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ABSTRACT

The neuronal representation of experience as stable memories requires a 

process termed consolidation, which engages the hippocampus.

Sexual dimorphisms in the performance of a number of tasks requiring 

hippocampus-dependent memory formation have previously been described. 

These sex differences are generally attributed to gonadal hormone-mediated 

mechanisms which impact on neuroanatomy and modulate memory formation.

At the molecular level, memory consolidation requires de novo 

transcription, activating the transcription factor CREB. This activation can be 

accomplished by a variety of signalling pathways including the CaM kinase 

cascade.

Male mutant mice bearing a genetic deletion of CaMKK/?, an element of 

this cascade, are impaired in spatial memory formation in the Morris water maze 

(MWM), and fail to activate CREB after spatial training. Remarkably, female 

mutants performed equally to their WT counterparts, indicating a sex-specific 

requirement for this kinase in spatial memory consolidation. This mutant line was 

used as a tool to investigate dimorphisms in the molecular mechanisms 

underlying memory formation.

First, comparison of hippocampal transcriptional profiles between WT and 

CaMKK/? mutants by Affymetrix Microarray analysis identified four CaMKK/? 

regulated genes in males. Second, quantitative real-time PCR was used to 

compare hippocampal transcriptional profiles of these genes in naive males and 

females, and after training in two hippocampus-dependent tasks: the MWM and 

contextual fear conditioning (CFC). This study identified three genes with altered
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transcription thirty minutes after spatial training in the MWM and CFC in male 

mice: PSF, Gaa1 and SRp20. Naive females expressed lower levels of all three 

genes than naive males, and two of them (Gaa1 and SRp20) were not regulated 

specifically by training in these tasks at the same time point in females.

The work described in this thesis has identified two male-specific 

molecular markers for hippocampal activity, and provided insights into sexual 

dimorphisms in the molecular mechanisms underlying memory consolidation.
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S South coordinate in the MWM
SDS Sodium dodecyl sulfate
SE southeast quadrant in the MWM
SRp20 Splicing Regulator Protein 20
ssDNA Single stranded deoxyribonucleic acid



STM Short-Term Memory
SW southwest quadrant in the MWM

TE Tris-EDTA buffer

TF Transcription factor

TQ target quadrant in the MWM
US Unconditioned stimulus
W West coordinate in the MWM
WT Wild type
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Chapter I: Introduction

1.1. SEX DIFFERENCES IN THE MAMMALIAN BRAIN

In sexually dimorphic species, becoming able to reproduce requires not only 

proper maturation of the reproductive organs but also the development of adequate 

somatosensory body maps able to adjust to sex-differentiated structures. In addition, 

evolution is claimed to have favoured the development of sex-specific behavioural 

traits to account for sexual competence, parental skills and also cognitive abilities to 

cope with distinct environmental challenges (Tomizawa et al., 2003; Silverman et al., 

2000).

Some behavioural differences between the sexes reflect dimorphisms in 

neuronal function which stem from a complex interplay between biological 

(neuroanatomical and neurophysiological) and environmental factors.

The contributions of nature and nurture to differences between males and 

females lead some authors to dissociate the concepts of sex and gender, the first 

one biologically determined and the second one, the result of environmental factors 

(Rose, 2005). Some other authors, however, maintain that only a complex interplay 

of factors of biological and social origin, can account for dimorphisms and hence, sex 

and gender can not be dissociated (Hines, 2004). For the remaining of this thesis the 

terms sex and gender will be used as having equivalent meanings, and terms like 

“genotypic" and “phenotypic" sex will be used whenever the distinction is considered 

pertinent.

While in some species, sex differences in the central nervous system (CNS) 

are pronounced, in many other these are subtle and their functional significance is 

poorly understood (Arnold, 2004; Morris et al., 2004). As Springer and Deutsh 

(1993) point out: “there are true differences that are small in magnitude and easily
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masked by individual variability or other factors that are not controlled”. Hence, for 

the purpose of this thesis, the term sex difference will correspond to; “any 

anatomical, molecular, biochemical psychological or behavioural characteristic that 

differs on average for males and females of a particular species“ (Hines, 2004).

1.1.1. SEX DIFFERENCES IN BEHAVIOUR AND COGNITION IN HUMANS

A number of studies report sexual dimorphisms in susceptibility to 

neurodevelopmental disorders, mental disabilities and their phenotypic 

manifestations. Typical examples of such conditions include autism (typically 

affecting men) or depression (affecting predominantly women; Baron-Cohen et al., 

2005; Cahill, 2005; Noble, 2005; Halari et al., 2004; Zechner et al., 2001).

Sex differences in cognition have been widely documented. On average, men 

outperform women in spatial tasks including mentally rotating and matching three 

dimensional objects, navigation, target directed motor skills and mathematical 

reasoning. Women generally excel men in verbal tasks (such as recalling words) 

and perceptual motor tasks and tend to have a better episodic memory as long as no 

strong spatial component is required (Halari et al., 2005; Postma et al., 2004; Postma 

et al., 1999).

In addition, imaging studies of humans subjects while performing cognitive 

tasks and evidence from unilateral brain injuries, point to an asymmetrical 

specialization of the hemispheres, with the right hemisphere engaged in perceptual 

and spatial functions and the left mostly devoted to speech. This lateralization is 

much less pronounced in women than in men, which can explain, for example, easier 

recovery of certain cognitive faculties after strokes and more widespread patterns of
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brain activation during performance of cognitive tasks (Hines, 2004; Kovalev et al.,

2003). This lesser degree of lateralization in women is thought to rely on a higher 

connectivity between brain hemispheres due to a slightly higher number of cells in 

the corpus callosum (e.g. Shin et al., 2005).

Despite some controversy, most studies in the literature have failed to find sex 

differences in scores of tests aiming to assess “general intelligence” or “ability to 

learn” (Blinkhorn, 2005; Rushton et al., 2003; Snow and Weinstock, 1990; Persaud, 

1987). Spatial and verbal fluency tests assess relative performances and reaction 

times under standardized conditions, suggesting that sex differences in the scores 

obtained are indicative of different task solving strategies rather than differences in 

cognitive abilities (Sakthivel et al., 1999; Sandstrom et al., 1998; Astur et al., 1998).

The relative contributions of biological and cultural factors to sex differences in 

cognitive abilities are particularly difficult to disentangle in humans. Insights into the 

biological causes of sex differences are provided by rare genetic syndromes affecting 

the number of X chromosomes, or affecting gonadal function, gonadal hormone 

secretion and/or receptivity, and intersex conditions (Halari et al., 2005; Cohen et al., 

1997; Zhou et al., 1995) Additionally, a variety of studies have found correlations 

between performance in a variety of tasks and gonadal hormone concentrations, 

thereby shedding light on the modulatory effects of gonadal hormones in cognition 

(Sherwin, 2003a; Sherwin, 2003b; Postma et al., 1999).

The biological foundation of sex differences in the brain has been modelled in 

a number of animals, particularly in rodents. The following sections focus on the 

origin of sex differences in neuroanatomy and neurophysiology.
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1.1.2. SEX DIFFERENCES IN NEUROANATOMY

In higher vertebrates, gonadal hormones are classically viewed as the agents 

responsible for sexual differentiation of the CNS (Morris et al., 2004). In early life, 

hormones are believed to organize the brain, setting up the brain circuitry as male or 

female. A new burst of hormones during puberty activates the pre-set sex-specific 

circuits and is thought to contribute to evoke the characteristics of masculine or 

feminine behavioural patterns.

1.1.2.1. ORGANIZATIONAL EFFECTS OF GONADAL HORMONES

In vertebrates, it is classically assumed that the development of the 

heterogametic brain requires active mechanisms while the homogametic brain 

develops by “defaulf (Becker et al., 2005; Arnold, 2004; Morris et al., 2004; but see 

Bakker et al., 2002).

In mammals, testosterone secretion by the testes shortly after birth provides a 

signal for the brain to develop masculine features and lose feminine features, 

processes termed masculinization and defeminization respectively (Bakker et al., 

2002). In neurons, testosterone can bind the androgen receptor to regulate 

transcription (Shah et al., 2004), or can be aromatized to 17/?-estradiol which exerts 

pleiotropic effects in neuronal cells (reviewed in McEwen, 2002, discussed in section 

1.1.2.4). Thus, while males are exposed to both testosterone and estradiol shortly 

after birth, females are not exposed to high levels of either hormone until puberty.

In the rodent brain, these distinct hormonal environments shape sexually 

dimorphic nuclei (SDN) which differ in terms of volume, cell number, pattern of
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connectivity, hormone responsiveness and other biochemical features (Morris et al., 

2004; Shah et al., 2004; Kuhnemann et al., 1994).

In agreement with the idea that sexual dimorphisms in the brain should 

account for sexual competent behaviours it is not surprising that SDN in the brain are 

predominantly found in areas involved in the control of sexual and reproductive 

behaviours. Due to its direct connection to the master endocrine gland (the pituitary), 

the hypothalamus displays multiple SDN (reviewed in Morris et al., 2004). 

Hypothalamic SDN comprise the preoptic area of the anterior hypothalamus (SDN- 

POA), the bed nucleus of the stria terminalis (BNST) and the anteroventral 

periventricular nucleus (AVPV) of the hypothalamus. The SDN-POA and the BNST 

are involved in the regulation of male copulatory behaviour and are constituted by a 

significantly higher number of cells in male rodents (Morris et al., 2004). A sex 

difference in the size of BNST has also been described in humans (Zhou et al., 

1995). The AVPV, involved in the regulation of ovulatory cycles is bigger in females 

(Morris et al., 2004). Perinatal manipulation of testosterone levels either by male 

gonadectomy or exogenous administration to females abolishes or reduces 

neuroanatomical dimorphisms in all the three dimorphic areas (reviewed in Simerly, 

2002; del Abril et al., 1987; Dohler et al., 1984).

Testosterone manipulations also have a direct impact in sexual behaviours: 

lordosis in females (arching of the back when receptive to coitus) and mounting in 

males. In a pioneering experiment Phoenix and colleagues (1959) treated female 

guinea pigs with testosterone in utero which caused a shift towards a masculinized 

sexual behaviour (Phoenix et al., 1959 reported by Bakker et al., 2002). However, 

the impacts of testosterone in the formation of SDN and sexual behaviour can not
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always be related causally as, for example, lesions of the SDN-POA do not 

significantly affect male sexual behaviours (De Vries, 2004).

Insights into the importance of the organizational effect of testosterone in 

humans is provided by condtions of perinatal over and underexposure to adrenal 

hormones. Girls suffering from hyperactivity of the adrenal glands [congenital 

adrenal hyperplasia (CAH)] or exposed to synthetic steroids in utero display not only 

obvious deficits in genital morphology, but also male-typical playing habits (Halari et 

al., 2005; Sherwin, 2003a). Conversely, androgen insensitivity in genotypic males 

leads to the development of feminized bodies. These individuals have a tendency to 

adopt female specific behavioural traits, which can not be attributed solely to the 

development of the “default" feminine brain, as cultural and social effects of the 

rearing should also be considered.

The classical view that the mammalian female brain develops “by default" has 

recently been challenged. For example Bakker and colleagues (2002) generated a 

mouse line with a genetic deletion of aromatase (the enzyme responsible for 

aromatization of testosterone to estradiol). Female null mutant mice and wildtype 

(WT) counterparts were ovarectomized in adulthood and treated with estradiol. This 

treatment evoked normal sexual receptivity in WT animals, but failed to do so in 

aromatase null mutants. These results suggest that an active feminization 

mechanism should operate perinatally to account for normal female sexual 

behaviours in adulthood.
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1.1.2.2. ACTIVATIONAL EFFECTS OF GONADAL HORMONES

After the perinatal testosterone surge, only in puberty do organisms 

experience a new burst of hormone secretions. These are crucial for the sexual 

arousal of the organism, pair bonding and parental behaviour and contribute to the 

refinement of the organizational effects developed in utero and shortly after birth 

(McEwen, 1999).

Dimorphisms in some nuclei are only detected after puberty and can be 

reversed or induced by hormonal manipulations in adulthood (reviewed in Becker et 

al., 2005; De Vries, 2004; Simerly, 2002). In rodents, well defined sexual 

dimorphisms in the CNS include the extent of innervation of the septal region by 

arginine-vasopressin fibers which contribute to pair bonding and paternal behaviour 

(Young and Wang, 2004) and the posterodorsal medial amygdala (MePD) which 

receives inputs from olfactory and pheromonal centres (Cooke et al., 1999).

In addition, a study using three dimensional imaging techniques comparing 

brains from adolescent and adult mice revealed sex-specific and age-related 

structural differences in the hippocampus, amygdala and ventricles (Koshibu et al.,

2004). Because the hippocampus is engaged in the behavioural tasks used in the 

work described in this thesis, sexual dimorphisms in this structure will be described in 

section 1.2.4.

In addition to pharmacological interventions and gonadectomies, insights into 

the role of gonadal hormones in sexual behaviours were provided by genetic 

manipulation of classical estrogen receptors a  (ERa) and /? (ER/?) which are involved 

in estrogen mediated transcription (discussed in section 1.1.2.4.1). While ERa null 

mutant females displayed decreased lordosis (Kudwa and Rissman, 2003), ER/2 null
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mutants displayed normal sexual behaviour in both sexes. Male gonadectomy, 

however, led to higher lordosis in ER/? mutants, suggesting an incomplete perinatal 

defeminization of the brain (Kudwa, 2005). These studies do not allow the 

discrimination between organizational and activational effects of estrogens because 

these animals fail to express the receptors in all stages of development.

Despite being well established and accepted, increasing evidence has 

challenged the dogma that gonadal hormones are the sole players in determining 

sexual dimorphisms. Some of the evidence will be discussed in the following 

sections.

1.1.2.3. CONTRIBUTION OF CHROMOSOMAL REPERTOIRE TO SEX 

DIFFERENCES IN THE BRAIN

1.1.2.3.1. Y CHROMOSOME GENE EXPRESSION

Despite having been identified over 100 years ago, it was not until 1990 that 

the role of the Y chromosome in determining the male sex was understood. The Y  

chromosome contains a small number of functional genes which collectively encode 

27 proteins. These are distributed among two pseudoautosomal regions (PAR) 

which can recombine with the X chromosome during male meiosis, and a male 

specific region, named MSY (Skaletsky et al., 2003). The MSY contains a coding 

sequence for the transcription factor that acts like a master switch for masculinization 

by triggering testes development: the sex-determining region of the Y chromosome 

(Sry).
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In order to disentangle the contribution of chromosomal repertoire versus 

gonadal secretions, Arnold and colleagues (Carruth et al., 2002; De Vries et al., 

2002) generated a transgenic mouse model bearing the Sry gene not in the Y 

chromosome but in an autosomal region (XYSry), which generated fertile males that 

were crossed with normal females. The offspring of these crosses consisted of 

individuals with matched genetic and gonadal phenotypes (XX, XY'Sry) and 

individuals where these were mismatched: genotypic females with Sry (XXSry) and 

genotypic males without Sry (XY). Evidence obtained from cell cultures from the 

mesencephalic dopaminergic system harvested from embryos before gonadal 

development points to a higher number of dopaminergic neurons in cells bearing the 

Y chromosome independently of the presence of the Sry transgene. (Carruth et al., 

2002). In adult animals, presence of the Y chromosome determines some subtle 

sexually dimorphic features independently of Sry (De Vries et al, 2003) but the 

presence of Sry was the key determinant for other important and robust sexual 

dimorphisms and for normal social and sexual behaviours (De Vries et al., 2002).

1.1.2.3.2. X CHROMOSOME GENE EXPRESSION

The X chromosome is particularly rich in genes involved in brain development, 

(some of which have been associated with single gene mental retardation 

phenotypes), whereas only a small percentage are present in the Y chromosme 

(Zechner et al., 2001). In order to overcome the imbalance of X chromosomes, 

permanent X-chromosome inactivation mechanisms operate in females. This 

inactivation occurs in a mosaic pattern and different cells within the same body will 

display a different gene repertoire depending on whether maternally or paternally
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derived chromosome have been inactivated (Gilbert, 2000). Variations in cell and 

tissue pattern of X chromosome inactivation account for variations in the 

manifestation of and susceptibility to X-linked diseases in females (Ostrer, 2001).

However, some mammalian genes escape X-chromosome inactivation 

therefore causing a dosage imbalance between males and females (Carrel and 

Willard, 2005) which can explain differences in the transcriptional levels of some X 

linked genes between the sexes (De Vries et al., 2002 and references within).

1.1.2.4. MOLECULAR MECHANISMS UNDERLYING SEXUAL DIMORPHISMS IN 

NEUROANATOMY

Dimorphisms in brain structure originate from differences in cell number (due 

to apoptosis, cell migration and neurogenesis), connectivity, synaptogenesis and 

axon guidance (reviewed in Simerly, 2002). Most studies aiming to understand the 

sex specific regulation of these mechanisms have focused on the effects of 

estrogens.

1.1.2.4.1. MOLECULAR AND CELLULAR ACTIONS OF ESTROGENS

In neurons, estrogens can exert their actions in a genotropic fashion driving 

transcription, or in a non-genotropic fashion by interaction with other signalling 

pathways (Morris et al., 2004; Razandi et al., 2003; Cato et al., 2002; McEwen, 

2002).

Classical estrogen receptors (ER) are intracellular ligand-dependent 

transcription factors composed by homo or heterodimers of ERa and ER/? subunits.
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ERs become activated upon ligand binding and exert activational effects by direct 

interaction with estrogen responsive elements (ERE) in the regulatory sequences of 

target genes, or repressional effects by interaction with other transcription factors.

In vitro studies document rapid responses to estrogen administration 

incompatible with the time demands of a genotropic action. These fast actions of 

estrogen are most likely mediated by membrane ER (Toran-Allerand, 2004); G- 

protein coupled receptors (GPCR) and modulation of a number of intracellular 

signalling pathways (Razandi et al., 2003; Cato et al., 2002; Bi et al., 2000).

A number of in vivo and in vitro studies in rodent models and humans 

document protective effects of estrogens against excitotoxicity and oxidative damage 

(reviewed in McEwen, 2002). These actions allegedly contribute to the prevention of 

some neurodegenerative diseases, and may constitute one of the bases for sex 

differences in vulnerability to neurodegenerative disorders (Eberling et al., 2003; 

Sherwin, 2003a; Dhandapani and Brann, 2002).

1.1.2.4.2. SEX-SPECIFIC REGULATION OF APOPTOSIS

The major way that steroids control cell numbers is by interfering with 

apoptotic processes either promoting it or conferring a protective effect, depending 

on the tissue. In the brain this is true both for developmental processes guiding the 

formation of sexually dimorphic nuclei and for survival processes of certain areas 

which differ after puberty (Madeira and Lieberman, 1995).

For example, Forger et al. (2004) provided evidence for the specific 

involvement of apoptotic regulators in the development of SDN. Null mutant male 

mice for the pro-apoptotic gene Bax, displayed a higher number of cells in the sexual
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dimorphic nuclei than did their WT counterparts. More importantly, Bax genetic 

deletion, completely ablated sex differences in the AVPV and BNST. Because 

sexual dimorphisms in these areas are opposite (BNST larger in males, AVPV larger 

in females), these results suggest that Bax acts in a cell or region specific-manner, 

conferring a protective effect in the BNST and promoting apoptosis in the AVPV.

In conclusion, the biological foundations of phenotypic sex differences 

comprise a complex interplay of sex determining genes with hormonal effects during 

different stages of development and in adulthood (summarized in Fig. 1.1).

Apart from the SDN which are directly connected to control of reproductive 

function, sexually dimorphic features have also been described for other areas of the 

brain, such as the corpus callosum, the amygdala, ventricles and the hippocampus.

Memory function in a number of species displays sexually dimorphic features 

assessed at the behavioural, anatomical, cellular and molecular level. These sexual 

dimorphisms will be addressed in the following section together with an outline of the 

neurobiology of memory formation and experimental approaches used to study it.

Sex Chromosome Brain Phenotypic Sex

Figure 1.1- Cascade of effects leading to phenotypic sex differences.
Genes encoded by the sex chromosomes contribute to brain differentiation either directly or 
by driving gonadal hormone secretion. Gonadal hormone secretion throughout life in 
combination with environmental factors promote phenotypic sex differences in adulthood 
(adapted from McEwen, 1999).

Genes
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1.2. MEMORY, TYPES OF MEMORY AND THE ROLE OF THE HIPPOCAMPUS

“Life is not what one lived, but what one remembers and how one remembers it in 
order to recount it. ”

Gabriel Garcia Marquez, “Living to tell the tale11

When interacting with their environment, animals face continuous challenges. 

The ability to learn information, recall previous experience and procedures and 

shape behaviours accordingly is a major adaptative advantage and a crucial survival 

mechanism (Kandel, 2001; Kolb and Whishaw, 2001). Understanding how this is 

accomplished has been one of the most challenging tasks for philosophers and 

scientists alike.

1.2.1. HUMAN AMNESIA

During the course of the 19th century the ‘’phrenological theory of the mind” 

initiated by Franz Gall had a large number of followers. This theory postulated that 

the brain was the organ of the spirit containing multiple centres devoted to particular 

psychological functions” (reported by Damasio, 1995).

Today, brain function is rather understood as a coordinated operation of 

multiple systems (Shu et al., 2003). Nevertheless, studies have provided evidence 

for the requirement of certain brain areas for particular cognitive and intellectual 

abilities (Squire, 2004; LeDoux, 2003; Damasio, 1995).

Evidence for brain areas devoted to memory was provided by studies of 

amnesic patients, among which the most famous case is patient HM initially 

described by Brenda Milner and William Scoville (Scoville and Milner, 2000; Scoville
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and Milner, 1957; Milner, 1954). This patient received bilateral resection of the 

medial temporal lobes to treat epilepsy. After surgery, HM became unable to retain 

new information and to retrieve memories related to events that happened during the 

eleven years preceding surgery, symptoms termed anterograde and retrograde 

amnesia respectively. However, ability to remember numbers or unrelated words for 

short periods of time, ability to learn and improve performance in motor tasks, and 

memories of very remote events remained intact (Corkin, 2002; Milner et al., 1998; 

Milner, 1954). Neuropathological findings and psychological studies of HM and other 

patients allowed the characterization of human amnesia (summarized in table 1.1) 

and paved the way for a field of research integrating a very wide range of techniques 

and approaches aiming to understand the neurobiological bases of memory (Silva, 

2003; Burgess et al., 2002; Kandel, 2001; Milner et al., 1998; Silva et al., 1997).

Table 1.1- Characteristics of human amnesia (Squire, 2004; Eichenbaum, 1997; 
Squire and Zola-Morgan, 1991)________________________________________________

•  Memory impaired on tasks requiring retrieval of facts and events
• Memory impairment exacerbated by distraction
• Memory impairment can be enduring
• Memory for events prior to the onset of amnesia can be affected
• Learning capacities for motor, perceptual, cognitive skills, sensory 

adaptations, and priming of perceptual and lexical stimuli are spared
• Immediate memory is spared (distinct temporal stages required for retention of 

new information)
• Very remote memories may be intact (temporal grading of retrograde 

 amnesia)_____________________________________________________________

1.2.2. MEMORY CATEGORIES

In a key study, Milner trained patient HM in a motor skill task that demanded 

many training sessions (Corkin, 2002; Milner et al., 1998). Like healthy controls, HM
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was able to learn the task and improve performance with the number of training 

sessions, however he had no conscious recollection of the learning episodes. 

Similar ability to learn and retain on other than motor skill tasks were subsequently 

described in medial temporal lobe lesioned patients (reviewed by Squire, 2004; Myer 

et al., 2002; Kopelman, 2002). These findings provided evidence for multiple 

memory systems relying on dissociable brain areas.

In general, memory is broadly divided into two categories: declarative or 

explicit and non declarative or implicit.

Declarative or explicit memories are those that one is aware of, can express 

through language and trigger upon conscious recall. These include information about 

everyday episodic events, locations and universal factual knowledge, termed 

episodic and semantic memory respectively (Squire and Zola, 1998; Eichenbaum, 

1997) and are dependent on the function of the medial temporal lobe (Squire and 

Zola-Morgan, 1991).

Memories for perceptual, motor and other skills are globally termed non 

declarative or implicit. These are expressed through performance, elicited in 

response to environmental stimuli and learned through practice. Because non 

declarative memory comprehends a very wide range of faculties, it also engages 

multiple anatomical areas mostly in the basal ganglia (Fig. 1.2; Squire and Kandel, 

1999).
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MEMORY

I DECLARATIVE | NON DECLARATIVE

PROCEDURAL 
(skills and habits)

NON ASSOCIATIVE 
LEARNING

SIMPLE CLASSICAL 
CONDITIONINGEVENTS PRIMINGFACTS

NEOCORTEX AMYGDALA CEREBELLUM REFLEX

DIENCEPHALON PATHWAYS

Figure 1.2- Taxonomy of memory systems. _Brain areas thought to be especially important 
for each form of declarative and non declarative memory. In addition to its role in emotional 
learning the amygdala exerts a modulatory effect upon declarative and non declarative 
memory formation (from Squire, 2004).

1.2.3. THE ROLE OF THE HIPPOCAMPUS IN DECLARATIVE MEMORY

The medial temporal lobe is a large region including the hippocampus proper, 

amygdaloid complex and adjacent areas such as the entorhinal, parahippocampal 

and perirhinal cortices (Amaral and Witter, 1995). Comparative studies in patients 

bearing medial temporal lobe lesions of different extent, some of them restricted to 

the hippocampus proper, established that, within the medial temporal lobes, the 

hippocampus is the critical structure involved in declarative memory formation 

(Scoville and Milner, 2000; Rempel-Clower et al., 1996; Squire and Zola-Morgan, 

1991), although some authors defend that the hippocampus is only important for the 

episodic aspects of declarative memory but not for the semantic component (e.g. 

Tulving and Markowitsch, 1998)

The hippocampus is traditionally divided into two regions: the dentate gyrus 

(DG) consisting primarily of granule cells and the Cornu Ammonis (CA), further
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subdivided into the CA1, CA2 and CA3 subfields, and constituted by pyramidal 

neurons. The DG and CA areas can be distinguished on the bases of morphology, 

connectivity, electrophysiological and molecular properties (Lein et al., 2004; Zhao et 

al., 2001; Amaral and Witter, 1995)

The hippocampal formation receives inputs and conveys outputs to multiple 

cortical and subcortical areas. Hippocampal intrinsic connections, other than the 

ones already described, include interconnections and recurrent connections within 

subfields (Fig. 1.3; Amaral and Witter, 1995). The trisynaptic circuit within the 

hippocampus proper comprises a set of three unidirectional pathways (Fig 1.3): (a) 

the perforant pathway (PP) that conveys inputs from the enthorinal cortex to the DG; 

(b) the mossy fiber (MF) pathways constituted by projections of DG granule cells to 

pyramidal cells in CA3 and (c) the Schaffer collaterals (SC) constituted by projection 

of axons from area CA3 to CA1.
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g  Subcortical Inputs

•Amygdala 

•Hypothalamus 

•Thalamus

Subcortical Outputs

•Olfactory Regions 

•Amygdala 

•Hypothalamus 

•Thalamus

DG

CA1

Cortical Interconnections

•Perirhinal cortex 

•Retrosplenial cortex 

•Medial frontal cortex

Figure 1.3- Major intrinsic connections of the rodent hippocampal formation.
(A) The perforant pathway (PP), mossy fibers (MF) and Schaffer collateral (SC) pathways 
are unidirectional (from Anderson et al., 1971); (B) Some cortical and subcortical inputs and 
outputs of the hippocampal formation are listed; orange arrows represent recurrent 
connections and black arrows represent other intrinsic connections between hippocampal 
subfields and the subiculum with the entorhinal cortex (EC) such as the temporoammonic 
pathway (TA) that conveys information directly from the EC to subfield CA1 (adapted from 
Amaral and Witter, 1995).

1.2.4. SEX DIFFERENCES IN THE HIPPOCAMPAL COMPLEX

In several rodent species, the hippocampal formation is larger in males than in 

females either in terms of absolute volume or in proportion to the total volume of the 

brain (Andrade et al., 2000; Madeira and Lieberman, 1995; Jacobs et al., 1990). 

However, most evidence points to the fact that females compensate for a generally
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smaller cell number and hippocampal volume by establishing an increased number of 

synaptic connections. A summary of the evidence available is described in table 1.2.

In contrast to rodent studies, some imaging and morphometric studies in 

humans report higher hippocampal volumes relative to total brain volume in females 

(Caviness, Jr. et al., 1996; Filipek et al., 1994). Other studies, using bigger sample 

sizes fail to detect any sexual dimorphisms in this parameter (Fleisher et al., 2005; 

Goldstein et al., 2001; Giedd et al., 1997).

Table 1.2- Sex differences in the rodent hippocampus (reviewed in Madeira and 
Lieberman, 1995).
Region Volume and number of cells Connectivity

Whole
hippocampus

• Larger in adult males.
• Larger cross sectional 

area in males
• Thicker on the left side in 

females and on the right 
side in males.

Dentate
Gyrus

• Wider and thicker in 
males of all ages

• Higher total number of 
granule cells in males

• Changes in dendritic tree 
formation triggered by 
environmental factors are 
more pronounced in 
males than in females

• Sprouting of perivascular 
sympathetic axons more 
pronounced in females 
than males

CA3 • Same volume and cell 
number for both sexes

• CA3 has more dendrites 
in females

CA1 • Smaller volume and total 
number of cells in 
females

Mossy Fibres • Total number of fibres 
smaller in females

• Each female fibre 
establishes a higher 
number of synaptic 
contacts.

• Volume of fibre buttons 
bigger in females

Subiculum • Higher cell number in 
males

•  Equal area of active 
synaptic zones
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In addition to anatomical dimorphisms, physiological and biochemical 

dimorphisms have also been described such as different patterns of estrogen and 

androgen and corticosterone receptor expression and distinct cholinergic and 

serotonergic activities. Additionally, hippocampal cells are capable of synthesising 

steroids from endogenous cholesterol (Hojo et al., 2004; Kretz et al., 2004). This 

local synthesis of steroids accounts for sex differences in the content of estradiol in 

hippocampal tissue which is higher in neonatal females than in males (Amateau et 

al., 2004).

1.3. ANIMAL MODELS TO STUDY HIPPOCAMPUS-DEPENDENT MEMORY

Although some aspects of declarative memory formation can only be studied 

in humans, insights into the biological mechanisms underlying memory were 

provided by studies in model organisms. These include invertebrates, with relatively 

simple nervous systems constituted by a limited number of cells and synaptic 

connections (Dubnau et al., 2003; Kandel, 2001), to higher vertebrates bearing 

nervous systems composed by a large number of cells interconnected by complex 

circuitries (Morris, 2001; Zola-Morgan et al., 1986).

1.3.1. RODENT MODELS

To study declarative memory in experimental animals such as rodents is 

apparently paradoxical. Lack of language does not suit the linguistic definition of 

declarative memory and complicates the distinction between implicit and explicit 

memory. Nevertheless rats and mice are able to behave as though they have built a
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knowledge of their surrounding world (Clayton and Dickinson, 1998; Morris, 2001) 

and hence are able to form a so-called “episodic-like“ memory.

The validity of using mouse models to understand the processes underlying 

hippocampal memory formation is supported by arguments such as the following: (a) 

hippocampal structure, synaptic circuitry and neighbouring regions are apparenlty 

well conserved between rodents and primates (Amaral and Witter, 1995; Squire and 

Zola-Morgan, 1991); (b) hippocampal lesions in rodents cause impairments in long

term memory formation for contextual and spatial learning tasks (Broadbent et al., 

2004; Cho et al., 1999; Moser et al., 1995; Morris et al., 1982); (c) a variety of 

pharmacological approaches can be used in rodents (Gureviciene et al., 2003; Igaz 

et al., 2002; e.g. Barrientos et al., 2002; Maren et al., 1997); (d) advanced molecular 

tools such as targeted mutagenesis of the mouse genome allow the dissection of the 

molecular mechanisms involved (Silva, 2003; Giese et al., 1998; Silva et al., 1997); 

and (e) there are well developed and standardized memory tasks designed to 

explore different aspects of memory formation, some of which can test both rodents 

and humans (Astur et al., 2004; Sandstrom et al., 1998).

On these grounds, mouse studies have provided valious insights into the 

fundamental neurobiology of memory and have also been used to model human 

cognitive disorders (Silva et al., 2000).

1.4. MEMORY TASKS

In memory tasks, behavioural measures throughout training and during test 

sessions are used as an output of the strength of memory formation. For some 

behavioural paradigms, a single training episode is sufficient to trigger a robust 

behavioural response upon testing -  single trial learning tasks. Some other tasks,
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however, require several training sessions to trigger the formation of strong 

memories, or at least to trigger a robust response -  multiple trial learning tasks.

Single and multiple trial learning tasks differ essentially in the nature of the 

stimulus used, biological relevance of the learning episode and cognitive demands. 

This distinction will be exemplified by comparison of contextual fear conditioning (a 

single-trial learning task) and the Morris water maze (a multiple-trial learning task) as 

they were used in the work described in this thesis.

1.4.1. FEAR CONDITIONING

Memories about basic, but significant, emotional events are generally 

designated “emotional memories”. Most of the research into the mechanisms 

underlying emotional memories has focused on the neurobiology of fear. Learned 

fear is commonly employed to study the neural circuits and cellular mechanism 

underlying associative memory processes related to emotional behaviour. This 

concerns the ability to form associations between noxious events and the 

environmental stimuli that predict them, and to use this information to shape 

defensive behaviours (Rumpel et al., 2005; McGaugh, 2004; LeDoux, 1994).

1.4.1.1. CONTEXTUAL AND CUED FEAR CONDITIONING

Beginning in the 1890, the Russian physiologist Ivan Pavlov, laid the bases for 

the studies of simple forms of conditioning. Several derivations of his initial paradigm 

have been adapted to different species (reviewed in Maren, 2001).
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In Pavlovian or classical fear conditioning, a rodent is initially exposed to a 

novel stimulus termed conditioned stimulus (CS) which is followed by a mild foot 

shock, termed unconditioned stimulus (US). The animal will then form an aversive 

memory of the CS as a predictor of the noxious US. The formation of the aversive 

memories triggers conditioned responses (CR) revealed upon re-exposure to the CS. 

CRs include a set of defensive reactions: endocrine responses (e.g. corticosterone 

secretion), autonomic responses (eg. increased heart rate), potentiated startle and 

behavioural responses such as freezing. The majority of the studies use a readily 

accessible behavioural output (freezing) as an index of fear memory formation. 

Freezing consists of a complete suppression of locomotor activity and a refrain from 

all movements except for those needed for respiration (Fanselow and Bolles, 1979).

Depending on the training paradigm adopted, the CS may comprise a novel 

environment (background -  contextual component) or sensory cues (foreground -  

cued component). A conditioned response can be triggered even if these 

components are dissociated, i.e. when the animal is exposed to the same context in 

the absence of cues and when exposed to the cue in a different context.

1.4.1.2. THE NEUROCIRCUITRY OF FEAR CONDITIONING

By using an auditory contextual fear conditioning task in rats, and by 

introducing lesions in different connections and areas within the sensorial input 

(auditory cortex) and output (motor cortex, periacqueductal gray) circuits, Joseph 

LeDoux and colleagues traced the “fear pathway” and identified a subcortical region 

-  the amygdala as the locus for storage and encoding of CS-US associations 

(reviewed in McGaugh, 2004; Huff and Rudy, 2004). A large number of studies have
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addressed the relative contribution of structures in the "fear pathway" to the 

formation of fear memories. In the majority of these studies the approaches used 

were to functionally inactivate elements of the pathway by means of lesions or 

pharmacological interventions at different time points in the course of acquisition or 

consolidation of the task (reviewed in Rodrigues et al., 2004). Some of the results of 

these studies are summarized in Table 1.3. Importantly, imaging studies in healthy 

and lesioned humans provide evidence for an evolutionary conservation of the fear 

pathways (Adolphs et al., 2005; Phelps and LeDoux, 2005; Bechara et al., 1995). In 

fact, lesion studies, pharmacological and genetic interventions demonstrate the 

crucial requirement of intact amygdala function for the acquisition and expression of 

fear conditioning, both in the cued and contextual variants of the task (Rumpel et al., 

2005; Maren, 2005; Huff and Rudy, 2004; Nader et al., 2000; Maren and Fanselow, 

1996).

1.4.1.3. THE ROLE OF THE HIPPOCAMPUS IN FEAR CONDITIONING

As expected, lesions and pharmacological inactivation of the amygdala impair 

conditioned responses to both the contextual and cued CS, due to failure to store the 

CS-US associations (Kim et al., 1993; Phillips and LeDoux, 1992). Other studies 

have provided evidence for a participation of other brain areas, including the 

hippocampus in contextual fear conditioning.

In the first studies that underscored the role of the hippocampus in contextual 

conditioning, lesions of the dorsal hippocampus before (Kim et al., 1993; Phillips and 

LeDoux, 1992) and after (Kim and Fanselow, 1992) training were shown to impair 

freezing responses to context while sparing responses to auditory cues. However,
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the involvement of the hippocampus in contextual fear conditioning was challenged 

by other studies. For example Rudy et al. (2002) demonstrated that damage to the 

hippocampus prior to conditioning does not affect memory suggesting that fear to a 

context can be supported by extra-hippocampal brain regions. Interpretation of these 

studies requires the consideration of variable factors namely the method of lesion, 

area of the hippocampus affected by the lesion, and time of the lesion relative to the 

behavioural experiment (Rudy et al., 2004).

