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Abstract

This thesis focuses on identification and estimation of structural parametric and semi-
parametric models in microeconometrics. The analysis of the conditions under which -in
the context of an econometric model- data can be informative about the parameters of
interest of an economic process is essential and must be of high priority in any economet-
ric work. When considering models with which to identify interesting features, emphasis
should be placed on imposing the minimum set of restrictions in order to achieve identific-
ation, since inappropriate restrictions may lead to inconsistent estimates of the parameters
of interest. For this reason in the literature one finds that some attention has been paid to
relaxing parametric distributional assumptions on the unobservables or functional forms
of the relationships between observables and unobservables.

To begin with, [ examine how the parameters of interest of a general class of models can
be identified and then estimated when not all of the relevant variables are jointly observed
in the same dataset. To do so, the existence of an additional data set with information
on both the missing variables and on some common variables in the original data set is
necessary.

I then move on to an analysis of the identification of the preference parameters in a dis-
crete choice demand model in which individuals only derive utility from the characteristics
of the goods they consume. I discuss how this particular model makes the estimation of
these parameters feasible without imposing distributional assumptions in the errors even
if the number of goods in the choice set is very large.

Finally, I consider the comparison of nonparametric regression curves between different
samples. 1 propose to estimate the parameters that explain these differences between
the conditional mean functions by using an estimator developed in the semiparametric
literature which avoids the computational problems faced by the previously proposed

estimators.
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Chapter 1

Introduction

In the forthcoming chapters, identification and estimation of both structural parametric
and semiparametric models are considered. The minimum set of restrictions that should
be imposed in defining an econometric model in order to achieve identification of the para-
meters of interest of an economic process, has received much attention in the econometric
literature. In this literature, the main emphasis has been placed on relaxing the func-
tional formn restrictions on both the relationship between observables and unobservables,
and on the distributional assumptions on the unobservables. However, a fully nonpara-
metric approach to modelling the relationship between the observables in the model im-
poses enormous data requirements when the number of variables is high. Semiparametric
modelling has become a very attractive tool to reduce this "curse of dimensionality" by
imposing some paranetric restrictions on the model while assuming that the functional
form of many other parts of the model are unknown.

This thesis focuses on three very different aspects of this attempt in the literature to
reduce the functional form restrictions needed in order to identify and estimate certain
economic features of interest. The data one has access to determines which variables -
amongst those that should be included in a model- must be considered to be unobserved to
the econometrician. For a wide class of models, some stochastic restrictions on these un-
observables -which often imply distributional assumptions- are usually imposed to identify
and estimate the parameters of interest. However, there might exist information on the
distribution of these unobserved variables in a different data set which would allow one to
nonparametrically identify its distribution and consequently relax some of these restric-

tions (Chapter two). To study the economic interpretation of the assumptions placed on
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the relationship between the observables and unobservables and the particular specifica-
tion of the unobservables, is crucial. Chapter three analyzes this issue in the context of
a discrete choice model used as a structural model of demand to obtain preference para-
meters. The last chapter studies a number of issues relating to the estimation of a specific
semiparametric model in which linear and index restrictions are imposed in the unknown
conditional mean function, in order to include a variable that determines to which group
or sample each observation belongs. A brief description of each chapter follows.

In chapter two I study an incomplete data problem in which the data set available
contains only a strict subset of the list of variables that are relevant in an empirical
analysis. The proposed method presumes the existence of another data set which contains
a subset of variables in the original data set as well as the variables that are missing from
the original data set. The interest is on identifying the true effects on the dependent
variable of the common variables between two data sets, once the omitted variable bias
that arises from the missing variables is controlled for. Additionally, one would like to
identify the effect of these missing variables on the dependent variable even if they are
never jointly observed. In other words, one would like to find under which conditions one
is able to identify the same parameters as in a complete data framework. I show that, for
a wide variety of problems, having access to a complementary data set combined with a
parametric structural restriction and some joint variation on the variables in the auxiliary
data set, may be sufficient to identify the parameters of interest. The main advantage of the
framework I use here is that it extends the existing method for linear-in-parameters models
in the incomplete data literature to more general models. This generality is not assumed
at any cost since when the model under consideration is nonlinear, the identification
conditions are model-specific and it is difficult to provide conditions for global identification
at this level of generality. For this reason, regarding the identification results, I focus on
the parametric and semiparametric binary choice model which are leading examples of
nonlinear models in econometrics. However, for the very general class of models I discuss
the estimation of the parameters when no parametric restriction are imposed on the joint
distribution of the variables observed in the complementary data set. General conditions
under which the proposed estimators exhibit consistency and asymptotic normality are
developed.

In chapter three I investigate the identification of preferences in a model which avoids
the counterintuitive properties in policy analysis related to the introduction of new goods

implied by standard discrete choice models that are used as structural models of de-

12



mand. The model analyzed in this chapter does not assume product specific unobserved
tastes which are usually modeled in the standard approaches as an unbounded random
term independent and identically distributed across individuals and alternatives. The
implications is that in our model individuals derive utility from a finite set of product
characteristics. Under these assumptions, the main contribution of this chapter is to relax
the distributional restrictions on the random tastes over product characteristics without
relying on the dimension of the product space. This contrasts with previous contributions
in semiparametric multinomial discrete choice models in which the index dimension of
the choice probabilities becomes intractable when the number of products in the market
is high. When consumer-level data is available, 1 state the conditions under which the
preference parameters are identified up to a scalar constant both when the distribution of
the unobserved individual attributes is assumed to be known and unknown.

In chapter four I discuss the estimation of a semiparametric model in which paramet-
ric transformations exist that explain the differences between nonparametric conditional
mean functions of different groups or samples. Instead of using a fully nonparametric ap-
proach, this model assumes a particular specification to explain how the variable defining
the group or the subsample affects the endogenous variable. Thus, there exist two para-
meters explaining the differences between the nonparametric means for different groups:
one implies a horizontal shift and a change of slope and the other parameter shifts the
unknown functions vertically. This model is denoted in the literature as the shape invari-
ant model and is equivalent to a single index model with a partial linear term in which
one of the conditioning variables is the group or sample discrete variable. The previous
estimators introduced in the literature for the shape invariant models face the computa-
tional difficulty that their objective functions only attain a local minimum at the true
value of the parameters so that they must rely on intensive computational methods. We
argue that the existing semiparametric least squares estimator constitutes a natural way
of estimating the parametric transformations, along with solving this computational prob-
lem. To reduce this burden is important because this estimator makes the comparison
of nonparametric curves with respect to more than one variable defining the group or
the subsample, feasible. The asymptotic properties of this estimator in a semiparametric
model with multiple equations are established. We also discuss the possibility of giving
different weights to each combination of the equations and the optimal weight that makes
the estimator efficient. Finally, a shape invariant model arises in the estimation of Engel

curve relationships where the demographic composition is taken into account and I com-
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pare the performance of the estimators discussed in this work with the estimates obtained

from the British Family Expenditure Survey.
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Chapter 2

Identification and Estimation of
GMM Models by Combining Two

Data Sets

2.1 Introduction

It is often the case that we do not have an ideal data set that contains all of the relev-
ant variables that should be used in an empirical piece of work. In some cases a set of
relevant variables is incompletely observed whilst in some other cases the variables are
completely missing. As a consequence, empirical studies based on analogous data might
yield incomparable results because the implicit models used are incomparable when the
same variables in those data sets differ in their definition or a different set of conditioning
variables is used. The object of the present research is to develop a general method that
allows us to estimate a common model even when an available data set may be incomplete
in itself.

We consider a special case of incomplete data problems in which a data set at hand
contains only a strict subset of the list of variables relevant for empirical analysis. We
tackle the problem by assuming that there is another data set which contains a subset of
variables in the original data set as well as the missing variables in the original data set. We
show that this assumption, combined with a parametric structural assumption and some
joint variation assumption on the variables in the auxiliary data set, are often sufficient to

identify the effects of missing variables as well as those of the non-missing variables in the
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parametric structural relationship. We propose estimators for the identified parameters
and establish the asymptotic properties of the estimators.

An empirical framework that allows one to consider a combination of two data sets
may be important for many applications. A survey of individual finances might have
detailed information on wealth but scarce information on consumption or labour market
behavior. In fact, this is the case in the BHPS survey in the UK and the PSID in the US.
On the other hand budget surveys, such as the CEX in the US and the FES in the UK,
have rich information on individual decisions but have little or poor quality information
on wealth. Both types of data sets could be complemented to estimate structural models
in which both consumption and wealth are the relevant variables. Birth certificate data,
health surveys, or consumer scanner data may be fruitfully combined with more general
surveys as well to complement their general lack of information on household income.

Analysis under missing observations is a significant research area. An analogous prob-
lem to ours has been addressed and solved for the linear-in-parameter models by Glasser
(1964), Gourieroux and Monfort (1981), Angrist and Krueger (1992) and Arellano and
Meghir (1992).},2 See a useful survey by Little (1992) for early works®. For non-lincar
in parameter models various identification issues and estimation procedures have been
insightfully discussed by Ridder and Moffitt (2003). Our problem shares some properties
with the literature that uses additional samples to correct for the measurement error in
the regressors. The main difference with respect to our assumptions is that they do not
assume joint observation of the missmeasured and variable measured without error. This
makes that identification needs to rely on different conditions (See Hu and Ridder (2003),
Chen, Hong and Tamer (2004), Schennach (2004)).

We develop a general framework that covers a wide class of non-linear models although
the aim of the paper is not to provide identification conditions for each model belonging

to this class. It is hard for to give sufficient conditions for global identification in a very

'See Carroll and Weil (1994), Lusardi (1996), Currie and Yelowitz (1997) and Dee and Evans {1997)

for applications.
“Imbens and Lancaster (1994) study how to combine cross sectional data with information on (aggreg-

ate) population moments. We assume however the existence of two micro data sets (i.e. both of them with

individual information).
YEarly references also include Rubin (1974), which establishes maximum likelithood factorization meth-

ods dealing with missing data problems. These methods however do not allow one to identify the effect of

the missing regressor.
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general non-linear model (similarly to the identification in GMM non-linear model with
complete data). We discuss though the general conditions that are required to compute
the identifying moment condition with the incomplete data, and therefore to compute the
estimators.

This level of generality allows one to establish the asymptotic distribution theory for
a wide class of estimators when two data sets are needed in the estimation including
estimators for linear and non-linear regression models, generalized method of moments
(GMM) estimators and the maximum likelihood estimators (MLE). The results we obtain
differ from the previous contributions in the literature because the sample analogue of the
moment condition does not need to be separable in observations belonging to each of both
data sets.

In order to provide specific conditions for global identification, we focus on a subclass
of those non-linear models covered by the general framework by studying the identification
of the parametric and semiparametric binary discrete choice model.

The identification results for the binary choice model complement the results of Manski
and Tamer (2003). They consider the binary choice model with non-missing regressors
with one incompletely observed regressor in the sense that the regressor value is known
only to lie in an interval. Without assuming access to a complementary data set, but
assuming that the variable affects the choice probability monotonically, they show point
identification of the effect of non-missing and missing variables only when there is a positive
probability of complete data, otherwise they only achieve partial identification. We show
that for parametric models when there is a complementary data set, we can allow for
more than one missing exogenous variable and we provide sufficient conditions under
which coeflicients of the missing regressors are identified. For the semiparametric binary
choice model, some additional conditions need to be imposed on the distribution and the
support of the common regressors in order to identify the parameters up to scale.

After explaining the framework of the incomplete data problem that we consider in
section 2.2 we discuss identification issues and present a general estimation method in
sections 2.3 and 2.4, respectively. The asymptotic theory for this framework is established
in section 2.5.Monte Carlo simulation results are presented and discussed in section 2.6.

Section 2.7 concludes.
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2.2 General Framework for Combining Two Data Sets

All random (column) vectors and their realizations are denoted by upper and corres-
ponding lower case letters respectively. Endogenous and exogenous random vectors are
denoted by Y and X with subscripts respectively. We assume access to two data sets,
data sets 1 and 2. Data set 1 contains observations on the random vector (Y7, Y, X1, X.)
and data set 2 contains observations on the random vector (Y, Y3, X, X2). Assume
that (Y1, Ye, Y2, X1, X¢, X2) is needed to carry out a standard empirical analysis. Let
Zy = ,Y, X1), Z. = X., and Zy = (Ya, X3)' be random vectors of length m,, m. and
my, respectively. Random vector Z. includes only those exogenous variables that are com-
mon to both data sets and random vector Z; includes those variables that are exclusively
observed in data set 2. The distribution of the missing variables in data set 1 conditional
on the common variables, in particular conditional on the common exogenous variables,
is assumed to be unknown but the second data set can be used to identify it. Thus, the
distribution of interest to be identified from data set 2 is the conditional distribution of
Zy given Z, which we assume is dominated almost surely in Z, by a fixed measure p so
that there is a conditional density y(z2|z.) for almost all 2, in the support of Z..

We are interested in estimating the structural parameter 98’ € © C RX defined via the
following moment conditions that can be computed with complete data (i.e. when Z;, Z,

and Z; are joihtly observed in the same dataset)

E{Y(p(Zy, Zc, Z2,0);0)| X1, Xe, Xa} =0 (2.1)
almost surely in X, Xy, X, iff § = 08

where function p: R™ x R™ x R™ x @ — RS and ¢ : R® x © — RT where T is the
number of moments and T > K.

However, if the data is incomplete and Z, = X, are the only exogenous variables in
common between both data sets, then we could only use conditional moments on Z.. The
conditional moment on the common exogenous regressors Z, that is directly implied by
(2.1) can only be computed with the data we have assumed we have access to if Z, and
Zy are independent conditional on Z.. Being able to write the moment condition is a
necessary condition to identify 6y and without the mentioned conditional independence
is not possible to do so, since the conditional distribution of (Z;, Z;) given Z. cannot
be identified from the incomplete data. This conditional independence assumption is

however a strong assumption which would impose a strong restriction on the true value of
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the parameters 6.

An alternative to the conditional independence assumption, which is used in this work,
is to assume a conditional moment on Z. which can be computed with the incomplete
data. Then, we study the restrictions that need to be imposed on functions %, p, and p,
in order for the parameter that it is identified through the conditional moment on Z, with
incomplete data to be the same as the true value of the parameter that moment (2.1)
identifies.

The general framework that we consider defines the structural parameter 4 € @ ¢ R¥
via the following conditional moments given random vector Z., which are identified with

incomplete data:

E{h(Z,,Z;0)|Z.} = 0 almost surely in Z, iff § = 6} (2.2)

where
h(z1,260) = ¥(q(z1,2,6);0) (2.3)
q(z1,26,0) = / (21, z¢y 22,0)g(22]20)du (2.4)

The function g (z3]2.) is typically defined via v (22|z.). We motivate the formulation below
but first note that in general both functions ¢ cannot be interpreted as conditional mean
functions of p given Z. without further assumptions. This is because we do not use the
conditional distribution of Zy given Z. and Z; to integrate out Zs. This alternative is
impossible with the type of data we have assumed to have access to. Note that the moment
conditions in (2.2) are not the only moments that can be identified given the model with
complete data and the data sets in our hands.

Therefore, the identification problem we want to pursue in this paper is under which
conditions we can ensure that the value of the parameter that uniquely solves moment
condition (2.1) is the same as the parameter that solves the moment condition with in-
complete data in (2.2) (i.e. 6§ = 6))

The framework in (2.2)-(2.3) covers general parametric conditional probability models,
non-linear regression models and some generalized method of moment (GMM) models by
defining for each particular case the form of functions ¥, p, and p, and the variables that
should be included in Z1, Z, and Zs.
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2.2.1 Parametric models

Suppose a parametric conditional probability model is specified by

[ (W1, Ye, y2|21, T, 723 9)

Integrating out yo. the model implies a parametric model f (y1,yc|21, Zc, 22:6). If there
is no zp, i.e. if all conditioning vector is observed jointly in the second data set, then
integrating out x9 using g (x2|z.) would yield a parametric conditional probability model
for the data that it is observed in the first data set f (y1,yc|z¢; 6).* The moment condition
that identifies the true value of the parameters 6y is the score of the likelihood function
using the conditional probability model with complete data f (yi1, yc|xe, z2; €) . Therefore,
the A function in this case corresponds to the first order condition of the maximum like-
lihood estimator (MLE) using the implied conditional probability model f (y1,yc|zc;6)
for incomplete data® Let g (z2]|z.) denote the density of X7 given X, with respect to p.
The functions defined for the general framework take that following forms to identify the

parameters imbedded in the conditional parametric model just outlined:

J Vof (1, ye, yalze, 22;6) dys
]f y17y01y2|xC:x219) dy2
Pl( 0) /py (58) = Vof (y1,yclze, 22;0) / f (Y1, YelTe, 22 0)

p(yhyc,wc,wg;ﬂ) = {

¥ (p(50))
(I(’IJI sy Yoy Tl 9) =

P (Y1, Yer Te, T2;6) g(aa|zc)dp =

{Vof (1, yele: )}
f (Y1, yelze; 6)

h(y1,ye,2e;0) = ¥ (g(:8)) =

= q (-;9) /a2 (::0) = Vo f (y1,Yc|ze; 0) / f (y1,Yclze; 6)

where the subscripts of p and g denote the elements of these vectors. It is not clear if the
original pararmeters are still identified after integrating out certain variables. We explicitly
address this issue for some specific cases in section 2.3. Note that although the following

moment condition .
/ (/) (p (yl: yCa xCa $2; 9)) g(xZI.'L'C)d/J, = 0

'The analogous likelihood can be formulated replacing the role of two data sets if in fact the data sets

are symmetric as formulated above.
"We assume [ (y1,Yc|Zc, 0) to be dominated for each € in its neighborhood by an integrable function

with finite integral so that integration and differentiation can be interchanged.
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could be computed with this setting, it does not arise from the maximisation of the log

likelihood with incomplete data.

2.2.2 GMM

Define Y = (Y1,Y.,Y5) and X = (X1, X,, X2). In a GMM framework, the structural
parameter 6 is defined by

E (Y, X;0)|X] = 0 almost surely in X iff § = 6g (2.5)

where X is a set of instrumental variables and % may have some exclusion restrictions so
that not all elements of X need to appear directly as arguments in .

We assume that ¢ takes the following form and some elements of Z. are excluded as
arguments:Y

1/1(31, zCa 22;9) = Pl(zlyzc, 9) - p‘Z(ZCa 221 0) (26)

Under this separability assumption, the moment condition (2.5) can be integrated out to
become
EW(Z1, Z¢, Z2;0)| 2] = E[p1(Z1, Z¢;0)| Zc] — E [p2(Ze, Z2:0)|Zc] (2.7)

and each term on the right-hand side can be examined using the two data sets at hand
(See Ridder and Moffitt (2003)). Although this separability assumption guarantees that
the moments that arise from conditioning only on Z, can be computed with the data, it
is not a sufficient condition for the identification of 6.

In this formulation?

h(z1,260) = qi(21,260) — g2(2c; 0)
q1(z1,2¢0) = /pl(zlazc;0)9(22|zc)dz2 = p1(21,2¢;0)
QQ(ZC§9) = K [PQ(Z(', ZQ;())IZC]

2.2.3 Non-linear regression

As an example of the GMM model with incomplete data, let consider the nonlinear re-

gression model.

fFor notational convenience the following expression changes the location of arguments in function 1.
"We could also formulate

h(ze,22;0) = E|p, (21, Z¢; 0) | Ze) — pa (2¢, 22;6) .
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In this model there is no Y, or Y5 and again assume that we always observe the regressor
distribution so that there is no X;. We consider here the asymmetric case where the only
endogenous variable is exclusively observed in data set 1 so that Z; = Y7;Z. = X, and
Zy = X5. The parametric form of the conditional mean function is so that E (Y1]|X., X») =
m(X¢, X2;60). The non-linear regression model obviously satisfies the separability condi-
tion mentioned above and using the previous notation p,(Z1, Z.,0) = p;(Z1) = Y1 and
09(Zey Z2,80) = m(Xc, X2;60). Since

E (Y1|Xe) = E [m(Xc, X2;60)| Xc] (2.8)

the parametric conditional mean function is now E [m(X., X2;6)| X and it is computable
since we assume that the joint distribution of (X, X2) can be estimated from data set
2. Note that even when a subset of variables in X, does not appear in the function
m(X., Xo:60), it may appear in F [m(X,, X2;6)|X.] as it may be correlated with X,. As
pointed out by Angrist and Krueger (1992) and Arellano and Meghir (1992), this can help
identification of 8y as discussed bhelow.

The h function corresponding to the momnent condition above is then
h(Y1, X 0) = Y1 — E[m(Xc, X2;0)| X]

The moment condition in (2.8) identifies 6y through the mean independence of the
error in the regression with the common regressors. However, there might be additional
moment conditions that identify the parameters where function h should be defined in
alternative ways. In particular, for the non-linear regression model, the true value of
the parameter 6y uniquely solves the first order condition of the non-linear least squares
objective function using the implied conditional mean function: using the same notation

for g (z2|x.), the function h is defined as follows in this case

y1 — m (Z¢, Ty; 0
p (Y1, e, 25 0) = [yl (e, 22;6) }

VOTn (.’,L'c, T2, 6)

¢’(P (yl’IC>w2;9) ;0) - pl (yl?l‘()axQ;g) ‘ pQ(:l:Cal’Q; 9)

ooy |y [ miae, x010) g (22]ze) du
q(y1,2¢;0) = ,
I Veom (e, 22;0) g (z2|zc) dpe

h(y1,2c;0) = ¥(q(y1,7c;0)50) = q1 (y1,2¢;0) - g2(xc; 6)
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Thus, for a given model, there are alternative identifying moment conditions (which
can be conditional or unconditional on the common exogenous regressors®) by defining in

a different way the functions v and p.

2.3 Identification Conditions

The conditions under which the global identification of 6y holds in (2.2) are specific to

each model.

2.3.1 Parametric models

Let ® C RP be the parameter space. A well known identification condition for this
case is that within the parametric model the only probability distribution replicating the
distribution of the data corresponds to the one with the true parameter: namely, for any
RNC]

/ P21, 2, 22, 0)g (22l 2c) dpt = / 021, 7, 72, 0°)g(29]2)dps almost surely in (21, Zc) (2.9)

if and only if 6 = 6y and where p(z1, z¢, 22,0) = f (Y1, Ye|Zc, 22; ).
The linear regression model with incomplete data where the m function in (2.8) is
expressed as
m(Xe, X2,0) = X071 + X6,

identifies ° if and only if E(X5|X,) is a nonlinear function of X, and there is no proper
linear subspace of R™¢ having probability one under the probability distribution of X..
Y Regarding identification of the nonlinear regression models and the nonlinear GMM
models, sufficient conditions need to be given in each particular case to guarantee that
global identification holds in the complete data model and also, when Z; is integrated out,
in the incomplete data model. "

We investigate sufficient conditions under which condition (2.9) holds for the paramet-

ric and semiparametric binary choice models.!!

*In the general definition for the estimators we use unconditional moments.
9Note that this sufficient condition for identification is implicitely excluding variables which are nonlin-

ear functions of X, in the conditional mean model E(Y1|X., X2;0).
"WSufficient conditions for global identification in nonlinear-in-parameters models are difficult to obtain

(Newey and McFadden (1994)). See Rothenberg (1971) for sufficient conditions for local identification in

a neighborhood of 6° in nonlinear IV models.
"'In the rest of the paper, we consider that p, (21, %c, 32;0) is parametrically specified. Let g(z1,z.) =
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2.3.2 Identification conditions for the binary choice model

Let 6 = (o, 8,9 )/ € © be the parameters of the model and let the corresponding greek
letters with the subscript 0 denote the true value. Let d; and dy denote the number of
elements in 3 and -y, respectively. Let Z, = Y; Zy = X and Z, = X.. Consider the

following model:
Y = {ao + X8 + Xgvg + U >0} (2.10)

where we denote X = (X7, X3)". The number of elements in X is denoted by d = d. + ds.
We consider the following two different sets of stochastic restrictions on the errors U,
which define respectively a parametric and a semiparametric binary choice model. Let

F(.|zc,xz2) denote the distribution function of U conditional on X, = z. and Xs = z3.

Assumption A. 1 U and X are statistically independent, the median of U is zero and

F(.|z) is known and strictly increasing.
In this case we denote F(-|z) as F (-).
Assumption A. 2 U conditional on X has zero median.

Many empirical studies adopt Assumption A.l with the logistic or normal cumulative
distribution function F. With complete data the parameter g is identified as long as
no proper linear subspace of R? includes the support of X almost surely in X and F is
strictly monotonic.!? This is no longer the case when not all of the regressors are jointly
observed with the dependent variable Y. Even for the parametric case one would neced to
impose stronger restrictions on the support of X.

We assume below that data set 1 includes variables (Y, X.) and the second data set

includes variables X.

J p(z1,2¢,22)9(=2lzc)dze . The discussion about nonparametric identification of unknown function
p(z1,2c, 22) from the identified functions ¢(zi,zc) and g(z2|zc), is beyond the scope of this paper. How-
ever, there exist some results that are interesting to be considered in the incomplete data framework. If
p(Z1,Zc,22) = E(Z1|Z:,Z2) and Z: has some exclusion restriction, the results from Newey and Powell
(2003) can be applied and the conditional mean function is nonparametrically identified as long as g(22|zc)
satisfies the completeness assumption. Without assuming exclusion restrictions in Z., Cross and Manski
(2002) and Horowitz and Manski (1995) derive partial nonparametric identification results with the as-
sumed data at our hand for the conditional cdf p(Z1,Zc, Z2) = F(Z:\|Z.,Z2) and consequently, partial
nonparametric identification for E(Z1|Z., Z2).

"2One could weaken this further by writing conditions explicitly in terms of the support of X’6 and that
of U.
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The identification condition under the parametric model is that ,for any 8 € ©, and

for a given F (+|z¢, z2) satisfying Assumption A.1

[ F (0 X5+ ay) glaalXodd = [ F (0 + Xifly + o) g(aalXe)d (2.10)

a.s. in X, if and only if 8 = 89. Note that if there is no complementary data we would
have to show identification without assuming that we have the same ¢ function on both
sides since g would be unknown in this case. This is the main source of identification that
arises from the complementary data set.

For the semiparametric case, the identification condition becomes, for any 8 € © and

for a given F (:|z¢, x2) and any F (-|z., x9) satisfying Assumption A.2

/ F ((1 + X008 + x5y X, w2) gla] Xo)dp = / Fo (oo + X8y + 2ol Xe, .’L'Q) g(x9| X )dp
' ’ (2.12)
a.s. in X, if and only if 6 = 6.

Parametric Binary Choice Model The following assumptions are made for identific-

ation of [g:
Assumption A. 3 O is a bounded set in R*+!.

This assumption limits the potential effect of the missing regressors.
Assumption A. 4 Random vector Xo| X, is tight uniformly over X,

The complement of a set A is denoted by A°. Let S, denote the support of X..

Assumption A. 5 There is at least one element of X, that has unbounded support given

each of the other regressors.

This condition allows us to find proper variation in X, regardless of the missing vari-

ables. Let denote by X, the common regressor with unbounded support.

Theorem 1 When there is complementary data to estimate the distribution of Xo given
Xe, 0o of the parametric binary choice model defined by equation (2.10) is identified with
respect to any parameter 8 € © such that By # By if Assumptions A.1 and A.8-A.5 hold.
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Proof. Suppose equality (2.11) holds. 6 is identified with respect to 8 such that « # «y,
3 # By and ¥ = v, since for all X,

sign [(a + X8 + z5y) — (ao + X 8o + xY0) ]

equals —1 or 1 uniformly over the support of X, given X.. There is no need for an
unbounded support variable if v = 7y, and only the identification conditions with complete
data are required. Additional conditions are required to identify g with respect to 8 such
that v # 7. Let consider this case. Since Xy given X, is uniformly tight on X, for any
e > 0, there is a uniformly bounded subsets 3 (z.) of the support of Xy given X, for
almost all z. in the support of X, with Pr{Xs € Q3 (z.) |Xc = 2.} > 1 — . Note that we

haVC
/Q (Y ) [ ( : ) ( c~0 [,2’70)] g(:EQl‘(C)d;u
" 2\Ac
/ ( ) [ ( '[3 g ) ( XC[j : 12 0)] g(“?l‘ /) /L
- Q§ X 0 ) z i( d

almost surely in X... Since F' is a CDF. the absolute value of the second term on the right-
hand side is bounded by 2e alinost surely in X.. If the coefficients on regressor k in X, are
different, then since 8 lies on a bounded set (Assumption A.3) and €2 (z.) is uniformly
bounded, the difference between o + .5 + x5y and ag + x5y + T4y, can be made positive
or negative uniformly over x5 and 6 by moving the regressor under consideration but
holding other variables in X, fixed, because 7 and 6 are uniformly bounded on Q9 (X,)
and ©. This together with strict monotonicity of F, leads to a contradiction as € > 0 can
be chosen arbitrarily to be small. W

The sufficient conditions for identification of 6y with respect to € such that 8 = g,
would require that the support of Qy(x.) changes with . in a very restrictive way in order
to be able to make the difference between o + x4y and ag + x4y, positive or negative
uniformly for 22(x.) for a2, belonging to a subset of S. with positive probability and for
each possible value of § € © such that 8 = 3.

When there is no common variable with unbounded support or 8y wants to be identified
with respect to 6 € © such that 3 = 3, the next theorem provides identification of
when the missing regressors X are discrete and the distribution of X, given X, does not
belong to a particular parametric family.

Suppose Xy is a random variable which takes on two values, 1 and 2, we can repara-

metrize the model so that the problem is to identify a; = a + v and a9 = a + 2v when

26



almost surely in X138

F (o} + X8°) g(11Xe) + F (a3 + X.8) g (21Xe) = (2.13)
F(on + X00) g(11Xe) + F (a2 + XoB8) g (21X)
This implies that
9(21Xe) _ F (o +X(8%) — F(on + X(B)
9(11Xe)  F(az + X1B) - F (af + X.5°)
We should consider restrictions on the parameters for each value of X, such that (i)
a4+ X!8% > a1 + X/ and of + X.8° < ap + X8 or (i) o + X!8° < a1 + X.B and

ag + Xéﬂo > ag + X'B. 1 Consider the case where the parameters satisfy one of the above

sets of conditions for X., we have

F (o + X.B) ~ F (3 + X.8°)
F (o +X13% — F (a1 + X.B) + F (az + X18) — F (a3 + X.8°)

g(1{X.) = (2.14)

Note that the right-hand side defines a parametric model of the conditional probability
g (1|X,) as a function of X, using parameters {a1, oz, 8} and {a}, a9, 8°} with parameter
restrictions (i) or (ii) above. Thus the identification condition is that for each 6 € ©,
there is a value of X, for which ¢ (1|X,) is not within this parametric model. A sufficient
condition for this is that there exist a value of X, such that g (1|X.) does not belong to the
parametric mudel in (2.14) for any value of 8 € O satisfying one of the above conditions.
Note that the same reasoning of the identification follows with X/3 = X!3° = s if one
wants to identify 8 with respect to @ such that g = g°.

This identification condition is satisfied if there is a variable among X, that does not
appear in the index X3 or XéBO. Therefore, it is clear in this case that the exclusion
restrictions of common regressors are a sufficient restriction to guarantee the identification
of the parameters. Denote by X, the random vector that excludes some variables of X..
This exclusion restriction guarantees that one can identify the parameters {a?, a9, 3%}

without additional restrictions than in the complete data case, since

' Assume for simplicity that the support of X3 given X, is uniform in X.. The same results would arise
if this condition does not hold. In this case, the values of {a1, a2} to be identified would be different for

each X. but under the conditions specified here the parameters a, 8 and v would be identified.
""The rest of the parameters {a1, az, 3} such that do not satisfy these restrictions are directly identified

with respect to {a?, a3, 8°}. This is because they imply a negative value of the ratio of the two conditional

probabilities, which implies that the equality (2.13) cannot hold.
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(7 (af + £28°) = F (a1 + 28) | o110+
+ [F (ag + Xgﬁo) ~F (a2 + X;ﬁ)} g(21X.) =0 asin X,

implies that a; = of, as = of and B = B iff there does not exist a proper linear subspace
of R? having probability 1 under the distribution function of [g(1|X.), g(2|X.)]. This latter
condition is directly satisfied because the existence of a proper linear subspace implies that
g(11X,) = kg(2|X,) for scalar x and for all X., or equivalently that g(1]X.) is constant
over X..

More generally the following identification result holds:

Theorem 2 If there exist X, for each {ay,aq, 8} € © such that g (1|X.) is not an element
of the parametric model expressed by

F(ag+ X!B) - F (o + X.8°)
F (o} + X% — F (a1 + X.B) + F (o2 + X1B8) — F (o + X15°)

g(1|Xe) =

where & + X'8% > oy + X' and o + X!8° < ag + X3 for the case of binary variable
Xy and by

9(1|X,) =
~AF (ap + XB8) = [AF (a2 + X(B8) — AF (ai + XcB8)) 9(2|1 Xe) — -+
—[AF (a1 + XB) — AF (o + XeB)] g (k — 1] Xc)
[AF (a1 + X{8) = AF (a + X(5))

(2.15)

where numbering of the regressors follow the order ofaj—a? and that a;—a§ > X! (ﬁo - ﬂ)
and oy — o < XL (8% = B) for the case of general discrete vector Xa, then a, 8y and g
are identified.

Proof. The binary case is shown above. Suppose for some integer £ > 3 almost surely
in X,

F (al + Xéﬁ) g(llXc) +-+ F (ak + X(I:,B) g (klxc) =

F (of + Xi8°) g(1Xe) + - + F (o} + X(B%) g (kIX).

Without any loss in generality, assume that a; — oY > X/ ([30 —B) and o — &) <

X! (B° - B) and that the index is ordered in decreasing order of a; — 2. If this is

j.
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not the case the equality will not hold almost surely in X.. Let AF (o; + X.3) be
F(a; + X/B8) - F (a? + Xéﬁ(]). Since g (j|Xc) over j sum to 1, we have

- AF (ak + Xéﬁ) =
= [AF (a1 + Xéﬁ) - AF (ak + Xéﬁ)] g(1|Xe) + -+
+ [AF (ag—1 + X.B) — AF (ax + X8)] g (k — 1] Xc)

Note that AF (a7 + X.8) — AF (o, + X.8) > 0 so that

g9(1]1Xe)
—AF (a + X B) — [AF (ag + X.B) — AF (o + X B)] 9(2]Xe) — -+
—[AF (g1 + X.B) — AF (ay + X.8)] g (k — 1| X¢)
[AF (aq + X!B) — AF (ax + X.5)]

[ |

In the analysis above, we have allowed a frece parameter for each value of Xy, If there
are restrictions across different values of X5 the identification result certainly holds.

A comment on the need of joint variation of the regressors is in order once one com-
pares the linear and non-linear in parameters case. One would need to assume the very
restrictive assumption of independence between X9 and X, in order to be able to identify
the parameters - without further restrictions in the nonlinear model. There is no need of
further restrictions because under independence of X, and X, and under the assumption
that the support of X3 is uniform over X,, the equality of probabilities in (2.11) cannot
hold almost surely in X,. It is interesting to point out that in the linear in parameter
model, under independence of Xo and X, the parameter associated to transformations
of X5 is not separately identified from the constant term. Thus, the nonlinearity in the

parameters helps in the identification under the independence condition.

2.3.3 Identification conditions for the semiparametric binary choice model

For the semiparametric case, as we discussed, the identification condition is, for any 8 € ©

and for a given Fy (-|z., x2) and any F (-|z., z2) satisfying Assumption A.2

/ F(a+ X8 + zy|Xc, z2) g(z2] Xc)dp = / Fo (a0 + X[Bo + hyol Xe, z2) 92| X )dp
' ' (2.16)
a.s. in X, if and only if § = 6. The approach in the parametric model above fails

because now we can choose F' as well. However, an analogous result holds for up to scale
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identification of the parameters.’® Assumption A.5 should be replaced by the following

one:

Assumption A. 6 There exists at least one variable in X. denoted by X.; and ;3(; #0

such that given each of the other regressors has everywhere positive Lebesgue density.

Theorem 3 When there is complementary data to estimate the distribution of X, given
X, 0y of the semiparametric binary choice model defined by equation (2.10) is identified
up to scale with respect to any parameter 6 € © such that 8; # By; and By; # 0 if
Assumptions A.2, A.3-A.4 and A.6 hold.

Proof. Proceed exactly as in the parametric identification proof up to the point at
which we obtain the inequality between o + X5 + x5y and a + X3y + o4y, uniformly
over x9 and 6. The true value of the parameter 8y is identifed if there is a set of values in

the support of X, with positive probability for which the following condition cannot hold
/ [F (o + 208 + 2hyy|ze, 22) — Fo (o + 208y + 970l2e, 22) ] g(@2]we)dp = 0
. Qz(.LC)

Thus, we need to find those values of . such that for any 8 € © such that 3; # 3, and

By, # 0 one of the following two inequalities

a+alB+xy > 0> ao+ 2By + x5y or

a+zlB+ahy < 0<ap+z.By+ THy

holds uniformly over x3 € Q(z.). Since random variable X.; has unbounded support, if
B; # By; then following the proof for the parametric model, there are values of z¢; in the
support of X,; that can make the difference between a + z,8 + x5y and ag + 2.8 + zhyq
positive or negative uniformly in z9 and 6. Let denote by H the set of these values of
X¢j. The next step is to guarantee that 0 can lie between both indices for those values of
zc; € H. Note that any of the above inequalities can hold if § = aflg, for any scalar a > 0.
Thus, the identification of 6y is up to scale. Denote X. = [X;, X_;] and 8 = [8,,8_;].
Without loss of generality let consider the case where 3(; > 0, then if X,; has everywhere

positive Lebesgue density by Assumption A.6, it follows that

1 1
Pr { 3 (a+ @l B+ xhy) < xej < —/3—0_ (a0 + z’.B_jo + )
j j

Zej € H} >0
(2.17)

'"See Manski (1985) for the identification of this model in the complete data framework.
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for 8, > 0,

1 1
Pr {xcj < 5 (ag + 2" ;B_jo + TY0) i Tej < v (a+ 2’ B+ zhy)|ae € H} >0
j J
(2.18)
for 8; <0 and
1 .
Pr {:ccj <=5 (0 + 2" jB_jo+ 2hyp) s (@ + 285 +2hy) >0fze5 € H} >0
! UJ
(2.19)

for 8; = 0.

