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Abstract

A major bottleneck in drug discovery is the production of soluble human 

recombinant protein for functional, biochemical and structural analyses. The 

level o f recombinant protein expression is controlled by a complex relationship 

between both biological and engineering variables. Due to the inter-play between 

these variables and standard experimental methods, the identification o f the key 

variables which lead to improved protein expression can sometimes be missed. 

This thesis presents a framework which underpins the generation o f large 

quantities of soluble recombinant protein in E. coli in a rapid and cost-effective 

manner. To achieve this goal, Design o f Experiments (DoE) was first employed 

in combination with microwell plate (MWP) fermentations to investigate the 

wide array of protein expression variables. These tools are well suited to high- 

throughput expression requirements as they afford large savings in time, cost and 

resource requirements. The information generated from these MWP experiments 

was then exploited to devise a strategy for reproducing the process within stirred- 

tank reactors (STRs).

The DoE methodology was first used to identify relevant protein expression 

variables including fermentation variables (media type and fermentation time), 

protein induction variables (inducer concentration and induction time) and 

environmental variables such as oxygen transfer rate, temperature and pH. Ten 

factors were screened overall at the microwell scale and three were investigated 

further through optimisation designs. The application o f DoE led to a robust 

understanding of the process and resulted in protein yields five-fold greater than 

those obtained under standard shake-flask conditions. The most significant 

factors were post-induction period and shaking speed, the latter o f which is 

strongly related to the mass transfer coefficient, kia.

In order to translate this stable and optimised small-scale expression system to a 

production-scale stirred-tank reactor (STR), an understanding o f the engineering 

parameters at both scales o f operation was crucial. This need was complicated by 

significant differences between the MWPs and STRs such as geometry, mode of
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aeration and agitation, and the effects of surface tension. In this work, the MWP 

fermentation results led to the hypothesis that operation at a constant kLa value 

would facilitate predictable scale translation. However, there currently exists 

very little published work on the characterisation o f within MWPs. Miniature 

oxygen probes were, therefore, used to characterise MWP kia  values directly via 

the static gassing-out method over a range o f square-well MWP formats and 

shaking speeds.

This information was then used to translate the performance of a 3ml MWP E. 

coli fermentation, on the basis o f matched kia, to STR working volumes o f 51 

and 451. The efficacy o f scale-up was confirmed by performing F  tests on pairs 

of profiles for cell growth and expression levels of recombinant firefly luciferase. 

This rapid, accurate and direct method o f kia  characterisation within MWPs 

enabled a 15,000-fold direct scale-up o f fermentation performance in terms of 

cell growth and protein expression from MWP to STR.
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Glossary

a significance level

Po constant term
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Pu interaction effect
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P density, kg.m'3

CT standard deviation

TP probe response time, s

ai initial specific surface area, n f 1

af final specific surface area, m '1

Bo
'y

Bond number, pdv g/W, dimensionless

CER carbon-dioxide evolution rate, mmol.I'1.h'1

c P unsaturated oxygen fraction at time t, dimensionless

dt shaking amplitude, m

dv microwell vessel diameter, m

D 9 1diffusion coefficient, m .s'

D, impeller diameter, m

DoE Design of Experiments

DOT dissolved oxygen tension, %

FFL Firefly luciferase

Fr Froude number dt(27in)2/(2g), dimensionless

g
•y

acceleration due to gravity, m.s'

HTES High-throughput expression screening

HTPE High-throughput protein expression

HTS High-throughput screening

h a Mass transfer coefficient

MSBR Miniature stirred bioreactor

MWP Microwell plate

n shaking frequency, s '1
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N impeller speed, s"1
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(predictive R2)
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1 Introduction

1.1 Drug discovery

1.1.1 The current direction o f drug discovery

It is widely accepted that virtually all human diseases except trauma has some 

basis in our genes (Collins, 1999). In April 2003, the Human Genome Project 

(HGP) completed a rough draft o f the human genome within which 20,000 to

25.000 genes were identified (Human Genome Sequencing Consortium, 2004). 

Extrapolations from the now complete genome sequence predict that between

2.000 and 3,000 genes favour interactions with drug-like chemical compounds 

(Russ and Lampel, 2005). Recent estimates state that there are only 268 

therapeutic targets which are targeted by at least one marketed drug (Zheng et 

al., 2006). The exposure o f this shortfall has provided the main impetus for a 

new wave o f drug discovery in the post-genomic era.

Since virtually all human diseases have a hereditary component, it is perhaps not 

so surprising that the vast majority o f today’s drug targets are gene-products, 

proteins (Dahl and Sylte, 2006; Tyers and Mann, 2003). For this reason, 

proteomics, the study of protein function, has recently become of burgeoning 

interest to the pharmaceutical industry.

The sequencing of the human genome and that of many pathogens has provided a 

sequence based framework for investigating proteomes (Hanash, 2003), opening 

the gateway for proteomics to emerge. As a result, there is now intense interest in 

applying proteomics to increase our knowledge of disease processes, develop 

new biomarkers for early detection and diagnosis of disease, and accelerate drug 

development (Hanash, 2003).

The HGP required high-throughput and cost-effective technology to process the 

immense amount of information contained within the human genome. The field 

of proteomics now presents a much greater challenge due to the far larger size,
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complexity and dynamic nature o f the human proteome. The need for high- 

throughput technology is, therefore, greatly amplified and lies at the core of 

today’s drug discovery effort.

1.1.2 Drug discovery process

The field o f drug discovery is highly diverse and complex and the exact process 

differs widely within the pharmaceutical industry. Figure 1.1 illustrates a generic 

drug discovery process. Although a sequential process is shown here, in reality a 

large number of iterative cycles may be involved. Thus, Figure 1.1 should be 

seen as the overall sequence o f steps required, but not as a literal depiction o f any 

given drug discovery program.

Pre-clinical Drug 

Development

Screening

Phase

Hits to Leads

Target

Discovery

Lead

Optimisation

Target

Validation

Figure 1.1 Generic process of drug discovery

The process description that follows is a brief and generalised overview. The first 

stage involves the identification of a suitable disease target, towards which the 

Human Genome Project and, subsequently, functional genomics has contributed 

tremendously (Debouck and Metcalf, 2000; Mundy, 2001). The vast majority of 

therapeutic targets are proteins (Bleicher et al., 2003; Dahl and Sylte, 2006; 

Lindsay, 2003) which originate either in humans or in infectious agents such as 

bacteria, fungi and viruses. The role and function of a therapeutic target is 

investigated and its chemical tractability or “druggability” evaluated.
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Target Validation aims to demonstrate that a molecular target is critically 

involved in a disease process and that modulation of the target is likely to have a 

therapeutic effect. This stage involves in vitro and in vivo biochemical analysis 

and provides fundamental information which will direct and aid the screening 

phase. For example, target validation may generate information relating to the 

relevant form of the target protein needed for screening e.g active or inactive, 

membrane bound or cytoplasmic.

The Screening Phase (or Hit Generation) o f the drug discovery process is broad 

in scope where various techniques can be applied to asses how effectively 

compounds interact with the target protein. Techniques such as bioassays, 

structure based methods (X-ray crystallography and Nuclear Magnetic 

Resonance) and biophysical techniques such as thermal denaturation and 

isothermal calorimetry are all used in the screening phase of modem drug 

discovery. The cost, time and throughput o f these techniques vary as does the 

level of detail obtained regarding the binding o f compounds to the target protein. 

These screening techniques require differing levels of target protein and so a 

flexible production capacity is required to accommodate these needs.

Traditionally, a functional biochemical assay would be used to screen compound 

libraries where a value for the inhibition o f the target protein could be calculated. 

This type of in vitro assay is the basis for High-Throughput Screening (HTS) 

where the assay is formatted onto microwell plates (MWPs) and compound 

libraries of >200,000 compounds can be screened in a timely fashion. Whilst the 

throughput of an HTS screen is very rapid, the sensitivity of the assay can be 

quite low with compounds requiring a low micro-molar potency to be detected. 

Therefore, smaller but more novel compounds could be missed in this type of 

screen. Although a value for the inhibition of the compound against the target 

protein is calculated in an HTS campaign, no information is generated regarding 

the actual binding mode of the compound to the protein. This information is 

highly valuable to the medicinal chemist when trying to optimise the potency and 

selectivity o f the compound.
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More recently, protein crystallography has emerged as a powerful screening tool 

for hit generation. Traditionally, protein crystallography has been used in the 

latter stages of the drug discovery process. However, advances in protein 

production, crystallisation and data collection have enabled this technique to be 

used in the screening phase. The generation of detailed structural information on 

how the compound interacts with the target protein is immensely powerful and is 

the key to designing more selective and potent drugs. The use of High 

Throughput Crystallography in structure based drug design has been enhanced by 

advances in in silico methods. Prior structural information can be used to enrich 

compound libraries with molecules that have been shown computationally to 

interact well with the target protein. Through iterative cycles of structure 

determination of protein/ligand complexes coupled to medicinal chemistry, 

detailed Structure Activity Relationships (SARs) can be generated.

The Hits to Leads phase builds up significant SAR data around the initial hits 

obtained from the screening phase. Chemical moeties with different 

functionalities are added onto the initial hit in an attempt to improve the binding 

of the compound to the target protein. These new compounds are then re

screened to establish which o f the modifications have improved the potency of 

the compounds. The Lead Optimisation phase focuses on a few lead series that 

look the most attractive in terms o f potency, selectivity and physicochemical 

properties. Medicinal chemists take these lead compounds and alter their 

structures using all the knowledge gained thus far, drawing heavily from SAR 

data, to improve the drug qualities o f lead compounds such as stability, 

bioavailability and absorption, distribution, metabolism, and excretion (ADME) 

profiles. These drug candidates are then assessed in more extensive in vivo 

studies and animal models to generate pharmacokinetics (PK), 

pharmacodynamics (PD), ADME and toxicity data. If the profile of a lead 

compound is deemed to be promising then it progresses through to drug 

development.
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1.1.3 Drug discovery challenges

A study of therapeutics in clinical trials between 1991 and 2000 revealed an 89% 

average failure rate across ten large pharmaceutical companies (Kola and Landis,

2004). The scale o f this problem is compounded once the development time and 

cost for new drugs are considered. The average development time of all drugs 

that gained approval in 2002 was 12 years 10 months; the average development 

cost of a new drug in 2001 was approximately US $802 million (DiMasi et al., 

2003) and some authors believe the true cost may be more than double this 

amount (Adams and Brantner, 2006). In addition to these costs is the human cost 

of the failure to discover new treatments, and the cost in animal lives throughout 

the research process. Understanding the root causes of clinical drug failure and 

minimising attrition is, therefore, one o f the most important aims of today’s 

pharmaceutical discovery programmes (Nicholson et al., 2002).

The major causes of attrition in the clinic in 2000 were lack of efficacy, 

accounting for approximately 30 % of failures, and safety, accounting for a 

further 30 %, (Kola and Landis, 2004). The vast majority o f attrition occurs in 

clinical development (Kola and Landis, 2004) at which stage the cost of failure is 

very high (Bleicher et al., 2003; Nicholson et al., 2002). Early measures are, 

therefore, required to increase the understanding of drug properties within the 

drug discovery process.

The key to overcoming this obstacle is to obtain a more rigorous understanding 

of how drug candidates bind and interact with their protein targets (Stewart et al., 

2002). To this end, it is critical that a more detailed knowledge of protein and 

drug structures is generated at the screening phase of drug discovery. This would 

enable medicinal chemists to optimise the drug properties o f the lead molecules. 

For example, detailed knowledge of a target molecule’s binding site would 

facilitate in the design o f drug compounds with higher potency and selectivity 

(Blundell et al., 2002). This in turn would decrease the occurrence o f side 

reactions and might also improve efficacy and toxicity profiles, the leading 

factors in drug attrition.
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X-ray crystallography is perhaps the most commonly used tool for three- 

dimensional molecular structure determination (Blundell and Patel, 2004; 

Congreve et al., 2005; Kuhn et al., 2002; Stewart et al., 2002). The generation of 

sufficient quantities of soluble recombinant protein for the production of 

diffraction-quality crystals can present a bottleneck to the entire drug discovery 

process (Stewart et al., 2002). Furthermore, there is a growing requirement to 

increase the throughput of X-ray crystallography (Blundell and Patel, 2004; 

Congreve et al., 2005; Kuhn et al., 2002; Stewart et al., 2002). For instance, 

fragment-based lead-discovery is becoming increasingly popular for identifying 

better lead molecules so as to reduce attrition (Rees et al., 2004). Molecular 

fragments by their very nature are o f low chemical complexity and display 

limited functionality which results in a lower affinity in conventional biological 

assays (Gill et al., 2005). X-ray crystallography is able to detect low-affinity 

binding and so has emerged as a complimentary/replacement approach to 

traditional high-throughput screening (Rees et al., 2004). Furthermore, screening 

throughput itself may be driven higher as a result of the increased identification 

o f potential therapeutic targets from functional genomics research, as outlined in 

Section 1.1.2. Overall, therefore, there is intense interest in enhancing throughput 

by automating all steps o f protein crystallography, the first step of which is the 

rapid and cost-effective production o f soluble protein samples (Congreve et al., 

2005).

1.2 High Throughput Protein Expression

1.2.1 Choice of expression system

The choice of expression system can greatly affect the yield and activity of a 

protein (Blundell and Patel, 2004; Stewart et al., 2002). There is no universal 

expression system for heterologous proteins (Rai and Padh, 2001) and so the 

selection o f an appropriate system involves an assessment of the benefits and 

disadvantages of each system in relation to the application requirements. This 

project aims to establish a framework that will underpin the generation o f large 

quantities of soluble protein in a rapid and cost-effective manner. A model
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expression system is required, therefore, the properties of which should facilitate 

the development of the framework. A model expression host should:

i. grow rapidly;

ii. require simple and inexpensive substrates;

iii. express high yields of heterologous protein;

iv. lend well to high-throughput production, MWP growth, automation and 

scale-up.

An immediate choice would be a bacterial expression host as it meets all these 

requirements. Escherichia coli in particular is an ideal host as it grows rapidly 

with a short doubling time o f ~20 minutes (Singleton and Sainsbury, 2002), it is 

inexpensive to culture (Blundell and Patel, 2004; Hunt, 2005) and efficient 

expression of recombinant product to more than 50 % of total cell mass has been 

reported (Andersen and Krummen, 2002; Baneyx, 1999; Jana and Deb, 2005; 

Swartz, 2001). Moreover, a wealth o f information exists regarding its genetics 

and physiology which greatly facilitates gene cloning and cultivation (Rai and 

Padh, 2001).

1.2.1.1 Bacterial expression systems

Since E. coli is a simple organism, it is also highly amenable for growth within 

the MWP format using standard shaking incubators (Hunt, 2005). This utility 

allows many parameters to be analysed simultaneously in small volumes which, 

in turn, allows the rapid identification o f optimal expression conditions for the 

generation of large quantities o f recombinant protein.

These properties make E. coli the most widely used host in industry for 

recombinant protein expression, provided post-translational modifications o f the 

product are not required (Andersen and Krummen, 2002; Blundell and Patel, 

2004; Choi et a l, 2006; Graumann and Premstaller, 2006; Hunt, 2005; Rai and 

Padh, 2001; Stewart et al., 2002; Walsh, 2002).
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If diffraction-quality crystals are not readily obtainable using E. coli, then several 

alternative expression systems are available, each with its own unique 

combination o f benefits and disadvantages in relation to cost, ease o f use, and 

post-translation al modification profiles.

1.2.1.2 Yeast expression systems

Yeast systems present the favoured alternative host for expression of 

recombinant proteins for research, industrial and medical use (Rai and Padh,

2001) of which the most common strains are Saccharomyces cerevisiae and 

Pichia pastoris (Andersen and Krummen, 2002; Graumann and Premstaller, 

2006; Stewart et al., 2002). Yeasts have played a central role in many traditional 

biotechnological processes such as brewing and baking and so they, like E. coli, 

are very well characterised within modem biotechnology. Yeasts are simple 

eukaryotes and thus are able to perform a range of post-translational 

modifications required by many human proteins. They usually grow fast, but 

slower than E. coli, and are also able to secrete proteins to the culture medium 

(Graumann and Premstaller, 2006) which facilitates isolation and purification of 

the product. Although a variety o f therapeutic proteins have been manufactured 

in Saccharomyces cerevisiae, expression levels of heterologous protein are often 

low, typically representing less than 5 per cent of total cellular protein (Walsh,

2002).

1.2.1.3 Insect cell/baculovirus expression systems

Insect cell lines are also emerging as popular systems for overproducing 

recombinant proteins (Rai and Padh, 2001). Heterologous protein expression is 

usually mediated by the baculovirus expression system which is highly specific 

to the target cell line. The gene encoding the protein of interest is introduced into 

a non-essential region of the viral genome. The virus is then propagated within 

the insect cell culture and the recombinant protein is expressed in the process. 

The main advantage afforded by insect cells is that they are able to produce many
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of the post-translational protein modifications that occur in human cells (Davies, 

1994). The majority of proteins expressed within insect cells are, therefore, 

soluble (Rai and Padh, 2001). However, insect cells grow much slower than 

bacteria or yeasts with a doubling time o f approximately 24 hours (O'Reilly et 

al., 1992) and the cost and complexity o f the growth medium is usually high. 

Furthermore, expression levels of heterologous protein have thus far been highly 

variable (Walsh, 2002).

1.2.1.4 Mammalian expression systems

Proteins which require mammalian-specific post-translational modifications 

should ideally be expressed in mammalian cells (Rai and Padh, 2001). Chinese 

hamster ovary (CHO), human embryonic kidney (HEK 293) and non-secreting 

murine myeloma (NS0) cell expression systems have now established themselves 

as the predominant systems for mammalian expression (Andersen and Krummen, 

2002). Mammalian cell culture requires complex and expensive culture media 

(Rai and Padh, 2001; Walsh, 2002) and low product yields are often obtained 

(Rai and Padh, 2001). Furthermore, cell growth is slower and more complicated 

than the expression systems reviewed thus far. As such, they are not the first 

choice for high-throughput protein production.

1.2.1.5 Cell-free expression systems

Perhaps the most interesting emerging technology is that of cell-free expression 

systems. These include both more traditional systems using cell extracts and 

systems reconstituted from purified components (Kim and Swartz, 2001; 

Shimizu et al., 2001). The main advantages o f these systems over conventional 

in vivo systems are: (i) the target protein is the only protein synthesised which 

greatly simplifies the purification requirements, (ii) the reaction is rapid and can 

be carried out in small volumes and (iii) the absence of living cells makes the use 

of a wide range of different reaction conditions possible (Ozawa et al., 2005). A 

further advantage of this system is that chemical modifications for structural
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studies such as N 15 and C 13 labelling and Selino-Methionine labelling can be 

made in a more straight forward manner

Recombinant proteins are often expressed in more than one system during drug 

discovery (Janssen, 2004). A bacterial expression system may be used for initial 

studies to determine solubility or activity or to produce large amounts of protein 

for structural studies. In order to obtain higher activity or post-translational 

modifications, the same gene might then be expressed in eukaryotic cells (protein 

expression and purification techniques). Overall, Escherichia coli, remains the 

first choice of expression system for producing samples for protein 

crystallography (Blundell and Patel, 2004; Edwards et al., 2005). It will, 

therefore, be used as the model expression host in this project.

1.2.2 Mechanism of protein expression

In general, both constitutive and inducible systems have been described for E. 

coli where the latter dominate (Graumann and Premstaller, 2006). The expression 

of recombinant proteins induces a metabolic burden, which is defined as the 

amount of resources which are withdrawn from the host metabolism for 

maintenance and expression o f foreign DNA (Bentley and Kompala, 1990). 

Maximum productivity in recombinant E. coli is often achieved when the growth 

and production phases are separated by delaying the induction time until the cell 

density reaches a suitable value (Choi et al., 2006). This approach is especially 

important when the expression target is toxic to the cell (Baibas, 2001; Jana and 

Deb, 2005; Sorensen and Mortensen, 2005). The ideal expression vector tightly 

regulates gene expression to achieve rapid cell growth to sufficient densities 

before the induction phase.

E. coli strain BL21 (DE3) was chosen as the model expression system for this 

project. BL21 is a robust and commonly used strain for the expression of 

recombinant proteins (Sorensen and Mortensen, 2005). It is deficient of both the 

Ion protease and the ompT outer membrane protease (Grodberg and Dunn, 1988). 

The lack of two key proteases reduces degradation of heterologous proteins. The
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DE3 designation indicates that the strain contains the XDE3 lysogen that carries 

the gene for T7 RNA polymerase under control of the lac\JV5 promoter. This 

promoter contains a mutation in the consensus region of the lac promoter which 

increases its strength (Reznikoff, 1980). Expression of T7 RNA polymerase is 

inducible by isopropyl-p-D-thio-galactopyranoside (IPTG), a lactose analogue, 

which binds to the lac\ repressor and reduces its affinity for the lac operator; the 

overall expression mechanism is summarised effectively by Sorensen and 

Mortensen (2005).

The pET (plasmid for expression by 77 RNA polymerase) vector system was 

developed by Studier et al. (1990) for cloning and expressing recombinant DNA 

under control o f a T7 promoter. Due to the high selectivity of T7 RNA 

polymerase for the T7 promoter, transcription of target DNA by E. coli RNA 

polymerase in the absence o f T7 RNA polymerase is low enough to enable the 

expression of very toxic genes (Studier et al., 1990), which increases the 

applicability o f the model expression system. Furthermore, pET vectors confer 

antibiotic resistance upon their host and so serve as a selectable marker. The 

pET expression system is by far the most widely used currently in recombinant 

protein expression (Sorensen and Mortensen, 2005) and high levels o f success 

have been reported in obtaining diffraction-quality protein crystals originating 

from E. coli BL21 (DE3) cells transformed with the pET vector (Folli et al., 

2001; Goulding and Perry, 2003; Park et al., 2005; You et al., 2003).

1.2.3 Factors influencing soluble protein expression

Much research has been carried out into optimising soluble heterologous protein 

expression through host strain and vector development (for detailed reviews, see 

Baneyx, 1999; Georgiou and Valax, 1996; Hannig and Makrides, 1998; Jana and 

Deb, 2005; Sorensen and Mortensen, 2005; Weickert et al., 1996). A simpler and 

often equally effective approach is to manipulate the culture conditions 

(Georgiou and Valax, 1996). Relatively little research has been carried out in this 

area, however.
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Batch cultivation is the simplest way to produce a recombinant protein (Jonasson 

et al., 2002), and it is particularly appropriate for the MWP format. Several 

factors are reported to affect cell growth and soluble protein expression within 

this mode of fermentation. Fermentation variables such as media composition, 

pH, temperature and dissolved oxygen can affect transcription, translation, and 

proteolytic activities within a cell (Choi et al., 2006; Bird et al., 2004). Protein 

induction conditions such as pre-induction cultivation period, inducer 

concentration, post-induction cultivation period and the levels of fermentation 

variables during the induction phase also affect expression levels (Choi et al., 

2000; Jeong and Lee, 1999; Yim et al., 2001). In order to investigate these 

effects on expression levels of heterologous protein, it is vital that all other minor 

variables are controlled between batches.

The composition of the growth medium has significant effects on both the rate of 

cell growth and level o f product accumulation (Broedel et al., 2001; Jana and 

Deb, 2005). The translation o f different mRNAs, for example, is differentially 

affected by changes in the culture medium (Corisdeo and Wang, 2004). Fast 

growth due to high concentrations o f rapidly metabolised sugars is often 

associated with low productivity o f recombinant protein (Stanbury and Whitaker,

1993). Furthermore, Broedel et al. (2001) observed that the optimal medium 

composition for soluble protein expression differed between proteins.

It is well established (Riesenberg, 1991) that E. coli growth is inhibited when the 

following nutrients are present above certain concentrations (shown in brackets): 

glucose (50 g .l1), phosphorous (10 g.l'1), magnesium (8.7 g.l"1), ammonia (3 g.l" 

'), iron (1.15 g.l'1) and zinc (0.038 g.l’1). It is, therefore, important to develop 

media in which these components are present at non-inhibitive concentrations.

While defined media are generally used to obtain high-cell densities (Sang,

1996), complex media are often employed in industrial settings because o f lower 

costs and more robust cell growth (Diaz-Ricci et al., 1990). Although 

fermentations in complex media are more prone to variation due to varying 

nutrient compostion and quality (Jonasson et al., 2002; Sang, 1996), the vitamins
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and macromelocular precursors provided by the media are often necessary to 

obtain high levels of recombinant protein (Diaz-Ricci et al., 1990; Jonasson et 

al., 2002).

A major challenge in the production of heterologous protein at high cell density 

is the formation of acetate, a lipophilic agent that inhibits cell growth (Jana and 

Deb, 2005; Luli and Strohl, 1990). The wide range of detrimental effects on the 

growth o f E. coli caused by acetate accumulation is reviewed in detail by 

Shiloach and Fass (2005). Acetate is produced when the culture is grown in the 

presence of glucose or under oxygen limiting conditions (Kleman and Strohl,

1994) and it is important to maintain the acetate concentration below a certain, 

inhibitory level (Jonasson et al., 2002). One way of achieving this is by using 

glycerol in preference to glucose as the carbon substrate (Holms, 1996; Korz et 

al., 1995); at least one study has demonstrated a two-fold increase in 

recombinant protein expression from E. coli cultures grown on glycerol 

compared to those grown on glucose (Lee et al., 1997).

The pH of the culture medium can also affect product yield. One benefit o f 

avoiding acetate formation is that it minimises the pH disturbance which is of 

particular concern with respect to MWP cultures where pH control is not 

routinely available. The optimal pH range for E. coli growth is approximately 6-8 

(Ingraham and Marr, 1996) and several studies have also observed optimal 

recombinant protein production in E. coli within this pH range (Dien et al., 2001; 

Ryan and Parulekar, 1990; Wang et al., 2005). Although relatively little 

information exists on the behaviour of pH-uncontrolled systems, Calik et al. 

(2006) reported higher cell concentrations and product yields from batch 

fermentations with no pH control compared to those with pH control.

Temperature is another important variable. Cultivation at reduced temperature 

slows down cell growth and protein synthesis (Peng et al., 2004). Although this 

generally leads to a lower final biomass concentration, the amount of soluble 

recombinant protein is usually increased. These factors contribute to a higher 

solubility of foreign proteins (Schein, 1989) and the technique has proved
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effective in producing a number o f proteins which are typically poorly expressed 

(Vasina and Baneyx, 1997). The reason why cultivation at a lower temperature of 

-30  °C favours the native state is related to a number of factors, including a 

decrease in the propensity o f hydrophobic interactions which cause proteins to 

aggregate (Georgiou and Valax, 1996; Kiefhaber et al., 1991), a slower rate of 

protein synthesis (Georgiou and Valax, 1996), the partial elimination of heat 

shock proteases (Chesshyre and Hipkiss, 1989) and an increase in the expression 

of E. coli chaperones (Ferrer et al., 2003; Mogk et al., 2002).

Oxygen is an essential nutrient for the aerobic growth of E. coli (Andersen and 

von Meyenburg, 1980; McDaniel et al., 1965), but at the same time it is the most 

difficult to supply because o f its low solubility (Li et al., 1992). For this reason 

the oxygen demand may become the limiting factor o f E. coli growth, if it 

exceeds the oxygen transfer capacity o f the fermentation vessel (Maier and 

Buchs, 2001). This is more likely to occur if rapidly metabolised sugars such as 

glucose, which lead to high oxygen demand, are available in high concentrations 

(Stanbury and Whitaker, 1993). The issue o f oxygen demand is particularly 

significant to shaken MWP cultures, where oxygen supply, provided solely by 

surface aeration, may be poor.

There are no definitive rules regarding the effect of oxygen supply on expression 

levels of recombinant protein. This is because there are relatively few published 

studies in this area and furthermore, those that do exist observe differing trends. 

In a study by De Leon et al. (2003), the maximum production of active penicillin 

acylase by E. coli was obtained at a dissolved oxygen tension (DOT) o f 1 %. In 

contrast, Bhattacharya and Dubey (1997) reported a drastic decrease in the level 

o f target protein (Msp\ methylase) in recombinant E. coli under oxygen-deficient 

conditions. This variable trend was summarised by Li et al. (1992) who 

examined the effects of dissolved oxygen levels on the level of biomass, plasmid 

content and the levels o f chloramphenicol acetyltransferase and beta- 

galactosidase within four recombinant strains of E. coli. The optimal dissolved 

oxygen concentration for the specific activity o f recombinant proteins was found 

to be dependent on both the host strain and the particular recombinant product. In
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light o f these studies, oxygen should prove to be an interesting variable for 

investigation.

