
REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree Year 7 - 0 0 $ Name of Author r ^ A f tr t  ia> £ .£ -  $A/o 
€  .

COPYRIGHT
This is a thesis accepted for a  Higher Degree of the University of London. It is an 
unpublished typescript and the copyright is held by the author. All persons consulting 
the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and 
that no quotation from it or information derived from it may be published without the 
prior written consent of the author.

T heses may not be lent to individuals, but the Senate House Library may lend a copy 
to approved libraries within the United Kingdom, for consultation solely on the 
premises of those libraries. Application should be m ade to: Inter-Library Loans, 
Senate House Library, S enate  House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written 
permission from the S enate  House Library. Enquiries should be addressed to the 
Theses Section of the Library. Regulations concerning reproduction vary according 
to the date of acceptance of the thesis and are listed below a s  guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the 
author. (The Senate  House Library will provide add resses where possible).

B. 1962 -1974 . In many cases the author has agreed to permit copying upon 
completion of a Copyright Declaration.

C. 1975 -1988. Most theses may be copied upon completion of a Copyright 
Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

This copy has been deposited in the Library of

This copy has been deposited in the Senate House Library, Senate House,

LOANS

Malet Street, London WC1E 7HU.

C:\Documents and Settings\lproctor\Local Settings\Temporary Internet Files\OLK8\Copyright - thesis (2).doc





Essays on Identification and Estimation of Structural 

Parametric and Semiparametric Models in 

Microeconometrics

Elena Martmez-Sanclhs

A D isserta tion  su b m itted  to  th e  D epartm en t of Econom ics 

in p artia l fulfilm ent of th e  requirem ents for th e  degree of 

Doctor of Philosophy 
University College London

A ugust 2005, London



UMI Number: U592113

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U592113
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



C ontents

1 In trodu ction  11

2 Identification  and E stim ation  o f G M M  M odels by C om bining Tw o D ata  

Sets 15

2.1 In tro d u c tio n ......................................................................................................................  15

2.2 General Framework for Combining Two D ata S e t s ..............................................  18

2.2.1 Param etric m o d e ls ............................................................................................ 20

2.2.2 G M M ...................................................................................................................  21

2.2.3 Non-linear regression ........................................................................................  21

2.3 Identification C o n d itio n s ................................................................................................ 23

2.3.1 Param etric m o d e ls ............................................................................................ 23

2.3.2 Identification conditions for the binary choice m o d e l ............................. 24

2.3.3 Identification conditions for the semiparametric binary choice model 29

2.4 Estim ation ......................................................................................................................  32

2.5 Asymptotic N o rm a li ty ......................................................................................................  39

2.6 Monte Carlo E v id e n c e ..................................................................................................  45

2.7 C o n c lu sio n s ......................................................................................................................  48

2.8 T a b le 's ................................................................................................................................. 50

2.9 A p p e n d ix .......................................................................................................................... 57

3 Identification  o f P referen ces in th e P u re C haracteristics D em an d  M odel 

w ith  M icrod ata  63

3.1 In tro d u c tio n ...................................................................................................................... 63

3.2 Demand Model: N otation and A ssu m p tio n s ........................................................... 65

3.2.1 N o ta tio n ................................................................................................................ 67

1



3.2.2 Difference in assumptions on unobservables with the standard  dis­

crete choice models: Justification of our specification   71

3.2.3 Interpretation of the i.i.d term  : Unobserved tastes over charac­

teristics vs product specific unobserved tastes ..........................................74

3.2.4 Advantage of the approach in the Semiparametric Approach: Di­

mensionality R e d u c t io n   77

3.3 Choice P ro b a b il i t ie s ......................................................................................................  79

3.4 Id e n tif ic a tio n ........................................................................................................................83

3.4.1 Identification conditions for the param etric model .................................... 85

3.4.2 Identification conditions for the semiparametric m o d e l ............................. 88

3.5 C o n c lu sio n s ....................................................................................................................... 90

3.0 A p p e n d ix ..........................................................................................................................  91

3.7 P r o o f s .................................................................................................................................  93

4 Sem iparam etric Least Squares E stim ation  o f Shape Invariant M odels  

w ith  M u ltip le  Equations: A n A pplication  to Engel C urves 105

4.1 In tro d u c tio n ......................................................................................................................... 105

4.2 Model and N o ta t io n ........................................................................................................ 107

4.3 Previous estim ators for the shape-invariant m o d e l...................................................109

4.4 Estim ating the shape invariant model using SLS ...................................................114

4.5 Id e n tif ic a tio n ......................................................................................................................121

4.6 Large Sample Properties of the E s t im a to r ................................................................ 123

4.6.1 C onsis ten cy ............................................................................................................ 124

4.6.2 Asymptotic Normality .....................................................................................128

4.6.3 Optim al weighting m a t r ix ................................................................................. 131

4.6.4 Estim ation of the Covariance M a tr ix ............................................................. 132

4.7 Monte Carlo S im ulations..................................................................................................133

4.8 Empirical A p p lic a t io n .....................................................................................................137

4.9 Conclusion ......................................................................................................................... 141

4.10 T a b le s ................................................................................................................................... 144

4.11 A p p e n d ix .............................................................................................................................155

4.12 Figures ................................................................................................................................170

2



List o f Tables

2.1 Monte Carlo Experiment for a linear model w ithout exclusion restriction

a 2 = l .................................................................................................................................... 51

2.2 Monte Carlo Experiment for a linear model without exclusion restriction

a 2 = 3 ......................................................................................................................... 52
2.3 Monte Carlo Experiment for a linear model with exclusion restriction. Just

identified c a s e .......................................................................................................................53

2.4 Monte Carlo Experiment for a linear model with exclusion restriction. Over

identified c a s e ..................................................................................................................  54

2.5 Variance decomposition of error term for Linear Model with exclusion re­

strictions ............................................................................................................................. 55

2.G Monte Carlo Experiment for a probit model (Z2 dummy variable, Zc Normal) 56

2.7 Monte Carlo Experiment for a probit model (Z2 uniform, Zc Normal) . . .  56

4.1 Simulation results for SLS: Part 1 . 300 trials. n=200 and J = 1 ...............145

4.2 Simulation results for SLS: Part 2 . 300 trials. n=200 and J = 1 ...............146

4.3 Simulation results for previous estimators: Part 1. 300 trials. n=200 and

J= 1  ......................................................................................................................................147

4.4 Simulation results for previous estimators: Part 2 . 300 trials. n=200 and

J =  1 ......................................................................................................................................148

4.5 Simulation results for SLS for multiple equations J= 2  . 300 trials, n—200 . 149

4.6 Simulation results for SLS for multiple equations J= 2  . 300 trials. n=200 . 150

4.7 Estim ation using FES da ta  for one equation. Alcohol Engel Curves. Results

for all the estim ators f u n c t io n s ................................................................................... 151

4.8 Estim ation using FES data  for multiple equations: Engel Curves. SLS Es­

tim ation when objective function is divided by the sum of indicator functions 152

3



4.9 Estim ation using FES data  for Multiple equations: Engel Curves. SLS

Estim ation when objective function is divided by the sum of s functions . . 153

4.10 Estim ates reported by Blundell, Duncan and Pendakur (1998) and Wilke

(2003) using FES data  for multiple equations: Engel Curves................................154

4



List o f Figures

4.1 Nonparametric Kernel Densities for Log Total Expenditure for different

demographic groups and different values of param eter c .................................... 171

4.2 Loss functions for param eter c (L(c\ao)) proposed by Pinkse and Robinson,

Hardle and Marron, Wilke and the? Loss function using knowledge of rn 

function ( cq = —0 . 3 ) ....................................................................................................... 172

4.3 PR  Loss Function L f r (c\ (1q)  conditioned on the true value of param eter a,

for different values of the integration limits [x, x ] ..................................................173

4.4 HM Loss Function L HAI (c\ao) conditioned on the true value of param eter

a, for different values of the integration limits [x, x] ...........................................174

4.5 SLS Objective function as a function of c -L s l s (c\ciq, ho) where ho is the

optimal CV-bandwidth for (ao,co) - for simulated data  for one good . . . .  175

4.6 SLS Objective function as a function of c -Ls l s {c\ao> ho) where ho is the

optimal CV-bandwidth for (ao,co) - for simulated data  for one good. . . . 176

4.7 SLS Objective function as a function of c -L s l s (c\ao, ho) where ho is the

optimal CV-bandwidth for (ao, Co) - for simulated data  for one good. . . . 177

4.8 L(c\ao,ho) SLS Objective function as a function of c and number of obser­

vations where estim ated density is above its lower bound. Simulated D ata 

One good...............................................................................................................................178

4.9 Objective Function L-2 (a, c\ho) as a function of both param eters using sim­

ulated data  for one g o o d ................................................................................................ 179

4.10 Objective Function Lo(a,c\ho) as a function of both param eters using sim­

ulated data  for one g o o d ................................................................................................ 180

5



A bstract

This thesis focuses on identification and estimation of structural param etric and semi- 

param etric models in microeconometrics. The analysis of the conditions under which in 

the context of an econometric model- data  can be informative about the param eters of 

interest of an economic process is essential and must be of high priority in any economet­

ric work. W hen considering models with which to identify interesting features, emphasis 

should be placed on imposing the minimum set of restrictions in order to  achieve identific­

ation, since inappropriate restrictions may lead to inconsistent estimates of the param eters 

of interest. For this reason in the literature one finds th a t some attention has been paid to 

relaxing param etric distributional assumptions on the unobservables or functional forms 

of the relationships between observables and unobservables.

To begin with, I examine how the parameters of interest of a general class of models can 

be identified and then estim ated when not all of the relevant variables are jointly observed 

in the same dataset. To do so, the existence of an additional data  set with information 

011 both the missing variables and 011 some common variables in the original data  set is 

necessary.
I then move* on to an analysis of the identification of the preference param eters in a dis­

crete choice demand model in which individuals only derive utility from the characteristics 

of the goods they consume. I discuss how this particular model makes the estimation of 

these param eters feasible w ithout imposing distributional assumptions in the errors even 

if the number of goods in the choice set is very large.

Finally, I consider the comparison of nonparametric regression curves between different 

samples. I propose to estim ate the param eters tha t explain these differences between 

the conditional mean functions by using an estimator developed in the semiparametric 

literature which avoids the com putational problems faced by the previously proposed 

estimators.
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Chapter 1

Introduction

In the forthcoming chapters, identification and estimation of both structural parametric 

and semiparametric models are considered. The minimum set of restrictions tha t should 

be imposed in defining an econometric model in order to achieve identification of the para­

meters of interest of an economic process, has received much attention in the econometric 

literature. In this literature, the main emphasis has been placed on relaxing the func­

tional form restrictions on both the relationship between observables and unobservables, 

and on the distributional assumptions on the unobservables. However, a fully nonpara- 

metric approach to modelling the relationship between the observables in the model im­

poses enormous data  requirements when the number of variables is high. Semiparametric 

modelling has become a very attractive tool to reduce this "curse of dimensionality" by 

imposing some parametric restrictions on the model while assuming that the functional 

form of many other parts of the model are unknown.

This thesis focuses on three very different aspects of this attem pt in the literature to 

reduce the functional form restrictions needed in order to identify and estimate certain 

economic features of interest. The data one has access to determines which variables - 

amongst those tha t should be included in a model- must be considered to be unobserved to 

the econometrician. For a wide class of models, some stochastic restrictions on these un­

observables -which often imply distributional assumptions- are usually imposed to identify 

and estimate the param eters of interest. However, there might exist information on the 

distribution of these unobserved variables in a different data  set which would allow one to 

nonparametrically identify its distribution and consequently relax some of these restric­

tions (Chapter two). To study the economic interpretation of the assumptions placed on
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the relationship between the observables and unobservables and the particular specifica­

tion of the unobservables, is crucial. Chapter three analyzes this issue in the context of 

a discrete choice model used as a structural model of demand to obtain preference para­

meters. The last chapter studies a number of issues relating to the estimation of a specific 

semiparametric model in which linear and index restrictions are imposed in the unknown 

conditional mean function, in order to include a variable tha t determines to which group 

or sample each observation belongs. A brief description of each chapter follows.

In chapter two I study an incomplete data  problem in which the da ta  set available 

contains only a strict subset of the list of variables tha t are relevant in an empirical 

analysis. The proposed method presumes the existence of another da ta  set which contains 

a subset of variables in the original data set as well as the variables tha t are missing from 

the original data  set. The interest is on identifying the true effects on the dependent 

variable of the common variables between two data sets, once the omitted variable bias 

that arises from the missing variables is controlled for. Additionally, one would like to 

identify the effect of these missing variables on the dependent variable even if they are 

never jointly observed. In other words, one would like to find under which conditions one 

is able to identify the same param eters as in a complete data  framework. I show that, for 

a wide variety of problems, having access to a complementary data  set combined with a 

parametric structural restriction and some joint variation on the variables in the auxiliary 

data set, may be sufficient to identify the parameters of interest. The main advantage of the 

framework I use here is tha t it extends the existing method for linear-in-parameters models 

in the incomplete data literature to more general models. This generality is not assumed 

at any cost since when the model under consideration is nonlinear, the identification 

conditions are model-specific and it is difficult to provide conditions for global identification 

at this level of generality. For this reason, regarding the identification results, I focus on 

the parametric and semiparametric binary choice model which are leading examples of 

nonlinear models in econometrics. However, for the very general class of models I discuss 

the estimation of the param eters when no parametric restriction are imposed on the joint 

distribution of the variables observed in the complementary data  set. General conditions 

under which the proposed estimators exhibit consistency and asymptotic normality are 

developed.

In chapter three I investigate the identification of preferences in a model which avoids 

the counterintuitive properties in policy analysis related to the introduction of new goods 

implied by standard discrete choice models tha t are used as structural models of de-

12



rnanci. The model analyzed in this chapter does not assume product specific unobserved 

tastes which are usually modeled in the standard approaches as an unbounded random 

term independent and identically distributed across individuals and alternatives. The 

implications is tha t in our model individuals derive utility from a finite set of product 

characteristics. Under these assumptions, the main contribution of this chapter is to relax 

the distributional restrictions on the random tastes over product characteristics without 

relying on the dimension of the product space. This contrasts with previous contributions 

in semiparametric multinomial discrete choice models in which the index dimension of 

the choice probabilities becomes intractable when the number of products in the market 

is high. When consumer-level data  is available, I state the conditions under which the 

preference param eters are identified up to a scalar constant both when the distribution of 

the unobserved individual attributes is assumed to be known and unknown.

In chapter four I discuss the estimation of a semiparametric model in which param et­

ric transformations exist tha t explain the differences between nonparam etric conditional 

mean functions of different groups or samples. Instead of using a fully nonparametric ap­

proach, this model assumes a particular specification to explain how the variable defining 

the group or the subsample affects the endogenous variable. Thus, there exist two para­

meters explaining the differences between the nonparametric means for different groups: 

one implies a horizontal shift and a change of slope and the other param eter shifts the 

unknown functions vertically. This model is denoted in the literature as the shape invari­

ant model and is equivalent to a single index model with a partial linear term  in which 

one of the conditioning variables is the group or sample discrete variable. The previous 

estimators introduced in the literature for the shape invariant models face the computa­

tional difficulty tha t their objective functions only attain  a local minimum at the true 

value of the param eters so tha t they must rely on intensive com putational methods. We 

argue tha t the existing semiparametric least squares estimator constitutes a natural way 

of estimating the param etric transformations, along with solving this computational prob­

lem. To reduce this burden is im portant because this estim ator makes the comparison 

of nonparametric curves with respect to more than one variable defining the group or 

the subsample, feasible. The asymptotic properties of this estimator in a semiparametric 

model with multiple equations are established. We also discuss the possibility of giving 

different weights to each combination of the equations and the optimal weight that makes 

the estimator efficient. Finally, a shape invariant model arises in the estimation of Engel 

curve relationships where the demographic composition is taken into account and I com-
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pare the performance of the estimators discussed in this work with the estimates obtained 

from the British Family Expenditure Survey.
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Chapter 2

Identification and E stim ation  of  
G M M  M odels by Com bining Two  

D ata  Sets

2.1 Introduction

It is often the case th a t we do not have an ideal data  set tha t contains all of the relev­

ant variables tha t should be used in an empirical piece of work. In some cases a set of 

relevant variables is incompletely observed whilst in some other cases the variables are 

completely missing. As a consequence, empirical studies based on analogous data  might 

yield incomparable results because the implicit models used are incomparable when the 

same variables in those data  sets differ in their definition or a different set of conditioning 

variables is used. The object of the present research is to develop a general method that 

allows us to estimate a common model even when an available data  set may be incomplete 

in itself.

We consider a special case of incomplete data  problems in which a data  set at hand 

contains only a strict subset of the list of variables relevant for empirical analysis. We 

tackle the problem by assuming tha t there is another data  set which contains a subset of 

variables in the original data  set as well as the missing variables in the original data  set. We 

show tha t this assumption, combined with a param etric structural assumption and some 

joint variation assumption on the variables in the auxiliary data  set, are often sufficient to 

identify the effects of missing variables as well as those of the non-missing variables in the
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parametric structural relationship. We propose estimators for the identified parameters 

and establish the asymptotic properties of the estimators.

An empirical framework tha t allows one to consider a combination of two data  sets 

may be im portant for many applications. A survey of individual finances might have 

detailed information on wealth but scarce information on consumption or labour market 

behavior. In fact, this is the case in the BHPS survey in the UK and the PSID in the US. 

On the other hand budget surveys, such as the CEX in the US and the FES in the UK, 

have rich information on individual decisions but have little or poor quality information 

on wealth. Both types of data  sets could be complemented to estim ate structural models 

in which both consumption and wealth are the relevant variables. Birth certificate data, 

health surveys, or consumer scanner data  may be fruitfully combined with more general 

surveys as well to complement their general lack of information on household income.

Analysis under missing observations is a significant research area. An analogous prob­

lem to ours has been addressed and solved for the linear-in-parameter models by Glasser 

(1964), Gourieroux and Monfort (1981), Angrist, and Krueger (1992) and Arellano and 

Meghir (1992).',2 See a useful survey by Little (1992) for early works3. For non-linear 

in param eter models various identification issues and estimation procedures have been 

insightfully discussed by Ridder and Moffitt (2003). Our problem shares some properties 

with the literature tha t uses additional samples to correct for the measurement error in 

the regressors. The main difference with respect to our assumptions is tha t they do not 

assume joint observation of the missmeasured and variable measured w ithout error. This 

makes tha t identification needs to rely on different conditions (See Hu and Ridder (2003), 

Chen, Hong and Tamer (2004), Schennach (2004)).

We develop a general framework that covers a wide class of non-linear models although 

the aim of the paper is not to provide identification conditions for each model belonging 

to this class. It is hard for to give sufficient conditions for global identification in a very

1 See Carroll and W eil (19 9 4 ), L usardi (1996), Currie and Y elow itz (1997) and D ee  and E vans (1997) 

for ap p lica tion s.
T m b e n s and L ancaster  (1994) s tu d y  how to com bine cross section a l d a ta  w ith  in form ation  on (aggreg­

ate) p o p u la tio n  m om en ts. W e assum e how ever th e  ex isten ce  o f tw o m icro d a ta  se ts  (i.e . b o th  o f them  w ith  

ind iv idu al in form ation ).
'E arly  references a lso  inclu de R ubin  (1974), w hich e sta b lish es m axim um  lik elih ood  factor iza tion  m eth ­

ods dealing w ith  m issing  d a ta  problem s. T h ese  m eth o d s how ever do not allow  one to  identify  the effect o f  

th e  m issing  regressor.
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general non-linear model (similarly to the identification in GMM non-linear model with 

complete data). We discuss though the general conditions tha t are required to compute 

the identifying moment condition with the incomplete data, and therefore to compute the 

estimators.

This level of generality allows one to establish the asymptotic distribution theory for 

a wide class of estimators when two data  sets are needed in the estimation including 

estimators for linear and non-linear regression models, generalized method of moments 

(GMM) estimators and the maximum likelihood estimators (MLE). The results we obtain 

differ from the previous contributions in the literature because the sample analogue of the 

moment condition does not need to be separable in observations belonging to each of both 

data sets.

In order to provide specific conditions for global identification, we focus on a subclass 

of those non-linear models covered by the general framework by studying the identification 

of the parametric and semiparametric binary discrete choice model.

The identification results for the binary choice model complement the results of Manski 

and Tamer (2003). They consider the binary choice model with non-missing regressors 

with one incompletely observed regressor in the sense tha t the regressor value is known 

only to lie in an interval. W ithout assuming access to a complementary data  set, but 

assuming tha t the variable affects the choice probability monotonically, they show point 

identification of the effect of non-missing and missing variables only when there is a positive 

probability of complete data, otherwise they only achieve partial identification. We show 

that for parametric models when there is a complementary data  set, we can allow for 

more than one missing exogenous variable and we provide sufficient conditions under 

which coefficients of the missing regressors are identified. For the semiparametric binary 

choice model, some additional conditions need to be imposed on the distribution and the 

support of the common regressors in order to identify the param eters up to scale.

After explaining the framework of the incomplete data  problem tha t we consider in 

section 2.2 we discuss identification issues and present a general estimation method in 

sections 2.3 and 2.4, respectively. The asymptotic theory for this framework is established 

in section 2.5.Monte Carlo simulation results are presented and discussed in section 2.6. 

Section 2.7 concludes.
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2.2 General Framework for Com bining Two D ata Sets

All random (column) vectors and their realizations are denoted by upper and corres­

ponding lower case letters respectively. Endogenous and exogenous random vectors are 

denoted by Y and X  with subscripts respectively. We assume access to two data  sets, 

data sets 1 and 2. D ata set 1 contains observations on the random vector (Yi, Yc, X \ ,  X c) 

and data  set 2 contains observations on the random vector (Yc, Y2, X c, X 2 ). Assume 

that (Yi, Yc, Y2 , X i ,  X c, X 2 ) is needed to carry out a standard empirical analysis. Let 

Z\ — (Y \ ,YC, X \ ) ' , Z c — X c, and Z 2 = (Y2, X 2 )' be random vectors of length m \,  m c and 

m 2, respectively. Random vector Z c includes only those exogenous variables tha t are com­

mon to both data sets and random vector Z2 includes those variables tha t are exclusively 

observed in data set 2. The distribution of the missing variables in data  set 1 conditional 

on the common variables, in particular conditional on the common exogenous variables, 

is assumed to be unknown but the second data set can be used to identify it. Thus, the 

distribution of interest to be identified from data set 2 is the conditional distribution of 

Z 2 given Z c which we assume is dominated almost surely in Z c by a fixed measure /1 so 

that there is a conditional density 7 (22kc) for almost all 2C in the support of Z c.

We are interested in estimating the structural param eter Q q £ . Q c  R k  defined via the 

following moment conditions tha t can be computed with complete data  (i.e. when Z\,  Z c 

and Z 2 are jointly observed in the same dataset)

E  {ip(p(Zi, Zc, Z2, 9 ) - e ) \X i ,X c, X 2} = 0 (2.1)

almost surely in X \ ,  X 2 , X c iff 6 = 9q

where function p : R mi x R m2 x R nic x 0  —* R s  and 'ip : R s  x 0  —> R T where T  is the

number of moments and T  > K.

However, if the data  is incomplete and Z c = X c are the only exogenous variables in 

common between both data  sets, then we could only use conditional moments on Z c . The 

conditional moment on the common exogenous regressors Z c that is directly implied by

(2 .1) can only be computed with the data we have assumed we have access to if Zj  and

Z\ are independent conditional on Zc. Being able to write the moment condition is a 

necessary condition to identify Qq and without the mentioned conditional independence 

is not possible to do so, since the conditional distribution of { Z \ , Z 2 ) given Zc cannot 

be identified from the incomplete data. This conditional independence assumption is 

however a strong assumption which would impose a strong restriction on the true value of
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the parameters 0q.

An alternative to the conditional independence assumption, which is used in this work, 

is to assume a conditional moment on Z c which can be computed with the incomplete 

data. Then, we study the restrictions tha t need to be imposed on functions 0 , pa and pb 

in order for the param eter tha t it is identified through the conditional moment on Z c with 

incomplete data  to be the same as the true value of the param eter th a t moment (2 .1) 

identifies.

The general framework tha t we consider defines the structural param eter 6$ E 0  C R K 

via the following conditional moments given random vector Z c, which are identified with 

incomplete data:

The function g (z<2 \zc) is typically defined via 7  {z2 \zc). We motivate the formulation below 

but first note that in general both functions q cannot be interpreted as conditional mean 

functions of p given Z c without further assumptions. This is because we do not use the 

conditional distribution of Z 2 given Zc and Z\  to integrate out Z2. This alternative is 

impossible with the type of data  we have assumed to have access to. Note tha t the moment 

conditions in (2 .2 ) are not the only moments that can be identified given the model with 

complete data  and the data sets in our hands.

Therefore, the identification problem we want to pursue in this paper is under which 

conditions we can ensure tha t the value of the param eter tha t uniquely solves moment 

condition (2 .1) is the same as the param eter that solves the moment condition with in­

complete data in (2 .2) (i.e. 6q = 6q)

The framework in (2.2)-(2.3) covers general param etric conditional probability models, 

non-linear regression models and some generalized method of moment (GMM) models by 

defining for each particular case the form of functions 0 , pa and pb and the variables that 

should be included in Z \ , Z C and Z 2 .

E  {h ( Z \ , Z c\ 6)\ZC} = 0 almost surely in Z c iff 9 = 6J0 (2 .2 )

where

h(zu zc;6) =  'ip(q{zu zc,9)-,6)

q ( z i , z c,9)

(2.3)

(2.4)

19



2.2.1 Param etric m odels

Suppose a parametric conditional probability model is specified by

f  ( y i , y c , y 2 \ x i , x c , x 2 \ Q )

Integrating out y 2 , the model implies a parametric model f  [y\ , yc\x\ , x c, %2\9)- If there 

is no x'i, i.e. if all conditioning vector is observed jointly in the second data  set, then 

integrating out X2 using g (x2 \xc) would yield a parametric conditional probability model 

for the data  tha t it is observed in the first data set /  (y \ , yc\xc, #)-4 The moment condition 

that identifies the true value of the param eters 9q is the score of the likelihood function 

using the conditional probability model with complete data  /  (y i , yc\xc, X2 \ 9). Therefore, 

the h function in this case corresponds to the first order condition of the maximum like­

lihood estimator (MLE) using the implied conditional probability model f  {yi ,yc\xc\Q) 

for incomplete da ta5 Let g (x2 \xc) denote the density of X 2 given X c with respect to p. 

The functions defined for the general framework take tha t following forms to identify the 

parameters imbedded in the conditional parametric model just outlined:

_  ./’ V fl/ (2/1, 2/c  2/2k c ,  X2 \ 9) dy2

J f  (2/1/2 /c , 2/21̂ c> x 2\6) dy2 
=  Pi  (•; / P 2 (•; =  V e f  ( y u y c \ x c , X2- , 9)  / f  ( y i , y c\xc, x 2\9)

=  j  p { y i , y c , x c, x 2-,9) g ( x 2\xc)d[i =

V o/ (yi, yc\xc\9) 

f ( y u y c\xc;0)

= ^ (9 (- ;^ ) )  =

=  <?i (-;0)/92 (-;0) = V o f  ( y u y c\xc-,0) / f  ( y u y c\xc-,9)

where the subscripts of p and q denote the elements of these vectors. It is not clear if the 

original param eters are still identified after integrating out certain variables. We explicitly 

address this issue for some specific cases in section 2.3. Note tha t although the following 

moment condition

j  ^ { p ( y i , y c , x c , X 2 \ 9 ) ) g ( x 2 \ xc ) d p  =  0

‘T h e  an a logou s lik elihood  can be form ulated  rep lacing the role o f tw o d a ta  se ts  if in fact th e  d a ta  se ts  

are sy m m etric  as form u lated  above.
’W e assum e /  ( y i , y c \xc , 0)  to  be d o m in ated  for each 6  in its  n e ighb orh ood  by an in tegrab le  fun ction  

w ith  finite integral so th a t in tegration  and d ifferentiation  can be in terchanged .

p( y i , Vc, Xc, X2 \ 9) 

q(yi ,Vc,xc\0)

h ( y i p y c, x c\9)
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could be computed with this setting, it does not arise from the maximisation of the log 

likelihood with incomplete data.

2 .2 .2  G M M

Define Y  — {Y\ ,YC, Y ^  and X  = { X \ , X c, X ‘l)1 . In a GMM framework, the structural 

param eter 9q is defined by

E  [ip(Y, X \0 ) \X]  = 0 almost surely in X  iff 9 =  9q (2.5)

where X  is a set of instrum ental variables and ip may have some exclusion restrictions so 

that not all elements of X  need to appear directly as arguments in ip.

We assume tha t ip takes the following form and some elements of Z c are excluded as 

arguments:0

ip{z\ ,Zc,Z2\0) = Pi (zu zc,G) -  p2{zc, z 2,9). (2.6)

Under this separability assumption, the moment condition (2.5) can be integrated out to 

become

E  [ip(Z\, Z c, Z2; 9)\ZC\ = E  [Pl(Z u Zc] 9)\ZC\ -  E  [p2(Zc, Z2; 9)\ZC] (2.7)

and each term on the right-hand side can be examined using the two data  sets at hand 

(See Ridder and Moffitt (2003)). Although this separability assumption guarantees that 

the moments that arise from conditioning only on Z c can be computed with the data, it 

is not a sufficient condition for the identification of 00- 

In this formulation7

h {zi, zc\ 9) =  q i ( z i , z c\9) -  g2(zc;0)

9i U i ,Zc\8)  =  j  Pi (zi ,Zc\8)g(z2\ zc)dz2  =  P i ( z i , z c;0)

q2(zc\S) =  E{p2(Z,.,Z2-.0)\zL\

2 .2 .3  N o n -lin e a r  reg r essio n

As an example of the GMM model with incomplete data, let consider the nonlinear re­

gression model.

f'For n o ta tio n a l conven ien ce  th e  follow ing expression  changes the lo ca tio n  o f argu m en ts in fun ction  -ip.
1 W e could  also form ulate

h ( z c , Z2 -,6 ) =  E [ Pl  ( Z l l Z c ; 0 ) \ Z c] - p 2 ( z c , z a; 0 ) .
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In this model there is no Yc or Y>i and again assume tha t we always observe the regressor 

distribution so th a t there is no X \ .  We consider here the asymmetric case where the only 

endogenous variable is exclusively observed in data  set 1 so th a t Z\ — Y \ ; Z c =  X c and 

Z 2 = X 2 . The param etric form of the conditional mean function is so tha t E  (Yi |XC, X 2 ) = 

m ( X c, X2;0q). The non-linear regression model obviously satisfies the separability condi­

tion mentioned above and using the previous notation p1(Z\, Z c,0) = P\(Z\)  =  Y\ and 

p2(Zc, Z 2 , e ) = r n ( X c, X 2 ;e0). Since

E ( Y i \ X c) = E [ m ( X c, X 2-,0o)\Xc (2 .8 )

the param etric conditional mean function is now E  [m{Xc, X 2 \ 0)\XC] and it is computable 

since we assume tha t the joint distribution of (X C, X 2 ) can be estim ated from data  set

2. Note tha t even when a subset of variables in X c does not appear in the function 

rn ( X c, X 2; 0), it may appear in E  [rn(Xc, X 2; 0)\XC) as it may be correlated with X 2. As 

pointed out by Angrist and Krueger (1992) and Arellano and Meghir (1992), this can help 

identification of #0 as discussed below.

The h function corresponding to the moment condition above is then

h (YU X C; 0) = Y i - E  [m(XC) X 2; 0) \XC]

The moment condition in (2.8) identifies 0q through the mean independence of the 

error in the regression with the common regressors. However, there might be additional 

moment conditions tha t identify the parameters where function h should be defined in 

alternative ways. In particular, for the non-linear regression model, the true value of 

the param eter 0q uniquely solves the first order condition of the non-linear least squares 

objective function using the implied conditional mean function: using the same notation 

for g {x2\xc), the function h is defined as follows in this case

p ( y i , x c, x 2-,0) =

q ( y i , x c\0) =

yi -  m ( x c , X 2 \ 0 )

V o m { x c, x  2\0)

V>{p(y\,Xc,x2\0) \0) =  P i  {y \ ,xc, x 2\0) ■ p2{xc,x2\0)  

yi -  J rri (xc, x 2\ 0 )g { x 2\xc) dp 

f  V&m (xc, x 2; 0) g (x2 |xc) dp

h { y i , x c\0) =  !/j(q(yu x c]0) \0) = qx (yu x c;0) 'q 2(xc;0)
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Thus, for a given model, there are alternative identifying moment conditions (which 

can be conditional or unconditional on the common exogenous regressors8) by defining in 

a different way the functions and p.

2.3 Identification Conditions

The conditions under which the global identification of 6q holds in (2.2) are specific to 

each model.

2 .3 .1  P a r a m e tr ic  m o d e ls

Let 0  C HP be the param eter space. A well known identification condition for this 

case is tha t within the param etric model the only probability distribution replicating the 

distribution of the data  corresponds to the one with the true parameter: namely, for any 

6 e Q

j  p ( z u zc, z 2, 0 ) g ( z 2\zc)dp  =  I  p { z i , z c,Z2i90)g{z2 \zc)d(i almost surely in (ZUZC) (2.9)

if and only if 0 = 9q and where p{z\, zc, z2,0) = f  (y i , yc\xc,'x 2i9)-
The linear regression model with incomplete data  where the rn function in (2.8) is 

expressed as
rn(Xc, X 2,0) = X c01 +X!262

identifies 60 if and only if E ( X 2\XC) is a nonlinear function of X c and there is no proper 

linear subspace of R nic having probability one under the probability distribution of X c. 

9 Regarding identification of the nonlinear regression models and the nonlinear GMM 

models, sufficient conditions need to be given in each particular case to guarantee that 

global identification holds in the complete data  model and also, when Z2 is integrated out, 

in the incomplete data model. 10

We investigate sufficient conditions under which condition (2.9) holds for the param et­

ric and semiparametric binary choice models.11

*In th e  general defin ition  for th e  estim a to rs we use u n con d ition a l m om en ts.
9 N o te  th a t th is sufficient co n d itio n  for identification  is im p lic ite ly  ex clu d in g  variab les w h ich  are n on lin ­

ear fun ction s o f X c in th e  con d itio n a l m ean m odel E ( Y \ \ X C, X 2 ; 0).
10Sufficient co n d itio n s for g lobal identification  in non lin ear-in -param eters m o d els are d ifficu lt to o b ta in  

(N ew ey and M cF adden (1 9 9 4 )). See R oth en berg  (1971) for sufficient co n d itio n s for loca l id en tifica tion  in 

a neighb orh ood  o f 0°  in non linear IV m odels.
11 In the rest o f the paper, we consider th at p b{ z \ , z c , Z2 \ 0 ) is param etr ica lly  sp ecified . Let q ( z \ , z €) -
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2.3.2 Identification conditions for the binary choice m odel

Let 9 — (a, (3', 7 /) / G 0  be the parameters of the model and let the corresponding greek 

letters with the subscript 0 denote the true value. Let d\ and denote the number of 

elements in (3 and 7 , respectively. Let Z\ — Y\ Z 2 =  X 2 and Z c = X c. Consider the 

following model:

Y  =  l{ o 0 +  X ’CP0 +  X'2 7 0 + U >  0} (2.10)

where we denote X  = (X'c, X ^ ) '■ The number of elements in X  is denoted by d = dc 4- d>2 - 

We consider the following two different sets of stochastic restrictions on the errors U, 

which define respectively a parametric and a semiparametric binary choice model. Let 

F(.\xc,X2 ) denote the distribution function of U conditional on X c = x c and X 2 = x^.

A ssu m p tio n  A . 1 U and X  are statistically independent, the median of U is zero and 

F (.|x ) is known and strictly increasing.

In this case we denote F(-\x) as F(-).

A ssu m p tio n  A. 2 U conditional on X  has zero median.

Many empirical studies adopt Assumption A .l with the logistic or normal cumulative 

distribution function F. W ith complete data  the param eter 6 q is identified as long as 

no proper linear subspace of R d includes the support of X  almost surely in X  and F  is 

strictly monotonic.12 This is no longer the case when not all of the regressors are jointly 

observed with the dependent variable Y . Even for the parametric case one would need to 

impose stronger restrictions on the support of X .

We assume below that data set 1 includes variables (Y, X c) and the second data  set 

includes variables X .

f  p ( z \ ,  z c , Z2 ) g ( z ‘z \ z c ) d z 2 ■ T h e  d iscu ssion  a b ou t nonparam etric id en tifica tion  o f unknow n fun ction  

p ( z \ , z c ,Z2 ) from  the identified  fu n ctio n s q(zi , zc) and g ( z 2 \ zc), is beyon d  th e  sco p e  of th is paper. H ow ­

ever, there ex ist som e resu lts th a t are in terestin g  to  be considered  in th e  in co m p lete  d a ta  fram ework. If 

p { Z \ ,  Z c , Z 2 ) — E ( Z \ \ Z C, Z 2 ) and Z c has som e exclu sion  restr iction , th e  resu lts from  N ew ey  and  Pow ell 

(2003) can be app lied  and  th e  con d itio n a l m ean fun ction  is non param etr ica lly  identified  as long  as g ( z 2 \ zc ) 

satisfies th e  co m p leten ess a ssu m p tion . W ith o u t assum ing  exclu sion  restr ictio n s in Z c , C ross and M anski 

(2002) and H orow itz and M anski (1995) derive partia l non param etric  id en tifica tion  resu lts w ith  th e  a s­

sum ed d a ta  at our hand for th e  con d ition a l cd f p ( Z \ ,  Z c , Z 2 ) =  F ( Z i \ Z c , Z 2 ) and consequ en tly , partia l 

nonparam etric  identification  for E ( Z \ \ Z C, Z 2 ).
12 O ne cou ld  w eaken th is further by w riting co n d itio n s ex p lic itly  in term s of th e  su p p ort o f X '6  and  th a t  

of U.

24



The identification condition under the parametric model is tha t ,for any # 6  0 ,  and 

for a given F  (• \xc,X2 ) satisfying Assumption A .l

I  F  ( a +  X'C0 + x'2 7 ) g(x 2 \Xc)dn  =  I  F ( a 0  + X'c/30  + x'2lo) g (x 2 \Xc)dti  (2.11)

a.s. in X c if and only if 0 = #q. Note tha t if there is no complementary data we would 

have to show identification without assuming that we have the same g function on both 

sides since g would be unknown in this case. This is the main source of identification that 

arises from the complementary data set.

For the semiparametric case, the identification condition becomes, for any # 6 0  and 

for a given Fq { ( x ^ x p  and any F  (-\xc, x 2) satisfying Assumption A.2

j  F ( a  +  X ' j i  +  x 2 p X c ,  x 2 ) g{x2 \Xc)dg =  j  F0 (cv0 +  X'cp {] +  X 270 |X C, x 2) g (x 2 \Xr)dg

( 2 . 12 )

a.s. in X c if and only if # =  #o-

P aram etric B inary C hoice M odel The following assumptions are made for identific­

ation of (3q:

A ssum ption  A. 3 © is a bounded set in R d+l.

This assumption limits the potential effect of the missing regressors.

A ssum ption  A. 4 Random vector X 2 \XC is tight uniformly over X c

The complement of a set A  is denoted by A c. Let Sc denote the support of X c.

A ssum ption  A. 5 There is at least one element of X c that has unbounded support given 

each of the other regressors.

This condition allows us to find proper variation in X c regardless of the missing vari­

ables. Let denote by X c  ̂ the common regressor with unbounded support.

T heorem  1 When there is complementary data to estimate the distribution of X 2 given 

X c, #o of the parametric binary choice model defined by equation (2 . 1 0 ) is identified with 

respect to any parameter # 6 0  such that (5k p  /30fc i f  Assumptions A . l  and A . 3 -A . 5  hold.
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Proof. Suppose equality (2.11) holds. 9q is identified with respect to 9 such that a ^  c*o, 

(3 ^  and 7  =  y0, since for all X c

sign  [(a  4- X'c(3 +  x'2 j )  -  (a 0 +  X'c(30 4- x ^ q ) ]

equals —1 or 1 uniformly over the support of X 2 given X c. There is no need for an 

unbounded support variable if 7  =  y0 and only the identification conditions with complete 

data  are required. Additional conditions are required to identify 9q with respect to 6  such 

tha t 7  ^  7 0. Let consider this case. Since X 2 given X c is uniformly tight on X c, for any 

5 > 0, there is a uniformly bounded subsets VI2 (27) of the support of X 2 given X c for 

almost all x c in the support of X c with Pr { X 2 G Q2 ( 2 7 ) \XC = x c} > 1 — e. Note tha t we 
have

0 = I  [F (a + X c(3 + x 2^) -  F  (a 0 + X c(30 + x '^q)] g (x 2 \Xc)dg 
Jn2{xc)

4- I  [F [a +  X c(3 4- x'27) — F  (ao +  X c(3q 4- 2/27 o)] y ( x 2 \Xc)dfi 
./n§(xc)

almost surely in X c. Since F  is a CDF. the absolute value of the second term on the right- 

hand side is bounded by 2e almost surely in X c. If the coefficients on regressor k in X c are 

different, then since 0 lies on a bounded set (Assumption A.3) and Q2 {xc) is uniformly 

bounded, the difference between a  + x c(3 + x 27 and c*o +  x c(3q 4 - x^Jq can be made positive 

or negative uniformly over X2 and 9 by moving the regressor under consideration but 

holding other variables in X c fixed, because X2 and 9 are uniformly bounded on Q2 (Ac) 

and 0 . This together with strict monotonicity of F, leads to a contradiction as e > 0 can 

be chosen arbitrarily to be small. ■

The sufficient conditions for identification of 9q with respect to 9 such tha t f3 = (30 

would require tha t the support of ^ 2(27) changes with x c in a very restrictive way in order 

to be able to make the difference between a  +  F27  and ao 4- 2^70  positive or negative 

uniformly for 1)2(27) for x c belonging to a subset of Sc with positive probability and for 

each possible value of 9 E 0  such tha t (3 = (3

When there is no common variable with unbounded support or #0 wants to be identified 

with respect to 9 E 0  such tha t (3 = /?0, the next theorem provides identification of #0 

when the missing regressors X 2 are discrete and the distribution of X 2 given X c does not 

belong to a particular parametric family.