The types of lesions used in these studies are either electrolytic (affecting the 

hippocampus and afferent fibres) and excitotoxic (sparing fiber integrity). This latter 

approach, can, however, have an impact on other elements of the circuitry causing 

dysfunction or over excitation of downstream structures (Sanders et al., 2003; 

Anagnostaras et al., 2002).

In a series of experiments, Philips and LeDoux (1994) demonstrated impaired 

contextual conditioning and normal cued conditioning in animals with dorsal 

hippocampal lesions, when trained with tone shock pairings. However, lesioned 

animals trained in the absence of a salient cue such as the tone or with unpaired 

shock tones, responded strongly to the context. Hence, in the absence of strong 

stimuli, the amygdala should perceive some background cues as foreground cues 

and build the association for the noxious event.

Determining a role for the ventral hippocampus (VH) in contextual fear 

conditioning has proved somewhat more difficult than demonstrating a role for the 

dorsal hippocampus. This is mainly due to two factors: first, damage to the ventral 

hippocampus has been implicated in hyperactivity which may impair the displaying of 

freezing responses; second, lesion of the VH may disrupt communication between 

the hippocampus and the amygdala. Recent studies revealed that blockade of VH
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function by various means consistently causes anterograde amnesia for context and, 

depending on the manipulation used, also for tone (Zhang et al., 2001). Taken 

together, evidence from dorsal and ventral hippocampus lesions studies suggest that 

the contextual component of fear memories is distributed throughout the whole 

hippocampus (Rudy and Matus-Amat, 2005).

The hippocampus is generally believed to support the representation of 

context in a contextual fear conditioning paradigm. In one trial fear conditioning 

experiments, animals shocked very shortly after exposure to a novel environment, 

display low freezing upon context re-exposure, a phenomenon termed immediate 

shock deficit. The immediate shock deficit can be rescued by pre-exposure to the 

context in the absence of conditioning (Rudy et al., 2004; Frankland et al., 2004; 

Rudy and O'Reilly, 2001; Rudy and O'Reilly, 1999). Lesion and pharmacological 

inactivation of the hippocampus shortly before or immediately after context-pre- 

exposure prevent the repairing effect on conditioning (Matus-Amat et al., 2004; Rudy 

et al., 2002).

In addition to supporting contextual representations, a number of studies 

report that neural activity within the hippocampus can also strongly correlate with the 

acquisition of associations between the context and the noxious event (von Hertzen 

and Giese, 2005; Ressler et al., 2002; Hall et al., 2000; Impey et al., 1998).

Despite the fact that most studies revealing the contrinbutiion of the 

hippocampus for contextual fear conditioning have been performed in rats, the basic 

findings described above have been replicated in mice (Frankland et al., 2004; 

Geriai, 2001a).

A role for the hippocampus in fear conditioning has also been described for 

humans: a patient with amygdalar damage failed to display autonomic responses
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following conditioning to a noxious stimulus, but could describe verbally the 

occurrence and associations related to the noxious event. Conversely, a patient with 

hippocampal damage displayed normal fear responses but was unable to verbalize 

the CS-US association (Bechara et al., 1995).

Table 1.3- Effects of lesions and pharmacological inactivation of the dorsal 
hippocampus, ventral hippocampus and amygdala at different times relative to 
training and context pre-exposure in contextual and cued fear conditioning. (?- 
not tested)

Area Time Point Contextual
Conditioning

Cued
Conditioning

Reference

Dorsal
hippocampus

Prior
conditioning

to impaired normal (Phillips and 
LeDoux, 1992)

Amygdala Prior
conditioning

to impaired impaired (Phillips and 
LeDoux, 1992)

Dorsal
hippocampus

Prior
conditioning

to impaired ? (Kim et al., 
1993)

Amygdala Prior
conditioning

to normal ? (Kim et al., 
1993)

Hippocampus Post-training Impaired 
(assessed 7 
days after 
conditioning)

normal (Kim and
Fanselow,
1992)

Ventral
hippocampus

Prior to 
preexposure 
after preexposure 
and
prior to 
conditioning

impaired 
(assessed 48 
h after 
conditioning)

? (Rudy and
Matus-Amat,
2005)

1.4.1.4. SEX DIFFERENCES IN EMOTIONAL MEMORY

Psychological studies report better memory in women than men for emotional 

events. Insights from functional imaging studies point to a sex-specific pattern of 

activation of brain structures. For example, in a study by Canli et al. (2002), a 

recognition memory test for emotionally arousing images triggered a more
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widespread brain activation in women than in men, despite equal rating of stimulus 

intensities (Canli et al., 2002). In this and other studies, a sex-specific pattern of 

amygdalar activity has been reported with enhanced memory correlating with 

increased activation of right amygdala in men and left amygdala in women (Cahill 

and vanStegeren A., 2003; Canli et al., 2002; Cahill et al., 2001). The Canli study 

also described a correlation between the emotional rating and hippocampal activation 

in women but not in men.

In the rodent literature, most studies tend to use male animals, and other 

studies, particularly with mutant animals, tend to pool data from males and females 

without addressing whether sex differences might be present.

Only a small number of studies report sex differences in contextual fear 

conditioning indicating higher freezing responses by males than by females in the 

contextual but not in the cued variant of the task (Mizuno et al., 2006; Kudo et al., 

2004; Wiltgen et al., 2001; Anagnostaras et al., 1998; Maren et al., 1994). Apart from 

equipment, species and genetic background effects, a number of factors may favour 

or prevent the detection of sex differences. First, sex differences in rats have been 

detected in animals trained with one tone-shock pairing, but not after three tone 

shock pairings (Maren et al., 1994); Second, long placement to shock intervals (time 

lapse between exposure to the context and shock delivery) and context pre-exposure 

have been shown to eliminate sex differences (Wiltgen et al., 2001). Third, the rate 

of decrease of the conditioned response in animals tested on consecutive days after 

conditioning (extinction) is significantly faster in females (Gupta et al., 2001). The 

conjunction of these results suggests that sex differences in contextual fear 

conditioning stem from a faster rate of acquisition in males and a faster rate of 

extinction in females.
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Some studies detected differences in contextual fear conditioning between 

males and randomly cycling females, from which no information about estrogen 

levels was available (Wiltgen et al., 2001; Maren et al., 1994). Insights into gonadal 

hormone influence on sexual dimorphisms were provided by monitoring of estrous 

cycle in intact females (Markus and Zecevic, 1997), or after gonadectomies and 

exogenous gonadal hormone replacements (Edinger et al., 2004; Gupta et al., 2001; 

Anagnostaras et al., 1998). These studies provided evidence for a deleterious effect 

of estrogen on contextual fear conditioning. Specifically, female rats in proestrus 

(when plasma levels of estrogens are higher) displayed lower levels of freezing when 

compared to females in estrus (when levels of estrogens were lower; Markus and 

Zecevic, 1997); Furthermore, gonadectomized females froze at comparable levels to 

males and significantly more than intact females, an effect attenuated by exogenous 

estrogen administration (Gupta et al., 2001).

There is no consistent evidence for a role of testosterone in the modulation of 

contextual fear conditioning. One study detected lower freezing responses in 

gonadectomized males, a deficit rescued by testosterone replacement (Edinger et 

al., 2004). Another study on the same strain of rats failed to detect any effect of 

testosterone (Anagnostaras et al., 1998). Possible causes for the discrepancies 

between the two experiments may be related to experimental setup and experimental 

procedures, concretely the time of testing (1 day in the Anagnostaras study and 5 

days in the Edinger study). Because in both studies, the animals were 

gonadectomized in adulthood, only the activational effect of testosterone on 

contextual fear conditioning could be addressed, leaving opened the possibility that 

an organizational effect of the hormone from early life may account for the male 

advantage.
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1.4.2. SPATIAL MEMORY

"Space plays a role in all our behaviour. We live in it, move through it, explore it, 

defend it.u(O'Keefe and Nadel, 1978).

Being able to find our way around an environment demands the formation of 

spatial memories, or memories about place (Morris, 2001). The importance of 

hippocampal function for spatial memory was established by studies in patients 

bearing hippocampal lesions (Milner et al., 1998), imaging studies in human subjects 

while performing spatial tasks (Burgess et al., 2002) and lesion studies in rodents 

trained in spatial learning tasks (Broadbent et al., 2004; de Bruin et al., 2001; Cho et 

al., 1999; Moser et al., 1995). The discovery of place cells- pyramidal cells in the rat 

hippocampus with location-specific activity, provided further evidence for the 

involvement of hippocampal function in the encoding and storage of spatial 

information (O'Keefe and Dostrovsky, 1971).

Evidence from lesion studies in rodents and evidence from human patients 

suggest that retrieval of spatial information relies predominantly on the dorsal part of 

the hippocampus, while acquisition of spatial tasks may also be mediated by the 

ventral hippocampus (Moser and Moser, 1998; Moser et al., 1995). Recent evidence 

suggests that this specialization of the dorsal hippocampus is due to the fact that the 

dorsal hippocampus receives visuospatial inputs from the dorsolateral band of the 

enthorhinal cortex (Steffenach et al., 2005).

Tasks aiming to test spatial abilities in humans include mental rotation tasks 

(Astur et al., 2004), object relocation (Postma et al., 1999), object to position 

assignment, precise metric information (Postma et al., 2004) and virtual navigation
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tasks (Burgess et al., 2002; Maguire et al., 1999). A variety of spatial tasks has been 

developed for rodents, these are generally complex tasks demanding multiple 

training trials. The most commonly used are the radial arm maze and the Morris 

water maze (MWM; Angelo et al., 2003; Need and Giese, 2003; de Bruin et al., 2001; 

D'Hooge and De Deyn, 2001; reviewed in Brandeis et al., 1989).

1.4.2.1. THE MORRIS WATER MAZE TASK

The fact that place cells fire independently of local cues, posed difficulties in 

correlating place cell firing with learning processes. To circumvent the so called 

“local cue” problem, Richard Morris developed a new behavioural task: the Morris 

water maze (MWM; Morris, 2003; Morris, 1984). .

The MWM set up is composed of a round pool filled with opaque water with a 

submerged platform, placed in a room where several landmarks are distributed 

around the walls. The animal is trained to find a platform as the only way to escape 

the water. Because the platform is not flagged, it can not be perceived by the 

senses, and the animal will need to develop strategies to find it.

Once placed in the pool, animals can use two types of spatial frameworks to 

solve the task: egocentric and allocentric (or spatial).

Egocentric frameworks are centred with the body of the animal and move with 

it. Hence orientation can be provided by repetitive use of fixed motor movement, or 

deriving relative distances between two points. Allocentric strategies are based on a 

mental representation of the platform location relative to a set of extramaze cues and 

do not depend on the location of the animal. Hippocampal lesions cause specific 

impairments in the development of allocentric strategies without affecting egocentric
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strategies or the ability to locate the platfrom relative to a single intramaze cue (de 

Bruin et al., 2001; Pearce et al., 1998).

Training produces a decrease in escape latency independently of the strategy 

used. In fact, even when large portions of the hippocampus are inactivated, animals 

are able to improve acquisition of the task with the number of training trials (de Bruin 

et al., 2001; Moser et al., 1995). The formation of a hippocampus-dependent 

strategy is probed in a transfer test or probe trial (eg. Peters et al., 2003). During this 

test, the platform is removed form the pool and the animals are allowed to swim 

freely for a certain period of time. If the animal learned the position of the platform 

based on the presence of extramaze cues, in other words if it has developed an 

allocentric strategy to locate the platform, it will spend a high percentage of time in 

the area where the platform was previously located. On the contrary, an animal that 

developed an egocentric strategy will not display a preference for any particular area 

of the pool.

In order to assess probe trial performance quantitatively, the pool is artificially 

divided in four quadrants. Quantitative measurements of spatial accuracy include the 

percentage of time spent in the target quadrant (where the platform was placed 

previously), the cumulative distance to the platform position throughout the trial 

(Gallagher proximity measure - GPM) and the number of times the animal crossed 

the platform position or equivalent positions in the pool (Peters et al., 2003; de Bruin 

et al., 2001; Gallagher et al., 1993).

Since it was first published, this task has been adapted to other species of 

rodents such as mice and used in a great number of neuronanatomical, 

pharmacologic and genetic studies (e.g. Peters et al., 2003; Need and Giese, 2003; 

de Bruin et al., 2001; Cho et al., 1999; Tsien et al., 1996)
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1.4.2.2. THE RADIAL ARM MAZE TASK

Another hippocampus-dependent spatial task is the radial arm maze (Gresack 

and Frick, 2003; Bimonte-Nelson et al., 2003; Lee and Kesner, 2003; Mizuno et al., 

2002), which is used in rodents and has also been adapted to humans in virtual 

reality environments (Astur et al., 2004; Sakthivel et al., 1999; Astur et al., 1998).

The radial arm maze (RAM) consists of a centre area with a number of 

identical arms radiating outwards. Some of the arms can be baited with rewards 

(generally food in dry versions and platforms in wet versions) which are withdrawn 

once found. Success in this task implies (a) being able to locate the baited arms 

between different training trials; (b) not re-entering arms previously visited within a 

training trial. In other words, animals need to learn spatial information that remained 

constant overtime (reference memory component), and that changed during the time 

of a single trial (working memory components; reviewed in Jonasson, 2005).

1.4.2.3. SEX DIFFERENCES IN SPATIAL MEMORY

Many studies in the sex differences literature ascribe better spatial abilities to 

men than to women. Men are generally better at reading maps, in mental rotation 

tasks, are more accurate in metric positional information and faster in the acquisition 

of virtual navigation tasks namely in some humanized versions of mouse tests 

(Postma et al., 2004; Parsons et al., 2004; Astur et al., 2004; Postma et al., 1999; 

Sakthivel et al., 1999; Galea and Kimura, 1993). On the other hand women are 

better in recalling landmarks in the map and detecting changes in landmark position 

(Galea and Kimura, 1993).
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Some studies have reported that the male advantage in spatial tasks also 

occurs in rodent species (Gresack and Frick, 2003; Frick et al., 2000; Markowska, 

1999; Kelly et al., 1988), however, a great number of other studies fail to report any 

sex difference (reviewed in Jonasson, 2005). The nature and robustness of sex 

differences depend on a number of factors, some of which will be discussed below.

1.4.2.3.1. TASK PARAMETERS

The RAM and MWM are frequently used interchangeably to assess spatial 

memory and navigation abilities. In fact, robust sex differences are observed in the 

RAM both for the working and reference memory component (Astur et al., 2004; 

Heikkinen et al., 2004; Gresack and Frick, 2003; Bimonte-Nelson et al., 2003), while 

in the MWM these differences tend to be more subtle (Jonasson, 2005) and highly 

dependent on training procedures and task parameters. These tasks differ in 

motivation (appetitive in the RAM and aversive in the MWM) and motor demands 

(walking in the RAM and swimming in the MWM), with higher levels of stress 

imposed by the MWM procedure (Beiko et al., 2004). Additionally, in the RAM, 

assessment of reference memory can be biased by working memory errors within the 

trial, while scoring of spatial abilities in the MWM depends purely on reference 

memory. These factors may partially justify differences in the detection of sex 

differences by the two tasks.

In the MWM, differences in performance may correlate with the engagement 

of distinct strategies in solving the same task. In fact, a number of studies point to 

differences in navigation strategies based on cue utilisation. Manipulation of 

environmental characteristics in a virtual navigation task revealed that females rely
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predominantly on landmark information, while males can more easily coordinate 

landmark and geometric information and are less susceptible to landmark disruption 

(Sandstrom et al., 1998), a finding coincident with self reported strategies (reviewed 

in Halari et al., 2005).

In agreement with the findings in humans, manipulation of task parameters 

also produces a sex-specific effect in rodents. Roof and Stein (1999) demonstrated 

that changes of release position across trials was significantly more detrimental for 

retention of platform acquisition in females, but the sex difference could be reversed 

if important salient cues such as the position of the experimenter remained constant 

throughout trials. However, no conclusions on sex differences in hippocampal 

memory can be extrapolated from these studies as performance was assessed by 

escape latencies which may not depend on hippocampal function (Moser and Moser, 

1998; Moser et al., 1995). Additional evidence for the engagement of different 

strategies in spatial memory tasks was provided in a study by Williams et al. (1990). 

In this study, male and female rats were trained in the RAM until both groups 

reached similar levels of reference and working memory errors. Changes in the 

geometry of the room disrupted male performance, while female performance was 

more strongly disrupted by changes in landmarks.

The coordination of landmark and geometric information by the males is a 

more efficient strategy to locate the platform in comparison to relying on landmarks 

only. This efficiency is reflected in sexual dimorphisms in the rate of acquisition of 

the task. These difference tend to become minimal as training progresses and 

animals demonstrate robust spatial learning (Warren and Juraska, 1997; Perrot-Sinal 

et al., 1996; Frye, 1995). Therefore the time point in the course of training at which 

the animals are tested can be crucial for the detection of sex differences.
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Additionally, pre-training in hippocampus-independent version of the MWM exerts a 

facilitator effect in the hippocampus-dependent version of the MWM. These effects 

are more pronounced in females and can therefore mask a female disadvantage 

(Perrot-Sinal et al., 1996).

1.4.2.3.2. SOURCE OF GONADAL HORMONES

Studies performed in naturally cycling humans and rodents report impaired 

performance in spatial tasks during phases of high estradiol concentration (Galea et 

al., 2002; Postma et al., 1999; Fugger et al., 1998; Warren and Juraska, 1997), while 

other studies fail to find any influence of the phase of the estrous cycle in spatial 

memory. On the contrary, lower concentration of estrogens after estropause is 

related with decreased spatial abilities (Sherwin, 2003a; Frick et al., 2000).

Inter-individual variations and possible disruptions to normal cycling due to 

environmental conditions may bring confounds to the interpretation of behavioural 

outputs. To circumvent this problem many studies combine gonadectomies with 

hormone replacement. Yet, no consistent evidence was, so far, provided by these 

studies: some report advantages in gonadectomized over intact rats and a 

detrimental effect of estrogen replacement (Galea et al., 2002; Chesler and Juraska, 

2000; Fugger et al., 1998), while others report an advantageous effect of estrogen 

(Sandstrom and Williams, 2004; Gureviciene et al., 2003; Markham et al., 2002; Frick 

et al., 2002).

Possible causes for the discrepancies between the studies mentioned above 

are differences in the time points of estrogen administration relative to training and 

testing of the animals. Sandstrom and Williams (2004) used a delayed matching to
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place version of the MWM to determine the time frame of estrogen action. In this 

task, ovarectomized rats were given a training and test session separated by 

retention intervals of variable length. Generally, the longer the retention interval, the 

smaller the improvement in escape latency on the test trial. Estradiol injection thirty 

minutes prior to behavioural training caused significant improvements in performance 

for longer retention intervals, an effect only detectable 24 hours after the priming 

injection. Furthermore, these authors demonstrated that continuous estradiol 

replacement maintained the improvement in performance. These results suggest 

that the significant effects of estrogen in cognition are mediated by slow genotropic 

actions, rather than by fast cross talk with other intracellular signalling pathways.

Additional insights into the role of estrogen in spatial memory were provided 

by genetic manipulation of classic estrogen receptors. MWM training of ER a  and ER 

p null mutant female mice revealed different actions of the receptors for spatial 

memory acquisition: ERp null mutants showed impaired performance when

compared to their WT littermates (Kudwa et al., 2005; Rissman et al., 2002). In 

contrast ERa null mutants showed normal acquisition (Li et al., 2003; Fugger et al.,

1998), while WT littermates treated with high doses of estradiol were impaired in 

MWM performance, suggesting that estrogen mediated activation of ERa receptors 

was detrimental for the acquisition of spatial tasks, while activation of ER/? was 

beneficial.

In addition to the effects of estrogen, a number of studies have also addressed 

the impact of progesterone in cognition (Sandstrom and Williams, 2001; Warren and 

Juraska, 2000). Comparison of two groups of postestropausal females with similar 

concentration of circulating estrogens but different concentrations of progesterone
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suggested that higher levels of progesterone can be detrimental to the acquisition of 

spatial tasks (Warren and Juraska, 2000).

Like estrogen, testosterone is able to exert a modulatory effect in spatial 

abilities. For example, testosterone hypersecretion confers an advantage in mental 

rotation tasks in girls with the CAH condition relative to normal girls, but the opposite 

effect is seen in boys (Halari et al., 2005). Similarly, higher levels of circulating 

endogenous testosterone as well as exogenous administration correlates positively 

with spatial abilities in women (Aleman et al., 2004).

The studies described above focused on organisms that were either gonadally 

intact or that have been gonadectomized in adulthood, thereby providing insights 

onto the activational role of gonadal hormones in the shaping of sexually dimorphic 

navigation abilities. However, for example in humans, male advantages are 

detectable in 3-4 year old infants (Halari et al., 2005), but very little is known about 

the impact of organizational effects of gonadal hormones on navigational abilities in 

human adults. Williams and colleagues (1990) performed neonatal castration of 

male rats and estrogen administration to neonatal female rats, and the control groups 

were subsequently castrated in adulthood to prevent an activational effect of gonadal 

hormones. Testing of these animals in the RAM revealed the prevalence of an 

organizational effect of perinatal estrogen in the improvement of reference memory. 

Whether the organizational effects of testosterone were mediated by effects upon 

androgen receptors or estrogen receptors (due to aromatization) was unclear until a 

recent report on androgen insensitive male rats (Jones and Watson, 2005). These 

males secrete normal levels of testosterone, and have normal aromatase activity, but 

carry a mutation in the androgen receptor that renders them insensitive to 

testosterone. When tested in the MWM, this group of mice displayed a level of
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performance intermediate between normal males and females. These results 

suggest that the masculinization of spatial behaviours is mediated by androgen 

receptors.

Only one study reports a direct impact of sex chromosome gene expression in 

spatial abilities. This study took advantage of a line of C57BL/6 mice in which, 

somegenotypic XY individuals develop as phenotypic females. XY females were 

significantly better than XX females in the MWM (Stavnezer et al., 2000).

1.4.2.3.3. AGE OF THE SUBJECTS

An important study by Frick et al (2000) point to an age effect in sex 

differences in learning and memory (L&M) in the MWM. Testing of groups of young, 

middle aged and old mice of both sexes in the MWM pointed to an earlier impairment 

in females presumably due to lowering of circulating estrogen levels and cessation of 

cyclicity. The importance of cyclicity and its contribution for later protective effects is 

also provided by studies of mice in a dry version of the RAM, where the cognitive 

decline becomes milder as the age of ovarectomy increases, this is, for as long as 

the mice are allowed to cycle normally (Heikkinen et al., 2004).

1.5. MEMORY CONSOLIDATION IS A TIME-DEPENDENT PROCESS

Pioneering studies by Muller and Pilzecker on acquisition and retrieval of 

verbal material (Muller and Pilzecker, 1890, reported by Lechner et al., 1999) were 

the first to report the requirement of a time-dependent process for memory 

stabilization. Clinical studies of retrograde amnesia and use of amnesic treatments
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in experimental animals (electroconvulsive shocks, hypoxia, hypothermia and 

inhibition of protein synthesis) provided evidence for the existence of a time frame 

during which memory is susceptible to disruption (Squire et al., 2001; Nadel and 

Bohbot, 2001; Sara, 2000; Squire and Zola-Morgan, 1991; Misanin et al., 1968; 

Schneider and Sherman, 1968; McGaugh, 1966; Agranoff et al., 1965; Flexner et al., 

1963). Based on this and other studies, two temporal stages of memory were 

defined: short-term memory (STM) and long-term Memory (LTM). STM emerges 

within the few seconds or minutes following the learning episode and persists for 

short periods of time (in the minute range). LTM are stable and persist for days, 

months or even a lifetime. The consolidation theory of memory postulates that 

formation of stable, enduring and usable representations of learning experiences is a 

time dependent process (McGaugh, 2000).

Consolidation of hippocampus-dependent memory occurs at the cellular and 

systems level (Frankland and Bontempi, 2005; Dudai, 2004).

Synaptic or cellular consolidation comprises a set of molecular and cellular 

events triggered in hippocampal neurons by the learning experience which are 

thought to modulate synaptic strength and eventually contribute to the reshaping of 

the pattern of connectivity in the hippocampal circuitry (Lamprecht and LeDoux, 

2004). These processes are initiated and occur during the first few hours following 

learning and will be further discussed in section 1.6.

Systems consolidation, refers to a slow process of reorganization of the 

memory trace within brain areas, which is thought to involve a cross talk between the 

hippocampus and the neocortex (Frankland and Bontempi, 2005; Dudai, 2004; Dash 

et al., 2004; Nadel and Bohbot, 2001). Studies of systems consolidation in human 

patients and lesioned rodents yielded conflicting results which gave rise to two main
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theories: the multiple trace theory, and the trace transfer theory. The multiple trace 

theory postulates the participation of the hippocampus in the retrieval of spatial and 

contextual memories for as long as they persist (Winocur et al., 2005; Rosenbaum et 

al., 2000; Nadel and Moscovitch, 1997). On the other hand, the trace transfer theory 

defends that memories are only temporarily stored in the hippocampus and gradually 

become solely dependent on the neocortex (Clark et al., 2005; Bayley et al., 2005; 

Squire et al., 2001).

1.6. CELLULAR AND MOLECULAR BASES OF MEMORY

The studies on human patients and rodents described in the previous section 

provided strong evidence for a role of the hippocampus in the storage of declarative 

or episodic-like memories. However, finding the memory engram, the physical 

support for memory encoding, has proved to be a more challenging task. 

Nevertheless, an extensive amount of literature describes correlations between 

molecular and cellular mechanisms and behavioural outputs used as measures of 

memory formation. Some of these studies will be described in the next sections.

1.6.1. SYNAPTIC PLASTICITY

Neurons communicate with each other via synapses. These are specialized 

adhesion junctions that display highly plastic properties (Hussain and Sheng, 2005). 

Synapse formation, turnover and remodelling occur during development contributing 

to set the wiring of the brain. Pioneering ideas concerning the physical support of 

memory were put forward by the Spanish neuroanatomist Santiago Ramon y Cajal at
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the end of the 19th century, who postulated that modifications of synaptic connections 

between neurons can serve as elementary components of memory storage (Cajal, 

1894, reported by Bailey et al., 2000).

Following Cajal's ideas, the Canadian neuropsychologist Donald Hebb, 

postulated on the electrophysiological properties of synaptic transmission: “When an 

axon of cell A is near enough to excite cell B and repeatedly or persistently takes part 

in firing it, some growth processes or metabolic changes take place in one or both 

cells such that A's efficiency as one of the cells firing B, is increased" (Hebb, 1949 

reported by Bliss, 2003).

A cellular mechanism able to account for Hebbian plasticity rules, emerged 

from studies by Bliss and Lomo, who described a sustained increase in the efficiency 

of synaptic transmission in the dentate gyrus, after high frequency stimulation of the 

perforant path (Bliss, 2003; Bliss and Lomo, 1973). This phenomenon of increase in 

synaptic strength was termed long-term potentiation (LTP), and various forms of LTP 

have subsequently been described in all excitatory pathways of the trisynaptic circuit 

of the hippocampus and in other brain regions such as the amygdala (Maren, 2005; 

Lynch, 2004; Malenka and Bear, 2004; Sweatt, 1999). LTP is characterized by three 

basic properties: cooperativity, associativity and input specificity. Cooperativity 

corresponds to the need for a certain threshold intensity for induction; Associativity 

permits the potentiation of a weak input if it is active at the same time as a strong 

tetanus to a separate but convergent input; Input specificity prevents the occurrence 

of potentiation in inputs that were not active at the same time of the tetanus (Bliss 

and Collingridge, 1993). These three properties and the durability of LTP support a 

potential physiological relevance of this cellular process in L&M consolidation . 

(Lynch, 2004)
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LTP is conventionally separated into three stages: (a) Induction, referring to 

the transient extracellular stimuli that trigger the potentiation effect; (b) Expression, 

comprising an array of molecular mechanisms that allow increased potentiation; and 

(c) Maintenance, pertaining to the persistent biochemical signal that lasts in the cell. 

Each of these stages is further divided into three temporal stages: initial, early and 

late LTP (L-LTP). The use of specific enzyme inhibitors and electrophysiological 

studies both in WT and genetically modified animals has provided evidence for the 

engagement of distinct biochemical and molecular mechanism in each of these 

stages. Among these, the dependence of L-LTP on de novo transcription and 

protein-synthesis, should be emphasized as this is also a requirement for memory 

consolidation (Sweatt, 1999; Nguyen et al., 1994; Malinow et al., 1988; Frey et al., 

1988)

LTP is an experimental phenomenon which can be used to demonstrate the 

repertoire of long-lasting modifications that synapses can undergo. Many studies 

report a correlation between in vitro LTP and performance in memory tasks, while 

others report dissociation between these two phenomena. A conclusive 

demonstration that in vivo LTP underlies memory formation is still missing (Lynch, 

2004; Malenka and Bear, 2004; Sweatt, 1999).

1.6.1.1. SEX DIFFERENCES IN LTP

The magnitude of perforant path LTP induced in vitro was reported to be 

higher in hippocampal slices from male rats (Maren, 1995; Maren et al., 1994). 

Further studies were pursued towards understanding whether the sex difference was 

due to hormonal effects and, if so, which hormones were implicated in this regulation.
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The degree of potentiation evoked by a single high frequency tetanus stimulation of 

the perforant path did not differ between castrated and intact males, indicating that, 

at least under this induction protocol, testosterone did not participate in the 

modulation of LTP (Anagnostaras et al., 1998). Under the same electrophysiological 

protocol, administration of estrogen to castrated female rats produced a lesser 

degree of potentiation in comparison to vehicle treated animals (Gupta et al., 2001). 

These results suggest that as far as perforant path LTP is considered, estrogen 

contributes to a lesser degree of synaptic potentiation.

Similarly to DG synapses, high frequency stimulation of the Schaffer collateral 

produces higher LTP magnitude in males than in females (Yang et al., 2004). 

However, contrarily to DG synapses, higher levels of estrogen both in naturally 

cycling and estrogen replaced animals contribute to augmented LTP in CA1 

synapses (Gureviciene et al., 2003; Good et al., 1999).

1.6.2. MOLECULES INVOLVED IN SYNAPTIC PLASTICITY

A number of neurotransmitters can accomplish synaptic transmission in 

excitatory synapses, among which the most intensively studied is glutamate. 

Glutamate released by the pre-synaptic terminal can act upon three kinds of 

ionotropic receptors embedded in the post synaptic membrane: N-methyl-D- 

aspartate receptors (NMDAR) and non-NMDAR such as the alpha-amino-3-hydroxy- 

5-methyl-4-isooxazolepropionic acid receptor (AMPAR) and kainate receptors (Cull- 

Candy and Leszkiewicz, 2004).

The NMDAR is a doubly gated channel permeable to calcium ions (Ca2+). In 

the resting state, when neurons are polarized, the NMDAR channel is blocked by a
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magnesium ion (Mg2+). NMDAR activation depends on the temporal coincidence of 

two events: depolarization of the post-synaptic membrane by strong electrical 

stimulation and pre-synaptic release of glutamate. Thus, the NMDAR acts as a 

molecular coincidence detector (Tsien, 2000).

Calcium entry into the cell is the trigger for multiple events such as the process 

of AMPAFICATION. This corresponds to increased exocytosis of pre-formed and de 

novo synthesis of AMPAR and activation of transcription via cross talk with signalling 

pathways and second messengers (Deisseroth and Tsien, 2002; West et al., 2001; 

Berridge et al., 2000; Ho et al., 2000).

Whether strengthening of synaptic transmission relies on pre or post-synaptic 

mechanisms or both is still a highly debated issue. Some studies report increased 

neurotransmitter release and restructuring of the pre-synaptic terminal after LTP 

induction (Zakharenko, 2001, Antonova, 2001) and other studies reporting an 

engagement of the post-synaptic compartment through increased AMPAR insertion 

upon LTP induction and after associative learning in a fear conditioning paradigm 

(Malinowand Malenka, 1999; Rumpel, 2005).

1.6.3. MOLECULES INVOLVED IN LEARNING AND MEMORY MECHANISMS

While in vitro techniques may provide insights into the physiology of synaptic 

transmission, addressing the biological mechanisms relevant for actual L&M 

processes requires a combination of behavioural, pharmacologic and genetic 

manipulations in living animals.

The advent of mouse molecular genetic techniques provided valuable tools to 

unravel some of the molecules, mechanism and pathways engaged in memory
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consolidation. These techniques allowed the deletion, modification and insertion of 

genes in the mouse genome (Giese et al., 1998; Mayford et al., 1996; Silva et al., 

1992). Refinements of these techniques offered the possibility of tightly regulating 

the effects of the mutations introduced in a temporal and regional fashion, thus 

preventing developmental abnormalities and unspecific effects of the mutation on 

L&M (Nakazawa et al., 2003; Morozov et al., 2003; Mayford and Kandel, 1999; Tsien 

et al., 1996). Some of these manipulations for molecules that have been shown to 

be involved in L&M processes will be described below.

1.6.3.1. THE ROLE OF THE NMDAR IN LEARNING AND MEMORY

A combination of pharmacologic and electrophysiological techniques 

established that, in the majority of synapses that support LTP, the post synaptic Ca2+ 

increase is mediated through activation of the NMDAR (Lynch, 2004; Malenka and 

Bear, 2004; Sweatt, 1999). Furthermore, pharmacologic, genetic and behavioural 

techniques established the critical importance of the NMDAR in L&M consolidation.

Pioneering studies by Morris and co-workers (Morris et al, 1986) revealed that 

pharmacological inhibition of the NMDAR with the selective antagonist D-2-amino-5- 

phosphonopentanoate (AP5) causes severe deficits in LTP and prevents memory 

formation after MWM training.

In the adult brain, the majority of the NMDAR are heteromers of NR1 and 

either NR2A or NR2B subunits (Tsien, 2000). Deletion of the NR1 subunit renders 

the receptors non functional. The relative predominance of NR2B over NR2A 

declines with age which is thought to be related to age-related cognitive decline (Cull- 

Candy and Leszkiewicz, 2004; Tsien, 2000).
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Genetic deletion of the NR1 subunit in area CA1 in the adult hippocampus 

caused impairments in a variety of hippocampus-dependent tasks, and abolished 

LTP in hippocampal subfield CA1 (Tsien et al., 1996; McHugh et al., 1996). NR1 

deletion in subfield CA3 caused deficits in slice LTP evoked in the recurrent-collateral 

CA3 synapses, but mild impairments in spatial memory in standard MWM protocols. 

However, impairments in a delayed matching to place version of the MWM, and upon 

partial removal of cues suggest that NMDARs in subfield CA3 of the hippocampus 

are involved in processes of pattern completion (Nakazawa et al., 2003; Nakazawa et 

al., 2002). Further evidence for a critical role of the NMDAR in learning processes 

was provided by a general improvement in performance in hippocampus-dependent 

tasks and enhanced LTP in mice overexpressing the NR2B subunit (Tang et al.,

1999).

The studies described above, among many others, established positive 

correlations between NMDAR function, artificially induced LTP and memory 

consolidation assessed at the behavioural level. However, a number of other studies 

fail to find these correlations: whether this failure is related to the experimental 

conditions under which LTP was induced and measured, or, whether LTP-related 

phenomena do not always represent the cellular model of memory consolidation, is 

still a highly debated issue (Malenka and Bear, 2004; Morris, 2003; Tsien, 2000; Bliss 

and Collingridge, 1993).
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1.6.4. MEMORY CONSOLIDATION REQUIRES DE NOVO TRANSCRIPTION AND 

TRANSLATION

Studies by Agranoff and colleagues in the 1960’s demonstrated that 

administration of protein synthesis inhibitors produces amnesic effects in the goldfish 

(Davis and Agranoff, 1966; Agranoff et al., 1965). Follow up studies in rodents 

demonstrated that systemic and intraventricular administration of anisomycin (an 

agent that interferes with transpeptidation) before or shortly after training strongly 

affects formation of LTM, while sparing STM for a variety of tasks (e.g. von Hertzen 

and Giese, 2005; Barrientos et al., 2002; Schafe et al., 1999).

Additionally, the use of RNA polymerase inhibitors (like a-amanitin) provided 

evidence that not only translation but also de novo transcription are critical for 

memory consolidation (Igaz et al., 2002).

An intriguing question is how the activation of cell wide mechanisms could 

account for input specificity, in order to strengthen particular synapses. Frey and 

Morris (1997) suggest that newly synthesized proteins are sequestered at potentiated 

synapses by an electrophysiological tag. Alternatively, Schuman and colleagues 

propose that strengthening of activated synapses is accomplished by local dendritic 

translation. In fact, mRNAs and components of translational machinery have been 

found in dendritic sites, and dendritic translation has been shown to be regulated in 

an activity-dependent manner (Sutton et al., 2004; Steward and Schuman, 2003; 

Steward and Schuman, 2001). No conclusive evidence points to a single agent 

responsible for specific marking of activated synapses for translational activation, but 

candidates include protein kinases, adhesion molecules, cytoskeletal elements and 

translational activators (Martin and Kosik, 2002).
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1.6.5. CREB AS THE KEY MOLECULAR SWICTH FOR MEMORY FORMATION

Given the well established requirement of de novo transcription for memory 

consolidation, an intensive amount of effort attempted to find transcription factors 

which can enable memory formation.