The optimal conditions for inducing recombinant protein expression are highly 

dependent upon the characteristics o f the target protein and thus the extent of the 

imposed metabolic burden (Donovan et al., 1996). In many cases the inducer 

concentration is optimised to balance the decreasing yields of recombinant cells 

following induction with increasing cellular levels of target protein (Bentley et 

al., 1991). For soluble cytoplasmic proteins, this optimal level is usually 

approximately 1 mM IPTG (Bentley et al., 1991; Donovan et al., 1996). When 

product expression is low and/or does not significantly affect cell growth, overall 

heterologous protein yield is maximised by inducing expression throughout the 

entire growth phase (Donovan et al., 1996). However, if expression of the 

recombinant protein does impose a significant metabolic burden, induction at or 

beyond middle stage o f exponential growth may prove optimal (Bentley et al., 

1991; Donovan et al., 1996; Lee, 1996; Peng et al., 2004).

A common limitation of the studies mentioned so far is that they fail to 

adequately study the combined effect o f variables on heterologous protein 

expression. Thus no account is made for interactions between the large number 

o f variables. An objective of this project is to address this shortfall.

1.2.4 Microscale processing

A wide range of variables affect heterologous protein expression levels as 

described in Section 1.2.3 and numerous experiments are, therefore, required to 

adequately characterise the total complement o f interactions and effects. 

Microscale processing techniques are rapidly emerging as a means of satisfying 

the demands placed by High Throughput Protein Expression (HTPE) studies. 

Through the miniaturisation and automation of fermentation, these techniques 

allow for vast savings in time, money (especially where expensive media or 

substrates are involved), space and manpower (Kumar et a l, 2004; Lye et al.,
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2003; Maier and Buchs, 2001). This also enables a wider range of process 

variables to be examined (Lye et al., 2003).

The pressing need for reproducible and scalable high-throughput cultivation 

technology has identified several areas of research interest (Weuster-Botz et al.,

2005). These interests draw a parallel with the direction of research that followed 

the emergence of conventional bioreactors. For example, a quantitative 

understanding of the engineering parameters associated with the operation of 

small-scale fermentation vessels such as the hydrodynamics and mass transfer 

characteristics, is of primary concern (Fernandes and Cabral, 2006). The ability 

to measure online process parameters such as dissolved oxygen, temperature and 

pH is also needed. Appropriate sensors have been developed towards these 

purposes for a range of small-scale bioreactors including shake-flasks, miniature 

stirred bioreactors (MSBRs), and MWPs.

The shake-flask represents the classical parallel reactor used in biotechnology 

(Weuster-Botz, 2005). Scientists have used cell cultivation in shake-flasks as a 

means of process development for the past fifty years (Betts and Baganz, 2006), 

with volumes ranging from ca. 10 ml to 500 ml (Buchs, 2001). These reactors are 

inexpensive, easy to use and largely impervious to mechanical complications 

(Betts and Baganz, 2006; Kumar et al., 2004). Recently, instrumented shake- 

flasks have become available, which allow for the monitoring of pH and DOT 

levels online (Anderlei and Buchs, 2001; Wittmann et al., 2003). Other 

parameters such as the oxygen transfer rate (OTR) and carbon dioxide evolution 

rate (CER) can now also be measured online. A major limitation, however, is that 

shake-flask fermentations are not typically automated. Sampling, for example, 

requires the removal of the shake-flasks from the shaking device, thus 

interrupting oxygen supply (Kumar et al., 2004).

Miniature stirred bioreactors based on conventional STRs have been developed 

as an alternative to traditional shaken systems for early-stage process 

development (Betts and Baganz, 2006; Hsu and Wu, 2002; Harms et al., 2006; 

Kostov et al., 2001; Lamping et al., 2003; Zanzotto et al., 2004; Zhang et al.,
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2006). Despite their small size, temperature, pH and dissolved oxygen can be 

monitored and controlled at desired levels within MSBRs. They are also 

relatively easy to scale-up due to similarities in geometry and in methods of 

aeration and agitation with conventional bioreactors. The use of these reactors is, 

however, severely limited by their high costs relative to other small-scale devices 

and also the difficulties of their integration with high-throughput screening 

technologies (Kumar et a l,  2004; Weuster-Botz, 2005).

MWPs are perhaps the most popular choice for the screening stages o f high- 

throughput bioprocess development (Weuster-Botz et a l, 2005). They have been 

used to grow a wide range of cell lines including bacteria (see Kumar et al., 2004 

for a review), yeast (Hammonds et a l,  1998; Janssen, 2004), insect cells (Bahia 

et al., 2005; Chambers et al., 2004) and also mammalian cells (Davies et al., 

2005; Deshpande et al., 2004; Micheletti et al., 2006). They offer all the 

advantages o f shake-flasks with the added benefit of being highly amenable to 

process automation. Their ability to perform many identical reactions in parallel 

with very small volumes (Betts and Baganz, 2006) endows them with the 

greatest high-throughput capability out o f all the miniature bioreactor formats 

mentioned thus far.

MWPs typically contain 6, 12, 24, 48, 96 or 384 wells, with up to 1536 and 3456 

wells now available for ultra high-throughput screening (UHTS) (Mere et al., 

1999). MWPs are available in a range of geometries, well volumes and materials 

of construction and are reviewed in detail by Lye et al. (2003) and Betts and 

Baganz (2006).

The processing of MWPs can be automated using robotics with modem pipetting 

and dispensing systems, centrifuges, etc (Kumar et al., 2004). A wide range of 

commercially available automated platforms is reviewed by Lye et al. (2003). 

Instruments and methods have been developed for pH measurements (Elmahdi et 

al., 2003; John et al., 2003a; Weiss et al., 2002) and dissolved oxygen 

measurements (see Table 1.1). Now, MWPs with integrated sensors are 

commercially available and are reported by Betts and Baganz (2006). A major
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bottleneck in the use of MWPs for cultivation is the risk of cross-contamination 

(Kumar et a l, 2004). Evaporation o f medium is also a critical factor particularly 

for slow growing organisms. These limitations can be reduced with the use of 

oxygen-permeable sealing membranes, a variety of which are reviewed by 

Zimmermann et a l (2003).

Table 1.1 summarises the existing research into microscale mixing within the 

aforementioned reactor formats. The mass transfer coefficients (foa) o f shake- 

flasks and MSBRs are well characterised over a range of geometries and working 

volumes and the two formats share similar Ida ranges. In contrast, the majority o f 

research into MWPs has focussed on the 96 well format, which is probably due 

to the frequency o f its use in industry (Kensy et a l,  2005). Subsequently, the 

research is also limited with respect to the range of working volumes 

investigated. For these plates, the majority o f kLa values are in the lower range, 

below 180 h 1. The notable exception here is the extreme kLa value reported 

Kensy et a l (2005) of 1600 h '1 for a 48 well plate, which is comparable to that of 

a conventional STR. Clearly, there is a need for further investigation in this area, 

but this research has already demonstrated the potential for MWPs to exhibit 

similar mixing characteristics to that o f conventional STRs.

1.2.5 Reporter genes

The term reporter gene is used to define a gene with a readily measurable 

phenotype that can be easily distinguished over a background of endogenous 

proteins (Alam and Cook, 1990). This characteristic is highly desirable when 

choosing a suitable product model for the investigation of high throughput 

protein expression. Moreover, reporter gene assays are largely quantitative and 

rapid, requiring no prior protein purification. This facilitates the accurate analysis 

and comparison o f recombinant protein expression levels under a range of 

culture conditions.
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Table 1.1 Summary o f microscale research into mixing and oxygen transfer 
carried out in a range o f small-scale vessels including the shake flask (SF), 
miniature stirred bioreactor (MSBR) and microwell plate (MWP). 'The terms 
static gassing-out and dynamic gassing-out are used in accordance with the 
definitions provided by Stanbury and Whitaker (1993).

Reactor Format
Working

Volume

(ml)

kLa

Of1)

Method1 Reference

SF (unbaffled) 2 - 1 6 0 <565 Sulphite oxidation Maier et al. (2004)

SF (unbaffled) 100 1 0 -5 4 Static gassing-out Van Suijdam et al. (1978)

SF (baffled) 200 144-482

SF (baffled/ 50 -  200 35 - 400 Sulphite oxidation Henzler and Schedel

unbaffled) and oxygen balance 

(E. coli / S. tendae)

(1991)

MSBR 6 100-400 Static gassing-out Lamping et al. (2003)

MSBR 1 <500 Sulphite oxidation Harms et al. (2006)

MSBR 2 1 0 -4 4 n/a Rostov et al. (2001)

MSBR 0.15 2 0 -7 5 Static gassing-out Zhang et al. (2006)

MSBR 18 <480 n/a Betts and Baganz. (2006)

MWP (96 well) 0.2 < 150 Bio-oxidation o f  

catechol

Ortiz-Ochoa et al. (2005)

MWP (96 well) 0.2 < 130 Dynamic gassing-out 

(C. glutamicum )

John et al. (2003b)

MWP (24 well) 0.07 < 180 Static gassing-out and Doig et al. (2005)

MWP (96 well) 0.2 < 180 linear growth o f  strict

MWP (384 well) 1.2 < 100 aerobe (B. subtilis)

MWP (96 well) 0.5 < 188 Oxygen balance {P. 

putida)

Duetz et al. (2000)

MWP (48 well) 0.3 < 1600 Sulphite oxidation Kensy et al. (2005)
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The variety of available reporter genes is very broad. Some commonly used ones 

include chloramphenicol acetyltransferase (CAT), p-galactosidase, bacterial and 

firefly luciferases, alkaline phosphatase and green fluorescent protein (GFP) 

(Naylor, 1999; Welsh and Kay, 1997; Wood, 1995).

The luc gene from the firefly (Photinus pyralis) is one of the most widely used 

reporter genes (Roda et a l, 2004; Urbain, 2001; Welsh and Kay, 1997) and it is 

also well-suited for application within this project. The assay has a broad linear 

range o f up to 7-8 orders of magnitude (Joyeux et al., 1997) and, unlike (3- 

galactosidase, no endogenous activity exists within E. coli for the luciferases 

(Wood, 1995), a property which contributes to the highly sensitive nature o f the 

assay (Alam and Cook, 1990). The luc gene encodes a single polypeptide which 

imparts a low metabolic burden upon the expression host in contrast to the 

bacterial luciferase operon which codes for five polypeptides (Hakkila et al.,

2002). Furthermore, firefly luciferase shows little toxicity (Welsh and Kay,

1997) and requires no posttranslational modifications (Bronstein et al., 1994).

Luciferase activity is proportional to the total light emission of the reaction 

scheme shown below (Bronstein et al., 1994):

firefly luciferase + Mg2+
ATP + D-luciferin + 0 2 ----------------------------------► C 02 + AMP + PPj + oxyluciferin

+ light (560nm)

The requirement of D-luciferin, an exogenous substrate, makes the use o f an end

point assay for soluble protein yield possible. In contrast, if bacterial luciferse, 

was used as a reporter, it would be necessary to monitor light emission 

continuously because the corresponding reaction would proceed automatically 

from endogenous substrates upon induction of the reporter genes (Hakkila et al., 

2002).

The luciferase assay is also well suited to the high-throughput screening format 

unlike the CAT assay which is laborious, expensive and relatively insenstitve
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(Suto and Ignar, 1997). GFP is also relatively insensitive, because of a 

considerable background signal due to cellular autofluorescence (Hakkila et al., 

2002; Naylor, 1999). Moreover, the accumulation of GFP, narrow linear range 

and low turnover make it also unsuitable for any high throughput investigation 

(Naylor, 1999).

1.3 Design of Experiments

1.3.1 Description and benefits over traditional approaches

High-throughput protein expression (HTPE) studies rely on screening a large 

number of expression parameters. Most approaches, including high-throughput 

expression screening (HTES), are unstructured and result in only a limited 

understanding o f the system. The task o f accurately determining the optimal 

expression conditions, therefore, can be resource intensive. This requirement 

may prove prohibitive above a certain number o f variables.

The one-factor-at-a-time (OFAT) method represents a more systematic approach 

to HTPE studies. This approach is illustrated in Figure 1.2 (a), for a system 

influenced by two parameters. This is representative of a simple biological 

system in which interactions between variables may exist. Here, the OFAT 

approach fixes factor X2 and varies factor Xi until a maximum response is 

observed. Then, factor Xi is fixed at its apparent optimum level and factor X2 is 

varied until a new optimum response is observed. In this scenario OFAT analysis 

fails to identify the optimal conditions as it is unable to account for the 

interaction o f factors.

Statistical Design of Experiments (DoE) is able to overcome the limitations of 

traditional HTPE approaches. DoE is a structured and efficient approach for 

determining the mathematical relationship between multiple factors affecting a 

process and the output(s) of that process as illustrated in Figure 1.3.
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Factor X
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Figure 1.2 Response contour plot of a system influenced by two factors, 
investigated using OFAT (a) and DoE (b). Individual experiments are also shown 
[ • ] •

The DoE approach is illustrated in Figure 1.2 (b), the same system for which the

OFAT methodology was previously demonstrated. Here, a small experimental 

design is applied in which the two factors are varied simultaneously. Due to the 

symmetry of the experimental design, certain predictions about the system’s 

behaviour can be made. In this scenario, it is possible to predict the direction in
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which the optimal region is likely to be found. Subsequent designs will be able to 

determine the precise location of the optimal region.

Factors,
System / process

Response(s),

Y

Factors,

X

DoE

1

---------►
--------- ► Representative

-------- ►--------- ► model--------- ►

Predicted

Y’

Figure 1.3 The DoE procedure in which system or process is modelled, enabling 
the prediction of response values from defined factor levels.

In summary, DoE offers three clear advantages over other HTPE methods. 

Firstly, as mentioned previously, DoE is able to account for interactions between 

factors. Design of Experiments is also able to estimate experimental error by 

considering the overall difference between observed response values and those 

predicted by the mathematical model. In this way, real effects can be 

distinguished from experimental error. Finally, in quantifying the real effects, 

DoE is able to produce reliable maps of the investigated process or system from 

which the optimal region can be identified. This last point is of key importance to 

bioprocess development, where fermentation optimisation is a crucial precursor 

to successful scale-up; results obtained under sub-optimal conditions such as
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oxygen limitation are likely to be misleading (Buchs, 2001; McDaniel et al., 

1965).

1.3.2 Pre-experimental steps

The first step in implementing DoE is the problem formulation and its objective 

is to establish and clarify the intentions underlying an experimental investigation. 

The problem formulation considers six aspects: (1) the experimental objective, 

(2) factors, (3) responses, (4) model, (5) design, and (6) worksheet.

1.3.2.1 Experimental objective

The exact aims of DoE depend on the stage o f an investigation/experimental 

process to which it is applied. Design of Experiments need not be applied to 

every stage of the experimental process, but it is often prudent to break down an 

investigation into several stages. These stages, which are discussed further in 

Chapter 3, normally include familiarisation, screening, finding the optimal 

region, optimisation, robustness testing and mechanistic modelling (Eriksson et 

al., 2000). By characterising the system gradually in this way, the cost of 

resources is minimised. By comparison, going straight into an optimisation 

design with little or no prior knowledge o f a system would require huge amounts 

of resources and would defeat the overall purpose of DoE.

1.3.2.2 Specification of factors

Here, the factors relevant to the current experimental objective are listed and 

categorised according to whether they are quantitative or qualitative, controlled 

or uncontrolled, etc. The range and levels o f each factor are specified, and this is 

influenced by the experimental objective; in screening, factors have relatively 

large ranges and are varied over only two levels whereas during optimisation, 

factor ranges are narrow, involving three or more levels per factor. If factor 

transformations are required, they must be done at this stage, prior to generation 

o f a worksheet. One heuristics approach is to transform a factor where the range
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varies by more than 10-fold. Finally, factor levels are coded between values o f -1 

and +1 to facilitate later-stage data analysis.

1.3.2.3 Specification o f responses

Appropriate process performance indicators should have been identified at the 

familiarisation stage of the experimental process and are listed here.

1.3.2.4 Model selection

Selection of a model at this stage is partly constrained by the experimental 

objective. If screening was selected, a linear or interaction polynomial model will 

suffice, whereas a quadratic polynomial model is the minimum requirement for 

optimisation. This is intuitive because linear and interaction polynomial models 

have no optimum.

1.3.2.5 Generation o f an experimental design and creation of a worksheet

The choice of experimental design is intimately linked to the specified model, 

and hence experimental objective, but also to the number of factors, their levels 

and whether they are quantitative or qualitative. Some of the most commonly 

used classical designs include fractional factorial, full factorial and composite 

designs (Table 1.2). Two-level fractional factorial and full factorial designs are 

used for screening and yield linear and interaction models. These designs can 

also be used for optimisation if each factor is varied over a minimum of three 

levels. The last row of Table 1.2 displays composite designs which are used in 

optimisation.

The abovementioned designs are all of regular geometry and so each is only 

applicable to a regular experimental region. Where the experimental region is 

irregular, i.e. when certain factor combinations are not permitted, computer-

50



1. Introduction Islam 2007

generated D-optimal designs are employed. These designs allow for the removal 

of unfeasible experiments from the overall candidate set before a design is 

generated. An algorithm then computes the optimal design region from the 

remaining experiments. D-optimal designs offer several other advantages 

including the capability of investigating qualitative factors within the 

experimental region.

Once an appropriate design is selected, its corresponding algorithm is used to 

generate a worksheet in which the required experiments are specified.

1.3.3 Post-experimental steps

The analysis of experimental data generated through DoE consists o f three 

stages. The first stage, evaluation o f  raw data, focuses on the general trends and 

irregularities within the data. The second stage, regression analysis and model 

refinement involves calculating the actual terms within the regression model and 

evaluating its overall accuracy. The use o f  the regression model constitutes the 

final stage of analysis where the model is used to map the process and determine 

the optimal factor settings.

1.3.3.1 Evaluation o f raw data

A large variety of tools are available at this stage of analysis. A replicate plot, for 

example, illustrates the size of replicate error relative to the overall response 

variation. A histogram o f  response illustrates the distribution of a response which 

should be continuous and normally distributed under ideal circumstances. 

Otherwise, the response may need to be transformed in which case a Box-Cox 

plot serves as a guide towards the correct response transformation. An N- 

probability plot is a useful tool for detecting deviating experiments, or outliers. If 

an outlier is detected, a decision can be made to repeat the experiment, omit it 

from the design or simply leave it as it is.
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Table 1.2 Pictorial representation of various experimental designs. The star at 
the centre of each design represents centre-point experiments.
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1.3.3.2 Regression analysis and model refinement

Two important diagnostic tools at this stage include the R2/Q* performance 

indicators and analysis of variance, ANOVA. The R2 and Q2 values vary between 

0 and 1 and represent the fraction of the response variation explained and 

predicted by the model, respectively. These performance indicators should be 

used in conjunction with ANOVA, which formally tests if a given model explains 

a significant fraction of the response variation and whether the unexplained 

fraction is due to noise or model error. During optimisation, these performance 

indicators can be used to monitor the performance of a model as terms are 

removed via the coefficient plot until the overall model performance no longer 

increases. A parity plot of observed vs. predicted response values can then be 

used to illustrate final model performance.

1.3.3.3 Use of regression model

The purpose of a regression model depends upon the experimental objective. For 

screening, the model is used as a guide to determine which factors may have 

strong effects on the process. For optimisation, the model is used to map the 

process via response contour/surface plots and predict the optimal factor 

settings.

1.3.4 Relevant studies incorporating DoE

Given the large number of culture parameters which are known to affect soluble 

protein expression, the task of optimising expression levels is large and complex. 

The possibility exists that a thorough understanding of this complex relationship 

will result in significant improvements in expression levels. Currently, however, 

this opportunity has not been fully exploited.
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The recent application o f methods which analyse the effects o f simultaneously 

varying several parameters, such as the method of DoE, is certainly a step in the 

right direction. Unfortunately, the majority of relevant studies are limited by a 

small number of investigated parameters and/or incomplete application of the 

DoE toolset. For example, the parameters investigated by most studies can 

broadly be grouped by one of three categories: media formulation (Adinarayana 

and Ellaiah, 2002; Galindo et al., 1990; Hounsa et al., 1996; Nikerel et al., 2005; 

Ren et al., 2006; Sunitha et al., 1999; Zhang, 2006), growth conditions (Dutta et 

al., 2004; El Helow et al., 2000; Roebuck et al., 1995) or induction parameters 

(Cao, 2006; Swalley et al., 2006; Urban et al., 2003; Wang et al., 2005; Xie et 

al., 2003). By investigating only a small number of parameters, it is unclear 

whether these studies have fully optimised protein expression levels. 

Furthermore, these studies do not consider the effects of engineering parameters 

and so the results are o f limited benefit to scale-up.

The mathematical model which results from the implementation of DoE serves 

as a very powerful predictive tool when applied correctly. However, further 

investigation into the abovementioned reports reveals that some authors conduct 

statistical analyses on their regression models, but then do not utilise this 

information to alter their models accordingly (Adinarayana and Ellaiah, 2002; 

Nikerel et al., 2005; Ren et al., 2006; Wang et al., 2005). Other authors do not 

perform statistical analyses and so it is difficult to evaluate which of the 

investigated factors are important (Dutta et al., 2004; El Helow et al., 2000; 

Hounsa et al., 1996; Sunitha et al., 1999). In two other studies, the models are 

not stated (Galindo et al., 1990; Urban et al., 2003) and this severely limits the 

interpretation of results.

1.4 Scale-up of protein expression

The protein generated from small to medium scale expression studies may, in 

some instances, be sufficient for downstream purposes. In many cases the 

generation of protein for high throughput screening, secondary selectivity assays
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or a structural biology campaign may require gram quantities o f protein over a 

long period of time. It is therefore highly desirable to produce single preparations 

of the protein whenever possible, which minimises batch-to-batch variability and 

reduces the demand placed on resources. For such larger-scale production o f 

protein, shake-flask cultures can be employed, but for volumes in excess o f 10 1, 

the use o f stirred-tank reactors (STRs) is more commonplace (Hunt, 2005).

Successful scale-up means that a process has been designed and built giving a 

predictable increase in production capacity (Reisman, 1993). More specifically, 

the aim here is to translate the data generated from HTPE studies to production 

scale rapidly and accurately (Freyer et al., 2004). The optimal conditions 

determined from screening at small-scale are also likely to provide the 

environment for the production o f high quantities of soluble protein (Hunt,

2005). To achieve accurate and rapid scale-up, it is first necessary to understand 

the total environment of the cell (Young, 1979) and consider how this changes 

with scale. The total environment may encompass the biological, chemical and 

physical variables relating to fermentation (Freyer et al., 2004; Junker, 2004). A 

complete catalogue of these factors is also detailed extensively by Reisman 

(1993).

Biological factors are largely associated with the state of the inoculum, i.e. the 

number of generations associated with its development, phase of growth o f 

inoculum cells, cell density and cell viability. These variables also extend to 

secreted products and their interactions, inhibitory factors and cell-cell 

interactions. Chemical factors typically include the type and concentration of pH 

control and protein induction agents, composition and quality o f nutrients, water 

quality and foam formation. Physical factors include bioreactor configuration, 

aeration, agitation and chemical homogeneity, temperature control, pressure and 

method of medium sterilisation. This list is by no means exhaustive and serves as 

a general guide for all cell culture systems.

Some factors will have little effect on the system but may still cause an undesired 

deviation from predicted operation. These factors typically include ambient
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temperature, humidity and variability in raw material composition. They should 

be identified and regulated as far as possible so as to establish a fine degree o f 

process control.

Some variables are not easily translated. For example the host of physical 

variables which arise upon scale-up due to the physical geometrical difference 

between an MWP and an STR requires further investigation. Ordinarily, these 

variables are summarised by engineering parameters such as impeller tip speed, 

superficial gas velocity, mixing time or power per unit volume (Junker, 2004). 

Traditional scale-up techniques prescribe that one or more these parameters 

should remain constant upon scale-up. In the context of MWPs these parameters 

are either inapplicable or difficult to characterise. Moreover, the significance of 

certain phenomena such as surface tension effects may not be shared between 

scales. Thus many established scale-up correlations are unusable. Yet without 

proper process characterisation, it is likely that traditional scale-up problems 

such as those presented by Humphrey (1998) would be amplified.

Initial studies have suggested that scaling-up on the basis o f a constant mass 

transfer coefficient (faa) appears to be the most appropriate approach when 

dealing with microorganisms growing under aerobic conditions (Ferreira-Torres 

et al., 2005; Micheletti et al., 2006). Adequate oxygen provision remains a 

significant challenge for aerobic growth in shaken MWP fermentations (Maier 

and Buchs, 2001) and results obtained under oxygen limiting conditions are 

likely to be misleading particularly for scale-up purposes (Buchs, 2001; 

McDaniel et al., 1965). Considerable effort, therefore, has been put recently into 

the characterisation within MWPs o f engineering parameters such as kLa.

Different kLa characterisation techniques such as sulphite oxidation (Hermann et 

al., 2003; Kensy et al., 2005), dynamic gassing-out (Duetz and Witholt, 2001) 

and enzymatic methods (Duetz and Witholt, 2004; Ortiz-Ochoa et al., 2005) have 

been employed. These methods are, however, often time consuming, labour 

intensive and in the case of the sulphite oxidation technique, notoriously non- 

robust (Van't Riet and Tramper, 1991). Furthermore, unless experiments are
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conducted in fermentation broth, results may be deceiving due to rheological 

differences (Stanbury and Whitaker, 1993).

Recently, however, miniature oxygen probes have been used to characterise 

oxygen transfer directly via the static gassing-out method (John et al., 2003b; 

Doig et al., 2005), which overcomes many of the aforementioned complexities 

and enables the same measurement principle to be applied at both microwell and 

larger scales. Doig et al. (2005) also presented a kLa correlation derived from 

round-well MWPs. These advances represent valuable tools in the rapid and 

accurate scale-up of MWP fermentations.

1.5 Thesis aims and objectives

The overall aim of this project is to establish a generic framework that will 

underpin the generation of large quantities of soluble protein in E. coli in a rapid 

and cost-effective manner. Specific objectives will be:

• to determine the key components and overall structure of the framework 

and explore the practical issues of implementing the framework 

components within this project. The framework is outlined in Chapter 3 

and then refined through practical experimentation in subsequent 

chapters;

• to demonstrate the sequential application of DoE in engineered 

microwell experiments for the optimisation of soluble protein expression 

in E. coli. This will be described in Chapter 4;

• to characterise the engineering environment in microwell cultures and 

define a reliable basis for the reproducible scale-up of optimised culture 

conditions. This will be described in Chapter 5;

• to show that the insights gained at the microwell scale can inform pilot- 

scale operation. This will be described in Chapter 6;
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• to provide a thorough and quantitative analysis of the inherent time and 

cost savings provided by the current framework over traditional 

approaches. This will be discussed in Chapter 7.

• to explore how the current framework may be developed towards further 

industrial applications. This will be discussed in Chapter 8.
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2 Materials and methods

2.1 Introduction

The aim of this chapter is to provide a clear description o f all the materials and 

methods used in this research. Section 2.2 describes the preparation of 

fermentation media used in this work, the bacterial expression system and the 

preparation of inoculum for all subsequent fermentations. Section 2.3 describes 

the experimental design and fermentation procedures for microwell plate 

fermentations with the aim of identifying the optimal conditions for recombinant 

soluble protein expression. This section also illustrates the procedures for 

standard shake-flask fermentations from which the soluble protein yield serves as 

a reference. Section 2.4 describes the methods for characterising the mass 

transfer coefficient, as a basis for scale-up at all scales of fermentation. The 

scale-up of microwell plate fermentations on the basis of constant kua is 

described in Section 2.5, together with statistical procedures for evaluating the 

similarity of performance between fermentations. Section 2.6 describes the 

quantitative assay procedures used in this work for biomass concentration, 

glycerol concentration and relative soluble firefly luciferase activity.

2.2 General methods

2.2.1 Media preparation

All chemicals used were purchased from Sigma-Aldrich Chemical Company 

(Dorset, UK) unless stated otherwise and reverse osmosis (RO) water was used 

throughout. The three media types used were prepared as follows:

Luria Bertani (LB): 5 g.l'1 yeast extract, 10 g.l"1 tryptone and 10 g.l'1 NaCl, pH 

7.2;
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Terrific Broth (TB): 24 g.l'1 yeast extract, 12 g.l'1 tryptone, 4.0 ml.I'1 glycerol 

(100 %), 2.31 g.l'1 KH2P 04 and 12.54 g.l'1 of K2H P04, pH 7;

Glucose M9Y (GM9Y): 5 g.l'1 yeast extract, 4.0 g.l'1 glucose, 1 g.l'1 NH4C1, 

0.5 g.l'1 NaCl, 241 mg.l'1 M gS04, 11 mg.l'1 CaCl2, 6.0 g.l'1 Na2H P04 and 3.0 g.l'

1 KH2P 04, pH 6.9.

GM9Y media was obtained from Athena Environmental Sciences (Baltimore, 

MD, USA). The glycerol and glucose components were filter sterilised through a 

0.2 pm filter (Sartorius Ltd, Epsom, U.K.). The phosphate components were heat 

sterilised separately and added to the respective media using aseptic technique. 