Suppose X 2 is a random variable which takes on two values, 1 and 2, we can repara- 

metrize the model so tha t the problem is to identify c*i =  a  4- 7  and Q2 =  ck 4 - 27 when
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almost surely in X cl,i

F  (a? +  X'/3°) g( 1 \XC) + F ( a °2 + X'J3) g (2\XC) =  (2.13)

F  (a , +  X ’c/3) g ( l \X c) + F ( a 2 + X'c0) g (2\XC)

This implies that
g (2 \X C) F  (a0, + X ' J ° )  -  F  (a, + X'c/3)
9 W * c )  F ( a 2 + X'c0 ) -  F ( a °2 + X'cl3°)

We should consider restrictions on the parameters for each value of X c such tha t (i) 

a j  +  X'C(3Q > a i  +  X'c(3 and a°  +  X'c(3° < a 2 +  or (ii) a? +  X'c(3° <  a i  +  X'/3 and 

<̂ 2 +  X'/3° > a 2 + X'c(3. 14 Consider the case where the param eters satisfy one of the above 

sets of conditions for X c, we have

, , N F  ( a 2 +  X'CP) -  F  (a§ +  X'c/3°)
-  F  (n o +  x , ^  - F ( a i + X ’J )  + F ( a 2 +  X ’cf)) - F { a °2 + X ’c0°)

Note tha t the right-hand side defines a parametric model of the conditional probability 

g ( l \ X c) as a function of X c using param eters { a i , a 2,/3} and {a^, /?0} with param eter

restrictions (i) or (ii) above. Thus the identification condition is tha t for each 0 G 0 , 

there is a value of X c for which g ( l \ X c) is not within this param etric model. A sufficient 

condition for this is that there exist a value of X c such tha t g (11 ACc) does not belong to the 

parametric model in (2.14) for any value of 6  6  0  satisfying one of the above conditions. 

Note that the same reasoning of the identification follows with X'c/3 =  X'c/3° =  s if one 

wants to identify 0° with respect to 6  such that (3 = (3°.

This identification condition is satisfied if there is a variable among X c th a t does not 

appear in the index X'c(3 or X'c(3°. Therefore, it is clear in this case th a t the exclusion 

restrictions of common regressors are a sufficient restriction to guarantee the identification 

of the parameters. Denote by X c the random vector tha t excludes some variables of X c. 

This exclusion restriction guarantees tha t one can identify the param eters 

without additional restrictions than in the complete data  case, since

u  A ssu m e for sim p lic ity  th a t the su p p ort o f X i  g iven X c is uniform  in X c ■ T h e  sam e resu lts w ould arise  

if th is cond ition  d o es not hold . In th is case, th e  values o f { 0 :1 , 0 1 2 } to  be id en tified  w ou ld  be different for 

each X c bu t under th e  co n d itio n s sp ecified  here th e  param eters o ,  /? and  7  w ou ld  be identified .
H T h e  rest o f th e  param eters { 0 1 , 0 2 ,/?} such th a t do not sa tisfy  th ese  restr ic tio n s are d irec tly  identified  

w ith  respect to  { 0 1 , 0 2 , /30}. T h is  is becau se  they  im ply  a negative  value of th e  ratio  o f th e  tw o con d ition a l 

prob ab ilities, w hich  im p lies th a t th e  eq u a lity  (2 .13 ) can n ot hold.

27



F (a°t +  X '/3°) -  F  ( a j  +  X '/?)] ff(l|X c)+

+  \ f  (a§ + X'/3°) - f (c*2 + X ' j f  g (2\XC) = 0 a.s in

implies tha t cn =  a j ,  a 2 =  and (3 =  /3° iff there does not exist a proper linear subspace

of Hi2 having probability 1 under the distribution function of [g{\\Xc),g{2\Xc)\. This latter 

condition is directly satisfied because the existence of a proper linear subspace implies that 

g ( l \ X c) = kcj(2\XC) for scalar k and for all X c, or equivalently tha t g{ l \X c) is constant 

over X c.

More generally the following identification result holds:

T h e o re m  2 I f  there exist X c for each {qi, 0:2, (3} E 0  such that g (1|X C) is not an element 

of the parametric model expressed by

( ,x  ) = _______________ F ( a 2 + X'cf 3 ) - F ( a °2  + X ’c0°)_______________
9 (  1 c> F(a°1+ X'c0>) - F ( o * +  X t f )  + F ( a 2 +  X'/3) - F { a °2 + X'c0°)

where a® +  X'c(3° > Qi -f X'c(3 and +  X^fi0 < a 2 +  X'c(3 for the case of binary variable

X ‘2 and by

i \xc) =
- A F  (ak +  X'c(3) -  [AF  ( a 2 +  X'c(3) -  A F  ( a ,  +  X'c(3)} g(2\XC)

-  [AF  ( a fc_! +  X'J3) -  A F  (a k +  X'J3)] g ( k -  1\XC)
[ A F ( a 1 + X ^ ) - A F ( a fc +  X'/3)]

(2.15)

where numbering of the regressors follow the order o f a j —a® and that c*i —a® > X[. (/3° — j3) 

and a k — a® < X'c ((3i] — (3) for the case of general discrete vector X 2 , then ao,/30 and y0 

are identified.

Proof. The binary case is shown above. Suppose for some integer k > 3 almost surely 

in X c

F  (ai  + X ' 0 )  g ( l j X c) + --- + F ( a k + X ’c/3)g (k \Xc) = 

F  (a? +  X'J>) g ( l \X c) + ■ ■ ■ + F  (a°k + X'/3°) g (k \Xc) .

W ithout any loss in generality, assume that a\ — a® > X'c (/?° — (3) and a k — a°k < 

X'c ((3° — (3) and tha t the index is ordered in decreasing order of aj  — a®. If this is

28



not the case the equality will not hold almost surely in X c. Let A F  (aj  4- X'cj3) be 

F  (otj 4 - X'c(3) — F  (a °  -f X ’c^ j . Since g ( j \ X c) over j  sum to 1 , we have

-  A F  (a k 4- X'c(3) =

= [A F  (qi 4- X'c0)  -  A F  (ak +  X ' J ) \  g( 1\XC) +  • • • +

4- [A F  (oik-i +  X ‘J3) -  A F  (ak +  X'J3)] g ( k -  \ \ X C)

Note that A F  (a\  4- X'c/3) — A F  (ak 4- X'c/3) > 0 so tha t

g{ i \xc)
' - A F  (ak 4- X'c/3) -  [AF (q 2 +  X'c0) -  A F  (a* 4- A'/3)] ^(2 |X C)

-  [A F ( a fc_i 4- X'CP) -  A F  (Qfe +  X'/3)] g (k — 1| A c)
[A F (a! +  A'/^) -  A F  (a fc -f A'/3)]

■
In the analysis above, we have allowed a free param eter for each value of X<2 - If there 

are restrictions across different values of X<i the identification result certainly holds.

A comment on the need of joint variation of the regressors is in order once one com­

pares the linear and non-linear in parameters case. One would need to assume the very

restrictive assumption of independence between X<i and X c in order to be able to identify 

the parameters without further restrictions in the nonlinear model. There is no need of 

further restrictions because under independence of X 2 and X c and under the assumption 

that the support of X 2 is uniform over X c, the equality of probabilities in (2 .11) cannot 

hold almost surely in X c. It is interesting to point out tha t in the linear in parameter 

model, under independence of X 2 and X c, the param eter associated to transformations

of X 2 is not separately identified from the constant term. Thus, the nonlinearity in the

parameters helps in the identification under the independence condition.

2 .3 .3  Id e n tif ic a t io n  c o n d it io n s  for th e  sem ip a r a m e tr ic  b in a ry  ch o ice  m o d e l

For the semiparametric case, as we discussed, the identification condition is, for any 0 £ 0  

and for a given Fo {-\xc,%2 ) and any F  (-|:rc, 2-2) satisfying Assumption A.2

j  F  (q +  X'rJ3 + x'2 'y\Xc, x 2 ) g ( x 2 \Xc)dfi= J F0 (a0 +  X'cj30  +  x'27 0 |A'c, x 2) g (x 2 \Xc.)d^

(2.16)
a.s. in X c if and only if 0 = Qq. The approach in the param etric model above fails 

because now we can choose F  as well. However, an analogous result holds for up to scale
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identification of the param eters .15 Assumption A.5 should be replaced by the following 

one:

A ssu m p tion  A. 6 There exists at least one variable in X c denoted by X cj  and (3® 7  ̂ 0 

such that given each of the other regressors has everywhere ‘positive Lebesgue density.

T heorem  3 When there is complementary data to estimate the distribution of X 2 given 

X c> $0 of the semiparametric binary choice model defined by equation (2 .1 0 ) is identified 

up to scale with respect to any parameter 0 E © such that (3j 7̂  /30j  and (30j  /  0 i/ 

Assumptions A . 2 , A .3 -A .4 and A . 6  hold.

Proof. Proceed exactly as in the parametric identification proof up to the point at 

which we obtain the inequality between a  +  X'J3 +  x '27  and a  4- X'c(3q +  2̂ 27 o uniformly 

over X2 and 0. The true value of the param eter #0 is identifed if there is a set of values in 

the support of X c with positive probability for which the following condition cannot hold

/ [F (a  +  x'c(3 + x '27\ x c, x 2) -  F0 ( a 0 + x'cp 0 +  x'2y Q\xc, x 2)} g{x 2 \xc)dp = 0 
JQ-2 (xc)

Thus, we need to find those values of x c such tha t for any 0 E 0  such tha t (3j 7̂  and 

Pqj 7̂  0 one of the following two inequalities

a  +  x'cJ3 +  x 27  > 0 > ao +  x'cJ30 +  x^Jq or 

a  +  x'c(3 -t- x 27  < 0 < ao +  x'c(30 +  rr27 0

holds uniformly over X2 € Q.2 {xc)- Since random variable X cj  has unbounded support, if 

j3j 7  ̂ P0j then following the proof for the param etric model, there are values of x cj  in the 

support of X cj  tha t can make the difference between a  +  x'c{3 +  x 27  and ao +  x'cj30 +  £27 q 

positive or negative uniformly in X2 and 0. Let denote by H  the set of these values of 

X cj.  The next step is to guarantee that 0 can lie between both indices for those values of 

x cj G H.  Note that any of the above inequalities can hold if 6  = aOo, for any scalar a > 0. 

Thus, the identification of 0q is up to scale. Denote X c = [ X j , X - j ]  and (3 = [f3j,(3_j\. 

W ithout loss of generality let consider the case where /30j > 0, then if X Cj has everywhere 

positive Lebesgue density by Assumption A.6 , it follows tha t

‘■'See M anski (1985) for th e  iden tifica tion  o f th is m odel in the co m p lete  d a ta  fram ew ork.
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for (3j > 0 ,

Pr |  x Cj < (a0 +  x'_j ,.8 _ j 0  +  x'rf0) ; x cj < - j - ( a  + xLicP - j  + x'2 j )  x cj e H  j  > 0

(2.18)

for (3j < 0 and

Pr |  x cj < (fto +  x'_jc/3_j0 +  x'270) ; (a +  x'_jc^ _ j  +  x ^ j )  > 0  x CJ e / / j  > 0

(2.19)

for 13 j = 0 .
This implies tha t there are values of x C] £ H  with positive probability where the

inequality a  +  x'c(3 +  x '27  >  0 > <ao +  x 'c(3q +  a ^ o  holds uniformly in X2 and 9. Then,

the median independence assumptions (i.e. F(0|a:) =  Fo(0|a;) =  0.5 a.s in x) leads to the 

contradiction since

F  (a +  x'c(3 +  x'2 ^ \x c, x2) > 0.5 > F0 ( a 0 +  x'c/30  +  X270|xc, x2) or

F  (a +  x^(3 + X2 7 |xc, x2) < 0.5 < F0 ( a 0 +  x'cf3Q +  a^Tokc, ^ 2)

uniformly over 9 and z2 € f l2(xc) for those values of xc where one of the above probabilities 

(2.17) - (2.19) is positive. ■

The previous result complement the results of Manski and Tamer (2003). They as­

sume that X ‘2 is partially observed in the original data  set so th a t there is only interval 

information about where the true value of the variable lies and there is not access to any 

complementary data set where X 2 and X c are jointly observed. Under these conditions, 

the unbounded support assumption only allows them to identify the param eters associ­

ated to the unbounded variables X ck while the rest of the param eters are only partially 

identified. They can only achieved point identification of the param eters when regressor 

X 2 is completely observed along with X c and Y  at least for some observations. When we 

have a complementary data  in the parametric case, multiple (discrete) missing regressors 

are allowed, more importantly, it allows one to point identify the param eters associated to 

the missing regressors. Additional conditions on the support of the common and missing 

regressors need to be imposed with respect to the complete data  case. W ith respect to 

the parametric binary choice case, a more strict assumption requiring at least one con­

tinuous common regressor needs to be imposed in order to semiparametrically identify the 

parameters up to scale.
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It would be interesting to consider how the identification conditions could be relaxed

if one considers a mixture of the setting in Manski and Tammer (2003) and the missing 

data problem we consider in this work. T hat it is, using both the interval information on 

X ‘i in the original data set and the joint distribution of X 2 and X c in the complementary 

data set. In this case, the interval information on X 2 could be considered as a natural 

exclusion restriction. We are interested in the effect of the complete variable X 2 on the 

dependent variable, but obviously this interval information is related with it and can be 

used as an instrument. As we pointed out before, having exclusion restrictions among the 

common regressors ensures that some of the above identification conditions are satisfied 

so tha t a weaker set of identification conditions could be studied when there exist those 

excluded variables.

2.4 E stim ation

Let Ni  be the sample size of data set 1 and N 2 be the sample size of data  set 2 and p the 

dimension of the vector of parameters. Let f2z x E R  m i , ^ z c £ R mc,£lz2 £ R r r l 2 E R K. 
Let Tq be a Banach space of functions on R mi x R mc x 0 . Let be a Banach space of 

functions on x 0 . Formally, function q(Z\, Z c, 9) is a function from Qzi x ^ z c x ® inf° 

R s , and Zc,6);9) is a mapping from q(.) x © into R 1  with T  > K,  where q 6  Tq.
T  denotes the number of moment conditions. We consider the sup-norm for the space of 

functions T denoted by ||.||r  .

Define the sample analogue of the moment condition in (2.2) as

( 2 .20 )

where

Qn-2(z u , *ci, 0) =  /  p{zu ,  Zd , 22; 0)gN2(Z‘21zcl)d z2 ( 2 .2 1 )

and the trimming indicator10

(2 .22 )

In what follows, we omit the dependence of the estimators /  and g of the sample sizes 

used for their estimation.

16W e consider a fixed tr im m in g  term  w hich does not change w ith  th e  sam p le size, un like in R ob in son

(1988).
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Our estim ator solves the following problem

6  = inf H(9,q(. ,0)) '  x W  x H ( 6 ,q ( . , 6 )) (2.23)
0€©

where W  is a T  x T  m atrix tha t converges in probability to a positive definite m atrix W . 17

Under the assumption tha t both regressors Z c and Z 2 are continuous, and substituting 

g(z2 \zc) by its kernel nonparam etric conditional density estimation, we obtain the following 

expression for the estimate of the q function evaluated at the i — th  observation

q ( z \ i , z d , 9 )  =  /  p ( z u , z ci, z 2; 0 ) -  — L-— i  --------- j - 1-----------  ~ d z'i
J K i ( * % * )

If, among other assumptions18, the s — th  derivatives of p with respect to z 2 are continuous 

and the kernel function is of order s (such that / k(u)du  =  1, / k(u)u^du = 0 for < j  < s — 1 

and / k(u)usdu = 0 ), then the usual change of variable of t =  (z2 — z 2r ) / h ^ 2 in the above 

integral leads to

( p ( z u , z cUz2r ;0)Ki
q(zU, Zd, 9) =  ( N h %  ) 7-------------   7  S + ° ( hh )  (2.24)

V ^  ^ ( A rh % )

The estimator we propose here for the moment condition is a weighted average of 

the function p where observations from both data  sets are combined. For each possible 

combination of observations i from the first data  set and r from the second data  set, the 

kernel function gives more importance to those combinations in which the corresponding 

values of the common variable in both data  sets are closer to each other.

If the distribution of Z 2 given Z c is discrete where Z 2 takes R  possible different values 

(c i, .../Ur}, the sample analogue of the estimate for q is then
R

q(zu , z cl, 6 ) = ^ 2 p ( z u , z ci, v s-0)PN 2  (Z 2 = vs \zci)
S — 1

where

h  , v  , , ! n , ( ^ Z 2 = V s ) P n , ( Z 2 =  Vs ) =  VS) K  (
l .v2 \Z 2 • Vs\Zci) ■■ ---------    - —

t/v2

A d * * )  h

11 N ote  th a t th e  e stim a to r  0 and  H  are fun ction  of both  sam p le sizes N \  and A T  T h e  e stim a tes  o f  q 

and g  are ob ta in ed  from  th e  d a ta  set 2, so th a t th ey  are a fun ction  o f N 2 on ly . W e ignore th e  different 

su b in d ices for sim p lic ity  in th e  n o ta tio n .
lKW e provide d eta iled  co n d itio n s in S ection  (2 .5 ).
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In what follows, we present some examples of particular estimators.

Consider the linear regression model as a particular case of the nonlinear regression 

models explained in Section (2.2.3) with ra(A c, X 2; 0°) = +  1 ^ 2 '  The moment

conditions of the linear regression model19 with incomplete data identify the true value of 

the param eters 9q as long as the conditional mean of E(X-2 \XC) is nonlinear in X c. These 

moment conditions suggest to estimate 0 0 from the following regression20

yu  =  x'ci0i +  E N2 ( X 2 \Xc = x c i ) ' 0 2  + Vi for i = 1, (2.25)

Vi =  u% +  (x2i -  E ( X 2 \Xc =  x ci)) '0 2 +  ( e { X 2 \Xc = x ci) -  E N2 ( X 2 \Xc = x ^  02

(2.26)

where E ( U \X C) = 0 and E n 2 ( X 2 \Xc = x ci) is a nonparametric estimation of the 

mean of X 2 using data  set 2 conditional on each observation of the common regressors 

x ci of data set 1 ,i =  {1,..., Ah}. In order for the OLS estimates of 90 from (2.25) to be 

consistent, we need to impose conditions tha t guarantee tha t for the generated regressor

converges to zero in probability. The consistency of the 

nonparametric conditional mean and the nonlinearity of E ( X 2 \XC) in X c ensure that 

these conditions are satisfied.

Alternatively, the same linear regression model suggests to estim ate 9° from the fol­

lowing regression

E Nl (Y \\Xc = X d )  = x ’cl9i +  E N2 ( X 2 \Xc = x a ) ' 0 2  + Vi  for i = 1,..., Ah (2.27)

Ui  =  ( E ( X 2 \ x c -  Xci) ~  E N2 ( X 2 \Xc =  x ci)) '02 -  (E{Y\\XC =  x ci ) -  E n ^ Y ^ X c  =  x ct ))

If the conditional mean of X 2 given X c is linear in X c (as it is the case when both 

are jointly normal distributed), in order for the model to separately identify 0° and 

the vector of regressors X c needs to have some exclusion restrictions. For this additive 

model in the error term  U, the separability conditions discussed in the GMM section are 

automatically satisfied. Denote X c as a strict subset of X c■ Again, the linear regression 

model with the conditional mean independence E{U \X C) = 0 suggests to estimate the
H I

E [ ( Y l - e l X c - 0 2E { X 2 \ X c) ) \  Xc  ) ) = O i f f 0  =  0 °
\  V E(Xv\Xc) J J

'J0T h e  su b -in d ices in th e  e x p e c ta tio n s  d en o te  the sam p le size o f  th e  d a ta se t in w hich each co n d ition a l  

m ean is com puted .
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param eters from regression (2.25) where some variables in X c are excluded in the linear 

part.

Therefore, when X 2 enters linearly in the model, the estimated param eters are obtained 

through the im putation of X 2 using its estimated conditional mean given the common 

variables X c in both data  sets.

The way X 2 is im puted using the observations of the common regressor X c explains 

the differences between the estimator proposed by Arellano and Meghir (1992) and the 

one we propose here. They suggest to obtain an imputed value of the missing regressor by 

estimating the best linear prediction of X 2 given the common regressors X c. Thus, they 

obtain their estimates from the following regression

y u  =  x ' J j +  E*N2( X 2\ X c =  x a )'02 +  Vi for i =  1 , JV, (2.28)

Vi =  ui +  02 ( x 2 i - E ' ( X 2\X c =  x ci)) +  0 2 ^ E ’' ( X 2 \ X c =  x ci) - E * N2( X 2\X c =  x a )  ̂

(2.29)

where E * (X 2 \XC = x c) is the best linear predictor of X 2 given a particular realization 

of X c. It is im portant to point out tha t even if the structural equation th a t relates X 2 with 

X c is nonlinear, the best linear prediction of X 2 given X c allows one to obtain consistent 

estimates of the param eters of interest 0. This becomes clear when the correlation of X c 

with each of the terms in v in (2.29) is analyzed.

The definition of the best linear predictor E*{X 2 \XC = x c) defines an error e = X2 — 

E*{X 2 \Xc — x'c), which by definition is uncorrelated with x c and E*N {X 2 \XC — xc) .21 

Additionally, the consistent estimation of the best linear predictor ensures, by the law of 

large numbers, that the third term in v is not correlated with x c. In terms of consistency 

then, there is no obvious advantage of using the nonparametric estim ator of E { X 2 \ X C) 

instead of its linear projection, even if true conditional mean of X 2 is non-linear in X c. 

However, it is not difficult to think of cases of nonlinear relationships of between X 2 and 

X c where V a r ( X 2 — E*N2 ( X 2 \XC =  x c) \Xc = x c) is higher than  V a r ( X 2 — E n 2 ( X 2 \Xc =

21 S ince

E ( e ’X c) =  E { [ X 2 -  E ' { X 2 \ X C) \  X c) =

E ( [ X 2 -  X c E i X ' c X c r ' E i X M ] ’ X c) =  0

and

E { e ' X c {X'cX cy l X'CX 2) = 0
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x c) \Xc = x c). For these cases, this would result in a higher efficiency of the estim ator tha t 

approximates nonparametrically the conditional mean of X 2 given X c.

The estimator obtained from the linear im putation method in (2.28) coincides with a 

two-stage least-squares estimator, where the first step uses observations from an auxiliary 

data  set.
For the linear model with exclusion restrictions (and in general, for any given model), 

there is a number of different ways to write estimators for the param eters tha t this model 

identifies. For example, for the linear GMM model above defined from the moment con­

dition E ( U \X C = x c) = 0, Angrist and Krueger (1992) suggest the following alternative to 

the two-sample two-stage estimators discussed above. The sample analogue of the moment 

condition E ( U 'X C) =  0 suggests the following estimator which is denoted in the literature 

of combining data  sets as Two-Sample IV estimator (2SIV)

0 =  argm ta -  ±  x (2.30)

x Q n \n 2 x ( ^ T i  -  X'cNl0 iYXcNl ~  ^  ( X I N2 6 2 ) ' X CN̂

where QniN2 is a m atrix which converges to a non-singular positive definite matrix 

Cl.22  The sub-indices Afi and N 2 denote that the variable is taken from data  set 1 or data 

set 2 , respectively.

Since the moment condition is separable in Y\ and X 2 , the first part of this moment 

condition can be estimated using only the observations in data  set 1 with sample size N\  

and the second part using data  set 2 with sample size A^- This estim ator computes each 

of the sample analogue moments imbedded in criterion function with the observations of 

tha t data  set tha t allows us to compute this moment. Hence, for example, the sample 

analogue of moment E(X'2 X C) is fully computed with observations in data  set 2. However, 

there is an alternative estimation of this moment that combines both samples. Therefore, 

instead of computing moment E(X!2 X C), the estimator we have defined in (2.20) suggests 

to compute the sample analogue of the objective function by estimating E ( E ( X 2 \XC) X C) 

using both data  sets. D ata set 2 is used to estimate nonparametrically the inner conditional 

mean and data  set 1 is used to compute the outer expectation. In this way, we can link 

the estimation of this moment with the observations in data  set 1 by conditioning on each 

observation there. This way of computing the sample analogue of the moment condition

22T h is w e ig th in g  m a trix  can b e  com p u ted  e ith er usin g  o n ly  d a ta se t 1  or o n ly  u sin g  d a ta se t 2  or b oth . 

T h a t is th e  reason for th e  double  su b -in d ex  ./Viand A V
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turns out to be more efficient than the estimator proposed by Angrist and Krueger (1992) 

in the Monte Carlo simulations we have performed in this paper.

Although the previous studies have focused on linear models which directly imputes 

the value of Z 2 and replace it by its estimated conditional mean given Zc, the idea behind 

the Two-sample IV estim ator can be extended to nonlinear models too as long as they are 

separable as in (2.6). F irst, consider the following moment conditions implied by (2.7):

As it happened for the linear GMM model, there are different alternatives to construct 

the sample analogue of these unconditional moments with the data  assumed at our hand. 

The first alternative computes the sample analogue of above expectation with tha t data 

set having full information on the variables inside each expectation. T hat it is, a valid 

estimator of #° solves

The alternative estim ator we propose is derived from expression (2.20). Thus, using the 

law of iterated expectations, we provide an alternative method of computing the sample 

analogues of moments associated with p 2 which uses also the information on Z c in data 

set 1. In other words, it constructs a sample analogue of the conditional expectation 

E z c {E  ( Z'cp2(Zc, Z 2,0)\ Z c)) where the inner expectation is nonparam etrically estimated 

using data  set 2 and the outer expectation uses observations in da ta  set 1. Thus, the 

sample analogue of the moment condition is as follows

or alternatively, once the bias associated to the estimation of g (s \ z ci) has been controlled

E  [Z ’c (p, ( Z u  Zci 8) -  p 2(Zc, Z 2; 8 ) ) } = 0

0 € Q
inf H ( 0 ) ' W H ( 0 ) (2.31)

for

H(0) (2.32)

Ni N 2
i =  1 r =  1 f ( Z c i )
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with f ( z a ) =  (N h % )->  £ rWJ ,  K
1n2

Alternatively, using unconditional moment condition, one can propose estimators of 

do by using the FOC of the sample analogue of the objective function

E  ( (p, (Zt, Zc; 0 ) - E  (p2 (Zc, Z 2; 8 )\Zc) f

that the true value of the param eter uniquely minimizes, where E  (p2 (Zc, Z<i\0)\ZC) is 

estimated using data  set 2 for each conditioning observation of Z c in data  set 1. Thus, as 

mentioned before, given the moment condition E (p l (Z\, Z c) — p2 {Zc, Z 2 )\ZC) =  0, there 

is a wide variety of valid estimators of the param eters tha t can be constructed using 

different ways of building the sample analogue of this moment condition. It is difficult to 

determine a apriori which of these estimators is the most efficient. Our conjecture is that 

those estimators that use the law of iterated expectations to condition on observations of 

data set 1 are more efficient than those estimators tha t construct some sample analogues 

of moments using only data  set 2. This is confirmed in the Monte Carlo simulation that 

we perform in this paper. Unfortunately, there is no result in this framework of incomplete 

data which can provide us with that estimator that attains the semiparametric efficiency 

bound. This constitutes an interesting topic for future research.

Regarding the Maximum Likelihood estimator, consider the param etric conditional 

probability model f ( y i  |xc, x<2',0). The ML estimator can be defined by considering the score 

of the log likelihood of the model with incomplete data, i.e. log j  f { y \  j x c , x<i; 0 ) g ( x 2 \xc ) d x 2 .

Thus, we define 0 as that value that solves

V e f ( y u \ X c i , X 2 r ,  d)  /  /  f ( y u \ X c i , X 2 ' , 0 ) g ( x 2 \xci )dX2
XCr  — X c i

hs-i

N  i i—1 r — 1 : (; :lr  x ci
hNo

(2.33)

+  0 ( h %  ) — 0

And replacing g  by its nonparametric estimation, finally we have tha t the ML estimator 

0  solves

n N  •=! - I

+  — o
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2.5 A sym ptotic N orm ality

In the theorem of this section, we state the sufficient conditions to show asymptotic nor­

mality of 6 . Newey and McFadden (1994) discuss the asymptotic behavior for general 

two-step semiparametric estimators. We apply those general results for the case in which 

the first step is a kernel nonparam etric estimator of g (z2 \zc) obtained from a different data 

set and the equation tha t defines the estimator does not depend linearly on the kernel es­

timator. We assume tha t both data  sets are independent which makes the derivation of 

the asymptotics more straight forward.23

To motivate the asymptotic results, consider a Taylor’s series expansion for 6  around 

Oq from the FOC of the objective function in (2.23)

V ^ i  + N 2 ( 0 -  $o) = -  [V0 H (8,q ( ;0) )  x l f x  V oH(0, q(„ 0))] (2.34)

'V0H ( 9 , q ( J ) )  X W  x ■jN1 + N 2H(eOtq{. ,0o))

where 11Q — 6 0  j | < 0  — 6 ®

In what follows we denote by zc and zc to the realized values of random variable Z c 

in data sets 1 and 2, respectively. Equivalent notation is used for Z 2. Observations in the 

first data  set are indexed by i and observations in the second data  set are indexed by r, 

so tha t we have, access to the following data: {zu ,Zd}  for 2 =  1,..., N\  and { ic r ^ r }  for 

r = 1,..., Â2- This notation is useful to clarify how the projections of the U-statistic on 

the other sample tha t arise in the asymptotics are computed.

Consider the following assumptions:

A ssu m p tion  B . 1 The observations in data set 1 {z u , Zd}^fi are independent and identic­

ally distributed. The observations in data set 2 {zcr, Z2r )r=\ are independent and identic­
ally distributed. Additionally both samples are independent

A ssum ption  B. 2 The identification condition is satisfied so that Oq is the only value of 

the parameters that satisfies

j  J  'ip{q{zi,zc,6o)\9o) f( z i , zc)dzidzc = 0

2 i T h e  case o f in d ep en d en t sam p les is th e  ty p ica l s itu a tio n  th a t we face. It is very un likely  th a t there  

are com m on ob servation s in b o th  d a ta  sets. H ow ever, in th is  h y p o th e tica l case, one cou ld  iden tify  the  

param eters usin g  the o b servation s th a t are in com m on and our conjecture is th a t  th ere  are som e efficiency  

gains th a t w ould arise from  th ese  com m on observations. A lso , th e  e stim a to rs w ou ld  be d ifferent to  the  

ones we present in th is section .
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A ssu m p tion  B . 3 E  (\ip(q(Zi, Z c, 9q)\#o)|2) < °°

A ssu m p tion  B . 4 Let Ai =  p \ im NuN2^oo n ^+n2 and ^2 =  p l im ^ ^ - o o  n~+n^ so that 
Ai +  A2 =  1

A ssu m p tion  B . 5 9$ is an interior point of the compact set © e R K

A ssu m p tion  B . 6 The kernel K  is a Borel measurable bounded real-valued function twice

continuously differentiable and with second derivatives satisfying the Lipschitz continuity. 

Kernel K  also satisfies: j K(u)du  =  1; / u^K{u)du  =  0 for j  =  1, — 1; f  usK{u)du <

00 ; J \K(u) \ du < 00 ; |u| \K(u)\ —* 0 as \u\ —» 00 ; sup \K(u)\ < 00 ; J K 2 (u)du < 00

A ssu m p tion  B . 7 I is the maximum absolute moment (with I > 2) between p {Z \ , Zc, Z<i \ 90)
and M Z i - Z f r M

A ssu m p tion  B . 8 Let r — m ax{2,m r} and s > As N\ —> 0 0 , N 2 —* 00 , the se­

quence of the bandwidths should satisfy h ^ 2 —> 0; {N\ -I- N-fjh^  —► 0; —> 00 ;

( N i h ' ^ l i 2) /  logNi  -» 0 0 , -» 00

A ssu m p tion  B . 9 The s — th order derivatives of p(z\, zc, Z2,9q) and dP(Zl'z£ jZ2'°o) wnh  

respect to zc and Z2 are Lipschitz continuous

A ssu m p tion  B . 10 rip{q\ 9) is Frechet differentiable with respect to 9 and q(.) and the 

Frechet derivatives are Lipschitz continuous, with C j{ z \ , z c) >  0, E  {Cj{z\,  zc)} < 00 for 

J = { 1,2,3,4}

< C \ ( z \ , z c) 19 -  9’| +  C 2 (zu zc) ||q -

< Ca{zi ,zc) 19 -  9' | 4- Ca(z i , zc) ||g -  q' | | r<j

A ssum ption  B . 11 p{z\, zc, Z2 , 9) is continuously differentiable with respect to 9 uni­

formly in a neighborhood of 9q

A ssu m p tion  B. 12 The s — th order derivative of the density function of Z c denoted by 

f ( z c) is Lipschitz continuous. This density function also satisfies sup2c€^ z |f ( z c)\ < 0 0  

and inf2c€ftZc \ f ( z c)\ > 0

e) _  d ' M \ 9 )  
89 89

dji(q\ 9) _  8 ip{q'\ 9') 
8 q 8 q
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A ssu m p tio n  B . 13 The s — th order derivatives with respect to zc of the conditional 

densities g(z2 \zc) and f ( z \ \ z c) are continuous

A ssu m p tio n  B. 14 plim^lŷ 2̂ 00W  = W  where W  is symmetric and positive definite

Henceforth we use the following shorthand notation. Let qieQ =  q(zu,  zcl, 6 q) where sub­

index i denotes tha t z\ and zc are conditioned on the i th observation. Denote 'ipi0o (qio0 ; 6 q) = 

'f)(q(zu, Zd, do);do) and pio0(zf) = p(zn,  Zd, £2; #o) to indicate th a t the rest of the variables 

are all conditioned on the i th observation. Where necessary, we make explicit the argument 

of functions VhP and q.

T h e o re m  4 Suppose that 6  is consistent to Q$. Under Assumptions B. ( 1 )-Assumptions 

B.14, i f V W V  is nonsingular with

shown in two parts. The first part shows the asymptotic distribution of the score term

We can focus on the distribution of a statistic which uses the trimming indicator based 

on the true density function since by Lemma A. 1 in the Appendix the above conditions

V =  Vo' ip(q(zi , zc,Oo) \ 0 o ) f ( z i , z c) d z i d z t (2.35)

, then

v/jVj + n -2 (eNlNl -  0O) -4 n (0, (v’wv) 1 {v'wswv) (v’wv) ')

where £  =  -r-Ei 4- d-Eo an(^Aj 1 A'2 *

E i = V a r ^ ( q ( Z u Z c;e0 y,eo)) (2.36)

p(Zi ,Zcr,Z2r,Oo)  ~  j  p{z\  , 2cr, Z2, Oo)g(z2\zcr)dz2 X

di>(q(zi,zcr;0oy,0o)
X dq

P ro o f. [P ro o f o f T h e o re m  (4)]

Consider the Taylor’s series expansion in (2.34). The asymptotic distribution of 0 is

\ /N \  4- N 2 H { 9 o, q(.,&o)) and the second part shows tha t the conditions we state ensure 

the uniform convergence of the Jacobian to a positive definite matrix.

P a r t  1

yv p
on the sequence of band widths and the kernel function ensure tha t sup^ Cv-; — A —* 0 as
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N \ , N 2 —> oo. The expression below makes clear the sources of inefficiency tha t arise when 

Z 2 is not jointly observed with Z\  and Z c.

H { 6 o,qN2{-, 0o)) =

1 Nl
= j r Z I' ^ o  o(*a);0o) (2-37)

i= 1 

1 Nl
+  Y l Ti N 'M b ^ o )  -Tp(Pieo(z2&,0o)] (2.38)

1 1=1

-I- —  T \n -  n 1' ^ ( ^ o ; (O oq\
+  jgl Z-^ ^ l0° qi0°* <% (-.39)

Z=1

+  RniN 2 (2.40)

Only term (2.37) would arise if Z 2 were jointly observed with Z\  and Z c. Term (2.38) 

reflects the efficiency loss due to not observing of Z2, since if Z 2 is observed there is no 

need to integrate out function p over the distribution of Z 2 given Z c. The next term  (2.39) 

represents the efficiency loss due to the estimation of the conditional distribution function 

of Z 2 given Zc, g(Z'2 |Zc) inside function q.

Lemma A. 2 in the Appendix shows under which some of the assumptions above 

\A/Vi T N 2 RniN 2 — °p(l)- From expression (2.39),we use the asymptotically linearity 

at rate N 2 for kernel estimators of conditional expectations. Define m p i0 (zc) =  

] Pio0 {z2 )g (zi\zc) dz2 and its estimated counterparts by m p ieQ(Zc). Thus, expression (2.39) 
can be w ritten as

Un\N2

1
yv. n 2 ( 

N\ N 2 h7ric i=1 r = l

{pi0o(z 2r) -  mpm {zcr)}' K lN2

f(Zci)

1 Nl { 1 \
+ v  X A * + °r ( ) +  ° (/lW

where

'qi
J  h
h ^ ;  f ( z ct)

E z, ( [mpt0o{Zc) -  m p Wo( z d ) ] ' K
zc zc

hj\[2

(2.41)

v
'd'ip(qieQy

A
dq

di>{qi0O)
dq

Since mpidQ(Zc) is differentiable with respect to Zc by the s — th  order differentiability 

of g(Z 2 \Zc) with respect to Zc in Assumption B.13, one can show by the usual change of

42



variable and a Taylor’s series expansion in kernel estimator tha t

‘ s/ N i +  N 2plim
Ah

=  pUm (V iV , +  N 20(h%2) ±  g  / ( ^ } d ^ ] j

which is equal to zero as long as Afih)y2 —> 0 and A ^ h ^  —> 0 as Ah —> oo, N 2 —» 00 .

By Assumption B. 4, the last reminder term of Un1n 2 converges to zero in probability 

since y/N\  +  N 2 op ~  y fe 0p^ '  n0W comPute Pr° jecti°n VniN2 °f terms
(2.41) denoted henceforth as V}van 2- These are two-sample U-statistics of order 1, since 

there is only one observation from each sample in each kernel24. Let define the kernels a 

in each of the U-statistic as
1 Nj n 2

V N i N 2 — y  lyr ^  > a N 2 { z \ i i  z c i i  z c r i  z 2 r )
z = l  r = l

where

U.N2 ( ̂  l i , Zc t , Zc r , 2 2 r )
h

h n 2 / ( - . )
dvi<Ma.

dq

Denote by T = E  (a^ 2 (zu,  zci, Zcr, z2r)) • The projection of statistic (V^ 1n 2 — T) is defined 

as
1 N i  1 n 2

T/V1N2 =  ~jTT ^  -^ (O.N2 (^l i> ĉr>- 2̂r)| '^cz)T_rr- -E (^N2 (^lz) -̂ czi ^cn ^2r) | ^cr? -̂ 2r) 2T
N  S '-  N * TZi

It can be shown tha t the projection over both samples of the kernels are 

E  ( Uyv2 (Zl», Zci, Zcr, ^2r) | ^cz) == 0

E  ( U/V2 ( -^ l i , Zcz, Zc r , ^2r  ) | ^cr j -^2r ) —

’d'ipiqoo)
E E Zl\zc E O ( h % ){ P 90 ( Z 2r )  ~  m P e Q{ Z c r ) } '  X " Z c =  Zcr

25The above conditions ensure that the later Taylor’s series expansion can be done 20. The 

Lemma A. 6 in the Appendix gives sufficient conditions for

\ / N \  +  N 2 V/Vj n 2 -  T  -  V/V] n 2 0

21 For Central Limit T heorem s for U -statistics, see Serffing (1980) and van der Vaart (1998)
2,1 The projection of the statistic  over the first sam ple becom es zero since when we condition on observation  

z cr and integrate out using the distribution of g ( z 2 r \ z Cr ) ,  the numerator of the projection becom es zero. 
2f'N ote that

J  [1 { f ( z cr +  t hN) > 6} -  l { f ( z cr) >  6}] K  (0  dt  —» 0

if /ijv —► 0 as N  —* oo because the indicator function has only finitely points of discontinuity in t and K ( t )  
is continuous in those points.
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as N\ —> oo, A 2̂ —> oo and known as the U-statistics projection result. There we use 

the sufficient condition of E  ^|a/v2(z it, zCi, zcr, Z2r ) \ — o(A^) in Powell, Stock and Stoker

(1989), which is satisfied as long as A ^h^; —> 00 as N2 —> 00 .

The sufficient conditions in Assumption B. 8 guarantees that and tha t

also the conditions in Lemma A.2 in the Appendix are satisfied since I > 2 .

Note also tha t because the projection on the first sample is zero, then T =  0. Having 

used then the projection device to find the distribution of (2.39) we can conclude tha t the 

asymptotic distribution of H(9o, <7tv2(., $o) 5 9 n 2) normally distributed as

y V i + AT2tf(0o,<?/v2( .A ) )  =

=  N\ + N 2 ( - j y -  ^0) +  Vviiv2)  +  °p(l) ~ * AT(0 , £ )

with the expression in £  as in expression (2.36).

Part 2

Under the differentiability conditions of function 0  and q with respect to 6  in Assump­

tions B. 10 and B. 11 uniformly in a neighborhood of 6 0 , the Taylor’s series expansion 

in (2.34) is correctly done. W ith respect to the Jacobian term in (2.34), the uniform 

convergence arguments together with the consistency of 6  and q suggests that

V eH(i)t qNa( J ) ) - V \  = op(l)  (2.42)

and consequently also, VeH(9,qN 2 (.,9)) — V =  op( 1) where

V  = j  V6»'0(g(zi, zc, #0); 9q)f (z\, zc)dz\dzc (2.43)

The convergence in probability in (2.42) is shown in two steps. Lemma A.7 in the Appendix

shows that

X7eH(0,q(. ,9)) -  V oH (9oM ;9o) ) \  = oP( 1) (2.44)

where 9 and g(., 9) belongs to a neighborhood of the true value of the param eters 90 and

the true function q(.,90). By the law of large numbers,

V eH(9o,q(. ,90 ) ) - v \ = o p(l) (2.45)

By the continuity of the matrix inversion (given the nonsingularity of V ' W V )  and the 

Slutsky theorem, the result of the asymptotic variance arises.®
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The main difference between the asymptotics tha t we have derived and those of pre­

vious approaches is tha t we allow for sample analogue moment conditions tha t are not 

necessarily separable in both data  sets. Arellano and Meghir (1992) and Angrist and 

Krueger (1992) derive the asymptotic distribution for GMM problems when data  sets are 

combined in which the criterion function is perfectly separable in variables observed in 

each of the available data  sets.

