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Abstract

It has previously been proposed that in fission yeast mitotic spindle position 

is monitored by a checkpoint that controls the timing of anaphase onset. This 

checkpoint is activated by treatment of cells with Latrunculin A (Lat A), an 

inhibitor of actin polymerisation. It was previously thought that Lat A imposes 

an anaphase delay by preventing interaction of astral microtubules with the 

cortical actin cytoskeleton and that this interaction was required for correct 

spindle orientation.

By contrast I show that cells lacking Mto1, a centrosomin-like protein, have 

mis-orientated spindles but are not delayed in the timing of sister chromatid 

separation.

Secondly, I show that astral microtubules are only nucleated after sister 

chromatids separate and that mitotic spindle orientation is instead 

determined by the position of the spindle pole body during interphase. 

Spindle pole position is controlled by interphase microtubules, which also 

position the nucleus in the centre of the cell. Since the position of the nucleus 

determines the site of septation, I propose that interphase microtubules 

ensure perpendicular alignment of the spindle and the axis of cell division.

Thirdly, in contrast to previous findings, I find that Lat A causes an anaphase 

delay and mitotic spindle collapse in a proportion of cells. These results 

suggest that Lat A delays the onset of anaphase by disrupting mitotic spindle 

stability rather than by causing spindle mis-orientation. Importantly, this effect 

is abolished in a Lat A-insensitive actin mutant, implicating a role for actin in 

mitotic spindle stability.

Lastly, I demonstrate that the effect of Lat A is exacerbated in cells lacking 

Ase1, which binds and stabilises the spindle midzone. I have uncovered two 

factors, Mal3, and a novel kinesin, Klp9, which are required for viability in the 

absence of Ase1. I present a preliminary characterisation of the role of Klp9 in 

the mitotic cell cycle.
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Chapter 1

General Introduction

The cell cycle ensures the correct segregation of replicated genetic material 

from mother cell to daughter cells. To increase its fidelity this process is tightly 

regulated by a series of checkpoints. In the absence of such checks, 

chromosome instability can arise. Indeed, many checkpoint-defective tumour 

cells display an abnormal number of chromosomes, a phenomenon known as 

aneuploidy. Analysis of the cell cycle and its regulatory elements provides an 

understanding of what can go wrong in an unchecked cell cycle and potentially 

offers long-term therapeutic tools. Due to the high level of homology between 

eukaryotes, components of the cell cycle machinery are often evolutionarily 

conserved. As a result, the fission yeast, Schizosaccharomyces pombe, and the 

budding yeast, Saccharomyces cerevisae, have proved instrumental in 

understanding how the cell cycle progresses not only in yeast but also in higher 

eukaryotes, including man.

1.1 Fission veast as a model organism to study the cell cycle

S.pombe provides an excellent model organism for cell cycle studies for several 

reasons. Firstly, it undergoes a more rapid cell cycle than mammalian cells, 

meaning that the events of a whole cycle can be studied and a large amount of 

cells can be generated in a relatively short time. Additionally, genetic 

manipulation of fission yeast is straightforward when compared to mammalian 

systems. Gene “tags” and deletions can be performed easily and quickly. Aiding 

this, the entire genome of S.pombe has been sequenced (Wood et al., 2002). 

Fission yeast can also undergo both a haploid and diploid cell cycle, meaning 

that heterozygous strains deleted for essential genes can be made. Mating 

between haploid mutants followed by sporulation means that the generation of 

novel mutant combinations is straightforward. Due to its history as a model 

organism there is a wide and dedicated community, a wealth of techniques and 

an array of reagents available for use in S.pombe. Fission yeast cells are 

particularly suited to cell cycle studies as they are rod-shaped and grow by
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apical extension so cell cycle stage can be easily estimated. Furthermore, they 

divide by medial fission as do the majority of mammalian cells but in contrast to 

budding yeast cells, which undergo an asymmetrical division.

Fission yeast has a rich history of use in cell cycle studies. The seminal cyclin 

dependent kinase (Cdk) Cdc2 was first identified in fission yeast as a positive 

regulator of the cell cycle (Nurse and Thuriaux, 1980). Subsequently, the 

human homologue of Cdc2 was found to complement a fission yeast cdc2 

mutant (Lee and Nurse, 1987), illustrating the degree of conservation between 

systems. Since this pioneering work multiple cell division cycle (cdc) mutants 

have been identified in fission yeast, which has facilitated further investigation 

of the eukaryotic cell cycle.

The cell cycle in all eukaryotic cells can be split into four stages, G1, S, G2 and 

M. The S.pom be  cell cycle is illustrated in figure 1.1. G1 (gap 1) phase 

separates M and S phase and is the shortest phase in the fission yeast cycle. 

Cells in G1 are binucleate following mitosis but have not initiated genome 

replication, which occurs in S (synthesis) phase immediately following G1. 

Septum position is defined at the onset of M (mitosis) (Daga and Chang, 2005; 

Tolic-Norrelykke etal., 2005), however, cytokinesis does not occur until after S 

phase. The fission yeast cell cycle is therefore unusual since G1 and S phase 

occur prior to cytokinesis, which results in haploid cells having a 4C DNA 

content during S phase. The next phase is G2 (gap 2), which accounts for the 

largest portion of the fission yeast cell cycle and consists of the growth of the 

recently divided cells. Cells first extend only at the old end, but later, growth 

switches to bipolar in an event known as new end take-off (NETO; Mitchison 

and Nurse, 1985). Following growth to a critical size threshold, the cell 

undergoes M (mitosis) phase when the replicated genome is physically 

separated within the mother cell.

Several of the checkpoints (Hartwell and Weinert, 1989) that operate to 

increase the fidelity of the cell cycle (section 1.3) function during mitosis itself or 

at the G2-M transition, one of the two most important regulatory points in the 

fission yeast cell cycle.
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Figure 1.1 The fission yeast cell cycle

Schematic diagram showing the growth of fission yeast during a replicative cell 
cycle. Abbreviations: M, mitosis; S, DNA synthesis; G1 and G2, gap phases. 
Nuclear material shown in blue.



1.1.1 G2-M transition

The Cdc2 kinase (section 1.1) is the master regulator of the cell cycle and its 

switch from inactive to active is responsible for driving cells from G2 to mitosis 

(Nurse, 1990). The activity of Cdc2 is regulated in three ways, by cyclin binding 

partner, localisation and by phosphorylation. I describe these mechanisms in 

brief below.

The phosphorylation status of the Tyr15 residue, located within the ATP binding 

domain, regulates the activity of Cdc2 (Simanis and Nurse, 1986; Gould and 

Nurse, 1989). In G2 it is phosphorylated, and therefore inhibited, by the protein 

kinase Wee1 and to a lesser extent by Mik1 (Lundgren et a i, 1991). In cells 

lacking Wee1, mitosis occurs prematurely (Nurse, 1975; Fantes and Nurse, 

1978). Conversely, if Wee1 is overexpressed, cells become blocked in G2 

(Russell and Nurse, 1987). Cdc2 is activated via the dephosphorylation of 

Tyr15 by the phosphatase Cdc25, which triggers entry into mitosis (Russell and 

Nurse, 1986; Gould and Nurse, 1989). Cdc25 accumulates throughout G2 until 

cells attain a critical size threshold, whereupon Cdc25 is activated (Moreno et 

a i,  1990). There is some evidence that the Polo kinase (Plo1) may co- 

ordinately control Cdc25 and Wee1 activities. Plo1 localises to the spindle pole 

bodies (SPBs) at mitotic onset (Mulvihill et a i, 1999) and is necessary to form a 

mitotic spindle (Ohkura et a i, 1995). A mutation of the SPB protein, Cut12, 

allows premature Plo1 localisation and suppresses the mitotic entry defect of 

cdc25 -22  cells (Bridge et a i,  1998; Mulvihill et a i,  1999). Similarly, 

overexpression of Fin1, the NIMA-related kinase, drives association of Plo1 to 

the poles and bypasses the requirement for Cdc25 (Grallert and Hagan, 2002).

As well as Tyr15 phosphorylation, the cyclin partner associated with Cdc2 

provides a second level of regulation. The essential mitotic cyclin in S.pombe is 

Cdc13, a homologue of human cyclin B (Hagan et a i, 1988). This, like Cdc25, 

accumulates steadily throughout G2, before levels peak in metaphase and then 

sharply reduce in anaphase (Creanor and Mitchison, 1996). The reason for the 

rapid reduction in the amount of Cdc13 protein post-anaphase is due to 

proteolysis carried out by the anaphase promoting complex (APC). This is a 

necessary regulatory step in limiting the mitotic activity of Cdc2, as
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indestructible cdc13  mutants arrest in anaphase with high Cdc2 activity 

(Yamano et a i, 1996).

A third form of regulation is achieved by localisation. Studies of fluorescently 

tagged Cdc13 (Decottignies et a i, 2001; Tatebe et a i, 2001) show that it 

localises to the spindle poles and the spindle in mitosis. Once sister chromatids 

separate at anaphase onset Cdc13 is degraded and disappears from the 

spindle. Antibodies against Cdc2 show that it follows a similar localisation 

pattern (Alfa et a i, 1990). In this way the activity of Cdc2 in mitosis is spatially 

restricted to the mitotic machinery.

1.1.2 Mitotic progression

The onset of mitosis requires the activation of Cdc2 (section 1.1.1). Upon entry 

to mitosis chromosomes undergo chromatin condensation (reviewed in 

Stunnikov, 2003). At the same time SPBs, which duplicate in late G2, enter a 

fenestra in the nuclear envelope (Ding et a i, 1997). This process requires 

Cut11, a protein that contains membrane spanning domains, is found in the 

nuclear envelope throughout the cell cycle and localises to SPBs as they enter 

the envelope (West et a i, 1998). Cells entering mitosis also undergo a 

conformational re-arrangement of their cytoskeletal elements (described in 

detail in the following section). In brief, actin relocalises from the cell tips to the 

middle (Marks et a i, 1986) and the microtubules of the interphase array are 

depolymerised and specialised mitotic microtubules are nucleated (Hagan and 

Hyams, 1988).

The mitotic spindle, composed of tubulin, is responsible for the physical 

separation of the replicated chromosomes. Tagging tubulin with the green 

fluorescent protein (GFP) has allowed spindle dynamics to be studied in fission 

yeast (Tatebe et a i, 2001). During mitosis, the spindle elongates in a 

characteristic three step process (Nabeshima et a i, 1998). In phase 1, pro­

metaphase, the replicated poles separate and are positioned by microtubules to 

opposite sides of the nuclear envelope. In this way the spindle rapidly elongates 

to a length of approximately two microns, the diameter of the fission yeast 

nucleus. This spindle length is maintained during phase 2, metaphase, during
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which sister chromatids are observed to bounce between poles. The duration of 

phase 2 is presumably dependent on meeting the conditions of the spindle 

assembly and spindle orientation checkpoints (SAC and SOC, described in 

section 1.3.2). These mitotic progression checkpoints work by delaying the 

onset of anaphase by inhibiting the anaphase promoting complex (APC). At 

anaphase onset cohesin is destroyed, which allows the spindle to undergo 

anaphase A, where sister chromatids are resected back to opposite SPBs, and 

anaphase B, where the spindle rapidly elongates to further separate genetic 

material ready for cytokinesis. This rapid elongation of the spindle has been 

termed phase 3.

Cohesin is a conserved multi-subunit complex that acts as a “molecular glue” 

physically holding sister chromatids together and opposing the forces pulling on 

the spindle microtubules. Cohesion is established in S phase and must be lost 

in anaphase to allow sister chromatids to separate. Work in budding yeast first 

described the cohesin complex and its components, Smc1, Smc3, Scc1 and 

Scc3 (Guacci et a i, 1997; Michaelis et a i, 1997; Toth et a i, 1999). Defects in 

any of these proteins results in premature chromatid separation. At anaphase 

onset, targeted proteolysis of cohesin occurs. The APC cleaves Pds1 (securin), 

which inhibits the protease Esp1 (separase) (Uhlmann et a i, 1999). Without its 

inhibitory element, Esp1 cleaves Scc1 and cohesin is inactivated (Ciosk et a i, 

1998; Uhlmann et a i, 1999). The homologues of both the cohesin complex and 

its inhibitory elements are conserved in fission yeast. Psm1, Psm3, Psc3 and 

Rad21 form the cohesin complex (Birkenbihl and Subramani, 1992, 1995; 

Tatebayashi et a i, 1998; Tomonaga et a i, 2000) whilst Cut1 is separase and 

Cut2 is securin (Funabiki e ta i,  1996a; Kumada et a i, 1998).

The APC, a highly conserved multi-subunit E3 ubiquitin ligase, acts by 

facilitating the destruction of both the mitotic cyclin Cdc13 and securin (Funabiki 

et a i, 1996b, 1997; Yamano et a i, 1996, 1998). Targets of the APC contain a 

conserved 9-residue destruction box motif. Ubiquitin molecules are transferred 

to a lysine side chain of such target proteins by the APC, which leads to their 

identification and degradation by the 26S proteosome in M or G1 phase 

(Wilkinson et a i, 1999). In addition the APC associates with adaptor molecules 

to confer substrate specificity. At anaphase this is Slp1 (Matsumoto, 1997; Kim
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mid1-gfp cdc11-cfp

.

Figure 1.2 S.pombe divides by medial fission following segregation of the 
genetic material

Images through the cell cycle of fixed mid1-gfp cdc11-cfp cells expressing Mid1- 
GFP (red), the earliest known marker for division ring placement, and Cdc11- 
CFP (green), which marks the spindle pole bodies. DNA and septa are stained 
blue by DAPI and calcofluor respectively.
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Figure 1.3 Cell cycle dependent localisation of actin and tubulin

Schematic diagram showing both the re-localisation of actin patches (red) from 
the cell tips to the middle of the cell and the changes the microtubule (green) 
cytoskeleton undergoes upon entry into mitosis. Nuclei are shown in blue and 
spindle pole bodies in black.



et a i, 1998; Yamada et a/., 2000), the fission yeast homologue of Cdc20 in 

budding yeast (Sethi et a i, 1991; Hilioti et a i, 2001; Pfleger et a i, 2001; 

Schwab et a i, 2001) this acts to target securin. At mitotic exit and G1 the 

activator Ste9 (Kitamura et a i, 1998; Kominami et a i, 1998; Blanco et a i,

2000), the fission yeast homologue of budding yeast Cdh1 (Visintin et a i, 

1997), is recruited to confer specificity for mitotic cyclin.

1.2 Organisation of the S.pombe cvtoskeleton

As previously stated, the aim of the cell cycle is the successful transmission of 

genetic information from one generation of cells to the next. This is illustrated in 

figure 1.2 which shows the transmission of DNA from a mother cell to two 

daughter cells. Spindle poles and the anillin-like protein M idi, which plays a role 

in positioning the site of division (section 1.2.2), are shown. In order to 

segregate the replicated genetic material and physically separate the daughter 

cells in this manner the structural components of tubulin (forming microtubules) 

and actin are required. Figure 1.3 highlights the positional and structural 

changes that these components undergo not only in mitosis but also throughout 

the cell cycle to mechanistically achieve this goal. In this section I will describe 

microtubules and actin in some detail and the roles they play in ensuring the 

fidelity of the cell cycle.

1.2.1 Microtubules

Microtubules in S.pombe are formed from the polymerisation of a (nda2, atb2) 

and p (nda3) tubulin heterodimers (Yanagida, 1987). These nucleate to a 

template determined by y-tubulin (g tb l) (Horio et a i, 1991; Stearns et a i, 1991) 

and assemble as linear protofilaments that are arranged adjacent to each other 

forming hollow tube-like structures. Microtubules exhibit dynamic instability at 

the “plus” end where subunits are added or lost to allow growth and shrinkage 

respectively (Mitchison and Kirschner, 1984). Polymerisation is dependent on 

the hydrolysis of GTP bound to the (3-tubulin subunit (Weisenberg et a i, 1976; 

Desai and Mitchison, 1997). Microtubules are nucleated from a y-tubulin ring 

complex (y-TURC) (Moritz and Agard, 2001; Janson et a i, 2005), so named as 

it contains y-tubulin to which the “minus” end of the microtubule is anchored.
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Figure 1.4 Cell cycle and Microtubule Organizing Centre (MTOC) overview

A diagrammatic representation of the three MTOCs (shown in cyan except the 
SPBs, which are red) present in S. pombe and the classes of microtubule (MT, 
green) nucleated from each during the cell cycle. Nuclei are shown in blue.



These structures are known as microtubule organising centres (MTOCs). There 

are 4 types of MTOC in fission yeast. Firstly, the SPBs, which are functionally 

similar to centrosomes in mammalian cells, act as MTOCs during mitosis 

(Hagan, 1998). Secondly, an equatorial MTOC (eMTOC) forms during mitotic 

exit (Hagan, 1998; Heitz et al., 2001). Thirdly, an interphase MTOC (iMTOC) 

nucleates microtubules during interphase (Drummond and Cross, 2000; Tran et 

al., 2001). Lastly, a mating specific MTOC also exists in S.pombe but will not 

be described here (Petersen et al., 1998). Figure 1.4 illustrates the various 

MTOCs and the microtubules nucleated from them in the course of a mitotic cell 

cycle. In the next section, I will outline the specific roles of microtubules during 

interphase and mitosis.

Microtubules in interphase

1.2.1.1 Interphase microtubule organising centres (iMTOCs)

A number of iMTOCs, including the SPB, are active during interphase in fission 

yeast. They are predominantly found on the nuclear periphery (Tran et al.,

2001), although there is some evidence for satellite iMTOCs in the cytoplasm 

(Sawin et al., 2004). iMTOCs nucleate 3-4 anti-parallel bundles of interphase 

microtubules that comprise the interphase microtubule array (Hagan, 1998; 

Tran et al., 2001). Microtubule “minus” ends are anchored to the iMTOCs at the 

nucleus and the microtubules extend parallel to the longitudinal axis of the cell 

so that “plus” ends are at the cell tips. Interphase microtubules have several 

documented roles including the correct centre positioning of the nucleus (Tran 

et al., 2001; Daga et al., 2006b) and maintenance of cell polarity (Sawin and 

Nurse, 1998). These roles are undertaken in concert with multiple microtubule 

associated proteins (MAPs). So, for example the central position of the nucleus 

is dependent on Ase1 and Klp2, which act to organise interphase microtubules 

(Carazo-Salas and Nurse, 2006; Daga et al., 2006a; Janson et al., 2007). Ase1, 

a member of the ASE1/PRC/MAP65 family, bundles anti-parallel microtubules 

at zones of overlap, primarily at the nuclear periphery (Loiodice et al., 2005; 

Yamashita et al., 2005). The kinesin Klp2 is the motor protein responsible for 

force generation in interphase microtubule sliding (Troxell et al., 2001; Carazo- 

Salas et al., 2005). Recently it has been shown that these components can
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assemble the interphase microtubule array even in the absence of a nucleus 

(Daga et al., 2006a). Mutants in factors determining polarity have defective cell 

shapes such as spherical, curved and t-shaped (Verde etal., 1995; Sawin and 

Nurse, 1998). Polarity is generated and maintained by interphase microtubules, 

which deposit Teal-complex at the cell tips (Mata and Nurse, 1997), where it is 

anchored by the plasma membrane protein Mod5 (Snaith et al., 2005). Teal is 

also required for the localisation of other cell polarity factors including the 

kinase Pom1, which plays a role in defining the cell tips as a growth site (Bahler 

and Pringle, 1998). Additionally, localisation at the cell tips of Bub6 , an actin- 

binding protein (Glynn and Chang, 2001), and the formin, For3, required for 

actin cable formation (Feierbach and Chang, 2001; Feierbach et al., 2004), are 

both dependent on Tea l. In this way Teal establishes a link between the 

microtubule interphase array and the actin cytoskeleton that is necessary for 

cell growth (reviewed in La Carbona et al., 2006). Cells lacking either Mal3, the 

fission yeast EB1 homologue, T ipi, a CLIP170-like protein, or the kinesin Tea2 

all suffer polarity defects due to their effects on interphase microtubules 

(Beinhauer et al., 1997; Brunner and Nurse, 2000; Browning et al., 2000). Mal3 

binds to the “plus” end of polymerising microtubules and increases stability 

(Busch and Brunner, 2004; Sandblad et al., 2006) whereas T ip i prevents 

microtubule catastrophe before reaching the cell tips (Brunner and Nurse, 

2000).

Microtubules in mitosis

The molecular mechanisms controlling the switch from interphase to mitotic 

microtubule nucleation are not well understood. After nucleation from iMTOCs 

is terminated, two types of mitotic MTOCs operate in fission yeast. Firstly, the 

SPBs, which nucleate microtubules from both their nuclear and cytoplasmic 

faces. Later in mitosis, an equatorial MTOC nucleates microtubules (figure 1.4).

1.2.1.2 Nuclear face of spindle pole bodies

The microtubules nucleated from the nuclear face of the SPBs are collectively 

termed spindle microtubules. However, they can be further sub-divided into 

three groups, k-fibres, pole-to-pole and intra-nuclear astral microtubules.
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(i) k-fibres

The “minus” end of these microtubules is anchored to the SPB and the “plus” 

end is captured and attaches to a kinetochore. Electron microscopy shows that 

there are 2-4 k-fibres attached to each kinetochore (Ding et al., 1993). To 

ensure accurate segregation of the genome, one sister chromatid from each 

pair should be attached to k-fibres nucleated from one of the SPBs while its 

sister should be similarly attached to the opposing SPB, an arrangement 

termed amphitelic attachment. The SAC monitors bi-polar chromosome 

attachment and is described in section 1.3.2.1. At anaphase A, when cohesin is 

destroyed chromatids retract to opposite spindle poles. Broadly speaking there 

are two possible mechanisms for this retraction that have been studied in higher 

eukaryotes. Firstly, the so-called “pacman” model whereby chromatids induce 

the depolymerisation of “plus” ends of k-fibres enabling the chromatids to be 

“chewed” poleward (Gorbsky etal., 1987, 1988). Secondly, a model involving 

poleward microtubule flux whereby chromatids are “reeled” in by continual 

depolymerisation of the “minus” ends of k-fibres (Margolis and Wilson ,1981; 

Mitchison, 1989; Mitchison and Salmon, 1992). As there is no microtubule flux 

in fission yeast (Mallavarapu etal., 1999) the former model seems the most 

applicable. However, this raises the question of how this retraction is 

mechanistically achieved. The DASH complex is involved in chromosome bi­

orientation and in correcting improper chromosome attachments (Cheeseman 

et al., 2002; Li et al., 2002; Janke et al., 2002; section 1.3.2.1). The DASH 

complex contains ten proteins, which connect to kinetochores at the “plus” ends 

of k-fibres (Cheeseman et al., 2001a, 2001b; Sanchez-Perez et al., 2005; 

Tanaka et al., 2007). Data from in vitro studies shows that the DASH complex 

forms rings around microtubules and moves progressively at the “plus” ends 

(Miranda et al., 2005; Westermann et al., 2005; Asbury et al., 2006). Therefore, 

it is possible that this ring couples the depolymerisation of the “plus” end of the 

k-fibre with the kinetochore after anaphase A. Whilst the DASH complex is 

essential for pre-anaphase retrieval of chromatids to the pole in S.pombe  

(Franco et al., 2007) it is not essential for poleward transport in anaphase A 

(Sanchez-Perez et al., 2005). However, when coupled with deletions of the 

fission yeast kinesin- 8  family members Klp5 and Klp6 , which have problems in 

undergoing timely anaphase A (West et al., 2001), cells are inviable and die
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with formed spindles but problems in chromosome segregation (Sanchez-Perez 

et al., 2005). This suggests that these components may play an overlapping 

role in the processivity of the chromatids to the poles. Interestingly, in budding 

yeast displaced chromatids prior to anaphase can be retrieved by both the use 

of lateral attachments to stabilised microtubules in a Kar3 mediated manner 

(Tanaka et al., 2005, 2007) and via end-on attachments in a DASH-dependent 

manner (Tanaka et al., 2007). However, in fission yeast lateral attachments do 

not result in chromatids retracting to the pole (Franco et al., 2007) and the 

deletion of all “minus” end directed motor proteins does not effect retrieval 

(Grishchuk and McIntosh, 2006). Therefore the current model is that 

depolymerisation of the “plus” ends of k-fibres drives poleward chromosome 

movements in S.pombe (Grishchuk et al., 2005; Grischuk and McIntosh, 2006). 

Interestingly however, dynein has been shown to have a role in mitotic delay 

(Courtheoux et al., 2007) and cells lacking Klp2 have a slower processivity of 

retrieval (Grishchuk and McIntosh, 2006). Therefore, it remains conceivable that 

lateral movement on pole-to-pole microtubules could aid chromatid retraction to 

the poles.

(Ii) Pole-to-pole microtubules

This second class of microtubules extends from a “minus” end tethered at the 

SPB to a “plus” end located at some point between the SPBs. This allows 

interdigitation with the “plus” ends of microtubules nucleated from the opposing 

SPB. The region where anti-parallel microtubules overlap is termed the spindle 

midzone. Electron microscopy shows that in metaphase the packaging of these 

pole-to-pole microtubules is loosely hexagonal, whereas after anaphase onset 

the packaging switches to a tight square formation (Ding et al., 1993). This 

arrangement ensures that each microtubule is surrounded by 4 anti-parallel 

microtubules that each originate from the opposite pole. It is unclear which 

proteins are required for this change in formation, although it is known that 

multiple proteins localise to the spindle midzone. For example, Ase1 localises to 

the overlapping anti-parallel microtubules found at the midzone and stabilises 

them (Loiodice et al., 2005; Yamashita et al., 2005). These authors show that 

fission yeast cells lacking Ase1 undergo frequent spindle collapses in phase 3. 

Ase1 has been observed at the fission yeast spindle midzone prior to anaphase
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onset (Loiodice et al., 2005; Yamashita et al., 2005). However to date, only a 

minor role (Loiodice et al., 2005) and no role (Yamashita et al., 2005) in pre­

anaphase spindle dynamics has been observed for Ase1. In addition to 

structural proteins such as Ase1, the chromosome passenger complex protein 

Bir1 (survivin), which is conserved from yeast to man, also binds to the midzone 

after having previously bound to the kinetochores (Rajagopalan and 

Balasubramanian, 1999, 2002; Morishita et al., 2001; Rajagopalan et al., 2006). 

Bir1 and the S.pombe INCENP homologue Pic1 (Leverson et al., 2002) form a 

complex with the fission yeast Aurora kinase homologue (Ark1), and are 

required for the localisation of Ark1 to the spindle midzone after anaphase 

(Morishita et al., 2001; Petersen et al., 2001). This pattern of localisation is 

similar to that seen in the Aurora B complex in higher organisms where 

INCENP and survivin are also required (Adams et al., 2000; Wheatley et al., 

2001; Bolton et al., 2002). Ark1 is responsible for correcting deleterious 

kinetochore-microtubule attachments (section 1.3.2.1). During spindle 

elongation in phase 3 the force required is generated at the midzone. Various 

MAPs are implicated in this process including the kinesin Cut7, which is 

required in anaphase B (Hagan and Yanagida, 1990, 1992). Pole-to-pole 

microtubules are therefore responsible for further elongating the spindle 

following the retraction of k-fibres in anaphase A, resulting in further separation 

of daughter genomes.

(Hi) Intra-nuclear astrals

The third class of microtubules emanating from the SPBs are termed intra­

nuclear astrals (INAs). INAs, like pole-to-pole and k-fibre microtubules, nucleate 

from the nuclear face of the SPB whilst the “plus” ends are seen within the 

nucleoplasm. First observed very recently by the use of fluorescently tagged 

tubulin coupled with a nuclear envelope marker (Zimmerman et al., 2004), they 

had presumably been mistaken for cytoplasmic microtubules by earlier 

investigators. INAs are highly dynamic and have been observed in phases 1 

and 2. However, upon entry into phase 3, INA nucleation is terminated and 

instead cytoplasmic astrals are nucleated. This data is reported relative to 

spindle length and has not been defined relative to anaphase onset. 