All other media components were combined as dry powders and were heat 

sterilised for 20 min at 121 °C. After sterilisation, all media formulations were 

supplemented with 30 mg.l'1 kanamycin to prevent contamination and hence 

uncontrolled depletion of the media.

2,2.2 Bacterial expression system

The bacterial strain E. coli BL21 (DE3) (Invitrogen, Paisley, UK) was used as 

the expression host for all experiments. This strain is deficient in two key 

proteases (Ion protease and the ompT outer membrane protease) which results in 

a reduced degradation o f heterologous protein. This strain contains the XDE3 

lysogen which carries the gene for T7 RNA polymerase under control o f the 

/crcUV5 promoter. Expression o f T7 RNA polymerase is inducible by isopropyl- 

p-D-thio-galactopyranoside (IPTG), a lactose analogue, which binds to the lac\ 

repressor and reduces its affinity for the lac operator.

The gene encoding a thermally stable mutant of firefly luciferase (FFL) (Law et 

al., 2006) was provided as a kind gift by Lumora Ltd (Cambridge, UK) and 

subsequently cloned into a pET30a expression vector (Novagen, Nottingham, 

UK). This vector, which confers kanamycin resistance upon its host, expresses 

recombinant DNA under the control o f a T7 promoter. Due to the high selectivity 

o f T7 RNA polymerase for the T7 promoter, transcription of target DNA by E. 

coli RNA polymerase in the absence of T7 RNA polymerase is very low.
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2.2.3 Inoculum preparation

E. coli BL21 (DE3) cells were transformed with pET30a-FFL using standard 

methods (Maniatis et al., 1989) and grown overnight at 37 °C on Luria Bertani 

(LB) agar plates containing 30 mg.l'1 kanamycin. A single colony o f E. coli 

BL21 (DE3) transformed with pET30a-FFL was transferred to a 2 1 shake-flask 

using a sterile loop. Shake-flasks contained 500 ml of either LB, TB or GM9Y 

depending on the experiments to be performed. Cultures were grown overnight at 

37 °C and 200 rpm in a Multitron incubator shaker (Infors, Bottmingen, 

Switzerland). Cultures grown in the appropriate medium were used for 

subsequent inoculation o f microwell plate (MWP) experiments described in 

Section 2.3.

For the MWP and stirred-tank reactor (STR) fermentations described in Section

2.5, glycerol-cell stocks were used for inoculation of these fermentations. 

Glycerol-cell stocks were prepared in the following manner. Aliquots of 0.85 ml 

of the abovementioned overnight culture were mixed thoroughly with 0.15 ml of 

glycerol previously sterilised by autoclaving at 121 °C for 20 min. These 

glycerol-cell stocks were stored in 2 ml eppendorf tubes (Eppendorf, Cambridge, 

UK) at -80 °C. When required, glycerol-cell stocks were thawed at room 

temperature and transferred to a 2 1 shake-flask containing 500 ml TB. Cultures 

were grown overnight at 37 °C and 200 rpm in a ISF-l-V incubator shaker 

(Adolf Ktihner AG, Birsfelden, Switzerland) and used to inoculate the 

fermentations described in Section 2.5.

2.3 Methods for optimisation of soluble protein expression at the 

microwell scale

2.3.1 Microwell plate (MWP) fermentations

Three different deep-well polypropylene MWPs were used in this work: (PI) 48 

rectangular wells, flat bases (Whatman PLC, Middlesex, U.K.), (P2) 24 square 

wells, round bases (Whatman PLC) and (P3) 24 square wells, pyramidal bases
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(DOT Scientific Inc. Burton, MI, USA). These plates are described in further 

detail in Table 2.1.

For the initial familiarisation and screening experiments (Sections 2.3.2 and

2.3.3), an overnight E. coli culture was prepared as described in Section 2.2.3 

and used to inoculate 40 ml of LB, TB or GM9Y sterile media such that an initial 

OD600 of 0.1 was obtained (an initial OD600 of 0.001 was used for the 

familiarisation experiments described in Section 2.3.2). Aliquots of the 

inoculated media were transferred into one o f the three MWPs and the plates 

were sealed with gas permeable membranes (ABgene, Epsom, UK) to minimise 

the loss of liquid due to evaporation. Cultures were grown in a HiGro incubator- 

shaker (GeneMachines, Huntingdon, UK), with an orbital shaking diameter o f 8 

mm, under the experimental conditions described in Table 2.2. Optical density 

measurements at a wavelength o f 600 nm (OD600) of broth samples were made 

both immediately prior to and again after protein induction and were 

subsequently converted into dry cell weight measurements as described in 

Section 2.6.1. FFL was expressed as an intracellular enzyme by the addition to 

each well o f 20 pi isopropylthiogalactosidase (IPTG) solution at the appropriate 

concentration. After the induction period, cells were harvested by centrifugation 

at 4 °C for 10 min at 3000 rpm using an Eppendorf 5417R centrifuge 

(Cambridge, UK) and samples were stored at -80 °C. Identical methods were 

adopted for optimisation experiments (Section 2.3.4) but only TB media was 

used and the levels of the factors were altered as described in Table 2.2.
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Table 2.1 Description of MWP geometries used throughout this work. All 
dimensions are given in mm, correct to the nearest mm. Drawings not to scale.

Plate PI Plate P2 Plate P3

Total volume 48 wells x 
5 ml.weir1

24 wells x 
10 ml.well'1

24 wells x 
10 ml.well'1

Plan view of well
17

< >

17
< >

17

17
< >

17

Side view of well 41

A

32

V

38

± .
8

"A

Table 2.2 Specification o f factors and settings investigated within 
familiarisation, screening and optimisation experiments. Pre-I and post-I are 
abbreviations for pre-induction and post-induction, respectively. Plate PI had 48 
rectangular wells with flat bases, plate P2 had 24 square wells with round bases 
and plate P3 had 24 square wells with pyramidal bases. aThe familiarisation 
experiments had a lower shaking speed o f 50rpm. bAn upper liquid fill volume of 
2 ml was used in conjunction with the 48-well plate to prevent splashing.

Name Abbr. Units
Experimental settings

Familiarisation / Screening Optimisation

Growth medium X] -
Glucose M9Y, LB Broth, 

Terrific Broth
Terrific Broth

Plate geometry *2 - PI, P2, P3 P3

Liquid fill volume *3 ml 1, 2a,3 1 ,2 ,3

Pre-I temperature X4 °C 17, 37 27

Pre-I shaking speed x5 rpm 100b, 500 100,300, 500

Pre-I period *6 h 2 ,6 1 ,4 ,7

Inducer concentration x7 pM 50, 1000 500

Post-I temperature Xg °C 17,37 23 ,3 0 ,3 7

Post-I shaking speed x9 rpm 100b, 500 100,300, 500

Post-I period X|0 h 3, 15 6, 12, 18
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2,3.2 Design of MWP familiarisation experiments

Ten factors were initially chosen for investigation towards experimental 

familiarisation. These factors are specified in Table 2.2 and the rationale for their 

selection will be discussed further in Section 4.2.1. A D-optimal design (Eriksson 

et al., 2000) was chosen to generate an appropriate experimental plan. D-optimal 

designs are capable o f handling both quantitative variables (time, concentration, 

etc.) and qualitative variables (media type, plate geometry, etc.). They also allow 

for the removal of experiments which have unfavourable factor combinations 

from the initial candidate set o f experiments. For example, preliminary 

experiments had shown that excessive splashing would occur within the 48-well 

plates at a shaking speed of 500 rpm, above a liquid fill volume of 2 ml. 

Unfavourable factor combinations were thus removed from the candidate set 

prior to generation o f the experimental plan. A logio transformation of the 

inducer concentration factor range was also made at this time. The general 

approach is to transform any factor range which spans one or more orders of 

magnitude, so as to preserve the orthogonal shape of the design region (Eriksson 

et al., 2000).

Table 2.3 shows the D-optimal familiarisation design in which ten factors were 

investigated in 30 experimental runs. Two replicated centre-point experiments 

were included for estimation of pure error. The soluble protein yield results 

shown in Table 2.3 will be discussed in detail in Chapter 4. All factors were 

varied over two levels (low and high) and for statistical calculations the actual 

levels of each variable {Xj) were coded as x, according to the following 

relationship:

2z - z max - z minx  = _ j  1 q .A)
1 _  m a x  _ m i n  '  'z, -  z,

where z, is the actual variable value of X, and the superscripts “max” and “min” 

denote the maximum and minimum values used.
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Table 2.3 D-optimal design matrix for the initial assessment of soluble protein 
yield at the familiarisation stage. Quantitative variables are coded at low (-1), 
medium (0) and high (+1) levels.

Observations X] *2 x3 x4 *5 *6 x7 Xg x9
Mean soluble 

X |0 protein yield 
(RLU.m l1)

N1 M9Y PI 0 1 1 -1 0 -1 -1 -1 0

N2 M9Y PI 0 1 -1 1 0 -1 -1 -1 1221

N3 M9Y PI 0 -1 1 1 -1 1 1 1 404587

N4 LB PI 0 -1 -1 1 -1 -1 -1 1 136

N5 TB PI 0 1 -1 1 0 1 -1 1 6947

N6 LB PI -1 1 -1 -1 -1 1 1 -1 0
N7 TB PI -1 -1 1 -1 0 -1 1 1 0
N8 TB PI -1 -1 1 -1 -1 1 1 -1 129

N9 M9Y P2 1 -1 -1 -1 -1 1 -1 1 2748

N10 M9Y P2 1 -1 -1 1 0 1 1 -1 0
N il LB P2 1 1 -1 -1 0 -1 1 1 319

N12 TB P2 1 1 1 -1 -1 -1 -1 -1 0
N13 TB P2 1 -1 1 -1 0 -1 1 1 59

N14 M9Y P2 -1 1 1 -1 -1 1 -1 -1 11260

N15 LB P2 -1 -1 1 1 -1 -1 -1 1 128

N16 LB P2 -1 -1 1 1 0 1 1 -1 0

N17 TB P2 -1 1 -1 1 0 1 -1 1 9983

N18 TB P2 -1 1 -1 1 -1 -1 1 -1 0

N19 M9Y P3 1 1 1 1 -1 -1 1 1 60559

N20 LB P3 1 -1 -1 -1 -1 -1 -1 -1 0

N21 LB P3 1 1 1 1 0 1 1 -1 0

N22 TB P3 1 -1 1 1 -1 1 -1 -1 0

N23 TB P3 1 1 -1 -1 -1 1 1 1 374457

N24 M9Y P3 -1 -1 -1 -1 0 1 -1 1 350

N25 M9Y P3 -1 -1 -1 -1 0 -1 1 -1 0
N26 M9Y P3 -1 1 1 1 -1 -1 1 1 6896

N27 LB P3 -1 1 1 -1 0 1 -1 1 4922

N28 TB P3 -1 -1 -1 1 0 -1 -1 -1 0
N29 M9Y PI 0 0 0 0 0 0 0 0 78111

N30 M9Y PI 0 0 0 0 0 0 0 0 4076
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Each experimental run was performed in quadruplicate and the mean soluble 

protein yield was recorded. A linear model was then fitted to the data and 

assumed the following form:

r  = /?0 +X /3 ,* , (2.2)

where Y is the dependent variable (soluble protein yield), po is the independent 

term and /?,■ are the regression coefficients related to the main effects. The size of 

each coefficient is proportional to the influence of a particular factor on the 

response and can be used to determine which factors should be investigated 

further.

2.3.3 Design o f MWP screening experiments

The ten factors identified at the familiarisation stage were investigated further 

through a set of screening experiments. The aim here was to elucidate which of 

the factors influenced soluble protein yield the most. Identical procedures used in 

the familiarisation stage were adopted here, but with altered factor ranges, as 

specified in Table 2.2. The D-optimal experimental design for the screening 

experiments is shown in Table 4.2.

2.3.4 Design o f MWP optimisation experiments

A Central Composite Face (CCF) design was employed to determine the optimal 

levels of the key variables identified from initial screening experiments. This 

design requires each factor to be varied over three levels only (low, medium and 

high) and fewer runs are needed compared to an equivalent Box-Behnken or 3- 

level full factorial design (Eriksson et al., 2000). All factors were coded as 

described in Section 2.3.2. Table 4.3 shows the experimental plan for 

optimisation in which six factors were investigated in 50 experimental runs. Six 

replicated centre-point experiments were also included for estimations o f pure
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error. Each experimental run was performed in quadruplicate and the mean 

response values were recorded.

The behaviour of the system was modelled using the following equation:

Y = Po + Z P'x> + Z Pvx'xj + Z P»x> (2'3)

where /?,, and /?,, are the regression coefficients corresponding to the second-order 

interactions and squared main effect terms, respectively. Regression coefficients 

whose confidence intervals included zero were removed from the model in a 

step-wise manner, starting with the least significant terms. The resulting 

regression model for soluble protein yield was maximised and this enabled the 

prediction of the optimal factor settings. A verification experiment was then 

performed at these settings and factors which did not appear in the model were 

maintained at their mid-point values.

2.3.5 Reference shake flask fermentations

An aliquot of 50 ml overnight E. coli culture, prepared as described in Section

2.2.3, was used to inoculate 1 1 o f TB medium supplemented with 30 mg.l'1 

kanamycin in a Nalgene 2 1 baffled shake flask (VWR International Ltd, 

Leicestershire, U.K.). This culture was grown at 27 °C and 185 rpm in a 

Multitron incubator shaker (Infors, Bottmingen, Switzerland). The culture was 

induced with 0.5 mM IPTG when the OD600 reached 1.0 at approximately 2 h 40 

min. After a 4 h induction period, cells were harvested by centrifuging 1 ml 

aliquots of culture at 4 °C for 10 min at 3000 rpm in an Eppendorf 5417R 

centrifuge (Cambridge, UK). Samples were subsequently stored at -80 °C.
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2.4 Methods for characterisation of bioreactor mass transfer 

coefficients (kLa)

2.4.1 Measurement of MWP kLa values

The MWPs described in Section 2.3.1 were modified such that three wells on 

each plate had a small oxygen sensor spot (Precision Sensing GmbH, 

Regensburg, Germany) mounted flush with the inside wall of each well. The 

principle of the sensor operation is based on the quenching of luminescence 

caused by collisions between molecular oxygen and luminescent dye molecules 

on the surface of each sensor spot. The sensor spots were located as close as 

possible to the base of each well. Consequently, a minimum liquid fill volume of 

2 ml (rounded up to the nearest ml) was required to completely submerge the 

sensor spot in each well of plate PI at all shaking speeds. Similarly, a minimum 

liquid fill volume of 3 ml was required for plates P2 and P3. Miniature optical 

oxygen probes (Precision Sensing GmbH) were then mounted in line with the 

sensors, through the outer wall o f each plate. Each probe was connected via optic 

fibres to a light emitting diode (LED) to illuminate the sensor spots and also to a 

photodetector (Precision Sensing GmbH) to measure the light intensity. The 

overall setup is illustrated in Figure 2.1.

TB medium was used for all kLa characterisation experiments at the MWP scale. 

An aliquot 0.2 ml.I'1 polypropylene glycol was first added to the medium after 

sterilisation, as would be used in subsequent STR kta characterisation 

experiments to prevent foaming. Aliquots of 2ml of this TB medium were then 

added to the modified wells of plate PI and 3ml to those of plates P2 and P3. 

Oxygen probes were calibrated at 0 % air saturation at room temperature 

immediately after exposing the medium in each well to a blanket of nitrogen for 

a period o f 20 min. Similarly, the probes were calibrated at 100 % air saturation 

at room temperature immediately after a 20 min period of pumping air 

continuously into the headspace above the medium in each well.
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Plate wall
Well wall

Mini-optical 
oxygen probe

To optic fibres, light 
emitting diode and 
photodetector

Oxygen 
sensor spot

Mounting screw 
for oxygen probe

Acrylic support for 
sensor spot

Figure 2.1 Cross-sectional diagram illustrating the setup of a microwell plate 
modified with the oxygen sensor system as described in Section 2.4.1.

kLa measurements were made for each plate at five different shaking speeds (100, 

200, 300, 400 and 500 rpm) on an Infors Orbitec orbital shaker (Bottmingen, 

Switzerland). This orbital shaker has an identical orbital shaking diameter (8 

mm) to that of the HiGro incubator-shaker used in MWP fermentation 

experiments (Section 2.3.1). The dynamic gassing-out technique (Van't Riet, 

1979) was used for all kLa measurements. The appropriate agitation speed was 

selected and a blanket of nitrogen was placed over the wells until the dissolved 

oxygen tension (DOT) reached zero. At this point the nitrogen supply was 

removed, the plate was sealed with a gas permeable membrane (ABgene, Epsom, 

UK) and the rate at which the DOT increased was recorded. Each measurement 

was performed in triplicate.

The response time for the oxygen probe was measured as follows. A 3 ml aliquot 

of water was first added to the modified well of plate P3 and the plate was 

shaken at 500 rpm so that the oxygen concentration reached 100 % saturation. A 

2 ml aliquot of 2 M Na2S0 3  was then added to the well, and the time taken for 

the oxygen concentration to reach 37 % was recorded. This procedure was
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repeated 4 times. The mean probe response time was relatively long (25 s) 

compared to those quoted in the literature (Van't Riet, 1979) so it was necessary 

to account for this when calculating h a  values. This was achieved using the 

following expression (Lamping et al., 2003):

C,= / - r . lm eXP - t  exp
\ Xp J (2.4)

where Cp is the undissolved fraction of oxygen at time t, rp is the probe response 

time and tm=l/kLa. An iterative approach was then used to solve this equation for 

h a  at each time point between 20 % and 80 % oxygen saturation. From these 

results, a mean value for h a  was calculated.

2.4.2 Specific air-liquid surface area measurements in MWPs

Doig et al (2005) previously established a correlation for the prediction of h a  

values in MWPs. In order to adapt the correlation for use with the MWP 

geometries used in this study, it was necessary to measure the specific air-liquid 

surface area in the wells over same the range of conditions used in the h a  

experiments (Section 2.4.1). All wells in plates P2 and P3 were each filled with 3 

ml RO water and shaken at one o f six different speeds (0, 100, 200, 300, 400 and 

500 rpm) on an Infors Orbitec orbital shaker at 23 °C for 4 h. The mean 

evaporation rate over this period was measured. The evaporation rate from plate 

PI was measured in the same way, but using a liquid fill volume of 2 ml per well 

and an upper shaking speed of 400 rpm to avoid splashing. Once this evaporation 

rate data was measured, the specific air-liquid surface areas were calculated 

according to Equation 2.5:

af  _ shaken evaporation rate ^
a' unshaken evaporation rate
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where a/ and a, are the specific air-liquid surface areas (m 1) in the wells under 

shaken and unshaken conditions, respectively. The values for at were 68 m '1 for 

plate PI and 96 m '1 for plates P2 and P3.

Previous trial experiments had shown the evaporation rates from MWPs covered 

with gas-permeable membranes to be very small and hence difficult to measure 

accurately. Consequently, and in contrast to all other MWP experiments 

conducted thus far, the experiments here were performed without the use o f gas- 

permeable membranes. Although this would increase the rates of evaporation, the 

ratio o f the shaken evaporation rate to the unshaken evaporation rate should 

remain constant for each MWP. Consequently, the values of a/  should also 

remain the same.

2.4.3 Measurement o f stirred-tank reactor (STR) kLa values

Two different sizes of STR were used in this work. The first vessel (Figure 2.2) 

was a 7.5 1 BioFlo 110 (New Brunswick Scientific Co., Inc., Edison, NJ, USA) 

which had two six-bladed Rushton turbine impellers connected to a top-driven 

impeller shaft. The second vessel was a 75 1 LH (formerly LH Fermentation, 

Reading, U.K.) and had three six-bladed Rushton turbine impellers attached to a 

bottom-driven impeller shaft. The 75 1 LH had the following approximate 

dimensions: 0.92 m internal vessel height, 0.33 m internal vessel diameter, 0.11 

m impeller diameter.

In accordance with the MWP experiments, TB medium was used for all kLa 

characterisation experiments at the STR scale. The 7.5 1 STR was first filled with

4.5 1 o f TB medium, excluding the phosphate components, and the entire vessel 

was autoclaved at 121 °C for 20 min. Similarly, the 75 1 STR was filled with 40.5 

1 of TB medium excluding the phosphate components and the vessel was steam- 

sterilised in place at 121 °C for 20 min. The phosphate components were 

sterilised separately in an autoclave and added aseptically to each vessel, raising 

the final working volumes to 5 1 in the 7.5 1 STR and 45 1 in the 75 1 STR. An
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aliquot 0.2 ml.l'1 polypropylene glycol was added to all media after sterilisation, 

to prevent foaming during experimentation.

VERTICAL SECTION THROUGH U-U*

V

179

SECTION THROUGH V - V’

-H 31 h-

u

Figure 2.2 Dimensions o f BioFlo 110 7.5 1 STR used in this study. All 
dimensions are given in millimetres. A = impeller shaft; B = impeller disc; C = 
impeller blade; D  = baffle. Impeller spacings are set according to the vessel 
manufacturer’s guidelines.

The DOT probes (Mettler-Toledo Ltd., Leicester, U.K.) were calibrated at 100 % 

air saturation at 23 °C by sparging air into each vessel at a rate of 1 vvm for 20 

min. The 0 % air saturation calibration was made by placing the probe in a 

stream of nitrogen gas outside the vessel.

In accordance with the MWP experiments, the dynamic gassing-out technique 

was again used to measure values at the STR scale. Measurements were 

performed at four different impeller speeds (200, 400, 600 and 800 rpm) in the

7.5 1 STR and five impeller speeds (200, 400, 600, 800 and 1000 rpm) in the 75 1 

STR. Nitrogen was first sparged through the medium in each vessel at a rate o f 1 

vvm at the predetermined impeller speed. Once the DOT level had fallen to zero, 

the gas supply was switched rapidly to air at a flow rate o f 1 vvm and the rise in
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DOT was recorded. All measurements were carried out in triplicate at room 

temperature. For each vessel, the response time for the oxygen probe was 

measured five times at each agitation speed using a standard procedure (Dunn 

and Einsele, 1975). The mean probe response time was relatively high, varying 

between 28 s and 46 s, and so it was again accounted for when calculating kLa 

values as described Section 2.4.1.

2.5 Scale-up of microwell plate fermentations

2.5.1 MWP fermentations

An overnight culture o f E. coli, prepared as described in Section 2.2.3, was used 

to inoculate 40 ml o f TB media such that an initial OD600 of 0.1 was obtained. 

Aliquots of 3 ml inoculated media were then transferred into all wells of plate P3 

and the plate sealed with a gas permeable membrane (ABgene, Epsom, UK). 

Cultures were grown in a HiGro incubator-shaker (Genomic Solutions, Ann 

Arbor, MI, USA) under the conditions described in Table 2.4 and FFL 

expression was induced by the addition to each well of 20 pi IPTG solution to a 

final concentration o f 500 pM. The run order of all fermentations was 

randomised in order to prevent any uncontrolled variables from producing 

systematic effects on the results. For example, several plates were prepared 

simultaneously for each fermentation batch; the time delay in inoculating all the 

wells in sequence represented an uncontrolled variable, the effects of which were 

minimised through run-order randomisation.

Samples of 50 pi fermentation broth were taken at regular intervals for biomass 

growth measurements as described in Section 2.6.1. Samples o f 1.2 ml 

fermentation broth were also taken at regular intervals for glycerol and FFL 

measurements. These samples were first clarified by centrifugation at 14,000 rpm 

for 10 min at 4 °C using an Eppendorf 5417R centrifuge (Cambridge, UK). The 

supernatant was assayed for glycerol, as described in Section 0, and the cell 

pellets were stored at -80 °C for subsequent FFL analysis, as described in Section

2.6.3. All sampling occurred in duplicate from separate sacrificial wells.
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Dissolved oxygen profiles were obtained from the unsampled modified wells as 

described in Section 2.4.1. All MWP fermentations were performed in duplicate.

Table 2.4 Specification of factors and settings investigated during the scale-up o f 
microwell plate fermentations. Pre-I and post-I are abbreviations for pre
induction and post-induction, respectively. abThe MWP fermentation conditions 
described here have been adopted from experiments N32 and N36, respectively, 
form the optimisation experiments (Section 4.4).

Factor Units k,a = 247 h’1 kfa = 55 h’1

Plate P3a 7.5 1 75 1 Plate P3b 7.5 1

Liquid Fill volume 1 3 x 1(U 5 45 3 x 10‘3 5

Pre-I temperature °C 27 27 27 27 27

Pre-I shaking speed / 
agitation rate rpm 500 721 645 300 242

Pre-I period h 7 7 7 4 4

Inducer concentration pM 500 500 500 500 500

Post-I temperature °C 37 37 37 30 30

Post-I shaking speed / 
agitation rate rpm 500 721 645 300 242

Post-I period h 18 18 18 12 12

2.5.2 STR fermentations at equivalent kLa conditions

These fermentations were performed within both the 7.5 1 and the 75 1 STRs. All 

probes were manufactured by Mettler-Toledo Ltd. (Leicester, U.K.). The pH 

probes on both vessels were calibrated outside the vessel using standard buffers 

at pH 4.01 and 7.00 supplied by Mettler-Toledo Ltd. Approximate calibrations 

for the DOT probes were made outside the vessel using gaseous air and nitrogen 

for the 100 % and 0 % air saturation calibrations, respectively. Once all 

calibrations were made, the probes were placed in their appropriate locations 

within each vessel. The vessels were then filled with TB medium and sterilised 

as described in Section 2.4.3. After the sterilisation procedure, the phosphate 

components were added aseptically to each vessel and an aliquot of kanamycin 

was added to each vessel through a 0.2 pm filter (Sartorius Ltd, Epsom, U.K.) to 

a final concentration o f 30 mg.l'1.
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At this stage the calibration o f the pH and DOT probes were rechecked and 

recalibrated as appropriate. A 10 ml aliquot of media was sampled from each 

STR using aseptic techniques, and the pH was measured on a Mettler-Toledo 

MP220 pH meter. This measurement was used to adjust the pH readout from 

each STR accordingly. The 100 % air saturation calibration was checked after 

sparging air into each vessel at a rate o f 1 vvm for 20 min at 27 °C using an 

agitation speed of 200 rpm.

An overnight E. coli culture, prepared as described in Section 2.2.3, was used to 

inoculate each vessel to an initial OD600 of 0.1. At this point a sample of 

inoculated media was taken from the 75 1 vessel and used for the parallel MWP 

fermentations as described in Section 2.5.1. The air supply was set to 1 vvm and 

cultures were grown under the conditions described in Table 2.4. The pH was left 

uncontrolled in accordance with the MWP fermentation operation. An aliquot of 

IPTG solution was added to each vessel to a final concentration of 500 pM at the 

appropriate time point through a 0.2 pm filter (Sartorius Ltd, Epsom, U.K.).

Feedback loops were set up on both vessels to monitor and control foam levels 

by way of automatic additions o f polypropylene glycol MW = 2025 (VWR 

International Ltd, Leicestershire,U.K.). Temperature, DOT, pH and agitation 

speed were continuously recorded on both vessels using BioComand Plus 

software version 3.28 (New Brunswick Scientific Co.) on the 7.5 1 STR and 

MTX-Propack software (formerly Acquisition Systems, Berkshire, UK) on the 

75 1 STR. On-line exit gas composition was measured using a Prima 600 mass 

spectrometer (formerly VG Gas Analysis Ltd., Cheshire, U.K.).

Samples of 50 pi fermentation broth were taken at regular intervals for OD600 

measurements as described in Section 2.6.1. Samples of 1.2 ml fermentation 

broth were also taken at regular intervals for glycerol and FFL measurements. 

These samples were first rapidly clarified by centrifugation at 14,000 rpm for 10 

min at 4 °C using an Eppendorf 5417R centrifuge (Cambridge, UK). The 

supernatant was assayed for glycerol, as described in Section 0, and the cell
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pellets were stored at -80 °C for subsequent FFL assaying, as described in 

Section 2.6.3.

