does not play a role in this. Some tRNAs are able to recognise 

more than one codon. The yeast tRNAAIa investigated by Holley can recognise GCU, 

GCC, and GCA. Models of various base pairs to determine the distance and angle 

between the glycosidic bonds. If some steric freedom or “wobble” is allowed certain base 

pairings are allowed at the third base pair position. These are C:G, A:U, U:A or G, G: U 

or C, I: U or C or A, (codomanticodon). The number of codons read by an anticodon is 

determined by its first base. Those beginning G or C will read 1 codon, those beginning U
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or G two, and those that start with Inosine, formed by the post transcriptional 

deamination of adenosine, read three codons. Therefore part of the degeneracy of the 

genetic code arises from wobble in the pairing of the third position of the codon and the 

first position of the anticodon.

Mitochondrial tRNAs show a number if differences from cytosolic tRNAs. Cloverleaf 

folding occurs in all but the tRNA Ser(AGY) group, but exhibits large size variations 

especially within the T-loops. This aspect of tRNA structure is highly conserved in the 

canonical tRNAs. Furthermore all mt tRNAs have a variable region restricted to 3 to 5 

nucleotides, as opposed to the standard 23 nucleotides variable region in canonical 

tRNAs 47. The degree of conservation of nucleotides in the primary sequence also differ^ 

greatly from non-mitochondrial tRNAs. These are often nucleotides involved in tertiary 

folding, implying that mt tRNAs probably have their own set of folding rules.
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Figure 1.5

The mitochondrial tRNALue(UUR) molecule, showing its nucleotide sequence, amino acid 

acceptor stem, dihydrouridine loop, TT'C loop, anticodon, and sites of common 

mutations, (from 115)
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1.4 MITOCHONDRIAL IMPORT

Nuclear genes encode the vast majority of mitochondrial proteins. Therefore, in order to 

reach their target organelle these nuclear encoded mitochondrial proteins rely upon 

transport mechanisms to reach their intended target. Protein translocation across and into 

the mitochondrial membranes involves at least four specialised translocation systems. A 

single general translocase (the TOM complex) is present in the outer membrane and is 

responsible for the transfer of all nuclear encoded mitochondrial proteins through the 

outer membrane 52. The inner membrane however contains three distinct translocases, 

each for different classes of preproteins. Some mitochondrial preproteins, transcribed on 

cytosolic ribosomes, contain an N-terminal mitochondrial targeting sequence. Th^ 

preprotein interacts with the inner membrane surface and then inserts into the preprotein 

translocase of the inner membrane (TIM 23 complex). Hydrophobic preproteins with 

internal targeting signals rely on the TIM 22 complex for insertion into the inner 

membrane. The OXA translocase controls the insertion of preproteins and 

mitochondrially encoded proteins from the mitochondrial matrix into the mitochondrial 

inner membrane 53. Translocation through the outer and inner membrane is completed by 

the mitochondrial HSP 70-ATP dependent driving system associated with the TIM 

complex. The preproteins also undergo proteolytic processing in the mitochondrial 

matrix. Protein folding is achieved by molecular chaperone systems, mtHSP70, HSP60, 

and associated co-chaperones 54. Successful translocation across the inner membrane 

requires ATP and the presence of the mitochondrial membrane potential. Insertion into 

the membrane requires the membrane potential only.

1.5 CYBRID TECHNOLOGY

The ability to deplete cells of their mtDNA whilst maintaining their viability has allowed 

the development of cybrid technology. This has proved a powerful tool in the 

investigation of mitochondrial disorders. MtDNA replication can be inhibited by 

ethidium bromide. This intercalates with DNA and at low concentrations (0.1-2jig/ml)
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inhibits mtDNA replication without affecting nuclear DNA 55,56. Dideoxycytosine and 

azidothymidine also result in depletion of mtDNA levels but achieve this effect by the 

inhibition of mtDNA polymerase y 57,58. Cells lacking mtDNA are termed rho-zero (p°).

Rho-zero yeast cells remains viable if supplemented with a fermentable energy source. 

Human cells however cannot survive even in a high glucose environment 59. Pyrimidine 

synthesis is also deficient in these cells because dihydrooratate dehydrogenase, an 

enzyme of the pyrimidine synthesis pathway located on the mitochondrial inner 

membrane requires mitochondrial electron transport for normal function 60. Uridine 

supplementation is therefore necessary for cell survival. The addition of pyruvate to the 

culture medium is also required. The reason for this requirement is uncertain but probably 

relates to the need for excess cytoplasmic NADH to be oxidised to NAD in order for 

glycolysis to proceed. This is achieved by the conversion of pyruvate to lactate via lactate 

dehydrogenase. Additional pyruvate is therefore required to provide sufficient levels for 

entry into the tricarboxylic acid cycle 61.

The generation of cytoplasts, by the enucleation of mammalian cells provides a source of 

mitochondrial DNA devoid of nuclear DNA. Their subsequent fusion with p° cells 

(containing nuclear DNA but devoid of mitochondrial DNA) to generate cybrids allows 

the mixing of mtDNA with novel nuclear backgrounds 62'64. After its initial development 

this technique also proved applicable to human cells 61. Repopulated cybrids with 

functioning mitochondria are able to grow in the absence of uridine and pyruvate 59. 

Nuclear markers are also required to exclude the presence of nucleated donor cells, 

because most enucleation procedures will leave some residual intact nucleated cells 59. 

“206” osteosarcoma cells are thmidine kinase deficient and therefore able to survive in 

the presence of bromodeoxy Uridine since toxic products are not generated. A549 lung 

carcinoma cell lines are resistant to Geneticin. Alternatively, platelets can be used to 

provide an easily obtainable, naturally enucleated source of mitochondria 65.

Cybrid technology therefore allows the study of specific mtDNA genotypes containing 

mutations and nuclear-mitochondrial genomic interactions at the cellular, molecular, and
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biochemical level. The persistence of a biochemical defect after transfer of mtDNA to a 

new nuclear environment is considered proof of a mtDNA aetiology of the defect 66. If 

the defect is complemented then a nuclear origin for the defect is implicated. Cybrid 

technology also allows the generation of clones containing a range of mutant loads from 

0 to 100%. This is an important resource in the investigation of molecular mechanisms 

underlying mtDNA mutations. The persistence of altered protein synthesis and 

respiratory chain deficiencies after the introduction of mtDNA harbouring the A3243G 

mutation into 206 p° cells was the first functional proof of the pathogenicity of this 

common MELAS mutation. A threshold value of 6% wild type mtDNA, sufficient to
67 68restore the normal biochemical parameters, was also established by this technique ’ . 

The same technique revealed that mutant levels above 60% resulted in the synthesis of 

little or no ND6 complex I subunit, and impaired complex I activity. Clones of similar 

mutant load showed markedly different levels of O2 consumption with pyruvate. Mutant 

levels above 95% showed a consistently reduced complex I, III, and IV activities with a 

marked generalised reduction in levels of mitochondrial translation products 69. In a 

similar way platelet fusion experiments proved the mtDNA genotype containing the 

common MERRF A8344G mutation to be causal 65.

Cybrid technology was also used to demonstrate the nuclear origin of mtDNA depletion 

syndromes. Patient fibroblasts with mtDNA levels below 2% and impairment of all 

respiratory chain enzymes, were enucleated and fused with A549 p° cells. This led to the 

restoration of mtDNA levels and MRC function confirming that nuclear genes were 

responsible for this disorder70. The nuclear origin of COX deficient Leigh syndrome was 

shown in a similar manner71.

1.6 THE GENETICS OF MITOCHONDRIAL RESPIRATORY CHAIN 

DYSFUNCTION.

In the 1.5 billion years since the incorporation of mitochondria into eukaryotic cells, a 

complex symbiotic relationship has developed. Mitochondria are no longer self
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supporting. Nuclear genes encode 72 of the 85 subunits that make up the MRC. All other 

non-respiratory chain proteins within a fully functioning mitochondrion, numbering in 

excess of 1000, are also nuclear encoded. The human genome contains an estimated 

30,000 genes, and thus 3% of the nuclear genome is devoted to the function of a single 

organelle, the mitochondrion n . Therefore, the majority of mitochondrial proteins are 

encoded by nuclear genes, translated in the cytoplasm usually as precursors with an N- 

terminal mitochondrial targeting sequence, and then transported across one or both of the 

mitochondrial membranes. Once inside the mitochondrion they may require cleavage of 

the targeting sequence and further modification by assembly and other factors n . 

Furthermore, although mtDNA encodes all the tRNAs required for mitochondrial 

translation, these tRNAs need to be charged by aminoacyl-tRNA synthases that are; 

nuclear encoded. In addition although mtDNA encodes two rRNAs, all the associated 

mammalian mitochondrial ribosomal proteins are the products of nuclear genes that also 

require importation to the mitochondrion from the cytosol.

In the short history of mitochondrial medicine innumerable rearrangements and over 130
79point mutations have been described . The mutation rate of mtDNA is estimated to be 5 

to 100 times that of nuclear DNA, due to the oxidative environment, and poor repair 

mechanisms of mtDNA 73,74. However, in children with an isolated or combined 

OXPHOS enzyme deficiency, a mtDNA mutation is identifiable in only 5-10% of cases
75,76

MRC dysfunction can be a consequence of mutations within either mitochondrial or 

nuclear DNA. MtDNA mutations can be either rearrangements or point mutations. 

Rearrangements are usually deletions, but also include duplications. MtDNA deletions 

result in the loss of protein coding genes, tRNAs or rRNAs, but can also generate novel 

fusion products. Point mutations can involve protein coding genes, rRNAs or tRNAs. Of 

all point mutations a third are located in mtDNA encoded polypeptides (18 in complex I 

mtDNA subunits, 14 in cytochrome b subunits of complex III, 11 in complex IV subunits, 

and 5 in complex V all of which lie within the ATPase 6 subunit gene).
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The first nuclear gene mutation causing a mitochondrial respiratory chain defect in 

humans was reported by Bourgeron in 1995 11. In two siblings with complex II deficiency 

presenting as Leigh syndrome, an Arg554Trp substitution was detected in a conserved 

domain of the nuclear-encoded flavoprotein subunit gene of succinate dehydrogenase 

(SDH). The mutation was shown to have a deleterious effect on the catalytic activity of 

SDH (complex II) in an SDH- yeast strain transformed with mutant Fp cDNA.

To date, mutations in nuclear encoded OXPHOS subunits have been identified in 

complex I subunits (NDUFS4 in four patients with Leigh syndrome (LS), NDUFS7 in 

two siblings with LS, NDUFS8 in a singleton with LS, and NDUFV1 in two infants with 

leukodystrophy and myoclonic epilepsy, and three LS patients, NDUFS2 in three familiesj 

affected by cardiomyopathy and encephalomyopathy, and NDUFS1 in three unrelated LS 

patients) 78-85. Mutations in the FP subunit of complex II were responsible for late onset 

neurodegenerative disease in two sisters with optic atrophy, ataxia, and proximal 

myopathy 86. Two families have also been described with mutations of complex II 

associated with LS 77,87. Three different families with hereditary paragangliomas have 

been linked to the PGL1, PGL2, and PGL3 loci. Mutations in SDHD and SDHC are 

responsible for PGL1 and PGL3 respectively. These are the smallest subunits of complex 

II and are responsible for anchoring the enzyme to the inner mitochondrial membrane 

88,89. Mutations in the region of SDHD have also been identified in non-familial 

phaeochromocytoma 90 (Table 1.4). In a few unrelated families a syndrome of muscle 

coenzyme Qi0 deficiency causing recurrent myoglobinuria, seizures, ataxia and mental 

retardation, with ragged red fibres, the histological hallmark of mitochondrial 

myopathies, and lipid storage in muscle is described 91. Cases lacking myoglobinuria and 

with mild myopathic signs are also seen. These are attributed to defects in coenzyme Qi0 

synthesis and respond to coenzyme Qio supplementation 91-94. To date, mutations in 

nuclear encoded complex III or IV subunits have not been described.

Our knowledge of the 70 human nuclear genes that encode the subunit building blocks of 

the OXPHOS system has grown. Mutation identification has focused on those nuclear 

subunits with a high degree of evolutionary conservation, and established functional
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significance. It has subsequently become apparent that most nuclear gene mutations 

resulting in mitochondrial disease lie not in these genes, but in genes for proteins 

involved in the regulation of transcription, translation, post-transcriptional modification, 

mitochondrial signaling, folding and assembly, or the transport of nucleotides and 

metabolites 72. Approximately 340 of these genes are known to be involved in 

mitochondrial maintenance and assembly in Saccharomyces cerevisiae 95. A number of 

these genes are now identified in humans and those associated with the archetypal 

mitochondrial encephalomyopathies are discussed under the relevant sections below. 

Mutations in the dystonia deafness protein, a human homologue of the yeast 

mitochondrial import protein Tim8p, are responsible for Mohr-Tranebjaerg syndrome 96. 

This is the first example of defective mitochondrial import in human disease and î  

discussed further in Chapter 5. Future efforts using human expressed sequence tag 

databases and known genes of lower species to identify candidate genes should expand 

this area of mitochondrial biology.

1.7 GENETIC FEATURES OF MITOCHONDRIAL DNA DISEASES.

Diseases associated with mtDNA mutations are characterised by their diverse 

manifestations. They have a predilection for the neuromuscular system and can manifest 

with disease affecting any part of the neuraxis. Their presenting features are often 

commonly occurring neurological symptoms such as stroke, epilepsy, neuropathy, 

movement disorders, dementia, ocular disease and deafness. Mitochondrial disorders 

often cause multi-system disease with endocrine, heamatological, gastrointestinal, 

hepatic, renal, dermatological, psychiatric, ophthalmological, and cardiovascular 

manifestations. Age of onset can cover a wide range even for specific disease entities. 

The relationship between phenotype and genotype is notoriously poor. A single 

phenotype can invariably result from multiple mtDNA mutations, and a single mutation 

may result in a wide range of phenotypes. Phenotypic variability may be marked even 

within a single family. A reported family with the A8344G common myoclonic epilepsy 

and ragged red fibres (MERRF) mutation illustrates this point. Within the family different
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members presented with Leigh syndrome, spinocerebellar degeneration, or atypical 

Charcot-Marie-Tooth disease. Even within those presenting with a phenotype of 

spinocerebellar degeneration cases varied from age of onset in late childhood with death 

aged 73 years, to onset aged 20 years and death at 40. This family illustrated another 

common finding in mitochondrial disease in that when they were first reported they were 

classified as an unknown neurological disease of autosomal dominant inheritance. When 

they were re-reported the ascertainment of oligosymptomatic subclinical cases revealed 

the maternal pattern of inheritance.

A number of genetic features peculiar to mitochondrial DNA that distinguish it from 

Mendelian genetics may underlie the clinical diversity of these conditions. j

1.7.1 Maternal inheritance

The ovum contains several hundred mitochondria and these, each containing several 

copies of mtDNA, contribute to the zygote. The sperm in contrast, despite containing 

mitochondria to power its motility, have been believed to contribute no mtDNA material 

to their offspring 97. Paternal mtDNA may be excluded from the zygote simply because 

sperm mitochondria fail to gain access to the interior of the oocyte. Alternatively, if 

sperm mitochondria do gain access they may be lost from the zygote due to a dilutional 

effect. Other mechanisms, including molecular surveillance mechanisms have also been
QO

proposed . Therefore, if inheritance is purely maternal, a mother harbouring a mtDNA 

mutation would pass it on to all her offspring, but only her daughters would pass it on to 

subsequent generations " .  Recent evidence however has proposed that paternal mtDNA 

inheritance does in fact occur. Schwartz and Vissing described a patient with exercise 

intolerance, lactic acidosis after minimal exertion, and RRFs. MtDNA sequencing 

revealed a 2 bp deletion in the ND2 gene in 90% of muscle mtDNA, but absent from 

lymphocyte mtDNA. Sequencing of the parents mtDNA revealed a paternal haplotype 

that matched the patients muscle mtDNA, but a maternal haplotype that matched the 

patients lymphocyte mtDNA. The 2 bp deletion was not present in either parent and is 

assumed to have arisen as a new mutation in the paternal germ line or during
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embryogenesis. In embryogenesis metabolic needs are met by glycolysis and there is 

therefore no selection against mutant mtDNA 10°. Paternal mtDNA transmission has 

previously been reported only as a very rare event that occurs in crosses of different 

strains of laboratory mice 101. Its occurrence in humans has not previously been reported, 

although detection methods may have been sub optimal.

Alternatively, mitochondrial disease caused by nuclear gene mutations may exhibit X- 

linked, autosomal dominant or autosomal recessive patterns of inheritance (table 1.1).

j
Table 1.1 Inheritance of Genetically Determined OXPHOS Disorders

Nuclear Gene Defects Inheritance

Structural OXPHOS genes AR

Non-structural OXPHOS genes

Assembly defects AR

Import defects XR

nDNA-mtDNA communication AR

Mitochondrial DNA defects

Point mutations Maternal

Single deletions Sporadic

Multiple deletions AR/ AD

Depletion AR
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1.7.2 Heteroplasmv

Each cell contains two alleles of each nuclear gene, one paternally, and one maternally 

derived. Each cell however contains several hundred to several thousands mitochondria, 

each of which contains several mtDNA molecules 102. Each cell therefore contains several 

thousand copies of each mtDNA genome. Silent polymorphisms in mtDNA usually affect 

all mtDNA molecules in a given individual, a state known as homoplasmy. In contrast, 

pathogenic mtDNA mutations usually affect a proportion of these molecules in each state. 

They therefore coexist with wild type molecules, a state known as heteroplasmy. The 

ratio of mutant to wild type can vary from cell to cell, and tissue to tissue. This mutant 

load can also vary over time if one population expands more rapidly than the other, or if a 

certain cell with a particularly high or low mutant load proliferates faster than other cells. 

This segregation may occur as a random event or due to selection advantages of 

particular cells.

MtDNA pathogenic mutations may exist in the homoplasmic state contrary to the above 

rule. For some time this has been known to be true for mutations causing Leber’s 

Hereditary Optic Neuropathy 103, but more recently further evidence has accumulated 

regarding pathogenic homoplasmic mtDNA mutations 104. A 35 year old woman was 

described who in ten pregnancies from four partners, had had one therapeutic 

termination, one live child with Leigh syndrome, and eight infant deaths, usually from 

cardiac failure and lactic acidosis at a maximum of 85 hours. Three of her siblings had 

died in early infancy. She herself had a past history of migraine, and a proximal 

myopathy was evident on examination. Muscle biopsy revealed a uniform decrease in 

COX activity, instead of the usual mosaic pattern seen as a consequence of heteroplasmic 

mutations. MtDNA sequencing revealed a C1624T tRNAVal mutation in the highly 

conserved dihydrouridine loop. The explanation for the mother’s relatively asymptomatic 

survival remains a mystery 104.

1.7.3 The Threshold Effect
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MtDNA mutations need to be present above a specific level before biochemical 

impairment and clinical features occur. This level or threshold varies between mutations 

and tissue types. In general the threshold is lower for more aerobically dependant tissues. 

In vitro studies have shown that both the A3243G and A8344G mutations cause a 

mitochondrial respiratory chain defect and impair intramitochondrial protein synthesis 

once the level of mutant mtDNA exceeds about 85% 66’105‘107. The extent to which this 

single factor accounts for phenotypical variation remains to be established. A high level 

of correlation between mutation load and clinical phenotype has been found in some 

studies 108' 110? but not in others 107’11M14. Other unidentified factors, environmental or 

genetic, have also been suggested to determine phenotype via modulation of the primary 

mtDNA defect115116’117.

1.7.4 Mitotic segregation

At cell division wild-type and mutant mtDNA molecules may segregate to the daughter 

cells unevenly. The level of heteroplasmy can therefore shift between passages of cells. 

Thus during embryogenesis larger amounts of mutant mtDNA can move into different 

cell lineages. This process of shift also means that thresholds can be exceeded at any 

point in time. The tissue distribution of different mtDNA mutations differs. Deletions, 

unlike point mutations are rarely present in peripheral blood samples. The variable 

segregation to different cell lineages could be an important factor in determining 

phenotype. If this theory were correct it would imply that the passing of deletions into all 

three germ layers would result in the Keam Sayre syndrome (KSS),segregation into the 

haematopoietic lineage would cause Pearson marrow-pancreas syndrome, and 

segregation to muscle alone would result in chronic progressive external ophthalmoplegia 

(CPEO) " 8.

1.7.5 The Bottleneck Phenomenon

A fertilised oocyte contains approximately 100,000 mtDNA molecules 119. However only 

about 1000 of these will eventually repopulate the foetus. This dramatic reduction is
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thought to take place in early oogenesis and is referred to as the bottleneck. This 

phenomenon was first observed in Holstein cows when heteroplasmy at position 346
1 on •shifted towards homoplasmy within a single generation . Neutral mitochondrial 

genotypes were shown to segregate in different directions in the offspring of the same 

female. Heteroplasmy was shown to return to homoplasmy within only two or three 

generations. Previous insect studies had suggested much slower rates of mtDNA 

segregation. Fundamental differences are believed to exist in the mechanisms of 

mitochondrial gene transmission between different taxa. As a consequence of the 

bottleneck phenomenon the evolution of a polymorphism through generations is difficult 

to predict.
!

1.7.6 Secondary MtDNA mutations

There is evidence that secondary mutations, mitochondrial or nuclear, may influence the 

clinical or biochemical effect of primary mtDNA mutations. For example the A3243G 

common MELAS mutation has been shown to be 2.7 times more likely to cause stroke­

like episodes if an A12308G nucleotide change is also present 1 2 This secondary 

mutation exists as a neutral polymorphism in 16% of the population. Also in vitro studies 

have shown that the biochemical effects of the A3243G mutation are ameliorated by the 

presence of a G12300A mutation in the tRNA Leu(CUN) gene 122. This was identified from 

a cell line containing 99% A3243G mutant mtDNA and exhibiting a severe defect in 

mitochondrial respiratory metabolism. A spontaneous derivative was isolated that, whilst 

still containing 99% mutant mtDNA levels, had reverted to the wild type phenotype as 

determined by normal respiration, growth characteristics in selective media, 

mitochondrial protein synthesis, and biogenesis of mitochondrial membrane complexes. 

The secondary G12300A heteroplasmic mutation within the tRNA Leu(CUN) gene was 

detected in this clone, and accounted for approximately 10% of its total mtDNA. The 

secondary mutation was predicted to generate a suppressor tRNA with the ability to 

decode UUR leucine codons, thus bypassing the deleterious effects of the A3243G tRNA 

Leu(UUR) mutation.

49



1.7.7 Immunological and Environmental factors

Evidence also exists for a role of immunological and environmental factors. The effects 

of ageing on the mitochondrial genome and the fact that some subunits show tissue 

specificity (such as 2 of the 13 complex IV subunits) may also be of importance in 

determining phenotypic expression.

1.8 MITOCHONDRIAL DISEASE

As our knowledge of the genetic mechanisms underlying mitochondrial disease has

expanded, the need has arisen for a revised classification of these disorders 123’124. They

are now classified as class I (primary), and class II (secondary) OXPHOS defects to

incorporate the concept of disease originating from either mitochondrial or nuclear
1 2genome defects (see table 1.2) ’ . The former represents the archetypal mitochondrial 

encephalomyopathies. Class II disorders are predominantly neurodegenerative disorders.

1.8.1 THE ARCHETYPAL MITOCHONDRIAL ENCEPHALOMYOPATHIES

The mitochondrial encephalomyopathies are a clinically diverse group of disorders. This 

diversity combined with their multi-system nature demands a high index of suspicion in 

order to ensure the detection of these progressive and potentially fatal disorders. The 

situation is further complicated by the complexities of mtDNA genetics, the limitations of 

investigation modalities including genetic analysis, uncertainties regarding potential 

therapeutic agents, and further limitations regarding prognostication.

The incidence of the mitochondrial encephalomyopathies is undoubtedly higher than 

often appreciated. An epidemiological study in Finland covered a population of 245,201 

and identified 615 individuals with any of the symptoms reported to occur in the 

mitochondrial encephalomyopathy, lactic acidosis and stroke like episodes syndrome 

(MELAS). 480 of these were analysed for the common A3243G MELAS mtDNA point 

mutation. A mutation frequency of above 16.3/100,000 of the adult population was
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Table 1.2

MITOCHONDRIAL DISORDERS 

(Classification according to Leonard + Schapira 2001)

Class I: Primary OXPHOS defects

a. MtDNA mutations

i. large scale deletions, duplications involving protein coding genes and tRNA 

genes

ii. mutations of protein coding genes e.g. point mutations, small rearrangements.

iii. mutations of tRNA and rRNA genes.

b. Mutations of nuclear encoding OXPHOS subunits

including mutations affecting the gene promoter, mature protein or its mitochondrial 

targeting sequence.

Class II: Secondary OXPHOS defects

a. Genetic

i. abnormalities of mtDNA induced by nuclear gene defects affecting mtDNA 

transcription, translation, or replication.

e.g. autosomal dominant or recessive multiple deletions, or mtDNA depletion.

ii. direct damage to mtDNA or defects of mtDNA repair

e.g. frataxin deficiency and oxidative damage in Friedreich’s ataxia

iii. defects of the import pathway of nuclear encoded OXPHOSsubunits 

e.g. membrane receptors, protein processing, etc

iv. defects of the assembly of OXPHOS

e.g. chaperone mutations, defects of heme synthesis

b. Toxic

i. endogenous

e.g. free radicals including superoxide, nitric oxide, peroxynitrite

ii. exogenous

e.g. 1 -methyl-4-phenyl 1,2,3,6 tetrahydropyridine, 3-nitropropionic acid, malonic 
acid, isoquinolines



established 125. The high prevalence of the common MELAS mutation in the adult 

population suggests that mitochondrial disorders constitute one of the largest diagnostic 

categories of neurogenetic disease. A study in the northeast of England estimated a 

minimum point prevalence of 7.59/100,000 in those under the age of sixty-five years. 

12.48/100,000 either had mtDNA disease or were at risk of developing it. This would 

make mtDNA disease as common as amyotrophic lateral sclerosis (point prevelance 

6:100,000, annual incidence 1:50,000) or Huntington’s chorea (point prevelance 

5:100,000; annual incidence 0.4:100,000), and more common than Duchenne muscular 

dystrophy(prevelance 3:100,000, incidence among live bom males 20-30:100,000) or 

myotonic dystrophy (1:8000 live births) 126. Furthermore, the A3243G mutation has been 

found in 0.9% of unselected patients with diabetes mellitus (DM), and in 1.6% of those; 

with matrilineal DM 127.

The first report of disease resulting from mitochondrial respiratory chain dysfunction was 

published in 1962. A 35 year old woman developed severe euthyroid hypermetabolism 

and a mitochondrial respiratory chain defect resulting in the uncoupling of oxidation and 

phosphorylation in muscle mitochondria129. Further cases were reported 13°, and these 

cases also described heat intolerance, profuse sweating, polyphagia, and polydipsia 

without polyuria. Muscle weakness was mild. Ragged red fibres (RRFs) were found on 

skeletal muscle biopsy. This histological change, which came to be the defining feature of
i i i

mitochondrial myopathies , represents the peripheral and intermyofibrillar proliferation 

and accumulation of structurally abnormal mitochondria (Figure 1.5). RRFs were later 

noted to be associated with progressive external ophthalmoplegia 132 133 and with other 

myopathic syndromes lacking ophthalmolplegia. Subsequently, RRFs were also 

identified in patients with non-myopathic central nervous system manifestations of 

mitochondrial disease. This realisation led to the introduction of the term “mitochondrial 

encephalomyopathies”. Non-myopathic cases may present with any of a vast range of 

neurological symptoms including cognitive impairment manifesting as psychomotor 

retardation or dementia, movement disorders and ataxia, stroke, seizures, retinopathy or 

deafness, or peripheral neuropathy in various combinations and permutations, leading to 

the identification of the archetypal encephalomyopathies 134'136.
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A number of mitochondrial encephalomyopathy syndromes have subsequently been 

delineated. Common to all is the phenotypic and genotypic diversity. The correlation 

between phenotype and genotype is poor and a complete explanation for this remains 

elusive. In the majority of these conditions, a wide range of potential clinical 

manifestations are described in addition to the core clinical features, and a wide range of 

disease causing mutations have been described, in addition to the commonest mutation.

1.8.1.1 Chronic Progressive External Ophthalmoplegia / Kearns Savre Syndrome 

(CPEO / KSSI

Chronic progressive external ophthalmoplegia is one of the commonest manifestations of 

mitochondrial myopathy. Presentation is with slowly progressive ptosis, and 

multidirectional limitation of eye movements, affecting upgaze maximally. In Kearns 

Sayre syndrome CPEO is accompanied by pigmentary retinopathy, and one or more of
1 ̂ 7complete heart block, a CSF protein level of above 1 g/1, and ataxia

In 1988 Ian Holt made the seminal discovery of single large scale deletions on mtDNA in 

patients with mitochondrial myopathies 145. The following year Zeviani showed that these 

deletions were consistently associated with KSS 146. This mtDNA abnormality is 

detectable in DNA extracted from muscle samples of CPEO/KSS, but blood mtDNA 

analysis is normal. Deletions lack segments of DNA in the major arc between Oh and Ol 

and most are flanked by direct sequence repeats 147>148. These deletions are found in 80% 

of those with KSS, and 70% of those with CPEO 149. MtDNA duplications are also 

occasionally found 149. Conversely, all patients with single mtDNA deletions and 

neurological disease have CPEO, with only two exceptions to this rule described 150151. 

Histological examination of muscle reveals RRFs and a mosaic pattern of COX negative 

fibres. Patients with mtDNA deletions present as sporadic cases 152. Other CPEO patients 

show a maternal pattern of inheritance and in these cases mtDNA point mutations are 

detectable. This is most commonly the A3243G MELAS mutation, although several other 

point mutations have also been detected 153. Autosomal dominant and recessive pedigrees
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also occur. In contrast to sporadic cases, these are associated with multiple mtDNA 

deletions that arise secondary to nuclear gene defects 146’154. Three loci have been 

associated with adPEO, 4q34-35, chromosome 10q24, and 15q22-q26 155'158. Mutations 

in the genes encoding adenine nucleotide translocator (ANT-1), DNA polymerase y (Pol 

y), and Twinkle have been identified 159'161. ANT-1 forms a homodimeric inner 

mitochondrial membrane channel for the exchange of ADP into and ATP out of the 

mitochondrial matrix. In addition ANT is a component of the mitochondrial permeabiliy 

transition pore that has a pivotal role in mitochondrially-mediated apoptosis 159. Twinkle 

has homology to bacteriophage helicases, and mutations identified to date are believed to
1 ff)alter its dNTPase activity with consequent mitochondrial nucleotide pool imbalance 

Mutations of the catalytic unit of POLy have been identified, but their functional) 

significance is as yet undetermined 158. This finding suggests that disorders of mtDNA 

replication can also be responsible for mtDNA deletions. Models for the generation of 

deletions have been proposed and include “slip-replication” and “illegitimate-elongation”
163,164

The size of the deletion does not correlate with the clinical phenotype, in the same way 

that although a wide variety of deletions have been described, each removing a different 

set of mitochondrial genes, all KSS patients have fundamentally the same phenotype. 

This is thought to occur brcause mtDNA that remains and is transcribed, will still not be 

able to be translated due tot the fact that tRNAs, scattered around the genome are also 

removed by the deletion. Every documented pathogenic mutation in KSS or PEO 

removes at least 1 tRNA gene. If wild type mtDNA co-exists at a high enough level 

though, it can compliment this deficiency.

1.8.1.2 Mitochondrial Encephalomvopathv, Lactic Acidosis, and Stroke Like Episodes 

(MELAS)

In 1984, MELAS was described by Pavlakis as a distinct clinical syndrome within the 

spectrum of mitochondrial disorders171. This original report described two cases and nine 

other similar cases from the literature. Normal early development was later complicated 

by stunted growth, the development of focal and generalised seizures, and recurrent
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neurological deficits resembling strokes. Additional clinical features have been described 

in association with the core features of MELAS 172. The phenotypic consequences of this 

mutation and the common MERRF mutation have been compared (Table 1.3).

Of all cases meeting the clinical criteria for MELAS, 80 % are positive for an A to G 

transition at base pair 3243 within the tRNA LeuUUR gene 199’200. A large number of 

different mutations have also been found to result in the MELAS phenotype. A G13513A 

mutation in the ND5 gene was also associated with recurrent focal cortical brain 

hematomas in a child with MELAS 201. Conversely, of all cases with the 3243 mutation 

from an unselected population of 17 patients with mitochondrial myopathy, 50% were 

found to fulfil the criteria for MELAS at the time of clinical assessment140. Theoretically 

further cases could develop these clinical features with the passage of time. Mutations in 

protein coding genes (ND5 and COX III) have also been reported in patients with 

clinically typical MELAS 202'204.

1.8.1.2.1_____Pathogenesis of the A3243G common MELAS mutation:

Disease associated mutations have been identified in 20 of the 22 mt tRNA genes, and it 

seems likely that the two remaining tRNAs (tRNAArg and tRNAHls) will be added to this 

list in the future. Certain tRNAs such as tRNA1̂ 171̂ ,  tRNALys and tRNAIle appear to be 

hot spots for mutations whilst other tRNA genes are less often affected. Most pathogenic 

mutations affect highly conserved nucleotides whereas most polymorphic mutations 

affect rather non-conserved nucleotides. However exceptions to this rule do exist. 

Furthermore, the type of mutation (transition or transversion), the distribution on the 

secondary structural domains, and their structural effect in stems also fail to completely 

distinguish polymorphic and disease associated mt tRNA mutations.

Despite the identification of the A3243G common MELAS mutationin in 1990 199, an 

accepted explanation of how this mutation causes disease, and in particular how it causes 

such a diverse spectrum of phenotypes was slow to appear. This hampered the 

development of therapeutic interventions or preventative strategies which had to rely on
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educated guesses alone. A body of literature has focused on the relationship between 

mutant load, and tissue distribution of mutations and the severity of the clinical 

phenotype. Whilst there is a lot of evidence to support the threshold theory, it is also 

apparent that other factors must be involved in the pathway from mutation to disease.

Much of the initial investigations into the mechanism of the A3243G mutation focused on 

the fact that the mutation lies within the mtDNA binding site for mTERF, a protein factor 

that promotes termination of transcription at the 16S rRNA / tRNALeu(UUR) boundary. In 

vitro assays revealed a marked decrease in affinity of purified mTERF for the mutant 

target sequence. By contrast, in transformants carrying the MELAS mutation, despite 

severe protein synthesis and respiration defects, RNA transfer hybridisation experiment^ 

failed to show any significant change in the steady-state amounts of the two rRNA 

species encoded upstream of the termination site, and of the mRNAs encoded 

downstream 68’574. in addition the reduction in labelling of the various mitochondrial 

translation products in defective transformants is not correlated to their UIUR-encoded 

leucine content, thus arguing against an effect of the MELAS mutation on the function or 

stability of the tRNALeu(UUR) 575. Altered RNA processing has also been implicated in the 

pathogenesis of the A3243G mutation, after the identification of the accumulation of a 

novel RNA transcripts, termed RNA 19, in immortalised cell lines and patient tissue 

samples. This abnormal transcript corresponds to 16S rRNA plus tRNALeu(UUR) plus 

subunit 1 of the NADH-coenzyme Q-oxidoreductase gene 576.