2.6 M onte Carlo Evidence

We perform three different experiments to assess the performance of the estimator we 

propose in this work: a linear model without exclusion restrictions, a linear model with 

exclusion restrictions and a Probit model.

The first experiment consists of the linear model in (2.25) where the conditional mean 

model of X<i given X c is nonlinear in X c. We consider the case of scalar X c and X 2 - The 

data generating process is Y  = 6 q +  0 \ X C +  O2 X 2 +  U with 6  = [0.5; 1.5; 2], U N (0 , l )  

and X c ~  N(Q, 1); X 2 = fto +  P \ X C +  $ 2 +  e where (3 = [1; 1; 1] and e ~  iV(0 ,cr2). 
We generate two different sets of variables { X C, X 2 } from this data  generating process 

with sample sizes Ah =  1000 and N 2 = 5000, respectively. The conditional mean of 

X 2 given X c is nonparametrically estimated from data  set 2. The performance of the 

estimates of 6  depends on the goodness of fit of the regression of the missing regressor X 2 

on X c, which clearly depends on the value of a 2. We perform different experiments for 

different values of a 2. The results are presented in Tables (2.1)-(2.2). for values of a 2 — 1 

and o 2 — 3, respectively. In each case, we report the mean, the quantiles and the MSE 

over the number of replications for each parameter and also the mean of the adjusted 

Ft2 of the OLS regression of the quadratic equation of X 2 . The data  was trimmed from 

the boundary of the support of X c so tha t 95% of the data  were considered to evaluate 

the estimated conditional mean. This trimming defines an upper bound for the optimal 

bandwidth, which is obtained by Cross-Validation for each replication27. A third order

2l T h e  C ross V alidation  fu n ction  was com p u ted  using th e  observation s in d a ta se t 2, since it is th e  o n ly  one  

in which Z c and Z 2 are jo in tly  observed . W e w ant to  eva lu ate  th e  e stim a te s  o f  th e  co n d itio n a l ex p e cta tio n  

for each observation  in d a ta se t 1 . H ow ever, the C V  fun ction  th a t we are ab le to  co n stru ct m in im ises the  

e stim a ted  pred iction  error o f th e  con d ition a l m ean fun ction  eva lu a ted  at th e  ob serv a tio n s o f Z c in d a ta set

2. S ince b o th  d a ta se ts  are gen erated  from th e  sam e un derly ing  p op u la tio n , th e  C V  u sin g  th e  sim u la ted  

d a ta set 1 and d a ta se t 2  are very sim ilar and also th e  o p tim al b a n d w id th  th a t b o th  provide.
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kernel was used to reduce the order of the bias of the estimated conditional mean function. 

In particular, the kernel used is K(u)  = (4/3)k(u) — ( l /6 )*k (u /2 )  where k(u) is a standard 

normal pdf. This helps in reducing the bias of the third component of v in (2.26). In each 

row of the last panel of Tables (2.1)-(2.2), the mean over replications of the components 

of v in (2.26) are reported and also the mean over replications of the correlation with the 

generated variables used in the regression.

These results illustrate tha t our estimator performs well in a model without exclusion 

restrictions as long as the true underlying conditional mean model is nonlinear in X c. 

The performance of the estimator is worse when the model for X <2 is more noisy and X c 

explains less of the variance of X ;, as can be seen when comparing the MSE of both 

simulations is Tables (2.1)-(2.2). The decomposition of the error components is useful to 

assess the source of asymptotic bias of the replications. The results below suggest that 

the main source arises from the difference between the true conditional mean and the 

estimated conditional mean. Both tables also report a decomposition of the variance of 

the error between its components. W ith respect to the full data  case, the main source of 

inefficiency when X 2 is not jointly observed with Y  is due to the fact th a t we replace X 2 

by its conditional mean E ( X 2 \XC). The inefficiency tha t arises because this conditional 

mean is nonparametrically estimated is almost negligible in the results we report.28

The second experiment illustrates a model with excluded restrictions from structural 

equation. We consider both the just-identified and the overidentified case. X c is an 

exogenous scalar variable, X 2 is the scalar missing regressor and W \ , W 2 are the ex­

cluded variables. The design of the experiment for the just identified case is the fol­

lowing. The common regressor and the excluded variable are independently normal 

: X c ~  N(Q, l ) ;W \  ~  N ( 0,4) and the missing regressor relates to these two variables 

as follows: X 2 =  1 +  2Wi +  X CW\ + e with e ~  N(0,<j2);ct =  0.85. The model for the 

dependent variable is Y  =  Oo +  0 \ X C +  O2 X 2 +  U with 0 =  [0.5; 1.5; 2], U ~  V (0 ,1). Our 
estimator in this case amounts to imputing the value of X 2 using its nonparametric condi­

tional mean given X c and W\  as regression (2.25) suggests. We report these results in the 

upper panel of Table (2.3) and compare them with the results from the two-sample two- 

stage least squares where X 2 is linearly fitted using X c and W\  as in (2.28) in the second 

panel of results. We also present there results for two different versions of the two-sample 

IV estimator. The first version is reported in the third panel of Table (2.3) and uses only

"*The sim u la tio n s perform ed for the a ltern a tiv e  linear m odel in (2 .27) y ie ld  very sim ilar resu lts to  the  

ones reported  in T ables 1-2. For brevity, we om it th ese  resu lts here.
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data set 2 to compute those moments that include X 2 , as the estim ator from moment 

condition (2.31) and (2.30) suggests. The second IV version is the estim ator that solves

(2.32) where instead of using the sample analogue of E{X'2 Wi)  from data  set 2, uses the 

sample analogue of E ( E  {X i^X ^  W\)  W\)  where the inner expectation is computed with 

data  set 2 and the outer expectation is computed with data  set 1. The results reported 

in Table (2.3) use only data  set 1 to compute the weighting m atrix of the IV estimator. 

Similar results where obtained when the weighting m atrix used only observations from 

data  set 2 .

The design for the simulation of the overidentified model with exclusion restriction is 

similar except for the conditional mean model for the missing regressor X 2 = 1 +  2W\ +  

X CW\  +  W 1 W 2 +  2 W 2 +£  with W\ ~  V(0,4),£: ~  iV(0,cr2). The corresponding results for 

the overidentified case can be found in Table (2.4).

The estimator we propose (i.e. those estimates in the first and fourth panel of Tables 

(2.3) and (2.4)) turns out to be more efficient than the two estimators we compare 

it with. Obviously, the design of the experiment helps in finding these results, be­

cause the conditional mean model is non linear in the conditioning variables. This in­

duces a higher dispersion in the differences between X 2 and the estim ated linear pro­

jection of X 2 given X C, W \ , W 2 then in the differences between X 2 and the nonpara- 

metric estimate, of the conditional mean E ( X 2 \XC, W \ , W 2 )' Table (2.5) compares the 

variance decomposition of v in (2.26) in each of its terms for both the estimator where 

the nonparametric conditional mean of X 2 given (Vc, Idfi, W2) and the estimator that 

uses the best predictor of X 2 given (X c, W\,  W 2 ) . 29 The mean over replications of these 

variance and covariances are reported. The analysis of this table reveals tha t the dif­

ferences in efficiency between both estimators arise from the higher dispersion of the 

( E ( X 2 \Xc, Wi,  W 2 ) — E*N2 ( X 2 \Xc, Wi,  W 2 )) with respect to the dispersion of its nonpara­

metric counterpart ( E ( X 2 \XC, W\,  W 2 ) -  E n 2 ( X 2 \Xc, W\,  W 2 )). The IV estim ator implied 

by our framework turns out to be also more efficient than the two-sample IV estimator 

proposed in the literature in both the just-identified and the over identified case.

In the third experiment we design the simulation of a probit. model with a discrete and 

scalar missing regressor X 2 . The data generating process of the regressors is X c ~  iV(0,1)

2!)W e trim  the o b servation s w hen the value o f X 2 is im p u ted  using its non p aram etr ic  e stim a tio n  of  

the co n d ition a l m ean o f X 2 \ X C. For th is reason, th e  com parison  o f th is variance d eco m p o sitio n  w ith  the  

estim a to r  in w hich E ( X 2 \ X C) is linearly  fitted  is carried o u t using th e  sam e ob servation s. A s a consequ en ce, 

th e  first tw o term s o f v  are equal and  th ey  on ly  differ in th e  th ird  term .
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and X 2 — 1 {1 -\- X c + s  > 0} where e ~  N { 0,1) and y = 1{0q +  G\XC +  0 ^ X 2 4- U > 0} 

with [#o,#i,#2] =  [1,3, —3] and U ~  iV(0,1). The results of two estimators of this model 

are reported in Table (2.6). First, we estimate the param eters of a probit model where 

the dependent variable is generated using both X c and X 2 as explained above but the 

estimations only use regressor X c to estimate the model. These results are reported in 

the top panel of Table (2.6). The bottom  panel reports the results of the ML estimator 

tha t combines two different data  sets defined in (2.33). The high value of the coefficient of 

the param eters associated to X 2 induces a high omitted variable bias in the estimates of 

the probit model including only the available information in X c. The use of an additional 

data  set allows us to estimate more efficiently the model by reducing this omitted variable 

bias.30

For scalar X 2, we also provide identification results for a more general scalar and 

continuous X 2. Table (2.7) reports the simulation results of a binary choice model where 

X 2 is uniformly distributed X 2 ~  U(0,1) and X c = 10(1 — X 2 )M  where M  ~  N ( 0,1) 

and y = l{0g +  0?XC +  0%X2 +  U} with [08,0?, 0§] =  [0.5,1.5, -0.5] and U ~  N ( 0 ,1). 
Again, these results suggest tha t even if the regressors are not jointly observed with the 

binary endogenous variable, our estimator helps in reducing the omitted variable bias that 

ignoring X 2 as a relevant variable of the model would induce.

2.7 Conclusions

In this paper, we have developed a framework tha t allows for identification and estimation 

of structural models in which not all of the relevant variables are jointly observed. This 

framework can be applied to those models tha t identify their param eters via zero moment 

restrictions. We exploit the joint variation of the variables in an additional data set 

together with a parametric restriction to identify the effects of the missing and non-missing 

variables in the parametric structural relationship under certain conditions. We present 

a general estimator for this class of models based on the nonparametric estimation of the 

conditional distribution function of the regressors which can obtained from the auxiliary

iuT h e  o p tim al b a n d w id th  choice for th is se t up in w hich the estim a to r  is defined  as th e  m axim iser o f a 

least sq u ares-typ e  o b jec tiv e  fun ction  w here som e non param etric  e stim a te s  are im bedded  has been  stu d ied  

by H ardle, H all and Ichim ura (1993). H ow to  se lect th e  ban d w ith  w hen th e  o b jec tiv e  fu n ction  is a  lik elihood  

fun ction  involv in g  som e n on param etric  e stim a tio n  is an open  q u estion . We use a value o f th e  b a n d w ith  for 

th e  sam p le sizes reported  for th e  probit resu lts of 0 .75. Various sen s it iv ity  a n a ly sis  exercises were carried  

out (having  som e con tra in ts given the su p p ort of Z c) and the resu lts d id not change su b stan tia lly .
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data  set. This general setting encompasses a broad class of estimators such as linear and 

non-linear least squares, MLE and GMM. For linear regression and linear GMM models 

previous results are available in the literature. We compare the performance of our general 

estimator with the existing ones and we point out tha t the main differences arise in the 

way our estimator computes the conditional moments tha t need to be estim ated from the 

auxiliary data  set. There are no existing results in this framework of incomplete data 

which provides us with the semiparametric efficiency bound so tha t we cannot formally 

discuss in this work efficiency issues between all the possible estimators defined from a 

given set of moment conditions. This constitutes an interesting future application of this 

framework. Preliminary evidence based on Monte Carlo experiments indicates that in 

some familiar cases our estimator is more efficient than previous estimators.

The identification conditions are specific to each param etric model, therefore we provide 

detailed conditions for each case we discuss. In general, the identification results can be 

summarized as follows. For the linear model, the common regressors and the imputed 

value of the missing regressor given the common regressors must satisfy the usual rank 

condition. For the GMM, the moment condition must be separable in those variables that 

are not jointly observed in the same data  set so that identification does not rely on strong 

conditional independence assumptions. This separability condition is automatically satis­

fied when the model is additively separable in the unobservables. For nonlinear regression 

models and nonlinear GMM models, sufficient identification conditions are harder to ob­

tain because they are problem specific. Therefore, our main identification results for the 

general param etric model are limited to the parametric and semiparametric binary choice 

model.

For the binary choice model our results complement the work by Manski and Tamer 

(2003) by allowing for a vector-valued missing discrete regressor for both parametric and 

semiparametric models and in addition allowing for identification of the coefficients of those 

missing regressors. These results are obtained through the added information available 

from the auxiliary data. We present Monte Carlo results tha t illustrate how our data 

sets combination method reduces substantially the omitted variable bias th a t arises in the 

binary choice model when a relevant missing variable is excluded from estimation.

We also derive the asymptotic variance of this type of estimators for the general case 

and provide sufficient conditions tha t must checked to be satisfied for each particular case.
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2.8 Tables
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Table 2.1: M onte Carlo Experim ent for a linear model w ithout exclusion restriction a 2 = 1

Ah =  1000;TV2=5000; No. replications=100 

a 2 = 1, mean of adj-/?2 =  0.7623

0° Mean Qq.25 Qo.5 0  Qo.75  MSE

0.5 0.5197 0.3318 0.5575 0.6871 0.0827

1.5 1.4939 1.3875 1.4783 1.6045 0.0323

2 1.9980 1.8804 1.9879 2.0097 0.0219

sum of M S E 0.1369

E(v) 0.0167

Var(v) 13.0251

corr(v, X c) -0.0019

corr(v,EN2(X 2 |X C)) -0.0017

First component of v

E(u) 0.0143

Var(u) 9.0270

corr(u, X c ) -0.0064

corr{u, E N.2{X2\XC)) -0.0037

Second component of v

e2E ( x  2 -  e (x 2\x c)) -0.0029

V a r ( X 2 -  E ( X 2\Xc)) 3.9787
c5rr(62( X 2 -  E ( X 2\Xc) ) , X c) 0.0049

<ZEr(82(X 2 -  E ( X 2\Xc) ) ,E Nl( X 2\Xc)) -0.0024

Third component of v

e2E ( ( E ( X 2\Xc) -  E N2( X 2\Xc))) 0.0159

V a r ( E ( X 2\Xc) -  E n 2( X 2\Xc)) 0.0056

c o f r ( (E (X 2\XC) -  E N2( X 2\Xc) ) , X c) 0.0192

cSrr ( (E(X2\Xc) -  E N2( X 2\XC)), E N2( X 2\XC)) 0.1257

Covariances components of v

cov(u, ( X 2 -  E ( X 2\Xc))) 0.0014

cov{u, ( E ( X 2\Xc) -  E N2( X 2\Xc))) 0.0002

c w ( ( X 2 -  E ( X 2\Xc)), ( E ( X 2\Xc) -  E n .2( X 2\Xc))) -0.0009
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Table 2.2: M onte Carlo Experim ent for a linear model w ithout exclusion restriction  a 2 — 3

N \ = 1000]N2 —5000; No. replications=100 

a 2 = 3, mean of adj-i?2 =  0.5164

0° Mean Qo.25 Qo.so Qo.75 MSE
0.5 0.5383 0.2777 0.5910 0.8029 0.1386

1.5 1.5123 1.3755 1.4984 1.6444 0.0530

2 1.9874 1.8657 1.9599 2.1223 0.3556

sum of M S E 0.5475

E{v) 0.0172

Var(v) 21.0018

corr(v, X c) 0.0002

corr{v,EN2( X 2\Xc)) -0.020

First component of v

E{u) 0.0143

V ar(u ) 9.0271

corr(u, X c) -0.0064

corr(u,EN2{X2\XC)) -0.0037

Second component of v

62E ( X 2 - E ( X 2\Xc)) -0.0050

V a r ( X 2 - E ( X 2\Xc)) 11.9363
m rr(02( X 2 - E ( X 2\Xc) ) , X c) 0.0049

corr(e2( X 2 -  E ( X 2\Xc) ) ,E N2( X 2\Xc)) -0.0024

Third component of v

92E { ( E ( X 2\Xc) -  E N2{X2\Xc))) 0.0250
V a r ( E ( X 2\Xc) -  E N2( X 2\Xc)) 0.0152

carr( (E(X2\Xc) -  E n 2( X 2\Xc) ) , X c) 0.0103

m r r ( ( E ( X 2\Xc) -  E N.2( X 2\XC) ) , E N2( X 2\XC)) 0.0825

Covariances components of v

cov(u, ( X 2 -  E ( X 2\Xc))) 0.0013
cav(u, ( E ( X 2\Xc) -  E N2{X2\Xc))) 0.0008

cov((X2 -  E ( X 2|Xc)), ( E ( X 2\Xc) -  E N2{X 2\Xc))) -0.0016
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Table 2.3: M onte Carlo Experim ent for a linear model w ith exclusion restriction. Just

identified case

N\ = IQ00;N2=3000; No. replications=100

Two-Sample two stage (Nonparametric)

e° Mean Qo.25 Qo.50 Qo.75 MSE

0.5 0.7089 0.6019 0.7040 0.8511 0.0770

1.5 1.2384 0.9227 1.3382 1.5404 0.2545
2 2.1456 2.0450 2.1456 2.2134 0.0366

sum of M S E 0.3680

Two-Sample two stage (Linear Prediction)

e° Mean Qo.25 Qo.50 Q 0.75 MSE

0.5 0.7933 0.6689 0.7857 0.9040 0.119

1.5 0.9231 0.6318 0.8787 1.1869 0.4747
2 2.1861 2.0477 2.1946 2.3045 0.0558

sum of M S E 0.6424

IV (using complete data  set for moments)

0° Mean Qo.25 Qo.50 Q0 .7 5 MSE

0.5 0.7388 0.6133 0.7311 0.8505 0.0836

1.5 0.8775 0.5573 0.8414 1.1523 0.5482
2 2.4009 2.2488 2.4114 2.5300 0.1864

sum of M S E 0.8181

IV (conditional moments from dat a set 2)

60 Mean Qo.25 Qo.50 Q o .75 MSE

0.5 0.6181 0.4997 0.6021 0.7362 0.0411
1.5 1.2757 1.0417 1.2143 1.5575 0.1522
2 2.4876 2.3877 2.4950 2.5657 0.2564

sum of M S E 0.4496
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Table 2.4: M onte Carlo Experim ent for a linear model w ith exclusion restriction. Over

identified case

Â’i =  1000;A7’2=3000; No. replications—100

Two-Sample two stage (Nonparametric)

0° Mean Q 0.25 «o o bi o Qo.75 MSE

0.5 0.8527 0.7159 0.8419 0.9910 0.1698

1.5 1.3111 1.0541 1.3872 1.5607 0.1553

2 2.1012 2.0236 2.1074 2.1685 0.0198

sum of M S E 0.3449

Two-Sample two stage (Linear Prediction)

0° Mean Q o .25 Q o.50 Qo.75 MSE

0.5 0.8264 0.7173 0.8081 0.9315 0.1321

1.5 0.9165 0.6419 0.8981 1.1725 0.4768

2 2.1847 2.0501 2.1971 2.3117 0.0545

sum of M S E 0.6634

IV (using complete data  set for moments)

0° Mean Qo.25 Q o.50 Qo.75 MSE

0.5 0.7502 0.6431 0.7401 0.8469 0.0865

1.5 0.8708 0.5833 0.8465 1.1367 0.5491
2 2.3985 2.2522 2.4134 2.5371 0.1831

sum of M S E 0.8187

IV (conditional moments from data set 2)

9° Mean Qo.25 Q o.50 Qo.75 MSE

0.5 0.2623 0.1585 0.2526 0.3724 0.1062

1.5 0.9046 0.6391 0.9145 1.1965 0.4998
2 2.2565 2.1563 2.2465 2.5131 0.0781
sum of M S E 0.6841
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Table 2.5: Variance decom position of error term  for Linear Model w ith exclusion restric­

tions

./Vi =  1000;iV2=3000; No. replications=100

Just identified model Over identified model

V  ar{u)

V ^ r ( ( X 2 -  E ( X 2\Z))

V ot( (E (X 2\Z) -  E ^ ( X 2\Z))

V a r ( ( E ( X 2\Z) -  E N, ( X 2\Z))

» ( « ,  ( X 2 -  E ( X 2\Z))
«Zu(u, (E(X2\Z) -  E'N2( X 2\Z)) 

6m,(u , (E(X2\Z) -  E n .2( X 2\Z)) 

c o v ( ( X 2 -  E ( X 2\Z), (E { X 2\Z) -  E'N2(X 2\Z))

0.9875 1.0003

207.5141 293.5613

10.6006 95.7986

2.1836 1.0003

0.0037 -0.0082

-0.0080 -0.5478

-0.0013 -0.5424

0.0286 0.0017

-0.0060 0.0018cov((X2 -  E ( X 2\Z), ( E ( X 2\Z) -  E N2( X 2\Z))

In this table, Z  denotes vector [Xc, W\, W 2 }
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Table 2.6: Monte Carlo Experiment for a probit model (Z2 dummy variable, Zc Normal)

Ari =  1000;-/Vr2—2000

No. replications=100

Z2 omitted

Mean Qo.05 Qo.25 «o © Cn O Qo.75 Q o.95 M S E

1 -0.8865 -0.9971 -0.9359 -0.8768 -0.8408 -0.7883 3.5632

3 1.6059 1.4674 1.5424 1.6020 1.6555 1.7282 1.9511

Likelihood combining Z2 Mean Qo .05 Qo.25 Q o.50 Qo.75 Q o.95 M S E

0°

1 1.0092 0.4644 0.7997 1.0135 1.2105 1.5108 0.1081

3 3.0329 2.5410 2.8059 3.0255 3.2403 3.5864 0.1112

-3 -3.0474 -3.9902 -3.4259 -3.0584 -2.7467 -2.2948 0.3113

Table 2.7: Monte Carlo Experiment for a probit model (Z2 uniform, Zc Normal)

iVi =  1000;JV2=2000

No. replications=100

Z2 omitted

0° Mean Q o.05 Qo.25 Q o.50 Qo.75 Q o.95 M S E

0.5 0.0080 -0.1081 -0.0466 0.0004 0.0638 0.1214 0.2473

1.5 1.4787 1.2498 1.3742 1.4926 1.5483 1.6966 0.0170

Likelihood combining Z2 Mean Q o.05 Qo.25 Q o.50 Qo.75 Qo.95 M S E

£°

0.5 0.2758 0.2064 0.2458 0.2762 0.3024 0.3508 0.0520
1.5 1.4855 1.2568 1.2568 1.5100 1.5477 1.7035 0.0167
-0.5 -0.2664 -0.3117 -0.3117 -0.2713 -0.2461 -0.2142 0.0557
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2.9 A ppendix

L em m as u sed  in  P a r t  1 o f th e  P ro o f  o f T h e o re m  (4)

L em m a 1 Let I Nt = 1 { f ( z d )  > b} and U =  1 { f ( zd )  > b}. I f  ( ^ N h ^ b 2^ /logJVi -+ oo, 

|t f ( 0 )| < oo and there is no positive probability that f { zd )  = b, then

ooPr | a i  least one i such that — U 7  ̂ 0 j —* 0 as N 2 , N\

P ro o f, (see Ichimura (2003)) ■

L em m a 2 Let Assumptions B.9, B.10. B.12, B.7, B.13 and B.6 be satisfied and consider 

the bandwidth sequence that satisfies

(-log/lATj)
JV 2/4

0 (2.46)

00 (2.47)

00 (2.48)

Then, \ /N \  +  N 2 RN 1 n2 — °pifi)

P ro o f.

The reminder term in (2.40) is expressed as 

1 Nl
R - N1N 2 =  J j -  f e o  “  QiOo]7

i =  1

di>(qio0-,9o) _  dip(qjQ0’, dp) 
dq dq

where \\qw0 — qw0 ||p < WliOQ — Qi0o\\rq ■ From the Frechet differentiability o f '0 with respect 
to q and the Lipschitz continuity conditions of its derivatives in assumption B.10, then

1 Nl
R N 1 N 2 < ^ 2 L C 4 { z h ,  Z d ) [qiOo -  qiOo]' [QiOq -  IiOa]

I— 1

Thus, in this reminder term  we have a nonparametric conditional mean function and in 

the expressions below we use notation for both the numerator and the denominator of
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both estimators. Denote qtQ0 =  rqioQ/  f i • Then, 

RniN 2 <

Ni
—  Y

i=1

T 1 I" 1 ^Qi0r\
fi lr R0o r(L9o\ —f  f f i - f i +

+°p { rq ie0 -  T(He0) + op |J ' - h .

t 1 f "J ™Qi9n
^ T i  [r ( l i 9o  -  r W o \  -  - j f -

+ ° P  { rq i Oo  -  r ( l iOo)  +  ° P

f i - f i

l -  f i

+
X C4 ( z n , Zci) (2.49)

(2.50)

To show that \ /N \  +  N 2 RN 1N2 — ° p ( 1 )  we f°ll°w the next steps. Lemma 3 shows tha t 
the order of the bias of the nonparametric estimators is hsN so tha t E  (rqio0) — =

-  / ,  =  0(h%2). The differentiability conditions of Lemma 3 are stated 

in assumptions B.9, B.12 and B.13. From expression (2.50) and Lemmas 3 - 5 below, 

the reminder term converges in probability to zero if there exist positive sequences h/v2, 

{£7̂ 2}, {efNz} and {M /v2} such that

y/N\  +  N 2£tn2£ fN‘2 0 (2.51)

y /  N\  + N 2 £ r ^ 2 h%/o

y/N!  +  N 2h%

0; \ / N \  + N2SfN2hsN2 —> 0 

0

as N\ —+ 0 0 , N 2 —> 0 0  and such tha t these sequences satisfy the conditions of Lemmas 4

- 5 below. To see that these sequences exist, take £jN2 =  (— log hM2/ N 2hj^2) 1̂  bj^2 and 

MjNi — (~  l°g ^ n2))1̂ 2 ^jN2 f°r 0 < ^ < 1 and f°r positive sequences bj^2 tha t
diverge to infinity for j  =  (r, /} . Then, the sequences satisfy the conditions in lemmas 4

- 5 as long as condition (2.47) holds.

The conditions in (2.51) hold if the sequences bjjv2 diverge at a slower rate than 

o(( -  log/i/v2)-1 /2) and if (N\ +  N 2)h)f —> 0 and N 2h2N —► 00 . ■

L em m a 3 Let E  zcl, Z 2\9q) K  ^ Zq Zc exists. The s — th order derivatives

of f { Z c) and j  tp{zu, zcl, Z 2\6o)g (Z2 \ZC) dZ2 with respect to Z c and the s — th order 

derivatives of function ip(Z\, Z c, Z 2\9q) with respect to Z 2 are Lipschitz continuous. The
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kernel function satisfies Assumption B.6, then for h ^ 2 > 0 and hiy2 —► 0 and N<2 —> oo 

E  ( J ^ f  v ( z n, zcl, Z 2;60)g {Z2\zcl) d Z ^  f ( z cl)̂ J -

j  v{z \u  zcl, Z 2\0Q)g {Z2\zd) dZ ^ j  f ( z d )  = 0{h%2' N 2 >

Let these conditions be satisfied for ip(zu,  z ci, Z 2;6q) = p (zu ,  z ci, Z 2\ 0 q) andtp(zu, zci , Z 2-,6fi) 

1.

P ro o f. Note tha t the expression for the estimator is

( f (z u , Z d ,  z 2-, 90)g ( Z 2\zd) dZ2 ) f ( z d )  =

n 2

g  *  ( 2 ^ )  *  ( s g * )  *

After the change of variable ti = (Z 2i — z2ri ) / h ^ 2 for I = l , . . . , m 2 and a Taylor’s series 

expansion of order s of <p{zu, zci, Z 2;6q) around z2r, then

<p(zii,Zci,Z2;9o)g{Z2\zci)dZ2 ) f { z ci) =  

n 2

N ^ Y [ ^ n , ^ z 2r ,e0) K  + 0 (h%2)

Taking now expectations from the above estimator with respect to variables Z 2 and 

Z c and by the Law of Iterated Expectations,

E  ( ( /  ^ z i i ' z™'Z 2 ''e°}y (Z2\Zci'>dz'*) h Zci^

j  J ^ E Z2\ZC M z h ,  * * ,  Z2; flo)l Zc) K  f ( Z c ) d Z c +  0 (h%2)

which by the s — th  order continuously differentiability of g (Z2\ZC) with respect to Z c can 
be shown that

^ ( ( / (p(z ii ’ zci’Z X0o)g(Z2\zci)dZ2Sj  f ( z d =  j  v{ z i i , z ci , Z 2\6o)g(Z2\zci)d Z 2f ( z ci) + 0 ( h sN2)

L em m a 4 Under assumptions B.7 and B.6, then

Pr t sup | rql0 -  E  (fq ie) | > /v2 > —> 0 as N 2 —> 00
,2C,Q£?Lzx x^zc x0 J
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i f  £rN-2 hN2 M lN^  —» co and (log/ijv2)(l +  MN2 erN2 ) / (N h N 2 e^N2) —* 0? where M/v2 denotes 
a sequence for the support of the dependent variable p(z\, zc, z2, 9)

P ro o f. See Ichimura (1993) Lemmas A.5 and A.8 in the Appendix ■

L em m a 5 Under assumption B.6, then

Pr < sup
I zcefizc

> £f!S!2 > —> 0 as N 2 —► °o

i f  (log /iyv2)(l +  Al£fj^2 ) / ( N 2 h ^ 2 e'jN2) —> 0, where M  denotes an interval containing 1 

P ro o f. See Ichimura (1993) Lemmas A.5 and A.8 in the Appendix ■

Lem m a 6 I f  N 2 hn̂  —> 00 as N 2 —* 00 , then E  {^a^2 ( Z \ , Z c, Zc, Z 2))2^ =  0 (^ 2) 

P ro o f.

II { p z O o M  m p l0o{ Zcr) }  K  hN* J
' ^ ( Q i O o Y

h nica N2 f ( z ci) d q
a N 2 ( ’ Hi  z ci i  z c r i  z 2r )

Denote the conditional expectations of a ^ 2{Z\,  Z Cy Z c, Z 2)2 °n the realised values of Z c 

in each data  set as
2

z c r ) —

p ( Z \ , z ci, Z 2\ 6 0 ) —

/' p (Z i , z ci, Z2; Oo)g{Z2 \zcr)dZ2 

x
f { Z i \ z cl)g(Z2\ Zcr) dZ  1 dZ2

dp(q{Zi,zc l \0 q ) )  
Dq

Then,

£  ((aN2(^i) Z c, Z c, Z 2))2 Ĵ
1 zcr) K 2 (̂ ZcihNZ°' )

f 2 ( z ci )

1 v(^«, ^d +  thN2 ) K 2 (£)

/  ( ̂ d ) f  ( ̂ cr ) dzci dzcr

hrncnN2

O N 2 N 2h

f ( z ci)

V

f ( z d  +  thN2 )dzcdt

ln 2

Consequently, we have that E  [ [ a ^ 2{ Z \ , Z c, Z c, Z 2))2  ̂ =  o(N2) if and only if N 2h^  —* 00 

as N 2 —> 00 .■

L em m as u sed  in P a r t  2 o f th e  P ro o f  o f T h e o re m  (4)
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p
L em m a 7 Under Assumption B. 10 and B. 11, i f  0 —> 0§ and the bandwidth sequence

N h + ^
satisfies h ^ 2 ► 0 and (_ i0g lN ) ~'* 00 &s N 2 oo, then

V eH(9,q(. ,9))  -  V sH (e 0 ,q(. ,90))\ = op( 1)

P ro o f.

For 0 and q(.,0) belonging to a neighborhood of the true value of the param eters 0q 

and the true functions q(.,0 o),

\VeH(9,q{.,9)) -  VeH (9 0 ,q(.190))\ < 

\VeH ( e , q ( . , 9 ) ) - V f)H(9o,q(. ,e))\ +

+  \VoH(90,q(. ,6)) -  V eH(90,q(. ,90))\

It can be shown by the Lipschitz continuity conditions in Assumption B.10 that

(2.52)

(2.53)

\VoH {0 ,q{ . ,0 ) )~  V oH(0o,q(.,0))\ <
Ni

<
N~i Ei— 1

Cl (^lii Zci) “b C * 3 Z&)
d q ( z u , z c i , 0 )

80 x \ \ e - e 0\\

For consistent estimators 0 and q of 0q and q, respectively, we can consider 0 = 0 and q — q 

in the above expression. Under the conditions on functions C's  on Assumption B 10 and 

the differentiability of function p in assumption B. 11, the first term  in (2.52) converges 

to zero in probability

V eH(0,q( .,0)) -  V eH(0o,q(.,0))\ = op( 1)

By assumption B.(10) and after some algebra, we obtain an upper bound for the second 

term in (2.52)

| V *tf(0o, q(-, 0)) ~ V o H ( 0  o, </(,(•, 0o))| <

1 Nl
-  J ^ Y l c 2(z i u zci) M m  ~  <H0o\\rq +

I — I 
Ni

+ I i,Zd) ||qie -  qie0Ni

+
Ni

i= 1 
Ad

E
i= 1

9 J
dqiQ
80

d'ip{gleQ; 0 o)
8 q

8 qio _ dqjQQ 
80 80

(2.54)
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Denote as in Lemma 2 the numerator and denominator of the conditional mean expectation 

as qtQ =  'fqlQ/ a n d  for its first derivative as = rqf^ / / z. To show that the upper

bound in (2.54) converges to zero in probability, we should require consistency of 6 . We 

also need the following results on uniform consistency

IPr < sup ||rqie -  rqie|| > er N 2  
[ i,0

fi  ~  fi

-(1) (1) 
r(he ~ r(Ue

0

Pr < sup

Pr < sup

> £fN2

^  £r]N2 0

The bias order of these nonparametric conditional expectations is 0 { h sN<2) as shown in 

Lemma 3 as long as the conditions there are satisfied for <p{zu, zai, Z 2\ $o) —

The above uniform convergence results hold, using Lemmas A.5, A.6, A.8 and A.9 in 

Ichimura (1993), if there exist sequences {eryv2} and {er]/v2} such that

r l — lerN,2 hN.2 M r N 2  -> 00 ; (logh.v.2)(l +  M rN2 £rN2) / {N 2 k N.2 erN.2) -* 0 

en N2riN2iv[l~^2h N, M i  L  -> 00 ; (logh/v2)(1 +  MriN.2£rxN,2 )/ {N2 hN.2£ ^ N,2) -* 0

and where Mryv2 denotes a sequence of the support of the dependent variable p(z\, zc, z2 , 0 ), 

Mitv denotes a sequence containing 1, Mn 2at2 denotes a sequence of the support of the
N  h +T^

dependent variable — . These sequences exist as long as ( J ^ g ^  )
/

0 0  and

00 as in (2.47). Note that if / > 2, the former condition on the sequence of( -  log/lyv2) 
bandwidths implies the latter
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Chapter 3

Identification o f Preferences in the  
Pure C haracteristics D em and  
M odel w ith  M icrodata

3.1 Introduction

Differentiated product models have been widely applied to the adjustm ent of welfare in­

dices to quality change, welfare analysis of the introduction of new goods, merger analysis 

and many other policy analysis where the estimation of price elasticities and substitution 

patterns play a central role.

In this paper we study the identification of preferences in pure hedonic discrete choice 

models of differentiated products with consumer-level data (i.e. when choices, product 

characteristics and individual attributes are jointly observed) where individuals derive 

utility from a finite set of product characteristics and rules out product specific unobserved 

preferences. These consumer preferences are used in the estimation of the price elasticities 

and substitution elasticities across products with different attributes.

Some recent papers (Berry and Pakes (2003), Bajari and Benkard (2003, 2005)) have 

pointed out that standard discrete choice econometric models used to estimate structural 

models of demand have some undesirable properties when the number of products be­

comes large, implying counterintuitive implications in policy analysis related with the 

introduction of new goods.

The main assumption tha t drives these properties is the existence of the i.i.d error
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component -independent across individuals and products - with support in the entire real 

line that usually is interpreted as an unobserved individual taste for each specific product1. 

We argue that this error term can also be interpreted as unobserved tastes over a set of 

unobserved product characteristics whose dimension has to be equal to the number of 

alternatives in the market.

An alternative model proposed in the literature to overcome the counterintuive implic­

ations of the standard models brought to the data is a model which does not include the 

additive random error term with unbounded support. In this work, we study the identi­

fication conditions of the preference parameters in both parametric and semiparametric 

models. The semiparametric model allows one to relax the distributional assumptions on 

the taste coefficients for each product characteristic. For example, the normality assump­

tion may not be a reasonable distribution for unobserved tastes and any other distribu­

tion may be more suitable depending on the characteristic in consideration (some tastes 

over characteristics may have a truncated distribution, skewed distribution, nonnegative 

distribution, etc). Estim ation of the parameters in the utility function in the standard 

multinomial discrete choice models is not computational feasible without making assump­

tions about the distribution of this additive i.i.d term, since nonparam etric estimations 

would suffer from the curse of dimensionality when the number of goods considered is very 

large. Therefore, in comparison with previous semiparametric models based on standard 

multinomial discrete choice models (see for example, Lee, L.F. (1995), Matzkin (1991)), 

this model has the advantage of reducing the dimension of the problem from the product 

space to the characteristics space2. This issue becomes im portant when markets with a 

high number of products are considered.

One of the counterintuitive implications of discrete choice models with iid random 

terms with unbounded support is tha t each individual utility increases to infinity as the 

number of products in the market becomes large and the predicted demand probabilities 

are always positive regardless of the characteristics of the products introduced and for 

every price vector. Although this last feature is attractive from the computational point 

of view, it has implications when computing welfare measures by computing the area

P r e v io u s  work using this specification include, for exam ple, Berry (1994), Berry, Levinshon and Pakes 

(1995) and Nevo (2000) for aggregate data; Berry, Levinshon and Pakes (1998) and Goldberg (1995) for 

microdata; and Petrin (1998) using a com bination of both.
2In the standard discrete choice models including an i.i.d random term, the choice probabilites are 

com puted from a m ultiple integral whose dim ension relies in the number of alternatives.
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behind the demand curve, since demand is never zero even if the price tends to infinity. 

In fact, this property has been found to lead to an overestimation of welfare measures 

in empirical works by Petrin (2003) and Ackerberg and Rysman (2001). The unobserved 

differentiability of the products implied by the error structure also makes tha t no perfect 

substitutes of any product can be found even when the number of products becomes very 

large.

Thus, the assumptions about the additive i.i.d error term  in the standard discrete 

choice econometric approaches seem to have been introduced in order to ease computation 

of the probabilities, although the existence of this additive error term is not directly 

implied by the pure characteristics framework where products are defined as a finite vector 

of product characteristics.

We also control for the omitted variables problem that arise due to unobserved (by 

the econometrician) product characteristics and which are likely to be correlated with 

product price. Thus, prices are higher for those products which display those unobserved 

characteristics that are desirable for consumers. Using consumer-level data  we could po­

tentially control for this endogeneity problem by estimating product-specific constants in 

the individual choice probabilities. The model considered in this work accounts only for 

a unidimensional unobserved product attribute. In some sense, this is a more restrictive 

model than the standard approach with an i.i.d term: the model here allows only one un­

observed component but in the standard model infinite unobserved product factors have 

to be consider if the number of alternatives becomes infinitely large. We argue tha t a more 

general model with multiple unobserved product characteristics whose dimension is not 

linked to the number of alternatives would be a more desirable model. This constitutes 

an interesting topic for future research.

After discussing and justifying the model we use in this paper in Section (3.2), we derive 

the choice probabilities implied by the pure characteristics model in Section (3.3). Section 

(3.4) gives sufficient conditions for the identification of the preference parameters under 

both cases where the distribution of the unobserved individual taste drifters is assumed 

to be known or unknown.

3.2 Dem and Model: N otation  and Assum ptions

Modelling demand using a discrete choice model has been the practice of many of the 10 

empirical works on demand of differentiated products. Products differentiate from each
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other in their inherent characteristics or attributes. This discrete choice setting assumes 

that individuals are only able to choose one unit of their chosen product as opposed to the 

continuous demand model where individuals choose the amount of the good they want to 

consume.

This discrete choice framework differs also from the standard hedonic models3 where 

consumers decide the amount of each characteristic to be present in the ideal product 

maximizing their utility (e.g. consumers can choose the different components or charac­

teristics when purchasing a PC). In the discrete choice case, however, individuals take as 

given the possible product combination available in the market and choose tha t product 

that maximizes their utility. The discrete choice framework complicates the analysis but 

it is more realistic for those industries in which consumers cannot construct their ideal 

product or the available products are placed discretely in the characteristics space.

We follow a discrete approach in this paper and consider the choice of one product 

among a choice set It is assumed tha t the rest of the goods consumed by each individual 

or household constitute a composite good denoted by c. Consumers choose tha t product 

j  E ^  and that level of consumption of the composite good c that yields the highest level of 

utility subject to their budget constraint. The utility attained by each individual depends 

on the level of c attained and on the product chosen by the individual. As in the hedonic 

literature, the individual utility derived from the consumption of a differentiated product is 

assumed to be defined over the product characteristics space. This allows one to reduce the 

number of param eters to be estimated in a demand system, since the substitution patterns 

across products is reduced to the characteristics dimension regardless of the number of 

products available.4

Moreover, we also allow for some of the product characteristics to be unobserved by 

the econometrician, but not by the consumers. Obviously, utility is also a function of some 

individual attributes tha t make the utility derived from the consumption of one product 

be different between individuals with different attributes (such as income, family size,

^See Rosen (1974), Brown and Rosen (1982), Epple (1987) Ekeland, Heckman and Nesheim (2004), 

Heckman, M atzkin and Nesheim  (2005), for instance.
'1The traditional consumer analysis prior to the work of Lancaster (1966) and Gorman (1980) worked 

with individual preferences or orderings defined over the product space. Thier work kead to a com plete 

replacement of this old theory in this respect by assum ing that consum er’s preferences over products are 

a function of characteristics or properties intrinsec in marketed goods which allows to reduce significantly  

the number of elasticities to be com puted in a demand system .
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etc.). The heterogeneity in tastes over product characteristics induced by these individual 

characteristics makes individuals to choose different alternatives.