2.5.3 Statistical analyses offermentation kinetic profiles

Microcal Origin version 6.0 (Northampton, MA, USA) was used in the 

modelling of fermentation profiles. To evaluate the effect of scale on 

fermentation performance, response profiles of biomass growth, glycerol 

utilisation and soluble protein yield were compared between the MWP and 7.5 1 

scales and also between the MWP and 75 1 scales. Assuming no difference (the 

null hypothesis), one model would adequately describe both sets of data for a 

given response, and any observed differences would be purely due to chance. 

However, if in fact fermentation scale did have an effect on performance (the 

alternative hypothesis), then each set o f data for a given response would be 

discrete and separate models would be required to fit the two data sets. The basis 

for this approach is described further by Motulsky and Christopoulos (2003).

Both hypotheses were tested simultaneously using the models described in Table

2.5. The degrees o f freedom (DF) from separate model fits were first summed 

and labelled DFsep. The residual sum of squares (RSS) from each model were 

also summed and labelled RSSsep. Then, both data sets were combined, the same 

model type was refitted and new values for DF and RSS, labelled DFcomb and 

RSScomb. respectively, were determined. RSSsep is expected to be smaller than 

RSScomb, simply because more predictor variables are available when separate 

models are used. The key question is whether or not this difference lies within 

the expected range for normal experimental error, assuming the null hypothesis is 

true. To answer this, a statistical test was performed, the first part of which 

involved calculating the F  ratio:

F {RSSamh- R S S j ! R S S !tJl
(2 .6)
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The corresponding p  value was then calculated. The p  value is the probability of 

achieving a difference (in RSS values) as large as or larger than observed if the 

null hypothesis (no effect o f scale) was true. If the p  value were above a certain 

threshold, typically 0.05, it would be possible to conclude that the observed 

difference is due purely to chance and hence the effect o f scale is insignificant.

Table 2.5 Description of functions used to model each fermentation response 
profile, where y  is the fermentation response level at time /, yo is the initial 
response level and a, b and c are arbitrary constants.

Response name Model type Model equation

[Biomass]

(growth phase only)

[Glycerol]

[Soluble protein]

Logistic

One site competition

Extreme peak function

In
a

1 + e -h(l- c)

1 + 10('-log/»

y  -  To + cex p (-ex p (-d ) ~ d  + 1) 

where d  = ———

2.6 Analytical procedures

2.6.1 Quantification o f biomass concentration

For the MWP fermentations, OD600 measurements of broth samples were made 

using a Spectronic Helios Alpha spectrophotometer (Thermo Electron 

Corporation, Hemel Hempstead, U.K.). For the STR fermentations, OD600  

measurements were made using a Jenway 6400 spectrophotometer (Essex, U.K.). 

For each measurement, 50 pi o f fermentation broth was first diluted in 1000 pi o f 

corresponding media (1:21 dilution) before measuring OD6oo-
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A calibration curve (Figure 2.3) for biomass concentration versus O D6oo was 

generated from separate shake-flask fermentations of E. coli in each media 

preparation (LB, TB and GM9Y media). Fermentation samples were collected in 

triplicate at a minimum of four different time points and their OD600 recorded. 

These samples were filtered through a 0.2 pm, 25 mm diameter filter (Whatman 

PLC, Middlesex, U.K.) and the filter was dried to constant weight using a HG53 

Halogen Moisture Analyser (Mettler-Toledo Ltd., Leicester, U.K.). The dry cell 

weight was calculated from the increase in weight from the original empty filter. 

A calibration curve was obtained and used to convert all OD6oo measurements 

into dry cell weight per litre broth (g .f1) measurements.

Optical density at 600nm (TB)
0 4 8 12 16

2
O
CO_l

O)
o> O)

1
O)
1

0
2 4 60

Optical density at 600nm (LB, GM9Y)

Figure 2.3 Calibration curve for optical density and dry cell measurements o f E. 
coli grown in LB ( ), GM9Y ( -e - ) and TB ( - A -  ) medium. The following
lines of best-fit are obtained: y = 0.342x, R2 = 0.967 (LB), y = 0.387x, R2 = 
0.998 (GM9Y), y = 0.497x, R2 = 0.964 (TB).
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2.6.2 Quantification o f glycerol concentration

Glycerol concentrations were measured using a commercially available kit 

(Megazyme International Ireland Ltd. Co. Wicklow, Ireland).

The general reaction principles of the assay are as follows. Glycerol is 

phosphorylated by adenosine-5’-triphosphate (ATP) to L-glycerol-3-phosphate in 

the reaction catalysed by glycerokinase (GK.) (Equation 2.7):

Glycerol + ATP —(GK) > L - glycerol - 3 - phosphate + ADP (2.7)

The adenosine-5’-diphosphate (ADP) formed in the reaction is reconverted by 

phosphoenolpyruvate (PEP) with the aid of pyruvate kinase (PK) into ATP with 

the formation of pyruvate (Equation 2.8):

ADP + PEP (Pig > ATP + pyruvate (2.8)

In the presence o f the enzyme L-lactate dehydrogenase (L-LDH), pyruvate is 

reduced to L-lactate by reduced nicotinamide-adenine dinucleotide (NADH) with 

the production NAD+ (Equation 2.9):

Pyruvate + NADH + H + (1'1PM-) > L-lactate + NAD+ (2.9)

The amount of NAD+ formed in the above reaction pathway is stoichiometric 

with the amount of glycerol. The NADH consumption is measured directly by 

the decrease in absorbance at 340 nm (Anon., 2005).

The change in absorbance (AAgiyCeroi) was then used to calculate the glycerol 

concentration according to the following formula:

V x MW
C =  -j  * AA , , (2.10)

8 x d x v
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where c is the glycerol concentration (g.F1), V = final volume (ml), MW = 

molecular weight o f glycerol (g.m of1), e = molar extinction coefficient = 6300 

(l.mol '.cm '1), d = light path (cm), v = sample volume (ml).

2.6.3 Quantification o f relative soluble firefly luciferase activity

The assay for FFL enables a quantitative value o f expressed soluble protein to be 

derived and requires no prior purification of the enzyme. Cell pellets were 

thawed on ice and resuspended in 500 pi BugBuster (Abgene, Epsom, UK). An 

aliquot o f 50 pi DNase I (Burgess Hill, UK) at a concentration of 1 mg.ml'1 was 

added and the samples were incubated for 20 min on ice. Lysates were clarified 

by centrifugation at 14,000 rpm for 10 min. A 5 pi aliquot of lysate was mixed 

with 200 pi o f Luciferase Assay Buffer (LAB) containing 10 mM MgS0 4 , 10 

mM Tris pH 7.8, 0.5 mM ATP, 0.47 mM luciferin, 0.27 mM co-enzyme A and

31.5 mM dithiothreotol, in a Nalgene 96-well plate (VWR, Loughborough, UK). 

The activity o f luciferase was measured using a SpectraMAX Gemini XS 

luminometer (Molecular Devices, Winnersh, UK) according to the reaction 

scheme shown below:

FFL + M^+
ATP + D-luciferin+ Q  ------------------— >

C 0 2 + AMP + PPi + oxyluciferin + light (560nm) (2.11)

The luminescence profile o f each sample was recorded at room temperature over 

a period o f 20 min. An example o f a typical luminescence profile, where 

measurements of Relative Light Units (RLU) are made, is shown in Figure 2.4.
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Figure 2.4 Example o f standard luminescence profiles from samples of the 
replicate MWP fermentations described in Section 2.3.1, taken at identical time 
points. Measurements made as described in Section 2.6.3.

For samples with particularly high soluble protein yields, the reaction shown in 

Equation 2.11 proceeded too rapidly and peak luminescence often occurred 

before measurements could be made as illustrated in Figure 2.5 (a). In order to 

obtain a usable luminescence profile from these samples, lysates were First 

diluted 20-fold in 100 mM Tris pH 7.8 prior to the addition of LAB. This 

resulted in a luminescence profile that enabled maximum peak heights to be 

obtained within the experimental time frame (Figure 2.5 (b)). The peak height of 

each luminescence profile is proportional to the luciferase activity (Bronstein et 

al., 1994) and so for each luminescence profile, the mean of the four largest 

luminescence values was recorded. This value was then divided by the original 

microwell liquid fill volume to give the soluble protein yield in units o f RLU.mf
i
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Figure 2.5 Typical luminescence profiles for the replicate samples within each 
MWP fermentation. For samples with particularly high soluble protein yields, the 
reaction proceeded very fast and the peak was often missed (a). In these 
scenarios, the lysates were first diluted 20-fold in 100 mM Tris pH 7.8 prior to 
the addition of LAB which resulted in more standard profiles (b).
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2.6.4 Analytical software

MODDE software version 7.0 (Umetrics, Windsor, UK) was used for 

experimental design o f the MWP fermentations (Sections 2.3.2 to 2.3.4 

inclusive) and the subsequent regression analysis and process modelling. 

Microcal Origin version 6.0 (Northampton, MA, USA) was used in the statistical 

data analysis of fermentation profiles (Section 2.5.3). It was also used for figure 

design. Microsoft Excel 2002 was used to solve Equation 2.4 for the calculation 

o f all kid  values and also to calculate p  values during the statistical analyses of 

fermentation profiles (Section 2.5.3).

83



3. A framework for the rapid optim isation o f  soluble protein expression in E. co li Islam 2007

3 A framework for the rapid optimisation of soluble 

protein expression in E. coli

3.1 Aims and objectives

As described in Section 1.5 the overall aim of this project is to establish a generic 

framework which underpins the generation o f large quantities o f soluble 

recombinant protein in E. coli in a manner which is both rapid and cost-effective. 

To achieve this goal, various tools and technologies will need to be combined 

and applied in a novel manner. The aim of this chapter is to provide the 

conceptual framework to achieving this goal. Specific objectives are:

• to determine the key components of the framework and its overall 

structure (Section 3.2);

• to explore the practical issues of implementing the framework 

components within this project (Sections 3.3).

3.2 Framework design

3.2.1 Introduction

The challenge of rapidly generating large quantities of protein may be split into 

two principal stages: (1) small scale protein expression characterisation followed 

by (2) scale-up of optimised protein expression. A wide range of development 

tools is available to aid in achieving these goals. In the following sections, the 

most appropriate tools are selected and a framework for their implementation is 

proposed.

3.2.2 Component specification

The first stage of the framework involves the characterisation o f protein 

expression. A wide range o f variables affects heterologous protein expression
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levels, as described in Section 1.2.3, and numerous experiments are normally 

required to characterise such a complicated process. Design of Experiments is 

able to greatly reduce the number o f these characterisation experiments (Section

1.3), whilst providing a high level of process understanding which also aids in 

subsequent scale-up. This high degree o f characterisation coupled with the 

significant savings in time and costs places DoE at the heart of the project 

framework.

In order to generate the characterisation data in a rapid and cost-effective 

manner, experiments should be performed at small scale as discussed in Section

1.2.4. Microscale experimentation complements DoE in that material 

requirements are reduced and experimental throughput is increased through 

parallel operation and potential automation. A framework component which 

includes microscale experimentation would thus prove highly beneficial.

The second stage o f the framework involves the scale-up of protein expression in 

order to access larger quantities o f protein. The final scale o f fermentation 

required is dependent on both the demands of the specific drug-discovery 

campaign and the expression characteristics of the target protein. The second 

stage o f the framework will thus involve the reproduction of microscale protein 

expression levels over a range o f scales. Separate strategies for laboratory scale 

and pilot scale expression will form the components of this stage of the 

framework.

In order to minimise the time and costs o f scale-up, these strategies should 

incorporate the information generated from the DoE / microscale stage of 

experimentation. The optimal fermentation conditions determined from small- 

scale characterisation experiments, for example, are likely to mirror those at 

larger scales (Hunt, 2005). These optimal conditions should provide some 

indication of the key process scale-up parameters and the overall scale-up 

strategy should also take account o f this.
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3.2.3 Framework structure

Having specified the key components, the next design step is to arrange these 

components within an optimal framework configuration such as that illustrated in 

Figure 3.1. The target protein and expression system proceed through to the first 

stage of the framework: protein expression characterisation. Here, suitable 

factors and responses are specified and experimental designs are generated 

through DoE. These fermentations are performed within microwell plates 

(MWP) and the data generated is used to guide subsequent experimental designs. 

This cycle continues until the optimum expression conditions have been 

identified.

The target protein and expression system then proceed through to the second and 

final stage o f the framework: scale-up o f optimised protein expression levels. 

The process information gathered thus far, such as optimal expression conditions 

and potential key scale-up parameters is used to design an appropriate scale-up 

strategy and this strategy is implemented up to the laboratory scale. Then, the 

successful strategy is refined in light o f any new information emerging from 

laboratory scale fermentations and applied to reproduce MWP protein expression 

levels at the pilot scale.

3.3 Framework implementation

3.3.1 Protein expression characterisation

3.3.1.1 Background

The experimental designs within this framework are greatly influenced by the 

properties of microscale experimentation. The implementation aspects of both 

components will, therefore, be considered simultaneously.
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Target protein and
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Design of 

Experiments (DoE)

Microscale
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Figure 3.1 Overview o f the proposed framework for large-scale optimised 
protein expression. The numbered arrows represent information streams. The 
specification of factors and responses is determined by the particular target 
protein and expression system (1) and DoE is used to design the subsequent 
microscale experiments (2). Several rounds o f expression studies are required to 
determine the optimal process conditions in a time and cost efficient manner. The 
information gathered from each round is used to generate subsequent 
experimental designs (3) until the optimal conditions are found. The process 
knowledge which emerges from the DoE / microscale experiments should 
provide insight into larger (laboratory) scale performance and thus it should be 
incorporated into the appropriate scale-up strategy (4). Similarly, the knowledge 
gained from the laboratory scale strategy should inform the subsequent pilot 
scale strategy (5), thereby enabling the production of gram quantities of target 
protein (6).
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The stages involved in DoE were first reviewed in Section 1.3.2 and included 

familiarisation, screening, finding the optimal region, optimisation, robustness 

testing and mechanistic modelling. Not all stages are relevant to the objectives of 

this project, however. Mechanistic modelling, for example, is usually only 

attempted when there is a need to establish a theoretical model within a field and 

this lies beyond the scope of the current work. Similarly, robustness testing is 

mainly performed when reproducible product quality is o f key importance. Since 

the expressed reporter protein has no application as a product, robustness testing 

is unnecessary. Finally, finding the optimal region does not constitute a primary 

DoE objective and it will thus be considered alongside the screening stage.

Overall, the three primary experimental objectives of this work are 

familiarisation, screening and optimisation. Figure 3.2 illustrates the 

implementation sequence and characteristics of these stages towards the goal of 

obtaining a process map. As each stage is completed, the number o f potentially 

significant variables is reduced whilst the degree of process characterisation is 

increased. The specific implementation aspects o f each stage are discussed in the 

following sections.

3.3.1.2 Familiarisation

Familiarisation serves as perhaps the most important stage within the overall 

framework. As the name suggests, the purpose o f this stage is to gain familiarity 

with the process under investigation. The accuracy of information generated here 

will affect the number of experiments required to locate and characterise the 

optimal region, the reproducibility o f response data and the success o f the 

subsequent scale-up strategy. Thorough planning of the familiarisation 

experiments is thus crucial.
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Figure 3.2 Implementation sequence of the stages o f DoE applied in this work 
(arrows) towards the goal of obtaining a reliable process map. As each stage is 
completed, the number o f potentially significant variables is reduced whilst the 
degree o f process characterisation is increased.

The first step involves identifying all variables which may affect the process 

under investigation and this may be accomplished using insight gained from 

published literature, past experience or simple experimental designs. Some 

factors will have little effect on the system but may still cause an undesired 

spread around the ideal result. These factors typically include ambient 

temperature, humidity and variability in raw material composition. By 

developing techniques for controlling undesired sources of variation, it should be 

possible to establish a fine degree o f process control and the accuracy of 

information gained from the process should thus be improved. In contrast, factors 

which are thought to have the potential to significantly affect the system, such as 

those described in Section 1.2.3, should be targeted for investigation through 

DoE.
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A key requirement here is that factors are chosen to provide insight into larger 

scale performance and thus that the microwell experiments are performed in a 

defined engineering environment (Fernandes and Cabral, 2006). Initial studies 

have suggested that scaling-up on the basis o f a constant oxygen mass transfer 

coefficient, Ata, appears to be the most appropriate approach when dealing with 

microorganisms growing under aerobic conditions (Ferreira-Torres et al., 2005; 

Micheletti el al., 2006). Factors which are thought to influence kLa, such as 

MWP shaking speed and fill volume should, therefore, also be included for 

investigation. Their optimisation should enhance culture conditions and provide 

insight into scale-up criteria for optimal fermentation performance.

The next step involves choosing responses that are relevant to the goals o f the 

investigation and developing the appropriate response measurement techniques. 

Several responses will be considered throughout this project including cell 

growth and soluble protein yield. The corresponding assays will need to be 

compatible with both DoE and microscale processing techniques in that they 

should be rapid, sensitive, and quantitative, involving minimal processing to 

further reduce costs and facilitate potential automation.

Overall, the parameter assumptions and experimental methods developed thus far 

should be improved through experimentation before progressing through to the 

next stage o f DoE, screening.

3.3.1.3 Screening

The key purpose of screening is to identify the most influential factors and 

provide an estimate for their appropriate ranges. Here, factors are commonly 

investigated over only two levels and so a relatively low number o f experiments 

is required (Eriksson et al., 2000). For soluble recombinant protein production, 

the appropriate screening design should be capable o f handling not only a large 

number of factors, but also a mixture of qualitative and quantitative variables.
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It is usually possible to gauge if a screening design has captured the optimal 

settings, but the results do not lend themselves well to extrapolation. Therefore, 

if the optimal region appears to lie outside o f the screening window, it may be 

necessary to perform an additional number o f extra scouting experiments prior to 

optimisation.

3.3.1.4 Optimisation and process mapping

The goal of optimisation is to reveal the nature of the mathematical relationship 

between factors and responses and thus produce an accurate map or model o f the 

system under investigation. The corresponding designs vary factors over 3 to 5 

levels and so involve more experiments per factor than screening designs. The 

model can then be used to accurately determine the optimal factor settings, 

assuming they lie within the optimisation window.

3,3,2 Scale-up strategy: laboratory scale

A strategy for translating optimal DoE results from MWP fermentations to a 

laboratory scale STR is then needed and is underpinned by the ability to 

predictively scale-up microwell results. This need is complicated by stark 

differences between microwell plates and stirred tank reactors such as geometry, 

the method of aeration and agitation and the effects of surface tension. Scaling- 

up on the basis o f constant kLa has the potential of overcoming the 

aforementioned complications as it corresponds to an overall measure of 

agitation and aeration.

Regardless o f the basis for scale-up, the key scale-up parameter(s) will first have 

to be characterised over a range o f conditions at both the MWP scale and 

laboratory scale STR. It should then be possible to translate MWP fermentation 

performance to the larger scale. Several sets o f fermentation conditions should be 

investigated to provide an estimate for the range of conditions over which 

successful scale-up can be achieved.
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3.3.3 Scale-up strategy: pilot scale

The scale-up strategy developed at the laboratory scale should also provide the 

foundation for an effective pilot scale strategy. For example, the techniques 

developed at the laboratory scale for measuring the key scale-up parameter(s) 

should also be applicable at this scale o f operation. The range of scale-up 

conditions over which successful scale-up can be achieved may also be similar.

At this scale of operation, however, many minor sources of process variation 

may arise. These include method o f inoculum preparation, method of 

sterilisation, quality of media components, etc. In combination these may cause a 

significant deviation from predicted performance. These variables should, 

therefore, be taken into account when designing the appropriate scale-up 

strategy. By this stage it should be possible to produce large amounts of target 

protein under optimal conditions.

3.4 Summary

The aim o f this chapter was to provide a conceptual framework for generating 

large quantities of soluble recombinant protein in E. coli in a manner which is 

both rapid and cost-effective. The key components and overall structure of the 

proposed framework were specified in Section 3.2 and in Section 3.3 the 

practical issues of framework implementation were explored. In the following 

chapters, the practical details o f the framework are determined through 

experimentation. Chapter 4 will address protein expression characterisation and 

Chapters 5 and 6 will tackle the translation of microscale fermentation 

performance to the laboratory scale and pilot scale, respectively.
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4 Optimisation of soluble protein expression at the 

microwell scale*

4.1 Aims and objectives

The first stage o f the proposed framework (Section 3.3.1) involves the 

optimisation o f soluble protein expression at the microwell scale. This is covered 

in this chapter which addresses the application o f DoE and the performance of 

experiments at the microwell scale. The specific objectives of this chapter are:

• to develop appropriate experimental techniques and identify potential 

variables influencing protein expression through initial familiarisation 

experiments (Section 4.2);

• to screen the selected variables to identify those which produce the most 

significant effects on the expression system and estimate the factor ranges 

which are likely to encompass the optimal settings (Section 4.3);

• to confirm the identify o f the important factors and model their effect on 

soluble protein expression (Section 4.4);

• to improve the predictive ability o f the resultant model through statistical 

analysis, to pinpoint the optimal settings of the important factors and 

verify the model’s practical capability (Section 4.5).

4.2 Experimental familiarisation

4.2.1 Specification o f variables

The first objective of the familiarisation experiments was to identify the variables 

influencing soluble protein expression and their appropriate ranges for the system 

under investigation. Ten factors were initially chosen for investigation and these 

are described in Table 4.1. This selection of factors is generic and could be

fThe majority o f the results presented in this chapter have been published as: Islam,R.S., Tisi,D., 
Levy,M.S., and Lye,G.J. (2007) Framework for the Rapid Optimization of Soluble Protein 
Expression in Escherichia coli Combining Microscale Experiments and Statistical Experimental 
Design. Biotechnology Progress. 23, 785-793.
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applied to the study of soluble protein production in microwells for any inducible 

E. coli expression system. Medium types were chosen from commonly used 

complex media and plate formats were chosen such that a range of geometries 

was present. The chosen screening temperatures, IPTG concentrations and post

induction periods were adopted from a study by Urban et al. (2003) who also 

investigated recombinant protein expression using the pET vector and an 

identical strain o f E. coli. The IPTG concentrations used, 50-1000 pM, are also in 

line with those used in other E. coli expression systems (Cao, 2006; Swalley et 

al., 2006). Previous experiments near centre-point conditions had shown the mid

exponential growth phase to occur at ~4 h and so the boundaries for the pre

induction growth period were positioned symmetrically around 4 h. In contrast to 

other DoE studies, shaking speed and liquid fill volume were included as factors 

since these strongly influence the oxygen transfer rate into the wells (Hermann et 

al., 2003). The upper shaking speed was limited by the speed of the HiGro 

incubator-shaker and the upper liquid fill volume was chosen such that excessive 

splashing was avoided within the wells at the highest shaking speed.

4.2.2 Development o f response measurement techniques

The second objective was to identify suitable responses and develop the 

appropriate measurement techniques. An obvious response was that of biomass 

concentration, for which optical density measurements would provide a good 

indication and which have the potential to be made rapidly in a high-throughput 

manner. These observations would be made during the optimisation experiments 

at specific time points throughout the course of each microwell plate 

fermentation. The time points immediately following the growth and induction 

periods were deemed most appropriate for these initial measurements.

Another key measurement was that o f soluble protein yield. Although general 

assay procedures for FFL are described in the literature, it was necessary to 

develop an assay which met the specific requirements of this work. Firstly, all 

assay procedures were adapted to the MWP format. Following this, the relative 

quantities of assay reagents were adjusted to suit the range of expression levels
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particular to these fermentation conditions. Finally, it was necessary to again 

develop assay procedures which were compatible with the demands o f high- 

throughput automated processing (Lye et al., 2003). The final version o f the 

assay procedure used throughout this study is described in Section 2.6.3.

Table 4.1 Specification o f factors and settings investigated within 
familiarisation, screening and optimisation experiments. Pre-I and post-I are 
abbreviations for pre-induction and post-induction, respectively. Plate PI had 48 
rectangular wells with flat bases, plate P2 had 24 square wells with round bases 
and plate P3 had 24 square wells with pyramidal bases. aThe familiarisation 
experiments had a lower shaking speed of 50rpm. bAn upper liquid fill volume of 
2 ml was used in conjunction with the 48-well plate to prevent splashing.

Experimental settings
Factor name Abbr. Units __________________________________

Familiarisation / Screening Optimisation

Growth medium Xl - LB, TB, GM9Y TB

Plate geometry x2 - PI, P2, P3 P3

Liquid fill volume X3 ml 1, 2a,3 1 ,2 ,3

Pre-I temperature x4 °C 17, 37 27

Pre-I shaking speed X5 rpm 100b, 500 100,300. 500

Pre-I period X6 h 2 , 6 1 ,4 ,7

Inducer concentration X7 pM 50, 1000 500

Post-I temperature X8 °C 17, 37 23, 30, 37

Post-I shaking speed x9 rpm 100b, 500 100,300, 500

Post-I period Xio h 3, 15 6 , 1 2 , 18

4.2.3 Method development through experimentation

In order to evaluate the cell culture and analytical techniques developed methods 

thus far, a trial set o f 30 DoE experiments was performed from a screening 

design according to the factor settings described in Table 4.1. The mean soluble 

protein yield results from these experiments are shown in Figure 4.1. 

Approximately 40 % of the experiments resulted in protein yields undetectable 

by the assay with the average soluble protein yield per fermentation being 32,230

95



4. Optimisation o f  soluble protein expression at the microwell scale Islam 2007

RHJ.ml'1. For comparison, shake flask fermentations were also performed under 

standard expression conditions as defined in Section 2.3.5. These fermentations 

were run in duplicate and a mean soluble protein yield of 552,000 RLLI.ml*1 (a = 

12.9 %) was obtained.
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Figure 4.1 Column chart illustrating the variation of soluble protein yield from 
MWP familiarisation experiments. Experiments performed as described in 
Section 2.3.1.

Due to the low protein yield measurements and the high incidence of zero-value 

measurements, subsequent regression analysis was severely impeded. However, 

the goal of familiarisation is to gain some initial experimental experience with 

the system under investigation. Consequently, several changes were made to the 

experimental procedure, two of which were key. Firstly, the volume of inoculum 

was increased to raise the starting OD600 from 0.001 to 0.1. Secondly, the lower 

shaking speed was raised to lOOrpm, as shaking at 50rpm was observed to 

produce virtually no mixing in the wells.
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4.3 Screening experiments

Building upon the knowledge and experience gained from the familiarisation 

stage, the objective o f the screening experiments was to rapidly explore the 

influence of a wide range of factors on soluble protein yield. Detailed 

information on biomass growth and protein expression kinetics was sacrificed at 

this stage in order to rapidly identify the main factors influencing soluble protein 

yield. On completion of the screening experiments, a regression model was fitted 

to the soluble protein yield data (Table 4.2); note that the particular screening 

design used here did not support the quantification of interaction effects, only 

main effects. A fourth root transformation was then performed on these values in 

order to render their distribution approximately normal and hence maximise the 

Q2 value for the fitted model. This subsequent model yielded R2 and Q2 values of 

0.86 and 0.63 respectively which indicated that 8 6  % of the response variation 

was explained by the model and 63 % of the response variation was predicted by 

the model. These R2 and Q2 values suggested that the resulting model provided 

information of sufficient accuracy for creating a subsequent optimisation design.

The significance o f each screening factor on soluble protein yield is illustrated in 

the coefficient plot shown in Figure 4.2. It can be clearly observed that, of the 

qualitative factors, LB medium and plate PI contributed to the lowest soluble 

protein yields. In contrast, TB medium and plate P3 resulted in the highest 

soluble protein yields. There are several reasons why growth in TB could have 

resulted in the highest soluble protein yields. This medium is not only rich in 

nutrients such as yeast extract and tryptone, it also contains a defined carbon 

source, glycerol. Coupled to this, TB contains significant amounts of KH2PO4 

and K2HPO4 , (2.31 g.l' 1 and 12.54 g .f 1 respectively) which provide some level of 

buffering capacity against any disturbance in pH within the medium during 

fermentation. In contrast, LB medium contains no defined carbon source and no 

phosphate components and has almost five times less yeast extract than TB.
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Table 4.2 D-optimal screening design matrix for the initial assessment o f soluble 
protein yield. Quantitative variables are coded at low (-1), medium (0) and high 
(+1) levels according to the factor levels specified in Table 4.1.