Cybrid analysis has been a cornerstone of this field of research. This in vitro scenario has 

many potential limitations. Studies in osteosarcoma and lung carcinoma cell lines have 

suggested that the mutant tRNA is functionally deficient and thus less able to decode Leu 

UUR codons. Impaired aminoacylation 711’581j low levels of base modification within the 

D-stem 712, and low steady state levels in some cell lines122 but not others713 have all been 

observed. This loss of function mechanism would be consistent with the observed 

threshold effect that results in impaired MRC function and loss of mitochondrial protein 

synthesis.
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Other cybrid studies, predominantly those using Hela cells, have given conflicting results. 

Despite lower levels of the mutant tRNA aminoacylation is minimally affected . The 

mutant tRNA lacks the wobble base U hypermodification. This feature normally confers 

specificity of codon recognition, and without it phenylalanine UUY codons may also be 

translated by tRNALeu(UUR). This mechanism would confer a gain of function that would 

result in an impairment of mitochondrial protein synthesis.

The picture is complicated further by studies in patient derived lymphoblastoid cell lines 

that have shown no effect of the mutation on tRNALeu(UUR) levels or the level of 

mitochondrial protein synthesis. There was however reduction of the relative amounts of
CHQ

incorporation of leucine into some mitochondrial translation products . The inference 

was that the mutant tRNA may be mischarged with incorrect amino acids or that the 

affinity of the mutant tRNA for the codon is impaired allowing other tRNAs to 

incorporate the wrong amino acid at UUR codons. In this setting mutant levels as low as 

70% significantly reduced complex IV activity. Gain of function mechanisms would 

explain the presence of the disease in patients with mutant levels below the threshold 

levels found in cybrid studies. Other potential gain of function mechanisms have been 

proposed, and include a role for precursor-like RNA molecules that are believed to
1 7 7  C 7Qaccumulate in mutant cells and interfere with ribosome function ’ .

In vivo protein synthesis studies may clarify the picture but are currently lacking. 

However, it may be that these apparently conflicting views are in fact both correct. 

Studies in A549 cells support the loss of function hypothesis. A heteroplasmic anticodon 

mutation within tRNALeu(CUN) generates a novel tRNA capable of reading UUR. This 

suppresses the protein synthesis defect and respiratory impairment of cells with high 

A3243G mutant loads 122. This phenotype suppression effect is transmitted along with the 

“suppressor mtDNA” to successive generations 58°. In the 143B nuclear background 

abnormal translation products are present at mutant loads below the threshold levels 

normally accepted to cause total loss of mitochondrial translation 69. As in lymphoblasts 

respiratory deficiency occurs at levels at which protein synthesis appears normal 69,581. 

Despite proteins appearing to be synthesised at normal rates, the proteins generated may
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not be totally normal. Low but functionally significant levels of amino acid 

misincorporation have been reported 58°. High mutant A3243G levels have also been 

associated with as yet unidentified structural modification of tRNALeu*CUN* 122. This may 

represent a compensatory or partial suppressor mechanism allowing a proportion of 

tRNALeu(CUN) to read UUR codons.

The question will always remains as to whether all of these in vitro changes represent 

primary or secondary effects of the mutation. Cybrid studies utilise immortalised, usually 

tumour derived, cell lines. The nuclear material of these cells is not normal with high 

rates of aneuploidy that vary even within a single cell line and within a single culture.

i
In vivo studies of mutant tRNALeu(UUR) levels and aminoacylation efficiency in muscle 

biopsies from A3243G patients have shown defects of both in most patients. In some 

however, one parameter was low and the other normal, and in one patient no abnormality 

was apparent. Four different patterns were therefore seen. The patients studied however 

all had similar phenotypes at the far end of the spectrum of disease associated with this 

pathogenic mtDNA mutation 582.

The role of nuclear genes, mitochondrial haplotype, developmental background, and 

epigenetic factors remains unestablished. The primary effect of the mutation on tRNA 

function has also not been fully explored. Potential mechanisms of interest include the 

level of expression of other tRNAs, such as tRNAphe. Incorrect modification of normally 

aminoacylated mutant tRNALeu(UUR) may result in frequent misreading of the Phe codon. 

The Leu(UUR) and Phe tRNAs would then compete for the UUY codon and the 

generation of abnormal translation products would then depend upon the relative levels of 

these two tRNAs. TRNAphe synthesis is almost entirely dependent upon not the full 

length overlapping H strand, but the rRNA transcription unit, the termination of which is 

inhibited by the 3243 mutation 583. In a different background aminoacylation of the 

mutant tRNA may be the limiting factor. The relationship between mutant load and 

phenotype would therefore differ due to this loss of function mechanism. Recent studies 

have focused on wobble modification deficiency in mutant tRNAs in patients with
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mitochondrial diseases. Mt tRNALeu(UUR) containing the A3243G mutation has previously 

been shown to be deficient in a normal taurine containing modification (taum5U;5- 

taurinomethyluridine) at the anticodon wobble position. This is believed to result in a 

UUG codon specific translational defect (A5). This has been demonstrated in cybrid cells 

with different nuclear backgrounds as well as from patient tissues (Al). Correlation with 

clinical phenotype has also been shown by comparing tR N A ^ 00^  mutations known to 

cause a MELAS phenotype and those causing milder disease (A2).

Nuclear factors may influence the expression of mtDNA mutations. In yeast, a mutation 

in the initiation codon of the mitochondrial COX III was suppressed by a reduction in the 

level of cytoplasmic ribosomal protein SI8 584. This effect was believed to be mediatecj 

by changes in cytoplasmic translation accuracy or by products that affect mitochondrial 

protein synthesis. Suppression of mutated tRNA function has also been reported. Again 

in yeast, a mutated tRNAAsn causing impaired maturation could be compensated for by 

the presence of additional copies of the mitochondrial Ef-Tu and aspartyl-tRNA 

synthetase 585. In humans, a secondary mutation in tRNALeu(CUN) has been shown to 

suppress the effects of the archetypal MELAS A3243G tRNALeu(UUR) mutation. This

occurs because the secondary mutation enables the tRNA1̂ 01̂  to recognise UUR
122codons . Recently a G5703A mutation that causes a severe mitochondrial protein 

defect and a reduction in the steady state levels of tRNAAsn, has been shown to generate 

revertant lines due to presumed nuclear gene factors. These revertant clones contained 

homoplasmic levels of the mutation, but did not exhibit the biochemical defects and had 

normal OXPHOS activity. When the mitochondria were transferred to a novel nuclear 

background the original defective phenotype was restored 586.

The effect of mtRNA mutations on the pattern of mitochondrial proteins at a broader 

level has been assessed using comparative proteomics as a tool to evaluate several 

hundred mitochondrial proteins. In cybrid cell lines carrying the A3243G MELAS or the 

A8344G MERRF mutations, large quantitative decreases were apparent for COX Va and 

COX Via, two nuclear encoded subunits of cytochrome c oxidase. This finding opens yet
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another avenue through which to explore the pathogenic mechanisms of mitochondrial 

tRNA mutations.

1.8.1.3 Myoclonic Epilepsy and Ragged-Red Fibres (MERRF)

The syndrome of myoclonic epilepsy and red ragged fibres (MERRF) was first described 

in 1980 135, although the association between progressive myoclonic epilepsy and ragged 

red fibres had been described seven years previously 205. Subsequently the role of 

mtDNA mutations in the pathogenesis of MERRF was documented 206. The core clinical 

features are of myoclonus, ataxia, and seizures.

The most commonly detected mutation, found in approximately 80% of cases fulfilling 

the clinical criteria for MERRF, is at position 8344 within the tRNA Lys, and was first 

reported by Shoffner in 1990 206. The relationship between mutant load and phenotype 

has revealed a positive correlation in some reports 140>206’210 but not others 21 Other 

mutations within the same tRNA gene (T8356C and G8363C) are also described in 

association with MERRF 209>212. Insertion of a C nucleotide at position 7472 in the tRNA 

Serine UCN gene results in a syndrome of hearing loss, ataxia, and myoclonus that is 

very similar to MERRF 2I3. MERRF has also been reported in patients harbouring 

multiple mtDNA deletions 166, and overlap syndromes with features of both MERRF and 

MELAS have been reported for the T7572C and T8356C tRNA Serine(UCN) mutations.

MELAS and MERRF are thus both phenotypically highly variable, in terms of age of 

onset, organs involved and severity of symptoms 115’200 2,1> Both mutations in vitro cause 

mitochondrial respiratory chain defects, and impaired intramitochondrial protein 

synthesis, above a specific threshold of about 85% 210>216. it is generally accepted that 

variation in the percentage mutation load is the principle factor responsible for the varied 

clinical presentation of mtDNA defects 216)217 however previous studies have only found a 

weak correlation between the mutation load and the clinical phenotype 107’110’112-114 This 

may be explained by intercellular heteroplasmy but secondary factors as discussed above 

may also be aetiologically significant.
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Analysis of 245 individuals with the A3243G of A8344G mutation showed a strong 

correlation between the frequency of the more common clinical features and mutant load
I 8Ain muscle however no relationship with mutant load in blood was shown . Thus 

percentage mutant mitochondrial DNA in muscle has been proposed, but not yet widely 

accepted, as a useful prognostic indicator.

The relationship between maternal mutation load and the frequency of clinically affected 

offspring has also been examined in an attempt to guide genetic counseling . These 

studies concluded that the higher the level of mutant load in mother’s blood the higher the 

frequency of affected offspring, and at any one level of mutant load, the number of 

affected offspring was found to be always greater for the A3243G mutation than for the 

A8344G MERRF mutation. These two mutations both involve tRNA genes and have
136similar effects on respiratory chain function in vivo . The reason for different 

inheritance patterns is therefore unclear. Mothers with A3243G have a high (>25%) 

frequency of affected offspring what ever their mutant load. Women with less than 40%
918A8344G have a relatively low frequency of having an affected child . Prospective 

studies are required to provide sufficient information for predictive genetic counselling 

purposes.
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Table 1.3

Clinical features of the A8344G MERRF and A3243G MELAS mutations 

(from 186)

Clinical feature A3243G A8344G

Recurrent stroke 48% 1 %

CPEO 28 6

Diabetes mellitus 15 3

Pigmentary retinopathy 15 0

Deafness 44 39

Dementia 27 25

Epilepsy 50 43

Myopathy 53 70

Short stature 15 13

Lipomata 1 8

Optic atrophy 1 13

Neuropathy 5 24

Ataxia 24 50

Myoclonus 8 61

1.8.1.4 Neurogenic Muscle Weakness. Ataxia, and Retinitis Pigmentosa fNARP)

First described by Holt et al in 1990, the key features are peripheral neuropathy, ataxia, 

retinitis pigmentosa, seizures and dementia 219Inheritance is maternal. The commonest 

mutation is a T to G transversion at nucleotide position 8993. This causes a change from 

the highly conserved leucine to arginine within subunit 6 of the mitochondrial F0Fi ATP 

synthase. This mutation has also been identified in several cases of maternally inherited 

Leigh syndrome (MILS) 220, and both LS and MILS have been reported within the same
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family 221. A T8993C transition replacing leucine with proline has been reported in one 

NARP/MILS family 222 and also in one patient with LS 223. Both of these mutations 

involve a conserved charged region of ATP synthase which is associated with the proton 

channel of this enzyme complex 224. These changes may interfere with the utilisation of 

the electrochemical gradient to produce ATP 10.

Patients with NARP usually have above 80% mutant mtDNA levels. With mutant 

mtDNA levels below 75% patients usually suffer from pigmentary retinopathy alone, or 

suffer migraines, or are asymptomatic 225. This illustrates the good correlation between 

mutant load and disease severity that is not present in the majority of the other 

mitochondrial encephalomyopathies.

1.8.1.5 Leigh Syndrome (LS)

This subacute necrotising encephalomyelopathy was first described in 195 1 228. Its 

characteristic neuropathology is of bilateral symmetrical focal necrotic lesions within the 

thalamus, extending into the pons, inferior olives and spinal cord. The clinical features of 

LS are of psychomotor retardation, hypotonia, failure to thrive, respiratory abnormalities, 

oculomotor disturbances, optic atrophy, seizures and lactic acidosis. Biochemical 

abnormalities include defects of oxidative phosphorylation (in particular complex I 229 or 

complex IV 23°, and deficiency of the pyruvate dehydrogenase complex 231 and 

biotinidase deficiency 232. Ragged-Red fibres are absent.

The majority of LS cases are believed to result from nuclear gene defects 233>234. This has 

been confirmed for cases of LS with deficiency of the PDH complex 233, complex I 80,
77and II . The majority of children with complex IV deficient LS harbour mutations in the 

surfeit-1 housekeeping gene 235>236. This gene is involved in the complex process of 

complex IV assembly 237’239. Mutations in other complex IV assembly genes have been 

identified. These include SC02 (Synthesis of Cytochrome Oxidase gene) mutations in 

three unrelated infants with fatal cardio-encephalomyopathy and isolated complex IV 

deficiency 240. All were compound heterozygotes and all had an E140K mutation on one
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allele. SCO 10 (heme A famesyltransferase) mutations have been identified in complex 

IV deficient patients with LS and DeToni-Fanconi-Debre syndrome 24 *. This enzyme 

catalyses the first step in the conversion of protoheme to the heme A prosthetic groups of 

cytochrome oxidase. SCOl mutations have also recently been reported in a single family 

with multiple cases of neonatal ketoacidotic coma and isolated COX deficiency 242. 

Deficiency of heat shock protein (Hsp) 60, a mitochondrial matrix protein involved in the 

assembly and folding of polypeptides into many complex mitochondrial enzymes, is also 

known to result in multiple mitochondrial inner membrane enzyme deficiencies, and a 

fatal systemic mitochondria disease 243,244. The underlying genetic defect is not 

established.

The BCS1 gene is involved in complex III assembly, and mutations within this gene have 

been detected in six patients from 4 unrelated families with neonatal proximal 

tubulopathy and hepatopathy 245. This gene may be a frequent cause of complex III 

deficiency.

Nuclear gene defects are also presumed to be causal for cases of LS with biotinidase 

deficiency. Mutations in the E la  subunit of PDH have been identified in X-linked and 

sporadic cases. Up to 20% of LS patients have the T to G, or T to C, mtDNA mutation at 

position 8993 within the ATPase 6 gene of complex V 234. Mutant loads are above 90%, 

and lower levels of this mutation are associated with the neurogenic muscle weakness, 

ataxia, and retinitis pigmentosa (NARP) syndrome. High levels of the A3243G MELAS 

mutation and the A8344G MERRF mutation have also been reported in LS 234. Other 

mtDNA mutations described include G1644T within the tRNA Val gene 246, and 

deletions 247 and depletion of mtDNA levels 248. The ATPase 6 mutations T8851C and 

T9176C are also associated with bilateral striatal necrosis and with maternally inherited
L g  249,250

1.8.1.6 Mitochondrial DNA Depletion Syndrome
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This quantitative disorder of mtDNA was first described in 1991 251. More than 30 cases 

of this severe (up to 99%) tissue specific reduction in total mtDNA copy number have 

now been described 252, and this syndrome thus represents a relatively common cause of 

lactic acidosis in infancy. Clinical heterogeneity is marked, but typically neonatal or 

infantile fatal lactic acidosis is associated with severe hypotonia, and progressive liver 

failure. Seizures, ophthalmoplegia, Fanconi syndrome, congestive cardiac failure, and 

cataracts are also described. The clinical course is often rapidly fatal with death before 

the first year.

There has been no evidence of maternal transmission. Some cases are sporadic, and some 

autosomal families are also described. In vitro complementation studies concluded a 

nuclear gene defect to be responsible for this syndrome 70. This syndrome is both 

clinically and genetically heterogeneous. Mutations in the deoxyguanosine kinase gene 

(DGUOK - chromosome 2p), and mitochondrial thymidine kinase gene (TK - 

chromosome 16q) have been identified in kindreds of Druze Israeli descent 254’255. Both 

of these enzymes are responsible for the salvage of nucleotides within mitochondria. 

There is no de novo synthesis of nucleotides within mitochondria, and their only other 

source is from the import of cytosolic nucleotides. In non replicating cells cytosolic 

dNTP synthesis is down regulated, forcing mitochondria to rely on these nucleotide 

scavenging pathways.

Depletion of mtDNA can also be secondary, occuring in inclusion body myositis, or 

iatrogenic, as occurs in patients receiving nucleoside analogues. MtDNA is also reported 

in Alpers’ syndrome and Navajo hepatopathy 256>257} but it is unclear whether it represents 

a primary or secondary event in these conditions.

1.8.1.7 Mvoneurogastrointestinal Encephalopathy (MNGIE')

This recessively inherited syndrome was first described in 198 7 258 and the term MNGIE 

was proposed in 1994 259. Diagnostic criteria include peripheral neuropathy, CPEO, 

gastrointestinal dysmotility, in combination with histological features, namely RRFs,
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259increased SDH staining or ultrastructurally abnormal mitochondria . A variety of 

oxidative phosphorylation enzyme defects have been reported in these patients including 

isolated partial complex IV defects and combined enzyme defects. Molecular defects are 

usually of multiple mtDNA deletions. MtDNA depletion is also described 

Homozygous and compound heterozygous mutations within the thymidine phosphorylase 

gene (chromosome 22ql3.32-ter) have been identified 261. The mechanism by which 

these mutations result in multiple deletions is uncertain.

1.8.2 THE NON-ENCEPHALOMYOPATHIC ARCHETYPAL MITOCHONDRIAL 

DISORDERS: i

Leber Hereditary Optic Neuropathy (LHON) is a maternally inherited bilateral acute or 

subacute painless optic neuropathy. 90% of patients present before the age of 45, with 

mean age of onset of 23 years. 85% of patients are male. The majority of cases result in 

severe and permanent visual loss. Acuity may deteriorate to less than 6/60 over a period 

of a few weeks 262.

Three mtDNA point mutations, all lying within the complex I genes, account for the vast 

majority of cases. The G11778A mutation in the ND4 gene is found in 50-70% of LHON 

cases, the G3460A mutation in ND1 in 15-25%. A mutation at nucleotide 14484, within 

the ND6 gene, is associated with a better prognosis with some visual recovery in 70% of 

those affected . The mutations are detectable in blood, and are often homoplasmic, in 

contrast to the point mutations found in the other mitochondrial encephalomyopathies.

Complex I deficiency has been demonstrated in the muscle and platelets of some patients
265 266’ . Only 15% of females carrying one of the primary mutations are clinically affected.

This led to the hypothesis of an X-linked susceptibility locus 267, but linkage analysis has 

not supported this 268.
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Pearson marrow-pancreas syndrome was described in four unrelated children in 1979. 

These infants presented with refractory sideroblastic anaemia, vacuolation of erythroid 

and myeloid precursors within the marrow, and exocrine pancreatic failure 295. All
• • 9Q f\reported cases harbour mtDNA rearrangements (deletion, duplication, or both) . Cases

907are usually sporadic, although maternal inheritance has been reported . Mortality in 

Pearson syndrome is high. Occasional cases show spontaneous improvement of the 

anaemia, reflecting the clearance of mutant mtDNA from rapidly dividing haematopoietic 

tissue. In slowly dividing tissues however mutant mtDNA may accumulate. In this way
9qo

multisystem features, including KSS, may gradually develop . The spectrum of 

mtDNA re-arrangements is similar in both KSS and Pearson syndrome, suggesting that 

they may both be part of the same disease entity although KSS is less clinically severe). 

There is no correlation between the type, size, or location of the mtDNA arrangements 

and clinical course.

1.8.3 BIOCHEMICAL CLASSIFICATION OF MITOCHONDRIAL DISEASE

Mitochondrial respiratory chain activity can be analysed in any tissue, but most 

commonly muscle or platelets. Whole, fresh or frozen muscle samples can be used, or 

mitochondrial preparations can be fractionated from tissue samples. Analysis can be 

performed by polarography or spectrophotometric methodologies. In this way 

deficiencies of each of the mitochondrial respiratory chain complexes can be identified. 

Complex I deficiency is associated with a wide spectrum of mitochondrial disorders,
9̂ 4most commonly as LS . It is probably the commonest respiratory chain defect 

associated with MELAS and MERRF, and occurs in isolation or with complex III and/or 

IV defects 310'312. Complex I deficiency has also been found in CPEO and mtDNA
• 313 •deletions . The deleted region in these cases encompassed only complex I genes and 

the intervening tRNAs. These are the only examples where the deleted mtDNA genes 

correspond exactly with the biochemical defect. LHON is also associated with complex I 

defects.
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Complex II deficiencies are less common, but again are associated with a wide clinical 

spectrum. Complex III deficiency is usually not an isolated defect 314. Complex IV 

defects may result from mutations of mtDNA encoded subunits, or from mutations of 

assembly genes (Table 1.4). The clinical spectrum is again diverse, and includes LS, 

benign and fatal infantile myopathies and cardiomyopathies, adult onset myopathies, 

MNGIE, MERRF, and MELAS.



Table 1.4

NUCLEAR GENE DEFECTS RELATED TO 

MITOCHONDRIAL DISORDERS

1 Structural components of RC complexes

Protein Function Phenotvoe

NDUFS4 Cxi Atypical LS
NDUFS8 Cxi LS
NDUFV1 Cxi LS, leukodystrophy, myoclonus
NDUFS1 Cxi LS
NDUFS7 Cxi LS
Flavoprotein CxII LS
SDHD, SDHC Cx II Hereditary paraganglioma
CoQIO synthesis Cx III III Ataxia, myopathy, epilepsy

2 Factors controlling OXPHOS or mtDNA metabolism

Protein Function Phenotype

SURF1 COX assembly LS
SCOl COX assembly, Copper metabolism IE
SC02 COX assembly, Copper metabolism Infantile CM
COX 10 COX assembly, heme A synthesis IE
BCS1 Complex III assembly IE, tubulopathy, hepatopathy
ANTI Nucleotide pool adPEO
Twinkle Helicase adPEO
Thy phos Nucleoside pool MNGIE

Mt proteins indirectly related to OXPHOS

Protein Function

Tim 8/9 transporter
ABC7 iron exporter
Frataxin iron storage
Paraplegin metalloprotease
OPA1 dynamin-related protein

Phenotype

X dystonia deafness 
X ataxia/ sidero anaemia 
Friedreich’s ataxia 
HSP
AD Optic Atrophy



1.9 PATHOGENIC MECHANISMS OF MtDNA MUTATIONS

The pathogenesis of mitochondrial DNA mutations is only partly explained by the rules 

of mitochondrial genetics. The influence of heteroplasmy, the bottleneck effect, 

threshold, and mitotic segregation on the phenotypic consequences of mtDNA genotypes 

has been discussed above. However, despite these theories, the poor genotype-phenotype 

correlation typical of the mitochondrial encephalomyopathies remains to a great extent 

unexplained.

Mutations in tRNA genes are usually associated with multisystem disease. In cases of 

isolated myopathy a family history is usually lacking, the inference being that the 

mutations arise spontaneously. In most patients the mtDNA mutation is also detectable iii 

blood and fibroblasts suggesting that the phenotype is a consequence of “skewed
T1 Sheteroplasmy” with preferential accumulation of the mutation in skeletal muscle

As the spectrum of mitochondrial disorders widens other phenotype-genotype 

correlations have proved invalid. Protein coding gene mutations, as in LHON and 

NARP/MILS, were thought to always cause multisystem, maternally inherited, disease 

and to be inconsistently accompanied by lactic acidosis and never associated with RRFs 

. The evaluation of patients with exercise intolerance, with or without myalgia and 

myoglobinuria due to ND4, ND1, cytochrome b, COX III, and COX I mutations 

disproved these rules 316-321.

Our understanding of the phenotypic consequences of mtDNA mutations will be 

enhanced by the recent development of several animal models of mitochondrial disease 

(see chapter 4). Until now reliance has been on the use of cybrid cell technology. Human 

cell lines are depleted of mtDNA using a variety of agents. These mtDNA-less (p°) cells 

can then be repopulated with heteroplasmic mtDNA to generate clones of varying 

degrees of heteroplasmy. This in vitro system has a number of potential limitations. 

Cybrid cells require a high percentage of A3243G mutant mtDNA to be present before 

OXPHOS is impeded. In vivo studies suggest a much lower threshold effect. Calf muscle 

magnetic resonance spectroscopy from an oligosymptomatic patient revealed markedly
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decreased maximal ATP production despite the fact that the mutant load was very low in 

muscle 322. Proton MRS has shown elevated lactate in the brain of A3243G carriers, and 

that the relationship to the proportion of mutant mtDNA was linear as opposed to the
323exponential pattern usually seen for the threshold effect

1.10 MODELS OF MITOCHONDRIAL DISEASE

The pathogenesis of mitochondrial disease remains obscure. There is still little 

understanding of the causes of clinical heterogeneity and progression of symptoms, and 

this lack of knowledge has hindered the development of directed therapies. The quest for 

a greater understanding of the pathogenesis of human mitochondrial diseases and thp 

desire for systems in which to evaluate potential therapeutic agents have stimulated 

attempts to develop both in vivo and in vitro models of mitochondrial diseases. A number 

of strategies have been developed based on cellular and animal models.

Primary myoblast or fibroblast cultures, established from muscle or skin biopsies of 

patients with mitochondrial disease, have been used as cellular models of mitochondrial 

disease 587. Transformed cell lines rendered p°, transmitochondrial hybrids (cybrids), and 

xenocybrids have also been employed to this end. The latter is a technique unique to 

mitochondrial biology. Cloning provides cell lines of varying mutant load. The lifespan 

of these cell lines in culture is limited, but they have been used for the investigation of 

transcription, translation, threshold effects, and segregation of mtDNA mutations 106. Cell 

lines devoid of mtDNA (p° cells) can be generated in a number of ways. From these p° 

cells transmitochondrial cybrids can be generated by fusion with platelets or enucleated 

cells. This technique allows the study of the effect of different levels of mutant mtDNA 

on transcription, translation, and respiratory chain function in a constant nuclear 

background.

The generation of inter-specific (xenomitochondrial) cybrids, as first suggested by
588Kenyon and Moraes , has provided both an alternative approach to generating 

OXPHOS defects in mouse cells, and also provided opportunities to explore cross-species
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nuclear-mitochondrial interactions. MtDNA divergence is about 5-13 times more rapid 

than in nuclear DNA (nDNA) 589. Therefore as species evolve a general incompatibility 

between nuclear and mitochondrial encoded gene products would be expected. This is 

predicted to occur between pairs of even recently diverged taxa 59°. The complete 

mtDNA sequence for mouse, rat, and a number of non-human apes have been determined 

(Bibb 1981) 591, and provides a very clear picture of the evolution of mtDNA in these 

species. Despite a relatively high number of sequence variations, once non-coding and 

synonymous mutations are ignored, a high level of functional homology is revealed 591. 

Even between human and orang-utan this homology exceeds 95%. The co-evolution of 

the nuclear and mitochondrial genomes in vertebrates, and how these interactions evolved 

to optimise OXPHOS are poorly understood.

Prior to the work on Kenyon and Moraes the maintenance of mitochondrial genomes in 

interspecies somatic hybrids had been dependent upon the presence of a complete set of 

cognate chromosomes 592'594 595. It has subsequently been shown that OXPHOS function 

in human p° cell lines can be restored by the insertion of mtDNA from other humanoid 

primates including the common chimpanzee {Pan troglodytes), pigmy chimpanzee {Pan 

paniscus), and gorilla {Gorilla gorilla). These results suggest that in primates 

mitochondrial nuclear compatibility had been preserved over approximately 5-12 million 

years (myr). MtDNA from orang-utan {Pongo pygmaeus) however, a species that 

diverged from other humanoids 12-18 million years ago, is unable to functionally replace 

human mtDNA implying an increase in failed mitochondrial nuclear interactions at this 

degree of evolutionary distance. The critical nNDA-mtDNA interactions that have been 

affected in unsuccessful xenomitochondrial cybrids are not known. Potential candidates 

include primate promotor recognition by the nuclear-coded human mitochondrial RNA 

polymerase 596. Further studies on human-chimpanzee or human-gorilla xenocybrids 

revealed a 20-30% reduction in oxygen consumption and a 40% decrease in complex I 

activity, attributable to defective interactions between nDNA and mtDNA encoded 

complex I subunits 591. These cybrids also exhibited an increased sensitivity to 

programmed cell death when treated with complex I inhibitors 324.
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Transmitochondrial mouse cells have been created using mus musculus p° cells and
589 • •mtDNA from rattus norvegicus or mus spretus . Evolutionary distances are 

controversial but believed to be 10-12 myr and 1 myr respectively 598. Both fusions 

generated viable cybrids. The mouse-mouse xenocybrid product exhibited normal 

OXPHOS function. The mouse-rat xenocybrid showed normal replication, transcription, 

and translation (as determined by S35 methionine labelling) but complex I activity was 

46%, complex III 37%, and complex IV 78% of control values. The maximal rate of 

respiration, analysed polarographically, was 12-31% of control and mus spretus-mus 

musculus xenocybrids. It is anticipated that the generation of other mouse xenocybrids 

with less severe OXPHOS phenotypes will provide models of a broader spectrum of 

human mtDNA diseases. j

The retention of both species of mtDNA in mouse-rat and mouse-hamster xenocybrids 

has also been reported. However it is not known whether both species of mtDNA are 

expressed or whether one set is selectively repressed 5" . The uniparental loss of mtDNA 

has been shown to occur in parallel with chromosomal loss 595’600’602# Human cells will 

preferentially replicate defective human mtDNA over foreign normal primate mtDNA 

suggesting that mtDNA determinants for trans-acting factors may be of greater 

significance than OXPHOS functionality 603.

MRC defects of primate xenocybrids differ from those of mouse-rodent xenocybrids, 

both in terms of which complexes are affected, and the evolutionary distance that can be 

tolerated. These findings provide new insights into the interactions of nuclear DNA and 

mitochondrial DNA by showing that predictions regarding viability and phenotype of 

xenomitochondrial cells do not correlate strictly with evolutionary divergence or the 

overall number of amino acid or nucleotide differences and will vary depending on the 

species used. By comparative studies of the species used it will be possible to gain 

important insights into the nuclear mitochondrial interactions that determine efficient 

mitochondrial function, and may provide useful mouse models of human mtDNA disease.
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Figure 1.6 Brief phylogeny of the Muridae showing divergence times estimated from

molecular studies. Time is shown by the scale below the phenogram and expressed as
con

millions of years before present (m.y.b.p.). (from ).

mt gene product Identity Number of amino acids No. of amino 
acid differencesRat Mouse

NADI 90% 318 315 32
NAD2 74 345 345 88
COXI 97 514 514 14
COXII 99 227 227 3
ATP8 79 67 67 14
ATP6 95 226 226 12
COXIII 97 261 261 9
NAD3 87 115 114 15
NAD4L 86 98 97 14
NAD4 87 459 459 59
NAD5 78 610 607 133
NAD6 80 172 172 34
Cytochrome b 93 380 381 26

Table 1.5 Comparison of M. musculus and R. novegicus mitochondrial translation 

products.
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1.10.1 Animal Models

The high cellular mtDNA copy number and the lack of demonstrated mechanisms of 

recombination have presented technical barriers to the generation of mtDNA “knockout” 

mice or animal models of mtDNA mutations. Several mechanisms have been explored to 

overcome this 604. Some approaches may be limited by the lack of available mtDNA 

mutants in cultured mouse cells.

Using available vectors the stable introduction of mutant mtDNA into the mitochondria 

of mammalian cells is problematic. Attempts have been made to use a transfection 

approach using a DNA construct linked to a mitochondrial target peptide leader sequencp 

504,605 c ommoniy usecj vectors are retroviruses that require active DNA replication to 

enable their insertion into genomic DNA. This technique is therefore precluded in 

myoblasts, which like neurons cease DNA synthesis before fusion 606. An alternative 

approach was developed using transformed cybrid technology to generate a mouse model
f\(YJof mitochondrial disease, termed mito-mouse . Synaptosomes were isolated from 

healthy aged mouse brains and fused with p° cells. Aging tissue accumulates mtDNA 

deletions 608, and these are referred to as low abundance rearranged molecules or 

“sublimons”. The resultant cybrids containing such deletions were identified, and these 

cells were enucleated and electro-fused with zygotes before implantation into 

pseudopregnant female mice. Previously mtDNA had been shown to be eliminated from 

zygotes, depending upon its tissue origin, inter or intra species barriers, and whether it is 

implanted into sperm or oocytes 609. These findings implied the existence of imprinting 

factors 6I0. The mtDNA deletion was passed not only into somatic cells but also into the 

germ line, a rare event for human pathologically rearranged mtDNA other than partial 

duplications. It accumulated in successive generations, and when a threshold of 90% was 

reached mitochondrial dysfunction become apparent in various tissues.

In humans, the presence of deleted or partially duplicated mtDNA above a threshold of 

50% causes multisystem disease of variable phenotype. The phenotype is determined by 

both the tissue distribution of the rearranged mtDNA, and the type of rearranged
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molecule present, and probably other, as yet unidentified, factors. Duplications tend to 

cause more widespread disease. Red ragged fibres and weakness are almost always 

present. Mito-mouse exhibited no RRFs, there was a mosaicism of respiratory 

impairment in cardiac and skeletal muscle, and death occurred at 200 days due to renal 

failure and anaemia, rare manifestations of disease in humans. Furthermore, in contrast to 

human mtDNA disease, the mouse levels of mutant mtDNA showed little variation 

between different tissues. In addition to the deleted mtDNA, partially duplicated mtDNA 

molecules were detectable in the mice. It was deduced that in early development donor 

deleted mtDNA must have recombined with wild type mtDNA to generate these partially 

duplicated species. Inter molecular recombination of this type has not been observed in 

human cybrids heteroplasmic for deleted mtDNA. Mito-mouse has therefore provided  ̂

disease model for human mtDNA rearrangement diseases. However the dissimilarities 

from human mtDNA biology, also rather than detracting from this model, serve to 

provide us with new insights into a number of aspects of mtDNA biology, including the 

maintenance of mtDNA during development, tissue expression, and transmission.