This implies that there are values of xz,; € H with positive probability where the
inequality a + 2.8 + aby > 0 > ap + x,8y + 5o holds uniformly in z and 6. Then,
the median independence assumptions (i.e. F(0|z) = Fyp(0]z) = 0.5 a.s in ) leads to the

contradiction since

F(o+aLB+ ahylze,x2) > 0.5 > Fy (ag + 2,8y + zhyolee, z2) or

F o+ LB+ dhylae, 2) < 0.5 < Fp (a0 + 2,8y + Thyolze, 72)

uniformly over 8 and zy € Q(z.) for those values of 2, where one of the above probabilities
(2.17) - (2.19) is positive. W

The previous result complement the results of Manski and Tamer (2003). They as-
sume that X, is partially observed in the original data set so that there is only interval
information about where the true value of the variable lies and there is not access to any
complementary data set where Xy and X, are jointly observed. Under these conditions,
the unbounded support assumption only allows them to identify the parameters associ-
ated to the unbounded variables X while the rest of the parameters are only partially
identified. They can only achieved point identification of the parameters when regressor
X5 is completely observed along with X, and Y at least for some observations. When we
have a complementary data in the parametric case, multiple (discrete) missing regressors
are allowed, more importantly, it allows one to point identify the parameters associated to
the missing regressors. Additional conditions on the support of the common and missing
regressors need to be imposed with respect to the complete data case. With respect to
the parametric binary choice case, a more strict assumption requiring at least one con-
tinuous common regressor needs to be imposed in order to semiparametrically identify the

parameters up to scale.
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It would be interesting to consider how the identification conditions could be relaxed
if one considers a mixture of the setting in Manski and Tammer (2003) and the missing
data problem we consider in this work. That it is, using both the interval information on
X5 in the original data set and the joint distribution of X9 and X, in the complementary
data set. In this case, the interval information on X5 could be considered as a natural
exclusion restriction. We are interested in the effect of the complete variable X5 on the
dependent variable, but obviously this interval information is related with it and can be
used as an instrument. As we pointed out before, having exclusion restrictions among the
common regressors ensures that some of the above identification conditions are satisfied
so that a weaker set of identification conditions could be studied when there exist those

excluded variables.

2.4 Estimation

Let N be the sample size of data set 1 and Ny be the sample size of data set 2 and p the
dimension of the vector of parameters. Let {1z, € R™,Qz € R™,Q,, € R™,0 € RE,
Let I'y be a Banach space of functions on ™ x R™¢ x ©. Let I'y, be a Banach space of
functions on I’y x ©. Formally, function ¢(Z1, Z, 8) is a function from €2z, x 2z, x © into
RS, and ¥(q(Z1, Z.,0);0) is a mapping from ¢(.) x ©into RY with T > K, where q € I',,.
T denotes the number of moment conditions. We consider the sup-norm for the space of
functions I' denoted by ||.||- .

Define the sample analogue of the moment condition in (2.2) as

Ny
. AL
H(an, (. 0) = - > " Iny (G, (210, 20, 0):6) = 0 (2.20)
=1
where _
Gn, (214, 2ei, 0) = /p(zu,Zmzzl9)£7N2(22|2n¢)d22 (2.21)

and the trimming indicator!'¢

lei =1 {le (2ei) > b} (2.22)
In what follows, we omit the dependence of the estimators f and § of the sample sizes

used for their estimation.

'*We consider a fixed trimming term which does not change with the sample size, unlike in Robinson
(1988).

32



Our estimator solves the following problem
b= inf A(6,4(..0))' x W x H(6,4(.0)) (2.23)

where W is a T' x T matrix that converges in probability to a positive definite matrix W.17
Under the assumption that both regressors Z, and Z3 are continuous, and substituting
g(22]zc) by its kernel nonparametric conditional density estimation, we obtain the following

expression for the estimate of the g function evaluated at the i — th observation
thc+m2 -1 ZNQ K Zer=za ) K, ( 220=22
No r=1 1 hN2 2 hN2 d
-1
mMc N cr—Z2¢i
(hs) oo b (o)
If, among other assumptions'8, the s —th derivatives of p with respect to z are continuous

and the kernel function is of order s (such that [ k(u)du = 1, [ k(u)u/du = 0for < j < s—1

G(21i, 2ci,0) = /P(zli,zci,zz;@) 22

and [ k(u)u’du = 0), then the usual change of variable of t = (22 — 22,)/hn, in the above

integral leads to

o R P(Zliyzci,zzr;())l(l(%ﬁf“) )
(214, 26, 0) (NhN21> ;(Nh%’;)_lzﬁélm (ﬁ%) +O(h,) (2.24)

The estimator we propose here for the moment condition is a weighted average of

the function p where observations from both data sets are combined. For each possible
combination of observations i from the first data set and r from the second data set, the
kernel function gives more importance to those combinations in which the corresponding
values of the common variable in both data sets are closer to each other.

If the distribution of Z, given Z. is discrete where Zy takes R possible different values

{v1,...,ur}, the sample analogue of the estimate for g is then

R
Q(ZM', Zciy 0) = ZP(ZM, Zeiy Uss Q)PNQ (ZQ = Us'zci)

s=1
where
R o N _ =2
b g Dl = v) Py = v) _ T e = b (S5
Ny (Z2 = Vslzei) = A - N .
() I K (5e)
2

I"Note that the estimator § and H are function of both sample sizes N1 and Naz. The estimates of ¢
and § are obtained from the data set 2, so that they are a function of Ny only. We ignore the different

subindices for simplicity in the notation.
""We provide detailed conditions in Section (2.5).
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In what follows, we present some examples of particular estimators.
Consider the linear regression model as a particular case of the nonlinear regression
models explained in Section (2.2.3) with m(X., X2;6°) = X269 + X169. The moment

119

conditions of the linear regression model'™” with incomplete data identify the true value of

the parameters 6y as long as the conditional mean of E(X3|X,) is nonlinear in X.. These

moment conditions suggest to estimate 6% from the following regression?’
Yii = .’13,61»91 + EN2 (X2|Xc = .’L‘Ci)’eg +uv;fori=1,...,V; (225)
~ !
v; = U; + (.’:CQ:L' — E(XQ'XC = CCCI'))IOQ + (E(XQ’XC = xci) — ENQ(XQIXC = :Bm)) 92
| (2.26)

where E(U|X.) = 0 and ENQ(X‘ZIXC = ) is a nonparametric estimation of the
mean of X using data set 2 conditional on each observation of the common regressors
ze of data set 1,4 = {1,..., N1}. In order for the OLS estimates of 6° from (2.25) to be
consistent, we need to impose conditions that guarantee that for the generated regressor
IT}T Zfi’l ENQ(XQlXC = x)'v; converges to zero in probability. The consistency of the
nonparametric conditional mean and the nonlinearity of E(X3|X.) in X, ensure that
these conditions are satisfied.

Alternatively, the same linear regression model suggests to estimate 6° from the fol-

lowing regression

ENl (Y1|Xc = :L'm') = .’Elcz-el + ENQ(X2|XC = .’l'ci)leg +v; for i = 1,...,N; (227)
UV = (E(X2|Xc = xcz') - ENQ (X2|Xc = xci))’GQ - (E(Yllxc = xci) - ENI(Ylec = l'ci))

If the conditional mean of Xy given X, is linear in X, (as it is the case when both
are jointly normal distributed), in order for the model to separately identify 9[1) and 98
the vector of regressors X, needs to have some exclusion restrictions. For this additive
model in the error term U, the separability conditions discussed in the GMM section are
automatically satisfied. Denote X, as a strict subset of X.. Again, the linear regression

model with the conditional mean independence E(U|X.) = 0 suggests to estimate the

14

E((y1 -01xc_02E(X2|XC))( E(;ix) )) =0iff 9 =6°
2 c

*“The sub-indices in the expectations denote the sample size of the dataset in which each conditional

mean is computed.
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parameters from regression (2.25) where some variables in X, are excluded in the linear
part.

Therefore, when X5 enters linearly in the model, the estimated parameters are obtained
through the imputation of Xy using its estimated conditional mean given the commmon
variables X, in both data sets.

The way X9 is imputed using the observations of the common regressor X, explains
the differences between the estimator proposed by Arellano and Meghir (1992) and the
one we propose here. They suggest to obtain an imputed value of the missing regressor by
estimating the best linear prediction of Xy given the common regressors X.. Thus, they

obtain their estimates from the following regression

Y = 01 + En, (Xo|Xe = 20i) 02+ v for i =1,..., N (2.28)
v, = U+ 69 (IEQZ' — E*(XQ'XC = :L'a)) + 64 (E*(XQIXC == :L‘m) — E;VQ(XQIXC = :L'm‘)>
(2.29)

where E*(X32| X, = x.) is the best linear predictor of X3 given a particular realization
of X.. It is important to point out that even if the structural equation that relates X, with
X, is nonlinear, the best linear prediction of Xo given X, allows one to obtain consistent
estimates of the parameters of interest 6. This becomes clear when the correlation of X,
with each of the terms in v in (2.29) is analyzed.

The definition of the best linear predictor E*(X32|X. = z.) defines an error € = x —
E*(X,|X. = x.), which by definition is uncorrelated with z. and ER@(«YQIXC = x.).%!
Additionally, the consistent estimation of the best linear predictor ensures, by the law of
large numbers, that the third term in v is not correlated with .. In terms of consistency
then, there is no obvious advantage of using the nonparametric estimator of E(X3|X,)
instead of its linear projection, even if true conditional mean of X, is non-linear in X,.
However, it is not difficult to think of cases of nonlinear relationships of between X, and
X, where Var(X; — E}, (Xo| X = z)| X = z.) is higher than Var(Xs — En, (Xa|X. =

2Gince

E(e'Xc) = E([X2 ~ B"(X2|Xo)])' Xe) =
E([X2 — XeE(X.X) T E(X.X2)] Xc) =0

and

B(e'Xo(X!Xe) ' X\ X2) =0
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zc)|Xe = z.). For these cases, this would result in a higher efficiency of the estimator that
approximates nonparametrically the conditional mean of X7 given X..

The estimator obtained from the linear imputation method in (2.28) coincides with a
two-stage least-squares estimator, where the first step uses observations from an auxiliary
data set.

For the linear model with exclusion restrictions (and in general, for any given model),
there is a number of different ways to write estimators for the parameters that this model
identifies. For example, for the linear GMM model above defined from the moment con-
dition E(U|X. = z.) = 0, Angrist and Krueger (1992) suggest the following alternative to
the two-sample two-stage estimators discussed above. The sample analogue of the moment
condition E(U'X.) = 0 suggests the following estimator which is denoted in the literature
of combining data sets as Two-Sample IV estimator (2SIV)

/

> . 1 - 1 ' ,
0 = arg min (——I(Yl — X!n61) Xen, — ~ (X3n,02) XCN.Z) X (2.30)

XUty X (N%(Y1 — XN 61) Xen, — ]_\16 (X§N292)/XCN2>

where Qx,n, is a matrix which converges to a non-singular positive definite matrix
.22 The sub-indices N; and N, denote that the variable is taken from data set 1 or data
set 2, respectively.

Since the moment condition is separable in Y7 and Xy, the first part of this moment
condition can be estimated using only the observations in data set 1 with sample size N;
and the second part using data set 2 with sample size N;. This estimator computes each
of the sample analogue moments imbedded in criterion function with the observations of
that data set that allows us to compute this moment. Hence, for example, the sample
analogue of moment E(X}X.) is fully computed with observations in data set 2. However,
there is an alternative estimation of this moment that combines both samples. Therefore,
instead of computing moment E(X,X.), the estimator we have defined in (2.20) suggests
to compute the sample analogue of the objective function by estimating E(E(X}|X.)X.)
using both data sets. Data set 2 is used to estimate nonparametrically the inner conditional
mean and data set 1 is used to compute the outer expectation. In this way, we can link
the estimation of this moment with the observations in data set 1 by conditioning on each

observation there. This way of computing the sample analogue of the moment condition

22This weigthing matrix can be computed either using only dataset 1 or only using dataset 2 or both.
That is the reason for the double sub-index Niand Na.
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turns out to be more efficient than the estimator proposed by Angrist and Krueger (1992)
in the Monte Carlo simulations we have performed in this paper.

Although the previous studies have focused on linear models which directly imputes
the value of Z; and replace it by its estimated conditional mean given Z., the idea behind
the Two-sample IV estimator can be extended to nonlinear models too as long as they are

separable as in (2.6). First, consider the following moment conditions implied by (2.7):
E [Zé (01(2Z1, 23 0) — po(Ze, Z2;9))] =0

As it happened for the linear GMM model, there are different alternatives to construct
the sample analogue of these unconditional moments with the data assumed at our hand.
The first alternative computes the sample analogue of above expectation with that data
set having full information on the variables inside each expectation. That it is, a valid

estimator of #° solves

inf H(0)WH(6 .

ing ()W) (231)
N1 No

with H(9 Z 2. (213, 2ci, 0) — N Zz”pz Zery 291, 0)

1=1 r=1

The alternative estimator we propose is derived from expression (2.20). Thus, using the
law of iterated éxpectations, we provide an alternative method of computing the sample
analogues of moments associated with py which uses also the information on Z. in data
set 1. In other words, it constructs a sample analogue of the conditional expectation
Ey; (E(Zlpy(Ze, Z2,0)| Z.)) where the inner expectation is nonparametrically estimated
using data set 2 and the outer expectation uses observations in data set 1. Thus, the

sample analogue of the moment condition is as follows

H(9) = N, szpl 21, Zaiy 0) — / 2iP2(2ciy $,0)G(8]2ci)ds

or alternatively, once the bias associated to the estimation of g(s|z.;) has been controlled

for,

H(0) (2.32)

1 ! Zer—2e
Ny Ny —-m—thzm-pQ(zci,zgr,H)K (——ﬂ” )
2

S AERSIETL TS 95
Nl <o ciP1\R14s Rciy Nl N2 e f(zci)
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with f(zci) = (NhK,ch -1 27{\2] K (Zcr—zm-)

hn,

Alternatively, using unconditional moment condition, one can propose estimators of

0o by using the FOC of the sample analogue of the objective function
E ((p1(21, 26:9) = E (p3(2e, 22:6)|2.))°)

that the true value of the parameter uniquely minimizes, where E (py(Z., Z9:0)|Z.) is
estimated using data set 2 for each conditioning observation of Z. in data set 1. Thus, as
mentioned before, given the moment condition E(p,(Z1, Zc) — py(Ze, Z2)|Z:) = 0, there
is a wide variety of valid estimators of the parameters that can be constructed using
different ways of building the sample analogue of this moment condition. It is difficult to
determine a apriori which of these estimators is the most efficient. Our conjecture is that
those estimators that use the law of iterated expectations to condition on observations of
data set 1 are more efficient than those estimators that construct some sample analogues
of moments using only data set 2. This is confirmed in the Monte Carlo simulation that
we perform in this paper. Unfortunately, there is no result in this framework of incomplete
data which can provide us with that estimator that attains the semiparametric efficiency
bound. This constitutes an interesting topic for future research.

Regarding the Maximum Likelihood estimator, consider the parametric conditional
probability model f(y1lzc, 22;0). The ML estimator can be defined by considering the score
of the log likelihood of the model with incomplete data, i.e. log / flyrlxe, 25 0)g(xolx.)dy.

Thus, we define 0 as that value that solves

LM M {Vaf(yuhcci,mr,@)/ /f(ylz‘|$ci»x2;g)g(":?'wd)dx?] K (zg:_;f;;)
R NhTe -
N, ;( N?) 7; (Nh"N"L;)—I SN Ky (4‘"—-‘“ . )

(2.33)

+O(hiy,) =0

And replacing ¢ by its nonparametric estimation, finally we have that the ML estimator

6 solves

AERRAL: 1 v9f(ylilmli,l'2r,@)]{1 (iu:iu)

1
ENE:E:MM -

) R
i=1 7=1 "N (Nh’,’&;) S0 f(riler, wos, 6) K <ﬂ . )

+O(h%,) =0

_|,_
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2.5 Asymptotic Normality

In the theorem of this section, we state the sufficient conditions to show asymptotic nor-
mality of 8. Newey and McFadden (1994) discuss the asymptotic behavior for general
two-step semiparametric estimators. We apply those general results for the case in which
the first step is a kernel nonparametric estimator of g (222.) obtained from a different data
set and the equation that defines the estimator does not depend linearly on the kernel es-
timator. We assume that both data sets are independent which makes the derivation of
the asymptotics more straight forward.??

To motivate the asymptotic results, consider a Taylor’s series expansion for § around

By from the FOC of the objective function in (2.23)

VN, + Ny ((9 - 00> = [V'ofl((),(j(.,@)) x W x Vo H(8, q(.,é))} (2.34)
x [VoE(®,4(,0) x W x /Ny + N (0o, d(.,60))]

o < oo

In what follows we denote by 2. and Z. to the realized values of random variable Z,

where |

in data sets 1 and 2, respectively. Equivalent notation is used for Zs. Observations in the
first data set are indexed by 7 and observations in the second data set are indexed by 7,
so that we have access to the following data: {z;,24} for i = 1,..., Ny and {2, 29} for
r = 1,..., Na. This notation is useful to clarify how the projections of the U-statistic on
the other sample that arise in the asymptotics are computed.

Consider the following assumptions:

Assumption B. 1 The observations in data set 1 {z1;, zm}f\:l1 are independent and tdentic-
ally distributed. The observations in data set 2 {Z., 227.}5,\/:21 are independent and identic-

ally distributed. Additionally both samples are independent

Assumption B. 2 The identification condition is satisfied so that 6y is the only value of

the parameters that satisfies

/h /'w(q(zl, Zc, 90); Ho)f(zl, zc)dzldzc =0

*3The case of independent samples is the typical situation that we face. It is very unlikely that there
are common observations in both data sets. However, in this hypothetical case, one could identify the
parameters using the observations that are in common and our conjecture is that there are some efficiency
gains that would arise from these common observations. Also, the estimators would be different to the

ones we present in this section.
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Assumption B. 3 F (lw(q(Zl,Zc,Qo);%)lQ) < oo

. T N ST N; X
Assumption B. 4 Let \; = plimpn, Ny—oo IT/1_+1172 and Ay = plimy, Ny—oo '/V#NE so that

A+ =1
Assumption B. 5 0 is an interior point of the compact set © € RX

Assumption B. 6 The kernel K is a Borel measurable bounded real-valued function twice
continuously differentiable and with second derivatives satisfying the Lipschitz continuity.
Kernel I also satisfies: [ K(u)du=1; [WK(u)du=0 forj=1,..,s—1; [u*K(u)du <
00; [ |K(u)|du < oo; |u| | K (u)] — 0 as |u] — oo; sup |K(u)| < oo; [ K%(u)du < oo

Assumption B. 7 [ is the mazimum absolute mmoment (with [ > 2) between p (21, Z¢, Z2; 60)

Op(Z1,2¢,%2;00
and 50

Assumption B. 8 Let 7 = max{2,m.} and s > As N1 — oo,Ny — 00, the se-

r
I
quence of the bandwidths should satisfy hy, — 0; (N1 + N-g)h‘}\j',) — 0 Nohly, — o0
24 75
Nihy,

(_loghNg) -

(NliL';(};b'z) /log N1 — oo,

21,2¢,22,00 :
50 with

Assumption B. 9 The s — th order derivatives of p(z1, 2¢, 22,09) and 9

respect to z. and zy are Lipschitz continuous

Assumption B. 10 ¢(q;0) is Frechet differentiable with respect to 6 and q(.) and the
Frechet derivatives are Lipschitz continuous. with Cj(z1,2:) > 0, E{Cj(21,2.)} < oo for
j=1{1,2,3,4}

‘awq; 6)  9v(d;0)

< Ci(z1,20) |0 = 0] + Ca(21, 2c) |g - qllqu

08 oo
oY(q;0)  0v(d;8)
\ o~ o | = Cy(21,20) [0 = 0| + Cu(z1, o) |la = 4|,

Assumption B. 11 p(z1, 2¢, 22,0) is continuously differentiable with respect to € wuni-

formly in a neighborhood of 8

Assumption B. 12 The s — th order derivative of the density function of Z, denoted by
f(zc) is Lipschitz continuous. This density function also satisfies sup, cq, |f(2c)] < oo

and inf; cq, |f(z)] >0
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Assumption B. 13 The s — th order derivatives with respect to z. of the conditional

densities g(z2|zc) and f(z1|z.) are continuous
Assumption B. 14 plz’le,N,z_.ooﬁ/ = W where W is symmetric and positive definite

Henceforth we use the following shorthand notation. Let gig, = q(21i, 2ei, 00) where sub-
index ¢ denotes that z; and z. are conditioned on the ith observation. Denote 4,9, (¢ig,; 60) =
Y(q(214, 2ci, 00); 60) and pyp, (22) = p(214, 2ci» 22; 00) to indicate that the rest of the variables
are all conditioned on the ¢th observation. Where necessary, we make explicit the argument

of functions ¢, p and q.

Theorem 4 Suppose that 6 is consistent to 0. Under Assumptions B. (1)-Assumptions
B.14, if V'WYV is nonsingular with

V= /Vow(q(zl,zc,90);90)f(z1,zc)dzldzc (2.35)

, then

2 d / -1 / / -1

VNN (bviw = 80) S N (0, (v'wv) T (viwEwy) (vivy) T

where ¥ = ;\1—121 + /\%Zg and
2 = Var (W(g(Zy, Ze;60):00)) (2.36)

. !
|:p(217201‘7z27‘790) - / p(z].aZCT722700)g(Z2|ZCT)dZ2:| X f

o 20(a(21,2¢r00):00)
O
q

Lo =Var / (21|2cr)d21

Proof. [Proof of Theorem (4)]

Consider the Taylor’s series expansion in (2.34). The asymptotic distribution of 0 is
shown in two parts. The first part shows the asymptotic distribution of the score term
VNI + N2H(00,G(.,600)) and the second part shows that the conditions we state ensure
the uniform convergence of the Jacobian to a positive definite matrix.

Part 1

We can focus on the distribution of a statistic which uses the trimming indicator based
on the true density function since by Lemma A. 1 in the Appendix the above conditions
Ine = I

on the sequence of bandwidths and the kernel function ensure that sup; £.0as
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Ny, No — 00. The expression below makes clear the sources of inefficiency that arise when
Z3 is not jointly observed with Z; and Z..

A~

H(60, 4, (- 00)) =

Ny
1
=N zfz"cﬁ(moo(zzz‘);@o) (2.37)
=1
Ny
1 : .
+ 577 2 1 [V(@i0i60) = ¥ lpig, (22:):60)] (2.38)
i=1
Ny N
1 N 1 0¥ (giy; o) 5
+ Nl ; I'l [(]7«00 q’L(/’o] (')q (..-39)
+ Itvy vy (2.40)

Only term (2.37) would arise if Zy were jointly observed with Z; and Z.. Term (2.38)
reflects the efficiency loss due to not observing of Z2, since if Z; is observed there is no
need to integrate out function p over the distribution of Z; given Z.. The next term (2.39)
represents the efficiency loss due to the estimation of the conditional distribution function
of Zy given Z., g(Z2|Z.) inside function g¢.

Lemma A. 2 in the Appendix shows under which some of the assumptions above
VN1 + NoRn,n, = 0p(1). From expression (2.39),we use the asymptotically linearity
at rate N{l/z for kernel estimators of conditional expectations. Define mp;y (2:) =
| pioy(22)g (22]2c) dzo and its estimated counterparts by mp;e, (Zc). Thus, expression (2.39)

can be written as

Unin, = (2.41)
U Rer—2gj
1 i i I; {pr(ZQT) _ mpwu(zw)} K ( hy ) X [8—"#(%00)—]
Ny Nyhe pe ot f(zcz) 8C]

1 Ny 1
+..___§ bei + 0y [ —— | + O(KS
N = ¢i T O (\/N2> ( NQ)

where

by = 1 _L Ey, ([mpwo(Zc) - mpwo(zci)]'l( (Z_CLEEE)) X [ai.éqéﬂfﬁzl

hins f(2ci) hivy
Since mp;q,(Z.) is differentiable with respect to Z, by the s — th order differentiability
of g(Z3|Z.) with respect to Z. in Assumption B.13, one can show by the usual change of
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variable and a Taylor’s series expansion in kernel estimator that
Ny

plim ( 1+N2quz> = plim (\/Nl"‘NQO Zfl azﬂ;f”)

which is equal to zero as long as Nlh?\?2 — 0 and Ngh?j2 — 0 as N7 — 00, Ny — .

By Assumption B. 4, the last reminder term of Un, n, converges to zero in probability
since /Ny + Naop (\/—}V—;> = ﬁop(l). We now compute the projection Vy,n, of terms
(2.41) denoted henceforth as Vi, n,. These are two-sample U-statistics of order 1, since
there is only one observation from each sample in each kernel?*. Let define the kernels a

in each of the U-statistic as

1 N1 No
VN1N2 = ZZCLNQ leaZcthrazQT)
]Vl NZ i=1r=1
where
[ § . 'y zer—2¢
) i [P = oG} K (35224) ) rou(g,)
aNz(zli, Zeiy Zers 227-) h m: f(lu') X T(]—

Denote by T = E (an, (21, 2ci, Zer, 22r)) - The projection of statistic (Vy,n, — 1) is defined

as
1 & 1 &
VNlNg = N ZE aNz(le,zczazc'ryer)lzlz)zcz) -N;ZE(G'NQ(zl’i)ZCiazCTaZ27‘)|ZC’I‘,‘ZQT‘)_QT
=1 r=1

It can be shown that the projection over both samples of the kernels are

E (any(z1i, Zeiy Zer, Z2r)| 214y 2ei) = 0

E (aNz(zliv Zciy Zers ZQT)] Zer, z2r) =

I, Ey 7. [{PGO(ZQT) - mp90(z")}l % {M]

dq

#5The above conditions ensure that the later Taylor’s series expansion can be done 2, The

Z, = z] +O(hsy,)

Lemma A. 6 in the Appendix gives sufficient conditions for

VN1 + Ny {VNlNQ - T - VNlN'z] LN 0

*For Central Limit Theorems for U-statistics, see Serfling (1980) and van der Vaart (1998)
%" The projection of the statistic over the first sample becomes zero since when we condition on observation

zer and integrate out using the distribution of g(z2r|zcr), the numerator of the projection becomes zero.
26
Note that

/[l{f(zcr +thw) > b} = 1{f(ser) > b} K (£) dt — 0
if hy — 0 as N — oo because the indicator function has only finitely points of discontinuity in ¢t and K(t)

is continuous in those points.
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as N; — 00, Ng — oo and known as the U-statistics projection result. There we use
the sufficient condition of E (|aN2(zM, Zeiy Zers 22r)‘2) = 0o(Np) in Powell, Stock and Stoker
(1989), which is satisfied as long as Nahlye — 00 as Ny — oo,

The sufficient conditions in Assumption B. 8 guarantees that Ngh’ﬁ; — oo and that
also the conditions in Lemma A.2 in the Appendix are satisfied since | > 2 .

Note also that because the projection on the first sample is zero, then T = 0. Having
used then the projection device to find the distribution of (2.39) we can conclude that the
asymptotic distribution of H (6, dn,(.,00), dn,) is normally distributed as

VN1 + NoH (8o, dn, (., 60)) =
N1
1 .
=N+ N, (Fl > Iip(ging; 00) + VN1N2> +0p(1) = N(0, %)
=1

with the expression in ¥ as in expression (2.36).

Part 2

Under the differentiability conditions of function ¢ and ¢ with respect to 8 in Assump-
tions B. 10 and B. 11 uniformly in a neighborhood of 6y, the Taylor’s series expansion
in (2.34) is correctly done. With respect to the Jacobian term in (2.34), the uniform

convergence arguments together with the consistency of 6 and g suggests that
V0B, an(,8)) - V| = 0p(1) (2.42)

and consequently also, ‘ngf(@,(j;vg(.,é)) - V‘ = 0p(1) where

V= /Vaw(Q(Zl,Zc, 60);00) f(21, 2c)dz1dzc (2.43)

The convergence in probability in (2.42) is shown in two steps. Lemma A.7 in the Appendix

shows that

|VoH1(0,4(.,60)) ~ VoH (80, 4(,00)| = 05(1) (2.44)

where 6 and §(.,6) belongs to a neighborhood of the true value of the parameters 6y and

the true function ¢(.,6p). By the law of large numbers,
|VoH (6,4(.,80)) = V| = 05(1) (2.45)

By the continuity of the matrix inversion (given the nonsingularity of V'WV) and the

Slutsky theorem, the result of the asymptotic variance arises.ll
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The main difference between the asymptotics that we have derived and those of pre-
vious approaches is that we allow for sample analogue moment conditions that are not
necessarily separable in both data sets. Arellano and Meghir (1992) and Angrist and
Krueger (1992) derive the asymptotic distribution for GMM problems when data sets are
combined in which the criterion function is perfectly separable in variables observed in

each of the available data sets.

2.6 Monte Carlo Evidence

We perform three different experiments to assess the performance of the estimator we
propose in this work: a linear model without exclusion restrictions, a linear model with
exclusion restrictions and a Probit model.

The first experiment consists of the linear model in (2.25) where the conditional mean
model of Xy given X, is nonlinear in X.. We consider the case of scalar X, and X5. The
data generating process is Y = 0g + 61X + 0, X2 + U with 6 = [0.5;1.5;2], U ~ N(0,1)
and X, ~ N(0,1); X2 = B¢ + 81 Xc + B2X2 + & where 8 = [1;1;1] and ¢ ~ N(0,0?).
We generate two different sets of variables {X,, X2} from this data generating process
with sample sizes N; = 1000 and Ny = 5000, respectively. The conditional mean of
X9 given X, is nonparametrically estimated from data set 2. The performance of the
estimates of 0 depends on the goodness of fit of the regression of the missing regressor X»
on X, which clearly depends on the value of o?. We perform different experiments for
different values of 0. The results are presented in Tables (2.1)-(2.2). for values of 02 =1
and 0% = 3, respectively. In each case, we report the mean, the quantiles and the MSE
over the number of replications for each parameter and also the mean of the adjusted
R? of the OLS regression of the quadratic equation of X. The data was trimmed from
the boundary of the support of X, so that 95% of the data were considered to evaluate
the estimated conditional mean. This trimming defines an upper bound for the optimal

bandwidth, which is obtained by Cross-Validation for each replication?”. A third order

*TThe Cross Validation function was computed using the observations in dataset 2, since it is the only one
in which Z. and Z3 are jointly observed. We want to evaluate the estimates of the conditional expectation
for each observation in dataset 1. However, the CV function that we are able to construct minimises the
estimated prediction error of the conditional mean function evaluated at the observations of Z. in dataset
2. Since both datasets are generated from the same underlying population, the CV using the simulated

dataset 1 and dataset 2 are very similar and also the optimal bandwidth that both provide.
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kernel was used to reduce the order of the bias of the estimated conditional mean function.
In particular, the kernel used is K (u) = (4/3)k(u)—(1/6)*k(u/2) where k(u) is a standard
normal pdf. This helps in reducing the bias of the third component of v in (2.26). In each
row of the last panel of Tables (2.1)-(2.2), the mean over replications of the components
of v in (2.26) are reported and also the mean over replications of the correlation with the
generated variables used in the regression.

These results illustrate that our estimator performs well in a model without exclusion
restrictions as long as the true underlying conditional mean model is nonlinear in X..
The performance of the estimator is worse when the model for X3 is more noisy and X,
explains less of the variance of X3, as can be seen when comparing the MSE of both
simulations is Tables (2.1)-(2.2). The decomposition of the error components is useful to
assess the source of asymptotic bias of the replications. The results below suggest that
the main source arises from the difference between the true conditional mean and the
estimated conditional mean. Both tables also report a decomposition of the variance of
the error between its components. With respect to the full data case, the main source of
inefficiency when X3 is not jointly observed with Y is due to the fact that we replace X»
by its conditional mean E(X3|X.). The inefficiency that arises because this conditional
mean is nonparametrically estimated is almost negligible in the results we report.?®

The second experiment illustrates a model with excluded restrictions from structural
equation. We consider both the just-identified and the overidentified case. X, is an
exogenous scalar variable, Xy is the scalar missing regressor and Wi, W are the ex-
cluded variables. The design of the experiment for the just identified case is the fol-
lowing. The common regressor and the excluded variable are independently normal
: Xe ~ N(0,1); W) ~ N(0,4) and the missing regressor relates to these two variables
as follows: Xo = 1 4+ 2Wp + X W7 + ¢ with € ~ N(0,0'2);0' = (0.85. The model for the
dependent variable is Y = 6y + 6; X, + 62Xo + U with 6 = [0.5;1.5;2], U ~ N(0,1). Our
estimator in this case amounts to imputing the value of X, using its nonparametric condi-
tional mean given X, and W) as regression (2.25) suggests. We report these results in the
upper panel of Table (2.3) and compare them with the results from the two-sample two-
stage least squares where X3 is linearly fitted using X, and Wj as in (2.28) in the second
panel of results. We also present there results for two different versions of the two-sample

IV estimator. The first version is reported in the third panel of Table (2.3) and uses only

**The simulations performed for the alternative linear model in (2.27) yield very similar results to the

ones reported in Tables 1-2. For brevity, we omit these results here.
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data set 2 to compute those moments that include Xy, as the estimator from moment
condition (2.31) and (2.30) suggests. The second IV version is the estimator that solves
(2.32) where instead of using the sample analogue of E(XjW1) from data set 2, uses the
sample analogue of E(E (X5|X., W1) W1) where the inner expectation is computed with
data set 2 and the outer expectation is computed with data set 1. The results reported
in Table (2.3) use only data set 1 to compute the weighting matrix of the IV estimator.
Similar results where obtained when the weighting matrix used only observations from
data set 2.

The design for the simulation of the overidentified model with exclusion restriction is
similar except for the conditional mean model for the missing regressor Xo = 1 + 2W; +
X W1 + WiWa + 2Ws + & with Wy ~ N(0,4),e ~ N(0,0%). The corresponding results for
the overidentified case can be found in Table (2.4).

The estimator we propose (i.e. those estimates in the first and fourth panel of Tables
(2.3) and (2.4)) turns out to be more efficient than the two estimators we compare
it with. Obviously, the design of the experiment helps in finding these results, be-
cause the conditional mean model is non linear in the conditioning variables. This in-
duces a higher dispersion in the differences between X, and the estimated linear pro-
jection of Xy given X., Wi, Wy then in the differences between X, and the nonpara-
metric estimate. of the conditional mean E(X3|X., Wy, Ws). Table (2.5) compares the
variance decomposition of v in {2.26) in each of its terms for both the estimator where
the nonparametric conditional mean of Xy given (X, Wi, W5) and the estimator that
uses the best predictor of Xy given (X, Wi, W5).2 The mean over replications of these
variance and covariances are reported. The analysis of this table reveals that the dif-
ferences in efficiency between both estimators arise from the higher dispersion of the
(E(Xy| X, Wy, Wa) — E,"VQ(XQIXC, W1, Wa)) with respect to the dispersion of its nonpara-
metric counterpart (E(X2|X., Wi, Wa) — En, (X2| X, W1, Wa)). The IV estimator implied
by our framework turns out to be also more efficient than the two-sample IV estimator
proposed in the literature in both the just-identified and the over identified case.

In the third experiment we design the simulation of a probit model with a discrete and

scalar missing regressor X,. The data generating process of the regressors is X, ~ N(0,1)

We trim the observations when the value of X3 is imputed using its nonparametric estimation of
the conditional mean of X3|X.. For this reason, the comparison of this variance decomposition with the
estimator in which E(X2|X.) is linearly fitted is carried out using the same observations. As a consequence,

the first two terms of v are equal and they only differ in the third term.
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and Xy = 1{1 4+ X. 4+ ¢ > 0} where ¢ ~ N(0,1) and y = 1{65 + 69X, + 63X, + U > 0}
with (60, 69,63] = [1,3,-3] and U ~ N(0,1). The results of two estimators of this model
are reported in Table (2.6). First, we estimate the parameters of a probit model where
the dependent variable is generated using both X, and X5 as explained above but the
estimations only use regressor X, to estimate the model. These results are reported in
the top panel of Table (2.6). The bottom panel reports the results of the ML estimator
that combines two different data sets defined in (2.33). The high value of the coefficient of
the parameters associated to X9 induces a high omitted variable bias in the estimates of
the probit model including only the available information in X.. The use of an additional
data set allows us to estimate more efficiently the model by reducing this omitted variable
bias.3V

For scalar X5, we also provide identification results for a more general scalar and
continuous X,. Table (2.7) reports the simulation results of a binary choice model where
Xy is uniformly distributed X; ~ U(0,1) and X, = 10(1 — X2)M where M ~ N(0,1)
and y = {63 + 69X, + 69X, + U} with [65,69,69] = [0.5,1.5,—0.5] and U ~ N(0,1).
Again, these results suggest that even if the regressors are not jointly observed with the
binary endogenous variable, our estimator helps in reducing the omitted variable bias that

ignoring X, as a relevant variable of the model would induce.