Zimmerman et al. (2004) conclude that INAs are nucleated exclusively in
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phases 1 and 2  whereas astral microtubules are nucleated exclusively in phase 

3. This is in stark contrast to other investigators who state that astrals are 

nucleated in phases 1, 2 and 3 (Gachet et al., 2001, 2004; Oliferenko and 

Balasubramanian, 2002; Tolic-Norrelykke et al., 2004). More recently, Gachet 

et al. (2006) have presented evidence to indicate that astrals and INAs can be 

nucleated at the same time. Clearly, the role of INAs is not fully understood at 

this time. One possibility, suggested by Zimmerman et al. (2004), is that INAs 

are responsible for corrective spindle orientation prior to anaphase. This could 

be dependent on the shape of the nucleus or other as yet undescribed nuclear 

cues. Another possibility is that INAs are naive spindle microtubules that could 

either become k-fibres or pole-to-pole microtubules depending on their initial 

contact. Evidence supporting this hypothesis is that the DASH complex, which 

plays a role, though not an essential one, in chromatid attachment, caps INAs 

(Sanchez-Perez et al., 2005).

1.2.1.3 Cytoplasmic face of spindle pole bodies

(iv) Astral microtubules

Another class of microtubules emanates from the SPBs in mitosis, however 

these are nucleated from the cytoplasmic face and are termed astral 

microtubules. Astral microtubules were first described by Hagan and Hyams 

(1988) as being nucleated in a parallel or divergent conformation in cells that 

that have presumably undergone anaphase A. However, as described above 

(section 1 .2 .1 .2 ) the timing of cytoplasmic astral microtubule nucleation is a 

contentious issue with several groups describing pre-anaphase astrals which 

may in fact have been INAs. This is an important point as Gachet et al. (2001,

2004) concluded that astral microtubules are responsible for orientating the 

mitotic spindle both before and after anaphase onset. They propose that 

corrective orientation towards the longitudinal axis of the cell occurs via astral 

interaction with a specialised area of the cortex termed the astral microtubule 

interaction zone (AMIZ). They further suggest that this interaction can be 

disrupted by actin depolymerisation, resulting in spindle mis-orientation prior to 

sister separation and a subsequent delay over anaphase onset, termed the 

SOC (spindle orientation checkpoint; described in section 1.3.2.2). This infers
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that astral microtubules require the polymerised actin band, which localises to a 

band around the nucleus in mitosis (Marks et al., 1986; Arai et al., 1998; Arai 

and Mabuchi, 2002), to effect a corrective orientation of the spindle. 

Interestingly, these authors also suggest that astrals are involved in triggering 

anaphase onset itself via an asymmetrical contact with the cortical actomyosin 

ring (CAR). It is possible that instead of astral microtubules, INAs are the 

structures affecting orientation, although it is harder to understand how actin 

depolymerisation would affect this since direct INA contact with the CAR would 

require penetration of the nuclear envelope. There is consensus agreement that 

astral microtubules are present post-anaphase, where their role is again in the 

orientation of the spindle towards the longitudinal axis of the cell. However, 

there is still a discrepancy as to whether astral microtubules contribute to the 

rate of spindle elongation in anaphase B. Using both pharmacological agents 

and genetic mutations Gachet et al. (2004) and Venkatram et al. (2004) 

conclude that astrals increase the rate of elongation, whereas Sawin et al. 

(2004); Tolic-Norrelykke et al. (2004) and Zimmerman and Chang (2005) using 

genetic mutants and laser ablation studies, disagree.

1.2.1.4 Equatorial microtubule organising centres (eMTOCs)

During anaphase B eMTOCs nucleate a microtubule ring from the middle of the 

cell, which gives rise to the post-anaphase array (PAA) of microtubules (figure 

1.4). eMTOC nucleation requires the activity of both the septation initiation 

network (SIN), that regulates the onset of cytokinesis, and the APC (section 

1.1.2) (Heitz et al., 2001). The PAA contributes to nuclear repositioning 

following mitosis (Hagan and Yanagida, 1997). Recently, Pardo and Nurse

(2003) have shown that the microtubule ring maintains the position of the CAR. 

Additionally, these authors show that actin depolymerisation prevents PAA 

formation.

1.2.1.5 Mto1: a universal cytoplasmic y-TURC-MTOC tethering protein

Mto1/Mbo1/Mod20 (hereafter called Mto1) is a centrosomin-like protein 

responsible for tethering the y-TURC (section 1.2.1) to all cytoplasmic MTOCs 

(Sawin et al., 2004; Venkatram et al., 2004). The nuclear face of the SPB is
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Figure 1.5 Mto1 is required for microtubule nucleation from the cytoplasmic, but 
not nuclear, face of the spindle pole body

A diagram illustrating the hypothesis that Pcp1 tethers the y-tubulin complex to 
the inner face of the SPB whereas Mto1 carries out the same role at the 
cytoplasmic face.
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Figure 1.6 Mto1 is required for microtubule nucleation from all cytoplasmic 
MTOCs

Loss of Mto1 (mtolD) affects microtubules (MTs, green) emanating from the 
iMTOCs, the outer face of the SPBs and eMTOCs. MTOCs are shown in cyan 
except the SPB, which is shown in red. mtolD is depicted with a 
characteristically mis-positioned nucleus (blue) and a mis-orientated mitotic 
spindle. The wild type microtubule profile is shown for comparison.



tethered to the y-TURC by the essential protein Pcp1 (figure 1.5), showing that 

only spindle microtubules are required for cell viability (Flory et al., 2002). Cells 

lacking Mto1 retain spindle microtubules but are deficient in all cytoplasmic 

microtubules and thus lack interphase, astral and PAA microtubules (shown in 

figure 1.6) (Sawin et al., 2004; Venkatram et al., 2004). Occasionally, in m tolD  

cells a single interphase microtubule remains. Evidence from Zimmerman and 

Chang (2005) shows that this remaining microtubule is in fact nucleated at the 

inner face of the SPB and has penetrated the nuclear envelope. However it is 

not known whether it can then attach to an iMTOC. Nevertheless, since they 

are profoundly deficient in interphase microtubules, cells lacking Mto1 are often 

bent and frequently have mis-positioned nuclei. There is again a discrepancy in 

the literature concerning the mitotic dynamics of m tolD  cells with some workers 

seeing a delay over anaphase onset (Venkatram et al., 2004) whilst others 

observe none (Sawin etal., 2004; Zimmerman and Chang, 2005).

1.2.2 Actin

The second component of the fission yeast cytoskeleton is actin, encoded by 

the essential gene a c tl. Actin is a remarkably conserved protein between 

species and in fission yeast it exists in two forms: monomeric actin (termed 

globular or G-actin) and polymeric actin (termed filamentous or F-actin). F-actin 

is much more prevalent than G-actin and makes up actin cables, actin patches 

and the cell division ring in S.pombe (Marks et al., 1986; Arai et al., 1998; Arai 

and Mabuchi, 2002). The pharmacological agent latrunculin (Lat) causes rapid 

depolymerisation of actin by binding to monomers and preventing 

polymerisation (actin structure is shown in figure 1.7) (Spector et al., 1989; 

Ayscough etal., 1997; Morton etal., 2000).

Like tubulin (microtubules), actin localisation is cell cycle dependent (Marks et 

al., 1986; Arai et al., 1998), as illustrated in figure 1.3. After septation, actin 

patches concentrate at the old end of the daughter cell the site where 

monopolar growth begins. At NETO, actin patches relocalise to both tips and 

growth becomes bipolar (Marks et al., 1986). This localisation is influenced by 

Bud6  and For3 (section 1.2.1.1), which localise to the cell tips in a Teal, and 

therefore interphase microtubule, dependent manner. In interphase, actin
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Figure 1.7 A 3-dimensional representation of the actin monomer

The actin monomer seen from the front and reverse. Sites of binding of various 
compounds are highlighted in colours which correlate to the key. Reproduced 
from Belmont etal. (1999).



cables extend along the longitudinal axis of the cell with the barbed ends facing 

the tips. This conformation is thought to aid the transport of material to the 

growing ends of the cell (Kamasaki et al., 2005).

At mitotic entry, actin cables re-orientate so that barbed ends face into the cell 

middle (Kamasaki et al., 2005). As mitosis proceeds, the actin patches 

relocalise to a broad band around the middle of the cell and in anaphase, this 

band concentrates into a tight ring (Marks et al., 1986; Arai et al., 1998; Arai 

and Mabuchi, 2002). Recruitment of components to this actin ring occurs in an 

ordered fashion (Wu et al., 2003, 2006). The earliest known marker for division 

ring placement is the anillin-like protein M idi, shown in figure 1.2 (Chang and 

Nurse, 1996; Sohrmann eta l., 1996). As SPBs separate, M idi leaves the 

nucleus, in a Plo1-dependent manner, and localises at the cortex around the 

nucleus in a broad band that then narrows in anaphase to form a tight band 

(Bahler et al., 1998a; Paoletti and Chang, 2000). Importantly, cells lacking Midi 

position the division septa randomly, despite having a correctly positioned 

nucleus. Other proteins that associate with the CAR include Myo2, which 

interacts directly with M idi, Cdc12, the Arp2/3 complex and Cdc15 (Motegi et 

al., 2004; Wu et al., 2003; Arai and Mabuchi, 2002; Pollard, 2007). Timing of 

division ring positioning has recently been investigated. It was found that 

position is set shortly after mitotic entry, correlating to the timing of Midi release 

from the nucleus (Daga and Chang, 2005; Tolic-Norrelykke et al., 2005). In this 

way, the position of the mitotic nucleus and the ring site overlap, increasing the 

efficiency of correctly placing the division plane between the segregated sister 

genomes. As previously mentioned the CAR is required for eMTOC formation 

and is then itself spatially maintained by the microtubules nucleated from the 

eMTOC (section 1.2.1.3). In cytokinesis, the CAR constricts and the daughter 

cells are physically separated.

Recently, several groups have observed a role for actin in higher organisms in 

modifying transcriptional complexes in the nucleus (reviewed in Pederson and 

Aebi, 2005) and in yeast as a chromatin remodelling factor (reviewed in 

Blessing et al., 2004). Additionally, there is some evidence from other 

organisms of actin being an extra-spindle matrix (Fabian and Forer, 2005). To 

date, actin has not been observed in the nucleus in fission yeast. However,
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visualisation of actin primarily relies on phalloidin staining which only detects F- 

actin. Therefore, it is conceivable that actin also exists in the fission yeast 

nucleus as monomers or short filaments and that conclusions regarding the role 

of actin will be re-assessed as imaging capabilities improve.

1.3 Checkpoints controlling mitotic entry and progression

In the previous sections, I have described the events of the G2-M transition and 

mitotic progression together with a summary of the cytoskeletal re-organisation 

that fission yeast undergoes during these stages. In this section I will describe 

some of the checkpoints which act to ensure fidelity of the cell cycle at both the 

G2-M transition and during mitotic progression.

1.3.1 Checkpoints acting over the G2-M transition

Firstly, several checkpoints act over the G2-M transition including those relating 

to DNA damage, DNA repair and environmental stress. I will not describe these 

here but will instead summarise the cell size checkpoint as it pertains directly to 

this work.

1.3.1.1 Cell size checkpoint

The cell size checkpoint acts at the G2-M transition to prevent mitotic entry if 

cells are too small. This checkpoint works by preventing entry into mitosis by 

inhibiting the mitotic activity of Cdc2 (section 1.1.1). In brief, Cdc2 is kept 

phosphorylated and inactive by the kinase Wee1 (Nurse, 1990). This is shown 

in cells that lack Wee1 where the checkpoint is inactivate, Cdc2 activation is not 

inhibited and therefore small (“wee”) cells progress to mitosis (Nurse 1975; 

Fantes and Nurse, 1978). In an unperturbed cell cycle the level of the 

phosphatase Cdc25 that acts antagonistically to Wee1 to dephosphorylate and 

activate Cdc2 accumulates during G2 (Russell and Nurse, 1986; Gould and 

Nurse, 1989; Moreno et al., 1990). Likewise, the mitotic cyclin Cdc13 increases 

during G2 (Hagan et al., 1988; Creanor and Mitchison, 1996). Additionally, the 

fission yeast polo kinase, Plo1, binding to the poles drives activation of Cdc2 

perhaps through an auto-amplification loop of Cdc2 as seen in other eukaryotes
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(Kumagai and Dunphy, 1996). A mutation of the SPB component Cut12 and 

overexpression of the NIMA-related kinase, Fin1, cause premature Plo1 pole 

localisation and bypass the requirement for Cdc25 for mitotic entry (Bridge et 

al., 1998; Mulvihill et al., 1999; Grallert and Hagan, 2002). Meaning that the 

recruitment of Plo1 to the poles influences the balance between Wee1 and 

Cdc25.

This checkpoint provides a useful tool for synchronising cells at the G2-M 

transition. Cells containing the cdc25-22 temperature sensitive mutation can be 

blocked at a restrictive temperature and released into mitosis at a permissive 

temperature (Fantes, 1979). The addition of high concentrations of the actin 

depolymerisation agent latrunculin arrests cells at the G2-M transition due to a 

failure to reach the critical cell size threshold (Rupes et al., 2001).

1.3.2 Checkpoints acting over mitotic progression

In addition to the checkpoints acting at the G2-M transition there are a number 

which govern mitotic progression to ensure accurate segregation of the genetic 

material to daughter cells. In the following section I will describe the spindle 

assembly and spindle orientation checkpoints (reviewed in Lew and Burke, 

2003).

1.3.2.1 The Spindle Assembly Checkpoint (SAC)

In mitosis, the SAC monitors the bi-polar attachment of chromosomes to ensure 

the correct segregation of the duplicated genome to each daughter cell. This 

checkpoint, whose function and components are highly conserved in all 

eukaryotes, acts, via APC inactivation, to delay anaphase onset allowing time 

for the cell to correct deleterious attachments (figure 1.8). Individual SAC 

components, namely Mad1, Mad2, Mad3, Bub1 and Bub3, were first identified 

in budding yeast by screening for mutants that died following microtubule 

destabilising treatment (Li and Murray, 1991; Hoyt etal., 1991). Similarly, Mps1 

was also identified as a SAC component with an additional role in SPB 

duplication (Weiss and Winey, 1996).

40



Inactive 
v A PC /F ^

Metaphase 
Arrest

I
- i

Figure 1.8 The spindle assembly checkpoint (SAC) in fission yeast

In the absence of bipolar spindle attachment (B) components of the SAC (A and 
C) are loaded to the vacant kinetochore binding site (D) and serve to inactivate 
the anaphase promoting complex (APC) leading to a metaphase arrest (E and 
F). In the presence of bipolar spindle attachment (G) APC is active and degrades 
securin (Cut2) (H and I) leading to cohesin destruction and chromatid separation 
(J). Reproduced from Kadura and Sazer (2005).
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Whilst the SAC is known to monitor the correct bi-polar attachment of sister 

chromatids to k-fibres the actual mechanism responsible for this has not been 

straightforward to assess. The SAC could be monitoring either microtubule 

occupancy of the kinetochore, tension across the spindle or a combination of 

both of these. Evidence from vertebrates shows that a SAC mediated delay can 

be overcome by the application of tension, via micromanipulation, to improperly 

attached chromosomes (Li and Nicklas, 1995). Additionally, a single unattached 

kinetochore can delay anaphase (Rieder et al., 1994), and in both vertebrates 

and yeast, Mad2 localises only to such empty kinetochores (Waters et al., 1998; 

Ikui et al., 2002). By contrast, the kinase Bub1, a substrate for Cdc2, localises 

to all kinetochores early in metaphase in an unperturbed cell cycle (Taylor and 

McKeon, 1997; Bernard et al., 1998). To support this, experiments in 

mammalian cells have further shown that, when kinetochores have attached 

microtubules but tension is abolished by treatment with vinblastine, Bub1 is 

recruited but not Mad2 (Skoufias et al., 2001). This evidence has led to the 

hypothesis of a SAC with two branches, one (Mad2-dependent) that monitors 

occupancy and another (Bub1-dependent) monitoring tension.

Once the SAC is activated, Mad2 binds directly to an APC adaptor protein, 

Cdc20 in budding yeast or Slp1 in fission yeast (section 1.1.2), to prevent APC 

activation, an event that is Mad1 dependent (Hwang et al., 1998; Kim et al., 

1998). Mad1 becomes hyperphosphorylated and forms a complex with Mad2 

(Hardwick and Murray, 1995). In fact, Mad2 fails to localise correctly to the 

kinetochore in the absence of Mad1 (Chen et al., 1998; Ikui et al., 2002). 

Structural studies on Mad2 have suggested a mechanism into how the protein 

causes a SAC delay (Luo et al., 2000; Sironi et al., 2002). There are in fact two 

conformations of Mad2 (Luo et al., 2004). Recruitment of Mad2 to Mad1 at an 

unattached kinetochore results in a conformational change in Mad2 that allows 

it to bind to Mad1 (Luo et al., 2002). As the binding site for Mad2 is similar in 

Mad1 and Cdc20 (Luo et al., 2002; Sironi et al., 2002) this conformational shift 

allows Mad2 to then bind to Cdc20 and inhibit the APC. In this way the 

unattached kinetochore acts to catalyse a conformational change to Mad2 that 

acts to inhibit the APC via Mad2 association to Cdc20 (reviewed in Nasmyth

2005). A complex that comprises the Cdc20 adaptor protein together with 

Mad2, Mad3 and Bub3 has been identified in human cells (Sudakin etal., 2001)
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and yeast cells (Hardwick et al., 2000; Millband and Hardwick, 2002) that, in 

vitro, inhibits the APC up to 3000 times more than Mad2 alone. Other proteins 

are then recruited to the kinetochore. There is evidence that in fission yeast 

Bub1 may act with Bub3 to form a scaffold to recruit more Bub1, Bub3 and 

Mad3 protein to the kinetochore (Vanoosthuyse etal., 2004).

During mitosis in budding yeast, each kinetochore attaches a single k-fibre 

(Byers and Goetsch, 1975; Peterson and Ris, 1976; Winey et al., 1995). This is 

in contrast to the situation in fission yeast and mammalian cells where each 

kinetochore attaches to multiple k-fibres, 2-4 in the case of S.pombe (Ding et 

al., 1993) and approximately 20 in the case of mammalian cells at multiple 

locations (Cassimeris et al., 1990). Due to the multiple docking sites for k-fibres 

on each kinetochore, in the same way as mammalian cells, fission yeast can 

have several attachment conformations. Correct attachment, where an equal 

number of k-fibres from each SPB are attached exclusively to one of each of 

the two sister kinetochores, results in balanced tension and is termed amphitelic 

attachment. Funabiki and colleagues (1993) showed the formation of a 

metaphase plate of aligned kinetochores in fixed S.pombe cells for the first time 

indicating that balanced tension, and therefore amphitelic attachment, is 

established prior to anaphase onset. This observation was later confirmed in 

live cell analyses by Tournier et al. (2004). In fission yeast there are three 

incorrect attachment conformations, namely: monotelic, where only one 

kinetochore is attached to k-fibres from a single SPB; syntelic, where both 

kinetochores are attached to k-fibres from the same SPB; merotelic, where one 

kinetochore is attached to microtubules from both SPBs. Left uncorrected, all 

these arrangements could potentially cause mis-segregation.

Correction of inappropriate attachments in budding yeast is achieved by the 

action of the Aurora kinase homolgue IpH (Biggins et al., 1999; Tanaka et al.,

2002). The consequent lack of tension induces IpH to activate the SAC and to 

phosphorylate kinetochore proteins including Dam1 (Kang etal., 2001), which 

allows uncoupling of the kinetochore and the k-fibre. Dephosphorylation of 

Dam1 by Glc7 allows re-attachment of the kinetochore and this 

phosphorylation/dephosphotylation process repeats until the correct attachment 

is achieved (Pinsky et al., 2006). The fission yeast Aurora kinase, Ark1, is also
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involved in regulating chromosome attachment (Petersen et al., 2001). Ark1 is 

recruited to the mitotic spindle by the chromosome passenger protein Bir1 

(survivin) (section 1.2.1.2). Interestingly, cells lacking Ark1 and Bir1 mutants are 

unable to recruit Mad2 to kinetochores in the presence of microtubule 

destabilising agents, whereas Bub1 and Mad3 localisation is unaffected 

(Petersen and Hagan, 2003). This indicates that Ark1 is involved in the 

predicted occupancy-sensing branch of the SAC. The mitotic fission yeast 

Shugoshin-like protein Sgo2, is required for Bir1, and therefore Ark1, 

localisation and activity (Kawashima et al., 2007; Vanoosthuyse et al., 2007). In 

fission yeast, unlike budding yeast, Dam1 is not essential. However, cells 

lacking Dam1 undergo a SAC-mediated delay, showing that this protein plays a 

role in attachment (Sanchez-Perez et al., 2005). In fact, cells lacking both Dam1 

and Klp5 are inviable, suggesting that these proteins can substitute for one 

another. Furthermore, cells lacking Klp5 and Klp6 , kinesin- 8  family members 

that destabilise microtubules, are synthetically lethal with cells lacking Bub1 but 

not Mad2 (West et al., 2002). The localisation of Klp5/6 to the outer repeats of 

centromeres in metaphase indicates that controlled destabilisation here may be 

important for generating tension in mitosis (Garcia et al., 2002).

1.3.2.2 The Spindle Orientation Checkpoint (SOC)

The SOC was first described in S.cerevisae but has more recently also been 

described in S.pombe.

1.3.2.2.1 SOC in budding yeast

In this organism, a checkpoint exists, known as the SOC, to prevent anaphase 

onset until the spindle is correctly positioned (reviewed in Lew and Burke,

2003). This is necessary because of the unusual mitotic programme of 

S.cerevisae, whereby it forms a mitotic spindle before the G1-S transition, 

meaning that both the nucleus and the mitotic spindle have to be physically 

transported to the bud neck before mitosis. This is achieved by astral 

microtubule interaction with the actin cytoskeleton at the cell cortex (Palmer et 

al., 1992). Disruption of any part of this process in mutants with defects in astral 

microtubules, microtubule motor proteins or cortical proteins leads to a mis-
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positioned spindle and an activated SOC (Beach et al., 2000; Schuyler and 

Pellman, 2001; Segal and Bloom, 2001). The SOC delays anaphase by 

preventing mitotic exit network (MEN) activation (reviewed in McCollum and 

Gould, 2001), which in turn controls the release of Cdc14 required for Cdk 

inactivation (reviewed in Jensen et al., 2002). As the mitotic spindle forms 

components of the MEN localise to SPBs. Several of these, including Bub2- 

Bfa1 and Tem1, localise asymmetrically to the pole that will enter the daughter 

cell (Bardin et al., 2000; Pereira et al., 2000). The only MEN component not to 

bind at either pole, Lte1, binds instead to the cortex of the daughter cell, 

providing an appealing model of spatial regulation whereby activation of the 

MEN, and therefore anaphase onset, can only occur when the pole enters the 

daughter cell allowing Lte1 to interact with Tem1 (Bardin et al., 2000; Pereira et 

al., 2000). However, Lte1 is not essential for MEN activation except at low 

temperature, meaning that there must be other regulatory steps to the SOC that 

are as yet undescribed and that at least at elevated temperatures Lte1 is not 

acting as a guanine exchange factor (GEF) for Tem1 (Adames et al., 2001). 

Another putative target of the GEF activity of Lte1 could be Ras2, however, 

whilst Ras2 is essential for Lte1 localisation Lte1 preferentially binds to Ras2- 

GTP (Yoshida et al., 2003; Seshan and Amon, 2005). Whilst this interaction 

does require the GEF domain of Lte1 it appears to be functioning here not as 

an exchange factor domain but as a binding motif. Furthermore, the MEN 

inhibitor Kin4 which localises primarily in the mother cell provides more 

evidence of particular asymmetric spatial cues (D’Aquino et al., 2005; Pereira 

and Schiebel, 2005). Interestingly, in an unperturbed cell cycle, it is always the 

old pole that enters the daughter cell and has the asymmetrically distributed 

MEN components localised to it. This asymmetry is disrupted by treatment with 

the microtubule poison nocodazole, meaning that MEN loading becomes 

symmetrical and either pole enters the daughter randomly (Pereira et al., 2001).

1.3.2.2.2 SOC in fission yeast

The SOC in fission yeast was first described by Gachet et al. (2001) as a 

checkpoint that delays the onset of anaphase if the mitotic spindle is mis- 

orientated by more than 30° from the longitudinal axis of the cell (figure 1.9). 

The rationale behind the proposal was that sister chromatid separation along an
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Figure 1.9 The spindle orientation checkpoint (SOC) in fission yeast

A model of the SOC adapted from Gachet et al. (2004). Microtubules are shown 
in green, chromatids in blue, SPBs in black and the astral microtubule interaction 
zone (AMIZ) in red.



axis that is not approximately perpendicular to the axis of cell division could 

lead to mis-segregation of the replicated genome. Unlike in budding yeast, mis- 

positioning of the spindle in S.pombe results in a delay over anaphase onset 

that is mediated by the APC rather than by the MEN equivalent in this 

organism, the septation initiation network (SIN) (reviewed in Krapp et al., 2004). 

However, like in budding yeast, the SOC can be activated by the disruption of 

the actin cytoskeleton (via latrunculin treatment or the use of act1-188 mutants), 

in mutants defective in actin organisation (myo5D and for3D) or in mutants with 

astral microtubule instability (cdcl 1-123) (Gachet et al., 2001, 2004; Tournier et 

al., 2004; Rajagopalan et al., 2004).

A mechanism of spindle orientation in fission yeast proposed by Gachet et al.

(2004) is that to orientate the spindle prior to anaphase astral microtubules 

interact with a band of cortical actin that localises around the nucleus in mitosis, 

termed the astral microtubule interaction zone (AMIZ) (section 1.2.1.3). 

However, there is controversy within the literature about the precise timing of 

astral microtubule nucleation (section 1 .2 .1 .2 ) meaning that orientation by 

astrals prior to anaphase onset is now disputed. Zimmerman et al. (2004) 

suggest that INAs (section 1.2.1.2), which are nucleated in phases 1 and 2, are 

responsible for orientation. However, a model for such orientation, incorporating 

the effect of actin depolymerisation, has yet to be proposed.

Regardless of the mechanism of spindle orientation it is generally agreed upon 

that mis-orientation is monitored by a subset of SAC components, which are 

required for a SOC-mediated delay. However, the exact components required 

for the SOC are disputed. Tournier et al. (2004) state that Bub1, Bub3 and 

Mad3 are required whereas Mad1 and Mad2 are not. Mph1, the fission yeast 

homologue of Mps1, is partially required for the delay, perhaps reflecting its 

partial role in the recruitment of Bub1 to kinetochores (Vanoosthuyse et al.,

2004). Recently it has been shown that the exact same subset of SAC 

components is required to impose a delay on cells lacking Mal3 (Asakawa et 

al., 2005), the fission yeast EB1 homologue which stabilises polymerising 

microtubules (Sandblad et al., 2006). By contrast, other groups working on the 

SOC have found that only Bub1 and Mph1 are required to activate it 

(Rajagopalan et al., 2004). Interestingly, both groups report a role for Bub1,
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which has been implicated in tension sensing but not Mad2, which is thought to 

be involved in sensing kinetochore occupancy (section 1.3.2.1). Therefore it 

seems the SOC is monitoring tension across the kinetochores. This may be 

particularly important in fission yeast, which can have microtubule occupancy at 

all kinetochore sites but may nevertheless be syntelically or merotelically 

attached (section 1.3.2.1). In addition to being required to impose the SOC 

delay, Tournier et al. (2004) show that Bub1 localises to kinetochores in the 

presence of latrunculin and in cd c l 1-123 cells, whereas Mad2 does not. In 

several ways the results of Rajagopalan et al. (2004) that Bub3 and Mad3 are 

not required for the SOC are surprising as both are required in S.cerevisae for 

Mps1 to impose an arrest in response to microtubule damage. Also, Bub3 is 

required for recruitment of Bub1 to kinetochores and for the SAC function of 

Bub1 in fission yeast (Vanoosthuyse et al., 2004).