The cyclic adenosine mono phosphate (cAMP) responsive element (CRE) 

binding protein (CREB) was identified as a molecular switch for LTM formation in 

different species ranging from Drosophila to molluscs and mammals and in a wide 

range of hippocampus and amygdala dependent tasks (Dubnau et al., 2003; Kimura 

et al., 2002; Graves et al., 2002; Waddell and Quinn, 2001; Kandel, 2001; Gass et 

al., 1998; Bourtchuladze et al., 1994).

Hippocampal CREB activation has been identified after training of rodents in 

spatial and contextual learning tasks (Kudo et al., 2004; Peters et al., 2003; Wei et 

al., 2002; Mizuno et al., 2002; Taubenfeld et al., 1999). Additionaly, specific 

activation of genes bearing CRE-elements, upon training in single trial learning tasks 

has also been described for amygdala and hippocampus-dependent tasks (Athos et 

al., 2002; Impey et al., 1998).

Moreover, blockade of CREB function by injection of antisense 

oligonucleotides in the hippocampus disrupted consolidation of a spatial learning task 

(Guzowski and McGaugh, 1997), and expression of a CREB endogenous repressor 

blocked consolidation of contextual fear memories (Kida et al., 2002).

These results were further complemented by mouse molecular genetics: 

deletions of the genes ecoding the alpha and delta isoforms of CREB (CREBa5 

mutations) led to strong deficits in hippocampus dependent spatial memory and 

contextual fear and in amygdala dependent cued conditioning, which were
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accompanied by impairments in LTP in CA1 synapses (Bourtchuladze et al., 1994). 

Disruption of CREB function in hippocampal subfield CA1 by expression of a 

dominant-negative form of CREB caused impairments in performance of the MWM 

task (Pittenger et al., 2002) and expression of a constitutively active CREB protein 

facilitated the transcription dependent phase of LTP (L-LTP) (Barco et al., 2002).

Despite the evidences described above, the requirement of CREB for memory 

consolidation has been challenged by other studies on spatial and contextual tasks. 

First, impairments in the MWM have been shown to be dependent on the training 

protocol, as the CREBa5 mutants were able to learn the task under a spaced 

training protocol (Hebda-Bauer et al., 2005; Kogan et al., 1997); Second, 

manifestation of the phenotype was strongly dependent on the genetic background of 

the mouse lines (Graves et al., 2002; Gass et al., 1998); Third, other mutants with a 

marked reduction of hippocampal levels of CREB protein displayed only mild 

phenotypes in the MWM (Balschun et al., 2003).

There is also controversy concerning the role of hippocampal CREB in 

classical conditioning tasks. Kida et al. (2002) reported impaired contextual fear 

memory consolidation after expression of a CREB repressor. However, expression 

of a dominant negative form of CREB in area CA1 did not interfere with contextual or 

cued fear conditioning (Pittenger et al., 2002).
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1.6.6. CREB ACTIVATION PATHWAYS

CREB belongs to the basic-leucine zipper (bZIP) family of transcription factors 

that also comprises CREM and ATF. Members of this family form homo or 

heterodimers that can either exert a compensatory effect upon CREB loss or 

counteract CREB function thereby acting as transcriptional repressors (Chen et al., 

2003; Pittenger et al., 2002).

CREB activation is achieved by self dimerization and phosphorylation of serine 

residue 133 (Gonzalez and Montminy, 1989).

Given the functional heterogeneity of genes possessing CRE elements and 

the broad range of stimuli that can elicit CRE-driven transcription, tissue and time 

specificity is achieved through: (a) Combinatorial effects in the dimerization of the 

bZIP family member transcription factors; (b) Recruitment of other transcriptional co

activators such as CREB-binding protein (CBP; Impey et al., 2002; Chawla et al., 

1998).

In neurons, transduction of synaptic inputs to the nucleus in order to activate 

CREB is mediated mainly by two signalling pathways: the cAMP activated protein 

kinase (PKA) cascade which cross-talks with the mitogen-activated protein kinase 

(MAPK) cascade and the calcium/calmodulin (Ca2+/CaM) dependent protein kinase 

(CaMK) cascasde (reviewed in Silva, 2003; Soderling, 1999). In vitro studies in 

cultured neurons and biochemical studies have revealed learning-specific activation 

of members of these pathways. Furthermore, combination of targeted mutagenesis 

techniques with behavioural and electrophysiological techniques have provided 

insights into the role of particular members of these pathways in synaptic plasticity
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and L&M processes (Kelleher, III et al., 2004; Giese et al., 2001; Sweatt, 2001; Blum 

et al., 1999; Selcher et al., 1999; Bourtchouladze et al., 1998; Atkins et al., 1998).

Because part of the work described in this thesis was performed with mice 

carrying a genetic mutation for one of the members of the CaMK cascade, the 

biochemistry and the role of this pathway in L&M and synaptic plasticity will be 

addressed below.

1.6.7. THE CaM KINASE CASCADE

The CaMK cascade participates in many biological functions including T cell 

activation (Westphal et al., 1998), fertility and, as discussed below, synaptic plasticity 

and L&M (Wu et al, 2000a, Wu et al, 2000b).

1.6.7.1. BIOCHEMISTRY OF THE CaM Kinase cascade

The CaMK cascade consists of a set of serine/threonine kinases including 

CaMKI, CaMKIV and a pair of upstream activating kinases, CaMKKa and CaMKK£ 

(Anderson et al., 1998; Chatila et al., 1996; Seibert et al., 1995). All members share 

structural similarities: they possess a catalytic domain adjacent to a regulatory region 

containing an inhibitory domain (AID) and a Ca2+/CaM binding domain (CBD). A 

conformational constraint based on the interaction of the catalytic domain with the 

AID maintains the kinases in an inactive state. Ca2+/CaM biniding to the CBD is 

essential for the release of the inhibitory constraint allowing activation of the protein 

(Anderson et al., 1998; Cruzalegui et al., 1992). The fact that upstream and 

downstream members of the cascade require the same allosteric activator is an
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unusual feature in intracellular signalling cascades, and advantages of such a pattern 

of activation are not apparent (Soderling, 1999).

The mechanisms of activation of CaMKIV are well understood: after the 

release of the inhibitory constraint by Ca2+/CaM binding allowing phosphorylation of 

multiple serine residues, CaMKK binds to CaMKIV/Ca2+/CaM complexes and 

phosphorylates a threonine residue in the catalytic domain which renders the enzyme 

fully active (Tokumitsu et al., 1999; Anderson et al., 1998; Tokumitsu et al., 1995). 

Phosphorylation of this threonine residue can only be mediated by CaMKK and is 

essential for nuclear translocation of CaMKIV (Lemrow et al., 2004). CaMKK 

mediated phosphorylation is essential for full activation of the protein rendering it able 

to phosphorylate nuclear substrates (Impey et al., 2002; Kane and Means, 2000; 

Enslen et al., 1995).

Interestingly, following CaMKK-mediated phosphorylation, CaMKIV is capable 

of maintaining Ca2+/CaM independent or autonomous activity, which accounts for 

sustained activity beyond the transient intracellular rise in calcium concentration. 

Notably, this autonomous activity is required for CaMKIV to drive transcription (Chow 

et al., 2005).

Despite the fact that both CaMKI and CaMKIV are able to activate CREB in 

vitro (Takemoto-Kimura et al., 2003; Bito et al., 1996), multiple lines of evidence 

suggest that CaMKIV alone is the most likely candidate for a CREB kinase in vivo. 

Firstly, CaMKIV has been found in the nucleus and cytoplasm while CaMKI has only 

been detected in the cytoplasm (Lemrow et al., 2004; Nakamura et al., 1995); 

Second, interference with CaMKIV through antisense or dominant negatives in 

cultured neurons, inhibits CRE-dependent transcription (Finkbeiner et al., 1997; Bito 

et al., 1996); Third, expression of a constitutively active form of CaMKIV promotes
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increased CREB and CBP phosphorylation, thereby enhancing transcription (Impey 

et al., 2002).

The CaMKK family is encoded by two distinct genes giving rise to the a  and /? 

isoforms, the latter subject to alternative splicing (Hsu et al., 2001). Despite 

displaying structural and functional similarities and similar ability to activate CaMKI 

and CaMKIV in vitro, CaMKKs display distinct tissue intracellular distribution with 

CaMKKa being more widespread and CaMKK/? predominantly expressed only in 

brain tissue, thymus and male gonads (Vinet et al., 2003; Sakagami et al., 2000; 

Anderson et al., 1998; Nakamura et al., 1995). Subtle structural differences render 

the enzymes differentially sensitive to certain chemical inhibitors (Tokumitsu et al., 

2003) and to activation by Ca2+, as activity of CaMKK/? is not entirely dependent on 

Ca2+/CaM binding, while binding of this complex is absolutely essential for CaMKKa 

activation (Tokumitsu et al., 2001).

No data in the literature confirm or rule out the possibility that CaMKKa can 

phosphorylate CaMKI or CaMKIV. It is also unclear in which subcellular 

compartment CaMKIV phosphorylation occurs (Chow et al., 2005).

The role of the CaM Kinase cascade in signalling transduction pathways is not 

limited to regulation of CREB and CBP. In fact, CaMK cascade members, crosstalk 

with other signalling pathways such as the MAP kinase and PKB cascades and, 

furthermore, CaMKIV can directly activate a number of other transcription factors 

(Inuzuka et al., 2002; Kane and Means, 2000; Soderling, 1999).
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1.6.7.2. THE ROLE OF THE CaM KINASE CASCADE IN L&M

Evidence for a direct role of CaMKIV in synaptic plasticity was provided for 

example by the demonstration that CaMKIV is activated and involved in stimulation 

of gene expression during LTP in the hippocampal CA1 region (Kasahara et al., 

2001). In order to investigate the role of members of the CaMK cascade in synaptic 

plasticity and L&M, a number of mutant mouse lines for members of the pathway 

have been generated.

Wu and colleagues generated a global null mutant mouse which displayed 

serious developmental abnormalities and was, therefore, unsuitable for behavioural 

testing (Wu et al., 2000). In contrast, another CaMKIV global mutant did not display 

obvious deficits except for abnormalities in cerebellar development (Ho et al., 2000). 

This mutant line displayed deficits in glutamate-induced CREB activation in the CA1 

area in hippocampal slices. In addition, early LTP, a transient form of synaptic 

potentiation, was normal in the mutants while late LTP (L-LTP), which is dependent 

on de novo transcription, was impaired in CA1 synapses, an effect that can be 

partially explained by a failure to activate CREB in the mutant line. At the 

behavioural level the mutation affected contextual and cued fear conditioning (Wei et 

al., 2002), but spared performance in the MWM (Ho et al., 2000). However, the 

presence of truncated transcripts in the latter mouse line made it unclear whether 

CaMKIV function was, in fact, fully ablated.

To elucidate the role of CaMKIV while preventing the developmental deficits 

described, Kang et al. (2001) generated forebrain-restricted transgenic mice 

expressing a dominant negative transgene of CaMKIV which confered a defect in 

CREB phosphorylation. In agreement with the data from the global null mutant mice,
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reduction of activity-induced CREB phosphorylation produced a defect in L-LTP. At 

the behavioural level, this mutant line displayed deficits in spatial memory formation 

assessed in the MWM, and contextual fear conditioning assessed 7 days after 

training, but not 1 day after training. In addition to the possibility that CaMKIV 

function was not fully ablated in the global mutant line, discrepancies in the 

behavioural phenotype in the MWM may be explained by the MWM setup and 

training protocol: in the Ho study, the swimming pool was relatively small (100 cm in 

diameter as opposed to 160 cm in the Kang study) and the MWM training protocol 

started with the visible platform version of the task which is known to facilitate 

subsequent learning in the hidden platform version (Warren and Juraska, 1997).

Peters et al. (2003) generated a mutant mouse line bearing a global null 

mutation for the gene encoding CaMKK/?. These mice did not display any gross 

developmental abnormalities and were subsequently put through a battery of 

behavioural tests. Contextual and cued fear conditioning memory assessed one day 

after training did not differ between WT and CaMKK/? null mutants. These mice were 

trained in the hidden platform version of the MWM and tested in a probe trial at the 

end of the sixth day of training. Probe trial performance revealed impairment in 

spatial memory consolidation in male mice. Remarkably, probe trial performance of 

null mutant females was comparable to that of WT littermates (Mizuno et al., 2006). 

Furthermore, a deficit in hippocampal CREB activation was detected in male 

CaMKK/? null mutant mice sacrificed immediately after the probe trial on day 6. In 

agreement with the findings relative to the CaMKIV lines, deficits in CREB activation 

correlated with deficits in slice L-LTP in hippocampal CA1 synapses.

Probe trial data is a composite measurement of task acquisition, consolidation 

and retrieval of spatial memory. Hence, the findings on failure of CREB activation
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and impaired L-LTP are more difficult to interpret in the light with the consolidation 

theory. A conclusive demonstration that lack of CaMKK# has an impact on memory 

consolidation was provided by testing these mice in the social transmission of food 

preferences (STFP), another hippocampus-dependent task. This is an ethological 

task which takes advantage of the natural tendency that rodents have to prefer types 

of food already ingested by their peers (Need et al., 2003). The task consists of 

feeding a group of demonstrator mice with scented food. These mice will then 

interact with a group of food deprived mice, who can smell the scent of the food 

eaten by the demonstrator. When given the choice between two differently scented 

foods, mice will tend to eat preferentially the food scented with the same scent 

previously smelled on the breath of the demonstrator (cued food). Testing of the 

CaMKK# mouse line in this task, 5 min after interaction with the demonstrator 

revealed a preference towards the cued food in both groups, demonstrating a normal 

acquisition of the task. When tested 24 hours after interaction with the demonstrator, 

mutant mice failed to show a preference towards the cued food. These results 

provided a demonstration that CaMKK# is required for memory consolidation of, at 

least some, hippocampus-dependent learning tasks.

Mizuno and colleagues (2006) generated a global null mutant mouse line for 

CaMKKa. This mutant mouse line displayed normal spatial learning assessed in the 

MWM and impaired hippocampus-dependent contextual fear conditioning in male 

mice but not in female mice. L-LTP was not affected in hippocampal slices from 

animals of either sex.

The results obtained from the Peters et al. (2003) and Mizuno et al. (2006) point 

to a male specific requirement for the upstream members of the CaMK cascade, 

CaMKKa and CaMKK#, in spatial and contextual memory formation respectively.
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The results of the behavioural and synaptic plasticity studies of mutant mouse 

lines for member of the CaM kinase cascade are summarized in the table 1.4.

Table 1.4- The impact of genetic manipulation of members of the CaM 
kinase cascade in synaptic plasticity and L&M tasks.______ __________________
Mutant line LTP Spatial Memory Fear conditioning
CaMKIV global 
mutants
(Wei et al., 2002; 
sex of the animals 
not specified; Ho et 
al., 2000)

Normal E-LTP and 
impaired L-LTP in 
CA1

Normal MWM; 
Normal RAM

Impaired contextual 
and cued fear 
conditioning 
assessed 1 and 7 
days after training. 
Reduced CREB 
activation after 
contextual fear 
conditioning.

Dominant negative 
CaMKIV transgenic 
line
(sex of the animals 
not specified; 
Kang et al., 2001)

Normal E-LTP and 
impaired L-LTP in 
CA1

Impaired MWM; Normal contextual 
fear conditioning 
assessed 1 day 
after training but 
Impaired CFC 
assessed 7 days 
after training.

CamKK/? global 
null mutant (Peters 
et al., 2003)

Normal E-LTP and 
impaired L-LTP in 
CA1 in males, 
normal in females

Males impaired in 
the MWM;
Impaired CREB 
activation after 
spatial training 
Females normal

Normal contextual 
and cued fear 
conditioning 
assessed 1 day 
after training.

CaMKKa global 
null mutant (Mizuno 
et al., 2006)

Normal E-LTP and 
L-LTP in CA1 in 
both sexes

Normal in both 
sexes

Impaired contextual 
fear conditioning in 
males; normal in 
females; normal 
cued conditioning 
in both sexes

1.7. MOLECULAR BASES OF SEX DIFFERENCES IN MEMORY FORMATION

The work on sex differences in spatial and contextual memory tasks has 

focused mostly on the effects of gonadal hormones (sections 1.4.1.4 and 1.4.2.3). In 

addition, the modulatory roles of gonadal hormones on LTP (section 1.6.1.1).
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Furthermore estrogen treatment of cultured hippocampal neurons correlates with a 

number of molecular events that have been associated with memory consolidation: 

(a) increased CREB phosphorylation accompanied by increased density of dendritic 

spines (Frick et al., 2004; Murphy and Segal, 1997); (b) increased expression of 

synaptic proteins including the NR1 subunit of the NMDAR (Li et al., 2004; Frick et 

al., 2002; Gazzaley et al., 1996a; Gazzaley et al., 1996b); (c) Interaction with and 

modulation of signalling cascades known to participate in synaptic plasticity and 

memory consolidation processes (reviewed in Cato et al., 2002).

The results on the CaMKKa and f3 mouse lines suggest that, in addition to 

gonadal hormone actions, sex differences in spatial and contextual memory tasks 

can also derive from the engagement of distinct signalling pathways in hippocampus- 

dependent memory consolidation. In addition, converging evidence suggests a sex- 

specific role for CREB in memory formation. First of all, a study of CREB activation 

upon contextual conditioning revealed a specific increase in phosphorylated CREB in 

area CA1 in male rats but not in female rats (Kudo et al., 2004). Furthermore data 

from our lab (K. Mizuno and K.P.Giese, unpublished) reveal lower levels of CREB 

activation in female WT mice after training in the MWM, when compared to male 

mice. Finally, a manipulation of task parameters in MWM training of CREBa8 mutant 

mice, revealed that in males, pre-exposure to an unsuccessful learning experience 

prevented subsequent learning under more favourable conditions. In females, 

however, previous unsuccessful learning did not affect subsequent learning under 

more favourable conditions. Conversely, change of platform location affected female 

mutants more adversely than male mutants (Hebda-Bauer et al., 2005).
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1.8. MEMORY EFFECTOR GENES

The importances of de novo transcription and translation as well as the role of 

some transcription factors and upstream regulatory signalling pathways in memory 

consolidation are well established. The relevance of these processes depends on 

the events ultimately triggered in the neuronal cell and that contribute to the 

modulation of synaptic transmission. For this purpose it is essential to identify the 

downstream target genes of the signalling pathways described above.

A combination of biochemistry and bioinformatic approaches has provided 

comprehensive data on the identity of CREB target genes (Impey et al., 2004; 

Conkright et al., 2003). Because CREB mediated transcription exerts pleiotropic 

effects in neurons (West et al., 2001; Wu et al., 2001; Finkbeiner et al., 1997; Bito et 

al., 1996) the identification of CREB targets is not the most efficient approach 

towards the identification of “memory effector genes”. In addition, multiple lines of 

evidence challenge the requirement of CREB for memory consolidation (Balschun et 

al., 2003; Graves et al., 2002; Gass et al., 1998) and the importance of a number of 

other transcription factors in synaptic plasticity and L&M processes has been well 

established (eg. Ramanan et al., 2005; Levenson et al., 2004a; Guzowski et al., 

2001; Taubenfeld et al., 2001). Finally, the first group of genes to be expressed after 

synaptic activation, termed Immediate Early Genes (IEG) comprises a number of 

transcription factors, such as c-fos and zif268 which drive transcription of other 

memory effector genes (reviewed by Guzowski, 2002). The conjunction of these 

factors adds a very high degree of complexity to the regulation of activity induced 

gene expression (Fig. 1.4).
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Short Term Plasticity?

Long Term Plasticity? 
(synaptic tag?)

Delayed onset IEGEffector lEGs

Synaptic Activity

Transcription factor, lEGs 
(c-fos, zif 268, etc).

Activation of kinases/phosphatases by Ca2+ and cAMP

Modification of pre-existing 
proteins to alter synaptic 

function

-Structural;
-growth related; 
-synaptic proteins, 
-neuropeptides; 
-trophic factors, etc

Activation of constitutive 
transcription factors (e.g. 
CREB) to alter neuronal 

transcription

| LONG TERM PLASTICITY? |

Figure 1.4- Model of experience-dependent gene expression in synaptic plasticity and 
memory consolidation processes. Synaptic activity driven by experience leads to 
alterations in intracellular second messenger levels, which in turn activate cellular kinases 
and phosphatases. These enzymes modulate the activity of a wide range of pre-existing 
cellular proteins, including synaptic components and transcription factors. In the nucleus, 
activation of CREB and related transcription factors initiates a cascade of gene expression 
(adapted from Guzowski, 2002).

1.8.1. GENOME-WIDE ANALYSIS OF GENE EXPRESSION INDUCED BY 

BEHAVIOURAL TRAINING

Technologies aimed at the identification of memory effector genes are based 

on comparative analyses of the transcriptome of whole brain or specific areas of the 

brain in animals subjected to different training conditions. A large number of 

screening technologies for gene expression in the brain have been developed (Lein 

et al., 2004; Proudnikov et al., 2003; Evans et al., 2002; Broude, 2002). One of the 

most popular ones is Affymetrix Microarray technology (von Hertzen and Giese,
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2005; Datson et al., 2004; Levenson et al., 2004a; Cavallaro et al., 2002). A 

characterization of the latter technique and its general advantages and 

disadvantages is provided in Chapter III.

1.9. AIM OF THE PROJECT

Performance in tasks assessing hippocampus-dependent memory formation 

has been reported to be sexually dimorphic. This is classically interpreted as the 

effect of gonadal hormone actions in the brain.

De novo transcription is required for memory consolidation. Memory 

consolidation engages activation of the transcription factor CREB which can be 

activated by a variety of signalling pathways including the CaMK cascade. Peters 

and colleagues (2003) generated a null mutant mouse in which all the beta isoforms 

of CaMKK were deleted. This CaMKK/? null mutant line was subjected to a variety of 

behavioural tests aimed at assessing hippocampus-dependent memory formation.

Male CaMKK/? mutant animals exhibited delayed spatial memory formation 

assessed in the MWM. This behavioural phenotype was accompanied by an 

impairment in CREB activation after spatial training and in the transcription 

dependent phase of LTP (L-LTP) in CA1 synapses. Remarkably, CaMKK£ null 

mutant females were unimpaired in the MWM and in L-LTP. These studies 

suggested the hypothesis that the transcriptional mechanisms underlying spatial 

memory formation may differ between the sexes.

Starting from this hypothesis, the current project used the CaMKK/? null 

mutant line as a tool to investigate sexual dimorphisms in gene expression in 

hippocampal tissue.
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The aims of this project were:

1. To identify CaMKK/? regulated genes in the male hippocampus, and to 

investigate whether the same genes are also regulated by CaMKK/? in female 

mice.

2. To investigate whether transcription of these genes in the hippocampus was 

regulated by training in behavioural task; and, if so, whether the pattern of 

regulation was sexually dimorphic
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2.1. EXPERIMENTAL ANIMALS

2.1.1. ANIMAL HOUSING

Mice were housed with food and water ad libitum and maintained on a 12 h 

light-dark cycle, weaned and genotyped 3 weeks after birth and housed in groups of 

2 to 5. Housing and experimental procedures were performed according to the 

Animals (Scientific Procedures) Act 1986.

All animals used for behavioural experiments and expression studies were 

aged between 8 and 16 weeks. A group of mice used only for expression studies was 

sacrificed on post-natal day 21 (P21).

2.1.2. MOUSE GENETIC BACKGROUND

CaMKKp null mutant mice were generated as described in Peters et al. 

(2003). Briefly, exon 5 of the CamKK2 gene encoding the CaMKKp protein was 

flanked by a recognition site for Cre-recombinase (loxP site) and a floxed Neomycin 

resistance cassette (NEO). This construct was injected into R1 embryonic stem cells 

and, after selection for neomycin resistance, the deletion of the targeted exon and 

the NEO cassette was achieved by transient transfection with Cre-recombinase (Fig. 

2.1 A). ES cells transfected with the mutant allele were injected into 129/Sv 

blastocysts which were then implanted in the uterus of C57BL/6 foster mothers. 

Male chimeras were crossed with C57BL/6 females to assess germline transmission 

of the mutant allele.

In the present studies, mutants and control wildtype (WT) littermates were 

obtained in the 129/Sv/C57BL/6F3,4,5 background by intercrosses of heterozygous
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mice. WT mice used in subsequent experiments (described in chapter IV) were 

obtained by intercrosses of non-siblings WT offspring of the F4 generation.

2.1.3. GENOTYPING

The genotype was determined by polymerase chain reaction (PCR) 

amplification of DNA obtained from tail biopsies performed at post-natal day 21 (day 

of weaning). 5 mm of mouse tail were incubated overnight (ON) at 55 C in lysis 

buffer [100mM Tris-HCI (pH 8.3), 5mM ethylenediaminetetraacetic acid (EDTA), 

0.2% Sodium dodecyl sulfate (SDS), 200 mM NaCI and 0.1 mg/ml proteinase K]. DNA 

was extracted from the supernatant by isopropanol precipitation, washed with 70% 

ethanol, re-suspended in 100 pi of double distilled water and incubated ON at 55 C. 

1pl of a ten-fold diluted DNA sample was used for subsequent PCR amplification. 

Reactions were performed in a final volume of 25pl containing 0.5 units of Taq DNA 

polymerase (Invitrogen, Paisley, UK), 1XPCR reaction buffer and 1.5 mM MgCh 

(supplied with the enzyme), 50pM 2'-deoxynucleoside 5'-triphosphates (dNTP) and 

0.2 pmol of each primer. Amplification conditions were the following: 93°C for 2 min, 

35 cycles (30s at 93°C, 30s at 56°C and 45s at 72°C) and 72°C for 10 min.

A 347 base pair (bp) wildtype fragment was generated with primers (Invitrogen): 

KKBETA1: 5’- CAGCACTCAG CTCCAATCAA -3’

KKBETA2: 5’- GCCACCTATTGCCTTGTTTG -3’; - spanning intron 4 

and a 470 bp mutant fragment with primers KKBETA1 and 

KKBETA3: 5’- TAAGCACAAGCACTCATTCC -3’ (Fig. 2.1).

PCR products were loaded in 1.2% agarose gels in 1XTAE (0.04M Tris-Acetate;

0.001 M EDTA) stained with 0.5 mg/ml of ethidium bromide.

All mice used for behavioural experiments were re-genotyped after sacrifice.
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Figure 2.1- Gene targeting strategy and genotyping reactions. (A) Gene 
targeting strategy: exon 5 of the CamKK2 gene encoding the CaMKKp protein was 
flanked by a loxP site and a floxed NEO, deletion of the targeted exon and the NEO 
cassette was achieved by transient transfection with Cre-recombinase [B-BamHI; E- 
EcoRI; H-Hindlll; Hp-Hpal; S-Sphl; adapted from Peters et al. (2003)]. Position of the 
primers used for genotyping is illustrated (B) PCR products of genotyping reactions 
(WT-wildtype band; mut- mutant band; het-heterozygote).
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2.2. BEHAVIOURAL STUDIES

2.2.1. MORRIS WATER MAZE

2.2.1.1. EQUIPMENT

The Morris Water Maze (MWM) setup consisted of a 50 cm deep circular 

swimming pool with 150 cm diameter. The pool was filled up to 20 cm below the rim 

with water made opaque with non toxic white paint (ready mix paint, The Early 

Learning Centre, Swindon, UK). Before the beginning of each training day, the water 

temperature was adjusted to 26°C.

The pool was placed in a rectangular room with geographical coordinates 

assigned to each of the walls. The West (W), North (N) and East (E) walls were 

covered with white curtains. On the South side (S) curtains were kept open and a 

violet door could be seen from the pool and used as a cue. Other cues were hung 

from the curtains: a plastic orange chair near the southwest (SW) quadrant, two 

football balls (red and blue) near the northwest (NW) quadrant, a flat “dartboard" cue 

placed near the northeast (NE) quadrant and a three dimensional cardboard box 

near the E coordinate. A video camera was placed in the ceiling of the room in the 

direction of the centre of the pool. The experimenter remained seated near the NE 

quadrant below the pool level throughout the trials, in order to prevent being used as 

a visible cue. All experiments were carried out under dim light provided by four 

upward projecting white 40 watt lamps placed in each comer of the room.

A circular platform (10 cm diameter) was submerged 1 cm below the water 

level, 30 cm in a straight line apart from the Southwest (SW) quadrant mark and 

remained in the same position throughout all training trials.
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2.2.1.2. BEHAVIOURAL TRAINING PROCEDURE

The hidden platform version of the Morris Water Maze was previously shown 

to be hippocampus-dependent in this setup (Angelo et al., 2003). All experiments 

were performed in the afternoon, during the light phase of the cycle and all animals 

were naive. The experimenter was blind to genotype.

Handling

Handling prior to training in the Morris Water Maze is thought to contribute to 

reduce fearful reactions to the experimenter and anxiety levels, which could 

confound the behavioural output (Need and Giese, 2003; Gerlai and Clayton, 1999). 

Handling consisted of holding each mouse in the experimenter’s hand or lower arm 

for around 2 min during the same period of the day at which they were to be trained. 

This procedure was carried out over 10 days before the beginning of training.

Habituation

On each day, mice were moved in their home cages to the training room and 

allowed to habituate for one hour under the same light conditions in which they were 

to be trained and tested. Cages were placed below the pool, so that the mice could 

not see the pool or cues in the room.

Pre-training

Pre-training consisted of placing each animal on the platform (in the SW 

quadrant) for 30 s. The animal was then retrieved from the platform, released from 

the NE coordinate, and allowed to swim freely for approximately 30 s. It was then
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given three practice climbs onto the platform from different angles and allowed to 

remain there for 30 s. If the animal jumped off the platform during these periods it 

was placed back in order to ensure a minimum of 2 min in total spent on the platform 

during the pre-training session.

Training Trials

Each training session consisted of a block of four trials per day. Before the 

beginning of each block of trials, the animals were placed on the platform for 60 s. 

They were then retrieved from the platform, placed in the start positions (N, S, E or 

W), and released facing the wall of the pool. Latency times (time spent to find the 

platform) were recorded for each trial. If the animals failed to find and climb onto the 

platform after 90 s of swimming, they were removed from the pool, placed in the 

platform and latency times were scored as 91 s. The time spent on the platform 

between trials (inter-trial interval) was 60 s. The order of start positions was 

pseudorandom, remaining constant for all mice on the same training day, but varying 

on different days.

The animals were guided to the different start positions and/or platform always 

using the shortest path possible and keeping the animal’s eyes covered to prevent 

them from seeing the cues in the room.

Probe T rial

Because improvement in acquisition is not an accurate measure to assess 

hippocampus-dependent spatial memory formation, after completion of training, mice 

were tested for spatial preference in searching behaviour. This probe trial consisted 

of placing the animal on the platform for 60 s, removing the platform from the pool
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and allowing the animal to swim freely for 90 s, having the NE coordinate of the pool 

as the starting position, as this is the most distant coordinate from the previous 

platform location.

Behavioural data were imaged by HVS water program (HVS image LTD, 

Hampton, UK)

Mice subsequently used for gene expression studies were sacrificed thirty 

minutes after the end of the probe trial.

2.2.1.3. DATA ANALYSIS

The following parameters were analysed: latency, selectivity towards TQ in the 

probe trial, number of platform crossings and cumulative proximity to the platform.

Latency

The time spent to find the platform was averaged for each training day, per 

group of mice. The maximum score per trial was 91 s corresponding to the trials 

when the mice failed to find the platform.

Acquisition curves were plotted as the average latency score per block of trials 

against the training day, per group of mice. Acquisition data were analysed by two- 

way ANOVA with repeated measures on subjects with training and genotype or 

training and sex as variables.

Probe Trial

For analysis of the probe trial data the pool was divided into four quadrants, 

Target Quadrant (TQ=SW), Adjacent Left (AL=SE), Adjacent Right (AR=NW) and 

Opposite (OP=NE).
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Percentage of Search Time Spent in Quadrant

The relative percentage of time spent swimming in each quadrant was plotted 

as a bar graph.

Number of Platform Crossings

The number of times that the mice swam directly over the location where the 

platform was positioned previously was counted by the software and compared to the 

number of times the animals swam over equivalent “platform positions" in the three 

remaining quadrants.

Gallagher Cumulative Proximity Measure

The Gallagher cumulative proximity measure computed by HVS software is a 

measure modified from the Gallagher learning index (Gallagher et al., 1993). 

Distances between the centre of the mouse and the centre of the platform in TQ or 

equivalent platform positions were computed every 0.1 s (sample point). The total 

sum of these distances during the course of a trial corresponds to the Gallagher 

cumulative proximity measure. Scores obtained for this measure reflect search errors

i.e., deviations from an optimal search or optimal path to the goal. Animals with an 

accurate search strategy swim at significantly lower cumulative distance from the 

platform position in TQ than from any other platform positions.

Exclusion Criteria

Floating and thigmotaxis are measures of anxiety which can affect 

performance of the task. For this reason, animals were excluded when they floated 

(swam at less than 5 cm/s) in more than 75% of the trials for more than 20 s, or if

92



Transcriptional Analysis of Sex Differences in Hippocampal Function

they spent more than 75% of their search time in the thigmotaxis zone (outer 0.9% 

of the pool) in more than 85% of the trials (Need and Giese, 2003).

Statistical Analysis

Data were statistically analysed with Microsoft Excel or Sigmastat (SYSTAT 

software, SSPS Science Inc., Chicago, IL). Comparison of target quadrant 

preference between the groups was performed by one-way ANOVA with group as 

variable. Comparison of quadrant preference within each group was performed by 

one-way ANOVA with quadrant as variable.

2.2.2. CONTEXTUAL FEAR CONDITIONING

2.2.2.1. EQUIPMENT

The conditioning chamber consisted of a 27.5 cm wide, 12.5 cm deep and 

14.0 cm high box (Fig. 2.2; Campden Instruments, Loughborough, UK). Lateral sides 

and ceiling were made of aluminium and the front (door) and back of the chamber 

were made of transparent plexiglass. The chamber had a metal grid floor connected 

to a constant voltage generator (521/C, Campden Instruments, Loughborough, UK) 

through a shock scrambler (521/S, Campden Instruments, Loughborough, UK). The 

chamber was illuminated by a total of four 24 V white lights, two placed on each 

lateral side and two on the ceiling, which remained switched on throughout the whole 

training and testing procedures. A 2.8 KHz tone with an intensity of 80 dB was 

delivered by a speaker placed in the centre of the ceiling. The chamber was scented 

with 70% ethanol sprayed onto two sheets of paper, placed in a tray below the grid 

floor. The conditioning chamber was placed inside a sound attenuating chamber.
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The conditioning room was kept under dim light (only light emmited by the computer 

screen) and training and testing procedures were carried out after 2 p.m. except for 

the “Latent Inhibition" and “Overnight Exposure" groups which were carried overnight 

(for approximately 14 h) with the shock being delivered in the morning.

2.2.2. BEHAVIOURAL TRAINING PROCEDURE

Learning of the task was shown to be hippocampus and protein synthesis 

dependent in this setup (von Hertzen and Giese, 2005).

Habituation

Unhandled naive animals were transported from the animal rooms in their 

home cages and placed in the lobby of the fear conditioning room under dim light to 

habituate for one hour.

Training

Immediately before training the animals were transported individually in a cage 

to the training chamber and placed inside it with the lights off. The mouse was 

allowed to freely explore the chamber for 2 min. At the end of 2 min a 2.8 KHz tone 

with 80 dB of intensity (conditioned stimulus-CS) was played for 30 s paired with a 

0.75 mA foot shock during the last 2 s of the tone (unconditioned stimulus-US). The 

animal remained in the chamber for another 30 s after which lights were switched off. 

The animal was immediately removed from the chamber and returned to the home 

cage. The chamber was washed with water and 70% ethanol between training of 

different animals.
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Novelty controls

Novelty controls were exposed to the conditioning chamber under the same 

conditions as trained animals except for not receiving the foot shock.

Latent Inhibition controls

Latent inhibition controls were housed in the training chamber bedded with 

tissue paper for approximately 16 h, with food and water ad libitum. 1 h before the 

foot shock was delivered, the bedding and most of the food pellets were removed in 

order to ensure that the mouse would receive the shock. A subgroup of mice was 

exposed to the tone (ON exp) and another subgroup was trained without the tone 

(LI).

Testing

Animals were tested for contextual memory, by re-exposure to the 

conditioning chamber in the absence of the tone and foot shock, 24 hours after 

training. Freezing was used as the behavioural response to assess memory. The 

animal was considered to be freezing if it completely refrained from any kind of 

movement except for respiration (Ehninger et al., 2005). Freezing was sampled 

every 5 s for 2 s during 5 min and averaged for the 5 min period. Freezing scores 

were compared between the experimental groups by one-way ANOVA with group as 

variable, and post-hoc Student-Newman-Keuls tests were used when significance 

was found.
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Figure 2.2-Contextual fear conditioning equipment.

