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Abstract 

Goal-relevant information maintained in working memory is remarkably robust 

and resistant to distractions. However, our nervous system is endowed with 

exceptional flexibility; therefore such information can be updated almost effortlessly. 

A scenario – not uncommon in our daily life – is that selective maintaining and 

updating information can be achieved concurrently. This is an intriguing example of 

how our brain balances stability and flexibility, when organising its knowledge. A 

possibility – one may draw upon to understand this capacity – is that working 

memory is represented as beliefs, or its probability densities, which are updated in a 

context-sensitive manner. This means one could treat working memory in the same 

way as perception – i.e., memories are based on inferring the cause of sensations, 

except that the time scale ranges from an instant to prolonged anticipation. In this 

setting, working memory is susceptible to prior information encoded in the brain’s 

model of its world. This thesis aimed to establish an interpretation of working 

memory processing that rests on the (generalised) predictive coding framework, or 

hierarchical inference in the brain. Specifically, the main question it asked was how 

anticipation modulates working memory updating (or maintenance). A novel 

working memory updating task was designed in this regard. Blood-oxygen-level 

dependent (BOLD) imaging, machine learning, and dynamic causal modelling 

(DCM) were applied to identify the neural correlates of anticipation and the violation 

of anticipation, as well as the causal structure generating these neural correlates. 

Anticipation induced neural activity in the dopaminergic midbrain and the striatum. 

Whereas, the fronto-parietal and cingulo-operculum network were implicated when 

an anticipated update was omitted, and the midbrain, occipital cortices, and 

cerebellum when an update was unexpected. DCM revealed that anticipation is a 

modulation of backward connections, whilst the associated surprise is mediated by 

forward and local recurrent modulations. Two mutually antagonistic pathways were 

differentially modulated under anticipatory flexibility and stability, respectively. The 

overall results indicate that working memory may as well follow the cortical 

message-passing scheme that enables hierarchical inference. 
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Chapter 1. Introduction 

1.1. Overarching theme and research questions 

Uncertainties and random fluctuations are intrinsic to any physical system, 

irrespective of whether they are biological or non-biological. In evolutionary terms, 

any biological entity may not exist without the ability to maintain homeostasis within 

a certain range of uncertainty. To maintain homeostasis, one must resolve the mutual 

antagonism between stability and flexibility. These can be expressed on many levels: 

from instantaneous (e.g., a motor reflex to scalding) to anticipatory (e.g., calculating 

the altitude at which to deploy a parachute, or buying in shares). The better an 

organism can represent the causal structure of the environment, in its information 

processing infrastructure, the better its ability to infer the hidden states of the world 

and their trajectories, and to implement contingencies given anticipated fluctuations 

in the hidden states. 

Working memory emerges when a causal relationship between an organism’s 

internal states and external states is inferred with high fidelity (Postle, 2006). It 

endows us with the ability to generate a piece of information upon an environmental 

cue and to continue to retain the information after the cue is extinguished. The idea 

of working memory embodies the retention of information because the organism that 

employs working memory is predisposed to the guidance of such information in its 

course of action. In other words, the organism believes a priori the possessing of 

specific information will be of prospective advantage.  

While working memory entails beliefs about stable environmental states that 

their realisation in the immediate future, an equally potent aspect of working 
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memory is concerned with the updating of beliefs by exchange with another – i.e., 

updating of working memory (Miller & Cohen, 2001). Maintaining and updating 

working memory therefore speak to the conflicting demands of stable (precise) and 

flexible (uncertain) belief. As such, representing anticipatory fluctuations in working 

memory is equivalent to inferring environmental volatility.  

The overarching theme of this thesis thus rests on anticipatory fluctuations and 

updating in working memory, and is developed through addressing research 

questions built on a number of assumptions. First, it treats working memory updating 

as a manifestation of cognitive flexibility; in other words, an update entails set-

switching. Probabilistic evaluations of a set (in an anticipatory manner) are referred 

to as an anticipatory set. Secondly, dopaminergic innervations are a candidate 

neuromodulator that nuances the balance between stability and flexibility of working 

memory. The function of dopamine is characterised by tonic and phasic modes of 

discharge, and action through different receptor subtypes. Thirdly, the frontoparietal 

network, the basal ganglia, and the sensory cortices support working memory 

function. Finally, working memory processing may also follow the principle of 

hierarchical inference (or generalised predictive coding). 

In brief, research questions pertain to: 

Question 1: What are the behavioural relevance and the neural correlates of 

anticipatory set; is dopamine critical to working memory, does predicting an update 

implicate dopaminergic responses? 

Question 2: Invalid anticipatory set is followed by improbable (or surprising) 

updating or maintenance of working memory, if these represent prediction error 
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responses then they require exogenous and/or endogenous drives for error 

processing; to what extent are they dissociable in terms of neural responses?  

Question 3: If anticipatory set (in working memory) reflects prediction and 

surprise reflects prediction error, do they follow the principle of hierarchical 

inference in the brain by providing appropriate forward/backward influences? 

In the following sections, I give a brief review of the development of working 

memory as a psychological construct and its biological relevance, followed by a 

particular focus on the neural mechanisms of working memory updating, citing the 

notion of ‘central executive’. The neuromodulation of dopamine is then introduced 

and linked to recent findings in working memory. Also, the influence of 

dopaminergic modulations in the development of neurocomputational models of 

working memory is reviewed. Next, the seminal work on the prefrontal cortex-basal 

ganglia working memory (PBWM) model is introduced to show how the basal 

ganglia may enable working memory updating. Finally, I focus on the increasingly 

popular notion that the brain employs hierarchical inference, which may be 

intrinsically related to working memory processes. 

1.2. A brief history of working memory 

The development of working memory as a psychological construct can be traced 

back to the Jamesian conceptualisation (James, 1890), in which the distinction 

between a temporary primary memory and a more stabilised secondary memory was 

proposed. The theory did not aggregate much interest until the 1950s when Donald 

Hebb (1949) postulated two separate memory systems, short-term memory (STM) 

and long-term memory (LTM), which were later corroborated on empirical grounds 

(J. Brown, 1958; L. R. Peterson & Peterson, 1959). This had stirred up debates 
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(during the 1960s) as to whether a two-process memory system was necessary. 

Critics citing proactive interference theory challenged the view of memory trace 

decay, on which STM was largely theorised. Specifically, STM suffers from trace 

decay if its content was not rehearsed. The debate was not settled until the double 

dissociation based on patient studies was established in the 1970s. Patients with 

bilateral damage to the temporal lobe and hippocampus were shown to have reduced 

capacity for LTM performance, but performance in STM tasks was comparable to 

normal controls (Baddeley & Warrington, 1970). Shallice and Warrington (1970) 

demonstrated another class of patients who showed completely opposite deficits, 

with normal LTM but impaired STM performance. This was about the time when 

models of multi-process memory systems started to gain favour. Among them, 

perhaps the most influential one was the modal model, proposed by Atkinson and 

Shiffrin (1968). The modal model holds a subsystem of unitary short-term store, 

acting as working memory, which is of limited capacity and capable of manipulating 

information. In addition, the short-term store is solely responsible for encoding and 

retrieving LTM.  

The major problem with the modal model was that it requires information to be 

held in STM in order to enter and formulate LTM. The model thus predicts that 

patients having STM dysfunction may not have functional LTM. However, the work 

by Shallice and Warrington (1970) established clearly the opposite case. The 

inconsistency inherent in the modal model advocates alternative perspectives, that 

STM may not serve as a general purpose working memory – as STM patients are 

often found functional in life. This motivated Alan Baddeley and Graham Hitch’s 

seminal working memory model in the 1970s, from which the ensuing review 

originates.  
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Their study of the memory system took on a dual-task approach. One component 

of the task involved repeatedly reciting a sequence of random digits to prevent the 

subjects from articulatory rehearsal. The reciting was assumed to take up short-term 

storage capacity as the sequence size progressed. They based their assumption on 

that by the time all existing models agreed that the immediate serial recall task 

depends on STM, which is limited in capacity. The other component was a verbal 

reasoning task (Hitch & Baddeley, 1976). They found, with the increase of 

concurrent digit load, the mean reasoning time increase but no effect on accuracy. 