An A2379T mutation within the 16S rRNA mtDNA gene confers resistance to 

chloramphenicol (CAP) in mouse 3T3 cells. The introduction of this “(CAP)-resistant” 

mtDNA mutation into mouse embryonic stem cells has provided another animal model of 

mtDNA disease. Embryonic stem cells were obtained, and CAP-sensitive mtDNAs 

selected against. Chimeric mice were then generated by fusing these cells with enucleated 

CAP-resistant 3T3 mouse cells. The resulting cell lines had a mutant load of 90% and 

reduced cytochrome oxidase activity 61 \  Chimeric heteroplasmic (transmitochondrial) 

mice were generated by the injection of these cells into blastocysts. The mutant mtDNA 

load in tissues analysed varied from 0% to 50% 611,612. The mice developed cataracts, 

retinopathy, cardiomyopathy and myopathy 612>613. Parallels can be drawn to human 

mitochondrial disease because sensorineural deafness may also result from mutations of 

rRNA genes, the A3243G MELAS mutation results in a similar translational defect, and 

the NARP T8993G ATPase6 mutation causes a similar alteration in retinal function 

611>613. The variable segregation of wild and mutant type mtDNA into different tissues 

also mirrors human mtDNA disease 61 \  The lack of a technique for site directed
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mutagenesis of the mitochondrial genome means that this method may be of use in the 

generation of mouse mutants for different mtDNA mutations. Severe combined 

immunodeficiency (SCID) mice have been used to generate animal models of human 

mtDNA disease. Myoblasts obtained from patients with NARP and MERRF are able to 

regenerate and express their mtDNA after injection into the tibialis anterior muscle of 

SCID mice 6'4.

Three different classes of nuclear DNA encoded mitochondrial gene mutations have been 

reported in the mouse. These include mutations in a biosynthetic apparatus gene (Tfam), 

mutations in the mitochondrial bioenergetics genes ANTI and UCP1-3, and mutations in 

the mitochondrial antioxidant genes GPxl and SOD2 (MnSOD). Knockout gene? 

technology has been used to generate mouse models of mitochondrial disease due to 

nuclear DNA defects. Mitochondrial transcription factor A (mtTFA) is a nuclear-encoded 

protein that binds upstream of the light and heavy chain mtDNA promoters, promotes 

transcription and may also regulate mtDNA replication 615. Knockout of the mouse 

homologue Tfam causes severe mtDNA depletion and embryonic lethality in the 

homozygous state. Mitochondria are enlarged, of abnormal morphology, and are 

deficient in COX but not SDH. Heterozygous mice have a 34% reduction in mtDNA 

copy number, a 22% reduction in mitochondrial transcripts, and a partial reduction of the 

COI protein in heart but not in liver 19. Tissues vary in their sensitivity to changes in the 

levels of mtTFA. A gene-dosage effect may therefore contribute to tissue-specific 

differences in respiratory chain capacity in humans 19. A similar model has been 

developed with Tfam inactivation confined to cardiac and skeletal muscle 616. This caused 

postnatal lethality due to dilated cardiomyopathy. Cardiac conduction defects were also 

present. There was a reduction of complexes I and IV, but not II. Tfam inactivation in the 

pancreatic |3 cells has been used to examine the importance of mtDNA depletion in 

diabetes 617.

Inactivation of the mouse nDNA adenine nucleotide translocase (ANTI) gene provides a 

model of mtDNA multiple deletion syndrome 159’294s but also provides insight into the 

role of depleting cellular ATP, inhibition of the electron transport chain, and increasing
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mitochondrial ROS production in the pathophysiology of mitochondrial disease 159. 

ANTI mutants exhibit exercise intolerance and cardiac hypertrophy, a dramatic 

proliferation of mitochondria, and the presence of ragged-red muscle fibers 294. There are 

elevated levels of serum lactate, alanine, succinate, and citrate, consistent with inhibition 

of the TCA cycle and the ETC 294. Inhibition of ETC causes electrons to be redirected to 

0 2 to generate 0 2'. There is increased production of reactive oxygen species (ROS) in the 

ANTI deficient mice, with a six to eight-fold increase in levels of hydrogen peroxide 

(H202). The respiratory defect is complete in skeletal muscle, and partial in cardiac 

muscle. The levels of antioxidant defence enzymes induced are consequently higher in 

skeletal muscle than the heart, and the accumulation of mtDNA damage is lower in 

skeletal muscle 329. The ANTI -/- mouse therefore provides a model of AD-PEO, but one 

important difference is that ANTI mutations in human are dominant, but in mice are 

recessive.

Mutations in the genes for superoxide dismutase (SOD), an enzyme that reduces

superoxide anions generated during the OXPHOS process to H202, result in reduced ATP
£10

synthesis and increased oxidative stress . There are three genes for SOD and their 

effects have been examined in knockout mice 486. Inactivation of SOD2 gene causes the 

most deleterious phenotype, with cardiomyopathy, lactic acidosis and hepatic fat 

accumulation 619 Biochemical analysis revealed severe deficiencies in MRC complexes I 

and II and the tricarboxylic acid cycle enzymes. A severe inhibition of ATP synthesis and 

the accumulation of oxidative mtDNA damage result 485’486’620t The SOD mimetic and 

synthetic antioxidant manganese 5, 10, 15, 20-tetrakis (4-benzoic acid) porphyrin 

(MnTBAP) may prevent the development of cardiomyopathy and the accumulation of 

lipid in the liver 620. Therefore, the SOD2 knockout mice constitute a good model to 

examine the efficacy of antioxidants and to study the mechanisms of oxidative damage 

that may be associated with mitochondrial disease.

Glutathione peroxidase 1 deficient mice have increased levels of mitochondrial H20 2 

production. Their phenotype is determined by the inter-tissue (high expression in liver, 

brain, and renal cortex) and intra-cellular (cytosol and mitochondria of liver and kidney,
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and cytosol of heart) distribution of GPxl. GPxl mice have chronic growth retardation, 

increased H2O2 production in the liver, but this has only a mild deleterious effect on 

respiration 621.

Uncoupling proteins (UCP) increase the mitochondrial inner membrane permeability to 

protons. This short circuits the Aij/ (membrane potential) and activates the ETC to rapidly 

bum brown fat to generate heat. Mice lacking either UCP2 or 3 (the more widely 

expressed isoforms) exhibit increased mitochondrial ROS production 622623 

Mitochondrial function was assayed by determining the resistance of mice to infection 

with toxoplasma gondii

1.11 CLASS II NON-ARCHETYPAL SECONDARY OXPHOS DEFECTS

A growing number of neurodegenerative disorders without overt primary OXPHOS 

defects are now linked to mutations in mitochondrial proteins that are indirectly linked to 

the processes of cellular respiration and energy production. The breadth of mitochondrial 

disorders is therefore expanding to include more common neurological disorders. It may 

be that mitochondrial biology underlies an even greater number of disorders both 

neurological and others. (Table 1.5)

OXPHOS defects have consequences beyond impairment of ATP production. In vitro 

drug induced complex I deficiency results in alterations in cellular respiration, growth, 

free radical production, lipid peroxidation, mitochondrial membrane potential, and 

apoptosis. The degree of complex I inhibition correlates with the extent of these defects 

324. Mechanisms of free radical production and oxidative damage have been proposed in 

the pathogenesis of both the class I archetypal mitochondrial encephalomyopathies and 

the class II neurodegenerative conditions.
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Table 1.6

Genetic causes of bioenergetic defects in neurodegenerative diseases

Diseases with nuclear DNA-encoded mitochondrial defects

Friedreich’s ataxia 

Wilson’s disease 

Hereditary spastic paraparesis 

Deafness-dystonia 

Leigh’s disease

Diseases with nuclear DNA mutations with secondary mitochondrial dysfunction

Huntington’s disease 

Cerebellar degenerations

Diseases with mitochondrial DNA-encoded mitochondrial defects e.g.

LHON 

KSS/CPEO 

MELAS 

MERRF 

Leigh’s disease

Diseases with some evidence of mitochondrial dysfunction

Amyotrophic lateral sclerosis 

Parkinson’s disease 

Alzheimer’s disease 

Progressive supranuclear palsy
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1.12 Reactive Oxygen Species and Oxidative damage as a pathogenic mechanism 

in class I and class II mitochondrial disorders.

O c  '2 ')£L

Over 85% of the oxygen used by a cell is consumed by its mitochondria ’ . If free

electrons are released during this process, or if the oxygen is incompletely processed, 

oxygen radicals are generated that are damaging to lipids, protein, and DNA. 

Mitochondria have therefore evolved a number of ROS scavenging mechanisms both 

enzymatic and non-enzymatic. Their capacity is however usually exceeded by the rate of 

production of ROS 327>328. The degree of damage to mtDNA is inversely proportional to 

the levels of these antioxidant defences 329.

The major ROS are superoxide (0 2'), hydrogen peroxide (H2O2), and the hydroxyl 

radical (OH ). Superoxide is formed by the transfer of a free electron to molecular 

oxygen. This reaction occurs at a number of specific sites within the electron transport 

chain. Production is maximal from complex I and III. Superoxide is highly reactive and 

diffuses poorly throughout the cell. Damage is therefore maximal at the site of 

production, the mitochondrial inner membrane. The mitochondrial scavenging enzyme 

manganese superoxide dismutase converts superoxide to H2 O2 , which is, by contrast, 

highly diffusible. H20 2 in turn is converted to H20  by glutathione peroxidase. This 

reaction requires reduced glutathione as a coenzyme. However, in the presence of 

reduced transition metals, H2O2 reacts via the Fenton reaction to generate OH a highly 

reactive ROS that lacks any known scavenging mechanism.. This will react with virtually 

any molecule in close proximity.

Other important radicals include nitric oxide (NO) and peroxynitrite (ONOO'). These can 

be produced endogenously by mitochondrial NO synthetase 330'332. NO can have both 

beneficial and detrimental effects, with its influence on the mitochondrial permeability 

transition pore being dependent on the prevailing NO concentration 333. Mitochondrial 

NO decays via ubiquinol oxidation, reversible binding to cytochrome c oxidase, and by 

interaction with superoxide resulting in the formation of ONOO' 334. Peroxynitrite causes 

modification of proteins by nitration of tyrosine residues to form dityrosine, and oxidizes

81



tryptophan to cysteine 335. These effects culminate in mitochondrial swelling,
336depolarization, calcium release, and permeability transition

Mitochondria thus play the role of both assailant and victim in ROS induced cellular 

damage. These roles have been proposed to be of pathological significance in a number 

of archetypal mitochondrial encephalomyopathies and other neurodegenerative 

conditions, and are thought to result in a vicious cycle of cellular damage. In this way an 

initial MRC defect causes generation of ROS, which, by induction of secondary mtDNA 

mutations further exacerbates the ROS production rate and MRC defect.

Oxidative stress causes greater damage to mtDNA than nuclear DNA due to the lack of 

histones, repair mechanisms, non-coding sequences from mtDNA, and due to its location 

near the site of ROS production 33?. However in patients with pathogenic mtDNA 

mutations PCR based techniques failed to show an increased level of mtDNA deletions in 

muscle arguing against this vicious cycle theory . ROS production and oxidative 

damage are increased in MELAS and MERRF fibroblasts . Hydroxyl radical damage 

of mtDNA is reported in MELAS and can be accelerated by specific genotypes 34°. ROS 

associated telomere shortening has been reported in both MELAS and LHON 341. These 

hypotheses have been strengthened by the findings in xenomitochondrial cybrids, where 

the degree of complex I deficiency correlates with the rates of cellular respiration and 

growth, ROS production, lipid peroxidation and other markers of ROS induced damage 

324. Partial MRC deficiencies may therefore precipitate cellular degeneration via ROS 

related pathways.

1.13 The role of mitochondrial dysfunction in neurodegeneration

Mitochondrial dysfunction has been implicated in the pathogenesis of a range of 

neurodegenerative conditions. Hereditary spastic paraparesis (HSP) is a clinically and 

genetically heterogeneous group of disorders. Incidence is estimated at 1:10000 342>343. it 

occurs as complicated and pure forms and can be inherited as autosomal recessive or
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dominant, or X-linked traits 344. The unifying feature is of progressive spasticity and less 

evident weakness of the lower limbs. Seven loci for AD HSP, three autosomal recessive 

loci and two X chromosome loci have been identified. Chromosome 16 linked families 

with AR complicated and pure HSP (SPG7), have been found to harbour mutations in the 

gene encoding paraplegin a protein of 795 amino acids 346. Muscle biopsies from these 

patients revealed typical mitochondrial pathology 346,347. Paraplegin shows high sequence 

homology to three yeast proteins (Afg3p, Ymelp, and Rcalp), suggesting that it also is a 

mitochondrial ATP-dependent zinc metalloprotease of the triple ‘A’ protease family 

(^4TPases associated with a variety of cellular activities). These proteins act as 

chaperones and are involved in the ATP dependent degradation of mitochondrial 

translation products. AD HSP Linked to 2p (SPG4) is caused by mutations in spastin. 

This is also a member of the AAA family 348, but does not localize to the mitochondrion. 

Evidence of mitochondrial dysfunction has been reported in HSP patients not linked to 

chromosome 16 349>35°. Spastic paraparesis secondary to the ingestion of chick peas 

(lathyrism) is also linked to mitochondrial dysfunction 351.

Hepato-lenticular degeneration (Wilson’s disease WD) is an autosomal recessive disorder 

that causes the accumulation of copper, maximal in the brain and liver. It affects 

approximately 1:30,000, and is the consequence of mutations in the ATP7B gene on 

chromosome 13. The WD protein localizes to mitochondria 352. The ATPase is expressed 

predominantly in the liver and transports copper into the hepatocyte secretory pathway 

for subsequent incorporation into caeruloplasmin and excretion into bile 353. This is the 

only significant pathway for copper removal. Mitochondrial morphology is abnormal in 

WD . Impaired activities of mitochondrial respiratory chain complex I, II/III, IV and 

aconitase are found in WD liver 358. The level of oxidative stress has been shown to 

correlate negatively with the copper concentration 359. Copper is an important component 

of complex IV, and it may act as a substitute for iron in redox reactions resulting in the 

generation of free radicals 360’361.

Dystonia is a disorder of movement caused by sustained involuntary muscle contractions 

affecting one or more body sites. This frequently causes twisting and repetitive
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movements, or abnormal postures 631,632. The prevalence of dystonia is not accurately 

known, und estimates vary between 127 to 329 per million 633>634. The aetiology of 

dystonia remains uncertain in the majority of cases. Furthermore in those cases with 

an identified gene, the pathogenic mechanisms remain to be elucidated. Mitochondrial 

dysfunction, either as a primary or secondary phenomenon, has been implicated by a 

number of studies.

Among the many clinical manifestations of the primary mitochondrial diseases, 

disorders of movement, especially dystonia, occur at a greater frequency than 

expected. In 85 consecutive patients with mitochondrial myopathy 10.5% had a 

movement disorder, which included dystonia, chorea, Parkinsonism and myoclonus 

142. In a number of families with Leber’s hereditary optic neuropoathy (LHON) 

dystonia is also present. A missense mutation in the mtDNA encoded ND6 complex I 

subunit gene was identified in one family 272. Cells from patients containing this 

G14459A mutation showed a 55% reduction in complex I activity 669. In a Dutch 

family a heteroplasmic A11696G in the ND4 gene, and a homoplasmic T14596A 

mutation in ND6 were identified. Biochemical analysis of a muscle biopsy revealed a
9 7 1severe deficiency of complex I

Further support for the role of mitochondrial dysfunction in the aetiology of dystonia 

came with the identification of the causative gene for Mohr-Tranebjaerg syndrome/X- 

linked deafness-dystonia-optic atrophy syndrome . This condition is characterised 

by X-linked recessive sensorineural hearing loss, dystonia, dementia, psychotic 

features and optic atrophy. The DFN1/MTS locus was linked to Xq21.3-22 673 and a 

mutation identified in a novel gene DDP (deafness-dystonia peptide) 67°. The DDP 

gene generates a 1167 bp cDNA which encodes a 97 amino acid, 1 lkDa polypeptide, 

named DDP1 96. This protein is homologous to a family of yeast proteins known as 

the ‘Tiny Tims’, which are part of a complex of proteins known as inner membrane 

translocases. Via yeast homolgy studies the DDP1 protein was identified as TIMM8a 

675. TIMM8a assembles with TIMM13 in a 70kDa complex in the mitochondrial 

intermembrane space. This complex is responsible for the import, at low membrane 

potentials, of Tim23 an essential component of the import machinery for matrix- 

targeted proteins. Impairment of this mechanism would therefore lead to a significant 

reduction of many mitochondrial functions 677.



Mitochondrial involvement in the pathogenesis of dystonia is further supported by 

studies of the systemic administration of subacute doses of 3NP, a mitochondrial 

toxin, in cebus apella monkeys. This led to the developed of dyskinesia at 5-6 weeks 

after discontinuation of 3NP. After this time period chorea lessened as dystonia
/ n o

worsened in severity and intensity . Biochemical evidence of mitochondrial
A 7Qdysfunction in primary dystonia first came in 1992 . Decreased complex I activity

was demonstrated in the platelets of patients with focal (37% mean reduction), and 

segmental or generalised (62% mean reduction) primary dystonia. In a separate study 

a complex I defect was confirmed in platelets from patients with sporadic focal 

dystonia (mean reduction 21%). However for patients with generalised dystonia 

(linked or unlinked to chromosome 9q34) the difference from controls was not 

significant 680. Biochemical analysis of cybrids from these patients with sporadic focal 

dystonia, showed that the defect was complemented in mixed and clonal cybrid lines 

681 suggesting that the complex I defect in dystonia is caused by a nuclear mutation or 

a circulating toxin.

Huntington’s disease (HD) is caused by an expanded CAG repeat on chromosome 4p. 

This causes a polyglutamine repeat in the N-terminal region of the widely expressed 

Huntingtin protein. Roles in glutamate homeostasis, endocytosis and vesicle 

trafficking have been proposed for Huntingtin ’ . Post mortem, in vivo and in vitro

studies have implicated mitochondria in the pathogenesis of HD. OXPHOS defects of 

complexes II, III, and to a lesser extent complex IV, have been reported in HD 

caudate nucleus 371>372. Huntingtin does not localize to mitochondria, and OXPHOS 

function is normal in cybrid studies . Mitochondrial dysfunction is thought to be a 

secondary consequence of excitotoxicity mechanisms and/or oxidative stress. Other 

evidence pointing to a disturbance of cellular energy metabolism includes the findings 

of elevated lactate levels in the occipital cortex and basal ganglia 374, abnormalities on 

muscle 31P MR spectroscopy 375, and that mitochondrial toxins can create animal
376 377models of HD ’ . Studies of transgenic HD mice also implicate secondary

mitochondrial dysfunction as a consequence of the gene mutation 378,379.

l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP), a contaminant of synthetic 

opiates, led to an outbreak of young-onset parkinsonism 38°. MPTP is metabolized to
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MPP+ a complex I inhibitor 381. In the substantia nigra of patients with idiopathic
382Parkinson’s disease there is a 30-40% decrease in complex I activity , and reduced 

immunohistochemical subunit staining for complex I, with sparing of the other MRC 

complexes 383. Cybrid studies imply a mtDNA-encoded defect 384,385. Both the 

susceptibility to MPP+ and free radical production are increased, and mitochondrial
n o /

calcium buffering is impaired . The 11778 mtDNA mutation has been associated
007

with multisystem degeneration, parkinsonism, and a complex I defect . MtDNA 

mutations have however not been identified in idiopathic PD, implying that the 

bioenergetic defect may be the result of unidentified mtDNA mutations or
388polymorphisms, or the interaction of genetic and environmental factors

TQQ
Alzheimer’s disease (AD) postmortem tissues show complex IV defects 

Immunostaining shows reduced subunit levels maximal for mtDNA encoded subunits 

390. The biochemical defect persists in cybrids generated from AD platelets. Results 

are conflicting however and a study of cybrids generated from synaptosomes and 

platelets failed to find a MRC defect391. Initial results suggesting a mtDNA mutation 

to be responsible for the defect, were withdrawn when a nuclear pseudogene was later 

found to be responsible for this spurious result . Further mtDNA polymorphisms of
'IQ'l

proposed aetiological significance have been reported .Oxidative damage to 

mtDNA is increased threefold in AD post-mortem tissue 394. Other parameters of 

oxidative damage also imply that this is an important mechanism in the pathogenesis 

of AD.

The role of mitochondrial dysfunction in sporadic amyotrophic lateral sclerosis is 

supported by a large body of literature. Mitochondria are histologically abnormal in 

liver and anterior horn cells 395’396. In skeletal muscle complex I activity is reduced by 

50% 397, and mitochondrial volume and calcium concentrations are increased 398. 

There is also evidence of increased oxidative damage 3" .  A COX subunit I mutation 

has been reported in an individual with sporadic ALS 400Mutations in copper-zinc 

superoxide dismutase (SOD) are found in a proportion of patients with familial ALS 

40 \  These mutations have been shown to impair mitochondrial function in vivo 402, 

and transgenic studies show mitochondrial morphological changes to be an early 

feature preceding motor weakness and loss of motor neurons 403.
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1.13.1 Friedreich’s ataxia:

This ataxic disorder was first described by Nicholaus Friedreich in a series of five 

papers published between 1863 and 1877 404'408. He reported nine members of three 

families who had onset in puberty of ataxia, dysarthria, sensory loss, muscle 

weakness, scoliosis, foot deformity, and cardiac symptoms. Areflexia was only 

described in the final two reports, but was later adopted as one of the clinical 

diagnostic criteria. In the intervening 133 years until the elucidation of the molecular 

mechanism of FRDA there was much debate about the clinical features and the 

phenotypic spectrum of this disorder 409.

FRDA is now recognised as the commonest inherited ataxia. Prevalence studies 

performed after the introduction of genetic testing have suggested that it is commoner 

than previously recognised with values up to 1:29,000 410. Carrier prevalence is 

estimated at between 1:60 to 1:90 4n. The disease is rare in Asia and Africa. 

Autosomal recessive inheritance was established by segregation analysis 409, although 

this had also been suggested by the high rate of consanguinity 412. Due to the high 

carrier frequency pseudo-dominant inheritance had also been reported 4I3,414.

Prior to the introduction of genetic testing various diagnostic criteria were proposed to 

enable natural history studies and the investigations of molecular mechanisms 409)415. 

Subsequently a number of these have proved invalid, most noticeably with the 

recognition of onset over the age of 25 years (late-onset Friedreich’s ataxia -  LOFA), 

and the preservation of lower limb reflexes (Friedreich’s ataxia with retained reflexes 

-  FARR). These patient groups, and others such as the Acadian form of FRDA and 

Acadian spastic ataxia have all been found to be due to the same genetic mutation 416' 

424. Other atypical forms include the presentation of FRDA as a pure spastic 

paraparesis 425)426. Presentation as a pure sensory ataxia or as chorea is also recognised
427,428

The core clinical features of gait and lower limb ataxia are reported in virtually 100% 

of all reported studies. The frequency of other features varies depending on: 1) 

whether the patients were identified by clinical or genetic criteria 2 ) potential racial 

variations, 3) the range of age and disease duration in the patients studied and 4) the

87



criteria used to define the presence of certain features. The latter are illustrated by 

variations between studies in the criteria used to define for example diabetes (defined 

by patient history, blood glucose values, or oral glucose tolerance tests), 

cardiomyopathy (defined by ECG alone in some studies, and by echocardiography in 

others), impaired visual and auditory acuity, and skeletal abnormalities including 

scoliosis and pes cavus (Table 1.6).

There is a paucity of natural history data for FRDA, a common feature of slowly 

progressive disorders. Onset ranges from 1.5 years to 51 in reported series. Loss of 

ambulation has been reported to occur at a mean of 15.5 ± 7.4 years after disease 

onset but ranges between 3 and 44 years. Death is most commonly as a consequence 

of cardiomyopathy and is at a mean age of 37.5 ± 14.4 years 429. Retrospective 

analysis of disease progression has reported a mean time to wheelchair confinement 

of 1 1  years 429.

Pathological studies of FRDA report changes maximal in dorsal root ganglia, dorsal 

columns, corticospinal tracts, and heart. Macroscopically the spinal cord is atrophic 

with the posterior and lateral columns particularly affected 43°. Changes within the 

nervous system are thought to be the consequence of a dying back process from the 

periphery affecting the longest and largest myelinated fibres that show changes of an 

axonopathy 43 !’432. Demyelination is seen in the dorsal columns. The cerebellar cortex 

shows only mild neuronal loss 433, but the dentate nucleus, and Clarke’s column in the 

cord show marked changes. The cerebellar, and occipital cortex, show reduced 

phospholipids levels in the absence of neuronal loss 434. A hypertrophic 

cardiomyopathy develops in a significant proportion o f patients. Studies of the cardiac 

phenotype report variable left ventricular hypertrophy (concentric, asymmetric, or 

both, left ventricular outflow tract obstruction, and thickening of the papillary muscles 

435,436 Yhe presence of cardiac hypertrophy is non concordant with the presence of 

ECG abnormalities or the neurological features of the condition. The mechanism of 

cardiac hypertrophy is unclear. Histology reveals cellular hypertrophy, diffuse 

fibrosis, and focal myocardial necrosis 437. The susceptibility of the heart in FRDA 

may be a reflection of the relatively high cardiac expression of frataxin 438, and the 

low antioxidant defences of cardiac tissue 329.
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Table 1.7

Clinical, genetic, and neurophysiological parameters in Friedreich’s ataxia, according 

to the studies of Harding 1981, Durr 1996, Dalatycki 1999, and Hart 2003 

(unpublished data) 409,418,439. Ages are given in years,other values are percentages of 

total patient group. (NA= not available)

Harding 1981 Durr 1996 Dalatycki 1999 Hart 2003

Number of patients 115 140 51 77

(families) (90) (114) (43) (67)

Definition of case clinical genetic genetic genetic

Mean age 32.3±13.8 31±13 NA 24.1±10

(range) (10-73) (7-77) (10-57)

Mean age onset 10.52±7.4 15.5±8 10.5±6.4 11.75±6.3

(range) (1.5-27) (2-51) (1-26) (2-27)

Onset to w/c NA 1 0 .8 ± 6 10.1± 4.4 1 1 . 2

confinement

Mean GAA repeat NA 630±230 739±191 730±225

(range) (120-1700) (300-1345) (130-1080)

Gait ataxia 1 0 0 1 0 0 1 0 0 1 0 0 e

Limb ataxia 99 99 1 0 0 1 0 0

Dysarthria 97 91 95 95*

LL reflexes 0.9 1 2 2 13

extensor plantars 89 79 74 87

Impaired vibration 73 78 8 8 56
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Impaired visual 

acuity

18 13 NA 3d

Sphincter

disturbance

NA 23 41 45g

Pes cavus 55 55 74 64

Scoliosis 79 60 78 76

cardiomyopathy 6 6 a 63 65 47*1

Diabetes mellitus 1 0 b 32 8 5C

Median NCV 52.2±7.63

(n=2 2 )

NA NA 50.6±3.45

Peroneal NCV 44.96±7.2

(n=2 2 )

NA NA 40.5±7.4

At least 1 SAP 

absent

92

(n=26)

NA NA 83

a cardiomyopathy defined by ECG alone
b 10% of patients known to be diabetic. No other patients found to have
glycosuria
c patients known to be diabetic, including one unknown case detected on

random serum glucose and HbAlc analysis 
d patients previously investigated for optic atrophy
e Gait ataxia defined as unable to walk more than 4 steps in tandem
f any modification of fluency or suggestion of slurring.
g Minimum criteria: patients reporting mild urinary hesitancy, urgency or

retention < once per month 
h Defined as an interventricular septal thickness of greater than 11 mm.
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Clinical parameters also correlate with the repeat length size. The size of GAA1 

accounts for between 33 and 73% of the variation in the age of onset in various 

studies. GAA2 accounts for les than 20% of this variability 4 1 8 ,4 1 9 ,440 ,44 Indeed 

GAA1 correlated better than GAA2 for several disease parameters and complications, 

including cardiomyopathy, in all studies 4 1 8 >4 1 9 ’4 3 9 ’4 4 1 >442 except one 423. Diabetes 

mellitus by contrast correlated in only one study 441.

Further variation may result from other factors. The GAA repeat length may vary in a 

tissue specific pattern due to mitotic instability, and peripheral blood samples may be 

a poor indicator of repeat lengths in pathologically affected tissues. GAA1 has been 

shown to differ in different brain regions 443 and in various tissues 443'446. Cis acting 

factors may also influence the phenotype. Potential mechanisms would include effects 

upon the stability of the trihelix structure by sequence alterations within or flanking 

the GAA expansion 447. Other genetic or environmental factors may also exert an 

influence on the phenotype. This is illustrated by the finding that the age of onset in 

sibs correlates strongly regardless of the degree of difference between their repeat 

lengths 440’448.

Our level of understanding of mitochondrial involvement in FRDA is perhaps greater 

than for any other neurodegenerative condition. Subsequently mitochondrially 

targeted therapies have been trialed in FRDA. This issue, and in particular the 

measurement of the efficacy of potential therapies for FRDA are the subject of 

chapter 6 . At this point the clinical and molecular features of FRDA and the evidence 

to date for therapeutic benefit will be discussed.

In 1988 the FRDA gene was mapped to chromosome 9 449. The gene was linked to 

9q 13-21.1 in 1990 and cloned in 1996 450’451. 9 5 % of cases are now known to be the 

result of a homozygous GAA triplet repeat expansions in intron 1 of the FRDA gene 

on chromosome 9 452. This is a unique trinucleotide repeat disorder in that its 

inheritance is autosomal recessive, its location is intronic, and it involves a GAA 

trinucleotide. The repeat length is normal individuals is 6  to 34, but is expanded in 

patients and carriers to between 67 and 1700 4l8’453. The remaining 5% of patients are 

compound heterozygotes harbouring an expanded repeat on one allele and a point 

mutation on the other. Twenty-three different point mutations are described to date
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and include missense, frameshift, splice site, initiation codon, and nonsense 

mutations. The former are found only in the C-terminal suggesting that functional 

domains reside in this part of the protein 454. The location of these mutations in highly 

or poorly conserved amino acids correlates with the severity of the phenotype and the 

presence of atypical features 455_458. No cases resulting from homozygous point 

mutations have been described, although the population incidence of such individuals 

has been calculated to be l:100xl06 459. Clinically typical FRDA may occur in 

individuals in the absence of linkage to chromosome 9 suggesting that a second locus
~  • .4 6 0may exist

The FRDA gene contains seven exons (l-5a, 5b, and the non-coding exon 6 ) within 

80 kb of nuclear DNA. Transcription most commonly generates a 1.3 kb product 

representing exons 1 to 5a 452. This is translated into a 210 amino acid protein named 

frataxin. Alternative splicing, with the transcription of exon 5b instead of 5a, 

generates a 171 amino acid protein of uncertain significance 452. Frataxin and mRNA 

levels are maximal in tissues of high mitochondrial content (heart, pancreas, liver and 

skeletal muscle) 438. Not all of these exhibit obvious clinical involvement in FRDA. 

Within the CNS mRNA levels are highest in the cord, low in the cerebellum, and very 

low in the cerebral cortex 452. Frataxin appears to play a role in development; its 

homozygous knockout is embryonically lethal 461. Frataxin mRNA levels are high in 

fetal spinal cord, dorsal root ganglion, heart, liver, skeletal muscle, and skin 462’463. 

Lymphocytes from patients with homozygous expansions contain low levels of 

frataxin, and this level, and that of the mRNA, are inversely related to the size of the 

smaller repeat 438,464,465. The block is thought to occur at the level of transcript 

elongation 465, and the mechanism for this is believed to be through the formation of 

unusual DNA structures, such as DNA triplexes, by the GAA/TTC repeats 466. Several 

point mutations (I145F, G130V) appear to alter the secondary structure of the protein 

and thus influence mitochondrial uptake or cleavage 467.

The function of frataxin is incompletely understood. The amino acid sequence shows 

no strong homology to any proteins of known function. It has however been shown to 

contain an N-terminal mitochondrial targeting sequence in it’s first 55 amino acids 

and a sequence of highly conserved amino acids in exons 4 and 5a 468. The predicted 

mitochondrial location was confirmed when tagged expressed frataxin was shown to
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co-localise with mitochondrial markers in HeLa and COS cells 463,469,470. An inner 

membrane and a matrix location within the mitochondrion have both been proposed 

438,471 x-ray crystallography studies reveal similarities to ferritin, a site for protein- 

protein interaction, and the ability to bind one molecule of iron 468. An oligomer 

structure may be required for this latter attribute. Point mutations in the protein core 

cause more severe phenotypes than those within the ferritin-like anionic patch, or flat 

external protein interaction surface.

Repeat lengths are unstable. Paternal transmission is associated with a reduction in 

repeat length, an effect that increases with increasing paternal age. Maternal 

transmission can cause an increase or decrease in repeat length, and expansions are 

greater with increasing maternal age 445. The repeat length is less in an individual’s 

sperm than in their blood, suggesting post-zygotic mechanisms. Repeat length can 

vary between and within tissues, somatic mozaicism has been demonstrated in 

different CNS tissues 443. The effects of these factors on frataxin levels and clinical 

phenotype are uncertain.

A number of models of FRDA have aided our understanding of the pathogenesis of 

FRDA. Ataxia with vitamin E deficiency (AVED), caused by mutations in the a  

tocopherol transfer protein on chromosome 8 , causes a phenocopy of FRDA. This fact 

provided the first evidence that an increased susceptibility to oxidative stress could be 

involved in the pathogenesis of FRDA472. The yeast homologue of frataxin (yfhlp) 

was identified as a suppressor which rescued a mutant yeast strain unable to grow on 

iron limited medium 469. Loss of the yeast frataxin homologue (YFH1) causes poor 

growth on non-fermentable substrates, a two-fold increase in cellular and a ten-fold 

increase in mitochondrial iron content, defects of complexes I, IV, and V of the MRC, 

reduced mtDNA levels, and increased susceptibility to hydrogen peroxide induced 

oxidative stress 460>469’473i However, these findings may simply be a consequence of 

excess cellular iron causing oxidative damage by promoting the conversion of H2 O2 to 

the hydroxyl radical. Analysis of patient tissues has also shown iron deposits in the 

hearts of some but not all patients 433>474. Post-mortem human cardiac and skeletal 

muscle shows reduced activity of aconitase, an enzyme particularly susceptible to free 

radical damage 475, and this may be further evidence of increased oxidative damage in
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FRDA 474>476. Cardiac muscle also exhibited severe defects of complexes I and II/III 

with a milder defect detectable in skeletal muscle 474,476. These four enzymes all 

contain iron-sulphur centers. Magnetic resonance imaging has shown increased iron 

content in the dentate nucleus of the cerebellum 47?, and iron levels are mildly
A H Q

increased in FRDA fibroblasts . Yeast, mouse, and human studies suggest that 

frataxin assembles as multimers of approximately 60 subunits and binds over 3000 

atoms of iron 479’480. Frataxin may therefore have roles in the storage, uptake or efflux, 

or bioavailability of mitochondrial iron. A mitochondrial ferritin has been identified
4 0 1

that may also serve this role but it has a severely limited tissue distribution 

Despite this evidence there is to date no evidence of MRC defects in cells cultured 

from FRDA patients 482. The role o f oxidative damage in the pathogenesis of FRDA is 

supported by the finding of elevated levels of urinary 8  hydroxy 2 ’ deoxyguanosine, a 

surrogate markers of oxidative damage 483, reduced blood free glutathione levels 35°, 

and elevated plasma malondialdehyde, a marker of lipid peroxidation 484. The 2-6 fold 

elevations of urinary 80H2’dG, shown in a study of 33 FRDA patients, was not 

related to GAA1 size or disease duration. The level of plasma DHBA 

(dihydroxybenzoic acid) a marker of hydroxyl radical attack was not elevated in this 

group of FRDA patients. MRC defects may be secondary to loss of mtDNA which 

itself may be the result of increased oxidative damage. MtDNA deficiency has been 

shown to be present but to a degree insufficient to explain the biochemical defect seen 

. The pattern of biochemical defect is similar to that seen in response to oxidative 

stress, as occurs in the manganese SOD knockout transgenic mouse 486, and in 

Huntington’s disease 372.