2.3. MOLECULAR BIOLOGY

2.3.1. HIPPOCAMPAL DISSECTIONS

Mice were anaesthetized in a C 0 2 chamber and killed by cervical dislocation. 

Brains were removed and placed in a sterile RNAse free dish and hippocampi were 

dissected from the dorsal aspect under a low magnification microscope. 

Hippocampal tissue was placed in an RNAse and sterile 1.5ml eppendorf tube, 

immediately frozen on dry ice and kept at -80°C.

2.3.2. RNA EXTRACTION AND QUALITY ANALYSIS

2.3.2.1. RNA EXTRACTION PROTOCOL

Frozen hippocampal tissue was homogenised in TRIZOL reagent (Invitrogen 

Life Technologies) according to manufacturer’s instructions.
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Briefly, 800pl of TRIZOL reagent were added to the tissue and it was 

homogenised with a Powergen 125 homogenizer (Fisher Scientific, Loughborough, 

UK) at an approximate speed of 20,000 rpm for 20 s or until no pieces of tissue 

were visible. The homogenates were centrifuged at 11,000 rpm for 10 min at 4°C, to 

remove excess fat tissue. The supernatant was transferred to a fresh tube, 

incubated for 5 min at room temperature (RT) and 160 pi of chloroform were added. 

Tubes were vigorously shaken by hand for 15 s, incubated at RT for 3 min, and 

centrifuged at 13,000 rpm for 30 min at 4°C. The aqueous upper phase was 

transferred to a fresh 1.5 ml tube and RNA was precipitated with 400 pi of 

isopropanol. After incubation at RT for 10 min the tube was centrifuged at 13,000 rpm 

for 10 min at 4°C. Supernatant was removed and the pellet washed with 75% 

ethanol, vortexed and centrifuged at 10,000rpm for 5 min at 4°C. Ethanol was 

removed, and the pellet allowed to dry until it became transparent, when it was re

suspended in 100 pi RNAse free water and stored at -80C . At this stage, a 10 pi 

aliquot was collected at this stage for subsequent analysis of RNA integrity. RNA was 

purified with the QIAGEN RNeasy Minikit (QIAGEN, West Sussex, UK) following the 

manufacturer’s instructions. RNA was re-suspended in a final volume of 50 pi and a 

5 pi aliquot collected for analysis of RNA integrity.

2.3.2.2. RNA INTEGRITY AND QUALITY

RNA integrity

RNA integrity was assessed using the Agilent 2100 Bioanalyzer (Agilent 

technologies, Palo Alto, CA, USA). To rule out the possibility of RNA degradation, the
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ratio between 28S/18S ribosomal RNA present in the sample was estimated. Only 

samples with a ratio higher than 1.4 were processed further.

Whenever the use of the bionalyzer was not possible, RNA integrity was 

analysed by loading the sample in 1.2% agarose gel in 1XTAE containing 0.5 mg/ml 

ethidium bromide (Fig. 2.3). The 28S/18S ratio was estimated by comparing optical 

densities of the respective bands in the gel. Only samples where this ratio was higher 

than 1.4 were processed further.

RNA Quality

To rule out protein contamination of the samples the ratio of optical 

absorbances between nucleic acids (260 nm) and proteins (280 nm) were 

determined. Samples, in which this ratio was out of the 1.9-2.0 range were discarded.

Contamination with genomic DNA was ruled out by PCR amplification of 

cDNA with primers spanning two exons of the hypoxanthine-guanine- 

phosphoribosyltransferase (HPRT) gene and is described in section 2.3.4.1.
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Figure 2.3- Agarose gel of total RNA extracted from hippocampal tissue, before 
and after purification with the QIAGEN RNeasy Minikit.

RNA quantification

RNA was quantified using the Agilent 2100 Bioanalyzer (for the samples used 

in the microarray analysis), or by spectrophotometric measurement of the 

absorbance at 260 nm (for the samples used in the QPCR reactions).

2.3.3. Affymetrix MICROARRAY SCREENING

The Genechip® Murine Genome array U74Av2 (MG-U74Av2; Affymetrix, 

Santa Clara, CA) represents 12,000 transcript sequences. Approximately half of 

these sequences correspond to functionally characterized genes and the other half 

correspond to uncharacterized expression sequence tags (EST) derived from the

Before After
purification purification
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Unigene database (Build 74, April 2001). Each gene or EST in the array is probed 

by a set of 16, 25 nucleotide long probe pairs. Each pair comprises a perfect match 

(PM) sequence and a mismatched (MM) sequence differing from the first one only on 

the central nucleotide. Subtraction of MM from PM signals accounts for background 

noise and non-specific interactions. Each chip also includes hybridization controls 

polyAdenylation controls, and probes for maintenance genes, that allow the quality 

control of sample processing.

2.3.3.1. SAMPLE PREPARATION

After RNA extraction and quantification, all subsequent steps until the final 

data output were performed by a specialized technician in the Affymetrix Microarray 

core facility at the Institute of Child Health, University College London who followed 

the instructions of the GeneChip Expression Analysis Technical Manual (Affymetrix).

Briefly, 10 jug of purified RNA (from hippocampal tissue of a single animal) 

were primed with T7 oligo(dT)24 for reverse transcription into single stranded cDNA. 

This was subsequently converted to double stranded cDNA (dsCDNA), which was in 

vitro transcribed into cRNA using T7 RNA polymerase, and biotin labelled 

ribonucleotides. Fragmented Biotinylated cRNA derived from one hippocampal 

sample were hybridized onto a U74Av2 GeneChip Array at 45°C for 16 hours. 

Hybridized chips were stained with streptavidin and phycoeritrin solutions and 

scanned for fluorescence.

Readings of “raw" fluorescence intensities for each probe set were computed 

by the Microarray analysis Suite (MAS) software. This primary output allowed a 

general quality control assessment of various aspects of sample preparation such as 

hybridization efficiency (provided by the percentage of probe sets called “present"
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and the detection of pre-labelled hybridization controls included in the chip), and 

validation of in vitro transcription (provided by the signal ratio between 5’ and 3’ 

directed probes for selected maintenance genes).

2.3.3.2. DATA ANALYSIS

Analysis of differences in hybridization intensities across chips from different 

groups permits a comparison of transcriptional profiles between distinct biological 

samples. The Affymetrix Data Mining Tool 3.0 (DMT, Affymetrix) was used for a 

preliminary analysis of the data. This software performed direct pairwise comparisons 

between signal intensities across arrays corresponding to the WT and mutant 

groups.

A number of factors both in the manufacture of the chips and in sample 

preparation may represent sources of variability and impose biases on signal 

intensities (Chudin et al., 2002). Normalization of fluorescence intensities is required 

to bring all arrays within an experiment to a similar overall brightness, and diminish 

bias generated by non-biological causes. Microarray data analysis softwares use 

distinct normalization and mathematical analysis procedures to compare 

transcriptional profiles. In the present study, in addition to the output from the DMT, 

two alternative softwares were used: dCHIP (Li and Wong, Harvard University, USA) 

and Genespring (Silicon Genetics; Agilent technologies, Palo Alto, CA, USA).
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2.3.3.2.1. DChip NORMALIZATION PROCEDURES AND MODELS OF ANALYSIS

dCHIP uses the invariant set normalization method, which encompasses the 

following steps: (a) definition of the array with median overall brightness as a 

“baseline” array; (b) identification of an invariant set of probes (based only on signals 

arising from PM), corresponding to genes that are not differently expressed between 

groups; (c) calculation of a normalization curve defined by the median intensity 

values for each probe on the invariant set; (d) fitting of signal intensities of the 

variant probe sets to the normalization curve (Li and Hung, 2001). Chips with low 

hybridization intensities (present call percentage, lower than 30%) are treated as 

outliers and excluded from the analysis. All eight arrays hybridized in the present 

analysis had present call percentages above 30%, and were used in the 

transcriptional analysis

Two models of comparative analysis were independently used: the PM-MM 

average difference intensity model (ADI) and the PM model-based expression index 

(MBEI) because they differ in sensitivity depending on the transcript level. The ADI 

presents the advantage of accounting for background noise and non-specific 

interactions by subtracting MM from PM signals (Chudin et al., 2002). This method 

discards probe sets with a PM-MM difference over three standard deviations higher 

than the average PM-MM difference across the array, carrying the risk of excluding 

probe sets for transcripts with true large responses (Li and Wong, 2001). For this 

reason, the MBEI model, which accounts for PM signals only, was also used in this 

analysis.
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2.3.3.2.2. GENESPRING NORMALIZATION PROCEDURES AND MODELS OF 

ANALYSIS

GeneSpring uses a multiplicative normalization method starting with a per 

Chip normalization followed by a per gene normalization. The per chip normalization 

uses positive control genes, mRNA belonging to other genomes and housekeeping 

genes to normalize expression levels to the overall brightness of the Chip. The per 

Chip normalization has the advantage of accounting for chip-wide variations in 

intensity due to imperfections in the processing of the sample; however this 

procedure can mask high hybridization levels arising from true high transcriptional 

levels.

The per chip normalization was followed by a per gene normalization which 

adjusted the levels of expression of each gene to the median of the expression of 

the same gene throughout the experiment. Transcription level comparison started by 

filtering out genes having mean normalized expression levels that did not vary 

between the groups.

The per chip normalization has the advantage of accounting for chip-wide 

variations in intensity due to imperfections in the processing of the sample, however 

this procedure can mask high hybridization levels arising from true high 

transcriptional levels.

2.3.3.2.3. COMPARISON CRITERIA

Standard ANOVA and t-tests for Microarray data analysis, were used with dCHIP 

and GeneSpring softwares. CaMKKp mutants and WT mice were defined as
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experimental and baseline groups respectively. Genes with a detected transcriptional 

change higher than 30% with a significance level of 95% were further analyzed.

2.3.4. QUANTITATIVE REAL TIME PCR

The quantitative real-time PCR (QPCR) technique allows relative 

quantification of transcripts from reverse transcribed and amplified cDNA. The QPCR 

master mix includes a fluorescent dye which binds to double stranded DNA, and is 

incorporated into products as the amplification proceeds. Amplification reactions 

were performed in 96 well plates placed in a thermal cycler and fluorescence 

detector (ABI Prism 7700, Applied Biosystems, Warrington, UK). Fluorescence data 

were monitored as the PCR products were generated. The starting copy number of 

the product being monitored is considered to be proportional to the cycle at which the 

product is first detected. The sooner a significant increase in fluorescence is 

observed, the more abundant the transcript is in the original sample (Bustin, 2000).

2.3.4.1. cDNA REVERSE TRANSCRIPTION FROM HIPPOCAMPAL mRNA

An estimated amount of 2.5 pg of total RNA was used for cDNA synthesis primed 

with 25 ng oligo(dT)24 (Invitrogen) and incubated at 70°C. The cDNA synthesis 

reaction mix contained 1 X first strand buffer, 10 mM dithiotreitol (DTT), 10 nM dNTP, 

and 20 U of RNaseOUT™ (Recombinant Ribonuclease Inhibitor; Invitrogen). RNAse 

out (Invitrogen) and 200 U of Superscript™ IIRT enzyme (Invitrogen). cDNA 

synthesis reaction was performed for 50 min at 42°C, after which the enzyme was 

inactivated at 70°C for 10 min.

104



Transcriptional Analysis of Sex Differences in Hippocampal Function

To rule out the possibility of contamination with genomic DNA, cDNA was 

amplified for 35 cycles (30s at 93°C, 30s at 59°C and 1 min at 72°C) using primers for 

HPRT. Primer sequences were (Invitrogen):

H1:5’-GCTGGTGAAAAGGACCTCT-3’;

H2:5’-CACAGGACT AGAACACCT GC-3’

As this primers span contiguous exons, a 249 bp fragment is generated from 

cDNA and a 1100 bp fragment is generated from genomic DNA (Fig. 2.4).

Each cDNA tested aliquot was diluted tenfold for subsequent QPCR.

Genomic DNAcDNA

Figure 2.4- Amplification of cDNA and genomic DNA with primers for HPRT.

2.3.4.2. PRIMER DESIGN FOR QPCR

mRNA sequences for the transcripts detected in the microarray analysis were 

downloaded from the ensemble database (http://www.ensembl.org: Build 33). 

Specific primers were designed using Primer Express Software (Applied Biosystems) 

and chosen according to either of the following criteria: (a) Spanning exon/exon
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boundaries in order to exclude the possibility of amplification of traces of genomic 

DNA; (b) spanning the 3’UTR of the transcript to assure ability to capture shorter 

cDNAS.

Primer sequences are listed in appendix I.

2.3.4.3. OPTIMIZATION OF PRIMER CONCENTRATIONS

Different combinations of concentrations of forward and reverse primers were 

tested, using either primer at 50 nM, 300 nM and 900 nM final concentrations (ie. 6 

permutations per pair). The combination chosen was the one that yielded the earliest 

threshold cycle for a given amount of cDNA, provided that there was no primer dimer 

formation in the no template control or any other kind of unspecific amplification, as 

determined by the dissociation curve. To determine primer efficiency, serial dilutions 

of cDNA were amplified using gene-specific primers. All PCR products exhibited high 

linearity amplification plots (^>0.98) and the slope of the standard curves was 

approximately -3.2, which is indicative of a two fold amplification per cycle 

(efficiency close to 1, according to SYBR Green PCR Master Mix and qPCR protocol 

booklet).

Primer concentrations were selected under the following criteria: (a) earlier 

cycle of detection for a fixed fluorescence threshold; (b) no primer dimmers detected 

in the dissociation curve of the melted final PCR products.
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2.3.4.4. CHOICE OF INTERNAL CONTROLS

Internal control transcripts HPRT (primer concentrations 300nM forward 

primer/300nM reverse primer and 900 nM forward primer/ 900nM reverse primer) 

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; primer concentrations 

900 nM forward primer / 900 nM reverse primer) were tested for each gene. 

Validation of internal controls was performed by plotting differences in cycle threshold 

between pairs of genes (ACt) vs. log RNA concentrations in arbitrary units. The 

internal control chosen corresponded to the trendline displaying a slope as close to 

zero as possible (<0.1) for a 1 to 1/16 fold range of concentrations. Whenever distinct 

internal controls were valid for the same PCR product, the one displaying a smaller 

cycle threshold difference was chosen as this is indicative of a similar abundance 

between the gene tested and the internal control.

2.3.4.5. AMPLIFICATION REACTIONS

Amplification reactions contained 1XSYBR green PCR Master Mix [SYBR Green I 

Dye, AmpliTaq Gold DNA polymerase, dNTPs with dUTP, passive reference and 

optimized buffer components; Applied Biosystems], optimized primer concentrations 

(appendix 1) and 1 pi of cDNA (approximately 2.5 ng) in a final volume of 25 pi. 

Each sample was run in triplicates both for the gene and the internal control, and a 

no template control reaction was performed also in triplicate per reaction mix used. 

Micro-Amp 96-well plates were used (capped with an ABI prism optical adhesion 

cover and run on ABI PRISM 7000/7700 Sequence detection system (Applied 

Biosystems). The qPCR conditions were 95 C for 10 min followed by 40 cycles of 

95 C for 15sec and 62°C for 1min. Dissociation curves were generated after
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amplification in order to monitor the purity of the product formed, and the discard the 

possibility of contamination.

PCR product levels were monitored by measuring the increase in fluorescence 

with the ABI PRISM 7000/7700 Sequence detection system (Applied Biosystems).

2.3.4.6. DATA ANALYSIS

The quantification procedure followed the following steps: (a) a constant 

fluorescence threshold was defined; (b) the cycles of detection between replicates 

were averaged; (c) the average cycle threshold for the internal control was 

subtractedl from the average cycle threshold for the target transcript (ACt); (d) The 

ACt for each experimental group was averaged (at this step samples with a ACt 

deviating more than two standard deviations from the average of the group were 

excluded); (e) The average cycle threshold difference for the calibrator group (ACt 

cal) corresponding to naive male mice, unless otherwise stated, was calculated; (f) 

ACt cal was subtracted from each ACt to obtain a (AACt) in order to normalize cycle 

threshold differences to the average ACt of the calibrator group; (g) The AACt values 

were subjected to logarithmic transformation to obtain a percentage of expression; 

(h) The relative percentage of expression were compared between the groups using 

one-way ANOVA.

For the experiments described in chapter III, each cDNA sample was loaded in 

triplicates for both the target transcript and internal control, the cycle threshold was 

averaged per triplicate and whenever one of the triplicates differed in more than 0.4 

cycles from the average of the other two it was excluded from the analysis. For the 

experiments described in chapter IV no replicates were used in each plate,
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expression values were normalized in each plate and these were averaged for 3 to 5 

plates.

2.3.4.7. PRODUCT SPECIFICITY AND PURITY

After confirming from the dissociation curve that each well presented a single 

PCR products were cloned into pCR2.1 TOPO vector (Invitrogen), used to transform 

XL10 competent cells and plated in LB agar containing 100 pg/ml ampicillin and 

grown ON at 37°C. White colonies were inoculated in liquid LB containing 100 pg/ml 

ampicillin and grown ON at 37°C. Plasmid DNA was isolated using QIAprep Spin 

Miniprep Kit (QIAGEN) according to manufacturer’s instructions. PCR products 

were digested with EcoRI (supplier) and the digestion products loaded in 1.2% 

agarose gels in TAE. DNA from clones containing the insert of the expected size 

were sequenced by the WIBR sequencing service using vector-specific primers (M13 

fwd and M13 rev, Invitrogen). The sequences obtained were submitted to Basic Local 

Alignment Search Tool (BLAST) from the National Centre for Biotechnology 

Information (NCBI) and identified.

2.4. IN SITU HYBRIDIZATIONS

2.4.1. TISSUE PREPARATION

Mice were anaesthetized under CO2 and killed by cervical dislocation and brains 

scooped out from the ventral part of the skull and frozen in -20 to -30°C isopentane 

(Merck, Harlow, UK), placed in a dry-ice chilled 15 ml falcon tube and stored at 

-80C.
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Sectioning

Coronal sections (15 pm thick) were cut in a cryostat at -40°C and thaw-mounted 

onto polilysine coated superfrost slides (Invitrogen). Slides were fixed in freshly 

prepared and filtered ice cold 4% parafromaldeheyde (PFA) for 5 min, rinsed in 

phosphate buffered saline (PBS) for 1 min and 70% ethanol for 5 min and stored in 

95% ethanol at 4°C.

2.4.2. PROBE DESIGN

Antisense DNA probes complementary to the transcripts were designed to span 

exon/exon boundaries having around 50 nucleotides length (nt) and a 50% GC 

content. Probe sequences for each transcript are listed in appendix II.

2.4.3. IN SITU HYBRIDIZATION PROTOCOL

2.4.3.1. PROBE LABELLING

Probe oligonucleotides were diluted to a final concentration of 5 ng/pl. 10 ng of 

oligo were labelled with 500 nM [a-35S] dATP (1000 Ci/mmol; Amersham 

Biosciences, Bucks, UK) in a reaction containing 1 X terminal transferase buffer and 

22.5 U terminal deoxynucleotidil transferase (TdT). Reactions were performed at 

37°C for 30 to 45 min, and stopped by adding 40pl of 10 mM Tris-EDTA buffer.

To remove unincorporated radiolabelled nucleotides, the reaction mix was purified 

through a sephadex column, centrifuged for 1 min at 2,000 rpm. 2 pi of flow through 

were diluted in scintillation fluid and the counted in a scintillation counter. 1 pi of 1M
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dithiotreitol (DTT) were added to the reaction. Labelled probes were kept on ice until 

being used.

2.4.3.2. HYBRIDIZATION

In situ hybridization buffer [50% formamide, 4XSSC (0.15M Sodium Chloride 

and 0.015M Sodium citrate), pH 7.0, 25 mM Sodium phosphate pH 7.0; 1 mM 

sodium pyrophosphate; 5X Denhardt’s solution (0.2 g/L Ficoll; 0.2g/L 

polyvinyl pyrrolidine; 0.2 g/L bovine serum albumin (BSA), herring sperm DNA; 

0.1 mg/ml polyadenlylic acid and 0.1g/ml dextran sulphate] was previously prepared 

filtered and stored at -20°C. Slides were removed from 95% ethanol and allowed to 

air-dry for 30 min. 100,000 to 300,000 cpm of labelled probe and 2 pi of DTT were 

diluted per 100 pi of hybridization buffer. An unspecific labelling mix was set up by 

adding 10 ng of the unlabelled probe to the above mix. 60 pi of hybridization buffer 

were applied to a glass coverslip, and the slides were gently pushed against the 

coverslip and placed in the hybridization chamber. The hybridization chamber was 

kept moist by covering the chamber edges with pieces of Wattman paper embedded 

in “chamber buffer (50%formamide, 4XSSC) and sealed with NESCO film (Fisons 

Scientific Apparatus, Loughborough, UK) to prevent evaporation. Hybridization was 

performed ON at 42°C.

2.4.3.3. WASHING

Slides were washed in 1X SSC for 10 min at RT, 2 times in 1XSSC at 55 C , 

and briefly rinsed in 0.1XSSC, 70% ethanol, 95% ethanol at RT and allowed to air 

dry for 1h.
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2.4.3.4. EXPOSURE

Slides were exposed to a 35S sensitive autoradiographic film (KodaK, Biomax) 

together with 14C microscale standards (Amersham Sciences, Bucks, United 

Kingdom). Exposures were performed at RT and times of exposure varied according 

to the transcript being probed as indicated appendix II.

2.4.4. IMAGE ANALYSIS

The autoradiograph of every brain section was imaged with a monochrome 

camera. Image densities were calibreted with reference to the 14C microscale 

standards (nCi/g tissue equivalent). Two to three animals were used in each 

condition and, for each animal, the measurements obtained represented the average 

of measurements taken from 8 to12 different sections.

Image analysis was performed using MCID M5+ analysis software (Imaging 

Research, St Catherine’s, Ontario, Canada). Two alternative measurements were 

used: densitometry and “estimated counts above threshold".

Densitometry

Densitometry readings were sampled with a single 1 pixel-wide ribbon 

covering the central longitudinal area of each hippocampal subfield of interest. These 

measurements are proportional to the average amount of transcript expressed per 

cell within the hippocampal subfield sampled.

Estimated counts above threshold

When comparing levels of expression between different conditions, an overall 

density measurement per hippocampal subfield may dilute true differences restricted
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to a small number of cells. To circumvent this problem, an alternative method was 

used: First, a line limitating the edges of each hippocampal subfield was drawn for 

each section and the average density for each subfield in the control condition was 

defined as the threshold density. The number of pixels, with a density above 

threshold levels were measured as " estimated counts above threshold”. This 

analysis provides a measurement proportional to the number of cells that express a 

number of copies of the transcript above a pre-determined level.

Densities and "estimated counts above threshold” within each hippocampal 

subfield for each condition were averaged for all the sections considered and are 

presented in bar graphs. Data were not statiscally analysed, as the number of 

animals (2-3 per condition) was very low.
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3.1. INTRODUCTION

Memory consolidation is a time dependent process requiring de novo 

transcription (Igaz et al., 2002), engaging activation of transcription factors such as 

CREB (Bourtchuladze et al., 1994). One of the signalling transduction pathways 

involved in CREB activation is the CaM Kinase cascade (Takemoto-Kimura et al., 

2003; Soderling, 1999; Bito et al., 1996). Known members of this cascade are CaMKI 

and CaMKIV and two upstream activating kinases CaMKKa and CaMKK# (Vinet et 

al., 2003; Hsu et al., 2001; Soderling, 1999; Anderson et al., 1998).

Evidence from mutant mouse models points to a direct engagement of 

components of this cascade in synaptic plasticity processes and memory formation 

(Peters et al., 2003; Wei et al., 2002; Kang et al., 2001; Ho et al., 2000).

Peters et al. (2003) described an impairment in hippocampus-dependent 

spatial memory in the MWM in male mice carrying a global deletion of CaMKK#. 

This behavioural phenotype was accompanied by a deficit in spatial training induced 

CREB activation in the hippocampus - a molecular correlate of spatial memory 

formation (Mizuno et al., 2002); and an impairment in the transcription dependent 

phase of LTP - a cellular model of long-term memory formation (Nguyen et al., 

1994). Remarkably, lack of CaMKK# did not affect spatial memory in the MWM, 

CREB activation or L-LTP in female mice (Mizuno et al., 2006; K. Mizuno and K.P. 

Giese, unpublished). These data suggest a male specific requirement for this kinase 

in the mechanisms engaged in the consolidation of spatial memories. Thus, the 

CaMKK# null mutant line represents a tool for the identification of plasticity regulated 

genes, and potentially provides an insight into molecular dimorphisms in the 

processes underlying memory formation.

115



Chapter III: Results I

3.2. AIM

The observations on male CaMKK# null mutant mice suggest that lack of 

CaMKK# in male mice is responsible for a transcriptional deregulation in the 

hippocampus that may account for the behavioural, molecular and cellular 

phenotypes described.

The aims of the work described in this chapter were (a) to identify CaMKK# 

regulated genes in the male hippocampus and (b) to investigate whether the same 

genes are also regulated by CaMKK# in the female hippocampus.

3.3. EXPERIMENTAL APPROACH

In order to identify genes regulated by CaMKK# after spatial training that may 

account for the phenotypes described by Peters et al. (2003), male CaMKK# 

mutant and WT male mice were trained in the MWM in a 4 trials per day training 

protocol and tested in a probe trial at the end of the third day of training. Animals 

were sacrificed 30 mins after the probe trial, hippocampal tissue was dissected, 

mRNA extracted, reverse transcribed into cDNA, in vitro transcribed into cRNA and 

hybridized with high-density oligonucleotide array chips (Affymetrix). The differences 

in transcriptional levels identified were further investigated and confirmed by 

quantitative real time PCR (QPCR; Fig. 3.1).
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Figure 3.1- Different steps in the experimental procedure used to identify CaMKK/? 
regulated transcripts. Widtype (WT) and CaMKK/? null mutant (mut) male mice were 
trained and tested in the MWM, hippocampal tissue was dissected, mRNA extracted and 
processed into cRNA which was hybridized to Affymetrix Gene Chips to generate gene 
expression profiles. Results were analysed using two different softwares and confirmed with 
quantitative real time PCR (QPCR).

3.4. EXPERIMENTAL RESULTS

3.4.1. TRAINING OF MALE CaMKK/? NULL MUTANT AND WT MICE IN THE 

MORRIS WATER MAZE

Naive male CaMKK/? null mutant (n=6) and WT littermates (n=6) between 10 

and 16 weeks old in the C57BL/6/129/Sv F3, F4 and F5 backgrounds were trained 

in the hidden platform version of the Morris Water Maze, in a hippocampus
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dependent set up (Angelo et al., 2003). All training trials were performed in the 

morning (2 hours after the beginning of the light phase of the cycle), and, at the 

beginning of each training day, the water temperature was adjusted to 26°C.

The training protocol consisted of 4 trials per day for 3 d. There was a 

significant effect of training as both groups decreased latency time to find the 

platform over days, which did not differ between genotypes (Fig 3.2A, effect of 

training F(2,34)=12.04, p<0.001; effect of genotype F(1,10)=0.21, p=0.66; genotype x 

training interaction F(2,34)=0.62, p=0.55, two-way repeated measures ANOVA).

In order to locate the platform, animals may develop either egocentric or 

allocentric (hippocampus-dependent) strategies. A decreased escape latency with 

increasing number of trials is expected even in animals with hippocampal lesions 

(Moser et al., 1995), and has been described for some mouse lines with 

hippocampus-dependent spatial memory impairments (eg. Peters et al., 2003). In 

order to assess the formation of a hippocampus-dependent spatial strategy, trained 

animals were tested in a probe trial during which the animals swim in the pool in the 

absence of the platform (D'Hooge and De Deyn, 2001; Morris, 1984). The use of a 

spatial strategy to solve the task is revealed by a preference for the previous platform 

location.

At the end of the third day of training, mice were tested in a 90 s probe trial, 

being released in the pool from the most distant coordinate from the location where 

the platform was previously placed.

During probe trials there was no difference in average swim speed between 

the groups (Fig. 3.2B, WT: 25.2 ± 0.7cm/s; mut: 25.2 ± 0.5 cm/s; F(1,10)=0.00 ; 

p=1.00, one-way ANOVA with genotype as variable). Furthermore, the percentage of 

time spent in the thigmotaxis zone, defined as an annulus of 10 cm near the rim of
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the pool, did not differ between genotypes (Fig. 3.2C, WT: 2.6 ± 0.8%; mut: 3.0 ± 

1.7%; F(1,10)=0.03; p=0.86, one-way ANOVA with genotype as variable) and was 

significantly lower than the 19% time expected if the animals swam randomly. The 

percentage of time spent swimming at a speed lower than 5 cm/s, considered as 

floating, was also similar between the two genotypes (Fig 3.2D, WT: 6.6 ± 2.0%; 

mut: 8.9 ± 1.9%; F(1,10)=0.69; p=0.43; one-way ANOVA with genotype as variable).

A B
80 i mut(n=6) 

wt (n=6)
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21 3
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E

3? 15
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Day D
chance

mut
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Figure 3.2- Normal acquisition and swimming abilities in CaMKK/? male null 
mutant mice.
(A) Both genotypes decreased their latency times to find the platform with the 

number of training trials; (B) During the probe trial, swim speeds did not differ 
between genotypes; (C) The percentage of time spent swimming in the thigmotaxis 
zone did not differ between genotypes and was lower than expected by chance. (D) 
The percentage of time spent floating did not differ between genotypes. (Mean±SEM)

In order to assess the spatial preference, the pool was artificially divided into 

four quadrants: the target quadrant (TQ), where the platform was previously located 

and adjacent right (AR), adjacent left (AL) and opposite (OP) quadrants relative to
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TQ. Measurements included percentage of time spent in quadrants and platform 

crossings (corresponding to the number of times the animal swam directly over the 

location where the platform was placed previously and equivalent positions in the 

remaining three quadrants). Another measurement used was the Gallagher 

cumulative proximity measure modified from the Gallagher learning index (Gallagher 

et al., 1993). Distances between the centre of the mouse and the centre of the 

platform in TQ or equivalent platform positions were computed every 0.1 s (sample 

point). The total sum of these distances during the course of a trial corresponds to 

the Gallagher cumulative proximity measure. The lower the cumulative distance 

relative to TQ, the more accurate is the mouse’s “knowledge of the platform position” 

(HVS Water 2020, instruction manual).

Animals were considered selective, if the percentage of time spent in TQ was 

higher than 35% and higher than the percentage of time spent in any other quadrant 

by at least 10%. Analysis of quadrant search times showed no significant difference 

between genotypes in percentage of time spent in TQ (Fig. 3.3A, WT: 34.5 ± 3.9%; 

mut: 38.3 ± 2.4%, F(1,10)=0.72; p=0.42, one-way ANOVA with genotype as 

variable). During the probe trial WT mice spent a significantly higher percentage of 

search time in TQ (Fig. 3.3A, F(3,20)=3.46, p<0.05; one-way ANOVA with quadrant 

as variable, p<0.05 for all TQ post-hoc Student-Newman-Keuls comparisons), and 

the same was true for the mutants (Fig. 3.3A, F(3,20)=15.42; p<0.001, one-way 

ANOVA with quadrant as variable, p<0.01 for all TQ post-hoc Student-Newman- 

Keuls comparisons).

Despite being selective towards TQ at this stage of training, neither of the 

groups displayed accurate search behaviour as assessed by the number of platform 

crossings and cumulative proximity to platform. Number of platform crossings in TQ
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did not differ between genotypes (Fig. 3.3B, WT:1.83 ± 0.22, mut: 2.50 ± 0.48, 

F(1,10)=1.62, p=0.23, one-way ANOVA with genotype as variable) and TQ over OP 

preference quadrant preference was only detected in the mutants (Fig. 3.3B, WT: 

F(3,20)=0.99; p=0.42; mut: F(3,20)=6.67; p<0.01, one-way ANOVA with quadrant as 

variable, p<0.01 for TQ vs OP, post-hoc Student-Newman-Keuls comparison).

Analysis of cumulative proximity revealed that both genotypes swam at similar 

distances from the previous platform location (WT: 25.6 ±2.1 m; mut: 30.0 ±1 .9  m, 

F(1,10)=1.56; p=0.24; one-way ANOVA with genotype as variable). Only mut animals 

swam at closer proximity to TQ than to AL or OP (Fig 3.3C, WT: F(3,20)=1.61; 

p=0.21; mut: F(3,20)=13.35; p<0.001; one-way ANOVA with quadrant as variable, 

OP vs TQ p<0.001 and AL vs TQ p<0.01, post-hoc Student-Newman-Keuls 

comparison).
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Figure 3.3- CaMKK/? male mutant mice displayed normal spatial memory 
assessed in a probe trial at the end of the third day of training.
(A) Both genotypes (WT: n=6, mut n=6) spent a significantly higher percentage of 
their search time in TQ, and this selectivity did not differ between genotypes; (B) WT 
mice crossed all platform positions equally often, mut performed more platform 
crossings in TQ than in OP, but number of platform crossings in TQ did not differ 
between genotypes; (C) Cumulative distance to platform position in TQ did not differ 
between genotypes, WT mice searched equally close to the platform positions in 
every quadrant and mutants searched significantly closer to TQ than to AL and OP. 
(MeanxSEM, *p<0.05, **p<0.01, ***p<0.001, TQ- target quadrant; AR- adjacent right; 
AL- adjacent left; OP- opposite)
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3.4.2. BEHAVIOURAL DATA FOR THE ANIMALS USED IN THE 

TRANSCRIPTIONAL ANALYSIS

In this study, high density oligonucleotide arrays (Affymetrix) were used to 

screen a proportion of the murine genome for differences in hippocampal gene 

expression between two groups of animals: male CaMKK/? null mutant mice and WT 

littermates both trained in the MWM as described in section 3.4.1.

Peters et al. (2003) describe impaired spatial memory formation in male 

CaMKK£ null mutant mice. This was observed in a probe trial given at the end of the 

sixth day of training in a 4 trials per day training protocol. Based on this observation 

CaMKK/? mutants would not be expected to be selective at the end of the third day of 

training. However, in the present study, both genotypes were selective and training 

was stopped at this stage (Fig 3.3). Nevertheless, analysis of individual performance 

scores revealed a high intra-group variation in selectivity. Animals were considered 

selective when they spent at least 35% of their search times in TQ during the probe 

trial, and non selective if they spent similar percentages of time in every quadrant, or 

at least similar amounts of time in two different quadrants (Fig. 3.4).

A number of studies report a correlation between levels of performance in the 

MWM, levels of CREB activation and expression of some “memory effector genes" 

(Brightwell et al., 2004; Balschun et al., 2003; Guzowski et al., 2001; Gass et al., 

1998). In order to gain an insight into the global differences in the transcriptional 

profiles between the genotypes, whilst avoiding possible biases related to 

performance levels, two selective and two non selective animals were used per 

group to generate four biological replicates.
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Figure 3.4- Individual probe trial performance data for the animals used in the 
transcriptional analysis.
Animals were classified as selective and non selective according to percentage of 

time spent in TQ during the probe trial (Top panel, WT animals; Bottom panel, mut 
animals).

3.4.3. MICROARRAY ANALYSIS OF CaMKK# REGULATED GENES AFTER 

TRAINING IN THE MORRIS WATER MAZE

Thirty minutes after the probe trial, mice were sacrificed and hippocampi 

dissected. Hippocampal mRNA was reverse transcribed into cDNA which was in vitro
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transcribed into cRNA as described in chapter II. Biotynilated cRNA derived from 

one hippocampal sample was hybridized onto an U74Av2 GeneChip Array 

(Affymetrix, Santa Clara, CA), stained and scanned for fluorescence.

The Genechip® Murine Genome array U74Av2 (MG-U74Av2) contains probe 

sets that can hybridize to 12,000 different transcript sequences. Analysis of 

differences in hybridization intensities across chips from different groups permits a 

comparison of transcriptional profiles between distinct biological samples. The 

Affymetrix Data Mining Tool 3.0 (DMT, Affymetrix) was used for a preliminary 

analysis of the data. This software performed direct pairwise comparisons between 

signal intensities across different arrays corresponding to the WT and mut groups. 

The output list of genes contained the number of comparisons where changes were 

detected and the respective average fold change (Tables 3.1 and 3.2).

A number of factors both in the manufacture of the chips and in sample 

preparation may represent sources of variability and impose biases on signal 

intensities (Chudin et al., 2002). Normalization of fluorescence intensities is required 

to bring all arrays within an experiment to a similar overall brightness, and diminish 

bias generated by non-biological causes. Microarray data analysis softwares use 

distinct normalization and mathematical analysis procedures to compare 

transcriptional profiles. In the present study, in addition to the output from the DMT, 

two alternative softwares were used: dCHIP (Li and Wong, Harvard University, USA) 

and Genespring (Silicon Genetics). The normalization procedures and models of 

analysis used by both softwares are described in Chapter II.

For statistical group comparisons, it was firstly ensured that only probe sets 

with normally distributed signal intensities were considered. Probe sets were 

discarded if normalized signal intensities for any of the probes were out of the 95%
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confidence interval for the distribution of the mean. A parametric t-test, not assuming 

variances equal, was used for statistical group comparison procedure, as this is the 

test advised for standard experiments where the number of replicates per group is 

small (according to dCHip and GeneSpring user’s manuals).