2.7 Conclusions

In this paper, we have developed a framework that allows for identification and estimation
of structural models in which not all of the relevant variables are jointly observed. This
framework can be applied to those models that identify their parameters via zero moment
restrictions. We exploit the joint variation of the variables in an additional data set
together with a parametric restriction to identify the effects of the missing and non-missing
variables in the parametric structural relationship under certain conditions. We present
a general estimator for this class of models based on the nonparametric estimation of the

conditional distribution function of the regressors which can obtained from the auxiliary

#The optimal bandwidth choice for this set up in which the estimator is defined as the maximiser of a
least squares-type objective function where some nonparametric estimates are imbedded has been studied
by Hardle, Hall and Ichimura (1993). How to select the bandwith when the objective function is a likelihood
function involving some nonparametric estimation is an open question. We use a value of the bandwith for
the sample sizes reported for the probit results of 0.75. Various sensitivity analysis exercises were carried

out (having some contraints given the support of Z.) and the results did not change substantially.
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data set. This general setting encompasses a broad class of estimators such as linear and
non-linear least squares, MLE and GMM. For linear regression and linear GMM models
previous results are available in the literature. We compare the performance of our general
estimator with the existing ones and we point out that the main differences arise in the
way our estimator computes the conditional moments that need to be estimated from the
auxiliary data set. There are no existing results in this framework of incomplete data
which provides us with the semiparametric efficiency bound so that we cannot formally
discuss in this work efficiency issues between all the possible estimators defined from a
given set of moment conditions. This constitutes an interesting future application of this
framework. Preliminary evidence based on Monte Carlo experiments indicates that in
some familiar cases our estimator is more efficient than previous estimators.

The identification conditions are specific to each parametric model, therefore we provide
detailed conditions for each case we discuss. In general, the identification results can be
summarized as follows. For the linear model, the common regressors and the imputed
value of the missing regressor given the common regressors must satisfy the usual rank
condition. For the GMM, the moment condition must be separable in those variables that
are not jointly observed in the same data set so that identification does not rely on strong
conditional independence assumptions. This separability condition is automatically satis-
fied when the model is additively separable in the unobservables. For nonlinear regression
models and nonlinear GMM models, sufficient identification conditions are harder to ob-
tain because they are problem specific. Therefore, our main identification results for the
general parametric model are limited to the parametric and semiparametric binary choice
model.

For the binary choice model our results complement the work by Manski and Tamer
(2003) by allowing for a vector-valued missing discrete regressor for both parametric and
semiparametric models and in addition allowing for identification of the coefficients of those
missing regressors. These results are obtained through the added information available
from the auxiliary data. We present Monte Carlo results that illustrate how our data
sets combination method reduces substantially the omitted variable bias that arises in the
binary choice model when a relevant missing variable is excluded from estimation.

We also derive the asymptotic variance of this type of estimators for the general case

and provide sufficient conditions that must checked to be satisfied for each particular case.
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2.8 Tables
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Table 2.1: Monte Carlo Experiment for a linear model without exclusion restriction o2 = 1

N1=1000;N,=5000; No. replications=100
0% =1, mean of adj-R? = 0.7623

60 Mean  Qo2s (Qoso Qors MSE
0.5 0.5197 0.3318 0.5575 0.6871 0.0827
1.5 1.4939 1.3875 1.4783 1.6045 0.0323
2 1.9980  1.8804 1.9879 2.0097 0.0219
sum of MSFE 0.1369

E(v) 0.0167

Var(v) 13.0251

éorr(v, Xe) -0.0019

corr(v, En, (Xa| X)) -0.0017

First component of v

E(u) 0.0143

Var(u) 9.0270

corr(u, X.) -0.0064

corr(u, En, (X2| Xe)) -0.0037

Second compoheut of v

02 E(Xy — E(X2)Xc)) -0.0029

Var(X, — E(X3|X.)) 3.9787

corr(62(X2 — E(X2]Xc)), Xe) 0.0049

corr(02(X2 — E(X2|Xe)), En, (X2|Xc)) -0.0024

Third component of v

02 E((E(X2|Xe) = Eny (X2l Xe))) 0.0159

Var(E(XalXe) = Eny (X2l Xe)) 0.0056

corr((E(Xa|Xe) — Eny (X2 X)), Xe) 0.0192

corr((E(XalXe) — Eny(Xa|Xe)), Eny (X2]X0)) 0.1257

Covariances components of v

éov(u, (X9 — E(X2]Xe))) 0.0014

cov(u, (E(Xa|Xe) — Eny(Xa|Xc))) 0.0002

cov((Xz — E(X2|Xo)), (E(X2lXe) — Eny(X2)X,))) | -0.0009
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Table 2.2: Monte Carlo Experiment for a linear model without exclusion restriction o = 3

N1=1000;N2=5000; No. replications=100
0% = 3, mean of adj-R? = 0.5164

¢° Mean  Qo2s Qoso Qo7s MSE
0.5 0.5383  0.2777 0.5910 0.8029 0.1386
1.5 1.5123  1.3755 1.4984 1.6444 0.0530
2 1.9874  1.8657 1.9599 2.1223 0.3556
sum of MSFE 0.5475

E(v) 0.0172

Var(v) 21.0018

corr(v, X¢) 0.0002

corr(v, En, (Xa|Xe)) -0.020

First component of v

E(u) 0.0143

Var(u) 9.0271

corr(u, Xe) -0.0064

corr(u, En, (X2 X)) -0.0037

Second compoﬁent of v

0,E(Xy — E(X|X,)) -0.0050

Var(X; — E(X3|X.)) 11.9363

corr(ba(Xy — B(X2|Xe)), X) 0.0049

cori(02( X2 — E(X2|Xc)), En, (X2 X)) -0.0024

Third component of v

02 E((E(X2|Xe) — Eny(X2|Xe))) 0.0250

Var(E(Xa|X.) — En, (X2]X2)) 0.0152

corr((E(Xa2|X.) — En,(XalX0)), X.) 0.0103

corr((E(X2|Xe) — Eny(Xa|Xe)), Eny (X2 X.)) 0.0825

Covariances components of v

cov(u, (Xo — E(Xq|Xe))) 0.0013

cob(u, (E(Xa|Xc) — Eny(XalXe))) 0.0008

V(X2 — BE(X2|Xe)), (E(X2|Xe) — Eny(Xa|X.))) | -0.0016
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Table 2.3: Monte Carlo Experiment for a linear model with exclusion restriction. Just

identified case

N1=1000;N>=3000; No. replications=100

Two-Sample two stage (Nonparametric)

6° Mean Qo2s Qoso Qors MSE

0.5 0.7089 0.6019 0.7040 0.8511 0.0770
1.5 1.2384 0.9227 1.3382 1.5404 0.2545
2 2.1456 2.0450 2.1456 2.2134 0.0366

sum of MSE | 0.3680

Two-Sample two stage (Linear Prediction)

6° Mean Qo2s Qoso Qors MSE
0.5 0.7933 0.6689 0.7857 0.9040 0.119
1.5 0.9231 0.6318 0.8787 1.1869 0.4747
2 2.1861 2.0477 2.1946 2.3045 0.0558

sum of MSE | 0.6424

IV (using complete data set for moments)

6° Mean Qo2s Qoso Qors MSE

0.5 0.7388 0.6133 0.7311 0.8505 0.0836
1.5 0.8775 0.5573 0.8414 1.1523 0.5482
2 2.4009 2.2488 2.4114 2.5300 0.1864

sum of MSE | 0.8181

IV (conditional moments from data set 2)

6° Mean Qo2 (oso Qors  MSE

0.5 0.6181 0.4997 0.6021 0.7362 0.0411
1.5 1.2757 1.0417 1.2143 1.5575 0.1522
2 2.4876 2.3877 2.4950 2.5657 0.2564

sum of MSE | 0.4496
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Table 2.4: Monte Carlo Experiment for a linear model with exclusion restriction. Over

identified case

N1=1000; N9=3000; No. replications=100

Two-Sample two stage (Nonparametric)

6" Mean Qo2s Qoso Qors MSE

0.5 0.8527 0.7159 0.8419 0.9910 0.1698
1.5 1.3111 1.0541 1.3872 1.5607 0.1553
2 2.1012 2.0236 2.1074 2.1685 0.0198

sum of MSE | 0.3449

Two-Sample two stage (Linear Prediction)

6" Mean  Qo2s  Qoso Qors MSE

0.5 0.8264 0.7173 0.8081 0.9315 0.1321
1.5 0.9165 0.6419 0.8981 1.1725 0.4768
2 2.1847 2.0501 2.1971 2.3117 0.0545

sum of MSE | 0.6634

IV (using complete data set for moments)

0° Mean Qo2s Qoso Qors MSE

0.5 0.7502 0.6431 0.7401 0.8469 0.0865
1.5 0.8708 0.5833 0.8465 1.1367 0.5491
2 2.3985 2.2522 2.4134 2.5371 0.1831

sum of MSE | 0.8187

IV (conditional moments from data set 2)

6° Mean Qo25 Qoso Qors MSE

0.5 0.2623 0.1585 0.2526 0.3724 0.1062
1.5 0.9046 0.6391 0.9145 1.1965 0.4998
2 2.2565 2.1563 2.2465 2.5131 0.0781

sum of MSFE | 0.6841
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Table 2.5: Variance decomposition of error term for Linear Model with exclusion restric-

tions
N1=1000;N2=3000; No. replications=100
Just identified model | Over identified model

Var (u) 0.9875 1.0003
Var((Xz E(X»|Z)) 207.5141 293.5613
V(Lf((E(X3|Z) E]{,z(Xng)) 10.6006 95.7986
Var((E(Xng) - Eny(X2|Z)) 2.1836 1.0003

‘ov(u, (X — E(X32]2)) 0.0037 -0.0082
cov(u, (E(X3]Z) - E‘;;,Q (X2)Z)) -0.0080 -0.5478
cov(u, (E(X32|Z) — En,(X2|Z)) -0.0013 -0.5424
cov((Xo — E(X2|Z),(E(X2]Z) — E}“VQ(XQIZ)) 0.0286 0.0017
cov((Xo — E(X2)2), (E(X2|Z) — ENQ(XQIZ)) -0.0060 0.0018

In this table, Z denotes vector [Xc, W1, Wy
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Table 2.6: Monte Carlo Experiment for a probit model (22 dummy variable, Zc Normal)

N1=1000;N,=2000
No. replications=100

Zy omitted

6° Mean  Qoos  Qo2s  Qoso  Qors  Qoes  MSE
1 -0.8865 -0.9971 -0.9359 -0.8768 -0.8408 -0.7883 3.5632
3 1.6059 14674 1.5424 1.6020 1.6555 1.7282 1.9511
Likelihood combining Z5 | Mean Qo.05 Qo.25 Qo.50 Qo.75 Qo.95 MSFE
90

1 1.0092 0.4644 0.7997 1.0135 1.2105 1.5108 0.1081
3 3.0329 2.5410 2.8059 3.0255 3.2403 3.5864 0.1112
-3 -3.0474 -3.9902 -3.4259 -3.0584 -2.7467 -2.2948 0.3113

Table 2.7: Monte Carlo Experiment for a probit model (Z2 uniform, Zc¢ Normal)
N1=1000;N,=2000
No. replications=100
Z» omitted

6° Mean  Qoos  Qoa2s  Qoso  Qors  Ques  MSE
0.5 0.0080 -0.1081 -0.0466 0.0004 0.0638 0.1214 0.2473
1.5 1.4787 1.2498 1.3742 1.4926 1.5483 1.6966 0.0170
Likelihood combining Z; | Mean  Qoos  Qo2s  Qoso  Qors  Qoes  MSE
90

0.5 0.2758 0.2064 0.2458 0.2762 0.3024 0.3508 0.0520
1.5 1.4855 1.2568 1.2568 1.5100 1.5477 1.7035 0.0167
-0.5 -0.2664 -0.3117 -0.3117 -0.2713 -0.2461 -0.2142 0.0557

56



2.9 Appendix

Lemmas used in Part 1 of the Proof of Theorem (4)

Lemma 1 Let In; = 1{f(ze) > b} and I, = 1{f(z4) > b}. If (Nh'[(};bQ) /log N1 — oo,
|K(0)] < oo and there is no positive probability that f(zc) = b, then

Pr {at least one i such that In; — I #* 0} — 0 as Ny, N1 — ©
Proof. (see Ichimura (2003)) W

Lemma 2 Let Assumptions B.9, B.10. B.12, B.7, B.13 and B.6 be satisfied and consider

the bandwidth sequence that satisfies

(N1 + No)hYy, — 0 (2.46)
i
Nghjlv_;
—— %, 2.47
(—loghN2) ( )
NphYy, — o (2.48)

Then, VN1 + NaRn, N, = 0p(1)

Proof.

The reminder term in (2.40) is expressed as

N )
) ) OY(Giog; 00)  OY(Gigy; 0
Ry, N, = N ZL‘ [Giao — gin,)’ [ (q(;; o (80(; .
i=1

where [|Gio, — igo I, < llGioo — Gu00
to ¢ and the Lipschitz continuity conditions of its derivatives in assumption B.10, then

r,- From the Frechet differentiability of 4 with respect

Ny
1 . .
Ry, N, < A 5 LCa(214, 2e4) [Givg = Gino) [Gioy — io,)
=1

Thus, in this reminder term we have a nonparametric conditional mean function and in

the expressions below we use notation for both the numerator and the denominator of
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both estimators. Denote Gi9, = 7q;9,/ fi. Then,

Ryin, <
1 i Lig- [7i, — Tdio) — %3& fi — fi‘ + .
M= +op (Fqs9, — Tis) + 0p ( fi — fi
L} Fiay = o] -8 [ £+

tfi [ on 4 o] fi i ¢ x Cy(z14, zcz’) (2-49)

+0p (36, — Ti0e) +0p ( fi — fi

(2.50)

To show that /Ny + NoRn,n, = 0p(1) we follow the next steps. Lemma 3 shows that
the order of the bias of the nonparametric estimators is Ay, so that £ (750,) — TG0, =
O(hy,); E (f,) — fi = O(hY,). The differentiability conditions of Lemma 3 are stated
in assumptions B.9, B.12 and B.13. From expression (2.50) and Lemmas 3 - 5 below,
the reminder term converges in probability to zero if there exist positive sequences hp,,

{erny }, {efn, } and {Mp,} such that

vV N, +N2€1‘N95fN2 — 0 (251)
vV N1+ Nzé‘erh?\rz — 0;v/N1 + N2EfN2h§VQ — 0
VN1 + Noh%, — 0

as N1 — 0o, No — oo and such that these sequences satisfy the conditions of Lemmas 4
- 5 below. To see that these sequences exist, take e;y, = (—log th/Ngth)l/2 bjn, and
M;jn, = (Nahpn,/ (—log hNQ))l/2 by, for 0 < u <1 and for positive sequences b;n, that
diverge to infinity for j = {r, f}. Then, the sequences satisfy the conditions in lemmas 4
- 5 as long as condition (2.47) holds.

The conditions in (2.51) hold if the sequences bjy, diverge at a slower rate than
o((—log hn,)~Y?) and if (N7 + Np)h%, — 0 and Nah%, — co. W

Lemma 3 Let £ (T{’,IF"O(Z”’ Zciy Z9;00) K (%%)) exists. The s — th order derivatives
2 No
of f(Z.) (md/w(zli,zci,Zg;Ho)g(Zngc)dZQ with respect to Z. and the s — th order

derivatives of function ©(Zy, Z., Zo:8o) with respect to Zy are Lipschitz continuous. The
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kernel function satisfies Assumption B.6, then for hy, > 0 and hy, — 0 and Ny — oo
E ((/ SO(Z]'L'»Zci,ZQ§00)g(ZQIZci)dZ2> f(Za)) -
~ (] e 20019 2l ) £e) = O3,

Let these conditions be satisfied for (213, zci, Z2;00) = p(21i, 2ci, Z2; 00) and @(21i, 2ei, Z2;60) =
1.

Proof. Note that the expression for the estimator is

(/ 90(211',Zci,Z2;90)§(Z2lzci)dZ2> flza) =
. No
1 Zy — 2o Z2ei — 2
/W(zliyzm’»Z?;eO)——.,m ZK (A) K (ﬁ__ﬁt) dZ,
, A

r=1 hNQ th

After the change of variable t; = (Zy — z971)/hn, for | = 1,...,mo and a Taylor’s series

expansion of order s of ¢(21i, 2¢i, Z2;00) around zg,, then

(/.So(zli,zci,Z%OO)Q(ZQIZci)dZ2> f(za) =

N,
1 Zei — Rer
= S oz, 2, 220 00) K [ X %
.NQ}L’,[C;; — (p(zl’t)zCl)zQ U) ( hN,z > +O( Nz)

Taking now expectations from the above estimator with respect to variables Zy and

Z. and by the Law of Iterated Expectations,

E ((_/’w(zu,zm‘,Zz;eo)ﬁ(Zglzci) dZQ) f(%i)) _

Zei — Lo

1
/'—EZQ|ZC (80(211',2@,22;90)|ZC)K<

= 1(Z2)dz. + O(h,)
No

h N2

which by the s —th order continuously differentiability of g (Z2|Z.) with respect to Z. can

be shown that
E (( / @(211‘,2@,Z2;90)Q(Z2lzcz‘)d22> f(zca) = [ Pletis 20 2010009 (Zlza) 422 (2 +OUIR,)
]

Lemma 4 Under assumptions B.7 and B.6, then

Pf{ sup 1796 — E (7qi9)| > 5rN2} — 0 as N3 — o0

21 .zcﬂeﬂzl xXQz.xO
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if 6,~N2hN2]W,lV_21 — 00 and (loghn,)(1 + ]WNQSTNQ)/(NthfNQ) — 0, where My, denotes

a sequence for the support of the dependent variable p(z1, ¢, 22, 6)
Proof. See Ichimura (1993) Lemmas A.5 and A.8 in the Appendix B

Lemma 5 Under assumption B.6, then

Pr{ sup
ZCGQZC

if (log hn, ) (1 + ,MstQ)/(NghNgsj)fN?) — 0, where M denotes an interval containing 1

fi-E(F)

>€fN2}—>0(LSIVQ——>OO

Proof. See Ichimura (1993) Lemmas A.5 and A.8 in the Appendix W

Lemma 6 If Nk}l — 0o as Nz — oo, then E ((aNQ(Zl, zc,zc,zg))?) = o(Ny)

Proof.
{Pio,(z2r) — mpig, (2 )}/K(M)
an, (210, 2ei, Zer, 2or) = i Pio 22 Pido er vy X 9 (4i,)
N2 \<1i5 “ciy <cry <2r hr](;; f(zci) 8(]

Denote the conditional expectations of an,(Z1, Z, Z, Z2)2 on the realised values of Z.

in each data set as

p(ZlyzCiy Z2; 00)—

V(2ei, 2er) = / / | (21, 2ci, Z2;00)9(Z2| 2er )dZo H(2|zei)9(Zelzer) 212
q
Then,

- [ e 2r) K (S

E ((aNz(Zlv Zey L, Z2))2) 2 ) f(zci)f(zcr)dzcidzcr

h%gl f2(zci)
"1 (2, 2a + thy ) K2 (t)
= - Zei + thy, )dz.dt
/ e 7 () Jzea - tha, )z

= 0 <N2 (Ngh’](};)_l)

Consequently, we have that F ((aNQ(Zl, Zey Ze, Zz))z) = o(N2) if and only if Nohy® — oo
as N2 — 0.l
Lemmas used in Part 2 of the Proof of Theorem (4)
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Lemma 7 Under Assumption B. 10 and B. 11, if 8 2, 0y and the bandwidth sequence
2+ 125
Nah

satisfies hy, — 0 and 0 y — 00 as Ny — 00, then

N.
- loghN2
VeH(0,4(.,0)) — VeH(80,q(.,60))| = 0p(1)

Proof.
For 6 and §(.,6) belonging to a neighborhood of the true value of the parameters 6y

and the true functions q(., o),

[VoH(0,4(.,0)) — VoH(bo,q(.,00))| <
+|VoH(84,G(.,0)) — VoH (8o,q(.,00))| (2.53)

It can be shown by the Lipschitz continuity conditions in Assumption B.10 that

IVoH(8,4(.,0)) — VeH(60,4(.,0))| <

N -
1 04(214, 2ci, 9)
< - C1(z14, 2¢i) + C3(214, 26i) || ——————> x |8 — 6
S W ;[ (214 Zi) + C(21, 2ci) 50 FJ 16— 6ol

For consistent estimators 6 and § of 8y and g, respectively, we can consider 8 = 6 and § = §
in the above expression. Under the conditions on functions C’s on Assumption B 10 and
the differentiability of function p in assumption B. 11, the first term in (2.52) converges

to zero in probability
VoH(8,4(.,8)) — VoH (60,4(.,8))| = 0p(1)

By assumption B.(10) and after some algebra, we obtain an upper bound for the second
term in (2.52)

IVoH(00,q(.,8)) — VoH (0o, q0(.,00))| <

Ny
1 ~
S Z;CQ(Zliv zi) io — giooll,, +
1=

b L 5" [Culons ) o — il ) 222+
N £ 4\ 214, Zci) ||9i6 — Gif, re] 59
M 3
1 0vY(qigy; 00) ||0die  Oqie,
ML o o e, (2:54)
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Denote as in Lemma 2 the numerator and denominator of the conditional mean expectation
~ —~ o . . . OG ~ l o~ r

as iy = 7,9/ fi and for its first derivative as ng_a = q,fg) = rqié)/fi. To show that the upper

bound in (2.54) converges to zero in probability, we should require consistency of 6. We

also need the following results on uniform consistency

2

)

Pr {SF‘(}) 7Gi9 — Tqioll > erz} -0

Pr {sqp

)

ﬁ_fz',

> 6fN2} -0
Pr {sup Hv‘?]f;) - 'rqi(;)H > €T1N2} -0
00

The bias order of these nonparametric conditional expectations is O(h},) as shown in
Lemma 3 as long as the conditions there are satisfied for ¢(z1;, 2¢i, Zo; 6p) = lebzﬂz
The above uniform convergence results hold, using Lemmas A.5, A.6, A.8 and A.9 in

[chimura (1993), if there exist sequences {e,n,} and {&,,n,} such that

ernghny MU — 00 (log huvy ) (1 + Mynyerny) /(Nahinyely,) — 0

&r Ny M, — 005 (log Ay )(1 + My nyer v,)/ (N2hivye2 ) — 0

and where M., denotes a sequence of the support of the dependent variable p(z;, 2, 22, 8),

Min denotes a sequence containing 1, M, a2y, denotes a sequence of the support of the
NahoiT=2
;s Op(z1,2¢,22,0 . 2hy
dependent variable 55 . These sequences exist as long as —2——5(_10g vy T and

!
Nohl2

(- loghn,
bandwidths implies the latter.

j — 00 as in (2.47). Note that if [ > 2, the former condition on the sequence of
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Chapter 3

Identification of Preferences in the

Pure Characteristics Demand
Model with Microdata

3.1 Introduction

Differentiated product models have been widely applied to the adjustment of welfare in-
dices to qualiﬁy change, welfare analysis of the introduction of new goods, merger analysis
and many other policy analysis where the estimation of price elasticities and substitution
patterns play a central role.

In this paper we study the identification of preferences in pure hedonic discrete choice
models of differentiated products with consumer-level data (i.e. when choices, product
characteristics and individual attributes are jointly observed) where individuals derive
utility from a finite set of product characteristics and rules out product specific unobserved
preferences. These consumer preferences are used in the estimation of the price elasticities
and substitution elasticities across products with different attributes.

Some recent papers (Berry and Pakes (2003), Bajari and Benkard (2003, 2005)) have
pointed out that standard discrete choice econometric models used to estimate structural
models of demand have some undesirable properties when the number of products be-
comes large, implying counterintuitive implications in policy analysis related with the
introduction of new goods.

The main assumption that drives these properties is the existence of the i.i.d error
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component -independent across individuals and products - with support in the entire real
line that usually is interpreted as an unobserved individual taste for each specific product!.
We argue that this error term can also be interpreted as unobserved tastes over a set of
unobserved product characteristics whose dimension has to be equal to the number of
alternatives in the market.

An alternative model proposed in the literature to overcome the counterintuive implic-
ations of the standard models brought to the data is a model which does not include the
additive random error term with unbounded support. In this work, we study the identi-
fication conditions of the preference parameters in both parametric and semiparametric
models. The semiparametric model allows one to relax the distributional assumptions on
the taste cocfficients for each product characteristic. For example, the normality assump-
tion may not be a reasonable distribution for unobserved tastes and any other distribu-
tion may be more suitable depending on the characteristic in consideration (some tastes
over characteristics may have a truncated distribution, skewed distribution, nonnegative
distribution, etc). Estimation of the parameters in the utility function in the standard
multinomial discrete choice models is not computational feasible without making assump-
tions about the distribution of this additive i.i.d term, since nonparametric estimations
would suffer from the curse of dimensionality when the number of goods considered is very
large. Therefore, in comparison with previous semiparametric models based on standard
multinomial discrete choice models (see for example, Lee, L.F. (1995), Matzkin (1991)),
this model has the advantage of reducing the dimension of the problem from the product

space to the characteristics space?

. This issue becomes important when markets with a
high number of products are considered.

One of the counterintuitive implications of discrete choice models with iid random
terms with unbounded support is that each individual utility increases to infinity as the
number of products in the market becomes large and the predicted demand probabilities
are always positive regardless of the characteristics of the products introduced and for
every price vector. Although this last feature is attractive from the computational point

of view, it has implications when computing welfare measures by computing the area

! Previous work using this specification include, for example, Berry (1994), Berry, Levinshon and Pakes
(1995) and Nevo (2000) for aggregate data; Berry, Levinshon and Pakes (1998) and Goldberg (1995) for

microdata; and Petrin (1998) using a combination of both.
‘In the standard discrete choice models including an i.i.d random term, the choice probabilites are

computed from a multiple integral whose dimension relies in the number of alternatives.
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behind the demand curve, since demand is never zero even if the price tends to infinity.
In fact, this property has been found to lead to an overestimation of welfare measures
in empirical works by Petrin (2003) and Ackerberg and Rysman (2001). The unobserved
differentiability of the products implied by the error structure also makes that no perfect
substitutes of any product can be found even when the number of products becomes very
large.

Thus, the assumptions about the additive i.i.d error term in the standard discrete
choice econometric approaches seem to have been introduced in order to ease computation
of the probabilities, although the existence of this additive error term is not directly
implied by the pure characteristics framework where products are defined as a finite vector
of product characteristics.

We also control for the omitted variables problem that arise due to unobserved (by
the econometrician) product characteristics and which are likely to be correlated with
product price. Thus, prices are higher for those products which display those unobscrved
characteristics that are desirable for consumers. Using consumer-level data we could po-
tentially control for this endogeneity problem by estimating product-specific constants in
the individual choice probabilities. The model considered in this work accounts only for
a unidimensional unobserved product attribute. In some sense, this is a more restrictive
model than the standard approach with an i.i.d term: the model here allows only one un-
observed component but in the standard model infinite unobserved product factors have
to be consider if the number of alternatives becomes infinitely large. We argue that a more
general model with multiple unobserved product characteristics whose dimension is not
linked to the number of alternatives would be a more desirable model. This constitutes
an interesting topic for future research.

After discussing and justifying the model we use in this paper in Section (3.2), we derive
the choice probabilities implied by the pure characteristics model in Section (3.3). Section
(3.4) gives sufficient conditions for the identification of the preference parameters under
both cases where the distribution of the unobserved individual taste drifters is assumed

to be known or unknown.

3.2 Demand Model: Notation and Assumptions

Modelling demand using a discrete choice model has been the practice of many of the 10

empirical works on demand of differentiated products. Products differentiate from each
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other in their inherent characteristics or attributes. This discrete choice setting assumes
that individuals are only able to choose one unit of their chosen product as opposed to the
continuous demand model where individuals choose the amount of the good they want to
consuine.

This discrete choice framework differs also from the standard hedonic models® where
consumers decide the amount of each characteristic to be present in the ideal product
maximizing their utility (e.g. consumers can choose the different components or charac-
teristics when purchasing a PC). In the discrete choice case, however, individuals take as
given the possible product combination available in the market and choose that product
that maximizes their utility. The discrete choice framework complicates the analysis but
it is more realistic for those industries in which consumers cannot construct their ideal
product or the available products are placed discretely in the characteristics space.

We follow a discrete approach in this paper and consider the choice of one product
among a choice set . It is assumed that the rest of the goods consumed by each individual
or household constitute a composite good denoted by ¢. Consumers choose that product
j € & and that level of consumption of the composite good ¢ that yields the highest level of
utility subject to their budget constraint. The utility attained by each individual depends
on the level of ¢ attained and on the product chosen by the individual. As in the hedonic
literature, the individual utility derived from the consumption of a differentiated product is
assumed to be defined over the product characteristics space. This allows one to reduce the
number of parameters to be estimated in a demand system, since the substitution patterns
across products is reduced to the characteristics dimension regardless of the number of
products available.?

Moreover, we also allow for some of the product characteristics to be unobserved by
the econometrician, but not by the consumers. Obviously, utility is also a function of some
individual attributes that make the utility derived from the consumption of one product

be different between individuals with different attributes (such as income, family size,

*See Rosen (1974), Brown and Rosen (1982), Epple (1987) Ekeland, Heckman and Nesheim (2004),

Heckman, Matzkin and Nesheim (2005), for instance.
"The traditional consumer analysis prior to the work of Lancaster (1966) and Gorman (1980) worked

with individual preferences or orderings defined over the product space. Thier work kead to a complete
replacement of this old theory in this respect by assuming that consumer’s preferences over products are
a function of characteristics or properties intrinsec in marketed goods which allows to reduce significantly

the number of elasticities to be computed in a demand system.

66



etc.). The heterogeneity in tastes over product characteristics induced by these individual
characteristics makes individuals to choose different alternatives.

In what follows we assume we have access to consumer-level data or micro data. That it
is, the structure of the data is such that information about individual attributes is matched
with their choices and the characteristics of these choices. The random utility model
underlying the demand choice that it is described in the next section could be defined
exactly defined if aggregate data is available. In the aggregate case though, individual
attributes need to be integrated out from the individual probabilities in order to obtain
the market share for each alternative, since the observations consist of sales and product

characteristics in each market.

3.2.1 Notation

We consider data from choices of N individuals in each market/period (indexed by i €
I = {1,..,N}) on a choice set containing J different alternatives (indexed by j € & =
{1,...,J}). The choice random variable by d; (a J—dimensional vector where d;; = {0, 1}
for all j € . The binary variable d;; equals 1 if individual 7 chooses product j and d;j; = 0
otherwise and where choices are mutually exclusive so that Zle di; =1).

The vector of characteristics for product j denoted by X;. This vector is divided in
two componeits X; = {z;,¢;} where z; is the vector of observed product characteristics
with dimension (K x 1) and §; is the vector of unobserved product characteristics with
dimension (K’ x 1). This unobserved product specific characteristic represents product
attributes that are difficult to measure, such as prestige, reliability,quality of any omitted
product characteristics. °

We assume, as others do, that the observed product characteristics z (excluding price)
are exogenous to the model. The matrix of characteristics for all the products is denoted
by matrix X = (X, ..., X )" of dimension (J x k) where Kk = K + K’.

Let Z be random vector of dimension M that represents observed consumer attributes.
Its sample space is denoted by 2z € RM. An individual drawn at random from the
population will have some attribute vector z € 2z. Let € be the vector of dimension E
representing unobserved consumer attributes. Its sample space is denoted by . € RE.

An individual drawn at random from the population will have a realization of unobserved

“This component is assumed to be prefectly observed by individuals so that there is no room for any

learning preocess about the value of this variable.
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random variable e € Qg. The vector of unknown parameters is denoted by ¢ and © denotes
the parameter space.

Economic agents make their choices on which j to choose and the level of composite
consumption ¢ by maximizing their utility derive form the consumption of both subject
to their budget constraint

max U;; = u(c, X;, 2,8
(jGJ,C) 1] ] Jr~0 Z)

st.c+p; <

where y; is the level of income of individual 7 and p; is the price of product j.

If u. > 0, for a selected product j the utility of individual ¢ satisfies that
Uiy = u(y: — pj, X5, %, €i) (3.1)

Utility in (3.1) represents the indirect utility function conditional on the discrete choice
J, which is the maximum level of utility that an individual with income y; when he chooses
alternative j. In order to analyze the determinants of the product choice and identify the
preference parameters associated to product characteristics is convenient to focus only on
the alternative choice. Considering indirect utility functions allows one to abstract from
the choice of the other goods affecting individual utilities.

It should be noted that the indirect utility function in (3.1) is giving some information
about the way income and price interact in the utility function, giving flexibility to the
way in which the rest of individual attributes and product characteristics interact. For
simplicity by now, we do not to distinguish between income and any other individual
attributes that enter the utility function. In the same way, we treat product price as
another product characteristic. We assume for the moment that the interaction between
income and product price does not have any particular feature with respect to any other
interaction between product characteristics and individual attributes,

The model analyzed in this work is

Uij = 9,'1']' +fj (3.2)
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where

oiz([el HQ]X{ZD (3.3)

M 1 E 2 .
Zm:l Om12im + 23:1 Oe1€ie

M 1 E 2 ,
Zm:l ngzim + Ze:l 98K51€

and the matrices of parameters ' and 62 are of dimension (K x M) and (K x E), respect-
ively. The parameter H}H,C is the preference over product characteristic k£ driven by the
observed individual product attribute m and parameter Hgk is the preference over product
characteristic & driven by the unobserved individual attribute e. Define the matrix of para-
meters of dimension (K x (M + E)) as § = [ 6! 92 ] Furthermore, we assume that the
unobserved individual attributes are statistically independent of the observed individual
attributes. However, the unobserved product characteristics (§;) are not independent of
the observed product characteristics (x;). For example, price is unlikely to be independent
of the unobserved product characteristics.

The most important difference of this model with the standard discrete choice models is
the fact that here the utility function does not include an additive i.i.d (across individuals
and alternatives) random error term with full support on the real line. ¥ The next section
justifies the assumption of restricting the randomness of the utility function to the random
coefficient ; by explaining some counterintuitive implications of the model that includes
the i.i.d random term with full support when the number of alternatives in the market is
very high.

It should be noted that no particular distributional assumption has been imposed on
the random error €. In fact, as it will be discussed later in this work, this model allows us to
identify the preference parameters without imposing any restriction on the distributional
form of the random coefficients.

Some comments on the utility specification are in order. If vector of individual attrib-
utes 2 includes a constant term across individuals, then the utility function U;; includes a
mean utility term for product j (i.e. amount of utility that is common to all the individuals

consuming product j).” Observed and unobserved heterogeneity in tastes are introduced

®This additive i.i.d term is usually assumed to be distributed as Extreme Value - Type I so that the

closed form probabilities for the conditional logit model are obtained (McFadden (1974))
"It is assumed that random vector ¢; does not include any factor invariant accross individuals since the
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in an additive way. If 85 # 0, individuals with the same observed attributes may still differ
in their preferences over product characteristics.

Also, the specification in (3.2) assumes that individual tastes on product characteristic
are linear in observed and unobserved individual attributes. The non-linearity of tastes in
observed attributes could be easily relaxed using our approach while the nonlinearity in
unobserved attributes would imply more difficulties in the estimation here suggested. ®

We also assume throughout this work that the unobserved product characteristics is
unidimensional (i.e. K’ = 1). This is a restrictive assumption since it implies that all
omitted product characteristics can be summarized in a unique factor. There have been
some attempts to extend the model to the case of multiple unobserved characteristics in the
marketing literature (Elrod (1988), Chintagunta (1994) and Elrod and Keane (1995) using
factor analysis). The mixed logit model used in the identification in Ben-Akiva, Bolduc
and Walker (2003) and Walker (2002) allows for a multidimensional unobserved product-
specific variables with heterogeneous tastes across individuals. In the latter papers, the
identification however is based in a more restricted model with heteroskedasticity and
where no random coefficients on observed product characteristics are considered. However,
any of these papers considers the possibility that the omitted product characteristic may
be correlated with the observed product characteristics.

When the endogeneity issue is considered, identification becomes harder and a unidi-
mensional unobserved product characteristic is usually assumed in the literature. Under
the assumption that &; is correlated with z; and K’ = 1, Berry and Pakes (2003), BLP
(1995) and Bajari and Benkard (2005)) study the identification of the parameters in the
parametric case when only aggregate data is available.

It has been argued that these identification results under endogeneity of the product
characteristics extend to the case where unobserved product characteristic is multivariate
and the second term in (3.2) reduces to an index of unobserved factors (Bajari and Benkard
(2005)). However, we think that the treatment that the unobserved product characteristic
has received in the literature is imposing restrictions on the way random coefficients enter
in the utility function and it is actually not straight forward to extend it to the case of
multidimensional unobserved product characteristic as it has been argued.

Assuming a unidimensional unobserved factor ¢ allows one to ignore the possibility of

mean utility parameter imbedded in 2 would not be separately identified from the mean utility parameter
in 61,
"See Brown and Walker (1989) for non-linear assumption in function u.
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individual specific taste on unobserved product characteristics. Suppose that we want to

consider unobserved tastes on ¢ in utility (3.2) so that
U; = B, X; + aifj (3.4)

As long as the unobserved product characteristic is a vertical characteristic (a; > 0, V1,
every individual positively values characteristic £), the individual utility can be rescaled by
o; without changing the ordering over the alternatives. Therefore, in the unidimensional
case, the assumption in (3.2) of no heterogeneity in tastes on £ is innocuous. However,
when the dimension of the unobserved product characteristics is greater than one (K’ > 1)
this procedure is no longer valid and the distribution of the unobservables factors a; need
also to be taken into account when computing the choice probabilities.