In what follows we assume we have access to consumer-level data  or micro data. T hat it 

is, the structure of the data is such tha t information about individual attributes is matched 

with their choices and the characteristics of these choices. The random utility model 

underlying the demand choice that it is described in the next section could be defined 

exactly defined if aggregate data is available. In the aggregate case though, individual 

attributes need to be integrated out from the individual probabilities in order to obtain 

the market share for each alternative, since the observations consist of sales and product 

characteristics in each market.

3 .2 .1  N o ta t io n

We consider data  from choices of N  individuals in each m arket/period (indexed by i 6 

I  — {1,..., AT}) on a choice set containing J  different alternatives (indexed by j  G ^  =  

{1,..., J}). The choice random variable by di (a J —dimensional vector where dij = {0,1} 

for all j  G The binary variable dij equals 1 if individual i chooses product j  and dijt = 0 

otherwise and where choices are mutually exclusive so tha t Y l j = l ~  ■*■)•
The vector of characteristics for product j  denoted by X j .  This vector is divided in 

two components X j  = { x j , £ j }  where Xj is the vector of observed product characteristics 

with dimension ( K  x 1) and ^  is the vector of unobserved product characteristics with 

dimension ( K 1 x 1). This unobserved product specific characteristic represents product 

attributes that are difficult to measure, such as prestige, reliability,quality of any omitted 

product characteristics. 5

We assume, as others do, tha t the observed product characteristics x  (excluding price) 

are exogenous to the model. The matrix of characteristics for all the products is denoted 

by matrix X  = (X i, . . . ,X j ) '  of dimension ( J  x ac) where ac =  K  -f- K ' .

Let Z  be random vector of dimension M  that represents observed consumer attributes. 

Its sample space is denoted by Uz  € R M . An individual drawn at random from the 

population will have some attribute vector z €E flz-  Let e be the vector of dimension E  

representing unobserved consumer attributes. Its sample space is denoted by Qe e  R E . 

An individual drawn at random from the population will have a realization of unobserved

;'This com ponent is assumed to be prefectly observed by individuals so that there is no room for any 

learning preocess about the value of this variable.
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random variable e 6  SIe - The vector of unknown parameters is denoted by 0 and 0  denotes 

the parameter space.

Economic agents make their choices on which j  to choose and the level of composite 

consumption c by maximizing their utility derive form the consumption of both subject 

to their budget constraint

max Uij =  u(c,Xj ,Zi ,ei)

S . t . c  +  Pj <  y l

where y% is the level of income of individual i and pj is the price of product j.

If iic > 0, for a selected product j  the utility of individual i satisfies that

UZJ =  u(yi - p j , X j , Z i , £ i )  (3.1)

Utility in (3.1) represents the indirect utility function conditional on the discrete choice 

j , which is the maximum level of utility that an individual with income yi when he chooses 

alternative j. In order to analyze the determinants of the product choice and identify the 

preference parameters associated to product characteristics is convenient to focus only on 

the alternative choice. Considering indirect utility functions allows one to abstract from 

the choice of the other goods affecting individual utilities.

It should be noted that the indirect utility function in (3.1) is giving some information 

about the way income and price interact in the utility function, giving flexibility to the 

way in which the rest of individual attributes and product characteristics interact. For 

simplicity by now, we do not to distinguish between income and any other individual 

attributes that enter the utility function. In the same way, we treat product price as 

another product characteristic. We assume for the moment that the interaction between 

income and product price does not have any particular feature with respect to any other 

interaction between product characteristics and individual attributes.

The model analyzed in this work is

Uij = 9{Xj -(- £ j (3.2)
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where

91 92 X

. £l .

(3.3)

/3 I  „  . ( f t  c
2 s m = l  v m l z im  ~r Z ^ e = l  a e l ^ e

H m =  1 ®mKzim +  Yle=l ^eK£ie

and the matrices of parameters 9l and 92 are of dimension (K  x M ) and (K  x J51), respect­

ively. The param eter 9^  is the preference over product characteristic k driven by the 

observed individual product attribute m  and parameter 9\k is the preference over product 

characteristic k driven by the unobserved individual attribute e. Define the matrix of para­

meters of dimension (K  x (M  + E))  as 9 = Furthermore, we assume tha t the

unobserved individual attributes are statistically independent of the observed individual 

attributes. However, the unobserved product characteristics (£ •) are not independent of 

the observed product characteristics {xj). For example, price is unlikely to be independent 

of the unobserved product characteristics.

The most im portant difference of this model with the standard discrete choice models is 

the fact that here the utility function does not include an additive i.i.d (across individuals 

and alternatives) random error term with full support on the real line. 6 The next section 

justifies the assumption of restricting the randomness of the utility function to the random 

coefficient 9i by explaining some counterintuitive implications of the model tha t includes 

the i.i.d random term with full support when the number of alternatives in the market is 

very high.

It should be noted tha t no particular distributional assumption has been imposed on 

the random error e. In fact, as it will be discussed later in this work, this model allows us to 

identify the preference parameters without imposing any restriction on the distributional 

form of the random coefficients.

Some comments on the utility specification are in order. If vector of individual a ttrib ­

utes  ̂ includes a constant term across individuals, then the utility function UVJ includes a 

mean utility term for product j  (i.e. amount of utility that is common to all the individuals 

consuming product j ) . 7 Observed and unobserved heterogeneity in tastes are introduced

f'T h is a d d itive  i.i.d  term  is u sually  assum ed to  be d istr ib u ted  as E x trem e V alue - T y p e  I so th a t the  

closed  form p robab ilities for th e  cond ition a l log it m odel are ob ta in ed  (M cF adden  (1 9 7 4 ))
' It is a ssum ed  th at random  vector £i does not inclu de any factor invariant accross in d iv id u a ls  since the
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in an additive way. If 6 2  7  ̂ 0, individuals with the same observed attributes may still differ 

in their preferences over product characteristics.

Also, the specification in (3.2) assumes that individual tastes on product characteristic 

are linear in observed and unobserved individual attributes. The non-linearity of tastes in 

observed attributes could be easily relaxed using our approach while the nonlinearity in 

unobserved attributes would imply more difficulties in the estimation here suggested. 8

We also assume throughout this work that the unobserved product characteristics is 

unidimensional (i.e. K '  = 1). This is a restrictive assumption since it implies that all 

omitted product characteristics can be summarized in a unique factor. There have been 

some attem pts to extend the model to the case of multiple unobserved characteristics in the 

marketing literature (Elrod (1988), Chintagunta (1994) and Elrod and Keane (1995) using 

factor analysis). The mixed logit model used in the identification in Ben-Akiva, Bolduc 

and Walker (2003) and Walker (2002) allows for a multidimensional unobserved product- 

specific variables with heterogeneous tastes across individuals. In the latter papers, the 

identification however is based in a more restricted model with heteroskedasticity and 

where no random coefficients on observed product characteristics are considered. However, 

any of these papers considers the possibility that the omitted product characteristic may 

be correlated with the observed product characteristics.

When the. endogeneity issue is considered, identification becomes harder and a unidi­

mensional unobserved product characteristic is usually assumed in the literature. Under 

the assumption tha t is correlated with x 3 and K'  = 1, Berry and Pakes (2003), BLP 

(1995) and Bajari and Benkard (2005)) study the identification of the parameters in the 

parametric case when only aggregate data is available.

It has been argued that these identification results under endogeneity of the product 

characteristics extend to the case where unobserved product characteristic is multivariate 

and the second term in (3.2) reduces to an index of unobserved factors (Bajari and Benkard 

(2005)). However, we think tha t the treatm ent that the unobserved product characteristic 

has received in the literature is imposing restrictions on the way random coefficients enter 

in the utility function and it is actually not straight forward to extend it to the case of 

multidimensional unobserved product characteristic as it has been argued.

Assuming a unidimensional unobserved factor £ allows one to ignore the possibility of

m ean u tility  param eter im bedded  in 62 w ould not be separately  identified  from th e  m ean u tility  param eter  

in 0 i.
"See Brown and W alker (1989) for non-linear assu m p tion  in fun ction  u.
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individual specific taste on unobserved product characteristics. Suppose that we want to 

consider unobserved tastes on £ in utility (3.2) so that

U i ^ f c X j + a i S j  (3.4)

As long as the unobserved product characteristic is a vertical characteristic (a* > 0, V«, 

every individual positively values characteristic £), the individual utility can be rescaled by 

ai without changing the ordering over the alternatives. Therefore, in the unidimensional 

case, the assumption in (3.2) of no heterogeneity in tastes on £ is innocuous. However, 

when the dimension of the unobserved product characteristics is greater than one ( K 1 > 1) 

this procedure is no longer valid and the distribution of the unobservables factors ai need 

also to be taken into account when computing the choice probabilities.

However, rescaling the utility by a{ has some costs on the assumptions we need to 

impose on the random coefficient #;in (3.2) and on the random coefficient before rescaling 

(denoted by /3J if they are assumed to be linear in both z  and e.

The utility function in (3.4) is equivalent to (3.2) if

0 1  i 0 2  i X

. £ i .

and either (i) (3U and /32* are proportional to (i.e. ^  ^  = 6 2 ); or (ii) f3u =  (31;

02% = 02 ; cb =  a . In other words, in order for utility expression (3.2) to be consistent with 

heterogeneous tastes on £, some linearity restrictions and proportionality assumptions 

need to be imposed on the random coefficient over observed product characteristic

In case (i), we should reinterpret the taste coefficients on observable product charac­

teristics relatively to individual tastes 011 unobserved product characteristics £ •.

The additivity of ^  without individual random coefficient is needed for the identifica­

tion results presented below.

In order to allow for a more general model, another factor (c*j) should be included in 

the model apart from the unobserved taste drifter on observed product characteristics a .

3 .2 .2  D ifferen ce  in  a s su m p tio n s  on  u n o b ser v a b les  w ith  th e  s ta n d a rd  d is ­

c r e te  ch o ic e  m od els: J u s tif ic a t io n  o f  our sp e c if ic a t io n

The main difference of the model outlined above with the standard discrete choice models 

normally used in empirical applications is tha t the latter includes an additive random er­

ror in the utility function (3.2) specified above, say ê - with different realizations for each
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individual and alternative, with full support in the entire real line which are i.i.d across 

individuals i and products j. The models including have been denoted in the previ­

ous literature as taste-for-products models versus taste-for-characteristics models which 

eliminate this additive random term. The interpretation and implications of this additive 

random error have received some attention in the recent literature. The basic references 

are Berry and Pakes (2002) and Bajari and Benkard (2003, 2005).

It has been argued tha t the assumptions imposed on the additive random term 

in the empirical applications are only justifiable in terms of reducing the complexity of 

solving the multidimensional integrals involved in the com putation of the choice probab­

ilities, since in some cases these assumptions give a closed form for the high-dimensional 

integrals. Although some restrictions on the distribution function of the unobservables are 

unavoidable in order to identify some of the structures of the model, some of the usual 

parametric assumptions on the unobservable eVj have some counterintuitive implications 

in welfare computations and effects of the introduction of new goods when the number 

of products in the market becomes large (Bajari and Benkard (2003), Berry and Pakes 

(2003), Caplin and Nabeluff (1991), Andersen, de Palma and Thisse (1992), Petrin (1998)). 

Bajari and Benkard (2003) list the properties of the models incorporating these restrictive 

assumptions and specify which particular assumptions yield each of the implications. We 

comment them in the remaining of this section.

One of the main assumptions driving these implications is th a t the additive error e is 

a continuous random variable with unbounded support on the entire real line.

The first implication tha t should be pointed about this assumption is tha t the choice 

probabilities for each alternative are strictly positive regardless of the value of the product 

characteristics. This feature is particularly undesirable in a structural model of demand 

since implies tha t the choice probabilities are strictly positive for every vector of prices. 

Thus, even if there are two products with the same (observed and unobserved) product 

characteristics but with very different prices, there is some small positive probability that 

random error e takes those values that are able to overcompensate for the price disutil­

ity so that higher utility is obtained from the consumption of the high priced product. 

The random term introduces some unobserved differentiation of each product with re­

spect to the other marketed products. The fact tha t the choice probabilities are strictly 

positive for any value of the product characteristics, individual attributes and/or value 

of the parameters in the utility function is however highly convenient for computational
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purposes9.

If the random variable e has full support on the real line, then the probability that €j 

is greater (in absolute value) that any M  < oo, conditioned on the errors of the rest of 

products smaller than Cj, |e_j| < M  is strictly positive (which is to say, Pr ( \ej\ < M\ \e~j\ < M) < 

1 -  5m  for 0 < 5m  < 1)- When the number of alternatives becomes very large, there is a 

positive probability tha t the maximum of the values of e across alternatives j  = 0,..., J  is 

greater than any finite number. Formally,

Pr( max |eA < M ) =  P r (|e j| < M, \ej- i\  < M , | e i |  < M )  (3.5)
o <j<J

= P r ( |ej| < M\  |e_ j| < M )  • Pr ( |e j - i  | < M\  |e_(j _ 1} | < M )  • ...

... • P r ( 1621 < M | |e i | < M ) -  P r( |e i | < M ) <

< (1 — 5 m ) J -> 0 as J  -> oo as 0 < 5 m  < 1

Note that the assumption of i.i.d errors has not been imposed here. Therefore, even 

if one uses more advanced models that avoid the IIA assumption- such as the Nested 

Logit which relaxes the independence assumptions of alternatives within the same nest, 

the property in expression (3 .5) holds when the number of alternatives is large (even if 

they are grouped in nests) as long as the unboundedness of the conditional distribution 

ej|e_j is satisfied.
The property of e in (3.5) makes tha t there exists a positive probability tha t the 

level of utility corresponding to the most preferred alternative goes to infinity. This has 

obvious implications for welfare evaluations of changes in the choice set since the consumers 

utility attached to those alternatives tha t have been added or removed from the choice set 

might be non-finite. Therefore, as the number of products increases in the market, the 

compensating variation for each individual of all products in the market tends to infinity.

This is believed to be overestimating the welfare benefits associated to the variety of 

available products because of the high sensitivity of the utility to high realizations of ej.

If in addition to the full support assumption, the distribution function of e has thick 

tails (formally, the hazard rate of e does not tend to infinity when e tends to the upper 

limit of its support), then the expected difference between the highest and the second

9 A s it will becom e clear in th e  exp la n a tio n  o f the choice p robab ilities in th e  co n tex t o f a pure character­

istics dem and m odel, the fact th a t for certain  values of the param eter sp ace the choice prob ab ilites becom e  

zero increases the com p lex ity  o f the com p u ta tio n  since the likelihood  function  becom es d iscon tin u ou s in 

the param eters.

73



highest tends to infinity as J  —> oo. Thus, consumers suffer from infinity welfare losses 

when their first choice is eliminated from the choice set, meaning tha t products do not 

become perfectly substitutes even if their number increases to infinity. When the number 

of alternatives tends to infinity, one would expect tha t products are allocated very close 

to each other in the characteristics space so that they become perfect substitutes. The 

reason is that the random error e induces some unobserved differentiation of each product 

with respect to the rest and because of the full support assumption, the value attached to 

this specific differentiation of product j  is likely to be above any finite number.

All these implications do not seem reasonable if the discrete choice framework wants 

to be used as a structural model of demand. However, some features of the structural 

model of demand would be more affected by this assumptions than others. Thus, large 

realizations of e affect more welfare evaluations of changes in the number of products 

than the estimation of the unknown parameters in the utility function (Berry and Pakes 

(2003)).
These properties suggest tha t the model used in the empirical applications to estimate 

structural demand parameters in a demand framework impose certain assumptions on the 

error structure of the utility which have some undesirable properties. A model like the one 

described above in (3.2) and (3.3) does not imply any of these properties since no additive 

error term has been assumed. Instead of removing this random error, the model analysed 

in Ackerberg and Rysman (2001) where the variance of the error terms e in a taste-for- 

products model depend on the number of available products is another alternative to the 

tastes-for-products model.

3 .2 .3  In te r p r e ta tio n  o f  th e  i.i.d  te r m  : U n o b se r v e d  ta s te s  over  ch ar­

a c te r is t ic s  v s  p r o d u c t sp ec ific  u n o b ser v ed  ta s te s

It is im portant to clarify the different behavioral interpretations of the i.i.d error term

in the standard multinomial discrete choice model and the error term in the 

taste-for-characteristics model.

The term a ^ j  is the unobserved taste for individual i over unobserved product char­

acteristic The unobserved characteristic £ has different values across products but it 

is an inherent attribute of every marketed product j , although unobserved to the econo­
metrician.

The standard interpretation given to i.i.d is a product-specific unobserved taste. In
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other words, each product offers a specific unobserved attribute th a t it is not possible to 

be obtained through the consumption of a different product and each individual has an 

unobserved taste over tha t attribute.

Take for example the design of one product as an unobserved characteristic by the 

econometrician. Suppose there exist a product such tha t its design is so specific tha t this 

attribu te might be considered as a something very genuine of the product, over which 

each individual has different tastes. Thus, this standard interpretation of means that 

each product has its own unobserved product characteristic tha t makes it specifically (and 

unobservably) different from the rest of the products.

The nature of the unobserved characteristics may be such tha t, for example, different 

products share the same type of design and with respect to this characteristic they are 

almost indistinguishable. In this case, the unobserved tastes over unobserved product char­

acteristics would be preferably expressed as ot^j.  Which type of unobserved characteristic 

we have depends on the nature of the products we study.

One way of obtaining i.i.d. random terms across i and j  is by interacting product 

dummies with a J —dimensional vector of independent tastes for individual z1(). In this 

way, it is easy to understand how the random errors are interpreted as product specific un­

observed heterogeneity. However, this way of constructing is only a sufficient condition 

in order for the errors to be i.i.d across i and j .

In order to find necessary conditions that need to be satisfied when random errors 

are i.i.d across individuals and products, it is convenient to express the error component 

as a linear combination of unobserved tastes for individual i (vj) over a J t h —dimensional 

vector =  [/i(l, j)] of unobserved product characteristics for product j  as
follows

J

=  ' 5 2 v ( r J ) v ir (3.6)
r —1

where /i(r , j )  corresponds to the r — th unobservable characteristic of product j  and vir is 

the i — th  individual preference for unobserved product attribute r.

Let Ei — [cii €i2...e*j]/; Vi =  [vn Ej =  [/^(l,j )  ••• //(J ,j) ] '.  Let denote the

10T h a t it is, random  term  t i j  can be expressed  as

e*j = Cj * Vi

where (,“ • is a J —dim ension al vector w ith  zeros bu t a one in th e  j t h  e lem en t, and  r)i is a J —dim ension al 

taste  vector.
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matrix of unobserved product characteristics of dimension J  x J  as £  =  [£i ... £./]' . 

Then, for individual i the matricial expression for the J  — th dimensional vector E x is

Ei =  £  x Vi

If the errors Vir are independent across r  and m atrix £  is diagonal, then obviously 

6ij is also i.i.d across i and j  (See Appendix A .l) and it can be interpreted as above as 

a specific unobserved taste of individual i for product j. A diagonal £  implies tha t each 

unobserved characteristic is specific of only one product. Thus, because ^  0 and

n(r , j )  = 0 Vr ^  j ,  the j t h —unobserved product characteristic is specific of product j  and 

it does not play any role in describing the preferences over any other product different 

from j .

However, the independence of Vi and diagonality of £  are not necessary conditions 

to obtain i.i.d. errors (See Appendix A.2). Take the normal case as an example, the 

random errors Vi do not need to be independent and they may have a covariance structure 

such that there exist some linear combinations (coefficients in £ ) which make the variance 

and covariance structure of the resulting errors equal to zero. The interpretation of tij is 

different with this structure. The random error can be interpreted then as an index 

of unobserved tastes (not necessarily independent) over a vector of unobserved product 

characteristics whose dimension coincides with the number of alternatives as it is clear 

from expression (3.6). The vector E\ would not be independent across j  if the dimension 

of the vector of unobserved product characteristics is smaller than J  (i.e. if the dimension 

of £  is J  x H, where H  < J).
This last interpretation of random terms has the advantage of making easier the 

comparison between a taste-for-products model (including e^) and a taste-for-characteristics 

model (with random coefficients for instance and unobserved product characteristics). 

While the latter can incorporate any number of unobserved product characteristics (al­

though we study identification only for the unidimensional case), the i.i.d error term of 

the taste-for-products model can be considered also as an index of unobserved tastes on 

unobserved product characteristics but the number of product factors considered has to 

be equal to the number of alternatives. Therefore, while the dimension of £ in the taste- 

for-characteristics model may remain constant as the number of products J  increases, the 

dimension of matrix £  in (3.6) increases when the number of products increases in the 
market.

The taste-for-product model and the taste-for-characteristic model with unidimen­

76



sional are two extreme ways of describing preferences. Given tha t the dimension of the 

unobserved product characteristic has been restricted to the unidimensional case, it may 

be difficult to capture all the unobserved heterogeneity in tastes for unobserved products 

with only one attribute. A more realistic model and preferred to both models would be 

an extension of the taste-for-characteristics model which allows for a higher dimensional 

vector of unobserved product characteristics.

Even in this multidimensional factor framework, it would be interesting to develop 

tests that allow us to determine which model explains better the observed data. One 

would like to assess whether a model with specific taste over products has some additional 

explanatory power with respect to a model where there exists unobserved heterogeneity 

in tastes over a vector of unobserved product characteristics captured by

Which of the two models is considered as a more general model depends on which 

interpretation we take. If we interpret the error term as unobserved individual tastes 

on product dummies, then the taste-for-products can be regarded as a particular case of 

the taste-for-characteristics model where product dummmies are considered as product 

characteristics. If we interpret e*j as unobserved individual taste over a J —dimensional 

vector of unobserved product characteristics, then the taste-for-products characteristics 

can be considered as more general because it allows for a higher dimensional vector of 

unobserved components (although restrictive because the dimension of this vector needs 

to be the same as the number of alternatives).

3 .2 .4  A d v a n ta g e  o f  th e  a p p roach  in  th e  S e m ip a ra m etr ic  A p p roach : D i­

m e n s io n a lity  R e d u c tio n

The main advantage of the model in (3.2) and (3.3) is tha t reduces the dimensionality 

of the problem and there is no need to introduce a different factor when the number of 

products in the market increases. Thus, if we believe that specific tastes over products does 

not explain more of the decision process when unobserved tastes for product characteristics 

have been included in the model, the model in (3.2) and (3.3) allows one to reduce the 

dimension of the problem and consequently relax some of the parametric assumptions on 

the distribution of the taste coefficients that have been usually imposed in the previous 
related literature.

In a taste for product model, the choice probabilities for product j  depend on the 

unobserved taste components for the rest of the products in the choice set J  (i.e. e*r for
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r 7̂  j) .  In order to ease the computation of such probabilities, standard discrete choice 

models have imposed independence across products and across individuals and have also 

assumed that each error term  is distributed as Extreme Value- Type I, since in this case 

a reduced form of the choice probabilities can be obtained. Even with a small deviation 

from the Extreme Value distribution, choice probabilities need to rely on simulations and 

distributional assumptions tha t may or may not be appropriate to describe the tastes in 

our population.

There have been some previous works analyzing the semiparametric identification of 

parameters in a multinomial discrete choice model by relaxing the distributional assump­

tion of the errors. Lee (1995), for example, introduces a multinomial version of Klein 

and Spady’s semiparametric estimator. His model does not allow for random coefficients, 

he assumes an additive i.i.d random term and his estimator depends on J  — 1 random 

variables.11 Although under certain conditions on the taste for products model, it may be 

possible to semiparametrically identify the preference parameters, its computation may 

be cumbersome due to the curse of dimensionality tha t would involve the computation 

of choice probabilities depending at least on J  — 1 random variables when the number of 

products in the market J  is relatively high.

If a random error term iid with unbounded support is added to the model in (3.2) 

and (3.3) the.probability of choosing product j  can be expressed as

r^j

where v r = e -Lr — €ij is equally distributed for all r ^  j.

This probability depends on (J  — 1) indices. These indices are the points at which we 

evaluate each of the (J — I) distribution functions in the expression above. The existence of

m eters w ith ou t d istr ib u tion a l a ssu m p tion s im posed  on the sto ch a stic  term  (C o ssle tt (1 9 8 3 ), Ichim ura and  

T h om p son  (1998), K lein  and Sp ady (1993), M ansk i(1975) and M atzk in  (1 9 9 2 )). M atzk in  (1992) and  K em p  

( 2 0 0 0 ) relax the restr ictions on th e  structure o f  the sy stem a tic  fun ction  o f the exo g en o u s observables in  

u tility  and M atzk in (1991) stu d ies th is issue in the m ultinom ial case. In th is  work we do not dea l w ith  

sem iparam etric  e stim a tio n  o f th e  u tility  function . In stead  we im pose th e  lin earity  assu m p tio n  for th e  

u tility  fun ction  but we relax the a ssu m p tion  on the d istr ib u tion  o f the un observed  factors.

P.£  = P r (0i(xj  -  x r) +  (£j -  £r ) > eir -  ^  for all r  ±  j \ x )

Under the i.i.d assumption of random errors e^,

11 For th e  b inary m odel, there ex is t  o ther works stu d y in g  th e  identification  and  e stim a tio n  of th e  para-
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a random term tha t is product specific forces one to rely on the product space dimension, 

without being able to reduce tha t dimensionality.

One plausible alternative that one would think is tha t assuming a logistic distribution 

for the product specific unobserved taste would allow us to reduce in some sense the number 

of indices of which the choice probability depends on. However, even in the case where 

FVr |x is distributed as a Extreme Value-Type I and the distribution of 9 is unknown, it is 

not possible to reduce the number of indices on which this probability depends. Under this 

parametric distributional assumption, the probabilty of choosing product j  is expressed 

as

=1 13
exp (9tXj +  f  •)

dF(0\x)
£ j = o exP(0^ j  + £ j)  j

The fact that our model does not include this alternative-specific additive random term 

allow us to find a semiparametric estimator whose dimension depends on the number of 

characteristics K  used to define the products or equivalently on the dimension of the un­

observable variables explaining the tastes over product characteristics. Thus, for those 

industries in which the number of marketed products is high and few observed charac­

teristics can be used to describe them, the estimator we suggest is more tractable that 

the ones previously proposed in the literature. In this version though, we only study a 

simplified version of this more general with a unidimensional unobserved factor.

3.3 Choice Probabilities

The choice probabilities in the likelihood function are obtained from a model of utility- 

maximizing behavior of the decision-makers. Consider the random utility function for the 

taste-for-characteristics model in (3.2) and (3.3). In order to simplify the computation 

of the choice probabilities we assume that there exist only a unidimensional vector of 

unobserved tastes over product characteristics e (i.e. E  =  1). Let Fe : C R  —*

[0,1] denote the distribution function of the unobserved individual attributes. The choice 

variable for each individual i and product j  is

dij =  1 { ( 0 i Zi ) '  X j  -f ( 0 2 £ i ) '  X j  + £ j  > ( 9 i Z i ) f xr -I- (02£iY x r +£r> f°r all r ^  j )  (3.7)

The observed choice for individual i with attributes Zi can be viewed as drawings from a 

multinomial distribution with selection probabilities P r (dj = 1|X, 0, Fe) for each j  G S
which are expressed as follows
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Pr (dj =  1|X,Zi-,e,Fe) =  

p r (  (QlZi ) '  Xj  +  (02£z)' Xj +  ^  >

V (OiZi ) 'xr +  (026i ) ' x r +  €r , for all r  ^  j \X,Zi\Q, F£

p r (  [x j  ~  x r] +  I f , '  “  t r \ >

\  ( f e t ) '  [xr ~  X j ] , for all r  ^  j |X , 2*; 0, Fe

The unidimensional assumption on £ is a strong restriction since it assumes tha t the 

random variable determining the random preference for product characteristics is the 

same across characteristics. The same realization of variable e explains unobserved tastes 

across K  product characteristics. Conditioning on observable attributes, this univariate 

random variable e is the only element that generates unobserved heterogeneity in tastes and 

choices. Nonetheless, the particular utility specification we consider relaxes somehow this 

dimensionality restriction by assuming different coefficients for each product characteristic 

k. Different values of the coefficients in 02 allows one to obtain different variances for the 

random coefficients across product characteristics.

When s is assumed to be unidimensional, the conditional choice probabilities for 

product j  are

Pr(dj =  l | X , z i;0 ,F e) =

p  f  ( Ol Z i ) ' [ X j  ~ X r ] +  [ £ j  - f r ] >  \

y 02 [xr -  Xj] £i, for all r  ^  j |X, Zi\ 0, Fe J

The exact expression of this probability choice depends on the sign of the inner product 

0f2 ( x r — X j ) .  Conditioned on a particular value of 02, products can be ordered with respect 

to this inner product. Products with respect to this ordering are indexed by (j )°2 for 

j  € This notation reflects the fact that this ordering depends on the value of param eter 

02

@2X ( l ) e2 ^  ••• ^  ®2X ( j - \ ) e2 <  @2X ( j )e2 <  @2X (j +  l ) e2 <  ••• <  ° 2 X {J)<>2 (3.10)

When computing the choice probabilities one should take into account the fact that 

there are products above and below product j  with respect to this ordering, since when 
isolating e the sign of the inner product is of relevance now.

If product j  is an intermediate good with respect to ordering 02 i.e. j  7  ̂ ( I )02 and

3  #  0 )"2,

(3.9)

(3.8)
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Pr

Pr

/(xl-xTT K61! ^ ) 7 -  X*1 + Kj -  f  J] > eu for all (s ) ° 2 > j
[(6 iz l)' [xj -  z j  +  -  £a]] < ei, for all (s)02 < j

02 ' ( x s —x j  
1

0'2 ( x s —X j )

m ax(s)92<j <  £ i

(s)e2 >j Ol'(-r-s-Xj) [ ( ^ l ^z )  [x j  ^’s] +  [ £ j  £s]]

(3.11)

If product j  is the first product with respect to the ordering 6 2 , i.e. j  =  ( l )02, 

Pr ( fl2; {x - x  ) ^ ° lZi^ 1Xj ~  Xs1 + ~ £i ’ f°r a11 S ^ J)

=  Pr ( min
,S>(1)«2 O2' ( xs -  Xj)

If product j  is the last product with respect to the ordering $2 , i.e. j  = (J)°2, 

Pr ( e / ( z  - x  ] -Xj  ~ Xsl +  Kj ~ t i l ]  ^ £*. for a11 s #  j )

(3.12)

=  Pr I max
s < ( J ) e2

[(OiZiYlxj  -  x s} + -£ s]] (3.13)
8 2 '  ( X s  -  X j )

The notation to be used in the choice probabilities is introduced below. The two 

products that maximize and minimize the lower and upper bound for e, respectively, in 

the choice probabilities for product j  in (3.11) are denoted by

R j ( O , X j , X - j 0 2 ,Zi) =  arg max
( s ) 0 2 < 3

1

r j  {&•> X j , X + j 0 2 > z i ) arg mm
( s ) e 2 > j

_e2 (xs -  Xj) 
1

&2 (X8 -  Xj)

[ { Q i Z i ) '  [ Xj  -  x a] +  [tj -  Q ]  

[(OiZi)' - x a]+  [ ^ - £ s]]

where

X —j , 9  2 

X + j , 9  2

{ ( ^ 2 , ^ 2 )  for («)02 < j }

{ ( x (s)^2 ,£(sp 2) for (s )02 > j}

This notation indicates tha t the product characteristics tha t affect the probability of 

choosing product j  are the characteristics corresponding to the products placed in the 

boundary of a specific order with respect to product j  (i.e. products R  and r). It should 

be also noted that the product denoted by r (R) depends on the value of the parameters
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9 , on (unobserved and observed) characteristics of product j, (unobserved and observed)

and also on the individual attributes. For simplicity of notation, we denote these two 

products only as a function of the value of the parameters (i.e. Rij(O) and r^(0)).

It is im portant to notice tha t the two sets of parameters affect in a different the determ­

ination of products Ri j (0)  and ri j (9).  Thus, only the part of the parameters corresponding

j. However which products maximizes or minimizes the indices in (3.11) depend on the 

particular values of both 9\ and 6 2  ■
Once we substitute these products in the indices in (3.11), then the choice probabilities 

can be expressed as functions of the cdf of the unobserved individual characteristic Fe 

evaluated at those two indices.
Let denote by A j  the upper bound of e in the choice probability of product j

ever complicates the estimation of the model by maximum likelihood since the loglikeli-

one individual for which the probability of selecting his observed choice is equal to zero. 

Moreover, note that the choice probabilities are not continuous with respect to param eter 

02- Note tha t a small change in #2 might alter the inner product ordering in (3.10). At 

the same time, this implies tha t the products tha t maximize and minimize the lower and 

upper bound indices in the choice probabilities should be obtained from different sets of 

products. Since both bounds depend on the product characteristics, which are assumed to 

be exogenous, there is not guarantee tha t the new interval for e would imply a value of the

characteristics of products below (above) product j  with respect to the ordering in (3.10)

to 0 2  affect the ordering in (3.10) which selects those products lying below or above product

( 9 l Z i Y  X j  -  X , +  [ £ j  -  s r . j i ' / J j i

(3.14)

and denote by A j the lower bound

(3.15)

The indicator 1 {A > A} avoids computing negative probabilities. This property how-

hood function is not defined for those values of the parameters for which there is at least
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choice probability close enough to the probability evaluated at a slightly different value of 

6 2 ■ This feature of the model not only implies some difficulties in the identification of the 

model, but also sets some challenges in order to find those values of the param eter that 

maximizes tha t the likelihood function. 12 

For j  =  (I)02, the choice probability is

P r (dj =  1|X ,Z i \9 ,F e) = Fe (A j (0, X j , zf))

and for j  = (J ) 02,

P r (dij = 1|X , z %- 6 ,F£) = 1 - F £ (AJ(e ,X J, X +he2 , z l))

3.4 Identification

Using notation as in Koopmans and Reiersol (1950), a structure belonging to the model 

described in (3 .2) and (3.3) is defined as S  = (h ,Fe), where h is the structural relationship 

linking observable and unobservable variables that in this case is expressed as

dij = h(x,  £, Zi, £i) (3.17)

for all i and j  and Fe is the distribution function of the unobservables.

A model is defined by tha t set of structures that share a set of apriori knowledge or 

conditions on both h and Fe. Let denote by Pr (dj = 1| X , Z ; S )  the choice probabilities 

for alternative j  generated by structure S.

D efin ition  1 Two structures S  and S' are observationally equivalent i f

Pr (dj =  l \ X , Z - S )  =  Pr (dj = 1| X , Z \ S ' ) V j  e  3  a.e. in Z

D efin itio n  2 (P a ra m e tr ic  M odel) A parametric model Tp is defined as that set of  

structures S  = (h, F£) such that (i) relationship h is

dtj = 1 {(OiZi)' Xj +  (0 2 £i)' Xj + £j > {9iZi)' x r +  {0 2 ei)' x r +  for all r ^  j )

12 In some of the preliminar M ontecarlo experim ents of the maximum likelihood estim ation of this model 

(not presented in this work) different alternatives have been tried in order to be able to obtain the globa  

maximum of the likelihood function. Some of them include the use of the sim ulated annealing algorithm  

as the optim isation m ethod and also the MCMC m ethod proposed by Chernozhukoz and Hong (2003)
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Thus, the utility function is specified as in (3.2) and (3.3) with K '  =  1 and E  = 1 and 

its functional form is known up to a finite number of parameters 9; and (ii) Fe is a 

known distribution function. The different structures belonging to this parametric model 
are defined giving specific values to the vector of parameters 9 G 0  C 'JZdnn(el

Let <f> denote the space of all probability distributions on the real line.

D efin itio n  3 (S e m ip a ra m e tr ic  M odel) A semiparametric modelTsp is defined as that 

set of structures S  = (h ,F£) such that (i) relationship h is defined in the similarly to the 

parametric model with K '  = 1 and E  = 1; and (ii) Fe € is a continuously differentiable 

unknown function, strictly increasing, 0 < Fe{e) < 1 for every e G TZ and F£{0) =  0.5. 

The different structures belonging to this semiparametric model are defined giving specific 

values to the pair {9,F£} G 0  x $  satisfying the above conditions (i) and (ii)

Let 90 G m £(0) denote the true value of the parameters and Fe° G <£> denote the true 

distribution function of the unobserved variable e

D efin itio n  4 (P a ra m e tr ic  Id en tif ic a tio n ) The true value of the parameter 90 is iden­

tified with respect to parameter value 9 9° Q if  there exists at least one product j  G

such that

Pr(z G 7Vj(9)) > 0

where

7Tj(0 ) =  {z  G Z  such that Pr (dj = l |X ,z ;0 ,F ° )  ^  Pr (dj = 1\X,  z; 0°, Fe0)} (3.18)

D efin itio n  5 (S e m ip a ra m e tr ic  Id en tif ica tio n ) The true value of the parameter 90 

and the true distribution function F f  are identified with respect to another pair (9,Fe) G 

r sp  such that Fe{e) F^(e) a.e in e £ and 9 ^  0° i f  there exists at least one product 
j  G S  such that

P r (z G 7Tj(9 , F£)) > 0 (3.19)

where

7Tj(9 ,F£) = {z  e  Z such that P r (dj = 1| X , z ; 9 , F £) ^  P r (dj = 1\X, z \ 0°, F£0)}

13

1 ‘T h e identification  o f th e  param eters im plies th a t the lim itin g  lik elihood  fun ction

L oo(a) =  E  ( J f P r  {dj  =  1| z , X , 6 °- ,F?)  log Pr {dj  =  1 \ z , X , 0 ;  Fe )
\ j =o
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In the next sections, we discuss sufficient conditions for the identification of parameters 

00 in the case that the distribution function Fe is known and conditions in order to identify 

(6 ° ,F e) in the semiparametric case when Fe is unknown.

3 .4 .1  Id e n tif ic a t io n  c o n d it io n s  for th e  p a ra m etr ic  m o d e l

The following assumptions are made for the identification of 6 q when Fe is assumed to be 

known:

A ssum ption  3. 1 The unobserved individual attributes e is a unidimensional factor (E —

1) with a known distribution function denoted by Fe : Qe C 7̂ . —> [0,1] such that (i)

Fejz = Fe \/z £ Ulz\ (ii) differentiable; (Hi) strictly monotonically increasing on its support 

and (iv) 0 < F£(e) <  1 for any e € R

A ssum ption  3. 2 E(£j\x)  = <p(xj) 7  ̂ 0 for all j  £ $

A ssum ption  3. 3 There exists at least one product characteristic k £ K, such that xjk 7  ̂

x gk for each pair j , g  £ ^

A ssum ption  3. 4 rank(X )  = K  with K  < J  and there is no proper linear subspace of 

having probability one under the probability distribution of Z, Fz

Assumption (3) rules out the possibility that there exist two products with exactly the 

same available observed characteristics. This implies that it is not possible to have two 

identical rows in the matrix of product characteristics X .  This assumption is im portant 

in order for our choice probabilities to be well defined and for our identification strategy.

Assumption (4) ensures full column rank of the matrix of product characteristics and 

also a limiting rank condition for the individual characteristic random variable.

T heorem  5 (P a ra m e tr ic  Id e n tific a tio n  o f  the  P u re  C h a ra c te r is tic s  M odel w ith o u t

£) Let consider the parametric model defined in definition (2). Under Assumptions 3.(1)- 

3.(4) and (i) £ • — 0 V? £ Qy (ii) Z  is a random vector of individual attributes which

has a un ique m axim um  at 6 °. A necessary  con d ition s for th is to  be satisfied  is th a t

j
Pl  i d 3 =  l b -  X ,  6 °; F ° )  log Pr (dj  =  l \ z ,  X , 0 ; Fe)

j =0
<  0 0

(N ew ey and  M cFadden (1 9 94)). W eaker con d ition s are po in ted  o u t by Van der Vaart (1998).
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dimension M  > 2 where at least two attributes have unbounded support; (Hi) there are at 

least two observed product characteristics K  > 2; and (iv) there exist at least two indi­
vidual attributes s 7  ̂ m  such that for at least one product characteristic k is satisfied that 

Q® km ^  Oiks, then the true value of the parameters 6 ° (such that 6>§ 7  ̂ 0 ) is identified up 

to a scalar scale with respect to any other 9 £ 0  (such that 6 2 7  ̂ 0 )

P ro o f. See in Proof’s Section ■

The intuition behind the identification proof is the following. The idea is to find those 

values of the individual attribute Z  in (3.18) such that there exists at least one choice 

probability that differs for different values of the parameters, or equivalently, those values 

of z such that the equality of choice probabilities for all j  imply also the equality of I 

parameters. The difficulty that arises from the choice probabilities derived in section (3.3) 

is that they depend on two different indices (the upper bound and the lower bound for the 

unobserved taste variable e). This is not the case in the standard discrete choice model 

where the probabilities depend on a unique index. For each product, we consider all its 

possible positions in the inner product ordering with respect to 6 2  and O®- We then define 

those sets of Z  such tha t we can bring either the upper or the lower bound to infinity so 

that the choice probability of each product only depends on one of them. By inspecting the 

expression for the upper and lower bound indices in (3.14) and (3.15), it is easy to see tha t 

we can fix one of them and bring the value of the other one to infinity if the characteristics 

of the products on which the upper and lower bound depend are different and there exist at 

least two unbounded individual attributes. This guarantees tha t the set of 2: has a positive 

probability and the last step is to show that when the choice probabilities depend only 

on one index, the equality in probabilities implies equality of the parameters of interest 

as well. This last step is similar to the identification of standard parametric models with 

the particularity that now the indices consist of a ratio where both the numerator and 

the denominator depend on the parameters and consequently only identification up to a 

scalar is possible. Consequently, in order to identify the sign of the coefficients, we would 

need to impose some assumptions or restrictions on the sign of the param eter we decide 

to normalize.