Observations * 1 * 2 X} X4 X5 x6 x7 x8 x9 X| 0

Mean soluble 
protein yield 
(RLU.m l1)

N1 M9Y P3 - 1 - 1 1 1 1 - 1 - 1 - 1 2.422

N2 M9Y P3 - 1 1 1 1 - 1 - 1 - 1 1 228.491

N3 M9Y P3 - 1 - 1 1 - 1 1 1 1 - 1 53.632

N4 LB P3 - 1 1 - 1 1 - 1 1 1 1 512.598

N5 TB P3 - 1 1 - 1 - 1 1 1 1 1 1.693.240

N 6 M9Y P3 1 - 1 - 1 - 1 - 1 - 1 1 1 906.256

N7 LB P3 1 - 1 - 1 - 1 1 - 1 - 1 - 1 440

N 8 LB P3 1 1 1 - 1 - 1 1 - 1 - 1 53.519

N9 TB P3 1 1 - 1 1 1 - 1 1 - 1 58.193

N10 TB P3 1 - 1 1 1 - 1 1 1 1 329,012

N il M9Y P2 - 1 1 - 1 1 1 - 1 1 - 1 547

N12 LB P2 - 1 - 1 - 1 1 - 1 - 1 1 - 1 1,366

N13 LB P2 - 1 - 1 1 - 1 1 - 1 1 1 34,999

N14 TB P2 - 1 1 1 - 1 - 1 - 1 - 1 1 395,539

N15 TB P2 - 1 - 1 - 1 - 1 - 1 1 - 1 - 1 102,534

N16 M9Y P2 1 - 1 - 1 1 - 1 1 - 1 - 1 41,042

N17 M9Y P2 1 1 1 1 - 1 1 - 1 1 171,085

N18 M9Y P2 1 1 1 - 1 1 - 1 1 1 7,800

N19 LB P2 1 1 1 1 1 1 1 - 1 943

N20 TB P2 1 - 1 - 1 - 1 1 - 1 - 1 1 147,394

N21 M9Y PI - 1 1 - 1 - 1 1 1 - 1 - 1 480

N22 M9Y PI - 1 - 1 - 1 - 1 - 1 1 1 1 852,391

N23 LB PI - 1 1 - 1 1 - 1 - 1 - 1 1 87,764

N24 LB PI - 1 - 1 1 1 1 1 - 1 1 43,145

N25 TB PI - 1 - 1 - 1 1 1 1 - 1 1 321,696

N26 TB PI - 1 1 1 - 1 - 1 - 1 1 - 1 10,359

N27 TB PI - 1 - 1 1 1 - 1 - 1 1 - 1 1 1 . 0 2 0

N28 TB P3 0 0 0 0 0 0 0 0 1,241,740

N29 TB P3 0 0 0 0 0 0 0 0 1,220,350

N30 TB P3 0 0 0 0 0 0 0 0 1,243,840
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Figure 4.2 Coefficient plot with confidence intervals (set at 95%) for soluble 
protein yield obtained from screening experiments. The size of each bar (or 
coefficient) represents the relative importance of that factor upon soluble protein 
expression. A positive coefficient for a quantitative factor indicates that an 
increase in that factor, relative to its centre-point level, would result in an 
increase in soluble protein yield. The opposite is true for negative coefficients. 
Qualitative factors, such as medium type, have no centre-point levels and so the 
coefficients displayed are relative to one another. Factors and experimental 
conditions as described in Table 4.1.

Intermediate levels o f soluble protein expression were obtained with Glucose 

M9Y. Unlike LB medium, Glucose M9Y medium contains phosphate 

components and a defined carbon source in the form of glucose. This carbon 

source, however, provides limited benefits in comparison to glycerol which is 

present in TB medium. Glucose is a rapidly metabolised sugar which is 

associated with low recombinant protein yields (Stanbury and Whitaker, 1993). 

Unlike glycerol, it is also converted to acetate which is detrimental to the growth 

of E. coli (Jana and Deb, 2005; Luli and Strohl, 1990).
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The plate geometry was also shown to causes diverse effects. This is especially 

significant since other publications examining protein expression in microwell 

formats have not fully investigated this factor (Cao, 2006; Nikerel et al., 2005; 

Ren et al., 2006; Swalley et al., 2006; Urban et al., 2003; Wang et al., 2005; 

Zhang, 2006). Plate P3, which has 24 wells each with a square cross-section and 

a pyramidal bottom, had the most significant and positive effect on soluble 

protein yield. The large wells provide an increased surface area per unit volume 

for oxygen transfer and the edges along the pyramidal bottoms produce a baffling 

effect which further promotes mixing and aeration (Doig et al., 2005; Duetz et 

al., 2000; Lye et al., 2003). Plate P2, which has 24 wells each with a square 

cross-section and a round bottom, resulted in intermediate soluble protein yields. 

The lowest soluble protein yields were observed with plate PI, which has 48 

wells each with a rectangular cross-section and a flat bottom. The wells o f plate 

PI are small, each well with a cross-sectional area less than half those of the 

other plates. This would lead to a significant reduction in oxygen transfer 

capability due to the reduced air-liquid surface area within each well. The 

increased importance o f surface tension effects as well as diameter decreases 

would exacerbate this problem.

The most significant quantitative factors (Figure 4.2) included the pre-induction 

(pre-I) and post-induction (post-I) periods and the post-I temperature. The post-I 

period had a positive coefficient, indicating that higher soluble protein yields are 

obtained at the higher setting (15 h). The highest soluble protein yields overall 

were obtained from the centre-point experiments where the post-I period was 9 h. 

This additional information suggested that the post-I period centre-point in the 

subsequent optimisation design should be positioned close to 9 h. The location of 

the window for post-I period would, therefore, be moved by +3 h for 

optimisation. The post-I temperature also had a positive coefficient. The upper 

limit was already at 37 °C, the optimum for E. coli, and so only the lower limit 

would be raised for optimisation experiments.

In many cases it is prudent to maximise the number of healthy cells prior to the 

addition of an inducer, which often retards cellular growth (Bentley et al., 1991;
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Donovan et al., 1996; Lee, 1996; Peng et al., 2004). Results from the screening 

experiments suggest differently, however. The negative coefficient for the pre-I 

period shows that, on average, higher soluble protein yields are obtained at the 

low setting of 2 h corresponding to lower cell densities prior to induction. For the 

optimisation experiments, the pre-I period range would be increased by 2 h 

overall symmetrically around the original centre-point.

While the coefficients for shaking speed, both pre- and post-induction, and also 

the liquid fill volume were not seen to have a significant impact on soluble 

protein yield (Figure 4.2), it was decided to retain them for subsequent 

optimisation experiments over their existing ranges. As previously mentioned in 

Section 4.2.1, these parameters are known to strongly influence kia  and hence 

the oxygen transfer rate into the wells (Hermann et al., 2003). Since the 

optimisation experiments are expected to produce higher cell densities and 

protein yields, oxygen mass transfer limitations may appear and so it would be 

prudent to include these three factors in the next stage of the design procedure. If 

any o f these parameters were to become significant under optimised conditions it 

would provide important insight for scale-up of the optimised process.

The remaining two quantitative factors o f pre-I temperature and inducer 

concentration both appeared to be insignificant (Figure 4.2). Although some 

circumstances exist under which screening designs may return false-negative 

results for factor relevance the decision was made to dismiss these factors in 

favour of a reduction in the number o f variables targeted for further investigation 

and optimisation. Since the centre-point experiments produced the highest 

soluble protein yields, both pre-I temperature and inducer concentration would 

be fixed near their centre-point levels for optimisation studies.

4.4 Optimisation experiments

Having identified the key factors influencing soluble protein yield in Section 4.3, 

the aim o f the optimisation experiments was to study a smaller number o f factors,
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over refined ranges, in more detail. The investigated factors are specified in 

Table 4.1. For the optimisation experiments the measured biomass dry cell 

weight pre- and post induction was also included as a response so as to provide 

extra insight into the relationship between cell growth and protein expression. 

The results for these experiments are summarised in Table 4.3. Here, it can be 

seen that there was a three-fold increase in the highest measured soluble protein 

yield (5.39 x 106 R L ll.m l1) compared to the maximum obtained in the initial 

screening experiments (1.69 x 106 RLU.mr1).

On completion of the optimisation experiments, soluble protein yield values were 

transformed by taking the fourth root as described in Section 4.3. The initial 

optimisation model consisted of 27 terms ( 6  main effect terms, 6  square terms 

and 15 two-level interaction terms). Model terms that were not significant were 

then removed in a hierarchical manner; if a main effect term was removed then 

all higher order terms containing that factor, such as square terms and interaction 

terms were also removed. The remaining model coefficients for soluble protein 

yield are shown in Figure 4.3 and their associated statistics are given in Table 

4.4. Confidence intervals, set at 95 %, show the intervals or limits within which 

there was a 95 % chance of finding the true values of the model coefficients. A p  

value indicates the probability that a given model coefficient has an insignificant 

effect on the response. It is evident, therefore, from Table 4.4 that all coefficients 

in the final optimisation model are significant at p < 0.05.

Only three of the original six factors were found to influence soluble protein 

yield significantly: the pre-I and post-I shaking speed and the post-I period. The 

square terms for both shaking speeds were significant indicating that the 

optimum levels for these factors lay within the ranges studied. The fact that both 

these shaking speeds have become significant factors in the optimisation 

experiments is a consequence o f the higher biomass concentrations achieved ( > 8  

g.l'1) and the further enhancement obtained in soluble protein yield. Both o f these 

will increase the oxygen demand o f the culture making oxygen transfer, and 

hence shaking speed, a key parameter.
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Table 4.3 CCF design matrix for the optimisation of soluble protein yield. DCWj 
and DCWf refer to dry cell weight measurements immediately prior to induction 
and immediately following the induction period respectively. All variables are 
coded at low (-1 ), medium (0 ) and high (+ 1 ) levels according to the factor levels 
specified in Table 4.1. Predicted mean soluble protein yields are calculated from 
Equation 4.1.

Observations x3 x5 X6 x8 x9 X| 0

Mean
DCWj
(g-1-1)

Mean
DCWf
(g .f )

Mean soluble protein 
yield (RLU.m l1)

Measured Predicted

N1 -1 -1 -1 -1 -1 -1 0.09 0.60 199.625 124,038

N2 -1 1 -1 -1 1 -1 0.09 1.10 144,839 245,718

N3 1 -1 -1 -1 1 -1 0.07 0.55 106,421 489,412

N4 1 1 -1 -1 -1 -1 0.09 0.32 75,637 45,207

N5 -1 -1 1 -1 1 -1 0.74 3.34 710.852 489,412

N6 -1 1 1 -1 -1 -1 4.90 4.87 15,679 45,207

N7 1 -1 1 -1 -1 -1 0.47 0.81 210,553 124,038

N8 1 1 1 -1 1 -1 3.02 3.60 77,194 245,718

N9 -1 -1 -1 -1 1 1 0.08 5.16 1,955,840 980,053

N10 -1 1 -1 -1 -1 1 0.09 1.05 705,421 147,452

N il 1 -1 -1 -1 -1 1 0.07 0.77 527,654 319,833

N12 1 1 -1 -1 1 1 0.12 3.30 1,270,210 553,720

N13 -1 -1 1 -1 -1 1 0.74 1.17 149,192 319,833

N14 -1 1 1 -1 1 1 3.01 3.38 84,983 553,720

N15 1 -1 1 -1 1 1 0.52 5.19 2,804,730 980,053

N16 1 1 1 -1 -1 1 2.81 2.44 106,785 147,452

N17 -1 -1 -1 1 1 -1 0.05 0.87 150,716 489,412

N18 -1 1 -1 1 -1 -1 0.11 0.77 132,055 45,207

N19 1 -1 -1 1 -1 -1 0.09 0.45 135,652 124,038

N20 1 1 -1 1 1 -1 0.11 1.61 429,209 245,718

N21 -1 -1 1 1 -1 -1 0.75 1.13 87,900 124,038

N22 -1 1 1 1 1 -1 2.85 3.67 289,720 245,718

N23 1 -1 1 1 1 -1 0.61 5.33 1,481,220 489,412

N24 1 1 1 1 -1 -1 2.89 2.42 27,639 45,207

N25 -1 -1 -1 1 -1 1 0.11 1.32 128,921 319,833

N26 -1 1 -1 1 1 1 0.13 5.05 368,363 553,720

N27 1 -1 -1 1 1 1 0.08 5.52 564,253 980,053

N28 1 1 -1 1 -1 1 0.12 0.90 114,381 147,452

N29 -1 -1 1 1 1 1 0.44 2.13 593,970 980,053

N30 -1 1 1 1 -1 1 2.96 2.25 95,179 147,452
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N31 1 -1 1 1 -1 1 0.54 1.01 164.592 319.833

N32 1 1 1 1 1 1 2.86 3.17 565.823 553.720

N33 0 -1 0 0 0 0 0.24 5.26 2.233.070 1.804.860

N34 0 1 0 0 0 0 0.66 3.46 1.858.960 1.111.250

N35 -1 0 0 0 0 0 0.78 5.44 1.726.340 3.248.830

N36 1 0 0 0 0 0 0.68 5.31 2.341.450 3.248.830

N37 0 0 -1 0 0 0 0.10 2.75 1.115.710 3.248.830

N38 0 0 1 0 0 0 2.18 5.19 4.264.530 3.248.830

N39 0 0 0 0 0 -1 0.91 4.82 3.257.280 2.546.740

N40 0 0 0 0 0 1 1.07 8.18 5.388.800 4.086.950

N41 0 0 0 -1 0 0 0.65 5.24 2.945.420 3.248.830

N42 0 0 0 1 0 0 0.91 7.37 2.751.670 3.248,830

N43 0 0 0 0 -1 0 0.59 1.37 498.272 537.454

N44 0 0 0 0 1 0 0.91 5.45 3.031.590 1.459,700

N45 0 0 0 0 0 0 0.44 5.61 3,423.950 3.248,830

N46 0 0 0 0 0 0 0.59 5.64 3.249.220 3.248.830

N47 0 0 0 0 0 0 0.53 5.60 3,630,600 3.248.830

N48 0 0 0 0 0 0 0.73 5.72 3,317.380 3,248,830

N49 0 0 0 0 0 0 0.98 6.24 4.068.960 3.248.830

N50 0 0 0 0 0 0 0.89 5.80 4,126,540 3,248,830

This also provides an early indication o f the significance of agitation and aeration 

conditions upon scale-up if the optimised results are to be reproduced at larger 

scales. Although the post-I period was significant, the lack of a significant square 

term implied that its optimum setting lay outside of the range studied; the 

positive coefficient suggested it lay beyond 18h.

Figure 4.4 shows the response surface plot of pre- and post induction shaking 

speed with respect to soluble protein yield. Since shaking speed was shown to 

have such a significant effect on soluble protein yield it is logical to deduce that 

mixing and aeration are important factors. The existence of an optimum shaking 

speed was at first surprising. However, visual observations indicated that at the 

higher speeds splashing occurred within each well leading to the formation o f a 

liquid film on the underside of the gas permeable membrane. This would have 

increased resistance to oxygen transfer (Zimmermann et al., 2003) resulting in 

oxygen limitation of the culture and decreased soluble protein yield. Also, while
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high oxygen transfer rates may benefit cell growth, high growth rates do not 

normally favour expression of heterologous protein which is the main response 

variable in this study (Broedel et al., 2002; Stanbury and Whitaker, 1993).

Figure 4.3 Coefficient plot for final optimisation model (Equation 4.1), complete 
with confidence intervals (set at 95 %) for soluble protein yield (Y transformed 
as Y025). The original model consisted of 27 terms. However, terms whose 
confidence interval included the value zero were deemed insignificant and so 
were removed from the model in a hierarchical manner. Factors and experimental 
conditions as described in Table 4.1.

105



4. Optimisation o f soluble protein expression at the microwell scale Islam 2007

Soluble prote 
yield (RLU.ml

x5: pre-I agitation (rpm)x9: post-I agitation (rpm)
150 150

100

Figure 4.4 Response surface plot showing influence of pre-I and post-l shaking 
speed on soluble protein yield (all other optimisation factors at their centre-point 
levels). Response surface generated using Equation 4.1.

Overall the three key variables identified at this stage strongly affect both cell 

growth rate and final biomass concentration. Analysis o f the raw factor 

combinations (Table 4.3) suggests that the highest soluble protein yields are 

obtained under conditions which promote both a slow growth rate during protein 

synthesis and a high final biomass yield.

4.5 Regression analysis and process modelling

The final stage in the application o f DoE involves analysis and verification o f the 

model. Model analysis helps to provide insight into any experimental issues that 

may not be accounted for in the model. Model validation involves experimental 

verification o f model predictions under conditions not specifically tested in the 

experimental design. Regression analysis o f the reduced optimisation model for 

soluble protein yield (Table 4.4) indicated that 82 % of the response variation 

was explained by the model and 76 % o f the response variation was predicted by 

the model. Figure 4.5 shows the correlation between measured and predicted
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soluble protein yield values. The predictive power o f the regression model is 

generally good but the 76 % value suggests that aspects o f the system being 

studied were behaving in an unpredictable manner.

Table 4.4 Estimated regression coefficients o f the reduced optimisation model 
for soluble protein yield (Equation 4.1). The corresponding p-values and 
confidence intervals are also shown. Variables as described in Table 4.1.

Variable Coefficient Standard error p  value
95% confidence 

interval (±)

Constant 42.455 1.250 < 0 . 0 0 1 2.520

Pre-I shaking speed -2.093 0.830 0.015 1.672

Post-I shaking speed 3.841 0.830 < 0 . 0 0 1 1.672

Post-I period 2.507 0.830 0.004 1.672

(Pre-I shaking speed): -7.895 2.538 0.003 5.115

(Post-I shaking speed)* -11.538 2.538 < 0 . 0 0 1 5.115

/?-’ = 0.817:0-’ = 0.760

4 5 -

4 0 -

3 0 -

8  2 0 -

3010 15 20 25 35 40 5045

Predicted (soluble protein yield)025 (RLU.ml1)025

Figure 4.5 Parity plot showing measured and predicted soluble protein yields for 
optimisation experiments. Predicted values obtained from Equation 4.1. Solid 
line represents line o f parity.
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Analysis o f Variance (ANOVA) was performed on the residual sum o f squares 

(SSrcsid). the results for which are shown in Table 4.5. SSreSid is comprised o f the 

sum o f two components: the experimental error, or the pure error sum o f squares 

(SSpo) and the model error, the lack o f fit sum o f squares (SS|0r). ANOVA 

revealed that SS|0r was the major contributor to SSrcs,d (SS|0r ~ 1023). with the 

pure error associated with the replicate experiments being relatively very low

(SSpc ~ 6).

Table 4.5 ANOVA results for analysis o f the reduced optimisation model 
(Equation 4.1) for soluble protein yield.

Source

Degrees of 

freedom 

(DF)

Sum of 

squares 

(SS)

Mean square 

(MS)
F statistic p  value

Total 50 48390.100 967.802

Constant 1 42752.100 42752.100

Total

Corrected
49 5637.980 115.061

Regression 5 4608.540 921.709 39.396 <0.001

Residual 44 1029.440 23.396

Lack of Fit 39 1023.050 26.232 20.547 0.002
Pure Krror 5 6.384 1.277

It's possible this lack o f fit was due to the removal o f too many terms from the 

model; it may have been prudent to leave significant interaction and square terms 

in the model even if their corresponding main effect terms were shown to be 

insignificant. Uncontrolled factors and/or mechanisms may also have been 

present. A number o f experiments were seen to generate extremely low soluble 

protein yields despite having relatively high biomass concentrations. On 

inspection o f these cultures, cells were seen to have aggregated at the end o f the 

fermentation and the broth had a viscosity consistent with that o f lysed cells. If 

cells within these cultures did indeed lyse disproportionately to other
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experiments, it would have represented a new mechanism, unaccounted for by 

the existing experimental design. Secondly, in experiments where the culture was 

shaken gently, cells were seen to adhere to the surface o f the wells complicating 

OD measurements and sampling o f the wells. Overall, however, the distribution 

o f responses (Figure 4.6) shows that the current experimental window is ideally 

placed around a highly variable region o f the system. Furthermore, the general 

trends seem to have been captured well since both the R2 and Q2 values are high 

and acceptable for such a complex system

15

1 0 -

>.oc
<DD
L_LL

5 -

o -M y y y y y y y---------
15 20 25 30 35 40 45 50

Bins ( soluble protein yield025 )

Figure 4.6 Histogram o f responses for (soluble protein yield)0 25 from the 
optimisation experiments (Table 4.3).

To test the accuracy o f the regression model, two verification experiments were 

performed at the predicted optimal factor settings. The final regression model 

was comprised o f the coefficients shown in Table 4.4 and assumed the form:

7 025 = 42.46 -  2.09x5 + 3.84x9 + 2 .5 lx10 -7 .9 0 x52 -1  1.54*2 (4.1)
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From this equation the predicted optimal factor settings were pre-I shaking speed 

= 270 rpm, post-I period ~ 18h and post-I shaking speed = 330 rpm. All other 

factors were maintained at their mid-point levels (Table 4.1). The mean soluble 

protein yield measured experimentally at these predicted optimal settings was 

3.26 x 106 RLU .m f1 (o = 14.5 %) and the corresponding pre-I and post-I mean 

biomass concentrations were 1.01 g .f1 and 6.88 g .f1 respectively. The mean 

soluble protein yield obtained was equivalent to just over 76 % o f the predicted 

optimum o f 4.25 x 106 R LU .m r1. This result suggested the model is highly 

predictive however, some lack o f fit o f the model does occur. For comparison, 

shake flask fermentations were also performed under standard expression 

conditions (Section 2.3.5). These fermentations were run in duplicate and a mean 

soluble protein yield o f 552,000 R LU .m r1 (a = 12.9 %) was obtained. Overall, 

the soluble protein yield measured under the predicted optimum conditions is 

almost 6-fold greater than that obtained under reference shake flask conditions.

Finally, Figure 4.7 shows the variation o f soluble protein yield modelled as a 

quadratic function o f  pre- and post-induction biomass yield, over which lies a 

scatter plot o f experimental observations. The model is able to largely explain the 

variation in soluble protein yield, with an R value o f 0.87 and thus several 

conclusions can be drawn. When the pre-induction biomass is high, ~ 3 g . f 1, the 

resultant post-induction biomass concentration remains relatively constant. The 

addition o f IPTG at high biomass concentrations seems to prevent further growth 

o f cells. Furthermore, the soluble protein yields measured at these levels are all 

relatively small (<1 x 106 R L U .m l1). In contrast, the highest soluble protein 

yields generally correspond to both a relatively low pre-induction biomass 

concentration, below ~ 1 g.F1, and high post-induction biomass concentration, 

above ~ 5 g.F1.
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Figure 4.7 Contour plot showing variation o f soluble protein yield (RLU.mr1) 
with respect to pre-induction dry cell weight (DCW,) and final dry cell weight 
(DCWf). Model used to generate contours was a least squares quadratic fit: 
logio(soluble protein yield) = 11.36 -  0.13x(DCW,) + 0.50x(DCWf) - 
0.12x(DCW,)2 -  0.02x(DCWf)2 + 0.09x(DCW,)x(DCWf). Data used to generate 
model are taken from Table 4.3 and are superimposed over the contour plot. 
Dashed line represents line o f parity.

4.6 Sum m ary

The aim o f this chapter was to optimise soluble protein expression at the 

microwell scale. Towards this aim a generic framework was developed, 

comprising four key stages: familiarisation, screening, optimisation and 

regression analysis towards generating a process map.

Ten factors were initially identified at the familiarisation stage (Section 4.2) 

using a combination o f  experience and literature studies. Relevant system 

responses were identified and the appropriate measurement techniques were 

developed. A simple experimental design was also applied to further develop the 

experimental methods. The ten selected factors were subsequently screened
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(Section 4.3) and six were chosen for further investigation through optimisation. 

The optimisation stage (Section 4.4) identified three significant factors and their 

effects on soluble protein expression levels were modelled. This model was 

subsequently improved through statistical analysis and the m odel's predictive 

ability verified through experimentation (Section 4.5).

In comparison to other HTPE approaches, the application o f DoE led to a 

significant decrease in the number o f experiments performed. Ten variables w ere 

studied at both the familiarisation and screening stages (2 qualitative variables at 

3 levels and 8 quantitative variables at 2 levels) and six were studied at 

optimisation (6 quantitative variables at 3 levels). The total number o f factor 

combinations for these three experimental designs is 2(32. 28) + 36= 5,337. This is 

a large, potentially expensive, and time consuming number o f experiments to 

perform. In contrast, the DoE approach required just 110 experiments (a 98 % 

reduction) and led to a high degree o f process understanding, as evidenced by the 

results for verification o f  the process model. At each stage o f the DoE process, an 

increased understanding o f the expression system was achieved. This is clearly 

illustrated in Figure 4.8 which demonstrates the significant improvements in 

maximum soluble protein yields obtained from the familiarisation, screening and 

optimisation experiments. Overall, the maximum soluble protein yield was 

increased more than 9-fold compared to reference conditions.

The use o f parallel microwell scale fermentations also helped to reduce the 

experimental timeframes. These timeframes could be further reduced if all 

experiments required by DoE were automated. Importantly, shaking speed and 

liquid fill volume, two factors that have a strong influence on oxygen mass 

transfer into microwells (Hermann et al., 2003) were included as factors in the 

experimental design. The fact that shaking speed was one o f the most significant 

factors in the optimisation model illustrates its importance when performing 

microwell fermentations. It also suggests that careful control o f agitation and 

aeration conditions upon scale-up o f the optimised culture conditions will be 

important in maintaining the optimal balance between cell growth and protein 

expression.
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Figure 4.8 Comparison o f maximum soluble protein yields obtained from the 
familiarisation, screening and optimisation experiments. Dashed line indicates 
the mean soluble protein yield measured from shake flask experiments under 
standard expression conditions (Section 2.3.5).
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5 Scale-up of MWP fermentation performance to 7.5 1 

STR scalef

5.1 A im s and objectives

Following the optimisation o f soluble protein expression at the microwell scale 

in Chapter 4. the next stage o f the proposed framework (Section 3.3.2) involves 

implementing an appropriate scale-up strategy which will enable the rapid 

reproduction o f MWP fermentation performance within a laboratory scale STR. 

Given the significance o f shaking speed on protein expression in Chapter 4 

(Figure 4.3) and its impact on oxygen transfer (Hermann et al., 2003), kLa was 

considered to be an important scale-up parameter. Initial studies have also 

suggested that scaling-up on the basis o f constant kia appears to be the most 

appropriate approach when dealing with microorganisms growing under aerobic 

conditions (Ferreira-Torres et al., 2005; Micheletti et al., 2006).

The aim o f this chapter is, therefore, to establish kLa as a suitable basis for scale- 

up o f MWP results and to determine the range o f kLa values over which this 

scale-up strategy is valid. Specific objectives are:

• to measure the variation o f  kia over a range o f operating conditions 

within both the MWP and 7.5 1 STR scales (Sections 5.2 and 5.3);

• to validate these measurements through comparisons to existing 

correlations (Sections 5.2 and 5.3);

• to perform MWP and 7.5 1 STR scale fermentations at matched kia  values 

(Section 5.4);

• to use established statistical techniques to demonstrate the equivalence, or 

otherwise, o f fermentation kinetic profiles at the two scales (Section 5.4).

+The majority of the results presented in this chapter have been submitted for publication as: 
Islam.R.S.. Tisi.D.. Levy.M.S.. and Lye.G.J. (2007) Scale-up of E. coli growth and recombinant 
protein expression conditions from microwell to laboratory and pilot scale based on matched k,a. 
Biotechnology and Bioengineering. In press, doi: 10.1002/bit.21697
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5.2 Measurement and correlation of MWP kLa values

The initial stage o f the scale-up strategy involved characterising and correlating 

MWP kia  values over a range o f  operating conditions. First, the static-gassing 

out technique was used to generate dissolved oxygen tension (DOT) profiles for 

each o f the MWP geometries studied in Chapter 4. These experiments are 

described in Section 2.4.1 and a sample o f the resultant DOT profiles is shown in 

Figure 5.1 (a). The range o f kLa values measured from such profiles is illustrated 

in Figure 5.2 (a) and kia is observed to increase with increasing shaking speed in 

all cases (the raw data from which Figure 5.2 was constructed is given in 

Appendix A). This figure also compares the measured kia values with those 

predicted from the correlation o f Doig et al. (2005) for a 24-well plate with a 

circular cross-section and flat base (the closest geometry to those used here):

The experimental kia  values shown in Figure 5.2 (a) are significantly larger than 

those predicted. This is most probably due to the improved oxygen mass-transfer 

characteristics o f square versus round well plate formats (Duetz and Witholt, 

2004; Hermann et al., 2003).

In order to broaden the application o f the Doig et al. (2005) correlation to include 

square well plates, the original correlation was modified. The Bond and Schmidt 

numbers were first removed from the correlation since these groups do not vary 

with shaking speed (the only variable investigated here in the k/,a experiments). 