However, rescaling the utility by o; has some costs on the assumptions we need to
impose on the random coefficient 8;in (3.2) and on the random coefficient before rescaling
(denoted by ;) if they are assumed to be linear in both z and e.

The utility function in (3.4) is equivalent to (3.2) if

[32.:([/311» 5%]*{2])

and either (i) 8;; and By; are proportional to o; (i.e. %lf = 6; %211 = 6,); or (ii) B1; = Bq;
Ba; = Bo; a = a. In other words, in order for utility expression (3.2) to be consistent with
heterogeneous tastes on £, some linearity restrictions and proportionality assumptions
need to be imposed on the random coefficient over observed product characteristic j3;.

In case (i), we should reinterpret the taste coefficients on observable product charac-
teristics relatively to individual tastes on unobserved product characteristics &;.

The additivity of £; without individual random coefficient is needed for the identifica-
tion results presented below.

In order to allow for a more general model, another factor («;) should be included in

the model apart from the unobserved taste drifter on observed product characteristics ¢;.

3.2.2 Difference in assumptions on unobservables with the standard dis-

crete choice models: Justification of our specification

The main difference of the model outlined above with the standard discrete choice models
normally used in empirical applications is that the latter includes an additive random er-

ror in the utility function (3.2) specified above, say €;; with different realizations for each
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individual and alternative, with full support in the entire real line which are i.i.d across
individuals ¢ and products j. The models including €;; have been denoted in the previ-
ous literature as taste-for-products models versus taste-for-characteristics models which
eliminate this additive random term. The interpretation and implications of this additive
random error have received some attention in the recent literature. The basic references
are Berry and Pakes (2002) and Bajari and Benkard (2003, 2005).

It has been argued that the assumptions imposed on the additive random term ¢;;
in the empirical applications are only justifiable in terms of reducing the complexity of
solving the multidimensional integrals involved in the computation of the choice probab-
ilities, since in some cases these assumptions give a closed form for the high-dimensional
integrals. Although some restrictions on the distribution function of the unobservables are
unavoidable in order to identify some of the structures of the model, some of the usual
parametric assumptions on the unobservable €;; have some counterintuitive implications
in welfare computations and effects of the introduction of new goods when the number
of products in the market becomes large (Bajari and Benkard (2003), Berry and Pakes
(2003), Caplin and Nabeluff (1991), Andersen, de Palma and Thisse (1992), Petrin (1998)).
Bajari and Benkard (2003) list the properties of the models incorporating these restrictive
assumptions and specify which particular assumptions yield each of the implications. We
comment them in the remaining of this section.

One of the main assumptions driving these implications is that the additive error € is
a continuous random variable with unbounded support on the entire real line.

The first implication that should be pointed about this assumption is that the choice
probabilities for each alternative are strictly positive regardless of the value of the product
characteristics. This feature is particularly undesirable in a structural model of demand
since implies that the choice probabilities are strictly positive for every vector of prices.
Thus, even if there are two products with the same (observed and unobserved) product
characteristics but with very different prices, there is some small positive probability that
random error € takes those values that are able to overcompensate for the price disutil-
ity so that higher utility is obtained from the consumption of the high priced product.
The random term introduces some unobserved differentiation of each product with re-
spect to the other marketed products. The fact that the choice probabilities are strictly
positive for any value of the product characteristics, individual attributes and/or value

of the parameters in the utility function is however highly convenient for computational
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purposes’.
If the random variable € has full support on the real line, then the probability that ¢;

is greater (in absolute value) that any M < oo, conditioned on the errors of the rest of

products smaller than €;, [e_;| < M is strictly positive (which is to say, Pr (|e;| < M||e-;| < M)

1 —6pr for 0 < 8p < 1). When the number of alternatives becomes very large, there is a
positive probability that the maximum of the values of € across alternatives j =0, ..., J is
greater than any finite number. Formally,
Pr(oréljaéchjl < M)=Pr(lej] < M, lej-1] < M, ..., |e| < M) (3.5)
=Pr(les] < Mlle—y| < M)-Pr(lejo1] S Mlle_y_y| < M) - ...
... Pr(les) < M|le] < M) -Pr(le;] < M) <

§(1—5N1)J—+OaSJ—-’008,SO<5M<1

Note that the assumption of i.i.d errors has not been imposed here. Therefore, even
if one uses more advanced models that avoid the IIA assumption- such as the Nested
Logit which relaxes the independence assumptions of alternatives within the same nest,
the property in expression (3.5) holds when the number of alternatives is large (even if
they are grouped in nests) as long as the unboundedness of the conditional distribution
€jle—; is satisfied.

The property of € in (3.5) makes that there exists a positive probability that the
level of utility corresponding to the most preferred alternative goes to infinity. This has
obvious implications for welfare evaluations of changes in the choice set since the consumers
utility attached to those alternatives that have been added or removed from the choice set
might be non-finite. Therefore, as the number of products increases in the market, the
compensating variation for each individual of all products in the market tends to infinity.
This is believed to be overestimating the welfare benefits associated to the variety of
available products because of the high sensitivity of the utility to high realizations of ;.

If in addition to the full support assumption, the distribution function of € has thick
tails (formally, the hazard rate of € does not tend to infinity when € tends to the upper

limit of its support), then the expected difference between the highest and the second

?As it will become clear in the explanation of the choice probabilities in the context of a pure character-
istics demand model, the fact that for certain values of the parameter space the choice probabilites become
zero increases the complexity of the computation since the likelihood function becomes discontinuous in

the parameters.
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highest tends to infinity as J — o00. Thus, consumers suffer from infinity welfare losses
when their first choice is eliminated from the choice set, meaning that products do not
become perfectly substitutes even if their number increases to infinity. When the number
of alternatives tends to infinity, one would expect that products are allocated very close
to each other in the characteristics space so that they become perfect substitutes. The
reason is that the random error € induces some unobserved differentiation of each product
with respect to the rest and because of the full support assumption, the value attached to
this specific differentiation of product j is likely to be above any finite number.

All these implications do not seem reasonable if the discrete choice framework wants
to be used as a structural model of demand. However, some features of the structural
model of demand would be more affected by this assumptions than others. Thus, large
realizations of € affect more welfare evaluations of changes in the number of products
than the estimation of the unknown parameters in the utility function (Berry and Pakes
(2003)).

These properties suggest that the model used in the empirical applications to estimate
structural demand parameters in a demand framework impose certain assumptions on the
error structure of the utility which have some undesirable properties. A model like the one
described above in (3.2) and (3.3) does not imply any of these properties since no additive
error term has been assumed. Instead of removing this random error, the model analysed
in Ackerberg and Rysman (2001) where the variance of the error terms € in a taste-for-
products model depend on the number of available products is another alternative to the

tastes-for-products model.

3.2.3 Interpretation of the i.i.d term ¢;; : Unobserved tastes over char-

acteristics vs product specific unobserved tastes

It is important to clarify the different behavioral interpretations of the i.i.d error term
€;; in the standard multinomial discrete choice model and the error term a;§; in the
taste-for-characteristics model.

The term «;¢; is the unobserved taste for individual i over unobserved product char-
acteristic £;. The unobserved characteristic £ has different values across products but it
is an inherent attribute of every marketed product j, although unobserved to the econo-
metrician.

The standard interpretation given to i.i.d €;; is a product-specific unobserved taste. In
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other words, each product offers a specific unobserved attribute that it is not possible to
be obtained through the consumption of a different product and each individual has an
unobserved taste over that attribute.

Take for example the design of one product as an unobserved characteristic by the
econometrician. Suppose there exist a product such that its design is so specific that this
attribute might be considered as a something very genuine of the product, over which
each individual has different tastes. Thus, this standard interpretation of €;; means that
each product has its own unobserved product characteristic that makes it specifically (and
unobservably) different from the rest of the products.

The nature of the unobserved characteristics may be such that, for example, different
products share the same type of design and with respect to this characteristic they are
almost indistinguishable. In this case, the unobserved tastes over unobserved product char-
acteristics would be preferably expressed as «;§;. Which type of unobserved characteristic
we have depends on the nature of the products we study.

One way of obtaining i.i.d. random terms €;; across ¢ and j is by interacting product
dummies with a J—dimensional vector of independent tastes for individual 3!, In this
way, it is easy to understand how the random errors are interpreted as product specific un-
observed heterogeneity. However, this way of constructing ¢;; is only a sufficient condition
in order for the errors to be i.i.d across ¢ and j.

In order to find necessary conditions that need to be satisfied when random errors ¢;;
are i.i.d across individuals and products, it is convenient to express the error component €;;
as a linear combination of unobserved tastes for individual ¢ (v;) over a Jth—dimensional
vector u(.,J) = [u(1,7)...u(J, 7)] of unobserved product characteristics for product j as

follows p
€ij = Z,u(f', J)ir (3.6)
r=1

where u(r, j) corresponds to the r — th unobservable characteristic of product j and v;, is
the i — th individual preference for unobserved product attribute r.
Let B = [e €2...65); Vi = [vi1 vio..vig]'s &5 = [w(1,7) ... u(J,5)]. Let denote the

'“That it is, random term e;; can be expressed as

€ij = (; *,

where (; is a J—dimensional vector with zeros but a one in the jth element, and 7, is a J—dimensional

taste vector.
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matrix of unobserved product characteristics of dimension J x J as £ = [X; ... £,]" .

Then, for individual i the matricial expression for the J — th dimensional vector E; is
Ei =Y x V,

If the errors v;. are independent across r and matrix ¥ is diagonal, then obviously
€ is also i.i.d across ¢ and j (See Appendix A.1) and it can be interpreted as above as
a specific unobserved taste of individual 4 for product j. A diagonal ¥ implies that each
unobserved characteristic is specific of only one product. Thus, because u(j,5) # 0 and
u(r,7) = 0 Vr # j, the jth—unobserved product characteristic is specific of product j and
it does not play any role in describing the preferences over any other product different
from j.

However, the independence of V; and diagonality of ¥ are not necessary conditions
to obtain i.i.d. errors €;; (See Appendix A.2). Take the normal case as an example, the
random errors V; do not need to be independent and they may have a covariance structure
such that there exist some linear combinations (coefficients in £) which make the variance
and covariance structure of the resulting errors equal to zero. The interpretation of ¢;; is
different with this structure. The random error €;; can be interpreted then as an index
of unobserved tastes (not necessarily independent) over a vector of unobserved product
characteristics whose dimension coincides with the number of alternatives as it is clear
from expression (3.6). The vector E; would not be independent across j if the dimension
of the vector of unobserved product characteristics is smaller than J (i.e. if the dimension
of ¥is J x H, where H < J).

This last interpretation of random terms ¢;; has the advantage of making easier the
comparison between a taste-for-products model (including €;;) and a taste-for-characteristics
model (with random coefficients for instance and unobserved product characteristics).
While the latter can incorporate any number of unobserved product characteristics (al-
though we study identification only for the unidimensional case), the i.i.d error term of
the taste-for-products model can be considered also as an index of unobserved tastes on
unobserved product characteristics but the number of product factors considered has to
be equal to the number of alternatives. Therefore, while the dimension of £ in the taste-
for-characteristics model may remain constant as the number of products J increases, the
dimension of matrix ¥ in (3.6) increases when the number of products increases in the
market.

The taste-for-product model and the taste-for-characteristic model with unidimen-
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sional §; are two extreme ways of describing preferences. Given that the dimension of the
unobserved product characteristic has been restricted to the unidimensional case, it may
be difficult to capture all the unobserved heterogeneity in tastes for unobserved products
with only one attribute. A more realistic model and preferred to both models would be
an extension of the taste-for-characteristics model which allows for a higher dimensional
vector of unobserved product characteristics.

Even in this multidimensional factor framework, it would be interesting to develop
tests that allow us to determine which model explains better the observed data. One
would like to assess whether a model with specific taste over products has some additional
explanatory power with respect to a model where there exists unobserved heterogeneity
in tastes over a vector of unobserved product characteristics captured by £;.

Which of the two models is considered as a more general model depends on which
interpretation we take. If we interpret the error term as unobserved individual tastes
on product dummies, then the taste-for-products can be regarded as a particular case of
the taste-for-characteristics model where product dummmies are considered as product
characteristics. If we interpret €;; as unobserved individual taste over a J—dimensional
vector of unobserved product characteristics, then the taste-for-products characteristics
can be considered as more general because it allows for a higher dimensional vector of
unobserved components (although restrictive because the dimension of this vector needs

to be the same as the number of alternatives).

3.2.4 Advantage of the approach in the Semiparametric Approach: Di-

mensionality Reduction

The main advantage of the model in (3.2) and (3.3) is that reduces the dimensionality
of the problem and there is no need to introduce a different factor when the number of
products in the market increases. Thus, if we believe that specific tastes over products does
not explain more of the decision process when unobserved tastes for product characteristics
have been included in the model, the model in (3.2) and (3.3) allows one to reduce the
dimension of the problem and consequently relax some of the parametric assumptions on
the distribution of the taste coefficients that have been usually imposed in the previous
related literature.

In a taste for product model, the choice probabilities for product j depend on the

unobserved taste components for the rest of the products in the choice set J (i.e. €; for
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r # 7). In order to ease the computation of such probabilities, standard discrete choice
models have imposed independence €;; across products and across individuals and have also
assumed that each error term is distributed as Extreme Value- Type I, since in this case
a reduced form of the choice probabilities can be obtained. Even with a small deviation
from the Extreme Value distribution, choice probabilities need to rely on simulations and
distributional assumptions that may or may not be appropriate to describe the tastes in
our population.

There have been some previous works analyzing the semiparametric identification of
parameters in a multinomial discrete choice model by relaxing the distributional assump-
tion of the errors. Lee (1995), for example, introduces a multinomial version of Klein
and Spady’s semiparametric estimator. His model does not allow for random coefficients,
he assumes an additive i.i.d random term and his estimator depends on J — 1 random
variables.!' Although under certain conditions on the taste for products model, it may be
possible to semiparametrically identify the preference parameters, its computation may
be cumbersome due to the curse of dimensionality that would involve the computation
of choice probabilities depending at least on J — 1 random variables when the number of
products in the market J is relatively high.

If a random error term iid with unbounded support ¢;; is added to the model in (3.2)

and (3.3) the. probability of choosing product j can be expressed as
PY =Pr (8i(z; — zr) + (§; — &) 2 & — €5 for all 7 # j| z)

Under the i.i.d assumption of random errors ¢;;,

PE = [ TT Pue (s = ) + 6, = €)) | dFinaltle)
T
where v, = €;; — €;; is equally distributed for all r # j.
This probability depends on (J — 1) indices. These indices are the points at which we

evaluate each of the (J —1) distribution functions in the expression above. The existence of

" TFor the binary model, there exist other works studying the identification and estimation of the para-
meters without distributional assumptions imposed on the stochastic term (Cosslett (1983), Ichimura and
Thompson (1998), Klein and Spady (1993), Manski(1975) and Matzkin (1992)). Matzkin (1992) and Kemp
(2000) relax the restrictions on the structure of the systematic function of the exogenous observables in
utility and Matzkin (1991) studies this issue in the multinomial case. In this work we do not deal with
semiparametric estimation of the utility function. Instead we impose the linearity assumption for the

utility function but we relax the assumption on the distribution of the unobserved factors.
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a random term that is product specific forces one to rely on the product space dimension,
without being able to reduce that dimensionality.

One plausible alternative that one would think is that assuming a logistic distribution
for the product specific unobserved taste would allow us to reduce in some sense the number
of indices of which the choice probability depends on. However, even in the case where
F,, |z is distributed as a Extreme Value-Type I and the distribution of 6 is unknown, it is
not possible to reduce the number of indices on which this probability depends. Under this
parametric distributional assumption, the probabilty of choosing product j is expressed

as

Pilj’ _ / {Z exp(fiz; + Ej) dF(0]a)

J
j=0 exp(iz; + &)
The fact that our model does not include this alternative-specific additive random term

allow us to find a semiparametric estimator whose dimension depends on the number of
characteristics K used to define the products or equivalently on the dimension of the un-
observable variables explaining the tastes over product characteristics. Thus, for those
industries in which the number of marketed products is high and few observed charac-
teristics can be used to describe them, the estimator we suggest is more tractable that
the ones previously proposed in the literature. In this version though, we only study a

simplified version of this more general with a unidimensional unobserved factor.

3.3 Choice Probabilities

The choice probabilities in the likelihood function are obtained from a model of utility-
maximizing behavior of the decision-makers. Consider the random utility function for the
taste-for-characteristics model in (3.2) and (3.3). In order to simplify the computation
of the choice probabilities we assume that there exist only a unidimensional vector of
unobserved tastes over product characteristics ¢ (ie. E = 1). Let F, : Q. C R —
[0,1] denote the distribution function of the unobserved individual attributes. The choice

variable for each individual ¢ and product j is
dij =1 {(Glzi)’ z; + (O2;) T + & = (012;) T + (026;) p + €, for all r # j} (3.7)

The observed choice for individual 4 with attributes z; can be viewed as drawings from a
multinomial distribution with selection probabilities Pr (d; = 1|X, 2;; 6, F;) for each j € &

which are expressed as follows
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Pr (d] - 1|X, 21;0, Fg) =

Pr (lei)/ z; + (9261’)/ z; + £j > . (3 8)
(012;) xp + (028;) x + &,., for all » # j|X, 2;;6, F. '
(026;) [z, — zj|, for all r # j|X, 20, F¢

The unidimensional assumption on ¢ is a strong restriction since it assumes that the
random variable determining the random preference for product characteristics is the
same across characteristics. The same realization of variable € explains unobserved tastes
across K product characteristics. Conditioning on observable attributes, this univariate
random variable ¢ is the only element that generates unobserved heterogeneity in tastes and
choices. Nonetheless, the particular utility specification we consider relaxes somehow this
dimensionality restriction by assuming different coefficients for each product characteristic
k. Different values of the coefficients in 62 allows one to obtain different variances for the
random coefficients across product characteristics.

When ¢ is assumed to be unidimensional, the conditional choice probabilities for

product j are
Pr(d; = 11X, 2:; 6, F) =

Pr (612:)' [z — =] + [€; — &) 2
05 [z, — zj| s, for all r # j| X, 2;; 6, F.

The exact expression of this probability choice depends on the sign of the inner product
85(z, — ;). Conditioned on a particular value of 65, products can be ordered with respect
to this inner product. Products with respect to this ordering are indexed by (j)? for
J € S. This notation reflects the fact that this ordering depends on the value of parameter
02

09 1yr <. <OGT (136, < O3 (jy0y < 05T (5 )00 < o < 05T y0 (3.10)

When computing the choice probabilities one should take into account the fact that
there are products above and below product j with respect to this ordering, since when
isolating e the sign of the inner product is of relevance now.

If product j is an intermediate good with respect to ordering 6 i.e. j # (1)%2 and

j # (J)GQ’
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o ( gy [(0120) [ — ] + [ — &,]] > &, for all (s)% >

0’2(xsl—zj) [(0121-)' [zj —zs] +[§; — &,]] < e, for all (s)2 < j

- ( max )6y « [m‘i—:;;) [(9121)’ [1‘]- — 5] + [é] - és]]] <ei ) (3.11)

< Mingge, [E’TI%?T}“) [(612) [aj — ] + €5 — és]]]

If product j is the first product with respect to the ordering 6y, i.e. j = (1)%,

Pr (m [(glzi)l [mj —zs] + [‘Sg - Es]] 2 €, forall s # .7>

. 1 /
= Pr (sf(lg}h [m [(0120) [x; — o] + [€; — fs]]] 2> 5,') (3.12)

If product j is the last product with respect to the ordering 63, i.e. j = (J)%,

Pr <m [(012)) [z — z5] + [§; — &) <&, forall s # j)

_ Pr( ma [; [(6r20) [z — 5] + [€; — &.]

s<(J)02 | B2' (zs — z;)

< az) (3.13)

The notation to be used in the choice probabilities is introduced below. The two
products that maximize and minimize the lower and upper bound for ¢, respectively, in

the choice probabilities for product j in (3.11) are denoted by

1
(0, X;,X_j0, %) = arg max |————— [(012) [x; — zs] + [€. —
Rj(6, X, X0y, ) arg max [9,2 ) [(012:)' [zj — 2] + [§; — &)

ri(0, X5, Xyj0,,2) = arg (SI)TgiI;j [m [(612:)" [z — 3] + [€; — Es”]

where

X_jo, = {(m(s)ez,f(s)ez> for (5)?2 < j}

X+j,92 = {(m(s)o2,£(3)92) fOI' (8)02 > ]}
This notation indicates that the product characteristics that affect the probability of
choosing product j are the characteristics corresponding to the products placed in the

boundary of a specific order with respect to product j (i.e. products R and r). It should
be also noted that the product denoted by r (R) depends on the value of the parameters
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6, on (unobserved and observed) characteristics of product j, (unobserved and observed)
characteristics of products below (above) product j with respect to the ordering in (3.10)
and also on the individual attributes. For simplicity of notation, we denote these two
products only as a function of the value of the parameters (i.e. R;;(0) and r;(8)).

It is important to notice that the two sets of parameters affect in a different the determ-
ination of products R;;(€) and r;;(6). Thus, only the part of the parameters corresponding
to 69 affect the ordering in (3.10) which selects those products lying below or above product
j. However which products maximizes or minimizes the indices in (3.11) depend on the
particular values of both 6; and 6.

Once we substitute these products in the indices in (3.11), then the choice probabilities
can be expressed as functions of the cdf of the unobserved individual characteristic F;
evaluated at those two indices.

Let denote by [lj the upper bound of € in the choice probability of product j

- (612:) [wj - ivn»j(o)] + &5 — &y 0)]

Aj(0, X5, Xtj0,,2) = ’ (3.14)
92 (‘(L‘Tij(g) - (Cj)
and denote by A; the lower bound
(012:)" |25 ~ 2Ry 0)| + &5 — Eriyi0))
’ _A_j(O,Xj,X_jﬁ?,zi) = [ 2 ] J J( ) (3.15)

9’2 (:L‘Ri],(g) et .’Ej)
For j # (1) and j # (J)%,

Pr(dj = 11X, 250, F) = 1{A > A} x [F. (84(0, X, X150, %)) — Fe (8,00, X5, X_j0,,2))]
(3.16)
The indicator 1 {A > é} avoids computing negative probabilities. This property how-
ever complicates the estimation of the model by maximum likelihood since the loglikeli-
hood function is not defined for those values of the parameters for which there is at least
one individual for which the probability of selecting his observed choice is equal to zero.
Moreover, note that the choice probabilities are not continuous with respect to parameter
2. Note that a small change in 62 might alter the inner product ordering in (3.10). At
the same time, this implies that the products that maximize and minimize the lower and
upper bound indices in the choice probabilities should be obtained from different sets of
products. Since both bounds depend on the product characteristics, which are assumed to

be exogenous, there is not guarantee that the new interval for € would imply a value of the
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choice probability close enough to the probability evaluated at a slightly different value of
5. This feature of the model not only implies some difficulties in the identification of the

model, but also sets some challenges in order to find those values of the parameter that

maximizes that the likelihood function. 12

For j = (1)?2, the choice probability is
Pr(dj = 1|X, 235 9, FE) = FE (Aj(e,X',X_j’QQ, Zz'))
and for j = (J)%2,

Pr(dij = HX, zi;9, Fg) =1- Fg (éj(gij,X+j,92,Zi))

3.4 Identification

Using notation as in Koopmans and Reiersol (1950), a structure belonging to the model
described in (3.2) and (3.3) is defined as S = (h, F:), where h is the structural relationship

linking observable and unobservable variables that in this case is expressed as
dij = h(:r, f, Ziy 61‘) (3.17)

for all ¢ and j.and F; is the distribution function of the unobservables.
A model is defined by that set of structures that share a set of apriori knowledge or
conditions on both h and F;. Let denote by Pr(d; = 1|X, Z; S) the choice probabilities

for alternative j generated by structure S.
Definition 1 Two structures S and S’ are observationally equivalent if
Pr(d; = 1|X,Z;S) =Pr(d; = 1|X,Z;S')Vj € S a.e. inZ

Definition 2 (Parametric Model) A parametric model T'p is defined as that set of
structures S = (h, F;) such that (1) relationship h is

dij = 1{(6h2:) z; + (b2e:) 2, + § = (012) x, + (B28) @ + &,., for all v # i}

*In some of the preliminar Montecarlo experiments of the maximum likelihood estimation of this model
(not presented in this work) different alternatives have been tried in order to be able to obtain the globa
maximurn of the likelihood function. Some of them include the use of the simulated annealing algorithm
as the optimisation method and also the MCMC method proposed by Chernozhukoz and Hong (2003)
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Thus, the utility function is specified as in (3.2) and (3.3) with K' =1 and E =1 and
its functional form is known up to a finite number of parameters 8; and (it) F, is a
known distribution function. The different structures belonging to this parametric model

are defined giving specific values to the vector of parameters § € @ ¢ RIm©)
Let @ denote the space of all probability distributions on the real line.

Definition 3 (Semiparametric Model) A semiparametric model I'sp is defined as that
set of structures S = (h, F,) such that (i) relationship h is defined in the similarly to the
pammetﬂ'c model with K' =1 and E = 1, and (ii) F. € ® is a continuously differentiable
unknown function, strictly increasing, 0 < F.(e) < 1 for every e € R and F.(0) = 0.5.
The different structures belonging to this semiparametric model are defined giving specific

values to the pair {0, F.} € © x ® satisfying the above conditions (i) and (ii)

Let 6 € int(©) denote the true value of the parameters and FO € ® denote the true

distribution function of the unobserved variable ¢

Definition 4 (Parametric Identification) The true value of the parameter 6° is iden-
tified with respect to parameter value 8 # 6° € © if there exists at least one product j € 3
such that

Pr(z e m;(6)) >0
where

mj(0) = {z € Z such that Pr(d; = 11X, 2,0, F0) # Pr(d; = 1|X,2,6°, F)}  (3.18)

Definition 5 (Semiparametric Identification) The true value of the parameter 6°
and the true distribution function FO are identified with respect to another pair (8, F.) €
Tsp such that F.(e) # FO(e) a.e in e € Qe and 6 # 6° if there exists at least one product
j € such that

Pr(z € m;(0, F;)) >0 (3.19)

where
7;(0, Fz) = {z € Z such that Pr(d; = 1|X, 2,0, F;) # Pr(d; = 1|X,z;00,F€0)}

13

"*The identification of the parameters implies that the limiting likelihood function

J
Leo(a) = E (Z Pr(d; = 1)z, X, 6% F2) log Pr (d; = 1|z, X, 0; Fs))

70
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In the next sections, we discuss sufficient conditions for the identification of parameters
69 in the case that the distribution function F} is known and conditions in order to identify

(6°, F.) in the semiparametric case when F; is unknown.

3.4.1 Identification conditions for the parametric model

The following assumptions are made for the identification of 8y when F; is assumed to be

known:

Assumption 3. 1 The unobserved individual attributes ¢ is a unidimensional factor (E =
1) with a known distribution function denoted by F. : Q. C R — [0,1] such that (i)
F,, = F: Vz € Qg; (ii) differentiable; (iii) strictly monotonically increasing on its support
and () 0 < Fe(e) L1 foranye € R

Assumption 3. 2 E({;|z) = o(z;) #0 for allj € <

Assumption 3. 3 There exists at least one product characteristic k € K, such that xj #

Zgk for each pair j,g € 3

Assumption 3. 4 rank(X) = K with K < J and there is no proper linear subspace of
RM having probability one under the probability distribution of Z, Fy

Assumption (3) rules out the possibility that there exist two products with exactly the
same available observed characteristics. This implies that it is not possible to have two
identical rows in the matrix of product characteristics X. This assumption is important
in order for our choice probabilities to be well defined and for our identification strategy.

Assumption (4) ensures full column rank of the matrix of product characteristics and

also a limiting rank condition for the individual characteristic random variable.

Theorem 5 (Parametric Identification of the Pure Characteristics Model without
§) Let consider the parametric model defined in definition (2). Under Assumptions 3.(1)-
8.(4) and (i) & = 0 Vj € S; (i) Z is a random vector of individual attributes which

has a unique maximum at 8°. A necessary conditions for this to be satisfied is that
J
E ( > Pr(d; = 1|z, X,60% F7) log Pr (d; = 1)z, X, 6; F) ) <00
j=0

(Newey and McFadden (1994)). Weaker conditions are pointed out by Van der Vaart (1998).
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dimension M > 2 where at least two attributes have unbounded support; (iii) there are at
least two observed product characteristics K > 2; and (iv) there exist at least two indi-
vidual attributes s # m such that for at least one product characteristic k is satisfied that
09 km # 9(1)’,“, then the true value of the parameters 6° (such that 69 # 0) is identified up
to a scalar scale with respect to any other 6 € © (such that 85 # 0)

Proof. See in Proof’s Section B

The intuition behind the identification proof is the following. The idea is to find those
values of the individual attribute Z in (3.18) such that there exists at least one choice
probability that differs for different values of the parameters, or equivalently, those values
of z such that the equality of choice probabilities for all j imply also the equality of
parameters. The difficulty that arises from the choice probabilities derived in section (3.3)
is that they depend on two different indices (the upper bound and the lower bound for the
unobserved taste variable €). This is not the case in the standard discrete choice model
where the probabilities depend on a unique index. For each product, we consider all its
possible positions in the inner product ordering with respect to 2 and 6. We then define
those sets of Z such that we can bring either the upper or the lower bound to infinity so
that the choice probability of each product only depends on one of them. By inspecting the
expression for the upper and lower bound indices in (3.14) and (3.15), it is easy to see that
we can fix oné of them and bring the value of the other one to infinity if the characteristics
of the products on which the upper and lower bound depend are different and there exist at
least two unbounded individual attributes. This guarantees that the set of z has a positive
probability and the last step is to show that when the choice probabilities depend only
on one index, the equality in probabilities implies equality of the parameters of interest
as well. This last step is similar to the identification of standard parametric models with
the particularity that now the indices consist of a ratio where both the numerator and
the denominator depend on the parameters and consequently only identification up to a
scalar is possible. Consequently, in order to identify the sign of the coefficients, we would
need to impose some assumptions or restrictions on the sign of the parameter we decide
to normalize.

It is interesting to note that if only one observed product characteristic is available
(K =1), the model only predicts positive probabilities for the first and the last products
placed in the ordering in (3.10).

86



When the characteristics space is unidimensional, if j # (1)?2, 5 # (J)? then the upper
and lower bound of the choice probabilities are

/ /
1%4 1<

AAj(z,z;0) = — 2

5 and _A.A_](zhxve) == 92

and consequently, the choice probabilities Pr(d; = 1|X, 2;8, F2) = 0 for all j # (1)%,5 #

(J)%2. The only choice probabilities different from zero are

/ .
Pr(d; = 1|X,20,F%) = F? (—%) if j = (1)%
2
I .
Pr(d; = 1|X,26,F.)=1~F? (- ;j’) if j = (J)%

These unattractive predictions of the model arise because the unobserved heterogen-
eity in tastes over a unique product characteristic is not enough to capture the diversity
observed in demand in the data. We believe that there may exist a necessary relationship
between the number of available choices in the data and the number of observable charac-
teristics in order for the pure characteristic model to be able to predict reasonable choice
probabilities.

In the next Theorem we consider the identification of the parameters § when there
are unobserved product characteristics (i.e. € # 0). If vector of individual attributes Z
includes also a vector of ones, then there exists a mean utility term for each product that
does not vary across individuals. Denote by 6 the parameter associated to this mean

utility term, then the utility function assumed in (3.2) can be rewritten as in
Uij = aCL‘j + Oixj + fj

By fitting product specific constants in the utility function one could identify all those
elements in the utility that does not change across individuals. Let denote these product
specific constants by d; which capture both the mean utility of the observed product

characteristics plus the unobserved product characteristics
§; =0z, + & (3.20)

By Assumption 3.(2), the unobserved product characteristics £; and the observed
product characteristics x; are not assumed to be independent. For example, when firms set
prices, they consider all the product characteristics that may not the available to the eco-

nometrician and that are captured in £!*.The econometric issues that arise in this case in

" Although other product characteristics different from price are likely to be correlated with &, prices

have been the variable typical used to illustrate the endogeneity problem in these models.
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an aggregate model have been considered in Berry (1994). This simultaneity bias appears
to be less important in a microdata model as the one considered here.

However, the fact that there are omitted variables is still a problem even when mi-
crodata is used. In this case, consistent estimates of the vector of product specific constants
§ are obtained and IV can be used in (3.20) (using a consistent estimate of vector J) to
control for the endogeneity of prices in the estimation of parameter §.!° In the next the-
orem, we denote by 6 the parameters imbedded in 6; (i.e. 8 and 62) so that the product

specific constants have separate notation.

Theorem 6 (Parametric Identification of the Pure Characteristics Model with
€) Let consider the parametric model defined in definition (2). Under Assumptions 3.(1)-
3.(4) and (i) £ # 0 for some j € S, (ii) Z is a random vector of individual attributes
which dimension M > 2 where at least two attributes have unbounded support; (iii) there
are at least two observed product characteristics K > 2; and (iv) there exist at least two
individual attributes s # m such that for at least one product characteristic k is satisfied
that O?Ykm # g(l),lcm then the true value of the parameters 6° (such that 69 # 0) is identified
up to a scalar scale with respect to any other 8 € © (such that 6, # 0) and the differences
of the product specific constants of each product with respect to a base product , say product
0, Sjl = J;j — 61 are udentified.

Proof. See Proof’s Section B

3.4.2 Identification conditions for the semiparametric model

Theorem 7 (Semiparametric Identification without £ ) Let consider the semipara-
metric model defined in definition (3). Under Assumptions 3.(1)-3.(4) and (i) £, =0V
j €S (i) Z is a random vector of individual attributes which dimension M > 2 where at
least two attributes have unbounded support; (iii) there are at least two observed product
characteristics K > 2; and (iv) there ezist at least two individual attributes s # m such
that for at least one product characteristic k is satisfied that 69, # 9(1)’,“, and (iv) there
exists at least one variable z,, with 9(1),km # 0 for at least one k such that ,conditioned on

the other elements of Z, the distribution of zm has everywhere positive Lebesgue density.

It should be noted that the issue of endogenous prices is important to be considered only when an
estimate of 0 is needed (for example to compute cross and own price and product characteristics elasticities).

For those applications in which only an estimate of ¢ is needed, one can disregard the endogeneity problem.
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Then. the true value of the parameters 65 form = 2,..., M and 98 (such that 69 # 0) is
identified up to a scalar scale with respect to any other 6 € © (such that 63 # 0)

Proof. See Proof’s Section W

In order to identify the finite dimensional preference parameters, only the median inde-
pendence assumption of € and Z is needed. However, if the stronger condition of statistical
independence between the unobserved and observed individual attributes is assumed, then
also the distribution of F; is identified up to scale in addition to the identification of the
preference parameters in the utility function 69, 69 for m = 2,.., M (See Corollary 5.
Proposition 2 in Manski (1988)). The identification up to scale implies that the taste
preferences parameters for one of the attributes and for all the characteristics should be
normalized to 1.

It should be pointed out that the additional assumption of continuity in at least one
individual attribute is required when the distribution of the unobservables is assumed to
be unknown. The way the proof evolves requires stronger conditions on the support of Z
than in the parametric proof (i.e. a more strict subset of Q0 is required to have positive
probability in order to be able to identify the parameters of interest). However, given
that we are providing sufficient conditions, the same unboundedness condition on Z in the
parametric prpof is also sufficient in this case.

The access to microdata has allowed us to identify the distribution of the unobserved
tastes over product characteristics. As it has been pointed out before in this work, this
is important because it is usually difficult to know apriori the appropriateness of any
parametric assumption imposed on the distribution of the heterogeneity in tastes. This
constitutes the major advantage with respect to the setting where one only has access
to aggregate data (as in Berry and Pakes (2003)). In that case, the semiparametric
identification of the preferences parameters and the taste distribution is much harder to
achieve, and the conditions under which this is possible have not been studied yet.

From the choice probabilities derived before, it can be checked that the dimensionality
problem does not change with the number of alternative or products in the market but

with the number of characteristics considered. 16

! Tackling the estimation of the identified parameters in 6° and F is an interesting and important issue

that would be prioritary to incorporate in future versions of this work.
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3.5 Conclusions

This work studies the conditions under which the preference parameters of a pure charac-
teristics model with microdata are identified. The model we consider here does not include
the iid random term with full support that is usually considered in the utility function in
standard approaches. We justify this model in terms of the counterintuitive implications
of standard assumption of the product specific unobserved heterogeneity, especially when
the discrete choice model is used as a structural model of demand and policy issues re-
lated to the change of products in the market are under consideration. The differences in
the interpretation of the unobserved tastes over products and characteristics between the
standard model and the one considered here are discussed.

For the parametric case, we conclude that the parameters of the utility function are
identified up to a scalar constant. The identification requires at least two of individual
attributes capturing the observed heterogeneity in tastes with unbounded support. Other
identification conditions include full support of the matrix of product characteristics, no
identical products should exist on the basis of the observable characteristics and also
multicollinearity between the different individual attributes should be ruled out. We also
show results for the identification of the alternative specific constant, which include the
unobserved product characteristics and the product specific mean utility. The possibility
of estimating ;chese product fixed effects allows us to control for the endogeneity problem of
prices that arises in these models where unobserved product characteristics are considered.

One of the main advantages of the model considered in this work is that not only
allows us to semiparametrically identify the preference parameters but also their estimation
would be computationally feasible regardless of the number of products in the market
(as apposed to the standard multinomial discrete choice models). For the semiparametric
model, the sufficient conditions to identify the preference parameters (after normalizing the
parameters for tastes over all observed product characteristics for one individual attribute)
and the distribution of the unobserved consumer tastes up to scale need to be strengthen
with respect to the parametric case to include at least one continuous individual attribute.