It is interesting to note that if only one observed product characteristic is available 

(K  =  1), the model only predicts positive probabilities for the first and the last products 

placed in the ordering in (3.10).
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When the characteristics space is unidimensional, if j  7  ̂ ( l ) 02, j  7  ̂ (J )02 then the upper 

and lower bound of the choice probabilities are

A A j ( z i , x ; 0 )  =  'rL and A A Az i , x \  6) =
“ 2 V2

and consequently, the choice probabilities Pr (dj = 1| X , z \ 6 ,F®) — 0 for all j  7  ̂ (1 )02, j  7^

(J )6*2. The only choice probabilities different from zero are

Pr(dj =  1| V,  6, F°)  =  F°  )  if J =  W *2

Pr(d, =  l|X ,z ;0 ,.F £) =  l - i ? ( - ^  i f j  =  ( J )"2

These unattractive predictions of the model arise because the unobserved heterogen­

eity in tastes over a unique product characteristic is not enough to capture the diversity 

observed in demand in the data. We believe that there may exist a necessary relationship 

between the number of available choices in the data and the number of observable charac­

teristics in order for the pure characteristic model to be able to predict reasonable choice 

probabilities.

In the next Theorem we consider the identification of the parameters 9 when there 

are unobserved product characteristics (i.e. £ 7  ̂ 0). If vector of individual attributes Z  

includes also a vector of ones, then there exists a mean utility term for each product that 

does not vary across individuals. Denote by 9 the parameter associated to this mean 

utility term, then the utility function assumed in (3.2) can be rewritten as in

Uij — 900j -|- 9{Xj -(- ^j

By fitting product specific constants in the utility function one could identify all those 

elements in the utility that does not change across individuals. Let denote these product 

specific constants by 5j which capture both the mean utility of the observed product 

characteristics plus the unobserved product characteristics

6 j = d x j + £ j (3.20)

By Assumption 3.(2), the unobserved product characteristics ^  and the observed 

product characteristics xj  are not assumed to be independent . For example, when firms set 

prices, they consider all the product characteristics that may not the available to the eco­

nometrician and that are captured in £14.The econometric issues tha t arise in this case in

14 A lth ou gh  other product characteristics different from  price are likely to  be correlated  w ith  £, prices  

have been the variable typ ica l used  to  illu stra te  th e  endogeneity  problem  in th ese  m odels.
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an aggregate model have been considered in Berry (1994). This simultaneity bias appears 

to be less im portant in a microdata model as the one considered here.

However, the fact that there are omitted variables is still a problem even when mi­

crodata is used. In this case, consistent estimates of the vector of product specific constants 

5 are obtained and IV can be used in (3.20) (using a consistent estimate of vector 6) to 

control for the endogeneity of prices in the estimation of param eter 9.Vo In the next the­

orem, we denote by 0  the parameters imbedded in 9{ (i.e. 9\ and #2) so that the product 

specific constants have separate notation.

T heorem  6 (P a ra m e tr ic  Id e n tific a tio n  o f  the P u re  C h a ra c te ris tic s  M odel w ith

£) Let consider the parametric model defined in definition (2). Under Assumptions 3.(1)- 

3.(4) and (i) 7  ̂ 0 for some j  € (ii) Z  is a random vector of individual attributes

which dimension M  > 2 where at least two attributes have unbounded support; (Hi) there 

are at least two observed product characteristics K  > 2; and (iv) there exist at least two 

individual attributes s 7  ̂ rri such that for at least one product characteristic k is satisfied 

that 91 km 7  ̂ 91 ks, then the true value of the parameters 90 (such that 9® 7  ̂ 0 ) is identified 

up to a scalar scale with respect to any other 9 £ © (such that 9<i 7̂  0) and the differences 

of the product specific constants of each product with respect to a base product , say product 

0, Sj 1 =  5j — 5 1 are identified.

Proof. See P roof’s Section ■

3 .4 .2  Id e n tif ic a tio n  co n d itio n s  for th e  sem ip a ra m etr ic  m o d e l

T heorem  7 (Sem iparam etric Identification w ithout £ ) Let consider the semipara­

metric model defined in definition (3). Under Assumptions 3.(l)-3.(4) and £ • =  0 V 

j  6  (ii) Z  is a random vector of individual attributes which dimension M  > 2 where at 

least two attributes have unbounded support; (Hi) there are at least two observed product 

characteristics K  > 2; and (iv) there exist at least two individual attributes s 7  ̂ m  such 

that for at least one product characteristic k is satisfied that 9® km 7  ̂ 9\ fcs, and (iv) there 

exists at least one variable zm with 9® krn 7  ̂ 0 for at least one k such that conditioned on 

the other elements of Z , the distribution of zm has everywhere positive Lebesgue density.

1,1 It should  be noted  th a t th e  issue of en dogenou s prices is im portant to  be considered  on ly  w hen an 

estim a te  o f 0  is needed (for exam ple to  com p u te  cross and own price and produ ct characteristics e la s tic itie s). 

For those app lica tion s in w hich on ly  an estim a te  o f £ is needed, one can disregard th e  en d o g en e ity  problem .



Then, the true value of the parameters 6 \m for m  =  2 , M  and 92 (such that 92 ^  0) is 

identified up to a scalar scale with respect to any other 9 € 0  (such that 9 2  i=- 0)

P ro o f. See Proof’s Section ■

In order to identify the finite dimensional preference parameters, only the median inde­

pendence assumption of e and Z  is needed. However, if the stronger condition of statistical 

independence between the unobserved and observed individual attributes is assumed, then 

also the distribution of Fe is identified up to scale in addition to the identification of the 

preference parameters in the utility function 9(m , 992 for m  = 2, ..,M  (See Corollary 5. 

Proposition 2 in Manski (1988)). The identification up to scale implies tha t the taste 

preferences parameters for one of the attributes and for all the characteristics should be 

normalized to 1.

It should be pointed out that the additional assumption of continuity in at least one 

individual attribute is required when the distribution of the unobservables is assumed to 

be unknown. The way the proof evolves requires stronger conditions on the support of Z  

than in the parametric proof (i.e. a more strict subset of Vtz is required to have positive 

probability in order to be able to identify the parameters of interest). However, given 

that we are providing sufficient conditions, the same unboundedness condition on Z  in the 

parametric proof is also sufficient in this case.

The access to microdata has allowed us to identify the distribution of the unobserved 

tastes over product characteristics. As it has been pointed out before in this work, this 

is im portant because it is usually difficult to know apriori the appropriateness of any 

parametric assumption imposed on the distribution of the heterogeneity in tastes. This 

constitutes the major advantage with respect to the setting where one only has access 

to aggregate data (as in Berry and Pakes (2003)). In that case, the semiparametric 

identification of the preferences parameters and the taste distribution is much harder to 

achieve, and the conditions under which this is possible have not been studied yet.

Prom the choice probabilities derived before, it can be checked tha t the dimensionality 

problem does not change with the number of alternative or products in the market but 

with the number of characteristics considered. 1(3

lf’T ackling the e stim a tio n  of th e  identified  param eters in 6 ° and F e is an in terestin g  and im p o rta n t issue  

th a t would be prioritary to incorporate  in future versions o f th is work.
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3.5 Conclusions

This work studies the conditions under which the preference param eters of a pure charac­

teristics model with microdata are identified. The model we consider here does not include 

the iid random term with full support that is usually considered in the utility function in 

standard approaches. We justify this model in terms of the counterintuitive implications 

of standard assumption of the product specific unobserved heterogeneity, especially when 

the discrete choice model is used as a structural model of demand and policy issues re­

lated to the change of products in the market are under consideration. The differences in 

the interpretation of the unobserved tastes over products and characteristics between the 

standard model and the one considered here are discussed.
For the parametric case, we conclude that the parameters of the utility function are 

identified up to a scalar constant. The identification requires at least two of individual 

attributes capturing the observed heterogeneity in tastes with unbounded support. Other 

identification conditions include full support of the matrix of product characteristics, no 

identical products should exist on the basis of the observable characteristics and also 

multicollinearity between the different individual attributes should be ruled out. We also 

show results for the identification of the alternative specific constant, which include the 

unobserved product characteristics and the product specific mean utility. The possibility 

of estimating these product fixed effects allows us to control for the endogeneity problem of 

prices that arises in these models where unobserved product characteristics are considered.

One of the main advantages of the model considered in this work is that not only 

allows us to semiparametrically identify the preference parameters but also their estimation 

would be computationally feasible regardless of the number of products in the market 

(as apposed to the standard multinomial discrete choice models). For the semiparametric 

model, the sufficient conditions to identify the preference parameters (after normalizing the 

parameters for tastes over all observed product characteristics for one individual attribute) 

and the distribution of the unobserved consumer tastes up to scale need to be strengthen 

with respect to the parametric case to include at least one continuous individual attribute.

In terms of future work, the estimation of both the preference parameters and the 

distribution of the unobservables will be studied in both the param etric and the semi­

parametric model. A large amount of scanner data has become recently available to 

practitioners. This data includes repeated observations of the household purchases for an 

extensive list of products along with individual specific information about demographics,
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income and consumption habits and detailed information about the characteristics of the 

products they consume. This constitutes an ideal setting to apply the model considered in 

this work. Additionally, it would allow us to analyze how repeated choice decisions for the 

same individual over time helps in the identification of the parameters of interest. Finally, 

we are also interested in deriving statistical tests able to assess which model of preferences 

describes better the observed choices in the data. We think tha t a more general model 

than the one studied here where the heterogeneity in tastes relies on more than one un­

observed product characteristic would be a fruitful extension of the actual model and also 

less restrictive tha t the standard models where each product introduces a new dimension 

of unobserved differentiation.

3.6 A ppendix

A ppend ix  A l:  Sufficient conditions to  construct i.i.d as a product o f  unob­

served product characteristics and individual tastes

Consider the notation introduced in section (3.2.3) and let f y  be the joint density of 

the vector of unobserved tastes { fy (vn,

Using the transformation technique we can obtain the joint density of vector E{ from 

f y .  Thus,

/z?(Ui, =  |E _1| f v  (E -1  x Ei)

where m(r, s) is (r, s) — th element of matrix E _1.

Assume (i) that V{r are independent across r and i and identically distributed across 

i, so that the joint distribution of Vi is

J

fv iy i l  Vij) — fs (vsi)
S  —  1

and (ii) matrix E of unobserved product characteristics is diagonal (//(r, s) ^  0 if r =  s, 
0 otherwise), which also implies matrix E _1 is diagonal (m(r, s) ^  0 if r  =  s, 0 otherwise). 

Under assumptions (i) and (ii), then

j
/e(cz1, =  |E “ 11 Y [ f s{m(s1 s)esi)

s= 1

J J

£ - 1 l f y  (
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Therefore, conditions (i) and (ii) are sufficient conditions in order for vector Ei to be 

independent across products j. Since Vi is independent across i so is Ei.

A ppendix A .2: Independence o f V  and diagonal E is not sufficient for i.i.d

El
Consider the case of J  =  2 where random errors {eu, ^ 2} are i.i.d with joint distribution

//?(<hi,<h2) =  9(*n) -0 (^ 2)

If these errors are expressed as linear combinations of tastes derived from a J —dimensional 

vector of unobserved characteristics as in (3.6), we show tha t the independence of en and 

Ei2 does not directly imply independence of vector Vi and a diagonal matrix E. 17Using 

the transformation technique we have the following equation for density functions of Ei 

and Vi

g(en)  • =  |£ _1| f v  {m( 1, l)eii +  m (l, 2)e2»,m ( 2 , l )eu  +  m (2 , 2)e2i)

Using notation un =  m (l, l)ei* +  m (l,2 )e2*, i/*2 =  m(2, l)ei* +  m (2,2)e2z we obtain 

the following system of differential equations

9 ' ( ( a ) jK (vii , ^ ) - m ( l , 2) a / y( : ^ a ) = 0
dvx\ dv i2

f  ( \ (■> n\ d f v { v n ,  J/i2) , . s d f v { V i \ i V i 2, nf v \ y i \ ^ i 2 ) -  rn{ 1 ,1)------—-------- -  771(2 ,1 ) ------^   =  0
0 (e*i) "" ^  dvn  d v i2

Using both equations we obtain the following differential equation for î 2

'g'(ei2)
_g(ti2 ) ra(l, 1) g(en ) . f v i v n ,  V12)

m(  2 , 1)
_m(l, 1)

T m(2, 2) d f v { y x\,Vii)
dVi2

0

Solving for the joint distribution of f v ( v n , V i 2 ), if can be checked tha t errors (i/^, vi2) 
do not need to be independent or /r(2 , 1) =  0 or / i ( l ,2) =  0 to generate independent 

(Cil>ei2 )

f v { v n , l ' i 2 ) =
______________ 1___________________________________________   — m (  1, 2)____

9(m(2. 1)^1 +  m(2, 2)i/i2) 1, 1 ) ^ ,  +  M(1> 2)l/i2r <1,1,H1,d S ^ +m<2' d

11 T h e  nota tion  used is £  =  I ^   ̂ ^ ( > ^)
M(2, 1) M2, 2)
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3.7 Proofs

P roof o f  T heorem  (5) (Param etric Identification o f th e  P u re C haracteristics  

M odel w ithout £). For the case in which there does not exist unobserved product 

characteristics we need to redefine the indices at which the choice probability evaluate the 

distribution function Fe. Let these indices without unobserved product characteristics be 

denoted by A A j(z{,x; 9) and A A j i z ^  x; 9) whose expression is exactly the same as for the 

homologous A3 and Aj  but with =  0 Vj 6  S.

Let ® be the Kronecker product and let WjS. ^  =  (xj — x s <g> z\ and A Xjs. ^  = 

(x sij(0 ) ~ x j) f°r — {rS^}- Thus, vector Wjr.(o) contains all the interactions between the 
M  individual attributes in Z  for individual i and the differences between the K  product 

characteristics of product j  and the characteristics of that product that minimizes the 

upper index of the choice probability for j  for the parameter value 6 . The first M  rows are 

interactions of the first product characteristic with all the individual attributes. Therefore, 

the indices evaluated at the true value of the parameters 9q are

;0/,

AAj ( z i , x - , 0 ° )  =  

A A A z i , x \ 9 ° )  =

ie i x zi ) ' ( x3 - ^ ( f l 0)) =  0 i W jrii<?>)

@2 ( x j n ( 0 ° )  ~  x j )  ^ 2 ^ x j n ( 0 ° )

( ° i  x *i)' (x 3 ~  x Rt j (e° ) )  Q i W j K i o 0)

^2  ( X j R i ( 0°) ~  Xj )  ^ 2 ^ x j R i ( 0°)

where Q\ — vec and (P2 = vec [0 ®] = O®.
Suppose the following equality of probabilities hold for 9 ^ 9 °

Pr(dj = 1 | X , z ; 9 ° )  =  Pr (dj =  1 | X , z \ 9 )  for all j  G 3  a.e in Z

Then, with probability 1 in Qz  ar*d for every j  £ S  except for j  = ( l )6*2, j  — {J)e‘2, j  = 
( I )6*2 and j  — (J )°2 the above identification condition implies (using (3.16))

Fe{t]il) — F£{tji2 ) = Fe(tji\ + tijii) — F£ (tji2 + Sji2 ) (3.21)

where,

t jn  =  A A j ( z i ,  x; 9°) t j i2 = A A j ( z i ,  x; 9°)

Sjn =  A A j ( z i , x - 9 )  -  A A j ( z i , x ] 9 ° )  sj i 2  =  AA,-(z*,x; 9) -  A A A z ^ x : 9 ° )

301 _  nO 18

18D efine v e c ( Y ) as th a t operation  w hich ap p en ds all the tra sp osed  rows o f a m a trix  Y  o f d im ension  

K 1 x  K 2 in a colum n vector o f d im ension  K 1K 2 ■ N o te  th a t since 62 is already a colum n vector vec{Q2 ) =  6 2 -
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When j  is one of extremes of the ordering with respect to #2 or #[>, the following choice 

probabilities arise

F & j i i) -  F€(tjii) =Fe (tji 1 +  sj a ) if { j  =  ( l) e2,J  /  (3-22)

F i f e i )  (ha  + Sja) ~  Fe (tja  +  sj a ) if { j  ±  (1 ?  ( J ) e\ j  = (1)"§}

(3.23)

F S j a )  ~ F S , ti) =1 -  Fe (t]i2 +  S j i 2 ) if { i  =  (J )<>i, i * ( \ f h i ? ( j f * )  (3.24)

1 -  Fe(tji2 ) = K  (t jn  +  Sjn) -  F, (tji2 +  Sja)  if [ j  /  ( J f 2, j  /  ( J f 2, j  =  ( J ) 0"}

(3.25)

1 -  Fc(tja) =1 -  Fe (tji2 + Sj,2) if {j =  ( j f 2, j  = ( j f 2} (3.26)

i v f e i )  =  F£ (tjj, +  Sj,,) if {j =  (1 f 2, j  =  (1)°°} (3.27)

1 -  F€(tji2) =  -Fi (Oil +  Sjii) if {j = (1 )°2, j  = ( J f 2) (3.28)

F;(ha)  =  1 ~ F € (tji2 +  . ^ 2) if {j =  (J)°2, j  =  (I)"2} (3.29)

In cases (3.27) and (3.26) -where the product j  is either the first or the last one with

This is because expressions (3.27) and (3.26) imply Sjn =  0 or SjX2 — 0, which as it is

values of the parameter that make reverse the order with respect to #2, as in (3.28) and

respect to 6 2  is as in (3.21) -(3.25), let consider indices tji and t j 2 as an inner product of 

the vector of individual attributes Zi as follows

By definition, and R VĴ °) are two different products and by Assumption 3. (3) they

differ at least in one characteristic. Therefore, both indices t jn and tji2 vary in a different 
way with respect to vector zx.

Therefore, as long as the dimension of the individual attributes vector is greater than 

2 (M  > 2) by condition (ii) of this theorem, the value of the index Uji can be held fixed

respect to the inner product ordering under both O2 and 0 j] — the identification is easier.

shown below implies identification of 9° with respect to 9. A special note deserve those

(3.29).

For the identification of 9° with respect to parameters 9 such tha t the ordering with
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while the value of the index £^2 changes. For example, for continuous Z\  and Z2 with 

M  = 2, the slopes of isoquant curves for Uj\ and £^2 in a two dimensional space are

Z L l  &l , k2 ( %j k  — x r lJ{e0 ) k Sj  

'l2 k = l  (̂ x j k  ~  x r , 3 (0Q)k^

Y l k = l  @l ,k2 {̂ Xj k  ~  x R l j {Q0 ) k SJ 

E f c = l  (^ jk  ~  x Ri3(do)kSj

If o\ k2 7  ̂ ^ ^ 2  for some k as condition (iv) in this theorem requires (i.e. there is at 

least one product characteristic for which the individual tastes associated to Z\  and Z 2 

are different), then both slopes above differ from each other.

This example also illustrates the need of having more than one product characteristics, 

since otherwise both indices t tj \  and £^2 would be equal.

Given that equations (3.21) to (3.25) hold a.e in Z, the key of the identification proof 

is to find a set of values 2 C Viz with positive probability for which one can conclude the 

equality of the two vectors of parameters (9 = 9°). This set is found by keeping either Uj\ 

(or Uj‘2 ) fixed and driving £^2 (or U j \ )  to infinity.
Let define

t \ j ( 9 ° ,9, X )  =  {z% G Viz such that t jn = t \ j }

T 2 j ( 9 ° , 9 , X )  = {zi G Viz such that £^2 =  £2;}

Next, for each j, we define the subsets of T2j or T\j - denoted by pj- which make the 

equality of choice probabilities at 9 and 90 in (3.21)-(3.29) as a function of a single index 

(either t j i  or £̂ 2).

If j  7  ̂ (1 )02, j  7  ̂ ( J ) 02, j  7̂  (1)0° and j  7  ̂ ( J )6*2, this set is defined as follows 

Pj(9° ,9,X)  =  {zi G Tij C Viz such that tji2 —> cxd}

The purpose of building this set is tha t for those values of Z, the choice probabilities 

in (3.21) can be simplified as

Fe(tjn) = Fe (tjn  +  Sjn ) if Zi G pj(9°, 9 ,X )

Given that the cdf Fe is assumed to be strictly increasing, the above equation implies

Sjil = 0 .

0 z2 i
d z Vl

d z 2i

dzu

'ij 1

' i j 2
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For equations (3.21) to (3.23) index tij2 needs to be driven to + 0 0  or - 0 0  in order 

to write the choice probabilities as a function of a unique index. For equations (3.24) 

to (3.25) we need to drive index Uj\ to + 00 . Equations (3.26) to (3.29) have immediate 

consequences over the parameters without restricting the support of Z.

Thus, when j  is one of extremes of the ordering with respect to 6  or #°, the set 

Pj(6 ° , 6 , X )  is defined as follows 19

Pj(0°, 8 , X )  =  {z, £ Tij C Qz  such that tj a  -> - 00} if {j = (I)®2} or {j  =  (1)"°}

Pj(e0 , e , x )  =  {z, e Uz]  if U = (1 f \ j  =  (1)"“}

Pj(8 ° , 8 , X )  =  {z, 6  r 2} C fiz  such that t}i 1 00} if {j  = ( j f 2, j  /  (J)"”} or { j  ^  (J ) 02, j  = ( J )02}

Pj ( 6 ° , e , X )  =  {zi  € fiz} if { j  = ( J f 2d  = ( J f 2)

We separate the cases for which Uj\ has to go to + 00/  — 00 (products belonging to the 

set 3q) from the cases in which Uj2 goes to + 00/  — 00 (products belonging to the set ^ 2) 

as follows V

( j  such tha t j j  =  (J ) e\ j  ^  (1)02, j  ^  ( J ) 62 j  

3 h (M °) =  |  or {j  ±  (J)9\ j  ±  = (J )6°2}

{ or {j  ^  ±  (1 ) ° \ j  ^  (J )6°2J  ^  ( l )0*}

o ( 3 such that ( j  =  (1 )9\ j  ±  (1)*2 ,j ^  ( J ) ^ l

{  o r | j  =  ( l)6K j  ^  (1)02J  ^  (J )62}

Let define

p ( 8 ° , e , x )  = u-’=1pJ( e ° , e , x )

as the set of Qz  such that at least one of the product probabilities is w ritten only as a 

function of tij\ or ttj 2 .

Then, for each value z G P(9°, 6 , X ) ,  there exist at least one product j  for which the 

probabilities in (3.21)-(3.27) become

F£(t2j) =  Fe (t2j +  Sji2) for z G Pj ( e ° , e , X )  where j  G 9 i ( M ° )  (3.30)

Fe(tij) — Fe (tij +  Sjn) for z G Pj{Q°,6 , X )  where j  G ^ ( f l ,# 0) (3.31)

19N o te th e n  th at for th e  cases w here { j  =  ( 1  ) 02, j  =  ( l ) 0<2} a n d  { j  =  ( J ) 02, j  =  ( J ) 6*2 } , the set p 0 (G, 9°,  X )  

does not restrict the sam p le space o f random  vector Z  since the probab ilities are a lready a fu n ction  o f a 

unique index.
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Note that if the sets pj(6 ° , 6 , X )  are disjoint across j ,  then for each z £ P(0°,Q,X)  

there exists only one possible product j  for which its probability is w ritten as a function 

of a unique index Uj. However, in general each element z  in P(0°, 9, X ) may belong to one 

or more sets pj(9° ,0 ,X).

If by condition (ii) in this theorem, there exists at least two variables in Z  with large

enough support on the entire real line, then we can ensure that

Pr {z £ n z n P ( 6 ° , 0 , X ) }  > 0 , V 0 E 0 , ^ 0 °  and 92 ^  0

since either Uji or tij2 can be brought to large values by increasing or decreasing the values 

of these particular attributes. This assumption though allows to have discrete individual 

attributes. The rest of the individual attributes are allowed to be discrete.

Therefore, for each ~ belonging to set P(90 , 9 ,X ) ,  there exists at least one product j  

that depends only either on t j 2 or tj\.

Let define for each 2 £ pj that set of products for which the choice probabilities can 

be expressed as a function of a unique index Uj

Qu  =  Q\{zi ,9Q, 9 , X )  = [ j  £ 9q(0,0°) such tha t Zi £ pj(9Q, 0 , X ) }

Q2i = $ 2( ^ , 0° ,# ,X )  — { j  £ $ 2(0 , 0°) such tha t Zi £ pj(6 ° , 6 , X ) }

Thus, if j  belongs to Qu  the choice probabilities of product j  for individual i are only 

a function of Uj2 and Sij2 (and not of Uj\)\ and viceversa for those products belonging to 

Q 21 ■
Consequently, define those subsets of P (9° ,9 ,X )  C implying either tij2 —> + 00/  — 

00 or Uji —>■ + 00

px((P,e,x) =  uje^ ie,eO)Pj{0o,9,x) 
p2(o°,e,x)  =  u^MO^ )Pj(e°,0,x)

20

By Assumption 3. (1) and from expression (3.30) we can conclude that

sn2 =  0 , vz i €Pi (e0, e , x ) X j € Q u  

sn  1 =  0 , V z i e P 2( 0 ° , e , x ) y  j  e Q 2i

20Note that P{0° , e , X)  =  Pi (6° ,9,X)  U P2{d°,6,X)
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Using the notation  introduced above for Sj3i and s.LJ2 ,

AA A z i , x \ 9 ) A A  J z t , x ; 9 0) ,Vz2 G Pi(0°,0 , X),V j  € Q u (3.32)

AA j ( z z,x\Q) =  AA j(z i ,  x; 0°) ,Vzi e  P2 (0 ° , 0 , X ) , \ / j  € Q 2i

This implies

~e  1 W jRi(Q)  
0'2A  x jRiie)

®\Wjn{Q)
02 A  Xjr^Q)

~e> ^ )

0%&xjRi(0°)

6 0l W 3r,«>°)

&2 &xj ri(e0)

or equivalently,

y z , e P i ( e (l, e , x ) y  j  e Q u

y z i e p 2 (0 ° , 6 , x ) , v  j  e Q 2,

■0 /
t W w , )  -  p ,  wjRi{l•>) (e'2A x } R m ) = 0

y z t e p 1 (0 ° , 0 , x ) , v  j e Q u

(S'lW'jr.m) («S'^r.(«»)) -  (^'W JT.i(0O)) (0'2Ax]rim) = 0

y z i e  p2(e°,e,x),v j eQ»

(3.33)

(3.34)

(3.35)

(3.36)

Using the above notation for each of these vectors, expressions (3.33) and (3.35) above 

are equivalent respectively to

40M

E
m — 1 

M

E
m= 1

Y l k - l  { @ l k m @ 2 k  {^x j k  x R i ( Q ° ) k ' j  Z i m  ( X R i { d ) k  x j k )  +

+  z C f c = 1 Y l k < s  (@lkm@2s ~  ( x j k  ~  x Ri (e°)k)  ( X Ri{6)s ~  x j s )

] C f c = l  ( ^l km@2k ~  9 \ k m 0 2 k j  ( Xj k  ~  Xn ( 0 ° ) k j  Zi m  ( x ri(0)k ~  x j k )  +  

P ^ l k - l  Y l k < s  \ f l k m ^ 2 s  ~  9 l s m0 2 k J  ( x j k  ~  Xri(Q°)kJ Zi™ ( x ri(6)s ~  x j s )

=  0

=  0

Let express equations (3.33) and (3.35) in a matricial way. Let n\  be the number of 

values of Z belonging to P i ( 9 ° , 9 , X )  and, analogously, ri2 be the number of values of Z  

belonging to P2(0°,9,  X ) .

Let consider the matricial expression for this system of equations

~ Wi  V i ' B w

_ w 2 v 2 _ . B v .

-  0 (3.37)

where W t is a matrix of dimension ( 'f o E S i  Qu) x K M )  for t =  {1, 2 } 

and Vt is a matrix of dimension(nt(Yu=i Qu) x for t =  {1, 2 }.



A representative row of matrices W\ and W 2 for an individual i is expressed as

{  ( X̂ j k  ~  x R t (0°)k^j Z i m  { X R i ( 0 ) k  ~~ ’ Z'L ^  j  6  Qu

2 i =  ^  ^ ( X̂ j k  X r l (0°)k^j Z i m  ( x r, (Q)k  5 ^  A " ), j  £  Q ‘2i

A representative row of matrix V\ and V2 of an individual i is expressed as

— | (̂ x j k  — x R 1( 9 ° ) k j  { x R i ( 9 ) s  ~  xjs) j>/c_ 1  ̂ I , Zi € Pl{0°,8,X) ,  j  (z Q]

=  ^  ^  ^  (̂ x j k  ~  x n{0°)k^ Zim { XTi(d)s — x j s )  ^  ^  ’ Zi ^  5 ^ ) A T ) , j  6 Q 2 i

B w  is a column vector of dimension M K  and B y  is a column vector of dimension 
( / \ A Y  wjlose elements are expressed as

M

k<s J rri—1

The only way one can obtain multicollinearity across and between the columns of W  

and V  is when matrix of product characteristics X  does not have full rank and when there 

exists a proper linear subspace of the individual attributes Z. Since this is ruled out by 

Assumption 3. (4), then matrix [kTVj'fiyV] is full rank in the limit, so that it can be 

concluded that B w  = 0 and B y  = 0.

Thus,

#ikm^2k =  OikmO^k for every k =

9°ikme2s = OikmQls for every k =  l , . . , K ] k  < s; m =  1, M

This system of equations does not have a unique solution. In fact, it has infinite

ways of expressing 9 as a function of 6  ° 21 Therefore, since not all the elements of the

vector of parameters 9 are identified, we need to impose some normalization and define

21 T he system  of eq u ation s [ B w  B v ] =  0 can be expressed  as

c(e°) x e = o

in order to  solve for 0 as a fun ction  of 0°. E ven for K  >  2, m atrix  C ( 6 °)  has not full rank.
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the parameters that can be identified. For simplicity, we normalized param eter $21 =  1 so 

that all the parameters are identified up to this scalar scale.

From the equations corresponding to k = 1

f
0 iim =  for every m  

* 2 1

The parameters of 9\ corresponding to characteristic k = 1 (normalized characteristic) 

and for all the individual attributes are identified as the ratio of the true parameter and 

the normalized parameter.
From the equations corresponding to s = 1, we are able to identify the parameters 0\ 

associated to all the interactions between the K  product characteristics and M  individual 

attributes.

01 k m  =  - ^ F 1 for every (3 -38)
021

From equations corresponding to s 7  ̂ 1, we obtain

0 Q2

0 1  k m =  01fcm 7cT fo r  e v e f y  k i m  ( 3 -3 9 )
^2 s

From expressions (3.38) and (3.39), we obtain the identification of the unobserved taste 
parameters,

6 0
025 =  7^  for every s ^  1

021

If o\krn = 0 for some k and m, given that 92 7  ̂ 0, also the value of 6 \km is zero. QED.

P roof o f T heorem  (6) (Param etric Identification o f the P ure C haracteristics
M odel w ith  £).

The upper and lower indices are now defined as

* 0 , 0, $  ~  +  x z*)',0 ) — -Q-
6 2  -  X j )

Aj(Zi,z;0°, '5O) = — ------^ o0,

The proof mimics the one without product fixed effects up to expressions (3.33) and (3.35) 

with some changes in the notation to make the upper and lower boundary products also
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dependent on the fixed effects (i.e. and Rij^o^0))- These two expressions become

now

&1 WjRi(0 fs) +  (Sj -  6 Rij(0 '5^  ( 6 ^ A x jRi^o 6o^j -

f i  +  ( '’i  “  (02A ijH,(«,J)) =  0

,Vzt e  j  e  Qu

(3.40)

QlW]T,(6 ,6 ) + (<5 (3.41)

^1 W jr,(6°,S°)  +  ( (5j “  (5r y ( 0 o .<S0) ) )  ( 0 2 ^ x j r , ( 9 , i ) )  ~  0

y z , € P 2 ( 0 O , 6 ° 1 0 , 6 , X ) , \ / j e Q 2 ,

Using the above notation for each of these vectors, expressions (3.40) and (3.41) above 

are equivalent respectively to

y ^ M  £ f c = l  ( ® l k m @ 2 k  ~  $ l / c m $ 2 f c )  ( x j k  ~  x T i ( 0 °  , 6 ° ) k ^  Z i m  ( x T t ( 0 , 8 ) k  ~  x j k )  +

T  Y l k - l  Y 2 k < s  ( ® l k m ® 2 s  ~  ^ I s m ^ k j  ( x j k  ~  x T i(0° , 6 ° ) k j  Zi™ ( x Ti(9,8)s ~  x j s )

+  ^ 5 j  -  Sr i j (0tg ^  Y ^ k = \  ® 2 k ^ x j T . i e 0 , 8 ° ) , k  ~  ~  ^Tij(0°,6° ) )  5 2 k = l  ® 2 k A x j T i { 0 , 6 ) , k

for T  = {R , r}

After adding and substracting ^5j — 5^(0° 6°)) 'Yhk^i^2k ^ x jTi{e,5 ),k f°r T  =  {R,  r}, 
we can express the condition above in a way tha t can help us in the identification,

£ / c =  1 ( @ l k m @ 2 k  ~  ^ l k r n ^ 2 k j  ( X j k  ~  x T i ( 9 °  , S Q ) k ^ j  Z i m  ( x T i ( 9 , 6 ) k  ~  x j k )  +

T  £ * = 1  Y 2 k < s  ( @ l k m @ 2 s  ~  & l s m & 2 k ^  j k  ~  x T i ( 9 ° , S ° ) k j  Z i m  ( x T i ( 9 , S ) s  ~  x j s )

~  ^ \ j ( 9 , S ) j  J 2 k = l  6 2 k ^ x j T l (0°,6°) ,k ~  ( f y  -  ^Tlj (0°,S°)  ) £ * L l  ^ 2 k ^ x j T t (0,8),k

=  0

Z^m= 1

+

+ d j  ~  ^TlJ(0°160) )  ®2k ~  [ f j  ~  STlJ(0°,So) )  ®2k A x j T x(9,5),k

=  0

(3.42) 
for T  =  {R, r}

Let express equations (3.42) in a matricial way. Let define rq and ri2 as in Theorem

(5).

Let consider the matricial expression for this system of equations

B w
Wi Vi I, Ci 1 B v
W 2 V2 I 2 C2 J B  j

B e

= 0 (3.43)
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where matrices W t and Vt are defined as in theorem (5), Ct is a matrix of dimension 

(n * G = i  Qu)  x J { J  ~ 1)^0 > h  is a matrix of dimension Qu)  x  J ( J  ~  l ) 2-^) f°r
* =  1, 2 .

Generically, matrix C\ contains the difference between the characteristics of the product 

in the lower boundary Rij{9 , 5) and product j, for each individual with Z{ E Pi(9°, 6° ,6 ,5 ,X )  

and j  E Qu.  The structure of C\ consists in three blocks. There are J  blocks, one for 

each product j  E Qu-  Each of these blocks has K  blocks for each product characteristics. 

Then, for each product j  and characteristic k, there are J  — 1 columns where only one 

value is different from zero for each individual/product (row). Only column Rij(6 ,5) has 

value {xR i (6 $) k — Xjk) for each row i for the column block corresponding to j  E Q u  and 

k. Matrix C2 is defined accordingly for ri(9,6).
The expression for B e  has to be defined accordingly to the definitions of C\ and C2. 

Thus, B e  is a column vector of dimension J ( J  — 1 ) K  whose elements are expressed as

B e  =  |  {  {(<5; -  <5.) -  (S°j ~  <5° )  M . : , 1 } L  }  ( 3  4 4 )

Thus, B[ is a column vector of dimension J ( J  -  1 )2K  whose elements are expressed as 

Bi  =  ^ { { ( ^  -  -  (5j -  Sh) &2k^xja,k}j ”, |  (3-45)

Matrices I\  and I 2 are matrices of zeros except for certain cells that take value one. 

For each row/individual, there exist as many columns as combinations between 5j,5s and 

5h- For example, for an individual with z\ G Pi(#°, <5°, 9 , 5, X )  and j  G Q u , row of matrix 
I\ has value one in the corresponding cell for all the characteristics of the combination of 

products j ,R i j (9° ,50) and Rij(9,5).

Submatrices ' A ‘ ' Ci '

. h  . . C 2 .
have full column rank because different individuals have

different products as upper and lower boundaries. And as before Assumptions 3.(3)- 

3.(4) ensure tha t the whole matrix W  V  I  C  has full column rank. Then, B w  =  

0, B y  =  0,B]  =  0, B e  = 0. The conditions B w  — 0 , B y  =  0 allows one to identify 0° 
with respect to 9 up to a scalar constant as before. We next show that B e  = 0 allows 

identification of the product specific constants.

B e  — 0 implies

{5j -  5S) 9%k =  {5°j -  (5°) 92k for V/c, Vj G 3 , Vs /  j
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As in theorem (3.2.3), #21 is normalized to one. Therefore, for k =  1

(6 ° -  £°)
"  &s) = '  0 V W 3  e  ^  i  

” 21

By normalizing, 8 1 =  0, one can identify the specific constant for each j  G j  7  ̂ 1 up 

to scale and normalized with respect to
Since we have shown that both 0° and 8° are identified, this implies that the boundary 

products are the same with the true value of the parameters and with the alternative value 

(Ri j (0° ,d°)  =  Ri j (6 ,5)  and r i j (9° ,8° ) =  r i j (9,8) ) .  This is consistent with the conclusion 

that Bj  equals zero. For each individual with Z{ G P i ( 9 ° , 8° , 9 , 8 ,  X )  and j  G Q u  for 

instance, the relevant element of B j  is

8 s) 0 2 /cXxjfi fc (8 j 8 fi) 6 2 /^Xxjs ^

with s = Rij{0, 8 ) ,h  = Ri(0°, 5°). Thus, since s =  h, one should expect then tha t elements 

of Bj  that interact s — h should be zero as we obtain. QED.

P roof o f T heorem  (7) (Sem iparam etric Identification  o f th e  Pure Charac­

teristics M odel w ith ou t £)

Our definition of identification is equivalent to

Pr | z e  Z  such that 9 =  #0 if Pr(djj =  l\x, z , F®\9°) =P r(d ij- =  l|x , z, Fe ; 9)

for all j G J )  >0

The proof follows the same reasoning as in the parametric proof up to expressions

(3.30) and (3.31), although throughout the proof different distribution functions Fe and F® 

should be used in the equalities. Thus, using the notation in the param etric identification 

theorem, these two expression become

F e ( A j ( z i , x ; 9 0)) = F£(Aj ( z i ,  x; 9)) for 2 G p j ( 9 ° , 9 , X )  where j  G 9h(0,0°)

F®( h j { z t , x \Q0)) = Fe( A j ( z i , x ; 9 ) )  for 2 G p j ( 9 ° , 9 , X )  where j  G S 2(0,0°)

Recall the definition of the upper and lower bound indices

A I /3<T n '  ( X 3 ~ X r i j ( 0 0 ) )Aj ( z i , x' , 9  ) = n0i-2i -  -Q--------3----- -Zi
e 2 { x r l 3{ 6 o ) - X 3 )

a  ,  m  TT/ e ' l ( X J - X r l 3 ( d ) )A j { z , x \ 9 )  =  UijZl =  — ------- 3-— r Zi
e 2 Kx t 13{ 6 ) - x j )
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For each j, define the following set

Quj = {z  c  ?tz s.t. [(n'ojZ < o < n 'z )  u (Ujz < o < n qjz)] n  pj(9° , 9, x ) }

Given the statistical independence of e and z (and hence, median independence), con­

ditions (ii) and (iv) in this theorem ensure that Qnj  has a positive probability for each 

j. Thus, the continuous variable zm ensures that one can find values of this variable to 

reverse the sign of indices Yi'-z and Yi'^z (see Manski (1985) in the identification proof 

of the semiparametric binary discrete model with median independence). Therefore, we 

can conclude from here that Iloij for Zi E Q \ \ 3 is identified up to scale (Iloij is a (M  x 1) 

vector and therefore we need to normalize of the these coefficients, say Ilozj, 1 =  1). Next 

we show that the identification of Ilozj implies identification of 0°, since

hloij,7
9 l m ( x j  x rij(Go) )  _  9 1 m ( x j  Xrlj(G))  _  j-j-..

9  2 (Xrij (0O) ~ X 3 ) d 2 (x rij (0 ) ~ x3 ) ^

for all m /  1, for all Zi E P j ( 9 ° , 9 , X )  and for all j  E { 9 , 6 ° )  (for j  E ^2($>#°)> the 

same expression as above with Rij(9)  and Ri j (9o ) instead holds).

Solving for the parameter values the system of equations defined by

K

_k= 1

^  > 9 1m, k(x j  Xri j (9o))k  
1
K

^  ^ 9 l m, k { x j ~ x nj ( do) )k

K

,k= 1

,/c=l

y > . * (
i

E 9U

X n — X r ;(G0))k

;(G0))k
k=  1

=  0

for all m  ^  1, for all Zi E pj(9°,9, X )  and for all j  E ^ i(# ,# °), and following the same 

procedure as in the parametric proof, Assumption 3.(4) on the full rank of matrix X  
guarantees that

1/cm

6 2 k w y k  = 1,
21

K

QED.
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Chapt er 4

Sem iparam etric Least Squares 
Estim ation of Shape Invariant 
M odels w ith  M ultiple Equations: 
A n A pplication to  Engel Curves

4.1 Introduction

In the semiparametric literature much attention has been given to the estimation of shape 

invariant nonparametric regression curves (Lawton, Sylvestre and Maggio (1972), Hardle 

and Marron (1990) and Pinkse and Robinson (1995)). The main idea of this model is 

that although no parametric restrictions are desirable to be imposed on the regression 

curve, one might be interested in quantifying the differences between curves for different 

samples. The unknown conditional mean functions for different samples are related by 

some parametric transformations which are known up to a finite number of parameters. 

These parameters shift and scale the unknown function without altering its overall shape. 

Both the unrestricted conditional mean functions and the finite dimensional parameters 

that relate these functions for observations belonging to different samples are potential 

parameters of interest. In this work we focus on the identification and estimation of 

the finite dimensional parameters tha t imply a vertical and an horizontal shift of the 

nonparametric regression functions.

This paper proposes an alternative way of estimating the finite dimensional parameters
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of the shape invariant model by the Semiparametric Least Squares estimator (henceforth, 

SLS) introduced by Ichimura (1993). We argue that this is a natural way of estimating 

the differences between unknown regression curves. Also, the estimators proposed in the 

early literature face some computational difficulties because the objective function attains 

only a local minimum at the true value of the parameters even for those models where 

the parameters are identified. This means tha t computational intensive methods should 

be used to find the local minimum close to the true value of the parameters. Although we 

find that SLS also faces some similar computational difficulties, the modification of the 

SLS estimator we propose here solves this problem and it is computationally less costly 

to obtain consistent estimates of the parameters1. Due to this property of the suggested 

estimator, it is feasible to deal with the comparison of the regression curves of more than 

two samples without adding much computational cost if this estimation method is used. 