Similar results were reported using the task involving comprehension or long-term 

learning (Baddeley, 1986), invalidating the assumption of unitary short-term storage, 

which was then replaced with a multi-component working memory (Figure 1.1). 

Simply put, it was inferred that the STM process and the reasoning process are 

subserved by different component processes of working memory. 

 

 

Figure 1.1 Baddeley’s multi-component working memory model. A tripartite system of 

working memory conceptualised by Alan Baddeley and Graham Hitch in 1974. The model 

includes two ‘slave’ systems, the phonological loop and the visuospatial sketchpad, and one 

central executive. As the names suggest, the two slave systems are in close connection with 

domain-specific sensory interface, whereas the central executive has a domain-general role, 

which processes the ‘process of sensations’. The central executive is thus strongly associated 

with attention and the Supervisory Attentional System proposed by Norman and Shallice in 

1983. 

 

Baddeley’s multi-component working memory model consists of two 

subsystems, the phonological loop and the visuospatial sketchpad, both of which are 



 

 15 

left out in the course of this thesis; as well as a supra-ordinate central executive 

(Baddeley, 1992). 

 The idea of the central executive, otherwise known as executive control or 

executive function (Baddeley, 2007) is, at times, referred to as ‘general purpose 

control mechanisms’ (Miyake et al., 2000). Fractionation of executive function was 

needed to put the theory to test. Initially, Baddeley refers to the Supervisory 

Attentional System (SAS) proposed by Norman and Shallice (1983) as a candidate 

model for central executive. There are two levels of behavioural control according to 

SAS, one underpins habits, a collection of nearly automatic, effortless mental states; 

the other refers to the mechanisms to overcome such automaticity, the SAS per se. 

Notably, the SAS was largely conceptualised based on observations during which 

frontal lobe patients control their behaviour. Two seemingly paradoxical outcomes 

came into focus: the patients either showed rigidity, perseverating with the same 

pattern, unable to switch action, or they were extremely susceptible to perceived 

stimuli, showing great distractibility. This means of concept of central executive was 

not only to incorporate the psychological construct of attention, it also implicates, as 

a constituent component of working memory, variability in representational power, 

i.e., the control that balances robustness against adaptiveness (Miller & Cohen, 

2001). Moreover, the fontal lobe, according to the patient study, seems to provide the 

functional architecture for executive function. Indeed, Baddeley (1986) coined the 

term dysexecutive function, referring central executive impairments as a neurological 

disorder which follows frontal lobe damage. The initial working memory model, 

which assumed the central executive is capable of attentional focus, storage, and 

decision making, was later revised to include four component processes – namely, 
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the capacity to focus attention, to divide attention, to switch attention, and to bridge 

working memory and long-term memory (Baddeley, 2012; 2007). 

Around the same time that Baddeley proposed the multi-component working 

memory model, another line of research in monkeys demonstrated a remarkable 

observation. Joaquin Fuster (Fuster, 1973; Fuster & Alexander, 1973) and other 

researchers showed that the monkey prefrontal cortex exhibits sustained activity at 

the single neuron level throughout the delay phase of a delayed-response task. The 

implication of this and other similar findings corroborates the notion of 

‘reverberation’ as a mechanism of a stimulus-induced transient memory (Hebb, 

1949). Most importantly, the finding speaks to the correspondence between a 

psychological construct and a physiological phenomenon. The integration of 

neurobiological and psychological concepts was further advanced by Goldman-

Rakic with the finding that the where/what organisation of the visual system may 

also apply to visual working memory (Compte, Brunel, Goldman-Rakic, & Wang, 

2000; Goldman-Rakic, 1995). In particular, Goldman-Rakic and colleagues used 

monkey electrophysiology to show not only single neurons exhibit where/what 

selectivity but also that the neurons can be classified into cue-sensitive, delay-

sensitive, and probe-sensitive groups (Goldman-Rakic, 1995; 1996) – as if there 

were ‘memory fields’ for processes and a topographic map of the sensorimotor 

cortex. This suggests that prefrontal neuronal activity is associated with sensory 

signals in a way that the PFC neurons ‘remember’ the channel from which the 

sensory signal originates. In addition, the prefrontal neurons are able to link such 

‘memory’ to guide behaviours that are set apart temporally from sensory signals. 

This forms a neural code of an ‘episode’ that seems to be an ad hoc integration of 
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information across time (Kahneman & Treisman, 1984; Kahneman, Treisman, & 

Gibbs, 1992).  

From Fuster to Goldman-Rakic, it has been established that the prefrontal cortex 

is central to working memory and may be a crucial neural substrate for executive 

function: Miller and Cohen (Miller & Cohen, 2001) proposed a model that describes 

the prefrontal cortex as providing biasing signals for enabling sensorimotor 

‘channels’ in the association cortex. However, what and how information is 

represented by the prefrontal cortex remains elusive (Sreenivasan, Curtis, & 

D'Esposito, 2014). Recently, major working memory research has turned to ask how 

working memory information is embedded in long-term memory (N. Cowan, 2008; 

Lewis-Peacock & Postle, 2008; McElree, 2001; Oberauer, 2003), the neural circuitry 

implementing the flexible biasing mechanism (M. J. Frank, Loughry, & O'Reilly, 

2001; Hazy, Frank, & O'Reilly, 2006; McNab & Klingberg, 2008), and the variable 

precision in representational power (Bays & Husain, 2008; N. Cowan, 2005; 

Gorgoraptis, Catalao, Bays, & Husain, 2011; Ma, Husain, & Bays, 2014). 

 

1.3. Updating working memory 

Updating of working memory representations refers to the process of 

“monitoring and coding incoming information for relevance to the task at hand and 

then appropriately revising the items held in working memory by replacing old, no 

longer relevant information, with newer, more relevant information” (Miyake et al., 

2000). The idea of updating as a component of working memory emerges with 

attempts to fractionate the central executive. In cognitive psychology, Morris and 

Jones (1990) conducted the running memory task and demonstrated that updating 
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memory affects performance independently of the effect of irrelevant speech and 

suppression. Under Baddeley’s working memory model (Baddeley, 1992), the 

system engaged in speech effects is the phonological loop. The authors therefore 

suggested that the updating process places demands on a superordinate system, i.e., 

the central executive. Using latent variable analysis, Miyake et al. (Miyake et al., 

2000) tested three sets of cognitive tasks, each is considered to tap one of the 

proposed executive functions: set-shifting, updating, and inhibition. Their findings 

indicated that the three proposed executive functions are co-dependent, yet clearly 

distinguishable.  

It is conceivable that updating is intertwined with the other two executive 

functions proposed by Miyake et al. (2000), in ways that cannot be addressed by the 

work of Morris et al. (1990). The running memory task was severely limited by the 

fact that it is characterised by distinct recency, but not primacy, effects. It has been 

argued that if the subjects were to process and hold all information on-line, then one 

might expect both primacy and recency effects as one would in a standard serial 

recall paradigm (Bunting, Cowan, & Saults, 2006; Palladino & Jarrold, 2008). In 

other words, the subjects performing the task may have employed a passive strategy, 

instead of actively engaging in the memory updating per se. Palladino et al. (2001) 

avoided these shortcomings and devised an updating task that was not subject to 

recency effects nor temporal criterion. They inferred, based on a measure of 

intrusion error rates, that the ability to inhibit irrelevant information in working 

memory is a critical variable to determine updating performance that underlies 

successful encoding of new goal-relevant information. 