In terms of future work, the estimation of both the preference parameters and the
distribution of the unobservables will be studied in both the parametric and the semi-
parametric model. A large amount of scanner data has become recently available to
practitioners. This data includes repeated observations of the household purchases for an

extensive list of products along with individual specific information about demographics,
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income and consumption habits and detailed information about the characteristics of the
products they consume. This constitutes an ideal setting to apply the model considered in
this work. Additionally, it would allow us to analyze how repeated choice decisions for the
same individual over time helps in the identification of the parameters of interest. Finally,
we are also interested in deriving statistical tests able to assess which model of preferences
describes better the observed choices in the data. We think that a more general model
than the one studied here where the heterogeneity in tastes relies on more than one un-
observed product characteristic would be a fruitful extension of the actual model and also
less restrictive that the standard models where each product introduces a new dimension

of unobserved differentiation.

3.6 Appendix

Appendix Al: Sufficient conditions to construct i.i.d ¢; as a product of unob-
served product characteristics and individual tastes

Consider the notation introduced in section (3.2.3) and let fy be the joint density of
the vector of unobserved tastes (fy (v, ..., vig)).

Using the transformation technique we can obtain the joint density of vector E; from
fv. Thus,

fE(eil, ...,6u) = |2_1| fv (E_l X Ei)
J J
= ]E—ll fy <Zm(1,s)esi,...,2m(J, s)e“)
s=1 s=1

where m(r, s) is (7, s) — th element of matrix Y1,
Assume (i) that v;, are independent across r and ¢ and identically distributed across
1, so that the joint distribution of V; is
J ~

fv (@i, s vig) = [ folvs)

s=1
and (ii) matrix ¥ of unobserved product characteristics is diagonal (u(r, s) # 0 if r = s,
0 otherwise), which also implies matrix £~! is diagonal (m(r, s) # 0 if r = s, 0 otherwise).

Under assumptions (i) and (ii), then
J ~
feleir, yeig) = |7 T folmls, s)es)
s=1
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Therefore, conditions (i) and (ii) are sufficient conditions in order for vector E; to be
independent across products j. Since V; is independent across i so is F;.

Appendix A.2: Independence of V; and diagonal ¥ is not sufficient for i.i.d
E;

Consider the case of J = 2 where random errors {€;1, €;2} are i.i.d with joint distribution

fe(en, €2) = glein) - gle)

If these errors are expressed as linear combinations of tastes derived from a J—dimensional
vector of unobserved characteristics as in (3.6), we show that the independence of €;; and
€;2 does not directly imply independence of vector V; and a diagonal matrix ¥. !"Using
the transformation technique we have the following equation for density functions of E;
and V;

g(€i1) - g(€2) = |2‘1| fv (m(1, e +m(1,2)ez, m(2,1)er; +m(2,2)es)

Using notation vy = m(1,1)ey; + m(1,2)eq;, vio = m(2,1)e; + m(2,2)ey; we obtain

the following system of differential equations

g’ (€:2) R Ofv(vir, via) Ofv(va,via)
g(eiQ) fV(VZl) l/t2) m(ls 2) al/il m(2, 2) aljiz - - O
g'(€i1) N Ofv(vii, vi2) Ofv(vi,via) _
olen) fv(vir, vig) — m(1, 1)——6141 m(2, 1)——__31/1'2 =0

Using both equations we obtain the following differential equation for v;9

g'(e2)  m(1,2) ¢ (ea) o
[Q(Eiz) m(1,1) 9(6“)] fv(vir, via)

Ofv(vi1,vi2) —0
al/ig

Solving for the joint distribution of fy (v1,v2), it can be checked that errors (v41, vio)
do not need to be independent or x(2,1) = 0 or u(1,2) = 0 to generate independent

(eil ) 6i2)

fv(vi,vio) =
1 —-m(1,2)

m(2,1 m(2, m m(2,1 m
(2, Vs + (2, 2)ig) 2 (R (22))9(#(171)1/1‘1+#(1a2)1/i2) € )

7 1
'"The notation used is £ = ( m(1,1)  p(1,2)
w(2,1)  p(2,2)
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3.7 Proofs

Proof of Theorem (5) (Parametric Identification of the Pure Characteristics
Model without £). For the case in which there does not exist unobserved product
characteristics we need to redefine the indices at which the choice probability evaluate the
distribution function F;. Let these indices without unobserved product characteristics be
denoted by Aﬁj(zi, x;0) and AA (2, x;0) whose expression is exactly the same as for the
homologous A; and A; but with §; =0Vj €.

Let ® be the Kronecker product and let Wi g) = (z; — s,,(9)) ® z: and Az, g) =
(zs,,(0) — x5) for s = {r, R}. Thus, vector Wj, gy contains all the interactions between the
M individual attributes in Z for individual ¢ and the differences between the K product
characteristics of product j and the characteristics of that product that minimizes the
upper index of the choice probability for j for the parameter value 6. The first M rows are
interactions of the first product characteristic with all the individual attributes. Therefore,

the indices evaluated at the true value of the parameters 6y are

/ =0/
(6} x 2) (zj — o)) W0

03 (jro0y —25) 05Dz, (g0

AAj(z,2;6%) =

/ =0/
(69 > 2:) (2 — g 0) 02 Wig, (o0

M'(ziam;eo) = -

J

where é? = vec [69] and ég = vec [98] =69.18

Suppose the following equality of probabilities hold for 6 # 6°
Pr(d; = 1|1X,2,6°) = Pr(d; = 1|X, 2;,6) for all j € S ae in Z

Then, with probability 1 in Q7 and for every j € S except for j = (1)%2,5 = (J)%2,j =

(1)98 and j = (J)Og the above identification condition implies (using (3.16))
Fe(tjin) = Fe(tjio) = Fe(tja + sjin) — Fe (tjiz + s5i2) (3.21)

where,
tjiin = AA;j(z,x;6°) tjio = AN (zi, 2 6°)

sji1 = BDAj(zi,2;0) — ADj(2,2;6°)  sjio = DAz, 23 0) — AN (24, 25 60%)

"*Define vec(Y) as that operation which appends all the trasposed rows of a matrix Y of dimension

K1 x K3 in a column vector of dimension K1 K. Note that since 02 is already a column vector vec(dz) = 6,.
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When j is one of extremes of the ordering with respect to 62 or 69, the following choice

probabilities arise

Filtyin) = Feltyia) =Fs (b + sj01) if {5 = (1%,5 # (V%5 # (1)} (3.22)
Fe(tjin) =F; (tjin + sji1) — Fe (tjio + 8ji2) if {j # (1), # ()),5 = (1)03}

(3.23)

Feltyin) = Feltyie) =1 = e (t2 + s50) if {j = (1)%,5 # ()%,5 # ()%} (3.24)
1= Fultyie) =F: (tyi1 + sj00) = Fe (b + 55i2) if {5 # ()),5 # (),5 = (J)%)

(3.25)

1 = Fu(tyin) =1 — Fe (tjiz + s5i2) if {j = (J)%2,5 = (J)%} (3.26)

Fe(tjn) = Fe (tja +sju) if {5 = (1)%,5 = (1)%) (3.27)

1= Fu(tjio) = Fe (tjan + s5a1) if {5 = (1), = (J)%) (3.28)

Fe(tiin) = 1 = Fe (tjn + sjiz) if {j = ()%, 5 = (1)%) (3.29)

In cases (3.27) and (3.26) -where the product j is either the first or the last one with
respect to the inner product ordering under both 4 and 65— the identification is casier.
This is because expressions (3.27) and (3.26) imply s;;1 = 0 or sj2 = 0, which as it is
shown below implies identification of #° with respect to #. A special note deserve those
values of the parameter that make reverse the order with respect to 67, as in (3.28) and
(3.29).

For the identification of 8% with respect to parameters 6 such that the ordering with
respect to 6, is as in (3.21) -(3.25), let consider indices t;; and t;; as an inner product of

the vector of individual attributes z; as follows

01k (zjk — x,ek)
b = Y03 Dl )

m=1k=1 92 (‘Er”(eo) )

u (Zjk — TR, (6 k)
e = 3.3 Al ),

=6y (TR.;(60) — Z5)

By definition, r;; g0y and R;; g0, are two different products and by Assumption 3. (3) they
differ at least in one characteristic. Therefore, both indices tj;; and tjio vary in a different
way with respect to vector z;.

Therefore, as long as the dimension of the individual attributes vector is greater than
2 (M > 2) by condition (ii) of this theorem, the value of the index ¢;;1 can be held fixed
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while the value of the index t;jo changes. For example, for continuous Z; and Z; with

M = 2, the slopes of isoquant curves for t;;1 and ¢;j2 in a two dimensional space are

K 70 . .
Oz k=1t (fﬂc - 1m<eo>k>
dz1i - K 70 , .
LT k1 0101 (Tjk = Ly (00)k
- éo .
Oz Y e L
021 - K 59 .
Lt Zk:l 01,k1 Tjk = LR;;(60)k

If 9(1)‘,62 # 67(1)’,61 for some k as condition (iv) in this theorem requires (i.e. there is at
least one product characteristic for which the individual tastes associated to Z; and 23
are different), then both slopes above differ from each other.

This example also illustrates the need of having more than one product characteristics,
since otherwise both indices t;;; and t;;2 would be equal.

Given that equations (3.21) to (3.25) hold a.e in Z, the key of the identification proof
is to find a set of values z C 0z with positive probability for which one can conclude the
equality of the two vectors of parameters (6 = 6°). This set is found by keeping either tij1
(or ti;2) fixed and driving ;0 (or ti;1) to infinity.

Let define

le(QO,Q,X) = {2z € Qz such that t;; = t;;}
'er(HO,Q,X) = {z; € Qg such that t;;0 = ty;}

Next, for each j, we define the subsets of T9; or 715 - denoted by p,- which make the
equality of choice probabilities at # and 6° in (3.21)-(3.29) as a function of a single index
(either t;; or t;2).

If j # (1)%,5 # (J)%2,5 # (1)03 and j # (J)ag, this set is defined as follows

pj(GO,G,X) = {Zi €7y C Q2 such that o — OO}

The purpose of building this set is that for those values of Z, the choice probabilities
in (3.21) can be simplified as

Fe(tjn) = F, (tjil +sji1) if 2, € pj(eo,e,X)

Given that the cdf F; is assumed to be strictly increasing, the above equation implies

Sjil = 0.
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For equations (3.21) to (3.23) index t;j2 needs to be driven to +0o0 or —oo in order
to write the choice probabilities as a function of a unique index. For equations (3.24)
to (3.25) we need to drive index t;;; to +00. Equations (3.26) to (3.29) have immediate
consequences over the parameters without restricting the support of Z.

Thus, when j is one of extremes of the ordering with respect to 6 or 6°, the set

pj(HO, 6, X) is defined as follows 'Y

p;(6°,0,X) = {z; € T1; C Qz such that t;; — —oo} if {j = (1)} or {j = (1)%}
p;(0°,6,X) = {z € Oz} if {j = (1)",5 = (1)}

pj(()O,O,X):{zi € T9; C Qz such that tj;; — oo} if {j = (J)%2,5 # (J 00} or {7 #(J Hz,j:(J)O'g}
p;(6°,6,X) ={z € Qz}if {j=(J)?,j= (J1)%)

o

We separate the cases for which ¢;;; has to go to 400/ — 0o (products belonging to the
set 1) from the cases in which ;9 goes to +00/ — oo (products belonging to the set Qq)

as follows V

4 such that {j = (J)b2,j # (l)og,j # (J)og
31(6,6°) = or {j # (J)%,5 # (J)%,5 = (J)%)
or {j # (J)P2,5 # (1)%2,5 # (J)%, # (1)%)}
j such that {j =(1)%,5 # (1)08,j # (J)gg}

2(6,6°
I9(0,0°) or {] — (1)93’j # (1)92’3‘ # (J)Gz}

Let define
P(6°6,X) =Ul_ p;(6°,6, X)
as the set of Qy such that at least one of the product probabilities is written only as a
function of t;;; or tj».
Then, for each value z € P(OO,B,X), there exist at least one product j for which the
probabilities in (3.21)-(3.27) become

Fe(taj) = Fe(toj + sjie) for z € pj(OO,O,X) where j € 3(6,6°) (3.30)
Fi(tiy) = Fe(tiy+s5u1) for z € p;(6°,6,X) where j € 39(6,6°) (3.31)

1¥Note then that for the cases where {j = (1),5 = (1)* } and {j = (J)?2,j = (J)%%}, the set p;(0.6°, X)
does not restrict the sample space of random vector Z since the probabilities are already a function of a

unique index.
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Note that if the sets pj(OO,H,X) are disjoint across j, then for each z € P(8%,6, X)
there exists only one possible product j for which its probability is written as a function
of a unique index t;;. However, in general each element z in P(8°,6, X) may belong to one
or more sets pj(ﬁo, 0,X).

If by condition (ii) in this theorem, there exists at least two variables in Z with large

enough support on the entire real line, then we can ensure that
Pr{zeQznNP#°6,X)} >0, V6 € ©,0+#6° and 6, #0

since either #;;1 or t;;2 can be brought to large values by increasing or decreasing the values
of these particular attributes. This assumption though allows to have discrete individual
attributes. The rest of the individual attributes are allowed to be discrete.

Therefore, for each = belonging to set P(6°,8, X), there exists at least one product j
that depends only either on t;, or t;;.

Let define for each z € p; that set of products for which the choice probabilities can

be expressed as a function of a unique index t;;

Qu = Qi(2,0%6,X)= {ije 31(6, 6% such that z; € pj(90,9,X)}
Qu = Qof2,6%60,X)= {je 9(8,6°) such that 2 € pj(HO,G,X)}

Thus, if j belongs to Q1; the choice probabilities of product j for individual i are only

a function of t;jo and s;;2 (and not of ¢;;;); and viceversa for those products belonging to
Q2.
Consequently, define those subsets of P(6°,6, X) C 0 implying either tijo — +00/ —
00 Or tyj] — +00
Pl(HO,H,X) B Ujec\}l(eyoo)p](ao,e,x)
Py(6°,0,X) = Ujcg,00)05(6°.6,X)
20

By Assumption 3. (1) and from expression (3.30) we can conclude that

sija = 0,Vz € P(6°,6,X)Vj€Qu
sij1 = 0,Vz € Py(6°,0,X)V 5 € Qu

*“Note that P(6°,0,X) = P(6°,0,X) U P»(6°,0, X)
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Using the notation introduced above for s;;1 and s;js,

AA(zi,2:0) = AAj(z,2:6°) V2 € Pi(6°,6,X)Y j € Qui (3.32)

AAj(Zi,x;H) = AAj(zi,:C;QO) ,Vz; € PQ(QO,H,X),Vj € Qi

This implies

~ ~0r
W, g oW,
1RO LR yooe p(e°,60,X) Y 5 € Qu
0282, (o) 02 Az;g, (00
- ~0/
6\ Wir0) 0 Wi o)
d = : Nz € Po(6°,60, X))V j € Qo
HIQA-'Ejri(G) gglAl'jri(gO) 25 2( ) J € Q

or equivalently,

(é’le&(g)) (68'aa, R (Y Win00)) (0:B25m0) =0 (3.33)

V2 € P(6°,6,X)V j € Qu (3.34)
~7 ~0/ ar
(ele,.i(@)) (93'Amm00)) - (91 Wﬁ,l(gu)> (0402, (9)) =0 (3.35)
Vi € Po(6°,6,X)V j € Qu (3.36)

Using the above notation for each of these vectors, expressions (3.33) and (3.35) above

are equivalent respectively to

M Zf:l (é(l)kmgﬂc - élkm‘)gk) <-’L‘jk - mm(a%) Zim (mRi(9)k - xjk) + - — 0
mzzl + Zl{"(:l 2k<s (é(l)km92s - élsmggk) (T'jk ~ TRy(6°)k ) Fim (zRi0)s — Tjs) ] -

M 1{(:1 (é(l)kmg% - élkmegk) (%‘k - %-(et))k) Zim (%(B)k — Zjk) + - 0
7; +Z/’f=1 D k<s (é?kme% - élb"megk) (afjlc - %(aﬂ)k) Zim (‘rm(e)s — zjs) | -

Let express equations (3.33) and (3.35) in a matricial way. Let n; be the number of
values of Z belonging to P;(6°, 0, X) and, analogously, ny be the number of values of Z
belonging to P»(6°,6, X).

Let consider the matricial expression for this system of equations

Bw

W, W
{ b =0 (3.37)
By

LVQ VQ

where W} is a matrix of dimension (n:(3 %, Qi) x KM) for t = {1,2}
and V; is a matrix of dimension (nt(Z?;l Qit) x ﬂK—;—IM) for t = {1,2}.
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A representative row of matrices W; and W3 for an individual ¢ is expressed as

K M
wy = {{(xjk - IRi(oo)k> Zim (TR, (0)k — Ijk)}kzl} A € P(6°,0,X), j € Qu
m=

Wi

K M
{{ (%‘k - fU,.l(aO)k) Zim (Tr,(0)k — %’k)} } .2 € Po(6°,6,X), j € Qui

k=1) =1

A representative row of matrix V; and V5 of an individual ¢ is expressed as

M

K
vy = {{{(%k - le-(BO)k) Zim (xm(e)s - x”)}k=1}k< } 1 , % € P1(90,9,X), J€Qu
§$/ m=
K M
vy = {{{(:c]k - wri(OO)k> Zim (Try(0)s — :cjs)}k:l}k< } o € Py(6°,0,X), j € Qu
8/ m=

By is a column vector of dimension MK and By is a column vector of dimension

Q‘::%M whose elements are expressed as
~0 ~ 0 K M
BW = 91km92k - elkmozk
k=1]) m=1

~0 - K
BV = {{{elkm92s—Hlsmggk}k_l}k }
- <s

The only way one can obtain multicollinearity across and between the columns of W

M

m=1

and V is when matrix of product characteristics X does not have full rank and when there
exists a proper linear subspace of the individual attributes Z.Since this is ruled out by
Assumption 3. (4), then matrix (WV])'[WV] is full rank in the limit, so that it can be
concluded that By = 0 and By = 0.

Thus,

~0 ~
O1kmbor = lem98k foreveryk=1,.,Kim=1,..,.M
~0 -~
O1emb2s = Orgmbs, forevery k=1, K;k<s;m=1,.,M
This system of equations does not have a unique solution. In fact, it has infinite

ways of expressing 6 as a function of 6 2! Therefore, since not all the elements of the

vector of parameters 6 are identified, we need to impose some normalization and define

! The system of equations [Bw Bv| = 0 can be expressed as
C(@°)x6=0

in order to solve for § as a function of 6°. Even for K > 2, matrix C(6°) has not full rank.
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the parameters that can be identified. For simplicity, we normalized parameter 69; = 1 so
that all the parameters are identified up to this scalar scale.
From the equations corresponding to k£ =1
~0

. 6
O11m = lém for every m

21

The parameters of 8, corresponding to characteristic & = 1 (normalized characteristic)
and for all the individual attributes are identified as the ratio of the true parameter and
the normalized parameter.

From the equations corresponding to s = 1, we are able to identify the parameters 6;
associated to all the interactions between the K product characteristics and M individual
attributes. o

O1m = —% for every k,m (3.38)
031

From equations corresponding to s # 1, we obtain
é _ 50 925 f
lem = 61km§ or every k,m (3.39)
S

From expressions (3.38) and (3.39), we obtain the identification of the unobserved taste

parameters,
0

05,
095 = % for every s # 1
b3,

If é(l)km = ( for some k and m, given that 69 # 0, also the value of O1m is zero. QED.

Proof of Theorem (6) (Parametric Identification of the Pure Characteristics
Model with ¢).

The upper and lower indices are now defined as

(89 = 0 g0)) + (60 x z) (2 — 2, (¢0))
98’($jn(9°) = %)
(67 ~ 5?%,';'(60)) + (69 x ) (z; — ZRi; (0%)

9(2)/(93]'&(60) — ;)

Aj (Zi, xT; 90, (50)

Az, x;6°,60) =

==J

The proof mimics the one without product fixed effects up to expressions (3.33) and (3.35)

with some changes in the notation to make the upper and lower boundary products also
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dependent on the fixed effects (i.e. ;g0 0y and R;jgo 50). These two expressions become

now
(é,lem(e,a) + (5j - 5&-,-(9,5))) (9(2)1ij&(00,50)) -
(Wm0 + (3 = %000y ) (AT18,0) =0 (3.40)
,Vz; € P1(6°,6°,6,6,X)Y j € Qu

(éllem(e,zs) + (5;- - 5rij(e,5))> (98'A$jn(00,50)) - (3.41)
-0
(“’llem(w,a") + (59 - 5?”(90,50))) (02A2jr,0.5)) =0
avzi € P?(Hoy 5Oy Oa 51 X)’v ./ € Q?i

Using the above notation for each of these vectors, expressions (3.40) and (3.41) above
are equivalent respectively to
- ~0 ~
A b1 (elkm()% - 91km98k> (fL‘jk - xﬂ(&”,é°)k> Zim (T7,(0.6)k — Tjk) +
=1 ~ ~
m + Zlfc(zl Zk<s (glkaQS d 015m93k> CL‘jk - mTi(OO,JO)k Zim (:ETi(B,é)s - .’L'js)
K 0 0 ({] K
+ (5j - 5T”-(o,5)) 2 k=1 02k A% 7, (g0 50y 1 — (&5 — 5nj(90,50)) 2 k=192 AT j1,(0,8) &
for T = {R,r}
After adding and substracting (dj - (STU(QO,(;O)) Zle ogkAl'jTi(o'é),k for T = {R,r},

we can express the condition above in a way that can help us in the identification,

) - N

M Yh (91km92k - 91km93k) (wjk - -’L'Ti(ooycso)k) Zim (T1y(0,8)k — Tjk) +
=1 -0 -

" + lec(:l k<s (91km923 - elsm98k> %xjk - xTi(()U,J")k) Zim (mTi(G,é)s - ij)

K
+ [(51‘ - 57}j(9,5)) Zk:l egkijﬂ(HO,JO),k - 53' - 5:&,-(00,60) lele HgkijTi(e.é),k}

i + {05 — 5T1j(90,5°) egk - (5? - ‘5%]-(90,50)> 92&} AZ5T,(0,6).k ]
(3.42)
for T = {R,r}
Let express equations (3.42) in a matricial way. Let define n; and ny as in Theorem
(5).
Let consider the matricial expression for this system of equations
Bw
Wi, i I, C B
bbb " | =0 (3.43)
Wy Vo I, Cs By
Be
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where matrices W; and V; are defined as in theorem (5), C; is a matrix of dimension
(e (3%, Qu) x J(J — 1)K), Iy is a matrix of dimension (n (3.1, Qit) x J(J — 1)*K) for
t=1,2.

Generically, matrix C) contains the difference between the characteristics of the product
in the lower boundary R;;(6, d) and product j, for each individual with z; € P (6°,8°,6,0, X)
and j € Q1. The structure of Cy consists in three blocks. There are J blocks, one for
each product j € Q1;. Each of these blocks has K blocks for each product characteristics.
Then, for each product j and characteristic k, there are J — 1 columns where only one
value is different from zero for each individual/product (row). Only column R;;(f,4) has
value (2, (9,54 — Tjk) for each row 7 for the column block corresponding to j € @1, and
k. Matrix Cy is defined accordingly for r;(0,4).

The expression for Be has to be defined accordingly to the definitions of C; and Cs.

Thus, B¢ is a column vector of dimension J(J — 1)K whose elements are expressed as

-k 7 .
Be = {{{(@- ~ 85) 0% — (69 — 69) i}, }k=1}J=1 (3.44)

Thus, By is a column vector of dimension J(J — 1)?K whose elements are expressed as

J

VK
By = {{{{(5]‘ —84) 0% Dxjn g — (85 — 6n) 98kAiL'js,k}::_1l}J 1} } (3.45)

h=1 _

Matrices I; and Ip are matrices of zeros except for certain cells that take value one.
For each row/individual, there exist as many columns as combinations between d;,d, and
Sp. For example, for an individual with z; € P1(6°,6°,6,6,X) and j € Qy;, row of matrix
I has value one in the corresponding cell for all the characteristics of the combination of
products j, R;;(6°,6°) and R;;(6,0).

I C
Submatrices [ ! } !i Cl } have full column rank because different individuals have
2 2

different products as upper and lower boundaries. And as before Assumptions 3.(3)-
3.(4) ensure that the whole matrix [ W V I C | has full column rank. Then, By =
0,By = 0,B; = 0,Bc = 0. The conditions By = 0,By = 0 allows one to identify 6"
with respect to § up to a scalar constant as before. We next show that Be = 0 allows
identification of the product specific constants.

Be = 0 implies

(85 — 85) 03 = (69 — 69) 6oy, for Vk,Vj € I,Vs # j
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As in theorem (3.2.3), 691 is normalized to one. Therefore, for k =1

(65 - 63) . .
——5—= VK, V] € S,Vs # ]
051
By normalizing, §; = 0, one can identify the specific constant for each j € 3, 7 # 1 up

(05 —0s) =

to scale and normalized with respect to d;.

Since we have shown that both 6° and 6° are identified, this implies that the boundary
products are the same with the true value of the parameters and with the alternative value
(Ri;(6°,8°) = Ry;(6,0) and r;;(6°,6°) = 7:;(8,6)). This is consistent with the conclusion
that B; equals zero. For each individual with 2; € P1(6°,6°,6,6,X) and j € Qy; for

instance, the relevant element of By is
{(65 — 85) 09, Azjnk — (8 — On) 03 Azjs i }

with s = R;;(6,0),h = Ri(6°,69). Thus, since s = h, one should expect then that elements
of By that interact s = h should be zero as we obtain. QED.

Proof of Theorem (7) (Semiparametric Identification of the Pure Charac-
teristics Model without §)

Our definition of identification is equivalent to
Pr {z € Z such that 8 = 0y if Pr(dy; = 1z, z, F%;6°)=Pr(d,;=1|, 2, F+: )
for all j € J} >0

The proof follows the same reasoning as in the parametric proof up to expressions
(3.30) and (3.31), although throughout the proof different distribution functions F. and F?
should be used in the equalities. Thus, using the notation in the parametric identification

theorem, these two expression become

Fe_p(—] 7

Az, 2;6%) = F.(A(z,2:0)) for z € pj(GO,Q,X) where j € 31(6,6°)
FO(Aj(2,2;6%) = Fe(Aj(zi,;0)) for z € pj(QO,G,X) where j € 39(6,6%)

Recall the definition of the upper and lower bound indices

A 0Y(z,—z,. .
A.?(z'b,x, 00) = H{)ij,l = 9[])'/5 J TU(BO))Zi
2 xri;‘(é’o)—xa)
— 9/ (-T—CL' (0 )
Aj(z,2;0) = Iz =2 "Tul@l
J ) ¥ a3 9’2(17”3(9)—_1']-)
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For each j, define the following set
Qn; = {2 C Qg st. [(Th;z <0< jz) U (ITjz < 0 < Ty;z) | N p; (6°,6,X) }

Given the statistical independence of € and z (and hence, median independence), con-
ditions (ii) and (iv) in this theorem ensure that (r; has a positive probability for each
j. Thus, the continuous variable z,, ensures that one can find values of this variable to
reverse the sign of indices ITjz and IIj;z (see Manski (1985) in the identification proof
of the semiparametric binary discrete model with median independence). Therefore, we
can conclude from here that Ily;; for z; € Qi is identified up to scale (Ilg;; is a (M x 1)
vector and therefore we need to normalize of the these coefficients, say Ilg;;,1 = 1). Next
we show that the identification of Ily;; implies identification of 60, since

O (2 =20 00) O (@i =Tr 0))

Moijm = = =1L;
j,m 93’(%,-(00)—%) 9’2 (xrij (0)._33].) ij,m

for all m # 1, for all 2; € pj(GO,G,X) and for all j € 31(6,8%) (for j € I9(6,6°), the
same expression as above with R;;(#) and R;;(6p) instead holds).

Solving for the parameter values the system of equations defined by

K K
{Z G?m,k(xj_wn‘j(ﬁo))k} X I:Z 92,k($j_mrij(90))kj| -

k=1 k=1
K K

- [Z elm,k(xj_xrij(f)o))k:' X l:z eg,k(mj—xmjwo))k] =0
k=1 k=1

for all m # 1, for all z; € pj(90,6’, X) and for all j € $1(8,6°), and following the same
procedure as in the parametric proof, Assumption 3.(4) on the full rank of matrix X

guarantees that
0
Oim = 3=, Vh=1,.., K,m=2,..,M
21

Oop = B,k =1,.., K
21
QED.
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Chapter 4

Semiparametric Least Squares
Estimation of Shape Invariant

Models with Multiple Equations:
An Application to Engel Curves

4.1 Introduction

In the semiparametric literature much attention has been given to the estimation of shape
invariant nonparametric regression curves (Lawton, Sylvestre and Maggio (1972), Hardle
and Marron (1990) and Pinkse and Robinson (1995)). The main idea of this model is
that although no parametric restrictions are desirable to be imposed on the regression
curve, one might be interested in quantifying the differences between curves for different
samples. The unknown conditional mean functions for different samples are related by
some parametric transformations which are known up to a finite number of parameters.
These parameters shift and scale the unknown function without altering its overall shape.
Both the unrestricted conditional mean functions and the finite dimensional parameters
that relate these functions for observations belonging to different samples are potential
parameters of interest. In this work we focus on the identification and estimation of
the finite dimensional parameters that imply a vertical and an horizontal shift of the
nonparametric regression functions.

This paper proposes an alternative way of estimating the finite dimensional parameters
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of the shape invariant model by the Semiparametric Least Squares estimator (henceforth,
SLS) introduced by Ichimura (1993). We argue that this is a natural way of estimating
the differences between unknown regression curves. Also, the estimators proposed in the
early literature face some computational difficulties because the objective function attains
only a local minimum at the true value of the parameters even for those models where
the parameters are identified. This means that computational intensive methods should
be used to find the local minimum close to the true value of the parameters. Although we
find that SLS also faces some similar computational difficulties, the modification of the
SLS estimator we propose here solves this problem and it is computationally less costly
to obtain consistent estimates of the parameters!. Due to this property of the suggested
estimator, it is feasible to deal with the comparison of the regression curves of more than
two samples without adding much computational cost if this estimation method is used.
It also extends the original framework of SLS to the estimation of a system of equations
where there might exist correlation between the errors of the different equations.

We only consider in this work the case where both the transformation of the argument
of the unknown function and the transformation of the function itself are linear. This
represents a more restrictive model than the one considered by Hardle and Marron (1990)
and Pinkse and Robinson (1995) which discuss the nonlinear transformation case. The
advantage is that the linearity assumption of the parametric transformations allows us to
be more specific about the identification conditions of the finite dimensional parameters.

Consumer demand and, in particular, the estimation of Engel curve relationships con-
stitute an important area for the application of semi and non parametric methods. Shape
invariant models arise in these applications for some specifications of the demographic
composition. Early works in the analysis of Engel curves (Hardle and Jerison (1988) and
Blundell and Duncan (1998)) use nonparametric techniques to estimate the unrestricted
relationship between budget shares and total expenditure. When this relationship wants
to be adjusted by observed heterogeneity (i.e. demographics) the way of modelling it in
a semiparametric model becomes an important issue. Blundell, Duncan and Pendakur
(1998) show that if the demographic composition enters in a partial linear way (as in
Robinson (1988)) the conditions for the consistency of the consumer theory impose strong
restrictions on the functional shape of the Engel curves. The shape invariant model arises

because a generalization of this model needs to be considered to incorporate the hetero-

'Wilke (2003) proposes a modification of Pinkse-Robinson and Hardle-Marron estimator that also solves

for the local minimum problem at the true value of the parameters.
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geneity in tastes that arises from the demographics (Blackorby and Donaldson (1994)).
This more general model rescales the total expenditure variable inside the unknown func-
tion by the demographic composition . To obtain a good estimate of the parameters
that rescale the total expenditure for different demographic groups is important in order
to semiparametrically estimate consumption based equivalence scales. Blundell, Duncan
and Pendakur (1998) use the British Family Expenditure Survey (FES) to estimate Engel
curve relationships with this extended partial linear model using the Pinkse and Robinson
(1995) estimator. We use the same FES data and obtain estimates of the finite dimensional
parameters of interest using SLS estimator for multiple equations. We compare our results
with the previous estimates that can be found in the literature from the Pinkse-Robinson
estimator and also from the modified estimator proposed by Wilke (2003). 2

This paper is organized as follows. Section (4.2) introduces the notation and the
model used throughout this work. Section (4.3) discusses the previous approaches to
estimate the model and the computational problems they face. Section (4.4) proposes an
alternative method to estimate the parameters of the model by using a modified version of
SLS and Section (4.5) gives sufficient conditions for the identification of these parameters.
Section (4.6) establish the large sample properties of the SLS estimator for a system of
equations. The optimal weighting matrix for the different equations is discussed as well
there. Section (4.7) shows some Montecarlo experiments that demonstrate the estimator
we propose performs better than the early previous estimators proposed in the literature in
finite samples when gradient methods are used to compute the minimum of the objective
function. Section (4.8) applies the SLS estimator to the estimation of Engel curves using

the British Family Expenditure Survey and Section (4.9) concludes.

4.2 Model and Notation

The shape invariant model is described as follows. We observe J different outcomes for
the same individual. Random vector W = [W), ..., W] denotes the J different outcomes
and X and Z are exogenous variables. The supports of exogenous variables X and Z are

denoted by 2x and Qz, respectively. We also use Qg?) and Qg? to denote the supports

‘In this work, we abstract from the problem that might arise due to the endogeneity of the total
expenditure, since it is likely to be simultaneously determined with budget shares. To adjust for this
endogeneity problem has been found to be important as documented in Blundell, Chen and Kristensen
(2003).
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of the conditional random variables X|Z = 0 and X|Z = 1, respectively. Let denote by
Y = (W,X,Z) € R% the observable random variables with dy, = J + d; + d, where d;
and d, are the dimensions of X and Z, respectively. All the equations share the same

exogenous variables and the system of equations is defined as follows
wj; = ¢ (T — chzi) +agjzi +€ji (4.1)

for j = 1,..,J where i = 1,...,N refers to individuals and j refers to the outcomes.
The vector of parameters in the linear part of the conditional mean is denoted by a =
[a},d,....a}). Let A C R’/% and C C R% be the parameter space for a and c, respectively.

The function ¢ R— R for j =1,...,J is not known. We assume conditional mean

independence of the errors and the exogenous variables
E(ej|z,z) =0 for all j.

The unknown conditional mean function differs across outcomes and also the coefficients
ag; in the linear part of the model are equation-specific. However, the parameter ¢y im-
bedded inside the unknown function ¢ is common for all the equations.

We assume that Z are binary discrete variables taking only values {0,1}. Let Z, for
1 < r < d, be an element of random vector Z. This allows one to interpret the r — th
element of parameter ag; as the vertical difference in the conditional mean E(wj|z) between
observations with Z, = 1 and the sample with Z, = 0. The r — th element of parameter ¢
implies an horizontal shift of the conditional mean function of observations with Z, = 1
with respect to observations with Z, = 0 and it also implies a change in the slope of
both conditional mean functions. In this way, we can also compare the nonparametric
regression curves of observations belonging to different groups defined, for example, by a
combination of two different elements Z, and Zs for r # s of random vector Z. Throughout
the paper however, for simplicity, we restrict ourselves to cases where d, =1 and d, =1
so that parameters ¢ and a; are unidimensional parameters for j = 1,...,J.

In the application of the estimation of Engel curves where demographic adjustments
are taken into account, wj; is the budget share for good j and household i, z; denotes the
logarithm of total expenditure and z; is a discrete variable taking value {0,1} describing

to which demographic group observation ¢ belongs to.
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4.3 Previous estimators for the shape-invariant model

We focus on the case where Z is unidimensional and can take only two possible values
{0,1}. Let denote the conditional mean function of w; given = for each of these two

subsamples as
e§~0)(:ci) = E(wjlzi, Z; =0) = ¢;(x:)
@) = Bl Zi=1) = ap; +6;(z: —co) (42)
so that the following relationship holds
(0)

J

(1

e, (zi) = agj +e; (z;—co) for j=1,....J (4.3)

Hardle and Marron (1990) and Pinkse and Robinson (1995) discuss estimators of para-
meters ag and ¢g for a wider class of models than the model outlined above. Thus, ex-
pression (4.3) relates both conditional means by two linear transformations (known up
to a finite number of parameters) of the regression function ¢ : one for the argument
and another one for the function itself. In this work, we restrict ourselves to this case.
However, Hardle and Marron (1990) cover the more general case where both transform-
ations are non-linear and Pinkse and Robinson (1995) consider the case where only the
transformation to the function is linear, but the transformation of the argument of e(® is
not necessary linear.?

The relationship between both conditional means expressed in (4.3) allows one to
understand the estimators proposed in the literature of shape invariant estimation. These

estimators are obtained through the minimization of the following loss functions. Hardle

and Marron (henceforth, HM) suggest to minimize with respect to a and ¢

* Although not discussed by the above mentioned authors, this framework allows for Z being discrete
(not necessarily binary) variables and multidimensional Z. In the case of Z taking for example values
Z ={0,1,2}, the following relationships hold

1
e (z1)

2
e§- Nz)) = 2ao, +e§0)(1'i — 2¢o)

agj + ego)(fw —¢o)

for j = 1,..., J. In the case of multidimensional Z, similar relationships can be found among the conditional
mean functions defined as

e*Na) = E(wylai, 2y = 5, Zo: = 1)

for s,t = {0,1}. The weight that each of the above equalities should be given in the estimation is rather

important and not discussed in the original set up where these estimators were introduced.
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LM (q zj: /.—. { (]) -a; — é;o)(:c - c)} : w(z)dx (4.4)

where w(z) is a weight function which is nonnegative and positive only on the interior
of a compact interval [z,Z] and e“) (z) and é;o) (xz — ¢) are consistent estimators of the
conditional mean functions deﬁned in (4.2). Let define the conditional mean functions as
(@) = r{(@)/ V(@) and ¢ (z — ) =
1"](-0) (z —¢)/f©(z — c). Pinkse and Robinson (henceforth, PR) suggest to modify this loss
function by multiplying by f(o)(a: — ) * fM(z) so that

the the ratio of the following two functions: e

J F
a0 =3 [ [/ = i) - 0, 0@ fO e = ) = FO@F e - 9] wiz)da
j=1"%
(4.5)

The reason Pinkse and Robinson argue in order to modify Hardle and Marron’s loss
function is for computational purposes in the derivation of the asymptotic properties,
since the ratios of nonparametric estimators have been replaced by multiplications whose
properties are easier to compute.