There are several differences in experimental approaches between groups that 

could have resulted in their differing conclusions as to which SAC components 

are required. These include the amount of drug used to activate the SOC, the 

method of visualisation employed and the strains used to activate the SOC. 

Tournier et al. (2004) use a concentration of Lat A that depolymerises actin 

cables but not patches. In this way the cell size checkpoint (section 1.3.1.1) is 

not activated and cells enter mitosis. Rajagopalan et al. (2004) however, use a 

cdc25-22 background to arrest cells after the cell size checkpoint at the G2-M 

transition meaning that the actin cytoskeleton can be completely depolymerised 

before mitosis. However, their use of 50\iM Lat A has previously been shown to 

prevent Polo kinase localisation to the SPBs, a necessary step in spindle 

formation (Tournier et al., 2004). Therefore the fidelity of the spindle at this dose 

of Lat A may be effected, altering the SAC components needed to impose a 

SOC delay. Alternatively, the use of DAPI staining to determine mononucleates 

versus binucleates and the percentage of short spindles in a population used by 

Rajagopalan and colleagues (2004) to determine whether cells have a delay 

over anaphase onset may be too crude. By contrast Tournier et al. (2004) use 

fluorescently tagged kinetochores and SPBs to determine the percentage of 

cells in prometaphase and metaphase. This may contribute to the discrepancies 

between findings in these groups. In addition, the field has further been 

complicated by the use of cells lacking Mia1/Alp7 to activate a SOC delay
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(Oliferenko and Balasubramanian, 2002), as this deletion was subsequently 

shown to activate the SAC (Sato et al., 2003).

In addition to the disparity between which SAC components are involved in 

mediating the SOC delay there are different prevailing theories about where 

mitotic spindle angle is monitored. Rajagopalan et al. (2004) propose that the 

essential gene Pcp1, which tethers the y-TURC to the nuclear face of the SPB 

in mitosis (section 1.2.1.5) monitors tension across the spindle. Thus pcp1(400- 

900D) cells have been described as activating the SOC due to an impairment of 

the tension-sensing ability of Pcp1 despite no observable mis-orientation of the 

spindle. However, Tournier ef al. (2004) favour the hypothesis that spindle 

orientation is measured at the kinetochores and that this is shown by the 

localisation of Bub1 to kinetochores, and not the poles, in SOC activation.

In a separate point, unlike the asymmetrically dividing budding yeast, fission 

yeast divides symmetrically at the middle of the cell. However, asymmetry of the 

loading of the SIN components, similar to that of the MEN, is observed 

(reviewed in Bardin and Amon, 2001). Whilst there is no correlation between 

whether the old or new pole is distributed to the old or new end of the cell in 

S.pombe, the SIN is always activated on the new pole (Grallert et al., 2004). 

Therefore despite the lack of specific spatial cues, the maturity of the pole 

determines its role in cytokinesis. It is unknown whether the specific 

destabilisation of astral microtubules will result in symmetrical loading of SIN 

components as it does with MEN components in budding yeast.

1.4 Aims of my project

The aim of this thesis is to provide an in depth re-evaluation of the mechanisms 

controlling mitotic spindle orientation and the SOC in fission yeast, with a view 

to solving the discrepancies presented in the literature and summarised in this 

introduction. To do this, I have used highly accurate, single cell time-lapse 

microscopy that has enabled me to follow minutely the spindle dynamics of a 

variety of mutant strains as well as those in which the SOC has been activated 

via drug-induced actin depolymerisation. This approach was made possible by 

specific labelling of individual components of the mitotic machinery (spindle,
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SPBs and kinetochores), allowing me to visualise and accurately measure 

spindle elongation and the angle of the spindle in relation to the longitudinal 

axis of the cell.
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Chapter 2

Materials and Methods

2.1 Yeast Techniques

2.1.1 Yeast strains

A full list of S.pombe strains used in this study is given in table 2.1.

2.1.2 Yeast media

All media were autoclaved at 120°C 15p.s.i. for 10 minutes.

Selective media -  Edinburgh Minmal Media (EMM):

0.3% KH phthallate, 0.22% Na2HP0 4, 0.5% NH4CI, 2% glucose, 20ml/l salts, 

1 ml/l vitamins, 0.1 ml/I minerals (as detailed in Moreno et al., 1991).

EMM agar was made by adding 2% Bacto Agar (Difco) to EMM liquid.

Glucose, EMM stocks and vitamins were added separately after autoclaving. 

Additional nutritional supplements (adenine, histidine, leucine and uracil) were 

added to the media as required from sterile stocks of 1 0 mg/ml to a final 

concentration of 1 0 0 ^g/ml

Rich media -  Yeast Extract plus Supplements (YES):

0.5% Oxoid yeast extract, 2% glucose, 100mg/l adenine.

YES agar was made by adding 2% Bacto Agar (Difco) to YES liquid.

Glucose and adenine were added separately after autoclaving.

For the selective growth of antibiotic resistant strains, G418 (Invitrogen) or 

Hygromycin B (Sigma) was added at 100^ig/ml to YES agar plates.

The actin depolymerisation agent Latrunculin A (Molecular Probes) was 

dissolved in dimethyl sulfoxide at a stock concentration of 1 mg/ml, and used at 

concentrations indicated in individual experiments. Latrunculin A was added to
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Table 2.1 Strains used in this study

Strain Genotvoe Source

JM100 leu 1-32 ura4-D18 h+ Lab stocks

JM109 leu 1-32 ura4-D18 h- Lab stocks

JM2977 mto1::hygR leu 1-32 ura4-D18 h+ This study

JM2978 mto1::hygR leu 1-32 ura4-D18 h- This study

JM2566 Iys1:nmt1-atb2-gfp leu1-32 ura4-D18 h+ Lab stocks

JM3096 mto1::hygR Iys1 :nmt1-atb2-gfp leu 1-32 
ura4-D18h+

This study

JM2887 dam1::kanR Iys1:nmt1-atb2-gfp leu1-32 
ura4-D18 h?

Lab stocks

JM2763 ndc80-gfp:kanR cdc11-cfp:kanR leu1-32 
ura4-D18 h-

Lab stocks

JM2979 mto1::hygR ndc80-gfp:kanR cdcl 1-cfp:kanR 
leu 1-32 ura4-D18 h-

This study

JM3237 mal3::ura4 ndc80-gfp:kanR cdc11-cfp:kanR 
leu 1-32 ura4-D18 h-

Lab stocks

JM2576 cdc7-gfp:ura4 leu1-32 ura4-D18 h- Lab stocks

JM2574 sid1-gfp:ura4 leu 1-32 ura4-D18 h- Lab stocks

JM2926 mto1::kanR leu 1-32 ura4-D18 h+ K. Sawin

JM2955 mto1::kanR cdc7-gfp:ura4 leu 1-32 ura4-D18 This study

JM2956 mto1::kanR sid1-gfp:ura4 leu 1-32 ura4-D18 This study

JM2945 Iys1:nmt1-atb2-gfp cdc15-gfp:ura4 leu 1-32 
ura4-D18 h-

Lab stocks

JM2835 ndc80-cfp:kanR leu 1-32 ura4-D18 h+ Lab stocks

JM3045 lys 1 :nmt1-atb2-gfp ndc80-cfp:kanR 
cdc15-gfp:ura4 leu 1-32 ura4-D18 h+

This study

JM2736 cdc11-gfp:kanR leu1-32 ura4-D18 h+ Lab stocks

JM3193 mto1::hygR cdc11-gfp:kanR leu 1-32 
ura4-D18 h+

This study

JM2761 act1-188 ndc80-gfp:kanR leu 1-32 ura4-D18 h- Lab stocks

JM3315 act1-188 ndc80-gfp:kanR cdcl 1-cfp:kanR 
leu 1-32 ura4-D18h-

This study

JM3387 a c tl-188 ndc80-gfp:kanR cdcl 1-cfp:kanR 
leu 1-32 Ieu1+ ura4-D18 pJK148 h-

This study

JM3388 Ieu1:act1 act1-188 ndc80-gfp:kanR 
cdc11-cfp:kanR leu 1-32 Ieu1+ ura4-D18 
pJK148 h-

This study



JM3389

JM3390

JM3406

JM3407

JM3408

JM3206

JM2608

JM3350

JM3207

JM3208

JM3217

JM2894

JM2893

JM2881

JM2844

JM3093

JM3137

JM3007

JM3089

JM3355

JM3219

JM3318

JM2666

JM3325

JM3236

JM3323

Ieu1 :act1 (R183A,D184A) act1-188 
ndc80-gfp:kanR cdc11-cfp:kanR leu1-32 
Ieu1+ ura4-D18 pJK148 h-

leu1:act1(D157E) act1-188 ndc80-gfp:kanR 
cdc11-cfp:kanR leu 1-32 Ieu1+ ura4-D18 
pJK148 h-

Ieu1:act1 act1::hygR ndc80-gfp:kanR 
cdcl 1-cfp:kanR leu 1-32 Ieu1+ 
ura4-D18pJK148 h-

leu1:act1(R183A,D184A) act 1 r.hygR 
ndc80-gfp:kanR cdcl 1-cfp:kanR leu 1-32 
Ieu1+ ura4-D18 pJK148 h-

leu1:act1(D157E) act1 r.hygR 
ndc80-gfp:kanR cdcl 1-cfp:kanR leu1-32 
Ieu1+ ura4-D18 pJK148 h-

ase1-gfp:kanR leu 1-32 ura4-D18 h-

cdc11-cfp:kanR leu1-32 ura4-D18 h+

ase1-gfp:kanR cdcl 1-cfp:kanR leu1-32 
ura4-D18 h-

ase l r.hygR leu 1-32 ura4-D18 h+

aselr.hygR leu 1-32 ura4-D18 h-

aselr.hygR ndc80-gfp:kanR 
cdc11-cfp:kanR leu 1-32 ura4-D18 h+

tea lrura4 leu 1-32 ura4-D18 h-

tip lrkanR  leu 1-32 ura4-D18 h-

dam lrkanR  leu 1-32 ura4-D18 h-

mal3rura4 leu 1-32 ura4-D18 h-

klp2rura4 leu 1-32 ura4-D18 h-

klp3rura4 leu 1-32 ura4-D18 h-

klp5rura4 leu 1-32 ura4-D18 h-

klp6rura4 leu 1-32 ura4-D18 h-

klp8rkanR leu 1-32 ura4-D18 h-

klp9rkanR leu1-32 ura4-D18 h-

klp9-gfp:kanR leu 1-32 ura4-D18 h+

ndc80-cfp:kanR leu 1-32 ura4-D18 h-

klp9-gfp:kanR ndc80-cfp:kanR 
leu 1-32 ura4-D18 h+

klp9rhygR leu 1-32 ura4-D18 h+

klp9rhygR ndc80-gfp:kanR 
cdc11-cfp:kanR leu 1-32 ura4-D18 h+
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This study

This study

This study

This study

This study

T. Toda 

Lab stocks 

This study

This study 

This study 

This study

Lab stocks 

Lab stocks 

Lab stocks 

Lab stocks 

Lab stocks 

Lab stocks 

Lab stocks 

Lab stocks 

This study 

This study 

This study 

Lab stocks 

This study

This study 

This study



JM3357

JM3368

JM2610

fin1-4gfp:kanR ura4-D18 h+

fin1-4gfp:kanR cdc11-cfp:kanR leu1-32 
ura4-D18 h+

mid1-gfp:ura4 cdcl 1-cfp:kanR leu1-32 
ura4-D18 h+

I. Hagan 

This study

Lab stocks
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YES liquid for cell cycle experiments or to EMM plugs for live cell microscopy 

(see section 2 .2 .3.2 ).

2.1.3 Yeast growth conditions

Liquid yeast cultures were grown in supplemented EMM or YES media in a 

New Brunswick gyratory shaker at 200r.p.m. at 30°C unless otherwise stated. 

Cells on agar plates were incubated in a constant temperature incubator at 

30°C.

2.1.4 Yeast storage conditions

Yeast strains were stored in 70% YES; 30% glycerol at 80°C.

2.1.5 Cell cycle synchronisation

Cell synchrony was achieved by lactose gradient size selection. A YES-lactose 

gradient (10-40% lactose) was manufactured in a 50ml centrifuge tube using a 

Fisherbrand gradient mixer. Cell cultures were grown to a density of 5x106 

cells/ml in YES. 50ml of this culture was chilled on ice for 10 minutes and then 

concentrated by centrifugation (2800r.p.m. for 1 minute in a Sorvall benchtop 

centrifuge). Cell pellets were resuspended in 1ml of chilled YES and carefully 

deposited on top of the YES-lactose gradient, which was then centrifuged at 

1300r.p.m. for 7 minutes at 4°C. Using a pipette a 3ml sample was gently 

extracted from the top of a broad band of cells that collected at the centre of the 

gradient during centrifugation. These cells were flushed into 40ml of chilled YES 

before being harvested by centrifugation at 2800r.p.m. for 1 minute. Cells were 

resuspended in 2ml of fresh YES. Following release at 30°C in an Innova water 

bath shaker, cell samples were collected at regular intervals and processed as 

described in 2 .2 .2 .

2.1.6 Yeast transformations by lithium acetate

Cells were grown to a density of 5x10ecells/ml. 100ml of cells was harvested by 

centrifugation (3200r.p.m. for 2 minutes in a benchtop centrifuge), washed twice
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in distilled water and resuspended in 500pl of LiAc.TE (0.1 M LiAc.IxTE (10mM 

Tris/HCI pH8.0 and 1mM EDTA)). To 100pl of LiAc.TE cell suspension was 

added 1—20pg of transforming DNA and 100pg of sterile sonicated single 

stranded salmon sperm carrier DNA in a volume of 10pl. 160pl of LiAc.TE.40% 

PEG3350 was added and the mix incubated at 30°C with agitation for 30 minutes. 

Cells were then heat shocked at 42°C for 15 minutes and harvested by 

centrifugation (13000r.p.m. for 10 seconds in a benchtop Heraeus Biofuge Pico 

microcentrifuge) before being resuspended in 200^1 of TE. This cell solution 

was then spread onto the appropriate selective EMM plates or, in the case of 

selection by antibiotic resistance, cells were initially spread onto YES agar 

plates and after 24 hours incubation at 30°C, replica plated to YES agar plates 

containing G418 or Hygromycin B.

2.1.7 Isolation of yeast genomic DNA

A freshly growing yeast colony was resuspended in 200pl of STET buffer (2% 

Triton X-100, 1% SDS, 100mM NaCI, 100mM Tris pH8.0, 1mM EDTA) in a 

microtube. 200pl of phenol-chloroform-isoamyl alcohol (25:24:1) was added, 

and glass beads (Biospec Products Inc.) added to the level of the meniscus. 

The cells were lysed in a Hybaid ribolyser (3x speed 4 for 10 seconds, chilled 

on ice between pulses). The lysate/phenol mix was collected by piercing the 

bottom of the sample tube with a heated needle and collecting into a fresh tube 

by centrifugation (2000r.p.m. for 30 seconds). The aqueous layer was then 

separated by centrifugation 13000r.p.m. for 10 minutes) and transferred to a 

fresh tube. To this was added ammonium acetate to a final concentration of 

0.3M and 2.5 volumes of 100% ethanol and the sample chilled on ice for 15 

minutes. The DNA was pelleted by centrifugation (13000r.p.m. for 10 minutes) 

and washed with 500pl of 70% ethanol. The tube was re-centrifuged briefly and 

any remaining liquid aspirated before the DNA pellet was dried in a 37°C 

incubator for 15 minutes. The DNA pellet was resuspended in 50|^l of water and 

1pl used in a 50pl polymerase chain reaction (PCR) reaction.
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2.1.8 Mating

Equal quantities of freshly growing cells of opposite mating types were mixed 

with a toothpick on an EMM agar plate containing all nutrients and incubated at 

28°C for 3 days. The formation of asci was monitored microscopically.

2.1.8.1 Random spore analysis

A small amount of the mated cell mix was resuspended in 1ml distilled water 

containing 0.5% Glucoronidase (Sigma) and incubated overnight at room 

temperature on a rotary wheel to digest asci. Spore numbers were estimated 

using a Thoma haemocytometer (Assistent) and, after washing out the 

Glucoronidase with H20 , approximately 500 spores were spread onto a YES 

agar plate and incubated at 30°C. After 3-4 days the colonies were replica 

plated to selective agar plates containing the appropriate nutritional 

supplements or antibiotics.

2.1.8.2 Tetrad dissection

Using a micromanipulator (Singer MSM), mature asci were placed in a line 3mm 

apart on a YES agar plate. The asci were left at 37°C for 3-4 hours to allow asci 

walls to break down. The 4 spores from each asci were then micromanipulated 

into a line 3mm apart and incubated at 30°C. After 3-4 days colonies were 

replica plated to selective agar plates containing the appropriate nutritional 

supplements or antibiotics.

2.2 Microscopy

2.2.1 (4’6-diamino-2-phenylindole) DAPI and calcofluor staining

Cells were fixed in 70% ethanol and stored at 4°C until required. Fixed cells in 

ethanol were pelleted by centrifugation (3000r.p.m. for 1 minute) and 

rehydrated in distilled water. 2\x\ of rehydrated cells were spread onto a 

microscope slide to form a monolayer of cells, and allowed to dry at room 

temperature. 1pl of DAPI plus calcofluor (1.5pg/ml DAPI (Sigma) and 50^ig/ml
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calcofluor fluorescent brightener (Sigma) in 1ml of Vectashield mounting 

medium (Vector Lab.)) was dotted onto the dried cells and sealed with a glass 

coverslip.

2.2.2 Fixation of cells expressing green fluorescent protein (GFP) and 

cyan fluorescent protein (CFP)

Cells in suspension were fixed by the addition of 0.1 volumes of 37% 

formaldehyde (Fisher Chemicals) for 10 minutes at their growth temperature, 

before being pelleted by centrifugation (3000r.p.m. for 1 minute) and washed 3 

times in PBSA. 2ptl of cell slurry was spread onto a microscope slide to form a 

monolayer of cells and dried at room temperature, 'lixl of DAPI plus calcafluor 

was dotted onto the surface and covered with a glass coverslip, as above 

(section 2 .2 .1 ).

2.2.3 Image acquisition

Fluorescence microscopy was performed on Deltavision Spectris and RT 

systems containing a photometries CH350L liquid cooled charge-coupled 

device camera and an Olympus IX70 inverted microscope with a 100x objective 

equipped with Deltavision data collection system (Applied Precision).

2.2.3.1 Fixed cells

Typically 18 images (0.2|im apart) were acquired and processed using the 

Softworx image processing suite (Applied Precision). Out of focus images were 

discarded prior to projecting the stack of images to one plane. Images were 

stored as 24 bit TIFF files and transferred to Photoshop (Adobe) to assemble 

figures. 3-dimensional cell reconstruction was performed using the Softworx 

application “volume viewer”.

2.2.3.2 Live cells

Live analysis of cells was performed in an imaging chamber (CoverWell PCI- 

2.5; Grace Bio-Labs) filled with 1ml of 1% agarose in EMM medium with or



without 0.625(aM or 1.25pM Latrunculin A and sealed with a 22 x 22mm glass 

coverslip. All time-lapse movies, unless otherwise indicated, were carried out at 

30°C. Constant temperature conditions were maintained using a full enclosure 

incubation chamber (Solent Scientific Ltd.). Stacks of six Z-sections (0.6pm 

apart) were taken at each time point with exposure times of 1 second for both 

GFP and CFP with a 33% neutral density filter used to limit photobleaching. 

Images were taken every 30 seconds unless otherwise stated. Projected 

images were made for each time point followed by intensity adjustments and 

conversion to 24 bit TIFF files. Movie files were transferred to ImageReady 

(Adobe) for signal balancing throughout the movie and compression to 

QuickTime (Apple) format.

Apparent spindle length was corrected for Z-axis skewing in strains with 

fluorescently tagged spindle poles by counting the number of focal stacks that 

separate the poles (stacks are 0.6pm apart). This provides an estimate of Z- 

depth (d), whilst the projected image gives the flat spindle length (uncorrected 

length, I). Pythagoras’s theorem was used to calculate spindle length (corrected 

spindle length =■%/(d2 + I2) ). Measurement of spindle length and angle was 

performed using the SoftWorx image processing suite. Spindle elongation rate 

was calculated by dividing the distance that the spindle elongates in phase 3 by 

the time taken. Spindle orientation plots are illustrated as graphs, with 0° 

representing the longitudinal axis of the cell and with ± values used for the 

spindle angle so that movement past 0 ° can be shown. ± values are assigned to 

movies randomly so that a spread of plots either side of zero can be observed. 

The spreadsheet program Excel (Microsoft) was used throughout to record data 

extracted from time-lapse sequences and for the production of graphs.

2.3 Nucleic acid manipulation

2.3.1 Polymerase chain reaction (PCR)

PCR was carried out using an OmnE or Techne thermal cycler in accordance 

with the manufacturer’s instructions. For amplification of DNA for cloning, gene 

disruptions and tagging, the Expand High Fidelity polymerase was used in 

accordance with the manufacturer’s instructions. Diagnostic PCRs were carried
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out using Taq polymerase (AB Technologies) according to the manufacturer’s 

instructions. A typical 50pl PCR mix contained 1xPCR buffer (either Expand 

PCR buffer or Taq PCR buffer), 1.5mM MgCL, 200pM dNTPs, 3pM of each 

primer, 0.1-250ng template DNA, and the recommended units of enzyme. 

Oligonucleotides were manufactured by Genosys or Oswel (for a list of 

oligonucleotide primers used in this study see table 2 .2 ) and were diluted to 

stock solutions of 1 pg/pl.

2.3.2 Agarose gel electrophoresis

Agarose gel electrophoresis was carried out in 1% agarose (Invitrogen) gels in 

1xTAE (40mM Tris base, 1mM EDTA and 20mM glacial acetic acid, pH8.3) with 

1xTAE electrophoresis buffer. DNA was loaded with 1/6 volume DNA loading 

buffer (0.25% Bromophenol blue; 40% glycerol) and electrophoresed with a 

constant current of 60-100mA. DNA was stained by including ethidium bromide 

(Life Technologies) in the gel at a final concentration of 0.5pg/ml, and visualised 

on a UV transilluminator. The molecular size of DNA fragments was determined 

by comparison to DNA size markers (Invitrogen).

2.3.3 Recovery of DNA fragments from agarose gels

DNA was extracted from agarose gels using a “MinElute Gel Extraction Kit” 

(Qiagen, ref. 28604) according to the manufacturer’s instructions.

2.3.4 Restriction endonuclease digestion and DNA modification

DNA was incubated with restriction endonucleases (New England BioLabs) and 

the appropriate buffers for 4 hours at 37°C. Calf intestinal phosphatase 

(Boehringer Mannheim) was used according to the manufacturer’s instructions 

and removed after reaction by gel electrophoresis (section 2.3.2) and recovery 

of the fragment (2.3.3). Ligation of DNA fragments was carried out in a 10pl 

volume of 1x ligation buffer (50mM Tris/HCI pH7.5, 10mM MgCL, 10mM 

dithiothreitol (DTT), 1mM ATP and 25pg/ml bovine serum albumin (BSA)) and 

0.4 unit of T4 DNA ligase (New England Biolabs). Ligations were incubated at 

room temperature for 4 hours.
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Table 2.2 Oligonucleotide primers used in this study

Italics represent plasmid specific sequence, restriction sites are underlined and 

mutagenic bases are shown in bold.

Ref. No. 

1290

1291

1292

1293

1056

1057 

1355

1356

1359

1372

177

179

1294

1295

1296

5’-3’ Sequence__________________________

AGTTTT CAT AT CTT CCTTT AT ATT CT A 
TT AATT G AATTT CAAAC AT CGTTTT AT 
T G AGCT CATTT AC AT CAACCGGTT C A 
CGGATCCCCGGGTTAATTAA

CTTTT AT G AATT AT CT AT AT GCT GT AT 
T CAT AT GCAAAAAT AT GT AT ATTT AAA 
TTT GAT CG ATT AG GT AAAT AAG AAG C 
GAA TTCGAGCTCGTTTAAA C

TACTTTCGCAGGCCAAGCC

AGT CTTTT AATT AT GACCT CAGT

AC AT CTT CTT CT G GAG G CC G

CGGCCT CCAGAAGAAGATGT

T CAGCCATT AATT GTT CCCCAT ACG A 
TTT AATT GAT ATT CT ATT GTT ATT ACCT 
GGTT AAGT CCG AT ATTTT AGCAAT C A 
CGGATCCCCGGGTTAATTAA

TTT AT AT AATT G GT AAC CTCT ATT ATT 
C AAT CT AAC AAG G AAT CAT G CCTT AA 
ACT CTCC AT AT CC AT GT CT AT AT C AG A 
GAA TTCGAGCTCG TTT AAA C

T C C G ATTTT ACT AAC AAT C CT AG

G G AAAT CT AATTTTT AAT CTTT CT

G CT AG GAT AC AGTT CT C AC AT C AC AT CCG

CGG AT GT GAT GT G AG AACT GT AT CCT AGC

AGCAACT GT CTT CCAACACTT CCAT CA 
TT CTT GT AC AC AAAG GATT G CTTTT AA 
GT CCCTTT AAACT CT G AAATT G ACC A 
CGGATCCCCGGGTTAATTAA

TAAAACCATTAAGCCCCTCTCGACGCC 
CT CCGTT G ACTT CTTT GTAT AGT GGG AC 
AACT GAT ATCG AT ATT AAT G AATT G 
CGGATCCCCGGGTTAATTAA

CAT GTG AAG G C AAG AG CTAAAT ATT AC 
T C AAAT AAG AGTT AT G AAC AC ATTTT GC 
C ATT CTT G GT AACTTTAAT GAT ATA 
GAA TTCGAGCTCGTTTAAAC

Function 

ase l del.F

ase l del.R

ase l 5’tester 

ase l 3’tester 

hygR F 

hygR R 

klp8 del.F

kip8 del.R

klp8 3’ tester 

klp8 5’tester 

kanR F 

kanR R 

klp9 del.F

klp9 tag.F

klp9 del/tag.R
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1297

1298 

JP7 

JP8

JP9

JP10

JP11

JP12

1342

1346

1347

1348

1349

1351

1352

1353

1354

1365

1366

1369

1370

1371 

1374

1375

CT ATTT AACT AG ATT G AAC ATT AC

C AAG AAG AT CTT AAG G ACT AT C

CAAAG AT GAT ACATGCCGCAG

TTAATTAACCCGGGGATCCG 
T AAT CTG GAT AGTTT G C G G

G TTT AAA CGAGCTCGAA TTC 
AATT GATT AG AAAACG AAC

CCGCAATT ACAAGT CT ACT AC

GAGTACACGTTGTGCCTG

CT AAC ACAAAC ATT AAACCTT C

G G GTGT ATT G AAGGT AC AT AC

TACCAATTAAATCAGTACTGAAG

CT CGCCGGT GCT GCCTT GACT GACTA

T AGT CAGT CAAGGCAGC ACCGGCGAG

AAT AACG CG G AAATT AT ATTT CC

GCTT CGT GTT GCT CCT GAG

GT AAGT AGCCT CAT GAATACC

GACT CTGGT G AGGGT GTT ACCCA

T G GGT AAC ACCCT C ACC AG AGT C

CT AAG CTC CT CTT ACTTTTT G

AGCCAGT GGG ATTT GTAGCT GAA 
AT ATTT CT GT AACTT CAAT AT G

T AT ATT CG AT AT CGT G AACTTT C

CAGG AAAAG AGCT CCTT AATTTT 
T AT GTT AAT GATT ATT C

CAGGACGCGTCGACCACTAATCA 
T AAC CAAT GT CTT AC

CT C AG CC AGCCGT GTT AT AACTT ACCG 
TTT ACC AACT ACATTTTTT GT AACG AAC 
CAAAAAACCCT CAAAAG ACAAGACC 
GGATCCCCGGGTTAATTAAG

AAG ATT G AAATTT AT AT AT AT C AG AA 
G AAT CG AT GTT ATT C AAAAGTAT GT 
AAAAAACGTTACAAAAAGTAAGAGGAGC 
GAATTCGAGCTCGTTTAAAC

klp9 5’tester 

klp9 3’tester 

m to l del.w 

m to l del.x

m to l del.y

m tol del.z 

m to l 5’tester 

m to l 3’tester 

leu1 3’ seq 

RADA 3’right 

RADA 5’right 

RADA 3’left 

RADA 5’left 

actl.F  internal 

actl.R  internal 

D157E 5’right 

D157E 3’left 

act 1.5’upstrm 

act 1.3’dwnstrm

act1 5’forward 

act1-Sac1 F

act1-Sal1 R

act1 del.F

act1 del.R
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2.3.5 DNA sequencing

DNA sequencing reactions were performed using the Big Dye DNA sequencing 

kit (Applied Biosystems) according to the manufacturer’s instructions. DNA 

sequencing was carried out by the in-house sequencing facility at the National 

Institute for Medical Research. DNA sequence results were analysed using 

DNAStar.