Another useful notion of working memory updating – with regard to executive 

function – is the distinction between binding updating and content updating (Artuso 
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& Palladino, 2011). The idea of binding updating stems from Kahneman’s ‘object 

file’ (Kahneman et al., 1992; Kahneman & Treisman, 1984), in which a memory 

object is an ad hoc integration of different pieces of information (see also Postle, 

2006; Sreenivasan et al., 2014) that are bound into a singular entity. Once the entity 

is formed, it may stay intact whilst its constituent information undergoes partial 

modification. Binding updating is therefore closely related to selective updating 

(Kessler & Meiran, 2008; Murty et al., 2011; Nee & Brown, 2013), whereas content 

updating is related to total updating (Kessler & Meiran, 2008). Generally, an 

updating cost can be identified when comparing reaction time measures between 

updating and non-updating trials (Kessler & Meiran, 2006). This (object switching) 

cost was first reported by Garavan (1998) and was interpreted as shifting the focus of 

attention to an object not currently attended, citing the hypothesis of embedded 

working memory (McElree:1998kw ; see also pp. 117 of Baddeley, 2007; i.e., 

selective attention to active long-term memory representation; N. Cowan, 1988). 

These findings confer working memory updating with a component of attentional 

control and a characteristic of set-switching. Compared with (content) updating cost, 

human subjects suffered from greater (binding) costs when engaging in binding 

updating (Artuso & Palladino, 2011). More recently, evidence has emerged 

regarding the possibility that binding updating involves processes beyond simple re-

encoding, whilst content updating is more likely to entail re-encoding alone (Artuso 

& Palladino, 2014). Artuso and Palladino’s (2014) finding marks a departure from 

the common conception that working memory updating resembles encoding (R. C. 

O'Reilly & Frank, 2006). 

Binding and content updating may be treated as component processes in working 

memory updating. Other work also employed similar tasks to decompose the 
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updating process. In particular, Ecker et al. (Ecker, Lewandowsky, Oberauer, & 

Chee, 2010) proposed that an updating operation may involve a combination of three 

component processes: retrieval (access), transformation, and substitution. Retrieval, 

or more precisely, to access already-retrieved information, involves focusing on 

previously unattended information; transformation refers to incorporating new 

information; substitution is similar to the construct of content updating mentioned 

earlier. Using latent variable analysis, the authors concluded that the three 

component processes appear to be independent and, of note, that individual 

differences in working memory capacity are a strong predictor to retrieval and 

transformation, but not substitution, performance. 

Taken together, working memory updating may be a multi-component process 

and interact with other aspects of executive functions – although the interdependency 

between component processes and executive function, or whether such fractionation 

creates redundancy, remains to be determined. Nevertheless, these notions on 

binding and executive functions speak to the remarkably flexible functionality of 

otherwise stable working memory, which seems to sit comfortably with known 

functional anatomy. Notably, the prefrontal cortex holds two hallmarks – that its 

damage causes both perseveration (inadequate updating) and increased distractibility 

(inappropriate updating; Miller & Cohen, 2001). But with normal function, the 

prefrontal cortex provides biasing signals to the association and sensorimotor cortex, 

which may be the neural basis for mediating binding (Treisman & Gelade, 1980). In 

addition, the basal ganglia may be capable of implementing inhibition (see Aron, 

2007 for review) and set-switching (e.g., Hikosaka & Isoda, 2010). Critically, both 

the prefrontal cortex and the basal ganglia are densely innervated by dopaminergic 
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inputs. Ample evidence has indicated that dopaminergic modulations are a potent 

factor that nuances flexibility and stability in working memory. 

Working memory updating has been an active area of neuroimaging study since 

the late 1990s (see Salmon et al., 1996). Early reports focused on the localisation of 

updating-related neural activity. Wager and Smith (2003) summarised findings from 

60 neuroimaging studies of working memory, reporting peak activations in a meta-

analysis. Their analysis showed that regions consistently activated during updating 

tasks (e.g., n-back) are found in Brodmann’s area (BA) 6, 8, 9, and 7, and are 

predominantly right lateralised. Later, in a meta-analysis specifically focused on the 

n-back paradigm, Owen et al. (2005) demonstrated that working memory updating 

involves bilateral cortical activation mainly in the fronto-parietal network, frontal 

pole, anterior cingulate cortex, insular, thalamus, and cerebellum. None of these two 

works had addressed the involvement of the basal ganglia in working memory 

updating. 

Our understanding about the functional role of the parietal cortex in memory 

updating is perhaps as limited as that of the prefrontal cortex. However, in a study 

that followed the paradigm in Miyake et al. (Miyake et al., 2000), Collette and 

colleagues (2005) provided evidence that updating, as well as other executive 

components, recruits the intraparietal sulcus (BA 40). The authors suggested that the 

common activation in the intraparietal sulcus reflects selective attention to relevant 

stimuli and suppression of irrelevant information. Their conclusion was in line with 

the finding in Vogel et al. (2005) and in McNab et al. (2008). 

Since the influential working memory model proposed by Frank et al. (Hazy et 

al., 2006), the functional role of the basal ganglia in working memory has been an 

active topic. One notable work is by McNab and Klingberg (2008). In this work, the 
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authors demonstrated that the ‘filtering set’ activity in the basal ganglia predicted 

individual working memory capacity and was inversely related to the activity in the 

parietal cortex. The filtering set activity was induced by predictive cues about 

whether or not distractors are present in the upcoming stimuli. Their findings 

corroborate the notion that the basal ganglia controls information represented in 

working memory. Consistent with this notion, Murty et al. (2011) showed that the 

meso-cortico-striatal activity was specifically modulated by selective updating of 

working memory (see also Podell et al., 2012). Few studies have reported the 

midbrain activity in association with working memory updating. Recently, in a 

careful set-up with cardiac-gating imaging sequences and transcranial magnetic 

stimulation, D’Ardenne et al. (2012) showed that the dopaminergic midbrain is 

indeed activated during memory updating and implicates phasic dopamine discharge 

(D’Ardenne, McClure, Nystrom, & Cohen, 2008).  

Overall, working memory updating may involve multiple psychological 

constructs and relate to different aspects of executive function. The binding notion 

seems to fit with the functional role of the prefrontal cortex, the basal ganglia and 

dopamine modulation. 

 

1.4. Neuromodulations 

1.4.1. Anatomy of dopamine 

Dopamine has a profound influence in the functioning of multiple aspects of 

cognition, including working memory. Dopaminergic projection neurons – i.e., 

neurons that use dopamine as a primary neurotransmitter – are found primarily in the 
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substantia nigra pars compacta (SNc) of the basal ganglia and the ventral tegmental 

area (VTA) in the midbrain. The other known dopamine-secreting areas include 

several nuclei in the hypothalamus and subthalamus (Iversen, 2010). The functional 

significance of dopamine can be seen from the diversity of projection pathways it 

gives rise to. Notably, the mesocortical and nigrostriatal pathways are associated 

with some key areas that provide the neural basis of working memory. The 

mesocortical pathway arises from the VTA and targets the cerebral cortex, with a 

convergence in the prefrontal cortex, especially the dorsolateral prefrontal cortex 

(Iversen, 2010); the nigrostriatal pathway, on the other hand, targets the striatum 

from the SNc. The nigrostriatal pathway targets specifically the matrix compartment 

of the striatum, where striatal medium spiny neurons (MSNs) form the direct and 

indirect pathways with other nuclei of the basal ganglia. The matrix compartment 

also receives cortical afferents, principally from superficial layer V.  

Dopamine binds to two receptor types that are categorised pharmacologically 

based on their ligand recognition properties and effects on cAMP production: the 

D1- and D2-family. In general, these receptors are located postsynaptically, 

especially for the D1-family receptors (Levey et al., 1993). The D2-family, by 

contrast, may be found postsynaptically on dopaminergic targets or, to a greater 

extent than the D1-family, on dopamine neurons as presynaptic autoreceptors. This 

indicates a difference in the localisation of the dopamine receptors. Levey et al. 