The weight function w(z) not only selects the integration limits [z, Z] but also helps in
the efficiency of the estimator. The appropriate choice of the integration limits is crucial
to define both objective functions and for the performance of the estimator, even if e(!)
and e(® were known functions. This is because the integrand in (4.4) is not defined if

z — ¢ does not lie in the support Qg?

), Therefore, in order for the objective function to be
well defined for each value ¢, the intersection of the supports Q( ) +en Q( ) should not
be empty and [z, Z] should be chosen to lie in this intersection. This is because we need

1)

to integrate over values z belonging to the support Qg( such that if we substract c still
belongs to the support Qg?) .When both random variables X; and Xg have full support on
the entire real line, this problem does not exist because e®) can be defined at any value
of z and c.

When functions e and e(!) are unknown and need to be estimated, the loss functions
should be integrated over a range of x such that both conditional means are consistently
estimated and are well defined. Let consider the weighting function as the indicator
function that takes only value 1 in the intersection of supports Q()?) -+ ¢ and Q(;) (i.e.
w(z) = l{x € Q()(())-{-CHQ(;)}). As Hardle and Marron point out, the fact that the weighting
function and therefore the integration limits depends on the value of the parameter ¢ makes

that the loss function is minimized attaining value zero at those arbitrary high or small
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values of ¢ such that the intersection of the supports is empty and the indicator (weighting)
function is always zero. Since they reckon that this feature imposes some difficulties in
the computation of the estimator, they suggest to establish a priori a compact set C with
feasible values for parameter ¢ and then define the weighting function as
w(z) = [[Hz € QF) +enaf’}
ceC

There are two drawbacks of defining the weighting function in this way. First, to
determine a reasonable set of values ¢ for the transformation of the argument of the
unknown function might not be easy for some applications, where depending on the shape
of ¢; a graphical analysis beforehand may not be very informative. Second, if the variables
Xo and X7 have compact support and the compact parameter space C is big enough, then
the set of values of x where one can evaluate the loss function might become very small.
If this is the case, some identification difficulties may arise then because as it is formally
shown below, the parameters are identified under the nonlinearity assumption of ¢, for
at least one j = {1, ..., J}. This nonlinearity assumption might be violated if the support
where we evaluate ¢ is very small and the function is approximately linear over this range.

Alternatively, Pinkse and Robinson define the weighting function such that takes only
nonnegative and positive values on the interior of a compact interval where all the points
z satisfy fO(z —¢) > 0 and f(U(z) > 0 for ¢ € C. The objective function takes value
zero at those values of ¢ for which there is no value of z such that densities £ (z —¢) and
fM)(z) are both bounded away from zero. Again, if one knows that random variables X
and X have full support on the real line, then the weighting function w(z) =1 for all «
belonging to the support of X.

In practical terms, the choice of the integration limits for « should guarantee that
estimates f(o)(w —c¢) and f(l)(w) are consistently estimated away from zero for cvery
x € [x,Z] for each value of ¢ € C. Even if X has full support on the real line, the observed
supports in finite samples denoted by Qg?) and Qg}) are compact sets. Thus, although
f(z - ¢) may be bounded away from zero, it might be the case that (z — ¢) is outside
the observed (or estimated support) Qg?) , in which case f©(z — ¢) is not going to be
consistently estimated bounded away from zero. It is possible to estimate consistently
both densities for those values of = belonging to the intersection of the observed (or
estimated) supports Qg) and QS?) +c.

Following the same reasoning as before, the minimum of the objective function is

attained at zero for those values of ¢ that make the intersection Qg}) N Qg?) + ¢ to be
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empty. A look at the support of X for both demographic groups determine the set of
values of ¢ that could potentially be identified from the data by yielding a value of the
loss function different from zero. The case in which we are interested (and also the one

that implies some computational difficulties) is when
co € C = {c € C such that QS})DQE?)ch;é @}

such that the loss function attains only a local minimum at cp.

To illustrate this, Figure (4.1) plots the nonparametric kernel densities of fO(z; —
¢) and f)(a;) using the FES data described below in the empirical section for each
observation z; of random variable X; (log total expenditure for demographic group Z=1)
and for different values of ¢ = {1,2}. As parameter c increases, the points at which we
should evaluate the nonparametric density of demographic group Z = 0 lie outside the
observed support of Xg in the data so that f(©)(x; —¢) is not consistently estimated away
from zero for these points. Thus, in this particular case, if ¢ is much higher than 2 there
would not exist overlap between the observed supports Q(;) and Q()?) + ¢ in the data.

The top graphs in Figure 4.2 show the loss function for PR and HM estimators with
respect parameter ¢ for the Monte Carlo simulations reported in Section 4.7 (see details
there). Both random samples for X; and X were drawn from different normal distribu-
tions. The loss functions are evaluated at ag. It should be pointed out that the corres-
ponding loss function with respect to parameter a behave nicely as expected being globally
concave. Those values that do not belong to C' are easily identified from the graph since
they give zero value to the loss function. Also the true loss function for HM where function
¢ is assumed to be known is plotted, but also choosing the integration limits for = as a
function of ¢ and of the supports Q()?) + ¢ and Q(;) These graphs illustrate the difficulties
that arise in the minimization of HM and PR loss function to find the local minima that
it is close to the true value of the parameters (ag, cg).*

The minimization of both loss functions LM (a,c) and L”%(a,c) with respect to a
and ¢ should be constrained so that ¢ € C. However. it is unlikely that this might solve

the local minimum problem because of the particular behavior of the loss functions inside

'For each value of c, the intersection between the observed supports of the drawn data is computed.
Once the integration limits are set, the integral is computed using the middpoint approximation (see Judd
(1998)). Other alternatives include the use of the observations belonging to the computed intersections
of the supports to compute their sample mean. The loss functions computed in this way perform slightly
worse than the ones using the middle point approximation, since as ¢ increases the number of observations

in the intersection decreases quickly.
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the parameter set C. The difficulties in the computation of the minimum of loss functions
LPR and LM is that they tend to zero as the intersection Q(;) N Qf,?) + ¢ becomes very
small as ¢ increases in absolute value, until the intersection becomes empty and then the
weighting function gives zero value to the loss function.

This local minimum problem at the true value of the parameter has been solved in
different ways in the applications of these estimators. For example, sequential minimiza-
tion in a and ¢ has been proposed, using grid search for the optimization with respect to
parameter ¢ over a reasonable set of values (see Blundell, Duncan and Pendakur (1998)).
However, other standard and less tedious optimization methods would perform very poorly
given the behavior of the loss functions for PR and HM estimators.

However, grid search methods are computationally costly if the dimension of the para-
meters inside the unknown conditional mean function is high. That it is, if for example one
is interested in estimating the parametric shifts in the Engel curves with respect to both
the demographic composition of the household and the employment status of the head of
the household, the dimension of parameter ¢ in this case would increase the computational
cost of doing grid search over a set of reasonable values for these parameters.

Wilke (2003) solves this problem by modifying the above objective function of HM
(and also PR) by dividing for the density attained at the overlap of the corresponding
supports, which makes that the loss function increases when the intersection becomes
small and improves the performance of the estimator in finite samples. Thus, the loss
function for this estimator is modified in the following way

A(1 5 2
o @ [870) = 05 = €0 - 9] wiz)d

S 1o (@) w(z)da

LY (a,c) =

The third graph in Figure (4.2) shows this objective function and illustrates how his
modification can help in the estimation of parameter c.

This M-shape of the PR and HM loss functions with respect to parameter c is due to the
fact that the integration limits depend on ¢ and also because the functions f(©, e f(1)
and e!) need to be estimated using the observed supports Q()}) and Qg?). If we use the
information on the parametric form of functions e(!) and e(© and the full support of Xy
and X7 on the whole real line ensures that e(®) is well defined uniformly for all ¢ so that
the integration range for z can be defined independently of ¢, the last graph in Figure (4.2)

shows that the loss function would be globally concave also with respect to parameter c¢.
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Figures (4.3) and (4.4) show the different shapes of the loss functions for PR and HM
when the integration range for z is fixed for all ¢ and lies on the support where both
fO(z;) and f()(z;) are estimated consistently. These graphs illustrate that even if the
integration limit for z does not depend on ¢, the loss function would decrease as the value
of the parameter ¢ increases in absolute value as the estimates of fO(z — ¢) become
arbitrary small. This shows that the choice of this integration limit is very important in

order to obtain consistent estimates of the parameters.

4.4 Estimating the shape invariant model using SLS

We suggest to estimate the parameters of interest by using Semiparametric Least Squares
(henceforth, SLS) proposed by Ichimura (1993). With respect to the estimators proposed
by Pinkse-Robinson and Hardle-Marron, the modification of the estimator we introduce
here solves the computational problem of finding the local minimum attained at the true
value of the parameters. Additionally, with respect to all the estimators discussed in the
previous section, SLS constitutes a natural way of estimating the parameters of interest
and it helps to extend the idea of comparing nonparametric regression curves to more than
two independent samples (since Z does not need to be binary) or when the comparison
wants to be done in more than one dimension (when Z is multidimensional).

The identification conditions discussed in Section 4.5 ensure that the true value of the

parameters uniquely solves the following loss function °

{ao1,-.yaos,c0} = arg I(niI; L(a,c) (4.6)
J
= arg {mr)l E {[wj —zaj — E(wj — zaj|z — cz)]Q} (4.7)
a,c
b j:1

As discussed in Ichimura (1993), the variation in w; — za; for each j comes from both
variation of €; and (z — cpz) and also from the variation in z if a; # ajo. Therefore, if
index takes a constant value s, i.e. (z — cpz) = s and a; = agj, then the variation arises

uniquely from ¢;. Thus, the variance in loss function (4.6) is minimized when ¢ = ¢y and

“It is important to note the difference of this objective function with the one of NLLS where function

m is known up to ¢. Both objective functions differ at parameter values different from the true values since
E(w; — zajlz — cz) # m(z — cz)

if ¢ # co and a # ag
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a = ap; for all j. The objective function above focuses only in the minimization of the
variance of w; — a;z for each j. However, the same argument could be used to argue that
the covariance between (w; — za;) and (wy — 2za,) for j # r is minimized at the true value
of the parameters. Therefore, the argument above also suggest that the true value of the

parameters also minimize

{ao1, .. a0, 0} = (4.8)
/
wy — za; — E(wy — zaq|z — ¢2) wy — za; — E(w, — zai|z — c2)
arg min F : |4
(a,c)
wy — zay — E(wy — zay|z — cz) wy —zay — E(wy — zaj|z — cz)

where V is a semi-definite positive matrix of size J x J which can depend on the data. The
minimum of function (4.8) is also attained at E{e'Ve} where € = [e1;..;€5] when a = ag
and ¢ = cg.

If the conditional mean E(w; — za;|z — cz) is known up to a and ¢, the identification
conditions guarantee that the loss function is globally minimized at (ag,cp) as long as
density function of the index fx_.z(z — c¢z) is bounded away from zero uniformly in
¢,z and z, so that the conditional mean function is well defined. This last condition
holds if the random variable X|Z has full support on the real line uniformly on Z and
0 <Pr(Z=1) <1 as it can be checked from what follows. If the density function of the

index is evaluated at observations such that z = 1

fx—cz(x—c) = fx_cziz(x—cZ=1)Pr(Z=1)+ fx_cziz(x —c|Z =0)Pr(Z =0) =
= fx@|Z=1)Pr(Z=1)+ fx(z—¢c|Z=0)Pr(Z =0) (4.9)

and if one evaluates at observations such that z =0,

fx-ez(x) = fx_cz12(x|Z=1)Pr(Z =1)+ fx_cz2(2|Z =0)P1(Z = 0) =
= fx(z+cZ=1)Pr(Z=1)+ fx(z|Z =0)Pr(Z =0) (4.10)

In the application of this model to the estimation of demand systems where X is the
logarithm of total expenditure this condition holds since X|Z has indeed full support for
both Z = 0 and Z = 1. If this condition is not satisfied, then we would need to introduce

an indicator function I = 1{(z,2) € Q} inside the expectation in (4.6) where set Q is
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defined as follows

Q = {(z,2) € Qx x Qz s.t fx_cz(z —cz) > 0 uniformly on c€ C} D
(4.11)
O {(z,2) € Qx xQz st fx(z|Z=0) >0 and fx(z|Z =1) > 0}

Thus, if X is not a random variable with full support we should guarantee that we evaluate
the above expectations at values of = € Qx belonging to the intersection of supports Qgg)
and Q()}). Note that although both definitions of @) are equivalent, the second one does not
depend on the parameter space C.

Note that in the case of X with full support on the real line, the objective function of
the previous estimators does not have a local minima problem at (ag, cg) when function
¢ is known (see graph 4 in Figure (4.2)). In this case, the integration limits could be
defined independently of the value of ¢ and the objective function is globally concave with
respect to ¢. The problem with these estimators is that even in the case where ¢ is known,
if random variable X|Z does not have full support on the real line, the integration limits
for x should be chosen so that f(9(2 —c) and f()(z) are well defined. Then, either
one has a clear idea of the compact set where ¢y lies in and the weighting function and
the integration limits are chosen uniformly for ¢ € C, or the integration limits should be
defined depending on ¢ which leads to the unpleasant M-shape of the objective function
with respect to parameter c¢. Also in finite samples, this problem is present even if X|Z
has full support because the estimator should be defined with respect to the observed
supports Q()?) and Qgp.

In SLS, there exists still a computational problem when the conditional mean is un-
known and needs to be estimated. Consider the following SLS estimator where nonpara-

metric kernel estimators are used to obtain a sample analogue of (4.6)

{ay,...,ay,¢} = argl(fuir}lz(a, c) (4.12)
3 J , 2
where L(a,c) = ZZ [wij - zia; — Ep(w; — za;|z; — czi)} (4.13)
1=11€Q

o S (wny = zvay) K ((mempleee)

n

tn;—l Z:#K (((El—CZi);(l‘r’-CZr)>

and Eh(wj — zaj|z; —cz) =

n
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where K is a kernel function and h, is a bandwidth sequence dependent on the sample
size. Using only observations belonging to set @ helps to show the uniform convergence
of E‘h(wj — zajlz; — cz;).

Figure (4.5) shows the objective function L(c[ao) with respect to parameter ¢ condi-
tioned at the true value for a. It should be first said that the function achieves the global
minimum at the true value ¢y of the parameters when it is evaluated at the rest of the true
value of the parameters, which for example constitutes a difference with respect to the
PR function. It does not seem however that the optimization problem would encounter
less problems here to find the global minimum than the minimization of the objective
functions of PR and HM estimators in finding the local minimum close at (ag, cp).

The reason for the flat ends of the objective function in Figure (4.5) is that for arbitrary
big or small values of ¢ the estimated density for the index achieves its lower bound which
is independent of ¢ as explained in what follows. Consider the nonparametric estimation
of the density of the index for a given value of the bandwidth h,, for observations ¢ where

z; = 0. This density can be bounded below uniformly in ¢ by

<———>—{Z<>Z(—‘-———)>H

(&0:11) (ng — 1 hon Z K < > = Pr(z = 0) fx (]2 = 0)

where ng is the number of observations such that z = 0. And equivalently, it can be shown

= Inf

: f‘ ¢ ol
rec Fx—en(®i) ceC

that the lower bound for the estimated density of the index evaluated at observations i

=)+ (=)

We denote this lower bound of the density of the index by ﬁ)(:ci, 2;), so that

such that z; = 1 is given by

inf A_'ar—cl = inf|———
ceC fx—cz(zi = c) ceC

o | e (55

> 1’3‘r<z = 1)fx(zilz=1)

ib(2:,0) = Pr(z=0)fx(zi|> = 0)
Ib(z;,1) = Pr(z=1)fx(a:]z=1)

If a finite kernel is used, then the above inequalities hold with equality since

ZK(”‘“}L:_ ))lzo

2

inf
ceC
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when set C is large enough. In this case, the minimum estimated density for observation 1
is attained for arbitrary large or small values of ¢ at lAb(xi, z;). Note that in the population
fx—cz(x — cz) is strictly bounded above from the lower bound lb(z,z) if and only if
fx(z—c|Z =0) and fx(z + c|Z = 1) are bounded away from zero.

Let v, be the value of ¢ € C that minimizes the estimated density of the index evaluated

at observation i (i.c.y; = arginfece | fx—cz(zi — czi)|). Then the loss function for SLS does

13

not depend on parameter ¢ for those values of ¢ belonging to the intersection N ;7;,

0L(a,c) =0 for c € N7,

oc

since also the weights of the nonparametric kernel regression would not depend on c for
those values ¢ € N ;7;-

If ¢p € N™_,7;, the true value of the parameters would not be easily identified in finite

samples with respect to the other values of the parameters in M. ;~, since they would

attain the same value of the objective function. Therefore, we work under the assumption
that cog ¢ N_,7;. In the estimation, we would ideally want to rule out values of ¢ such

1=

that do not belong to NI ,v;. One possibility is to restrict the estimation to those values
of ¢ ¢ NI, in the same way that the estimation was restricted for the computation of
PR and HM estimators to those values of ¢ such that the intersection Qg}) +cn Qg?) is
not empty.

However, even if the estimation procedure focuses on those values of ¢ where the loss
function is not flat, the minimization routine might have difficulties in achieving the local
minimum located close to the true value of the parameters (ag,co) for certain starting
values due to the shape of the objective function even if one constrains the minimization
routine to find values of the parameter such that ¢ ¢ N'_;+, In this sense, this is a problem
shared also by the PR and HM objective functions. The objective function with respect to
¢ decreases as ¢ becomes arbitrary large or small because the density of the index attains
its lower bound ﬁ)(xz, z;) for more and more observations.

For computational purposes, we implement the SLS estimator modifying the objective
function so that, for each ¢, we divide by the number of observations where the estimated

density of the index does not attain its lowest bound Ib

. 2
J
) el 2ieQ [w” — 705 — Ep(w; — za5lzi - Czi)}

LQ(CL?C) = 1 N —
L Y ien 1{ fxoez(wi = em) = B, 2) > 0}

(4.14)
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and ﬁg(a,c) =0if1 {fX—cZ(fEi - cz;) —l/l\)(xi,zi) > 0} =0, Vi € H. The set H is
defined as

H = {(z,2) € QxxQz s.t fx(z—c|z=0) >0 and fx(z+c|z = 1) > 0 uniformly on c € C}
(4.15)

This implies that for those observations (z;, 2;) € H, the indicator function evaluated
at the true densities 1 {fx_cz(z: — c¢z;) — lb(z;, z;) > 0} equals 1 uniformly on ¢ € C. This
helps in concluding that the asymptotic properties of the estimators that minimize Lsy(a,c)
and L(a, ¢) are similar. However, the indicator function evaluated at the nonparametrically
estimated density of the index and its lower bound can be different from one for some
observations belonging to set H.

The objective function is defined to be 0 for those values of ¢ € Nicyy;. Since for these
values of the parameters, the objective function achieves the global minimum, we also
constrained the optimization to those values of ¢ & Niepy;.8

It is important to note that the limiting objective function of objective function ]flg(a, c)
is that same as for L(a,c) as it will be formally shown in the Section on the asymptotic
properties of the estimator. Thus, this modification of the objective function does not
have any implication in terms of identification. Additionally, one could think that this
modification has made that the objective function is non differentiable with respect to
parameter ¢, which could potentially complicate the asymptotic properties of the estim-
ator. However, since in the limit this indicator function would attain value 1 for all the
observations i € H uniformly on ¢, also in the limit the denominator would not change

over ¢ € C. We discuss these arguments rigorously in Section 4.6.

“One could also think that a trimming indicator that selects those observations where the estimated
density of the index does not attain its lower bound would help in the performance of the estimator with

respect to parameter c. That it is an estimator that solves the following objective function

J .

Lay(a,c) = %;; 1 {f‘\»_cz(x,- —cz) — l’l\)(;r,,:l) > O} [‘lU,j — zia; - Ey(w; — za5]z, - C:,)]z
Some simulation exercises, similar to the ones presented later in this work, were performed for this
estimator. Although in principle, the local minimum problem for arbitrary large values of ¢ is solved, the
estimator becomes unstable when parameter ¢ increases in absolute value and less and less observations
are used in the computation of the objective function. In finite samples, although the global minimum
is attained at the true value of the parameters when this modification is done, the objective function
might present some local minimum when very few observations are used. We decided not to include the
analysis corresponding to this modification of the SLS objective function in this work since the estimators

we proposed here perfomed better.
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To assess the impact of the discontinuity of the indicator function with respect to
parameter ¢ introduced in the denominator in (4.14), we also examine the properties of an
analogous estimator where the indicator function is substituted by a continuous although
non-differentiable function that converges to the above indicator function as sample size

increases. This alternative estimator minimizes the following objective function

A 2
R 7—11 Z;‘]——-l ZieQ [wij - ziaj - Eh(’LUj - zajlmi - czi)]

Folee) = & LicH Sh {fx—cz(ilfz' — czi) — Ib(zs, Zz‘)} 10
where
sp, {z} = 1{z <0}0 + 1{z > 0} [~ exp (—%) + 1] (4.17)

and ng(a, ¢) =0if sy, {fx_cz(fcz' —cz) — lAb(:cz, zi)} =0, Vi € H. Note that lim, .« sp, {z} =
1{z > 0} when h,, — 0 as n — c0.”

Figure (4.6) shows the SLS loss function with respect to ¢ for the true value ag and
for the optimal bandwidth that minimizes the Cross Validation function evaluated at the
true value (ag,cg) which is denoted by hg. Two different objective functions are shown:
(i) objective function with a constant trimming of the 2% of the smallest densities, (ii)
modified objective function Lg(c|ag) in expression (4.14). Figure (4.7) shows in addition
the behavior of objective function Ls(c|ag) with respect to parameter c.

Figure (4.8) shows the same objective functions and the graph below represents the
number of observations for which the estimated density of the index does not attain its
lower bound l/l\)(a:,, z;) for each value of parameter c. As ¢ increases in absolute value, for
more and more observations the estimated density of the index attains its lower bound.

As it was pointed out before, it is also important to note that the global minimum for

"An alternative to this function sp,, is

= ()

where F'is a normal cdf. This is a continuously differentiable function that also converges to the indicator
function when h,, — 0 as n — oo. Using the modified f,a(a,c) with this definition of sy, does not help in
the computation of the global minimum in finite samples though. The reason is that for those observations
where the estimated density of the index attains its lower bound, this definition of function s, gives them
value F(0) not value 0. Because of this, it can be checked that the shape of the objective function in this
case does not help in avoid the local minimum for arbitrary large or small values of ¢. Thus, the s function
defined in (4.17) is a continuous although nondifferentiable function which also converges to the indicator

function as h, — 0 but it gives value 0 for those observations where fx_cz(:ri —€zi) — l’l\)(z“ z)=0.
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these three objective functions is located near the true value of the parameters. However,
the behavior of the modified objective functions here helps in obtaining a solution to the
minimization problem near the true value of the parameters. It avoids that the minim-
ization of the SLS loss function gives solutions for parameter ¢ close to the constrained
set and far away from ¢y as it would be the case if gradient methods were used in the
minimization of L(a, c).

It is important to point out that in this work we do not consider the optimal choice
of the bandwidth. The large sample properties discussed below are derived for a fixed
sequence of the bandwidth that satisfies the conditions to be established below. There-
fore, the bandwidth is not considered as an additional parameter with respect to which
the objective function needs to be minimized. Hardle, Hall and Ichimura (1993) show
that for single index models, solving for the optimal value of the bandwidth jointly with
the parameters of interest is optimal for both the estimation of {ao,cp} and function ¢;.
Whether this result still holds for objective function Ly(a,c) and Ls(a,c) where the de-
nominator depends both on h, and c is left for future work together with the simulations

and estimations based on this joint optimization.

4.5 Identification

Let consider the identification of (ag, ¢g) in the model given in (4.1). The true value of

the parameters are identified if
zaj + E(wj — ajzlz — cz) = zagj + ¢;(x — coz) as. inx,z for j=1,...,J
implies a; = ag; for j =1,...,J and c = ¢p
Theorem 8 If there is a set S C Qx x Qz such that
0< Ezix—cz(Z]|z —co2) <1 (4.18)

for (z,2) € S and there is at least one j* € {1,...,J} such that @,. is differentiable and

satisfies the following condition
a+ @t +8) =9;.(t) as int if and only if « =0 and 3 =0 (4.19)

, then both parameters ay and cy are identified.
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Proof. Consider an alternative value of the parameters {a, c} such that
zaj + E(w; — ajz|z — cz) = za0; + p;(T — cpz) as. inz,z for j = {1,...,J}  (4.20)

and denote by t = x — cz and E(wj» — a;+2[t) = ¥,;.(t), so that the above expression for

j = 7* becomes
Vaje (1) = 2z(agj> — aj+) + ;- (t + (c — )2) as. int,z
Consider the case where Z takes only two possible values: Z = {0, 1} so that

Pojr(t) = (aoj* —aj+) + . (t+(co —¢c)) as. at t for 2 =1
Yaje(t) = @j(t) as. at ¢t forz=0

Then,
(agj* = aj+) + @j.(t + (co — ¢)) = ;. (t) a:s. tif and only if aj+ = ag;» and ¢ = ¢p

so that {ag;-,co} are identified if function ;. satisfies the identification condition in
(4.19). The rest of the parameters ag; for 7 # j* are identified as follows. Since ¢p is
identified, then (4.20) implies

z(aj —agj) + E(agjz — a;jz|z — coz) = 0 as. in x,z for j* # 5

If the identification condition in (4.18) holds, the above expression implies that a; = ag;
forj#45* 1

Note that the identification condition (4.19) does not hold if ;. is linear in its ar-
gument, since the above equality implies (ag;» + o) — (a;j+ +¢) = 0. Thus, when @;. is
linear both parameters a;- and c cannot be separately identified. An implication is that
the parameters of the model are not identified if function ¢; is linear for all the equations.

Note that an equivalent condition to (4.19) is that
@i (t+ B) = ¢} (t) as. tif and only if =0

so that the parameters are not identified if ¢, is a cyclical function for all j. These

identification conditions are similar to those obtained by Chen, Blundell and Kristensen
(2003).
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4.6 Large Sample Properties of the Estimator
We use the following shorthands for the conditional expectations
m;i(., a,c¢) = E(w; — az|z; — cz;)
and the corresponding nonparametric estimators
mj;i(.,a,c) = Ep(w; — az|z; — cz;)

Also, m;(.,a,c) = [mi(.,,q,¢),...,miy(.,a,c)] and m;(.,a,c) = [Mi1(.,q,c),..., (., a,c).
The density function of the index and its corresponding nonparametric estimation is de-
noted by fei(.,¢) = fx_cz(x; — czilc) and fc_i(.,c) = fh‘x_cg(xi — cz|c), respectively.
Let denote by fi(.) = fx(x;) and fi(.) = fnx(z;) the true density function of X at
and its corresponding nonparametric estimation. Analogously, the estimated lower bound
for the estimated density of the index is denoted by lAbz = ﬁ)(x'i,zi) and its population
counterpart by lb; = [b(z;, z;). The subscript c tries to differ between the density function
of the index (which depends on ¢) and the density function of random variable X (which
does not depend on ¢). The m; functions are infinite dimensional parameters and they
are real-valued functions that depend on data (X, Z) and on the finite dimensional para-
meters (a,c). The J—real-valued-function m is assumed to belong to a Banach space M
defining a class of some smooth functions defined over the domain of function m. Function
fe(.,¢) is a real-valued function that depends on data (X, Z) and on the finite dimensional
parameter ¢ while function f(.) depends only on data X. The arguments of m, f. and f
are sometimes omitted for simplicity.

The estimators obtained from (4.12) are shown to be consistent regardless of the correl-
ation of errors ¢; across j. However, if this correlation exists, a more efficient estimator is
obtained by taking it into account and giving different weights to the correlation between
different equations in an individual specific matrix Vi, which is estimated from the data
of order (J x J) and it is estimated from the data. With the aim to gain some efficiency,

we define the following M-estimator of (ag, ¢p) that minimizes loss function

1 )
Lia,e) = =3 Liq(yi, &, (,0,)) (421)
=1
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where

Uy, a,mi(.,a,c)) = (4.22)
= B(yiv a, M b, ('7 a, C))If/inB(yi) a, mi,hn(’v a, C))
wit — ziay — By, (w1 — za1|z; — cz;)
where B(yi,a,m;p, (., a,c)) =

Wiy — 20  — EA‘j’hn (wy — zaj|z; — cz)

and I = 1{(z4, z;) € Q} for set defined as in (4.11).

Therefore, function B is a known, J—vector-real-valued function of Y and unknown
parameters (a,c,m(.)) € AxC x M. For simplicity in the notation, we also omit the
dependence of the nonparametric estimators of the bandwidth and this dependence is
assumed when the functions are estimated.

For the modification of the SLS estimator proposed above in expressions (4.14) and

(4.16), the function ! should be respectively defined as follows

B(yi, a, (., a, (:))’\A/,L-,LB(yi,a, mi(.,a,c))
% ZiEH 1 {fX—cZ(ﬂ?z' —cz) — ﬁ?(wi,zz) > 0}

ba(yi, @, ¢, (. a, ¢), fe, b) = (4.23)

B(yi,a,rhi(.,a, c))"an(yi,a,?’hi(.,a, C))
%Zie}{ Shn {fX-cZ(wi —cz) — ﬁ)(mi, zi)}

l3(y’i)a" ¢, m’i<'aaac)7fca l’l\)) - (424)

where fo = [fo1(1€),.., fon(, @) and Ib = [Ib1(.),..,Ibs(.)) . In the Consistency
and Asymptotic Normality Sections we derive the asymptotic properties of the estim-
ator defined in (4.12) and the sections below (4.6.1) and (4.6.2) point out the additional
conditions that need to be added to show the asymptotic properties of this alternative
estimator.

4.6.1 Consistency

We expect the probability limit of the objective function in (4.21) to be L(a, c)

L(a,c) = E [quB(y,u,m,-(.,a,c))’VZ-B(yi,a,mi(.,a,c))]
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where plim Vi, = V;. To show the convergence of L(a,c) to L(a,c) uniformly on (a,c),

define the following function
L*(a,c) =

I—rlz ZIiQB(y,a,mi(.,a, ¢))'ViB(yi,a,m(.,a,c))

i=1]

Since L(a, ¢) — L(a, ¢) = L(a, ) — L*(a, ¢) + L*(a, ¢) — L(a, ¢), the uniform convergence

is shown from the following two results
L(a,c) — L*(a,¢)| & 0 and |L*(a,c) — L(a,c)] & 0

uniformly over (a,c) € AxC

Assumption 4. 1 The observed sample y; = {w;, z;, T;}i—; are i.i.d. and its first r—moments,

r > 2, exists and there does not exist linear dependence among the explanatory variables
Assumption 4. 2 The unknown functions {¢,(t), ..., ;(t)} are continuous
Assumption 4. 3 The parameter space (A x C) is compact

Assumption 4. 4 The set QQ defined in (4.11) is a compact subset of Qx x Q5

Assumption 4. 5 The vector of expectations m;(.,a,c) = E(w; — ajz|z — cz) for j =

1,..,J are continuous functions of (z — cz)

Assumption 4. 6 For each ¢ € C, the index X — c¢Z has an absolutely continuous distri-

bution such that its density function f.(u,c) is continuous in u

Assumption 4. 7 The kernel function K(u) is continuous and K(s) =0 ifs < —1 and
s>1; [ K(u)du = 1;|K(u)| is bounded, K(u) is continuously differentiable and ‘uguﬂ

is uniformly bounded

Assumption 4. 8 For each observation 1, plimn_,oof/m = Vi, where V; is a positive semi-

definite matrix
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The assumptions 4.(1) - 4.(4) ensure that the conditions for the Uniform Law of Large
Number are satisfied (see Lemma 2.4 in Newey and McFadden (1994)) in order to show
that |L*(a,¢) — L(a,c)| 2 0 uniformly in (a, c).

On the other hand, regarding the second uniform convergence result, note that

li(a, ) — L*(a, c)\ <

1 — . - ) . )
< ;{ ZIiQB(yiaav mi(.,a, C))"/inB(yhaami(-’a)C)) - IiQB(yi,(LaTni('vav c))'V}B(y,-,(L,mi(.,a,c)) +
i=1
(4.25)
1 7n
+|= > LigB(yi,a, (., a,¢)) ViBlyi, a, (., a,¢)) = LigB(yi, a,mi(, a, €)' ViB(yi, a,mi( ., a, ¢))
1=1

(4.26)

The uniform convergence in probability to zero of these three terms above is studied
formally in the proof of the consistency theorem. In particular, the uniform convergence
of term (4.26) requires the uniform convergence of the nonparametric conditional means,

which is satisfied under the assumptions above.

Theorem 9 Under assumptions 4.(1)-4.(8) and the assumptions of Theorem 8 (Identi-
fication Theorem), if the bandwidth satisfies the following condition

lim ——h(+2/7) = oo (4.27)
n—oo Inn
.then the estimator defined by
n
(a4,¢) =arg min — LoB(yi, a,m (. a,¢)) Vin B(ys, a, i, (., a, ¢))

(a,c)eAXC T =

is a consistent estimator of (aop, co).
Proof. See Appendix. W

Additional conditions for consistency of the modified SLS estimators

In order to show the uniform converge in probability of the objective function Ly(a, ¢) and
Ls(a, c) to the limiting objective function, the convergence in probability of La(a,c) — L(a,c)

and |Ls(a,c) — L(a,c)| uniformly in (a, c) needs to be added to the original consistency
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proof. The theorem in this section shows this under the following additional conditions.
Let denote by n1, ng and ngy the number of observations with z = 1, z = 0 and belonging

to set H, respectively.

Assumption 4. 9 h, —» 0 asn — oo

Assumption 4. 10 Let pp = limp—,00 22 and p; = limp 0 2

n
f(z]2) is uniformly continuous in the real line and [ |f(z]z)| dz < co uniformly in 2

Assumption 4. 11 The characteristic function of the kernel function K is absolutely

integrable
Assumption 4. 12 limg, =2 =1

The following two lemmas are useful before showing the consistency of the alternative

estimators.

Lemma 8 (Uniform Convergence in probability of the indicator function) Under
assumptions 4.(1)-4.(7) and 4.(9)-4.(12),

n—oo icH,ceC

lim Pr ( sup ‘1 {fi,c(.,c) —-l?)i > 0} = 1{fic(.yc) = lb; > O}I < 6) =1
Proof. See Appendix W

Lemma 9 (Uniform Convergence in probability of function s) Under assumptions
4(])'4(7) and 4(9)'4r(12)7
lim Pr ( sup .shn(ﬁ-vc(.,c) - l?)l) - 1| < 6‘) =1
n—o0 1€ H ceC

Proof. See Appendix B

The two lemmas above use the result of the uniform convergence in probability of
the nonparametric estimators of the conditional mean and the uniform convergence of
fx(z|Z = 0) and fx(z|Z = 1) to the truc densities uniformly in z. The assumptions
4.(9)-4.(11) together with the following bandwidth conditions

noh? — oo and nih% — 0o as n — 0o

- which are indeed implied by condition in expression (4.27) and assumption 4.(10)- guar-
antee that this is the case (see Pagan and Ullah (1999)).
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Theorem 10 (Consistency) Under assumptions 4.(1)-4.(12) and the assumptions of
the identification theorem (8), if the bandwidth satisfies the following condition

lim ———h (1+2/7) = o0 (4.28)
n—oc Inn
,then the estimators defined by
ds,C2) = arg min L a,c
(ag,¢é2) 8 o hin 2(a,¢)
as, ¢ = arg min L a,c
( 3 3) g(aC)GAXC 3( )

are consistent estimators of (agp, o).

Proof. See Appendix B

Note that the crucial uniform result in Lemma (8) does not hold if it is defined
over a different set (not a subset) of H. This is because the uniform convergence of
[1{fic(.,c) =1b; >0} —1| on ¢ € C and on ¢ might not hold if we do not restrict the
set for the observations to set H, where the indicator equals one uniformly on ¢, by defin-
ition of this set. This is the reason why in the definition of the objective function lig(a,, c)

and Ls(a, c) the sum of the corrected denominator is defined over set H.

4.6.2 Asymptotic Normality

The estimator that minimizes the objective function in ﬁ(a, ¢) solves the following system

of equations
—ZLQ () B(i, &, (., @, c))]/f/ B(y;,a,m;(.,a,8)) =0

where

Via By (. 0,8) = | D (—x— 2plind)) | O]

Oa; dc
where D(-z — d—mla%zﬁ;—)) is a matrix of order (J x J) where the only elements different
from zero are the elements in the diagonal and the element (j x j) in the diagonal takes

value —z — 2@%}1— Since by the assumptions above B is a differentiable function of the
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parameters, doing the usual Taylor’s series expansion of B around (ag, cy) we obtain

A(t72)-
¢ —cp
1 n -1
— {E Z IiQV(a‘C)B(yi, a, 7’724'(., a, é))/%nV(a‘c)B(yi, a, ﬁli(., a, 5))} X (429)
1=1

x [-———\/ﬁ g 1oV (a.0) B(yi, @, (., 4, c))'VmB(yi,ao,mi(.,ao,co))} (4.30)
=1

Two main results allow one to obtain the asymptotic distribution of (a,¢) : (i) the
convergence in probability of the hessian term (4.29) to a positive definite matrix and (ii)
the convergence in distribution of term (4.30) to a normal distribution.