3.4.3.3. COMPARISON CRITERIA

Comparison of transcriptional profiles between the WT and mut groups was 

performed on normalized data. The WT group was defined as a baseline group, and 

the genes with a fold change between the group means above a 30% threshold, with 

a p-value of less than 5% for the null hypothesis, were designated “candidate genes".

Within the lists of candidate genes that fulfilled the criteria described above, a 

subset, listed in Tables 3.1 and 3.2, was chosen for further investigation. The criteria 

for the choice of these genes were: (a) described function in synaptic plasticity and 

learning and memory processes; or (b) described or putative participation in sexually 

dimorphic molecular mechanisms in the CNS; (c) known biological function with 

potential relevance to synaptic plasticity processes; (d) if the function was unknown, 

coincident detection by more than one software tool. Candidate genes included: 

neurotransmitter receptors, signalling molecules, apoptosis regulatory factors, 

transcription factors and splicing factors.

The group of neurotransmitter receptors included: The GluR1 subunit of the 

AMPA receptor, the proper function of which is critically required for LTP and LTD 

expression and retention of spatial memories (Lee et al., 2003); the alpha subunit of 

the GABAa receptor, a receptor involved in the modulation of anxiety related 

behaviours (Holmes, 2001) and context learning in classical fear conditioning
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paradigms (Huff and Rudy, 2004); and the neuropeptide Y receptor 2 (NPYR2), 

which is known to play a role in spatial memory assessed in the MWM (Redrobe et 

al., 2004).

In the signalling molecules group the following genes were investigated: the 

IQ motif containing GTPase activating protein (IQGAP1), a protein involved in 

modulation of cytoskeletal organization (Li et al., 2005), which interacts with the 

Ras/Raf signalling pathway involved in memory formation (Giese et al., 2001). 

Finally, the transcriptional profile of the, GPI-anchor attachment protein 1 (Gaa1), 

involved in post-translational processing of transmembrane proteins (Tsui-Pierchala 

et al., 2002; Hiroi et al., 2000) was also investigated.

Proteins involved in regulation of apoptosis were selected on the basis of a 

number of reports connecting differences in regulation of apoptosis to sexual 

dimorphisms in brain anatomy (Morris et al., 2004; Forger et al., 2004). This group 

included an anti-apoptotic factor, the serine protease inhibitor serpin 3n, which 

regulates the activity of a number of pro-apoptotic proteases (Horvath et al., 2005), 

and a pro-apoptotic factor, the bcl-2-related ovarian killer protein (Bok), which is 

prominently expressed in reproductive tissues and thought to participate in 

hormonally regulated cyclic cell turnover mechanisms (Hsu et al., 1997).

De novo steroidogenesis has been identified in the brain (Hojo et al., 2004), 

and given the modulatory role of steroids in cognition (Sherwin, 2003a; Sherwin, 

2003b), the transcriptional profile of the steroidogenic acute regulatory protein (Star; 

Manna et al., 2003), was further investigated. This was a particularly promising 

candidate as it was previously identified as a CREB target (King et al., 2002).

The group of splicing factors included: the splicing factor arginine/serine rich 3 

(Srp20; Jumaa et al., 1997), the brain specific isoform of the polypyrimidine tract
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binding protein (brPTB; Lillevali et al., 2001), the PTB associated splice factor (PSF; 

Chanas-Sacre et al., 1999; Patton et al., 1993) and the U2 small nuclear ribonuclear 

protein (U2AF, Kielkopf et al., 2004). Interest in these factors was based on a 

number of reports on activity-dependent regulation of mRNA splicing in neurons (eg. 

O’Connor et al., 2004).

The ubiquitin ligase Arihl was selected on the bases of a description of an 

important role of ubiquitination factors on the tuning of synapse formation (DiAntonio 

et al., 2001) and on the fact that lack of the Arihl orthologue in Drosophila is 

associated with a neurodegenerative phenotype (Aguilera et al., 2000).

Other genes investigated included: the ATP binding cassette PMP70, 

encoding a peroxisomal transmembrane protein which is implicated in the 

pathogenesis of Zelwegger syndrome, a mental retardation syndrome (Collins and 

Gould, 1999); the transcription factor, pre-B cell leukaemia transcription factor 

(Pbx3), which is induced during neuronal differentiation in development (Qin et al., 

2004); an FMS-like tyrosine kinase, a transmembrane receptor involved in the 

modulation of diabetogenesis and the pathogenesis of leukaemia(Advani, 2005; 

Bates et al., 2002); and Synaptotagmin 4, a post-synaptic membrane protein which 

acts as a calcium sensor and is thought to mediate post-synaptic vesicle trafficking 

(Yoshihara and Montana, 2004).
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Table 3.1- Candidate genes detected as being expressed at lower levels in the 
hippocampus of CaMKK/? null mutant male mice after training in the MWM, when 
compared to WT controls (*p<0.05; **p<0.01; ***p<0.001; nd- not-detected).

Probe Set Gene name
% transcript level in CaMKK/? 

trained male mice (normalized to 
WT trained male mice )

Biological Function

Afffy
DMT

dCHIP Gene
Spring

ADI MBEI

104374_at Serpin 3n 
(serine protease 
inhibitor)

50%* 
(2 comp)

nd 50%* 38%** Endopeptidase 
inhibitor activity; anti- 
apoptotic factor

92943_at GluR1 
(Glutamate 
receptor, 
ionotropic, 
AMPA1, 
a subunit).

70%*
(1comp)

nd 67%* 67%* Neurotransmitter 
receptor subunit

161784_f_at Star
(steroidogenic 
acute regulatory 
protein 1)

50%*
(1 comp)

nd nd 60%* Neurosteroid
synthesis

Known CREB target
100561_at IQGAP1 

(IQ motif 
containing 
GTPase
activating protein 
1)

nd 67%* nd 67%* Neuronal cell 
adhesion

161682_f_at Gaa1
(GPI-anchor 
attachment 
protein 1)

nd nd nd 67%* Anchoring of GPI 
moieties to proteins

98031_at Bok
(Bcl-2-related 
ovarian killer 
protein)

nd nd nd 61%* Regulation of 
apoptosis

101004_f_at SRp20
(Splicing factor 
arginine/serine 
rich 3 )

nd nd nd 56%** Regulation of 
alternative splicing 
and
nucleo cytoplasmic 
transport of mRNA
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Table 3.2- Candidate genes detected as being expressed at higher levels in the 
hippocampus of CaMKK/? null mutant male mice after training in the MWM, when 
compared to WT controls (*p<0.05; **p<0.01; ***p<0.001; nd- not-detected).

Probe Set
Gene name

% trar 
trained m

iscript level in CaMKK/? 
ale mice (normalized to WT 
rained male mice)

Biological Function

Afffy
DMT

dCHIP

ADI MBEI

Gene
Spring

94088 at 
160374_r_at

brPTB
(polypirimidine 
tract binding 
protein- brain 
specific isoform)

nd 250%* nd 160%*** Regulation of 
alternative splicing 
and
nucleocytoplasmic 
transport of mRNA

104046_at Arihl (ariadne- 
like E3 ubiquitin 
ligase)

nd 170%* 140%* 300%* Targeted protein 
degradation

93045_at PMP70 
(ATP binding 
cassette 
subfamily)

nd 140%* ND 200%* Peroxisome
biogenesis
Zelwegger
syndrome

95559_at FMS-like tyrosine 
kinase;
Riken cDNA 
6330403k07,

135%
(1comp)

140%* 140%* 150%** Transmembrane
receptor

160190_at Synaptotagmin 4 125%* nd 160%* nd Ca2+ sensors of 
vesicular traffic 
and endocytosis

93615_at Pbx3
(Pre B-cell 
leukemia 
transcription 
factor 3)

nd nd 200%* 150%* Transcription

100703_at NPYR
(Neuropeptide Y 
receptor Y2)

nd nd nd 173%* Neurotransmitter
receptor

97486_at U2AF (small 
nuclear 
ribonuclear 
protein)

nd 149%* nd 149%* Alternative splicing

99620_at PSF (PTB 
associated 
splicing factor 
proline/glutamine 
rich)

nd nd nd 190%* Alternative splicing 
and transcriptional 
co-activator

92938_at GABA_A 
receptor subunit 
a1

nd 140%* nd nd Neurotransmitter 
receptor subunit
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Microarray analysis is a widely used tool for high throughput screening of 

transcriptional differences, and has been used in a number of studies aiming to 

identify genes regulated by behavioural training (e.g. Levenson et al., 2004a; Dubnau 

et al., 2003; Leil et al., 2002). Results from these and other studies underscore the 

importance of using independent follow up assays to confirm differences in gene 

expression between groups, as artifactual false positives are inevitably present 

(Dubnau et al., 2003).

3.4.4. MUTATION RELATED TRANSCRIPTIONAL DIFFERENCES IN MALE

MICE

The transcriptional analysis described above provided an insight into the 

patterns of hippocampal gene expression of CaMKK/? mut and WT male mice. Due to 

the high cost of this type of experiment, the initial microarray screening could only be 

performed for a limited number of conditions. The initial screening procedure focused 

on hippocampal transcripts from male mice trained in the MWM, using four biological 

replicates per genotype: CaMKK£ mut and WT.

As CaMKK pathway members are involved in transcriptional regulation, 

differential levels of expression of certain genes are expected between WT and mut 

mice in the naive hippocampus; furthermore, based on the observation that male 

CaMKK/? mutant mice fail to activate CREB after spatial training and display an 

impairment in the transcription dependent phase of LTP in hippocampal CA1 

synapses (Peters et al., 2003), it is also possible that differences in gene expression 

induced by behavioural training may also account for the transcriptional differences 

identified. Hence, at least two factors may account for the transcriptional differences
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identified: (a) the lack of CaMKK# per se (baseline differences); (b) the lack of spatial 

training-induced CaMKK# activity.

The first follow-up step used in this transcriptional analysis, aimed to identify 

baseline differences in gene expression, i.e, CaMKK# regulated genes in the naive 

hippocampus. For this purpose, hippocampal transcriptional levels of candidate 

genes were compared between WT and mut naTve mice using a relative 

quantification method: QPCR. These animals were sacrificed at the same time of the 

light cycle at which trained animals were sacrificed, to avoid potential confounds due 

to circadian changes in levels of expression of certain genes (Ronnback et al., 2005).

The assay consisted of measuring target gene and internal control gene 

expression in the same samples. Internal controls act as loading controls accounting 

for between sample variations arising from subtle differences in start RNA 

concentration, RNA quality and reverse transcription that inevitably occur. Data were 

subject to normalization and logarithmic transformation assuming a perfect doubling 

of PCR products per cycle, as described for example, by Leil et al. (2002),.

The results of this confirmatory step are summarized in figures 3.5 and 3.6.
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Figure 3.5- QPCR comparison of transcriptional levels of candidate genes in the naYve 
hippocampus (I). These genes were detected in the Affymetrix microarray screening as 
being expressed in lower levels in trained CaMKK/? null mutant males and are listed in table
3.1. The only gene detected as being expressed in lower levels in the naYve hippocampus 
was SRp20 (F, WT: 100 ± 10%; mut: 69.6±5.5%; F(1,8)=7.37; p=0.026, one-way ANOVA 
with genotype as variable). (MeaniSEM, p-values are indicated above the mut bar, *p<0.05, 
all values were normalized to the average WT levels of expression).
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Figure 3.6- QPCR comparison of transcriptional levels of candidate genes in the naive 
hippocampus (II). These genes were detected in the Affymetrix microarray screening as being 
expressed in higher levels in trained CaMKK/? null mutant males and are listed in table 3.2. Two 
genes were detected as being differently expressed (A-Arih1; WT: 100 ± 15%; mut: 64.4 ± 8.2%; 
F(1,12)=5.43; p=0.038; J-PSF; WT: 100 ± 11%; mut: 131.9 ± 6.2%; F(1,11)=5.95; p=0.033; one
way ANOVA with genotype as variable). (Mean±SEM, p-values are indicated above the mut bar, 
*p<0.05, all values were normalized to the average WT levels of expression).
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Analysis of transcriptional levels of candidate genes in the naive 

hippocampus, revealed three genes as being differently regulated between the 

genotypes in male mice (Table 3.3). The direction of variation for PSF and SRp20 

was the same for naive and trained animals. For Arihl an opposite direction of 

variation was detected with these two independent methods: in trained mice, mutants 

expressed higher levels of the transcript than WT; in naive mice, mutants expressed 

lower levels of the transcript than their WT counterparts.

Table 3.3- Comparison of hippocampal transcriptional levels of candidate genes 
after MWM training and in naive animals(*p<0.05; **p<0.01; ***p<0.001; nd- not- 
detected).

Gene name
% transcript level in 
male trained CaMKK/? 
mutants (normalized to 
male trained W T ) 

AFFYMETRIX 
MICROARRAY 

ANALYSIS

% transcript level in male 
naive CaMKK/? mutants 
(normalized to male naive 
WT naive)

QPCR ANALYSIS

Afffy
DMT

dCHIP Gene
Spring

Arihl (ariadne-like E3 
ubiquitin ligase)

nd 170% 300%* 67.00% F(1,12)=5.43; 
p=0.038

Splicing factor 
arginine/serine rich 3 
(SRp20)

nd nd 56%** 69.55% F(1,8)=7.37; p=0.026

Splicing factor 
praline/glutamine rich 
(PTB associated) (PSF)

nd nd 190%* 128.65% F(1,11)=5.94; 
p=0.033

3.4.5. KNOWN CREB TARGET GENES

CaMKK£ is a member of the CaM kinase cascade known to mediate CREB 

phosphorylation, an essential event for the activation of CREB mediated transcription 

(Gonzalez and Montminy, 1989). The hippocampal levels of expression of four
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known CREB target genes with functions in synaptic plasticity processes were 

compared between WT and CaMKK/? mut male mice. The genes tested were: the 

brain derived neurotrophic factor (Barco et al., 2005; Blanquet et al., 2003), 

members of the orphan receptor family of transcription factors: nuclear orphan- 

receptor 1 (Nor1), Nur77 and Nuni (von Hertzen and Giese, 2005; Darragh et al., 

2005; Inuzuka et al., 2002). No differences in hippocampal levels of expression of 

either of these genes were detected between genotypes (Fig. 3.7).

wt (n=6)

B-Nurr1
180

A-BDNF

mut(n=8) wt (n=6) mut(n=8)

C-Nur77
140 -I

<
z  100
a:
E 60

20

wt (n=6) mut(n=8)

D-NOR1

wt (n=6) mut(n=6)

Figure 3.7- QPCR comparison of transcriptional levels of known CREB and 
CaM kinase cascade targets in the naive male hippocampus. None of the genes 
screened was differently regulated between WT and CaMKK/? null mutant mice. 
(Mean±SEM, p-values are indicated above the mut bar, all values were normalized to 
the average WT levels of expression).
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3.4.6. TRAINING of CaMKK/? NULL MUTANTS AND WT MALE MICE IN THE 

MWM FOR 6 DAYS

An anaysis of the videotapes of the behavioural training procedures for the 

cohort of mice described in section 3.4.2, suggested that the mice could have been 

exposed to extramaze cues while being moved around the pool in between trials. 

This could have eased the learning of the task and justifiy the selectivity in the probe 

trial at the end of the third day of training. In addition, the small number of animals in 

each group could have also prevented the detection of the phenotype. In an attempt 

to replicate the experimental conditions and use a number of animals comparable to 

the Peters et al. (2003) study, two new cohorts of CaMKK/? mut and WT male mice 

were trained in the MWM using a four trials per day training protocol for six days. 

However, the desired effect was not achived because the behavioural data from the 

two experiments could not be pooled. This was due to a significant difference in 

swim speed during the probe trial between the two cohorts (effect of cohort: 

F(1,25)=6.86, p<0.05; effect of genotype: F(1,26)=0.312, p=0.312; genotype x cohort 

interaction F(1,24)=0.334, p=0.57, two-way ANOVA, with genotype and cohort as 

variables). Hence, behavioural data pertaining to each cohort are presented 

separately.

3.4.6.1. FIRST COHORT

The first cohort of mice consisted of WT (n=7) and mut (n=11) male mice in 

the C57BL/6/129/Sv F4,5 genetic background. A decreased latency was observed 

with the number of training days in both groups [Fig. 3.8A, effect of training: 

F(5,107)=24.88, p<0.001; effect of genotype: F(1,16)=0.30, p=0.59; genotype x 

training interaction F(5,107)=0.85, p=0.52, two-way repeated measures ANOVA on
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transformed values (square root of the escape latency) because the data were not 

normally distributed].

During probe trials there was no difference in average swim speed (Fig. 3.8B, 

WT: 24.8 ± 1.4 cm/s; mut: 22.4 ± 1.2 cm/s; F(1,16)=1,92; p=0.19, one-way ANOVA 

with genotype as variable), percentage of time in the thigmotaxis zone (Fig. 3.8C, 

WT: 0.7 ± 0.3%; mut: 3.5 ± 1.1%; F(1,16)=3.94; p=0.065, one-way ANOVA with 

genotype as variable), or percentage of time floating (Fig. 3.8D, WT: 1.59 ± 0.60%; 

mut: 3.02 ± 0.97%; F(1,16)=1.19; p=0.29, one-way ANOVA with genotype as 

variable).

Analysis of quadrant search times showed no significant difference between 

genotypes in percentage of time spent in TQ (Fig, 3.9A, WT: 38.3 ± 4.9%; mut: 41.0 

± 4.5%; F(1,16)=1.57; p=0.70, one-way ANOVA with genotype as variable).

Additionally, both genotypes were selective towards TQ (Fig, 3.9A, WT: 

F(3,24)= 6.20; p<0.01, one-way ANOVA with quadrant as variable and p<0.05 for all 

TQ post-hoc Student-Newman-Keuls comparisons; mut: F(3,40)=9.96; p<0.01 for TQ 

vs OP and p<0.05 for the remaining quadrants post-hoc Student-Newman-Keuls 

comparisons).

Number of platform crossings did not differ significantly between genotypes 

(Fig. 3.9B, WT: 7.3 ± 1.3; mut: 4.7 ± 1.0, p=0.13, F(1,16)= 2.61, one-way ANOVA 

with genotype as variable). Both genotypes crossed significantly more times the 

platform position in TQ than in any other quadrant (WT: p<0.05, F(3,24)=3.88, mut: 

p<0.05, F(3,40)=2.98, one-way ANOVA with quadrant as variable; WT: p<0,01 for 

TQ vs AL comparison and p<0.05 for the remaining comparisons; mut: p<0.05 for TQ 

vs AL and AR, post-hoc Student-Newman-Keuls comparisons).
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Both genotypes swam at a similar cumulative proximity to TQ (Fig. 3.9C, WT: 

43.7 ± 3.6 m, mut: 43.6 ± 3.3 m, p=0.83, F(1,16)=0.046, one-way ANOVA with 

genotype as variable). Each genotype swam significantly closer to TQ than to any 

other quadrant (WT: F(3,24)=3.01; p<0.05; mut: F(3,40)=2.84; p<0.05, one-way 

ANOVA with quadrant as variable, WT : p<0.05 for TQ vs OP and TQ vs AL; mut: 

p<0.01; TQ vs AL p<0.05 and TQ vs OP, post-hoc Student-Newman-Keuls 

comparisons).
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Figure 3.8- Normal acquisition and swimming in CaMKK/? male null mutant mice after 
a 6 days training protocol (cohort i).
(A) Both genotypes decreased their latency times to find the platform with the number of 

training trials; (B) During the probe trial, swim speeds did not differ between genotypes; (C) 
The percentage of time spent swimming in the thigmotaxis area did not differ between 
genotypes and was lower than expected by chance. (D) The percentage of time spent 
floating did not differ between genotypes. (Mean±SEM).
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Figure 3.9- CaMKK/? male mutant mice displayed normal spatial memory assessed in a 
probe trial at the end of the sixth day of training (cohort I).
(A) Both genotypes (WT: n=7; mut: n=11) spent a significantly higher percentage of their 
search time in TQ, and this selectivity did not differ between genotypes; (B) WT mice 
crossed the platform in TQ more often than any other platform positions, mut mice crossed 
the platform position in TQ more often than in AR or AL, but number of platform crossings in 
TQ did not differ between genotypes; (C) Cumulative proximity to platform position in TQ did
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not differ between genotypes, and both groups swam at a closer proximity to TQ than to AL 
or OP (Mean±SEM, *p<0.05, **p<0.01, ***p<0.001).

3.4.6.2. SECOND COHORT

This cohort of mice included WT (n=4) and mut (n=7) male littermates in the 

C57BL/6/129/Sv F5 genetic background. During the six day training period, there 

was a significant effect of training for both genotypes, no difference between 

genotypes, and no genotype-training interaction (Fig. 3.1 OA, effect of training 

F(5,45)=12.18, p<0.001; effect of genotype: F(1,9)=3.09, p=0.113; genotype x 

training interaction F(5,45)=1.09, p=0.38; two-way repeated measures ANOVA, with 

genotype and training as variables). Because, a difference in the escape latencies 

between genotypes, was apparent in days 3 and 4, one-way ANOVA planned 

comparisons on escape latencies were performed for each of these days. A 

significantly higher latency in the mut group was detected on the third day of training 

(p<0.05) and a trend towards a significant difference on the fourth day (p=0.083). In 

order to address whether this difference could be related to differences in swim 

speed, these were compared throughout the whole training procedure, with no 

differences between genotype being found (Fig 3.1 OB, effect of genotype 

F(1,9)=0.15; p=0.71; effect of training F(5,45)=0.20; p=0.46; genotype x training 

interaction F(5,45)=1.45; p=0.22 two-way repeated measures ANOVA). In fact, the 

differences in acquisition were reflected in the average path length (Fig 3.10C, 

effect of genotype F(1,9)=1.77, p=0.22; effect of training F(5,45)=14.07 , p<0.001; 

genotype x training interaction F(5,45)=0.93, p=0.47 two-way repeated measures 

ANOVA). Planned comparisons on path length for days 3 and 4 revealed 

significantly longer path lengths in the mutant group on day 4 (p<0.05) and a trend 

towards a higher path length on day 3 (p=0.071).
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During probe trials, the genotypes did not differ in average swim speed (Fig. 

3.10D, WT: 20.0 ± 1.3 cm/s; mut: 19.3 ± 1.7 cm/s, F(1,9)=0.80; p=0.78, one-way 

ANOVA with genotype as variable), percentage of time spent in the thigmotaxis zone 

(Fig 3.10E, WT: 9.7 ± 5.4 %; mut: 2.1 ± 1.7 %; F(1,9)=2.79; p=0.13, one-way 

ANOVA with genotype as variable), or percentage of time spent floating (Fig. 3.1 OF, 

WT: 7.9 ± 4.0 %; mut: 3.4 ± 1 . 0  %; F(1,9)=1.97; p=0.19, one-way ANOVA with 

genotype as variable).

Analysis of quadrant search times showed no significant difference between 

genotypes in percentage of time spent in TQ (Fig. 3.11 A, WT: 50 ± 17 %; mut: 49.5 ± 

7.9 %; F(1,9)=0.0019; p=0.97, one-way ANOVA with genotype as variable). Both 

genotypes spent a significantly higher percentage of time swimming in TQ than in 

any other quadrant (Fig. 3.11 A, WT: F(3,12)= 3.63; p<0.05; mut: F(3,24)=10.37; 

p<0.001, one-way ANOVA with quadrant as variable; WT: p<0.05 for all TQ 

comparisons, mut: p<0.01 for all TQ post-hoc Student-Newman-Keuls comparisons).

Analysis of platform crossings revealed no significant difference between 

number of TQ crossings between genotypes (Fig. 3.11B, WT: 6.0 ± 3.2; mut: 4.00 ± 

0.98; F(1,9)= 0.55; p=0.48, one-way ANOVA with genotype as variable). Although a 

higher number of platform crossings in TQ was apparent for the WT group (Fig 

3.11B), there was no significant difference in the number of platform crossings in the 

different quadrants (F(3,12)=1.71; p=0.21, one-way ANOVA with quadrant as 

variable). Mutants showed a preference for TQ (F(3,24)=3.01; p<0,01; one-way 

ANOVA with quadrant as variable, Student-Newman-Keuls post-hoc comparisons 

revealed a preference for TQ vs AR and OP , p<0.01).

Analysis of cumulative proximity revealed no difference between genotypes 

(WT: 40.7 ± 3.2 m; mut: 37.1 ± 3.9 m; F(1,9)=0.17; p=0.69). No significant lower
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global proximity to TQ was detected for WT (F(3,12)=1.86; p=0.18, one-way ANOVA 

with quadrant as variable) presumably due to the high variability of performance 

within the group. Mutant mice swam significantly closer to TQ than to any other 

quadrant (F(3,24)=9.40; p<0.001; one-way ANOVA with quadrant as variable; TQ 

vs OP (p<0.001), post-hoc Student- Newman Keuls comparisons).
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Figure 3.10- Acquisition and swimming abilities in CaMKK/? male null mutant mice after a 6 
days training protocol (cohort II).
(A) Both genotypes decreased their latency times to find the platform with the number of training 
trials, but there was a difference in escape latencies on the third day of training; (B) Swim speeds did 
not differ between genotypes during the acquisition of the task; (C) The path length of the mut group 
was significantly longer on the 4th day of training; (D) During the probe trial, swim speeds did not differ 
between genotypes; (E) The percentage of time spent swimming in the thigmotaxis area did not differ 
between genotypes and was lower than expected by chance. (F) The percentage of time spent 
floating did not differ between genotypes. (Mean±SEM, *p<0.05).
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Figure 3.11- CaMKK)? male mutant mice displayed normal spatial memory assessed in 
a probe trial at the end of the sixth day of training (cohort II).
(A) Both genotypes (WT: n=4; mut: n=7) spent a significantly higher percentage of their 
search time in TQ, and this selectivity did not differ between genotypes; (B) No significant 
difference between number of platform crossings in TQ and the remaining quadrants was 
detected for the WT group; Mutant mice crossed the platform position in TQ more often than 
in AR or OP, but number of platform crossings in TQ did not differ between genotypes; (C) 
Cumulative proximity to platform position in TQ did not differ between genotypes, but only 
mut mice swam at a closer proximity to TQ than to OP (Mean±SEM, *p<0.05, **p<0.01,
***p<0.001).
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3.4.7. COMPARATIVE ANALYSIS OF SPATIAL TRAINING INDUCED 
TRANSCRIPTION BETWEEN MALE CaMKK/? MUT AND WT MICE

The initial Affymetrix transcriptional comparison screening was performed in 

hippocampal tissue from trained animals and the first follow up steps were performed 

in samples from naive animals, in order to account for mutation related changes 

(Table 3.3). Hence, the possibility that some of the genes detected in the microarray 

analysis (listed in Tables 3.1 and 3.2) are regulated by CaMKK/? after training in the 

MWM still remained untested.

This possibility was only tested for one of the candidate genes encoding the 

glycosylphosphatydilinositol (GPI)-anchor attachment protein (Gaa1), a protein that 

catalyzes the attachment of GPI moieties to membrane proteins (Hiroi et al., 2000a). 

This gene was chosen because preliminary data (described in chapter IV) pointed to 

a transcriptional regulation after training in the MWM in male WT mice. To address 

whether Gaa1 expression is regulated by CaMKK/? in an activity-dependent manner, 

the hippocampal levels of expression were compared between naive mice (WT: n=6; 

mut: n=6) and mice that were trained in the MWM for six days (WT: n=4; mut:n=7), 

and shown to be selective in a probe trial given at the end of the sixth day of training. 

(Figs. 3.9 and 3.10).

According to the previous finding (Fig. 3.6), transcriptional levels did not differ 

between genotypes in naive animals (Fig. 3.12, WT: 100.0 ± 6.4%; mut 111 ± 11%, 

F(1,9)=0.71, p=0.42, one-way ANOVA with genotype as variable). A spatial-training 

induced up regulation of the gene was detected in naive but not in mutant animals 

(planned comparisons: WT naive: 100.0 ± 6.4%; WT trained: 124.6±4.7%, 

F(1,8)=0.49, p=0<0.05; mut naive: 111 ± 11%, mut trained: 108.2 ± 8.6%; 

F(1,11)=0.051, p=0.82; one-way ANOVA with genotype as variable). These findings
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suggest that activation of CaMKK£ induced by training in the MWM regulates Gaa1 

transcription.

 I

naive MWM naive MWM
(n=6) (n=4) (n=6) (n=7)

wt mut

Figure 3.12- CaMKK/? mutation dependent transcriptional output in males trained in
the MWM. Levels of expression of Gaa1 did not differ between genotypes in naive mice, 
however a spatial training induced upregulation was found for WT mice, but not for mut mice. 
(MeaniSEM, *p<0.05, all values were normalized to the average WT naive levels of 
expression).

3.4.8. TRANSCRIPTIONAL LEVELS OF CANDIDATE GENES IN FEMALE NAIVE 

MICE

Mizuno et al. (2006) describe a sex-specific role of CaMKK£ in hippocampal 

learning and memory processes. In order to assess whether CaMKK£ regulates the 

expression of the candidate genes in females, the transcriptional profile of these 

genes was compared between naive WT and CaMKK/? null mutant female mice (Fig. 

3.13). Lack of CaMKK£ in naive females did not have an impact on Gaa1, PSF or 

SRp20 expression levels (Fig. 3.13, B: Gaa1, WT: 100.0 ± 7.7%; mut: 94.5 ± 9.7%; 

F(1,13)=0.21; p=0.65; C: PSF, WT: 100±11%, mut: 124.9±8.6%; p=0.11; 

F(1,13)=2.82; D: SRp20, WT: 100.0±5.0%, mut: 108.4 ± 8.9%, p=0.40, F(1,12)=0.75; 

one-way ANOVA with genotype as variable). However, Arihl expression is
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significantly higher in null mutant females than in the WT counterparts (WT: 100 ± 

16%, mut 180 ± 43%, p=0.047, F(1,13)=4.80, one-way ANOVA with genotype as 

variable) which was opposite to the pattern of expression in males.
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Figure 3.13- QPCR comparison of transcriptional levels of candidate genes in the 
female naive hippocampus. All these are CaMKK# regulated in the naYve male 
hippocampus, but only Arihl (A) is differently regulated in the naYve female hippocampus of 
WT and mutant animals (MEAN±SEM, p-values are indicated above the mut bar, *p<0.05, all 
values were normalized to the average WT levels of expression).
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3.5. DISCUSSION

Peters et al. (2003) demonstrated a role for the CaMKK/? isoforms in 

hippocampal learning and memory and synaptic plasticity processes. Male CaMKK/? 

mutant mice were impaired in spatial memory in the MWM, assessed in a probe trial 

given at the end of the sixth day of training, a deficit that was overcome by four 

additional days of training. The behavioural phenotype was accompanied by impaired 

spatial training induced CREB activation and deficits in L-LTP. These observations 

were the basis of the project described in this thesis.

The work described in the present chapter aimed at identifying genes that 

displayed distinct transcriptional profiles between WT and CaMKK/? mutant male 

mice in response to spatial training. However, the delayed spatial memory formation 

previously described was not replicated in three independent cohorts of mice (one of 

which was trained for three days only). Possible causes for these discrepancies 

include experimental and biological factors, which will be addressed below. 

Nevertheless, an Affymetrix Microarray analysis revealed a number of genes that 

displayed dinstinct levels of expression in the hippocampus of WT and CaMKK£ null 

mutant mice after training in the MWM. A QPCR follow up assay on a number of 

target genes detected in the Microarray analysis, pointed to differences in regulation 

of four of these genes purely due to the mutation (Arihl, SRp20 and PSF) or due to 

training in the MWM (Gaa1).
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3.5.1. EXPERIMENTAL CONDITIONS

In the Peters et al. (2003) study, a delayed spatial memory formation was 

reported for CaMKK/? null mutant male mice. This impairment was assessed by three 

independent measurements of spatial learning. These were the percentage of time 

spent in TQ, the number of platform crossings (which reflects precise knowledge of 

the platform position) and the Gallagher cumulative proximity. While the first two 

reflect spatial biases in the search path, the third one is a measurement of accuracy 

as it reflects deviations from the optimal path. This is considered one of the most 

sensitive and informative methods to assess spatial memory formation (Gallagher et 

al., 1993). In the probe trial at day 6 in the Peters et al. (2003) study, all WT animals 

displayed a preference towards TQ while CaMKK/? failed to do so, as assessed by all 

three measurements. In the present studies, no differences in preference towards 

TQ were detected between genotypes and within genotype comparisons of 

percentage of time spent in each quadrant, revealed a global preference for TQ in 

WT and mutant animals. Surprisingly, and contrarily to the Peters et al. (2003) study, 

in two of the cohorts tested, the number of platform crossings and the cumulative 

proximity measure indicated a preference towards TQ in mutants but not in WT 

suggesting higher spatial accuracy in mutants.

Learning and memory paradigms applied to rodents aim to assess learning 

abilities and/or memory formation based on behavioural outputs. When applied to 

animals subject to anatomical, pharmacological or genetic manipulations, these 

behavioural outputs are generally interpreted as direct consequences of these 

interventions. However, a number of studies report a strong dependence of 

behavioural results on laboratory environment factors which include training
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apparatuses and procedures; mouse housing conditions and experimenter effects 

(Wahlsten et al., 2003; Gerlai, 2001b; Crabbe et al., 1999).

Effects of differences in training apparatus and experimental setup, can be 

ruled out when comparing the present study and the study by Peters et al (2003) as 

they were performed in the same facility. However, effects of animal housing and 

rearing conditions are prone to vary between testing periods of different animal 

cohorts. This can explain, not only the discrepancies between the published and the 

present study, but also the differences in swim speed between the first and second 

cohorts trained by the same experimenters as reported in sections 3.4.6.1 and

3.4.6.2.

A strong influence of laboratory environments on behavioural outcomes for a 

number of tests has been reported even when variability in mouse rearing conditions 

and experimental apparatuses are minimised (Wahlsten et al., 2003; Crabbe et al.,

1999). Nevertheless, a number of studies report that one of the factors that can 

account for the highest variability in behavioural responses in a number of 

behavioural tests is differences in handling by the experimenter (Chesler et al., 

2002a; Chesler et al., 2002b; Wahlsten, 2001; Gerlai and Clayton, 1999). However, 

it is important to mention that the impact of the variability of experimental conditions 

or experimenter effects in the hidden platform version of the MWM has never been 

systematically addressed.

Pre-training handling was longer in the experiments described in this chapter 

(ten days), than in the published study (six days; Peters et al., 2003). Pre-training 

handling is known to contribute to reducing stress and fearful responses to the 

presence of the experimente. For this reason, it is possible that a longer period of 

handling in the current study has contributed to differences in stress responses and
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consequent differences in performance. Furthermore, handling of the animals during 

the training procedure is also known to strongly influence anxiety related behaviours 

such as thigmotaxis and escape from the platform (Gerlai, 2001a; Gerlai and 

Clayton, 1999). Subtle differences in handling during the training procedure may 

have contributed to differences in the behavioural outputs obtained. The training 

procedure described in this chapter may have contributed to a faster learning by the 

mutant group when compared to the cohorts trained by Peters et al. In fact, analysis 

of acquisition data in the second cohort of mice trained in the MWM (Fig. 3.10) 

revealed longer escape latencies and path lengths during the third and fourth day of 

training. Although, as discussed above, these are not accurate measurements of 

spatial memory formation, it is possible that a difference in probe trial performance 

could have been found on these particular training days, at least for this cohort of 

mice.

Another important factor to bear in mind when interpreting the behavioural 

data is the statistical power of the sample sizes used (Wahlsten, 2001). While the 

data presented in Peters et al (2003) refers to a high number of animals (WT: n=11; 

mut n=12), the present data refers to rather smaller sample sizes. Larger sample 

sizes confer not only an increased statistical power to the analysis but can also buffer 

intrinsic individual differences in learning abilities (Matzel et al., 2003).

3.5.2. BIOLOGICAL EFFECTS

The gene targeting technique used to generate the CaMKK/? null mutant mice, 

produced a general deletion of the functional transcript affecting all the body in all 

developmental stages. Lack of the functional CaMKK/? protein may have triggered
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alterations in a set of developmental, physiological and even behavioural processes 

in order to compensate for the effect of the mutation (Gerlai, 2001b). These 

compensatory mechanisms may operate differently or vary across generations. 

Furthermore, polymorphisms in the genetic background and general differences in 

the chromosomal constitution between littermates in a hybrid background may 

account for large biological variations in the genetic repertoire, which are prone to 

mask mutation-related phenotypes (Gerlai, 2001b; Dubnau and Tully, 1998). The 

behavioural study by Peters et al. (2003) used mice in the F2-F4 generations while 

the data reported in this chapter concerns mice in the F4-F5 generations. Therefore, 

the discrepancies between the behavioural phenotypes described in the Peters et al. 

(2003) study and the current study may be due to genetic background effects. In 

addition, animals used in the Peters et al. (2003) were between 2 and 6 months old, 

while in all the studies performed in this thesis, no animal was older than 4 months. 

Therefore, the contributuion of age effects in the phenotype described in the Peters 

et al. (2003) study, can not be ruled out.

Another important factor to bear in mind is that overtraining can overcome the 

behavioural deficit described, a feature common to other mouse lines such as the 

CREBaS mutants (Hebda-Bauer et al., 2005; Kogan et al., 1997; Bourtchuladze et 

al., 1994). A likely hypothesis is that, in these lines, a developmental or physiological 

compensation may determine changes that account for the molecular requirements 

of the specific training paradigm.