(1993) used antibodies raised to specifically bind dopamine receptor subtypes and 

demonstrated that the D1 and D2 receptors are differentially enriched in the striatal 

patch and matrix compartments. Additionally, both receptor types may regulate 

neurotransmitter release by presenting themselves in the axonal terminals. Sesack, 

Aoki, and Pickel (1994) claimed consistently that the localisation of D2-family 
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receptors subserve auto-regulation at the level of dendritic spines in the midbrain and 

at the presynaptic axonal terminals in the striatum. Importantly, the autoreceptors 

underpin an excitability fine-tuning that governs the pattern of firing discharge of the 

dopaminergic neurons, which, in turn, regulates the extracellular dopamine 

concentration and postsynaptic reactivity (Mercuri et al., 1997). 

The two receptor types not only differ in synaptic localisation, they are also 

shown to distribute differentially across cortical and subcortical regions, as well as 

across laminae. In a monkey study (see Goldman-Rakic, Lidow, Smiley, & 

Williams, 1992 for dopamine resemblance between human and other primates), 

Lidow et al. (1991) used autoradiography with a D2 antagonist ([3H]raclorpride) and 

concluded that low-density D2 distribution was detected for frontal, parietal, and 

occipital lobes, with a preferentially high concentration in cortical layer V. This 

result was compared with that of D1-sepcific binding, which revealed that the 

density for the D1 receptor is over 10 to 20-fold higher than that for the D2 receptor. 

Also, compared with the D2 laminar preference, the D1 receptors were observed 

primarily in supragranular layers and infragranular layers. Both receptors show a 

rostro-caudal decrease in density, suggesting a gradient of functional significance. In 

spite of the disproportionate receptor density, the D2 receptor may play a greater role 

in the human basal ganglia than in other brain regions. Camps et al. (1989) used 

autoradiographic techniques with the administration of radioactive D2 antagonist in 

human post mortem brain tissue. The result revealed the highest D2 densities in the 

caudate, putamen, olfactory tubercle, and SNc. Although the D1 receptor is still the 

dominant subtype, the dominance is around a tenth as compared with the D1 density 

in other brain regions, namely, the D1/D2 concentration ratio is at 2 - 3 in the basal 

ganglia, contrasting with the ratio of 10 - 20 in the neocortex (Lidow et al., 1991). 
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1.4.2. Dopamine modulates neuronal excitability 

A bewildering aspect of dopamine lies in the fact that it is neither an excitatory 

nor an inhibitory neurotransmitter, unlike other neurotransmitters that work on 

ionotropic receptors, such as glutamate and GABA. The dopamine receptor families 

belong to the G protein coupled receptor class, a major role of this receptor class is 

by affecting a secondary messenger system, which increases or decreases 

intracellular level of cAMP. The net influence of dopamine is therefore dependent 

upon the receptor subtype with which it interacts, as well as the reaction of the 

postsynaptic cell to the cAMP. Generally speaking, the effect of dopamine is the 

regulation of excitability as a summation of multiple factors (Iversen, 2010).  

Prefrontal neuronal excitability may be modulated by a postsynaptic dopamine-

glutamate interaction via the D1 receptor. In a rodent study, Wang and O’Donnell 

(2001) reported that a synergism exists between NMDA and D1 receptor activation, 

which led to increased spike numbers with decreased latency. Multiple pathways 

were suggested to mediate the synergism by observing its removal through the 

administration of protein kinase A (PKA) inhibitors and Ca2+ chelator. The same 

results were extended by Tseng and O’Donnell (2004) in which the role of D2 

receptor activation was characterised in light of D1-NMDA synergism. The 

excitatory effect of NMDA in the prefrontal cortex was attenuated by D2 agonists. 

The D2-induced NMDA attenuation was, however, removed by GABAA antagonists, 

suggesting a mediation of GABAergic interneurons. Overall, prefrontal pyramidal 

cell excitability is modulated by D1 and D2 receptors in opposite ways (Trantham-

Davidson, Neely, Lavin, & Seamans, 2004).  
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In the striatum, dopamine modulation also controls intrinsic excitability and 

glutamatergic signalling, although the effect depends on the receptor subtype 

expressed on the striatal MSNs (D1 MSN and D2 MSN). A classical model (Albin, 

Young, & Penney, 1989) outlines one aspect of how dopamine shapes striatal 

activity. This model has been elaborated with new findings (Nicola, Surmeier, & 

Malenka, 2000; Redgrave et al., 2010). The classical view states, in principle, that 

the D1 receptors excite the striatonigral (‘direct’) pathway, whereas the D2 receptors 

inhibit the striataopallidal (‘indirect’) pathway. This means different receptor 

subtypes are segregated, whilst a smaller subpopulation of MSNs coexpress both 

subtypes (D. J. Surmeier, Song, & Yan, 1996). Through D1 receptor signalling, the 

MSNs may approach a more depolarised state known as an up state under sustained 

glutamatergic stimulation. Whereas, such signalling with transient or uncoordinated 

glutamate release may not form an up state (Nicola et al., 2000). A similar 

physiological consequence of D1 dopamine was also observed in the deep layer 

pyramidal neurons of the prefrontal cortex exhibiting bistability (Lavin & Grace, 

2001). By contrast, D2 signalling exerts an opposite effect, which inhibits 

presynaptic release of glutamate, thereby diminishing D2 MSNs stimulation 

(Bamford et al., 2004). 

1.4.3. Tonic and phasic modes 

Dopamine neurons are known to fire in two distinct modes that affect 

extracellular concentration and pre-/post-synaptic receptor binding, one is 

characterised by a low-frequency (around 4 - 5 Hz for primates), spike-independent 

tonic mode and the other by a short-latency (70 - 100 ms), short-duration (around 

200 ms), burst of neuronal activity called the phasic mode. The phasic mode is also 

referred to as spike-dependent activity, in which packets of action potentials (20 - 80 
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Hz) at a hundred-millisecond scale are separated by a longer electrical silence 

(Iversen, 2010). These phasic spiking activities are in response to salient, unexpected 

events that are attributed to prediction error signals (Redgrave, Gurney, Gurney, & 

Reynolds, 2008; Schultz & Dickinson, 2000). The terminal release of tonic 

dopamine in the striatum is suggested to involve prefrontal glutamatergic afferents 

(Grace, 1991). A primary form of this excitatory regulation takes place in the 

dopaminergic VTA cell bodies (Karreman & Moghaddam, 1996). The tonic and 

phasic modes of dopamine are one determinant of extracellular dopamine 

concentration. The other factor affecting the concentration concerns the cellular 

metabolism that governs dopamine re-uptake. Dopamine concentration is speculated 

to modulate higher cognitive performance, including working memory. As 

mentioned earlier, the anatomy of dopamine receptor varies across the rostro-caudal 

axis, as well as across receptor subtypes. Studies have shown that dopamine 

metabolism also exhibits regional diversity. This may have a pronounced effect of 

dopamine acting on different receptor subtypes, as the D1-family and the D2-family 

receptors have quite distinct dopamine-binding affinities. Taken together, the 

likelihood of dopamine receptor activation is a function of the dopamine affinity of 

receptor subtypes and the concentration to which the receptors are exposed. 