Additionally to the assumptions needed for consistency, the following assumptions
should be satisfied:

Assumption 4. 13 The unknown functions {p;(t),...,;(t)} are continuously differen-
tiable of order g + 1 where g > 2

Assumption 4. 14 The functions fc.(u,co) and E (z|u) are continuously differentiable in

u of order g + 1

Assumption 4. 15 The conditional expectation functions m;(.,a,c) = E(w; —a;jzlx—cz)

forj=1,..,J and E(z|x — cz) are continuously differentiable in (x — cz)
Assumption 4. 16 The density function f.(u,c) is continuously differentiable in u
Assumption 4. 17 K(u) is twice continuously differentiable and satisfies

400
/ wK(u)du =0

J =00

fors={2,...,q—1}

Theorem 11 (Asymptotic Normality) Under assumptions 4.(1)-4.(17), if the band-

width sequence satisfies the following conditions

Jim RN < oo (4.31)
lim Vrhi = 0
n—oQ
Vit = oo
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Then,the Hessian term in (4.29) converges to a positive definite matriz H

1 ¢ S o
g ZIZQ [V(a,c)B(yiﬂ) mi(wa)C))]/%n [v(a,c)B(yiaaa mi(.,a,c))] L H
i=1

where

H=F [IQA(y)'VA(y)]

and

a) = [ (- - 2mipeal) | o)

where D(x) is a diagonal matriz where the elements in the diagonal are the elements in
vector x, the score term in (4.30) converges in distribution to a normal random variable

as follows

1 n ) A o .
Vn > 1oV (0o Bir &, (., @, 8)) Vin B(yi, ag, i, ao, <o) < N(0,T)
i=1
where
Y= E{Ig[Aly) Vee'V[Ay)]}

so that the asymptotic distribution of the SLS estimator is

Proof. See Appendix. W

Equivalent asymptotic distribution for the alternative estimators

In this section we show that the asymptotic distribution of the estimators (dz,é) and
(a3, ¢é3) defined through the minimization of objective functions Lg(a,c) and Ls(a, c) is
the same as the estimator (@,é) defined through the original objective function L(a, c).

Formally, we show that

lim Pr(|lvn((az,é) - (a,0)]| >e2) = 0 (4.32)
Mlim Pr(|lv/n((as,¢3) = (a,6))]| > e3) = 0 (4.33)

for any €2 > 0 and €3 > 0. The probability in (4.32) can be rewritten as

Pr H\/ﬁ((&% 62) - (dv é))” > €,
1{f;,c(.,c) > o} = 1{fic(,c)—1b; >0} Vie H, VeeC

o Pr VR ((G2, ) — (a,8))]| > €2,
1 {fivc(.,c) — b, > O} # 1{fic(.,c) —lb; > 0} for some i € H or some c € C
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The second probability in the expression above converges to zero by Lemma (8). Re-
garding the first probability, note that if the indicator function at the estimated density
and lower bound equals one for all the observations in H and uniformly on ¢ € C, then

the objective function

Ly(a,c) = %f,(a,c)
so that both estimators are equal in this case and also the first probability converges to
zero.

A similar reasoning can be done to show the converges to zero of the probability in

(4.33). In this case, Lemma (9) can be used in the same way to show that

lim Pr (H\/ﬁ((fm,és) —(a,8)]| >e3) =

n—oQ
lim Pr vn (a3, ¢3) — (@,8))[| > e,
n—00 Sh, (fi,c(-, C) — ﬁ)z) =1 {fi,c(-,c) —1b; > O} Vie H, Ve e C

4.6.3 Optimal weighting matrix

The asymptotic variance of the SLS estimator defined in this paper depends on the limit V;
of the weighting matrix V;. In this section, we discuss the choice of this weighting matrix in
order to find the efficient estimator in the class of estimators defined by the minimization

of the sample analogue of objective function (4.8). When

V=E (ss’|y)_1

then, the asymptotic variance of the estimator equals

B{I8m) E (<) A0}

It can be then shown that if the (J x J) matrix F (e€’|y) is not singular, then the estimator
with V; = plim (V;) = E(e¢'|y:)"" is asymptotically efficient for this class of estimators.

Equivalently to the optimal minimum distance estimation, we need to show that

(E{IoA(y)VAW)}) ™ E{IoAWy) Ve VAY) Y (E {IoAWY) VA)}) ™ -
- (E{1aW'E (=) aw)})

is positive semi-definite for all positive semi-definite matrices V. Let define s = IoA(y)'E (ea’ly)’1 €

and t = IgA(y)' Ve, then the above difference between matrices can be expressed as
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(B{ts'}) " (E{e'}) (E{st'})” ~ (E{ss'})"

= (E{loAWw)'VA@w)}) ™ x E[UU] x (E{Igam)vaw)}) ™
with U = t — E{ts'} (E{ss'}) "' s. The above difference is positive semi-definite for all V
since E [UU'] is positive semi-definite.
4.6.4 Estimation of the Covariance Matrix

The asymptotic covariance matrix of the estimator can be consistently estimated by es-

timating both H and ¥ as follows,
. 1 & . A
= - i A i/ iA i 4.34
H nZIQ (y:) Vil (%) (4.34)
= }: A (v) ViediViA(ys) (4.35)

with
[ OF (w — az|z; — éz)

A(y;) = |D (—zi — E(z]z; - ézi)> , = 5

L

wyy — &,lz,; - F (w1 — d12|.7}i - ézi)

L Wiy — &le - E(’U)J — &lel'i - ézi)

The asymptotically efficient estimator discussed in Section (4.6.3) can be constructed
using a consistent estimator of E (e¢’|y) . The consistent estimation of this weighting
matrix can be obtained from a first step consistent estimation (& © c(o)) -using for example

Vi = I; where I is the identity matrix of order (J x J)— which is then used to construct

a consistent estimator of the optimal weighting matrix f/i*

-1
e _ [ 1 x—a0)200
‘/i = (;{ Zaz & (436)

where

Wy — dgo)zi - E (wl — a1 z|a: — &0 )

wiy -z~ E ('lUJ — D2z, - &0 )
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4.7 Monte Carlo Simulations

In this section we compare the performance of the estimators discussed in this work in
finite samples. We simulate a model with only one good (J = 1) with 200 observations

where the unknown function is

o1 (z) = —0.7 + 1.4z — 0.14z?
and the endogenous variable w; is generated as

wy = ag1z + ¢ (T +cpz) +e

with parameter values ag = 0.3 and ¢y = —0.3. The error e is normally distributed with
mean 0 and standard deviation g, = 0.2. 60% of the sample is generated so that it belongs
to the demographic group Z = 1. The distribution for random variable X is different
for each demographic group. The random variable X|Z = 0 is randomly drawn from a
normal distribution N(4,03);00 = 1.5 and X|Z = 1 is randomly drawn from a normal
distribution N(4.5,02);01 = 1. The function ¢,(.) satisfies the identification conditions.
The Montecarlo results with 300 trials for the different SLS introduced in this paper are
presented here. The value of the bandwidth is not considered as an additional parameter
and the results reported here are conditioned on the value of the bandwidth. The min-
imization of the objective function is done with respect to parameters (a,c) conditioned
on that value of the bandwidth -denoted by hg— that minimizes the objective function
evaluated at the true value of the parameters L(h|ag, o). The results for the estimators
minimizing respectively L(a, ¢) (trimming 2% of those observations with the smallest val-
ues of fx_cz(x—cz)), Ls(a, c) and Ly(a, c) for three different starting values are presented
in Tables (4.1) and (4.2). For each of these three exercises, the same starting value was
used for each montecarlo replication. The first two objective functions are minimized
subject to Y 1 ;1 {fi,c(.,c) —Ib; > O} > 0 and the third objective function is minimized
subject to > 7 sp, (fiyc(.,c) - l?)l) > 0. Thus, for L(a,c) the solution is constrained to
lie outside the set of the parameter space where the objective function is flat with respect
to ¢. For objective functions Lo(a, ¢) and Ls(a, c), the solution is constrained to lie outside
that set of parameter values where the objective function is exactly equal to zero
Different starting values deliver different results for each of the estimators. The first
set of results corresponding to the estimator that minimizes the original objective function

L(a, c) are notably sensitive to the starting value. Conditioned on ¢, the objective function

133



with respect to parameter a is globally concave, but the objective function with respect
to ¢ has local minima at arbitrary large or small values of c. As Figure (4.5) illustrates,
the starting value in this case determines the local minima given as a solution if gradient
optimization methods are used instead of grid search methods. For starting values (2, 2]
and [—1,1] -which are far away from (ag, cp)- this first estimator yields estimates with
high bias, especially for parameter c. The bias of both parameters is substantially reduced
as the starting value is closer to (ag,co). The standard deviation over replications makes
that the MSE is still high for parameter ¢ even if the starting value is relatively close to
the true value. A starting value that it is close enough to the true value ensures that the
global minima is achieved by the optimization method. Thus, the starting value [0.7, —0.7]
yields relatively good results and the smallest MSE among the results with three different
starting values.

Regarding the results for estimator defined through the minimization of Ly (a, ¢), if the
starting value is further away from the true value the estimator still delivers a distribution
of the estimated parameter ¢ with high MSE. Although the corrected objective function
Lo(clag) in Figure (4.6) is globally concave with respect to ¢ when it is evaluated at ag, the
behavior of this objective functions is not as nice when it is evaluated at a different value of
a. Figure (4.9) shows the objective function with respect to parameters (a, ¢) conditioned
on hg. As one moves a away from the true value, the objective function changes and it is
not globally concave as when it is evaluated at ag. This means that the starting value for
a is also important in this case in order to obtain unbiased results. Comparing this results
with the previous estimator in the same table, the results are better in the MSE sense
even for the starting value that is further away. This second estimator (g, é) performs
well for the last two starting values and the MSE is very close to zero when the starting
value is very close to (ap, ¢p).

The results for the SLS estimator that minimizes L(a,c¢) where the original objective
function is divided by a continuous approximation of the indicator function are presented
in Table (4.2). The distribution of the estimates over replications are quite robust to the
different starting values in this case and the MSE of both parameters are very small. This
is the estimator that works better in the simulations corresponding to one good.

Both the third estimator (where the original objective function is divided by s) and
the second estimator (where the original objective function is divided by the indicator
function) perform well even if the starting value is not placed close to the true values. The

reason why the third estimator appears to be more robust to the different starting values
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is that the objective function with respect to ¢ is concave even if a is not close to the true
value of ag as Figure (4.10) illustrates.

Tables (4.3) and (4.4) report the montecarlo results for the three previous estimators in
the literature for shape invariant models: Pinkse-Robinson (1995) (PR), Hardle-Marron
(1990) (HM) and the modification proposed by Wilke (2003). As expected from the
shape of the objective functions with respect to c for Pinkse-Robinson and Hardle-Marron
estimators, the solution is many times found at values of the parameters far away from the
true values. For these two estimators, the best results based on the MSE over replications
are found when the montecarlo experiment is designed so that the starting value is close
to (ag, cg). The rest of the results show that if the starting point is not carefully chosen,
this might result in high biased results. The estimator proposed by Wilke performs much
better regardless of the starting value and additionally delivers smaller MSE values for
the estimates than Pinkse-Robinson and Hardle and Marron estimators. The mean over
replications for the estimator proposed by Wilke is paradoxically worse when the starting
value is closer to the true value. This is due to isolated solutions for some replications
that are away from the true value, which makes that the distribution of the parameter
estimates is skewed. However, the median over replications is very close to (ayp, ¢p).

We also consider the multiple equation case (J = 2). The specific parametric condi-

tional mean functions ¢ are
@ (x) = =0.7 + 1.4z — 0.14z? and @,(z) = 2 + log(z)

and the dependent variable for each equation is generated with parameter values [ag1, apz, co] =
(1,-2.5,0.5]. Here we present results for the case where the errors of each equation e; and
ey are not independent. In this exercise, e; ~ N(0,0%), o1 = 0.2 and ey ~ N(0,03),
o2 = 0.5 with correlation coefficient p;o = 0.6. Given that for the single equation case we
have concluded that the estimators defined through the minimization of objective func-
tions Ly and L perform better than when the original objective function is used, we only
present here results for these two estimators and for the estimators introduced previously
in the literature. For the SLS estimators, the optimal weighting function V* is used, which
is estimated as described in (4.36) from a first step consistent estimators [&go) ,&(20),&(0)]
where W = I; (identity matrix of order J) is used as a weighting matrix. The first step
results for the modified SLS estimators are very similar to the second step results with

slightly smaller standard deviation over the replications. We omit these first step results
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here. The results for multiple equations (J = 2)8 are presented in Table (4.5) and Table
(4.6) for different starting points. The first set of results corresponds to a starting value
which is not so close to the true parameters. For this reason, the results from the PR
and HM estimators deliver quite high MSE since they must have found a solution in a
global minima away from the true value. Their performance is significantly worse for
parameter ¢ and in the case of HM even for parameter az. Among the rest of parameters,
the modification proposed by Wilke of the previous estimators produces very good results
with MSE quite close to zero. Regarding the SLS estimators, they also perform better
in this case than PR and HM estimators with the gradient computational methods used
in the optimization. The MSE is quite low for parameters a’s and it is slightly larger
for parameter c. The difference in the performance of the estimators obtained through
the modification of the original objective function for SLS with respect to the estimator
obtained through the modification of PR or HM objective function (Wilke) is due to the
different curvature of these objective functions around the true value of the parameters.
Thus, looking at the shape of both functions, the slope of the modified objective functions
Lo and L with respect to parameter c¢ is much more constant around (ag,cg) than the
modified objective function proposed by Wilke. This explains the difference in accuracy
in the estimates of ¢ in the results presented for these three estimators. When the starting
value is designed to be closer to the true value of the parameters (See Table (4.6)), the
PR and HM results improve in the MSE sense though in the case of the PR estimator
the bias corresponding to parameter c is still quite high. In this set of estimates, the
SLS estimators provide a mean over replications that it is closer to the true value of the
parameters while the standard errors are only slightly smaller and still higher than the
dispersion over replications of the estimates provided by the estimator proposed by Wilke.
Between the two alternative modifications of SLS proposed in this paper, it should be
pointed out that better estimates are obtained from the minimization of Ls(a,c). The
mean over replications is closer to the true value of the parameters and the variance of
the estimates over replications is also smaller. Additionally, this estimator turns out to be
more robust to the starting value used.

Therefore, in general, these simulation exercises suggest that when standard gradient
methods are used in the optimization the right choice of the starting value is quite im-

portant for the results of the estimators previously suggested in the literature to estimate

*1 should point out that qualititavely similar results were obtained in a simulation experiment with 3

equations.
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shape invariant models, and also for the SLS estimator in its original formulation. If the
starting value is not close to the true value, these computational methods deliver as valid
solutions minima that are far away of the local or global minimum that is close to the
true value of the parameters. Obviously, other types of optimization could be used if this
property of the objective function is know a priori, such as grid search methods. However,
these methods are computationally costly if parameter ¢ is multidimensional, for example
when the differences between nonparametric regression curves with respect to more than

one variable want to be studied.

4.8 Empirical Application

This section applies the SLS estimation of shape invariant models to the estimation of
Engel curves for different demographic groups using British Consumer data. To do so,
we use the same data as in Blundell, Duncan and Pendakur (1998). Thus we use cross
sections 1980-1982 of the British Family Expenditure Survey (FES). Only households with
one child (Z = 0) or two children (Z = 1) and with married and cohabiting couples where
the head of the household is employed are selected in this data. The selected sample is
then homogeneous with respect to other demographic variables. It contains six categories
of goods (food, domestic fuel, clothing, alcohol, transport and other goods). See Blundell,
Duncan and Pendakur (1998) for more details on the selection of the sample. There is a
total of 1519 observations where 594 of them belong to demographic group 0 (one child)
and 925 of them belong to demographic group 1 (two children).

We use the alcohol budget shares to compare the estimators discussed in this paper in
a single equation model. These results are shown in Table (4.7). Different starting values
were used to guarantee the robustness of the results presented here and the solution
that provided the minimum value function was selected. No grid search methods were
used for parameter ¢. As the montecarlo experiments suggested, the estimates (ag, ¢3) are
more stable to different starting values than the estimates we obtained for (a9, ¢;), but
we find similar results for both of them after trying different starting values. We also
present here for comparison the results of the estimator that minimizes the original SLS
objective function L(a,c) with 2% of observations trimmed. The same set of results were
obtained for different values of the bandwidth (h = {1,0.5,0.25,0.1}) and the estimates
attaining the smallest value function are presented here. For each estimator, the value of

the bandwidth at which we find the minimum of the objective function is shown in the row
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named by h. The covariance matrix is estimated as described in (4.6.4). The covariance
matrix estimation for HM and Wilke estimators is done using the asymptotic distribution
computed in the corresponding papers. 9

It can be checked that the estimates of ¢y are very different for each estimator con-
sidered. The values of the estimates for ¢ are especially different for the estimates obtained
through the minimization of the original SLS objective function (column (1)) and PR and
HM estimators which , as we discuss in the montecarlo section, are likely to have achieved
a local minima far away from the true value of the parameter. The sign of ¢ in column (1)
and in PR gives us also a hint that this might be the case. This is because c is interpreted as
the equivalence scale between households with two children and households with one child.
A negative value of this parameter does not have an economic interpretation given the two
demographic groups under consideration. Given the relationship e(!)(z) = a + e (z —¢),

a positive value of ¢ denotes the amount of additional total expenditure that should be

“Applying the asymptotic result of Hardle and Marron to the linear case we consider here, it can be
shown that their estimator is asymptotically normally distributed with zero mean and variance given by

Vv
o) () [ (o s

which is estimated using the corresponding nonparametric estimates of e, e!%) and the estimate for co.

Wilke (2003) provides the following asymptotic distribution for the modified estimator he proposes in

his work
a — ao —1 -1
\/H(A )—»N(O,H VH™)
C— Co
with
1 e (z — ¢g)/Bc
H = 9e(0) (0) 0 : IEQS‘())+CHQ§)
0e'®) (x — ep)/0c (38 (z~ Co)/ac)
vo- & ((’wl _ 8(1)(1‘))2 N (,wo _ 6<0)(l‘ _ CO))z) 1 36(0)(2 - CO)/aC ) re Q(O) +en Q(l
Ti(2)? folz)? 8e® (z — ¢o) /e (ae<°>(z ~ co) /ac) ~ N

An estimate of this matrix of variance and covariance is obtained by replacing the conditional mean
and density functions by its nonparametric estimation. Note that although the estimator is defined with
the integral over the intersection of the supports = € Qf\g) +énN Qg}), the above matrices are computed
with those observations in the data belonging to the intersection of z € Qf,?) +¢éNn Q(\l) This implies some
inconsistency of the standard errors provided with respect to the estimation method used. Although we
have computed Wilke’s modified estimator by simulating the integral over z, he implements his estimator

by miniming the sum of square losses over the observations instead of computing the integral.
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given to a family with two kids in order to have the same budget share on alcohol as the
households in the reference demographic group (households with one kid).

Almost all the estimators (with the exception of HM) yield negative estimates of agiconor
which implies that for a given value of total expenditure, households with two kids devote
a smaller budget share to alcohol than families with one kid.

Given the evidence obtained from the Montecarlo experiments, the estimates to be
viewed as more reliable are those in columns (2), (3) and Wilke. The estimated standard
errors are relatively small in these three cases, especially for the SLS estimates. Given that
these three estimators give estimates that are almost statistically different, some goodness
of fit criteria allowing one to choose among these three different estimates is left for future
versions of this work.

Table (4.8) reports the estimates from the SLS estimator with multiple equations that
minimizes the objective function Ly(a,c) which divides the original objective function by
the number of observations for which the estimated density is above its lower bound.
Four results are presented for different values of the bandwidth A = {0.1,0.25,0.5,1} and
different starting values were used. For each value of the bandwidth, the solution yielding
the smallest value of the objective function is reported. It is important to note that the
estimates are not robust to changes in the value of the bandwidth. In many of the cases,
especially for the estimates corresponding to the linear part (parameters a), there are even
changes in the sign of the estimates we obtain. This implies that the optimal choice of
the smoothing parameters turns out to be very important for this particular estimator.
The results corresponding to h = 0.5 attain the smallest value of the objective function.
Comparing these results with the ones reported in Blundell, Duncan and Pendakur (1998)
(for reference they can be found in Table 4.10)) corresponding to the Pinkse-Robinson

estimator!?

, it can be checked that the estimates for parameter a are very similar for
all the goods although the estimates for parameter c¢ are significantly different in both
cases. The SLS estimator yields an estimate of ¢ = 0.0558 while the estimate given by PR
estimator is ¢ = 0.2590. The estimated standard errors for the SLS estimates lead us to
conclude that for h = 0.5, the estimates of parameter ¢ are not statistically significantly
different from zero. The estimate of ¢ presented in Blundell, Duncan and Pendakur (1998)

is more precisely estimated !. This difference is even bigger if one compares the results

'“In order to obtain these results the authors describe that the optimisation method involves gridsearch

over parameter ¢ over a reasonable set of vlaues.
"'Since grid search is used for the computation of the estimate of ¢, the bootstrap standard errors for ¢
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with the ones reported in Wilke (2003). More similar results with respect to parameter ¢
(¢ = 0.2010) can be found when the smoothing parameter is set to A = 0.1 (for which the
value function at the estimates is slightly higher than for the global minimum) and the
estimated standard error for parameter c is also smaller in this case. Thus, the conclusions
from the results of this estimator is that the estimates (and their corresponding standard
errors) are not robust across different values of the bandwidth and the optimal choice here
seems important. The estimated ¢ for this version of SLS is smaller than the previous
estimates that can be found in the literature for both the global minimum found when
h = 0.5 and for estimated values close to the global minimum when A = 0.1.

Table (4.9) presents the results from the SLS estimator that minimizes the objective
function Ls(a,c), which divides the original objective function by the sum of continuos
functions s converging to the indicator function as the sample size increases. In contrast
to the previous SLS estimator, the results in this case are much more stable across dif-
ferent values of the smoothing parameter h. The objective function attains its minimum
at the estimated parameters when h = (0.1. The estimates were also very robust across
the different starting values. When comparing these results with PR and the modified
estimator proposed by Wilke, one can check that the estimate of ¢ is smaller for the SLS
than for the previous two estimators. The standard error for ¢ in our case is smaller than
the bootstrapped standard errors given by Blundell, Duncan and Pendakur (1998), how-
ever the parameter is estimated more precisely by Wilke. Note though that there exits a
trade off in the standard errors he reports for parameters a and c¢. While the parameters
in part a are much more precisely estimated by the proposed estimator in this work, his
estimation of ¢ is very precise.

The similarities of the estimates for a of this version of SLS with respect to PR and
Wilke differ across the goods. The coefficients belonging to the linear part of the specific-
ation have the expected sign given the definition of the two demographic groups under
consideration. In the PR and Wilke estimates, those coefficients whose sign is opposite to
the expected one turn out to be not significantly different.

The results we observe from the data are in line with the Montecarlo experiments. The
estimator proposed by Wilke and the SLS estimator that minimizes objective function
Ls(a,c) are robust with respect to different starting values and in the case of the SLS,

more stable for different values of the bandwidth. The estimates of the equivalence of

are generated through repetition of the gridsearch process for 500 bootstrap samples.
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scale are statistically different though for both estimators. The modified SLS we propose
gives an estimate ¢ = 0.1936 (with standard error 0.0245) and the modified PR estimator
proposed by Wilke gives an estimate of ¢ = 0.3926 (with standard error 0.0086).The
reported estimate of ¢ by Pinske and Robinson lies between both values. It should be
pointed out that this estimate has been obtained at a higher computational cost since the
computational procedure involves grid search methods and much different results would
have been obtained if gradient methods were used. The other two estimators however

obtain their estimates at a lower computational cost.

4.9 Conclusion

In this work we have provided an alternative way of estimating the parametric transform-
ations of a shape invariant model that relate nonparametric regression curves for different
samples by using the Semiparametric Least Squares (SLS) estimator (Ichimura (1993)).
The previous estimators that can be found in the literature (Hardle and Marron (1990)
and Pinkse and Robinson (1995) imply extensive computational methods because their
corresponding objective functions only attain a local minimum at the true value of the
parameters and, in addition, their shape do not help in obtaining consistent estimates.
In order to avoid these disadvantages, some modifications of these estimators have been
already proposed by Wilke (2003). The shape invariant model can be interpreted as a
single index model and therefore SLS constitutes a natural and efficient way of estimating
the parameters of interest.

We also find that the objective function in the original framework of SLS involves some
computational difficulties as well. Thus, the partial derivative of the objective function
with respect to the parameters imbedded in the unknown function is zero for arbitrary
large or small values of this parameter, where the objective function attains a local min-
imum. The intuition is that when this parameter is arbitrary large in absolute value,
the nonparametric estimation of the conditional mean function evaluated at a particular
observation gives zero weight to those observations belonging to a different sample. In
other words, only the observations belonging to the same sample are used and therefore
the objective function does not change with respect to the parameter that captures the
horizontal shift among regression functions for different samples . For this reason, we pro-
pose two possible modifications of the objective function that the SLS estimator minimizes

which help in computing estimates for this parameter. The idea of both modifications is
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that the objective function is divided by the amount of observations for which the estim-
ated conditional mean function still depends on the value of the vertical shift parameter.
The greater this parameter in absolute terms, the fewer this observations for which this
property holds and this makes the objective function increase for these values of the para-
meter and ease the computation of the minimum. One of the modifications implies that
the objective function is divided by an indicator function that depends on the value of
the parameters and the another proposed estimator corrects the objective function by a
continuos function that converges to the indicator function as the sample size increases.

In the Montecarlo experiments we perform, this second modified estimator performs
better than the original formulation and than the corrected objective function by the
indicator function. We find that when gradient methods are used in the computation, the
performance of the previous suggested estimators highly depends on the starting values.
If these are not carefully chosen, the shape of the objective functions makes that its
minimization yields local minimum as valid solutions which are far away of the true value
of the parameters.

The limit of both corrected objective functions coincides with the limiting function in
original framework and also the corrections do not depend on the parameter value in the
limit. This implies that the identification conditions and the asymptotic properties are
equivalent for the three cases.

Additionally, it can deal automatically with the comparison of regression curves for
more than two samples or with respect to more than one variable and because grid search
methods are not needed in the computation, this increase in the dimension is computa-
tionally feasible.

Given that we consider the case where we observe multiple endogenous variables for
each individual, we adjust the SLS estimator to deal with the estimation of a single index
mode] with multiple equations. This allows one to account for the existence of correlation
of the errors among equations for each individual. We also give sufficient conditions that
the unknown functions in the system of equations should satisfy in order to identify the
finite dimensional parameters of the model. We establish the asymptotic properties of the
SLS estimator with multiple equations and discuss the optimal weighting matrix across
equations in order to obtain an efficient estimator for this subclass of estimators.

A single index model with the form of a shape invariant model arises in the estimation
of Engel curve relationships (Blundell, Duncan and Pendakur (1998)). We use the British

Family Expenditure Survey to apply the different estimators discussed in this work to
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estimate consumption based equivalence scale between households with two children and
households with one child. In this empirical application, we find that the suggested estim-
ator where the objective function is divided by the indicator function is less stable than
when the denominator depends on a continuous function. And it is also less robust to the
choice of the smoothing parameter. The estimator that divides the objective function by
the continuous function converging to the indicator function together with the estimator
proposed by Wilke (2003) were the estimators that performed better in the simulation. In
the data though, we find different estimates of the equivalence scale parameter.

There are some issues that are not addressed in this paper and that would be worth-
while to investigate. First, given the alternative estimators for the parameters of the shape
invariant model, it would be interesting to compare their asymptotic efficiency and study
whether under some weighting schemes the SLS with multiple equations achieves the ef-
ficiency bound for single-index models (Newey (1990)). This would allow us to conclude
that the SLS estimator with multiple equations is asymptotically more efficient that the
early proposed estimators and that even the modified versions of them. A second point
would be to study the large sample properties of the estimation of the infinite dimensional
parameter given by the unknown function for each equation. And finally, as the Monte-
carlo simulations and the empirical application pointed out, the choice of the bandwidth
might be important for the robustness of the estimates. For this reason, analysis of the
optimal choice of the bandwidth for the modified estimators and the asymptotic properties

of the estimator that considers the bandwidth as an additional parameter are in order.
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4.10 Tables
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Table 4.1: Simulation results for SLS

: Part 1. 300 trials. n=200 and J=1

Statistics over replications mean st. dev. Qs Q25 @50 Q75 Qos MSE
(1) (4,&) =argming, ¢y L(a, c)

starting value : [2,2]

ap = 0.3 -0.403 0.489 -1.345 -0.625 -0.259 -0.104 0.020 0.732
co=-0.3 4.613 1.719 2.605 2.706 5.290 6.129 6.490 27.090
L(a, ¢, ho) 0.045

starting value : [—1,1]

ag =03 0.371  0.353 0.072 0.250 0.294 0330 1.170 0.130
cp =—0.3 -0.920 2.483 -7.104 -0.412 -0.218 -0.025 1.325 6.549
L(a, ¢ ho) 0.041

starting value : [0.7, —0.7]

ap = 0.3 0.272  0.195 0.192 0.277 0.304 0336 0.368 0.039
co =-0.3 -0.133  1.098 -0.743 -0.434 -0.296 -0.149 0.205 1.234
L(a, ¢, ho) 0.040

(2) (8y,&,) =argming o) Lo(a, )

starting value : (2, 2]

ag = 0.3 -0.114 0.110 -0.199 -0.156 -0.110 -0.071 -0.011 0.183
co=—-0.3 2.665 0.421 2.556 2.654 2.698 2.727 2.792 8.967
L(a, ¢, ho) 0.071

starting value : [—1,1]

ag = 0.3 0.275 0.085 0.081 0.249 0.297 0.323 0.370 0.008
co =-0.3 -0.104 0.549 -0.608 -0.429 -0.277 0.001 1.280 0.340
L(a, é, ho) 0.043

starting value : [0.7, —0.7]

ap =0.3 0.309 0.050 0.232 0.285 0.311 0.339 0.384 0.003
co = —0.3 -0.347 0.257 -0.747  -0.496 -0.348 -0.193 0.090 0.068
L(a,é, ho) 0.042

Notes: These objective functions are conditioned on the bandwidth that minimizes the

Cross-Validation function evaluated at the true value of the parameters, or equivalently

fJ(h|ao, o), denoted by ho. The value function L(a,é, flo) reports the mean over replications of

the value of the function at the solution
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Table 4.2: Simulation results for SLS: Part 2 . 300 trials. n=200 and J=1

Statistics over replications mean  st. dev. Qs Qa5 @so Qs Qos MSE
(2) (43,83) =argming o) Ls(a, ¢)

starting value : {2, 2]

ap =0.3 0.320 0.082 0.000 0.313 0.0336 0.359 0.385  0.007
co = —0.3 -0.504 0.184 -0.750 -0.601 -0.524 -0.444 -0.000 0.075
L(a, ¢, ho) 0.309

starting value : [—1, 1]

ag = 0.3 0.337 0.0401 0.272 0.316 0337 0361 0.389 0.003
¢ = —0.3 -0.534 0.158 -0.760 -0.621 -0.546 -0.468 -0.331 0.080
L(a,é, ho) 0.328

starting value : [0.7,=0.7]

ap = 0.3 0.309  0.040 0.280 0.319 0.341 0363 0.394 0.003
co = —0.3 -0.557 0.122 -0.766 -0.639 -0.556 -0.479 -0.380 0.081
L(a, ¢, ho) 0.321

Notes: These objective functions are conditioned on the bandwidth that minimizes the Cross-
Validation function evaluated at the true value of the parameters, or equivalently L(hlao,co),

denoted by hg. The value function L(a, ¢, iLo) reports the mean over replications of the value of

the function at the solution.
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Table 4.3: Simulation results for previous estimators: Part 1. 300 trials. n=200 and J=1

mean  st. dev. Qs Q25 @s0 Q75 Qos MSE
starting value : [2,2]
Hardle-Marron estimator
ap = 0.3 -0.523  0.099 -0.655 -0.588 -0.528 -0.482 -0.346 0.687
co = —0.3 5.815  0.395 5.618 5.722 5.723 5.877 6.492 37.547
L(a,¢é) 0.001
Pinkse-Robinson estimator
ag =03 0.300  0.053 0.223 0.270 0.298 0.328 0.398 0.003
co = —0.3 4485 0.271 4.282 4.475 4.511 4546 4.587 22.972
L(a,e) 0.002
Wilke estimator
ap = 0.3 0.309  0.070 0.228 0.289 0.314 0.339 0.380 0.005
co = —0.3 -0.310 0.471 0.727 -0.501 -0.336 -0.167 0.116 0.222
L(a,é) 0.019
starting value : [—1, —1]
Hardle-Marron estimator
ap = 0.3 1.486  1.805 0.251 0.859 1.04 1.1560  5.905 4.665
o= —0.3 -2.526  4.467 -5.720 -5.720 -5.720 -0.142 6.493 24.914
L(a,¢é) 0.018
Pinkse-Robinson estimator
ap = 0.3 0.104  0.043 0.038 0.07r3 0.102 0.137 0.173 0.040
co = —0.3 1.743  0.111 1.672 1.718 1.745 1.781 1.827 4.184
L(a,¢) 0.0001
Wilke estimator
ap = 0.3 0.308  0.066 0.228 0.288 0.314 0.339 0.378 0.004
co = —0.3 -0.285 0.611 -0.721 -0.496 -0.335 -0.166 0.127 0.374
L(a,¢é) 0.019

Note: For these three estimators the integral over a range of x needs to be computed.

This is done using the midpoint formula to compute the integral of the objective

function with 100 points of support and they only use those values of X belonging to the

intersection between Qgg) +cN Q(;), taking value O for any value of x outside this

support. Cross-validated bandwidth was used for the estimation of the nonparametric

mean functions and density functions used in the loss functions of these estimators.
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Table 4.4: Simulation results for previous estimators:

Part 2 . 300 trials. n=200 and J=1

mean  st. dev. (s Q25 @50 Q15 Qo5 MSE
starting value : [0.7,—0.7]
Hardle-Marron estimator
ap=0.3 0.2451 0.2144 -0.3064 0.2788 0.3136 0.3412 0.3785  0.0490
co = —0.3 0.4497 2.2773  -0.7370 -0.5646 -0.3570 -0.1230 6.4926 5.7480
L(a,¢) 0.0164
Pinkse-Robinson estimator
ap = 0.3 0.3267 0.0384  0.2731 0.3044 0.3266 0.3493 0.3835 0.0022
co = —0.3 -0.7333  0.0430 -0.7481 -0.7401 -0.7356 -0.7309 -0.7248 0.1896
L(a,¢é) 0.41e-6
Wilke estimator
ap = 0.3 0.2431 0.2270  -0.3209 0.2796 0.3144 0.3413 0.3796  0.0548
¢ = —0.3 0.3838  2.1913 -0.7342 -0.5633 -0.3583 -0.1250 6.4926  5.2692
L(a,¢) 0.0169

Note: For these three estimators the integral over a range of  needs to be computed.