Evidence suggests a role for frataxin in mitochondrial iron-sulphur (Fe-S) centre 

synthesis. Loss of this function will affect the assembly of MRC complexes and many 

other intra and extra-mitochondrial proteins. Reduced MRC and aconitase function 

would lead to increased mitochondrial iron. Further evidence comes from phylogenic 

profiles that describe the distribution of genes within multiple genomes. This 

technique relies upon the fact that genes of similar function are often located in close 

proximity within the genome. These studies have revealed that Frataxin, or its 

homologues, are closely located to the numerous proteins already known to be 

involved pathways of iron-sulphur (Fe-S) centre assembly 487_489. Furthermore, 

similarities exist between FRDA and the X-linked sideroblastic anaemia with ataxia
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syndrome (XLSA/A), a condition as described above, caused by mutations in hABC7,
367another Ee-S cluster synthesis protein

3 Phosphorous magnetic resonance spectroscopy (31P MRS) provides an in vivo 

technique for the measurement of high-energy phosphorous compounds 

(phosphocreatine (PCr) and ATP). The rate of PCr recovery following exercise 

(Vmax) in skeletal muscle is a measure of the efficiency of OXPHOS. In cardiac 

muscle the PCr/ATP ratio is a good measure of energy availability 490. This technique 

reveals abnormalities in FRDA heart and skeletal muscle, the latter correlating to the 

GAA repeat size 490-492.

The addition of iron chelators to the culture medium in the YFH1 model prevents iron 

accumulation and improves MRC activities, but aconitase activity remains low 493. 

Frataxin also shows homology with the cyaY protein of y-purple bacteria. Its 

knockout in E.coli had no effect on viability, iron content, or susceptibility to 

oxidative stress 494. FRDA knockout mice die in utero. In mouse embryo studies 

frataxin expression increases from day 10 to 14 462>463. Conditional knockouts have 

been generated using a ere recombinase transgene under the control of muscle 

creatine kinase (MCK) or neurone specific enolase (NSE). This causes tissue specific 

deletion of exon 4 flanked by loxP sites. These mice died prematurely with features 

similar to FRDA 495. Cardiac muscle showed abnormal mitochondria, reduced SDH 

staining, and impaired complex I, II/III, and aconitase activities a pattern similar to 

that found in human tissues. Skeletal muscle was unaffected. Iron deposition was seen 

in MCK mice only, and at a later stage than the bioenergetic defects. Similarly, the 

mutation of several yeast proteins involved in the synthesis of iron-sulphur clusters 

also results in late secondary mitochondrial iron accumulation 496. Knock-in 

techniques have been used to generate double heterozygous knock-in mice, or knock- 

in/knock-out mice. Frataxin levels were reduced to 75% in the former, and 30% in the 

latter but the mice were clinically normal up to one year, and increased cardiac iron 

levels and fibrosis were found in only one mouse 497. Lower frataxin levels may be 

necessary for phenotypic consequences.
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The precise relationship between frataxin levels, impaired MRC function, oxidative 

stress, and anti oxidant defence levels in FRDA remains incompletely understood.

1.14 Therapeutic intervention in Class I and Class II mitochondrial disorders.

The evidence of disturbed bioenergetics in both the archetypal mitochondrial 

encephalomyopathies and other neurodegenerative disorders has provided therapeutic 

avenues for exploration.

The treatment of the archetypal encephalomyopathies includes the specific treatment 

of disease complications. This includes the use of beta-blockers for the treatment of 

cardiomyopathy, the avoidance of aminoglycoside antibiotics, and pacemakers for 

cardiac conduction defects. Various pharmacological agents have been trialed in these 

disorders but hard evidence of efficacy is lacking. This includes the use of quinone 

derivatives, vitamins Bi, B 12, C and K3 , metabolic supplements (succinate, creatine, 

and carnitine), dichloroacetate, and corticosteroids (for review see 498). Antioxidants 

appear to delay clinical progression in various mouse models of mitochondrial disease 

499. A further target for therapeutic intervention has been the apoptotic pathway, in 

view of the pivotal role of mitochondria within it 50°. Drugs, such as cyclosporin A, 

that inhibit the mitochondrial permeability transition pore have been proposed but not 

yet evaluated in mitochondrial disorders or models 501. Gene therapy to enable the 

expression of mtDNA protein encoding genes within the nucleus have succeeded in
fAA _

yeast models but failed in mammalian cells in vitro . To date the only success 

has been with the delivery of self-replicating plasmids to isolated mitochondria 504. 

Mechanisms have been identified within yeast for the transport of tRNAs into 

mitochondria 505 and these may provide pathways for the delivery of gene therapy. 

Other potential therapies have been designed to alter the level of heteroplasmy in 

favour of wild type molecules. These techniques include the selective inhibition of the 

replication of mutant molecules by sequence specific peptide nucleic acids 506; the use 

of oligomycin to inhibit mitochondrial ATP synthesis thus leading to an increase in
• 507wild type mtDNA ; and the use of bupivicaine or concentric exercise to induce the 

proliferation of satellite cells that usually contain lower levels of mutant mtDNA 508. 

Effective patient therapies remain elusive.
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Mitochondrially targeted therapies have also been employed in the class II disorders. 

Administration of vitamin E to AD patients has been shown to slow the rate of 

progression 509, and vitamin E and C to reduce the risk of AD 51°. Coenzyme Qio, an 

important antioxidant in mitochondrial and lipid membranes 511 ,512 and a MRC
c  1 i

enhancer, has been shown to increase ATP production in vitro . It has shown 

benefit in animal models of mitochondrial disease and transgenic ALS mice 514,515. 

Two clinical trials have suggested benefit from coenzyme Qio therapy in Parkinson’s 

disease 516,517. Creatine and phosphocreatine have important roles in brain energy
C I O

metabolism and the maintenance of membrane potentials . Creatine increases brain 

energy stores and compensates for an energetic defect, and has also been shown to 

stabilise the transition pore and to promote glutamate reuptake 519. Benefit has been 

shown in 3-nitropropionic acid and MPTP induced neurotoxic models of
520 523mitochondrial disease, and in transgenic ALS and HD mice

A wide range of agents has been proposed for the treatment of FRDA and other ataxic 

disorders. These include phosphatidylcholine, acetazolamide, serotonin and 

carbidopa, amantadine, lecithin and linoleic acid, choline chloride, gamma vinyl 

GABA ' . These trials were highly variable in their design and the outcome

measures utilised. Their unifying feature was that they assessed small numbers of 

patients for short periods of time and showed no, or equivocal, benefit. Modem 

therapeutic trials, designed in response to the evidence of mitochondrial iron 

accumulation, oxidative damage, and MRC abnormalities, therapeutic strategies have 

been developed for FRDA. Iron chelation restores mitochondrial iron levels and 

prevents MRC dysfunction in the yeast model 493. In vivo use has been problematic 

because desferrioxamine the most commonly used iron chelator is relatively 

hydrophilic with poor permeability across the plasma membrane 533,534. In vitro 

studies have shown that desferrioxamine can protect respiratory chain complex II 

activity and lipids from oxidation by iron, but reduces aconitase activity. Iron 

chelators may therefore simply displace the toxic effects of ferrous iron rather than 

protect against it 535. Other iron chelators that are able to mobilise mitochondrial iron 

stores have been developed and include 2 -pyridylcarboxyaldehyde isonicotinoyl 

hydrazone (PCIH) 534. Iron chelation therapy has not yet been evaluated in FRDA and 

several potential problems exist with this proposed method of treatment. Serum 

ferritin and iron levels are normal in FRDA 536 and iron accumulation may be only a
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secondary event in the pathogenesis of FRDA 495. Despite this the reduction of 

mitochondrial iron levels may still help prevent secondary oxidative damage, however 

other physiological consequences may ensue since iron still needs to be available for 

roles such as it’s incorporation into iron-sulphur centers.

Antioxidant agents employed in the treatment of FRDA include idebenone 483,537,538, 

coenzyme Qio and vitamin E 539, N-acetyl cysteine and selenium 

(http: //intemaf. or g/ataxia/nacupd. htmO.

Coenzyme Qio (2,3,dimethoxy-5-methyl-6-decaprenil-l,4-benzoquinone) is a 

naturally occurring antioxidant 540541. In 1957 it was isolated from beef heart 

mitochondria 542. It is a lipid of the quinonic group. Its name is derived from the fact 

that it has 10 isoprenoid units in its sidechain. Due to its ubiquitous distribution it is 

also referred to as ubiquinone. It acts as an electron carrier in the MRC and therefore 

part of its mechanism of action may be to enhance cellular ATP synthesis. Although 

Qio is at high concentrations within mitochondria it does not saturate enzymes that it 

interacts with. Changes in its availability can therefore directly affect the respiratory 

rate 543. An average daily diet contains 5 mg. After ingestion it is readily taken up into 

blood 544, brain 515, heart and liver. Idebenone, a short chain analogue of coenzyme 

Qio is well tolerated, and is known to cross the blood brain barrier 545.

Vitamin E was discovered in 1922 as a factor required to prevent reproductive failure 

in rats. It is a naturally occurring lipid soluble anti-oxidant. Its concentration is 

maximal in the mitochondria. Its structure was elucidated in 1937. It consists of 

tocopherols (a, p, y and 8 ), the former being the most metabolically active form, and 

tocotrienols that have an unsaturated side chain. Vitamin E is involved in intercepting 

the production of secondary radicals from lipid hydroperoxide. It achieves this in 

conjunction with the actions of glutathione and selenium. Vitamin E donates 

hydrogen from its phenolic group to the peroxyl radical, so reducing it to 

hydroperoxide and forming the poorly reactive tocopheryl radical. In rats, oral 

administration of vitamin E increases tissue levels, in particular those of heart, 

skeletal muscle, and brain 546. It has been used with varying results in cardiovascular 

disease, Parkinsons disease, and malignancies 547'549. In AVED, vitamin E therapy can
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lead to a mild improvement in cerebellar ataxia especially in those patients in the 

early stages of the disease 55°.

Vitamin E and coenzyme Qio may act synergistically. Qio regenerates a-tocopherol, 

the active form of vitamin E, by reducing the a-tocopheryl radical 551. In addition, 

vitamin E has been shown in vitro to reduce the formation of the bisemiquinonelO
552radical, thus increasing the lipophilicity of Qio

Following the in vitro demonstration that in control heart homoigenates, idebenone 

protects against Fe2+ induced complex II deficiency and lipoperoxidation, the effect of 

idebenone (5 mg/kg/day for 4 to 9 months) was assessed in three FRDA patients. The 

in vitro studies had also shown that iron chelators and antioxidants worsen some of 

the biochemical defects, and that the protective effects of idebenone were dependent 

upon the presence of succinate to reduce it. The in vivo studies revealed a substantial 

decreases in cardiac septal thickness, and left ventricular wall thickness in the three 

patients. Left ventricular mass index was reduced by 20% to 30%, and the shortening 

fraction was substantially improved. In one patient left ventricular outflow tract 

obstruction decreased from 40 to 10 mmHg pressure gradient, allowing the 

discontinuation of beta blocker therapy. Intra-rater variability of echocardiographic 

findings was not addressed in this small study. There were subjective reports of 

improved hand strength and fine movements, but no objective evidence of 

improvement in ataxia. Subsequently the same group have reported the results of an 

open trial of the same treatment in 40 FRDA patients. After 6  months treatment a 20% 

reduction in left ventricular mass was seen 48% of patients. Six patients had a reduced 

shortening fraction pre-treatment, and in 5 this improved 553’554.

Idebenone, used for 8  weeks at a dose of 5 mg/kg/day in 8  patients, has also been 

shown to significantly reduce, by 20%, the levels of 80H 2’dG (a marker of oxidative
483damage to DNA) but in another study, only a small non significant reduction in 

MDA (a product of lipid peroxidation) was seen 484.

A placebo controlled cross over trial of idebenone ( 120 mg tds) in 9 ambulant FRDA 

patients showed no echocardiographic changes. Treatment blocks were 6  weeks long
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with a three-week wash out period. 3 IP MRS and clinical parameters, as assessed by 

the international clinical ataxia rating scale (ICARS) 555 also showed no significant 

change 538.

Our own experience with the combined therapy of Coenzyme QIO (400 mg/day) and 

vitamin E (2100 IU/day) in 10 patients with FRDA is discussed in detail in chapter 6 . 

In summary, after 3 months treatment 31P MRS showed an increase of 178% in the 

PCr:ATP ratio of cardiac muscle, and a 139% increase in the skeletal muscle 

maximum rate of ATP production. The effect was related to GAA1 length for the 

latter but not the former. Furthermore these increases were greater in pre-hypertrophic 

hearts. Four years follow up has now been completed and these effects are 

maintained.

A recent open-labelled trial of one years treatment with idebenone in 9 FRDA patients 

aged 11-19 used ICARS, echocardiography, and neurophysiology to evaluate 

response. There was a significant reduction in ICARS score at 3 months. Cardiac
539parameters did not change

Future therapeutic trials in FRDA may make use of antioxidants or other agents 

coupled to the triphenylphosphonium cation, which facilitates mitochondrial targeting 

of the agent. In this way intra-mitochondrial vitamin E levels can be increased 80 fold

556. Potentials for gene therapy are also being explored, and may utilise drugs that 

interfere with the “sticky DNA” structures that are thought to be the cause of the 

transcription blockade that occurs in FRDA. Gene therapy would need to overcome a 

large number of hurdles before being a therapeutic option in FRDA. Not least of these 

would be the systemic manifestations of frataxin deficiency.

Therapeutic trials in FRDA are also hampered by the lack of natural history data, 

making it difficult to evaluate treatments that may only serve to slow down the rate of 

disease progression. Furthermore, there is a dearth of information regarding the 

suitability of the vast range of measurement tools that have been proposed for the 

evaluation of ataxia it treatment trials. These issues and the results of our own trial of 

combined Co Qio and vitamin E therapy in FRDA are the subject of chapter 6 .
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CHAPTER 2

MATERIALS AND METHODS

2.1 Materials

The following equipment was used unless otherwise stated.

Tissue culture and human tissue handling equipment

ICN-Flow Automatic CO2 Incubator model 320 (ICN-Flow Ltd, High Wycombe, 

Bucks, UK); Gelaire (ICN-Flow) for tissue culture; Class 1 ICN Flow hood. 

Centrifuges

Beckman GPR bench-top centrifuge with GH-3.7 horizantal rotor (Beckman Ltd, 

High Wycombe, Bucks, UK), Kontron T-124 high speed centrifuge with 8.24 8x50ml 

fixed angle rotor (Kontron Instruments, Watford, Herts, UK), Biofuge 13 with 

18x 1.5ml fixed angle rotor (Haraeus, Germany), Fresco Microentrifuge (Heraeus). 

Electrophoresis equipment

Biorad 200/2.0 constant voltage power packs (BioRad Lab. Ltd., Hemel Hempstead, 

Herts, UK), BRL horizontal system for agarose gel electrophoresis (Bethseda Res 

Lab, Life Tech Inc., Gaithsburg, MD20887, USA) UV transilluminator (GRI Ltd., 

Dunmow. Essex, UK) and Polaroid camera.

Cell and Tissue homogenisers

Uni-form 5ml and 10ml glass/Teflon homogeniser (Jecons Ltd., Leighton Buzzard, 

Bedfordshire, UK), 5ml glass homogeniser and Glass-Col stirrer (CamLab Ltd., 

Cambridge, UK)

Spectrophotometers

Hitachi U-3210 (Hitachi Scientific Instrumants, Wokingham, Berks, UK) and 

Kontron Uvikon 940 (Kontron Instruments, Watford, Herts, UK) split beam 

spectrophotometers.

Microscopy and photography

Zeiss axiophot fluorescence microscope with FITC and rhodamine filters (Carl Zeiss 

Microscope Division, Oberkochen, Germany), Kodak ektachrome 400 for 

immunofluorescence.

Chemicals

Unless otherwise stated all chemicals were purchased from Sigma, Poole, Dorset, UK 

or Merck Ltd, Dagenham, Essex, UK.
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2.2 Cell Culture

2.2.1 Cell lines

Myoblasts

Primary myoblast cultures were set up from 16 week old foetal skeletal muscle with 

ethical approval of Imperial College Medical School Ethics Committee.

A549 B2 Neo o° cells

These cells were a gift from Dr Ian Holt, Ninewells Hospital Dundee. A549 cells are 

an immortal cell line derived from a human male lung carcinoma. Depletion of 

mtDNA had been achieved by prolonged exposure to ethidium bromide at 50 ng/ml

557. This cell line had also been transfected with a gene conferring resistance to G418. 

206 p° cells

These cells were a gift from Dr G Attardi (CalTech, San Francisco, USA). This is an 

immortal cell line derived from the osteosarcoma line 143B.TK and rendered p° by 

the same technique as described for A549 cells. These cells are resistant to 

bromodeoxyuridine (BrdU).

NT2 cells fNtera2/Dl) fStratagene. UK)

NT2 cells are neuronal precursor stem cells derived from a human teratocarcinoma. 

Following treatment with retinoic acid these cells form post-mitotic mature neurones 

(hNT neurones) 558>559.

SHSY-5Y cells

SHSY-5Y are a human neuroblastoma cell line that can be differentiated with retinoic 

acid to produce a neuronal phenotype. This phenotype involves both morphological 

changes such as growth arrest and neuritic sprouting as well as biochemical changes 

such as the production of dopamine receptors 560.

IB3RN cells tECACC)

The IB3RN cell line is an SV40 transformed normal male human fibroblast line 

resistant to geneticin (G418)

STOG o° cells

STOG mouse fibroblasts cells were a kind gift from Dr P Simons, Dept of Anatomy, 

Royal Free Campus, UCL medical School. They were rendered p° by prolonged 

exposure to ethidium bromide. They are derived from Sim-1 cells (Sandos Inbred 

Mice) 561
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2.2.2 Cell growth conditions

All chemicals and plates were obtained from Life Technologies Ltd (Paisley, UK) 

except DMSO, pyruvate and BrdU which were from Sigma chemicals Co. (Poole, 

UK).

2.2.3 Cell culture maintenance and harvesting

Unless otherwise stated cells were grown on 10 cm plastic culture dishes. Myoblasts 

were grown in 10 cm pre coated plates (Sarstedt).

Fibroblasts, STOG, A549, IB3RN and NT2 cells were grown in standard growth 

medium, consisting of Dulbeco’s modified Eagles medium (DMEM) containing 

glucose (4.5g/litre) and glutamine (5mM), penicillin 50units/ml, streptomycin 50mg/l, 

10% (v/v) fetal calf serum, 0.2mM uridine and ImM sodium pyruvate. Myoblasts 

were grown in standard medium but with 20% (v/v) fetal calf serum. SHSY-5Y cells 

were grown in standard growth medium except that a 50:50 mix o f Eagle’s modified 

essential medium and Ham’s F I2 replaced the DMEM, with 15% (v/v) fetal calf 

serum, and 1% non-essential amino acids. Selection medium was made using the 

above ingredients, but omitting uridine and pyruvate, and using dialysed fetal calf 

serum (Labtech international). Growth medium was changed twice weekly. Cells 

were washed whenever medium was changed with sterile phosphate buffered saline 

(PBS, Sigma UK), consisting of 137mM NaCl, 2.7mM KC1, lOmM Na2 HPC>4 , and 

1.8mM KH2PO4 pH 7.4. When cells reached confluency they were subcultured by 

harvesting. To harvest, cells were first washed twice with PBS, then 1ml of 10% (v/v) 

trypsin (2.5%) in Versene was added for 1-2 minutes at 37°C until the cells were 

easily dislodged by gently tapping the plate. Trypsin was inactivated by the addition 

of 5 mis of fresh standard growth medium. Cells were then split onto 2-6 fresh plates, 

depending on their anticipated rate of growth, and total volume of medium on each 

plate was made up to 10 mis. Unless stated otherwise cells were grown at 37°C and 

8 % C 02.

Foetal myoblasts were cultured by placing the foetal limb in a bacterial petri dish, 

covering it with fungizone solution (5ml PBS, 0.1ml penicillin 50units/ml, 

streptomycin 50mg/l, and 0.5 ml Fungizone250pg/ml), and removing the skin. The 

muscle was isolated and minced with scissors. Erythrocytes were washed away with
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small volumes of PBS. The muscle was transferred to a 10ml of enzyme solution 

(Hams F10 with 2% L-glutamine and 1% penicillin 50units/ml, streptomycin 50mg/l, 

plus 0.1% (w/v) collagenase type I, 0.1% (w/v) bovine serum albumin, 0.15-0.2% 

(w/v) trypsin in DMEM. The enzyme solution was filter sterilized through a 0.2 

millipore filter. The muscle in enzyme solution was incubated at 37°C for 15 minutes 

with constant agitation. The enzyme solution was then neutralized with an equal 

volume of growth medium. The solution was trituated in a 10ml pipette for 1 minute 

to generate a smooth cell suspension. The solution was filtered through a sterile 40pm 

cell strainer (Fulcon). The filtrate was centrifuged at 350g/1000 rpm for 10 minutes at 

room temperature. The supernatant was removed and the pellet was resuspended in 

10ml of culture medium. The digestion process was repeated a further two times. The 

combined supernatants were placed onto 35 mm tissue culture dishes precoated with 

0.1% gelatin. The dishes were incubated at 37°C and 5% CO2 . The medium was
562changed every three to four days

2.2.4 Culture conditions for the generation of p° cell lines

Cells were grown in the presence of ethidium bromide (EtBr) (Sigma chemicals) at a 

final concentration of 5, 0.5, 0.05, 0.04, 0.025, 0.01, or 0.005 pg/ml, or in the 

presence of dideoxycytidine (ddC) (Sigma chemicals) at a final concentration of 1, 2, 

or 3 pM. The ethidium bromide or ddC were refreshed with each change of culture 

medium.

2.2.5 Cell freezing and defrosting

A confluent plate of cells was harvested and centrifuged at 350g for 10 mins at RT. 

The pellet was resuspended in sterile freezing medium. Freezing medium consisted of 

90% growth medium and 10% DMSO filter sterilised for all cells except NT2 and 

SHSY5Y for which 90% fetal calf serum and 10% DMSO was used. All cells were 

frozen in 1ml cryotubes and frozen slowly in polystyrene boxes at -70°C overnight 

before long term storage in liquid nitrogen.

Frozen cells were defrosted by rapidly thawing the vial in a water bath at 37°C. The 

contents of the vial were added to lOmls of pre-warmed growth medium and then 

centrifuged at 350g for 10 minutes. The supernatant was removed and the resultant
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pellet was resuspended in lOmls of fresh medium. The following day cells were 

washed with PBS and fed with fresh medium.

2.3 Cell fusion methods

Enucleations, and construction of A3243G/P0 and control cvbrids.

Fibroblasts for enucleation were grown until nearly confluent on collagen coated 2cm 

plastic discs cut from the bottom of 10cm culture dishes. These were sterilised by 15 

mins of exposure to UV light and then coated with 0.1% gelatin. The discs with 

fibroblasts attached were inverted in sterile centrifuge tubes containing 5mis of pre­

warmed DMEM containing 1 Opg/ml of cytochalasin B. Centrifugation at 12000g for 

20 mins achieved enucleation of >50% of fibroblasts as judged by direct visualisation 

under light microscopy. The cytoplasts (enucleated fibroblasts) were incubated with 

3x105 p° cells for 3 hours at 37°C. Fusion was then achieved by agitating the cells 

upon their coverslips for 1 minute in polyethylene glycol (PEG) 50%w/v and DMSO 

(10%w/v) in DMEM. Coverslips were then washed three times in DMEM / 

10%DMSO with a final wash in standard growth medium. 24 hours later cells were 

plated at very low density in selection medium. Growing colonies were identified and 

isolated 3-6 weeks later.

Platelet fusions

30 ml of venous blood was taken using a 19G butterfly and no tourniquet. The blood 

was mixed with 3ml of 3.8% (w/v) tri-sodium citrate to prevent clotting. The platelet 

rich plasma (PRP) was separated by centrifugation at 200g for 20 mins. The 

supernatant containing PRP was taken off and prostaglandin h  (fc 3.5nM) added to 

prevent platelet aggregation. The PRP was then centrifuged at lOOOg for 30 mins. The 

resultant PRP pellet was then resuspended in 15mls of modified Tyrodes buffer (see 

appendix) centrifuged at lOOOg for 10 minutes. This Tyrodes wash was repeated twice 

more.

p° cells were prepared for fusion by harvesting, counting using a haemocytometer, 

and resuspending in Ca2+ free DMEM to a concentration on 5x10s cells /ml. 2 mis of 

this was added to the PRP pellet, and the mixture then centrifuged at 200g for 5 mins. 

The supernatant was aspirated and the pellet containing platelets and p° cells was 

resuspended in 100pl of PEG/DMEM mixture (5g PEG 1500 in 4ml Ca2+ free DMEM
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and 1ml DMSO). The suspension was incubated for exactly 1 minute by agitation by 

pipetting. 1 0  ml of standard growth medium was then added and cells transferred to a 

10cm culture dish. The next day cells were washed 3 times with PBS to remove debris 

and fed with standard growth medium. 24 hours later medium was replaced by 

selection growth medium. Growing colonies were identified and isolated 3-6 weeks 

later.

2.4 Isolation of clones

Two different techniques were used. 1) Plastic rings were cut from the tops of 0.5ml 

eppendorfs and autoclaved. Growth medium was removed from the culture duishes 

containing mature colonies, and two PBS washes were performed. The sterile plastic 

rings were dipped in UV sterilised high vacuum silicone grease and then placed so as 

to surround the individual clones. lOOpl of trypsin was added to each well and the 

clone harvested with lOOpl of standard growth medium. The cells were them 

transferred to 35mm culture dishes for further growth and grown in non-selection 

medium from this point onwards. 2) Sterile lOOpl pipette tips were used to draw up 

50pl of growth medium followed by 50pl of air so as to leave the bottom half of the 

tip empty, with medium above this air space. The tip could then be used to scrape 

over an individual colony, causing the cells of the colony to impact into the air space 

of the tip. The medium in the upper part of the tip could then be used to flush out the 

cells onto a fresh 35mm culture dish for further growth. Cells were grown in non­

selection medium from this point onwards.

2.5 DNA extraction

DNA was extracted from 1-I0xl06 cells or 2-5mls of whole blood using the Nucleon 

1 DNA extraction kit (Scotlab, UK) according to the manufacturer’s instructions. The 

extracted DNA was stored in 50pl sterile TE at -20°C. The yield was approximately 

5pg DNA per 106 cells.

2.6 Estimation of DNA concentration and purity

5pi of DNA solution was added to 995pi ddH20  in a 1ml silica quartz cuvette and 

mixed by inversion. The solution was scanned by measuring the absorbance pattern 

between 210nm and 310nm. The DNA concentration (pg/pl) was calculated assuming
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that a 1 mg/ml DNA solution has an absorbance of 20 at 260nm (Maniatis). The purity 

of DNA was accepted when the A2 60/A280 ratio was between 1.7 and 2.0.

2.7 Polymerase Chain Reaction (PCR)

DNA primers, dATP, dGTP, dCTP, dTTP, Taq polymerase, polymerase buffer, and 

MgCh were obtained from Perkin-Elmer Ltd (Bucks, UK). The standard PCR 

mixture, total volume 50pl, contained DNA (1 pg), forward and reverse primers (25 

pmol, see relevant chapters for primer sequences), 0.2mM of each dNTP, 1.5mM 

MgCh, and 5 units of Taq polymerase, and polymerase buffer (20mM Tris-HCl, 

lOOmM KC1 pH7.5). The reaction was either carried out in 0.5 ml eppendorf tubes, 

with sterile paraffin overlayed, or in 0.3ml thin walled PCR tubes using a Perkin- 

Elmer 2400 thermal cycler.

Standard reaction conditions were an initial denaturation of 94°C for 4 mins. Taq 

polymerase was added at 72°C if the reaction required a “hot start”. This was followed 

by 1 minute of denaturation at 94°C, 1 minute of primer annealing (see relevant 

chapters for annealing temperatures), and 1 minute of primer extension at 72°C 

repeated for 25-35 cycles. Finally the reaction was completed with lOmins of 

extension at 72°C. Variations of these standard conditions were used, and are 

described in the relevant chapters.

2.8 Semi-quantitative PCR detection of mtDNA levels

PCR amplification of a 630bp fragment of mtDNA (2928-3 558bp) was performed. 

Standard PCR conditions were used (section 2.7) with an annealing temperature of 

60°C. The forward primer at nt 2928mtDNA:5’-CCT AGG GAT AAC AGC GCA 

AT-3’ and the reverse primer at nt 3558mtDNA:5’-TAG AAG AGC GAT GGT GAG 

AG-3’ were used to amplify the mtDNA fragment. The PCR products were visualised 

on a 1.2% agarose gel. Comparisons were made with normal controls and a standard 

curve constructed with a dilution series of cellular DNA starting with 50jiig. Known p° 

cell lines were also used as positive controls. This allowed for a semi-quantitative 

analysis of mtDNA levels.

A lkb PCR was also performed on occasions to exclude the presence of a nuclear 

pseudogene mimicking the persistence of mtDNA after attempted depletion. The 

forward primer at nt 8765 mtDNA:5’-CCA CAA CTA ACC TCC TCG GA and the
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reverse primer at nt 9765 mtDNA:5’-TGA AGG GAG ACT CGA AGT AC were 

used to amplify the mtDNA fragment, using standard PCR conditions and an 

annealing temperature of 59°C.

2.9 Restriction enzyme digests of DNA

All enzymes and buffers were obtained from Promega (Chilworth Science Park, 

Southampton). Conditions for individual restriction digests are given in the relevant 

chapters.

2.10 Detection of PCR DNA products

All PCR reaction products and restriction digest products were separated on agarose 

gels using the BRL horizontal system for agarose gel electrophoresis (Bethseda Res 

Lab., Life Technologies Inc.). 0.8-1.2% (w/v) agarose gels (Sigma) were prepared in 

lxTAE buffer containing lpg/ml ethidium bromide. To facilitate loading onto the gel, 

PCR products, restriction digest products, and DNA size markers (Smartladder 

(containing fragments of 200bp to 10 kb, Eurogentec, Belgium), or lkb ladder were 

all diluted in 6x loading buffer (Promega UK Ltd, Hants). Electrophoresis was 

performed in lxTAE buffer at 40-100 Volts for 1-3 hours. The sample was visualised 

using an ultraviolet transilluminator and then photographed with a Polaroid camera.

2.11 Determination of mutant load

Apa I digest

1 jllI  of Apal restriction enzyme (Promega, Chilworth Science Park, Southampton), 

was added to 2.3 pi of restriction enzyme buffer and 20pl of sample. The mixture was 

incubated at 37°C for 1 hour. The products of the reaction were run on an agarsoe gel.

Polymerase chain reaction with fluorescent dUTPs

lpl of fluorescently labelled deoxynucleotides (dUTPs) (R6G IX 3nmol; ABI 

PRISM) that had been diluted 5 times in water, was added prior to the last cycle of the 

PCR. The PCR products were purified and subjected to restriction fragment length 

polymorphism analysis.

Automated capillary electrophoresis (ABI PRISM® 373A, Perkin Elmer) was used for 

the quantitation of the heteroplasmic proportions for the specific mtDNA mutation in
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different patient samples. The digested sample was precipitated using 4 volumes of 

ethanol per volume pf product. The pellet was mixed with 0.5 loading dye, 2 j l i 1 of 

water and 0.5pl of GeneScan-400HD size standard that contains 21 DNA fragments 

ranging in size from 50 to 400 bp. The run was executed with the ABI PRISM® 373A 

Data Collection Software (version 1.2). The capillary was filled with the Performance 

Optimized Polymer 4 (POP4) that achieves size separation of DNA fragments.

After completion of the run (approximately 40 minutes per sample), analysis was 

accomplished with the GeneScan® Analysis software (version 3.0) that uses the size 

standard to determine the size of unknown DNA fragments. The GeneScan Analysis 

software calculates the size of the unknown DNA sample fragments by generating a 

calibration or sizing curve based upon the migration times of the fragments in the 

standard. The unknown fragments are mapped onto the curve and converted from 

migration times to sizes.

Calculation of the percentage of heteroplasmy was achieved by dividing the peak area 

to data point ratio of the undigested product over the sum of the peak areas to data 

point ratios of the digested and undigested products.

2.12 Enzyme Analyses

All assays were performed on either Hitachi U3210 or Kontron 940 dual-beam 

spectrophotometers at 30°C in a final volume of 1 ml. Each enzyme was assayed in 

triplicate and values accepted if they were within 15% of each other. All chemicals 

were from Sigma Chemical Company and Boehringer Mannheim.

2.12.1 Citrate Synthase (CS)

CS is a mitochondrial matrix enzyme which was used as an indicator of mitochondrial 

mass in preparations as it has not known to be altered in disease states (Cooper JM 

personal communication). Respiratory chain activities were expressed as CS ratios to 

correct for variation in the purity of mitochondrial preparations or to correct for 

variation in the mitochondrial mass in tissue homogenates. The assay is based on the 

method of Coore et al 1971 563. The enzyme catalyses the condensation of acetyl-CoA 

and oxaloacetate to form citrate, producing CoA whose free thiol group combines 

with the 5-5’-dithiobis-nitrobenzoic acid (DTNB), resulting in an increase in the 

absorbance at 412nm.
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Two cuvettes were set up containing: lOOmM Tris-HCl buffer pH8.0, 200 pM Acetyl- 

CoA, 200 pM DTNB, 0.1% (v/v) Triton-X-100 and sample in a final volume of lml. 

The reaction was initiated by the addition of lOOpM oxaloacetate and the increase in 

absorbance at 412nm measured. Citrate synthase activity was calculated using the
a

molar extinction coefficient of 13.6 x 10 for the DTNB-CoA-SH complex and 

activity expressed as nmol/min/mg protein.

2.12.2 NADH-CoOi oxidoreductase (complex I activity)

The method of Ragan (1987) was used to measure the rotenone sensitive CoQi 

dependant oxidation of NADH at 340nm 564. CoQi was a gift from Eisai Chemical 

Co, Japan. A dilution of stock CoQi was made in ethanol and its absorbance at 275 

nm noted. Complete reduction of quinone to quinol was achieved by addition of 

excess sodium borohydride to the reference cuvette. The resultant absorbance change 

was used to calculate the CoQi concentration using a molar extinction coefficient of 

2.25x103 565.

Two identical cuvettes were set up containing 20mM potassium phosphate buffer 

pH7.2 with 8mM MgCl2, 150pM NADH, ImM KCN, 2.5 mg/ml BSA and sample. 