Specifically, the D2 receptor has higher dopamine affinity than that of the D1 

receptor (Cools & D'Esposito, 2011; Schultz, 2007). For a resting, unengaged 

animal, the tonic mode is able to maintain an extracellular concentration of a few 

nanomolar, which is sufficient to provide tonic D2 activation (Richfield, Penney, & 

Young, 1989). Whereas, the D1 receptor is not activated unless a higher 

concentration – over 100 nanomoles produced by phasic bursts – is provided 

(Richfield, Young, & Penney, 1987).  
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1.4.4. Homeostasis hypothesis 

A hypothesis relevant to the interaction between the independently regulated 

tonic and phasic dopamine in the striatum was proposed by Grace (1991). The 

hypothesis states that the extent to which dopamine may express its spike-dependent 

influence depends on synaptic homeostasis. The homeostasis hypothesis rests on two 

premises. Firstly, the behaviourally relevant phasic dopamine release in the synaptic 

space is subject to fast, low-affinity/high-capacity re-uptake systems (Iversen, 1973), 

such that homeostatic responses are not triggered. Secondly, the (prefrontal) 

glutamate-mediated terminal release of spike-independent dopamine is at 

background concentrations and unaffected by the low-affinity re-uptake system. 

Therefore, changes in tonic dopamine release would contribute to extracellular 

dopamine concentration, thereby triggering homeostatic regulations via inhibitory 

D2 autoreceptors. On stimulating the D2 autoreceptors, the dopamine release due to 

fast spikes is down-regulated (but see Benoit-Marand, Borrelli, & Gonon, 2001 for 

spike-dependent autoregulation). In other words, the amplitude of the phasic 

responses is set by the cellular responsiveness shaped by the tonic dopamine release 

(Grace, 1991). 

The hypothesis above has stimulated another supplement hypothesis along the 

same line of reasoning but ascribed to the prefrontal cortex with distinctive 

dopamine elimination routes, as compared with that of the striatum (Bilder, Volavka, 

Lachman, & Grace, 2004). The distinction between the prefrontal cortex and the 

striatum in dopamine re-uptake mechanisms is characterised by insignificant 

involvement of the dopamine transporter (DAT) and monoamine oxidase (MAO) in 

the prefrontal cortex (Lewis et al., 2001; Sesack, Hawrylak, Matus, Guido, & Levey, 

1998). In the striatum, both the DAT and MAO are responsible for fast re-uptake of 
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phasic dopamine in the synaptic space. Instead, the catechol-O-methyltransferase 

(COMT) takes the principal role in the elimination of extracellular dopamine in the 

prefrontal cortex. However, COMT is generally found in extrasynaptic space, 

leaving a longer distance for the dopamine to travel before the re-uptake. This 

probably underlies the higher background dopamine in the prefrontal cortex than that 

in the striatum (Moghaddam & Bunney, 1993; Sharp, Zetterström, & Ungerstedt, 

1986). As a consequence, Bilder’s hypothesis predicts that the greater extent of 

dopamine diffusion increases the likelihood of extrasynaptic D1 receptor stimulation 

(Smiley, Levey, Ciliax, & Goldman-Rakic, 1994). This would in turn enable the 

glutamate-mediated release of tonic dopamine in the striatum, thereby reciprocally 

reducing the postsynaptic responsiveness to phasic dopamine. Another 

complementary possibility is that the background prefrontal dopamine may attenuate 

cellular excitability via D2 stimulation (Tseng & O'Donnell, 2004), affecting 

downstream glutamatergic corticostriatal projections. Taken together, elevated tonic 

dopamine level in the prefrontal cortex may have a net effect of reducing coherent 

input to the striatal D1 MSNs. These hypotheses have an important implication as 

they speak to the underlying stability of cortical activation states. Critically, both 

prefrontal D1 or D2 stimulations by background dopamine may contribute to the 

tonic enabling of the striatal indirect pathway and thus promote flexible set-

switching or working memory updating (J. D. Cohen, Braver, & O'Reilly, 1996; M. 

J. Frank et al., 2001; Durstewitz, 2008; but see Stelzel, Fiebach, Cools, Tafazoli, & 

D'Esposito, 2013). 
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1.4.5. The Val158Met polymorphism 

An interesting aspect of dopamine function is the COMT Val158Met 

polymorphism. This COMT genotype entails a methionine (Met)/valine (Val) 

substitution at codon 158 of the COMT gene (Lachman et al., 1996). Individuals 

exhibiting homozygosity for the Met allele are associated with a three- to four-fold 

reduction in COMT activity than that of Val homozygotes (Weinshilboum, 

Otterness, & Szumlanski, 1999). The Met homozygotes therefore have relatively 

higher baseline dopamine than the Val homozygotes in the prefrontal cortex, whilst 

the heterozygotes demonstrate an intermediate level of baseline dopamine. With the 

polymorphic phenomenon, some predictions concerning dopamine-related 

performance are made: that individuals with the Met-allele may exhibit superior 

cognitive flexibility and working memory performance than the Val variants 

(Bellander et al., 2014; Cools & D'Esposito, 2011). In particular, the improvement in 

Met allele performance is often characterised by task-related reduction in regional 

BOLD responses (Mier, Kirsch, & Meyer-Lindenberg, 2010). This is comparable to 

the rCBF reduction as a result of catecholamine agonist-induced working memory 

improvement (e.g., Mehta et al., 2000; dorsolateral prefrontal cortex and parietal 

cortex). The task-related BOLD reduction is also associated with faster reaction 

times without accuracy trade-off (Mattay et al., 2003; Tan et al., 2007). Tan et al. 

(2007) demonstrated trend speed-up for the Met allele (Table 1. of Tan et al., 2007) 

but a marked task-related reduction in the fronto-parietal network throughout a series 

of working memory updating and manipulation tasks. The task-related reduction may 

be a consequence of GABAA-mediated inhibition via extracellular D2 stimulation. 

Of note, the magnitude of task-related reduction can be further emphasised by 

disrupting dopamine re-uptake mechanisms using amphetamine (Mattay et al., 
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2003). The effect, compared with that of placebo administration, was most 

pronounced with the Val homozygotes with increment of updating difficulty (n-

back). Critically, the use of drug resulted in the magnitude of regional responses in 

the Val group closely resembled that of the Met group. By contrast, the Met 

homozygotes, albeit with trend task-related BOLD reduction, showed a marked 

BOLD increase and impaired performance with amphetamine, indicating over-

abundant dopamine under the ‘inverted-U’ model (Cools & Robbins, 2004). 

1.4.6. Dopamine dose-dependency, terminal synthesis, and working 

memory capacity 

An ‘inverted-U’ relationship seems to hold between cognitive performance and 

baseline dopamine level. This dose-performance model predicts that excessive 

dopamine is as detrimental as insufficient dopamine. Williams and Goldman-Rakic 

(1995) determined that a dose-dependency exists for D1 receptor function, in which 

monkeys performing an ODR (oculomotor delayed-response) task showed that 

prefrontal neurons (‘memory field’) encoding target location – throughout the delay 

period – were selectively enhanced by a low, but not high, dose of D1 antagonist. A 

follow-up study by Vijayraghavan (2007) showed that the low-level D1 receptor 

agonism enhanced tuning in the memory field by suppressing neuronal responses in 

the non-target fields.  

The results were attributed to endogenous dopaminergic tone, where the D1 

blockade unmasked cells with excessive tone (G. V. Williams & Goldman-Rakic, 

1995), whereas adequate D1 stimulation suppressed noisy, spontaneous neuronal 

activity (Vijayraghavan et al., 2007). Zahrt (1997) also demonstrated a similar D1 

dose-dependency in rodents using D1 receptor agonists. Intriguingly, dose-
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dependency of performance changes with the specific task being performed (Phillips, 

Ahn, & Floresco, 2004). More specifically, the task difficulty contributes to how 

effective the receptor manipulation would be. In a rodent study based on a delayed 

version of radial maze task, the task difficulty was determined by the length of delay 

before the memory test, Floresco and Phillips (2001) demonstrated that the prefrontal 

administration of D1 agonists significantly improved the proportion of correct 

memory retrieval in the extended-delay group. The performance improved with the 

increase of D1 agonist dose. By contrast, the group taking the easy task exhibited a 

dose-dependent increase in error rate. Under the inverted-U model, the findings 

suggest a right shift in the dose-performance function for the difficult task, in which 

the drug administration corresponds to the rising segment of the difficult curve but to 

the descending segment of the easy curve.  