This is done using the midpoint formula to compute the integral of the objective function

with 100 points of support and they only use those values of X belonging to the intersection

between Qg?) +cn QSP, taking value O for any value of z outside this support. Cross-

validated bandwidth was used for the estimation of the nonparametric mean functions and

density functions used in the loss functions of these estimators.
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Table 4.5: Simulation results for SLS for multiple equations J=2 . 300 trials. n=200

mean  st. dev. Qs Q25 Q50 Qs Qos MSE

starting value [a,,a,,¢c] = [1,1,1]
(8y,82) =argming ¢ Lz(a,c)
agy =1 0.782 0.347 0.553 0.629 0.709 0.894 1.052 0.168
agy = —2.5 -2.849  0.272 -3.232 -3.058 -2.896 -2.612 -2.398 0.196
co =05 0.981 0.731 -0.377  0.3714  0.954 1403 2255 0.766
L(a,¢) 0.988
(83, 83) = argmin, ) Lsi(a,c)
apy =1 1.194 0.051 1.095 1.167 1.193 1.223 1.261  0.040
agy = —2.5 -2.227  0.102 -2.401  -2.281  -2.223  -2.168 -2.055 0.085
co=0.5 0.102  0.196 -0.262  -0.061  0.095  0.215 0.444 0.197
L(a,é) 0.651
Hardle-Marron estimator
ag =1 0.750  0.495 0.0325 0.386  0.715 1.025 1.427 0.308
agy = —2.5 -22.018 14.820 -34.160 -33.089 -32.140 -2.582 -2.363 600.58
co = 0.5 4.384 3.235 0.387 0.793 6.217 6.493 6.493 25.547
L(@, ¢) 0.040
Pinkse-Robinson estimator
ap; =1 0.958 0.026 0.913 0.940 0.955 0.975 1.002 0.002
agy = —2.5 -1.326  0.096 -1.492 -1.373 -1.314 -1.256 -1.192 1.38R%
co=0.5 5.303 0.075 5.191 5.258 5.297 5.345 5.387 23.077
L(a,¢é) 4.2¢-5
Wilke estimator
agy =1 1.020 0.405 0.946 0.999 1.020 1.048  1.079  0.002
agy = —2.5 -2.492  0.094 -2.665  -2.555  -2.480 -2.429 -2.352 0.009
co=0.5 0.646 0.156 0.382 0.545 0.639 0.751 0.901 0.046
L(a,¢) 0.123
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Table 4.6: Simulation results for SLS for multiple equations J=2 . 300 trials. n=200

mean st. dev. Qs Qs Q50 Qrs Qos  MSE

starting value [a,,a,,¢c] = [0.5,—-1,0.7]
(a,¢) = argming, ) Ly(a,c)
agr =1 0.989  0.044 0.908 0.958 0.992 1.021 1.053 0.002
agy = —2.5 -2.515 0.103 -2.708 -2.575 -2.513 -2.439 -2.364 0.011
co = 0.5 0.656  0.372 0.0285 0.3916 0.6172 0.8727 1.2540 0.1627
L(a,¢) 0.375
(a,¢) = argmin, Ls(a,c)
apg =1 1.165  0.041 1.091 1.139 1.163 1.193 1.226  0.029
ags = —2.5 -2.270  0.089 -2.434  -2.322 -2.269 -2.211 -2.127 0.061
co = 0.5 0.401  0.181 0.079 0.263 0.386 0.515 0.689  0.043
L(a,¢) 0.549
Hardle-Marron estimator
apgy =1 1.020  0.041 0.9444 0.999 1.020 1.048 1.073 0.002
agy = —2.5 -2.492  0.095 -2.684 -2.560 -2.480 -2.427 -2.360 0.009
co = 0.5 0.654  0.162 0.357 0.556 0.641 0.769  0.909  0.050
L(a,é) 0.1132
Pinkse-Robinson estimator
ag; =1 0.998  0.039 0.934 0971 1.003 1.021 1.065 0.002
agy = —2.5 -2.633 0.120 -2.856 -2.720 -2.634 -2.546 -2.442 0.032
cp=0.5 1.679  0.121 1.455 1.606 1.677 1.748 1.878 1.405
L(a,¢) 0.0001
Wilke estimator
a1 =1 1.022  0.041 0.946 1.002 1.020 1.051 1.074 0.002
agy = —2.5 -2.490 0.095 -2.680 -2.555 -2.478 -2.425 -2.352 0.009
cp=0.5 0.644  0.158 0.352 0.546 0.628 0.764 0.884  0.046
L(a,é) 0.122
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Table 4.7: Estimation using FES data for one equation. Alcohol Engel Curves. Results

for all the estimators functions

(1) (2) (3) HM PR Wilke
a -0.0357 -0.0139 -0.0112 0.0149  -0.0263 -0.0060
(0.0245)  (0.0038) (0.0036) (0.0047) - (0.0042)
é -1.9919  0.1020  0.1818  2.1772  -0.9417 0.2989
(0.0360) (0.0519) (0.0479) (0.4834) - (0.1157)
h 0.1 0.25 0.1
L(a,&) 1 0.0025 0.0040 0.0044  1.5¢-05 1.8e-05 0.0001

Note: Column (1) : (a,¢) = argmin, L(a,c); Column (2) : (ag,é&) = arg ming, () Lo(a, c);

Column (3): (as, é3) = argmin(q ) Ls(a,c). Standard errors in parenthesis.
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Table 4.8: Estimation using FES data for multiple equations: Engel Curves. SLS Estim-

ation when objective function is divided by the sum of indicator functions

Parameter arg min g ¢) La(a, c)

Bandwidth value h=0.1 h =0.25 h=0.5 h=1
~0.0054  0.0333 0.0247 —0.0850

@food (0.0056)  (0.0064)  (0.0065)  (0.0085)
~0.0085  0.0017  —0.0015  —0.0396

@fuel (0.0028)  (0.0029)  (0.0029)  (0.0043)
0.0118 —-0.0052  0.0002 0.0640

Qcloth

(0.0051)  (0.0054)  (0.0056)  (0.0074)
~0.0104  —0.0145  —0.0123  0.0067

falcohel (0.0034)  (0.0035)  (0.0035)  (0.0052)
—0.0045 00125  —0.0100  0.0199
Giransport (0.0055)  (0.0057)  (0.0056)  (0.0090)
02010  0.0053  0.0558 1.0248
¢ (0.0245)  (0.362)  (0.0624)  (0.0608)
Lo, ) 0.0451 0.0457  0.0448  0.0459

Note: Standard Errors in Parenthesis. Estimated Covariance matrix was obtained as
described in expressions (4.34) and (4.35). Consistent estimators with weighting matrix

Vi = I; are presented here.
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Table 4.9: Estimation using FES data for Multiple equations: Engel Curves. SLS Estim-

ation when objective function is divided by the sum of s functions

Parameter arg mingg c) L3(a,c)
Bandwidth value h=0.1 h =0.25 h=05 h=1
0.0069 0.0095 0.0184 0.0201
oo (0.0055)  (0.0061)  (0.0067)  (0.0054)
—0.0078  —0.0067  —0.0038  —0.0034
et (0.0028)  (0.0020)  (0.0096)  (0.0027)
0.0112 0.0096 0.0041 0.0035
fetoth (0.0050)  (0.0052)  (0.0056)  (0.0049)
~0.0104  —0.0098  —0.0111  —0.0111
(alcohol (0.0035)  (0.0035)  (0.0035)  (0.0034)
—0.0042  —0.0051 —0.0081  —0.0088
(ransport (0.0055)  (0.0056)  (0.0056)  (0.0056)
0.1936 0.1739 0.1130 0.1033
‘ (0.0245)  (0.0331)  (0.0656)  (0.1198)
Ls(a, ¢) 0.0487 0.0632 0.0960 0.1989

Note: Standard Errors in Parenthesis. Estimated Covariance matrix was obtained as
described in expressions (4.34) and (4.35). Consistent estimators with weighting matrix

V. = I; are presented here.
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Table 4.10: Estimates reported by Blundell, Duncan and Pendakur (1998) and Wilke
(2003) using FES data for multiple equations: Engel Curves.

Parameter
Bandwidth value | Blundell, Duncan and Pendakur (1998) Wilke (2003)
0.0281 —0.0292
a food
(0.0048) (0.2423)
-0.0013 —-0.0176
Q fyel
(0.0025) (0.0336)
-0.0018 0.0209
Acloth
(0.0045) (0.1238)
—-0.0121 —0.0009
Qalcohol
(0.0032) (0.0520)
-0.0100 0.0149
a Tanspor
franspert (0.0053) (0.1502)
0.2590 0.3926
c
(0.0809) (0.0086)

Note: Blundell, Duncan and Pendakur (1998) report results for FES data using Pinkse

and Robinson (1995) estimator. Standard errors in parenthesis.
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4.11 Appendix

We next present some lemmas that are used in the proof of Theorem (9) for consistency.

Lemma 10 Under assumptions (1)-(7), if

n

lim — A" = o
n—oolnn "
,then
sup [T h, (2, 25 0, €) — my(z, 250, )| L))
(z,2,a,c)€QXAXC
forg=1,...,J
Proof.

Assumptions 4.(1)-4.(7) and the bandwidth condition in (4.27) are sufficient to ap-
ply the Uniform Law of Large Numbers for U-statistics indexed by bandwidths (See in
Appendix in Ichimura and Lee (1991)) so that

1 1 (i —czi) — (Tr —czr)\ p , ,

r#i
(4.37)
1 "1 T, — czi) — (Tp — C2p
n-lZH’(“’”’z"a’j)K(( )h : )) 5 mj(zi, 2, a,0) fe (xi — czi, )
r#i n n
(4.38)

uniformly in (z;, z;,a,¢) € @ x A x C. To show the uniform convergence of the conditional

expectation, consider

sup 1T h, (2, 250, ¢) — Mj(2, 25 0,¢)| <
(z,2,a,c)€EQ x AXC

sup

< 1 "
il’lf(z,z,C)GQXC (fc (:C - CZ) C)) (.T,Z,G,,C)GQX,AXC

1M o (2, 230, ¢) fo (T — cz,¢) — l

“mj(.’L’, z;a,c)fc ('T — ¢z, C)

+ sup |mj(z, z; a, c)| sup
(z,2,a,c)€EQXAXC (z,2,a,c)EQXAXC

fc(a:—cz,c) -fc(:c—cz,c)i}

The conditional expectation is continuous by assumption 4.(5) in the index and @ x

A x C is compact, then m;(z, z; a, ¢) is uniformly bounded.
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The density f. (z; — cz;,¢) is bounded away from zero uniformly in (z,z,¢) € @ xC

by the definition of compact set in expression (4.11). This implies that for £ > 0

lim Pr (
n—oo

Therefore, applying the two uniform convergence results above in (4.38) and (4.37),

inf (fc(x—cz,c))' >e) =1

(z,z,c)€QXC

the uniform convergence of the conditional expectation follows. B

Proof. [Proof of Theorem (9)]

Given the assumptions in Theorem (9), the limiting objective function L(a,c) is a
continuous function of the parameters (a,c) and the identification conditions are also
satisfied so that (ag, cg) are the unique minimizers of the limiting objective function L(a, c).
Therefore, in order to show consistency, the only condition that it is left to be satisfied is
the uniform convergence in probability of the objective function to the limiting objective

function. Let consider the application the Uniform Law of Large Numbers to
9(y;a,¢c) = IgB(y,a,m(.,a,c))'VB(y,a,m(.,a,c))

The only condition from Lemma 2.4 in Newey and McFadden (1994) that it is left to
be satisfied is E (SUP(a,C)e(Axc) |g(y;a,c)|) < 00. By the existence of the moments in
assumption 4.(1), the compactness of (A x C) and the continuity of g with respect to y
for each value of (a,c), this dominance condition is satisfied. This shows that the ULLN

can be applied to g(y;a,c) and consequently,

|L*(a,c) — L(a, ¢)| 2 0 uniformly in (a, c)

A

In order to show the uniform convergence of |L(a,c) — L*(a, c)| in probability to zero,
the uniform convergence of terms (4.25)-(4.26) is studied.

Regarding the uniform convergence of term (4.25), assumption 4.(8) guarantees that
this term converges in probability to zero uniformly.

Regarding the uniform convergence of term (4.26), consider instead the uniform con-

vergence in probability of

L [0 LBy, 0, il 0, ¢) VB a0, )2 —
ﬁ [E?:l IiQB(yi7a7 mi(~) a, C))"/ZB(yh avmi('vav C))]1/2

1 .
N (iq > Si x B(ys, a,mi(.; a, )l = [llig X Si x Blys, a, ma(, a,0))[|] <

1

. 1 .
< ——T_l HI?'Q x S; X [B(yiya>mi('»avc)) - B(yi’a’ mi("a’ C))Hl = % ”I%Q X 8 X [mi("a” C) - mi(.,a, C)]”
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where the positive definite matrix V; has been expressed as V; = S[S;. Therefore the
uniform convergence in probability of (4.26) is satisfied when the uniform convergence of
mq(.,a,c) converges in probability to m;(.,a,c) uniformly in i € @ and (a,c), which is
satisfied under the above assumptions as stated in Lemma (10).

Proof. [Proof of Theorem (9)]

Given the assumptions in Lemma (9), the limiting objective function L(a,c) is a con-
tinuous function of the parameters (a, c) and the identification conditions are also satisfied
so that (ag, ¢g) are the unique minimizers of the limiting objective function L(a, c). There-
fore, in order to show consistency, the only condition that it is left to be satisfied is
the uniform convergence in probability of the objective function to the limiting objective

function. Let consider the application the Uniform Law of Large Numbers to
g(y;a,c) = IoB(y,a,m(.,a,c))'QB(y,a, m(.,a,c))

The only condition from Lemma 2.4 in Newey and McFadden (1994) that it is left to
be satisfied is E (Sup(a.c)G(AXC) l9(y: a, c){) < 00. By the existence of the moments in
assumption 4.(1), the compactness of (A x C) and the continuity of g with respect to y
for each value of (a,c), this dominance condition is satisfied. This shows that the ULLN

can be applied to g(y;a,c) and consequently,
|L*(a,c) — L(a,c)| & 0 uniformly in (a, c)

In order to show the uniform convergence of Ii,(a, ¢) — L*(a, c)| in probability to zero,
the uniform convergence of terms (4.25)-(4.26) is studied.

Regarding the uniform convergence of term (4.25), assumption 4.(8) guarantees that
this term converges in probability to zero uniformly.

Regarding the uniform convergence of term (4.26), consider instead the uniform con-

vergence in probability of

2 11 Lo B(yi, a, 1iu( ., 0, €))iuB i, a, 1iu( ., a, )] —
% [Z?:l [iQB(yi) a, mi(') a, C))IQiB(Z/i» a, mi('» a, C))]1/2

L

T

[HIiQ X S, X B(yi,a,mi(.,a,c))u — H],;Q X S,j X B(yi,a,mi(.,a, C))]H _<_

where the positive definite matrix €0; has been expressed as ; = S.S;. Therefore the

uniform convergence in probability of (4.26) is satisfied when the uniform convergence of
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m;(.,a,c) converges in probability to m;(.,a,c) uniformly in 7 € @ and (a,c), which is
satisfied under the above assumptions as stated in Lemma (10). W

Proof. [Proof of Lemma (8): Uniform Convergence in probability of indicator function]
Lemma (10) states the bandwidth conditions that are required for the uniform convergence
in probability of the kernel density estimator of the index. The particular assumption
required for the bandwidth is E’Z_nh" — 00, which is implied by the bandwidth condition
in the consistency theorem. The following result for the uniform convergence in probability

of the nonparametric estimated densities

Pr (sup
xz

for any € > 0 can be shown under the additional conditions in Assumptions 4.(9)-4.(11)

flz|z =§) - f(z|z = ])‘ > s) — 0 as nj — oo for j = {0.1}

and if ngh2 — oo and n1h% — 0o as n — oo (which is indeed implied by the assumptions
above and by the bandwidth condition in the consistency theorem in expression (4.27)).
The probabilities Pr (Z = 1) and Pr (Z = 0) are consistently estimated when both ng — oo
and n; — 00. These last two results imply the convergence in probability of ﬁ)(m,z) to
Ib(z, z) uniformly on (z, z).

Define (z, z,¢) = f.(z — cz,c) — Ib(z, 2) and t(z, z,¢) = fe(x — cz,¢) — Ib(z, ), then
the two uniform convergence results above guarantee the uniform converge in probability

to zero of (t(x, z,¢) — t(z, z,¢)) uniformly in (z, z, ¢)

Pr sup
(z,z,c)e HxC

> Pr ( sup  |i(z, z,0) — t(z, z,¢)| > 6)

(z,z,c)€H XC

folx —cz,¢) — f(z - cz,c)i + sup il?)(:z:,z) - lb(m,z)t >e | >
(z,2)eH

The same uniform convergence result applies to the following transformation of ¢

L{tn(z,2,¢) > 0} £ 1{t(z,2,¢) >0}

uniformly on (z, z,¢) € H x C, since the indicator function ¥(u) = 1{u > 0} is continuous
for all w > 0 and by the definition of set H in (4.15), t(z, 2,¢) > 0 for all (z,2) € H and
ceCc
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Proof. [Proof of Lemma (9): Uniform Convergence in probability of function s

sup lShn(fi,c (.,c)— lAbl) — 1’ <
1€ H,ceC

< sup I&m(ﬂp(»c)—Z&)—‘l{ﬁx(uc)—ihi>0}’+' (4.39)
i€ H,ceC

+ sup }1{fw (.,¢) — Ib; >O}—1{flc — Iy, >0}' (4.40)
i€ H,ceC

+ osup [1{fe (@i czie) — f (m) > 0} — 1] (4.41)
1€H,ceC

The convergence in probability of term (4.39) is satisfied by the fact that lim, . sp, (2) =
1{z > 0} uniformly in z if h, — 0 as n — co. To show the convergence in probability of
term (4.40) see Lemma (8). The last term equals zero by definition of set H. W
Proof. [Proof of Theorem (10) | Let first show the uniform convergence in probability

of function Ly(a,c) to L(a,c). Function Lo is set to zero for those values of ¢ such that

Zz 1 {flc )— l%i > O} = (. Define ((L*,C*) as

(a*,¢*) = arg sup | L (a, ¢) — L(a,0)

(awc)

Then,

Pr (sup Lo(a,c) — i(a,c)) > 5) =

Pr (sup Ly(a,c) — I:(a,c)‘ >e Z 1 {fi,ct(.,c*) — b > O} > O) Pr (Zl {fi'c*(.,c*) — b > 0} > 0) +

e ieH ieH

(4.42)

+Pr( - L(a,0) > e| Y1 {fir (1) = b > 0} = ) <Zl{fzc ) -1 >0} = 0)

*e icH byt

(4.43)

We next argue that term (4.43) converges to zero as n — 0. Note that by Lemma (8) we

can conclude that

<Zl{fm. — b >0}:0>—>Oasn—>oo

i€H
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Denote by Sp(c) =13 .41 {fw(, c) — Ib; > 0} . Therefore, we focus on the behavior
of the difference of ’ig(a,c) — L(a, c)} in that part such that S(c*) > 0. Then,

Pr (sup Lay(a,c) — I:(a,c)‘ > e|Sp(c*) > 0) <
1 > *
Pr (s%pll — Sn(o)] ms;lf L(a,c)i > e| Sp(c”) > O) (4.44)

This probability converges to zero if sup, |1 — S, (c)| converges to zero in probability and

if inf. |S,(c)| is bounded away from zero. Note that
sup |l — Sy(c)| < sup ‘1 - IL—]—{-’ +
c c n

+ sup |1{fic(.,c)=1bi >0} -1 {ﬁ,c(.,c) - ﬁ)l > OH
c,i€H

where ny = Y7, 1{i € H}. The second term from the above inequality converges to
zero in probability by Lemma (8). The first term in the above inequality converges to
zero under assumption 4.(12). Thus, as the number of observations increases we require
that the number of observations where the true density function of the index is strictly
bounded above from [b increases at the same rate as n.
Since 1 {ﬁyc(.,c) — b > O} converges to 1 {f;c(.,c) — lb; > 0} uniformly in ¢ and
25 1 el 0) =ty > 0} = 22
"icH "
for all ¢ € C, then we can conclude that inf. |S,(c)| is bounded away from zero.

An equivalent reasoning can be used to show the uniform convergence in probability
of |Ls(a,c) — L(a, c)’ to zero. By the uniform convergence of the nonparametric estimator
of the density of the index and of the estimator of the lower bound, by the definition of set
H and by the limit of function s, to the indicator function if h, — 0 as n — oo, Lemma

(9) in the Appendix shows

Pr ( sup jshn(ﬁjc(.,c) - ﬁ)z) - 1’ > 5) —0

i€H,ceC

which implies that term Pr (ZiEH Shn {fi,c" (.,c*) — l/l\)l} = 0) converges to zero as n — oo.
Therefore, in the limit, one should focus on the behavior of ‘I:s(a,c) - J:(a, c)\ when

> icH Shn {fi,c" (%) — ﬁ)z} > 0. In order to show that in this case, the difference ‘ig(a, ¢) — L(a,c)
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converges to zero in probability uniformly in (a,¢) and following the same reasoning as in

expression (4.44), it is sufficient to show that the following term converges in probability

to zero
su 1—125 {f ( c*)—l/l\)‘} <su '1——}+
cp n'eH e b ’ - cp
+ sup ll{fm —1b; > 0} — sp, {fw( c) —
ci€H

The uniform convergence to zero of this upper bound is again implied by Lemma (9) and
under under assumption 4. (12). W

Proof. [Proof of Theorem (11) | First we show the convergence in probability of the
Hessian to a positive definite matrix. Note that the hessian term in expression (4.29) can

be expressed as

~ZLQ B(yi, a,11%(., 4, 6))] Vin [V(a.0)B i, @, 110(., @, 2))] =

ZIZ-Q (Vi) B @, mi(, @, )] Vi [V (0o Blyi, a,mal, @, 6))] + (4.45)
=

+ ZI,Q () B, &,mi(,8,8))]’ (Vm - w) [V 0y Bys, &, ma(, 8, 8))] + (4.46)
+ZIZQ B(i, a,mi(,6))] Vin [V(ae)B®i, @& mi(.,8,8)) = V(0,0 B(¥i, & mi(., &, &))]

+ ZI’LQ [v(a‘c)B(y’iva'ami(w&)é)) - V(a,c)B<yi,d: m’i(w&a 6))]’{/”1 [V( )B(yha ml( a, E))]
=1

(4.48)

+ Z Iin(a,C)B(yia d’ Ifhi(" &7 é))/‘};n [v(a,c)B(y’iz a, ml() a, E)) - v(a,c)B(yia a, mi('a a, é))]
i=1

(4.49)

The first term (4.45) converges in probability to

om;(a -0,00)) dm(ag,co)]’ om;(ajo, co) dm(ag, co)
H=FE|Ip|D|—-2—- —1~2 — . 20,70 _ A0, 0/
[ @ { ( ‘ Oa; ' Oc VP ( z da; ) ’ dc H

by the Uniform Law of Large Numbers (Newey and McFadden (1994), Theorem 2.4)
and by the consistency of (@, é).
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The second term converges to zero in probability by assumption 4.(8).The third term
converges in probability to zero by the consistency of (@, ¢) and the continuity of function
B with respect to the parameters. In order to show that the terms (4.48) and (4.49)

converge to zero in probability note that

Viae)Bi,a,mi(.,a,¢)) = ViaoBlyi,a,mi(.,a,c)) =

D omj(aj,c)  Om;(a;,c) Om(a,c) 9m(a,c)
da; Oa; Jc dc

and moreover,
omj(aj,c)  Om,(aj, c)
Oa; Oa;

Therefore the uniform convergence of the derivatives of the nonparametric estimators

= E(z|z — cz) — E(z|z — cz) for all j

of the conditional mean, i.e.

Ormy(aj,c) _ Imy(aj.0)| p

sup E(z|z — cz) — E(z|z — cz)| & 0 and sup
(2,2,0,0)EQXAXC (@,2,0,¢)EQ X AXC Oc oc
for all j, guarantees the convergence in probability to zero of the last two terms. Under the
assumptions of theorem (11), if lim, F&'ﬂhiﬁ”/ Nt o 0o, this uniform convergence
result holds (see Lemma 4 in Ichimura and Lee (1991)).
We next show the convergence in distribution of the score term in expression (4.30).
First note that by the continuous differentiability of function B and the kernel function
K, by the consistency of estimators (&, ¢) and by the convergence in probability of Vi, to

V; uniformly on 4, one can focus on the following term
1 & R / )
%ZL’Q [V (a,e)B Wi, a0, (., a0, o)) ViB(yi, ag, (., ag, co)) | =
i=1

+ (4.50)

1 n
vn ZIiQ [V (a,0)B(¥s, a0, mi(., ag, Co))]l Vie;
i=1

1 & X
+ NG > Lig [Viae)B(i, a0, (., a0, 0)) = V(a,) B(¥i, a0, mi(., ao, co))] Viei | +
L =1
(4.51)
(1 & , )
+ N ZIiQ [V (a,0)B(¥i, a0, mi(., ao, &))]" Vi [mi(., ao, co) — (., a0, co)] | + (4.52)
A=

n

1 . N
+ Jn > L [Viae Bi, a0, mi(., a0, ¢0)) = Va0 Byi, a0, mi(., ao, €0))]" Vi [ma(., ao, co) — (., ag, co)]
L =1

(4.53)
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Central limit theorem applied to (4.50) shows that this term converges to normal

distribution with asymptotic variance given by ¥. The convergence to zero in probability

of term (4.52) is similar to term (4.51) and hence we omit it.
Convergence in probability to zero of term (4.53)

This vector of dimension (J + 1) x 1 can be written as

i (5m1i(~,010160) _ 91mii(,e10,¢0)

J X
dar Ja; ) > =1 Vig [maj(, a0, co) — (., a0, co)]

1 & :
_— I ‘ - ’
\/ﬁ Zl Q (d"lJ1(-7aJOaCO) _ 9myi(.,a40,¢0) J

1=

J J am,, (., s Ot ,@50,C0 N
L Zj:l Zs:] ( m, (a:yo co) ITL]l(BZ‘JO CU)) Vijs [mis (., ao, co) — Mis (., ag, o]

oy e, ) =1 Vis [maj (1, a0, co) — 1;(., ao, co)]

(4.54)

where V; ;¢ represents the element (7, s) of matrix V;. Let introduce the following notation

for the estimated and true conditional mean functions. Let m;(., a;,¢) = ri;(., a5, ¢)/ fic(., ¢)

and my;(.,aj,¢) = fij(.,aj,c)/f;-,c(., ¢) and define

Gl a0, 0) = _—ll)—h_ Z (pj(xi — cozi) — (Wmj — ajzm)) K ((xi — co0z) — (Zm — COZm))
I mi

(n—

hn
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Let consider the element corresponding to the derivative with respect to parameter as,

which can be rewritten as

= a777/51( asOaCO) 8msz( asOaCO 4 C <
\/—Ele 8(13 Z‘/zsgfzc( ) ‘j(-;a07CO) >

1 O am) O7si(., 350, €0) \
< sup | = < sz s05 . sil-) As0, ) %,sjcij(-,a0;00)+
( f’i,c("CO)fi,c Z_: 8(13 J:Zl
(4.55)
1 = Orsi(.,as0,c0)  Ofsi(., as0, o) ) 2
+ sup | = ( - fie(yc0) = fie(.,co) ) x
{ fi,C('?CO)Qfl,C(', Z] 8@3 80:3 ( )
(4.56)
J
X ZV},stij(-,ao, co)+
j=1
Orsi(., aso, co) /Bas .
+ s5Up | I; fzc C0 fzc( (&) 1,8 a0700)+
i | fic(sco)fic(.sco)? \/_Z Q( )Z: i
(4.57)
6Tsi(-aasO,CO)/6as 1 =
+sup | = — —= I; fi,c(-,co fzc ‘/zs Cz QO,CO)
i | fie(eyc0)ficl.,co)? ﬁ; Q( ) le il
(4.58)

where fi,c lies between fi,c and f; .. The factors in the expressions above are bounded in
probability since fi,c(.,co) converges in probability to f;c(.,cg) uniformly in ¢ under the

above assumptions, which is uniformly bounded away from zero. Also,
sup |Orsi(., aso, ¢o)/Oas| = sup |- E (z|x; — coz;) fic (T — cozi, co)
(2 1

is uniformly bounded in probability by the continuity of the conditional mean functions
and the density of the index and by the compactness of ) x A x C. In order to show that
term (4.55) converges to zero in probability, apply the Markov and Cauchy inequality to

164



obtain

" si\-y As0, C a/Asi . As0, C
Pr —\/l—ﬁ ZI,-QK@T (62 0,<0) & (82 0 CO)) VisiCij(,a0,c0)| > € | <
i=1 j=1 s °
- Vi IoE (C, NE(VENE Orsi(., as0,c0)  O7sil., aso, o) |’ e
S ]:le Q ( ij(')a‘o’ CO) ) ( i,sj) 80/3 - 8(15

(4.59)

It can be shown (see Ichimura and Lee (1991)) that if function ¢ and f are g continu-

ously differentiable and a kernel function of order ¢ is used, then

Il

E (VCL?“ (Cz'j(., ag, Co)|i) + E? (Cij(., ag, Co)|i))

-0 <(;LT%7T> -0 (h2)

Analogously, it can be shown that

arsi(waSOaCO) _ 87:57;(’10’30’60) : — ——1— 29
E (( - o =0\ o) O ()

Therefore, in order for term (4.59) to converge to zero in probability the following con-

E (Cij (.,ap, 00)2)

ditions for the sequence of the bandwidth need to be satisfied: h,, — 0,/nh, — oo and
Vvnh} — 0 as n — oo. It can be shown analogously that under the same conditions for
the bandwidth, term (4.57) converges to zero in probability. Regarding terms (4.56) and
(4.58), they converge to zero in probability if n%3h, — oo and n'/3hY — 0 as n — oo,
which are indeed implied by the above bandwidth conditions. When one considers the ele-
ments of vector (4.54) that involve the derivative with respect to parameter ¢, the above
derivations should change slightly since in this case the derivative of the nonparametric
conditional mean involve the derivative of the kernel function. Therefore, in this case it

can be shown that

E 87'81('10‘807 CO) _ af‘si(-uaSOacO) 2 .
dc dc N

E 0 [E (Z'l‘l - Cozi) fi,c(.,CO)] _ 0 [E (Z"Ti - Cozi) fi,c(-u CO)}
Oc Oc

2

O (i)~ )

n
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for which we require an additional order of differentiability of the conditional mean func-
tions ¢ and f.(.,¢) (order of differentiability ¢ + 1) so that the bias can still have this
order. Applying again the Markov and Cauchy inequality in this case, the corresponding

expression is bounded above by terms which are

1 2 _ 2y |
0|0 (G roum)] o (s ) o] =
1 2q—1 1 2q+1
- - h24+
o (=) +ot) [o (=) + 0™
which converges to zero in probability if he following conditions for the sequence of the
bandwidth need to be satisfied: h, — 0, /nh2 — oo and /nh} — 0 as n — oo.
Convergence to zero in probability of term (4.51)
This (J + 1) x 1 term can be written as

1 n
7m 2t

6a1 aal

i omy;(.,a10,c0 9y (.,a10,¢ J
( 1:(,@10,60) 1i(,210 0)) E]‘=1Vi,lj5ij

Oay

(8mJi(~vaJ0»C0) _ 9myi(,ag0,

Oay

co) J -
) Zj:l Vi,Jj€ij

J J Omji(.,aj0,c0)  Omji(.,a;0,c0)
i Zj:l Zs:l( =5 - =5 Vi js€is

Then, the elements corresponding to the derivatives corresponding to parameter ¢ in the

vector above can be written as

1 I Ori; (., ajo,co)/Oc  B7i(., aj0,c0) /e
NG L e - L]A’]7 1,J8%1is T .
\/;I ;; ; Q ( fie(.,co) Fielco) Vijs€ (4.60)
__}___ n J ' rij(.,ajo, co) Ofic(.,co) 7i5(-, a0, o) 5‘]?1.,0(.,60) o

The convergence to zero in probability of term (4.61) can be analogously shown as

term (4.60). By doing a Taylor’s series expansion in (4.60) for some value of f; . between
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fie(.,co) and fie(., o), it can be shown that in order to show the following four conditions

1 n J J . arij(,,ajo,q)) _ a’f’ij(,,ajo,CO) 1 Ve = (1) (4 62)
ﬁzzz Q @C 80 fi,c(-,CO) Z,]Sals - Op .

i=1 j=1 s=1
n J J o
1 aTi«'(.,a'o,Co) Bn-j(., ajo,C(]) 1 1
/n IzQ ( : ’ - -z Vi, js€is = O (1)
\/ﬁ ;]:Zl; dc Oc fi,c(',CO) fi,c(-,CO) J P
(4.63)
n J J o
1 | fielyeo) = fie(co) \ Orij(,aj0,¢0) ,
_ﬁ - ;; I7Q < fi.c(-a CO)Q 00 ‘/Z,]SE’L.S = Op(l) (464)
noJ J s
1 At (. ; 21 0ry(ha40,00),
_TL g J; ;IZQ (fl,c(w (’0) fl,C('v CO)) fi,c(,,CO)B aaj ‘/1']5615 = Op(l)
(4.65)

The convergence to zero in probability of term (4.64) is similar to term (4.62) and

hence omitted. To show the convergence in probability of term (4.62) note that

1 arij(‘vaj()ac()) 8fij(.,aj0,co) _ 1 ;
fic(.yco) ( dc Ic ) g;;i’tﬁim

where WVigpp = ___}__ [(Zi _ Zm) K’ <($Cm - Cozmll“ (331‘ - COZz)> _ hi@E(ZL'Ez - Caoczi)fi,c(.,CO)

fi,C(') CO)
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Then the variance of term (4.62) can be written as

2
1 J J n
mE I'LQ Zzzzwrm ’Ljsezs) =

j=1s=11i=1i#m

1 n .
= o B | LigJ® W Vigseis | | DY Wl Vigiea | | +
n(n —1)%n i=1 i#m =1 i£m
2
1 9 n i
K ]i J im Vijs€is
n(n —1)2ht Q s #mwzm Js€ )
1 n n
2 ‘ 7 q y S . . ..
+n(’l’L — 1)2h%E IzQJ ;;ﬂw{'m%,]sezs ;i;&zmwim%,s]&'”
n—2 i
B (’IE -1) })14 E ( [delmw‘kvz js‘/7,j161351[ + J? wtm ! VzQJsazs + Jzngmwikeisgijvi,jsw,sj}) *
1 3 2 o (7 \2v,2 2 0l 5 \2
+——————(n — 1) A E IzQ J (l/),m) ‘/i,js‘/i,jlc‘:iseil +J (wim) Vi,jssis +J (’lp”n) Eisgij%,js‘/i,sj
+'(n — 1) hé iQ Qp mi Vijs Vm, jl€is€ml + ‘/)mz i,98 Vm,js€is€ms + wzm miVijsVm,sj€isEqr
n

where i,m, k € {1,...,n} are the subindices for different observations and are different and
l € {1,...,J} are the subindices for the different equations.
It can be shown that under the above conditions E (#ngm z) = O(h}) for all j €
{1, ..., J}, therefore the first term in the above expression cor;werges to zero in probability
if hy, — 0 while the second and the third terms converge to zero in probability if nhl — co
as n — 0o
Regarding the elements corresponding to the derivatives with respect to parameter as
for s = {1, .., J}, the convergence in probability to zero can be shown in a very similar way.
The only difference is that analogous of (4.62) with respect to as requires the following )
definition of v,

1 Oris(.,as0,c0)  Ofis(.,as0,¢0)\
fi,c(-,CO) ( Oag Jag - fl —-—1 Ry, mzﬂwzm

where 1, = [me <(x"" — Cozmzl— (2 - Cozi)) — hpE(z|z; — coz;) fio(-s co)]

In this case the convergence to zero of the analogous term of (4.62) requires a less strict

condition on the bandwidth, i.e. nh? — co as n — oo.
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The convergence in probability to zero of terms (4.63) and (4.65) can be done in a
similar way as it was shown that the elements of the (J + 1) x 1 vector in (4.53) converge

to zero in probability (see above in this proof). W
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4.12 Figures
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Log Total Expenditure

Figure 4.1: Nonparametric Kernel Densities for Log Total Expenditure for different demo-

graphic groups and different values of parameter ¢

Note: Data Drawn from 1980-1982 Family Expenditure Surveys for couples with one
kid (z = 0) and two kids (z = 1). Line /1(a:1) plots the nonparametric density of log total
expenditure for demographic group with z — 1 over the points of the support of , line
f0(x0) plots the nonparametric density of log total expenditure for demographic group
with z — 0 over the points of the support of line fO(x! +¢) for c = {-1,-2} plots
the nonparametric density of log total expenditure for demographic group z = 0 over the

points of the support of X| —c. Gaussian kernel used and Silverman’s optimal bandwidth.
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PR loss function HM/true loss function
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Wilke Loss Function True HM loss function using constant integration limit over ¢
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Figure 4.2: Loss functions for parameter ¢ (L(c|ao)) proposed by Pinkse and Robinson,
Hardle and Marron, Wilke and the Loss function using knowledge of m function (co =
-0.3)

Note: For each value of the parameter ¢, the above functions compute the overlap of
the supports 4-c from the observed data. The integration limits of the objective
functions above are set to cover this intersection. The integration to compute the loss
function is done using middlepoint approximation for integrals. The true loss function of
Hardle and Marron uses the true known function m instead of its nonparametric estimation

as in the HM loss function. The weight function w{x) = 1 ifx G A c)
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Figure 4.3: PR Loss Function L% (c|ag) conditioned on the true value of parameter a, for

different values of the integration limits [z, Z]
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Hardle and Marron Loss Function for different ranges of x
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Figure 4.4: HM Loss Function L7 (c|ag) conditioned on the true value of parameter a,

for different values of the integration limits [z, Z]
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Figure 4.5: SLS Objective function as a function of ¢ -L5%%(clag, ho)

optimal CV-bandwidth for (ag, ¢g) - for simulated data for one good
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constant trimming dividing by Indicator
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Figure 4.6: SLS Objective function as a function of ¢ -L%F5(clag, hg) where hg is the
optimal CV-bandwidth for (ap, co) - for simulated data for one good.

Left Graph: objective function including a constant trimming of the 2% of the smallest
densities (expression (4.12)); Right Graph: objective function dividing by the number of
observation where the estimated density of the index does not attain its lower bound

(expression (4.14)).
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Figure 4.7: SLS Objective function as a function of ¢ -L°45(c|ag, hg) where hg is the

constant trimming
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parameterc

optimal CV-bandwidth for (ag,¢) - for simulated data for one good.

Left Graph: objective function including a constant trimming of the 2% of the smallest
densities (expression (4.12)); Right Graph: objective function dividing by the number of
observation where the estimated density of the index does not attain its lower bound

(expression (4.14)). Middle Graph: objective function dividing by continuous function s

as in (expression (4.16)).
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Objective Functions wrtc
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Figure 4.8: L(c|ag, ho) SLS Objective function as a function of ¢ and number of observa-

tions where estimated density is above its lower bound. Simulated Data One good.

(Top Graph) SLS Objective function as a function of ¢ -L55(c|ag, hg) where hy is

the optimal CV-bandwidth for (ag, ¢g) - for simulated data for one good for (i) objective

function including a constant trimming of the 2% of the smallest densities (expression

(4.12)); (ii) objective function dividing by the number of observation where the estimated

density of the index does not attain its lower bound (expression (4.14)). (Bottom Graph)

Number of observations such that f x—cz(x — cz) is strictly greater than ﬁ)(xi, zi)
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parameter ¢
parameter a

Figure 4.9: Objective Function " 2(0,c\ko) as a function of both parameters using simulated

data for one good
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Figure 4.10: Objective Function L”(a, c\ho) as a function of both parameters using simu-

lated data for one good
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