The reaction was initiated in the test cuvette by adding 50 pM CoQi. The rate of 

NADH oxidation was monitored by the change in absorbance at 340nm. After 10 

minutes 10 pM rotenone was added to the test cuvette and the rotenone insensitive 

rate measured for a further 10 minutes. The complex I activity was defined as the 

rotenone sensitive rate (i.e. the total rate minus the rotenone insensitive rate). 

Calculation of activity used a molar extinction coefficient of 6.81xl03 for NADH to 

allow for the contribution of reduced CoQi to the absorbance at 340nm. Enzyme 

activity was expressed as a ratio with citrate synthase (CS)

2.12.3 Succinate cytochrome c oxidoreductase (complex II/IIII

This assay, based on the method of King 566, determines the combined activity of 

complex II and III. It detects the antimycin A sensitive, succinate dependent, 

reduction of cytochrome c at 55nm.

0.1M potassium phosphate buffer pH 7.4, 0.3mM potassium (K2) EDTA, and O.lmM 

cytochrome c were added to two identical cuvettes. Into two eppendorfs was placed 

ImM KCN, 20mM succinate and sample. These were incubated at 30°C for 5 minutes
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to fully activate the enzyme. The contents of the eppendorfs were then added to the 

cuvettes to initiate the reaction. The change in absorbance at 550nm was monitored. 

After 10 minutes 20 pM antimycin A was added. The complex II/III activity was 

calculated as the rate which was sensitive to antimycin A using the molar extinction 

coefficient of cytochrome c (19.2x103). Enzyme activity was expressed as a ratio with 

citrate synthase (CS).

2.12.4 Succinate-ubiquinol oxidoreductase (complex II)

This assay, based on the method of Hatefi et al 567measures, at 660nm, the reduction 

a dye, 6,6-dichlorophenolindophenol (DCPIP) in the presence of succinate and 

ubiquinone-2 (C0 Q2). Enzyme activity is taken as the rate inhibited by 2- 

thenoyltrifluoroacetone (TTFA).

Two identical cuvettes were prepared containing 50mM potassium phosphate buffer 

pH7.4, O.lmM K2-EDTA, 20mM sodium succinate, 74 pM DCPIP, ImM KCN, 

lOpM rotenone and sample. 50pM of ubiquinol-2 was added to initiate the reaction. 

After 10 minutes ImM TTFA was added to inhibit the reaction. Activity was 

calculated using the molar extinction coefficient of DCPIP (2.1x10 ). Enzyme activity 

was expressed as a ratio with citrate synthase (CS).

2.12.5 Ubiquinol-cvtochrome c reductase (complex III1
• • c/:o #

This assay is based on the method of Birch-Machin et al . Ubiquinol-cytochrome c 

reductase catalyses the oxidation of ubiquinol and the reduction of cytochrome c. This 

is measured at 550nm. The concentrations of ubiquinone-2 and cytochrome c 

influence the reaction rate. Their concentrations are therefore established prior to 

enzyme assay. To determine the cytochrome c concentration 15 pM of cytochrome c 

in ddFhO (final volume 1 ml) was added to two identical cuvettes. A few granules of 

ascorbate were added to the reference cuvette thus reducing the cytochrome c. The 

absorbance change was noted and the cytochrome c concentration calculated 

(extinction coefficient 19.2mM).

Ubiquinol-2 was prepared from ubiquinone -2  (lOmM) in ethanol acidified to pH2 

with HC1. After addition of ddlUO to a final volume of 1ml, a few granules of sodium 

borohydride were added to reduce quinone to quinol. The quinol was extracted into 

3ml of diethyl ether: cy c lohexane (2:1 v/v) and the upper phase collected. 1ml of 2M 

NaCl was added and the upper diethylether phase collected. This was evaporated to
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dryness under a stream of nitrogen gas. The resultant residue was dissolved in 1ml of 

ethanolr acidified to pH2 with HC1 and alliquoted and stored at -20°C under nitrogen 

gas to prevent oxidation.

To lOpl of ubiquinol-2 was added lOpl of 5M KOH and 980pl of ethanol. The 

subsequent oxidation of ubiquinol-2 to ubiquinone-2 led to an absorbance change at 

275nm from which the concentration of ubiquinol-2 was determined using the 

extinction coefficient of 12.25mM.

The rate of non-enzymatic reduction of cytochrome c, influenced by the 

concentrations of ubiquinone-2 and ubiquinol-2, that occurs in this reaction was 

determined and subtracted from the observed sample rate. Identical cuvettes were set 

up with all reaction ingredients (see below) except ubiquinol and sample. Ubiquinol-2 

was then added to the test cuvette and the rate of absorbance change at 550nm noted. 

The non-enzymatic activity was calculated as below.

To assay complex III activity the reaction contained 35mM potassium phosphate 

buffer pH7.2, ImM K2 EDTA, 5mM MgCU, 2mM KCN, 5pM rotenone and 15pM 

cytochrome c. 15pM ubiquinol-2 was added to the test cuvette to initiate the reaction 

which was followed at 550nm for 5 minutes.

Calculation of the pseudo first-order rate constant (k) is performed by extrapolation of 

the absorbance back to time=0 and determination of the change in absorbance at 

various time points up to two minutes. The non-enzymatic rate was calculated in the 

same way and subtracted from the sample rate. K/min/ml was calculated by: {lnO.288- 

ln(0.288-change in absorbance at time t) x 1000/sample volume(pl) x dilution factor}, 

where 0.288 represents the absorbance of fully reduced cytochrome c. The k/ml 

values for five time points were plotted against time and the gradient of the line was 

calculatedusing linear regression analysis (k/min/ml). Results were expressed as a 

ratio with citrate synthase (CS).

2.12.6 Cytochrome c oxidase (complex IV)

This assay is based on the method of Wharton et al 569 and monitors the oxidation of 

reduced cytochrome c at 550nm.

Reduced cytochrome c was prepared from 100 mis of a 1% (w/v) solution of horse 

heart cytochrome c in lOmM potassium phosphate buffer. This was reduced by adding 

an excess (13mg) of ascorbate. Complete reduction was confirmed by 

spectrophotometry at 550nm, using two cuvettes containing 50pl of the cytochrome c
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solution and 950pl of lOmM potassium phosphate buffer. lOpl of freshly made 

saturated ascorbate solution was added to the sample cuvette. A positive change in 

absorbance would indicate that the cytochrome c solution could be further reduced by 

the addition of ascorbate, and was therefore not yet fully reduced. When fully 

reduced, removal of the ascorbate from the cytochrome c solution was achieved by 

dialysis, using size 1 dialysis tubing (Medicell International Ltd., London) and 

dialysing against 51itres of lOmM potassium phosphate buffer pH7.0 at 4°C overnight. 

To confirm complete removal of ascorbate, oxidised cytochrome c was added to a 

sample of the dialysed reduced cytochrome c. No change in absorbance implied 

complete removal of ascorbate.

The concentration of reduced cytochrome c was calculated by placing lOOpl of 

lOOmM potassium phosphate buffer pH7.0, 850pl ddH20, and 50pi of reduced 

cytochrome c in two identical cuvettes. lOpl of 0.1 M K+ Ferricyanide was added to 

the reference cuvette to oxidise the reduced cytochrome c. The change in absorbance 

was noted and the concentration calculated by: 0.96/Absx50=volume of stock 

cytochrome c solution required for 50pM solution (where 50pM cytochrome c 

produces an absorbance of 0.96).

The enzyme assay was performed by adding lOmM potassium phosphate buffer and 

and 50pM cytochrome c to two identical cuvettes. lOpl of lOOmM K+ Ferricyanide 

was added to the reference cuvette to oxidise the cytochrome c. The initial absorbance 

was noted (0.96=50 pM cytochrome c) and the reaction initiated by the addition of 

sample to the test cuvette. The reaction was followed at 550nm. The pseudo first- 

order constant k was calculated as for the complex III assay. Complex IV activity 

(k/min/ml) was expressed as a ratio with citrate synthase (CS).

2.12.7 Aconitase

Aconitase catalyses the isomerisation of citrate to isocitrate. With the reduction of 

NADP this product then forms a-ketoglutarate. This assay measures this reduction of 

NADP at 340nm. Into two identical cuvettes are added 50mM Tris-HCl pH7.4, 

0.4mM NADP, 5mM sodium citrate, 0.6mM MgCL, \% (v/v) Triton X-100 and 2 units 

of isocitrate dehydrogenase. Sample was added to the test cuvette only, and both 

cuvettes were pre-incubated at 30°C for 30 minutes. The absorbance change at 340nm 

was then followed for 15 minutes. Aconitase activity was calculated using the molar 

extinction coefficient for NADP (6.22x103).

113



2.13 Preparation of mitochondrial-enriched fractions (MEFs)

MEFs were prepared from twenty confluent 10cm plates of cells based on the method 

of Ragan et al 564. Harvested cells were washed three times in PBS and the resultant 

pellet frozen at -70°C overnight. The pellets were thawed and resuspended in 2ml of 

ice-cold homogenisation buffer (see appendix). Each sample was homogenised on ice 

using a Potter homogeniser for 20 strokes at 1000 rpm. The sample was spun at 1500g 

for 10 minutes at 4°C. The resultant post-nuclear supernatant (PNS) was collected into 

a fresh tube on ice. Homogenisation of the residual pellet in a further 2ml of 

homogenisation buffer and subsequent centrifugation was performed twice more. The 

combined PNS (6 mis) was subjected to a further centrifugation and any resudual 

pellet discarded. The final PNS was centrifuged at 10,000g for 12 minutes at 4°C on a 

Kontron Centrikon T-124. A small brown pellet, the mitochondrial enriched fraction, 

was generated. This was resuspended in 200-800pl of ice-cold homogenisation buffer, 

snap frozen in liquid nitrogen and stored at -70°C for a maximum of five days before 

assaying. All samples were freeze thawed in liquid nitrogen three times before 

assaying to maximise the mitochondrial enzyme activities.

2.14 Preparation of brain homogenates

Brain samples were stored at -70°C. Aliquots were removed, put in liquid nitrogen 

and weighed. Homogenisation was performed in nine volumes of ice-cold 

homogenisation buffer using a 5ml glass/Teflon homogeniser. Samples were freeze- 

thawed as above prior to immediate assaying.

2.15 Preparation of muscle homogenates

Muscle samples were stored at -70°C. Aliquots were removed, put in liquid nitrogen 

and weighed. Homogenisation was performed in ice-cold homogenisation buffer 

using a glass/glass homogeniser. Samples were freeze-thawed as above prior to 

immediate assaying.

2.16 Preparation of cell homogenates (for aconitase assavl

Three confluent plates of cells were harvested using a cell scraper (Lifetech Ltd). 

Cells were washed three times in PBS and the pellet was then resuspended in 1ml of 

ice-cold homogenisation buffer. Assays were performed immediately.
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2.17 Protein assay

All protein assays were performed using the Pierce-Warriner BCA™ Protein assay 

reagent. This system uses the reaction of protein with Cu2+ in an alkaline environment 

to form Cu1+ which is then detected by the reagent bicinchoninic acid (BCA). The 

purple reaction product of BCA and Cu1+ is water-soluble and exhibits a strong 

absorbance at 562nm. For each assay a set of protein standards, made to cover the 

range of protein concentrations expected for the samples being tested, was made using 

bovine serum albumin (BSA) in the same diluent as the samples. The assay was 

performed according to the manufacturers instructions. The protocol requiring thirty 

minutes incubation at room temperature was used. Each assay was performed in 

triplicate.

2.18 Immunofluorescence staining of cultured cells

Cultured cells were seeded onto coverslips. Coverslips were washed three times im 

PBS, and then fixed in pre-warmed 4% paraformaldehyde in PBS for 20 minutes. 

After a further three washes in PBS coverslips were immersed in methanol at -20°C 

for 15 minutes. After a further three washes in PBS coverslips were blocked with 10% 

normal goat serum in PBSfor 30 minutes at 37°C in a humidified atmosphere. Cells 

were then incubated with the primary antibody for 2 hours at 37°C, then washed, then 

incubated with goat anti-mouse IgG Alexa® 488 (molecular probes, Inc.) for 1 hour at 

37°C. After a final three washes in PBS coverslips were mounted on glass slides in 

Citifluor/PBS/glycerol (Agar) supplemented with 1 pg/ml of DAPI (Sigma).

2.19 Microscopy and photography

All microscopy for immunofluorescent staining of cultured cells was performed using 

a Zeiss axiophot microscope (Carl Zeiss microscope division, Oberkochen, Germany) 

with Kodak EPH pl600 (ASA 3200) film.

2.20 Statistical analysis

Statistical analysis of all enzyme activity data was performed using the Mann- 

Whitney U test via Instat statistical software for enzyme assay data.
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2.21 Health-Related Quality of Life in Friedreich’s Ataxia

2.21.1 Patients

Fifty-six patients with clinically defined FRDA, and with confirmed homozygosity for 

the GAA intronic repeat expansions in the FRDA gene were recruited via the Ataxia 

Society. The patients had contacted us in response to an advertisement placed in the 

Ataxia Society magazine asking for volunteers for a therapeutic trial.

2.21.2 Genetic Analysis

Prior to recruitment into this study, the diagnosis of FRDA was confirmed in all 

patients by the detection of the GAA repeat expansion within our own laboratory

2.21.3 Health status measures

A single questionnaire containing demographic questions and the four health status 

measures were sent by post to these 56 patients. The four health status measures used 

were the Barthel Index, General Health questionnaire, Euroqol, and short form 36. 

Questionnaires were sent out at t=0 and resent to non-respondents at 6 weeks, and 

again at 6 weeks after that. Only patients over the age of 18 were sent the 

questionnaire since these health measures have not previously been validated for use 

in children.

The SF-36 contains eight domains and a single question about perceived changes in 

health change over the preceding month. A scoring algorithm converts the raw scores 

onto a scale from 0 (poor health) to 100 (good health). Two summary scales, the 

Physical Component Summary Score (PCS) and the Mental Component Summary 

Score (MCS) can be derived. Scores above 50 imply better health than the mean of 

the general population and scores below 50 imply worse health. There is one further 

unsealed item in the SF-36 asking respondents about health change over the past year. 

Findings can be compared with normative data obtained in the UK 570,571.

Euroqol was developed by a multidisciplinary group of researchers from 5 European 

countries. It requests one of three possible responses of no problem, some problems, 

unable or extreme problems to questions regarding mobility, self-care, usual activities, 

pain/discomfort, and anxiety/depression (table 6.1). A single overall score is also 

gained by the Euroqol thermometer, a simple visual analogue scale. The items that 

comprise the Barthel Index and the GHQ 12 are also listed in table 2.1.
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EuroOol Health State SF-36

Mobility (1 item) Physical functioning (10 items)
Self care (1 item) Social functioning (2 items)
Usual activity (1 item) Role limitations due to physical problems (4 items)
Pain/discomfort (1 item) Role limitations due to emotional problems (3 items)
Anxiety/depression (1 item) Mental health (5 items)

Energy/vitality (4 items)
Pain (2 items)
General health perception (5 items)

Barthel GHO 12

Bathing (1 item) Concentration (1 item)
Transfer (1 item) Worry (1 item)
Dressing (1 item) Playing a useful part in things (1 item)
Feeding (1 item) Making decisions (1 item)
Mobility (1 item) Under strain (1 item)
Stairs (1 item) Overcoming difficulties (1 item)
Toilet use (1 item) Enjoying normal activities (1 item)
Grooming (1 item) Facing up to problems (1 item)
Bladder (1 item) Unhappy and depressed (1 item)
Bowels (1 item) Self confidence (1 item)

Worthlessness (1 item)
Happiness (1 item)

Table 2.1

Dimensions of four health measures: Barthel, General Health Questionnaire 12, 

EuroQol Health State and Short Form 36. Numbers in brackets show the number of 

items in each category.
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2.22 Friedreich’s ataxia; Evaluation of ICARS and Factors Influencing 

Clinical Progression. 

2.22.1 Patients.

Patients were recruited via Ataxia UK and by direct referral from consultant 

Neurologists. All assessments and investigations were performed with the approval of 

the Royal Free Hospital Ethics committee.

2.22.2 Genetic Analysis.

Genetic analysis was performed as in 2.21.2

2.22.3 Clinical Assessments

Patients were examined and assessed using ICARS on a total of 209 occasions. 

Examinations were recorded onto videotape. Ten patients were entered into a pilot 

open labelled study following their initial assessments 539, and a further 3 patients 

were added to the pilot study following several assessments. The remaining 64 

patients were assessed on two or three occasions and 50 patients were entered into a 

double-blind, randomised, placebo-controlled treatment trial o f combined vitamin E 

and coenzyme Qio- The same examiner (PEH) performed all assessments. At selected 

assessments patients also underwent studies to evaluate the symptoms associated with 

cardiac (Dr J Joshi, National Amyloidosis centre, Royal Free Hospital), 

neurophysiology (Dr M Al-Khayatt, Department of Neurosciences, Royal Free 

Hospital), speech, swallowing and upper and lower limb co-ordination as part of the 

therapeutic trial.

Activities of daily living (ADL) were scored using a 0 to 36 point scale modified from 

standard scales 572. A maximum of four points from normal to severe disability was 

assigned to speech, swallowing, cutting food and handling utensils, dressing, personal 

hygiene, falling, walking, quality of sitting position, and bladder function.

Retrospective analysis of disease progression was achieved using a patient 

questionnaire and interview. This ascertained five disease stages (0-4) as defined by 

the age at which the patient first: 0) had difficulty walking, 1) always required aid 

while walking outside, 2) used a wheelchair, 3) had to use a wheelchair all the time 

when outside, and 4) had to use a wheelchair all the time when outside or inside.
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Complete 2D echocardiography and Doppler studies were performed using GE 

Vingmed System V performance ultrasound machine with wide band width 2.5mHz 

centre frequency probe with coded harmonics. Left ventricular wall thickness was 

measured from the anterior and posterior walls from short axis cuts at the mitral level, 

papillary muscle and apex, and corrected for body surface area in children.

Nerve conduction studies were performed with a Medelec Saphire 112ME and evoked 

potential using a Digitimer D200. Limb temperatures were maintained at room 

temperature. Sensory action potentials (SAP) and sensory nerve conduction velocities 

(SNCV) were determined in the right median, ulnar, radial and sural nerves. Motor 

studies were performed on the right median and common peroneal nerves by placing 

surface electrodes on the right abductor policis brevis and extensor digitorum brevis 

muscle respectively. Somatosensory evoked potentials (SSEP) were analysed on the 

right median nerve. Latencies to Erbs point (N9), cervical region (N13) and parietal 

cortex (N20) were calculated.

The presence of diabetes mellitus or impaired glucose tolerance was ascertained by 

patient history and by random plasma glucose and HbAlc analysis. Optic neuropathy 

and scoliosis were defined by patient history alone.

2.22.4 Statistical analysis

Single and multiple linear regression analyses were performed using SPSS. 

Retrospective analysis of disease progression was analysed between groups via 

weighted means at subsequent timepoints with the weights based on estimated 

survival curves as described by Zilber et al 1994 573. Due to censored observations at 

intermediate stages the method was slightly modified. Each survival curve was 

bounded by the survival curve of the following stage. Group comparisons were done 

with a closed test procedure of F  tests in repeated measurement ANOVAs (analysis of 

variance).
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CHAPTER 3

NUCLEAR INFLUENCES ON THE BIOCHEMICAL EXPRESSION OF THE 

A3243G MITOCHONDRIAL DNA MUTATION.

3.1 Introduction

Phenotypic variability is a key feature of the archetypal mitochondrial disorders. 

Patients can present at a wide range of ages with mild or severe disease. Patients may 

have an isolated slowly progressive non-disabling myopathy, or present with a severe 

multi-system disorder that proves rapidly fatal.

Mutation load is generally accepted as a key factor underlying this phenotypic 

variability. However as previously discussed (section 1.8.1.2) a number of studies 

have failed to confirm a threshold effect and alternative mechanisms have been 

suggested to determine the phenotypic consequences of mtDNA point mutations. Both 

nuclear and secondary mtDNA factors have been suggested and the experiments in 

this chapter were designed to explore this hypothesis.

Four aspects have been addressed in this experimentation.

does the nuclear background of the recipient cell influence the level of

A3243G mtDNA that can be established in cybrids,

what is the effect of mutant mtDNA level on MRC function,

what is the effect of mutant mtDNA levels on reactive oxygen species

injury in cybrid clones,

what influence does nuclear background have on these preceeding two 

issues.

To study this mtDNA from patients with severe and mild A3243G associated 

phenotypes was fused with a variety of nuclear backgrounds, and resultant cybrids 

were analysed for mutant load, MRC function, and oxidative damage.
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3.2 Experimental Hypothesis

The phenotypic variability associated with the A3243G common MEL AS pathogenic 

mtDNA mutation is influenced by its nuclear environment and mtDNA genotype.

3.3 Experimental Design

The experiment was designed in two parts. Part A of the experiment was designed to 

test the integrity of the experimental techniques used in part B, and is described in full 

below. Part B forms the core part of the experiment and involves the fusion of 

different A3243G containing mtDNA with different nuclear backgrounds. The effect 

on the MRC function and aconitase activity of the resultant cybrids of varying mutant 

load would allow analysis of the effect of nuclear or mitochondrial background upon 

the expression of the A3243G mutation.

Part A: The generation of cybrid clones containing nuclear and mitochondrial DNA of 

different origins relies on the generation of p° cells that lack mtDNA. The 

introduction of foreign mtDNA to these cells then allows their survival in culture 

conditions that select for cells with intact MRC function. In order to rely upon this 

technique it must first be established to what extent p° cells are truly devoid of 

mtDNA, whether small amounts of native mtDNA persist and whether these have the 

potential to repopulate their parent cells. After fusion of platelets or enucleated 

fibriblasts with p° cells, prolonged culture is necessary for clones to become 

established. There is therefore a hypothetical concern that during this prolonged 

culture, p° cells with levels of native mtDNA below the level of detection may be able 

to repopulate themselves with self mtDNA. These cells would then be able to survive 

the selection process designed to ensure that only p° cells that have successfully fused 

with patient mtDNA proliferate. Therefore in this part of the experimentation the 

mtDNA content of p° cells was tested using semiquantative PCR and 

immunoflourescnece, and these were repeated after the cells had been cultured for a 

further 28 days (the average duration of the cybrid selection process) in culture 

medium free of the mtDNA depleting agent (ethidium bromide or ddC).
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Part B: To investigate the potential contribution of the nuclear DNA and mtDNA 

background to the biochemical expression of mtDNA mutations we identified patients 

who harboured the A3243G common MELAS mtDNA mutation, but who had 

markedly different phenotypes. Patient platelets or enucleated fibroblasts were fused 

with a variety of p° cell lines, thus introducing patient mtDNA into a variety of 

nuclear backgrounds. Neuronal (SHSY-5Y) and embryonal myoblast (Myoe) p° cell 

lines were generated de novo to provide a more physiological in vitro representation 

of the tissues most commonly affected in vivo. Fibroblast (IB3), lung (A549), and 

osteosarcoma (206) p° cell lines were also used. In this way the following sets of 

cybrids would be generated.

A549 206 SHSY-5Y IB3 Myo

Lung Osteosarcoma Neuronal Fibroblast Myoblast

Patient 1 1L 10ST IN IF 1M

Patient 2 2L 20ST 2N 2F 2M

Controls C3 COST CN CF CM

Clones covering a range of mutant loads were isolated and respiratory chain complex, 

aconitase and citrate synthase activities were analysed spectrophotometrically. 

Analysis of the biochemical function of these cell lines would allow the determination 

of the effect of different mtDNA molecules within the same nuclear background (i.e. 

1 versus 2 versus Controls), and the effect of different nuclear backgrounds on the 

same mtDNA molecule (i.e. L versus OST versus N versus F versus M).

3.4 RESULTS

The generation of p° cell lines.

Lung A549p° cells were provided by Dr I Holt (Dunn Human Nutrition Unit, 

University of Cambridge) and osteosarcoma 206 p° cells were provided by Prof G 

Attardi (CalTech, California). Neuronal (SHSY-5Y and NT2), fibroblast (IB3) and 

embryonal myoblast (myoe) p° were generated using standard mtDNA depleting
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agents (ethidium bromide 0.005 -  5 pg/ml or dideoxycytidine ddC 1-1 OpM, section 

2.2.4) for up to 120 days.

To determine if the cells had mtDNA depletion DNA extracted from the various cells 

was amplified to generate a 630 bp mtDNA specific product and semi-quantified 

using serial dilutions of the DNA template and the products analysed using agarose 

electorphoresis (section 2.8). To help exclude the presence of a nuclear pseudogene a 

lkb PCR was also performed on some samples (section 2.8) In addition 

immunofluorescence using anti COX 1 antibodies was used to assess the relative loss 

of mtDNA encoded proteins (section 2.18).

Semi-quantitative PCR of A549 p° cells confirmed the absence of a 630bp mtDNA 

product even at the highest DNA template concentration of 50 ng and therefore 

demonstrated that they were p° (Figure 3.1 A). Growth of the cells for a further 28 

days in medium lacking ethidium Bromide (EtBr) gave rise to a faint 630 bp band at 

the highest DNA concentration after PCR amplification (figure 3B). This would imply 

mtDNA levels less than 0.1% of those of wild type p+cells. Immunofluorescence 

using an antibody to a mtDNA encoded subunit (COX I) gave rise to clear cytosolic 

punctate pattern of staining in normal cells, most intense around the nucleus (figure 

3.1C arrow). Immunoflourescence (IF) for A549 cells after EtBr treatment showed a 

loss of this punctate pattern (fig 3.Id arrow) confirming the loss of mtDNA 

demonstrated by PCR. 28 days after removal of EtBr COX I staining showed minimal 

punctate staining in some cells (fig 3.IE arrow) in keeping with the PCR results.

206 p° cells appeared to have significant levels of mtDNA as judged by semi- 

quantitative PCR (Figure 3.2 A) being perhaps 10% residual mtDNA levels compared 

to p+cells. Paradoxically, after removal of EtBr for 28 further days of culture, mtDNA 

levels appeared to have reduced to 1% (fig 3.2B). IF results (figure 3.2 C-E) showed 

that p° cells had lost the punctate pattern of staining seen in p+cells and that there was 

no significant change in the staining of p° cells after 28 days free from the effects of 

EtBr. The punctate staining evident in fig 3.2C was essentially absent in the p° cells at 

t=0 (fig 3.2D arrow). This suggested the p° cells had a lack of functional mtDNA in 

contradiction to the PCR findings.
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Embryonal myoblasts were confirmed to be p° by PCR (fig 3.3A) and to not 

accumulate mtDNA after 28 days of culture in the absence of ddC (Fig 3.3B). Of 

note, the p+cells showed mtDNA detectable to 4 serial dilutions, but at 28 days later, 

after no change in their culture conditions, mtDNA was only detectable to two serial 

dilutions. One could infer that mtDNA cell content varies greatly as a normal 

phenomenon, or perhaps more probably that the technique employed (semi- 

quantitative PCR) has limitations. Immunoflourescence with COX I antibody of 

embryonal myoblasts showed punctate staining (fig 3.3C) but in a less intense pattern 

than that seen in other cell types. p° cells lacked the punctate staining of the p+cells 

cells, and had a different morphology (fig 3.3D arrow). At 28 days after removal of 

the mtDNA depleting agent, there are no discernable changes to the IF pattern (fig 

3.3E arrow).

MtDNA was undetectable by PCR in the SHSY-5Y p° cells (fig 3.5 A) and remained 

so after 28 days in the absence of ethidium bromide (figure 3.5). IF studies again 

showed punctate staining in the p+ cells (fig 3.5C), and absence of this pattern of 

staining in the p° cells (fig 3.5D arrow) and no reaccumulation of staining after 

removal of EtBr (fig 3.5E arrow).

NT2 cells, after prolonged exposed to maximal concentrations of EtBr or ddC, or 

both, failed to achieve p° status (fig 3.4 A). MtDNA content was reduced to 

approximately 1% of normal, but complete irradication of mtDNA from these cells 

was not achieved. The PCR product could be the result of a nuclear pseudogene but 

this potential explanation was excluded by performing a second PCR for a 1 kb 

fragment of a different part of the mtDNA molecule (fig 3.6). There was no evidence 

of an increase in mtDNA levels after removal of EtBr from the culture medium as 

judged by the PCR based technique, althought there was perhaps some increase in 

staining on immunoflourecence (fig 3.4 E).

A549, embryonal myoblasts, and SHSY5Y cells were therefore all shown to be 

suitable for use in platelet fusion experiments. It was apparent that NT-2 cells could
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not be used for cybrid generation because, despite prolonged exposure to mtDNA 

depleting agent both singly and in combination, they failed to reach p° status. Due to 

the failure of NT-2 cells to reach p° status, IB3 cells (fibroblasts) were substituted 

after being confirmed p° (data not shown). 206 cells were also shown to contain 

residual mtDNA, but after further treatment true p° status was regained (data not 

shown) and these cells were used for cybrid generation. Neither PCR techniques nor 

IF studies provided any clear evidence of the re-accumulation of mtDNA levels after 

the removal of mtDNA depleting agents from the culture medium.
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Figure 3.1 Analysis of mtDNA and COX I in A549 p+ and p° cells.

Semiquantitative PCR of a 630bp mtDNA fragment using serial dilution of cellular 
DNA,(lanes 1 to 5: 50, 5, 0.5,0.05 and 0.005ng DNA). (A) A549 p+ and A549 p° cells 
immediately following ethidium bromide treatment. (B) A549 p+ and A549 p° cells 
after 28 days growth in the absence of ethidium bromide. M is a lOObp ladder.

Immunoflourescence of subunit I of COX in (C) A549 p+ showing clear punctate 
mitochondrial staining (arrow), (D) p° cells after ethidium bromide treatment where 
mitochondrial staining is absent (arrow) and (E) p° cells 28 days after the removal of 
ethidium bromide showing a slight increase in mitochondrial staining (arrow).
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Figure 3.2 Analysis of mtDNA and COX I in 206 osteosarcoma p+ and p° cells.

Semiquantitative PCR of a 630bp mtDNA fragment using serial dilution of cellular 
DNA,(lanes 1 to 4, 50, 5, 0.5,0.05 and 0.005ng DNA). (A) 206 pf and 206 p° cells 
immediately following ethidium bromide treatment. (B) 206 p+ and 206 p° cells after 
28 days growth in the absence of ethidium bromide. M is a lOObp ladder.

Immunoflourescence of subunit I of COX in (C) 206 p+ showing clear punctate 
mitochondrial staining (arrow), (D) p° cells after ethidium bromide treatment where 
mitochondrial staining is absent (arrow) and (E) p° cells 28 days after the removal of 
ethidium bromide showing a slight increase in mitochondrial staining (arrow).



Figure 3.3 Analysis of mtDNA and COX I in embryonal myoblasts (Myoe) p+ and p° 
cells.

Semiquantitative PCR of a 630bp mtDNA fragment using serial dilution of cellular 
DNA,(lanes 1 to 5, 50, 5, 0.5,0.05 and 0.005ng DNA). (A) Myoe p+ and Myoe p° cells 
immediately following ethidium bromide treatment. (B) Myoe p+ and Myoe p° cells 
after 28 days growth in the absence of ethidium bromide. M is a lOObp ladder.

Immunoflourescence of subunit I of COX in (C) Myoe p+ showing clear punctate 
mitochondrial staining (arrow), (D) Myoe p° cells after ethidium bromide treatment 
where mitochondrial staining is absent (arrow) and (E) Myoe p° cells 28 days after the 
removal of ethidium bromide showing a slight increase in mitochondrial staining 
(arrow).



Figure 3.4 Analysis of mtDNA and COX I in NT2 neuronal p+ and p° cells.

Semiquantitative PCR of a 630bp mtDNA fragment using serial dilution of cellular 
DNA,(lanes 1 to 5: 50, 5, 0.5,0.05 and 0.005ng DNA). (A) NT2 pH- and A549 pminus 
cells immediately following ethidium bromide treatment. (B) NT2 p+ and NT2 p 
minus cells after 28 days growth in the absence of ethidium bromide. M is a lOObp 
ladder.

Immunoflourescence of subunit I of COX in (C) NT2 p+ showing clear punctate 
mitochondrial staining (arrow), (D) p minus cells after ethidium bromide treatment 
where mitochondrial staining is absent (arrow) and (E) p minus cells 28 days after the 
removal of ethidium bromide showing an increase in mitochondrial staining (arrow).
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Figure 3.5 Analysis of mtDNA and COX I in SHSY-5Ypf and p° cells.

Semiquantitative PCR of a 630bp mtDNA fragment using serial dilution of cellular 
DNA,(lanes 1 to 5, 50, 5, 0.5,0.05 and 0.005ng DNA). (A) SHSY-5Y p+ and SHSY- 
5Y p° cells immediately following ethidium bromide treatment. (B) SHSY-5Y p+ and 
SHSY-5Y p° cells after 28 days growth in the absence of ethidium bromide. M is a 
lOObp ladder.

Immunoflourescence of subunit I of COX in (C) SHSY-5Y p+ showing clear punctate 
mitochondrial staining (arrow), (D) SHSY-5Y p° cells after ethidium bromide 
treatment where mitochondrial staining is absent (arrow) and (E) SHSY-5Y p° cells 
28 days after the removal of ethidium bromide showing no reaccumulation of punctate 
staining(arrow).



Figure 3.6 Analysis o f  mtDNA content o f  NT-2 p+ and “p°” neuronal cells

Semi-quantitative PCR o f NT-2 p+ and “p°” neuronal cells using primers for a 630 bp mtDNA 
(A), and a 1000 bp mtDNA fragment (B) to exclude a nuclear pseudogene being responsible form 
the result in A. Serial dilutions o f  cellular DNA (lanes lto  5: 50, 5, 0.5, 0.05, and 0.005 ng DNA). 
M is a 100 bp ladder.
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Generation of Cvbrids containing mtDNA from A3243G mutant patients and controls.

Patient details:

All patients were confirmed A3243G positive.

EF was a 62 year old man who had presented 12 years previously with a pure 

myopathy. He had not developed central nervous system disease.

RS was a 44 year old man with a 2 year history of stroke like episodes, cognitive 

decline, seizures, and lactic acidosis.

KK was an 18 year old man diagnosed with MELAS at the age of 8 years. He had 

short stature, mental retardation, lactic acidosis, and seizures. He died of his illness 1 

year after participating in this study.

YK was the mother of KK. She was positive in blood for the A3243G mutation but 

was asymptomatic at the age of 46 years.

CH was a middle-aged lady with a severe phenotype.

BB (52 year old female) and AW (58 year old male) were used as age and sex 

matched healthy controls

RS, KK, and CH therefore represented a severe phenotype, EF exhibited a mild 

phenotype, and YK was an asymptomatic carrier.