2.4 Bacterial techniques

2.4.1 Bacterial strain

Escherichia coli strain DH5-a (suppE44 Alac U169 (080 lacZAM15) hsdR17 

endA r thi-1 gyrA96 relA1) was used throughout.

2.4.2 Bacterial media

All media were autoclaved at 120°C 15p.s.i. for 10 minutes.

E.coli strains were grown in Luria-Bertani broth (LB):

1% Bacto-tryptone, 0.5% Bacto yeast extract, 1% NaCI, pH7.5.

LB Agar was made by adding 2% Bacto Agar (Difco) to LB liquid.

For the selection of all plasmids used in this study 100pg/ml ampicillin was 

added to LB media.

2.4.3 Bacterial growth conditions

Cells in liquid culture were incubated at 37°C in a New Brunswick gyratory 

shaker at 300r.p.m. Cells on agar plates were incubated at 37°C in a constant 

temperature incubator.

2.4.4 Bacterial storage conditions

Strains were grown to stationery phase in LB and stored at -80°C in 30% 

glycerol.

63



2.4.5 Bacterial transformation

2.4.5.1 Preparation o f competent E. coli cells

A 200pl aliquot of an overnight culture of E.coli DH5-a was inoculated into 50ml 

of fresh LB medium and grown to an ODeoo of 0.3-0.4 then cooled on ice and 

harvested (2500r.p.m. for 7 minutes at 4°C in a Sorvall benchtop centrifuge). 

Cells were washed twice in ice-cold 1 0 ml CaCL solution (60mM CaC^, 15% 

glycerol, 10mM PIPES; pH 7.0) before being resuspended in 2ml ice-cold CaCI2 

solution and either used immediately or stored at -80°C in 100p1 aliquots.

2.4.5.2 Transformation of E.coli cells

A 100pJ aliquot of competent E.coli DH5-a cells with 1-5^ig of transforming DNA 

was incubated on ice for 10 minutes then heat-shocked at 42°C for 2 minutes. 

1ml of LB was added and the cells incubated at 37°C for 1 hr to allow cells to 

recover and express the ampR gene. An aliquot of cells was then plated onto 

selective LB agar plates containing 100pg/ml of ampicillin.

2.4.6 Isolation of plasmid DNA

Plasmid DNA was isolated from bacterial strains using a “Quantum Prep” 

plasmid mini-prep kit (Bio-Rad, ref. 732-6100) according to the manufacturer’s 

instructions.

2.5 Strain construction

2.5.1 Deletion of genomic loci

Genes were deleted either by the one-step protocol described by Bahler et al. 

(1998b) or by a two-step process described by Krawchuk and Wahls (1999). 

Essentially, in both methods custom-made oligonucleotides are used to amplify 

a selective marker flanked by 5’ and 3’ non-coding sequence derived from the 

sequences immediately upstream and downstream of the open reading frame 

(ORF) of the target gene. The one-step method generates 80 base pairs of
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flanking sequence whereas the two-step method generates 250 base pairs, 

thus improving the efficiency of gene replacement following transformation.

ase1::hvaR

The single-step PCR-based insertion protocol was used to generate strains 

lacking A se l. First, the HygR cassette was amplified from pFA6 a-hphMX6  

(Hentges et al., 2005) using the oligos 1290 and 1291 (table 2.2). The 5’ end of 

oligo 1290 contains 80 base pairs homologous to the 5 ’ region immediately 

upstream of the ase l ORF followed by 20 nucleotides corresponding to the 5’ 

region of the HygR cassette. Oligo 1291 contains 80 base pairs of homology to 

the complementary strand at the 3’ region immediately downstream of the asel 

ORF followed by 20 nucleotides corresponding to the 3 ’ region of the HygR 

cassette. This amplified cassette was then transformed into the wild type strains 

JM100 and JM109 (table 2 .1 ). Stable integrants were selected by first 

spreading the transformed cells onto YES agar plates and, following growth at 

30°C for 24 hours, replica plating onto YES plus Hygromycin B plates. 

Integration of the cassette at the correct locus was confirmed by the generation 

of the correct size of PCR products using oligo 1292 (5’ sequence upstream of 

integration site) with 1057 (reverse oligo internal to hygR), and oligo 1293 (3’ 

sequence downstream of integration site) with 1056 (forward oligo internal to 

hygR) (table 2.2).

klp8::kanR

Deletion strategy as for a s e l r.hygR  except that the kanR cassette was 

amplified from plasmid pFA6 a-KanMX6  (Bahler et al., 1998b) using the oligos 

1355 and 1356 (table 2.2) which contain 5’ and 3’ regions of klp8  immediately 

flanking the ORF fused to sequences from the KanR cassette. The cassette 

was transformed into the wild type strain JM109 and integrants selected for by 

G418 resistance (as above for Hygromycin B resistance). Integration was 

confirmed by PCR using oligo 1372 with 179 and oligo 1359 with 177 (table

2 .2 ).
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klp9::hvaR and klp9::KanR

Deletion strategy as for ase::hygR and klp8::kanR except using oligos 1294 with 

1296 (table 2.2). Integrated deletions were checked using oligo 1297 with either 

179 {kanR) or 1057 {hygR) and oligo 1298 with either 177 {kanR) or 1056 

{hygR) (table 2.2).

mto1::hvoR

Strains lacking Mtol were generated using a two-step PCR-based insertion 

protocol (Krawchuk and Wahls, 1999). In the first stage, using genomic library 

as a template (Barbet et al., 1992), primer pairs JP7 and JP8 , and JP9 and 

JP10 (table 2.2) were used in 2 separate PCRs to amplify 250 base pair regions 

5’ and 3’ of the m to l locus. The 5’ ends of oligos JP8  and JP9 contain 

sequence complementary to the 5’ and 3’ region of the HygR cassette 

respectively. The products of the first stage were purified by gel extraction 

(section 2.3.3) and used in a second PCR with JP7 and JP10 to amplify the 

HygR cassette from pFA6 a-hphMX6  (Hentges et al., 2005) containing the 250 

base pair m to l flanking sequences. This product was gel purified and 

transformed (section 2.1.6) into the wild type strains JM100 and JM109 (table

2.1). Stable integrants were selected for Hygromycin B resistance as above. 

Integration of the cassette at the correct locus was confirmed PCR using oligo 

JP11 with 1057 and oligo JP12 with 1056 (table 2.2).

2.5.2 C-terminal tagging of genomic loci

klp9-gfp:kanR

klp9 was endogenously tagged with GFP(S65T) using the single-step PCR- 

based approach. First, the GFP tag was amplified from plasmid pFA6 a- 

GFP(S65T)-KanMX6 (Bahler et al., 1998b) using oligos 1295 and 1296 (table

2.2). 1295 contains the final 80 base pairs of the gene with the exception of the 

stop codon to allow read through of the GFP protein. 1296 contains homology 

approximately 200bp 3’ of the klp9 locus. This amplified cassette was then gel 

purified and transformed into PR100 and colonies selected for growth on G418 

as above. Integrants were confirmed by PCR with oligos 1298 and 177.
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2.5.3 Latrunculin A-insensitive actin strain construction

(a) act1 r.hygR Ieu1 :act1

(b) act1::hygR Ieu1 :act1 -R183A.D184A

(c) act1 r.hygR Ieu1:act1-D157E

The above strains were constructed stepwise as follows:

Construction of pJK148-act1 +

First, full-length act1+ (~2620bp, open reading frame plus ~760bp upstream and 

-730 downstream sequence) was amplified (Expand) using oligos 1370 and 

1371, which incorporate Sac7 and S a il tails, respectively. The product was 

cloned into Sac1-Sail-cut pJK148 (Keeney and Boeke, 1994) and transformed 

into bacteria (section 2.4.4). Bacterial colonies were selected for ampicillin 

resistance and the plasmid insert verified by sequencing with oligos 1347, 1349, 

1351, 1352, 1354, 1365 and 1366.

Construction of pJK148-act1(R183A,D184A) and pJK148-act1(D157E)

The actin R183A.D184A (RADA) mutation was amplified from genomic DNA 

(JM100) using a 2-step mutagenic PCR process. In the first step, oligos 1346 

and 1347 and oligos 1348 and 1349 were used to amplify the right (~1150bp) 

and left (~940bp) mutagenic arms of the product. The mutagenic arms were 

then used to prime each other in a secondary PCR which was further amplified 

with the 1346 and 1349 end oligos to generate a -2070 full-length product. This 

was then cut with Sacll and BamHI and the ~1300bp fragment gel purified 

before being used to replace the equivalent Sacll-BamHI cassette in pJK148- 

a c t^ . Exactly the same strategy was used to generate pJK148-act1(D157E) 

except that oligos 1347 and 1348 were replaced with oligos 1353 and 1354 and 

the left and right primary products were approximately 870bp and 1230bp 

respectively.
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To verify the mutations in both pJK148-act1(R183A,D184A) and pJK148- 

act1(D157E), the Sacll-BamHI inserts were completely sequenced using oligos 

1351, 1352 and 1369.

Transformation of strain act1-188ts

The act1+ and act1 mutant alleles were integrated at the Ieu1 locus as follows: 

pJK148 plasmid control together with pJK148-act1+ and both mutant variants 

were cut to completion with H ind lll and used to transform S.pombe strain 

JM1315 (act1-188ts ndc80-gfp:kanR cdcl 1-cfp:kanR leu 1-32 ura4-D18 h-) to 

Ieu1+. Transformants were selected on EMM medium lacking leucine and 

checked for stability. Strains were then grown at 33.5°C to verify that the wild 

type and both mutant alleles of act1, but not the control, were able to rescue the 

temperature-sensitivity of act 1-188ts (figure 2 .1 ).

Removing the act1-188ts allele

The act1-18&$ allele was then deleted and replaced by a hygromycin cassette 

using the method from Bahler and colleagues (1998b). The HygR sequences 

flanked by 5’ and 3’ act1 non-coding sequence cassette were amplified from 

pFA6 a-hphMX6  (Hentges e ta l,  2005) using the oligos 1374 and 1375. All three 

strains (JM3388, JM3389 and JM3390; table 2 .1 ) were then transformed to 

HygR (section 2.1.6) and stable colonies tested for growth at 33.5°C. 

Temperature sensitive transformants were discarded as they were judged to 

have been converted at the act1:leu1 locus rather than at the act1-188>s locus. 

Finally, the position of the three act1 alleles in each of the three strains (i.e. 

nested within the Ieu1 locus) was confirmed by PCR using oligos 1365 and 

1342.

2.6 Bioinformatics

2.6.1 BLAST searches

BLAST searches were performed using the NCBI (www.ncbi.nlm.gov) and the 

Sanger Centre (www.sanger.ac.uk) sequence databases.
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2.6.2 Sequence alignment

Sequence alignments were performed using DNAStar megalign programme 

(cluster method).
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act1-188 ndc80-gfp cdc11-cfp pJK148

(JM3387) (JM3388)
(JM3390)

\  act1-D157E

(JM3389)

act1- J
R183A,D184A/

Figure 2.1 act1, act1-R183A,D184A and act1-D157E rescue act1-188ts at 
restrictive temperature

Vector PJK148 either empty or containing act1+, act1-R183A,D184A or actl- 
D157E was integrated at the Ieu1 locus of JM3315 (act1-188ts ndc80-gfp cdc11- 
cfp). The top panel shows the strains as annotated in the schematic below at 
both permissive (23°C) and restrictive (33°C) temperature for the act1-188ts 
allele. Strain names are given in brackets.
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Chapter 3

Relationship between spindle angle and the timing of 

anaphase onset in fission yeast

3.1 Introduction

It has been previously suggested that in S.pombe, mitotic spindle orientation is 

monitored by a checkpoint that delays anaphase onset if the spindle is mis- 

orientated by more than 30° from the longitudinal axis of the cell (spindle 

orientation checkpoint (SOC); section 1.3.2.2.2). Several groups have 

examined the relationship between spindle orientation and mitotic progression 

by the use of pharmacological agents, such as Lat A, or genetic mutants 

(Gachet et al., 2001, 2004; Oliferenko and Balasubramabian, 2002; 

Rajagopalan et al., 2004; Tournier et al., 2004). These different approaches 

have led to some discrepancies in the literature (summarised in section

1.3.2.2.2). To resolve these discrepancies, I re-investigated the relationship 

between spindle angle and the timing of anaphase onset using m to W  cells, 

which lack the astral microtubules (section 1.2.1.3) that are implicated in spindle 

orientation. However, debate also exists as to whether the absence of Mtol 

influences mitotic spindle dynamics. Sawin et al. (2004) observed no delay over 

anaphase onset or change in spindle elongation rate in these cells, whereas 

Venkatram et al. (2004) found that they exhibit mitotic delay and that spindle 

elongation is slower than in wild type cells.

Previous studies on the SOC have primarily been based on cell populations. 

For this reason, I decided to use a time-lapse assay to simultaneously monitor 

both length and angle of the spindle in individual cells (figure 3.1). This 

approach requires fluorescently-tagging either the spindle itself or components 

of the mitotic machinery from which length and angle of the spindle can be 

calculated. I decided to utilise both approaches in parallel. To visualise the 

spindle, I used a strain containing fluorescently-tagged tubulin expressed from a 

thiamine inducible promoter (Iys1 :nmt1-atb2-gfp). In parallel, I used ndc80-gfp 

cdc11-cfp cells in which Ndc80, a constitutive component of the kinetochore, is
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Figure 3.1 Profile of mitotic spindle dynamics

(a) Graph representing the elongation dynamics of the mitotic spindle over time. 
Spindle extension can be split into 3 distinct phases with a characteristic 2 
micron plateau (Phase 2) separating 2 growth phases (Phases 1 and 3).
(b) Graph showing a typical plot of the angle of a wild type mitotic spindle over 
the same time. 0° represents the longitudinal axis of the cell.



#

Late G2
I

O g> 0O O

Mitosis: Metaphase
I

Mitosis: Anaphase
I

0 C>

Mitosis: Telophase

I

G1
i

#  I •

Figure 3.2 Positioning of spindle pole bodies and kinetochores throughout the 
cell cycle

A schematic representation of ndc80-gfp cdc11-cfp cells progressing through the 
various stages of the cell cycle, G1, S, G2 and Mitosis. Ndc80-GFP identifies 
kinetochores shown in green and Cdc11-CFP identifies spindle pole bodies 
(SPBs) in red. Nuclei are blue. The boxed section is the portion of the cell cycle 
under investigation in this study.



tagged with GFP, and Cdc11, a constitutive component of the SPB, is tagged 

with CFP (Tournier et a i, 2004). The latter strain not only allows spindle length 

and angle to be determined but also allows the accurate determination of the 

timing of sister chromatid separation (figure 3.2).

Astral microtubule disruption in S.cerevisae, via the addition of nocadazole, 

leads to a loss of asymmetric loading of mitotic exit network (MEN) components 

(section 1.3.2.2.1). Therefore, I also used m to W  cells to examine whether the 

proposed asymmetrical astral contact with the cortical-actin ring in S.pombe 

(Gachet et a i, 2004) influences the asymmetric loading of septation initiation 

network (SIN) components (reviewed in Krapp et a i, 2004) in fission yeast.

3.2 Results

3.2.1 Mis-orientation of the mitotic spindle does not delay the onset of 
anaphase

I have plotted spindle length for Iys1 :nmt1-atb2-gfp cells in two different ways. 

Figure 3.3a shows the plots lined up at 0 minutes (mitotic entry) whereas figure 

3.3b shows the same data but with the plots now aligned at the end of phase 2. 

This shows that the length and rate of phase 1 (figure 3.3a) and of phase 3 

(figure 3.3b) are invariant in 14 separate assays. However, significant cell-to- 

cell variation in the duration of phase 2  is observed even at constant 

temperature (figures 3.3a and b). Consequently, throughout this work I present 

the length of phase 2  as a measure of delay over anaphase onset.

To examine the effect of loss of Mto1 on spindle orientation and anaphase 

onset, I first utilised strains in which tubulin is fluorescently tagged (Iys1:nmt1- 

atb2-gfp). In this assay, m to lD  cells remain in phase 2 for 11 ± 2.5 minutes 

whilst the control is 9 ± 2.5 minutes (figures 3.4a-d). The length of phase 2 in 

cells lacking Mto1 is not significantly longer when compared to control cells. 

However, both strains have a significantly shorter phase 2 compared to cells 

lacking Dam1, which are known to undergo a SAC-mediated delay over 

anaphase onset (Sanchez-Perez et a i, 2005). The average length of phase 2 in 

damID  cells is 24 ± 10.5 minutes (figure 3.4c and d). Using data from the same
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Figure 3.3 Phase 2 is variable whereas phases 1 and 3 are invariant

(a) Graph showing the spindle length of 14 Iys1:nmt1-atb2-gfp cells aligned at 
mitotic onset.
(b) Graph showing the same data as (a) aligned at the end of phase 2.
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cells, and shown in figure 3.5, cells lacking Mto1, however, have significantly 

mis-orientated spindles. m to lD  cells exit phase 2 with an average spindle angle 

of 29 ± 5° compared to 18 ± 4° for the control strain and 15 ± 3° for damID  cells 

(figure 3.5a-d). Strikingly, m to lD  cells are severely mis-oriented when 

compared to the control strain but do not undergo any phase 2  delay.

As well as comparing spindle length and angle dynamics between different 

strains, I also analysed whether there is any correlation between these 

variables within each strain. In order to test for a correlation, Pearson’s 

correlation co-efficient was calculated for all 3 strains for spindle angle versus 

length of phase 2. As with the inter-strain comparison it is apparent that whilst 

length of phase 2  varies significantly from cell to cell within each strain there is 

no correlation between this and spindle mis-orientation.

I next examined spindle orientation and anaphase onset in cells in which SPBs 

and kinetochores were fluorescently tagged (ndcdO-gfp cdc11-cfp (wild type) 

and m tolD  ndc80-gfp cdc11-cfp (m tolD)). Figure 3.6 is a series of time-lapse 

images showing these organelles in representative movies (movies 3.1 and 3.2) 

of single wild type (a) and m to lD  (b) cells. Figure 3.6a shows that the wild type 

cell enters mitosis with the spindle parallel to the longitudinal axis of the cell. 

The end of anaphase A occurs at 660 seconds. Figure 3.6b shows an m to lD  

cell, which undergoes mitosis with the spindle almost perpendicular to the 

longitudinal axis of the cell. The end of anaphase A takes place at 630 seconds. 

Measurements of spindle length and angle were taken from 29 wild type cells 

and 20 m to lD  cells and the results plotted in figures 3.7 and 3.8 respectively. 

When using these strains, graphs relating to spindle length are aligned 

precisely at the end of anaphase A, which is possible due to the presence of 

fluorescently labelled kinetochores. Figure 3.7 a, b and c show that m tolD  cells 

have an average phase 2 of 12 ± 2.5 minutes that is statistically unchanged 

from the control, which have a phase 2 of 11 ± 3  minutes. By comparison, 

mal3D ndc80-gfp cdc11-cfp (mal3D) cells have a longer phase 2 (19 ± 8  

minutes) than control cells (figure 3.7 a, b and d). Cells lacking Mal3 have 

previously been shown to have a delay over anaphase onset (Asakawa et at., 

2005). Despite this m to lD  cells are significantly mis-orientated at the end of 

phase 2 (34 ± 4°) compared to wild type (17 ± 3°) or mal3D  cells (16 ± 2°)
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Figure 3.4 Iys1:nmt1-atb2-gfp cells lacking Mto1 show no mitotic delay

Graphs representing multiple time-lapse movies of (a) Iys1:nmt1-atb2-gfp (atb2- 
gfp) cells (n=14) (b) m tolD  Iys1:nmt1-atb2-gfp (mtolD atb2-gfp) cells (n=22), 
and (c) damID Iys1:nmt1-atb2-gfp (damID atb2-gfp) cells (n=14) showing the 
length of the mitotic spindle through time. Plots are aligned at the end of phase 
2 (dashed line).
(d) Histogram showing the average length of phase 2 in (a), (b) and (c) above. 
Error bars show standard error.
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Figure 3.5 Iys1:nmt1-atb2-gfp cells lacking Mto1 show severe mis-orientation of 
the mitotic spindle

Graphs representing multiple time-lapse movies of (a) Iys1:nmt1-atb2-gfp (atb2- 
gfp) cells (n=14) (b) mtolD Iys1:nmt1-atb2-gfp (mtolD atb2-gfp) cells (n=22), 
and (c) damID Iys1:nmt1-atb2-gfp (damID atb2-gfp) cells (n=14) showing the 
angle of the mitotic spindle relative to the longitudinal axis of the cell through 
time. Plots derived from the same data set as for figure 3.4.
(d) Histogram showing average angle of spindle at the end of phase 2 in (a), (b) 
and (c) above. Error bars show standard error of the mean (SEM).
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Figure 3.6 m tolD  ndc80-gfp cdc11-cfp cells show severe mis-orientation, but no 
delay over anaphase onset

The upper series of frames (a) shows images from a time-lapse movie of a cell 
expressing Ndc80-GFP (marking the kinetochores, red) and Cdc11-CFP 
(marking the SPBs, green). Time is shown in seconds. Phase 1 occurs between 
0-120 seconds, phase 2 between 150-630 seconds and phase 3 between 660- 
1110 seconds. The end of anaphase A (arrow) occurs at 660 seconds. The lower 
series (b) shows an m tolD  cell in the same background. Phase 1 occurs 
between 0-150 seconds, phase 2 between 180-630 seconds and phase 3 
between 660-1110 seconds. The end of anaphase A (arrow) occurs at 630 
seconds.



a ndc80-gfp cdc11-cfp

b m tolD ndc80-gfp cdc11-cfp



Figure 3.7 ndc80-gfp cdc11-cfp cells lacking Mto1 show no mitotic delay

Graphs representing multiple time-lapse movies of (a) ndc80-gfp cdc11-cfp (wild 
type) cells (n=29) (b) mtolD ndc80-gfp cdc11-cfp (mtolD) cells (n=20), and (c) 
ma!3D ndc80-gfp cdc11-cfp (mal3D) cells (n=18) showing the length of the 
mitotic spindle through time. Plots are aligned at the end of anaphase A (dashed 
line).
(d) Histogram showing the average length of phase 2 in (a), (b) and (c) above. 
Error bars show standard error.



Ti
m

e 
(m

in
ut

es
) 

Le
ng

th
 

(
îm
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Figure 3.8 ndc80-gfp cdc11-cfp cells lacking Mto1 show severe mis-orientation 
of the mitotic spindle

Graphs representing multiple time-lapse movies of (a) ndc80-gfp cdc11-cfp (wild 
type) cells (n=29) (b) m tolD  ndc80-gfp cdc11-cfp (mtolD) cells (n=20), and (c) 
mal3D ndc80-gfp cdc11-cfp (mal3D) cells (n=18) showing the angle of the mitotic 
spindle relative to the longitudinal axis of the cell through time. Plots are derived 
from the same data set as for figure 3.7.
(d) Histogram showing average angle of the spindle at the end of phase 2 in (a),
(b) and (c) above. Error bars show standard error of the mean (SEM).
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(figure 3.8a-d). I also analysed these data sets for any intra-strain correlation 

between spindle orientation and length of phase 2 by the application of 

Pearson’s correlation co-efficient, which revealed no positive association.

The above experiments were carried out at 30°C. I decided to repeat my 

analysis at 26°C (figure 3.9), as Gachet et al. (2004) and Tournier et al. (2004 

conducted their experiments at 25°C and 28°C respectively. Although there is 

an overall increased length of phase 2 at 26°C, there is no significant difference 

in the length of phase 2 between cells lacking Mto1 (18 ± 5.5 minutes) and the 

control (18.5 ± 4.5 minutes) (figures 3.9a and b). The level of mis-orientation at 

the end of phase 2 is also not affected by the change in temperature in either 

strain, with m to lD  cells still significantly more mis-orientated (29 ± 8°) than the 

control cells (15 ± 3°) (figure 3.9c).

I conclude that there is no correlation between spindle angle and the timing of 

anaphase onset.

3.2.2 Astral microtubules do not effect the rate of spindle elongation

It has been suggested that astral microtubules play a role in elongating the 

mitotic spindle in phase 3 (section 1.2.1.3). I have analysed the rate of spindle 

elongation in both the astral-less m to lD  ndcdO-gfp cdc11-cfp strain and the 

equivalent mto1+ control at both 30°C and 26°C (figure 3.10). Results show that 

in mto1+ cells at 30°C the spindle elongates at 0.82 ± 0.19^m/minute compared 

to 0.84 ± 0.24|Am/minute in cells lacking Mto1 at the same temperature (figure 

3.10a). At 26°C the rates of spindle elongation for mto1+ and m to lD  are 0.66 ± 

0.07^im/minute and 0.68 ± 0.22p,m/minute, respectively (figure 3.10b). 

Therefore the absence of astral microtubules does not change the rate of 

spindle elongation at either temperature.