It also extends the original framework of SLS to the estimation of a system of equations 

where there might exist correlation between the errors of the different equations.

We only consider in this work the case where both the transformation of the argument 

of the unknown function and the transformation of the function itself are linear. This 

represents a more restrictive model than the one considered by Hardle and Marron (1990) 

and Pinkse and Robinson (1995) which discuss the nonlinear transformation case. The 

advantage is that the linearity assumption of the parametric transformations allows us to 

be more specific about the identification conditions of the finite dimensional parameters.

Consumer demand and, in particular, the estimation of Engel curve relationships con­

stitu te an im portant area for the application of semi and non parametric methods. Shape 

invariant models arise in these applications for some specifications of the demographic 

composition. Early works in the analysis of Engel curves (Hardle and Jerison (1988) and 

Blundell and Duncan (1998)) use nonparametric techniques to estimate the unrestricted 

relationship between budget shares and total expenditure. When this relationship wants 

to be adjusted by observed heterogeneity (i.e. demographics) the way of modelling it in 

a semiparametric model becomes an im portant issue. Blundell, Duncan and Pendakur 

(1998) show that if the demographic composition enters in a partial linear way (as in 

Robinson (1988)) the conditions for the consistency of the consumer theory impose strong 

restrictions on the functional shape of the Engel curves. The shape invariant model arises 

because a generalization of this model needs to be considered to incorporate the hetero­

1 W ilke (2003) proposes a m odification  o f P in kse-R ob in son  and H ardle-M arron estim a to r  th a t also so lves  

for the local m inim um  problem  at the true value of the param eters.
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geneity in tastes that arises from the demographics (Blackorby and Donaldson (1994)). 

This more general model rescales the total expenditure variable inside the unknown func­

tion by the demographic composition . To obtain a good estimate of the parameters 
that rescale the total expenditure for different demographic groups is im portant in order 

to semiparametrically estimate consumption based equivalence scales. Blundell, Duncan 

and Pendakur (1998) use the British Family Expenditure Survey (FES) to estimate Engel 

curve relationships with this extended partial linear model using the Pinkse and Robinson 

(1995) estimator. We use the same FES data and obtain estimates of the finite dimensional 

parameters of interest using SLS estimator for multiple equations. We compare our results 

with the previous estimates that can be found in the literature from the Pinkse-Robinson 

estimator and also from the modified estimator proposed by Wilke (2003). 2

This paper is organized as follows. Section (4.2) introduces the notation and the 

model used throughout this work. Section (4.3) discusses the previous approaches to 

estimate the model and the computational problems they face. Section (4.4) proposes an 

alternative method to estimate the parameters of the model by using a modified version of 

SLS and Section (4.5) gives sufficient conditions for the identification of these parameters. 

Section (4.6) establish the large sample properties of the SLS estimator for a system of 

equations. The optimal weighting matrix for the different equations is discussed as well 

there. Section (4.7) shows some Montecarlo experiments that demonstrate the estimator 

we propose performs better than the early previous estimators proposed in the literature in 

finite samples when gradient methods are used to compute the minimum of the objective 

function. Section (4.8) applies the SLS estimator to the estimation of Engel curves using 

the British Family Expenditure Survey and Section (4.9) concludes.

4.2 M odel and N otation

The shape invariant model is described as follows. We observe J  different outcomes for 

the same individual. Random vector W  = \W\ ,..., Wj\  denotes the J  different outcomes 

and X  and Z  are exogenous variables. The supports of exogenous variables X  and Z  are 

denoted by Qx  and respectively. We also use and to denote the supports

'In  th is work, we abstract from  the problem  th a t m ight arise due to  th e  en d o g en e ity  o f th e  to ta l  

expend iture, since it is likely to  be sim u ltan eou sly  determ ined  w ith  b u dget shares. To adjust for th is  

en dogeneity  problem  has been found to  be im portant as d ocu m en ted  in B lu n d ell, C hen and K ristensen  

(2003).
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of the conditional random variables X \ Z  = 0 and X \ Z  = 1, respectively. Let denote by 

Y  — (W, X , Z)  e R dy the observable random variables with dy = J  + dx + dz where dx 

and dz are the dimensions of X  and Z , respectively. All the equations share the same 

exogenous variables and the system of equations is defined as follows

Wji =  -  c'qZ,) + a'0 jZi +  £ji (4.1)

for j  = 1 J  where i =  refers to individuals and j  refers to the outcomes.

The vector of parameters in the linear part of the conditional mean is denoted by a — 

[a'j, a 2, ..., a'j}'. Let A  C R Jdz and C C 7Zdz be the parameter space for a and c, respectively.

The function <fij : R  —> R  for j  — 1,..., J  is not known. We assume conditional mean 

independence of the errors and the exogenous variables

E(sj\x ,  z) =  0 for all j.

The unknown conditional mean function differs across outcomes and also the coefficients 

aoj in the linear part of the model are equation-specific. However, the param eter Co im­

bedded inside the unknown function 0 is common for all the equations.

We assume tha t Z  are binary discrete variables taking only values {0,1}. Let Z r for 

1 < r < d2 be an element of random vector Z. This allows one to interpret the r — th 

element of parameter aoj as the vertical difference in the conditional mean E(wj  |x) between 

observations with Zr — 1 and the sample with Zr — 0. The r — th  element of param eter Co 

implies an horizontal shift of the conditional mean function of observations with Zr = 1 

with respect to observations with Zr = 0 and it also implies a change in the slope of 

both conditional mean functions. In this way, we can also compare the nonparametric 

regression curves of observations belonging to different groups defined, for example, by a 

combination of two different elements Zr and Z s for r A s °f random vector Z. Throughout 

the paper however, for simplicity, we restrict ourselves to cases where dx = 1 and dz — 1 

so that parameters c and a3 are unidimensional parameters for j  =  1,..., J.

In the application of the estimation of Engel curves where demographic adjustments 

are taken into account, Wji is the budget share for good j  and household i, Xi denotes the 

logarithm of total expenditure and Zi is a discrete variable taking value {0,1} describing 

to which demographic group observation i belongs to.
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4.3 Previous estim ators for the shape-invariant model

We focus on the case where Z  is unidimensional and can take only two possible values 

{0,1}. Let denote the conditional mean function of Wj given x  for each of these two 

subsamples as

e f \ x i ) — E (w j \x i ,Z i  =  0) =  <j>j{xi)

e f \ x i )  = E  {wj\xi, Zi — 1) =  a0j +  <f>j{xi -  c0) (4.2)

so that the following relationship holds

e(J1\ x l) = a0j +  e f \ x i  -  c0) for j  =  1,..., J  (4.3)

Hardle and Marron (1990) and Pinkse and Robinson (1995) discuss estimators of para­

meters no and cq for a wider class of models than the model outlined above. Thus, ex­

pression (4.3) relates both conditional means by two linear transformations (known up 

to a finite number of parameters) of the regression function : one for the argument 

and another one for the function itself. In this work, we restrict ourselves to this case. 

However, Hardle and Marron (1990) cover the more general case where both transform­

ations are non-linear and Pinkse and Robinson (1995) consider the case where only the

transformation to the function is linear, but the transformation of the argument of is

not necessary linear.3

The relationship between both conditional means expressed in (4.3) allows one to 

understand the estimators proposed in the literature of shape invariant estimation. These 

estimators are obtained through the minimization of the following loss functions. Hardle 

and Marron (henceforth, HM) suggest to minimize with respect to a and c

'* A lthou gh  not d iscussed  by the above m entioned  auth ors, th is fram ework allow s for Z  being  d iscrete  

(not necessarily  b inary) variables and m ultid im en sional Z.  In the case o f  Z  tak in g  for exam ple  values  

Z  =  { 0 ,1 ,2 } ,  the fo llow ing relation sh ip s hold

=  a 0j e f \ x i  -  Co )  

e)2 ) (x ,)  =  2a 0j +  e)0 ) (x'( -  2 c0 )

for j  = 1 , J.  In the case o f m ultid im en sional Z , sim ilar relation sh ip s can be found am ong th e  cond itional 

m ean functions defined as

e}st)(x i)  =  E  ( w j \ x i , Z \ x — s , Z ‘2i =  t)

for s,  t  =  { 0 ,1 } .  T he w eight th a t each of the above equalities should  be g iven  in the e stim a tio n  is rather  

im portant and not d iscussed  in th e  original set up where th ese  estim ators were in troduced .
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L h m (a,c) = ^  j  e ^ \ x )  — a,j — e ^ \ x  — c) w(x)dx  (4.4)
j=i ^

where u>(x) is a weight function which is nonnegative and positive only on the interior 

of a compact interval [x,x] and e ^ \ x )  and e ^ \ x  — c) are consistent estimators of the 

conditional mean functions defined in (4.2). Let define the conditional mean functions as 

the the ratio of the following two functions: e ^ \ x )  =  r ^ \ x ) / f ^ \ x )  and e ^ \ x  — c) — 

r j0^  — c ) / f ( ° \ x  — c). Pinkse and Robinson (henceforth, PR) suggest to modify this loss 

function by multiplying by f ^ ° \ x  — c) * f ( l\ x )  so that

^ "i 2
L pll{a, c) = /  f ( ° \ x  — c)f^l\ x )  — a j f ^ \ x ) f ^ ( x  — c) — f ^ ( x ) f ^ 0\ x  — c) w(x)dx

j = i  -

(4.5)

The reason Pinkse and Robinson argue in order to modify Hardle and M arron’s loss 

function is for computational purposes in the derivation of the asymptotic properties, 

since the ratios of nonparametric estimators have been replaced by multiplications whose 

properties are easier to compute.

The weight function w(x)  not only selects the integration limits [x,x] but also helps in 

the efficiency of the estimator. The appropriate choice of the integration limits is crucial 

to define both objective functions and for the performance of the estimator, even if 

and e(°) were known functions. This is because the integrand in (4.4) is not defined if 

x  — c does not lie in the support Therefore, in order for the objective function to be 

well defined for each value c, the intersection of the supports +  c fl £2^ should not 

be empty and [x, x] should be chosen to lie in this intersection. This is because we need 

to integrate over values x  belonging to the support such that if we substract c still 

belongs to the support £2^ .When both random variables X \  and X q have full support on 

the entire real line, this problem does not exist because can be defined at any value 

of x  and c.

When functions e(°) and e^1) are unknown and need to be estimated, the loss functions 

should be integrated over a range of x  such tha t both conditional means are consistently 

estimated and are well defined. Let consider the weighting function as the indicator 

function that takes only value 1 in the intersection of supports £~2  ̂ +  c and £2^ (i.e. 

w(x) = \ { x  £ £ 7 ^+ cn £ 7 ^} ). As Hardle and Marron point out, the fact that the weighting 
function and therefore the integration limits depends on the value of the param eter c makes 

that the loss function is minimized attaining value zero at those arbitrary high or small
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values of c such that the intersection of the supports is empty and the indicator (weighting) 

function is always zero. Since they reckon that this feature imposes some difficulties in 

the computation of the estimator, they suggest to establish a priori a compact set C with 

feasible values for parameter c and then define the weighting function as

w ix ) — ]^[ 1{^ £ +  c f"1 ^x^}
ceC

There are two drawbacks of defining the weighting function in this way. First, to 

determine a reasonable set of values c for the transformation of the argument of the 

unknown function might not be easy for some applications, where depending on the shape 

of 4>j a graphical analysis beforehand may not be very informative. Second, if the variables 

Xq and X \  have compact support and the compact parameter space C is big enough, then 

the set of values of x  where one can evaluate the loss function might become very small. 

If this is the case, some identification difficulties may arise then because as it is formally 

shown below, the parameters are identified under the nonlinearity assumption of (f)j for 

at least one j  = {1,..., J}. This nonlinearity assumption might be violated if the support 

where we evaluate <f> is very small and the function is approximately linear over this range.

Alternatively, Pinkse and Robinson define the weighting function such that takes only 

nonnegative and positive values on the interior of a compact interval where all the points 

x  satisfy f ^ ° \ x  — c) > 0 and f ^ ( x )  > 0 for c G C. The objective function takes value 

zero at those values of c for which there is no value of x  such that densities f ^ ° \ x  — c) and 

f ^ ( x )  are both bounded away from zero. Again, if one knows tha t random variables Xo 

and X \  have full support on the real line, then the weighting function w(x) = 1 for all x  

belonging to the support of X.

In practical terms, the choice of the integration limits for x  should guarantee that 

estimates f ^ ( x  — c) and / ^ ( x )  are consistently estimated away from zero for every 

x  G [x, x) for each value of c G C. Even if X  has full support on the real line, the observed 

supports in finite samples denoted by and are compact sets. Thus, although 

f (°)(x — c) may be bounded away from zero, it might be the case tha t (x — c) is outside 

the observed (or estimated support) in which case f ( ° \ x  — c) is not going to be

consistently estimated bounded away from zero. It is possible to estimate consistently 

both densities for those values of x  belonging to the intersection of the observed (or 
estimated) supports and +  c.

Following the same reasoning as before, the minimum of the objective function is 

attained at zero for those values of c that make the intersection Pi +  c to be
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empty. A look at the support of X  for both demographic groups determine the set of 

values of c tha t could potentially be identified from the data  by yielding a value of the 

loss function different from zero. The case in which we are interested (and also the one 

that implies some computational difficulties) is when

co E C = {c E C such that H -f c ^  0}

such that the loss function attains only a local minimum at co-
To illustrate this, Figure (4.1) plots the nonparametric kernel densities of f ^ ° \ x i  — 

c) and using the FES data described below in the empirical section for each

observation Xi of random variable X \  (log total expenditure for demographic group Z = l) 

and for different values of c =  {1,2}. As parameter c increases, the points at which we 

should evaluate the nonparametric density of demographic group Z  — 0 lie outside the 

observed support of Ao in the data so that f ^ { x i ~ c) ls not consistently estimated away 
from zero for these points. Thus, in this particular case, if c is much higher than 2 there 

would not exist overlap between the observed supports anc  ̂ c *n ^ ie data.
The top graphs in Figure 4.2 show the loss function for PR  and HM estimators with 

respect parameter c for the Monte Carlo simulations reported in Section 4.7 (see details 

there). Both random samples for X \  and Xo were drawn from different normal distribu­

tions. The loss functions are evaluated at ao- It should be pointed out tha t the corres­

ponding loss function with respect to parameter a  behave nicely as expected being globally 

concave. Those values tha t do not belong to C  are easily identified from the graph since 

they give zero value to the loss function. Also the true loss function for HM where function 

0 is assumed to be known is plotted, but also choosing the integration limits for i  as a 

function of c and of the supports +  c and £2^. These graphs illustrate the difficulties 

that arise in the minimization of HM and PR loss function to find the local minima that 

it is close to the true value of the parameters (ao,co).4
The minimization of both loss functions L H M ( u , c ) and L p r { ci, c ) with respect to a  

and c should be constrained so that c  G C . However, it is unlikely tha t this might solve 

the local minimum problem because of the particular behavior of the loss functions inside

T o r  each value o f c, the in tersection  betw een  the observed su p p orts o f th e  drawn d a ta  is com puted . 

O nce the in tegration  lim its are se t, the integral is com p u ted  using the m id d p o in t ap p roxim ation  (see Judd  

(1998)). O ther a ltern atives inclu de th e  use o f th e  observations be lon g in g  to  th e  co m p u ted  in tersection s  

of the su pp orts to  com p u te  their sam p le m ean. T h e  loss fu n ction s co m p u ted  in th is  w ay perform  sligh tly  

worse than  the ones using the m iddle  po in t app roxim ation , since as c increases th e  num ber o f observations  

in the in tersection  decreases quickly.
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the parameter set C. The difficulties in the computation of the minimum of loss functions 

L pr  and L h m  is that they tend to zero as the intersection C l^  fl +  c becomes very 

small as c increases in absolute value, until the intersection becomes empty and then the 

weighting function gives zero value to the loss function.

This local minimum problem at the true value of the param eter has been solved in 

different ways in the applications of these estimators. For example, sequential minimiza­

tion in a and c has been proposed, using grid search for the optimization with respect to 

parameter c over a reasonable set of values (see Blundell, Duncan and Pendakur (1998)). 

However, other standard and less tedious optimization methods would perform very poorly 

given the behavior of the loss functions for PR and HM estimators.

However, grid search methods are computationally costly if the dimension of the para­

meters inside the unknown conditional mean function is high. T hat it is, if for example one 

is interested in estimating the parametric shifts in the Engel curves with respect to both 

the demographic composition of the household and the employment status of the head of 

the household, the dimension of parameter c in this case would increase the computational 

cost of doing grid search over a set of reasonable values for these parameters.

Wilke (2003) solves this problem by modifying the above objective function of HM 

(and also PR.) by dividing for the density attained at the overlap of the corresponding 

supports, which makes that the loss function increases when the intersection becomes 

small and improves the performance of the estimator in finite samples. Thus, the loss 

function for this estimator is modified in the following way

r -j 2
£ / = l  fm 'n b V + c  -  “j -  e{0)(x -  c) w(x)dx

L w (a, c)

The third graph in Figure (4.2) shows this objective function and illustrates how his 

modification can help in the estimation of parameter c.

This M-shape of the PR  and HM loss functions with respect to param eter c is due to the 

fact that the integration limits depend on c and also because the functions 

and need to be estimated using the observed supports and If we use the

information on the parametric form of functions and e(°) and the full support of X q 

and X \  on the whole real line ensures that is well defined uniformly for all c so that 

the integration range for x  can be defined independently of c, the last graph in Figure (4.2) 

shows that the loss function would be globally concave also with respect to param eter c.
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Figures (4.3) and (4.4) show the different shapes of the loss functions for PR  and HM 

when the integration range for x  is fixed for all c and lies on the support where both 

and are estimated consistently. These graphs illustrate tha t even if the

integration limit for x  does not depend on c, the loss function would decrease as the value 

of the parameter c increases in absolute value as the estimates of f ^ \ x  — c) become 

arbitrary small. This shows that the choice of this integration limit is very im portant in 

order to obtain consistent estimates of the parameters.

4.4 Estim ating the shape invariant m odel using SLS

We suggest to estimate the parameters of interest by using Semiparametric Least Squares 

(henceforth, SLS) proposed by Ichimura (1993). W ith respect to the estimators proposed 

by Pinkse-Robinson and Hardle-Marron, the modification of the estimator we introduce 

here solves the computational problem of finding the local minimum attained at the true 

value of the parameters. Additionally, with respect to all the estimators discussed in the 

previous section, SLS constitutes a natural way of estimating the param eters of interest 

and it helps to extend the idea of comparing nonparametric regression curves to more than 

two independent samples (since Z  does not need to be binary) or when the comparison 

wants to be done in more than one dimension (when Z  is multidimensional).

The identification conditions discussed in Section 4.5 ensure tha t the true value of the 

parameters uniquely solves the following loss function J

{a0i, ...,a0j , c 0} =  argm inL (a,c) (4.6)
(a ,c)

J

= argm in E  < [wj — zaj  — E ( w j  — za,j\x — c z )]2 > (4.7)
( ° > c )  ~T{ L J

As discussed in Ichimura (1993), the variation in wj — zaj for each j  comes from both 

variation of ej and (x — cqz) and also from the variation in z  if aj ^  a; o- Therefore, if 

index takes a constant value s, i.e. (x — cqz) =  s and aj  =  aoj , then the variation arises 

uniquely from ej. Thus, the variance in loss function (4.6) is minimized when c =  Co and

'It is im portant to  note  the difference o f th is ob jec tiv e  fun ction  w ith  th e  one o f NLLS w here fun ction  

m  is known up to  c. B oth  ob jec tiv e  fun ctions differ at param eter values different from  th e  true values since

E ( w j  — z a 3 \x — c z)  ^  m ( x  — cz)

if c 7  ̂ Co and a /  ao
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/
w\  — za\  — E{ w \  — z a \ \ x  — cz)

/
w\  — za\  — E ( w \  — z a \ \ x  — cz)

V

< w j  — z a j  — E { w  j  — z a j \ x  — cz) w j  — z a j  — E ( w  j  — z a j \ x  — cz)

a = aoj for all j. The objective function above focuses only in the minimization of the 

variance of Wj — ajz  for each j. However, the same argument could be used to argue that 

the covariance between (wj  — zaj )  and (wr — z a r ) for j  ^  r  is minimized at the true value 

of the parameters. Therefore, the argument above also suggest that the true value of the 

parameters also minimize

{ a o i , a 0j,  co} =  (4-8)

(u,c)

where V  is a semi-definite positive matrix of size J  x J  which can depend on the data. The 

minimum of function (4.8) is also attained at E{ e ' V e )  where e = [ew . . \ej ]  when a = ao 

and c =  co.
If the conditional mean E ( w j  — za j \ x  — cz) is known up to a and c, the identification 

conditions guarantee tha t the loss function is globally minimized at (ao,co) as long as 

density function of the index fx -cz(% ~ cz) is bounded away from zero uniformly in 

c, x and z,  so tha t the conditional mean function is well defined. This last condition 

holds if the random variable X \ Z  has full support on the real line uniformly on Z  and 

0 < Pr (Z = 1) < 1 as it can be checked from what follows. If the density function of the 

index is evaluated at observations such that z  — I

f x - c z { x - c )  =  f x - c Z \ z ( x - c \ Z  =  l)P r (Z  =  1) + f x - c z \ z ( x  -  c\Z = 0 )P r(Z  =  0) =  

=  f x ( x \ Z  =  1) Pr (Z  = 1) + f x ( x  — c \ Z  = 0) P r (Z = 0) (4.9)

and if one evaluates at observations such that 2 =  0,

f x - c z ( x )  =  f x - c Z \ z ( v \ Z  =  l ) P T ( Z = l )  +  f x _ cZl z ( x \ Z  =  0 ) P T ( Z  =  0) =

= f x ( x  + c \ z  = 1) Pr {Z = 1) +  f x ( x \ Z  = 0) P r (Z =  0) (4.10)

In the application of this model to the estimation of demand systems where X  is the 

logarithm of total expenditure this condition holds since X \ Z  has indeed full support for 

both Z  — 0 and Z  =  1. If this condition is not satisfied, then we would need to introduce 
an indicator function I q — \ { (x , z )  € Q} inside the expectation in (4.6) where set Q is
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defined as follows

Q = {(x, z) G f i x  x  s.t f x - c z { x  ~ cz) > 0 uniformly on c G C} D

(4.11)

D {(x, z) G x Q>z s.t /x (x |Z  =  0) > 0 and f x { x \ Z  — 1) > 0}

Thus, if X  is not a random variable with full support we should guarantee that we evaluate 

the above expectations at values of x G £7x belonging to the intersection of supports 

and N °te that although both definitions of Q are equivalent, the second one does not 

depend on the parameter space C.
Note that in the case of X  with full support on the real line, the objective function of 

the previous estimators does not have a local minima problem at (ao,co) when function 

0 is known (see graph 4 in Figure (4.2)). In this case, the integration limits could be 

defined independently of the value of c and the objective function is globally concave with 

respect to c. The problem with these estimators is that even in the case where 0 is known, 

if random variable X \ Z  does not have full support on the real line, the integration limits 

for x should be chosen so that / ^ ( x  — c) and / ^ ( x )  are well defined. Then, either 

one has a clear idea of the compact set where cq lies in and the weighting function and 

the integration limits are chosen uniformly for c G C, or the integration limits should be 

defined depending on c which leads to the unpleasant M-shape of the objective function 

with respect to parameter c. Also in finite samples, this problem is present even if X \ Z  

has full support because the estimator should be defined with respect to the observed 

supports and

In SLS, there exists still a computational problem when the conditional mean is un­

known and needs to be estimated. Consider the following SLS estimator where nonpara­

metric kernel estimators are used to obtain a sample analogue of (4.6)

{ h i,..., aj,  c} =  arg min L{a, c)
(a,c)

where L(a ,c ) =  E E  Wij — Zidj — Eh(wj — za,j |xz — czi)
] =  1 i £Q

a £ . ,  , , c ^ r C , . K - ^ ) « (
and h/hiwj — zaAx,  — czi) = --------------------------------------- -̂------------ --------

1 1 TS f  (xt - c z j ) - ( x r - c z r ) \
hn n —1 2-^r^i \  hn J

(4.12)

(4.13)
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where K  is a kernel function and hn is a bandwidth sequence dependent on the sample 

size. Using only observations belonging to set Q helps to show the uniform convergence 

of Eh{wj -  zaj\xi -  czi).
Figure (4.5) shows the objective function L(c\ao) with respect to parameter c condi­

tioned at the true value for a. It should be first said that the function achieves the global 

minimum at the true value co of the parameters when it is evaluated at the rest of the true 

value of the parameters, which for example constitutes a difference with respect to the 

PR function. It does not seem however that the optimization problem would encounter 

less problems here to find the global minimum than the minimization of the objective 

functions of PR  and HM estimators in finding the local minimum close at (ao,co).

The reason for the flat ends of the objective function in Figure (4.5) is tha t for arbitrary 

big or small values of c the estimated density for the index achieves its lower bound which 

is independent of c as explained in what follows. Consider the nonparametric estimation 

of the density of the index for a given value of the bandwidth hn for observations i where 

Zi =  0. This density can be bounded below uniformly in c by

inf
ceC f x ~ c z ( x i) inf

c€C

1

>

(n — 1) h,

(no -  1) 1
(n -  1) (n0 -  1) hn

_Zr  —  0
+  £ *

Xi (X'f c) >

z r =  0

X  i

hr
Pr(z =  Q)fx {xi\z =  0)

where no is the number of observations such that z = 0. And equivalently, it can be shown 

tha t the lower bound for the estimated density of the index evaluated at observations i 
such that Zi =  1 is given by

inf
cec f x - c z i x i  -  c) = inf

c€C

1

—-1
X i  — x r

hrt + Y . k
Zfr —0

{Xj — c) — Xj
hn(n — 1) hr 

> Pr(z =  l ) f x (xi\z = 1)

We denote this lower bound of the density of the index by lb(xi,Zi), so that

lb(xu 0) =  Pr(z =  0) fx (x i \ z  = 0)

Tb{xu 1) =  Pi(z  =  l ) f x {xt \z =  1)

If a finite kernel is used, then the above inequalities hold with equality since

Xi -  (xr -  c)

>

inf
fir

= 0
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when set C is large enough. In this case, the minimum estimated density for observation i 

is attained for arbitrary large or small values of c at lb(xi, Zi). Note tha t in the population 

f x -  -cz(x ~ cz) is strictly bounded above from the lower bound lb(x, z ) if and only if 

f x ( x  -  c\Z = 0) and f x ( x  +  c\Z = 1) are bounded away from zero.

Let ryl be the value of c G C that minimizes the estimated density of the index evaluated 

at observation i (i.e.yz =  arginfc(Ec f x - c z ( x t -  czi) ). Then the loss function for SLS does 

not depend on parameter c for those values of c belonging to the intersection

dL(a ,c ) „
^  • =  0 for c G n?=17 i

since also the weights of the nonparametric kernel regression would not depend on c for 

those values c G n ”= 1 7 j.
If Co G f l”= 1 7 j ,  the true value of the parameters would not be easily identified in finite 

samples with respect to the other values of the parameters in fl™=1 ryi since they would 

attain the same value of the objective function. Therefore, we work under the assumption 

that co £ H I n  the estimation, we would ideally want to rule out values of c such 

that do not belong to n ”= 1 7^ One possibility is to restrict the estimation to those values 

of c ^ in the same way that the estimation was restricted for the computation of

PR  and HM estimators to those values of c such that the intersection +  c fl is 

not empty.

However, even if the estimation procedure focuses on those values of c where the loss 

function is not fiat, the minimization routine might have difficulties in achieving the local 

minimum located close to the true value of the parameters (ao,co) for certain starting 

values due to the shape of the objective function even if one constrains the minimization 

routine to find values of the parameter such that c ^ In this sense, this is a problem

shared also by the PR  and HM objective functions. The objective function with respect to 

c decreases as c becomes arbitrary large or small because the density of the index attains 

its lower bound lb(xi,Zi) for more and more observations.

For computational purposes, we implement the SLS estimator modifying the objective 

function so that, for each c, we divide by the number of observations where the estimated 
density of the index does not attain its lowest bound lb

2

(4.14)
n £ / = l  E z G Q  w i j  ~  Zi a J ~  E h ( W j  -  Z a j \ X i  -  CZi )

L 2 (a,c) =
n T , i e H  1  { f x - c z { x i  -  CZi) -  Tb{Xi ,  Zi )  >  o}
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and L2(a,c) =  0 if 1 j f x - c z { x i  ~ cz^ -  fb(xi,Zi) > o j  =  0, Vi 6 H.  The set H  is 

defined as

H  =  {(x,z)  G s.t f x { x - c \ z  — 0) > 0 and f x (x+c\z =  1) > 0 uniformly on c G C)
(4.15)

This implies tha t for those observations ( X { , Z { ) G H , the indicator function evaluated 

at the true densities 1 { f x - c z ( x i  ~  c z i )  -  lb(xi, Z i )  >  0} equals 1 uniformly on c G C. This 
helps in concluding that the asymptotic properties of the estimators that minimize L 2(a, c) 

and L(a, c) are similar. However, the indicator function evaluated at the nonparametrically 

estimated density of the index and its lower bound can be different from one for some 

observations belonging to set H.
The objective function is defined to be 0 for those values of c G Since for these

values of the parameters, the objective function achieves the global minimum, we also 

constrained the optimization to those values of c £
It is im portant to note that the limiting objective function of objective function L2(a, c) 

is that same as for L(a, c) as it will be formally shown in the Section on the asymptotic 

properties of the estimator. Thus, this modification of the objective function does not 

have any implication in terms of identification. Additionally, one could think tha t this 

modification has made that the objective function is non differentiable with respect to 

parameter c, which could potentially complicate the asymptotic properties of the estim­

ator. However, since in the limit this indicator function would attain  value 1 for all the 

observations i G H  uniformly on c, also in the limit the denominator would not change 

over c G C. We discuss these arguments rigorously in Section 4.6.

(l O ne could also th ink  th a t a trim m ing ind icator th at se lects those observations where the estim a ted  

density  o f th e  index does not a tta in  its lower bound would help in th e  perform ance of the estim a to r  w ith  

respect to param eter c. T h a t it is an estim ator  th at so lves the follow ing o b jec tiv e  function

1 J 2 
L i ( a , c )  =  — 1 { / - Y - c z ( x i  -  c zi )  -  f b( x t , z i )  >  o j  |’w tj -  z,ctj -  E h { wj  -  z a }■\xl -  cc,-)j

j —i i eQ

Som e sim ulation  exercises, sim ilar to  the ones presented  later in th is work, were perform ed for th is  

estim ator . A lthou gh  in princip le, the local m inim um  problem  for arbitrary large values o f c is so lved , the  

estim ator  becom es u n stab le  w hen param eter c increases in a b so lu te  value and less and less observations  

are used in the com p u ta tio n  o f th e  ob jec tiv e  function . In fin ite sam p les, a lth o u g h  th e  g lobal m inim um  

is a tta in ed  at the true value of the param eters w hen th is m od ification  is done, th e  o b jec tiv e  fun ction  

m ight present som e local m inim um  w hen very few observations are used. W e dec id ed  not to  inclu de the  

analysis corresponding to  th is m od ifica tion  of th e  SLS o b jec tiv e  fun ction  in th is  work since th e  estim a to rs  

we proposed here perfom ed better .
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To assess the impact of the discontinuity of the indicator function with respect to 

parameter c introduced in the denominator in (4.14), we also examine the properties of an 

analogous estimator where the indicator function is substituted by a continuous although 

non-differentiable function tha t converges to the above indicator function as sample size 

increases. This alternative estimator minimizes the following objective function

l{x > 0} when hn —► 0 as n  —> ood
Figure (4.6) shows the SLS loss function with respect to c for the true value ao and 

for the optimal bandwidth that minimizes the Cross Validation function evaluated at the 

true value (ao,co) which is denoted by hq . T w o  different objective functions are shown:

Figure (4.8) shows the same objective functions and the graph below represents the

more and more observations the estimated density of the index attains its lower bound. 

As it was pointed out before, it is also im portant to note tha t the global minimum for 

7 An a lternative  to  th is function  Shn is

where F  is a norm al cdf. T h is  is a continuou sly  differentiable function  th a t also converges to  th e  ind icator  

function when hu —> 0 as n —> oc. U sing the m odified  Z/3 (a ,c )  w ith  th is defin ition  o f Sh.„ does not help in 

the com p u tation  o f the global m inim um  in finite sam ples though . T h e reason is th a t for th ose  observations  

where the estim a ted  d ensity  o f the index a tta in s  its lower bound, th is defin ition  o f fun ction  Sh„ g ives them

case does not help in avoid th e  local m inim um  for arbitrary large or sm all values o f c. T hu s, the s fun ction  

defined in (4 .17) is a continuou s a lth ou gh  nondifferentiable fun ction  w hich also converges to  th e  ind icator

(4.16)

where

shn {x } — 1{X ^  0}0 +  \ { x  > 0} - e x p  + 1  (4.17)(4.17)

(i) objective function with a constant trimming of the 2% of the smallest densities, (ii) 

modified objective function L 2 {c\clq) in expression (4.14). Figure (4.7) shows in addition 

the behavior of objective function Z,3(c|ao) with respect to param eter c.

number of observations for which the estimated density of the index does not attain  its 

lower bound lb(xi,Zi) for each value of parameter c. As c increases in absolute value, for

value F (0 )  not value 0. B ecau se  of th is, it can be checked th a t the sh ape o f the o b jec tiv e  fun ction  in th is

function  as h n —» 0  but it g ives value 0  for th ose  observations w here f x - c z ( x i  — czi )  — l b ( x l ,Zi)  =  0 .
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these three objective functions is located near the true value of the parameters. However, 

the behavior of the modified objective functions here helps in obtaining a solution to the 

minimization problem near the true value of the parameters. It avoids that the minim­

ization of the SLS loss function gives solutions for parameter c close to the constrained 

set and far away from co as it would be the case if gradient methods were used in the 

minimization of L(a,c).

It is im portant to point out that in this work we do not consider the optimal choice 

of the bandwidth. The large sample properties discussed below are derived for a fixed 

sequence of the bandwidth that satisfies the conditions to be established below. There­

fore, the bandwidth is not considered as an additional parameter with respect to which 

the objective function needs to be minimized. Hardle, Hall and Ichimura (1993) show 

that for single index models, solving for the optimal value of the bandwidth jointly with 

the parameters of interest is optimal for both the estimation of {ao,co} and function <pj. 

W hether this result still holds for objective function Z/2(a, c) and Lffa ,c )  where the de­

nominator depends both on hn and c is left for future work together with the simulations 

and estimations based on this joint optimization.

4.5 Identification

Let consider the identification of (ao,co) in the model given in (4.1). The true value of 

the parameters are identified if

zaj +  E(wj  — ajZ\x — cz) = zaoj 4- <Pj(x — cqz) a.s. in x, z  for j  = 1,..., J

implies aj = aoj for j  — 1,..., J  and c = co

Theorem  8 I f  there is a set S  C Clx x Viz su°h that

0 < E z \x - cqz(Z\x ~ coz ) < 1 (4-18)

for (x,z)  € S  and there is at least one j * G {1,..., J}  such that cpj* is differentiable and 
satisfies the following condition

a  +  ipj* (t + 0 ) = (t ) a.s. in t i f  and only i f  a = 0 and 0  — 0  (4.19)

, then both parameters ao and cq are identified.
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P ro o f. Consider an alternative value of the parameters {a, c} such that

zaj -f- E(wj  — ajz\x  — cz) =  zaoj +  p j ( x  ~~ coz) a -s- in x , z  f°r j  — {1> •> J}  (4.20)

and denote by t = x  — cz  and E(wj*  — aj*z\ t)  — i>aj*(t) ,  so tha t the above expression for 
j  = j* becomes

Vaj* (*) =  z (a0j- ~ aj *) +  <fj* (t + ( c -  cq) z) a.s. in t, z

Consider the case where Z  takes only two possible values: Z =  {0,1} so that

W =  (aoj* -  aj *) +  +  (co -  c)) a.s. at t for 2 =  1

^ aj *(0 — a-s- at t for 2 =  0

Then,

(aoj* — &j*) +  +  (co — c)) =  a.s. t if and only if aj* = a$j* and c =  co

so that {aoj*,co} are identified if function tpj, satisfies the identification condition in 

(4.19). The rest of the parameters aoj for j  ^  j * are identified as follows. Since Co is 

identified, then (4.20) implies

2 (aj — aoj) + E(aojZ — a j Z \x — cqz) = 0 a.s. in x, z  for j* ^  j

If the identification condition in (4.18) holds, the above expression implies that a3 =  a$j 
for j  ±  j* M

Note that the identification condition (4.19) does not hold if is linear in its ar­

gument, since the above equality implies (a^j* +  co) -  (aj* +  c) = 0. Thus, when p rj. is

linear both parameters aj* and c cannot be separately identified. An implication is that 

the parameters of the model are not identified if function is linear for all the equations. 

Note that an equivalent condition to (4.19) is tha t

<p'j* (t +  j3) = p j . (t) a.s. t if and only if = 0

so that the parameters are not identified if <pj is a cyclical function for all j .  These 

identification conditions are similar to those obtained by Chen, Blundell and Kristensen 

(2003).
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4.6 Large Sample Properties of the Estim ator

We use the following shorthands for the conditional expectations

a, c) =  E ( w j  — az\xi  — czi)

and the corresponding nonparametric estimators

a, c) =  E h(u)j -  az\xi  -  cz{)

Also, m *(.,a,c) =  [raa (., a ,c ) , ...,m *j(.,a,c)] and m*(.,a,c) =  a, c ) , a ,  c)].

The density function of the index and its corresponding nonparametric estimation is de­

noted by f c,i(.,c) =  f x - c z & i  ~ czi\c) and / C, i ( . ,c )  = fh ,x -cz (^ i  ~ czi\c), respectively. 

Let denote by /)(.) =  f x { x %) and f l (.) =  fh,x{x i) the true density function of X  at x % 
and its corresponding nonparametric estimation. Analogously, the estimated lower bound 

for the estimated density of the index is denoted by Ibi =  lb(xi,Zi) and its population 

counterpart by Ibi = lb(xi,Zi). The subscript c tries to differ between the density function 

of the index (which depends on c) and the density function of random variable X  (which 

does not depend on c). The rrtj functions are infinite dimensional parameters and they 

are real-valued functions that depend on data (X, Z)  and on the finite dimensional para­

meters (a, c). The J —real-valued-function m  is assumed to belong to a Banach space M. 

defining a class of some smooth functions defined over the domain of function m.  Function 

f c{., c) is a real-valued function that depends on data (X , Z)  and on the finite dimensional 

parameter c while function /( .)  depends only on data X.  The arguments of m, f c and /  

are sometimes omitted for simplicity.

The estimators obtained from (4.12) are shown to be consistent regardless of the correl­

ation of errors Sj across j. However, if this correlation exists, a more efficient estimator is 

obtained by taking it into account and giving different weights to the correlation between 

different equations in an individual specific matrix Vin which is estimated from the data 

of order (J  x J)  and it is estimated from the data. W ith the aim to gain some efficiency, 

we define the following M-estimator of (ao,co) that minimizes loss function

1 n
L { a , c) =  -  UqKvu a , m ,h n (•> c)) (4-21)

2 = 1
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where

l (yua,fhi( . ,a,c))  =

B(yu a, rhithn(; a, c))'VinB(y i , a, m i>hn(., a, c))

(4.22)

/  Wii -  Zjfli -  -  za\\xi -  czi) \

\  -  z{a j  -  E Jjhri(wj -  zaj \xi  -  czi)

and I%q =  1 {{xi,Zi) G Q} for set defined as in (4.11).

Therefore, function B  is a known, J —vector-real-valued function of Y  and unknown 

parameters (a, c, m(.)) G A  x C x A4. For simplicity in the notation, we also omit the 

dependence of the nonparametric estimators of the bandwidth and this dependence is 

assumed when the functions are estimated.

For the modification of the SLS estimator proposed above in expressions (4.14) and

(4.16), the function I should be respectively defined as follows

and Asymptotic Normality Sections we derive the asymptotic properties of the estim-

conditions that need to be added to show the asymptotic properties of this alternative 
estimator.

4 .6 .1  C o n s is te n c y

We expect the probability limit of the objective function in (4.21) to be L(a,c)

B{yu a, m*(., a, c )yv inB{yi,a,  rhi(., a, c))
(4.23)

B(yj,  a, mj(., a, c))'VinB(yi ,a,  a, c))
(4.24)

where f c = [/Cjl(., c ) , . . , / c,n(., c)]' and lb = [lb\ (.),.., lbn (.)}' . In the Consistency

at or defined in (4.12) and the sections below (4.6.1) and (4.6.2) point out the additional

L(a,c ) =  E  [llQB{y,a, m l ( .,a,c)),VlB{yl ,a, m l (.,a,c))]
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where plimVhi =  V{. To show the convergence of L(a , c )  to L(a , c )  uniformly on (a,c), 

define the following function

L*(a, c) =

1
-  2 ^  a , m l (.,a, c))'ViB (y l , a, m*(., a, c))

i=l

Since L(a,  c) — L(a, c) =  L(a,  c) — L*(a, c) +  L*(a, c) -  L(a,  c), the uniform convergence

is shown from the following two results

L(a,  c) — L*(a,  c) 0 and |L*(a, c) — L(a, c)| 0

uniformly over (a, c) G d  x C

A ssum ption  4. 1 The observed sample yi = {wi, Zi,Xi}f=l are i.i.d. and its first r —moments, 

r > 2, exists and there does not exist linear dependence among the explanatory variables

A ssum ption  4. 2 The unknoivn functions {<pl (t), ...,(pj(t)} are continuous

A ssum ption  4. 3 The parameter space ( A x  C) is compact

A ssum ption  4. 4 The set Q defined in (4-11) is a compact subset o f Q x  x

A ssum ption  4. 5 The vector of expectations rri j ( . ,a,c)  = E{w.j  — ajz\x — cz) for j  —

1, J  are continuous functions of (x — cz)

A ssum ption  4. 6 For each c G C, the index X  — cZ has an absolutely continuous distri­

bution such that its density function f c(u , c) is continuous in u

A ssum ption  4. 7 The kernel function K{u) is continuous and K(s )  = 0 i f  s < — 1 and 

s > 1; j  K(u)du = l; \K(u)\ is bounded, K{u) is continuously differentiable and 

is uniformly bounded

d K  ( u )  
du

A ssum ption  4. 8 For each observation i, p/zmn,_KX)Vin — Vi, where Vi is a positive semi- 
definite matrix
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The assumptions 4.(1) - 4.(4) ensure that the conditions for the Uniform Law of Large 

Number are satisfied (see Lemma 2.4 in Newey and McFadden (1994)) in order to show 

that |L*(a,c) — L (a ,c)| 0 uniformly in (a,c).