Blood samples were taken and fibroblast cultures were established for each patient 

and the proportion of the A3243G mutation quantitated using fluorescent PCR 

analysis as described in section 2.11. Mutation loads are shown in table 3.1 (data not 

available for patient CH). These show that the two patients with severe phenotypes 

had high mutant load in both tissues tested. KK had a much earlier age of onset than 

RS, but had slightly lower mutant loads, some of which (fibroblasts 60%) are some 

way below the normal expected threshold levels of 80-90%. The asymptomatic 

patient YK had low levels in both tissues, whereas in patient EF fibroblast mutant 

levels were significantly greater than those in blood.
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Patient Phenotype Blood % Fibroblasts %

RS severe 77 80

EF mild 7 48

KK severe 72 60

YK asymptomatic 8 22

Table 3.1

A3243G mutation loads as determined by quantitative fluorescence PCR in blood and 

fibroblasts in patients RS EF KK and YK

Fusion of platelets and fibroblasts with p° cells

Platelets and fibroblasts from patients RS EF YK KK and controls were fused with 

SHSY-5Y, A549, 206, IB3 and embryonal myoblast p° cells (section 2.3) as shown in 

table 3.2. All colonies of cells growing in selection medium were harvested by ring 

cloning or picking techniques as described (section 2.4). The number of cybrid lines 

generated for each cell type are represented in Table 3.2.

As regards fusions using A549, 206, SHSY-5Y, and IB3, cybrids were obtained from 

all attempted fusions except the RS/IB3. Embryonal myoblasts appear to generate 

cybrids poorly using this technique, only being successful for the fusion with patient 

RS, and failing to generate cybrids at all for all other attempted fusions. The failure of 

some experiments to generate cybrids does not appear to be dependent upon the 

technique used, because IB3/RS used enucleated fibroblasts whereas myoblast fusions 

were all performed using patient platelets. Platelet fusions from patient CH were a gift 

from Dr Mei Gu and data relating to number of clones obtained is not available.
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Patient Rho-zero cell line

A549 206 SHSH-5Y IB3 Myo

RS 23 15 52

EF 23 29 20 14

Table 3.2 Number of clones isolated from platelet (clear boxes) and enucleated 

fibroblast (light grey boxes) fusions between patients and various p° cell lines. (Dark 

grey boxes refer to fusions not performed).

Distribution of mutant load in cvbrids

DNA was extracted from all cybrids generated, the 630 bp region surrounding the 

A3243G mutation was amplified by PCR, the product digested with Apal, and 

separated on ethidium bromide agarose gels (section 2.11). The ratio of 630 bp to 315 

bp was assessed to determine mutant load, and these were classified according to 

whether they contained 0%, <50%, >50%, or 100% mutant mtDNA. The distribution 

of the clones between these mutant load groups is shown in figure 3.7.

Combining the data from clones from the same cell type from all five patients (fig 

3.7A), shows variation in the distribution of mutant mtDNA content in generated 

cybrids. The majority of SHSY-5Y clones had lower mutant loads, indeed 60% of 

these clones contind only wild type mtDNA. 206 and IB3 cybrids had greater than 

50% mutant load in all cybrids. Myoblasts most commonly generated clones 

containing greater than 50% and A549 cybrids most commonly less than 50%. Only a 

few clones contained 100% mutant load and this only occurred in SHSY-5Y and 206 

cells.
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Figure 3.7. Relationship between number of cybrid clones with varying levels of A3243G 
mtDNA in different cell types ; SHSY5Y ( blue), A549 (green), 206 (yellow), IB3 (red) and 
myoblasts (black). A -  cybrids from all patients studied; B -  from patients with severe phenotype 
(RS, KK); C -  patients with mild phenotype (EF, YK).



•3o

p
S
£
o
ro
<N
CO
<

100

7 5

5 0

2 5

0 4-

♦
—♦— 

<50 >50 100

A3243G % mutant load
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When categorized according to phenotype severity of the donor mtDNA (fig 3.7 B+C) 

the same pattern was seen in both groups for SHSY5Y and 206 cells. However a 

different pattern was seen in A549 cells. When mtDNA was derived from patients of a 

severe phenotype, clones had a higher mutant load than when mtDNA was derived 

fom those of a mild phenotpye.

Mild phenotype patients failed to generate any clones of 100% mutant load. However, 

this did occur when the donor mtDNA was derived from severe phenotype patients, 

but the absolute number of these clones was very small. Myoblast fusions only 

succeded when fused with severe phenotype mtDNA. However all of these were 

derived from fusion with a single severe phenotpye patient, and failed to succeed with 

the second severe phenotype patient. This would imply technical factors underlay this 

finding rather than it being attributable to mitochondrial or nuclear genetic factors.

For each cybrid generated that contained >50% mutant load as judged by the Apal 

digest technique (section 2.11) mutation load was determined with greater accuracy 

by fluorescent labelled PCR as described (section 2.11). This was kindly performed 

by Dr Teeraton Pulkes, Institute of Neurology, London. The accuracy of the initial 

estimation of mutant load by visual inspection of Apal digests was assessed with 

reference to the more accurate value obtained by the fluorescent labeled PCR 

technique (fig 3.8). This scatter plot shows a good degree of correlation between the 

two techniques. Only 2.5% of clones were misclassified by the Apal digest technique.

Mitochondrial Enzyme and Aconitase Activities

Spectrophotometry for complexes I. II/III. IV, CS. and Aconitase:

Cybrid clones with 0% or greater than 50% mutant load were selected, grown to a 

suitable number for mitochondrial enrichment and spectrophotometric analysis 

performed as described (section 2.12-2.13 and 2.16).

Analysis of spectrophotometric data:

Complex I, II/III, and IV activities, expressed as CS ratios, and aconitase activities per 

mg protein were plotted against mutant mtDNA load. Clones containing between 0%
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and 50% mutant mtDNA were not analysed further since it was felt that any potential 

threshold effect was unlikely to fall within this range of heteroplasmy. The number of 

clones subjected to spectrophotometric analysis (i.e. both the number containing 0% 

and the number containing mutant mtDNA) is shown in table 3.X. Clones containing 

0% mutant mtDNA (i.e. 100% wild type mtDNA) were used as internal controls. 

Where these were not generated by the fusion experiment, control fusions generated 

from age-matched healthy control individuals were used.

As the number of clones derived for each patient in each cell type was not sufficient 

for the enelysis to be performed for each patient individually the data was pooled. 

First of all the activities were expressed for each cell line, combining the data from all 

patients, and secondly the clones were combined into two groups, those from patients 

with severe and those from patients with a mild MEL AS phenotype.

The spectrophotometric data is shown graphically in figures 3.9-3.16.

138



80 100

100200

B

80
i ----------- t---------------- r

20 40 60
A3243G Mutant Levels

Figure 3.9 Influence of A3243G mutant load upon mitochondrial respiratory chain 
activities in SHSY-5Y cybrids generated by fusion of platelets from all patients. Clones 
containing mutant mtDNA (blue squares) and those containing wild type mtDNA (blue 
diamonds) are shown. The latter act as controls. Citrate synthase ratios w ith ; A NADH 
CoQl reductase B Succinate cytochrome c reductase, C cytochrome oxidase
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Figure 3.10 Influence of A3243G mutant load upon mitochondrial respiratory chain 
activities in A549 cybrids generated by fusion of platelets from all patients. Clones 
containing mutant mtDNA (blue squares) and those containing wild type mtDNA (blue 
diamonds) are shown. The latter act as controls. Citrate synthase ratios with ; A NADH 
CoQl reductase B Succinate cytochrome c reductase, C cytochrome oxidase
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Figure 3.11 Influence of A3243G mutant load upon mitochondrial respiratory chain activities in 
206 cybrids generated by fusion of platelets from all patients. Clones containing mutant mtDNA 
(blue squares) and those containing wild type mtDNA (blue diamonds) are shown. The latter act as 
controls. Citrate synthase ratios w ith ; A NADH CoQl reductase B Succinate cytochrome c 
reductase, C cytochrome oxidase



CO
o

■><
o

0.2

0.15

0.1

0.05

0
60 8040 10020

O  0.3

co
O
5
X

O

14
12
10

8

6
4
2
0

200 40 60 80 100

c

A3243G Mutant Levels

Figure 3.12 Influence of A3243G mutant load upon mitochondrial respiratory chain 
activities in IB3 cybrids generated by fusion of platelets from all patients. Clones 
containing mutant mtDNA (blue squares) and those containing wild type mtDNA (blue 
diamonds) are shown. The latter act as controls. Citrate synthase ratios with ; A NADH 
CoQl reductase B Succinate cytochrome c reductase, C cytochrome oxidase



SHSY5Y

CO
o  0.2

O  0.15 

0.1 
0.05 

0

A549

0.7

0.6

206

20 40 60 80 10(

0.16

0.14

0.12

0.1

0.08

0.06

0.02

0 20 40 60 80 100

coo

o

0.4

0.3

)1
0.1

0
20 40 60 10(

0.7
0.6
0.5
0.4
0.3
0.2

40 60 80 100

0.6

0.5

0.4

0.3

0.2

0.1

0
0 20 40 60 80 100

25

20

15

10

5

0
20 40 60 80 10C

10

8

6

4

2

0
0 20 40 60 80 100

Figure 3.13 Influence of A3243G mutant load upon mitochondrial respiratoiy chain activities in SHSY5Y, A549 and 206 cybrids generated by fusion 
of patients with a severe MELAS phenotype (RS, KK, CH). Data represents; CXI / CS - NADH CoQl reductase; CX II/III / CS - Succinate cytochrome 
c reductase, CX IV / CS - cytochrome oxidase



Cx
 

IV
/C

S 
Cx 

ll/ll
l/C

S 
Cx 

l/C
S

IB3

0,2
0.15

0.05

60 80 10020 40

0.5

0.4

0.3

0.2

0.1

0
60 80 10040200

80 10020 40 600

206
0.12

0 .0 9  '

0 .0 6

0 .0 3

0 20 4 0 6 0 100

0.4

0.3

0.2

0.1

0
0 20 40 100

10
8
6
4

2
0

0 20 40 60 100

Figure 3.14 Influence of A3243G mutant load upon mitochondrial respiratory chain activities in IB3 and 206 cybrids generated by 
fusion of a patient with a mild MELAS phenotype (EF). Data represents; CXI / CS - NADH CoQl reductase; CX II/III / CS - 
Succinate cytochrome c reductase, CX IV /CS - cytochrome oxidase



A
co

ni
ta

s
0.8

I  ° '6 ‘
I  0.4* 
<

0 .2 1

40 60 80 100200

A

2 . 5

0 . 5

20 4 0 6 0 8 0 100

B

o>
COsc
oo<

5

4

3

2

0
20 40 60

c

80 100

A3243G Mutant Levels

Figure 3.15 Influence of A3243G mutant load upon aconitase activities in; A SHSY5Y ; 
B A549; C 206 and D IB3 cybrids generated by fusion of all patients.
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Relationship between A3243G mutant load, nuclear background, and MRC dysfunction

To understand the relationship between mutant load and MRC activity in the different 

cell types the CS ratio for complexes I, II/III, and IV for each clone from all patients were 

plotted against mutant load.

SHSY-5Y clones contained mutant mtDNA up to a level of 76%. Up to this level 

complex I, II/III, and IV showed no decline in activity (fig 3.9). Of course a threshold 

effect above this level could not be excluded. In A549 cells there was a good range of 

mutant loads obtained, with a maximum mutant load of 94% (fig 3.10). These exhibited a 

reduced complex IV activity at above approximately 85% mutant mtDNA. No such trend 

was apparent for complex I and II/III, however the wide spread of activity at low mutant 

clones may mask a threshold effect. 206 cells (fig 3.11) had mutant loads from 76% to 

98% and showed a reduction of complex IV activity above 90% mutant load , but again 

there was a significant spread in the data. No clear trend was seen for complex I and 

II/III. Analysing all patient clones in IB3 cells (fig 3.12), mutant load ranged from 82% to 

100%, and results suggested a threshold of approximately 90% for both complex I and 

complex IV activity. No decline in complex II/III activity was seen.

In an attempt to understand the effect of mtDNA haplotype upon the relationship between 

mutant load and nuclear background clones were analysed in groups depending on 

whether the mtDNA had been derived from a patient with a severe or mild phenotype. 

Only sufficient clones were available to perform this analysis in SHSY-5Y, 206, and 

A549 cell lines (figure 3.13). There was a reduced complex IV activity at high mutant 

load in A549 and 206 cells, and a similar decline in complex II/III activity but only in 

A549 cells. The threshold level was approximately 85% in all of these lines. No threshold 

effect was demonstrable in SHSY-5Y cells but again, in this group no cybrids containing 

greater than 80% mutant mtDNA were obtained.

Only sufficient clones were available to perform analysis in IB3 and 206 cell lines fused 

with mild phenotype patients (fig 3.14). There was a decline at high mutant load (>90%)
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for complex I and complex IV activity in IB3 cells. In 206 cells despite the analysis of 

clones containing 90% A3243G mtDNA no clear biochemical defecit was seen. In 

particular no decline in complex IV activity was seen as in the fusions generated with 

severe phenotype patients (fig 3.13). Again of course a threshold level may exist in 206 

cells at a level of mutant load above that of the maximum cybrid mutant load generated 

by these fusion experiments.

Relationship between A3243G mutant load, cell type, and oxidative damage

In A549 cells, when the data was pooled for all patients studied, aconitase activity 

showed a reduction at low mutant levels ( f i g  3.15B) but no such pattern in any of the 

other cell lines, some of which did not generate clones of mutant load above 80% (eg 

SHSY-5Y cells - f i g  3.15A), whilst others included clones up to 93% or 100% (eg 206 

cells f i g  3.15C and IB3 cells f i g  3.15D respectively).

In an attempt to understand the effect of mtDNA haplotype upon the relationship between 

mutant load and nuclear background, clones were analysed in groups depending on 

whether thee mtDNA had been derived from a patient with a severe or mild phenotype. A 

Aconitase activity in A549 cells fused with mtDNA from severe phenotype patients ( f i g  

3.16 B) was below control levels in all cybrids irrespective of mutant load. In this set of 

cybrids the lowest mutant load assayed was 32%. This might imply a very low threshold 

for ROS cell injury in this setting. Fusions between 206 cells and severe phenotype 

patients also showed a threshold effect for aconitase activity but at a more traditional 

level of 80-90%. The other cybrid sets (severe patients in SHSY-5Y, mild patients in IB3, 

and mild patients in 206) did not demonstrate a threshold effect, in some cases this was 

perhaps due to the lack of high mutant load cybrids for analysis ( f i g  3.16A), whereas in 

other cybrid sets high mutant load clones were available for analysis, but there was a 

wide spread of aconitase activities in clones of similar mutant load ( f i g  3.16 D and E )
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3.6 DISCUSSION

Knowledge of pathological mtDNA mutations has expanded at a rapid rate over the past 

fifteen years. However our understanding of the pathophysiological consequences of 

these mutations has not progressed at an equivalent rate. For instance, as discussed in 

section 1.8.1.2) although many explanations have been proposed for the mechanism 

underlying the clinical variability seen with the A3243G mutation, none have been 

universally accepted. Mt DNA factors have been proposed that may modify the effect of 

the A3243G mutation. The clearest example of this to date is seen with tRNA suppressor 

mutations 122. Nuclear genotype factors, environmental and epigenetic factors have also
790been proposed, and their interaction with the threshold effect explored

The initial part of this experimentation, part A, addressed the robustness of the methods 

employed in generating cybrids. Results from immunofluorescent (IF) and PCR based 

studies showed no evidence of re-accumulation of mtDNA in p° cells once free of the 

influence of the agent initially used to deplete their mtDNA levels, suggesting that this is 

not a potential cofounding factor when analyzing the results of cybrid studies. 

Interpretation of IF photomicrographs is qualitative. Dilutional PCR studies can be 

considered semi-quantitative, and results supported the conclusions drawn from the IF 

studies. The results from part A also illustrate that diferent cell lines required different 

agents in order to successfully render them p°. A549, 206, and embryonal myoblasts all 

became p° in the presence of ethidium bromide. In contrast some cell lines were resistant 

to the effects of ethidium bromide, requiring exposure to ddC in order to render them p°. 

Furthermore, some cell lines never became p° despite prolonged exposure to maximal 

concentrations of ethidium bromide, or ddC, alone or in combination. This was the case 

for the NT2 neuronal cell line (figure 3.6). Maximal doses of these agents were used. At 

higher doses cells failed to proliferate or died. The apparent failure to attain p° status as 

determined by PCR may have been due to the presence of a nuclear pseudogene. This 

possible explanation was refuted by the second PCR for a non-overlapping 1 kilobase 

mtDNA fragment (figure 3.6). Of note, the successful generation of p°NT2 cells has been 

reported after the use of ethidium bromide as a mtDNA depleting agent 721. Why we were
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not able to reduplicate this is unclear. Also, why cell lines should differ in their 

susceptibility to mtDNA depleting agents is unclear but may relate to their ability to 

metabolise or remove the agent. There is some suggestion that this observation mirrors 

the clinical findings of variable tissue susceptibility to the effects of nucleoside analogue 

drugs used to treat the human immunodeficiency virus, for which neuronal toxicity is a 

major dose-limiting factor.

Cybrid studies have suggested that a variety of factors may promote the non-random 

segregation of mutant and wild-type mtDNA in different tissues 186,714,715,716,71?. Using 

206 cells Dunbar et al 714 generated cybrids that had either a stable mitochondrial 

genotype or showed an increase in the proportion of mutant mtDNA. Other cell lines 

however showed a shift to wild type mtDNA, suggesting that the nuclear genetic 

background of the recipient cell line can influence the segregation of mutant and wild- 

type mtDNA. Variability of mutant load has also been seen at the single cell level 718. 

NT2 cells have shown mitotic segregation towards increasing levels of mutant A3243G 

mtDNA 722. This rapid segregation was frequently followed by complete loss of mtDNA. 

These findings suggest that pathological mtDNA mutations are particularly deleterious in 

specific cell types, and may explain some of the tissue-specific aspects of mtDNA 

diseases. Sudden and dramatic changes in heteroplasmy level have also been shown after
7 9growth of clones in selective medium . In one instance this was associated with a gain 

of chromosome 9 724. It was proposed that mtDNA exists in nucleoids containing many 

copies of the genome. These nucleoids may themselves be heteroplasmic, and can be 

reorganized under nuclear genetic controlresulting in shifts of heteroplasmy level.

Non-random segregation of mutant and wild-type mtDNA was also evident in the 

experiments described above as shown by the range of mutant loads found in the cybrids 

generated. The varying effect of different nuclear backgrounds was also evident in the 

success rate of fusion experiments. With p° myoblasts only platelets from patient RS 

generated clones successfully. EF produced clones after fusion with IB3 p° but RS did 

not. All other fusions between all patients and all other p° cell lines were successful. The 

reasons for this are unclear. If it is a real phenomenon it may represent incompatibility

150



between different mtDNA molecules and different nuclear backgrounds. It is unlikely to 

be a factor confined to the A3243G mutation itself, because neither wild type nor mutant 

mtDNA containing clones were generated. It could of course be related to technical 

failings in those particular fusion experiments, and thus be an arefactaul finding. To test 

this further, the fusions could be repeated a number of times to see if they consistently 

fail to generate viable clones.

The varied effect of different nuclear backgrounds was also evident, as shown in figure 

3.7, in the range of mutant mtDNA levels tolerated in the cell lines. In fig 3.7A, IB3 and 

206 cells appear to allow higher mutant loads than SHSY-5Y or myoblasts. When 

comparing fusions using mtDNA from patients with a severe phenotype with those using 

mtDNA from patients with a mild phenotype the spread of mutant loads was similar in 

both cases for SHSY-5Y and 206 cells. In contrast, significant variation was seen for 

fusions with A549 p° cells, mtDNA from severe phenotype patients giving cybrids of 

much higher mutant load. This would imply that mtDNA factors also influence the 

resultant mutant load in cybrids. MtDNA sequencing might shed further light upon these 

findings.

Of course, these findings might be influenced by the fact that the donor mtDNA used in 

different fusion experiments contained differing levels of mutant mtDNA. For example 

Patient YK (mild phenotype) platelets contained only 8% A3243G mutant mtDNA, 

whereas the level in her son KK (severe phenotype) was 72%. The fact that the spread of 

mutant load in SHSY-5Y cybrids for fusions generated from severe or mild phenotype 

patient was very similar would argue against the donor mutant mtDNA level being a 

significant factor in determining the mutant mtDNA level in cybrids.

A number of other potential confounding factors should be considered. Not all fusion 

experiments were performed on the same day and therefore conditions might vary. It has 

already been mentioned that some fusions were performed with patient platelets and 

others with enucleated patient’s fibroblasts. This was due to the difficulties in repeatedly 

obtaining platelet samples from patients. This factor might also influence the fusion
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process. Mutant loads varied between patients and between fibroblasts and platelets of a 

single patient. Furthermore the results of mutant loads presented are from the products of 

a single fusion experiment for each patient cell line cross. The data would be more robust 

if the fusions were repeated a number of times. Limitations aside these variations may 

provide evidence that both nuclear DNA and secondary mtDNA influence the ability of 

cells to accept foreign mtDNA, and their ability to tolerate a given level of mutant 

mtDNA. This may be a reflection of both the metabolic demands of the cell line, and the 

ability of its MRC machinery to generate ATP. This latter factor would be determined by 

the efficiency of the multitude of interactions between the nucleus of the p° cell line and 

the introduced mtDNA, both mutant and wild type.

The spectrophotometric experiments presented were designed to investigate the 

relationship between mutant load, MRC activity, aconitase activity (a marker of ROS 

injury), and nuclear background. The concept of a threshold level of mutant mtDNA, 

above which MRC activity and other biochemical parameters are affected adversely, is 

often discussed and accepted. It has been demonstrated in osteosarcoma cells 69 and A549 

cells 71 \  When A3243G levels reach 70-90% a mild defect in complex I has been 

reported; above 90% oxygen consumption falls dramatically, and there is a quantitative 

effect on mitochondrial protein synthesis and an abnormal pattern of translation products 

most clearly affecting ND6 69.

However, a number of unexplained inconsistencies exist. In vivo the A3243G mutation 

appears to have a lower threshold level than the A8344G mutation, but in vitro the
186 719reverse is often true ’ . Threshold levels vary between tissues, potentially related to

varying energy demands. Brain exhibits a low threshold level, and unusually, shows a 

linear relationship between the level of heteroplasmy and defects of oxidative
323phosphorylation . In some cybrid lines mitochondrial protein synthesis activity is 

preserved despite high mutant load and severe mitochondrial dysfunction 581. The steady 

state level of tRNALeu(UUR) and its degree of aminoacylation also vary depending upon 

the nuclear background studied 58°.
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The results described above support the hypothesis that both the nuclear DNA 

background and the mtDNA haplotype influence the biochemical phenotype of the 

A3243G mutation. Patterns of MRC dysfunction varied between cell lines and also varied 

depending upon the source of the donor mtDNA (ie from severe or mild penotype 

patient). Threshold effects were apparent in some cell lines and for some MRC 

complexes but not in others.

There were of course some limitations in the data. High mutant load clones were not 

generated from all fusion experiments; enzyme activities showed some spread of data 

amongst clones of similar mutant load; data from patients had to be combined into severe 

or mild phenotype groups because numbers of clones generated from single patients were 

too small to allow meaningful analysis.

The pattern of aconitase activity also varied between cell lines. A549 cells fused with 

mtDNA from severe phenotype patients (fig 3.16 B) showed low aconitase levels at all 

mutant loads. This might suggest a high degree of ROS injury even at low mutant levels. 

The reliability of the control data would need confirmation in future studies. In 206 cells 

fused with mtDNA from severe phenotype patients a threshold effect for aconitase 

activity was present at the more common 80-90% level. Aconitase thresholds were not 

demonstrable in other cybrids.

In summary, the data presented goes some way to support the hypothesis that both the 

nuclear DNA background and the mtDNA haplotype influence the biochemical 

expression of the A3243G mtDNA mutation. Repeated attempts at the fusions would 

strengthen the data regarding the range of mutant loads permissible within different 

nuclear backgrounds. However, the experimentation as presented was labour intensive, 

and simply undertaking more upon more fusions, might be too cumbersome an 

experimental design. Different methodologies should be explored to investigate 

genotype-phenotpye correlation in the mitochondrial encephalomyopathies, a core feature 

of these intriguing disorders that still remains to be fully explained pathophysiologically. 

Not until the fundamental secrets of these disorders are unlocked can rational therapeutic
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approaches be planned. Improved understanding of the basic molecular mechanisms will 

also be of relevance to the rapidly growing number of conditions and pathologies in 

which mitochondrial dysfunction is now implicated.
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Chapter 4

The use of xenomitochondrial cybrids to investigate nuclear -mitochondrial 

interactions and the development of cell models of mitochondrial disease.

4.1 Experimental hypothesis

Nuclear DNA and mtDNA work together in a complex symbiotic relationship to produce 

an efficient mitochondrion able to meet the energy requiremtns of the cell and to fulfill 

the other functions of mitochondria. These interactions occur at a number of levels. The 

most obvious is the nuclear and mitochondrially encoded subunits of the mitochondrial 

respiratory chain, but also includes nuclear encoded factors responsible for the import of 

mitochondrially targeted proteins, and mitochondrial transcription and translation factors. 

In chapter 3 I explored the relevance of these nuclear mitochondrial interactions in 

determining the phenotypic manifestation of the A3243G mutation. To explore these 

interactions further, but at a different level I utilized the technique of xenomitochondrial 

cybrids. This technique generates cybrids by fusing nuclear and mtDNA from different 

species. The entire mitochondrial genomes of human, rat, mouse, and a number of non­

human primates, amongst other species, are established. I investigated the potential 

viability and biochemical consequences of human-mouse-rat xenomitochondrial cybrids. 

The resultant xenocybrids also provide useful models of MRC deficiency.

As discussed in depth in chapter 1, literature already exists on the phlyogenetic 

relationships of mtDNA from various species, and also on the ability of nuclear and 

mtDNA to interact adequately or otherwise across these varying phlogenetic distances. 

The experiments described below use xenomitochondrial cybrids to explore the 

development of cellular models of human mitochondrial disease, and to provide further 

insights into the complexities of nuclear mitochondrial interactions.
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4.2 Experimental Design

Mouse fibroblast (STOG) cells were depleted of their mtDNA by the addition of ethidium 

bromide to the culture medium as described (section 2.2.4). Their p° status was confirmed 

by PCR methods as described (section 2.8). Platelets isolated from rat or human blood 

were then fused with these mouse p° cells (section 2.3). Resultant cybrids were isolated 

and the origin of their nuclear and mitochondrial DNA was confirmed by PCR techniques 

as described (section 2.5). Clones were grown to sufficient quantity to allow the isolation 

of the mitochondrial fraction, and spectrophotometric analysis of these samples was 

performed as described (section 2.12)
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4.3 Results:

Mouse fibroblasts (STOG) a gift from Dr Paul Simons, Dept of Anatomy, Royal Free 

Campus, Royal Free and University College Medical School, University College London, 

were cultured as described (section 2.2). They were grown in the presence of ethidium 

bromide (5pg/ml) for 30 days (section 2.2.4) and the level of mtDNA determined semi- 

quantitatively by PCR amplification (section 2.8). DNA extracted from untreated STOG 

fibroblasts showed a clear band at 300 bp, and the intensity of the band could be seen at 

0.005pg DNA template. After 30 days of ethidium bromide treatment a 300 bp product 

was not detectable even using 50 pg DNA template, (see figure 4.1).
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Figure 4.1
1.2% agarose gel of 315kb semi-quantitative mtDNA PCR of STOG p+ cells before (upper) and 
after (lower) 30 days culture in 5pg/ml Ethidium Bromide. The five lanes represent 1:10 serial 
dilutions of template DNA (50ng, 5ng, 0.5ng, 0.05ng, 0.005ng) from left to right.
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Human platelets were freshly prepared and fused with STOG p° cells on four occasions 

(section 2.3). On all occasions they failed to generate any viable clones. However fusion 

with mus musculus or ratus norvegicus platelets both generated similar numbers of viable 

clones. DNA was extracted from cybrids in a standard way (section 2.5). A number of 

primer pairs were designed by automated (DNAstar, Lasergene 98 -  Primer select 

software) and manual techniques to distinguish human, mouse, and rat mtDNA:

primer pair 1 fl (9559..9578) 5’-GAA CAG GCA TCA CCC CGC TA 

rl (9847..9868) 5’CGG ATG AAG CAG ATA GTG AGG A

primer pair 2 f l  (3315..3335) 5’-ACC CTA GCA GAA ACA AAC CGG 

r2 (4107..4129) 5’-CAG GAG GAT AAT TAT TGA GGC TG

primer pair 3 f3 (3356..3376) 5’-GGC TTT AAC GTC GAA TAC GCC 

r3 (4209..4229) 5’-TAG TGG AAT GGG GCT AGT CCA

primer pair 4 f4 (2829-2848) 5’-GCA AAG GCC CCA ACA ACG AA 

r4 (3266-3243) 5’-GTC AGG CGG GGA TTA ATA GTC AGA

primer pair 5 f5 (12520-12540) 5’-GAT TCC ACC CCC TCA CGA CTA 

r5 (12875-12855) 5’-GAG GGC GAG GCT TCC GAT TAC

Standard PCR conditions were used with an annealing temperature of 60°C. The origin of 

mtDNA contained within mus musculus / mus musculus (MM) and mus musculus / ratus 

norvegicus (RM) clones was assessed using per pimer pair 2 and Bam HI restriction 

enzyme digestion._The five pairs of primers designed were tested for their specificity for 

rat, mouse and human mtDNA. DNA was extracted from human p+ cells (H), mouse 

STOG p+ cells (Mp+), mouse blood (Mb), and rat blood (Rb). The per products were run 

on a 1.2% agarose gel (figure 4.2). Results of these reactions, summarised in table 4.1,
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show that only primer pair 2 with BamHl digest was able to clearly distinguish between 

human, rat, and mouse mtDNA.

Primers H Mp+ Mb Rb

1 0 + + (+)

2 0 + + +

2+digest cut cut no

3 0 0 + +

3+digest no no

4 0 0 + +

5 + (500) +(380) +(380) 0

Table 4.1 Summary of the results of PCR with primer pairs 1 to 5 (+/- BamHl 

digest) performed on human p+ cells (H), mouse STOG p+ cells (Mp*), mouse blood 

(Mb), and rat blood (Rb). 0 = no PCR product, + = PCR product obtained, (+) = faint 

PCR product obtained, (xxx) = size of PCR product in base pairs. RE digest results show 

whether a PCR product was cut by BamHl (cut) or not (no).
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Figure 4.2 Primer design for distinguishing human/mouse/rat mtDNA
Polymerase chain reaction products for primer pairs 1,2,3,4,and 5, and BamHl digest products for 
primer pairs 2 and 3. Samples A=human p+ cells, B=mouse p+ cells, C=mouse blood, D=rat 
blood, E=water blank.



Of the five Mus musculus / mus musculus (MM) clones grown up and analysed all 

contained only mouse mtDNA as assessed by PCR. All these clones after PCR with 

primer pair 2 and BamHl digest generated a 565 and 250 bp fragment (figure 4.3). 

Similarly, of the ten mus musculus / ratus norvegicus (RM) clones grown up and 

analysed all contained only rat mtDNA (see figure 4.3), generating a single product of 

815 bp after the same PCR and digest. This PCR also excludes, within the levels of 

detection of the PCR, the coexistence of both mouse and rat mtDNA in any of the clones

Individual clones were grown up until sufficient quantity (20 confluent 10 cm plates) was 

obtained for extraction of the mitochondrial fraction and subsequent spectrophotometric 

analysis of the mitochondrial respiratory chain complexes I,II, III, II/III, IV and CS 

(section 2.12). Data was analysed using Mann-Whitney U test as described in section 

2.20. This revealed a significant reduction in complex I activity (34% of control 

mouse/mouse cybrids), complex III activity (60% of control mouse/mouse cybrids), and 

complex IV activity (43% of control mouse/mouse cybrids), and no significant difference 

in complex II activity figure 4.4).
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Figure 4.3

Rat or mouse mtDNA content of cybrids obtained by fusing mouse or rat platelets with STOG p° 
mouse fibroblasts to generate mouse-mouse (MM) and rat-mouse (RM) clones. PCR performed 
using pair 2 primers and subsequent BamHl restriction enzyme digest.
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Figure 4.4
Mitochondrial respiratory chain activities expressed as citrate synthase (CS) ratios for complex I 
(Cxi), complex II/III (Cx II/III), and complex IV (CxIV), and CS activities in xenocybrid clones. 
Ratios are mean + SEM values for mouse/mouse (n=5) and rat/mouse (n=9) xenocybrids. For Cx 
II and Cx III mouse n=4 and rat n=3. Statistical sinificance by Mann-Whitney U teat: *p,0.05,
**p<0.001.

164



4.4 Discussion;

The introduction of rat mtDNA into a mouse nuclear background was able to generate 

viable clones. Human mtDNA introduced into mouse p° cells did not produce viable 

cybrids, presumably because the two genomes are phyllogenetically too diverse to allow 

adequate “cross-talk”. The rat-mouse xenomitochondrial cybrids exhibited impaired 

respiratory chain function. Despite this significant impairment MRC activity was 

obviously adequate enough to allow cell survival and proliferation. These defects were 

present despite the finding that mitochondrial mass as evaluated by citrate synthase 

activity per mg protein was 38% greater in RM cybrids. This may be a reflection of 

mitochondrial proliferation in response to impaired MRC function. EM studies of RM 

cybrid mitochondria would provide further information.

The maintenance and expression of rat mtDNA in a mouse cell implies that the 

machinery of replication (DNA polymerase y, single-strand binding proteins, RNases 

required for producing replication primers etc), transcription (RNA polymerase, 

transcription termination factors, RNA processing enzymes, etc), and translation 

(initiation and elongation factors, aminoacyl tRNA synthetases, ribosomal proteins, etc.) 

are still able to function sufficiently to permit cell survival despite the mtDNA nucleotide 

changes present in the foreign mitochondria. However, the partial defects in respiratory 

chain complexes detected in these experiments would imply that assembly of functional 

OXPHOS complexes is sensitive to such changes, and whilst still able to function, they 

do so with reduced efficiency. Transcription and translation studies and the use of two- 

dimensional denaturing gels to assess subunit structure would be of interest to further 

investigate the efficiency of interactions between these two genomes from different 

species.

Other studies have shown that the presence of less then 2% of self mtDNA results in 

cellular respiration at 40% of parental lines. With time in culture the levels of self 

mtDNA rise, and when at 10% normal respiratory function is restored. This pattern is 

similar to that seen in studies of the threshold effect of some pathogenic mtDNA
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mutations, when similar levels of wild type mtDNA (6-15%) can complement enzymatic 

defects 68’624’625. Despite this increase in the level of self mtDNA with the passage of time 

in culture, a complete replacement by mouse mtDNA does not occur. This may be 

because once normal respiratory function is restored the selection advantage in favour of 

self mtDNA is lost. A similar phenomenon is described in human cells with an ATP6 

gene mutation 626. Native mtDNA was not detectable in rat-mouse cybrids although the 

potential for accumulation exists during the period between PCR based ascertainment of 

mtDNA content and growing up of sufficient quantities of cells for spectrophotometry.