3.2.3 A proportion of cells lacking Mto1 have unclustered kinetochores

Careful analysis of m to lD  ndc80-gfp cdc11-cfp  cells revealed a novel 

phenotype. In control cells, the 6 kinetochores are held together at the nuclear 

envelope in close proximity to the SPBs, known as the Rabl configuration.
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Figure 3.9 m tolD  cells exhibit significant mis-orientation of the mitotic spindle 
but no difference in the timing of mitosis at 26°C

Graphs representing multiple time-lapse movies at 26°C of (a) ndc80-gfp cdc11- 
cfp (wild type) cells (n=10) and (b) m tolD  ndc80-gfp cdc11-cfp (mtolD) cells (n= 
9) showing the length of the mitotic spindle through time. Plots are aligned at the 
end of anaphase A (dashed line).
(c) Histogram showing the average angle of the mitotic spindle relative to the 
longitudinal axis of the cell at the end of phase 2 for the cells shown in (a) and 
(b). Error bars show standard error.



wild type

10

E
:±

_c=
O)c
0

— I

mtolD
12

10

E
:L

J= 
-♦—>O)c  
0 
_I

-35 -15-30 -25 -20 -10 5 0 5 10 15

Time (minutes)

c
40 y  

35 -

wild type mtolD

83



a
30°C

wild type mtolD

b
26°C

wild type mtolD

Figure 3.10 Spindle elongation rates remain unchanged in cells lacking Mto1

(a) Histogram showing the spindle elongation rate for ndc80-gfp cdc11-cfp (wild 
type) and m tolD  ndc80-gfp cdc11-cfp (mtolD) cells at 30°C. Derived from data 
collected for figures 3.7a and 3.7b. Error bars show standard error.
(b) Histogram showing the spindle elongation rate for ndc80-gfp cdc11-cfp (wild 
type) and m tolD  ndc80-gfp cdc11-cfp (mtolD) cells at 26°C. Derived from data 
collected for figures 3.9a and 3.9b. Error bars show standard error.
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m toV m tolD

kinetochores

Figure 3.11 A small proportion of cells lacking Mto1 have unclustered 
kinetochores

Log phase mto1+ and mtolD  cells expressing Ndc80-GFP (marking the 
kinetochores, red) and Cdc11-CFP (marking the SPBs, green) were fixed and 
the DNA stained with DAPI (blue). Left panel shows mto1+ cell and right panels 
are two examples of mtolD  cells displaying the unclustered kinetochores 
phenotype. Arrows indicate unclustered kinetochores. The unclustered 
kinetochore is DAPI-associated (open-headed arrow).



However, a proportion of m tolD  ndc80-gfp cdc11-cfp cells display a defect in 

Rabl formation where one pair of sister kinetochores are observed at another 

part of the nuclear envelope away from the SPBs (figure 3.11). This phenotype 

was observed in 9% of interphase cells (n=500) after formaldehyde fixation of 

log phase cells. By observing time-lapse images of live cells in mitosis, I found 

that unclustered kinetochores rapidly move back to one of the two spindle poles 

before the kinetochore pair is bi-oriented. Figure 3.12a and movie 3.3 show that 

transport of the unclustered kinetochore pair to the spindle pole takes 330 

seconds over a distance of 1.32 microns. In 20 movies of m to lD  ndc80-gfp 

cdc11-cfp cells (figures 3.7b) I observed 3 with unclustered kinetochores at the 

start of mitosis (shown in red, figure 3.12b). These 3 cells remained in phase 2 

for an average of 14.5 ± 2.5 minutes compared to 12 ± 2.5 minutes for the total 

sample, or 11 ± 2  minutes for the 17 cells displaying normal Rabl formation 

(figure 3.12c). This is similar to the length of phase 2 in mto1+ cells (11 ± 3 

minutes, figure 3.7a). Cells with unclustered kinetochores spend longer in 

phase 2 than wild type cells, and this correlates with the time necessary for 

chromosome retrieval. Results of this small sample suggest that the slight 

increase in the length of phase 2 in the m to lD  cell sample versus wild type is 

due to this unclustering phenomenon.

3.2.4 Asymmetry of SIN activation is independent of astral microtubule 

contact with the cell cortex

I next examined whether the presence or absence of astral microtubules 

influences the asymmetric loading of the septation initiation network (SIN) 

components. To test this, I examined the localisation of Cdc7-GFP and Sid1- 

GFP, which bind asymmetrically to one of the two SPBs in anaphase B. I found 

that localisation of Cdc7 and Sid1 remained unaltered in m tolD  cells compared 

to mto1+ (figure 3.13). This indicates that the reported asymmetry of astral 

contact with the AMIZ (Gachet et al., 2004) is not responsible for the asymmetry 

of SIN component loading and is consistent with previous observations that the 

asymmetry of the SIN activation is microtubule independent (Sohrmann et al., 

1998).
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Figure 3.12 m tolD  cells with unclustered kinetochores have an extended 
phase 2

(a) Frames from a time-lapse movie of an m to lD cell expressing Ndc80-GFP 
(marking the kinetochores, red) Cdc11-CFP (marking the spindle pole bodies, 
green) in metaphase with an unclustered pair of kinetochores (arrow) that are 
transported to the spindle pole in 330 seconds.
(b) The graph represents multiple time-lapse movies of m tolD  ndc80-gfp 
cdc11-cfp (mtolD) cells (n=20) showing spindle length through time. Data 
reproduced from figure 3.7b. 3 cells entered mitosis with unclustered 
kinetochores and these are shown in red.
(c) Histogram comparing the average length of phase 2 in ndc80-gfp cdc11-cfp 
cells (wild type;n=29) with the average length of m tolD  ndc80-gfp cdc11-cfp 
(mtolD; n=20) cells (Black bars, data derived from figure 3.7c). m tolD  sample 
is further split into (i) 17 cells with Rabl conformation (hatched), and (ii) 3 cells 
with unclustered kinetochores (red). Error bars show standard error.
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mto1+ m tolD

cdc7-gfp

Figure 3.13 Asymmetry of SIN component loading is maintained in mtolD  cells

Log phase cdc7-gfp, sid1-gfp, mtolD cdc7-gfp and mtolD sid1-gfp cells were 
fixed and stained with DAPI and calcofluor to stain for DNA and septa 
respectively. Panels show the location of asymmetric SIN components Cdc7 or 
Sid1 (both in green) in mitotic cells. In wild type (mto1+) cells Cdc7-GFP localises 
to both SPBs in metaphase and is then removed from one in anaphase. S idlp- 
GFP localises to one SPB only in anaphase. This localisation pattern is 
unchanged in mtolD  cells.



3.3 Discussion

In this chapter I have revisited the concept of a SOC in fission yeast. Results 

with m tolD  cells show that mis-orientation of the mitotic spindle per se does not 

lead to a significant delay in anaphase onset. This argues against the existence 

of a SOC.

3.3.1 Re-assessing the evidence for a spindle orientation checkpoint

It has previously been reported that the SOC can be activated with various 

mutant strains that cause astral microtubule defects. In each case, a mis- 

orientation was reported together with a corresponding delay in the onset of 

anaphase. However, not only orientation but spindle microtubule dynamics may 

be affected in m ia lD /a lp7D  (Oliferenko and Balasubramanian, 2002), 

pcp1 (400-900D) (Rajagopalan et al., 2004) and cdc11-123  (Tournier et al., 

2004) cells either because these gene products bind to spindle microtubules 

(Alp7/Mia1), are required for proper attachment of spindle microtubules to SPBs 

(Pcp1) or interfere with spindle pole body integrity (Cdc11).

To avoid these problems I chose to use m to lD  cells to cause mis-orientation, 

whilst avoiding altering spindle dynamics. One caveat to this approach is that 

Mto1 could be involved not only in the process of orientating the spindle but 

also in sensing the mis-orientation or activating the checkpoint response. In this 

case, m tolD  cells would be unable to have a SOC delay imposed on them. This 

is an important consideration that I address in chapter 5, where I present data 

that this is not the case.

Therefore, the evidence presented in this chapter shows that there is no 

correlation between spindle angle and timing of anaphase onset in single cells, 

indicating that spindle angle and anaphase onset are not functionally linked. 

Whilst this thesis was in preparation, Vogel et al. (2007) published a paper that 

agrees with several of the principal findings in this chapter. The authors present 

data to illustrate that there is no correlation within a strain between spindle 

angle and anaphase onset. However, since these authors use m ia lD  cells, 

which have been previously been shown to be delayed in anaphase onset due
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to inherent activation of the SAC mediated delay (Sato et al., 2003), they were 

unable to formally conclude that spindle mis-orientation is unlinked to the timing 

of anaphase onset.

3.3.2 Mitotic spindle dynamics in the absence of Mto1

Other conflicting evidence in the literature pertains to whether or not m to lD  

cells are delayed in anaphase onset. Sawin et al. (2004) observe no delay 

whereas Venkatram et al. (2004) record an elongated phase 2 for m tolD  cells 

versus wild type. In addition there is confusion as to whether the presence of 

astral microtubules influences spindle elongation rate during phase 3. 

Venkatram et al. (2004) find that in cells lacking Mto1, spindles elongate at 

approximately 30% the rate of wild type. However, Sawin et al. (2004) report no 

change in elongation rate between mto1+ and m to lD  cells. These differences 

could be explained by their use of differing Atb2-GFP constructs. From my own 

work, I have observed that there is a high level of cell-to-cell variation in tubulin- 

GFP levels, which may influence the timing of mitosis. Also, m to lD  could be 

more sensitive to changes in tubulin levels and it is this sensitivity that is being 

revealed by Venkatram et al. (2004) rather than a true reflection of unperturbed 

spindle dynamics in the strain.

I find that m to lD  strains are not delayed in anaphase onset in either the 

Iys1 :nmt1-atb2-gfp or ndc80-gfp cdc11-cfp backgrounds in agreement with 

Sawin et al. (2004). Similarly, in agreement with the same authors, I observe no 

effect on the rate of spindle elongation. Further, Tolic-Norrelykke et al. (2004) 

conclude, from laser ablation studies, that astral microtubules push the spindle 

away from the cortex but do not contribute to the rate of spindle elongation. To 

avoid the potential problems, discussed above, of visualising the spindle using 

over-expressed tubulin (which is also structurally altered via the addition of a 

GFP tag), I present data primarily from ndc80-gfp cdc11-cfp strains throughout 

the remainder of this thesis. This strain offers additional benefits including (i) the 

ability to accurately determine the end of anaphase A and (ii) a means for 

correcting for spindle angle in the Z-axis (compare the spread of data points 

around 0 minutes for spindle length in both m to lD  Iys1:nmt1-atb2-gfp and
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m tolD  ndc80-gfp cdc11-cfp to see the effect of this correction (figures 3.4b and 

3.7b).

3.3.3 Unclustering of kinetochores in cells lacking Mto1

I demonstrate that a percentage of kinetochores are unclustered from the SPBs 

during interphase. This phenotype raises several interesting questions.

How does the loss of Mto1 cause centromere unclustering?

One possibility is that a small proportion of Mto1 is present on the inner face of 

the SPB and is involved in spindle nucleation. In the absence of Mto1, tethering 

of kinetochores to the SPBs may not be as efficient. Alternatively, unclustered 

kinetochores may bind to the inner side of the nuclear envelope underlying 

inactive interphase microtubule organising centres (iMTOCs). It is known that 

m tolD  cells, have only one interphase microtubule bundle and this is either not 

attached or only loosely attached to either the SPB or the nuclear envelope 

(Zimmerman and Chang, 2005). It is possible that the lack of attachment of 

interphase microtubules to the cytoplasmic face of iMTOCs could lead to a 

conformational change on the nuclear face, which permits association of 

kinetochores. Regardless of the reasons, unclustering occurs only in a 

proportion of cells.

Why does centromere unclustering occur in only a proportion o f cells?

Intriguingly, m to lD  cells with a nucleus positioned at the cell tip have a 

significantly higher frequency of unclustered kinetochores than m tolD  cells with 

the nucleus positioned in the middle of the cell (Alejandro Franco-Sanchez, 

unpublished data). Therefore, the answer to this question could lie in cell-to-cell 

variation of distribution of interphase microtubules in cells lacking Mto1. The 

misplaced nuclei in m tolD  cells are those that are not being correctly positioned 

by their remaining interphase microtubule. It follows that these are the nuclei 

that are less likely to have an interphase microtubule attached to the outer face 

of their SPBs, meaning that they are more likely to undergo the events leading
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to unclustering as speculated above. However, recovery of the unclustered 

kinetochores seems to be highly efficient.

How are unclustered kinetochores recovered?

The unclustering phenotype occurs in 9% of m to lD  interphase cells. However, 

cells lacking Mto1 only have a mis-segregation event in 0.08% of cells (Sawin 

et al., 2004). The process of capture and retrieval of the unclustered 

kinetochores must therefore be highly efficient. In S.cerevisae, Tanaka and 

colleagues (Tanaka et al., 2005) have developed a system to monitor the 

retrieval of chromosomes by spindle microtubules. In these cells, a lost 

chromosome is retrieved by the Kar3 minus end-directed kinesin motor on the 

lateral face of a stabilised microtubule. By contrast unclustered kinetochores in 

m to lD  cells are generated without imposing a protracted cell cycle delay or 

centromere inactivation and activation. Furthermore, initial results suggest that 

the fission yeast Kar3 homologues, Klp1 (Pkl1) and Klp2, are not required for 

unclustered kinetochore retrieval. Instead, the DASH complex is absolutely 

required (Franco et al., 2007).

3.3.4 Astral microtubules do not impose the asymmetry of SIN activation

Activation of cytokinesis involves the asymmetrical distribution of some 

components of the MEN (budding yeast) or SIN (fission yeast) to the SPBs 

(reviewed in, Simanis 2003). Pereira et al. (2001) demonstrated that when 

astral microtubules are disrupted, key MEN components fail to localise 

asymmetrically and are present on both SPBs. In contrast, I have shown that a 

lack of astral microtubules does not prevent asymmetric loading of SIN 

components in fission yeast, consistent with (Sohrmann et al., 1998). A detailed 

study of the timing of cytokinesis may reveal a minor role for astral microtubules 

in the timing of SIN asymmetry, but is outside the scope of this study.
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3.4 Conclusions

• There is no relationship between the angle of the mitotic spindle and the 

onset of anaphase, and therefore no spindle orientation checkpoint.

• The rate of spindle elongation in phase 3 is not controlled by astral 

microtubules.

• Mto1 is required for efficient Rabl configuration of kinetochores in fission 

yeast.

• Asymmetry of SIN activation is not dependent on astral microtubules.
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Chapter 4

Mechanism controlling mitotic spindle orientation in 

fission yeast

4.1 Introduction

It has previously been proposed that spindle orientation occurs during phase 2 

and is mediated by interaction of astral microtubules with a region of the medial 

cell cortex termed the astral microtubule interaction zone (AMIZ) (Gachet et al., 

2004; section 1.2.1.3). Additionally, Gachet et al. (2004) found that only one of 

the two astral microtubules interacts with the cytokinetic actomyosin ring (CAR) 

and suggested that this contact may initiate anaphase onset. Mis-orientation of 

spindles was also observed in mia1 D/alp14D mutants, which have defective 

astral microtubules (Oliferenko and Balasubramanian, 2002; section 1.3.2.2.2). 

These authors concluded that metaphase spindle alignment might be imposed 

by a tension-sensing checkpoint. However, subsequent analysis showed that 

Mia1/Alp14 also binds the mitotic spindle and that loss of Mia1/Alp14 disrupts 

mitotic spindle integrity causing activation of the spindle assembly checkpoint 

(SAC) (Sato et al., 2003). Similarly, defects in spindle orientation and a delay in 

anaphase onset were observed in cdc11-123 cells and pcp1 (600-900D) cells 

(Gachet et al., 2004; Rajagopalan et al., 2004). However, it was not possible to 

determine whether the delay in anaphase onset was due to defective astral or 

spindle microtubule function. During the course of this thesis, however, 

Zimmerman and colleagues (2004) demonstrated that cytoplasmic astral 

microtubules are in fact only nucleated during phase 3, although the precise 

timing of anaphase onset was not determined. Instead, these authors proposed 

that intra-nuclear astral (INA) microtubules orientate the spindle during phase 2. 

Others suggest that both classes of astral are present simultaneously prior to 

anaphase onset (Gachet et al., 2006). In this chapter I re-examine the 

mechanism of spindle orientation in S.pombe.
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4.2 Results

4.2.1 Spindle orientation during prometaphase and metaphase

To test whether the spindle is rotated towards the longitudinal axis of the cell by

the action of astral microtubules during phase 2 (Gachet et al., 2004) I used the

detailed measurements collected previously (section 3.2.1) to calculate the

average angle of the mitotic spindle at the start and end of phase 2 in

Iys1:nmt1-atb2-gfp cells (mto1+; figure 4.1a). I found that there is no directed

correction towards the longitudinal axis of the cell as these cells have an

average spindle angle of 15 ± 4° at the onset of phase 2 and 18 ± 4° at the end.

The same is true for m tolD  Iys1 :nmt1-atb2-gfp cells, which enter phase 2 with

spindles at an angle of 34° ± 5° and exit at 29 ± 5°. Likewise, damID Iys1:nmt1-

atb2-gfp cells show no corrective movement from the beginning to the end of

phase 2, despite an extended SAC-mediated delay (14 ± 4 °  to 15 ± 3°). To

further support this data I analysed the average spindle angle at the start and at

end of phase 2 in ndc80-gfp cdc11-cfp cells (figure 4.1b). These cells start

phase 2 with a mean spindle angle of 15 ± 3° and end at 17 ± 3°. Similar

measurements revealed that m to lD  ndc80-gfp cdc11-cfp cells exhibit no

significant corrective spindle orientation from 37 ± 7° at the start to 34 ± 4° at

the end. Lastly, mal3D ndc80-gfp cdc11-cfp cells, originally analysed as a

positive control for phase 2 delay, average a spindle angle of 16 ± 3° at the start

of phase 2 and 16 ± 2° at the end. Similar data were obtained from cells

undergoing mitosis at the lower temperature of 26°C (figure 4.1c). The start/end

averages in ndc80-gfp cdc11-cfp cells were 11 ± 3° and 15 ± 3° respectively,

while those of m to lD  ndc80-gp cdc11-cfp cells were 31° ± 7 °  and 29° ± 8°

respectively. Therefore, there is no corrective spindle orientation between the

beginning and the end of phase 2 in any of the strains analysed. Notably,

however, in all strains I observed substantial oscillations in the angle of the

spindle both towards and away from the longitudinal axis of the cell during

prometaphase and metaphase (figures 3.5 and 3.8). These oscillations may or

may not be due to interaction of intra-nuclear spindle microtubules with the

inner face of the nuclear envelope. Notwithstanding, the average angle of the

spindle remains unchanged during prometaphase and metaphase. This is

clearly shown in figure 4.2 where the average spindle angle of ndc80-gfp
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Figure 4.1 There is no corrective orientation of the mitotic spindle during phase 2

Histograms showing the average angle of the mitotic spindle relative to the 
longitudinal axis of the cell at the start and end of phase 2 for the following: (a) 
Iys1 :nmt-atb2-gfp (atb2-gfp), m tolD  Iys1:nmt1-atb2-gfp (m tolD  atb2-gfp) and 
damID Iys1:nmt1-atb2-gfp (damID atb2-gfp) cells. Data extracted from figures 
3.5a-c; (b) ndc80-gfp cdcl 1-cfp, m tolD ndc80-gfp cdcl 1-cfp and mal3D ndc80- 
gfp cdcl 1-cfp cells. Data extracted from figures 3.8a-c; (c) ndc80-gfp cdcl 1-cfp 
and m tolD  ndc80-gfp cdcl 1-cfp cells at 26°C. Data extracted from figures 3.9a 
and b. In each case error bars show standard error of the mean (SEM).
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Figure 4.2 The average spindle angle of both mtolD and control cells remains 
constant prior to anaphase

Graph shows the average spindle angle relative to the longitudinal axis of the cell 
for ndc80-gfp cdcl 1-cfp (wild type; blue) and mtolD ndc80-gfp cdcl 1-cfp 
(mtolD] red) cells over time. Data extracted from figures 3.7a and b. Plots are 
aligned at the end of anaphase A (dashed line). Error bars show standard error 
of the mean (SEM).



cd c l 1-cfp cells with and without Mto1 is compared at multiple time points. 

Therefore, I conclude that intranuclear spindle microtubules are unable to direct 

orientation of the spindle towards the longitudinal axis of the cell.

4.2.2 Astral m icrotubules control spindle alignment during anaphase B

In the previous section I showed that there is no corrective angle adjustment 

during phase 2, in strains either with or without astral microtubules. Given the 

claims described previously (section 1.2.1.3) with respect to astral interaction 

with the CAR I decided to examine the timing of astral microtubule nucleation 

and interaction with the CAR with respect to the timing of anaphase onset. To 

do this, I examined microtubule and kinetochore dynamics in Iys1 :nmt1-atb2-gfp 

ndc80-cfp cdc15-gfp cells. Cdc15 is an early component of the CAR (Carnahan 

and Gould, 2003). Figure 4.3 shows a representative series of time-lapse 

images generated with this strain. Here, separation of sister chromatids occurs 

by 90 seconds but the first astral microtubule is not nucleated until 180 

seconds. Whilst I do see the reported asymmetrical contact of the first 

nucleated astral with the CAR at 270 seconds, this clearly occurs after sisters 

have separated and therefore after anaphase onset. Strikingly, I never 

observed astral microtubule nucleation prior to sister separation, although astral 

microtubules always contacted the ring (n=9 movies). This data indicates that 

astral microtubules are only present after anaphase onset and therefore cannot 

be responsible either for orientation of the spindle during phase 2 or for initiating 

anaphase.

After the onset of anaphase A, spindles elongate at the same rate in wild type 

cells and in cells lacking Mto1 (section 3.2.2), confirming previous observations 

that astral microtubules do not contribute to the rate of anaphase B (Sawin et 

al., 2004; Tolic-Norrelykke et al., 2004). Secondly, both spindle poles are never 

observed on the same side of the division plane in cells lacking Mto1, indicating 

that astral microtubules are not normally required for the maintenance of cell 

ploidy. Thirdly, the average spindle angle is reduced after anaphase A in both 

wild type cells and cells lacking Mto1 (figure 4.2), indicating that cell shape is 

more important for determining spindle orientation than the presence of astral 

microtubules. Despite this, spindles remain more mis-oriented during anaphase
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Figure 4.3 Microtubule contact with the ring occurs after sisters have separated

A time-lapse movie series showing a Iys1:nmt1-atb2-gfp (microtubules, green) 
cell expressing Ndc80-CFP (kinetochores, red) and Cdc15-GFP (cortical actin 
ring, green). Time is in seconds. Sister chromatids separate at 60 seconds and 
the first nucleation of astrals occurs at 180 seconds (arrow). Astral microtubules 
contact the ring multiple times (open-headed arrows).



B in m tolD  ndc80-gfp cdcl 1-cfp cells than in control cells, indicating that astral 

microtubules play a minor role in ensuring optimal spindle alignment, 

presumably by pushing spindle poles away from the cell cortex (Gachet et al., 

2004; Tolic-Norrelykke et al., 2004). The precise mechanism underlying this 

effect is not fully understood.

4.2.3 Role of astral microtubules and the post-anaphase array in 

determining SPB position

As there is no corrective orientation of the mitotic spindle during phase 2 

(section 4.2.1), the mis-orientation observed in m to lD  cells could be due to 

incorrectly positioned SPBs during the previous mitosis and subsequent 

interphase. I used cdc11-gfp (wild type) and m to lD  cdc11-gfp (m to lD ) cells, 

where SPBs are fluorescently tagged, to further investigate the role of astral 

microtubules and the post-anaphase array (PAA) in controlling SPB position 

after the completion of spindle elongation. m to lD  cells were used since they 

have neither astrals nor a PAA. Figure 4.4a shows a series of time-lapse 

images from a wild type cell. The spindle is fully elongated at 10 minutes and 

the SPBs then move rapidly away from the cell tips and by 13 minutes are 

towards the middle of what will be the daughter cells. However in the m to lD  

cell, after the spindle reaches its maximum elongation at 14 minutes, the SPBs 

remain at the cell tips for an additional 19 minutes (figure 4.4b). This data 

suggests that the repositioning of the SPB away from the cell tip is driven by the 

interaction of astral microtubules with the cell tip and/or microtubules from the 

PAA.

To further examine the mechanism of SPB re-positioning following mitosis 

ndc80-gfp cdcl 1-cfp (wild type) and m to lD  ndc80-gfp cdcl 1-cfp (m tolD) cells 

were synchronised via lactose gradient centrifugation (materials and methods, 

2.1.5). Cells were then fixed at 100 minutes post-synchronisation and stained 

with DAPI and calcofluor to allow visualisation of the DNA and septa 

respectively. Figure 4.5a shows that in 4 representative wild type cells, the 

nuclei are re-positioned in the middle of the daughter cells after septation. In 

addition, if the nucleus is imagined as a globe, SPBs are located on the nuclear 

equator perpendicular to the longitudinal axis of the cell. By contrast, in m tolD
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Figure 4.4 SPB repositioning post-mitosis is deficient in cells lacking Mto1

The upper series of time-lapse images (a) shows a cell expressing Cdc11-GFP 
(spindle pole bodies, green) undergoing phase 3 spindle elongation (0-10 
minutes) followed by spindle pole body re-positioning. The lower series (b) 
shows an mtolD  cell in the same background. Here phase 3 elongation finishes 
at 14 minutes. However, there is no repositioning of the poles.
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Figure 4.5 SPB repositioning post-mitosis is dependent on astrals and the PAA

mtoV  and m tolD  cells expressing Ndc80-GFP (kinetochores, red) and Cdc11- 
CFP (spindle pole bodies, green) were synchronised by lactose gradient 
centrifugation. Each culture was then split in half and released into liquid media 
in the presence and absence of 1.25pM Lat A. Cells were fixed at 100 minutes 
after release at 30°C and stained with DAPI and calcofluor to visualise DNA 
(blue) and septa (light blue).
(a) Images of ndc80-gfp cdcl 1-cfp (wild type) cells in the absence of Lat A. The 
images on the left of the arrow are cells fixed earlier during mitotic progression. 
The 4 cells to the right of the arrow were fixed at 100 minutes after lactose 
synchronisation.
(b) Images of mtolD ndc80-gfp cdcl 1-cfp (m tolD ) cells in the same format as 
(a).
(c) Images of ndc80-gfp cdcl 1-cfp (wild type) cells in the presence of 1.25pM Lat 
A in the same format as (a).
(d) Images of mtolD ndc80-gfp cdcl 1-cfp (m tolD ) cells in the presence of 
1.25pM Lat A in the same format as (a).



cells, the nuclei remain at the cell tips with the SPBs facing away from the cell 

middle (figure 4.5b). To separate the role of the PAA in nuclear and SPB 

positioning, this experiment was repeated in the presence of 1.25pM Lat A, 

which prevents eMTOC formation (Heitz et al., 2001) but retains astrals. In the 

presence of Lat A, the nuclei of control cells are located close to the cell middle 

with SPBs facing each other (figure 4.5c). Calcoflour staining is shown as a 

dispersed granular pattern around the middle of the cell as a septum is not 

deposited when actin is depolymerised. By contrast, the positioning of the SPBs 

and the nuclei in m to lD  cells is not affected by the addition of Lat A (compare 

figure 4.5b and d). I conclude that SPB and nuclear re-positioning are 

performed both by astral microtubules and microtubules derived from the PAA. 

As m to lD  cells are defective in both classes of microtubules this contributes to 

mis-positioning SPBs during the subsequent cell cycle.

4.2.4 Interphase SPB position determines initial spindle angle in mitosis

I have shown that nuclei and SPBs are incorrectly re-positioned in m to lD  cells 

and in cells lacking a PAA following mitosis. Interphase microtubules are known 

to be involved in nuclear positioning (section 1.2.1.1), but may also have a role 

in SPB positioning prior to mitosis. This, together with the absence of astral and 

PAA microtubules, may explain the severe mis-orientation seen in m tolD  cells, 

which are also deficient for interphase microtubules (section 1.2.1.5). To 

examine this possibility I analysed 3D position of the SPBs (materials and 

methods, 2.2.3.1) in cdc11-gfp and m tolD  cdc11-gfp interphase cells. In this 

way I could effect a virtual rotation of the whole cell through 90° so that the 

longitudinal axis of the cell, which was aligned along the x-axis, could be 

realigned along the z-axis. In effect this enables a cross section of the cell to be 

visualised allowing the precise location of the SPBs to be analysed in 3D. 