Despite the failure to replicate the behavioural phenotype previously 

described, the transcriptional screening reported in this chapter revealed genotype 

effects, in the levels of expression of a number of genes. Whether these differences 

can be attributed directly to CaMKK/? function, or are a consequence of
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compensatory mechanisms triggered in response to the mutation can not be 

established at this stage. For the sake of simplicity, the candidate genes identified 

were designated “CaMKK# regulated genes” due to differences in transcriptional 

levels between WT and CaMKK# null mutant mice.

3.5.3. ARRAY ANALYSIS

The present study aimed to identify CaMKK# regulated genes in the 

hippocampus of male mice. As explained in section, 3.4.3, the first screening 

process was performed in mice that had been trained in the MWM. Thus, both the 

mutation and the training procedure may have contributed to the regulation of gene 

expression.

Microarray data may display a very high degree of intra-group variation which 

may be derived from true biological differences or differences in sample preparation 

and technical limitations (Chudin et al., 2002; Pritchard et al., 2001).

As described in chapter II, preparation of the mix of cRNAs to be hybridized 

with the array is a complex process encompassing multiple steps. Despite monitoring 

of sample quality after each of these steps, small differences in the handling of 

different samples may compromise sample quality and introduce non systematic 

errors which can not be accounted for in the analysis. Furthermore, the array 

manufacture conditions may also impose constraints: non specific interactions due 

to combinatorial complexity; thermodynamic equivalence of probes; accuracy and 

spatial uniformity of probe synthesis onto the glass slide (Chudin et al., 2002). 

Importantly, as well, known immediate-early genes with functions in L&M processes
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such as Arc (Guzowski et al., 2000) are not probed in these arrays and were 

obviously missed in this transcriptional analysis.

The use of microarrays to characterize transcription profiles in total brain or 

brain tissues such as the hippocampus has been reported in a number of studies 

(Datson et al., 2004; Lein et al., 2004; Zhao et al., 2001). However, detection of 

change in gene expression in the brain is complicated by a series of factors like the 

complexity of the tissue analysed, transcript abundance, magnitude of transcriptional 

changes and time point addressed which is particularly important for the detection of 

transcriptional changes induced by behavioural training.

Nature of the tissue analysed

The hippocampus is a heterogeneous tissue, composed by a variety of cells 

with different molecular and electrophysiological properties (Zhao et al., 2001; 

Amaral and Witter, 1995). The use of alternative techniques such as microdissection 

of hippocampal subfields (Datson et al., 2004) or mRNA in situ hybridization (ISH) 

(eg. Zhao et al., 2001) analysis may help to narrow down the subset of cells where 

the changes occur and provide a more accurate estimation of the magnitude of the 

fold change. In addition, transcriptional analysis at the single cell level, for example 

by single cell laser capture (Tietjen et al., 2003) may provide valuable insights into 

the magnitude and cell-specificity of the transcriptional changes elicited by 

behavioural training.

Magnitude of transcriptional changes

The differences in transcription between genotypes, either in the baseline or 

in an activity induced manner, may be subtle and close to the level of “noise“(Barlow
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and Lockhart, 2002). Changes of higher magnitude are also likely to occur in the 

brain, but these may be restricted to small number of cells and “diluted" when a 

whole tissue is analysed (Barlow and Lockhart, 2002).

Use of an alternative technique for detection of hippocampal transcripts, serial 

analysis of gene expression (SAGE) in parallel with Affymetrix microarray analysis 

revealed the unreliability of the latter technique for the detection of low abundance 

transcripts (Evans et al., 2002), which largely outnumber the high abundance 

transcripts. A post reverse transcription amplification could probably improve the 

detection of low abundant transcripts at the expense of potentially saturating 

expression levels of more abundant genes.

The small number of biological replicates used (four per group) and within 

group heterogeneity in gene profiles (Pritchard et al., 2001) imply an increased 

likelihood of detecting transcriptional differences that are not related to the mutation. 

The use of larger sample sizes would permit the “dilution" of within-group variations.

In the present analysis, the above factors were considered by setting a rather 

low threshold (30%) of fold change in gene expression between the groups. The 

obvious disadvantage of setting such a low threshold is an increased false positivity 

rate.

The initial microarray screening aimed at the identification of transcriptional 

differences between WT and CaMKK# mut mice after training in the MWM. The 

following experimental step addressed whether any of these transcriptional changes 

could be detected in the hippocampus of naive male WT and CaMKK# mutant mice. 

Because the follow up procedures focused on a group of mice under different 

conditions than the ones used for the initial microarray screening, the current 

experimental design did not allow the estimation of the positivity rate of the
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microarray screening. For this reason it is not pertinent to compare the results of the 

current study with other published studies on microarray screenings of hippocampal 

tissue. Neverthless, the genes initially detected in the microarray screening and after 

confirmed to be CaMKK^-regulated in naive animals (Arihl, SRp20, PSF; Table

3.3.), or after MWM training (Gaa1; Fig. 3.13), were all detected by GeneSpring and 

only one of these was detected by dCHIP. This suggests that Genespring yelded a 

higher positivity rate, at least within the group of genes tested. Discrepancies in the 

target genes detected by the two softwares can be interpreted on the bases of the 

normalilzation procedures used. While dCHIP starts by normalizing brightness across 

chips to the array with median overall brightness, GeneSpring starts by normalizing 

gene expression levels within a chip and only after normalizes levels of gene 

expression to the median brightness of each particular probe set. Under the 

prevailing conditions, GeneSpring represented a more reliable method of analysis as 

this was less biased by variations in hybridization procedures across chips. This also 

suggests that the hybridization step was critical for the final outcome of the analysis.

Time points:

The MWM is one of the most commonly used tasks to assess spatial memory 

formation in rodents. The parameter normally measured is selectivity towards the 

area where a hidden platform was located which implies a hippocampus dependent 

formation of a spatial representation of the environment (Morris et al., 1982). This is 

a complex learning task, with multiple behavioural and cognitive demands: 

swimming, learning that the platform is the only way to escape the water, and
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learning the platform location (Gerlai, 2001a). Training paradigms comprise multiple 

trials generally given in the course of several days.

Experimental designs used in previous studies to detect changes in gene 

expression after training in the MWM differ in the number of training trials used, the 

number of days of training, the use of probe trials and the time points of sacrifice of 

the animals (Leil et al., 2003; Cavallaro et al., 2002; Leil et al., 2002). The complexity 

of the task and the time points chosen for the analysis of behavioural training induced 

changes affect strongly the final outputs from the transcriptional analysis, for this 

reason a comparison between the transcriptional outputs found in this study and 

found in other studies is not appropriate.

The present study used a three day training protocol, followed by a probe trial, 

30 min after which the animals were sacrificed. The results of the transcriptional 

change should be strictly interpreted in the context of this experimental design: First 

of all, changes in transcription of particular target genes occur with a distinctive time 

course (Cavallaro et al., 2002), and the present experimental design missed 

transcriptional changes occurring earlier in the course of training; Second: the 

transcriptional changes associated with spatial training may be induced by the 

behavioural experience (handling, swimming, exposure to the room) without 

necessarily having a role in memory consolidation; Third: The training protocol 

encompassed a number of training trials over a number of days. Therefore, it is also 

possible that the transcriptional changes detected were elicited by memory 

reconsolidation, rather than consolidation (Morris et al., 2006). Fourth: in principle, 

the experience of swimming in the absence of the platform during the probe trial can 

induce extinction of the memory of the platform or platform location. Attempts to
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distinguish between experience-related and learning-induced transcriptional changes 

are described in chapter IV.

3.5.4. QPCR FOLLOW UP ASSAY

QPCR was used as an independent follow-up method to identifiy CaMKK/? 

regulated genes. This technique is accurate enough to detect 20% changes in gene 

expression (Bustin, 2000). With this technique, variations in gene expression 

between CamKK/? null mutants and WT male mice were identified for four candidate 

genes. QPCR analysis for the remaining candidate genes failed to detect significant 

inter-group variations. This might be due to the fact that these are not CaMKK/? 

regulated genes, and their detection resulted from artefacts in the microarray 

procedure.

3.5.5. TRANSCRIPTIONAL CHANGES IDENTIFIED

Differences in transcriptional levels in the naive hippocampus were identified 

for four genes (three of which at the baseline level, and one in induced by 

behavioural training in the MWM). Lack of CaMKK/? resulted in lower levels of 

expression of SRp20 and higher levels of expression of PSF in the hippocampus of 

male mice. However, lack of this kinase did not have an impact on levels of 

expression of these genes in the female hippocampus. For Arihl, loss of CaMKK/? 

resulted in opposite patterns of expression between the sexes, with a downregulation 

in male mutants and an upregulation in female mutants. These results point to a sex- 

specific role of this kinase in the regulation of gene expression in the naive 

hippocampus. This finding was consistent with a sex specific role of this kinase in
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hippocampal plasticity earlier described (Mizuno et al, 2006). Furthermore, these 

findings suggest sexual dimorphisms in the pattern of regulation of these genes in 

the naive hippocampus, a hypothesis that was investigated and will be addressed in 

chapter IV.

Additionally, the identification of Gaa1, a gene not regulated by CaMKK£ in 

the naive hippocampus but regulated by spatial training, points to differences in the 

spatial training transcriptional outputs between the genotypes. This was an expected 

finding considering differences in spatial training induced CREB activation and L-LTP 

described by Peters et al (2003).

It is important to emphasize, however, that investigation of most of the 

transcripts identified in the initial microarray screening was pursued no further. For 

example, the hypothesis that genes other than Gaa1 are regulated by CaMKK/? in an 

activity-dependent manner remains to be determined. As discussed in section

3.4.3.3, a role for the proteins encoded by some of these genes in synaptic plasticity 

and L&M has been previously described.

A more thorough investigation of the correlations between the transcriptional 

changes identified and L&M processes, the sex-specific patterns of gene expression, 

and the “behavioural training-induced” changes in gene expression are the focus of 

chapter IV. The potential significance of these transcriptional changes for memory 

consolidation will be addressed in chapter V.
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3.5.6. A POSSIBLE ROLE FOR THE CANDIDATE GENES IN THE 

CONSOLIDATION OF HIPPOCAMPUS-DEPENDENT MEMORY

3.5.6.1. ARIADNE UBIQUITIN-3 LIGASE (Arihl)

3.5.6.1.1. UBIQUITINATION AT THE SYNAPSE

Selective protein degradation plays an essential role in cell homeostasis, 

allowing clearance of harmful metabolites, cell cycle progression and regulation of 

transcription (Voet and Voet, 1995).

Proteins are targeted for degradation via covalent attachment of a small 

monomeric protein -  ubiquitin. Ubiquitination occurs through three sequential 

processes catalyzed by ubiquitin activating (E1), conjugating (E2), and ligase (E3) 

enzymes. Multi-ubiquitinated targets are recognized by a large protein complex: the 

proteosome, which hydrolyses long polypeptide chains into small peptides (Voet and 

Voet, 1995).

Converging evidence establishes the importance of ubiquitination in normal 

synaptic function: In Drosophila, mutations in components of the ubiquitination 

pathway cause phenotypes including loss of synaptic growth control and axon 

guidance and defects in presynaptic neurotransmitter release (DiAntonio et al., 2001; 

Kitada et al., 1998; Muralidhar and Thomas, 1993). In Aplysia, proper function of the 

ubiquitination machinery is crucial for activity-dependent transcriptional activation 

(Yamamoto et al., 1999; Hegde et al., 1993). In addition, the gene encoding 

Ubiquitin C-terminal hydrolase (an enzyme that contributes to faster proteolysis by 

the proteosome) is an activity-dependent immediate early gene both in Aplysia and 

rodents (Foley et al., 2000; Hegde et al., 1997).
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3.5.6.1.2. A ROLE FOR Arihl IN MEMORY CONSOLIDATION?

Several classes of E3 ubiquitin ligase have been described. Each individual E3 

ligase recognizes a restricted a set of proteins, which accounts for a tight regulation 

of ubiquitination of distinct substrates (reviewed by Pickart, 2004). Mutations in 

genes encoding E3 ubiquitin ligases are related to human diseases associated with 

cognitive impairments such as juvenile onset Parkinsonism and Angelman's 

syndrome (Kitada et al., 1998; Jiang et al., 1998).

Ariadne-1 is a E3 ubiquitin ligase gene that belongs to the Really Interesting New 

Gene (RING)-finger family of proteins (Aguilera et al., 2000). Drosophila mutants for 

the orthologue of Arih-1 exhibit severe developmental deficits affecting neuronal 

connectivity, and reduced rough endoplasmic reticulum suggesting compromised 

transmenbrane protein processing (Aguilera et al., 2000). This protein is highly 

conserved between Drosophila, mouse and humans and hence likely to display 

affinity for similar substrates (Tan et al., 2000). A known substrate of the human 

protein is the translation initiation factor eif4, suggesting that Arihl can not only 

regulate protein degradation, but also protein translation (Tan et al., 2003).

As summarized in table 5.1, Arihl levels display a sex specific pattern of 

expression being higher in the female than in the male adult naive hippocampus. 

Curiously, in pre-pubertal animals the sex difference was observed in the opposite 

direction, suggesting that estrogen exposure may play a role in the transcriptional 

regulation in Arihl. In order to determine whether estrogens influence its expression 

level, Arihl regulation could be studied in gonadectomized animals: First, an age 

effect would not be expected in gonadectomized females; Second, castration of 

males immediately after birth would prevent the organizational effects of estrogen 

and ablate the pre-pubertal sex difference.
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Additionally, mice trained in the MWM and contextual fear conditioning express, 

on average, higher levels of the gene than the naive counterparts, but this difference 

did not reach significance. In females, this lack of statistical significance can be due 

to hormonally driven fluctuations in levels of gene expression. This hypothesis could 

be tested by the monitoring levels of gene expression in different stages of the 

estrous cycle.

3.5.6.2. GPI-anchor attachment protein 1 (Gaa1)

3.5.6.2.1. PROTEIN GLYCOSILATION

The attachment of glycosylphosphatidylinositol (GPI) moieties to proteins 

constitutes a post-translational modification mechanism that permits anchoring of 

proteins lacking transmembrane domains to the exterior surface of the plasma 

membrane (Fivaz and Meyer, 2003; Voet and Voet, 1995).

A role for glycosilation processes in memory consolidation has been 

established, as specific inhibitors of glycosilation exert potent amnesic effects if 

administered right before or shortly after training or 5-6 hours after training (Rose and 

Jork, 1987). GPI-anchored proteins are incorporated into lipid rafts- subregions of 

the plasma membrane that are rich in cholesterol. A number of cell adhesion 

molecules that support stable contacts between neurons are GPI anchored and 

cluster in this region. These are also thought to intervene in the transmission of 

intracellular signals presumably by interaction with transmembrane signalling 

receptors (Tsui-Pierchala et al., 2002).

GPI anchoring occurs in the rough endoplasmic reticulum and is catalysed by 

a transamidase complex. Gaa1 is an important component of this complex, as 

genetic deletion in yeast or disruption of protein function in murine cell lines prevent
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expression of GPI anchored proteins on the cell surface membrane (Hiroi et al., 

2000; Hamburger et al., 1995).

3.5.6.2.2. A ROLE FOR Gaa1 IN MEMORY CONSOLIDATION?

Gaa1 mRNA levels are increased after training in the MWM and contextual 

fear conditioning in WT mice. In addition, the results described on chapter III indicate 

that Gaa1 expression is regulated by CaMKK/? in male mice, in response to 

behavioural training in the MWM.

Synaptic remodelling is believed to be one of the mechanisms supporting 

memory encoding in the hippocampus. In line with this view, a training induced 

upregulation of Gaa1, if mirrored at the protein level, could increase transamidase 

activity and levels of GPI anchored proteins incorporated into synapses; These GPI 

anchored proteins, for example, adhesion molecules, could contribute to the 

formation of new synaptic contacts and/or reinforcement of previously existing ones.

3.5.6.3. ALTERNATIVE SPLICING IN NEURONS

Maturation of pre-mRNA into translatable mRNA requires intron removal and 

exon ligation -  a process known as splicing. This process is catalysed by the 

spliceosome- a complex composed of a large number of ribonucleoproteins and 

small nuclear RNAs (Roberts and Smith, 2002).

Alternative inclusion/exclusion of exons is influenced by cis-regulatory 

elements in exonic and intronic sequences. These sequences can recruit a number 

of trans acting splicing factors which can either promote or prevent spliceosome
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assembly (Roberts and Smith, 2002; Will and Luhrmann, 1997). Cell-specific exon 

selection for a given pre-mRNA is determined by the stoichometry between splicing 

repressors and activators.

A number of studies describe regulation of alternative splicing in neuronal cells 

in response to membrane depolarization (Xie and Black, 2001), induction of LTP 

(O'Connor et al., 2004) or seizures (Bottai et al., 2002), exposure to stressful 

conditions (Nijholt et al., 2004), and physical activity (Beffert et al., 2005).

The present work studied the transcriptional profiles of two genes encoding 

two multifunctional nuclear proteins (PSF and SRp20), initially described as splicing 

regulators. These genes were identified as CaMKK/? regulated genes in the naive 

male hippocampus and shown to be regulated by training in the MWM and contextual 

fear conditioning in males in the case of SRp20 and in both sexes in the case of PSF.

3.5.6.3.1. SPLICING REGULATOR 20 (SRp20)

SR proteins constitute a multifunctional family of proteins primarily involved in 

regulation of alternative splicing. SR family members display overlapping 

specificities, which may account for redundant functions (reviewed in Graveley,

2000). However, targeted deletion of SRp20 is embryonically lethal at the blastocyst 

stage indicating that, at least at this stage of development lack of SRp20 can not be 

compensated by other proteins (Jumaa et al., 1999).

Cellular functions of SRp20 are fundamentally related to RNA metabolism and 

nuclear export. These encompass: (a) regulation of alternative splicing in a number 

of mRNAs (Galiana-Arnoux et al., 2003; Jumaa and Nielsen, 1997) including its own 

(Jumaa and Nielsen, 2000); (b) Regulation of alternative polyadenylation (Lou et al.,
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1998) and (c) Nucleocytoplasmic export of intronless mRNA (Shav-Tal and Zipori, 

2002).

3.5.6.3.2. A ROLE FOR SRp20 IN MEMORY CONSOLIDATION?

As described in chapter III, SRp20 is a CaMKK/? regulated gene in the male 

but not in the female naive hippocampus. Furthermore, baseline expression in the 

WT naive hippocampus is higher in males than in females; In addition, training in 

hippocampus-dependent tasks induces SRp20 transcription in males but not in 

females.

In addition to antisense, other possible approach towards establishing the 

importance of SRp20 in the cellular mechanisms underlying memory consolidation 

would be to inject the hippocampus with oligonucleotides corresponding to SRp20 

binding consensus sequences to titrate the pool of SRp20 protein in the cell. Possible 

limitations of these approaches would be compensation by other SR protein family 

members.

The identification of the mRNAs that are regulated by SRp20 for example by 

means of a three hybrid system (Hook et al., 2005) or bioinformatics analysis, would 

be necessary to understand how SRp20 regulation could account for the cellular 

mechanisms underlying memory consolidation.

3.5.6.3.3. PTB- Splicing Factor associated protein (PSF)

PSF was initially identified in co-purification assays with the polypyrimidine 

tract binding protein PTB (Patton et al., 1993). Structurally, it comprises RNA 

recognition motifs and DNA binding domains. Apart from a well described function in 

splicing regulation both in association and independently of PTB (Will and Luhrmann,
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1997), a number of other functions have been assigned to PSF: (a) nuclear retention 

of mis-edited mRNA through interaction with nuclear scaffolding proteins (Shav-Tal 

and Zipori, 2002); (b)Transcriptional repression of progesterone receptor and insulin 

growth factor mediated transcription (Urban and Bodenburg, 2002; Mathur et al.,

2001); (c) Nuclear anchoring protein of the.yisoform of protein kinase C which is 

usually cytoplasmic (Rosenberger et al., 2002); (d) DNA repair, by rejoining of DNA 

strand breaks (Bladen et al., 2005).

PSF expression is developmentally regulated being higher in post-mitotic 

differentiating neurons both in the last postgestational and early postnatal weeks. In 

adulthood PSF expression is restricted to areas maintaining a high level of synaptic 

plasticity like the hippocampus and the olfactory bulb (Chanas-Sacre et al., 1999).

Insights into the potential importance of this protein in the brain come from the 

observation that fetuses with Down syndrome have much lower levels of PSF in the 

brain than do healthy controls, accompanied by a downregulation of important 

components of the basal transcriptional machinery (Freidl et al., 2001).

3.5.6.3.4. A ROLE FOR PSF IN MEMORY CONSOLIDATION?

PSF mRNA levels are higher in CaMKK£ null mutant animals, and in WT 

animals trained in the MWM and contextual fear conditioning tasks. The observed 

upregulation of PSF after training in the MWM and its higher levels of expression in 

CaMKK/? null mutant naive mice, which were initially described as being impaired in 

MWM performance, raise two alternative hypotheses: (a) PSF upregulation in naive 

CaMKK/? null mutants is a compensatory mechanism triggered in response to lack of 

CaMKK# (b) CaMKK/? signalling represses PSF transcription in WT mice. In 

addition, if PSF does indeed play a role in memory consolidation, it is possible that
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higher basal PSF expression in CaMKK/? null mutant males account for normal 

spatial memory in some of the cohorts tested, such as the ones described in this 

thesis.

Functional studies both in WT and CaMKK/? null mutants, such as the ones 

suggested for SRp20 would be essential to elucidate this hypothesis. In addition, 

identification of the pre-mRNA targets of PSF and of the target genes upon whose 

expression PSF exerts a repressor activity could provide deeper insights into the 

patterns of gene regulation elicited by behavioural training. For example, it is possible 

that some of these target genes encode products with an inhibitory function in 

memory consolidation. Therefore, transcriptional repression of these genes would 

represent a way of reducing inhibitory constraints in memory storage (Chen et al., 

2003; Abel etal., 1998).
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4.1. INTRODUCTION

Peters and colleagues (2003) demonstrated the contribution of CaMKK£ to 

memory consolidation in some hippocampus-dependent tasks (STFP and spatial 

version of the MWM) in male mice. Furthermore, CaMKK/? null mutant male mice 

failed to activate the transcription factor CREB after spatial training and exhibited 

impairments in the transcription dependent phase of LTP. These results 

demonstrate the importance of the transcriptional events mediated by CaMKK/? in 

synaptic plasticity and in the formation spatial memories. Importantly, deletion of 

CaMKK/? did not produce any of these effects in females (Mizuno et al., 2006), 

suggesting a male-specific requirement of this kinase for the processes described 

above.

The previous chapter reports the identification of four CaMKK/? regulated 

genes encoding a GPI-anchor transamidase (Gaa1), an E3-ubiquitin ligase 

(Arihl) and two multifunctional nuclear proteins (SRp20 and PSF). Different 

levels of expression of these genes were initially detected in a microarray 

analysis of hippocampal tissue of male WT and CaMKK/? null mutant mice after 

training in the MWM. Confirmatory studies using an independent technique 

(QPCR) revealed that levels of expression of three of these genes (SRp20, PSF 

and Arihl) differed between genotypes in the naive hippocampus, while for a 

fourth gene (Gaa1) this difference arised from a spatial training induced 

upregulation occurring only in WT animals.

A number of studies have established correlations between behavioural 

training and transcriptional regulation of target genes, some of which specifically 

induced after training in hippocampus-dependent tasks (von Hertzen and Giese,
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2005; Levenson et al., 2004a; Leil et al., 2003; Cavallaro et al., 2002; Leil et al., 

2002; Ressler et al., 2002; Hall et al., 2000). Functional studies in rats (Lee et 

al., 2004; Guzowski et al., 2000) and insights from mutant mouse studies (e.g. 

Giese et al., 2001; Tsien et al., 1996; Bourtchuladze et al., 1994) have revealed 

the direct contribution of some of these genes to memory consolidation. The 

work described in the present chapter investigated the transcriptional profile of 

the four CaMKK# regulated genes after training in two hippocampus-dependent 

tasks: the MWM and contextual fear conditioning.

As described in the previous chapter, a between-genotype comparison of 

levels of gene expression in the female naive hippocampus, revealed a sex- 

specific requirement of CaMKK/?. In the present chapter, the characterization of 

the pattern of gene expression in the naive hippocampus was further pursued: 

First, levels of expression were compared between the sexes in adult mice, 

revealing sex specific levels of expression; Second, in order to determine 

whether this sex-specificity is determined before or after the onset of the pubertal 

hormone surge, levels of expression were compared between adult and pre

pubertal mice; Third, in situ hybridizations were used to characterize the pattern 

of mRNA expression within hippocampal subfields, CA1, CA3 and DG, and to 

compare it between the sexes. In addition, whether the training induced 

upregulation detected in males was also triggered in females, was also 

investigated.
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4.2. SEX DIFFERENCES IN GENE EXPRESSION IN THE NAIVE 

HIPPOCAMPUS

The findings reported in chapter III indicate: a requirement of CaMKK/? for 

the basal expression of Arihl, PSF and SRp20 in the male hippocampus; a sex- 

specific requirement of CaMKK/? for Arihl basal expression; and the requirement 

of CaMKK£ for the MWM spatial training induced upregulation of the gene Gaa1 

in the male hippocampus. Based on these findings, the baseline levels of 

expression of the target genes were compared between naive adult male and 

female WT mice (Fig. 4.1). Hippocampal tissue from eight WT males and seven 

WT females was used for the quantitative real-time PCR assay. As explained in 

chapter II, individual levels of expression that deviated from the Mean by more 

than two standard deviations were excluded from the analysis. The number of 

animals used for the gene expression analysis is indicated below each bar.

Levels of gene expression of Arihl, Gaa1, PSF and SRp20 differed 

significantly between the sexes in the hippocampus of naive adult male mice and 

naive randomly cycling adult female mice. Levels of expression of Arihl were 

higher in females than in males [Fig. 4.1 A, male: 100.0 ± 16%, female: 143.9 ± 

8.8%, F(1,11)=5.99, p<0.05, one-way ANOVA with genotype as variable]. For 

the remaining genes the opposite pattern, higher levels of expression in males 

than in females, was found [Fig. 4.1B, Gaa1, male: 100.0 ± 5.8%, female: 70.3 ± 

2.6%, F(1,13)=21.33, p<0.001; Fig. 4.1 C, PSF, male: 100 ± 11%, female: 60 ± 

14 %, F(1,11 )=16.08, p<0.001; Fig. 4.1D, SRP20, male: 100.0 ± 7.6%, female: 

78.9 ± 3.7%, F(1,13)=5.93, p<0.05, one-way ANOVA with genotype as variable].
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Figure 4.1- Sex differences in levels of gene expression in the naive hippocampus.
(A) Transcriptional levels of expression of Arihl were higher in female than male mice. 
(B, C, D) Hippocampal transcriptional levels of Gaa1, PSF and SRp20 were higher in 
males than in females. (MEAN ± SEM; *p<0.05; ***p<0.001; % mRNA levels relative to 
WT males).

4.3. HIPPOCAMPAL SUBFIELD LOCALIZATION OF SEX DIFFERENCES IN 

GENE EXPRESSION

The previous section described sex differences in the levels of gene 

expression of four candidate genes in whole hippocampal tissue. The 

hippocampus is constituted by a set of subfields characterized by distinct 

morphology, connectivity and electrophysiological properties (Amaral and Witter, 

1995). These hippocampal subfields are also molecularly distinct, as a number 

of studies report restricted or enriched expression of particular genes in discrete 

hippocampal subfields (Datson et al., 2004; Lein et al., 2004; Zhao et al., 2001). 

Characterization of the pattern of expression and relative quantification of mRNA 

levels of the candidate genes within hippocampal subfields in male and female
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mice was performed by in situ hybridizations of coronal brain sections covering 

the central part of the hippocampus (bregma -1.46 mm to -2.46 mm, according to 

Paxinos and Franklin, 2002). This approach allowed also a comparison of levels 

of gene expression between the sexes in the three principal hippocampal 

subfields: CA1, CA3 and DG.

Two alternative methods were used to quantify levels of gene expression: 

densitometry and number of counts above threshold density, as described in 

chapter II. As explained in the methods section, these measurements were 

averaged for the number of sections within each group and subfields considered. 

The results were not analysed statistically, as the number of animals in each 

group was very small. For most of the comparisons performed there were no 

obvious differences in levels of gene expression between the conditions 

compared, contrarily to what was previously determined by QPCR. Technical 

and biological factors may contribute to these discrepancies. Possible technical 

causes include: (a) the small number of animals used in each in situ analysis (2-3 

animals per condition), as opposed to an average of six per group in the QPCR 

analysis and (b) variations in overall densities between different slides arising 

from different hybridization efficiencies and contributing to a high within-group 

variation. Possible biological causes include intra-group variability in hippocampal 

mRNA levels of the target genes. In addition, a recent report describes 

heterogeneity in expression of a number of target genes along the dorsal-ventral 

axis of the hippocampus (Leonardo et al., 2005). If this is the case for Arihl, 

measurements of mRNA expression in coronal sections spanning a relatively 

broad longitudinal area may have eclipsed true differences restricted to discrete 

areas.
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4.3.1. Arihl

Arihl mRNA is expressed at similar levels in both sexes in all the 

hippocampal subfields considered (Fig. 4.2A). Neither of the measurements 

detected obvious sex differences in levels of gene expression in the distinct 

hippocampal subfields considered (Fig. 4.2A-D).

4.3.2. Gaa1

Densitometric analysis of Gaa1 mRNA expression revealed no differences 

in regional distribution and no overall sex differences between hippocampal 

subfields (Fig. 4.3A). The number of counts above threshold measurement 

suggested lower levels of Gaa1 mRNA in females in the CA1 (Fig. 4.3B) and DG 

(Fig. 4.3D) subfields.

4.3.3. PSF

Densitometric analysis of anatomical distribution of PSF mRNA revealed 

no apparent sex differences in expression in either of the hippocampal subfields 

compared. There were apparently higher levels of PSF mRNA in the DG 

compared to CA1 or CA3 in both sexes. Number of counts above threshold 

pointed to slightly lower levels of expression of PSF in females in all three 

hippocampal subfields considered (Fig. 4.4B-D).

4.3.4. SRP20

Analysis of the anatomical distribution of SRp20 mRNA revealed slightly 

higher levels of expression in the DG compared to areas CA1 and CA3 in both 

sexes (Fig. 4.5A). No apparent sex differences in densities were detected in any 

of the subfields considered. The number of counts above suggested sex 

differences in the expression of SRp20 in the naive hippocampus particularly in 

areas CA1(Fig. 4.5B) and CA3 (Fig. 4.5C) but not in the DG (Fig. 4.5D).
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Figure 4.2- Expression of Arihl mRNA in the hippocampus of naive male and 
female mice. (A) Density levels of expression did not differ between the sexes in either 
of the hippocampal subfields considered; Number of counts above threshold density did 
not differ between the sexes for (B) CA1, (C) CA3 or (D) DG hippocampal subfields. (E) 
Representative in situ hybridizations of coronal brain sections of male and female naive 
mice (males n=3 ; females, n=2; 8 sections/group).
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Figure 4.3- Expression of Gaa1 mRNA in the hippocampus of naive male and 
female mice. (A) Density levels of expression did not differ between the sexes in either 
of the hippocampal subfields considered; Number of counts above threshold density was 
significantly higher in males in (B) CA1 but not in (C) CA3 or (D) DG hippocampal 
subfields. (E) Representative in situ hybridizations of coronal brain sections of male and 
female naive mice (males n=3 ; females, n=2; 10 sections/group).
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mice. (A) Density levels of expression did not differ between the sexes in either of the 
hippocampal subfields considered; Number of counts above threshold density was 
significantly higher in males in subfield (B) CA1 and (C) CA3 but not in the (D) DG. (E) 
Representative in situ hybridizations of coronal brain sections of male and female naive 
mice (males n=3 ; females, n=2; 10 sections/group).
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Figure 4.5- Expression of Srp20 mRNA in the hippocampus of naive male and 
female mice. (A) Density levels of expression differed significantly between the sexes in 
all hippocampal subfields. Number of counts above threshold revealed significantly 
higher density in males in subfield (B) CA1 a trend towards higher expression in males in 
subfield (C) CA3 and no difference in the (D) DG. (E) Representative in situ 
hybridizations of coronal brain sections of male and female naive mice (males n=3/12 
sections; females, n=3/10 sections).
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4.4. AGE-RELATED EFFECTS ON SEX DIFFERENCES IN GENE 

EXPRESSION

The establishment of a sex-specific pattern of expression of these genes in 

the adult naive hippocampus raised the question whether these differences are 

determined by biological or environmental factors. Potential biological factors 

accounting for sex differences in gene expression include the complement of sex 

chromosomes, the perinatal organizational effects of hormones, and the 

activational effects of gonadal hormones after puberty (Becker et al., 2005; 

Arnold et al., 2004).

After birth, and until the age of weaning, male and female littermates are 

caged together, while after weaning at postnatal day 21 (P21), animals are caged 

with only same sex littermates. Differences in maternal care depending on the 

sex of the offspring have been described (Alieva et al., 1989) and so has the 

influence of maternal care in patterns of gene expression (Meaney and Szyf, 

2005; Meaney, 2001). In addition, after weaning, males and females only interact 

with same sex littermates and are exposed to different pheromone environments, 

which are also known to influence gene expression (e.g. Gore et al., 2000)

To address whether the transcriptional differences described (Fig. 4.1) 

arose before or after puberty, hippocampal mRNA levels of the candidate genes 

were compared between 2-3 month old animals (adult) and animals at P21, 

before the onset of puberty (Fig. 4.6).
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4.4.1. Arihl

Levels of Arihl mRNA expression are affected by sex and age [Fig. 4.6A, 

effect of sex: F(1,1)=1.63; p=0.32; effect of age: F(2,20)=29.52> p<0.001; sex x 

age interaction: F(2,20)=26.32, p<0.001, two-way ANOVA with sex and age as 

variables]. Student-Newman-Keuls post-hoc analysis revealed significantly 

higher levels of gene expression in pre-pubertal males when compared to pre

pubertal females (p<0.001). The direction of this difference is reversed in adult 

animals, as males express significantly lower levels of the transcript than 

females. A possible cause for this effect is pubertal secretion of gonadal 

hormones in females, as levels of expression are significantly higher in adult than 

in P21 females, (p<0.001), but do not differ with age in males (p=0.83).

4.4.2. Gaa1

Levels of expression of Gaa1 are significantly influenced by sex but not by 

age [Fig. 4.6B, effect of sex: F(1,1)=7.25; p<0.05; effect of age: F(2,20)=3.21, 

p=0.089; sex x age interaction: F(2,20)=0.017, p=0.90, two-way ANOVA with sex 

and region as variables]. Student-Newman-Keuls post-hoc analysis confirmed 

the sex difference in adults previously described (Fig. 4.1). Furthermore, a trend 

towards higher levels of gene expression in males was detected in P21 animals. 

Increasing the number of animals in the P21 group would be necessary to 

confirm whether the sex difference in SRp20 expression is indeed present before 

puberty. No age effect was detected in either sex (males: p=0.26; females:

p=0.80).
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4.4.3. PSF

Levels of expression of PSF are significantly influenced by age [Fig. 4.6C, 

effect of sex: F(1,1)=0.84; p=0.37; effect of age: F(2,20)=24.28, p<0.001; sex x 

age interaction: F(2,20)=2.92, p=0.10, two-way ANOVA with sex and age as 

variables]. Sex differences in levels of expression of PSF only arise in adulthood 

(P21 males vs females: p=0.60, Student-Newman-Keuls post-hoc test). 

Furthermore, levels of expression are reduced with age in both sexes (males: 

p<0.05; females: p<0.001).

4.4.4. SRp20

Sex differences in expression of SRp20 are detectable before the onset of 

puberty with females expressing lower levels of the transcript [Fig. 4.6D, effect of 

sex: F(1,1)=7.75; p<0.05; effect of age: F(2,20)=2.65, p=0.12; sex x age 

interaction: F(2,20)=0.53, p=0.48, two-way ANOVA with sex and age as 

variables; Student-Newman-Keuls post-hoc analysis: P21 males vs P21 females: 

p<0.05; P21 vs adult males: p=0.12; P21 vs adult females, p=0.52].