Functional incompatibilities appear to be species specific. This may be influenced by
627 628variable rates of evolutionary change ’ . The rate of substitution in mitochondrial

encoded proteins in mammals is at least one order of magnitude greater than it is in fish 

629. The mtDNA mutation rate of rodents has been estimated at 4.8 -  9.7% per Myr, and 

in humans at 2% per Myr 597’630. This factor is probably the key influence on the 

compatibility of the interactions between mtDNA and nuclear DNA from different 

species. Xenomitochondrial cybrids could be generated across different species barriers 

because this technology provides a useful addition to the tools available for the 

exploration of nuclear-mitochondrial interactions, and adds to the currently available 

models of human mitochondrial disease.
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CHAPTER 5

THE ROLE OF MITOCHONDRIAL RESPIRATORY CHAIN FUNCTION IN 

SPORADIC FOCAL DYSTONIA.

5.1 Introduction

The evidence to implicate mitochondria in the pathogenesis of a range of non-archetypal 

predominantly neurodegenerative conditions is described in detail in chapter 1. In this 

chapter the role of mitochondrial dysfunction in dystonia is explored further. This 

potential pathogenic link has been proposed for a number of reasons that include the fact 

that dystonia may occur in patients with LHON, and that the gene responsible for Mohr- 

Tranebjaerg syndrome has been discovered to be a mitochondrial transport protein. 

However it remains to be established whether mitochondrial dysfunction underlies other 

forms of dystonia? As described below this experiment used skeletal muscle obtained 

from patients with sporadic focal dystonia to look for evidence of mitochondrial 

dysfunction.

5.2 Experimental hypothesis

Mitochondrial dysfunction is involved in the pathophysiology of sporadic focal dystonia, 

and this biochemical defect would be detectable in the muscle of affected individuals.

5.3 Results

Ten patients with a diagnosis of sporadic focal dystonia and undergoing selective 

denervation of the sternocleidomastoid muscle for treatment of their spasmodic torticollis 

were identified. In all patients the stemocledomastoid muscle was biopsied at the time of 

surgery. Control samples were obtained from 4 patients undergoing a variety of cranio- 

cervical surgical procedures. In three controls the splenius muscle was sampled, and in 

one the paraspinal muscle. All patient and control details are summarized in table 5.1. All
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patients (but no controls) had previously been treated with botulinum toxin to the affected 

muscle.

Muscle samples from the 10 patients and 4 age-matched controls were frozen in liquid 

nitrogen at the time of collection. An aliquot was then removed and homogenised 

(section 2.15). Spectrophotometric analysis was undertaken of complex I, II/III, and IV of 

the mitochondrial respiratory chain, citrate synthase and aconitase as described above 

(section 2.12). Protein estimations were performed (section 2.17). The activities from 

patients and controls were expressed as citrate synthase ratios and compared using the 

Mann-Whitney U test (section 2.20).

All muscle samples underwent blinded histological and electron-microscopic evaluation. 

Ethical approval was obtained from the Ethics committees of the Royal Free Hospital and 

the National Hospital for Neurology and Neurosurgery.

The mean activities for complexes II/III, IV, and aconitase were lower in patients than in 

controls. Statistical significance however was not reached for any of these biochemical 

parameters (figure 5.1). Histology and electron microscopy examination (table 5.1), 

performed by Professor Landon, Institute of Neurology, showed abnormalities in three of 

four controls, and six of the 10 patients. The unexpected findings in the control samples 

were of RRFs in all three cases. These findings were suggestive of a mitochondrial 

myopathy in the controls. EM findings were not available for all patients. Two controls 

showed large peripheral collections of excess abnormal mitochondria. These 

mitochondria had abnormal christae and paracrystalline inclusions. The histological 

abnormalities in the patient samples were more suggestive of denervation secondary to 

botulinum toxin therapy. RRFs were found in patient 9, SDH changes (RRF equivalents) 

in patient 3, and occasional COX negative fibres in patient 8.
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■  Control
■  Dystonia

Cx I (x50) Cx II/III (x50) CxIV Aconitase (x2)

Figure 5.1
Mitochondrial Respiratory Chain (Complexes I, II/III, and IV) expressed as citrate synthase ratios 
and aconitase activites for sporadic focal dystonia patients (n=10) vs Controls (n=4),. Values shown 
are mean activities with standard error bars.
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Table 5.1 i Patient and Control details, light and electron microscopy findings
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Table5.1 ii Patient and Control details, light and electron microscopy findings
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Table 5.1 Patient and Control details, light and electron microscopy findings

Muscle biopsied: sp=splenius, ps=paraspinal, scm=stemocleidomastoid.

Diagnosis: bi=basilar invagination, csm=cervical spondylotic myelopathy, ocf= 
occipital cervical fusion for Rheumatoid arthritis, pt=pineal tumour, st=spasmodic 
torticollis, ptcd=post traumatic cervical dystonia, c+gd=cervical and generalized 
dystonia.

VFS=variation in fibre size (expressed in pm), IA+A=type I fibre atrophy and 
angulation, IIA+A= type II atrophy and angulation, Cent Nuc=central nuclei 
(+=present or 0=absent), Con tissue= connective tissue (+=increased or 0=normal), 
I/II propn= fibre type proportions, ox=oxidative, L/G/ADA/P/AP=lipid, glycogen, 
adenine deaminase, phosphorylase, acid phosphatase. RRF=Ragged red fibre, 
COX=cytochrome oxidase, SDH=succinate dehydrogenase.

5.4 Discussion

Several strains of evidence exist to implicate mitochondria in the pathogenesis of 

dystonia. This study found no evidence of a mitochondrial defect in muscle from 

patients with sporadic focal dystonia.

The small number of patients and controls limited the analysis. This reflects the 

difficulties in obtaining muscle samples from dystonic patients. Surgical therapies are 

rarely performed in this patient group. The advent of more effective medical 

therapies, mainly botulinum toxin, compounds this problem. Other limitations include 

the fact that scm was analysed for patients and neck extensor muscles for controls. A 

significant concern is the quality of the control samples. Three of the four controls had 

histochemical mitochondrial changes in their muscle biopsies. Whether these are 

pathological or physiological is uncertain. Although differences in the biochemical
f.Q'y

and histological properties of different muscle groups are recognized , there is no 

literature on mitochondrial function in normal neck muscles.

Furthermore, the dystonias are a heterogeneous group of disorders. It is known that 

similar phenotypes can result from different genetic mutations. It is therefore possible 

that our group of patients could have had a number of different conditions, and hence 

different pathogeneses. Eight of the ten patients had a diagnostic label of spasmodic
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torticollis. Of the other two, one was diagnosed with cervical and generalized 

dystonia, and the other with post-traumatic dystonia. These may well be different 

disease entities. A future study could analyse samples from genetically defined 

homogeneous groups of patients. Drug effects may also affect results, and exposure to 

botulinum toxin prior to muscle biopsy may have biochemical and histological 

consequences. This chemical denervation may mask biochemical defects.

Platelets are a more easily accessible tissue allowing greater numbers of patients to be

studied. However they may not necessarily be representative of biochemical changes

within the basal ganglia. The complex I defect found in Parkinson’s disease platelets

is however also present in the substantia nigra . Previous reports have shown that
680platelets from patients with sporadic dystonia have a 21% complex I deficiency , a 

defect that is corrected when platelets are fused with p° cells 681. This finding could 

have three potential explanations: i) the platelet defect was the consequence of a 

heteroplasmic mtDNA mutation, and after generation of the cybrids the mutation load 

fell below the threshold required to cause a biochemical defect; ii) the defect could be 

caused by a nuclear gene defect, and fusion with a new nuclear environment 

complements that defect; iii) an endogenous or exogenous toxin circulating in blood 

or bone marrow may induce the complex I defect in platelets.

Muscle may not be the ideal tissue in which to analyse mitochondrial function in this 

patient group. Neuronal tissue may be of greater interest but would prove difficult to 

obtain. The archetypal mitochondrial encephalomyopathies are renowned for their 

tissue specific clinical and biochemical manifestations. Little is known about 

mitochondrial respiratory chain function in the basal ganglia of dystonic patients. 

Pathological specimens would be required or biochemical information could be 

gleaned from magnetic resonance spectroscopy.

This is the first study to assess MRC function in dystonic muscle. No significant 

disturbance on MRC was found. It is of note that whilst none of our patients 

biochemical parameters were significantly reduced, the values for complex I activity 

was the least reduced from the control values. The absence from muscle of a complex 

I defect as found in platelets would support the previously proposed hypothesis of a

173



circulating toxin being responsible for the complex I defect found in patient platelets. 

However, this theory would require a circulating toxin to damage platelets in the 

circulation or bone marrow, to cross the blood brain barrier and cause mitochondrial 

dysfunction in the basal ganglia, but yet leave mitochondrial function in myocytes 

intact. This seems unlikely. Future studies of this nature should involve larger 

numbers of patients, with more uniformly defined disease entities. Controls should be 

better matched for age and muscle biopsied, since the current control data adversely 

affects the validity of the findings of this study.
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CHAPTER 6

FRIEDREICH’S ATAXIA: ASSESSING PATIENTS AND EVALUATING  

THERAPIES.

6.1 Introduction:

A number of potential therapies now exist for FRDA. Several other therapeutic agents 

are likely to become available as our understanding of the pathogenesis of this 

condition improves. The size of their treatment effect is difficult to predict. They may 

either worsen the disease, have no effect, slow disease progression, halt disease 

progression, or potentially reverse, partially or wholly, already established disability. 

The outcome will depend on whether the agents protect cells from further damage or 

are able to repair already damaged cells.

The effective assessment of the diverse clinical presentations associated with FRDA is 

central to the evaluation of these novel therapies. This requires the evaluation and 

validation of disease measures, which may be patient-orientated, clinically based, or 

employ surrogate markers of disease activity. Trials in FRDA are further complicated 

by the relative rarity of the disease, its chronicity, and the potentially small size of any 

treatment effect. In common with other chronic conditions, the slowness of 

progression makes prospective studies problematic. Treatment trials for rare 

conditions are complicated by the small number of patients available. Large placebo 

controlled trials may therefore not be feasible. One substitute is the use of historical 

controls to predict the expected rate of disease progression. A detailed understanding 

of the natural history of FRDA and the factors that influence disease progression is 

therefore necessary. Retrospective analysis of disease progression and survival have 

shown a median time from disease onset to wheelchair confinement in FRDA of 11 

years, and a 75% survival for more than 34 years after disease onset 429.

Historically, the use of ataxia scales followed on from the success of scales for basal 

ganglia disorders and has involved a variety of different scales. The Inherited Ataxia 

Clinical Rating Scale (IACRS) was published in 1980 . These scales and a variety

of novel or modified scales have been used to assess ataxic patient groups and
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determine the efficacy of therapeutic trials but their validity has not been rigorously 

tested 526.

More recently the International Co-operative Ataxia Ratings Scale (ICARS) 555 has 

been developed for the evaluation of potential pharmacological therapies for ataxia. 

ICARS is a 100 point scale that consists of four components, posture and gait, kinetic, 

speech, and oculomotor and uses arbitrary, non-linear, subjective, semi-quantitative 

scales in an attempt to assign a value of the severity of the ataxia for an individual 

patient. ICARS has been used to assess patients with FRDA 685 539 and AVED 55°. To 

date, despite its use in a number of therapyeutic trials there has been no systematic 

validation of the usefulness of ICARS as a measurement tool for FRDA or any other 

ataxic disorder 686.

Perhaps more significantly the degree of disability and the impact of FRDA as 

assessed from the patients’ perspective are poorly understood and poorly documented. 

FRDA clearly exerts a considerable, although as yet unquantified, impact on general 

levels of functioning and well being. In virtually all patients with FRDA the disability 

includes impaired mobility, swallowing, speech and thus communication, while in a 

significant population of patients cardiac disease, scoliosis, impairment of vision and 

hearing, and diabetes may impact further on the burden of disability.

The measurement of functioning and well-being from the patient’s perspective has 

become central to the assessment of health and the evaluation of treatment regimes. 

Consequently, measures variably referred to as health status, quality of life, or health 

related quality of life instruments are advocated when attempting to assess the 

outcome of health-care interventions. These measures are often not disease specific 

and encompass physical, psychological, and social function. While the value of these
(ion

measures in certain neurological disease is now well established the general use of 

such measures in neurology has lagged behind that in other medical specialties. 

Indeed, there is currently no disease specific measure for ataxia, nor have any of the 

non-specific measures been evaluated in this group of conditions.
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6.2 Health-Related Quality of Life in Friedreich’s Ataxia

6.2.1 Introduction:

The ability of four generic health status measures to assess 56 patients homozygous 

for the FRDA repeat expansion was evaluated. The 36-item Short Form Health 

Survey (SF-36), the self-report Barthel Index (BI), The General Health Questionnaire 

(GHQ 12), and the EuroQol were used. These health care measures are well 

established and validated. The SF-36 is perhaps the best known measure, developed 

from the Rand Corporation’s Health Insurance Experiment and the subsequent
570 688 •Medical Outcomes Study . Its brevity allows for rapid and easy completion yet it 

covers a core set of domains of functioning and well-being. The Barthel Index is 

already recommended for use in elderly populations, rehabilitation and stroke 

patients. Goldberg’s general health_questionnaire (GHQ) is the most commonly used 

international scale of general psychiatric morbidity. Developed in London 30 to 40 

years ago, it was designed to detect anxiety and depression. Since it includes 

psychosomatic items it may measure physical health status in addition to psychiatric 

morbidity. Its use has been validated in over fifty studies. The Euroqol is widely used 

internationally, and provides a standardized non-disease specific survey instrument 

for describing health related quality of life.

6.2.2 Experimental Design

Four generic health status measures (SF-36, BI, GHQ 12, and EuroQol) were sent to 

56 patients homozygous for the FRDA repeat expansion. The questionnaires were 

resent to those patients who had not responded by six weeks. Methodologies relating 

to patients, genetic analysis, and health status measures are as detailed in section

2.22.1 -  2.21.3. The questionnaires are included in appendix 2.

This work was performed in conjunction with Dr JM Cooper and Dr J Bradley of the 

Department of Clinical Neurosciences, Royal Free Campus, Royal Free and 

University College Medical School, University of London, who helped with the 

distribution of questionnaires, and Dr JC Hobart of the Department of Clinical 

Neurology and Neurorehabilitation, Neurological Outcome Measures Unit, Institute
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of Neurology, Queen Square, London, who assisted with the statistical analysis of the 

replies.

6.2.3 Results:

Of the 56 patients sent the questionnaire, 54 responded immediately, and only 3.6% 

needed the questionnaire resent at 6  weeks. The ages of the 56 patients ranged from 

18 to 57 years (mean 31.0 ± 8 .6 ). 57% were female, and 95% Caucasian. Age of onset 

ranged from 2 to 30 years, and averaged 13.7 years ±6.4. Disease duration varied 

from 4 to 38 years with an average of 18.1 years ±8.4. We questioned patients about 

their employment status, and of the 56, 41% were in employment, 26% retired due to 

their ataxia, 2 % retired for other reasons, 18% unemployed, and 13% were students. 

64% of our patients were educated beyond the minimum school leaving age, and 25% 

of our cohort had a degree or equivalent qualification. As regards marital status, 59% 

were single, 21% married, 5% divorced, and 14% living with a partner. Regarding 

mobility, bearing in mind the average disease duration of 18.1 years, 14% walked 

unaided, 30% walked with an aid, and 55% were wheelchair users.

Descriptive statistics for the self-report Barthel (BI), GHQ 12, EuroQol thermometer, 

and EuroQol Helath state are shown in table 6.1, and those for the eight domains of 

the SF-36 questionnaire in table 6.2. Mean scores were near the mid-point of the 

possible scale-range for role limitation physical, general health perceptions and 

vitality of the SF-36, and for the GHQ 12 suggesting that the distribution of the scores 

on these instruments is near normal and likely to detect change. Standard deviation 

was high, implying variability and thus the ability to detect change and discriminate 

between individuals, for all measures except the GHQ 12. Standard deviation was 

particularly high for role limitation physical and emotional of the SF-36. Floor and 

ceiling effects describe the percentage of patients scoring the maximum and minimum 

scores respectively. They represent the extent to which the measured range of an 

attribute is restricted and should ideally be below 15%. This was exceeded in all 

components of the SF-36 except general health perceptions, vitality, and mental 

health. Floor and ceiling effects were of desirable levels for BI, GHQ 12, Euroqol 

thermometer, and Euroqol health state. Skewness is a measure of how normal a
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distribution of scores is. A positive value indicates that scores cluster to the left of the 

mean, and a significant positive result was obtained for SF-36 physical function, and 

the GHQ 12. Sizeable negative skew values were obtained for all other measures 

except the SF-36 vitality.

Barthel Index GHQ 12 EuroQol
thermometer

Euroqol 
Health State

N 47 51 55 45
Missing data 16% 9% 1 .8 % 19.6%
Scale range 
(midpoint)

0 -2 0 ( 1 0 ) 12-48(30) 0-100(50) -0.594-1.00

Score range 2 - 2 0 12-40 20-95 -0.09-1.00
Mean (sd) 13.5(4.7) 25.0(6.1) 64.3(19.1) 0.53(0.3)
Floor % 0 0 0 0

Ceiling % 8.5 2 . 0 0 2 . 2

Skewness -0.580 0.678 -0.748 -0.902

Table 6.1

Descriptive statistics for the self-report Barthel, GHQ 12, EuroQol thermometer, and 

EuroQol Health state.
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Range Score
Dimension N

(missing 
data %)

Scale Score Mean (sd) Floor
%

Ceiling
%

Skew

Physical
function

54(3.6) 0 - 1 0 0 0-90 21.7 (23.7) 20.4 0 1.401

Role
limitations-
physical

55(1.8) 0 - 1 0 0 0 - 1 0 0

50.9 (42.5
27.3 36.4 0.059

Bodily pain 56(0) 0 - 1 0 0 2 2 - 1 0 0 78.3 (22.6) 0 39.3 -0.814
General
health
perceptions

55(1.8) 0 - 1 0 0 5-100 46.8 (23.4) 0 1 . 8 0.217

Vitality 55(1.8) 0 - 1 0 0 0-85 49.8 (22.3) 1 . 8 0 -0.0474
Social
functioning

56(0) 0 - 1 0 0 0 - 1 0 0 71.4 (27.3) 1 . 8 28.6 -0.885

Role
limitations-
emotional

53(5.4) 0 - 1 0 0 0 - 1 0 0 73.0 (37.6) 15.1 58.5 -1.056

Mental
health

55(1.8) 0 - 1 0 0 24-100 67.2 (21.3) 0 1 . 8 -0.404

Table 6.2

Descriptive statistics for the eight domains of the SF-36 questionnaire.
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6.2.4 Discussion:

The use of health instruments in neurology is well established. This is particularly true 

for the evaluation of outcomes after head injury 689 stroke, epilepsy, Parkinsons 

disease, motor neurone disease, spinal injury, and multiple sclerosis 69°. These health 

measures may be generic or disease-specific. General measures of health status allow 

comparison with other patient groups. Disease specific measures are more sensitive to 

change than generic measures, but may be too narrowly focused and thus fail to 

capture broader outcome measures. Generic and disease specific scores, and utility 

measures can be used simultaneously. No disease specific measures exist for the 

evaluation of ataxia, and no literature on the use of generic measures in this group of 

conditions could be found despite an extensive literature search.

The SF-36 covers facets of life that one would assume to be relevant to patients with 

ataxia. These are the ability to perform work and daily activities, and physical and 

social functioning. The reliability, validity, and responsiveness of the SF-36 have 

been previously well established 69 \  It has previously been used in a number of 

neurological disorders 692'694. Our results show that the impact of FRDA is significant. 

Three components of the SF-36 score showed a significant percentage of patients 

exhibiting maximum poor health scores. This floor effect was significant for physical 

function, physical role limitations, and emotional role limitations. All other 

parameters had negligible floor effects and the validity of the score and its usefulness 

in assessing change are therefore not compromised. Four components of the scale 

(physical role limitations, bodily pain, social functioning, and emotional role 

limitations) showed significant ceiling effects, suggesting that a sizeable percentage of 

our FRDA group reported no disability for these parameters. However two of these 

(physical role limitations and emotional role limitations) also had significant floor 

effects showing the group to be spread across the whole range with significant 

percentages at either extreme.

The three potential responses to the five items of the Euroqol health state 

questionnaire are combined to give a five-digit response set (eg 13212). Therefore 243 

(35) potential health states exist within this measure. The Euroqol thermometer, a 

simple visual analogue scale, provides a single overall score. This is a supplementary
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self-assessed measure of overall health status rather than a valuation of utility. The 

Barthel Index assesses ten clinically relevant items of physical dependence in personal 

activities of daily living. These are bathing, transferring, dressing, feeding, mobility, 

stairs, toilet use, grooming, bladder, and bowel function. The general health 

questionnaire concentrates on broad components of psychiatric morbidity. GHQ 12 is 

the shortest version of the general health questionnaire, but is as efficient as the 30- 

item version. The self report Barthel Index, GHQ 12, Euroqol thermometer, and 

Euroqol Health State exhibited no floor effect and ceiling effects were likewise 

negligible. However data was missing from 16% of the Barthel Index and almost 20% 

of the Euroqol health state.

This study documents for the first time the substantial impact that Friedreich’s ataxia 

has on the health status of patients. It has, as might be expected, particularly severe 

impact on physical functioning, but is also severely deleterious on emotional aspects 

of health status, social functioning, and mental health.

Further studies will evaluate the impact on health status over time, and the impact on 

the health status of care givers which has been shown to be an important factor in 

Alzheimers disease 695, and motor neurone disease 696. Treatments offering benefit to 

the patients might also benefit carers. The health status of carers also has implications 

for support services and charitable organisations. Further studies are underway to 

design a quality of life measure specific for FRDA.

The impact of FRDA on patients has until now consisted only of descriptive studies of 

the clinical features of the condition and data on parameters such as age of onset, 

wheelchair use, and age of death. This study has provided the first large-scale 

evaluation of the self-reported health status of patients with FRDA, and clearly 

describes the human impact of the disease. The findings show these measures to 

provide a meaningful and valid picture of the impact of Friedreich’s ataxia on the 

daily lives of those living with it. The data obtained will enhance our understanding of 

FRDA, and will be of use in the analysis of future trials that use quality of life as a 

primary outcome variable, allowing another dimension to the evaluation of the 

efficacy of potential therapeutic interventions.
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6.3 Friedreich's ataxia: Evaluation of ICARS and Factors Influencing

Clinical Progression. 

6.3.1 Experimental Design

77 patients, homozygous for the FRDA repeat expansion, from 67 different pedigrees 

were assessed clinically using ICARS as the scoring system. They also underwent 

echocardiography and neurophysiological evaluation. Methodologies concerning 

patients, genetic analysis, clinical assessment and statistical analysis are detailed in 

sections 2.22.1 -  2.22.4

6.3.2 Results

The data is summarised in table 6.3. There were similar numbers of males (37) and 

females (40), with a broad range of disease onset (2 - 27 years of age). In the vast 

majority gait ataxia was the presenting feature. Other features bringing patients to 

medical attention included pes cavus ( 2  patients), scoliosis ( 1 ), upper limb 

incoordination (2), family history of FRDA in asymptomatic individuals (1), and 

sphincter disturbance (1). The average time from symptom onset to diagnosis was 4.5 

±3.9 years, ranging from 4 years prior to the onset of symptoms in the sibling of an 

affected patient, to 17 years after symptom onset. In those at the upper end of this 

range disease onset tended to have been prior to the introduction of genetic testing. 

At the time of assessment the patients were between 10 - 57.7 years of age and disease 

duration ranged between 1.7 - 39.7 years. The size of the smallest GAA repeat 

(GAA1) ranged between 130-1080. There was an inverse relationship between GAA1 

and age of onset (figure 6.1). In the 62 patients questioned the ADL scores ranged 

between 2 - 2 6  (mean 13.6 ± 5.2).
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Clinical Feature Percent Clinical Feature Percent Clinical Feature Percent

Number of patients 77 Retained LL reflexes 8  a Dysphagia 60
Number of families 67 Absent SSEPs $
M ale: Female 37 :40 Extensor plantars 94 Sphincter 3 9  c N9 74

disturbance N13 61
Mean age 24.3 ± 10 Severely impaired 56 Severely impaired 3 d N20 37
(range) (10-57.7) vibration vision
Mean age of onset 11.9 ± 6.3 Scoliosis 6 8 Square wave jerks # 5 Absent SAP *
(range) (2 - 27) Radial 50
Mean disease 12.4 ±7 .8 Pes cavus# 62 Fixation instability# 16 Ulnar 80
duration (range) (1.7-39.7) Median (F2) 63
Mean GAA1 size 725 ± 229 Diabetes mellitus 5 b LVH by echo 42e Sural 83
(range) (130- 1080)

Table 6.3. Percentage prevalence of clinical features in Friedreich’s ataxia patients not assessed as part of the ICARS.

a. Defined as individuals with knee or ankle deep tendon reflexes
b. Diabetes was determined by a requirement for insulin or a raised random glucose or HbAlc level.
c. Minimum criteria: patients reporting mild urinary hesitancy, urgency or retention < once per month
d. Patients previously investigated for optic atrophy,
e. LVH defined by an intra ventricular septal thickness > 11mm

# n=63, $ n = 54
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Onset
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GAA1

Figure 6.1

Relationship between the size of the smaller GAA repeat (GAA1) and age of 

onset in 77 FRDA patients. Gradient 0.0184 years / GAA, correlation 

coefficient, R=0.666, p<0.001.
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Atypical clinical presentations included three cases of onset over the age of 25 years, 

and six cases with some preservation of lower limb (LL) deep tendon reflexes and a 

further 6 patients in whom some of the upper limb reflexes were still present. These 

patients tended to have a slightly older disease onset, and a shorter GAA1 repeat size 

than the remaining patients, but similar ICARS scores. The differences did not reach 

statistical significance.

fx\n
The prevalence of clinical features generally mirrored that of previous studies 

However, dysphagia, rarely commented on in previous studies, was reported by 60% 

of these patients in whom it was graded as moderate (choking more than once a 

month, 40%) or more severe (20% of patients). Sphincter disturbance was reported by 

39%, where it was moderate (moderate hesitance, urgency, or retention once a month, 

or urinary incontinence less than once a month, %) or more severe (% of patients). 

Skeletal abnormalities were common. Pes cavus was present in 62%, and scoliosis in 

68%, with 31% of those with scoliosis requiring corrective surgery. Only 5% of 

patients were known to be diabetic, with one further patient having a raised HbAlc 

level.

The clinical features of the patients as indicated by the total ICARS score (scale range

0-100) was quite diverse with a score ranging between 23 and 95 (mean 52.7 ±17.1). 

Analysis of how the total ICARS and four component scores changed with increasing 

patient age demonstrated that all scores fell on the scale with no floor or ceiling 

effects with the exception of posture and gait scores which increasingly reached a 

maximum above the age of 23.9 years (Figure 6.2).
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Relationship between patient age at assessment and the distribution of total ICARS 

score (A), and the four component scores of ICARS; posture and gait (B), kinetic (C), 

speech (D), and ocular (E), in 77 patients with FRDA.
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To determine if there was any relationship between clinical progression and GAA1 

size, patient age and disease duration the total ICARS and the four individual 

component scores were correlated with these parameters using single or multiple 

linear regression analyses (Table 6.4). The most significant correlation was between 

total ICARS, GAA1 and patient age with 49% of the variation in total ICARS score 

being attributable to these two combined variables. ICARS component scores were 

variably related to repeat length, disease duration, and age. Ocular scores, determined 

by the presence or absence of nystagmus, hypo or hypermetric saccades, and saccadic 

intrusion of pursuit movements, failed to correlate with these disease parameters 

(Table 6.4).
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Independent Variable

Dependent GAA1 Disease Age GAA1 / GAA1 /
Variable (number) Duration

(years)
(years) Duration Age

Total grad 
R2

0.021
0.077*

1.34
0.366**

0.71
0.170**

0.027/1.43
0.489**

0.05/1.29
0.490**

Kinetic grad 
R2

0.009
0.072*

0.576$ ♦
0.318

0.28
0.123*

0.012/0.617 ♦ *
0.431

0.021/0.525 ♦ ♦
0.393

Ocular grad NS NS NS NS NS
R2 0.012 0.021 0.00 0.037 0.015

Posture grad 
+ gait R2

0.011
0.080*

0.682
0.343**

0.386
0.181**

0.014/0.731 ♦ ♦
0.468

0.027/0.698 ♦ ♦
0.517

Speech grad 
R2

NS
0.001

0.064
0.212**

0.048 ♦ ♦
0.191

0.0/0.065
0.212**

0.001/0.062 ♦ ♦
0.239

Table 6.4

Relationship between ICARS and ICARS component scores and various 
disease parameters. Gradients (grad) relate to the changes in clinical score per 
unit of the independent variable, unless the relationship was not significant 
(NS). Correlation coefficients (R2 values) for 77 FRDA patients when 
correlated with various disease parameters. Single and multiple linear 
regression analyses were performed using SSPS. * = p <0.05, ** = p <0.001
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Visualisation of the combined influence of increasing age and GAA1 size on total 

ICARS scores was achieved by dividing the 77 patients into 4 groups according to the 

size of their GAA1 (<600, 600-750, 751-900 and >900 GAA), to give approximately 

equal numbers of patients in each group (Figure 6.3). The linear regression analysis 

for these groups showed a correlation indicating a progression of; 0.87, 0.54, 1.85 and 

2.26 ICARS points per year in the <600, 600-750, 751-900 and >900 groups 

respectively.

Retrospective analysis of disease progression was determined in the 4 patient groups. 

This identified a graded progression between the different stages in proportion to the 

size of GAA1 size. The mean time from onset of walking difficulties to wheelchair 

confinement for outdoor use was 17.9, 14.9, 10.3, and 9.5 years in the <600, 600-750, 

751-900 and >900 GAA groups respectively (figure 6.4). The value for the patient 

group as a whole was 11.2 years.

The ocular subscore of ICARS is a cumulative score of gaze-evoked nystagmus, 

abnormalities of ocular pursuit, and dysmetria of the saccade. Pursuit movements 

were slightly fragmented in 40%, and clearly fragmented in 33% of patients. 

Nystagmus was present in only 6% of patients, and in these patients only a few non­

sustained beats were seen. Saccades were hypermetric in 70%, and hypometric in 

19% of patients. Further evaluation of parameters not included in ICARS revealed 

fixation instability in the primary position in 16%, square wave jerks in 5% of patients 

and reduced saccadic velocity in 24%, (but only clearly so in 5%) of all patients.
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Relationship between patient age and total ICARS score in groups of patients with GAA1 repeat sizes 
in the range; A: >900 GAA (X, n=23), solid line, gradient = 2.26, R2=0.51 p <0.001 B: 751-900 GAA 
(open square, n=16), dotted line, gradient = 1.85, R2=0.58 p <0.001 C: 600-750 GAA (open diamond, 
n=18), long dashed line, gradient = 0.54, R2=0.167 p =0.09 D: <600 GAA (closed triangle, n=20) 
dashed-dotted line, gradient = 0.87, R2=0.328 p =0.06 E: represents the linear regression lines for each 
patient group taken from graphs A-D.
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Electrocardiography revealed one patient to be in fast atrial fibrillation while all 

others were in sinus rhythm. Hypertrophic changes were identified in 42% of patients 

using echocardiography criteria (IVS >llmm). Additional findings were coarctation 

of the aorta requiring stenting in one patient, prominent papillary muscles in 5 

patients, and systolic apical cavity obliteration in 2 patients. As a group the fraction 

shortening was 32.6 ± 5.2%, (normal values 28-37%) suggesting there was normal 

heart function in the majority of patients.

LVDd and LVDs demonstrated a significant positive correlation with disease 

duration, patient age and ICARS score (Table 6.5), but an inverse correlation with 

GAA1 size. This suggested LV dilation increased with increasing age, disease 

duration and clinical severity, but larger GAA1 sizes were associated with decreasing 

LV dilation. Fraction shortening showed an inverse correlation with disease duration 

and clinical score (table 6.5) suggesting heart function deteriorated with disease 

progression. PWd correlated poorly with the disease parameters analysed. However, 

IVS demonstrated a significant decline with increasing age suggesting less 

hypertrophy as the patients aged, and a near significant increase with GAA1 size 

suggesting more severe hypertrophy with larger genetic abnormalities (Table 6.5).

Neurophysiological evaluation was performed in 54 patients. Sural, radial, ulnar and 

median F2 nerve action potentials were undetectable in 83, 50, 80, and 63% of the 

patients respectively. The patients with undetectable SAP had larger GAA1 repeat 

sizes and higher clinical scores (ICARS) (table 6.5), but did not show significant 

differences between age or disease duration. In those patients where it was detectable 

the mean sensory action potentials were severely decreased to 1.5 ± 0.83 pV (control 5 

-30pV), 3.18 ± 1.67pV (control 21 - 80pV), 1.62 ± 0.97pV (control 15 - 50pV) and 

1.97 ± 0.94pV (control 16 - 65pV) in the sural, radial, ulnar and median (F2) nerves 

respectively.

The mean conduction velocities for sural, radial, ulnar and median nerves were 

respectively 39.3 ±3 .1  m/s (control 46.5 ± 4.0m/s), 48.9 ± 5.3 m/s (control 63 ± 

6.0m/s), 44.1 ± 6.35 m/s (control 57 ± 5.0m/s), and 49 ± 5.4 m/s (control 56.9 ± 

4.0m/s). Somatosensory evoked potentials were undetectable at N9, N13 and N20 in
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74, 61 and 37% of the patients respectively. In those with detectable responses, the 

latencies were similar to normal at N9, N13 with latencies of: 9.88 ± 1.05 msec 

(normal 9.83 ± 2.11msec), 13.9 ± 2.4 msec (normal 13.55 ± 2.14msec) but longer at 

N20 with a latency of 26.7 ±5.8 msec (normal 19.27 ± 2.22msec). In the patients with 

measurable SSEPs there were no significant correlations between the SSEP values 

and other disease parameters (GAA1 size, patient age, disease duration or ICARS 

score). In those patients with undetectable SSEPs the ICARS scores were significantly 

higher and the GAA1 repeat sizes tended to be larger, although these were not 

statistically significant (Table 6.5). Mean motor conduction velocity were slightly 

decreased to 50.6 ±3.5 m/s (normal 56.7 ±3.8 m/s) for the median nerve and 40.5 ± 

7.4 m/s (normal 49.9 ±5.9 m/s) for the common peroneal.