Figure 4.6a shows this analysis performed on a cdc11-GFP cell stained with 

DAPI together with a diagram of the poles and nucleus. In this case the 

replicated SPBs are positioned on the nuclear equator that lies perpendicular to 

the longitudinal axis of the cell. Spindle nucleation when the SPBs are 

positioned in this manner would result in an orientated mitotic spindle. However, 

in the m to lD  cdcl 1-cfp cell, shown in figure 4.6b, the SPBs are located away 

from this nuclear equator. This configuration would result in a mis-orientated
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Figure 4.6 Cells lacking Mto1 have mis-positioned SPBs in interphase

mtoV  and mtolD  cells expressing Cdc11-GFP (spindle pole bodies, green) were 
fixed and stained with DAPI to visualise DNA. The left column shows cells with 
the longitudinal axis aligned along the x-axis. The right column shows the same 
cells rotated through 90° so that the longitudinal axis is now aligned along the z- 
axis. (a) Shows a cdc11-gfp cell image manipulated in this way with a 
diagrammatic representation of the cell, nucleus and spindle poles below, (b) 
Shows an mtolD cdcl 1-gfp cell image presented in the same way.



phase 2 spindle. This data implies that the lack of interphase microtubules, 

and/or astral and PAA microtubules, in cells lacking Mto1 results in mis- 

positioned SPBs, which may consequently result in mis-orientated mitotic 

spindles.

4.3 Discussion

4.3.1 Mechanism controlling spindle orientation: previous hypotheses

When I began this work, the available data suggested that astral microtubules 

were effecting corrective orientation during phase 2 (Gachet et al., 2004; 

Oliferenko and Balasubramanian, 2004; Tolic-Norrelykke et al., 2004). 

However, in this chapter I have used marked kinetochores to show that astral 

microtubules are not nucleated until after sister chromatids separate. This 

means that astrals cannot be responsible for orientating the spindle prior to this 

event. This supports the finding of Zimmerman et al. (2004) who show that 

astrals are not nucleated until phase 3. In a separate issue, astral microtubule 

contact with the CAR has been proposed to initiate anaphase onset (Gachet et 

al., 2004). Again, this now seems highly unlikely due to the relative timing, 

demonstrated here, of sister separation and astral nucleation. To examine the 

timing of astral nucleation further and to resolve the remaining discrepancies in 

the literature, various temperature sensitive strains could be employed. With the 

cell arrested via APC mutants, it may be clearer whether astral nucleation is 

dependent on APC activation or vice versa.

It is possible that the INA microtubules are responsible for oscillations in spindle 

angle during prometaphase and metaphase. Zimmerman et al. (2004) proposed 

that INAs are used for spindle orientation during phase 2. However, I have 

never observed a significant corrective orientation during phase 2, including in 

cells lacking Dam1, which have a significant delay in anaphase onset. However, 

it is possible that since dam ID  cells lack a functional DASH complex, which 

binds to the tips of INA microtubules (Sanchez-Perez et al., 2005), INA 

microtubule function could be impaired. Zimmerman et al. (2004) present 

movies showing that the last INA microtubule appears to interact with the ring 

before anaphase onset. For this to occur, INA microtubules would have to
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penetrate the nuclear envelope at the end of phase 2, which seems unlikely. To 

address this question more carefully spindle microtubule dynamics could be 

monitored in orb mutants in conjunction with a nuclear envelope marker. Since 

orb mutants have a round phenotype the nuclear envelope is further from the 

cell cortex (Verde et al., 1995). This would help to determine whether INA 

microtubules genuinely penetrate the nuclear envelope. More recently, it has 

been shown that INAs are instead required for the retrieval of unclustered 

kinetochores. (Alejandro Franco-Sanchez, unpublished data).

4.3.2 Mechanism controlling spindle orientation: a new model

In this section I describe a model for the orientation of the mitotic spindle. 

Figure 4.7a is a pictorial representation of the cell cycle in a wild type cell 

showing microtubules and both nuclear and SPB position throughout. The 

uppermost cell (i) is in interphase with the nucleus being maintained in the 

middle of the cell by the interphase array of microtubules (Tran et al., 2001). 

The position of the SPBs is the determining factor for mitotic spindle orientation.

I propose that the replicated SPBs prior to mitosis are on the nuclear equator 

that lies perpendicular to the longitudinal axis of the cell in a wild type situation. 

As the cell enters mitosis the duplicated SPBs migrate to either side of the 

nucleus, shown in cell (ii) in figure 4.7a, where the cell is in phase 2 of mitosis 

and INA and spindle microtubules are present. This is the stage of the cell cycle 

when it was previously thought that directed spindle orientation took place 

(Gachet et al., 2004; Oliferenko and Balasubramanian, 2004; Tolic-Norrelykke 

et al., 2004). However, according to my data there is no corrective orientation of 

the spindle during phase 2. In fact, this is the only point in the cell cycle when 

the poles are not being actively positioned. After anaphase onset astral 

microtubules are nucleated to correct and maintain the angle of the elongating 

mitotic spindle during phase 3 (iii, iv). It has previously been shown that 

repositioning of the nucleus occurs by a mechanism in which SPBs direct 

nuclear migration from the tips to the middle of cells (Hagan and Yanagida, 

1997). I propose that after interaction with the cell tips astral microtubules push 

the nucleus towards the middle of the cell, and in doing so, reposition the 

nucleus and the SPB (v). Interaction with the cortical cell tip could cause a 

change in astral microtubule behaviour. Alternatively, disassembly of the mitotic
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Figure 4.7 A model for orientation of the mitotic spindle being dependent on 
initial spindle pole body position and orientation

A schematic representation of the cell cycle in fission yeast showing 
microtubules (green), spindle pole bodies (SPBs) (red) and nuclei (blue). In wild 
type cells (a) the positioning of the SPBs is determined first by interphase 
microtubules (i) and then following anaphase (iii, iv) by astral microtubules and 
lastly the post-anaphase array of microtubules (v). In mtolD  cells (b), cells are 
deficient in cytoplasmic microtubules resulting in mis-positioning of the SPBs in 
interphase (i). After anaphase, orientation of the spindle is achieved by 
interaction of the poles with the cell cortex as the spindle elongates (iv). Post­
mitosis SPBs are not correctly re-positioned (v).
(c) Diagrammatic representation of SPB orientation in a wild type cell, where 
alignment of the “old” and “new” SPB is mediated by an interphase microtubule 
which is itself parallel to the longitudinal axis of the cell.
(d) Diagrammatic representation of SPB orientation in an mtolD  cell. As cells 
lacking Mto1 are deficient in interphase microtubules, the SPBs in this case are 
not aligned with the longitudinal axis of the cell.



spindle may be necessary for spindle pole and nuclear re-positioning. During 

G1 and S phase, the eMTOC nucleates PAA microtubules, which capture the 

SPB and maintain its position. At this point the unseparated SPB lies on the 

equator of the nucleus and its position is maintained by interphase microtubules 

until the following mitosis (i).

Figure 4.7b shows the same schematic in a representative m to lD  cell. During 

interphase the nucleus is mis-positioned due to a defect in interphase 

microtubule nucleation (i) (Sawin et al., 2004; Venkatram et al., 2004). This 

results in a mis-positioning of the SPBs around the nuclear envelope. As the 

cell enters mitosis the spindle nucleates at an oblique angle to the longitudinal 

axis of the cell (ii). Since astral microtubules are not nucleated at anaphase 

onset, the spindle remains at an oblique angle (iii) and is only moved by 

interaction of the SPBs with the inner face of the plasmamembrane (iv). After 

spindle disassembly, the SPB is not repositioned since m to lD  cells lack both 

astral microtubules and a PAA (v). This contributes to both nuclear and SPB 

mis-positioning in the following cell cycle (i). Therefore, I hypothesise that 

m tolD  cells have significantly mis-orientated spindles because SPBs are not in 

the correct location on the nuclear equator upon entry into mitosis. Notably, 

spindle orientation of m to lD  cells (34°) is not truly random (45°). I propose this 

is due to the one remaining interphase microtubule, which may partially position 

the SPBs and nucleus prior to mitosis onset.

In order to test this model it would be necessary to carry out a series of 

microtubule re-growth experiments after centrifugation at low temperatures to 

cause microtubule depolymerisation and mis-positioning of SPBs. Cells could 

then be warmed to allow interphase microtubule to nucleate and SPB and 

nuclear position observed. In this way it should be possible to determine if the 

SPB positioning and nuclear positioning are inter-related events. This 

experiment could also be performed in m to lD  cells to determine whether the 

one remaining interphase MT can partially correct the position of the nucleus 

and the SPBs. Similarly, the role of eMTOC formation in SPB and nuclear 

positioning needs to be examined in greater detail, perhaps by utilising a 

temperature sensitive allele of sld2, a SIN component (Sparks etal., 1999). SIN 

mutants fail to undergo cytokinesis and form multi-nucleate cells with pairs of
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nuclei close together and SPBs facing (Hagan and Yanagida, 1997). This 

phenotype is similar to that generated when Lat A is used to prevent PAA 

formation except that cells arrest after one nuclear division.

Whilst the position of the SPBs is of great importance in orientating the mitotic 

spindle, it also follows that the actual orientation of the “old” and “new” SPBs 

relative to the longitudinal axis is equally as important. Figure 4.7c illustrates my 

hypothesis that in a normal cell the “old” and “new” SPBs sit on an interphase 

microtubule that is parallel to the longitudinal axis of the cell. This ensures the 

correct orientation of the SPBs prior to mitosis. In an m to lD  cell, which is 

deficient in interphase microtubules, this contact could be lost resulting in a mis- 

orientation of the spindle in the ensuing mitosis (figure 4.7d). To test this 

hypothesis, the orientation of the “old” and “new” SPBs could be examined in 

sfi1-gfp cdc l 1-cfp cells. Sfi1 localises to the half-bridge structure formed 

between replicated SPBs (Kilmartin, 2003) whilst Cdc11 binds to the outer 

plaque. A comparison between m to lD  and control cells would provide extra 

information as to the role of interphase microtubules in orientating the SPBs. In 

conclusion, I propose that cytoplasmic microtubules both position the SPBs to 

determine the orientation of the mitotic spindle and determine nuclear position. 

Importantly, since the position of the nucleus dictates the location of cell 

division, I propose that perpendicular alignment of the spindle and axis of cell 

division is determined by a common cytoplasmic microtubule program.

[Note: Whilst this thesis was in preparation Vogel et al. (2007) published a 

paper that supports many of the conclusions I have drawn. The authors state 

that interphase microtubules are indeed responsible for initial spindle position. 

They provide a model that is strikingly similar to mine, generated by comparing 

cells with damaged or absent interphase microtubules relative to control cells. 

They also conclude, in agreement with this work, that astral and INA 

microtubules do not effect a corrective orientation during phase 2.]

4.3.3. Cell shape and a more important role for astral microtubules?

The mitotic spindle elongates down the longitudinal cell axis in anaphase B. It is 

conceivable that astral microtubules maintain and/or correct spindle position
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during this period. Figure 4.2 compares the mean spindle orientation over time 

of m to lD  cells with that of control cells. After anaphase A it is apparent that 

both strains orientate rapidly towards 0°. Therefore, despite a lack of astrals in 

phase 3, the spindle is re-orientated in m to lD  cells due to interaction of the 

SPBs with the cell cortex. However, I find that spindle poles always migrate to 

either side of the division plane in m to lD  cells, suggesting that neither astral 

microtubules nor moreover, mitotic spindle orientation is normally required for 

the maintenance of cell ploidy. However, in spherical cells the requirement for 

astral microtubules may be different. This could be investigated by the use of an 

orb mutant (Verde et al., 1995). In a spherical cell, the lack of a SOC could 

prove disastrous for an astral-less S.pombe strain. In addition, spindle mis- 

orientation can cause chromosome mis-segregation when the rate of spindle 

elongation is decreased (Vogel et al., 2007). In this situation, interaction of 

astral microtubules with the CAR may be necessary to ensure spindle poles 

migrate to either side of the division ring. Such a hypothesis merits further 

investigation.

4.4 Conclusions

• There is no corrective orientation of the mitotic spindle in phase 2 either by 

INAs or by cytoplasmic astrals.

• Cytoplasmic astrals are only nucleated after sisters separate and therefore 

cannot play a role in either the initiation of anaphase or in the regulation of 

orientation prior to anaphase.

• Phase 2 spindle orientation is determined by the position and orientation of 

the SPBs prior to mitosis, which is determined by astral, PAA and interphase 

microtubules.
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Chapter 5

Actin is required for pre-anaphase mitotic spindle 

stability

5.1 Introduction

In chapter 3 I showed that spindle mis-orientation does not cause an anaphase 

delay in fission yeast. This is in conflict with the previous reports that the actin 

depolymerising agent Latrunculin A (Lat A) causes a spindle orientation 

dependent delay in the onset of anaphase by disrupting astral microtubule 

interaction with medial cortical actin cytoskeleton (Gachet et al., 2001, 2004; 

Rajagopalan et al., 2004; Tournier et al., 2004). Therefore, I decided to re­

evaluate the effect of Lat A on mitotic progression in fission yeast.

5.2 Results

5.2.1 Lat A delays anaphase onset and causes pre-anaphase spindle 

collapse

First, the effect of different concentrations of Lat A was examined in movies of 

single ndc80-gfp cdc l 1-cfp cells to simultaneously monitor spindle length, 

spindle angle and the timing of anaphase onset. The average duration of phase 

2 in untreated cells was 11 ± 3 minutes compared to 14.5 ± 5.5 minutes in the 

presence of 0.625pM Lat A and 19 ± 9 minutes in the presence of 1.25pM Lat A 

(figure 5.1a-d). These data confirm previous results in population studies that 

Lat A delays the onset of anaphase. However, closer examination reveals that 

Lat A causes a mitotic delay in only a subset of cells (figure 5.2b). In 61% of 

cells (n=17/28) (figures 5.2b, c and f) the length of phase 2 is 11 ± 2 minutes in 

the presence of 1.25|aM Lat A, which is indistinguishable from that in the 

absence of drug (11 ± 3 minutes; figure 5.2a and e). In the other 39% of cells 

(n=11/28), addition of 1.25p,M Lat A causes a protracted extension of phase 2 

(27.5 ± 4.5 minutes) with subsequent pre-anaphase spindle collapse (figures
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Figure 5.1 Latrunculin A treatment causes a concentration dependent pre­
anaphase delay

Graphs representing multiple time-lapse movies of (a) ndc80-gfp cdcl 1-cfp (wild 
type) cells (n=29) (reproduced from 3.7a), (b) ndc80-gfp cdcl 1-cfp cells + 
0.625p,M Lat A (n=12) and (c) ndc80-gfp cdcl 1-cfp cells + 1.25jj,M Lat A (n=28) 
showing the length of the mitotic spindle through time. Plots are aligned at the 
end of anaphase A (dashed line).
(d) Histogram showing the average length of phase 2 in (a-c) above. Error bars 
show standard error.
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Figure 5.2 Latrunculin A treatment results in a proportion of cells that undergo 
an extended phase 2 and a subsequent pre-anaphase spindle collapse

(a) Multiple time-lapse movies of ndc80-gfp cdcl 1-cfp (wild type) cells (n=29) 
showing the length of the mitotic spindle through time. Reproduced from figure 
5.1a.
(b) Multiple time-lapse movies of ndc80-gfp cdcl 1-cfp (wild type) cells + 1.25^iM 
Lat A (n=28) showing the length of the mitotic spindle through time. Spindles that 
undergo anaphase are shown in blue (extracted and shown in (c)). Spindles that 
undergo a pre-anaphase collapse are shown in red (extracted and shown in (d)). 
Plots in (a), (b), (c) and (d) are aligned at the end of anaphase A.
(e) Histogram showing the average length of phase 2 in (a) and (b) above. Error 
bars show standard error.
(f) Histogram showing the average length of phase 2 in (c) and (d) above. Error 
bars show standard error.



5.2b, d and f; movie 5.1). In the presence of 0.625pM Lat A (figure 5.1b) only 2 

out of 12 cells (17%) displayed a delay in anaphase onset and pre-anaphase 

spindle collapse. These results indicate that Lat A induces a concentration 

dependent delay in anaphase onset and pre-anaphase spindle collapse in a 

subset of cells.

To examine the relationship between the anaphase delay imposed by Lat A and 

spindle orientation, I calculated spindle angle at both the start and end of phase 

2 in ndc80-gfp cdc l 1-cfp cells in the presence and absence of 1.25pM Lat A. 

Importantly, this showed that there is only a slight increase in spindle mis- 

orientation in cells exposed to Lat A compared to control cells (figure 5.3a). In 

control cells, average spindle angle was 15 ± 3° at the start of phase 2 and 17 ± 

3° at the end. In the presence of 1.25pM Lat A, average spindle angle at the 

start versus end of phase 2 did not increase significantly, irrespective of 

subsequent spindle behaviour. Thus, spindles that underwent a pre-anaphase 

collapse started phase 2 at 19 ± 3° and ended at 23 ± 3° whilst those 

progressing to anaphase began phase 2 at 18 ± 3° and ended at 22 ± 4°. This 

data is plotted in figure 5.3b to show the behaviour of individual spindles from 

the 28 movies. In agreement with previous population studies I conclude that 

Lat A induces an apparent overall anaphase delay. However, this delay does 

not correlate with a defect in spindle mis-orientation. Crucially, I find that Lat A 

induces pre-anaphase delay and mitotic spindle collapse in a proportion of cells 

and suggest that it is this effect, rather than an effect on spindle orientation, that 

gives rise to the Lat A-dependent anaphase delay observed previously.

Additionally, in contrast to Gachet et al., (2004), I found that the rate of spindle 

elongation in ndc80-gfp cd c l 1-cfp cells (0.82 ± 0.19pm/minute) is not 

significantly altered by the presence of 1.25pM Lat A (0.79 ± 0.16pm/minute). 

This is in agreement with my previous conclusions, and those of others, that 

astral microtubules do not contribute to the rate of spindle elongation (section

3.2.2).
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Figure 5.3 Spindle mis-orientation is not significantly elevated by Latrunculin A 
treatment

(a) Histogram showing average angle of the mitotic spindle relative to the 
longitudinal axis of the cell at the start and end of phase 2. ndc80-gfp cdc11-cfp 
(wild type) is shown in black, reproduced from figure 4.2b. ndc80-gfp cdc11-cfp 
(wild type) + 1.25pM Lat A is shown in blue and red respectively for those 
spindles which do not collapse and those that do. Error bars show standard error 
of the mean (SEM).
(b) Multiple time-lapse movies of ndc80-gfp cdc11-cfp (wild type) cells + 1.25pM 
Lat A (n=28) showing the angle of the spindle relative to the longitudinal axis of 
the cell through time. Spindles that undergo anaphase are shown in blue and 
those that undergo a pre-anaphase collapse in red. Plots are aligned at the end 
of anaphase A (dashed line).



5.2.2 In the presence of Lat A a proportion of cells lacking Mto1 undergo 

phase 2 delay and pre-anaphase spindle collapse

In chapter 3, I showed that mitotic spindles are severely mis-orientated in 

m to lD  cells but the timing of anaphase onset is not delayed. One possibility is 

that Mto1 could either be a sensor of spindle mis-orientation or be required to 

transmit a mis-orientation signal to the cell cycle machinery. To test this 

hypothesis, I monitored mitotic progression in m to lD  ndc80-gfp cdc11-cfp 

(mtolD) cells in the presence or absence of 1.25pM Lat A to determine whether 

a delay could be imposed. Exposure of m to lD  cells to Lat A causes a similar 

effect to that observed in wild type cells (section 5.2.1 and figure 5.4a and c). 

The average length of phase 2 in m to lD  cells in the presence of 1.25pM Lat A 

is 21 ± 11.5 minutes (n=28) compared to 12 ± 2.5 minutes (n=20) in the 

absence of drug (figure 5.4b, d and e). As in wild type cells, in the presence of 

Lat A some m to lD  cells (n=13/28; 46%) undergo a protracted phase 2 (30 ±

10.5 minutes; figure 5.4d and f) and pre-anaphase spindle collapse, whereas 

the remaining (n=15/28; 54%) cells have a phase 2 of 13 ± 4 minutes (figure 

5.4d and f).

In the previous section I showed that Lat A treatment did not significantly 

increase spindle mis-orientation. I repeated this analysis in m to lD  cells in the 

presence or absence of Lat A (figure 5.5). In the absence of drug spindle angle 

was 37 ± 7° at the start of phase 2 and 34 ± 4° at the end (figure 5.5a). By 

contrast, in the presence of Lat A spindle angle was 33 ± 7° and 32 ± 7° 

respectively for spindles that progressed through anaphase, whilst those that 

collapsed prior to anaphase measured 34 ± 6° and 36 ± 8° (figure 5.5a). This 

data is plotted to show the angle of individual spindles over time in figure 5.5b, 

which clearly shows that there is no difference between m tolD  cells irrespective 

of pre-anaphase collapse during mitosis.

Additionally, the rate of spindle elongation in m tolD  cells in the absence of drug 

(0.84 ± 0.28pm/minute) is not significantly different from the rate of spindle 

elongation in m tolD  in the presence of 1 .25(lxM Lat A (0.76 ± 0.28pm/minute).
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Figure 5.4 Latrunculin A treatment results in a proportion of mtolD  cells with an 
extended phase 2 and a subsequent pre-anaphase spindle collapse

Multiple time-lapse movies showing the length of the mitotic spindle through time 
for: (a) ndcdO-gfp cdc11-cfp (wild type) cells (n=29), reproduced from figure 
5.1a.; (b) mtolD ndc80-gfp cdc11-cfp (m tolD) cells (n=20), reproduced from 
figure 3.7b.; (c) ndc80-gfp cdc11-cfp cells (wild type) cells + 1.25pM Lat A 
(n=28). Spindles that undergo anaphase are shown in blue and those that 
undergo pre-anaphase collapse in red.; (d) mtolD ndc80-gfp cdc11-cfp (m tolD) 
cells + 1.25pM Lat A (n=28). Spindles that undergo anaphase are shown in blue 
and those that undergo pre-anaphase collapse in red. Plots in (a), (b), (c) and (d) 
are aligned at the end of anaphase A (dashed line).
(e) Histogram showing the average length of phase 2 in (b) and (d) above. Error 
bars show standard error.
(f) Histogram showing the average length of phase 2 in (d) above. Spindles that 
undergo anaphase are shown in blue and those that undergo pre-anaphase 
collapse in red. Error bars show standard error.
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Figure 5.5 Latrunculin A treatment does not increase spindle mis-orientation in 
cells lacking Mto1

(a) Histogram showing the average angle of the mitotic spindle relative to the 
longitudinal axis of the cell at the start and end of phase 2. mtolD ndc80-gfp 
cdc11-cfp (m to lD ) shown in black, reproduced from figure 4.2b. mtolD ndc80- 
gfp cdc11-cfp (m tolD ) + 1.25pM Lat A shown in blue and red respectively for 
those spindles which do not collapse and those that do. Error bars show 
standard error of the mean (SEM).
(b) Graphs representing multiple time-lapse movies of mtolD ndc80-gfp cdc11- 
cfp (m tolD ) cells + 1.25pM Lat A (n=28) showing the angle of the spindle relative 
to the longitudinal axis of the cell through time. Spindles that undergo anaphase 
are shown in blue and those that undergo a pre-anaphase collapse in red. Plots 
are aligned at the end of anaphase A (dashed line).



In conclusion, Lat A imposes both a phase 2 delay and a subsequent pre­

anaphase spindle collapse on a proportion of cells lacking Mto1 without 

increasing the already severely mis-orientated angle of the spindle. Therefore, 

Mto1 cannot be part of the SOC machinery and Lat A is causing a delay without 

increasing spindle mis-orientation.

5.2.3 Construction of a Lat A-insensitive act in mutant

Lat A binds to actin monomers and prevents polymerisation (Morton et a/., 

2000). Lat A-insensitive actin alleles have been constructed in both S.cerevisae 

(Wertman et al., 1992; Belmont et al., 1999) and human cell lines (Fujita et a i,

2003). Figure 5.6 shows an alignment of the actin protein sequences of 

S .pom be, S .cerev isae, mouse and man. The location of the residue 

substitutions required to confer Lat A resistance are highlighted. To examine 

whether the observed effect of Lat A delay was due to actin depolymerisation or 

to a non specific effect of the drug I constructed actID  Ieu:act1 and a c tID  

Ieu1 :act1 -R183A,D184A strains in which the endogenous actin gene had been 

deleted and either wild type act1 or act1-R183A,D184A  alleles had been 

integrated at the Ieu1 locus (materials and methods, section 2.5.3). To test the 

sensitivity of actID  Ieu:act1 and actID  Ieu1 :act1 -R183A,D184A cells to Lat A 

log phase cultures were synchronised by lactose gradient centrifugation and 

incubated in fresh medium either in the presence or absence of 1.25|iM Lat A. 

Cells were fixed in formaldehyde at time 0 and every 20 minutes for 140 

minutes thereafter, and stained with DAPI and calcofluor to observe nuclei and 

septa respectively (n=200 cells for each time point). In actID  Ieu:act1 (control) 

cells, in the absence of Lat A, the peak of binucleate cells occurred at 60 

minutes and the peak of septation at 70 minutes (figures 5.7a and 5.7c). In the 

presence of Lat A, the peak of bi-nucleate cells was delayed relative to the 

control and cytokinesis was completely blocked (figures 5.7a and 5.7c). 

Synchronised untreated actID  Ieu1 :act1 -R183A,D184A cells also underwent 

sister chromatid separation and septum formation. However in this case, 

addition of 1.25^iM Lat A had no effect on the timing or appearance of bi- 

nucleates or the formation of septa (figures 5.7c and 5.7d). This data indicates 

that the actID  leu1 :act1 -R183A,D184A allele is insensitive to Lat A in fission 

yeast. I also constructed a second strain actID  Ieu1:act1-D157E based on the
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Figure 5.6 Actin sequence alignments between S.pombe (S.p.), S.cerevisae 
(S.c.), mouse (M.m.) and man (H.s.)

Black boxes indicate regions of homology. Red boxes indicate residues mutated 
to confer Latrunculin resistance on actin, namely D157 and R183.D184.
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Figure 5.7 act1-R183A,D184A is resistant to Lat A

Log phase actID Ieu1:act1 (control) and actID Ieu1:act1-R183A,D184A cells 
were synchronised by lactose gradient centrifugation and grown in the presence 
and absence of 1.25nM Lat A. Samples were taken and fixed at time 0 and every 
20 minutes thereafter and stained with DAPI and calcofluor to visualise DNA and 
septa respectively.
(a) Graph showing the percentage of binucleate actID Ieu1:act1 (Ieu1:act1) cells 
over time in the presence (red) and absence (blue) of Lat A.
(b) As (a) for actID Ieu1 :act1-R183A,D184A {leu 1:act1-RADA) cells.
(c) Graph showing the percentage of septated actID Ieu1:act1 (Ieu1:act1) cells 
over time in the presence (red) and absence (blue) of Lat A.
(d) As (c) for actID Ieu1:act1-R183A,D184A (Ieu1 :act 1-RADA) cells.



identification of Lat A-insensitive actin alleles in budding yeast and this was also 

found to confer Lat A resistance in fission yeast (data not shown). However, I 

chose to use the actID  Ieu1 :act1 -R183A,D184A strain for the remainder of this 

work.

5.2.4 Lat A delays anaphase onset and causes mitotic spindle collapse by 

preventing actin polymerisation

To determine whether the anaphase delay induced by Lat A is due to its known 

effect on actin polymerisation, mitotic progression was monitored in single 

actID  Ieu1:act1 ndc80-gfp cdc11-cfp (con tro l)  and a c tID  Ieu1:act1- 

R183A,D184 ndc80-gfp cdc11-cfp (actl-RADA) cells either in the presence or 

absence of Lat A. In the absence of drug, the length of phase 2 was not 

significantly different in either control (12.5 ± 4 minutes) or actl-RADA  cells 

(12.5 ± 3.5 minutes) (figures 5.8a and 5.8b). However, in the presence of 

1.25pM Lat A, phase 2 was extended in control cells (20.5 ± 8 minutes) while 

Lat A treatment had no effect in actl-RADA  cells (13 ± 3.5 minutes) (figures 

5.8c and 5.8d).