In summary, the results described in this section indicate that sex 

differences in Arihl and SRp20 expression levels can be detected before the 

onset of puberty. A trend for sex differences in Gaa1 expression was detected in 

P21 animals, but an increased number of animals would be necessary to draw 

conclusions on age effects in the regulation of this gene. Sex differences in PSF 

expression only arise after puberty.
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Figure 4.6- Comparison of hippocampal levels of expression of the candidate 
genes between pre-pubertal (P21) and adult mice. (A) Arihl mRNA levels differed 
between the sexes before the onset of puberty, and between P21 and adults in females 
only; (B) A trend towards a sex difference in Gaa1 mRNA was detected before the onset 
of puberty; (C) PSF mRNA levels did not differ between the sexes in pre-pubertal, and 
were lower in adults of both sexes; (D) Sex differences in SRp20 mRNA levels were 
detected before the onset of puberty (Mean ± SEM; *p<0.05; ***p<0.001; % mRNA levels 
relative to WT adult males).
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4.5. TRAINING INDUCED CHANGES IN GENE EXPRESSION -  MORRIS 

WATER MAZE

4.5.1. TRAINING OF MALE AND FEMALE MICE IN THE MORRIS WATER 

MAZE

Adult WT male (n=11) and female (n=11) littermates were trained in the 

hidden platform version of the MWM in a 4 trials per day protocol, and tested in a 

probe trial at the end of the sixth day of training. There was a significant effect of 

training in decreased latency time to find the platform and a significant sex x 

training interaction [Fig. 4.7A, effect of sex: F(1,20)=2.579, p=0.12; effect of 

training: F(5,100)=38.68 p<0.001; sex x training interaction: F(5,100)=2.85, 

p<0.05, two-way repeated measures ANOVA]. Student-Newman-Keuls post-hoc 

analysis revealed a significantly higher escape latency in the female group on the 

third day of training (p<0.01).

During probe trials there was no difference in average swim speed [Fig. 

4.7B, males: 26.3 ± 1 . 7  cm/s; females: 28.2 ± 1 . 7  cm/s; F(1,20)=0.63; p=0.44, 

one-way ANOVA with sex as variable]. A trend towards higher percentage of 

time spent in the thigmotaxis zone was detected in the female group [Fig. 4.7C, 

males 8.8 ± 2.0 %; females: 19.1 ± 5.0 %; F(1,20)=3.75; p=0.060, one-way 

ANOVA with sex as variable]. The percentage of time spent swimming at a 

speed lower than 5cm/s, considered as floating, was similar between the sexes 

[Fig. 4.7D, males: 14.4 ± 1.8%; females: 16.2 ± 2.4%; F(1,20)=0.36; p=0.55; one

way ANOVA with sex as variable).
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A probe trial at the end of the sixth day of training revealed the same 

degree of selectivity in males and females. One-way ANOVA with pool quadrant 

as variable revealed a global preference for the previous platform location within 

each sex group, measured by percentage of time spent in the quadrant [Fig. 

4.8A, males: F(3,40)=4.82, p<0.01, post-hoc Student-Newman-Keuls

comparisons: TQ vs AL and TQ vs OP: p<0.01; TQ vs AR: p<0.05; females:

F(3,40)=4.32; p<0.01, post-hoc Student-Newman-Keuls comparisons: TQ vs AR: 

p<0.01; TQ vs AL and TQ vs OP: p<0.10], number of platform crossings [Fig. 

4.8B, males: F(3,40)=4.55; p<0.01; post-hoc Student-Newman-Keuls

comparisons: TQ vs OP: p<0.01; TQ vs AR: p<0.05; females: F(3,40)=3.56;

p<0.05, post-hoc Student-Newman-Keuls comparisons: TQ vs AR and TQ vs OP, 

p<0.05: TQ vs AL, p<0.10] or cumulative proximity to platform in TQ [Fig. 4.8C, 

males: F(3,40)=5.23; p<0.01, post-hoc Student-Newman-Keuls: TQ vs OP: 

p<0.01; TQ vs AR and TQ vs AL: p<0.05; females: F(3,40)=2.81; p=0.05, post- 

hoc Student-Newman-Keuls: TQ vs AR: p<0.05; TQ vs OP: p=0.10]. 

Furthermore, one-way ANOVA with sex as variable revealed similar percentages 

of time spent in TQ [Fig. 4.8A, males: 34.8 ± 4.0%, females: 32.6 ± 3.4%; 

F(1,20)=0.17; p=0.69], number of platform crossings [Fig. 4.8B, males: 5.2 ± 1.0, 

females: 4.8 ± 0.9; F(1,20)=0.071; p=0.79) and cumulative proximity to platform 

[Fig. 4.8C, males: 46.4 ± 3.0m, females: 54.8 ± 3.5m; F(1,20)=3.32; p=0.083].
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Figure 4.7- Acquisition and swimming abilities of male and female WT mice trained 
in the Morris Water Maze.
(A) Both sexes decreased their latency times to find the platform with the number of 

training trials; (B) During the probe trial, swim speeds did not differ between genotypes; 
(C) A trend towards a higher percentage of time swimming in the thigmotaxis area was 
detected for the female group. (D) The percentage of time spent floating did not differ 
between the sexes. (Mean ± SEM, *p<0.05)
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Figure 4.8- Probe trial performance of male and female WT mice trained in the 
Morris Water Maze. (A) Males and females spent a significantly higher percentage of 
their search time in TQ, and this selectivity did not differ between the sexes; (B) Both 
sexes crossed the platform position in TQ more often than any other quadrant, and 
number of platform crossings in TQ did not differ between the sexes; (C) Cumulative 
distance to platform position in TQ did not differ between the sexes, but, in the female 
group, cumulative distance to TQ was only different from cumulative distance to AR. 
(Mean ± SEM, *p<0.05, **p<0.01, TQ- target quadrant; AR- adjacent right; AL- adjacent 
left; OP- opposite)
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Figure 4.8 (cont)- Probe trial performance of male and female WT mice trained in 
the Morris Water Maze. Percentage of time spent in quadrant for selective (D) and non 
selective (E) animals (Mean ± SEM, ***p<0.001; TQ- target quadrant; AR- adjacent right; 
AL- adjacent left; OP- opposite).

4.5.2. EXPERIMENTAL GROUPS

Preliminary data pointed to an upregulation of mRNA levels of Gaa1 (Fig. 

3.12), Srp20 and PSF (data not shown) after spatial training in the MWM in a four 

trials per day training protocol, followed by a probe trial at the end of the sixth day
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of training. In order to address whether these transcriptional changes were 

specifically elicited by learning of the platform location or by other factors such as 

handling or motor activity, four experimental groups were used in the gene 

expression analysis: (a) Naive: Animals were sacrificed directly from their home 

cages; Animals trained in the hidden platform version of the MWM with a 4 trials 

per day protocol for 6 days and tested in a probe trial at the end of the sixth day 

of training. According to the percentage of time spent in the TQ during the probe 

trial animals were divided in a subgroup of (b) selective animals (that spent 

significantly more time in TQ than in any other quadrant; Fig. 4.8D) and (c) non- 

selective animals (that did not display preference towards TQ; Fig. 4.8E). An 

additional group: (d) swim control group swam in the pool without a platform, for 

an equal number of sessions and trials and for the same period of time as the 

average duration of a training trial on the respective day of training.

4.5.3. REGULATION OF HIPPOCAMPAL GENE EXPRESSION AFTER 

TRAINING IN THE MWM IN MALE MICE

Arihl expression was not regulated after MWM training under the current 

training conditions [Fig. 4.9A; naive: 100 ± 16%; selective: 130 ± 19%; 

F(1,10)=1,67; p=0.22, one-way ANOVA with training as variable].

In contrast, levels of expression of the remaining genes differed 

significantly between the naive and selective groups. Therefore, a transcriptional 

analysis was performed in two additional experimental groups: animals trained in 

the MWM that failed to display selectivity towards TQ in the probe trial (non 

selective animals), and swim control groups (Fig. 4.9 B, C, D).

188



Chapter IV: Results II

For Gaa1, a significant difference in the levels of expression between the 

groups was found [Fig. 4.9B, naive: 100.0% ± 5.9%, swim controls: 113± 13 %, 

non selective: 141 ±11 %; selective: 149 ± 12 %; F(3,22)=5.06; p<0.01 one-way 

ANOVA with training as variable]. Student-Newman-Keuls post-hoc comparisons 

revealed a significant difference between naive vs selective and naive vs non 

selective animals (p<0.05), a trend towards significance between selective and 

non selective animals when compared to swim controls (p<0.10), and no 

significant difference between the groups that had been trained in the MWM. 

These findings suggest that swimming and exposure to the room are not 

sufficient to trigger Gaa1 upregulation.

PSF mRNA levels were significantly different between the four groups [Fig. 

4.9C, naive: 100.0% ± 4.1%; swim controls 144.2 ± 9.2%; non selective, 161.4 ± 

8.1%; selective 139 ± 15 %; F(3,23)=9.48; p<0.001, one-way ANOVA with 

training as variable]. Training in the absence of a platform was sufficient to 

trigger PSF upregulation as levels of expression differed significantly between 

naive and all the remaining groups (naive vs non selective and naive vs swim 

controls p<0.001; naive vs selective p<0.05, post-hoc Student-Newman-Keuls 

comparisons), but not between swim controls and animals trained in the MWM 

(p>0.05).

Levels of expression of SRp20 differed significantly between the groups 

(Fig. 4.9D, naive 100 ± 1 0  %; swim controls 130.5 ± 7.1%; non selective, 152 ± 

16 %; selective 177.0 ± 11%; F(3,20)=9.47; p<0.001, one-way ANOVA with 

training as variable). Post-hoc Student-Newman-Keuls analysis revealed 

significant differences between naive and all the remaining groups (p<0.001 vs 

selective group; p<0.01 vs non selective and p<0.05 vs swim controls), and
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higher levels in selective animals than in swim controls (p<0.05). This suggests 

that the conditions to which the swim controls were exposed can only partially 

account for the upregulation of SRp20 in the selective animals.
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Figure 4.9- Comparison of hippocampal levels of gene expression between male 
naive and MWM trained mice. (A) Arihl mRNA levels did not differ significantly 
between naive and selective animals; (B) Gaa1 mRNA levels did not differ between 
naive and swim controls, but differed between naive and trained animals; (C, D) PSF 
and SRp20 mRNA levels differed between naive and all the remaining groups. (Mean ± 
SEM, *p<0.05, **p<0.01, ***p<0.001, % mRNA levels relative to naive).

4.5.4. REGULATION OF HIPPOCAMPAL GENE EXPRESSION AFTER 

TRAINING IN THE MWM IN FEMALE MICE

The genes shown to be regulated after MWM training in male mice (Fig. 

4.9), display sex-specific levels of expression in the naive hippocampus (Fig. 4.1)
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and a requirement of CaMKK# for basal expression in males but not females 

(Figs. 3.5 and 3.6). In order to determine whether behavioural training-induced 

expression of these genes was sexually dimorphic, levels of expression were 

compared between naive and trained females, following the same experimental 

design described for males.

Analysis of Arihl levels of expression revealed no difference between 

naive and selective animals [Fig. 4.1 OA, naive: 100 ± 13 %, selective: 112.0 ± 

9.0%, F(1,11)=0.81; p=0.39, one way ANOVA with training condition as variable]. 

Because there were no differences in levels of Arihl expression between naive 

and selective females, the quantification of gene expression for the swim control 

and non selective groups was not performed.

Analysis of Gaa1 levels of gene expression after MWM training and in 

swim controls did not reveal significant differences between naive and trained 

groups [Fig. 4.1 OB, naive: 100.0% ± 3.8%; swim controls 98 ± 10 %; non 

selective: 116 ± 1 2  %; selective: 96.0 ± 5.5%; F(3,23)=1.16, p=0.35, one-way 

ANOVA with training condition as variable]. SRp20 had a similar pattern of 

expression [Fig. 4.10D, naive: 100.0% ± 4.1%; swim controls: 98.6 ± 6.6%; non 

selective: 115.6 ± 9.4%; selective: 106.4 ± 2.9; F(3,22)=1.58; p=0.22, one-way 

ANOVA with training condition as variable]. Training in the MWM induced 

upregulation of expression of PSF in females [Fig. 4.10C, naive: 100.0% ± 9.5%; 

swim controls: 125.8 ± 9.4%; selective: 145 ± 11 %; F(2,17)=7.20; p<0.01, one

way ANOVA with training condition as variable]. Student-Newman-Keuls post- 

hoc analysis revealed a significant difference in PSF mRNA levels between the 

naive and swim control groups (p<0.05) and naive and selective animals 

(p<0.01), but not between swim controls and selective animals (p=0.16).
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Figure 4.10- Comparison of hippocampal levels of gene expression between naive 
and trained female mice (MWM). (A) Arihl mRNA levels did not differ significantly 
between naive and selective animals; (B) Gaa1 mRNA levels did not differ between the 
four groups; (C) PSF mRNA levels differed between naive and the remaining groups; (D) 
SRp20 mRNA levels did not differ between the four groups. (MeaniSEM, *p<0.05, 
**p<0.01; % mRNA levels relative to naive).
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4.6. TRAINING INDUCED CHANGES IN GENE EXPRESSION- CONTEXTUAL 

FEAR CONDITIONING

4.6.1. EXPERIMENTAL GROUPS

Animals were trained in the background contextual fear conditioning 

paradigm, whereby shock presentation is paired with an auditory cue (Phillips 

and LeDoux, 1994). In order to investigate transcriptional changes elicited by 

training in the contextual fear conditioning paradigm the following groups of mice 

were used (Fig. 4.11): (a) Naive; (b) Fear conditioned (FC), exposed to the 

training context for 120 s, followed by a 30 s tone presentation that co-terminated 

with a 2 s footshock, removed from the context 30s after the shock and returned 

to their home cages; (c) Box, submitted to the same procedure as the FC groups 

except for the shock presentation; (d) Exposed to the training context overnight 

(ON exp) and presented with the tone and shock; (e) Latent inhibition (LI) 

exposed to the training context overnight and presented with the shock without 

the tone.

For the expression studies, mice were sacrificed 30 min after the end of 

the tone, and the naive group was sacrificed at the same time. Experimental 

control groups were tested 24 hours after conditioning.
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Figure 4.11- Experimental groups for the contextual fear conditioning task.
FC- trained in a background contextual fear conditioning paradigm; Box- Exposed to the 
tone and context in the absence of the shock; ON exp- Exposed overnight to the context 
followed by tone and shock; LI- latent inhibition, Exposed overnight to the context 
followed by the shock in the absence of the tone.

4.6.2. BEHAVIOURAL TESTING OF THE EXPERIMENTAL GROUPS

The transcriptional profiles of the candidate genes were investigated in a 

range of experimental groups. Control groups were used in order to investigate 

whether the transcriptional changes detected after contextual fear conditioning 

were specifically caused by association of the foot shock with the context or the 

result of non specific factors. Animals trained in the contextual fear conditioning 

paradigm exhibited significant freezing responses when tested 24 h after 

conditioning. In contrast, exposure to the context and tone in the absence of foot 

shock (Box) did not evoke a freezing response [Fig. 4.12.A, Box: 3.8 ± 2.2%; FC: 

47.8 ± 7.5%; F(1,5)=42.30; p<0.01, one-way ANOVA with training as variable].

A prolonged exposure to the context followed by tone and shock 

presentation elicited significantly lower freezing when compared to the contextual 

fear conditioning paradigm [Fig. 4.12.B, ON exp: 27.1 ± 5.6%; FC: 62 ± 13 %;
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F(1,5)=7.54; p=0.040, one-way ANOVA with training as variable]. However, 

prolonged exposure to the context followed by shock presentation in the absence 

of the tone (LI) was more effective in blocking the conditioned response [Fig. 

4.12.C, LI: 7.5 ±4.8%; FC: 89.4 ±8.9%; F(1,5)=76.27; p<0.001, one-way ANOVA 

with training as variable], indicating that, in this group, the animals failed to form 

the context-shock association. Because the LI group failed to form the context- 

shock association and was subject to the same degree of electrical stimulation as 

the FC group, this group was suitable for the study of shock induced 

transcriptional changes.

Figure 4.12- Freezing scores of the control groups for the fear conditioning task.
(A) Animals exposed to the context and tone for 3 minutes failed to display a freezing 
response (B) Animals exposed to the context overnight followed by tone and shock 
displayed some degree of freezing, albeit less than the group tested in the contextual 
fear conditioning paradigm; (C) Animals exposed to the context overnight followed by the 
shock without the tone failed to display a freezing response. (Mean±SEM, *p<0.05,
**p<0.01, ***p<0.001).
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4.6.3. REGULATION OF HIPPOCAMPAL GENE EXPRESSION AFTER 

CONTEXTUAL FEAR CONDITIONING IN MALE MICE

Analysis of Arihl mRNA levels after fear conditioning revealed an increase 

relative to the naive group (Fig 4.13A, naive: 100 ± 14 %; FC: 132 ± 10 %). 

However, presumably because of the high within group variability in Arihl mRNA 

levels, this difference did not reach significance [F(1,11)=3,70; p=0.08, one-way 

ANOVA with training as variable], and characterization of the transcriptional 

profile of this gene was pursued no further.

A pilot experiment (data not shown) indicated that hippocampal mRNA 

levels of Gaa1, PSF and SRp20 were significantly higher in FC animals 

compared to naive controls. The transcriptional profiles of these genes were 

studied in the control groups. This allowed investigating whether the up regulation 

was specifically related to the formation of a context-shock association or elicited 

by non specific factors such as handling, exposure to the context and/or tone or 

the electrical stimulation provided by the shock.

Analysis of gene expression levels after training in a fear conditioning 

paradigm revealed a significant effect of training for Gaa1 [Fig. 4.13B, naive: 

101.1% ± 4.5%; box: 99.1 ± 6.2%; LI: 94.3 ± 3.3%; ON exp: 123.4 ± 4.7%; FC: 

120.6 ± 4.6%; F(4,30)=5.97; p<0.01, one-way ANOVA with training as variable]. 

Post-hoc Student-Newman-Keuls comparisons revealed that Gaa1 mRNA levels 

differed significantly between in the following comparisons: naive vs FC

(p<0.01), naive vs ON (p<0.01), box vs FC (p<0.05), box vs ON (p<0.05); LI vs 

FC (p<0.01) and LI vs ON groups (p<0.05) and did not differ between the 

remaining groups. Hence, these results rule out the possibility that Gaa1
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upregulation after contextual fear conditioning was elicited by handling, exposure 

to the context or to the tone.

As shown in Fig. 4.13B, a prolonged exposure to the context followed by 

paired shock-tone presentation, elicited a significantly lower conditioned 

response than training in the contextual fear conditioning paradigm. Gaa1 mRNA 

levels differed significantly between the ON exp and naive and box groups 

(p<0.05 for both comparisons), and not between the ON exp and FC groups 

(p>0.05). Because these animals form some degree of context-shock 

association, albeit less than the animals trained in the contextual fear 

conditioning paradigm, this group is not suitable as a control for transcriptional 

events elicited by the shock alone. In the latent inhibition group, the freezing 

response was blocked suggesting a failure to associate the shock and the 

context. Levels of Gaa1 mRNA after training in the LI paradigm did not differ 

when compared to naive control animals indicating that the shock alone did not 

elicit upregulation of Gaa1 mRNA.

Taken together, these findings suggest that the upregulation of Gaa1 

expression in the hippocampus is the consequence of a context-shock specific 

association formed in the course of background contextual fear conditioning.

PSF gene expression levels differed between experimental groups [Fig. 

4.13C, naive: 102.0 ± 3.7 %; box: 107.7 ± 3.2%; LI: 97.1 ± 6.2%; ON exp: 136.2 ± 

7.9%; FC: 132.0 ± 8.2 %; F(4,32)=8.93; p<0.001; one-way ANOVA with 

genotype as variable]. Post-hoc analysis revealed significant differences in the 

following comparisons: naive vs FC (p<0.01), naive vs ON (p<0.001), box vs FC 

(p<0.05), box vs ON (p<0.01); LI vs FC (p<0.01) and LI vs ON groups (p<0.01).
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Upregulation of PSF expression was not elicited by the context alone (naive vs 

box: p>0.05), or the shock alone (naive vs LI: p>0.05).

Finally, SRp20 was specifically regulated in the FC and ON exp groups 

that received the tone paired with the shock [Fig. 4.13D, Naive: 97.4 ± 7.2%; Box: 

96 ± 12%; LI: 79.3±7.5%; ON exp: 116.6 ± 6.7%; FC: 132.0 ± 4.8%; 

F(4,31)=6.29; p<0.001, one-way ANOVA with training as variable]. Post hoc 

Student-Newman-Keuls analysis revealed significant differences in the FC vs 

Naive (p<0.01); FC vs Box (p<0.05); FC vs LI (p<0.001); and in the ON exp vs LI 

comparison (p<0.01) but no significant differences between the remaining 

groups.

4.6.4. REGULATION OF HIPPOCAMPAL GENE EXPRESSION AFTER 

CONTEXTUAL FEAR CONDITIONING IN FEMALE MICE

Under the prevailing training conditions, both males and females were able 

to form and consolidate memories for context-shock associations as assessed by 

freezing responses upon re-exposure to the context 24 h after training. In both 

sexes the groups trained in the contextual conditioning paradigm displayed 

significantly higher freezing responses than their respective box controls [Fig. 

4.14, males: Box: 4.0 ± 1.3%; FC: 54.1 ± 6.8%; F(1,13)=60.58, p<0.001; females: 

Box: 1.1 ± 0.1%; FC: 71.7 ± 9.7%; F(1,5)=37.85, p<0.01; one-way ANOVA with 

training condition as variable].

Freezing scores for the contextual fear conditioning paradigm did not differ 

between the sexes [F(1,9)=2.34; p=0.16; one-way ANOVA with sex as variable].
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Figure 4.13- Comparison of hippocampal levels of gene expression between male 
naYve and trained mice (contextual fear conditioning). (A) Arihl mRNA levels did not 
differ significantly between the naive and FC groups; (B) Gaa1 mRNA levels differed 
significantly between the shocked and non-shocked groups (C) PSF mRNA levels 
differed significantly between the shocked and non-shocked groups; (D) SRp20 mRNA 
levels differed significantly between naive and FC groups and between box and FC 
groups (Mean ± SEM, *p<0.05, **p<0.01, relative to FC, #p<0.05, ##p<0.01 relative to 
ON exp; % mRNA levels relative to naive).
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ma es females

Figure 4.14- Comparison of freezing scores between male and female mice in the 
contextual fear conditioning paradigm. Both sexes trained in the contextual fear 
conditioning paradigm froze significantly more than the box control groups. No 
differences in freezing scores were detected between the sexes in the FC groups. (Mean 
± SEM, **p<0.01, ***p<0.001).

Levels of Arihl expression did not differ significantly after training in 

contextual fear conditioning [Fig. 4.15A, naive: 100.0 ± 9.1%; FC: 150.0 ±28.0%, 

F(1,10)=2.88; p=0.12, one-way ANOVA with training as variable]. For Gaa1, no 

significant difference in levels of gene expression was found after fear 

conditioning [Fig. 4.15B, naive: 100.0 ± 3.5%; FC: 93.0 ± 4.6%, F(1,9)=1.54; 

p=0.25, one-way ANOVA with training as variable]. The same was observed for 

SRp20 [Fig. 4.15D, naive: 100.0 ± 12.0 %; FC: 93.7 ± 7.5%, F(1,9)=0.19; p=0.67, 

one-way ANOVA with training as variable]. For PSF, females displayed 

significantly higher levels of expression after fear conditioning [Fig. 4.15C, naive: 

100.0 ± 9.5%; FC: 127.4 ± 9.3%, F(1,9)=6.87; p<0.05, one-way ANOVA with 

training as variable].
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Figure 4.15- Comparison of hippocampal levels of gene expression between 
female naive and trained mice (contextual fear conditioning). mRNA levels of (A) 
Arihl, (B) Gaa1 and (D) SRp20 did not differ significantly between the naTve and 
conditioned groups.(C) An upregulation of PSF expression was observed in the 
conditioned group relative to naive. (Mean±SEM, *p<0.05, %mRNA relative to naive).

4.6.5. SUMMARY

The results described in the previous section point to a sex-specific 

regulation of expression of three genes (Gaa1, PSF and SRp20) in the naive 

hippocampus, with males expressing higher levels than females. In addition, 

training in two hippocampus-dependent tasks: the MWM and contextual fear 

conditioning induced an upregulation of PSF in both sexes. However,
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transcriptional upregulation of Gaa1 and SRp20 after training in these tasks was 

only triggered in males. Table 4.1 summarizes the data.

Table 4.1- Sex and behavioural training specific regulation of Gaa1, PSF 
and SRp20 gene expression in the hippocampus.

Gene Narve
hippocampus

Training in the MWM 
(trained selective animals 

compared to naive animals)

Training in cc 
conditioning | 

comparec

mfextualfear 
trained animals 
to naive)

Males Females Males Females

Gaa1 Male > Female Upregulated Unchanged Upregulated Unchanged

PSF Male > Female Upregulated Upregulated Upregulated Upregulated

SRp20 Male > Female Upregulated Unchanged Upregulated Unchanged

4.7. HIPPOCAMPAL SUBFIELD LOCALIZATION OF CONTEXTUAL FEAR 

CONDITIONING INDUCED TRANSCRIPTIONAL CHANGES

In order to determine whether the upregulation of Gaa1, Srp20 and PSF 

expression could be mapped to discrete hippocampal subfields, in situ 

hybridizations were performed in brain coronal sections of male naive animals 

(n=2) and animals trained in contextual fear conditioning and sacrificed 30 min 

after delivery of the shock (n=2). PSF regulation after training in contextual fear 

conditioning was also investigated in female mice.

4.7.1. Gaa1 EXPRESSION IN THE MALE HIPPOCAMPUS

Gaa1 mRNA levels measured by densitometry or estimated counts above 

threshold did not differ between the naive and FC groups in any of the subfields 

considered (Fig. 4.16A-D).
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4.7.2. PSF EXPRESSION IN THE MALE HIPPOCAMPUS

Densitometric measurements revealed slightly higher levels of PSF mRNA 

density in the group trained in the fear conditioning paradigm (Fig. 4.17A). 

Estimation of the number of counts above threshold suggested higher levels of 

expression in the FC group in subfields CA1 (Fig, 4.17B) and DG (Fig, 4.17D), 

and similar levels in CA3 (Fig. 4.17C).

4.7.3. PSF EXPRESSION IN THE FEMALE HIPPOCAMPUS

No differences in PSF mRNA levels were apparent between the 

hippocampal subfields as assessed by the densitometric measurement (Fig. 

4.18A). The number of counts above threshold density suggested that levels of 

expression are higher in areas CA1 (Fig, 4.18B) and CA3 (Fig, 4.18C) in the 

trained group.

4.7.4. SRp20 EXPRESSION IN THE MALE HIPPOCAMPUS

Densitometric measurements did not reveal differences in SRp20 mRNA 

expression between the naive and FC groups in either hippocampal subfield 

considered (Fig. 4.19A). Estimated counts above threshold suggest higher levels 

of expression in areas all three hippocampal subfields considered (Fig. 4.19B-D).

203



Chapter IV: Results II

30

O ) 25

O 20

> * 15
c
Q )
Q

10

5

Naive FC 
CA1

Naive FC 
CA3

Naive FC 
DG

B- CA1
TDO
- C0)<1)

3 0 0 0

i_
- C
-4—» '
<D
>O

2 0 0 0 -

jQ
<0
( 0

•*-»
c

1 0 0 0 -

o
o

C- CA3 D-DG

Naive

5 0 0

>  3 0 0

100

Naive Naive

Naive 1 Trained 2

✓

Naive 2 Trained 1

Figure 4.16- Expression of Gaa1 mRNA in the hippocampus of naive and trained 
male mice (contextual fear conditioning). (A) Density levels of expression did not 
differ between the conditions in either of the hippocampal subfields considered; Number 
of counts above threshold density did not differ in subfields (B) CA1, (C) CA3 or (D) DG. 
(naive n=3 ; fc n=2; 12 sections/group).
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Figure 4.17- Expression of PSF mRNA in the hippocampus of naive and trained 
male mice (contextual fear conditioning). (A) A trend towards higher density of PSF 
mRNA was detected in subfields CA1 and DG. Number of counts above threshold 
density did not differ in subfields (B) CA1, (C) CA3 or (D) DG. (9 sections/group)
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Figure 4.18- Expression of PSF mRNA in the hippocampus of naive and trained 
female mice (contextual fear conditioning). (A) Density levels of expression did not 
differ between the conditions in either of the hippocampal subfields considered; Number 
of counts above threshold density revealed a trend towards higher levels of expression in 
(B) CA1 but not (C)CA3 or (D) DG. (12 sections/group).
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Figure 4.19- Expression of SRp20 mRNA in the hippocampus of naYve and trained 
male mice (contextual fear conditioning). (A) Density levels of expression do not differ 
between the conditions in either of the hippocampal subfields considered; Number of 
counts above threshold density revealed a trend towards higher levels of expression in 
(B) CA1 and (C) CA3 but not in the (D) DG. (E) Representative in situ hybridizations of 
coronal brain sections of naive and trained mice, (na'ives: 15 sections; FC: 13 sections).
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4.8. DISCUSSION

The results described in this chapter identify molecular markers for sex 

differences in the hippocampus. Four genes were expressed differently between 

males and females in the naive hippocampus (Arihl, Gaa1, SRp20 and PSF). 

Three of the genes were shown to be regulated after training in the MWM for 6 

days and after training in FC in males (Gaa1 and SRP20), but only one of these 

was also regulated in females (PSF; Table 4.1).

A potential role for the gene products identified in memory or plasticity 

processes were be addressed in chapter III. The potential significance of these 

sex differences in the light of hippocampus-dependent L&M will be addressed in 

chapter V.

The following discussion will focus on the sex differences in gene expression 

in the naive hippocampus, and the specificity of the transcriptional events 

described in male mice.

4.8.1. SEX-SPECIFIC PATTERNS OF GENE EXPRESSION IN THE NAIVE 

HIPPOCAMPUS

In agreement with the roles of some dimorphic areas in the maturation of 

sexual and parental behaviours it is not surprising that morphological differences 

in sexually dimorphic nuclei are mirrored at the molecular level by enriched or 

decreased expression of certain genes (Devidze et al., 2005; Coelho et al., 

2005). In addition, a number of other studies have also reported sex-specific
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patterns of gene expression in the naive hippocampus and amygdala (Koshibu 

and Levitt, 2005; Zhang et al., 1999).

The present study provides further evidence for sexually dimorphic gene 

expression in the hippocampus of adult naive mice. QPCR analysis of whole 

hippocampal tissue revealed that levels of Arihl were significantly higher in 

randomly cycling female mice as compared to male mice. For the remaining 

three genes (Gaa1, SRp20 and PSF), the opposite pattern was obtained with 

male expression being significantly higher than female expression.

The subsequent step was to investigate whether sex-differences in levels 

of gene expression were already present before the onset of puberty. For this 

purpose, the transcriptional profiles of the candidate genes were compared 

between P21 mice (before the onset of puberty) and 2-3 month old mice. A 

combination of biological and environmental factors may contribute to changes in 

levels of gene expression between these two ages.

Sex differences in gene expression in young animals can be determined 

before birth by a direct or indirect effect of the sex chromosome complement 

(Dewing et al., 2003), or perinatally by the organizational effects of gonadal 

hormones (Carruth et al., 2002). The onset of puberty in mice occurs between 

post-natal days 28 and 30. Comparison of levels of expression of a number of 

genes across different age groups revealed that sex-specific effects of puberty 

can be transient and restricted to the phase of onset, or remain in adulthood 

(Koshibu and Levitt, 2005).

A number of epigenetic mechanisms modulated by environmental factors 

can also contribute to sex-specific patterns of gene expression. For example, 

maternal behaviour strongly influences the regulation of certain genes in the
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offspring both as infants and during adulthood (Meaney and Szyf, 2005; Meaney,

2001). And some studies report that male and female mouse pups are exposed 

to different patterns of maternal behaviour (Alieva et al., 1989) suggesting that 

sex-differences in gene expression in early life can be a consequence of 

maternal care. After weaning at postnatal day 21, animals are caged only with 

littermates of the same sex and are exposed to different pheromone 

environments, which are also known to influence gene expression (Gore et al., 

2000).

Sex differences in levels of expression of Arihl were present before 

puberty, with males expressing significantly higher levels of the gene. 

Surprisingly, the direction of this sex difference was reversed in adulthood. 

Furthermore, puberty correlated with significant upregulation of Arihl in the 

female but not in the male hippocampus. A possible interpretation of these 

findings is that Arihl expression was regulated by exposure to estrogen. In this 

interpretation: perinatal testosterone secretion and aromatization to estrogen 

contributes to the activation of the molecular pathways engaged in the regulation 

of transcription of Arihl; Because females are not exposed to high levels of 

estrogen in early life, Arihl expression is kept to minimal levels, and the 

pubertal estrogen burst activates expression of this gene.

Sex differences in levels of expression of SRp20 were present before 

puberty and remain in adulthood, suggesting that the pattern of transcriptional 

regulation of this gene resulted from indirect effects from the sex chromosome 

complement, organizational effects of gonadal hormones, or different 

experiences in early life (for example, maternal care).
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A trend towards sex differences in Gaa1 mRNA expression was detected 

in P21 animals. This comparison did not reach statistical significance presumably 

because the number of animals per group was relatively small (4 males, 5 

females). Increasing the number of animals would be necessary to clarify 

whether sex differences in Gaa1 mRNA expression are present before puberty.

A significant age effect was detected for PSF mRNA levels: P21 animals 

expressed higher levels of the transcript in both sexes. A study by (Chanas- 

Sacre et al. (1999) describe an age-dependent regulation of PSF expression 

which is widespread throughout the brain in early life and restricted to the 

olfactory bulb and the hippocampus in adulthood. The present study 

complements these results by reporting an age-dependent decrease in levels of 

PSF expression in the hippocampus.

This finding is consistent with previous reports of high levels of PSF 

expression in brain during early life, and reduced levels of expression in 

adulthood

In this study, all the genes displaying sex specific patterns of gene 

expression are encoded by autosomes [Arihl: chromosome 9; Gaa1: 

chromosome 15; SRp20: chromosome 3; PSF: chromosome 1;

(www.ensembl.org)], which rules out a direct contribution of sex chromosome 

complement for differences in transcriptional level. Distinct transcriptional levels 

of these genes can be justified by epigenetic mechanisms (as mentioned above), 

and/or differences in the regulation of gene expression at the level of transcription 

factors, and the signalling cascades that modulate their activity. This latter 

explanation is supported by the establishment of a sex specific requirement of
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CaMKK# in the regulation of expression of the target genes in the naive 

hippocampus (a topic that will be addressed in Chapter V).

4.8.2. THE SEXES DISPLAYED SIMILAR LEVELS OF PERFORMANCE IN 

THE MWM AND CONTEXTUAL FEAR CONDITONING

Some studies describe sex differences in performance in the MWM. 

Growing evidence suggests that these sex differences arise from a slower rate of 

acquisition in females and tend to be eclipsed by increased training. Causes for 

this lower rate of acquisition can be related to stress factors (which tend to be 

more detrimental to females than to males), but also to the use of alternative 

learning strategies (with females relying predominantly on distal cues; Roof and 

Stein, 1999; Williams and Meek, 1991).

In the MWM experiment described in section 4.5.1., both sexes improved 

their escape latencies with the number of training trials. In addition, during probe 

trials, both groups were, on average, equally selective towards TQ. Only slightly 

higher escape latencies were detected for females at the third day of training, 

suggesting that, probably, a difference in probe trial performance could have 

been detected at this stage. In addition, on average females presented a trend 

towards a higher percentage of time swimming in the thigmotaxis zone during the 

probe trial. Thigmotaxic behaviour is difficult to interpret in the light of learning 

abilities as there is no consensus on whether this is a cause or consequence of 

delayed learning. Swimming close to the rim of the pool can be interpreted as a 

measure of fearfulness towards the open space (Gerlai and Clayton, 1999) and a 

thigmotaxic behaviour could prevent the animals from finding the platform in initial
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stages of learning, which would then prevent or delay learning of the task. In 

contrast, thigmotaxis can also be a consequence of failure to learn the task and a 

choice of the animals towards a safer area of the pool.

A number of studies describe sex differences in contextual memory 

formation assessed by scoring freezing behaviours. These are dependent on 

task parameters such as exposure to shock interval, and conditioning apparatus 

(eg. Wiltgen et al., 2001). In the present conditions, the conditioning protocol 

triggered similar conditioned responses in both sexes (Fig. 4.14).

In summary, for the two hippocampus-dependent tasks used in this study, 

both males and females exhibited robust learning. This was an important factor 

in the experimental design. Training-induced transcriptional changes could not 

be compared between the sexes if these had displayed differences at the 

behavioural level.

4.8.3. SPECIFICITY OF THE TRANSCRIPTIONAL CHANGES ELICITED BY 

TRAINING IN MALE MICE

Activation of transcription upon induction of neural activity has been 

described for a number of genes. Transcriptional events triggered by electrical or 

chemical synapse stimulation such as protocols used for the induction of LTP or 

seizures, can be useful in the understanding of cellular mechanisms underlying 

synaptic plasticity (Ressler et al., 2002; Bottai et al., 2002; French et al., 2001; 

Cole et al., 1989). A number of studies in behaving animals report induction of 

expression of a number of genes in response to behavioural training. Functional 

studies have identified some of these genes as “memory effector genes" due to
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their importance in memory consolidation processes (Lee et al., 2004; Guzowski, 

2002; Guzowski et al., 2001; Hall et al., 2000). The present study investigated the 

regulation of hippocampal expression of Arihl, Gaa1, PSF and SRp20 after 

training in hippocampus-dependent tasks.