Apart from the dose-dependency and the dose/task interaction on performance, 

the inverted-U model has an intrinsic level of variability: the drug efficacy seems to 

vary across individuals. Granon et al. (2000) referred this variability to the 

dependence on individual baseline performance. That is, undrugged poor performers 

(rodents) received more behavioural enhancement under the influence of D1 agonist 

than the good performers. On the contrary, the administration of D1 antagonist 

impaired the good performers but not the poor performers. It is conceivable that the 

good performers may have optimal level of baseline dopamine for the specific task, 

such that they would show little or even adverse effects under D1 stimulation. 

Instead, the poor performers may gain from the D1 stimulation because their basal 

dopamine level may be at the far left of the inverted-U curve. The opposite case was 

also found for D1 antagonism, in which only the good performers suffered from the 

drug effect (Granon et al., 2000). 
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Similar findings were also obtained for humans, with the individual initial 

conditions being determined by the measure of working memory capacity (Kimberg, 

D’Esposito, & Farah, 1997). Kimberg et al. (1997) manipulated the placebo/D2 

agonism (via bromocriptine) effect on participants performing a Wisconsin Card 

Sorting task (WCST) and demonstrated that the drug eliminated the differences in 

performance between high-span and low-span individuals, in which the high-span 

individuals had better performance under the placebo treatment. In other words, the 

D2 agonism enhanced performance of individuals with low span size, whilst 

impaired that with high span size. A corroborating finding also reported beneficial 

effects of methylphenidate (that blocks dopamine and norepinephrine transporters) 

administration in subjects with lower working memory capacity (Mehta et al., 2000). 

Given the dose/performance dependency changes as an inverted-U function, with 

reference to the initial condition, it is therefore possible to associate individual 

working memory capacity with basal dopamine level. Cools et al. (Cools, Gibbs, 

Miyakawa, Jagust, & D'Esposito, 2008) performed their study in this regard. Basal 

dopamine level was determined by the terminal synthesis in the striatum using PET 

imaging. The authors used radioactive tracers that track decarboxylase activity as an 

index of presynaptic dopamine synthesis capacity. They detected a positive, age-

corrected, correlation between left caudate synthesis capacity and working memory 

capacity; trend correlations were also found in the rest of the striatum. However, 

current evidence is limited to the association between listening span and dopamine 

synthesis and cannot be extended to other span tests yet (Cools et al., 2008). 
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1.4.7. Computational theoretical models 

Theoretical models incorporating known biophysical properties of neuronal 

systems often allow one to gain insights into the mechanistic principles of the system 

in question. Indeed, numerous models have been attempted and refined to understand 

the perplexing behaviour of dopamine in modulating working memory function 

(Dreher & Burnod, 2002; Durstewitz & Seamans, 2008; Durstewitz, Kelc, & 

Güntürkün, 1999; Durstewitz, Seamans, & Sejnowski, 2000). Next, we turn to these 

models that concern working memory process, prefrontal cortex, and dopamine 

modulation. 

A working hypothesis of the prefrontal cortex function – with regard to working 

memory – is that the prefrontal cortex serves to protect goal-related information 

against interference during the delay period. This is associated with the control of 

representational stability and is considered as one of the hallmarks of the prefrontal 

cortex (Miller & Cohen, 2001). In terms of theoretical modelling, the mechanisms 

underlying prefrontal representational stability are characterised by several, though 

not mutually exclusive, computational principles (Durstewitz et al., 2000): (1) 

recurrent excitation within cell assemblies; (2) asymmetrical feedforward/feedback 

connectivity constituting a ‘synfire chain’; (3) maintenance of membrane 

conductance through cellular bistability; and (4) discrete and continuous attractor 

states. 

In Durstewitz et al. (1999), the functional role of dopamine was conceived in 

two aspects: (1) stimulating firing of the delay-sensitive prefrontal neurons; (2) 

preempting presynaptic inputs that encode goal-irrelevant information. The model 

did not, however, make explicit distinctions about the contribution of receptor 

subtypes or the temporal dynamics of dopamine discharge. Instead, model 
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parameters were designed to reflect synaptic or voltage-gated membrane 

conductance in prefrontal pyramidal neurons. Specifically, the underlying 

mechanisms related to (D1) dopamine-NMDA synergism that enhances a persistent 

shift in inward Na+ currents, which may increase evoked excitability of pyramidal 

cells, thereby increasing lateral inhibition (Goldman-Rakic, 1995). Additionally, 

spontaneous afferent glutamatergic stimulation was prevented by modulating high-

threshold Ca2+ and slowly inactivating K+ currents. These spontaneous afferents, 

presumably goal-irrelevant, elicit distal excitatory postsynaptic potentials (EPSPs) 

that are mediated by dendritic Ca2+ currents. Dopamine may attenuate distal EPSPs, 

increasing influence of proximal EPSPs (Yang & Seamans, 1996). In other words, 

dopamine induced the effect that neurons received more current influx proximally 

than distally. Finally, GABAergic interneuron activity is enhanced, probably via D2 

receptors (Trantham-Davidson et al., 2004; Tseng & O'Donnell, 2004), manner. 

Taken together, the model by Durstewitz et al. (Durstewitz et al., 1999) showed that 

dopamine may have a positive influence in stabilising prefrontal neural 

representations. This is achieved via several plausible dopamine modulations: (1) the 

increase of Na+ traffic; (2) the reduction of K+ efflux; (3) the decoupling between 

distal and proximal pyramidal neurons; and (4) the reduction of dendritic Ca2+ 

conductance. The model also predicted the disruptive effect under supranormal 

dopamine levels, which showed appropriate neuronal excitations and strong 

inhibitory feedbacks. 

Durstewitz and Seamans (2008) provided a more comprehensive review on 

models regarding to the functional implications of dopamine in the prefrontal cortex 

by taking the receptor-specific contribution into account. Using attractor network 

models, they proposed the existence of two discrete dynamic regimes, one associated 
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with D1 dominance and the other with D2 dominance. The D1-dominated state is 

characterised by a steep energy landscape, in which working memory-related 

attractor states staying in an energy ‘well’ are robustly maintained, whereas the D2-

dominated state corresponds to a flat landscape, which may be beneficial for flexible 

switching amongst representational states. A previously proposed model (Dreher & 

Burnod, 2002) also appealed to the notion that the dopamine thresholding of 

prefrontal afferents is state-dependent.  

 

1.5. Prefrontal cortex-basal ganglia working memory (PBWM) 

The classical view of basal ganglia function is that it enables motor control and 

action selection through extensive connections with behaviour effector systems 

(Mink, 1996). With the advance of understanding the parallel organisation of the 

basal ganglia, as well as the connectional anatomy, it is now conceivable that the 

basal ganglia subserve not only motor functions but also complex cognitions 

(Alexander, DeLong, & Strick, 1986; Bar-Gad & Bergman, 2001; Desrochers & 

Badre, 2012; Draganski et al., 2008; Redgrave et al., 2010). Amongst the advances, 

the link between the basal ganglia, the prefrontal cortex, and working memory 

function is reviewed here. Especially, an influential computational model proposed 

by Frank, Hazy, O'Reilly, and colleagues (M. J. Frank et al., 2001; Hazy, Frank, & 

O'Reilly, 2007; R. C. O'Reilly, 2006; R. C. O'Reilly & Frank, 2006) is brought to 

focus here – in light of its implication in working memory updating. The model gives 

an account of the control of information access into working memory (McNab & 

Klingberg, 2008) based on theories of artificial neural networks, the ‘long short-term 
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memory’ (Hochreiter & Schmidhuber, 1997), and a biologically realistic temporal 

difference (TD, or actor-critic) architecture. 