In these experiments, I noted that only 2 out of 26 (8%) actID  Ieu1:act1 ndc80- 

gfp cdc11-cfp cells exhibited a pre-anaphase spindle collapse in 1.25pM Lat A 

(figure 5.8c), lower than that observed in act1+ ndc80-gfp cdc11-cfp cells at the 

same dose (39%; figure 5.2b). I reasoned that actin may be expressed at a 

higher level from the Ieu1 locus than at its normal chromosomal location which 

may lead to partial insensitivity to Lat A. For this reason, the experiments above 

were repeated in the presence of 2.5pM Lat A. At this concentration, pre­

anaphase spindle collapse occurred in 8 out of 28 (30%) actID  Ieu1:act1 

ndc80-gfp cdc11-cfp cells, whilst there was no discernible effect on the length of 

phase 2 in actID  Ieu1:act1-R183A,D184 ndc80-gfp cdc11-cfp cells (13 ± 4.5 

minutes) and did not induce mitotic spindle collapse (figures 5.8e and 5.8f). The 

data, summarised in figure 5.9, strongly indicate that the effect of Lat A in 

inducing an anaphase delay and mitotic spindle collapse in fission yeast is due 

to its documented role in preventing actin polymerisation.
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Figure 5.8 act1-R183A,D184A cells do not undergo a pre-anaphase delay or 
collapse in the presence of Lat A

Graphs representing multiple time-lapse movies showing the length of the mitotic 
spindle through time for: actID Ieu1:act1 ndc80-gfp cdc11-cfp (Ieu1:act1) cells in 
the absence of Lat A (n=23) (a), in the presence of 1.25|iM Lat A (n=26) (c) and 
2.5^iM Lat A (n=27) (e); actID Ieu1 :act1-R183A,D184A ndc80-gfp cdc11-cfp 
(Ieu1:act1-RADA) cells in the absence of Lat A (n=23) (b), in the presence of 
1.25pM Lat A (n=26) (d) and 2.5|aM Lat A (n=25) (f). Spindles that undergo 
anaphase are shown in blue and those that undergo a pre-anaphase collapse in 
red. Plots are aligned at the end of anaphase A.
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Figure 5.9 Latrunculin A has no effect on the length of phase 2 or spindle 
stability in an act1-R183A,D184A mutant

(a) Histogram showing the average length of phase 2 for actID  Ieu1:act1 ndc80- 
gfp cdc11-cfp (Ieu1:act1) and actID  Ieu1:act1-R183A,D184A ndc80-gfp cdc11- 
cfp (Ieu1:act1-RADA) cells in the presence and absence of 1.25 and 2.5^iM Lat 
A. Data extracted from figure 5.8 a-f. Error bars show standard error.
(b) Number and percentage of pre-anaphase spindle collapses observed in the 
same data set.
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5.3 Discussion

5.3.1 The target of Lat A: previous assumptions

It was previously reported that in fission yeast, the addition of Lat A caused a 

delay in the onset of anaphase by causing spindle mis-orientation. This 

phenomenon was termed a spindle orientation checkpoint (SOC) (section

1.3.2.2.2). In this chapter, I confirm that Lat A does indeed induce a mitotic 

delay but demonstrate that this is not due to an effect on spindle orientation. 

Since there is also no relationship between spindle angle and the timing of 

anaphase onset (section 3.2.1), I conclude that fission yeast does not possess 

a spindle orientation checkpoint. Therefore, the previous conclusion that Lat A 

imposes a mitotic delay by preventing astral microtubule interaction with the cell 

cortex must be erroneous. In addition, it was found in a previous study that the 

elongation rate in phase 3 was slowed by the presence of Lat A (Gachet et al.,

2004). However, I have found no such effect in either wild type cells or cells 

lacking Mto1. This is consistent with my previous findings that the absence of 

astrals does not affect elongation rate (section 3.2.2). Additionally, I have found 

that a significant effect of Lat A, not previously observed, is that it causes a 

collapse of pre-anaphase spindles in a proportion of cells.

5.3.2 Why is pre-anaphase collapse only seen in a proportion of cells?

An important question raised by the novel observation described in these 

studies is why Lat A treatment causes an anaphase delay and spindle collapse 

is only a proportion of cells? One answer might be that I was using a sub- 

optimal concentration of drug. However, this is difficult to test because complete 

de-polymerisation of the actin cytoskeleton by high Lat A concentrations 

prevents mitotic entry as cells are not able to grow to a critical size to allow 

mitotic onset (Rupes et al., 2001). Notably however, complete depolymerisation 

of the actin cytoskeleton in cdc25-22 cells, which do not need to satisfy a size 

threshold as they are already large, delays but does not prevent the onset of 

anaphase. This argues that resistance to Lat A is an inherent property of at 

least a proportion of the cell population. Another possibility is that the number of 

spindle collapses observed correlates with the length of exposure of the cells to
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Lat A. However I find there is no such correlation. Indeed the spindles of cells in 

the same visual field, which have therefore been exposed to Lat A for the same 

amount of time, experience different fates, namely some collapse and some do 

not. Similarly, photo-toxicity due to an extended period of light exposure is not 

responsible for the collapses, since the same conditions were used to image 

mal3D  cells, which have a delayed phase 2 but do not undergo spindle 

collapse. At present it is unclear whether the pre-anaphase collapse 

phenomenon is reversible. However, in synchronisation experiments, all cells 

eventually become bi-nucleate which argues that mitotic spindle collapse is not 

irreversible. Further efforts, however, could be made to visualise spindle 

reformation following spindle collapse in single cells.

5.3.3 What is the real target of Lat A?

By use of a single cell based approach, I have found that Lat A causes mitotic 

spindles to collapse prior to anaphase onset in a proportion of cells. This 

phenotype would not have been apparent in population studies. Additionally, 

the collapses may have been prevented when mitotic progression was 

monitored in nmt1-gfp-atb2  cells, in which tubulin is overexpressed. This 

possibility is explored in more detail in chapter 6. Regardless, my data suggest 

that Lat A delays the onset of anaphase by disrupting mitotic spindle stability 

rather than by causing spindle mis-orientation. Furthermore, I demonstrate that 

the effect of Lat A is due to its effect on actin polymerisation rather than to a 

non-specific effect of the drug. One possibility is that Lat A influences the 

stability of the spindle midzone. Interestingly, Lat A induces a delay in activation 

of the anaphase promoting complex (APC) through a mechanism that requires 

a subset of spindle assembly checkpoint proteins, including Mad3, Bub1, Bub3 

and Mph1, but not Mad1 or Mad2 (Tournier et al., 2004; section 1.3.2.2.2). It is 

possible that the stability of the spindle midzone is monitored by a checkpoint 

which is activated in the presence of Lat A. This possibility is explored further in 

chapter 6.

The question remains with respect to the role of actin in mitotic spindle stability. 

There are at least three possibilities:
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Firstly, actin could be maintaining spindle stability by affecting the transcription 

of other players. Actin is a component of the NuA4, Ino80 and Swr chromatin 

remodelling complexes (reviewed in Blessing et al., 2004) and there is evidence 

to suggest that these can affect sister chromatid cohesion (reviewed in Riedel 

et al., 2004). Furthermore, actin is a component of the pre-initiation complex for 

RNA ploymerases I, II and III and also acts at a step immediately following 

transcript initiation (reviewed in Pederson and Aebi, 2005). However, it is 

unknown whether actin in these roles is monomeric, oligomeric or filamentous. 

The possibility that Lat A treatment is revealing a role for actin in transcription 

regulation seems unlikely, since Lat A only seems to effect pole-to-pole 

microtubules rather than k-fibres (the spindle assembly checkpoint is not 

activated). However, this possibility cannot be discounted although it would 

require microarray experiments in the presence and absence of Lat A to verify.

Secondly, actin depolymerisation could cause a redistribution of interphase 

microtubule “plus” end proteins to the nucleus. This would be the case if actin 

were required to tether proteins such as T e a l-4 and T ipi in the cytoplasm to 

prevent them from entering the nucleus and binding the tips of spindle 

microtubules. Again, however, if this were the case one might expect Lat A to 

affect both pole-to-pole microtubules and interaction with the kinetochores 

resulting in a full SAC activation. This hypothesis could be easily tested by 

analysing kinetochore and SPB dynamics in Teal-complex delete cells.

Thirdly, there could be an actin-based spindle matrix in fission yeast. There is 

some evidence for such a structure in crane fly spermatocytes (Fabian and 

Forer, 2005). Actin is also required for chromosome congression in very large 

oocytes (Lenart et al., 2005). In addition, mDia3 (formin) is found at the plus 

end of spindle microtubules and is required for microtubule-kinetochore 

interactions (Yasuda et al., 2004). In bacteria, the actin homologue MreB is 

utilised in the division of the genetic material (reviewed in Thanbichler and 

Shapiro, 2006). Spindle matrix proteins, not related to actin, have been 

discovered in Drosophila (Skeletor, Chromator and Megator: Walker et al., 

2000; Rath et al., 2004; Qi et al., 2004) and in budding yeast (Fin1: van Hemert 

et al., 2003; Woodbury and Morgan, 2007). The genetics of Fin1 in S.cerevisae 

are particularly intriguing since it is required for viability in the absence of Ase1
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(which will be discussed in the following chapter). At present, a spindle matrix 

factor has not been found in fission yeast. Actin as a spindle-matrix factor in 

S.pombe is an attractive possibility but is difficult to directly test. Phalloidin 

staining of a filament at the mitotic spindle may be masked by actin at the 

division ring. Also some evidence suggests that the form of actin in the nucleus 

cannot bind phalloidin (Schoenenberger et al., 2005). Monoclonal antibodies 

(2G2 and 1C7) to conformation-specific forms of actin that specifically 

recognise nuclear actin structures have been produced but these have not yet 

been tested in fission yeast (Gonsior et al., 1999; Schoenenberger et al., 2005). 

The epitopes to which these antibodies were raised are conserved between 

S.pombe and mammalian actin, and so have a good chance of being effective 

in fission yeast.

Whilst it is clear from my data that actin plays an important role in maintaining 

the stability of the pre-anaphase mitotic spindle in fission yeast, the mode of 

action remains unclear at this time.

5.4 Conclusions

• Lat A delays the onset of anaphase and causes pre-anaphase spindle 

collapse

• Lat A does not cause anaphase delay by causing spindle mis-orientation.

• The effect of Lat A is due to its effect on actin polymerisation.

• Actin is required for pre-anaphase spindle stability in fission yeast
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Chapter 6

Ase1 controls pre-anaphase spindle stability and the 

timing of anaphase onset

6.1 Introduction

In the last chapter, I presented data showing that actin controls pre-anaphase 

spindle stability in fission yeast. Bipolar spindle assembly and maintenance of 

spindle length and stability requires a number of kinesins and microtubule 

binding proteins. These include members of the ASE1/PRC1/MAP65 family, 

which bind, stabilise and bundle anti-parallel microtubules (Pellman et al., 1995; 

Mollinari et al., 2002; Schuyler et al., 2003; Loiodice et al., 2005; Yamashita et 

al., 2005; Sasabe and Machida, 2006; Carazo-Salas and Nurse, 2007). Fission 

yeast cells lacking Ase1 are viable but undergo mitotic spindle collapse during 

anaphase B (Loiodice et al., 2005; Yamashita et al., 2005). In addition, 

Yamashita et al. (2005) show that ase lD  cells are profoundly defective in the 

maintenance of an artificial minichromosome. Surprisingly, however, analysis of 

spindle dynamics in aselD  nmt1-gfp-atb2 did not reveal a role for Ase1 before 

anaphase onset in some studies (Yamashita et al., 2005), whereas it did in 

others (Loiodice et al., 2005). This discrepancy could result from the use of 

different atb2-gfp constructs, which may affect the stability of the spindle. In this 

chapter I have re-investigated kinetochore and spindle pole dynamics in aselD  

cells.

6.2 Results

6.2.1 Ase1 localises to the spindle midzone prior to anaphase onset

To visualise Ase1, a strain with the protein tagged with GFP at the C-terminus 

in a background containing Cdc11-CFP to visualise SPBs was used. Figure 

6.1a shows log phase ase lg fp  cdc11-cfp cells fixed with formaldehyde and 

stained with DAPI and calcofluor to visualise DNA and septa. As previously 

reported by Loiodice et al. (2005) and Yamashita et al. (2005), Ase1 localises to
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overlapping anti-parallel microtubules during interphase. Importantly, Ase1 is 

present at the spindle midzone in mitotic cells. This is clearly shown in figure 

6.1b and movie 6.1, which are a time-lapse series of images of an ase1-gfp 

cdc11-cfp cell during mitosis. Ase1 is present at the spindle midzone in phase 1 

(0 to 3 minutes) and throughout phase 2 (3 to 18 minutes) and during spindle 

elongation in phase 3 (18 to 36 minutes). In addition, Ase1 binds to SPBs at 27 

minutes, during anaphase B, when astral microtubules become bundled in an 

anti-parallel manner on the outer face of the SPB.

6.2.2 Cells lacking Ase1 are delayed in anaphase onset and undergo 

frequent pre-anaphase spindle collapse

To investigate the effect of loss of Ase1 on mitotic progression, individual 

aselD  ndc80-gfp cdc11-cfp cells were imaged throughout mitosis. Figure 6.2c 

shows that the average length of phase 2 in ase lD  ndc80-gfp cdc11-cfp cells 

(22 ± 7 minutes) is extended compared to control cells (11 ± 3 minutes) at the 

same temperature. Further analysis reveals three mitotic phenotypes in cells 

lacking Ase1 (figure 6.2b). Firstly, in 9 cells from a sample of 20 (45%) I 

observed the phase 3 collapse previously reported by (Loiodice et al., 2005; 

Yamashita et al., 2005) (figure 6.2b). Secondly, pre-anaphase collapses, similar 

to those induced by Lat A (section 5.2.1), were seen in 7 out of 20 aselD  cells 

(35%) (figure 6.2b). Finally, a new class of spindle fate is revealed in the 

absence of Ase1, in which anaphase A takes place, meaning sister chromatids 

separate, but anaphase B does not occur; this phenotype was observed in 4 out 

of 20 cells (20%) (figure 6.2b). There is also a correlation between the 3 classes 

of spindle fate and the duration of phase 2 (figure 6.2d), the duration of which is 

as follows: in cells that undergo spindle collapse in phase 3 it averages 16.5 ± 3 

minutes; in cells that undergo anaphase A but not anaphase B it is 21.5 ± 5 

minutes; whilst in those that undergo pre-anaphase spindle collapse it is 29.5 ±

4.5 minutes. The reason for this is presently unknown but suggests that other 

factors apart from Ase1 influence the stability of the spindle midzone and the 

contribution of these other factors to spindle stability varies from cell to cell.
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Figure 6.1 Ase1 localisation

(a) An image of fixed log phase cells expressing Ase1-GFP (red) and Cdc11- 
CFP (spindle pole bodies, green) and stained with DAPI and calcofluor to 
visualise DNA (blue) and septa (light blue) respectively. The third cell from the 
left is in interphase. The remaining three cells are in mitosis.
(b) Images from a time-lapse movie of a cell expressing Ase1-GFP (green) and 
Cdc11-CFP (spindle pole bodies, red) taken every 3 minutes. Phase 1 is 0-3 
minutes, phase 2 is 3-21 minutes and phase 3 is 21-36 minutes.
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Figure 6.2 Cells lacking Ase1 are delayed in phase 2 and undergo frequent 
spindle collapse both before and after anaphase onset

(a) Graph representing multiple time-lapse movies showing the length of the 
mitotic spindle through time of ndc80-gfp cdc11-cfp (wild type) cells (n=29) 
(Reproduced from figure 3.7a).
(b) Multiple time-lapse movies showing the length of the mitotic spindle through 
time of aselD ndc80-gfp cdc11-cfp {aseW ) cells (n=20). Spindles that collapse 
in anaphase B are shown in blue, those that undergo anaphase A but not B in 
green and those that undergo a pre-anaphase collapse in red. Plots for (a) and
(b) are aligned at the end of anaphase A (dashed line).
(c) Histogram showing the average length of phase 2 in (a) and (b) above. Error 
bars show standard error.
(d) Histogram showing the average length of phase 2 in the sub-populations of
(b) above. Error bars show standard error.



6.2.3 Abnormal kinetochore behaviour in the absence of Ase1

I noted that ase lD  ndc80-gfp cdc11-cfp cells display abnormal kinetochore 

behaviour. In control cells (ndc80-gfp cdc11-cfp), kinetochores undergo 

centromere breathing during prometaphase and metaphase due to microtubule 

based tension across bi-oriented sister chromatids. At the same time, sister 

chromatid pairs oscillate along the line defined by the axis between the 

separated spindle poles (figure 6.3a) before congressing to the spindle midzone 

just prior to the onset of anaphase A. By contrast, in the absence of Ase1, 

centromere breathing is still observed but one pair of sister chromatids is 

frequently located away from the spindle axis (figure 6.3b and movie 6.2) and 

chromosome congression is absent.

6.2.4 Actin and Ase1 control spindle elongation

The similarity between the effect of Lat A and a deletion of Ase1 on kinetochore 

and spindle pole dynamics persuaded me to examine the relationship between 

the two. I found that addition of 1.25pM Lat A had little effect on the overall 

length of phase 2 in aselD  ndc80-gfp cdc11-cfp cells (23 ± 1 0  minutes) 

compared to the same cells in the absence of drug (22 ± 7 minutes) (figures 

6.4b, d and e). However, the spindles of a se lD  rtdc80-gfp cdc11-cfp cells 

collapsed before the onset of anaphase A slightly more frequently in the 

presence of Lat A (9/20 movies; 45%) than in the absence of drug (7/20 

movies; 35%) (figures 6.4b and 6.4d). However, the major effect of Lat A in 

aselD  ndc80-gfp cdc11-cfp cells was seen in phase 3 (figure 6.5c). Whereas all 

ase1+ ndc80-gfp cdc11-cfp cells attained a spindle length of more than 4pm 

(29/29; 100%) this was reduced in the presence of Lat A (17/28; 61%). 

Similarly, fewer aselD  ndc80-gfp cdc11-cfp cells reached a spindle length of 

more than 4pm in the presence of Lat A (4/20; 20%) than in its absence (9/20; 

45%). This is important since I calculated that a spindle length of 4pm is the 

minimum necessary to produce bi-nucleate cells. Together these data indicate 

Latrunculin A substantially inhibits spindle elongation in the absence of Ase1.
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b
aselD

Figure 6.3 Kinetochore dynamics are perturbed in cells lacking Ase1

(a) Image from a time-lapse movie of an ndc80-gfp cdc11-cfp cell (wild type). 
Ndc80-GFP marks kinetochores (red) and Cdc11-CFP marks spindle pole 
bodies (green). Below is a diagrammatic representation superimposed on the 
presumed nuclear localisation (blue).
(b) As (a) for an aselD ndc80-gfp cdc11-cfp (aselD) cell.



Figure 6.4 Latrunculin treatment does not extend the length of phase 2 in cells
lacking Ase1

Graphs representing multiple time-lapse movies showing the length of the mitotic 
spindle through time for: ndc80-gfp cdc11-cfp (wild type) cells in the absence 
(n=29, a) or presence (n= 28, c) of 1.25nM Lat A compared to aselD ndc80-gfp 
cdc11-cfp (aselD) cells in the absence (n=20, b) or presence (n=20, d) of 
1.25|^M Lat A. Plot colours in (b), (c) and (d) represent spindles that initiate 
anaphase B (blue), anaphase A but not B (green) and pre-anaphase collapse 
(red). All plots are aligned at the end of anaphase A (dashed line), (a), (b) and (c) 
are reproduced from figures 6.2a, 6.2b and 5.2b respectively.
(e) Histogram showing the average length of phase 2 (a-d) above. Error bars 
show standard error.
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Figure 6.5 Latrunculin treatment decreases the percentage of bi-nucleate cells
following mitosis in cells lacking Ase1

Graphs representing multiple time-lapse movies showing the length of the mitotic 
spindle through time for aselD ndc80-gfp cdc11-cfp (aselD) in the presence (b) 
and absence (a) of 1.25p,M Lat A. The upper row shows those spindles which 
collapse in anaphase B with spindle poles more than 4pm apart, giving rise to a 
bi-nucleate cell (blue). The middle and lower rows show respectively those 
spindles that undergo anaphase A but not B or those which collapse pre­
anaphase. In both cases, spindle pole bodies are less than 4jxm apart at the end 
of all movies, with mitosis resulting in a mono-nucleate cell. Plots are aligned at 
the end of anaphase A (dashed line).
(c) Histogram representing the percentage of bi-nucleate (blue) and mono- 
nucleate (red) cells following mitosis in figures 6.4a, c and 6.5 a, b. wild type, 
n=29 cells; wild type + Lat A, n=28; aselD, n=20 cells; aselD + Lat A, n=20.
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6.3 Discussion

6.3.1 Re-assessing the cell cycle role of Ase1

Loiodice et al. (2005) and Yamashita et al. (2005) agree that there is a phase 3 

collapse in cells lacking Ase1. However, Loiodice et al. (2005) observe a phase 

2 delay whilst Yamashita et al. (2005) do not see any alteration in mitotic 

dynamics prior to phase 3. Arguing for a pre-anaphase effect is data from 

Yamashita et al. (2005) that shows ase lD  cells have a high mis-segregation 

rate. Also, localisation data from both groups, and also this work, shows clearly 

that Ase1 is present on the pre-anaphase spindle. I have shown in this chapter 

that, whilst I too observe the previously described phase 3 collapses, I also see 

pre-anaphase collapses and additionally cells in which anaphase A occurs 

without a subsequent anaphase B. This evidence shows that Ase1 does indeed 

have a role in spindle stability and mitotic progression prior to the onset of 

anaphase. Furthermore, the dispersed pattern of kinetochores in a se lD  cells 

during phase 2, which implies altered spindle bundling, confirms a pre­

anaphase effect. I propose that the previous discrepancies between Loiodice et 

al. (2005) and Yamashita et al. (2005) could be due to the use of various 

different Atb2-GFP constructs to visualise the spindle. Over-expression of this 

tagged protein could artificially stabilise the spindle since (a) more tubulin is 

present and (b) it is structurally altered by the GFP tag. Therefore, it would be of 

interest to repeat my multiple single cell time-lapse analyses using aselD  

Iys1:nmt1-atb2-gfp cells and observe whether a phase 2 role is implicated. If 

not, it would appear that spindle stability is affected by the visualisation method 

chosen, thus compromising accurate interpretations. In the case of a genuine 

phase 2 delay in a s e lD  cells, it will be interesting to examine whether 

components of the spindle assembly checkpoint (SAC) are required to maintain 

this delay.

6.3.2 Cell-to-cell variation

A proportion of spindles in ase lD  cells collapse before anaphase onset 

whereas others collapse after anaphase onset. The reason for this cell-to-cell 

variation is unknown. Notably, pre-anaphase spindle collapse is also seen in
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ase1+ cells in the presence of Lat A. These phenotypes are not due to photo­

toxicity since cells in the same field undergo different fates despite exposure to 

the same amount of light (movie 6.3), arguing that this variability is an inherent 

property of the cell population. An intriguing possibility is that spindle fate in 

ase lD  cells reveals a lineage dependent cell-to-cell variation in the number of 

pole-to-pole microtubules. Alternatively, the composition of the spindle midzone 

or concentration of different spindle stabilising factors may vary between cells. 

Another possibility is that when Lat A is used, its concentration is not maximal. 

It would be interesting to examine the effect of complete disruption of the actin 

cytoskeleton on spindle stability. However, this is not possible in wild type cells 

since actin is required for cell growth and the attainment of a critical cell size 

necessary for the initiation of mitosis (Rupes et at., 2001). This problem, 

however, could be circumvented in cdc25-22 cells arrested at the restrictive 

temperature. These cells exceed the size control needed for mitotic entry and 

synchronously enter mitosis on release to the permissive temperature even 

when the actin cytoskeleton is completely destroyed (Rajagopalan et al., 2004). 

The effect of complete disruption of the actin cytoskeleton in the absence of 

Ase1 could then be assessed.

6.4 Conclusions

• Loss of Ase1 causes altered kinetochore behaviour and pre-anaphase 

spindle collapse.

• Cells lacking Ase1 have a delay over anaphase onset.

• Ase1 and actin control spindle stability and spindle elongation
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Chapter 7

Klp9 kinesin is a novel regulator of mitotic spindle 

stability

7.1 Introduction

In the previous chapter, I showed that loss of Ase1 or addition of Lat A induces 

pre-anaphase spindle collapse and a delay in anaphase onset. More 

importantly, I found that addition of Lat A exacerbated the phenotype observed 

in cells lacking Ase1, so that only a few cells underwent anaphase B. I 

reasoned that Lat A might inhibit a pathway that is essential in the absence of 

Ase1. For this reason, I looked for genetic mutants that were inviable in the 

absence of Ase1 in the hope that these may lie on an actin-dependent pathway 

controlling pre-anaphase spindle stability. As a prelude to performing a full 

synthetic lethality screen with ase lD  cells, I tested whether loss-of-function 

mutants in known or putative microtubule binding proteins displayed such a 

genetic interaction with Ase1. In this chapter I describe the identification of two 

such proteins, the Mal3 (EB1) “plus” end microtubule binding protein and Klp9, 

a previously undescribed member of the kinesin-6 family. Members of the 

kinesin-6 family include the MKLP1/PAV/CH01 kinesin, a component of the 

centralspindlin complex, which binds the spindle midzone and triggers 

cytokinesis in higher eukaryotes (Sellitto and Kuriyama, 1988; Nislow et al., 

1992; Adams et al., 1998; Minestrini et al., 2003; Mishima et al., 2004; Neef et 

al., 2006).

7.2 Results

7.2.1 Mal3 is essential for viability in the absence of Ase1

Mal3 is a member of the EB1 plus-end microtubule binding family of proteins 

and associates only with polymerising but not depolymerising microtubules. 

Recent experiments have shown that Mal3 binds and stabilises the microtubule 

lattice seam in S.pombe (Sandblad et al., 2006). Fission yeast cells lacking
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Mal3 exhibit altered cell polarity, due to its role in maintaining the localisation of 

the Teal complex at the plus-end of interphase microtubules (section 1.2.1.1). 

In addition, cells lacking Mal3 display a high incidence of chromosome loss 

during mitosis, indicating a mitotic function (Beinhauer et al., 1997). Random 

spore analysis revealed that cells lacking both Mal3 and Ase1 are inviable 

(figure 7.1a), a synthetic lethality that was confirmed by tetrad analysis (figure 

7.1b), from which no haploid aselD  mal3D cells could be isolated (materials 

and methods, 2.1.8). This is unlikely to be due to the function of Mal3 at the 

“plus” end of interphase microtubules, since loss of Ase1 is not lethal in cells 

lacking Mto1, which are deficient in interphase microtubules, or components of 

the Teal complex including Teal, Tea2, and Tipi (figure 7.1). Moreover, I find 

that aselD  damID  cells are viable suggesting that loss of Mal3 is particularly 

damaging to the stability of pole-to-pole microtubules rather than kinetochore 

bound microtubules. The DASH complex exclusively binds to the “plus” ends of 

kinetochore associated microtubules but is not observed at the spindle midzone 

(Sanchez-Perez et al., 2005). Time lapse analysis of mal3D ndc80-gfp cdc11- 

cfp cells in the presence of 1.25pM Lat A reveals that collapses also occur in 

this background (preliminary data, not shown). Genetic interactions between 

aselD  and deletion mutants in other microtubule binding proteins such as Peg1 

(CLASP homologue: Grallert et al., 2006;), Alp7 (TACC homologue: Sato et at.,

2004), Alp14 and Dis1 (XMAP215/TOG homologues: Garcia et al., 2001) were 

not explored.