On the other hand, regarding the second uniform convergence result, note that

L(a, c) — L*(a, c) <

1 n
-  X  I iQB (yi>a’ a ’ c))'VinB{yi, a, ra,(., a, c)) -  I tQB(yi, a, m-,(., a, c))'VlB{yl , a , ?rq(., a, c))

(4.25)

<
n

i=l

+

+ 1 \ l v /“ X /  a ’ c)) '^^ (2 /o  rn»(., a, c)) -  I iQB { y i , a , m l(., a, c))'VlB ( y l ,a,  m*(., a, c))

(4.26)

n i=i

The uniform convergence in probability to zero of these three terms above is studied 

formally in the proof of the consistency theorem. In particular, the uniform convergence 

of term (4.26) requires the uniform convergence of the nonparametric conditional means, 

which is satisfied under the assumptions above.

T heorem  9 Under assumptions f . ( l ) - f . ( 8 ) and the assumptions of Theorem 8  (Identi­
fication Theorem), i f  the bandwidth satisfies the following condition

lim — hi1+2//r) =  oo (4.27)n—*oc In n

,then the estimator defined by

1 n
(a, c) =  arg ruin -  X  I lQB{yt ,a , rav;An(., a , c))'VmB{yi ,a,  m ^ ln( ,  a, c))

(a,c)<EAxC n i=\

is a consistent estimator of(ao,co).

Proof. See Appendix. ■

A dditional conditions for consistency  o f th e  m odified SLS estim ators

In order to show the uniform converge in probability of the objective function Z/2(a, c) and 

La(a, c) to the limiting objective function, the convergence in probability of £ 2(0 , c) — L(a , c)

and Ls(a,c) — L(a,c ) uniformly in (a, c) needs to be added to the original consistency
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proof. The theorem in this section shows this under the following additional conditions. 

Let denote by m , no and n// the number of observations with z  =  1, z  =  0 and belonging 

to set H,  respectively.

A ssum ption  4. 9 hn —> 0 as n  —> co

A ssum ption  4. 10 Let po =  limn-^oo ^  and p\ =  lim ^o o  ^

/(z |z )  is uniformly continuous in the real line and J \ f (x\z) \  dx < oo uniformly in z

A ssum ption  4. 11 The characteristic function of the kernel function K  is absolutely 

integrable

A ssum ption  4. 12 lirna^oo^ = 1

The following two lemmas are useful before showing the consistency of the alternative 

estimators.

Lemma 8 (U niform  C onvergence in probability o f the indicator function) Under 

assumptions and 4-(9)~4-(12),

lim P r sup
n ^ ° °  \ i£H,c£C

1 { f i M  c) ~ % >  o} -  1 {/»,c(., c) -  Ibi > o}

Proof. See Appendix

Lem m a 9 (U niform  C onvergence in probability o f function  s ) Under assumptions 

4.(l)-4-(7) and l(9)-4,(12),

lim P r sup shn{f^c (., c) -  Ibi) ~  1
i7,-+°o \ie//,c€C

< e  =  1

Proof. See Appendix ■

The two lemmas above use the result of the uniform convergence in probability of 

the nonparametric estimators of the conditional mean and the uniform convergence of 

f x { x \Z — 0) and f x { x \ Z  = 1) to the true densities uniformly in x. The assumptions 
4.(9)-4.(ll) together with the following bandwidth conditions

O n
n ohn —> oo and n\h^  —> oo as n  —> oo

- which are indeed implied by condition in expression (4.27) and assumption 4.(10)- guar­

antee that this is the case (see Pagan and Ullah (1999)).
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T h eo re m  10 (C o n sis ten cy ) Under assumptions 4-(l)~4-(l%) and Mie assumptions of  

the identification theorem (8), i f  the bandwidth satisfies the following condition

lim 7——/ii1+2^  = oo (4.28)
n —> oc  In n

,then the estimators defined by

(a2,c2) =  arg min L2(o,c)
(a,c)€.AxC

(a3 ,c3) =  arg min L 3 (a,c)
( a , c ) £A xC

are consistent estimators of(ao,co).

P ro o f. See Appendix ■

Note that the crucial uniform result in Lemma (8) does not hold if it is defined 

over a different set (not a subset) of H. This is because the uniform convergence of 

|1 {/i,c(-,c) — Ibi > 0} — 1| on c E C and on i might not hold if we do not restrict the 

set for the observations to set H , where the indicator equals one uniformly on c, by defin­

ition of this set. This is the reason why in the definition of the objective function L2(a, c) 

and L 3(a,c) the sum of the corrected denominator is defined over set H.

4 .6 .2  A sy m p to t ic  N o rm a lity

The estimator that minimizes the objective function in L(a, c) solves the following system 
of equations

1 n
~ Y 2 IiQ [V(a, c)B(y i , a ,mi { . , a , c ) ) ] '  V i nB( y i , a , i f y ( . , a yc)) =  0

i= 1

where

a,c)) = jj I _ z _  drhji{dj ,c) \  drhi(a,c)
daj J dc

where D ( —z -  ,c-) is a matrix of order ( J  x J )  where the only elements different

from zero are the elements in the diagonal and the element (j  x j )  in the diagonal takes 

value —z -  Since by the assumptions above B  is a differentiable function of the
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t

parameters, doing the usual Taylor’s series expansion of B  around ( a o ,  cq) we obtain

Two main results allow one to obtain the asymptotic distribution of (d, c) : (i) the 

convergence in probability of the hessian term (4.29) to a positive definite m atrix and (ii) 

the convergence in distribution of term (4.30) to a normal distribution.

Additionally to the assumptions needed for consistency, the following assumptions 

should be satisfied:

A ssum ption  4. 13 The unknown functions {(/^(i),..., <-Pj{t)} are continuously differen­
tiable of order q +  1 where q > 2

A ssum ption  4. 14 The functions f c(u,co) and E  (z\u) are continuously differentiable in 
u of order q +  1

A ssum ption  4. 15 The conditional expectation functions mj ( . ,  a, c) = E ( w j  —a j z \ x  — cz)  

for j  =  1,.., J  and E ( z \ x  — cz) are continuously differentiable in (x — cz)

A ssum ption  4. 16 The density function f c(u,c) is continuously differentiable in u

A ssum ption  4. 17 K{u) is twice continuously differentiable and satisfies

/•+oo

f o r s  = {2 , . . . , q -  1}

T heorem  11 (A sym p totic  N orm ality) Under assumptions 4.(1)-4.(17), i f  the band­
width sequence satisfies the following conditions

usK(u)du  =  0
—oo

n—*oo Inn
^ 2 ( 1 + 2 / 7 9 + 1  = (4.31)

lim \fnh% =  0

n—>oolim y/nhn =  oo

129



Then,the Hessian term in (4-29) converges to a positive definite matrix H  

1 n / -
~ Y l Ii(2 [V(a>c)5 (y i>a ,m i( .,a l c))]/ V5n [V(ajC)5 ( ^ ,  a, m*(., a, c))] ■£> H

i=  1
where

H  = E  [lQA(y) 'VA(y)]

and
D ( _  _  dmj(ajo,c0) \  <9ra(ao,c0)

[“ V '  )  ’ 9c
where D(x) is a diagonal matrix where the elements in the diagonal are the elem.ents in 

vector x , the score term in (4-30) converges in distribution to a normal random variable 

as follows

1 n - d
—= IiQ^(wc)B{yi, a, c ) y v inB ( yi , ao,rhi(., ao, Co)) -* N ( 0, E)
V Z = 1

where
Y, = E { l Q {A(y)}'Vee'V{A(y)}}

so that the asymptotic distribution of the SLS estimator is

a  a °  1 A  t u / h  t j — l  v*  t j ~  1V it  i

Proof. See Appendix.

^  N ( 0 , H - l Z H ~ l )
V C - C q I

Equivalent asym ptotic d istribution  for the alternative estim ators

In this section we show that the asymptotic distribution of the estimators (0-2, 02) and

(0,3, 03) defined through the minimization of objective functions L 2(a,c) and £ 3(0 , 0) is

the same as the estimator (a, c) defined through the original objective function L(a, c). 

Formally, we show that

Jhn^Pr ( ||v /n ((o 2,o2) -  (d,c))|| > o2) = 0 (4.32)

Jjim^Pr ( ||V n ((a 3,c3) -  (a,c))|| > e3) =  0 (4.33)

for any £ 2  > 0 and 03 > 0. The probability in (4.32) can be rewritten as

p  . \ \Vn((a2 ,C2 ) -  (d,c))|| > e2, \

1 { A c ( . , o )  -  Tbi >  0 }  =  1 { / i , c ( . , c )  -  Ibi >  0 } Vi e  H ,  Vc e  C J +

p r | \\Vn{{a2,C2 ) -  (d, c))|| > o2,
1 |A c (-, c) — Ibi > o |  ^  1 {fi,c (• 5 c) — Ibi > 0 } for some i G H  or some c e C
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The second probability in the expression above converges to zero by Lemma (8). Re­

garding the first probability, note that if the indicator function at the estimated density 

and lower bound equals one for all the observations in H  and uniformly on c 6 C, then 

the objective function

1/2 (a, c) =  — L(a, c) 
nH

so that both estimators are equal in this case and also the first probability converges to 

zero.
A similar reasoning can be done to show the converges to zero of the probability in 

(4.33). In this case, Lemma (9) can be used in the same way to show that

Jirn^Pr (|| Vn ((d3, c3) -  (d,c))|| > e3) =

 ̂ | | \ /n((d3,C3) -  (a,c)) | |  >  e2,

 ̂ shn (/i,c(.,c) -  Ibi') = 1 {fi,c(-ic) -  Ibi > 0 }  Vz G if, Vc 6 C
lim Pr

n —> oo
-  0

4 .6 .3  O p tim a l w e ig h tin g  m a tr ix

The asymptotic variance of the SLS estimator defined in this paper depends on the limit V% 

of the weighting matrix V{. In this section, we discuss the choice of this weighting matrix in 

order to find the efficient estimator in the class of estimators defined by the minimization 

of the sample analogue of objective function (4.8). When

V  =  E ( e e ' \ y ) ~ 1

then, the asymptotic variance of the estimator equals

e { j Q [A fo)]'£  {ee'\y)~l [A(r/)]j
- l

It can be then shown that if the (J  x J)  matrix E  {£e ' \y) is not singular, then the estimator 

with Vi = plim  (Vi )  = E{e£ ' \ y i )~l is asymptotically efficient for this class of estimators. 

Equivalently to the optimal minimum distance estimation, we need to show that

{ E { l Q& ( y ) ' V / \ ( y ) } y l E { l Q&(y ) 'Vee'V&(y)} (E  { l Q& ( y ) ' V -  

- { E { l Q^ y ) ' E ( e e ' \ y Y l £ , { y ) ) y '

is positive semi-definite for all positive semi-definite matrices V. Let define s = lQ A(y) 'E  (eef\y)~~l e 

and t — lQA(y) 'Ve,  then the above difference between matrices can be expressed as
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(£{«'}) (£{St'})-1- ( B {SS'} )-1 
=  (E { I QA ( Vy V A ( y ) } ) - '  x E [ U U '}  x (E  { l Q&(y) 'VA(y)} )

with U = t — E{ts '}  {E{ss’} y l s. The above difference is positive semi-definite for all V  

since E  [UU '] is positive semi-definite.

4 .6 .4  E s t im a tio n  o f  th e  C ovarian ce M a tr ix

The asymptotic covariance matrix of the estimator can be consistently estimated by es­

timating both H  and E as follows,

h  = - T i i Q A M ’v.My.)n z—̂

£ = -Ei'iQMvdVis&vMvi)

(4.34)

(4.35)
1 = 1

with

M vi) D l - Z i  -  E  (z\xi -  czi)) ,
d E  (w — az\xl — czi)

dc

£i

Wii — a.\Zi — E  (wi — a\z\xi — czt)

w u  -  ajZi -  E  (w j  - a j z \ x i -  czl)

The asymptotically efficient estimator discussed in Section (4.6.3) can be constructed 

using a consistent estimator of E  (se'\y)~l . The consistent estimation of this weighting 

matrix can be obtained from a first step consistent estimation ( d ^ \  c ^ )  -using for example 

V{ — I j  where I j  is the identity matrix of order ( J  x J ) — which is then used to construct 

a consistent estimator of the optimal weighting matrix V*

V S * = ^ E 4 0,4 0,V  (4.36)
i= l

where

=

wn  — cS^Zi — E  — d ^ z\xi — cWzi'j 

w u  -  cSj^Zi -  E  ( w j  -  a ^ z \ x i  -  c ^ z ^ j
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4.7 M onte Carlo Simulations

In this section we compare the performance of the estimators discussed in this work in 

finite samples. We simulate a model with only one good ( J  =  1) with 200 observations 

where the unknown function is

ip^x)  =  —0.7 +  l A x  — 0.14a;2

and the endogenous variable w\ is generated as

w\ — uoi z 4" y?i (a; +  cqz) -f- e

with parameter values ao =  0.3 and co = -0 .3 . The error e is normally distributed with 

mean 0 and standard deviation o e — 0 .2 . 60% of the sample is generated so tha t it belongs 

to the demographic group Z  — 1. The distribution for random variable X  is different 

for each demographic group. The random variable X \ Z  =  0 is randomly drawn from a 

normal distribution iV(4, crp); <7o =  1.5 and X \ Z  =  1 is randomly drawn from a normal 

distribution 7V(4.5,a2); o\  =  1. The function </q(.) satisfies the identification conditions.

The Montecarlo results with 300 trials for the different SLS introduced in this paper are 

presented here. The value of the bandwidth is not considered as an additional parameter 

and the results reported here are conditioned on the value of the bandwidth. The min­

imization of the objective function is done with respect to parameters (a,c) conditioned 

on that value of the bandwidth -denoted by ho — that minimizes the objective function 

evaluated at the true value of the parameters L(h\ao,co). The results for the estimators 
minimizing respectively L(a, c) (trimming 2% of those observations with the smallest val­

ues of f x - c z { x ~  cz)), T‘2(a, c) and L^(a, c) for three different starting values are presented 
in Tables (4.1) and (4.2). For each of these three exercises, the same starting value was 

used for each montecarlo replication. The first two objective functions are minimized 

subject to Y li=l 1 |/i,c(-,c) — Ibi >  oj > 0  and the third objective function is minimized

subject to X^Li shn ^/z,c(-,c) — Ib^j > 0. Thus, for L(a,c)  the solution is constrained to 

lie outside the set of the parameter space where the objective function is flat with respect 

to c. For objective functions Z/2(a, c) and L^(a, c), the solution is constrained to  lie outside 

that set of parameter values where the objective function is exactly equal to zero

Different starting values deliver different results for each of the estimators. The first 

set of results corresponding to the estimator tha t minimizes the original objective function 

L(a, c) are notably sensitive to the starting value. Conditioned on c, the objective function
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with respect to parameter a is globally concave, but the objective function with respect 

to c has local minima at arbitrary large or small values of c. As Figure (4.5) illustrates, 

the starting value in this case determines the local minima given as a solution if gradient 

optimization methods are used instead of grid search methods. For starting values [2, 2] 

and [—1, 1] -which are far away from (ao,co)- this first estimator yields estimates with 

high bias, especially for parameter c. The bias of both parameters is substantially reduced 

as the starting value is closer to (ao,co). The standard deviation over replications makes 

that the MSE is still high for parameter c even if the starting value is relatively close to 

the true value. A starting value that it is close enough to the true value ensures tha t the 

global minima is achieved by the optimization method. Thus, the starting value [0.7, —0.7] 

yields relatively good results and the smallest MSE among the results with three different 

starting values.

Regarding the results for estimator defined through the minimization of L 2 (a , c), if the 

starting value is further away from the true value the estimator still delivers a distribution 

of the estimated parameter c with high MSE. Although the corrected objective function 

L 2 {c\ao) in Figure (4.6) is globally concave with respect to c when it is evaluated at ao, the 

behavior of this objective functions is not as nice when it is evaluated at a different value of 

a. Figure (4.9) shows the objective function with respect to parameters (a, c) conditioned 

on h0. As one moves a away from the true value, the objective function changes and it is 

not globally concave as when it is evaluated at ao. This means tha t the starting value for 

a is also im portant in this case in order to obtain unbiased results. Comparing this results 

with the previous estimator in the same table, the results are better in the MSE sense 

even for the starting value that is further away. This second estimator (a2, 62) performs 

well for the last two starting values and the MSE is very close to zero when the starting 

value is very close to (ao, cq).

The results for the SLS estimator that minimizes £ 3(0 , c) where the original objective 

function is divided by a continuous approximation of the indicator function are presented 

in Table (4.2). The distribution of the estimates over replications are quite robust to the 

different starting values in this case and the MSE of both parameters are very small. This 

is the estimator that works better in the simulations corresponding to one good.

Both the third estimator (where the original objective function is divided by s) and 

the second estimator (where the original objective function is divided by the indicator 

function) perform well even if the starting value is not placed close to the true values. The 

reason why the third estimator appears to be more robust to the different starting values
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is that the objective function with respect to c is concave even if a is not close to the true 

value of ao as Figure (4.10) illustrates.

Tables (4.3) and (4.4) report the montecarlo results for the three previous estimators in 

the literature for shape invariant models: Pinkse-Robinson (1995) (PR), Hardle-Marron 

(1990) (HM) and the modification proposed by Wilke (2003). As expected from the 

shape of the objective functions with respect to c for Pinkse-Robinson and Hardle-Marron 

estimators, the solution is many times found at values of the parameters far away from the 

true values. For these two estimators, the best results based on the MSE over replications 

are found when the montecarlo experiment is designed so tha t the starting value is close 

to (ao,co). The rest of the results show that if the starting point is not carefully chosen, 

this might result in high biased results. The estimator proposed by Wilke performs much 

better regardless of the starting value and additionally delivers smaller MSE values for 

the estimates than Pinkse-Robinson and Hardle and Marron estimators. The mean over 

replications for the estimator proposed by Wilke is paradoxically worse when the starting 

value is closer to the true value. This is due to isolated solutions for some replications 

that are away from the true value, which makes tha t the distribution of the parameter 

estimates is skewed. However, the median over replications is very close to ( a o , c o ) .

We also consider the multiple equation case ( J  =  2). The specific parametric condi­

tional mean functions <p are

if i{x ) =  —0.7 -t- l A x  — 0.14x2 and — 2 +  log(x)

and the dependent variable for each equation is generated with param eter values [aoi, ao2, co] = 

[1, —2.5, 0.5]. Here we present results for the case where the errors of each equation e\ and 

e2 are not independent. In this exercise, e\ Ar(0,cr2), (ji =  0.2 and e2 ~  Af(0, cr2), 

o 2 =  0.5 with correlation coefficient p l 2  = 0.6. Given that for the single equation case we 

have concluded that the estimators defined through the minimization of objective func­

tions L <2 and Z/3 perform better than when the original objective function is used^we only 

present here results for these two estimators and for the estimators introduced previously 

in the literature. For the SLS estimators, the optimal weighting function V* is used, which 

is estimated as described in (4.36) from a first step consistent estimators [ a ^ ,  di>°\ ĉ 0)] 

where W  = I j  (identity matrix of order J)  is used as a weighting matrix. The first step 

results for the modified SLS estimators are very similar to the second step results with 

slightly smaller standard deviation over the replications. We omit these first step results
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here. The results for multiple equations ( J  =  2)8 are presented in Table (4.5) and Table 

(4.6) for different starting points. The first set of results corresponds to a starting value 

which is not so close to the true parameters. For this reason, the results from the PR 

and HM estimators deliver quite high MSE since they must have found a solution in a 

global minima away from the true value. Their performance is significantly worse for 

parameter c and in the case of HM even for parameter 02 . Among the rest of parameters, 

the modification proposed by Wilke of the previous estimators produces very good results 

with MSE quite close to zero. Regarding the SLS estimators, they also perform better 

in this case than PR  and HM estimators with the gradient computational methods used 

in the optimization. The MSE is quite low for parameters a's and it is slightly larger 

for parameter c. The difference in the performance of the estimators obtained through 

the modification of the original objective function for SLS with respect to the estimator 

obtained through the modification of PR or HM objective function (Wilke) is due to the 

different curvature of these objective functions around the true value of the parameters. 

Thus, looking at the shape of both functions, the slope of the modified objective functions 

L 2 and Z/3 with respect to parameter c is much more constant around (ao,co) than the 
modified objective function proposed by Wilke. This explains the difference in accuracy 

in the estimates of c in the results presented for these three estimators. When the starting 

value is designed to be closer to the true value of the parameters (See Table (4.6)), the 

PR and HM results improve in the MSE sense though in the case of the PR estimator 

the bias corresponding to parameter c is still quite high. In this set of estimates, the 

SLS estimators provide a mean over replications that it is closer to the true value of the 

parameters while the standard errors are only slightly smaller and still higher than the 

dispersion over replications of the estimates provided by the estimator proposed by Wilke. 

Between the two alternative modifications of SLS proposed in this paper, it should be 

pointed out that better estimates are obtained from the minimization of Ls(a,c).  The 

mean over replications is closer to the true value of the parameters and the variance of 

the estimates over replications is also smaller. Additionally, this estimator turns out to be 

more robust to the starting value used.

Therefore, in general, these simulation exercises suggest tha t when standard gradient 

methods are used in the optimization the right choice of the starting value is quite im­

portant for the results of the estimators previously suggested in the literature to estimate

81 should point out th a t qu a lititavely  sim ilar results were o b ta in ed  in a sim u la tion  exp erim en t w ith  3 

equations.
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shape invariant models, and also for the SLS estimator in its original formulation. If the 

starting value is not close to the true value, these computational methods deliver as valid 

solutions minima that are far away of the local or global minimum tha t is close to the 

true value of the parameters. Obviously, other types of optimization could be used if this 

property of the objective function is know a priori, such as grid search methods. However, 

these methods are computationally costly if parameter c is multidimensional, for example 

when the differences between nonparametric regression curves with respect to more than 

one variable want to be studied.

4.8 Empirical Application

This section applies the SLS estimation of shape invariant models to the estimation of 

Engel curves for different demographic groups using British Consumer data. To do so, 

we use the same data as in Blundell, Duncan and Pendakur (1998). Thus we use cross 

sections 1980-1982 of the British Family Expenditure Survey (FES). Only households with 

one child (Z = 0) or two children (Z = 1 ) and with married and cohabiting couples where 

the head of the household is employed are selected in this data. The selected sample is 

then homogeneous with respect to other demographic variables. It contains six categories 

of goods (food, domestic fuel, clothing, alcohol, transport and other goods). See Blundell, 

Duncan and Pendakur (1998) for more details on the selection of the sample. There is a 

total of 1519 observations where 594 of them belong to demographic group 0 (one child) 

and 925 of them belong to demographic group 1 (two children).

We use the alcohol budget shares to compare the estimators discussed in this paper in 

a single equation model. These results are shown in Table (4.7). Different starting values 

were used to guarantee the robustness of the results presented here and the solution 

that provided the minimum value function was selected. No grid search methods were 

used for parameter c. As the montecarlo experiments suggested, the estimates (as, 6 3 ) are 

more stable to different starting values than the estimates we obtained for (62 , £2), but 

we find similar results for both of them after trying different starting values. We also 

present here for comparison the results of the estimator tha t minimizes the original SLS 

objective function L(a, c) with 2% of observations trimmed. The same set of results were 

obtained for different values of the bandwidth (h = {1,0.5,0.25,0.1}) and the estimates 

attaining the smallest value function are presented here. For each estimator, the value of 

the bandwidth at which we find the minimum of the objective function is shown in the row
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named by h. The covariance matrix is estimated as described in (4.6.4). The covariance 

matrix estimation for HM and Wilke estimators is done using the asymptotic distribution 

computed in the corresponding papers. 9

It can be checked that the estimates of co are very different for each estimator con­

sidered. The values of the estimates for c are especially different for the estimates obtained 

through the minimization of the original SLS objective function (column (1)) and PR  and 

HM estimators which , as we discuss in the montecarlo section, are likely to have achieved 

a local minima far away from the true value of the parameter. The sign of c in column (1) 

and in PR  gives us also a hint that this might be the case. This is because c is interpreted as 

the equivalence scale between households with two children and households with one child. 

A negative value of this parameter does not have an economic interpretation given the two 

demographic groups under consideration. Given the relationship e^^(x) =  a +  e ^ \ x  — c), 

a positive value of c denotes the amount of additional total expenditure tha t should be

!l A pplying the a sy m p to tic  result o f H ardle and M arron to the linear case we consider here, it can be 

show n th at their estim ator  is a sy m p totica lly  norm ally d istr ib u ted  w ith zero m ean and variance given by

V7

V E
1 d e w ( x - c 0) / d c

<9e(0)(x  — c o ) / d c  ^de(0)(x  — c o ) / d c j
w ( x ) d x

which is e stim a ted  using th e  corresponding nonparam etric  estim a tes o f and the e stim a te  for Co.

W ilke (2003) provides th e  follow ing a sy m p to tic  d istr ibu tion  for th e  m odified  estim a to r  he proposes in 

his work
a — ao 
c -  Co

y/n

w ith

H  =

V  =

d e (0)(x  -  c o ) / d c

(wi >0 ) (*))5
/ i (z)5

+

<9e(0)(x  — c q ) / 8 c  

^de^0)(x  — c o ) / d c j

( w 0 -  e (0)(x  -  c0) ) 2 

/o(x)2

x e 4 0) + c n n 9)

d e ^ ° \ x  — c o ) / d c

d e ^ ° \ x  — c o ) / d c  

^de^0)( x  -  c0) / d c j
(0 )

An estim a te  of th is m atrix  of variance and covariance is ob ta ined  by rep lacing the cond ition a l m ean  

and d ensity  fun ctions by its nonparam etric estim a tio n . N o te  th a t a lth ou gh  th e  estim ator  is defined w ith  

the integral over the in tersection  o f th e  su pp orts x  G +  c f l  the above m atrices are com p u ted

w ith  those observations in the d a ta  belonging  to  the in tersection  o f x  G +  c f )  . T h is im plies som e  

inconsistency  of the standard  errors provided w ith respect to the estim ation  m eth od  used. A lthou gh  we 

have com puted  W ilk e’s m odified  estim ator  by sim ulating  th e  integral over x , he im plem ents his estim a to r  

by m inim ing the sum  of square losses over th e  observations in stead  o f co m p u tin g  the integral.

+  c n
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given to a family with two kids in order to have the same budget share on alcohol as the 

households in the reference demographic group (households with one kid).

Almost all the estimators (with the exception of HM) yield negative estimates of alcohol 
which implies that for a given value of total expenditure, households with two kids devote 

a smaller budget share to alcohol than families with one kid.

Given the evidence obtained from the Montecarlo experiments, the estimates to be 

viewed as more reliable are those in columns (2), (3) and Wilke. The estimated standard 

errors are relatively small in these three cases, especially for the SLS estimates. Given that 

these three estimators give estimates tha t are almost statistically different, some goodness 

of fit criteria allowing one to choose among these three different estimates is left for future 

versions of this work.
Table (4.8) reports the estimates from the SLS estimator with multiple equations that 

minimizes the objective function £ 2(0 , c) which divides the original objective function by 

the number of observations for which the estimated density is above its lower bound. 

Four results are presented for different values of the bandwidth h = {0.1,0.25,0.5,1} and 

different starting values were used. For each value of the bandwidth, the solution yielding 
the smallest value of the objective function is reported. It is im portant to note that the 

estimates are not robust to changes in the value of the bandwidth. In many of the cases, 

especially for the estimates corresponding to the linear part (parameters a), there are even 

changes in the sign of the estimates we obtain. This implies that the optimal choice of 

the smoothing parameters turns out to be very im portant for this particular estimator. 

The results corresponding to h = 0.5 attain the smallest value of the objective function. 

Comparing these results with the ones reported in Blundell, Duncan and Pendakur (1998) 

(for reference they can be found in Table 4.10)) corresponding to the Pinkse-Robinson 

estim ator10, it can be checked that the estimates for parameter a are very similar for 

all the goods although the estimates for param eter c are significantly different in both 

cases. The SLS estimator yields an estimate of c =  0.0558 while the estimate given by PR 

estimator is c =  0.2590. The estimated standard errors for the SLS estimates lead us to 

conclude that for h = 0.5, the estimates of parameter c are not statistically significantly 

different from zero. The estimate of c presented in Blundell, Duncan and Pendakur (1998) 

is more precisely estimated 11. This difference is even bigger if one compares the results

10 In order to ob ta in  th ese  resu lts the au th ors describe th a t the op tim isa tio n  m eth od  involves gridsearch  

over param eter c over a reasonable set o f vlaues.
11 Since grid search is used for the com p u ta tio n  of the estim a te  o f c, th e  b oo tstra p  stan dard  errors for c
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with the ones reported in Wilke (2003). More similar results with respect to parameter c 

(c =  0.2010) can be found when the smoothing parameter is set to h =  0.1 (for which the 

value function at the estimates is slightly higher than for the global minimum) and the 

estimated standard error for parameter c is also smaller in this case. Thus, the conclusions 

from the results of this estimator is that the estimates (and their corresponding standard 

errors) are not robust across different values of the bandwidth and the optimal choice here 

seems important. The estimated c for this version of SLS is smaller than the previous 

estimates that can be found in the literature for both the global minimum found when 

h =  0.5 and for estimated values close to the global minimum when h =  0.1.

Table (4.9) presents the results from the SLS estimator tha t minimizes the objective 

function Z/3(a, c), which divides the original objective function by the sum of continuos 

functions s converging to the indicator function as the sample size increases. In contrast 

to the previous SLS estimator, the results in this case are much more stable across dif­

ferent values of the smoothing parameter h. The objective function attains its minimum 

at the estimated parameters when h = 0.1. The estimates were also very robust across 

the different starting values. When comparing these results with PR  and the modified 

estimator proposed by Wilke, one can check that the estimate of c is smaller for the SLS 

than for the previous two estimators. The standard error for c in our case is smaller than 

the bootstrapped standard errors given by Blundell, Duncan and Pendakur (1998), how­

ever the parameter is estimated more precisely by Wilke. Note though tha t there exits a 

trade off in the standard errors he reports for parameters a and c. While the parameters 

in part a are much more precisely estimated by the proposed estimator in this work, his 

estimation of c is very precise.

The similarities of the estimates for a of this version of SLS with respect to PR and 

Wilke differ across the goods. The coefficients belonging to the linear part of the specific­

ation have the expected sign given the definition of the two demographic groups under 

consideration. In the PR  and Wilke estimates, those coefficients whose sign is opposite to 

the expected one turn out to be not significantly different.

The results we observe from the data are in line with the Montecarlo experiments. The 

estimator proposed by Wilke and the SLS estimator that minimizes objective function 

Ls(a,c) are robust with respect to different starting values and in the case of the SLS, 

more stable for different values of the bandwidth. The estimates of the equivalence of 

are generated  through rep etition  of the gridsearch process for 500 b o o tstra p  sam ples.
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scale are statistically different though for both estimators. The modified SLS we propose 

gives an estimate c = 0.1936 (with standard error 0.0245) and the modified PR  estimator 

proposed by Wilke gives an estimate of c =  0.3926 (with standard error 0.0086) .The 

reported estimate of c by Pinske and Robinson lies between both values. It should be 

pointed out that this estimate has been obtained at a higher computational cost since the 

computational procedure involves grid search methods and much different results would 

have been obtained if gradient methods were used. The other two estimators however 

obtain their estimates at a lower computational cost.

4.9 Conclusion

In this work we have provided an alternative way of estimating the parametric transform­

ations of a shape invariant model that relate nonparametric regression curves for different 

samples by using the Semiparametric Least Squares (SLS) estimator (Ichimura (1993)). 

The previous estimators that can be found in the literature (Hardle and Marron (1990) 

and Pinkse and Robinson (1995) imply extensive computational methods because their 

corresponding objective functions only attain  a local minimum at the true value of the 

parameters and, in addition, their shape do not help in obtaining consistent estimates. 

In order to avoid these disadvantages, some modifications of these estimators have been 

already proposed by Wilke (2003). The shape invariant model can be interpreted as a 

single index model and therefore SLS constitutes a natural and efficient way of estimating 

the parameters of interest.

We also find that the objective function in the original framework of SLS involves some 

computational difficulties as well. Thus, the partial derivative of the objective function 

with respect to the parameters imbedded in the unknown function is zero for arbitrary 

large or small values of this parameter, where the objective function attains a local min­

imum. The intuition is that when this parameter is arbitrary large in absolute value, 

the nonparametric estimation of the conditional mean function evaluated at a particular 

observation gives zero weight to those observations belonging to a different sample. In 

other words, only the observations belonging to the same sample are used and therefore 

the objective function does not change with respect to the param eter tha t captures the 

horizontal shift among regression functions for different samples . For this reason, we pro­

pose two possible modifications of the objective function tha t the SLS estimator minimizes 

which help in computing estimates for this parameter. The idea of both modifications is
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that the objective function is divided by the amount of observations for which the estim­

ated conditional mean function still depends on the value of the vertical shift parameter. 

The greater this parameter in absolute terms, the fewer this observations for which this 

property holds and this makes the objective function increase for these values of the para­

meter and ease the computation of the minimum. One of the modifications implies that 

the objective function is divided by an indicator function tha t depends on the value of 

the parameters and the another proposed estimator corrects the objective function by a 

continuos function that converges to the indicator function as the sample size increases.

In the Montecarlo experiments we perform, this second modified estimator performs 

better than the original formulation and than the corrected objective function by the 

indicator function. We find that when gradient methods are used in the computation, the 

performance of the previous suggested estimators highly depends on the starting values. 

If these are not carefully chosen, the shape of the objective functions makes that its 

minimization yields local minimum as valid solutions which are far away of the true value 

of the parameters.

The limit of both corrected objective functions coincides with the limiting function in 

original framework and also the corrections do not depend on the parameter value in the 

limit. This implies that the identification conditions and the asymptotic properties are 

equivalent for the three cases.

Additionally, it can deal automatically with the comparison of regression curves for 

more than two samples or with respect to more than one variable and because grid search 

methods are not needed in the computation, this increase in the dimension is computa­

tionally feasible.

Given that we consider the case where we observe multiple endogenous variables for 

each individual, we adjust the SLS estimator to deal with the estimation of a single index 

model with multiple equations. This allows one to account for the existence of correlation 

of the errors among equations for each individual. We also give sufficient conditions that 

the unknown functions in the system of equations should satisfy in order to identify the 

finite dimensional parameters of the model. We establish the asymptotic properties of the 

SLS estimator with multiple equations and discuss the optimal weighting matrix across 

equations in order to obtain an efficient estimator for this subclass of estimators.

A single index model with the form of a shape invariant model arises in the estimation 

of Engel curve relationships (Blundell, Duncan and Pendakur (1998)). We use the British 

Family Expenditure Survey to apply the different estimators discussed in this work to
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estimate consumption based equivalence scale between households with two children and 

households with one child. In this empirical application, we find that the suggested estim­

ator where the objective function is divided by the indicator function is less stable than 

when the denominator depends on a continuous function. And it is also less robust to the 

choice of the smoothing parameter. The estimator that divides the objective function by 

the continuous function converging to the indicator function together with the estimator 

proposed by Wilke (2003) were the estimators tha t performed better in the simulation. In 

the data though, we find different estimates of the equivalence scale parameter.

There are some issues tha t are not addressed in this paper and tha t would be worth­

while to investigate. First, given the alternative estimators for the parameters of the shape 

invariant model, it would be interesting to compare their asymptotic efficiency and study 

whether under some weighting schemes the SLS with multiple equations achieves the ef­

ficiency bound for single-index models (Newey (1990)). This would allow us to conclude 

that the SLS estimator with multiple equations is asymptotically more efficient tha t the 

early proposed estimators and that even the modified versions of them. A second point 

would be to study the large sample properties of the estimation of the infinite dimensional 

parameter given by the unknown function for each equation. And finally, as the Monte­

carlo simulations and the empirical application pointed out, the choice of the bandwidth 

might be important for the robustness of the estimates. For this reason, analysis of the 

optimal choice of the bandwidth for the modified estimators and the asymptotic properties 

of the estimator that considers the bandwidth as an additional parameter are in order.
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4.10 Tables
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Table 4.1: Simulation results for SLS: P art 1 . 300 trials. n= 200 and J= 1

Statistics over replications mean st. dev. Q 5 Q 25 Q 50 Q  75 Q 95 MSE

(1) (a, c) =  arg min(a c) L(a, c)

starting value : [2,2]

ciq = 0.3 -0.403 0.489 -1.345 -0.625 -0.259 -0.104 0.020 0.732

co =  —0.3 4.613 1.719 2.605 2.706 5.290 6.129 6.490 27.090

L(a,c, ho) 0.045

starting value : [—1,1]

&0 ■ 0.3 0.371 0.353 0.072 0.250 0.294 0.330 1.170 0.130

cq =  —0.3 -0.920 2.483 -7.104 -0.412 -0.218 -0.025 1.325 6.549

L(ci, c, ho) 0.041

starting value : [0.7, —0.7]

ao — 0.3 0.272 0.195 0.192 0.277 0.304 0.336 0.368 0.039

COCD1IIoO -0.133 1.098 -0.743 -0.434 -0.296 -0.149 0.205 1.234

L(a,c, ho) 0.040

(2) (a2,c 2) =  argm in(a)C) L2(a,c)

starting value : [2,2]

COCDIIoC3 -0.114 0.110 -0.199 -0.156 -0.110 -0.071 -0.011 0.183

co =  —0.3 2.665 0.421 2.556 2.654 2.698 2.727 2.792 8.967

L(a,c, ho) 0.071

starting value : [—1,1]

ao — 0.3 0.275 0.085 0.081 0.249 0.297 0.323 0.370 0.008

cs o II 1 o co -0.104 0.549 -0.608 -0.429 -0.277 0.001 1.280 0.340
L(a,c, ho) 0.043

starting value : [0.7, —0.7]

ao = 0.3 0.309 0.050 0.232 0.285 0.311 0.339 0.384 0.003
co =  -0 .3 -0.347 0.257 -0.747 -0.496 -0.348 -0.193 0.090 0.068
L(a,c, ho) 0.042

Notes: These objective functions are conditioned on the bandwidth that minimizes the 

Cross-Validation function evaluated at the true value of the parameters, or equivalently 

L(h\ao, Co), denoted by ho. The value function L(a, c, ho) reports the mean over replications of

the value of the function at the solution
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Table 4.2: Simulation results for SLS: P art 2 . 300 trials. n=200 and J= 1

Statistics over replications mean st. dev. Qh Q '25 Qso Q 75 Q  95 MSE

( 2 ) (a3,c 3) = arg min(a>c) Ls(a,c)

starting value = P.2]

COdIIod 0.320 0.082 0.000 0.313 0.0336 0.359 0.385 0.007

co =  —0.3 -0.504 0.184 -0.750 -0.601 -0.524 -0.444 -0.000 0.075

L(a ,c ,h0) 0.309

starting value : [-1.1]
a0 =  0.3 0.337 0.0401 0.272 0.316 0.337 0.361 0.389 0.003

Ci o II 1 o CO -0.534 0.158 -0.760 -0.621 -0.546 -0.468 -0.331 0.080

L(a , c, ho) 0.328

starting value O j-u 1 o Vi

ao =  0.3 0.309 0.040 0.280 0.319 0.341 0.363 0.394 0.003

c* o II 1 o CO -0.557 0.122 -0.766 -0.639 -0.556 -0.479 -0.380 0.081

L{a,c,ho) 0.321

Notes: These objective functions are conditioned on the bandwidth that minimizes the Cross- 

Validation function evaluated at the true value of the parameters, or equivalently L(h\ao,co), 

denoted by Hq. The value function L(a ,c , ho) reports the mean over replications of the value of 

the function at the solution.
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Table 4.3: Simulation results for previous estim ators: P a rt 1. 300 trials. n=200 and J= 1

mean st. dev. Q 5 Q 25 Q 50 Q 75 $95 MSE

starting value : [2,2]

Hardle-M arron estim ator

ao =  0.3 -0.523 0.099 -0.655 -0.588 -0.528 -0.482 -0.346 0.687

co =  —0.3 5.815 0.395 5.618 5.722 5.723 5.877 6.492 37.547

L(a, c) 0.001

Pinkse-R obinson  estim ator

o II O C
o 0.300 0.053 0.223 0.270 0.298 0.328 0.398 0.003

COO1IIoo 4.485 0.271 4.282 4.475 4.511 4.546 4.587 22.972

L(a , c) 0.002

W ilke estim ator

ao =  0.3 0.309 0.070 0.228 0.289 0.314 0.339 0.380 0.005

co =  —0.3 -0.310 0.471 0.727 -0.501 -0.336 -0.167 0.116 0.222

L(a, c) 0.019

starting value : [ -1 ,-1 ]

Hardle-M arron estim ator

COoIIo<3 1.486 1.805 0.251 0.859 1.04 1.150 5.905 4.665

c0 =  -0 .3 -2.526 4.467 -5.720 -5.720 -5.720 -0.142 6.493 24.914
L(a , c) 0.018

Pinkse-R obinson  estim ator

ao =  0.3 0.104 0.043 0.038 0.073 0.102 0.137 0.173 0.040
co =  —0.3 1.743 0.111 1.672 1.718 1.745 1.781 1.827 4.184
Z/(a, c) 0.0001

W ilke estim ator

o II O G
O 0.308 0.066 0.228 0.288 0.314 0.339 0.378 0.004

co =  —0.3 -0.285 0.611 -0.721 -0.496 -0.335 -0.166 0.127 0.374
L(a, c) 0.019

Note: For these three estimators the integral over a range of x  needs to be computed.