 

1.5.1. The neuroanatomy of the basal ganglia 

The basal ganglia are comprised of the striatum (caudate and putamen), the 

nucleus accumbens, the subthalamic nucleus (STN), and the globus pallidus, which 

includes the internal (GPi) and external (GPe) segments. The basal ganglia receive 

(glutamatergic) inputs from virtually all areas of the neocortex, with a specific 

laminar origin of layer V, and in some cases layer III. The basal ganglia send outputs 

via the GPi and the substantia nigra pars reticular (SNr) that target thalamic nuclei, 

which eventually reach cortical layer IV. The intralaminar thalamic nuclei also 

project back to the striatum. The corticostriatal projections are unique as far as a 

single MSN is concerned (Zheng & Wilson, 2002). This is because for the dendritic 

field of a single MSN, some 2800 MSNs are also present, whereas a single 

corticostriatal axon traversing this field has on average 40 boutons and makes one or 

a few contacts with a single MSN. This makes finding two striatal neurons that share 

a common cortical input rather unlikely. Therefore, the activation of a MSN depends 

on multiple convergent cortical neurons – a distinct feature that implicates the 

foundation of information processing in the basal ganglia (R. L. Cowan & Wilson, 

1994). 

The targets of the corticostriatal afferents are the striatal medium spiny neurons, 

a type of GABAergic projection neurons that accounts for 95% of the striatal 

neurons. Two critical basal ganglia circuits are provided by the striatal medium spiny 

neurons, the ‘direct’ and ‘indirect’ pathways. The direct pathway is named for its 
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direct input to the output nuclei in the GPi and the SNr. Whereas, the indirect 

pathway follows two waypoints sequentially, the GPe and the STN, before the output 

nuclei. The output neurons in the GPi are GABAergic and exhibit a relatively high 

level of tonic activity; in other words, the GPi tonically inhibits their thalamic 

targets. These inhibitory effects may be removed by the excitatory glutamatergic 

inputs from the neocortex via the direct pathway. As a consequence, activation of the 

striatal MSNs will inhibit the output neurons of GPi/SNr, thereby disinhibiting the 

thalamic targets. The indirect pathway is, however, more complex: the striatal output 

neurons first target the GABAergic GPe neurons, thereby disinhibiting the STN 

output, allowing the glutamatergic neurons of the STN to activate the GPi/SNr 

neurons, and finally result in enhanced inhibition in the thalamic neurons. Although 

the exact mechanisms regulating the activation of the direct and indirect pathways 

are complex and require extended text to explain, their concerted role provides 

antagonistic/counterbalanced regulation of basal ganglia output.  

Unlike the neocortex, the striatum lacks distinct cytoarchitectonic organisation, 

which means laminar structures are not present. However, it is well established that 

the striatum, along with the rest of the nuclei, maintain a topographic relationship 

with the neocortex (Draganski et al., 2008). For example, projections from the 

prefrontal cortex converge in the rostral part of the caudate nucleus, putamen, and 

globus pallidus. Likewise, the caudal part of the caudate, putamen, and globus 

pallidus receive inputs from the motor cortex.  

The axons of striatal medium spiny neurons exhibit an asymmetric degree of 

recurrent collaterals with respect to the dopamine receptor subtypes they express. As 

noted by Taverna et al. (2008), unidirectional MSN-to-MSN synapses are formed 

between D1 receptor-expressing MSNs, as well as between D2 receptor-expressing 



 

 39 

MSNs. D2 receptor-expressing MSNs also form synapses with D1 receptor-

expressing MSNs, but the reverse case is scarce. In other words, direct pathway 

MSNs tend to innervate MSNs of the same pathway, whereas indirect pathway 

MSNs innervate both MSN types equally. Additionally, this receptor-dependent 

MSN coupling seems to be disrupted in Parkinson’s disease models, suggesting a 

functional role in behavioural switching or possibly cognitive flexibility, although 

the exact mechanism remains unknown (Kreitzer, 2008). More recently, Lalchandani 

et al. (2013) suggested, in an in vitro study, that the efficacy of MSN collaterals may 

be regulated by dopamine, in which D2 agonist administration resulted in increased 

synaptic GABAA clusters and GABAA release sites that led to a greater synaptic 

efficacy. Further studies are still needed to understand how collateral inhibition may 

enable integration of information in the striatum.  

  

1.5.2. The 1-2-AX continuous performance task (1-2-AX CPT) 

The 1-2-AX CPT (Figure 1.2) was devised by Braver and Cohen (Braver & 

Cohen, 2000) based on a simpler version (Barch et al., 1997) and is used as a model 

task to demonstrate the behaviour of the PBWM introduced in the ensuing section. 

The task involves the presentation of a fixed set of stimuli (1, 2, A, X, and Y). X is 

the target to which the subject should respond if it follows an A, and the most recent 

number seen is 1. Alternatively, Y may be the target if the preceding stimulus is B, 

and the most recent number observed is 2. The task therefore entails both subgoals 

and goals: the subgoals are defined by the number stimuli that induce, at task level, 

the maintenance of the contingency within which the goal – A-X or B-Y sequence – 

is dealt. A hierarchy of functional demands in working memory is instantiated here, 
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including the encoding of relevant stimuli, the active maintenance of task and 

stimulus information in the presence of distractors, and the contingent updating of 

the A-X/B-Y sequence. 

 

Figure 1.2 The 1-2-AX continuous performance task (1-2-AX CPT). This widely applied 

cognitive task encapsulates two types of stimuli that require working memory to be engaged in a 

hierarchical manner. The task performance is context-sensitive, with the context being induced 

by the number stimuli (1 or 2). Unless a different number stimulus is encountered, the context is 

maintained and the context-dependent cue-response pairing is exercised. For example, a subject 

may only respond to the ‘X’ stimulus immediately following an ‘A’ if the current context is ‘1’. 

Alternatively, the target to which one makes responses is ‘Y’ when it is following a ‘B’ under 

the ‘2’ context. 

 

1.5.3. Computational model 

The PBWM model (OReilly:2006gy ; also see M. J. Frank et al., 2001) employs 

a series of mechanistically plausible considerations (R. C. O'Reilly, 1998) 

concerning the interactions between the prefrontal cortex, the basal ganglia, and the 

dopaminergic midbrain which together enable working memory. It is envisaged that 
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the model must be able to learn what information to keep over time and implement 

contingencies with respect to the delayed cue-outcome relationship. The model 

assumes working memory representations are maintained in prefrontal cortical 

activity, whilst the basal ganglia subserve a dynamic gating mechanism via 

disinhibitory neural pathways that determine what information can be represented by 

the prefrontal cortex. The gating mechanism is made adaptive by means of 

reinforcement learning, which reflects potent dopaminergic neuromodulation in the 

basal ganglia. Overall, the model enables computations associated with three key 

functional demands of working memory mentioned earlier: rapid updating, robust 

maintenance, and selective updating.  

The notion of gating by disinhibition is straightforward and makes direct link 

with the functional anatomy of the basal ganglia described previously (see also 

Figure 1.3). Firstly, the prerequisite to enable any prefrontal representation is to 

follow the thalamic disinhibition by activating the direct (‘Go’) pathway, thereby 

toggling the prefrontal cellular bistability (Camperi & Wang, 1998). Following this, 

active maintenance of information is then achieved by excitatory feedback circuit 

and recurrent excitatory inhibition that are intrinsic to the prefrontal cortex 

(Goldman-Rakic, 1995; 1996). At this stage, the indirect (‘NoGo’) pathway of the 

basal ganglia is enabled – to prevent erroneous encoding/updating in the maintained 

representations. Finally, selective updating (the case in which 1 is maintained but A 

or X may be updated, for example) proceeds in light of the connectional parallelism 

of the basal ganglia anatomy and the corticostriatal sparsity (Alexander et al., 1986; 

Zheng & Wilson, 2002). O’Reilly and colleagues viewed such structures as ‘stripes’ 

that can be modelled as a single unit of the prefrontal/basal ganglia system. The 
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remaining issue with the PBWM model pertains to the question of how the basal 

ganglia learn when to fire a Go or a NoGo signal.  