7.2.2 Klp9 is essential for viability in the absence of Ase1

The fission yeast genome contains nine kinesins. Pkl1 and Klp2 are members 

of the minus-end directed kinesin-14 family (Troxell et al., 2001). Klp3 is a 

member of the kinesin-1 family and is associated with organelle function 

(Brazer et al., 2000). Klp4 (Tea2) is required for maintenance of interphase cell 

polarity and, in particular, for delivering Teal at the plus end of interphase 

microtubules to the cell tips (Browning et al., 2000). Klp5 and Klp6 form a 

heterodimer that is required for accurate chromosome segregation (Garcia et 

al., 2002; West et al., 2002). I found that loss of Ase1 was not lethal in deletions 

of any of these kinesins (figure 7.2a). Cut7 is essential for bipolar spindle 

formation (Hagan and Yanagida, 1992) but genetic interactions between
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Strain Viability

as e lD +

a s e lD  m to lD +

a s e lD  tea lD +

a s e lD  tea2D +

a s e lD  tip ID +

a s e lD  d am ID +

a s e lD  mal3D -

b

Parental Ditypes

Tetratypes

Figure 7.1 Mal3 is required for viability in cells lacking Ase1

(a) Viability of ase1::hygR cells and double mutants of ase1::hygR combined with 
deletions in a variety of microtubule associated genes, as assessed by random 
spore analysis. (+ viable; - inviable).
(b) Colonies resulting from the tetrad analysis of ase1::hygR mal3::ura4 
heterozygous diploid spores, shown on both rich (YES) and selective (HYG, 
URA ) media. No ase1::hygR mal3::ura4 haploids were recovered (n=40 asci 
dissected).

ase1::hygR mal3::ura4

YES HYG URA-
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a Strain Viability

a s e lD  klp2D +

a s e lD  klp3D +

a s e lD  klp4D (ase lD  tea2D) +

a s e lD  klp5D +

a s e lD  klp6D +

a s e lD  klp8D +

a s e lD  klp9D -

aselr.hygR  klp9::kanR

YES G418 HYG

Parental Ditypes

Tetratypes

Figure 7.2 Klp9 is required for viability in cells lacking Ase1

(a) Viability of double mutants of ase1::hygR combined with deletions in a variety 
of kinesin genes, as assessed by random spore analysis. (+ viable; - inviable).
(b) Colonies resulting from the tetrad analysis of ase1::hygR klp9::kanR 
heterozygous diploid spores, shown on both rich (YES) and selective (G418, 
HYG) media. No ase1::hygR klp9::kanR haploids were recovered (n=40 asci 
dissected).
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temperature sensitive cut7 mutants and a s e lD  cells were not explored. In 

addition the fission yeast genome contains two other kinesins, Klp8 

(SPAC144.14) and Klp9 (SPBC2D10.21c). Klp8 is a member of the kinesin-3 

family, whose members are primarily involved in organelle transport (Miki et al.,

2005). Klp9 is a member of the kinesin-6 family, which contains 

MKLP1/PAV/CH01 (section 7.1). Klp9 contains a motor domain at its N-teminus 

and three consensus sites for cyclin dependent kinase (Cdk) in its C-terminus.

Gene deletions for both klp8  and klp9 were constructed (section 2.5.1) 

revealing that neither is essential for viability. Moreover, no genetic interactions 

between Ase1 and Klp8 were observed. However, random spore analysis 

revealed that ase lD  klp9D cells were inviable (figure 7.2a) and this was 

confirmed by tetrad analysis (figure 7.2b).

7.2.3 Klp9 localises to the spindle midzone

To determine the localisation of Klp9 during the cell cycle, it was tagged at its 

C-terminus with GFP (section 2.5.2) in ndc80-cfp cells, to allow visualisation of 

kinetochores. Log phase klp9-gfp ndc80-cfp cells were fixed in formaldehyde 

and stained with DAPI and calcofluor to visualise DNA and septa, respectively 

(figure 7.3). During interphase, Klp9 localised to the nucleus in a region 

consistent with nucleolar localisation. During mitosis, Klp9 could be seen in the 

midzone region between separated spindle poles after sister chromatid 

separation. Unlike Ase1, Klp9 was not observable at the spindle midzone prior 

to sister chromatid separation. However, it appeared strongly at the spindle 

midzone region during anaphase B and returned to the nucleolus during 

cytokinesis (movie 7.1). A more careful analysis will be required to precisely 

determine the timing of Klp9 association to the spindle midzone.

7.2.4 Effect of loss of Klp9 on mitotic progression

To analyse the effect of loss of Klp9 on mitotic progression, I monitored SPB 

and kinetochore position in klp9D ndc80-gfp cdc11-cfp cells. Surprisingly, I find 

that the average time spent in phase 2 in these cells is longer (19 ± 7 minutes) 

than in klp9+ cells (11 ± 3 minutes) at the same temperature (figures 7.4a-c).
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klp9-gfp ndc80-cfp

Figure 7.3 Klp9 localisation

Images of fixed log phase cells expressing Klp9-GFP (red) and Ndc80-CFP 
(kinetochores, green), stained with DAPI and calcofluor to visualise DNA and 
septa respectively (blue).
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Figure 7.4 Cells lacking Klp9 are delayed in phase 2 and undergo frequent pre­
anaphase spindle collapse

(a) Graph representing multiple time-lapse movies showing the length of the 
mitotic spindle through time of ndc80-gfp cdc11-cfp (wild type\ n=29) cells. 
(Reproduced from figure 3.7a).
(b) Multiple time-lapse movies showing the length of the mitotic spindle through 
time of klp9D ndc80-gfp cdc11-cfp (klp9D\ n=32) cells. Spindles that undergo 
anaphase B are shown in blue and those that collapse pre-anaphase in red. 
Plots for (a) and (b) are aligned at the end of anaphase A (dashed line).
(c) Histogram showing the average length of phase 2 in (a) and (b) above. Error 
bars show standard error.
(d) Histogram showing the average length of phase 2 of the two sub-classes of 
spindles depicted in (b) above. Error bars show standard error.



M oreover, a proportion o f klp9D ndc80-gfp cdc11-cfp  cells undergo pre­

anaphase spindle collapse (31%, n=32). C loser analysis revealed that those 

cells that do not undergo spindle collapse stay in phase 2 for an average of 16 

± 4.5 minutes compared to 25.5 ± 6.5 minutes in those that do collapse (figures 

7.4b and d). I also noted that the rate of spindle elongation in klp9D ndc80-gfp 

cdc11-cfp cells (0.44 ± 0.15pm/m inute) is significantly slower than either klp9+ 

cells (0.82 ± 0.19pm /m inute) or cells lacking Mto1 (0.84 ± 0.24pm /m inute) 

(figure 7.5).

7.2.5 Effect of Lat A in the absence of Klp9

The spindle pole and kinetochore dynam ics of cells lacking Klp9 appear 

strikingly sim ilar to those of wild type cells in the presence of Lat A. For this 

reason, I decided to examine these dynam ics in klp9D ndc80-gfp cdc11-cfp 

cells in the presence of 1.25pM Lat A (figure 7.6). I find that Lat A does not 

significantly effect the length of phase 2 in these cells, which is 19 ± 7 m inutes 

in its absence and 20.5 ± 6.5 m inutes in its presence. In addition, the 

percentage of cells that undergo pre-anaphase spindle collapse in klp9D ndc80- 

gfp cdc11-cfp cells is also unaffected by Lat A, as 31% (n=31) collapse in the 

absence and 31% (n=26) in the presence of drug (figure 7.7). Therefore, the 

mitotic defect in cells lacking Klp9 is not exacerbated by addition of Lat A. This 

may indicate that Klp9 and actin lie on the same pathway contro lling pre­

anaphase spindle midzone stability. However, I note that loss of Klp9 reduces 

the rate of anaphase B whilst addition of Lat A does not, indicating that Klp9 

has additional functions during anaphase B w hich are not shared by actin 

(figure 7.5).

146



1.25M.M 1.25m-M 1.25^M
Lat A | |_____Lat A| |_____ Lat AI

wild type mtolD klp9D

Figure 7.5 Spindle elongation rate in anaphase B is reduced in cells lacking Klp9

Histogram showing the average spindle elongation rate in ndcdO-gfp cdcl 1-cfp 
(wild type), m tolD ndc80-gfp cdcl 1-cfp (mtolD) and klp9D ndc80-gfp cdcl 1-cfp 
(klp9D) cells in the presence and absence of 1.25^iM Lat A. Compiled from data 
previously presented in figures 3.10a, 5.2b, 5.4d, 7.4b and 7.6d. Error bars show 
standard error.



Figure 7.6 Latrunculin treatment does not extend phase 2 in cells lacking Klp9

Graphs representing multiple time-lapse movies showing the length of the mitotic 
spindle through time for: ndc80-gfp cdcl 1-cfp (wild type) cells in the absence 
(n=29, a) or presence (n=28, c) of 1.25[xM Lat A compared to klp9D ndc80-gfp 
cdcl 1-cfp (klp9D) cells in the absence (n=32, b) or presence (n=26, d) of 
1.25|iM Lat A. Plot colours in (b), (c) and (d) represent spindles that undergo 
anaphase (blue) and pre-anaphase collapse (red). All plots are aligned at the 
end of anaphase A (dashed line), (a), (b) and (c) are reproduced from figures 
7.4a, 7.4b and 5.2b respectively.
(e) Histogram showing the average length of phase 2 in (a-d) above. Error bars 
show standard error.
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Figure 7.7 Latrunculin treatment does not increase collapse frequency in cells 
lacking Klp9

Graphs representing multiple time-lapse movies showing the length of the mitotic 
spindle through time for klp9D ndc80-gfp cdcl 1-cfp (klp9D) cells in the presence
(b) and absence (a) of 1.25pM Lat A. The upper row shows only those spindles 
that undergo anaphase (blue). The lower row shows only those spindles that 
undergo pre-anaphase collapse (red). Plots are aligned at the end of anaphase A 
(dashed line).
(c) Histogram showing the percentage of spindles which undergo anaphase 
(blue) and those that collapse before anaphase (red) in (a) and (b) above. klp9D, 
n=32 cells; klp9D + Lat A, n=26 cells.



7.3 Discussion

7.3.1 Role of Klp9 at the metaphase to anaphase transition

In this chapter, I present a preliminary analysis of the novel kinesin motor 

protein, Klp9, in fission yeast. Intriguingly, Klp9 localises to the spindle midzone 

only after sister chromatids have separated, as judged by imaging of fixed klp9- 

gfp ndc80-cfp cells. This localisation is strikingly similar to that found for MKLP1 

in mammalian cells (Matuliene and Kuriyama, 2002; Zhu etal., 2005). However,

I also show that klp9D  cells are delayed in prometaphase and metaphase. 

These results present a paradox, suggesting that the gene product is required 

at a stage in mitosis prior to its appearance at the midzone where its function is, 

presumably, exerted. One explanation for this could be simply that the imaging 

technique used is not sensitive enough to detect Klp9 at the earlier stage and 

requires re-analysis with live cell imaging.

Notably, Klp9 contains three consensus sites for cyclin dependent kinase (Cdk) 

in its C-terminus. It is therefore possible that APC-mediated destruction of cyclin 

B (Cdc13), which causes a drop in Cdk activity, allows dephosphorylation of 

Klp9 and its association to the spindle midzone. Binding of Klp9 to the spindle 

may cause pole-to-pole microtubules to push away from each other, resulting in 

increased tension across kinetochores. This may satisfy a tension sensitive 

checkpoint (section 1.3.2) that controls APC-mediated destruction of securin 

(Cut2) and consequent sister separation (section 1.1.2). A prediction of this 

model is that destruction of Cdc13 would not be effected by loss of Klp9 but 

destruction of Cut2 would be. This is an interesting possibility since cyclin B and 

securin destruction are generally thought to occur co-incidentally. In budding 

yeast the Cdc14 phosphatase is critical for microtubule stabilisation following 

anaphase onset (Higuchi and Uhlmann, 2005), though its relevant targets in this 

process are unknown. One possibility that merits further investigation is that 

Clp1, the S . p o m b e  Cdc14 homologue (Trautmann et al., 2001), 

dephosphorylates Klp9 to induce a change in microtubule dynamics required for 

timely onset of anaphase. Notably, however, budding yeast does not contain a 

member of the kinesin-6 family.
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7.3.2 Does fission yeast possess genetically separable attachment and 

tension checkpoints?

The anaphase delay induced by Lat A requires the Mad3, Bub1, Bub3 and 

Mph1, but not Mad1 or Mad 2 spindle assembly checkpoint (SAC) proteins 

(Tournier et al., 2004). This subset of SAC components was previously thought 

to delay anaphase in response to inappropriate spindle orientation. However, as 

I showed in chapter 3, spindle orientation has no effect on the timing of 

anaphase onset. A more likely explanation is therefore that Lat A induces an 

anaphase delay via these proteins by disrupting spindle stability. Notably, the 

anaphase delay in cells lacking Mal3 also requires the exact same subset of 

SAC proteins (Asakawa et al., 2005). Since ase lD  mal3D cells are inviable, 

loss of Mal3 may effect the stability of pole-to-pole microtubules more 

profoundly than microtubule-kinetochore interaction and, by inference, the 

anaphase delay in ma!3D cells may reflect this defect. Likewise Klp9 binds 

selectively to the spindle midzone and loss of Klp9 is lethal in the absence of 

Ase1. This suggests that the anaphase delay in klp9D cells is primarily due to a 

defect in pole-to-pole microtubules rather than a defect in microtubule 

interaction with kinetochores. It would be of great interest to examine whether 

the anaphase delay in cells lacking Ase1 or Klp9 is due to a delay in activation 

of the APC and, if so, which SAC proteins are required to impose this delay. It 

remains possible that a subset of SAC components monitors either the integrity 

of the pre-anaphase spindle midzone or spindle tension across kinetochores as 

a consequence of a defect in bipolar spindle stability but, importantly, is distinct 

from the checkpoint that monitors occupancy of kinetochores by spindle 

microtubules.

7.3.3 Role of Klp9 during anaphase B

I find that the rate of anaphase B in cells lacking Klp9, a putative motor-protein, 

is approximately half of that in control cells. This suggests that Klp9 kinesin 

pushes antiparallel microtubules apart and in doing so, pushes spindle poles 

away from each other. Other plus-end-directed kinesin motors which bind the 

spindle midzone, such as Cut7, may operate in a similar manner. The role of 

other kinesin motors, such as Klp5 and Klp6, at the spindle midzone is less
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clear. Electron micrographs of mitotic spindles by Ding and colleagues (1993) 

have revealed that pole-to-pole microtubules are bound in a loosely packed 

hexagonal arrangement at the spindle midzone before anaphase onset and in a 

tight square-packed arrangement during anaphase B. One possibility is that 

Klp9 and/or Ase1 could be necessary for the structural rearrangement of pole- 

to-pole microtubules at the metaphase to anaphase transition. Electron 

microscopy studies of spindle microtubules in klp9D and aselD  cells would be 

of significant interest in this respect.

7.3.4 Do Klp9 and actin lie on the same pathway controlling pre-anaphase 

spindle stability?

The frequency of pre-anaphase spindle collapse in klp9D cells is unchanged by 

addition of Lat A and the same proportion of cells undergoes anaphase B. One 

possibility is that Lat A prevents Klp9 from binding the spindle midzone. I 

believe that this is unlikely since Lat A alone does not effect the rate of 

anaphase B. However, there remains the possibility that Klp9 has a distinct pre­

anaphase role that may be affected by Lat A treatment. The identity of proteins 

that interact with Klp9 is likely to shed more light on the relationship between 

actin and Klp9.

7.4 Conclusions

• Mal3 and Klp9 are required for viability in the absence of Ase1.

• Klp9 localises to the spindle midzone and controls the timing of anaphase 

onset and pre-anaphase spindle stability.

• Pre-anaphase kinetochore behaviour in cells lacking Klp9 is unaffected by 

the addition of Lat A.

• Klp9 controls the rate of spindle elongation in anaphase B.
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Chapter 8

General Discussion

8.1 Summary

Since the first description of a spindle orientation checkpoint (SOC) in fission 

yeast by Gachet et al. (2001), there have been several reports published on the 

topic, some of which agreed with these initial conclusions and others that did 

not. The aim of my project was to perform a thorough experimental re- 

evaluation of the data by establishing more robust assays with which to test the 

prevailing hypotheses. By establishing a single-cell assay to simultaneously 

monitor spindle pole body and kinetochore position, I have demonstrated that 

spindle orientation is not monitored in this organism, nor does the angle of the 

spindle influence the timing of anaphase onset. In short, there is no SOC 

operating in fission yeast.

I have also re-examined the mechanisms controlling spindle orientation in 

fission yeast as it was unclear whether this was governed by intra-nuclear or 

astral microtubules and if so, at what cell cycle phase. I have found firstly that 

there is no corrective orientation during either pro-metaphase or metaphase 

thus intra-nuclear spindle microtubules cannot direct spindle orientation. 

Secondly, I have shown that astral microtubules are only nucleated after 

anaphase onset and thereafter play only a minor role in aligning the mitotic 

spindle along the longitudinal axis of the cell. Instead I have demonstrated that 

orientation is dependent on the initial positioning of the duplicated but 

unseparated interphase SPBs prior to mitosis, which in turn are positioned by 

cytoplasmic microtubules.

It was previously thought that treatment of fission yeast cells with Latrunculin A 

(Lat A) delayed anaphase onset by causing spindle mis-orientation. I found that 

this is not the case and that instead, Lat A delays anaphase onset by 

influencing mitotic spindle stability. This effect is abolished in actl- 

R183A,D184A cells, which express an actin mutant specifically insensitive to
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Lat A, showing for the first time that actin contributes to spindle stability in 

fission yeast. I found that a similar pre-anaphase mitotic spindle collapse occurs 

in cells lacking the anti-parallel microtubule bundling protein Ase1, which binds 

to the spindle midzone throughout mitosis. The spindle instability of aselD  cells 

can be exacerbated by the addition of Lat A, showing that Ase1 and actin act in 

concert to maintain the mitotic spindle. At present, the exact mechanism by 

which the actin component stabilises the mitotic spindle is unknown. One 

appealing idea is that filamentous actin can act as an extra-spindle matrix 

protein as is the case in some larger cells (Fabian and Forer, 2005; figure 8.1).

In an effort to shed more light on the actin-dependent pathway controlling 

bipolar spindle stability I have identified two proteins, Mal3 and a novel kinesin, 

Klp9, which are essential for cell viability in the absence of Ase1. Interestingly, 

cells lacking Klp9 have a slower anaphase B but also exhibit pre-anaphase 

spindle collapse, a phenotype which is not exacerbated by the addition of Lat A. 

For this reason I tentatively place Klp9 on an actin-dependent pathway 

controlling bipolar spindle stability.

8.2 Why do spindles collapse in only a proportion of cells?

The incidence of spindle collapse is approximately 50% in cells treated with Lat 

A or lacking either Ase1 or Klp9. In the presence of drug, this collapse 

frequency could be a result of cell-to-cell variation due to sub-maximal 

concentration of Lat A. However, in the deletion strains it is harder to 

understand why only approximately half the cells undergo a collapse event. 

Phototoxicity can be discounted since cells in the same visual field undergo 

different fates despite being exposed to the same amount of light. However, 

other strains that have a delay over anaphase onset, such as mal3D cells, do 

not undergo any collapses. Furthermore, control cells monitored at a lower 

temperature, which have a significantly extended phase 2, do not undergo 

collapse despite increased light exposure.

One intriguing explanation could be that two populations of cells exist in an 

S.pombe culture with different inherent spindle properties. A precedent for this 

is described in the work of Grallert et al. (2004). These authors show that the
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Actin Tubulin

Control

Lat B

Figure 8.1 Actin acts as a spindle matrix protein in another organism

Actin acts as a spindle matrix protein in crane fly spermatocytes. Notice the more 
dispersed conformation of tubulin in the presence of Lat B. Reproduced from 
Fabian and Forer (2005).
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NIMA-related kinase Fin1, an inhibitor of SIN activation, is always found bound 

to the “old” SPB but only on the “new” SPB in 50% of cells. It follows that two 

types of cell exist, one with Fin1 symmetrically bound to both poles and another 

with an asymmetrical distribution of Fin1 (figure 8.2). It is possible that mature, 

Fin 1 -marked poles behave differently to naive unmarked poles, perhaps 

nucleating more pole-to-pole microtubules. This could increase the stability of 

the spindle in cells that contain two Fin 1-marked poles and therefore prevent 

collapses in the presence of Lat A or the absence of Ase1 or Klp9. Observing if 

there is a correlation between those cells that collapse and those that 

asymmetrically load Fin1 to the poles could test this hypothesis.

8.3 Spindle checkpoint(s) affecting mitotic progression in fission yeast

In light of the findings presented in this thesis and summarised above, I propose 

a redefinition of not only the SOC but also the SAC. At present the SAC is an 

acronym for “spindle assembly checkpoint”. However, it should more accurately 

be named a “spindle attachment checkpoint” because an element of spindle 

assembly is not dependent on all SAC genes, namely spindle stability. 

Conveniently the acronym remains unchanged but crucially the description of 

what activates the checkpoint is refined.

The previously described SOC, a “spindle orientation checkpoint”, does not in 

fact monitor spindle orientation in S.pombe and so the name is erroneous. 

However, it involves a specific branch of the SAC that is activated in the 

presence of Lat A (Gachet et al., 2001, 2004; Rajagopalan et al., 2004; Tournier 

et al., 2004) or in absence of Mal3 (Asakawa et al., 2005). This branch consists 

of a subset of SAC proteins that include Bub1, Bub3, Mph1 and Mad3 

(implicated in tension and attachment sensing) but not Mad1 or Mad2 

(implicated in attachment sensing only). Since I have shown that the addition of 

Lat A causes not only anaphase delays but also frequent spindle collapses the 

specific subset of SAC components in question may in fact monitor spindle 

stability or integrity, perhaps through correct tension across the poles. In this 

way the SOC is really part of a more complex “spindle assembly checkpoint”. 

To avoid confusion I propose renaming this checkpoint element as the “spindle 

integrity checkpoint” (SIC) (figure 8.3). Importantly, it is not yet known whether
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Figure 8.2 The localisation of Fin 1 reveals two distinct lineage-dependent 
populations of fission yeast cells

Images of two log phase cells expressing Fin1-GFP (red) and Cdcl 1-CFP 
(SPBs, green). DNA (blue) is stained with DAPI. Fin1 localises to SPBs (either 
symmetrically (left column) or asymmetrically (right column)) and the spindle 
midzone, as described by Grallert et al. (2004).
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Figure 8.3 Re-defining the checkpoints acting over mitotic progression in fission 
yeast

Data from this and other work suggests that there are two branches of the 
classical spindle assembly checkpoint functioning in fission yeast. The first, 
which monitors kinetochore occupancy, requires all 6 SAC components and can 
be activated by microtubule depolymerisation. This is referred to here as the 
spindle attachment checkpoint (SAC). The second branch, that appears to 
monitor the fidelity of the spindle, requires a subset of SAC components and can 
be activated by actin depolymerisation. This is shown here as the spindle 
integrity checkpoint (SIC).

Anaphase



spindle assembly checkpoint proteins are required to delay anaphase onset in 

cells lacking either Ase1 or Klp9 and, if so, which ones.

8.4 The spindle integrity checkpoint: a spatial model monitoring tension 

via chromatid conqression

In the previous section, I proposed a model whereby the SIC monitors correct 

assembly of the mitotic spindle. Disruption of the SIC by Lat A causes a delay 

mediated by the Bub1-dependent tension-sensing subset of SAC components 

as well as spindle instability and subsequent collapse in a proportion of cells. It 

remains to be seen whether the phase 2 delay and proportion of spindle 

collapses seen in aselD  and klp9D cells is exclusively dependent on the SIC 

components. However, both proteins localise to the spindle midzone implicating 

this as an important region in monitoring spindle stability. Midzone integrity also 

affects the localisation of Ark1, which is involved in correcting k-fibre and 

kinetochore interactions.

In S.pombe multiple k-fibres attach to each kinetochore, meaning that whilst the 

Mad2-dependent attachment checkpoint may be satisfied, there could still be 

incorrect attachments from the inappropriate SPB. Such conformations could 

result in chromosome mis-segregation and so one role for the SIC might be to 

ensure an anaphase delay whilst these attachments are corrected. The correct 

conformation, termed amphitelic attachment, is where an equal number of k- 

fibres from each SPB are attached to opposing kinetochores. This arrangement 

causes balanced tension across the kinetochores prior to anaphase and results 

in the sister chromatids aligning at the spindle midzone equidistant from the 

poles. In the proposed model, only when all three chromatid pairs reach this 

conformation, termed the metaphase plate, would the SIC be satisfied and 

anaphase initiated (figure 8.4). A metaphase plate was described in fission 

yeast involving chromosome congression (Tournier et al., 2004). Importantly, 

these authors note that in the presence of Lat A when the SIC is activated, this 

congression is not observed, which could be due to midzone destabilisation. 

Similarly, loss of the proteins Ase1 and Klp9 could impair the ability of the 

midzone to determine the location, and therefore correct attachment, of sister
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Figure 8.4 Is the midzone involved in a tension-sensing pathway that ensures 
spindle integrity?

A model proposing that balanced tension across the kinetochores is sensed at 
the spindle midzone, allowing anaphase to occur only after the metaphase plate 
conformation is attained. SPBs are represented in green, kinetochores and k- 
fibres as red circles and lines respectively, pole-to-pole microtubules in black, 
asel in cyan and chromatids in blue.



chromatids. The method of communication between the midzone and 

kinetochores is unknown and provides a rich area for future study.
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Appendix

Movie legends

Movie 3.1 Kinetochore and spindle pole body dynamics in a mitotic control cell

A cell expressing Ndc80-GFP (marking the kinetochores, red) and Cdc11-CFP 

(marking the spindle pole bodies, green). Images acquired every 30 seconds.

Movie 3.2 Kinetochore and spindle pole body dynamics in a mitotic m tolD  cell

An m to lD  cell expressing Ndc80-GFP (marking the kinetochores, red) and 

Cdc11-CFP (marking the spindle pole bodies, green). Images acquired every 

30 seconds.

Movie 3.3 Retrieval of unclustered kinetochores in an m tolD  cell

An m to lD  cell expressing Ndc80-GFP (marking the kinetochores, red) and 

Cdc11-CFP (marking the spindle pole bodies, green). Images acquired every 

30 seconds.

Movie 5.1 Pre-anaphase spindle collapse in a control cell in the presence of 

Lat A

A cell expressing Ndc80-GFP (marking the kinetochores, red) and Cdc11-CFP 

(marking the spindle pole bodies, green) in the presence of 1.25|aM Lat A. 

Images acquired every 30 seconds.

Movie 6.1 Mitotic localisation of Ase1

A cell expressing Ase1-GFP (green) and Cdc11-CFP (spindle pole bodies, red). 

Images acquired every minute.

Movie 6.2 Kinetochore and spindle pole body dynamics in a mitotic aselD  cell

An a se lD  cell expressing Ndc80-GFP (marking the kinetochores, red) and 

Cdc11-CFP (marking the spindle pole bodies, green). Images acquired every 

30 seconds.
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Movie 6.3 Mitotic spindle fates in aselD  cells are independent of light exposure

Three aselD  cells expressing Ndc80-GFP (marking the kinetochores, red) and 

Cdc11-CFP (marking the spindle pole bodies, green) labelled (a), (b) and (c). 

Images acquired every 30 seconds.

Movie 7.1 Mitotic localisation of Klp9

A cell expressing Klp9-GFP. Images acquired every 30 seconds.
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