The sub-correlation for prediction o f cif /  a, was then altered to the following 

form:

7 1 - l r  n  r>  0  6 8  r*  0 .3 6  77* 0  8 6  n  0 .03k {a -  31.35.ZA<7;.Re ..Sc .Fr .Bo (5.1)

In —  = a.Fr (5.2)
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Figure 5.1 Example DOT profiles obtained across the full range o f shaking / 
agitation speeds within (a) the MWP (plate P3) and (b) the 7.5 1 STR. 
Experiments were performed as described in Section 2.4. A logarithmic 
transformation o f time is displayed on the x-axes such that the full range o f 
profiles for each bioreactor may be easily distinguished in one figure.
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Figure 5.2 Comparison o f predicted and measured MWP and af/a* values: (a) 
the correlation for kLa presented by Doig et al. (2005) (Equation 5.1) was used to 
predict kLa values for plates PI [ •  ], P2 [ A ] and P3 [ ■ ]; (b) Equation 5.2 was 
used to predict af/at values for plates PI [ o ], P2 [ A ] and P3 [ □ ] and the 
modified Doig correlation (Equation 5.3) was fitted to these data and used to 
predict kia  values for plates PI [ •  ], P2 [ A ] and P3 [ ■ ]. Values predicted 
from Equations 5.2 and 5.3 lie close to the line o f parity [ — ] and so are in good 
agreement with the corresponding experimental values, kia  values were 
measured as described in Section 2.4.1 and values for af/a t were measured as 
described in Section 2.4.2 and. Error bars indicate one standard deviation around 
the mean.
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where Fr is the Froude number and a, and b are constants. This alteration 

ensured that both sides of the equation would tend towards zero as the shaking 

speed approached zero. Equation 5.2 was then fitted to each set of specific air- 

liquid surface area measurements (Appendix A) within the three MWP 

geometries. The af / a, values predicted are in excellent agreement with those 

obtained experimentally as illustrated by the open symbols in Figure 5.2 (b).

These specific air-liquid surface area measurements were also used to model the 

variation o f ki with respect to shaking speed in the same manner as Doig et al. 

(2005). This model was combined with Equation 5.2 and the following modified 

correlation for square well plates as used here was obtained:

k ,a  = 3.94 ✓ I (T*.(D/c/, )a ,.R e" '1 .exp(aFrh) (5.3)

The corresponding values for a and b, respectively, were 1.66 and 2.47 for plate 

PI, 0.70 and 1.51 for plate P2, and 0.88 and 1.24 for plate P3. Figure 5.2 (b) also 

illustrates the good agreement between kLa values (solid symbols) predicted from 

Equation 5.3 with those obtained experimentally. Plate P3 is seen to yield the 

highest ^ a  values under the conditions studied. As it also showed the highest 

soluble protein yields (Figure 4.2) during protein expression characterisation, this 

MWP format was chosen for subsequent scale-up studies.

5.3 Measurement and correlation of 7.5 1 STR kLa values

The next stage of the scale-up strategy involved characterising and correlating 

laboratory scale STR faa values over a range of operating conditions. The static- 

gassing out technique was again used to generate DOT profiles, in this case 

within a conventional 7.5 1 STR as described in Section 2.4.3, and a sample of 

the resultant DOT profiles is shown in Figure 5.1 (b). The range o f faa values 

measured from such profiles (Figure 5.3) span a similar range to those obtained 

in the MWP experiments and faa is again observed to increase with increasing 

agitation speed (the raw data from which Figure 5.3 was constructed is given in
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Appendix A). Figure 5.3 also compares the experimental kLa values with those 

determined from the correlations of van’t Riet (1979). For pure water (coalescing 

medium) and strong ionic solutions (non-coalescing medium), respectively:

kLa = 0.026 - ± .0 .5

(5.4)

k ,a  = 0.002
\ v  J (5.5)

PA/QA/.rri2)

Figure 5.3 Comparison of experimental 7.5 1 STR kia values with those 
predicted by van't Riet (1979) (Equations 5.4 and 5.5) for pure water [ — ] and 
strong ionic solutions [ — ] at an air flow rate of 1 vvm. Values for Pg are 
calculated from Equation 5.6. Error bars indicate one standard deviation around 
the mean.
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In both cases Pg in the 7.5 1 STR was estimated according to the correlation 

proposed by Hughmark (1980):

The experimental faa values shown in Figure 5.3 lie mainly within the 

boundaries enclosed by the correlations for pure water and strong ionic solutions. 

This is expected as faa measurements made here were performed in a complex 

nutrient medium (as described in Section 2.2.1), which is of an ionic strength 

intermediate to the phases used by van’t Riet.

Visual observations o f the 7.5 1 STR showed that all faa values above ~ 200 h '1 

were obtained under conditions where there was good gas-liquid distribution 

within the vessel. Under the agitation conditions used at lower kLa values, 

however, there appeared to be poor gas dispersion within the vessel.

5.4 Fermentations at matched kLa values

5.4.1 Selection 0/ k La values and experimental conditions

The next stage of the scale-up process involved performing MWP and 7.5 1 STR 

fermentations at two sets o f kLa values, ‘high’ and ‘low’ so as to provide an 

estimate for the range o f faa values over which successful scale-up could be 

achieved.

Figure 5.4 illustrates the variation o f faa values achieved in relation to shaking / 

agitation speed in both the MWP and the 7.5 1 STR. From this figure, the 

observed range o f common faa values is between 38 h '1 and 247 h '1, 

corresponding to MWP shaking speeds of between 270 and 500 rpm. Figure 5.4

(5.6)

where P = P ox p x  N* x Dt5 (5.7)
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also shows the least squares model fits o f the kia  data with respect to shaking / 

agitation speed. For the MWP and the 7.5 1 STR, respectively, these are:

kLa = 0.00170 n2 - 0.400 n + 21.5 (5.8)

kLa = 0.402 N -  42.6 (5.9)

These models yielded R2 values o f 0.99 and 0.90 respectively, indicating good 

overall explanations of the response variation. The difference in kia  profiles 

observed here (curved versus linear) is most probably due to the increased 

significance o f surface tension effects at the microwell scale (Hermann et al., 

2003).
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600400 8000 200
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Figure 5.4 Variation of experimental kLa values with shaking speed for plate P3 
[ ■ ] and with agitation speed for 7.5 l STR [ □ ]. The dashed lines represent 
boundaries on the common range o f faa values measured at both scales. The 
solid lines represent least-squares model fits o f the faa data, described by 
Equations 5.8 and 5.9. Error bars indicate one standard deviation around the 
mean.
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Equations 5.8 and 5.9 were then combined and rearranged to obtain a 

relationship between MWP and 7.5 1 STR shaking / agitation speeds at matched 

kLa\

N = 0.00424 n2 - 0.996 n + 160 (5.10)

This equation enabled the prediction o f suitable agitation speeds within the 7.5 1 

STR on fermentation scale-up. Appropriate fermentation conditions were then 

chosen from the optimisation experiments o f Section 4.4 using the following 

criteria. A single shaking speed would be required throughout each fermentation 

in order to minimise the variation in kLa. This shaking speed should correspond 

to a scalable kLa value and should, therefore, be in the range of 270 to 500 rpm. 

The next requirement was for a minimum fill volume of 3ml per well - the same 

volume in which MWP kLa values were determined (Section 2.4.1). The final 

requirement was for a long overall fermentation time so that large comparative 

data sets could be generated. These criteria narrowed down the choice of 

experiments to N36 for the ‘low’ faa control and N32 for the ‘high’ faa control, 

the conditions o f which are described in Table 2.4.

5.4.2 MWP fermentation kinetics

Figure 5.5 illustrates a typical MWP fermentation profile at a ‘high’ faa value of 

247 h '1 and Table 5.1 shows a summary o f kinetic parameters for the same 

fermentation. Exponential growth started at ~ 2 h exhibiting a maximum specific 

growth rate, pmax, of 0.63 h '1. At 7 h, the cells were induced with 500 pM IPTG 

and ~ 30 min later, the dissolved oxygen tension fell to a minimum of 0 %. The 

DOT began to rise again at ~ 10 h which coincided with the end of the growth 

phase. The biomass concentration reached a maximum of -  7.9 g .f1 around 12 h. 

This coincided with the depletion o f glycerol, the main carbon substrate. At the 

same point, the soluble protein yield also appeared to reach a maximum of 3.0 x 

106 RLU.mr1. After this time the level o f expressed FFL fell rapidly suggesting 

utilisation of proteins by E. coli as a more complex source of carbon and energy 

once the glycerol was depleted (Garcia-Arrazola et al., 2005).

122



5. Scale-up o f  MWP fermentation perform ance to 7.5 1 STR scale Islam 2007

100 -

8 0 -

6 0 -

40 H

2 0 -

0-J

6x10®8

5x10®

6

4x10'

(Z -
cn

4 3x10'uo</)
o
CO 2x10®

2

1x10®

0
0 5 10 15 20 25

3 -T

I
¥
i
o

Time (h)

Figure 5.5 MWP (plate P3) fermentation kinetic profiles at high kLa (247 h '1). 
Profiles show biomass concentration [ -b- ], soluble protein yield [ •  ], glycerol 
concentration [ -A -  ] and DOT [ — ]. Arrow indicates time of induction. 
Experiments performed as described in Section 2.5.1.

Table 5.1 Summary of kinetic parameters for fermentations performed at the 
microwell and laboratory scales at matched kia values. Parameters calculated 
from Figures 5.5 to 5.8 inclusive. NA indicates data not obtainable.

Variable Units
kt a  = 247 h' 1 k,a = 55 li"

MWP vs.. 7.5 1 STR MWP vs. 7.5 1 STR

CERmax mmol.r'.h' 1 NA 41 NA 5.4

OURmax mmol.rVh"1 NA 51 NA 5.0

Pmax h- 1 0.63 0.59 0.63 0.49
Vyxmax g-1-1 7.9 7.7 5.4 2.3

[Soluble protein]max RLU.mr1 2.9 x 106 3.2 xlO 6 5.7 xlO 6 2.2 xlO 6

Specific 

[soluble protein]max
RLU.mg' 1 3.8 x 10s 4.2 x 105 1.1 xlO 6 9.8 xlO 5
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MWP experiments were also performed at a ‘low’ faa value of 55 h '1. The 

kinetic response parameters from these fermentations are also described in Table

5.1 and the corresponding response profiles are illustrated in Figure 5.6. In 

comparison to the high kLa experiment, cells were found to be still growing by 

the end of the post-induction period though the DOT profile suggested this was 

under oxygen limited conditions. The maximum biomass concentration measured 

at this time point, 5.4 g .f1, is significantly lower than that obtained from the high 

^ a  experiment. Interestingly, however, the maximum soluble protein 

concentration at the lower faa was almost twice as large at 5.7 x 106 RLU.ml1. 

There was no observed decrease in FFL expression as the cells never reached the 

stationary phase and it is likely there was no depletion of glycerol (data not 

available) as observed within the "high’ kia  experiment. These results reflect a 

trend observed in Chapter 4 (Figure 4.7), where fermentation conditions 

promoting slow growth often produced the highest soluble protein yields.
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Figure 5.6 MWP (plate P3) fermentation kinetic profiles at low a (55 h"1). 
Profiles show biomass concentration [ -e- ], soluble protein yield [ •  ] and DOT 
[ ••• ]. Arrow indicates time of induction. Experiments performed as described in 
Section 2.5.1.
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5.4.3 7.51 STR fermentation kinetics

Figure 5.7 shows the fermentation profiles obtained within the 7.5 1 STR, at a 

matched kia  o f 247 h '1. Exponential growth started at -  2 h with a corresponding 

Umax o f 0.59 h '1 (Table 5.1). At 7 h, the cells were induced as in the MWP 

experiment. Approximately 1 h post-induction, the DOT fell to a minimum o f ~ 

20 %, and the CER and OUR reached a maximum of 41 mmol.I'1.h'1 and 51 

mmol.I'1.h'1 respectively. At -12  h there was a sharp change in these profiles, 

coinciding with the depletion o f glycerol. The biomass and soluble protein 

concentrations both reached a maximum at this time of 7.7 g.l'1 and 3.2 x 106 

RLU.ml'1 respectively. The measured rise in pH after this point is consistent with 

protein deamination as a result o f  protein being used as a secondary carbon and 

energy source (Garcia-Arrazola et al., 2005) and could again account for the 

decrease in the expressed levels o f FFL. Further insight may have been gained 

through analysis o f the rates o f biomass accumulation (dX/dt), product 

accumulation (dP/dt) and substrate utilisation (dS/dt). For example, if whilst 

dS/dt=0, a point o f inflection for dX/dt coincided with that for dP/dt, it would 

provide additional evidence that protein was used as a secondary carbon source.

As with the MWP studies experiments were also performed at the 7.5 1 scale at a 

‘low’ matched kva value o f 55 h '1. The kinetic parameters from these 

fermentations are described in Table 5.1 and the corresponding response profiles 

are illustrated in Figure 5.8. The biomass concentration was seen to be still 

increasing by the end o f the post-induction period, in comparison to the high kia 

experiment where the stationary phase had been reached much earlier. The 

maximum biomass and soluble protein concentrations measured at this time 

point, 2.3 g .f1 and 2.2 x 106 RLU.ml'1 respectively, are lower than those obtained 

from the high kia  experiment (Table 5.1). This retarded growth and protein 

expression in the stirred-tank bioreactor is attributed to the poor gas-liquid 

dispersion observed at the low impeller speed. The maximum CER and OUR 

values were also -  10-fold lower than those observed within the ‘high’ kia 

experiment.
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Figure 5.7 7.5 l STR fermentation kinetic profiles at high kia (247 h'1): (a) 
offline data shows biomass concentration [ -b- ], soluble protein yield [ •  ] and 
glycerol concentration [ -A- ]; (b) online data shows DOT [ — ], OUR [ — ], CER 
[ — ] and pH [ — ]. Arrows indicate time of induction. Experiments performed 
as described in Section 2.5.2.

126



5. Scale-up o f  MW P fermentation performance to 7.5 1 STR scale Islam 2007

(a)

(b)
100 -

8 0 -

60-

40-

20-

0-J

8

5x10s

6

cr,
3x1Cf £4

a 2x10s

2
1x1 (f

0
0 5 10 15 20 25

Time (h)

60

30
oc
o
«aa:
ujo

10-

 ....
0 5 10 15 20 25

Time (h)

Figure 5.8 7.5 l STR fermentation kinetic profiles at low kLa (55 h '1): (a) offline 
data shows biomass concentration [ -b - ] and soluble protein yield [ •  ]; (b) 
online data shows DOT [ — ], OUR [ — ], CER[ — ] and pH [ — ]. Arrows 
indicate time of induction. Experiments performed as described in Section 2.5.2.
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5,4.4 Scale comparisons

For operation at a ‘high’ kia  o f 247 h"1, the kinetic parameters summarised in 

Table 5.1 are largely similar between the MWP and 7.5 1 STR scales. In these 

experiments similar final biomass concentrations and maximum yields o f soluble 

protein were obtained. The maximum specific soluble protein yields were also 

very similar and occurred at almost identical time points at both scales o f 

operation. In contrast, experiments at a ‘low’ kia  o f 55 h '1 showed significant 

differences at the MWP and 7.5 1 scales (Table 5.1). There was significant 

variation both in the biomass concentrations achieved and also the biomass 

growth profiles.

Figure 5.9 further illustrates the similarity, or otherwise, o f fermentation profiles 

between the scales for each kia  value. The complete data sets of the variation o f 

biomass concentration, soluble protein yield and glycerol concentration from 

each scale are presented as parity plots for experiments at a kia o f 247 h '1 (Figure 

5.9 (a)) and 55 h '1 (Figure 5.9 (b)). It is evident that data gathered from ‘high’ kia  

fermentations are very similar, with all measurements lying close to the line of 

parity. This is in marked contrast to the data from the ‘low’ kia  fermentations. In 

combination with the summary data in Table 5.1 these results show that at ‘high’ 

kLa values, where there is good gas-liquid distribution at both scales, effective 

scale-up of MWP fermentation results can be achieved at matched kLa values.

For experiments at the ‘high’ kia  value, a rigorous statistical comparison o f the 

fermentation data obtained at both scales was also performed with regard to 

kinetic profiles for cell growth, protein expression and substrate utilisation. 

Appropriate models were fitted to each profile data set (Appendix B) and 

analysed as described in Section 2.5.3. This analysis examines the similarity of 

data sets over the entire course o f cell growth and provides a better indication of 

how well the MWP fermentation results are reproduced at larger scales.
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Figure 5.9 Parity plots comparing fermentation kinetics between MWP (plate 
P3) and 7.5 1 STR for biomass yield [ □ ], soluble protein yield [ •  ] and glycerol 
concentration (x2) [ A ] at &z.a values o f (a) 247 h '1 and (b) 55 h 1. Data taken 
from Figures 5.5 to 5.8 inclusive.
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Table 5.2 lists the p  values resulting from statistical analyses on the effect o f 

scale on profiles o f biomass concentration, soluble protein yield and substrate 

concentration at the MWP and 7.5 1 STR scales. All profiles apart from those o f 

glycerol were statistically similar at a significance level o f 0.05 indicating an 

excellent agreement between all growth and protein expression. Although the 

glycerol utilisation kinetics were not found to be significantly similar at this 

level, the overall fermentation profiles shown in Figures 5.5 and 5.7 do show the 

complete utilisation o f glycerol occurring at the same time point and coinciding 

with the maxima for cell growth.

Table 5.2 Comparison o f microwell fermentation kinetic profiles (Figure 5.5) to 
those from the laboratory scale fermentation (Figure 5.7) at matched kLa 
conditions (247 h 1). P  values shown are from F  tests on pairs of profiles for 
biomass concentration, soluble protein yield and substrate concentration as 
described in Section 5.4.4. The null hypothesis, which states that there is no 
overall difference between each pair o f profiles, is accepted if p > 0.05.

Kinetic profile
P  values

Plate P3 vs. 7.5 1 STR

Biomass growth 0.56

Glycerol utilisation 1.63 x 10"4

Soluble protein expression 0.08

5.5 Summary

The aim o f this chapter was to design an effective scale-up strategy for rapidly 

translating MWP fermentation performance to larger scales. In Chapter 4, 

shaking speed was identified as one o f the most significant factors affecting 

recombinant protein expression in E. coli MWP formats. Shaking speed is 

known to affect oxygen transfer (Hermann et al., 2003), thus kia  was assumed to 

be an important scale-up parameter.
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Consequently, in this chapter, MWP faa values were determined over a range of 

shaking speeds via the static gassing-out technique (Figure 5.2) and the results 

were used to establish a predictive correlation applicable to the square-well 

MWP formats used here (Equation 5.3). A similar range o f faa values was 

obtained within the 7.5 1 STR, using the same faa measurement technique, and 

these values also compared well to those predicted by existing correlations 

(Figure 5.4).

Fermentations were then performed at ‘high’ and ‘low’ matched kLa values. For 

scale-up at a ‘high’ matched faa  value o f 247 h '1, MWP fermentation kinetic 

profiles and yields were accurately reproduced at the larger scale o f operation, 

equivalent to a 1,700 fold scale-up. These results are significant for several 

reasons. Firstly, they confirm the initial scale-up hypothesis which proposed that 

^ a  was an important scale-up parameter. This hypothesis emerged in Chapter 4 

following the application o f Design o f Experiments (DoE) and so these results 

also provide further support for the use o f DoE as a bioprocess development tool. 

Finally, these results also confirmed a number o f recent studies which have 

suggested faa to be an important scale-up parameter for aerobic fermentations 

(Ferreira-Torres et al., 2005; Micheletti et al., 2006).

Scale-up of MWP fermentations at a ‘low’ matched faa value, in contrast, did not 

provide reproducible performance at the 7.5 1 scale. This difference was 

attributed to the poor gas-liquid distributions observed within the larger vessel at 

the agitation speed used to provide this ‘low’ kua value. Overall, a scale-up 

strategy based on relatively high matched faa values should be applicable to 

larger scales o f fermentation. Further scale-up of MWP results to the 75 1 scale 

using faa as a basis for scale-up is addressed in the next chapter.
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6 Scale-up of protein expression to 751 STR scalet

6.1 Aims and objectives

The final stage o f the proposed framework (Section 3.3.3) is to develop a scale- 

up strategy for translating MWP fermentation performance to a pilot scale STR. 

In Chapter 5, key fermentation kinetics such as those for cell growth and soluble 

protein yield were scaled up successfully on the basis of relatively high matched 

t o  values, i.e. t o  values corresponding to good gas-liquid distributions within 

the vessels.

The aim o f this chapter, therefore, is to further develop this scale-up strategy for 

application at the pilot scale o f operation where larger quantities o f protein can 

be generated. The specific objectives o f this chapter are:

• to measure the variation o f t o  within a pilot scale (75 1) STR over a 

range o f operating conditions and compare to values measured at the 7.5 1 

STR and MWP scales (Section 6.2);

• to validate the 75 1 t o  measurements through comparisons to existing 

correlations (Section 6.2);

• to determine if  equivalent fermentation performance can be obtained 

between the MWP and 75 1 STR scales on the basis o f ‘high’ matched t o  

values (Section 6.3).

6.2 Measurement and correlation of 751 STR  kLa  values

6.2.1 Measurement o f kLa values

As described in Section 5.3 it was necessary to first measure and then correlate 

t o  values within the stirred-tank reactor over a range o f operating conditions. 

The static-gassing out technique applied in Chapter 5 was again used to generate

^ h e  majority o f the results presented in this chapter have been submitted for publication as: 
Islam,R.S., Tisi,D., Levy,M.S., and Lye,G.J. (2007) Scale-up o f E. coli growth and recombinant 
protein expression conditions from microwell to laboratory and pilot scale based on matched kLa. 
Biotechnology and Bioengineering. In press. doi:10.1002/bit.21697
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dissolved oxygen tension (DOT) profiles, in this case within a conventional 75 1 

STR as described in Section 2.4.3, and a sample o f the resultant DOT profiles is 

shown in Figure 6.1. The range o f faa values measured from such profiles 

(Figure 6.2) spans a similar range to those obtained in the MWP and 7.5 1 STR 

experiments (Chapter 5) and kLa is again observed to increase with increasing 

agitation speed (the raw data from which Figure 6.2 was constructed is given in 

Appendix A). In Figure 6.2 the faa  values determined at the 75 1 scale are also 

compared to those obtained from the correlations o f van't Riet (1979) for pure 

water (Equation 5.4) and strong ionic solutions (Equation 5.5). In both cases Pg 

in the 75 1 STR was estimated according to the correlation proposed by 

Hughmark (1980) (Equation 5.6).
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Figure 6.1 Example DOT profiles obtained across the full range o f agitation 
speeds within the 75 1 STR. Experiments were performed as described in Section
2.4.3. A logarithmic transformation o f time is displayed on the x-axes such that 
the full range o f profiles for each bioreactor may be easily distinguished in one 
figure.
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Figure 6.2 Comparison o f experimental 75 1 STR kLa values with those predicted 
by van't Riet (1979) (Equations 5.4 and 5.5) for pure water [ ••• ] and strong ionic 
solutions [ — ] at an air flow rate o f 1 vvm. Values for Pg are calculated from 
Equation 5.6. Error bars indicate one standard deviation around the mean.

The experimental kLa values shown in Figure 6.2 lie mainly within the 

boundaries enclosed by the correlations for pure water and strong ionic solutions, 

similar to the trend observed within the 7.5 1 STR (Chapter 5). They are also o f a 

similar magnitude to kia  values determined at the 7.5 1 scale since measurements 

were performed at similar P /V  values. Visual observations of the 7.5 1 STR 

showed that all faa values below ~ 200 h '1 corresponded to poor gas dispersion 

throughout the vessel. Visual observations o f gas-liquid mixing within the 75 1 

STR, however, were not possible due to the stainless steel construction o f the 

vessel.
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6.2.2 Comparison o f kia values with other scales

Figure 6.3 compares the variation o f kLa values achieved in the 75 1 STR, in 

relation to agitation speed, with those achieved in the MWP and 7.5 1 STR 

(Chapter 5). The maximum faa value measured in the 75 1 STR (396 h '1) is 

significantly higher than those measured in the MWP and 7.5 1 STR (247 h 1 and 

279 h '1, respectively). From this figure, the observed range of common MWP / 

75 1 STR Hlo values is between 50 h '1 and 247 h 1, corresponding to MWP 

shaking speeds o f between 290 and 500 rpm.

400-
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<0 2 00 -
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200 400 6000 800 1000
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Figure 6.3 Variation o f experimental faa values with shaking speed for plate P3 
[ ■ ] and with agitation speed for 7.5 1 STR [ □ ] and 75 1 STR [ A ]. The dashed 
lines represent boundaries on the common range o f faa values measured at both 
the MWP and 75 1 STR scales. The solid lines represent least-squares model fits 
o f the kia  data, described by Equations 5.8, 5.9 and 6.1. Error bars indicate one 
standard deviation around the mean.
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Figure 6.3 also shows the least squares model fits o f the kya data with respect to 

shaking / agitation speed. For the 75 1 STR this is:

The R2 value for this model was 0.99, indicating a good overall explanation o f 

the response variation.

Equation 6.1 was then combined with the corresponding MWP equation 

(Equation 5.8) and rearranged to obtain a relationship between MWP and 75 1 

STR shaking / agitation speeds at matched kLa\

This equation enabled the prediction o f suitable agitation speeds within the 75 1 

STR on fermentation scale-up.

6.3 Fermentations at matched kLa values

6.3.1 Selection tf/kLa values and experimental conditions

The next stage o f the scale-up process involved performing fermentations at both 

the MWP and 75 1 STR scales. In Chapter 5, key fermentation kinetics such as 

those for cell growth, soluble protein yield and substrate utilisation were scaled 

up successfully on the basis o f relatively high matched kLa values, i.e. faa values 

corresponding to good gas-liquid distributions within the vessels. To determine if 

this strategy also applied at the pilot scale o f operation, the ‘high’ kLa (247 h '1) 

MWP fermentation conditions from Chapter 5 would again be scaled up on the 

basis o f matched faa. This fermentation was identical to experiment N32 from 

the optimisation experiments o f Section 4.4 and the specific fermentation settings 

for this experiment are described in Table 2.4.

^ a  -  0.505 N -  78.7 (6.1)

N = 0.00337 n2 - 0.792 n + 198 (6.2)
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6.3.2 MWP fermentation kinetics

Initial experiments showed that fermentations within the MWP produced lower 

final biomass concentrations than those in the corresponding 75 1 STR 

fermentations (data not shown). This was attributed to differences in the method 

o f medium sterilisation between the two vessels, as described in Section 2.4, and 

the different temperature-time profiles achieved. Consequently, when performing 

MWP and 75 1 fermentations at a matched foa o f 247 h"1, the 75 1 vessel was first 

inoculated and then a sample o f the inoculated medium was rapidly removed and 

used to fill the wells in the parallel MWP fermentations as described in Section 

2.5.

Figure 6.4 illustrates a typical MWP fermentation profile at the ‘high’ foa value 

o f 247 h 1 and Table 6.1 shows a summary o f kinetic parameters measured for 

the same fermentation. Exponential growth started at ~ 2 h exhibiting a 

maximum specific growth rate, pmax, o f 0.66 h '1. At 7 h, the cells were induced 

with 500 pM IPTG and this coincided with the end of the exponential growth 

phase. At around 12 h, the biomass and soluble protein concentrations reached a 

maximum of ~ 5.4 g.l'1 and ~ 6.4 x 106 RLU.m l1 respectively, coinciding with 

the depletion o f glycerol. After this time the level o f expressed FFL fell rapidly 

suggesting utilisation o f proteins by E. coli as a more complex source o f carbon 

and energy once the glycerol was depleted as was seen previously at the MWP 

and 7.5 1 scales (Section 5.4).

6.3.3 751 STR fermentation kinetics

Figure 6.5 shows the fermentation profiles obtained within the 7.5 1 STR, at a 

matched kLa o f 247 h"1. Exponential growth started at ~ 2 h with a corresponding 

Pmax o f ~ 0.62 h*1 (Table 6.1) and the cells were induced at 7 h in the same way 

as for the MWP experiment and. Approximately 45 min post-induction, the DOT 

fell to a minimum o f ~ 27 %, and the CER and OUR reached a maximum of 48 

mm ol.I1.h"1 and 50 mmol.I'1.h'1 respectively. At 12 h the biomass and soluble
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protein concentrations reached a maximum of ~ 5.3 g.l'1 and ~ 6.4 x 106 RLU.ml' 

\  respectively, which again coincided with the depletion o f glycerol.
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Figure 6.4 MWP (plate P3) fermentation kinetic profiles at high faa (247 h '1). 
Profiles show biomass concentration [ - b-  ], soluble protein yield [ •  ] and 
glycerol concentration [ -A- ]. Arrow indicates time o f induction. Experiments 
performed as described in Section 2.5.1.