4.8.3.1. TRANSCRIPTIONAL CHANGES ELICITED BY SPATIAL TRAINING IN 

THE MORRIS WATER MAZE

The MWM is one of the most commonly used tasks to assess spatial 

memory formation in rodents. In this task, an animal learns to locate a hidden 

escape platform placed in a pool located in a room where several landmarks are 

distributed on the walls. Successful learning of the task is assessed in a probe 

trial. The parameter normally measured is selectivity towards the area where the 

platform was located previously. A preference towards this area is considered to 

indicate a hippocampus-dependent representation of the environment, which the 

animal uses to find an object which can not be perceived by the senses (Morris et 

al., 1982).

Successful acquisition of the MWM task requires learning a series of 

aspects of the task: learning that there is a platform, learning that this is the only 

way to escape the water and learning the platform location (Gerlai, 2001a; Gerlai 

and Clayton, 1999). For this reason, transcriptional changes detected after spatial 

training and successful learning of the task may not be directly associated to 

learning of the platform location alone. In addition to complex cognitive 

demands, other factors intrinsic to the task can modulate gene expression. First, 

a number of studies reported that exposure to novel environments is sufficient to
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trigger transcriptional activation of immediate early genes such as the ones 

encoding the transcription factor zif268 (Hall et al., 2000) and the cytoskeletal 

protein Arc (Guzowski et al., 1999). Second, motor activity elicits gene 

expression (Vaynman et al., 2004); Third, swimming and interaction with the 

human experimenter can also represent a potent stressor (Treit and Fundytus, 

1988).

Different experimental designs have been used to control for the impact of 

the factors mentioned above in gene expression induced by spatial training. 

These are generally termed “swim controls” and include mice that swam in the 

absence of a platform (Leil et al., 2003; Oh et al., 2003; Cavallaro et al., 2002; 

Shors et al., 2000) or in a cued platform version of the task (Leil et al., 2002). In 

the present experiment, swim controls corresponded to animals that swam in the 

absence of a platform, for the same number of trials and for the same amount of 

time per trial as trained animals. Despite being trained in the absence of the 

platform, mice in the swim control group were exposed to the training 

environment and may have formed a spatial representation of it. For this reason, 

these animals can not be purely regarded as controls for physical activity.

A number of studies have established direct correlations between 

transcriptional levels of certain genes in the hippocampus and performance in the 

MWM (Brightwell et al., 2004; Balschun et al., 2003; Matsuyama et al., 1997). In 

order to address whether mRNA levels of any of the candidate genes could be 

related to the levels of performance in the MWM, trained animals were separated 

into “selective” and “non selective” groups according to probe trial performance.

In the current expression studies, mRNA levels of Gaa1 did not differ 

between naive and swim control mice, but differed between these two groups
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and animals that were trained in the MWM, regardless of probe trial performance. 

These findings can have the following interpretations: (a) Animal handling and 

swimming or the stress inflicted by these factors, are not sufficient to regulate 

Gaa1 expression; (b) Gaa1 regulation is not related to the encoding of spatial 

information induced by exposure to the training environment; (c) Gaa1 is 

specifically regulated when animals are trained to find the platform, suggesting 

that the regulation of the gene is related to learning that there is a platform and/or 

where it is located.

Levels of PSF and SRp20 mRNA gene expression were comparable 

between the swim control groups, selective and non selective animals. These 

findings can be interpreted as follows: (a) physical activity and handling of the 

animals are sufficient to trigger PSF and SRp20 upregulation; or alternatively (b) 

PSF and SRp20 participate in the encoding or consolidation of spatial 

information, independently of the need to find a hidden platform.

The fact that training in this set up triggers similar transcriptional events 

independently of the cognitive demands of the task or the degree of selectivity in 

the probe trial does not rule out a potential contribution of these genes to spatial 

memory consolidation. For example, the magnitude of induction of the 

immediate-early gene Arc does not differ between animals trained in a spatial 

and non spatial versions of the MWM (Guzowski et al., 2001), nevertheless 

disruption of Arc protein expression causes impairments in the Morris Water 

Maze task (Guzowski et al., 2000). These results suggest that some 

transcriptional events in the hippocampus can be triggered by exposure to the 

novel environment alone and yet be relevant for the encoding of spatial 

information.
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Because both the swim controls and trained animals were subjected to 

four training trials during the course of six days, it is unlikely that the 

transcriptional events purely related to the initial learning of the task, were 

detected at the end of the sixth training day. In addition, acquisition of the task 

has, at this stage, already reached asymptotic levels. This suggests that the 

memory of the platform position has already been consolidated. In addition, the 

probe trial is thought to elicit memory extinction. For these reasons, it is possible 

that memory reconsolidation or extinction, rather than consolidation is being 

probed at this stage [for example as suggested by Morris et al. (2006)]. Under 

the prevailing conditions, memory consolidation, reconsolidation and extinction 

can not be dissociated at the molecular level. In order to attempt to establish the 

correlation between transcriptional events and memory consolidation, gene 

expression studies in the present report focused on a single trial hippocampus- 

dependent learning task: contextual fear conditioning.

4.8.3.2. TRANSCRIPTIONAL CHANGES ELICITED BY CONTEXTUAL FEAR 

CONDITIONING

In the contextual fear conditioning task, the animal is required to form an 

association between a context and a noxious event, and to display it through 

behaviour upon re-exposure to the context. A number of lesion and 

pharmacological studies established that the hippocampus is engaged in 

mediating context representations (Rudy and Matus-Amat, 2005; Rudy et al., 

2002; Rudy and O'Reilly, 2001; Rudy and O'Reilly, 1999). In addition, a number 

of gene expression and functional studies have provided evidence for an
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engagement of the hippocampus in the consolidation of memories not only for 

context but also for context-shock associations (von Hertzen and Giese, 2005; 

Lee et al., 2004; Ressler et al., 2002).

The transcriptional analysis reported in this chapter provides further 

evidence for the activation of transcription in the hippocampus as a consequence 

of context-shock association. This is because no upregulations in gene 

expression in males and PSF in females after contextual fear conditioning were 

elicited by the context alone or non-specific factors of the training procedure (Fig. 

4.13).

First, exposure of the animals to the context and tone in the absence of 

the noxious event, did not trigger upregulation of either of the genes studied, 

ruling out the possibility that transcription of these genes correlates purely with 

hippocampal representations of the context.

Using an immediate shock freezing paradigm, Frankland et al. (2004) 

provided evidence for a requirement of protein synthesis for the formation of a 

representation of the shock, although the contribution of the hippocampus has 

not been established. In addition, the electrical activity to which the animal is 

exposed can, per se, trigger changes in gene expression. Other studies have 

also used the immediate shock freezing paradigm to control for transcriptional 

events induced by the shock (eg. Atkins et al., 1998). However, in our 

experimental setup, immediate shock does not prevent the formation of context- 

shock associations (as assessed by freezing on a 24h test) and is not a suitable 

control (L.S.J. von Hertzen and K.P. Giese, unpublished). For this reason, an 

alternative control for shock induced transcriptional changes, latent inhibition (LI), 

was used in this study.
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In LI paradigms, animals are exposed to the context for a long period of 

time before receiving the shock. LI learning reflects the ability to ignore stimuli 

that historically predict no significant consequences, therefore preventing the 

association between the novel environment and the noxious stimulus (von 

Hertzen and Giese, 2005; reviewed in Meyer et al., 2005; Levenson et al., 2004b; 

Impey et al., 1998). In the present study, two attempts were made to establish a 

latent inhibition protocol: these groups were termed overnight exposed (ON exp) 

and latent inhibition (LI).

The ON exp group was exposed to the training context overnight, for 

approximately 14 hours. In the morning, the animals received a tone that co

terminated with a foot shock. The group trained under these conditions displayed 

a lower freezing response compared to that elicited by the fear conditioning 

protocol. Nevertheless, the percentage of time spent freezing (30%) was higher 

than that elicited by exposure to the context alone. This finding can be interpreted 

in two alternative ways: (a) A context-shock association was formed to some 

extent in this group; (b) the animals were conditioning to a discrete cue (the 

tone), and the freezing response observed is a response to tone-shock 

association, a phenomenon independent of the hippocampus (reviewed in 

McGaugh, 2004). Higher levels of gene expression in this group when compared 

to naive and box animals can not be solely triggered by the delivery of the shock.

An additional group of animals was trained under the same conditions as 

the ON exp group except for the exposure to the auditory cue (LI group). In this 

case, the freezing response was at the same level as that elicited in the box 

group. These results suggest that exposure to the tone before the shock 

contributed to conditioning to the context presumably by resetting attention and
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increasing awareness to the context (Restivo et al., 2002; Honey and Hall, 1989). 

This LI group represented a suitable control to test for shock-induced genes in 

the hippocampus. None of the genes tested was upregulated by training in LI 

protocol, suggesting that the shock alone does not account for the transcriptional 

events described.

Taken together, the controls used in this study allow to discriminate 

between the molecular events triggered in an association-specific manner and 

those triggered by novelty, tone or shock alone.

4.8.4. TIME POINT OF DETECTION OF CHANGES IN GENE EXPRESSION 

INDUCED BY BEHAVIOURAL TRAINING

In the initial transcriptional screen for MWM regulated genes, described in 

chapter III, the thirty minutes after probe trial time point was chosen. This choice 

was based on the observation that impairments in probe trial performance and 

the establishment of L-LTP in CaMKK0 were correlated with a failure to activate 

CREB immediately after spatial training (Peters et al., 2003). This time point has 

also been used in other MWM transcriptional studies and corresponds to peak 

levels of, for example the protein Arc, which has a functional importance in spatial 

memory consolidation (Guzowski et al., 2001).

The use of protein synthesis and transcription inhibitors has allowed the 

definition of time windows during which consolidation of long-term contextual fear 

memories is susceptible to disruption (Igaz et al., 2002; Bourtchouladze et al., 

1998). These studies have identified two waves of transcription, the first one
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occuring within the first hour and the second between 4-6 hours following 

conditioning.

The thirty minutes after conditioning in a single trial learning task was also 

used for the analysis of contextual fear conditioning regulated genes as CREB 

activation is detected 30 min after training in contextual fear conditioning (Kida et 

alM 2002), and the transcription levels of immediate early genes with well 

established functions in memory consolidation peak at this time point (Ressler et 

al., 2002).

It is important to mention at this stage, that a bioinformatics analysis of the 

regions in the upstream regulatory regions of the candidate genes, that are 

conserved between species, only revealed the presence of a CRE-element 

upstream of Arihl, and did not detect any CRE-elements upstream of Gaa1, PSF 

or SRp20 (data not shown). These results are not surprising as other screens for 

memory related genes have failed to find a strong enrichment in CREB 

dependent genes (e.g. Levenson et al., 2004a). Possible reasons for the lack of 

CRE-elements in the candidate genes include; (a) these genes were identified as 

CaMKK/? regulated and the CaM Kinase cascade is known to mediate activation 

of a number of transcription factors other than CREB (e.g. Kane and Means, 

2000); (b) these genes are regulated by transcription factors which are, 

themselves, IEG regulated by CREB such as zif268 (West et al., 2001; 

Finkbeiner et al., 1997; Bito et al., 1996)
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4.8.5. HIPPOCAMPAL SUBFIELD LOCALIZATION OF THE 

TRANSCRIPTIONAL CHANGES BY IN SITU HYBRIDIZATIONS

Sex-specific and behavioural-training induced transcriptional differences in 

whole hippocampal tissue were detected by QPCR. In situ hybridizations of brain 

coronal slices was performed in order to study whether the transcriptional 

differences detected by QPCR were occurring preferentially in any of the three 

major hippocampal subfields: CA1, CA3 or DG.

Gene expression studies in the rodent hippocampus after contextual fear 

conditioning suggest that the transcriptional events triggered by the behavioural 

experience occur predominantly in area CA1. First CRE-dependent transcription 

was activated in an association specific manner in area CA1 only (Kida et al.,

2002). Second, upregulation of a number of learning induced genes in the 

hippocampus was restricted to area CA1 (von Hertzen and Giese, 2005; Hall et 

al., 2000); Third, targeted disruption of gene expression in dorsal areas of the 

hippocampus was shown to specifically impair the consolidation of contextual 

fear memories (Lee et al., 2004).

As explained in section 4.3, the current in situ hybridizations data was not 

analysed statistically due to the low number of animals used in each group. 

Therefore, it would be necessary to increase the number of animals per 

experimental group considered to map sex differences and behaviourally induced 

transcriptional events to distinct hippocampal subfields.

Nevertheless, comparison of average densities or estimated counts above 

threshold suggests that some of the transcriptional differences detected by 

QPCR can be mapped to specific hippocampal subfieds.
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An interesting additional experiment would be to localize the transcriptional 

changes induced after training in the MWM, in order to determine whether the 

transcriptional changes would coincide in terms of subfield specificity for the two 

hippocampus-dependent tasks.
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5.1. SUMMARY OF THE RESULTS

Sexual dimorphisms in performance of some behavioural tasks assessing 

hippocampus-dependent memory formation have been described in rodents 

(Jonasson, 2005; Kudo et al., 2004; Gresack and Frick, 2003; Wiltgen et al., 

2001; Frick et al., 2000; Roof and Stein, 1999). Traditionally, these dimorphisms 

are interpreted as the result of organizational and activational effects of gonadal 

hormones (Frick et al., 2002; Gupta et al., 2001; Frick et al., 2000; Anagnostaras 

et al., 1998; Williams and Meek, 1991).

The consolidation of hippocampus-dependent memory requires de novo 

transcription, engaging activation of the transcription factor CREB. CREB 

activation can be mediated by different signalling pathways, including the CaM 

Kinase cascade (Soderling, 1999; Bito et al., 1996; Enslen et al., 1995). 

Combination of gene targeting approaches with behavioural and 

electrophysiological techniques has established the participation of members of 

the CaM Kinase cascade in synaptic plasticity and memory consolidation 

processes (Mizuno et al., 2006; Peters et al., 2003; Wei et al., 2002; Kang et al., 

2001; Ho et al., 2000).

Peters and colleagues (Peters et al., 2003) generated a null mutant mouse 

for CaMKK/?, an upstream activator of CaMKIV and CaMKI (Takemoto-Kimura et 

al., 2003; Anderson et al., 1998; Tokumitsu et al., 1995) which, in turn, is known 

to activate a number of transcription factors including CREB (Chow et al., 2005; 

Impey et al., 2002; Kane and Means, 2000). At the behavioural level, CaMKK£ 

male null mutants displayed delayed learning of the Morris Water Maze Task. 

This was accompanied by a failure to phosphorylate CREB after spatial training 

and by impaired late-phase LTP (L-LTP) in CA1 synapses which is dependent on
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de novo transcription and protein synthesis (Nguyen et al., 1994). These results 

suggest that lack of CaMKK# causes an impairment in the transcriptional events 

underlying memory consolidation for the MWM task. Remarkably, only males 

displayed the phenotype described above, while null mutant females were 

comparable to their WT counterparts in MWM performance and exhibited normal 

L-LTP (Mizuno et al., 2006). These findings provided evidence for sexual 

dimorphisms in the plasticity mechanisms underlying memory formation.

The work by Peters and colleagues paved the way for the project 

described in this thesis. The current project used the CaMKK# mutant mouse 

line to fulfil two main objectives:

(1)To identify target genes regulated by CaMKK# in male mice and whose 

transcriptional activation correlates with spatial learning.

(2) To use the insights provided by the transcriptional studies in male mice in 

order to investigate sexual dimorphisms in the molecular mechanisms 

underlying hippocampus-dependent memory formation.

The initial screening, performed by microarray analysis, compared 

transcriptional profiles between hippocampal tissue of WT and CaMKK# null 

mutant male mice after training in the Morris Water Maze. Among a number of 

transcripts detected in the microarray analysis, three genes were confirmed to be 

differently regulated in the naive male hippocampus of WT and CaMKK# mice 

(Figs. 3.5 and 3.6). These genes encode a ubiquitin ligase (Arihl), and two 

multifunctional nuclear proteins (SRp20 and PSF). A fourth gene, GPI-anchor 

transamidase (Gaa1), was shown to be expressed in higher levels in the 

hippocampus of WT mice after training in the MWM but did not differ between
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naive and trained CaMKK/? mutants. As explained in chapter III, these genes 

were designated as “CaMKK/?-regulated genes".

Transcriptional profiles of these genes were then characterized in null mutant 

females and compared between the sexes in WT naive mice. These results 

pointed to (a) sex-specific requirement of CaMKK/? for basal expression in the 

hippocampus (Figs. 3.5 and 3. 6); (b) sex-specific basal levels of expression in 

WT mice (Fig. 4.1). Finally, the experiments focused on the regulation of these 

genes after training in hippocampus-dependent tasks in WT mice. For this 

purpose male and female mice were trained in two hippocampus-dependent 

tasks: the MWM and contextual fear conditioning. In male mice, three of the 

genes (Gaa1, PSF and SRp20) were upregulated thirty minutes after a probe trial 

in the MWM (Fig. 4.9), and thirty minutes after conditioning in a contextual fear 

conditioning paradigm (Fig. 4.13). However, assessment of the transcriptional 

profile of these genes in the female hippocampus, at the same time points 

revealed an upregulation of PSF mRNA and no differences in mRNA levels of 

Gaa1 and SRp20 between naive and trained animals (Figs. 4.10 and 4.14). For 

the gene encoding the ubiquitin ligase (Arih), no statistically significant 

differences in mRNA levels were found between naive and trained animals of 

either sex.

In summary, this work has identified novel molecular markers for sex-specific 

gene expression in the naive hippocampus and after training in two 

hippocampus-dependent tasks (Table 5.1). These results suggest: (a) Sexual 

dimorphisms in experience dependent transcriptional outputs; (b) Coincidence of 

transcriptional outputs between tasks with distinct procedural demands.

227



Chapter V: General Discussion

The transcriptional analysis described above establishes correlations between 

regulation of the target genes and memory consolidation processes. However, to 

determine whether these are in fact “memory effector genes" would require in 

vivo disruption of normal gene function. The cellular functions of these target 

genes have been previously described. In the light of the idea that physical 

changes in synaptic morphology or properties represent the support of memory 

encoding, a potential function of these genes in memory consolidation was 

discussed in section 3.5.6. Possible explanations for sex differences in 

transcription induced by behavioural training will be discussed in section 5.2. The 

significance of sex differences in gene expression in the naive hippocampus, in 

the light of memory consolidation will be discussed in section 5.3. The 

coincidence of transcriptional outputs in memory consolidation of hippocampus- 

dependent tasks that are known to engage distinct molecular pathways will be 

addressed in section 5.4. Potential improvements to the experimental design 

used in this study and alternative approaches to studying sex differences in 

memory consolidation at the molecular level will be discussed in sections 5.5 and 

5.6 respectively.

Table 5.1. Summary of the transcriptional studies described in chapters III and IV. (Mean 
values per experimental group are indicated; Statistically significant differences are highlighted in 
bold font; *p<0.5, **p<0.01; ***p<0.001, for one-way ANOVA comparisons)._______________
Gene % mRNA relative to WT naive

Naive
CaMKK/? null 
mutants

Naive 
females 
(relative 
to males)

Selective 
Animals 
in the 
MWM

After Training in 
Contextual Fear 
Conditoining

Arihl Males 67%* 143%* 129% 138%(p<0.10)
Females 180%* 112% 149%(p=0.12)

Gaa1 Males 111% 70%*** 149%* 119%*
Females 94% 96% 93%

PSF Males 190%** 60%*** 139%* 142%**
Females 124%(p=0.11) 145%** 127%*

SRp20 Males 56%** 80%* 176%*** 137%*
Females 108% 106% 94%
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5.2. SEX DIFFERENCES IN HIPPOCAMPAL TRANSCRIPTION INDUCED BY 

BEHAVIOURAL TRAINING

Gaa1, PSF and SRp20 are expressed at lower levels in the female naive 

hippocampus. While PSF is regulated by training in the MWM and contextual fear 

conditioning in both sexes, Gaa1 and SRp20 are regulated in males only. Under 

the prevailing conditions, Gaa1 and SRp20 represent molecular markers for 

hippocampal activity in male but not in female mice.

Whether these transcriptional changes are mirrored at the protein level 

has not been tested, although the hypothesis that mRNA can, per se, have a role 

in memory consolidation can not be ruled out. In addition, evidence for a 

biological role for these gene products in memory consolidation is still missing. 

For these reasons, the possibility that Gaa1 and SRp20 represent 

epiphenomena, with no significance in memory consolidation processes, can not 

be ignored. Nevertheless, the work here described provides evidence for the 

occurrence of sex-specific transcriptional events triggered by training in 

hippocampus-dependent tasks. Possible causes for sex differences in 

hippocampal transcription in response to behavioural training will be addressed 

below and are summarized in figure 5.1.

5.2.1. DISTINCT KINETICS OF TRANSCRIPTIONAL ACTIVATION?

Sex-differences in the kinetics of transcriptional activation of these genes 

account for a failure to detect an upregulation at the 30 minute time point in 

females (Fig. 5.1 A). A possible approach to test this hypothesis would be to try to 

establish a time course of gene transcription in the female hippocampus by
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sacrificing the animals at different time points after conditioning. A 

transcriptional upregulation in females would be more likely to de detected after 

the 30 min time point as, in most studies the 30 min after conditioning has been 

the earliest time point after which changes in IEG expression have been 

detected.

Differences in the kinetics of activation of these genes could be accounted 

for by the engagement of distinct signalling transduction pathways. This 

hypothesis is supported by the following lines of evidence: (a) Gaa1 expression is 

regulated by CaMKK# after MWM training in males, but not in naive males or 

females; (b) SRp20 is regulated by CaMKK# in the male, but not in the female 

naive hippocampus, indicating that CaMKK# is not required for basal expression 

of SRp20 in females; (c) Lack of CaMKK# affects spatial memory consolidation 

in males but not in females (Mizuno et al., 2006); (d) SRp20 and Gaa1 are 

regulated after spatial training, in males but not in females, despite similar 

performances. Hence, it is likely that alternative signalling pathways are involved 

in male and female learning in the MWM.

The possibility that males and females engage distinct signalling pathways 

in hippocampus-dependent memory consolidation is more difficult to reconcile 

with the contextual fear conditioning data. This is because CaMKK# is not 

required for contextual memory formation, but CaMKK# regulated genes are 

regulated in an association-specific manner. Studies by Mizuno and colleagues 

(2006) established the requirement for CaMKKa in the consolidation of contextual 

memories in males but not in females. Taken together, these findings suggest 

that Gaa1 and/or SRp20 may be regulated by CaMKKa upon training in the 

contextual fear conditioning task. This hypothesis could be tested by comparing
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hippocampal transcriptional profiles between CaMKKa null mutant and WT males 

after training in contextual fear conditioning.

Insights from the CaMKKa and CaMKK/? null mutant lines suggest that 

these kinases are not required for hippocampus-dependent memory 

consolidation in females, as far as the contextual fear conditioning and the MWM 

tasks are concerned. In females, signalling pathways other than the CaM kinase 

cascade can mediate the transcriptional mechanisms required for memory 

consolidation for the MWM and contextual fear conditioning tasks. For example, 

the use of pharmacological inhibitors in cultured pyramidal neurons has 

established that fast CREB activation is mediated by the CaMK cascade and a 

slower CREB activation is mediated by the MAPK cascade (Wu et al., 2001). If 

these kinetic differences also occur in vivo it is possible that the same 

transcriptional outputs would be produced by activation of either of the pathways, 

but the time point after which transcriptional differences could be detected should 

differ between the sexes.

5.2.2. DISTINCT TRANSCRIPTION FACTORS?

An additional possibility would be that not only the molecular pathways, 

but also the transcription factors engaged in memory consolidation differ between 

the sexes (Fig. 5.1B). For example, a sexually dimorphic impact of CREB 

mutations in spatial learning has been suggested by Hebda-Bauer and 

colleagues (2005), who demonstrated that learning of the MWM by 

CREBa8 hypomorphic mutants is affected by previous unsuccessful experiences 

in males but not in females. In addition, a study by Kudo and colleagues
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demonstrated that CREB activation in hippocampal subfield CA1 is detectable in 

male rats but not female rats thirty minutes after conditioning in a contextual fear 

conditioning task (Kudo et al., 2004).

It is possible that other transcription factors display a sex-specific pattern 

of activation or are expressed in different levels in the hippocampus as it has 

been described for other brain structures (e.g. Coelho et al., 2005).

5.2.3. DISTINCT TRANSCRIPTIONAL OUTPUTS?

An alternative explanation would be that the target genes transcribed upon 

behavioural stimulation differ between the sexes. If any of these genes does 

indeed play a role in memory consolidation, it is conceivable that male-specific 

and female-specific memory effector genes exist.

These sex-specific gene products could subserve similar cellular functions 

and ultimately mediate the cellular modifications that constitute the bases of the 

memory engram (Fig. 5.1C). This would be a likely hypothesis for SRp20 as the 

SR family of proteins displays high redundancy. It would not be as likely for Gaa1 

as this is the only member of the family so far identified. However, other 

members of the transamidase complex could be responsible for a higher GPI 

anchoring activity of proteins in females.

Alternatively, the “memory effector genes" may differ between the sexes 

which could partially explain differences in the signalling pathways activated (Fig. 

5.1D).
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Figure 5.1- Sex-specific hippocampal transcription induced by behavioural 
training (I).
The sexes may produce the same transcriptional outputs but differ in the kinetics 
of transcriptional activation due to the engagement of (A) distinct signalling 
pathways or (B) distinct transcription factors. (TF-transcription factor; P- 
phosphate, as an exmpale of covalent modification).

233



Chapter V: General Discussion

D

6 Synaptic Input 9

TF
Gene A ~|Q Q ^

mRNA A

ProteinA

TF

mRNA B

Protein B

Cellular function

Distinct cellular function -> Sex-specific cellular functions 

Synaptic Input
<J 9

V
TF

Gene A |Q Q ^

mRNA A

ProteinA

Cellular function A

TF
Gene B

mRNA B

Protein B

Cellular function B

Distinct cellular function -> Sex-specific cellular functions

Figure 5.1- Sex-specific hippocampal transcription induced by behavioural 
training (II).
The genes regulated by behavioural training may differ between the sexes, but 
ultimately (C) accomplish the same cellular function or (D) accomplish different 
cellular functions (TF-transcription factor; P- phosphate, as an exmpale of 
covalent modification).

234



Chapter V: General Discussion

5.3. SIGNIFICANCE OF SEX DIFFERENCES IN BASAL LEVELS OF GENE 

EXPRESSION

Gene expression profiling of hippocampal tissue of the CaMKK/? regulated 

genes, revealed that behavioural training in the MWM or contextual fear 

conditioning in male mice regulated three of these genes (Gaa1, SRp20 and 

PSF). However, only PSF was regulated by behavioural training in the female 

hippocampus at the time point considered. In addition, sex differences in basal 

levels of expression were observed in the naive hippocampus, with females 

expressing lower levels than males.

In the case of Gaa1 and SRp20, these basal differences would probably 

not be relevant in the light of memory consolidation processes as, at least under 

the current conditions, females do not upregulate these genes after MWM or 

contextual fear conditioning (but see 5.2.1).

In the case, of PSF it is possible that basal levels of PSF are required to 

ease or mediate the early signalling events occurring upon behavioural training, 

therefore contributing to memory formation. In this interpretation, lower basal 

levels in the naive female hippocampus could account for different rates of 

learning, a possibility that could not be assessed under the current training 

conditions. A possible experiment would be to probe trial males and females 

throughout the course of training. In case of a slower rate of learning by females, 

revealed by worse performance in the probe trial, one could determine whether 

this was correlated with different levels of PSF expression.
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5.4. COINCIDENT TRANSCRIPTIONAL OUTPUTS BETWEEN TWO 

HIPPOCAMPUS-DEPENDENT TASKS

A number of studies in mutant mice and pharmacological interventions 

have established the dissociation between the signalling pathways involved in the 

consolidation of spatial and contextual memories (reviewed in Mizuno and Giese, 

2005). Surprisingly, the present study reports the coincidence of transcriptional 

outputs induced by spatial and contextual memory tasks (section 5.2.1). At least 

three non-mutually exclusive interpretations can be proposed: (a) Intracellular 

signalling cascades respond differently according to the nature of the 

hippocampus-dependent task, however the distinct signalling pathways 

eventually converge onto the same transcriptional outputs; (b) Coincident 

transcriptional events subserve the same purpose in both tasks, for example, 

regulation after MWM training may support encoding of non spatial information 

(e.g. related to emotional/aversive aspects of the task), or regulation upon 

contextual conditioning may support the encoding of spatial information which is 

only triggered after the experience of a noxious event; (c) Coincident 

transcriptional events occur for genes which are essential for memory encoding 

regardless of the nature of the memory in cause.

As mentioned in chapters III and IV, the current training protocol for the 

MWM, and the time point chosen to assess transcriptional profiles after MWM 

training, raises the possibility that memory reconsolidation may have been 

probed. In order to test this possibility, two approaches could be used: (a) 

animals could be subjected to intensive training in the MWM over one day only,
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and sacrificed at this stage of training in order to rule out the detection of 

molecular events associated with reconsolidation (as, for example, in: Leil et al., 

2003; Cavallaro et al., 2002; Leil et al., 2002). (b) Alternatively, memory 

reconsolidation could be probed in the contextual fear conditioning task, as a 

number of studies point to regulation of different subsets of immediate early 

genes after memory consolidation and reconsolidation in this task (von Hertzen 

and Giese, 2005; Lee et al., 2004). The assessement of the transcriptional profile 

of the target genes under all those experimental conditions would reveal whether 

their expression can correlate with memory reconsolidation.

5.5. TROUBLE SHOOTING

The major limitation of the transcriptional scre.ening described in chapter 

III was the number of chips used per group. For this reason, the experimental 

design comprised four biological replicates per group (WT and CaMKK# null 

mutants) of trained animals. An ideal experimental design would have included 

naive and trained animals from both genotypes, permiting the screening for 

mutation induced changes, the identification of MWM training regulated genes in 

WT animals, and the identification of genes regulated by CaMKK/? in response to 

spatial training.

As discussed in chapter III, the transcriptional profile of the candidate 

genes described in the microarray analysis was firstly investigated in naive mice 

of both genotypes by QPCR. The transcriptional profile of the “CaMKK# regulated 

genes", was then investigated after training in the MWM in WT mice. For these 

reasons, the follow up procedure did not allow the direct confirmation of the
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candidate genes revealed by microarray analysis and it is not possible to assess 

directly the false positivity rate of the array analysis.

Potential improvements to the experimental design in order to reduce 

sources of type I errors include: (a) the use of more biological replicates in order 

to reduce the contribution of within group variations; (b) the use of different 

cohorts of mice in order to reduce effects related to a single behavioural 

experiment (Levenson et al., 2004a); (c) the use of technical replicates to control 

the quality of each experimental step during sample preparation and 

hybridization; (d) choice of a higher cutoff value for transcriptional changes, at the 

expense of missing true transcriptional differences of small magnitude; (e) the 

choice of a more stringent significance level (lower p-value) (Unger et al., 2005; 

Levenson et al., 2004a; Benjamini et al., 2001).

5.6. FURTHER EXPERIMENTS TO IDENTIFY SEX SPECIFIC GENES 

INVOLVED IN MEMORY FORMATION

The current project was started under the finding that CaMKK/? is required 

for male long-term spatial memory formation in males but not in females. For this 

reason, the initial array analysis aimed at identifying CaMKK/? regulated genes in 

male animals. The transcriptional profile of these genes was then compared 

between the sexes in both naive and trained animals. A number of alternative 

approaches could be used in order to identify sex-specific genes involved in 

memory formation.

The most straightforward approach would be to compare transcriptional 

profiles between the sexes after training in hippocampus dependent tasks.
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The detection of sex differences at the behavioural level depends on task, 

training protocol and training apparatuses; and task parameters can be 

manipulated in order to favour or prevent the detection of sex differences at the 

behavioural level. The assessment of hippocampal transcriptional profiles would 

be equally in formative independently of finding the sex difference or not. For 

example if, like in the present study, sex differences are not detected at the 

behavioural level, but are detected at the molecular level, this raises the 

possibility that males and female engage distinct molecular pathways for memory 

encoding and consolidation. If on the contrary, sex differences are detected in 

behaviour, differences in transcriptional profiles could be interpreted as the cause 

for differences in behaviour.

5.7. CONCLUSION

Sexual dimorphisms in the performance of tasks assessing hippocampus- 

dependent memory have been intensively described in the human and rodent 

literature. These dimorphisms are classically attributed to the effects of gonadal 

hormones throughout development and during adulthood. In addition to the 

contribution of gonadal hormones, recent evidence points to the engagement of 

sex-specific signalling pathways in the transcriptional mechanisms required for 

memory consolidation. The results described in this thesis demonstrate, for the 

first time, that changes in gene expression induced by training in two 

hippocampus-dependent tasks differ between the sexes. These results suggest 

that differences in training-induced transcription may represent the molecular 

bases for sex difference in memory consolidation.
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APPENDIX I

Table A1- QPCR of cDNAS for target genes. Primer sequences, concentrations, 
internal control transcripts and respective primer concentrations

Primer sequences (5’-3’) Primer cone 
Fwd/Rev(nM)

Internal
control
Fwd/Rev
(nM)

Star Starfwd: GCAGGACTCAGGACCTTGAAAG 

Starrev: GAACGTAGCGAGGAACATGCT

900/300 HPRT
300/300

Gaa1 Gaa 1 fwd :GGCCAACATTT AGCT ACT CAGCAT 

Gaa1 rev:GCGAGCAGCGTCAACACA

900/900 HPRT
900/900

Serpina
3n

Serpinfwd: CCCCGTGATAGTGCCCATGAT 

Serpinrev: GAAAAGCTCCTCATCTCGGAAGT

900/300 GAPDH
300/300

brPTB PTBfwd: CTGCGTGGCTCGGTTCTT 

PTBrev: CCTCAGTGACAATTCCGTCCAT

900/300 HPRT
900/900

GluR1 GI u R1 fwd: CT GT G AAT C AG AACG CCT C AAC 

GluR1 rev: ACCCG ATGCCGTT CTTTT C

900/900 GAPDH
300/300

Iqgapl lqgap1fwd:CGGAAGTGTCTCTCACGTTGAC 

Iqgapl rev: GGT CCG AGCGT CCAT CT CT

900/900 HPRT
300/900

Fmslike
tyrosine
kinase

FMSIike fwd 
GAAGGTACCGCAAGGAGAATC A

FMSIike rev : GGT GT G ACGCAGCAT CAT G

900/300 GAPDH
300/300

Arihl Arihl fwd: GAGATGCAGCAGCACAACATG 

Arihl rev: CACTGGCAGAGGACATCAACTG

900/900 GAPDH
300/300

PMP70 pmp70 fwd: T G ACT CGG AAGCACAGT

pmp70 rev: 
CCAT GCCT CTT AT CT CT CT GGTT AAT A

900/900 HPRT
900/900

Dinein Di nei nfwd: ACAAT G G ACAAT CCCACC ACT AC 

Dineinrev: TGCTCCGCGCCTTCA

900/900 GAPDH
300/300

Srp20 SRp20fwd:TGAGGATCCCCGAGATGCT 

SRp20rev: CTTACACGGCAGCCACACAGT

900/900 HPRT
900/900

Ny2 Ny2fwd: AGCAGGCACAGCATTGCA 

Ny2rev: GTGT GAGCCAGCAAGT GAG AT C

300/900 HPRT
900/900
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Syn4 Syn4fwd :GACAG AGCACGCAG AAAACAT G 

Syn4rev:CCACT GT GGG AATTT CAT CG A

900/900 HPRT
900/900

U2af1 u2af1fwd: GCTGTCCCCAGTAACTGACTTCA 

u2af1 rev:GCCCCCTCTTGTGCACTT

300/300 GAPDH
300/300

Bok
bcl2rfwd: GGGAGTTTGTACGCAAGACCTT 

bcl2rev:CT GACCACACACTT G AGG ACAT C

900/900 HPRT
900/900

PSF PSFfwd: GGAGTTCCACCAGCAACCAT 

PSFrev: CTGCCCAAAGCGCTCAGT

900/900 HPRT
900/900

Pbx3 pbx3fwd: GCGACGGCAGGAAGCA 

pbx3rev:CT GGT CGGT G ATGGT CAT G A

300/900 HPRT
900/900

HPRT HPRT fwd: 
AT AC AG G CC AG ACTTT GTTG G ATT

HPRT rev: 
T CACT AAT G ACACAAACGT GATT CAA

GAPDH GAPDH fwd: 
CATTT CCT GGT AT G ACAAT G AAT ACG

GAPDH rev: 
T CC AG G GTTT CTT ACT CCTT G G A
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APPENDIX II

Table A2- In situ hybridization. Oligonucleotide sequences and times of film 
exposure for the different mRNAs targeted.

Targe
t
mRN
A

Oligonucleotide sequence (5’-3’) Time
Exposu
re

Arihl T CAGT CCT CAAT GT ACT CCCACAG AT CTTTTT CAT AGCC 
TTCATG

7 days

Gaa1 TT GAGCTT GCGGAACAT GCCCT CCAG AGCCTT GCCCAC 
T GT CGCCAAAT

28 days

PSF CTTT CTT CT CGTTGGCGTCT CATTT GTT CTT CCAT CT CA 
CGTTGGCGA

7 days

SRp2
0

GTGGTCCAT AAT AGCCAAAAGCCCGTT CT AATT CAGTCT 
TGTTTCCAT

7 days
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