Correlation of the detectable neurophysiology results with GAA1 size, patient age, 

disease duration and ICARS score revealed the following significant correlations: 

Mdndml, mfwave and cmapw all showed a significant positive correlation with 

disease duration, age and clinical severity; Cpdml a positive correlation with clinical 

severity; Cmapa a significant inverse correlation with genetic severity and age and 

Cmapk a significant inverse correlation with genetic severity (Table 6.5).
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GAA Duration Age ICARS

LVDd grad -0.009 0.280 0.282 0.068
R2 0.163** 0.183** 0.306** 0.052*

LVDs grad -0.0058 0.28 0.231 0.09
R2 0.075* 0.204** 0.230** 0.104**

FS grad NS -0.211 NS -0.102
R2 0.001 0.099** 0.032 0.113**

IVS grad NS NS -0.047 NS
R2 0.049 0.017 0.063* 0.002

mdndml grad NS 0.026 0.02 0.012
R2 0.003 0.135** 0.125** 0.177**

cmapw grad -0.015 0.6 0.496 NS
R2 0.134** 0.243** 0.265** 0.014

Mfwave grad NS 0.143 0.118 0.084
R2 0.025 0.128** 0.138** 0.254**

cpdml grad NS NS NS 0.04
R2 0.057 0.014 0.005 0.15**

Cmapa grad -0.0039 NS -0.039 NS
R2 0.172** 0.004 0.172** 0.039

Cmapk grad -0.0035 NS NS NS
R2 0.163** 0.004 0.056 0.04

Table 6.5

Relationship between various echocardiographic and neurophysiological parameters 
and genetic abnormality (GAA1), disease duration, patient age or clinical severity 
(ICARS). Gradients (grad) relate to the changes in clinical score per unit of the 
independent variable, unless the relationship was not significant (NS). Correlation 
coefficients (R2 values) for 77 FRDA patients when correlated with various disease 
parameters. Linear regression analyses were performed using SSPS. * = p <0.05, **
= p <0.01
LVDd= left ventricular diameter in diastole; LVDs= left ventricular diameter in 
systole; FS=fraction shortening; IVS= interventricular shortening; mdndml= median 
distal motor latency; cmapw= median compound motor action potential at the wrist; 
Mfwave= median f  wave; cpdml= common peroneal distal motor latenct; Cmapa= 
common peroneal compound motor action potential at the ankle; Cmapk= common 
peroneal compound motor action potential at the knee.
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6.3.3 Discussion

The understanding of the genetic and biochemical features of FRDA has markedly 

increased over the last decade. Although this knowledge has enabled the trial of a 

number of therapeutic interventions, analysis of their influence upon disease 

progression has been limited by the absence of a validated assessment protocol.

The prevalence of the clinical features observed in this cohort of FRDA patients is 

broadly in keeping with those of previous reports. However, fewer patients were 

found to be diabetic than previously reported while dysphagia and sphincter 

disturbance appears as a common complaint in FRDA. These differences are most 

likely to be due to case selection or differences in the criteria used to define the 

various clinical features. The recognition of these disease complications is important 

for the long term care of patients with FRDA.

Various surrogate markers have been used to assess therapeutic effects of treatment 

regimes including 31PMRS 490 and markers of oxidative stress 483, but ultimately 

clinical parameters and patient orientated outcome measures are required to confirm 

any benefits.

In this study neither the total ICARS score nor its component scores showed any 

significant floor effect, but the posture and gait score reached a ceiling at a relatively 

early age (23 years), with 17% of patients in this cohort, scoring above the 95th 

centile, and 2 patients scoring maximum points. This score makes up 34% of the total 

ICARS score; consequently this component of the ICARS score is of limited use in 

patients with relatively advanced disease.

Total ICARS scores correlated well with parameters associated with disease 

progression including age, disease duration and GAA1 size. Analysis of the ICARS 

component scores demonstrated that kinetic, and posture and gait scores correlated 

well with these disease parameters, while the speech component correlated to an 

intermediate level. The assessment of speech in ICARS is highly subjective, is limited 

to the analysis of only one specific phrase, and relies upon the subjective
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interpretation of fluency and intelligibility. More detailed speech analyses may be 

required to give results that correlate more closely with disease progression.

Of the ICARS component scores, oculomotor parameters correlated extremely poorly 

with disease parameters. A number of studies have investigated the prevalence of 

ocular and oculomotor manifestations of FRDA 698,699. However, the relationship 

between oculomotor manifestations, disease duration and progression, and the use of 

ocular parameters to assess treatment effects has, to date, been left largely unexplored. 

While some ocular features, including square wave jerks, were absent from the 

ICARS they involved relatively small numbers of patients. The absence of any 

progression of the ocular defects with disease progression or GAA1 size may indicate 

that the evaluation of ocular involvement is either too crude and may require a more 

sensitive protocol, or that there is no progression of these symptoms.

In common with other scales, ICARS is not a continuous scale and often the steps 

between points are relatively large with some patients falling between values. Many 

of the clinical symptoms associated with FRDA are not evaluated in the ICARS score. 

Included in this list are; cardiological and neurophysiological features, loss of 

reflexes, vibration sense, skeletal abnormalities, diabetes, swallowing problems, 

sphincter abnormalities and some ocular signs including blindness. These may make 

up a significant component of any treatment effect and need to be assessed separately.

The rate of clinical progression, as assessed by either ICARS or the retrospective 

clinical data, was shown to be dependent upon the size of the GAA1. This clearly 

links the severity of the primary cause of the disease with the rate of clinical 

progression. Previous observations have shown that the residual level of frataxin is 

inversely related to the size of GAA1 439. Consequently the larger GAA1 alleles lead 

to lower frataxin levels and a more aggressive disease. This understanding and 

quantification of varying rates of disease progression will be of value in measuring 

potential treatment effects.

The patients involved in this study may not be a random representation of the whole 

FRDA population. Patients with severe disability or advanced cardiac disease may 

have been prevented from participating in our study due to mobility difficulties or
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because they are less inclined to volunteer for assessment. Only patients over the age 

of 10 were accepted for assessment, therefore potentially skewing our patient 

population. However, the confounding aspects of child development and an ability to 

participate in certain assessments may mean the assessment of children may require a 

modified approach. This will be most evident with therapies that are disease 

modifying rather than curative where it will be preferable to treat patients either early 

on in the disease or in pre-symptomatic individuals, many of these patients will fall 

into the younger age group.

In conclusion we have been able to demonstrate that ICARS is a valid and useful tool 

to assess the clinical symptoms and progression of FRDA. Using cross sectional 

ICARS data we have clearly shown that disease progression is predominantly 

determined by the size of the genetic abnormality (GAA1). Consequently it is 

particularly important to consider this in the design of long-term therapies and 

especially for those therapies aimed at modifying disease progression. Posture and 

gait scores reached a maximum relatively early in the course of the disease making it 

less suitable for patients with a more advanced disease. In addition there are a number 

of features not assessed properly by ICARS and therefore require additional 

assessments. As with many clinical scales the subjectivity involved adds to the 

variability of the scores and this may be particularly evident in the kinetic 

components. This can be addressed by using additional tests less prone to subjectivity. 

Whether electrophysiological or echocardiographic parameters provide good 

measures of treatment response remains uncertain and may need more long-term 

follow-up. Further work was completed and continues, assessing quantitative 

measures of ataxia in these patients. These include tests of upper and lower limb 

dexterity, timed walks, peg board tests and tests of dysarthria. These, and their 

comparison with ICARS will be the subject of future publications.
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6.4 Antioxidant treatment of Patients with Friedreich’s ataxia: 3 year follow up.

6.4.1 Introduction

The identification of the FRDA gene product frataxin as a nuclear encoded 

mitochondrially targeted protein 438,463,469,470, and the finding of mitochondrial iron 

accumulation, increased sensitivity to oxidative stress, deficits of respiratory chain 

complex activities and in vivo impairment of cardiac and skeletal muscle tissue energy 

metabolism in patients with FRDA, has paved the way for the development of rational 

therapeutic interventions. Consequently these findings have suggested that patients with 

FRDA may benefit from antioxidant, mitochondrial enhancement, or iron chelation 

therapy. These findings have also provided surrogate disease markers that can be utilised, 

in parallel with clinical and patient orientated outcome measures, to monitor the response 

to novel therapeutic agents. We therefore undertook a pilot study to determine any 

clinical and bioenergetic benefits of long-term vitamin E and coenzyme Qio therapy in 

patients with Friedreich's ataxia. We followed 10 patients with genetically defined 

Friedreich's ataxia after 1, 2 and 3 years on the same therapy and determined the effect

upon; the clinical progression of the disease using ICARS and echocardiography; and on
11

the mitochondrial bioenergetics of the heart and skeletal muscle using P-MRS.

In vivo phosphorous magnetic resonance spectroscopy (31P-MRS) is a non-invasive

technique that detects phosphorous containing compounds and cytosolic pH, and can thus

be used to assess tissue oxidative metabolism. The major detectable compounds are ATP,

phosphocreatine (PCr) and inorganic phosphate (Pi). Free (metabolically active) ADP,

the major regulator of oxidative phosphorylation, can be calculated from the MRS data

using the creatine kinase equilibrium equation 700. Cardiac 31 P-MRS enables the in vivo
11

measurement of the PCr to ATP ratio. This has been shown by P-MRS and 

conventional biochemistry to be a good measure of the energetic state of cardiac muscle 

’ . Cardiac PCr to ATP ratio has previously been shown to be significnalty reduced in

FRDA patients with and without cardiac hypertrophy 703. Skeletal muscle provides an
• * 3 1ideal tissue in which to assess in vivo mitochondrial ATP production rate using P-MRS.
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It can be studied at rest, during exercise, and during the recovery phase 704. During 

incremental exercise there is a progressive reduction of PCr as it is hydrolysed via the 

creatine kinase reaction in order to buffer the ATP concentration. As soon as the exercise 

is stopped the PCr concentration begins to return to its pre-exercise levels, as PCr is re­

synthesised from ATP. ATP production during recovery from exercise is entirely due to 

oxidative phosphorylation 704, thus PCr re-synthesis rate reflects the mitochondrial rate of 

ATP production. Mean muscle Vmax in FRDA patients has been shown to be reduced to 

34% of the normal mean and is strongly dependent upon the size of GAA1 490’539.

6.4.2 Experimental Design:

Acknowledgements: this work was performed in conjunction with others. Dr J Crilley 

performed all echocardiography; Dr R Lodi and Dr B Rajagopalan performed all MRS 

studies in conjunction with Drs DJ Taylor, Dr A Blamire, Dr D manners, and Dr P Styles 

all of the MRC Biochemical and Clinical Magnetic Resonance Unit, Department of 

Biochemistry, University of Oxford and Oxford Radcliffe Hospital, Oxford, UK. Genetic 

analysis was performed by Dr J Bradley. All clinical evaluations were performed by 

myself. The trial was orchestrated by Dr JM Cooper and Prof AHV Schapira. Funding for 

the trial was provided by the Ataxia Society. All drugs were provided by Pharma Nord.

Subjects -  Ten FRDA patients (5 males, age range 16-40 years, mean ± SD 28 ± 6 years) 

were studied. At zero months their MRS data were compared to 10 healthy volunteers for 

the calf skeletal muscle (5 males, age range 22-41, mean ± SD 28 ± 5 years) and 10 

different healthy volunteers for the cardiac muscle 31P-MRS (5 males, age range 16-40 

years, mean ± SD 28 ± 6 years). The diagnosis of FRDA was confirmed by detection of 

a GAA repeat expansion in the first intron of both alleles of the frataxin gene 474. The 

GAA expansion was in the range 290 tom900 repeats for the shorter of the two alleles. 

Patients were assessedneurologically, and with MRS and echocardiography at 

0,3,6,11,23,and 35 months. Informed consent was obtrained from all patients and 

volunteers. The trial was conducted with the ethical approval of the Central Oxford and 

Royal Free Hospital Ethics Committees.
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31 •P-MRS -  Patients laid prone in the magnet and standard spin-echo MRI were used to 

position the heart in the centre of the magnet. Cardiac 31P spectra were acquired using a 7 

cm circular surface coil placed below the chest. Data were acquired using a slice selective

1-dimensional spectroscopic image imaging technique that separately localises signal 

from the chest wall and myocardium 705. Skeletal muscle 31P-MRS spectra were obtained 

from the right calf muscle at rest, during an aerobic incremental exercise of plantar 

flexion and the following recovery phase 706. Relative concentrations of inorganic 

phosphate (Pi), PCr and ATP were obtained. The maximum rate of mitochondrial ATP 

synthesis (Vmax) was calculated 707

Echocardiography -  2D and M-mode imaging from parasternal and apical windows was 

performed at the above time points using Sonos-5500 (Hewlett Packard, Bracknell, 

United kingdom). Images were recorded on optical disk for subsequent analysis. Standard 

M-mode measurements were made using established criteria 708.

Clinical evaluations -  were performed at 0, 6, 11, 18, 23, and 35 months, using ICARS as 

described above.

Statistical analysis -  Individual tests were taken as abnormal when they fell outside the 

normal range. In view of the low number of subjects, non-parametric tests were used. The 

Mann-Whitney U-test was used to compareindependent groups and the Wilcoxon’s 

matched pair test to compare dependent groups (i.e. data collected from FRDA patients 

before and during therapy). Statistical significance was taken as p  < 0.05. Correlation 

coefficients were calculated by linear regression.

6.4.3 Results:

After 6 months therapy cardiac PCr to ATP ratios increased by more than 50% in the 

FRDA patients as a group. Cardiac PCr to ATP ratio did not increase in two patients, 

both of whom had LVH, but one of these was the only patient with a normal cardiac PCr 

to ATP ratio before therapy. There was a greater degree of PCr/ATP recovery in the 4
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FRDA patients without cardiac hypertrophy (+70%) than in the 5 patients with LVH 

(+37%). Skeletal muscle Vmax increased for the group by 34% after 6 months therapy, 

and was unchanged in only 2 patients. At 35 months cardiac and skeletal muscle energy 

metabolism as judged by 31 P-MRS showed a sustained improvement (figure 6.5).

Echocardiography data suggests the fraction shortening at the 35 month time point for the 

patients as a whole was significantly increased relative to the pre-therapy data (figure

6.6). The total ICARS score and posture and gait, and kinetic component did not differ 

significantly from the pre-treatment group values (figure 6.7). Comparison of the 

progression of the patients' clinical scores with cross-sectional data suggested the clinical 

scores for 8 patients were better than predicted while 2 patients scores declined as 

expected (figure 6.8).
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6.4.4 Discussion

The vitamin E and coenzyme Qio doses used in this study were well tolerated, and are 

similar to those administered to patients with other neurodegenerative disorders where 

likewise no side effects were reported 709’710. Both drugs localise to cellular membranes, 

including mitochondrial membranes, and act as free radical scavengers in addition to the 

role of coenzyme Qio in electron transfer. The two antioxidants were combined to 

amplify their efficacy.

This pilot study demonstrated that antioxidant therapy in FRDA can improve surrogate 

bioenergetic parameters after six months therapy, and that this improvement is 

maintained over a prolonged period of time. The more marked bioenergetic improvement 

after therapy found in cardiac compared to skeletal muscle may reflect a higher 

dependence on frataxin and greater accumulation of iron and free radical mitochondrial 

damage in FRDA heart. The greater degree of PCr/ATP improvement in patients without 

LVH than those with LVH may indicate that the presence of LVH reduces the rate of 

bioenergetic recovery and that antioxidant therapy may be more effective if started before 

cardiomyopathy becomes established. Indeed, if the bioenergetic deficit precedes cardiac 

hypertrophy, then the early initiation of antioxidant therapy in FRDA may prevent the 

development of cardiac hypertrophy by reversing the bioenergetic abnormality. In 

addition to these improvements of surrogate markers, prolonged therapy was associated 

with a significant improvement in heart function as measured by fraction shortening. This 

latter finding is important because cardiac disease is often the life-limiting factor in 

FRDA.

Clinical progression of the disease however, as judged by ICARS and its component 

scores, did not change significantly over the course of the trial. It may be however that 

the treatment only served to slow the expected rate of progression of the disease rather 

than to cause improvement from baseline. In order to assess this the total ICARS score 

over 35 months for each of the ten individuals in the trial was compared with expected 

disease progression as generated by cross-sectional data. This analysis implied that eight

207



patients were deteriorating less rapidly than would have been expected. The validity of 

using cross sectional data to predict disease progression remains uncertain.

Based upon the results of this pilot study a double blind placebo controlled trial of 

combined coenzyme Qio and vitamin E in FRDA is currently underway.
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APPENDIX

Homogenisation buffer 

Sucrose 0.25M

Tris-HCl lOmM

EDTA-K2 ImM

pH 7.4

Modified Tvrodes buffer

NaCl 150mM

NaH2P04 0.55mM

NaHC03 7mM

KC1 2.7mM

Glucose 5.6mM

EDTA-K2 ImM

pH 7.4
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International Co-operative Ataxia Rating Scale (ICARS)

SPEECH
1. FLUENCY
("a mischievous spectacle in Czechoslovakia)
Repeated several times

0 Normal
1 Mild modification of fluency----------------------------------------------------
2 Moderate modification of fluency
3 Considerably slow and dysarthric speech
4 No speech __________

2. DYSARTHRIA: clarity of speech

0 Normal ----------------
1 Suggestion of slurring
2 Definite slurring, most words understandable
3 Severe slurring, speech not understandable __________
4 No speech

POSTURE + GAIT
***lf patient cannot walk 10 metres even with support of someone score maximum 
points for 3 and 4 and go to 5

3. WALKING CAPACITY
10 metre,
single step pivot half turn
1.5 m from wall

support from wall, 1 stick, 2 sticks /  stroller, 1 arm, 2 arms 
tandem walk distance ?

0 Normal (> 8 sequential steps in tandem).
1 Almost normal but can't tandem walk.(<4 sequential steps in tandem)
2 Walks without support, but clearly abnormal + irregular.
3 Walks without support but considerable staggering, difficulties with half turn.
4 Walking with autonomous support not possible episodic support of wall for 10 m walk
5 Walking only possible with one stick
6 Walking only possible with two special sticks or stroller
7 Walking only with accompanying person (one arm)
8 Walking impossible even with support from accompanying person

Can the patient RUN JUMP

Time to walk 10 metres secs



4. GAIT SPEED
If 4 or greater in 3 above - score 4 in this test

0 Normal
1 Slightly reduced
2 Markedly reduced
3 Extremely slow
4 Walking with autonomous support no longer possible

5. SPREAD OF FEET (natural position, eyes open, no support).
Stand in natural position 
Distance between medial malleoli

0 Normal <10 cm
1 10-25 cm
2 25-35 cm
3 >35 cm
4 standing in natural position no longer possible

6. STANDING EYES OPEN
Ask the patient to proceed from one state to the next to obtain the maximum state 
possible. For times score best of 3 attempts

Stand in natural position (time) is support needed 
Stand with feet together (time)
Stand with feet in tandem position 
Stand on one foot (time)

0 Normal, able to stand on one foot for > 10 secs [TIME sec , up to 1 min?]
1 Able to stand with feet together, and in tandem(> 10 sec), but not 1 above
2 Able to stand with feet together, but not in tandem [TIME_____sec, up to 1 min?]
3 Stand in natural position with no or moderate sway [TIME_____ sec, up to 1 min?]
4 Stand in natural position without support, with considerable sway + corrections
5 Needs strong support of one arm to stand in natural position
6 Unable to stand at all, even with strong support of 2 arms --------------

***lf cannot stand unaided for 30 sec, score max points for 7 + 8 
and go to 9



7. BODY SWAY (feet together, eyes open)
Monitor over 30 secs

0 Normal
1 Slight oscillations ( <1cm at level of head)
2 Moderate oscillations (1 -1 Ocm at level of head)
3 Severe oscillations ( >10 cm at level of head) threatening upright position.
4 Immediate falling

8. BODY SWAY (feet together eyes closed)
Monitor over 30 secs

0 Normal
1 Slight oscillations (<1 cm at level of head)
2 Moderate oscillations (1-10 cm at level of head)
3 Severe oscillations ( >10 cm at level of head) threatening upright position.
4 Immediate falling

9. QUALITY OF SITTING POSITION
Monitor over 30 secs
Thighs together, feet on floor
Hard flat surface, standard chair with a back
Arms folded

0 Normal
1 With mild oscillations of the trunk
2 With moderate oscillations of the trunk and legs (intermittent contact with chair)
3 With severe dysequilibrium, (needs contact with chair back or sides)
4 Impossible (needs continuous contact with chair back and sides)



OCULOMOTOR

10. GAZE EVOKED NYSTAGMUS

0 Normal
1 Transient
2 Persistent but moderate
3 Persistent and severe

11. PURSUIT: saccadic

0 Normal
1 Slightly saccadic
2 Clearly saccadic

12. DYSMETRIA

0 Absent
1 Bilateral clear overshoot or undershoot of the saccade

KINETIC FUNCTIONS

13. FINGER-NOSE (decomposition + dysmetria)
Patient sitting on chair 
Begin with hand on knee 
3 times each arm

0 No trouble
1 Oscillating movement without decomposition of the movement
2 Segmental movement in 2 phases and / or moderate dysmetria in reaching nose
3 Segmental movement in more than 2 phases and / or considerable dysmetria in 

reaching nose / finger
4 Dysmetria preventing the patient from reaching the nose

R L



14. FINGER-NOSE (intention tremor)
The studied tremor is that appearing during the ballistic phase of the movement

0 No trouble
1 Simple swerve of the movement
2 Moderate tremor with estimated amplitude < 10cm
3 Tremor with estimated amplitude between 10 and 40 cm
4 Severe tremor with estimated amplitude >40cm

R L

15. FINGER - FINGER TEST (action tremor and / or instability)
Sitting
Maintain medially 2 index fingers pointing at each other I cm apart 
for 10 seconds at level of thorax

0 Normal
1 Mild instability
2 Moderate oscillations of finger with estimated amplitude <10cm
3 Considerable oscillations of finger with estimated amplitude 10-40cm
4 Jerky movements with estimated amplitude >40cm

R L

16. PRONATION-SUPINATION
Sitting
Raise forearms vertically, elbows and shoulder 9 (f in front of body 
pronate /  supinate hand as fast as possible 
Each arm assessed separately

0 Normal
1 Slightly irregular and slowed
2 Clearly irregular and slowed but without sway of the elbow
3 Extremely irregular and slowed movement, with sway of the elbow
4 Movement completely disorganised or impossible

R L



17. KNEE - TIBIA (LOWERING OF HEEL)
Supine, visual control. Raise one leg place heel on knee and slide down anterior tibiaI 
surface to foot.
Note Decomposition of movement and intention tremor 
3 times each leg

0 Normal
1 Lowering of heel in continuous axis, but the movement is decomposed in several 

phases, without real jerks, or abnormally slow
2 Lowering jerkily in the axis
3 Lowering jerkily with lateral movements (not falling off leg or outside width of leg)
4 Lowering jerkily with extremely strong lateral movements (falling off leg, failing to hit 

upper part of foot) or test impossible

R L

18. ACTION TREMOR OF HEEL ON KNEE
Patient lifts foot onto knee and holds heel on knee for a few seconds

0 No trouble
1 Tremor stopping immediately when the heel reaches the knee
2 Tremor stopping in less than 10 secs after reaching the knee
3 Tremor continuing for more than 10 seconds after reaching the knee
4 Uninterrupted tremor or test impossible

R L



19. ARCHIMEDES' SPIRAL
Sitting at table, Paper fixed,Dominant hand
Move from centre to outside in a continuous movement

0
1
2

3
4

on the line
deviates from line in places 
mostly off line but not 
crossing other neighbouring 
dotted line 
crosses lines 
incomplete and no 
resemblance to spiral

* •  •  •  *



Non ICARS Clinical Assessments

20. HYPERTONIA

21. HYPOTONIA

22. INCREASED REFLEXES - upper limbs 
Biceps, triceps, supinator deep tendon reflexes

0 normal
1 slight
2 very brisk (poly kinetic and/or presence of clonus)

23. INCREASED REFLEXES - lower limbs 
Knee and ankle deep tendon reflexes

0 normal
1 slight
2 very brisk (poly kinetic and/or presence of clonus)

24. DECREASED REFLEXES - upper limb

0 normal
1 reduced
2 absent

25. DECREASED REFLEXES - lower limb

0 normal
1 reduced
2 absent

26. PLANTERS

0 normal
1 no response from big toe
2 Babinski



SUMMARY

Biceps Triceps Supinator Knee Ankle Planters
Right
Left

0 absent
+/- present with re-inforcement
+ normal
++ brisk but not pathologic
+++ pathologically brisk

27. VIBRATION
At styloid apophysis of ulnar bone 
Tibial tuberosity 
External malleolus

0 normal
1 decreased at lower limbs
2 decreased at upper and lower limbs
3 absent at lower limbs
4 absent at upper and lower limbs



General Health Questionnaire (GHQ-12)

• We would like to know if you have any medical complaints and how your helath has 
been, over the pat few weeks

• Please answer all the questions on the following pages simply by marking the 
answer which you think most nearly applies to you

• Remember that we want to know about present and recent complaints, not about 
those that you have had in the past
Have you recently: _________________________________________

1. Been able to 
concentrate on 
whatever you’re doing?

Better than 
usual

Same as 
usual

Worse than 
usual

Much worse 
than usual

2. Lost much sleep 
over worry?

Not at all No more than 
usual

Rather more 
than usual

Much more 
than usual

3. Felt that you are 
playing a useful part in 
things?

More so than 
usual

Same a s 
usual

Less useful 
than usual

Much less 
useful

4. Felt capable of 
making decisions 
about things?

More so than 
usual

Same as 
usual

Less so than 
usual

Much less 
capable

5. Felt constantly under 
strain

Not at all No more than 
usual

Rather more 
than usual

Much more 
than usual

6. Felt you could’nt 
overcome your 
difficulties?

Not at all No more than 
usual

Rather more 
than usual

Much more 
than usual

7. Been able to enjoy 
your normal day-to-day 
activities?

More so than 
usual

Same as 
usual

Less so than 
usual

Much less 
than usual

8. Been able to face up 
to your problems?

More so than 
usual

Same as 
usual

Less able than 
usual

Much less 
able

9. Been feeling 
unhappy and 
depressed?

Not at all No more than 
usual

Rather more 
than usual

Much more 
than usual

10. Been losing 
confidence in yourself?

Not at all No more than 
usual

Rather more 
than usual

Much more 
than usual

11. Been thinking of 
yourself as a worthless 
person?

Not at all No more than 
usual

Rather more 
than usual

Much more 
than usual

12. Been feeling 
reasonably happy, all 
things considered?

More so than 
usual

About same 
as usual

Less so than 
usual

Much less 
than usual



Name:
1. Are you 

1 female

Town of Residence:

2 Male

2. What is your age? (years) and date of birth? ... day ... month ...year

3. To which ethnic group do you belong?

1 White
2 Indian
3 Black/Caribbean
4 Pakistani
5 Black/African
6 Bangladeshi
7 Black/Other (please specify)
8 Chinese
9 Any other ethnic group (please specify)

4. Roughly when did your Friedreichs ataxia start
5. Roughly when was your Friedreichs ataxia diagnosed
6. Concerning your mobility indoors, please tick the most appropriate box 

I I I walk unaided

dH I use a stick or frame, or hold onto furniture or somebody when walking 

I I I use a wheelchair

7. Are you? (please circle one)

1 Single
2 Separated
3 Married
4 Divorced
5 With a partner
6 Widowed

8. Do you live? (please circle one):

1 Alone
2 With others (e.g. family, friends)



EUROQOL

By placing a tick in one box in each group below, please indicate which statement 
best indicates your own health state today.

Do not tick more than one box in each group

Mobility
I have no problems walking about □
I have some problems walking about □
I am confined to bed □

Self-Care
I have no problems with self-care □
I have some problems washing and dressing myself □
I am unable to wash and dress myself □

Usual activities (e.g. work, study, housework, family or leisure-activities)
I have no problems with performing my usual activities □
I have some problems with performing my usual activities □
I am unable to perform my usual activities □

Pain/Discomfort
I have no pain or discomfort □
I have moderate pain or discomfort □
I have extreme pain or discomfort □

Anxiety/Depression
I am not anxious or depressed □
I am moderately anxious or depressed □
I am extremely anxious or depressed □



To help people say how 
Good or bed a health state 
is, we have drawn a scale 
(rather like a thermometer) 
on which the best state you 
can imagine is marked 100 
and the worst you can 
imagine is marked 0.

We would like you to indicate 
on this scale how good or bad 
your own health is today, 
in your opinion.
Please do this by drawing a 
line from the box below to 
whichever point on the scale 
indicates how good or bad 
your health state is.

Y o u r  o\\  11 
h e a l t h  s t a t e  

t o d a \

75

50

0

25

100



It will help us to understand your answers better if we have a little background data 
from everyone, as covered in the following questions

1. What is your age in years<

2. Are you male
female

3. Are you a current smoker
an ex-smoker 
a never smoker

4. Which of the following best describes your main activity
In employment or self-employment
Retired
Housework
Student
Seeking work
Other (please specify

5. Did your education continue after the minimum school leaving age?

Yes
No

6. Do you have a degree or equivalent professional qualification

Yes
No

7. If you know your postcode please write it here

Thank you for taking the time to complete this questionnaire.
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POSTAL BARTHEL INDEX

• These are some questions about your ability to look after yourself
• They may not seem to apply to you. Please answer them all.
• Tick one box in each section

1. Bathing... In the bath or shower, do you:

manage on your own? 
need help getting in or out? 
need other help? 
never have a bath or shower? 
need to be washed in bed?

(remember- tick one box only)

Transfer.. Do you move from bed to chair:

on your own? 
with a little help from one person? 
with a lot of help from one or more person? 
not at all?

(remember- tick one box only)

Dressing. Do you get dressed:

Feeding..

Mobility..

(remember- tick one box only)without any help? 
just with help with buttons? 
with someone helping you most of the time?

Do you eat food:

without any help? (remember -  tick one box only)
with help cutting food or spreading butter? 
with more help?

Do you walk indoors:

without any help apart from a frame? (remember- tick one box only)
with one person watching over you?
with one person helping you?
with more thanone person helping?
not at all?
or do you use a wheelchair independently (e.g. round corners)?



6. Stairs.. Do you climb stairs at home:

□ without any help? (remember -  tick one box only)
□ with someone carrying your frame?
□ with someone encouraging you?
□ with physical help?
□ not at all?
□ don’t have stairs?

7. Toilet use... Do you use the toilet or commode:

□ without any help? (remember -  tick one box only)
□ with some help but can do something?
□ with quite a lot of help?

8. Grooming... Do you brush your hair and teeth, wash your face and shave:

□ without help? (remember -  tick one box only)
□ with help?

9. Bladder... Are you incontinent of urine?

□ never (remember -  tick one box only)
□ less than once a week
□ less than once a day
□ more often
□ or do you have a catheter managed for you?

10. Bowels... Do you soil yourself?

□ never (remember -  tick one box only)
□ occasional accident
□ all the time
□ or do you need someone to give you an enema?

Please check that you have answered all the questions. Thank you very much for your help.



Medical Outcomes Study Short-Form 36-Item Health Survey (SF-36)

• This survey asks for your views about your health. This information will help 
keep track of how well you are able to do your usual activities.

• Answer every question by marking the answer as indicated

• If you are unsure about how to answer a question please give the best 
answer you can.

1. In general, would you say your health is:

Circle one 
Excellent 1
Very good 2
Good 3
Fair 4
Poor 5

2. Compared to one year ago, how would you rate your health in general now?

Circle one
Much better now than one year ago 1
Somewhat better now than one year ago 2
About the same as one year ago 3
Somewhat worse now than one year ago 4
Much worse now than one year ago 5



3. The following questions are about activities you might do during a typical 
day. Does your health now limit you in these activities? If so, how much?

Circle one number
ACTIVITIES Yes, 

limited a 
lot

Yes, 
limited a 
little

No, not 
limited at 
all

a) Vigorous activities, such as running, lifting heavy 
objects, participating in strenuous sports

1 2 3

b) Moderate activities, such as moving a table, 
pushing a vacuum cleaner, bowling, or playing golf

1 2 3

c) Lifting or carrying groceries 1 2 3

d) climbing several flights of stairs 1 2 3

e)climbing one flight of stairs 1 2 3

f)Bending, Kneeling, stooping 1 2 3

g) Walking more than a mile 1 2 3

h) Walking half a mile 1 2 3

i) Walking one hundred yards 1 2 3

j) Bathing or dressing yourself 1 2 3

4. During the past 4 weeks, have you had any of the fillowing problems with your 
work or other regular daily activities as a result of your physical helath?_______
Circle one number on each line Yes No

a) Cut down the amount of time you spent on work or other 
activities

1 2

b) Accomplished less than you would like 1 2

c) Were limited in the kind of work or other activities 1 2

d) Had difficulty performing the work or other activities (for 
example, it took extra effort)

1 2



5. During the past four weeks, have you had any of the following problem with 
your work or other regular daily activities as a result of any emotional 
problems (such as feeling anxious or depressed)?

Circle one number on each line Yes No

a) Cut down on the amount of time you spent on work or other 
activities

1 2

b) Accomplished less than you would like 1 2

c) Did’nt do work or activities as carefully as usual 1 2

6. During the past four weeks, to what extent has youe physical helath or 
emotional problems interfered with your normal social activitieswith family, 
friends, neighbours, or groups?

Circle one
Not at all 1
Slightly 2
Moderately 3
Quite a bit 4
Extremely 5

7. How much bodily pain have you had during the past four weeks?

Circle one
None 1
Very mild 2
Mild 3
Moderate 4
Severe 5
Very severe 6



8. During the past 4 weeks, how much did pain interfere with your normal work 
(including both work outside the home and housework)

Circle one
Not at all 1
A little bit 2
Moderately 3
Quite a bit 4
Extremely 5

9. These questions are about how you feel and how things have been with you 
during the past four weeks. For each question, please give the one answer 
that comes closest to the way you have been feeling. How much of the time 
during the past four weeks -

Circle one number on each 
line

All of
the
time

Most 
of the 
time

A good 
bit of 
the time

Some 
of the 
time

A little 
of the 
time

None 
of the 
time

a) Did you feel full of life? 1 2 3 4 5 6

b) Have you been a very 
nervous person?

1 2 3 4 5 6

c) Have you felt so down in the 
dumps that nothing could 
cheer you up?

1 2 3 4 5 6

d) Have you felt calm and 
peaceful?

1 2 3 4 5 6

e) Did you have a lot of 
energy?

1 2 3 4 5 6

f) Have you felt downhearted 
and low?

1 2 3 4 5 6

g) Did you feel worn out 1 2 3 4 5 6

h) Have you been a happy 
person?

1 2 3 4 5 6

i) Did you feel tired? 1 2 3 4 5 6



10. During the past four weeks, how much of the time has your physical health or 
emotional problems interfered with your social activities(like visiting with 
friends, relatives, etc.)?

Circle one
All of the time 1
Most of the time 2
Some of the time 3
A little of the time 4
None of the time 5

11. How TRUE or FALSE is each of the following statements for you?

Circle one number on each line Definitely
true

Mostly
true

Don’t
know

Mostly
false

Definitely
false

a) I seem to get ill a little easier than 
other people

1 2 3 4 5

b) I am as healthy as anybody I know 1 2 3 4 5

c) I expect my health to get worse 1 2 3 4 5

d) My health is excellent 1 2 3 4 5

Thank you very much for your help.
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