Table 6.1 Summary o f kinetic parameters for fermentations performed at the 
microwell and pilot scales at matched faa values. Parameters calculated from 
Figures 6.4 and 6.5. NA indicates data not obtainable.

Variable Units
kLa  = 247 h'

MWP vs. 75 1 STR

CERmax mmol.r'.h ' 1 NA 48

OURmax mmol.rVh' 1 NA 50

Pm ax h' 1 0 . 6 6 0.62

^max g-1 '1 5.4 5.3

[Soluble protein]max RLU.ml1 6.4 x 106 6.4 x 106

Specific [soluble protein]max RLU.mg' 1 1 . 2  x 1 0 6 1.5 x 106
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Figure 6.5 75 l STR fermentation kinetic profiles at high kLa (247 h '1): (a) offline 
data shows biomass concentration [ -b- ], soluble protein yield [ •  ] and glycerol 
concentration [ -A- ]; (b) online data shows DOT [ — ], OUR [ — ], CER[ — ] and 
pH [ — ]. Arrows indicate time of induction. Experiments performed as 
described in Section 2.5.2.
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6.3.4 Scale comparisons

For operation at the ‘high’ kLa of 247 h '1, the kinetic parameters summarised in 

Table 6.1 are largely similar between the MWP to 75 1 scales. In these 

experiments similar final biomass concentrations and maximum yields of soluble 

protein were obtained. The maximum specific soluble protein yields were also 

very similar and occurred at almost identical time points at both scales of 

operation.

Figure 6.6 further illustrates the similarity of fermentation profiles between each 

scale of operation at the ‘high’ kLa value of 247 h '1. It is evident that data 

gathered from these fermentations are very similar, with all measurements lying 

close to the line of parity. In combination with the summary data in Table 6.1 

these results show that effective scale-up of MWP fermentation results can be 

achieved at matched kia values.

As performed in Section 5.4.4, a rigorous statistical comparison of the 

fermentation data obtained at both scales was performed with regard to kinetic 

profiles for cell growth, protein expression and substrate utilisation. Appropriate 

models were fitted to each profile data set and analysed as described in Section

2.5.3. A summary of these model fits is given in Appendix B. Table 6.2 lists the 

p  values resulting from statistical analyses on the effect of scale on profiles of 

biomass concentration, soluble protein yield and substrate concentration. All 

profiles were statistically similar at a significance level of 0.05 indicating an 

excellent agreement between growth, substrate utilisation and protein expression.
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Plate P3 soluble protein yield (RLU.mf1)
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Figure 6.6 Parity plot comparing fermentation kinetics at ‘high’ kia  value of 247 
h '1 between MWP (plate P3) and 75 1 STR for biomass yield [ □ ], soluble protein 
yield [ •  ] and glycerol concentration (x2) [ A ]. Data taken from Figures 6.4 and 
6.5.

Table 6.2 Comparison o f microwell fermentation kinetic profiles (Figure 6.4) to 
those from the pilot plant scale fermentation (Figure 6.5) at matched kia  
conditions (247 h '1). P values shown are from F  tests on pairs of profiles for 
biomass concentration, soluble protein yield and substrate concentration as 
described in Section 6.3.4. The null hypothesis, which states that there is no 
overall difference between each pair o f profiles, is accepted if p > 0.05.

Kinetic profile
P values

Plate P3 vs. 75 1 STR

Biomass growth 0.26

Glycerol utilisation 0.06

Soluble protein expression 0.80
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6.4 Summary

In Chapter 5, a scale-up strategy was developed which enabled the reproduction 

of MWP fermentation performance within a laboratory scale STR on the basis of 

relatively high matched faa values. The aim of this chapter was to further 

develop this strategy for application at the pilot scale of operation. Consequently, 

kLa values within a conventional 75 1 STR were first rapidly quantified over a 

range of agitation speeds via the static gassing out technique and these values 

compared well to those predicted by existing correlations (Figure 6.2). This 

measurement technique was identical to those used at the MWP and laboratory 

scales and so the results were directly comparable. All three scales shared a wide 

range of common kLa values (50 h '1 to 247 h '1), but overall significantly higher 

^ a  values were achievable within the 75 1 STR (Figure 6.3).

In Section 3.3.3 several factors were identified which could lead to variations in 

fermentation performance between the MWP and pilot scales. To minimise 

variation all media components were sourced from the same manufacturer and 

the method of inoculum preparation was preserved on scale-up. Initial 

experiments, however, still showed a difference in fermentation performance 

between the MWP and 75 1 scales. This was attributed to differences in the 

method of medium sterilisation between the two vessels, as described in Section 

2.4, and hence the different temperature-time profiles achieved. The scale-up 

strategy was thus modified by using media sterilised in the 75 1 STR for 

subsequent fermentations at both scales.

MWP fermentations at a ‘high’ faa value of 247 h '1 (Figure 6.4) were then 

scaled-up to the 75 1 STR (Figure 6.5) on the basis of matched faa and kinetic 

profiles and yields were accurately reproduced (Figure 6.6). No studies have 

previously demonstrated the reproduction of MWP fermentation profiles to this 

scale, equivalent to a 15,000 fold scale-up, and this result provides final 

indication of the efficacy of the scale-up strategy developed here. In so doing, the 

work covered in this chapter completes the proposed framework for 

underpinning the generation of large quantities of soluble protein in a rapid and
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cost-effective manner. The validation of this approach and its application in 

bioprocess development are covered further in the next two chapters.
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7 Management benefits of the proposed framework

7.1 Aims and objectives

This thesis has addressed the major challenge o f rapidly generating sufficient 

quantities of soluble recombinant protein for analysis during drug discovery. The 

design of the proposed framework (Chapter 3) was optimised towards this goal 

and, therefore, offers time and cost savings over alternative approaches.

The aim of this chapter is to provide a thorough and quantitative analysis o f these 

management benefits over both stages of the proposed framework: the rapid 

optimisation of protein expression (Section 7.2) and the rapid scale-up o f 

fermentation and generation of protein samples (Section 7.3).

7.2 Protein expression optimisation

7.2.1 Background and general assumptions

Relatively few published studies exist regarding the optimisation o f protein 

expression within drug discovery and this suggests that it may be an uncommon 

industrial activity. This is most probably due to the shortcomings o f the 

traditional characterisation approaches. High-throughput expression screening 

(HTES), for example, is resource intensive and the one-factor-at-a-time (OFAT) 

approach is unable to model complex systems reliably (Section 1.3.1). Thus there 

are no published benchmarks against which the time and cost savings o f the 

present work can be evaluated and it is, therefore, necessary to develop 

hypothetical alternatives.

Within the current framework, the DoE and MWP experimentation components 

were key to the rapid optimisation of protein expression. Reasonable 

hypothetical alternatives may, therefore, include approaches which lack one or 

the other of these components. In the following sections, three cost scenarios are

^ h e  inclusion o f this chapter relates to the University o f London EngD requirement for 
consideration o f the bioprocess management implications o f the research work performed.
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presented: (1) the current framework, (2) the current framework minus the MWP 

experimentation component, and (3) the current framework minus the DoE 

component which is akin to the HTES approach. The costs associated with each 

scenario have been separated into four categories: inoculum preparation, 

fermentation, assay and labour. A complete breakdown o f costs is provided in 

Section C.5. The general assumptions for all three scenarios are:

• Material costs (Section C. 1) are limited to:

o the cost o f media (including antibiotic and inducer); 

o the cost o f disposable MWPs; 

o the cost o f luciferase assay buffer components;

• Labour costs are proportional to minimum fermentation time (Section 

C.2) which assumes:

o 24 h experimentation and instant turnaround; 

o inoculum preparation and assays are performed in parallel with 

fermentations; 

o the availability o f one technician payable at £ 10.h'1;

• Rate of fermentation limited to 72 microwells or 24 shake-flasks (SFs) in 

parallel assuming:

o a maximum sampling time of three minutes; 

o a maximum sampling rate of 24 microwells or 8 SFs per minute 

per technician;

• All other costs including utilities, labware and equipment maintenance 

are negligible;

• All fermentations are performed in quadruplicate;

7.2.2 Scenario 1: current framework

In this scenario, both the DoE and MWP framework components are applied and 

a cost analysis for this scenario is provided in Table 7.1.
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Table 7.1 Cost analysis summary for Scenario 1: current framework. These costs 
have been summarised from the more detailed analysis o f Section C.5.2.

Cost category Cost (£)

Inoculum preparation 94

Fermentation 261

Assay 252

Labour 2,750

Total 3,357

7.2.3 Scenario 2: current framework minus the MWP component

In this scenario, the DoE component is implemented but the MWP component is 

replaced by shake-flask (SF) experimentation and the costs associated with this 

change are estimated. Here it is assumed that SFs are processed at a slower rate 

than microwells (24 SFs versus 72 micro wells) for the following reasons. Each 

set of four replicate MWP fermentations were situated on the same MWP, 

covered with a single gas-permeable membrane. By comparison, four separate 

SFs were required to process the same set o f experiments, each o f which was 

covered with cotton wool and aluminium foil. In combination, these differences 

would result in longer processing times. A cost analysis for this scenario is 

provided in Table 7.2.

Table 7.2 Cost analysis summary for Scenario 2: current framework minus the 
MWP component. These costs have been summarised from the more detailed 
analysis o f Section C.5.3.

Cost category Cost (£)

Inoculum preparation 94

Fermentation 637

Assay 252

Labour 4,260

Total 5,243
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7.2.4 Scenario 3: current framework minus the DoE component

In this scenario, the MWP experimentation component is applied but the DoE 

component is removed and the costs associated with this change are estimated. 

Here, there are no statistical tools available to enable the selection o f a 

representative subset of experiments, and so all experimental combinations need 

to be performed in order to locate with confidence the optimum experimental 

region. A cost analysis for this scenario is provided in Table 7.3.

Table 7.3 Cost analysis summary for Scenario 3: current framework minus the 
DoE component. These costs have been summarised from the more detailed 
analysis o f Section C.5.4.

Cost category Cost (£)

Inoculum preparation 1,987

Fermentation 62,222

Assay 135,266

Labour 984,150

Total 1,183,625

7.2.5 Scenario comparison

Table 7.4 displays a summary o f the costs associated with each scenario 

presented in the previous sections. Scenario one which represents the current 

framework is clearly the cheapest approach, in terms of both materials and 

labour, with an overall cost o f £3,357. It is interesting to note here that the total 

cost o f disposable MWPs (£256) contributes to over 98 % of the fermentation 

cost (Table C.9).

147



7. M anagement benefits o f  the proposed framework Islam 2007

Table 7.4 Summary o f costs for each expression optimisation scenario. Details 
of each scenario are described in Sections 7.2.2 through 7.2.4 inclusive.

Associated costs
Cost Scenario Materials (£) Labour(£) Total (£)

1 Current framework (CF) 607 2,750 3,357
2 CF - MWP 983 4,260 5,243
3 CF - DoE 199,474 984,150 1,183,624

The overall cost associated with scenario two, in which the MWPs have been 

replaced with traditional SF fermentations, is approximately one and a half times 

larger at £5,243. This increased cost is mainly attributed to the increased labour 

requirements due to the lower processing rate of SFs vs microwells. Moreover, 

although the media requirements o f scenario two are much greater than for 

scenario one, the media savings in scenario one are largely offset by the 

relatively high costs o f MWPs (Table C.4). Furthermore, the costs of purchasing 

and cleaning the reusable SFs were ignored in scenario two in order to simplify 

calculations which, otherwise, would have increased the overall costs of scenario 

two.

Scenario three, a partial representation of the conventional HTES approach, has 

the largest overall cost by far, which at £1,183,624 is over 350 times higher than 

that of scenario one. In reality, this approach would not be attempted as the 

experimental workload is simply too high.

The purpose of including this scenario was to emphasise the importance of DoE. 

In scenario one, where DoE was used, only 110 experiments were performed 

(Section 4.6). In scenario three by contrast, approximately 60,000 experiments 

would be required (Section C.5.4) to obtain a similar level o f  process 

characterisation. This assumes that the optimal region lies within the 

experimental window; if not, the experiments would have to be repeated under 

new factor settings. It would also be difficult to analyse the results without using 

basic statistical tools, in which case, they could have been employed from the 

start in the form of DoE.
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Overall the costs involved in protein characterisation are minimised when the 

current framework is applied. Interestingly, the major costs involved in this stage 

of the framework are attributed to the labour requirements and hence the overall 

experimental timeframes. By comparing the labour costs o f scenarios two and 

three, it is possible to conclude that the application o f DoE results in far greater 

time savings than that of MWP experimentation. In the following section, the 

long-term effect of these time savings on the profitability o f a new drug is 

investigated.

7.3 Generation of protein samples

7.3.1 Background and general assumptions

Unlike protein expression optimisation, the generation of sufficient quantities of 

protein for drug discovery is a common and indeed essential activity within 

industry. It presents a major bottleneck within drug-discovery (Stewart et al., 

2002) which, consequently, impacts negatively on the time to market for a new 

drug. Aside from the obvious human costs, the delayed launch of an important 

new drug can cost a company on average between $1 million (Kerns, 2001; 

Martin, 2002) and $15 million (Nofifke, 2007) per drug, per day.

In the following exercise, the speed of protein generation is estimated for two 

different scenarios and the potential difference in sales revenue is calculated. The 

first scenario represents the current framework which consists o f DoE/MWP 

protein expression optimisation followed by optimised fermentations within a 

laboratory scale (7.5 1) stirred-tank reactor (STR). The second scenario consists 

of parallel shake-flask fermentations at a single set of conditions, which presents 

perhaps the most common method of protein generation within drug-discovery 

(Kumar et al., 2004). This exercise includes no estimation of materials and 

labour costs, as they are assumed to be insignificant in comparison to the daily 

sales revenue of a new drug. The general assumptions for both scenarios are:
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• 24 h experimentation with instant turnaround;

• Rate o f experimentation limited only by equipment availability (same as 

that o f Astex Therapeutics Ltd.):

o one HiGro incubator shaker;

o three SF incubator shakers, each capable o f housing eight 2 1 SFs 

(working volume = 0.5 1); 

o four STRs (working volume = 5 1); 

o Protein sample requirements as in Table 7.5;

Table 7.5 Typical protein sample requirements o f drug discovery. Each stage of 
drug discovery aims to reduce the number o f investigated protein constructs by 
identifying those which demonstrate several key properties. These include 
functional activity and ease o f protein expression, purification and 
characterisation. Protein requirements may differ widely between different drugs 
and different drug discovery companies; the requirements shown here are 
representative of the operating ranges o f Astex Therapeutics Ltd.

Drug discovery stage
Number o f protein 

constructs

Mass of protein 
required per construct 

(mg)
Min. Max. Min. Max.

1 Pre-screening (protein 
expression) 10 20 5 10

2 Pre-screening 
(purification + 
characterisation)

4 6 10 50

3 Screening, hits-to-leads 
and lead optimisation

1 1 1000 2000

7.3.2 Scenario 1: current framework

In this scenario, the protein constructs examined at each stage of drug discovery 

first undergo DoE/MWP protein expression optimisation studies as in Chapter 4. 

Protein samples of each construct are then generated at the STR scale under the 

optimised conditions as in Chapter 5. Key assumptions are:
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• DoE/MWP protein expression optimisation studies for all protein 

constructs are carried out in parallel;

• Minimum fermentation time for protein expression optimisation is same 

as that for the current framework, i.e. 275 h ~ 11 days (Table C.9);

• Optimised protein expression levels are reproduced within the STR;

• Range of optimised soluble protein expression levels is same as that 

typically obtained at Astex Therapeutics Ltd.: 1-5 mg.l'1;

• STR fermentation time is same as the optimised fermentation time o f the 

current framework, i.e. = 22 h (Section 4.5).

A sample calculation o f the total fermentation time required by this scenario at a 

single set of conditions is provided in Table 7.6. This calculation was then 

repeated for the complete range o f protein sample requirements (Table 7.5) and 

the resulting time window is illustrated in Figure 7.1 as a function of the mean 

soluble protein yield obtained in the STR (1-5 mg.l'1). The general trend 

observed here is that the total fermentation time required decreases with 

increasing optimised soluble protein expression levels.

Table 7.6 Sample calculation for scenario one: current framework. Calculations 
based on average protein sample requirements (Table 7.5) and a mean soluble 
protein yield of 3 mg.l'1.

Protein requirement Number o f STR runs 
per construct (mg) required per construct

Number of 
constructs

Sub-total number of  
STR runs required

1 7.5 1 15 15
2 30 2 5 10
3 1500 100 1 100

Total number of STR runs required 125
Minimum number of STR batches required 32

Minimum MWP fermentation time (days) 11
Minimum STR fermentation time (days) 29
Total fermentation time (days) 41
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Figure 7.1 Fermentation time window for the current framework (DoE / MWP 
experimentation) over the full range of protein sample requirements (Table 7.5).

7.3.3 Scenario 2: traditional SFfermentation approach

In this scenario, there are no protein expression optimisation studies. Protein 

samples of each construct are generated immediately through SF fermentations at 

a single set of experimental conditions. Key assumptions are:

• SF fermentation time is the same as that used in the reference SF 

experiments (6 h 40 min) as described in Section 2.3.5;

• Ratio of optimised MWP protein yield to SF protein yield is the same as 

that obtained experimentally (Section 4.5), approximately 6:1, i.e. SF 

soluble protein yield range assumed to be: 0.17-0.83 mg.l'1.

A sample calculation of the total fermentation time required by this scenario at a 

single set of conditions is provided in Table 7.7. This calculation was then 

repeated for the complete range of protein sample requirements (Table 7.5) and
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the resulting time window is illustrated in Figure 7.2 as a function of the mean 

soluble protein yield obtained in the SF (0.17-0.83 mg.l'1). Again, the general 

trend observed here is that the total fermentation time required decreases with 

increasing soluble protein expression levels.

Table 7.7 Sample calculation for scenario two: traditional SF fermentation 
approach. Calculations based on average protein sample requirements (Table 7.5) 
and a mean soluble protein yield of 0.5 mg.l'1.

Protein requirement 
Stage . . ,per construct (mg)

Number of SF runs 
required per construct

Number of 
constructs

Sub-total number of 
SF runs required

1 7.5 30 15 450
2 30 120 5 600
3 1500 6000 1 6000

Total number of SF runs required 7050
Total number of SF batches required 294

Total fermentation time (days) 82
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Figure 7.2 Fermentation time window for the traditional SF fermentation 
framework over the full range o f protein sample requirements (Table 7.5).
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7.3.4 Scenario comparison

Direct comparison o f Figures 7.1 and 7.2 illustrates that the total fermentation 

time of the current framework is generally less than that o f the traditional SF 

framework, over the entire range o f conditions tested (Table 7.5). The total 

fermentation time o f the current framework is also less sensitive to decreasing 

protein yields. This implies that the current framework would provide the largest 

time savings when applied to proteins which express poorly.

Figure 7.3 illustrates the overall cost savings provided by the current framework 

relative to the traditional SF framework, in terms o f increased drug sales revenue. 

Overall, the time savings provided by the current framework create the potential 

for significantly increased sales revenues.
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Figure 7.3 Increased drug sales revenue window o f the current framework in 
comparison to the traditional SF framework over the full range o f protein sample 
requirements (Table 7.5), assuming average daily sales o f $1 million per drug, 
per day. The results displayed in this figure are calculated by subtracting the 
boundary results illustrated in Figure 7.1 from those displayed in Figure 7.2.
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7.4 Summary

The aim of this chapter was to provide a thorough and quantitative analysis o f the 

time and cost savings provided by the current framework over traditional 

alternatives. In Section 7.2 the main costs of protein expression optimisation 

were attributed to labour costs. The DoE component of the current framework 

was then identified as a key factor in significantly reducing overall experimental 

timeframes and hence labour costs. In Section 7.3 these time savings were also 

seen to apply to the larger scale generation of protein samples for drug discovery 

research. Within this context, the current framework creates the potential for 

significantly increased drug sales revenues by accelerating drug discovery. These 

benefits would be especially large when the target protein expresses poorly. In 

the following chapter, further potential benefits of the current framework, 

including the application towards manufacturing scale fermentation and 

bioprocess validation, are explored.
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8 Development of the proposed framework to facilitate 

bioprocess validation1̂

8.1 Aims and objectives

Although the framework presented in this thesis has been optimised for 

application within drug discovery, it also provides a foundation for generating 

much larger quantities o f protein. The key challenge here would be to maintain a 

fine degree of process control at the larger scales of fermentation and so the 

current framework would have to be developed towards achieving greater 

process understanding.

Moreover, the products o f large scale fermentations are often used in 

pharmaceutical drugs where product quality is of paramount importance. The 

regulatory authorities would thus require documented evidence (bioprocess 

validation) of a well-defined manufacturing process which performs consistently 

within predetermined specifications (U.S. Food and Drug Administration, 1987). 

A thorough characterisation o f the fermentation process during the early 

development stages would, therefore, greatly facilitate in the subsequent and 

mandatory validation process.

The aim of this chapter is to explore how the current framework may be 

developed towards this goal. The development approach is structured using a 

process improvement tool called Six Sigma and applied to a hypothetical 

scenario in which the MWP fermentation process described in Chapter 4 is to be 

scaled-up for manufacture o f a therapeutic protein.

fThe inclusion o f this chapter relates to the University o f London EngD requirement for 
consideration o f the bioprocess validation implications o f the research work performed.
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8.2 Bioprocess development through Six Sigma (DMAIC)

8.2.1 Introduction

Six Sigma is a disciplined, data-driven methodology for reducing the number of 

defects in any process to 3.4 defects per million opportunities (DPMO) (Brue, 

2002). A Six Sigma defect may be defined as any process output which lies 

outside of specifications.

Six Sigma has two key methodologies: DFSS and DMAIC. DFSS is an acronym 

for “Design For Six Sigma” and it is used to create new process designs. DMAIC 

is an acronym for “Define, Measure, Analyze, Improve and Control” and this 

methodology should be used when an existing product or process is not 

performing adequately. The flow o f a typical DMAIC project is illustrated in 

Figure 8.1. The following section explores how the existing fermentation process 

may be developed, using the DMAIC methodology as a guide.

i------------------------------------------    1
i i

Define —► Measure —► Analyse —► Improve —► Control

Figure 8.1 Typical flow o f a DMAIC project (Creveling, 2006). In practice, 
there may be significant overlap between each phase and an iterative approach to 
Six Sigma (indicated by the dashed line) may be required (Hayler and Nichols, 
2005).

8.2.2 Definition phase

The purpose of this phase is to introduce the overall problem and define the 

project goals. As already mentioned in Section 8.1, a hypothetical scenario is 

presented in which the MWP fermentation process described in Chapter 4 is to 

be scaled-up for manufacture of a therapeutic protein. An appropriate strategic 

goal would thus be to achieve greater control of the MWP fermentation process
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in order to facilitate the subsequent scale-up and validation o f the process. 

Corresponding process and project goals are proposed in Table 8.1.

The overall scope o f the project is limited to the development o f the MWP 

fermentations and the upstream inoculum shake-flask (SF) fermentations (Figure 

8.2). All analytical methods and all processes upstream of the inoculum 

preparation are assumed to be already developed / validated.

Table 8.1 Statement of goals at the strategic, process and project levels.

Strategic goal Process goals Project goals

• Increased • Identification o f more
characterisation responses

To achieve greater • Increased • All response
control of the reproducibility measurements lie within
MWP fermentation and predictivity 2% of predicted levels
process in order to and/or optimisation Q2
facilitate the for all fermentation
subsequent scale- response measurements
up and validation 
of the process.

>0.9

• Increased • Robustness Q2 for all
robustness fermentation response 

measurements < 0.1

8.2.3 Measurement phase

The goal of this phase is to measure the current performance of the process 

which consists here o f the inoculum SF and MWP fermentations. Key process 

responses should be identified (Table 8.2) and subsequently measured over an 

appropriate set of characterisation experiments. In order to obtain the relevant Q2 

values (Table 8.1), these experiments should be organised through DoE. The 

standard methods and conditions for inoculum preparation (Section 2.2.3) and 

those optimised for MWP fermentations (Chapter 4) would serve as references 

here. It should then be possible to define a process defect and calculate the 

DPMO of the current process.
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Inoculum SF 
fermentations

MWP
fermentations

Figure 8.2 Process map illustrating the overall scope of the Six Sigma project, 
complete with the flow o f process steps, factors and responses. The green arrows 
represent responses and the red and blue arrows represent controlled and 
uncontrolled factors, respectively; response measurements from the inoculum SF 
fermentation will serve as uncontrolled factors in the MWP fermentation step.

Table 8.2 List of key responses which may be used to measure process 
performance.

Biological responses Engineering responses

• biomass growth

• cell viability • ktci

• soluble protein yield • power per unit volume

• metabolite consumption • mixing / circulation time

• pH, DOT
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8.2.4 Analysis phase

At this stage o f the Six Sigma process, the gaps between current performance and 

project goal performance are quantified, and potential root causes of 

underperformance are identified. Various tools, such as the Ishikawa diagram 

(Brue, 2002; Creveling, 2006; Hayler and Nichols, 2005) are available at this 

stage to aid in root cause identification. Sources of variation to which future 

inoculum SF experiments may be susceptible are described in Table 8.3. Tables

8.4 and 8.5 list root causes for the variation / underperformance already observed 

from the MWP experiments and DOE analysis (Chapter 4), respectively.

Table 8.3 List of the sources o f variation to which inoculum SF experiments may 
be susceptible with corresponding suggested control measures.

Root causes of variation Suggested control measures

• Variable medium quality; • Use a defined medium;

• Un-optimised fermentation • Perform DoE and include all
performance; key fermentation responses: 

o Screen all critical factors -  
include all relevant factors 
from DoE screen (Table 
2.2);

o Determine optimal factor 
ranges; 

o Determine acceptable 
response ranges;

• Human error; • Implement robotic automation 
where possible;

• Variable incubator-shaker 
performance.

• Monitor incubator performance.
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8.2.5 Improvement phase

Here, all the root causes o f process underperformance identified during the 

Analysis phase should be controlled through implementation o f the suggested 

improvement measures. Thus, new rounds of DoE-driven experimentation are 

required to optimise each stage o f the process in sequence.

Once all improvements have been implemented, process performance should be 

re-evaluated and further improvements made if necessary. An iterative approach 

to the Measure-Analyse-Improve phases may, therefore, be required until all 

project goals (Table 8.1) are met as illustrated in Figure 8.1.

Table 8.4 Possible sources o f observed variation in the MWP fermentation 
performance (Chapter 4) with corresponding suggested control measures.

Root causes of variation Suggested control measures

• Variable inoculum quality; • Use improved inoculum;

• Variable medium quality; • Use a defined medium;

• Human error; • Implement robotic automation
where possible;

• Variable incubator-shaker • Monitor incubator performance.
performance.
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Table 8.5 Possible sources o f observed underperformance in the DoE analysis 
(Section 4.5) with corresponding suggested improvements.

Root causes o f underperformance Suggested improvements

• Hidden effect o f unidentified • Include responses from previous
factor(s). process step as uncontrolled 

factors;
• Conduct further scouting 

experiments;

• Factor ranges too large; • Establish narrower factor ranges;

• Model lack of fit; • Remove qualitative factors from 
screen;

• Optimise fermentation responses 
using a cubic model if  necessary;

• Robustness of process • Perform robustness testing
uncertain around key factors and responses.

8.2.6 Control phase

The goal of this phase is to control future process performance. All operating 

procedures associated with the new process should be documented and a 

monitoring and control plan should be implemented for sustaining improvements 

(short and long-term). Since small-scale processes are usually part o f a short

term development programme, application o f this phase may be more appropriate 

to the large-scale manufacturing process.

8.3 Summary

The aim of this chapter was to explore how the framework presented in this 

thesis could be developed to facilitate bioprocess validation. The need for greater 

process understanding and control was immediately identified and the principles 

of Six Sigma were applied to the current framework towards this goal. Using this 

methodology various framework improvements were proposed in the form of
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additional key responses (Table 8.2) and control measures against sources of 

process variation (Tables 8.3 and 8.4) and DoE analysis underperformance 

(Table 8.5). Overall, the suggested improvements should greatly facilitate the 

subsequent hypothetical scale-up and validation o f the process. In the following 

chapter, the main findings o f this thesis are summarised together with 

suggestions for future work.
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9 Conclusions and future work

9.1 Conclusions

At present, a major bottleneck within drug discovery involves the provision of 

sufficient quantities of recombinant protein for high-throughout screening 

(Stewart et al., 2002). This thesis has established a practical and generic 

framework to address this challenge which underpins the generation o f large 

yields of recombinant protein in E. coli in a rapid and cost-effective manner.