This is done using the midpoint formula to compute the integral of the objective 

function with 100 points of support and they only use those values of X  belonging to the 

intersection between +  cfl taking value 0 for any value of x  outside this 

support. Cross-validated bandwidth was used for the estimation of the nonparametric 

mean functions and density functions used in the loss functions of these estimators.
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Table 4.4: Simulation results for previous estimators: Part 2 . 300 trials. n=200 and J=1

mean st. dev. Q 5 Q 25 Q 50 Q 75 Q 95 M S E

starting value : [0.7, —0.7]

H a rd le -M a rro n  e s tim a to r

ao — 0.3 0.2451 0.2144 -0.3064 0.2788 0.3136 0.3412 0.3785 0.0490

0 o II 1 O CO 0.4497 2.2773 -0.7370 -0.5646 -0.3570 -0.1230 6.4926 5.7480

L(a, c) 0.0164

P in k se -R o b in so n  e s tim a to r

COoIIoe 0.3267 0.0384 0.2731 0.3044 0.3266 0.3493 0.3835 0.0022

Ci o II 1 o CO -0.7333 0.0430 -0.7481 -0.7401 -0.7356 -0.7309 -0.7248 0.1896
L(a, c) 0.41e-6

W ilke  e s tim a to r

ao = 0.3 0.2431 0.2270 -0.3209 0.2796 0.3144 0.3413 0.3796 0.0548

0 o II 1 o co 0.3838 2.1913 -0.7342 -0.5633 -0.3583 -0.1250 6.4926 5.2692
L(a, c) 0.0169

Note: For these three estimators the integral over a range of x  needs to be computed. 

This is done using the midpoint formula to compute the integral of the objective function 

with 100 points of support and they only use those values of X  belonging to the intersection 

between +  c f l taking value 0 for any value of x  outside this support. Cross­

validated bandwidth was used for the estimation of the nonparametric mean functions and 

density functions used in the loss functions of these estimators.
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Table 4.5: Simulation results for SLS for m ultiple equations J= 2  . 300 trials. n=200

mean st. dev. Qd Q25 Q50 Q 75 Q 95 MSE

s ta r t in g  value [al 5 a2 ? c] = [1,1,1]
(a2, c2) = arg m in(a)C) L2(a, c)

aoi = 1 0.782 0.347 0.553 0.629 0.709 0.894 1.052 0.168

ao2 =  —2.5 -2.849 0.272 -3.232 -3.058 -2.896 -2.612 -2.398 0.196

c0 =  0.5 0.981 0.731 -0.377 0.374 0.954 1.403 2.255 0.766

L (a ,c) 0.988

(a3, c3) = arg m in(a]C) L3(a, c)

aoi = 1 1.194 0.051 1.095 1.167 1.193 1.223 1.261 0.040

ao2 = — 2.5 -2/227 0.102 -2.401 -2/281 -2.223 -2.168 -2.055 0.085

co = 0.5 0.102 0.196 -0.262 -0.061 0.095 0.215 0.444 0.197

L(a, c) 0.651

H a rd le -M a rro n  e s tim a to r

aoi =  1 0.750 0.495 0.0325 0.386 0.715 1.025 1.427 0.308

a02 =  —2.5 -22.018 14.820 -34.160 -33.089 -32.140 -2.582 -2.363 600.58'

co = 0.5 4.384 3.235 0.387 0.793 6.217 6.493 6.493 25.547
L( a, c) 0.040

P in k se -R o b in so n  e s tim a to r

aoi = 1 0.958 0.026 0.913 0.940 0.955 0.975 1.002 0.002

ao2 = —2.5 -1.326 0.096 -1.492 -1.373 -1.314 -1.256 -1.192 1.388

c0 =  0.5 5.303 0.075 5.191 5.258 5.297 5.345 5.387 23.077
L(a, c) 4.2e-5

W ilke e s tim a to r

aoi = 1 1.020 0.405 0.946 0.999 1.020 1.048 1.079 0.002

p o to

II 1 to C
n -2.492 0.094 -2.665 -2.555 -2.480 -2.429 -2.352 0.009

O o II O 0.646 0.156 0.382 0.545 0.639 0.751 0.901 0.046
L(a, c) 0.123
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Table 4.6: Simulation results for SLS for m ultiple equations J=2 . 300 trials. n=200

mean st. dev Q 25 Q 50 Q 75 Q95 MSE

s ta r t in g  value a l5 a2) c] — [0 .5 ,-1 ,0 .7 ]

(a, c) =  argm in(aiC) L 2(a, c)

aoi = 1 0.989 0.044 0.908 0.958 0.992 1.021 1.053 0.002

ao2 = —2.5 -2.515 0.103 -2.708 -2.575 -2.513 -2.439 -2.364 0.011

c0 -  0.5 0.656 0.372 0.0285 0.3916 0.6172 0.8727 1.2540 0.1627
L(a, c) 0.375
(a,c) =  argm in(aiC) Z3(a,c)

aoi = 1 1.165 0.041 1.091 1.139 1.163 1.193 1.226 0.029

aof2 — —2.5 -2.270 0.089 -2.434 -2.322 -2.269 -2.211 -2.127 0.061

co = 0.5 0.401 0.181 0.079 0.263 0.386 0.515 0.689 0.043

L(a, c) 0.549

Hardle-Marron estimator

aoi = 1 1.020 0.041 0.9444 0.999 1.020 1.048 1.073 0.002

ao2 = —2.5 -2.492 0.095 -2.684 -2.560 -2.480 -2.427 -2.360 0.009

Ci o II o a* 0.654 0.162 0.357 0.556 0.641 0.769 0.909 0.050
L(a, c) 0.1132

Pinkse-Robinson estimator

aoi = 1 0.998 0.039 0.934 0.971 1.003 1.021 1.065 0.002

ao2 = —2.5 -2.633 0.120 -2.856 -2.720 -2.634 -2.546 -2.442 0.032
co = 0.5 1.679 0.121 1.455 1.606 1.677 1.748 1.878 1.405
L(d, c) 0.0001

Wilke estimator

aoi =  1 1.022 0.041 0.946 1.002 1.020 1.051 1.074 0.002

ao2 — —2.5 -2.490 0.095 -2.680 -2.555 -2.478 -2.425 -2.352 0.009
co = 0.5 0.644 0.158 0.352 0.546 0.628 0.764 0.884 0.046
L(a, c) 0.122
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Table 4.7: Estim ation using FES d a ta  for one equation. Alcohol Engel Curves. Results

for all the estim ators functions

(1) (2) (3) HM PR Wilke

a -0.0357 -0.0139 -0.0112 0.0149 -0.0263 -0.0060

(0.0245) (0.0038) (0.0036) (0.0047) - (0.0042)

c -1.9919 0.1020 0.1818 2.1772 -0.9417 0.2989

(0.0360) (0.0519) (0.0479) (0.4834) - (0.1157)

h 0.1 0.25 0.1

L(a, c) 0.0025 0.0040 0.0044 1.5e-05 1.8e-05 0.0001

Note: Column (1) : (a, c) = arg min(a c) L(a, c); Column (2) : (a2, £2) =  arg min(a c) L2(a, c); 

Column (3): (<23, £3) =  arg min(ac) Ls(a, c). Standard errors in parenthesis.
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Table 4.8: Estim ation using FES d a ta  for m ultiple equations: Engel Curves. SLS Estim ­

ation when objective function is divided by the sum of indicator functions

P a ra m e te r arg min(ac) L2(a ,c)

Bandwidth value h =  0.1 h -  0.25 h =  0.5 h =  1

& food
-0.0054

(0.0056)

0.0333

(0.0064)
0.0247

(0.0065)

-0.0850

(0.0085)

a fuel
-0.0085

(0.0028)

0.0017

(0.0029)

-0.0015

(0.0029)

-0.0396

(0.0043)

Q'cloth
0.0118

(0.0051)

-0.0052

(0.0054)

0.0002

(0.0056)

0.0640

(0.0074)

& alcohol
-0.0104

(0.0034)

-0.0145

(0.0035)
-0.0123

(0.0035)

0.0067

(0.0052)

&transport
-0.0045

(0.0055)

-0.0125

(0.0057)
- 0.0100

(0.0056)

0.0199

(0.0090)

C
0.2010

(0.0245)

0.0053

(0.362)
0.0558

(0.0624)

1.0248

(0.0608)

L 2(a,c) 0.0451 0.0457 0.0448 0.0459

Note: Standard Errors in Parenthesis. Estimated Covariance matrix was obtained as 

described in expressions (4.34) and (4.35). Consistent estimators with weighting matrix

Vi =  I j  are presented here.
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Table 4.9: Estimation using FES data for Multiple equations: Engel Curves. SLS Estim­

ation when objective function is divided by the sum of s functions

Param eter arg min(a c) L 3(a ,c)

Bandwidth value h = 0.1 h =  0.25 h =  0.5 h =  1

& food
0.0069

(0.0055)

0.0095

(0.0061)

0.0184

(0.0067)

0.0201

(0.0054)

(d fuel
-0.0078

(0.0028)

-0.0067

(0.0029)

-0.0038

(0.0096)

-0.0034

(0.0027)

ddcloth
0.0112

(0.0050)

0.0096

(0.0052)

0.0041

(0.0056)

0.0035

(0.0049)

ddalcohol
-0.0104

(0.0035)

-0.0098

(0.0035)

- 0.0111

(0.0035)

- 0.0111

(0.0034)

*̂ transport
-0.0042

(0.0055)

-0.0051

(0.0056)

-0.0081

(0.0056)

-0.0088

(0.0056)

C
0.1936

(0.0245)

0.1739

(0.0331)

0.1130

(0.0656)

0.1033

(0.1198)

L 3 (a,c) 0.0487 0.0632 0.0960 0.1989

Note: Standard Errors in Parenthesis. Estim ated Covariance matrix was obtained as 

described in expressions (4.34) and (4.35). Consistent estimators with weighting matrix

VL =  I j  are presented here.
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Table 4.10: Estimates reported by Blundell, Duncan and Pendakur (1998) and Wilke 

(2003) using FES data for multiple equations: Engel Curves.

P a ra m e te r

Bandwidth value Blundell, Duncan and Pendakur (1998) Wilke (2003)

0.0281 -0.0292
&food

(0.0048) (0.2423)

& fuel
-0.0013 -0.0176

(0.0025) (0.0336)

-0.0018 0.0209
acloth

(0.0045) (0.1238)

-0.0121 -0.0009
&alcohol

(0.0032) (0.0520)

-0.0100 0.0149
&transport

(0.0053) (0.1502)

0.2590 0.3926

(0.0809) (0.0086)

Note: Blundell, Duncan and Pendakur (1998) report results for FES data using Pinkse 

and Robinson (1995) estimator. Standard errors in parenthesis.
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4.11 Appendix

We next present some lemmas that are used in the proof of Theorem (9) for consistency. 

Lem m a 10 Under assumptions (l)-(7), if

lim 7—— h^1+2//r  ̂ — 00 n-»00 m n

, then

for j  =  1, J

Proof.

sup \rhjjln{x, z\ a, c) -  m j ( x , 2 ; a, c)| —> 0
(x, z ,a , c)£Q x A x C

Assumptions 4.(l)-4.(7) and the bandwidth condition in (4.27) are sufficient to ap­

ply the Uniform Law of Large Numbers for U-statistics indexed by bandwidths (See in 

Appendix in Ichimura and Lee (1991)) so that

7 T T E -fn K  C {Xi ~ CZi) hniXr ~  C"r ) ) ^  h { x i  ~ cz" c)
r^i ^

1 1 , \ is f ( Xi ~  CZi) -  (Xr -  CZr) \—\z2irn ~ K (  k Jr^i '

(4.37)

m j ( x i , Z i , a , c ) f c (xi -  czi ,c)

(4.38)

uniformly in (xi, zu a, c) G Q x A x  C. To show the uniform convergence of the conditional 

expectation, consider

sup \rhj^n(x,  2 ; a, c) — m j ( x ,  2 ; a, c)| < 
(x,z,a,c)€QxAxC

< 1
sup ™>3,hn (*> Z 'i a > C)fc (x  -  cz» c) -

—uij (x, 2 ; a, c) fc (x  — C2, c)inf(x,z,c)£QxC [fc {x -  CZ, c)j {(x,z,a,c)€QxAxC

+  sup |m j  (x,  2 ; a, c) \ sup f c (x — C2, c) — f c (x — cz , c)
(i ,2,o,c) € Q x ^ x C (x ,2 ,a ,c )£ Q x ^ x C

The conditional expectation is continuous by assumption 4.(5) in the index and Q x 

A  x C is compact, then i r i j ( x , z ; a , c ) is uniformly bounded.
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The density f c (xi — czi,c) is bounded away from zero uniformly in (x, z,c)  G Q x C 
by the definition of compact set in expression (4.11). This implies tha t for e > 0

Therefore, applying the two uniform convergence results above in (4.38) and (4.37), 

the uniform convergence of the conditional expectation follows. ■

P ro o f. [Proof of Theorem (9)]

Given the assumptions in Theorem (9), the limiting objective function L(a,c)  is a 

continuous function of the parameters (a, c) and the identification conditions are also 

satisfied so that (ao, co) are the unique minimizers of the limiting objective function L(a, c). 

Therefore, in order to show consistency, the only condition that it is left to be satisfied is 

the uniform convergence in probability of the objective function to the limiting objective 

function. Let consider the application the Uniform Law of Large Numbers to

g{y\a,c)  =  IqB(d,  a, m(., a, c))/V B ( y 1 a, m(., a, c))

The only condition from Lemma 2.4 in Newey and McFadden (1994) tha t it is left to 

be satisfied is E ^sup(ac)e(_4 xC) \g{y\ a, c)|^ < oo. By the existence of the moments in 

assumption 4.(1), the compactness of (A  x C) and the continuity of g with respect to y 

for each value of (a, c), this dominance condition is satisfied. This shows that the ULLN 

can be applied to g(y,a,c)  and consequently,

the uniform convergence of terms (4.25)-(4.26) is studied.

Regarding the uniform convergence of term (4.25), assumption 4.(8) guarantees that 

this term converges in probability to zero uniformly.

Regarding the uniform convergence of term (4.26), consider instead the uniform con­
vergence in probability of

inf
(x , z , c ) £ Q xC

\L*(a, c) — L(a, c)| ^  0 uniformly in (a, c)

In order to show the uniform convergence of L(a, c) — L*(a, c) in probability to zero
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where the positive definite matrix Vt has been expressed as Vi = S^Si. Therefore the 

uniform convergence in probability of (4.26) is satisfied when the uniform convergence of 

c) converges in probability to m *(.,a,c) uniformly in i E Q and (a,c), which is 

satisfied under the above assumptions as stated in Lemma (10).

P ro o f. [Proof of Theorem (9)]

Given the assumptions in Lemma (9), the limiting objective function L(a ,c ) is a con­

tinuous function of the parameters (a, c) and the identification conditions are also satisfied 

so that (ao, co) are the unique minimizers of the limiting objective function L(a, c). There­

fore, in order to show consistency, the only condition that it is left to be satisfied is 

the uniform convergence in probability of the objective function to the limiting objective 

function. Let consider the application the Uniform Law of Large Numbers to

g(y ; a, c) =  IQB{y,  a, m(., a, c))'VtB{y, a, m(., a, c))

The only condition from Lemma 2.4 in Newey and McFadden (1994) that it is left to 

be satisfied is E  ^sup(ux.)e(^ xc) \g{y, a, c)|^ < oo. By the existence of the moments in 
assumption 4.(1), the compactness of (A x C) and the continuity of g with respect to y 

for each value of (a,c), this dominance condition is satisfied. This shows that the ULLN 

can be applied to g(y ,a ,c ) and consequently,

|L*(a, c) — L(a, c)| 0 uniformly in (a, c)

In order to show the uniform convergence of L(a, c) — L*(a, c) in probability to zero, 

the uniform convergence of terms (4.25)-(4.26) is studied.

Regarding the uniform convergence of term  (4.25), assumption 4.(8) guarantees that 
this term  converges in probability to zero uniformly.

Regarding the uniform convergence of term (4.26), consider instead the uniform con­
vergence in probability of

^  E I U  JiQB ( y i , CW \ B ( y i , a ,  r r u ( . , a , c))]1/2 -

7 ^  E i L i  h Q B { y u a ,  nrii(., a, c))7̂ 5 ( ^ ,  a, m»(., a, c))]1/2

-4=  [IIUq x Si x B(yi ,a, ihi( . ,a,  c))|| -  \\IlQ x Sr x B (y l , a, m l (., a, c))||] <V n

< ~ r  I I x S* x [B{yua,rhi(. ,a,c)) -  B{yl , a , m l (.,a,c))}\\ = \\IlQ x Si x [rrq(.,a,c) -  m*(.,a, c) 
Vn Vn

where the positive definite m atrix has been expressed as Q  = S^Si. Therefore the 

uniform convergence in probability of (4.26) is satisfied when the uniform convergence of
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rhi(.,a,c) converges in probability to c) uniformly in i € Q and (a,c), which is

satisfied under the above assumptions as stated in Lemma (10). ■

P roo f. [Proof of Lemma (8): Uniform Convergence in probability of indicator function] 

Lemma (10) states the bandwidth conditions that are required for the uniform convergence 

in probability of the kernel density estimator of the index. The particular assumption 

required for the bandwidth is j ^ h n  —► oo, which is implied by the bandwidth condition 

in the consistency theorem. The following result for the uniform convergence in probability 

of the nonparametric estimated densities

Pr sup f{x \z  — j)  — f{x \z  = j)  > e ) —► 0 as rij —> oo for j  =  {0.1}

for any e > 0 can be shown under the additional conditions in Assumptions 4.(9)-4.(ll) 

and if —> oo and riih^ —» oo as n —► oo (which is indeed implied by the assumptions 

above and by the bandwidth condition in the consistency theorem in expression (4.27)). 

The probabilities P r (Z =  1) and Pr (Z =  0) are consistently estimated when both no —> oo 

and n\  —> oo. These last two results imply the convergence in probability of lb(x, z ) to 

lb(x,z)  uniformly on (x,z) .
Define t{x, z , c) =  f c (x — cz, c) — lb(x, z) and t(x, z, c) =  f c (x — cz, c) — lb {x, z ) , then 

the two uniform convergence results above guarantee the uniform converge in probability 

to zero of (t(x, z, c) — t(x, z, c)) uniformly in (x, z, c)

Pr sup
y (x , z , c ) £H x C

fc(x -  cz, c) -  f ( x  -  cz, c) +  sup
( x , z ) £ H

lb(x, z) — lb(x, z) > e >

> Pr j sup \t(x, z, c) — t(x, z, c)| >  e J 
y ( x , z , c ) e / / x C  J

The same uniform convergence result applies to the following transformation of t

1 { th(x, z, c) > 0} 1 {t{x, z, c) > 0}

uniformly on (x, z,c) e  H  x C, since the indicator function i9(u) = 1 {u > 0} is continuous 

for all u > 0 and by the definition of set H  in (4.15), t (x , z ,c )  > 0 for all (x,z)  G H  and 

c <5 C ■
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P ro o f. [Proof of Lemma (9): Uniform Convergence in probability of function s]

sup
i £ H , c £ C

<shn(fi,c (.,c) -  Ibi) -  1

S h n i f a c  (., c) -  Ibi) ~  1 {Ac ( . ,c) -  Ibi >  o}< sup
i€ / / , c G C

+  sup
iG // ,c G C

+ sup |1 { f c (Xi -  CZi,c) ~ f  {Xi) > 0} -  1| 
i £H, c&C

+

1 1 A c (., c) -  Z6i >  0 f -  1 {/*,c (., c) -  Ibi >  0} +

(4.39)

(4.40)

(4.41)

The convergence in probability of term (4.39) is satisfied by the fact that limn_>00 Shn (x) ■ 

l { x  > 0} uniformly in x  if h n —> 0 as n  —> oo. To show the convergence in probability of 

term (4.40) see Lemma (8). The last term  equals zero by definition of set H. ■

Proof. [Proof of Theorem (10) ] Let first show the uniform convergence in probability

of function L 2 (a, c) to L(a, c). Function L 2 is set to zero for those values of c such that

1 1 Ac(-, c) -  ^  > 0 } =  0. Define (a*, c*) as

(a*, c*) = arg sup £ 2 (0 , c) — L(a, c)
( a ,c )

Then,

Pr j sup

Pr sup
\  a ,c

£ 2 (0 , c) -  L (a ,c ) 

I/2 (a, c) -  L(a, c) £  1 {Ac-(.,C*) -  S i  > 0 } > 0 J P r ( 5 ^ 1  { / i , c. ( - , c * )  -  fb, > 0 }
i&H J \ i € H

(4.42)

-f- P r sup
\ a,c

0 1 (S
' 0 > £ 1 [ h e -  (., C*) -  /6j > 0 } =  0 J Pr ( 5 2 1  {A c- (., c*) -  (6, >  0 } =  0 

*€// /  Vie//
(4.43)

We next argue tha t term (4.43) converges to zero as n —> 00 . Note that by Lemma (8) we 
can conclude tha t

P r (  5 2  1 {Ac* A  <=*) -  fb, > 0 } =  0 J 0
Vie// /

as n  —> 0 0
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Denote by Sn (c) = ± J2i€H 1 \ fiA-> c) — Ibi > 0 }►. Therefore, we focus on the behavior

of the difference of Z/2(a, c) — L(a, c) in tha t part such tha t S(c*) > 0. Then,

Pr ( sup
a,c

Z2(a, c) -  L(a, c) > e Sn(c*) > 0 <

Pr sup 11 -  Sn(c)\ t
infc \Sn(c)\

L(a, c) > £ Sn(c*) > 0 (4.44)

This probability converges to zero if supc |1 — 5n (c)| converges to zero in probability and 

if infc |<S'n (c)| is bounded away from zero. Note that

sup |1 — S'n(c)! < sup n H
n +

+ sup
c,ie//

1 { A c ( - T )  -  Ik >  0 }  -  1 j / i , c ( . , c )  -  Ibi > o}

where n yv =  ^ H}- The second term from the above inequality converges to

zero in probability by Lemma (8 ). The first term in the above inequality converges to 

zero under assumption 4.(12). Thus, as the number of observations increases we require 

that the number of observations where the true density function of the index is strictly 

bounded above from lb increases at the same rate as n.

Since 1 < / i iC(., c) — lb{> 0 > converges to 1 { /i)C(-, c) — Ibi > 0} uniformly in c and

i£H

for all c G C, then we can conclude that infc |*S'n (c)| is bounded away from zero.

An equivalent reasoning can be used to show the uniform convergence in probability 

of Ls(a, c) — L(a, c) to zero. By the uniform convergence of the nonparametric estimator 

of the density of the index and of the estimator of the lower bound, by the definition of set 

H  and by the limit of function to the indicator function if hn —► 0 as n  —> oo, Lemma 

(9) in the Appendix shows

Pr j sup 
\ i £ H , c £ C

> £ 0

which implies tha t term  Pr Shn (•>c*) — — o) converges to zero as n  —> oo.

Therefore, in the limit, one should focus on the behavior of Ls(a}c) — L(a,c)  when 

Xlie// Sfln |  Ac* (• 7 c*) — Ibi |  0. In order to show that in this case, the difference lL3(n, c) — L(fl, c)
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converges to zero in probability uniformly in (a, c) and following the same reasoning as in 

expression (4.44), it is sufficient to show that the following term converges in probability 

to zero

sup
c i&H

1 { / i , c ( . ,  c) -  Ibi >  0 } -  s hn c) -  S i |

<  sup l  ILT +
c n

+  sup
c , i € / /

The uniform convergence to zero of this upper bound is again implied by Lemma (9) and 

under under assumption 4. (12). ■

P ro o f. [Proof of Theorem (11) ] First we show the convergence in probability of the 

Hessian to a positive definite matrix. Note that the hessian term in expression (4.29) can 

be expressed as

1 71 / ~
[v ( a , c ) % , « , ^ ( ' , t t > c ) ) ] / vin [ V (atC) H ( y i ,  a, mz(., a, c))] =

2 = 1
n

[V(a,c)^(^,a,m.i(. ,a,c))]/ Vi [ V M B { y t1a , m l ( . ,a, c) ) ]  +

n

+ ^ZIiQ (a,c)B{yi,a,mi(.,a,c))]' (vin -  vA [VM B(yi,a,mi(.,a,c))] +
i =  1 

n

(4.45)

(4.46)

+  [V(a,c)B(J/<> a,77ii(.,a, c ) ) ]V in [V(0|C)B(2/i, a , a ,  c)) -  V(a,c)B(yi,a, ra»(., a, c))]
Z—1

(4.47)
n

+  E I i Q  [E7( a , c ) ^ { y i i  O, 77l j ( . ,  G, c)) <2, ?77.i(., G, c))j V^n  G, 77l i ( . ,  G, c))j
i = l

(4.48)
n

+  E UqV(a,c)B{yu a, mi(., a, c))'Uw [V(aiC)B (^ , a, m*(., a, c)) -  a, mz(., a, c))]
i = l

(4.49)

The hrst term  (4.45) converges in probability to

H  = E Ic D - z -
d m J(aJQ,co)\ drn{ao,c0)

d a , dc
V D - z

drrij{ajo,CQ)\ 9m (a0,c0)'
da , ac

by the Uniform Law of Large Numbers (Newey and McFadden (1994), Theorem 2.4) 
and by the consistency of (a, c).
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The second term converges to zero in probability by assumption 4.(8).The third term 

converges in probability to zero by the consistency of (a, c) and the continuity of function 

B  with respect to the parameters. In order to show tha t the terms (4.48) and (4.49) 

converge to zero in probability note that

^(a,c)B(yi,a,ihi{.,a,c)) -  V {âc)B{yl , a, m l{., a, c)) =

/ d r r ij  {a j , c) d r h j  {a3, c) \  dm{a , c) dm{a , c) 
dan d a 3 dc dc

and moreover,

d m p ^  _  d m  ( a 3 , c )  =  &  ^  ^
daj daj

Therefore the uniform convergence of the derivatives of the nonparametric estimators 

of the conditional mean, i.e.

sup
(x, z , a, c)€Q x A x C

E{z\x — cz) — E{z\x  — cz) 0 and sup
( x , z , a , c ) G Q x . 4 x C

drhj {a3, c) drrij {aj, c) 
dc dc

for all j , guarantees the convergence in probability to zero of the last two terms. Under the 

assumptions of theorem (11), if lim ^oo  \Qg(n)hm1+2^ +1 — oo, this uniform convergence 

result holds (see Lemma 4 in Ichimura and Lee (1991)).

We next show the convergence in distribution of the score term in expression (4.30). 

First note tha t by the continuous differentiability of function B  and the kernel function 

A', by the consistency of estimators (a, c) and by the convergence in probability of Vin to 

Vi uniformly on i, one can focus on the following term

1 n
~ r  y 2 Ii(3 [v (a,c)B{yi, a0, m z(., a0, co))]' ViB(yit a0, % (., a0, c0))

i=i

1 n
I j Q  ( a , c ) B { y i i  O 0 i T T l i { . )  CLq , C q ) ) ]  V i £ {

_ i=l 
1 n

[V(a,c)B{yi,a0,mi{. ,ao,c0)) -  V (ajC)5 ( ^ ,  a0, m»(., a0, co))]' Vid
, Z = 1

(4.50)

+

+

+

+

(4.51)

(4.52)
1 n

[V (a,c)B{yi, a0,mi{., a0, co))]' V  [m»(.,a0,c 0) -  mi{.,a0,c0)]
. 1 

1 U
[V(a,c)B{yi,ao,mi{.,ao,co)) -  V(a,c)B{yi, a0, m*(., a0, c0))]' Vz [mi(.,a0,co)

i = l
7hz { . , a o , c o ) \

(4.53)
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Central limit theorem applied to (4.50) shows that this term converges to normal 

distribution with asymptotic variance given by E. The convergence to zero in probability 

of term (4.52) is similar to term (4.51) and hence we omit it.

C onvergence in probability to  zero o f term  (4.53)

This vector of dimension (J  +  1) x 1 can be written as

where Vijs represents the element (j, s) of matrix VL Let introduce the following notation 

for the estimated and true conditional mean functions. Let rriij(., a j , c )  = rij{. ,  aj ,  c ) //) )C(., c)

and rhi j ( . , a j , c ) =  f i j ( . , a j , c ) / / i ;C(.,c) and define

f  (^i CQZi) (%m CqZm)
'71
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Let consider the element corresponding to  the derivative w ith respect to  param eter as,
which can be rew ritten  as

1 V '  T ( d m si( . ,aso,co) drasi(., as0, c0) x J

i—1 da. da. E * .
j =i

1
SJ ; , Cij(-->a Oic o) <

Cq)

< sup

+  sup

1

C O C q)

1

Ji _ w f / ^csi(.,Qs0,co) _  drsi(. ,aSQ, c0) 
n  4-f lQ V das das .i=i x '  j=i

A c ( - , C o ) 2 /z,c(- ,C0)

_ L \ ^ r  f d r s%(.,aso,co) drsi(., a s0, co)

v Z=1 <9a.s <9as

Ci j i -y a0> co) +

(4.55)

/i,c(.,Co) -  Ac(.,Co) ) x

(4.56)

X  ^  ^ V i , s jC i j  ( •  7 a o 5 C q ) +

•7 = 1

+  sup

+  sup

drsi(.,aSQ, co)/da&

/ i , c ( - ,C 0) / i , c ( - , C 0) 2

d rsi( .,a s0,c0)/<9as

/i,c(-,Co)/i,c(-,Co)3

 ̂ n J

i—  ̂-Cq ^/i,c(-) co) — /i,c(-5 C0)) ^   ̂Vi,sjCij(-, a0■> co)T 
* i=l j = l

" ~ F  -^Q ^fi ,c(-->c 0 ) ~  f i , c ( - i co)) ̂   ̂Vj,sjCj j ( ., <2 p, Cp)
V n i=i i= l

(4.57)

(4.58)

where /*iC lies between f i jC and /*iC. The factors in the expressions above are bounded in 

probability since /i,c(-,co) converges in probability to / i jC(-,co) uniformly in i under the 
above assumptions, which is uniformly bounded away from zero. Also,

sup |<9r5i( .,a s0,c0)/<9as | =  sup |-J5  ( z ^  -  c0Zi) f i:C (xz -  c0Zi,c0)|
i i

is uniformly bounded in probability by the continuity of the conditional mean functions 

and the density of the index and by the compactness of Q x A  x C. In order to show that 

term (4.55) converges to zero in probability, apply the Markov and Cauchy inequality to
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obtain

n  J

Pr E E 7-
t=i j =1

drsi{-i dsQi Q)) d f s-i (., CLsq, C'o)
da. da. Vi,sj Cij (• > ^0) CQ ) > £ \ <

^  E E \  ! q e  (cv(-> ■“o- c ° ) 2 ) E  ( v l i ) E
j=i

d r si ( . , a s0iCo) <9rsi(., as0, c0)
<9a. <9a<

2 \  1 V 2

(4.59)

It can be shown (see Ichimura and Lee (1991)) that if function cp and /  are q continu­

ously differentiable and a kernel function of order q is used, then

E  (Ci j ( . , a0,co)2) =  E ( V a r ( C i j ( . , a o , c o ) \ i )  +  E 2 (Ci j ( . ,ao,co) \ i ) )

-  o

Analogously, it can be shown that

E
d r s i ( - i  &s05 ) d r s{(., nso? 0̂ )

da. da. = o (n — 1) h7 + O {h.%)

Therefore, in order for term (4.59) to converge to zero in probability the following con­

ditions for the sequence of the bandwidth need to be satisfied: hn —► 0, \ / nhn —> oo and 

yjnhn —■> 0 as n  —> oo. It can be shown analogously tha t under the same conditions for 

the bandwidth, term (4.57) converges to zero in probability. Regarding terms (4.56) and 

(4.58), they converge to zero in probability if n 2/ 3/in —> oo and r d ^ h n  —> 0 as n  —> oo, 

which are indeed implied by the above bandwidth conditions. When one considers the ele­

ments of vector (4.54) that involve the derivative with respect to parameter c, the above 

derivations should change slightly since in this case the derivative of the nonparametric 

conditional mean involve the derivative of the kernel function. Therefore, in this case it 
can be shown that

E

E

drsi( .,aSQ,co) drst(.,aso , c o ) \ 2 \ _
dc dc J

d [ E  {z\Xi — CQZi) / i iC(-,Co)] ® E  (z\xi CgZi) / z,c(., Co)
dc dc

2\

/
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for which we require an additional order of differentiability of the conditional mean func­

tions f  and / c(-,c) (order of differentiability q +  1) so tha t the bias can still have this 

order. Applying again the Markov and Cauchy inequality in this case, the corresponding 

expression is bounded above by terms which are

n O
1

(n -  I) h i
+ 0{h% ) o

1

n O (n -  1) h2n
0{h \2r i ) o

[n -  1) hn 
1

+ o  W )  

o (4 ,+1)(n -  1) h i

which converges to zero in probability if he following conditions for the sequence of the 

bandwidth need to be satisfied: hn —> 0, \ / n h l  —> oo and y/nhl  —> 0 as n  —> oo. 

C onvergence to zero in probability o f term  (4.51)

This ( J  +  1) x 1 term can be written as

i =  1

9 m l l (.,aio,c0 ) dihn{- ,aio,co]
da\ da  i Y 2 j  =  l

d m j j { . , a j  o, 
d a j

co) _  drhjj ( . ,ajQ,co)  \  xr
d a j  J 1

E J ( dmj i ( . , a jo,co)  di f i j l ( . , aj o,co) \
j = 1 2 - , s = 1 ^  dc dc J v i d s i

Then, the elements corresponding to the derivatives corresponding to parameter c in the 

vector above can be written as

11  ̂  ̂ n ,n cn)/r)r r ) r^(  r/„n r s \ \ / f ) r \
(4.60)1 v t ( 0r*j(.,ajO,co)/0c d r lj ( . Ja , j o , c o ) / d c \

— *: t  -? /— ;—  J
i =  1 j  =  1 s =  l 

1 n J J

i = l  j  =  l s —l

/z,c(-,C o) /i,c(-,C o)

T'iji-j ^ j0 ) Q )) Q )) f'iji-i djOi  Q)) ^ /z ,c (m  Qd)

/ » , c ( - , C  o) <9c Ac(.,C0)

The convergence to zero in probability of term (4.61) can be analogously shown as 

term (4.60). By doing a Taylor’s series expansion in (4.60) for some value of / j )C between
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co) and cq) ,  it can be shown that in order to show the following four conditions

n J J

k t Z Z 1*  -  a d * s a ! )  j z b s « * « -  ■ * »  <“ 2)i = l  j  =  l s = l  

n J  J1 f d r i j ( . ,ajo,co)  d f i j ( . , a j o , c o ) \  ( 1 1 \
^ h h h Q y  *  ^  )  \ i ^ ~ i A ^ ) ) V t j s e t s=  p W

(4.63)

) , V V V / , ,  ( A c(- g (: ^ (" C0))  ^ (^ ° ' C0)K , ^  =  o p ( l )  (4.64)

. /J7 (/».<=(•'C(>) /i,c(',Co)) ? ^ qJ, V ijs£is -  Op(l)

i = l  J = 1  i f=l  

71. J J

/ , , c ( . , c o ) ; ^

(4.65)

The convergence to zero in probability of term (4.64) is similar to term (4.62) and 

hence omitted. To show the convergence in probability of term  (4.62) note that

1 ( ( ■ >  Cq )  ( . ,  CLjQ, Co )   ̂   j. ^   ̂ jf  drLJ( . ,  ajo ,  c q )  ^  d f j j ( ., a^p, cp) \  _  1 , j

fi,c(.,co) V dc dc y ( n - l ) h l ^ .  im

where ^ rm = 1
co)

t \ t s! ( ( X ™ ~  C0 Zm )  -  -  C o Z i ) \  u 2 d E ( z \ X i  -  C0 Z i ) /z ,c ( - ,C o )

{Zi Zm]  V  h n j  K  d c
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Then the variance of term  (4.62) can be w ritten  as

E  | i ^ 2  ^ im Vhjs£i
j —1 s = l  i —1 i ^ m

n(n  — l ) 2h^

n(n _ -<\2uA E  ( l i Q J 3 f ^ J +
' 71 y  Y i=  1 i ^ m  J  y i = l  i ^ m  J  J

+

+ n ( n - \ Y h l E ( kQ j2 ( E E ̂ mVijseu I ( E E
v / a y  y  Z_ J  l ^ r n  I  \  1=  1 i ^ r n

(n -  2)
(n -  l)/i4 

1
(n -  1) /ij 

1

E [ h Q

e ( u q

E  ( ItQ

=  1

2„/4 j j  T/2 J 2  _j_ /20/,j 0/,s_ _. r . . ] / .  . y .c7,.sc?. j v i. is * i.

2 „ „ „ / , \ 2

J ^ ' ^ i m ^ i k V i j s V i j l Z i s Z i l  +  *h yj  s e  is +  ^  vi  , js v i ,sj +

V i , j s V i , j l £ i s £ i l  +  J 2 ( ^ m )  K \ j s £ ls +  ( t )  £ i s £ i j V i , j 3 Vi ,8j

J ^ ^ i m ^ m i V i j s V r n , j l £ i s £ m l  +  J  A i m ' A m A i j s ^ m J s ^ i s S m s  +  *h" A i m ^ m i ^ i ^ s A n . s j ^ i s ^( n - l ) / ^

where i , m , k  G {1,..., n} are the subindices for different observations and are different and 

j , s , /  G {1,..., J}  are the subindices for the different equations.

It can be shown that under the above conditions E  {^ i ' lp{rn\ij =  0{hn)  for all j  G 
{1,..., J} , therefore the first term in the above expression converges to zero in probability 

if hn —> 0 while the second and the third terms converge to zero in probability if n h \  —* oo 

as n  —> oo
Regarding the elements corresponding to the derivatives with respect to parameter as 

for s = {1,.., J} , the convergence in probability to zero can be shown in a very similar way.

The only difference is that analogous of (4.62) with respect to as requires the following |

definition of 'ipim

1 { d r ls(. ,as0,c0) dris(.,as0,co)

where tjjim =

f i A - , co) \  das daf

A m  Co Z m )  ( X i  C o 2 i ) \

hn J
Zrn K

' TTljE-l

hnE(z\xi  -  CQZi)fifC(;Co)

In this case the convergence to zero of the analogous term of (4.62) requires a less strict 

condition on the bandwidth, i.e. nh 2 - > o o a s n - » o o .
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The convergence in probability to zero of terms (4.63) and (4.65) can be done in a 

similar way as it was shown that the elements of the (J  +  1) x 1 vector in (4.53) converge 

to zero in probability (see above in this proof). ■
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4.12 Figures
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Figure 4.1: Nonparametric Kernel Densities for Log Total Expenditure for different demo­

graphic groups and different values of parameter c

Note: D ata Drawn from 1980-1982 Family Expenditure Surveys for couples with one 

kid (z = 0) and two kids (z = 1). Line / l(a :l)  plots the nonparametric density of log total 

expenditure for demographic group with z — 1 over the points of the support of , line 
f0(x0)  plots the nonparametric density of log total expenditure for demographic group 

with z — 0 over the points of the support of line f 0 ( x l  + c) for c = { -1 ,-2 }  plots 
the nonparametric density of log total expenditure for demographic group z =  0 over the 

points of the support of X \  — c. Gaussian kernel used and Silverman’s optimal bandwidth.

Log Total Expenditure
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Figure 4.2: Loss functions for parameter c (L(c|ao)) proposed by Pinkse and Robinson, 
Hardle and Marron, Wilke and the Loss function using knowledge of m  function (co =  
-0 .3)

Note: For each value of the parameter c, the above functions compute the overlap of 

the supports 4-c from the observed data. The integration limits of the objective
functions above are set to cover this intersection. The integration to compute the loss 
function is done using middlepoint approximation for integrals. The true loss function of 
Hardle and Marron uses the true known function m  instead of its nonparametric estimation 
as in the HM loss function. The weight function w{x) =  1 if x  G ^  c)
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Pinkse and R ob inson L oss function for different ran ges o f  x
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param eter c

Figure 4.3: PR  Loss Function L PR(c\ao) conditioned on the true value of parameter a, for 

different values of the integration limits [x, x ]
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Hardle and Marron L o ss  Function for different ran ges o f x
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Figure 4.4: HM Loss Function L HM(c\ao) conditioned on the true value of parameter a, 

for different values of the integration limits [x, x }
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Figure 4.5: SLS Objective function as a function of c -Ls l s  (c\clq, ho) where ho is the 

optimal CV-bandwidth for (no,co) - for simulated data for one good
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c o n s t a n t  tr im m in g  d iv id ing  by  in d ic a to r
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Figure 4.6: SLS Objective function as a function of c -LSLS(c\ao,ho) where Hq is the 

optimal CV-bandwidth for (ao,co) - for simulated data for one good.

Left Graph: objective function including a constant trimming of the 2% of the smallest 

densities (expression (4.12)); Right Graph: objective function dividing by the number of 

observation where the estimated density of the index does not attain  its lower bound 
(expression (4.14)).
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c o n s t a n t  t r im m in g  d i v i d in g  by  s  d i v i d in g  b y  i n d i c a t o r
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Figure 4.7: SLS Objective function as a function of c -Ls l s  (c\ao-,ho) where ho is the 

optimal CV-bandwidth for (ao,co) - for simulated data for one good.

Left Graph: objective function including a constant trimming of the 2% of the smallest 

densities (expression (4.12)); Right Graph: objective function dividing by the number of 

observation where the estimated density of the index does not attain  its lower bound 

(expression (4.14)). Middle Graph: objective function dividing by continuous function s 

as in (expression (4.16)).
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O bjec t iv e  F u n c t io n s  w r t  c

co n s ta n t  trim m ing  
dividing indicator
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Figure 4.8: L(c|ao, ho) SLS Objective function as a function of c and number of observa­
tions where estimated density is above its lower bound. Simulated D ata One good.

(Top Graph) SLS Objective function as a function of c -L s l s (c\ao, ho) where ho is 

the optimal CV-bandwidth for (ao,co) - for simulated data for one good for (i) objective 

function including a constant trimming of the 2% of the smallest densities (expression 

(4.12)); (ii) objective function dividing by the number of observation where the estimated 
density of the index does not attain  its lower bound (expression (4.14)). (Bottom Graph) 

Number of observations such tha t f x - c z ( x ~  cz) is strictly greater than lb(xi,Zi)
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Figure 4.9: Objective Function ^ 2(0 , c\ho) as a function of both parameters using simulated 

data for one good
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Figure 4.10: Objective Function L^(a, c\ho) as a function of both parameters using simu­
lated data  for one good
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