The underlying design o f the framework was first established in Chapter 3 

(Figure 3.1). This consisted o f two principle stages o f experimentation: (1) small 

scale protein expression characterisation followed by (2) scale-up of optimised 

protein expression. A wide range o f variables was known to affect heterologous 

protein expression (Section 1.2.3). Consequently, during the initial 

characterisation stage, Design o f Experiments (DoE) and experiments in 

microwell plate (MWP) formats were used in order to minimise the experimental 

costs and timeframes. A key requirement o f stage one was to provide insight into 

larger scales of performance (Fernandes and Cabral, 2006). Thus, in contrast to 

previous studies (Section 1.3.4), experiments were performed within a defined 

engineering environment through the manipulation of factors such as MWP 

shaking speed and fill volume. The information generated from stage one o f the 

framework then aided in the identification of key scale-up parameters and the 

subsequent design of a scale-up strategy. In order to meet the varying protein 

demands of different drug-discovery campaigns, separate strategies for 

laboratory scale and pilot scale protein expression were established.

In Chapter 4 the overall methodology for rapid protein expression 

characterisation was refined through practical experimentation and DoE was 

shown to lead to the rapid optimisation o f culture conditions. A mixture o f ten 

biological and engineering variables was initially chosen for investigation (Table 

4.1). After only three rounds of DoE, the protein induction period and shaking 

speed were identified as key factors (Figure 4.3) and a predictive model of
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protein expression was developed (Equation 4.1). In comparison to other high- 

throughout protein expression (HTPE) approaches, the application o f DoE led to 

a significant decrease (up to 98 %) in the number o f characterisation experiments 

required. At each stage of the DoE process a greater understanding o f the 

expression system was achieved and, overall, the soluble protein yield was 

increased approximately 9-fold over reference shake-flask conditions (Figure 

4.8). The use o f parallel MWP fermentations further helped to reduce the 

experimental timeframes. As mentioned previously, the shaking speed, which is 

known to strongly affect the oxygen mass transfer into microwells (Hermann et 

al., 2003), was identified as a key factor o f protein expression. This suggested 

that careful control o f agitation and aeration conditions would be important in 

maintaining optimal protein expression levels upon scale-up.

In Chapter 5 the oxygen mass transfer coefficient, kia , was shown to be a 

suitable basis for scale-up and microwell results were accurately reproduced at 

the laboratory scale. Here, MWP fermentations were scaled-up to a 7.5 1 stirred- 

tank reactor (STR) over a range of matched kia values. MWP fermentation 

kinetic profiles and yields were accurately reproduced at a ‘high’ matched kia  

value of 247 h"1, equivalent to a 1,700 fold scale translation (Figure 5.9 (a)). This 

result confirmed the initial DoE-driven hypothesis that kia  was an important 

scale-up parameter and in so doing, demonstrated the importance o f DoE within 

the current framework. This result also confirmed a number o f recent studies 

which have suggested kia  to be an important scale-up parameter for aerobic 

fermentations (Ferreira-Torres et al., 2005; Micheletti et al., 2006). In contrast, 

scale-up of MWP fermentations at a ‘low’ matched kia value o f 55 h '1 did not 

provide reproducible performance at the 7.5 1 scale. This difference was 

attributed to the poor gas-liquid distributions observed within the larger vessel at 

the ‘low’ kia  conditions.

This information was exploited in Chapter 6 to develop a scale-up strategy for 

translating MWP fermentation performance to pilot scale where kia  was again 

shown to be a suitable basis for scale-up. Here, MWP fermentations were scaled- 

up to a 75 1 stirred-tank reactor (STR) on the basis o f a ‘high’ matched kia  value
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of 247 h 1. Initial experiments showed a difference in fermentation performance 

between the MWP and 75 1 scales. This was attributed to differences in the 

method o f medium sterilisation between the two vessels (Section 2.4) and hence 

the different temperature-time profiles achieved. The scale-up strategy was thus 

further refined by first sterilising all fermentation media within the STR. This 

subsequently led to the accurate reproduction o f MWP fermentation kinetic 

profiles at the 75 1 scale (Figure 6.6). No previous studies have translated MWP 

fermentation performance to this scale, equivalent to a 15,000 fold scale-up. In 

so doing, this result clearly demonstrates the validity and efficacy o f the overall 

framework for underpinning the generation of large yields o f recombinant 

protein in a rapid and cost-effective manner.

Chapter 7 presented a thorough and quantitative analysis of the inherent time and 

cost savings provided by the current framework in which the DoE component 

was shown to be o f principal benefit. Overall, in comparison to the traditional 

approach for protein sample generation the current framework was predicted to 

provide significantly increased drug sales revenues by accelerating drug 

discovery. These benefits would be especially large when the target protein 

expresses poorly.

Finally, Chapter 8 explored how this framework could be developed towards the 

generation of manufacturing scale quantities o f protein and validation o f the 

subsequent process. The need for greater process understanding and control was 

immediately identified and various minor framework improvements were 

proposed towards this goal in the form o f additional key responses (Table 8.2), 

control measures against sources o f process variation (Tables 8.3 and 8.4) and 

measures to improve DoE analysis performance (Table 8.5). Overall, the 

suggested improvements would greatly enhance process control, thereby 

widening the applications o f the framework to include the production o f larger 

quantities of protein and subsequent bioprocess validation.
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9.2 Future Work

Throughout the course of this research, several areas for further work were 

identified. Based upon the experimental results obtained in this work, immediate 

follow-up studies should address the following points:

• The scale-up o f protein expression within this framework was achieved 

on the basis of a single, high matched kia  value. Further work is thus 

necessary to establish more accurately the range o f kia  values over which 

MWP fermentation kinetics can be reliably scaled-up;

• The cause(s) o f the observed lack-of-fit o f the optimisation model

(Section 4.5) should be investigated. Analysis of why some MWP

experiments yielded unusually low protein yields and why other 

experiments resulted in high degrees of cell lysis (Section 4.5) should 

facilitate this investigation. Ultimately, the process may have been 

affected by unidentified factors or the identified factor ranges may have 

been unsuitably high;

• Within the current work, kia  values were measured in cell-free media

under static conditions. Measurements of kia values within live media

over the course o f a fermentation would provide greater insight into the 

oxygen mass transfer characteristics o f the process which should in turn 

facilitate scale-up;

• The underlying cause o f why initial experiments within the MWP 

produced lower final biomass concentrations than those in the 

corresponding 75 1 STR fermentations should be further studied.

Based on the wider considerations of this framework the following points could 

also be addressed:
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• Further characterisation of the engineering environment within the MWP 

and STRs through, for example, mixing time studies, towards the 

visualisation of gas-liquid dispersion;

• Having reproduced near-optimal MWP protein expression levels at 

laboratory and pilot scales, further optimisation of protein expression 

could be performed at these larger scales. This may, for example, be 

accomplished through additional applications of DoE combined with the 

implementation of fed-batch culture to overcome the decrease in soluble 

protein yield once the glycerol supply is exhausted (Figures 5.5, 5.7, 6.4 

and 6.5);

• The key principles o f the current framework are also likely to apply to 

other expression hosts, recombinant proteins and expression mechanisms 

such as extracellular expression. In this case, further work would be 

required to identify additional key factors, responses and experimental 

techniques involved in small-scale protein expression and the subsequent 

scale-up strategy would have to be refined as appropriate;

• The level of process understanding and control provided by the current 

framework could also be easily developed. Chapter 8 describes in detail 

simple improvements to fermentation and DoE methods towards these 

goals. Ultimately, the improved framework could be applied to the rapid 

generation o f manufacturing scale quantities of protein in addition to the 

subsequent validation o f such a process.
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Appendix A -  Bioreactor mixing data

Table A.1 MWP kia values ( h 1) measured as described in Section 2.4.1.

Plate

geometry
Shaking speed (rpm)

100 200 300 400 500

PI 0.7 ±0.2 3.2 ±0.1 22.7 ±1.5 59.5 ±3.9 88.9 ±6 .4

P2 1.6 ±0.4 5.1 ± 0 .6 29.0 ±5.1 95.5 ±21.2 187.6 ±20.6

P3 2.1 ±0.2 5.0 ± 0 .7 47.7 ±8.0 148.0 ±7.0 241.3 ±28.7

Table A.2 MWP a f /a t values (dimensionless) measured as described in Section 
2.4.2. NA indicates data not obtainable.

Plate

geometry

100

Shaking speed (rpm)

200 300 400 500

PI 0.89 ±0.15 0.99 ±0.15 1.21 ±0.31 2.06 ±0.20 NA

P2 0.93 ± 0.03 0.97 ±0.02 1.17 ±0.07 1.63 ±0.19 2.22 ±0.07

P3 0.95 ± 0.02 0.97 ±0.03 1.28 ±0.04 2.10 ±0.05 2.58 ±0.11

Table A.3 STR kia values (h '1) measured as described in Section 2.4.3.

STR Agitation speed (rpm)

size 200 256 400 600 800 937

7.5 1 9.7 ± 0 .6 167.5 ± 1 2 .0 184.1 ± 17.9 272.1 ± 3 2 .9

75 1 48.4 ± 1 .8 129.1 ± 3 .6 211.1 ± 14.5 346.7 ± 2 2 .3 384.9 ± 2 3 .9
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Table A.4 STR gassed-power, Pg, values (W.rrT3) calculated using Equation 5.6

STR size Agitation speed (rpm)

200 256 400 600 800 937

7.5 1 0.23 1.66 5.26 11.95

75 1 7.6 26.8 84.4 199.0 311.6
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Appendix B - Fermentation response modelling

B.l Basis

All statistical modelling and analytical methods are described in Section 2.5.3.

B.2 MWP and 7.5 1 STR: [Biomass] comparison

Equation of model used: In — (logistic curve)

5

4

3>toto•
E
2
CD5toto•
E
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1
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E
2ffi
to
9
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Figure B.l Logistic curves fitted separately to Figure B.2 Single logistic curve fitted to 
MWP [biomass] data ( ■ ) and 7.5 l STR combined MWP and 7.5 l STR [biomass] data, 
[biomass] data ( □ ).

Table B.l Summary o f model parameters Table B.2 Summary of modelling
correct to 3 s.f. correct to 3 s.f.

Parameter Value Std. Error RSSsep 0.231

CL. a 5.11 0.158 RSScomb 0.294

2
b

c

4.96
0.615

0.180
0.0510

DFsep

DFcomb

F

8

1 1

0.733i n

a

b

5.17
5.21

0.224
0.257

c 0.551 0.0589 P 0.561

_b a 5.14 0.130
so b 5.08 0.149
D

c 0.581 0.0378
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B.3 MWP and 7.5 1 STR: [Glycerol] comparison

Equation o f model used: v = -------
^  |  +  J Q ( f - l 0 g/>)

4

3

t

1

0
0 5 10 1 5 20 25

Time (h)

Figure B J  One site competition curves fitted 
separately to MWP [glycerol] data ( ■ ) and 7.5 
1 STR [glycero] data ( □ ).

Table B.3 Summary o f model parameters 
correct to 3 s.f.

Parameter Value Std. Error

CL

£
a 3.70 0.0814

2 log b 7.76 0.0833

a 4.03 0.0748

log b 8.24 0.0726

j6
B

a 3.86 0.106

u lo g b 8 . 0 0 0.0977

(one site competition curve)

3

I
o 2«£O

1

0
0 5 10 2515 20

Time (h)

Figure B.4 Single one site competition curve 
fitted to combined MWP and 7.5 1 STR 
[glycerol] data.

Table B.4 Summary o f modelling statistics 
correct to 3 s.f.

RSSsep 0.288

RSScomb 1.233

DFsep 1 2

DF comb 14

F 19.7

P 1.63E-04
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B.4 MWP and 7.5 1 STR: Soluble protein yield comparison

Equation o f model used: y  = y 0 + cexp(-exp(-*/) -  d  +1)

where d  = ——— (extreme peak function curve)

35x10*

~  20x10*-

10x10*-

0 5 10 15 2520

Time (h)

Figure B.5 Extreme peak function curves fitted 
separately to MWP soluble protein yield data ( ■ ) 
and 7.5 1 STR soluble protein yield data ( □ ).

Table B.5 Summary o f model parameters correct 
to 3 s.f.

Parameter Value Std. Error

yo 1.29E+05 1.02E+05
f t .
£ a 1 1 . 8 0 . 2 2 2

b 2.96 0.230
c 2.82E+06 1.64E+05

yo 1.32E+05 9.14E+04

m a 12.7 0.170
r-- b 3.09 0.209

c 3.19E+06 1.32E+05

yo 1.27E+05 1.16E+05
X )
E a 12.3 0.236
o
U b 3.07 0.254

c 2.98E+06 1.76E+05

3 0x10* -

2 5*10* -

0 5 10 15 20 25

Time (h)

Figure B.6 Single extreme peak function curve 
fitted to combined MWP and 7.5 l STR soluble 
protein yield data.

Table B.6 Summary o f modelling statistics 
correct to 3 s.f.

RSSsep 6.59E+10

RSScomb 3.77E+11

DFsep 4

DFcomb 8

F 4.72

P 0.0811
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B.5 MWP and 75 1 STR: [Biomass] comparison

Equation of model used: In' y . '
J o /

a
\ + e

(logistic curve)

3 >  3 -

0 2 6 8 104 12

Time (h)

o 2 4 6 8 10 12

Time (h)

Figure B.7 Logistic curves fitted separately to 
MWP [biomass] data ( ■ ) and 75 l STR 
[biomass] data ( □ ).

Table B.7 Summary 
correct to 3 s.f.

o f model parameters

Parameter Value Std. Error

eu a 4.28 0.0577
£ b 4.12 0.0803

c 0.836 0.0460
a 4.31 0 . 1 1 0

75 b 4.35 0.153
c 0.740 0.0654

x a 4.29 0.0653
Eo b 4.23 0.0910
U

c 0.784 0.0447

Figure B.8 Single logistic curve fitted to 
combined MWP and 75 l STR [biomass] data.

Table B.8 Summary o f modelling statistics 
correct to 3 s.f.

RSSsep 0.082

RSScomb 0.131

DFsep 8

DF comb 1 1

F 1.60

P 0.264
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B.6 MWP and 75 1 STR: [Glycerol] comparison

Equation of model used: v = ------- , ,
1 + 10* g)
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0
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Figure B.9 One site competition curves Fitted 
separately to MWP [glycerol] data ( ■ ) and 75 
l STR [glycerol] data ( □ ).

Table B.9 Summary o f  model parameters
correct to 3 s.f.

Parameter Value Std. Error

CL a 3.98 0.0588
£
2 l o g b 8.73 0.105

a 4.12 0.038

l o g b 8.84 0.0792

.d a 4.05 0.0400
B

u l o gb 8.78 0.0767

(one site competition curve)
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Figure B.10 Single one site competition curve 
fitted to combined MWP and 75 1 STR 
[glycerol] data.

Table B.10 Summary o f modelling statistics 
correct to 3 s.f.

RSSsep 0.136

RSSComb 0.203

DFsep 14

DFcomb 16

F 3.438

P 0.061
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B.7 MWP and 75 1 STR: Soluble protein yield comparison

Equation of model used: y  = y 0 + cexp (-exp (-d ) - d  + 1)

where d  = ——— (extreme peak function curve)

0 5 10 15 

T im e (h)

20 25

Figure B .ll Extreme peak function curves fitted 
separately to MWP soluble protein yield data ( ■ ) 
and 75 1 STR soluble protein yield data ( □ ).

Table B .ll Summary o f model parameters 
correct to 3 s.f.

Parameter Value Std. Error

yo 6.95E+05 2.77E+05
a.
£ a 13.0 0.434
£ b 2.51 0.775

c 6.17E+06 6.65E+05

yo 3.95E+05 4.70E+05

«n a 13.2 0.354
r^ b 3.03 0.672

c 6.51E+06 5.85E+05

y<> 5.60E+05 2.07E+05
.o
£ a 13.1 0.195
o
U b 2.77 0.374

c 6.31E+06 2.98E+05
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Figure B.12 Single extreme peak function curve 
fitted to combined MWP and 75 l STR soluble 
protein yield data.

Table B.12 Summary o f modelling statistics 
correct to 3 s.f.

RSSSep 3.38E+11

RSScomb 6.14E+11

DFsep 2

DFcomb 6

F 0.410

P 0.797
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Appendix C -  Experimental costs and timeframes 

C.l Cost of consumables

All media costs shown below include the cost of an average addition of 500 pM 

(= 0.12 g.l'1) IPTG for all fermentations. All components were purchased from 

Sigma-Aldrich Chemical Company (Dorset, UK) unless otherwise stated in 

Chapter 2.

Table C.l Cost of LB media

Component Concentration Unit cost (£) Unit quantity Cost (£.r1)
Y east extract 5 g.l'1 126.50 1000 g 0.63
T ryptone 10 g .l1 24.10 1000 g 0.24
NaCI 10 g.l'1 16.40 1000 g 0.16
Kanamycin 30 mg.I'1 59.60 5000 mg 0.36
IPTG 0.12 g .l1 216.60 10 g 2.58

3.98

Table C.2 Cost of TB media

Component Concentration Unit cost (£) Unit quantity Cost (£J 1)
Y east extract 24 g.l'1 126.50 1000 g 3.04
Tryptone 12 g .f1 24.10 1000 g 0.29
Glycerol 4 ml.I'1 29.80 1000 ml 0.12
KH2P 0 4 2.31 g.l'1 25.00 1000 g 0.06
K2HPO4 12.54 g.l'1 76.40 2500 g 0.38
Kanamycin 30 mg.I'1 59.60 5000 mg 0.36
IPTG 0.12 g.l'1 216.60 10 g 2.58
Total 6.82

Table C.3 Cost of GM9Y media

Component Concentration Unit cost (£) Unit quantity Cost (£.r1)
GM9Y 15.5 g.l'1 25.69 500 g 0.80
Kanamycin 30 mg.I'1 59.60 5000 mg 0.36
IPTG 0.12 g.l'1 216.60 10 g 2.58
Total 3.73

Table C.4 Cost of MWPs including cost o f breathable membranes (£0.83 per 
membrane)

MWP geometry Unit cost (£) Unit quantity Cost per MWP
P1 220.00 25 9.63
P2 220.00 25 9.63
P3 74.86 25 3.82
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Table C.5 Cost o f luciferase assay buffer (LAB)

Component Concentration Unit cost (£) Unit quantity Cost (£J 1)
MgS04 1.20 g.l'1 15.80 100 g 0.19
Tris 1.21 g.l'1 15.60 100 g 0.19
ATP 0.28 g.l'1 38.60 1 9 10.64
Luciferin 0.13 g.l'1 643.90 0.05 g 1696.68
Co-A 0.22 g.l'1 424.70 0.1 g 928.33
DTT 4.86 g.l'1 11.70 0.25 g 227.40
Total 2863.42
Per 200pl assay (Section 2.6.3) 0.57

C.2 Optimal schedules for the theoretical MWP fermentation 

scenarios (Sections 7.2.2 and 7.2.4)

The following schedules assume 24 h experimentation, instant turnaround and a 

maximum processing throughput of 72 wells in parallel. These schedules also 

account for the fact that the HiGro incubator shaker can only be operated at one 

shaking speed at a time.

Shaking speed 
I 150 rpm
Y///A30Q rpm 
I 1500 rpm

 ■------ 1------ 1---------1---- ------- 1-----------’--1------ ------- 1-----■------- 1------ '------ r
0 10 20 30 40 50 60 70

Fermentation time (h)

Figure C .l An optimal schedule for the MWP familiarisation experiments 
described in Table 2.3, showing minimum theoretical number o f hours required 
to complete all fermentations. Experiments from Table 2.3 are arranged in 
fermentation batches according to those with identical pre-I and post-I shaking 
speeds. Numbers to the right of each bar represent number of fermentations per 
batch (including replicates).
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Figure C.2 An optimal schedule for the MWP screening experiments described 
in Table 4.2, showing minimum theoretical number of hours required to 
complete all fermentations. Experiments from Table 4.2 are arranged in 
fermentation batches according to those with identical pre-I and post-I shaking 
speeds. Numbers to the right of each bar represent number of fermentations per 
batch (including replicates).

§ 8 - 
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Figure C.3 An optimal schedule for the MWP optimisation experiments 
described in Table 4.3, showing minimum theoretical number of hours required 
to complete all fermentations. Experiments from Table 4.3 are arranged in 
fermentation batches according to those with identical pre-I and post-I shaking 
speeds. Numbers to the right of each bar represent number of fermentations per 
batch (including replicates).
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Figure C.4 An optimal schedule for the MWP optimisation experiments, 
identical to that of Figure C.3, in which the maximum number of fermentations is 
performed (72 wells in parallel). Numbers to the right of each bar represent 
number of fermentations per batch (including replicates).

C.3 Optim al schedules for the theoretical shake-flask (SF) 

ferm entation scenario (Section 7.2.3)

The following schedules assume the availability of three SF incubator shakers, 

each of which can be operated at a separate shaking speed. It is also assumed that 

a maximum of 24 SF experiments can be processed in parallel.
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Figure C.5 An optimal schedule showing the minimum theoretical number of 
hours required to complete the familiarisation experiments described in Table 
2.3, if performed in SFs. Experiments from Table 2.3 are arranged in 
fermentation batches according to those with identical pre-I and post-I shaking 
speeds. Numbers to the right o f each bar represent number of SF fermentations 
per batch (including replicates).
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Figure C . 6  An optimal schedule showing the minimum theoretical number of 
hours required to complete the screening experiments described in Table 4.2, if 
performed in SFs. Experiments from Table 4.2 are arranged in fermentation 
batches according to those with identical pre-I and post-I shaking speeds. 
Numbers to the right of each bar represent number of SF fermentations per batch 
(including replicates).
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Figure C.7 An optimal schedule showing the minimum theoretical number of 
hours required to complete the optimisation experiments described in Table 4.3, 
if performed in SFs. Experiments from Table 4.3 are arranged in fermentation 
batches according to those with identical pre-I and post-I shaking speeds. 
Numbers to the right o f each bar represent number of SF fermentations per batch 
(including replicates).

C.4 Disposable M W P requirem ents

The following requirements for MWPs assume that each MWP is disposed of 

after each batch.

Table C . 6  Minimum number of MWPs required at the familiarisation stage when 
experiments are arranged as described in Figure C.l.

Batch MWP requirements
Number P1 P2 P3

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 0 0

Total 5 4 4
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Table C .l Minimum number of MWPs required at the screening stage when 
experiments are arranged as described in Figure C.2.

Batch MWP requirements
Number P1 P2 P3

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 0 0 1

Total 4 4 5

Table C . 8  Minimum number of MWPs required at the optimisation stage when 
experiments are arranged as described in Figure C.3

. requirementsNumber --------^ p3------

1 2
2 1
3 3
4 1
5 2
6 2
7 2
8 1
9 1

Total 15

C.5 Cost scenarios 

C. 5.1 Background

The cost analyses in the following sections refer to the protein expression 

optimisation scenarios defined in Section 7.2. Section 7.2 also provides the 

general assumptions for all three cost analyses. In each analysis, 1 unit = 1 1 

media /1  MWP / 1 assay /1  h pay.
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C.5.2 Scenario one: current framework (Section 7.2.2)

In this scenario, both the DoE and MWP framework components are applied and 

the experimental requirements are considered at each stage of the DoE process: 

familiarisation (F), screening (5) and optimisation (O). A detailed cost analysis 

for this scenario is provided in Table C.9. Specific assumptions are as follows:

• Total number o f fermentations performed = 440 (Chapter 4);

• Mean micro well fermentation volume = 2 ml.

C.S.3 Scenario two: current framework minus the MWP component (Section 

7.2.3)

In this scenario, the MWP component is replaced by shake-flask (SF) 

experimentation and the costs associated with this change are estimated. Again, 

the experimental requirements at each stage of the DoE process are considered. 

A detailed cost analysis for this scenario is provided in Table C.10. Specific 

assumptions are as follows:

• The same number o f fermentations (440) is performed as in scenario one 

(Section C.5.2);

• The DoE factor related to MWP geometry is exchanged for SF geometry;

• Mean SF fermentation volume = 250 ml.

• Same number o f inoculum SFs and assays as for scenario one (Table 

C.9).

184



Appendix C -  Experimental costs and tim efram es Islam 2007

Table C.9 Cost analysis for scenario one: current framework. 'Unit costs 

calculated in Section C .l. Requirements are in accordance with experimental 

methods (Chapter 2). 3> Requirements are calculated in Sections C.4 and C.2 , 

respectively.

________ Requirements by stage________  Unjt Cost of Cost
Variable „ „ ^  ̂ , cost materials .____________ F S O  Total (£)i (£) labour

Inoculum preparation
Number of 500 ml (working volume) SFs2

LB 4 4 0 8 3.98 15.90
TB 4 5 9 18 6.82 61.41
M9Y 5 4 0 9 3.73 16.81

94.12
Fermentation

Minimum number of MWPs3

P1 5 4 0
P2 4 4 0
P3 4 5 15

Number of 2 ml MWP fermentations

9 9.63 86.67
8 9.63 77.04
24 3.82 91.79

255.50

LB 32 32 0 64 3.98 0.51
TB 40 48 200 288 6.82 3.93
M9Y 48 40 0 88 3.73 0.66

5.10

Assay
Number of assays2

120 120 200 440 0.57 251.98

Labour
Minimum fermentation time (h)4_____

___________ 70______ 70______ 135 275 10______________2,750
Total costs 607 2,750
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Table C.10 Cost analysis for scenario two: current framework minus the MWP 

component. 'Unit costs calculated in Section C .l. 2Minimum total fermentation 

times calculated in Section C.3.

________ Requirements by stage  Unjt Cost of Cost
Variable _ „ „  ^ , cost materials .F S O Total yy labour

Inoculum preparation
Number of 500 ml (working volume) SFs

LB 4 4 0 8 3.98 15.90
TB 4 5 9 18 6.82 61.41
M9Y 5 4 0 9 3.73 16.81

94.12
Fermentation

Number of 250 ml SF fermentations

LB 32 32 0 64 3.98 63.61
TB 40 48 200 288 6.82 491.31
M9Y 48 40 0 88 3.73 82.16

637.09

Assay
Number of assays

120 120 200 440 0.57 251.98

Labour
Minimum total fermentation time (h f

__________ 105 105 216 426 10.00____________ 4,260
Total costs 983 4,260

186



Appendix C -  Experimental costs and tim efram es Islam 2007

C.5.4 Scenario 3: current framework minus the DoE component (Section 

7.2.4)

In this scenario, the DoE component is removed and the costs associated with 

this change are estimated. Here, the DoE stages of familiarisation, screening and 

optimisation do not exist and so it is necessary to investigate each factor at three 

levels from the start. A detailed cost analysis for this scenario is provided in 

Table C.l 1. Specific assumptions are as follows:

• Total number o f factor combinations

= 2 qualitative factors (3 levels each) x 8  quantitative factors (3 levels 

each)

= 32 x 3 8 

= 59,049

• Total number o f experiments (including replicates)

= 4 x 59,049

= 236,196

• Mean microwell fermentation volume = 2 ml;

• 1 SF inoculates 9 MWPs = 3x48 + 6x24 exps = 288 exps;

• Minimum number o f MWPs required = total number experiments / 

individual MWP capacity;

• The schedule o f experimentation is the same as that of the optimisation 

experiments o f scenario one (Section C.5.2), where the maximum rate of 

experimentation = 324 fermentations in 135 h (Figure C.4).
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Table C .l l  Cost analysis for scenario three: current framework minus the DoE 

component. 'Unit costs calculated in Section C .l.

Unit Cost of Cost of 
Variable Total requirements cost materials labour
_____________________________________ (̂ l1_____ £1______£L_

Inoculum preparation

Number of 500 ml (working volume) SFs

LB 273 3.98 543
TB 273 6.82 933
M9Y 273 3.73 510

1,987
Fermentation

Minimum number of MWPs

P1
P2
P3

1,640
3.281
3.281

Number of 2 ml MWP fermentations

9.63
9.63 
3.82

15796
31591
12546
59,933

LB 78,732 3.98 626
TB 78,732 6.82 1074
M9Y 78,732 3.73 588

2,289

Assay
Number of assays

236,196 0.57 135,266

Labour
Minimum total fermentation time (h)

______________________ 98,415________________ 10_____________ 984,150
Total costs 199,474 984,150
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Experimental Design. Biotechnology Progress. 23, 785-793.
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