 

 

Figure 1.3 Parallel loops in the cortico-striato-thalamo-cortical pathway. 

 

1.5.4. Empirical support 

The PBWM model is especially successful in predicting the involvement of the 

dopaminergic midbrain while working memory is being updated (D'Ardenne et al., 

2012; Marklund et al., 2009; Murty et al., 2011). The gating notion is also supported 

by studies in which the basal ganglia is implicated when distracting information was 
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present and had to be distinguished from task-relevant information to guarantee task 

performance (Baier et al., 2010; McNab & Klingberg, 2008); or when information 

from one domain-specific sensory channel is selected over the other in a context-

sensitive manner (van Schouwenburg, Ouden, & Cools, 2010). 

Murty et al. (2011) compared neural responses during distinct working memory 

demands: maintenance, overwriting (total updating), and selective updating. They 

demonstrated that the dopaminergic midbrain, SN/VTA, and the bilateral caudate 

were significantly recruited. Correlation analyses also showed a functional 

connectivity between the striatum and the midbrain, but not with the prefrontal 

cortex. Interestingly, during the overwriting phase, no midbrain activation was 

detected, whilst the striatum was reliably deactivated, suggesting a tonic enabling of 

the ‘NoGo’ pathway (Hazy et al., 2006).  

D’Ardenne et al. (2012) employed the A-X-CPT and demonstrated that the right 

dorsolateral prefrontal cortex was activated while subjects underwent context 

updating, i.e., the presentation of A in the A-X pair.  Furthermore, they delivered 

single-pulse TMS to the context-sensitive region stated and found a context-

dependent, time-dependent disruption in context updating, suggesting a critical role 

of the right dorsolateral prefrontal cortex in context encoding. The time at which the 

TMS delivery is effective was at 150 ms after the contextual cue was presented. 

Additionally, the context updating was associated with dopamine-related phasic 

BOLD responses in the SN/VTA (D'Ardenne et al., 2008). However, the authors 

have yet to demonstrate whether the dopaminergic signal is associated with the basal 

ganglia in implementing the gating mechanism, altogether the signal is significantly 

correlated with the right dorsolateral prefrontal responses in a context-dependent 

manner.  
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In unmedicated Parkinson’s disease patients, Marklund et al. (2009) used fMRI  

to isolated transient from sustained brain activity during an N-back working memory 

updating task (Donaldson, 2004). They found a consistent under-recruitment in the 

caudate nuclei of patients relative to the normal controls. In the control group, 

updating was associated with a transient BOLD profile that can be specifically 

related to the phasic gating signal underlying working memory updating (Marklund 

et al., 2009).  

An analysis based on effective connectivity and Bayesian model comparisons 

also revealed that the basal ganglia served as a ‘gain control’ between the prefrontal 

cortex and domain-specific association cortices. van Schouwenburg et al. (2010) 

used non-linear dynamic causal models (Stephan et al., 2008) and showed that the 

basal ganglia mediate cognitive flexibility, i.e., set-switching, in response to 

behaviour-relevant changes in the environment. Specifically, it is the top-down 

connectivity that was gated by the basal ganglia activity, suggesting a downstream 

attentional control in the association cortex.  

Recently, an fMRI study showed that the activity in the basal ganglia not during 

working memory processing but during the instruction phase – in which the subjects 

were cued to ignore certain stimuli whilst scanning through them – predicts 

individual working memory capacity, as well as the task performance (McNab & 

Klingberg, 2008). This activity is referred to as ‘filtering set’ (McNab & Klingberg, 

2008). A crucial implication from the observation of filtering set activity is that the 

gating function of the basal ganglia is selective and may be implemented in an 

anticipatory or preparatory sense. The study also served as to establish that there is a 

convergence between perceptual set and working memory mediated by the basal 

ganglia. Indeed, the parietal activity associated with non-specific sensory storage 
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(Vogel et al., 2005) decreases with the amplitude of the basal ganglia (globus 

pallidus) filtering set activity (McNab & Klingberg, 2008). 

The notion that the basal ganglia gate or ‘filter’ information entering working is 

further supported by a lesion study (Baier et al., 2010). In an experimental setting 

similar to that of McNab et al. (2008), Baier et al. (2010) showed that lesions of the 

(left) putamen specifically caused the subjects to perform unreliably when distractors 

were presented together with the target stimulus. The result was confirmed by 

relating behavioural variables (e.g., the filtering ability as measured by differences in 

accuracy between distraction and distraction-free conditions) to the anatomical 

location of the lesions using VLBM (voxel-wise lesion-behaviour brain mapping; 

Rorden, Karnath, & Bonilha, 2007). Additionally, working memory performance 

was impaired in a load-dependent manner in patients with prefrontal cortex lesions, 

suggesting a key role for the prefrontal cortex in actively maintaining goal-relevant 

representations. Of note, the VLBM associated variations in working memory 

capacity with lesions in the insular cortex. 

1.5.5. Limitations 

Although the PBWM model gives a formal, mechanistic account – of how the 

meso-prefronto-basal ganglia circuitry achieves adaptive representation of working 

memory – it is limited in terms of biological realism, with respect to the ability to 

capture neuronal activity generated by continuous-time dynamical systems. Such 

systems can be expressed at the level of neurons (e.g., Durstewitz & Seamans, 2008) 

or as an ensemble (e.g., Friston et al., 2012). It also lacks a probabilistic 

representation, whereby environmental states are represented by density functions 

(Friston & Friston, 2005; e.g., Koechlin & Summerfield, 2007), as opposed to a 
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‘slot’ device. In addition, it cannot distinguish between stimulus-bound and 

contextual representations, which speak respectively to quite distinct 

neurophysiological mechanisms: one relates to information encoded in synaptic 

activity, and the other to modulation of plasticity or synaptic gain.  

 

1.6. The predictive brain 

1.6.1. The predictive coding hypothesis 

Rao and Ballard (Rao & Ballard, 1999) proposed the hierarchical predictive 

coding model to address ‘extra-classical’ receptive field phenomenon in visual 

cortex. It has been known for decades that for individual neurons in the primary 

visual cortex (in layer II and III) there is an optimally configured stimulus (e.g., the 

orientation of a line segment) that, when presented in the neuron’s (classical) 

receptive field, elicits the most rigorous response (Hubel & Wiesel, 1968). The extra-

classical phenomenon means that if the optimal stimulus extends beyond the 

neuron’s receptive field, the neuronal response is suppressed. This is referred to as 

‘endstopping’ and holds for the case that the ‘classical’ neuron is suppressed when 

the surrounding extra-classical receptive field is exposed to the stimulus with a 

specific property that matches the centre. The authors made a remarkable prediction 

that the extra-classical neurons provide predictive codes to the classical neurons, and 

together achieve three fundamental aspects of information processing in a neural 

network: (1) to encode exogenous statistical regularities, (2) to only signal 

deviations, and (3) to reduce redundancy (Rao & Ballard, 1999).  
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It naturally follows that the neural network may have a hierarchical organisation, 

whereby neurons of higher level may have a more general sense of the world and if 

such sense is sufficient to ‘explain away’ lower sensations, then there is of no 

biological value to process this information. Additionally, the idea about signalling 

only the deviations – those that cannot be predicted, i.e., prediction errors – is potent 

in the sense that such signals carry information that is not already predicted and may 

be of biological importance. 

It is also conceivable that the size of the receptive field increases as the hierarchy 

progresses, such that neurons at a higher level may have a receptive field of the 

entire visual field, or even be able to encode a ‘template’ of some aspects of the 

physical world. But what do these templates reflect in the real world? The answer to 

this is rooted in Helmholtzian notions that underlie perceptual inference and 

perceptual learning (Friston & Friston, 2005). Briefly, the process of inferring the 

cause of sensations is perceptual inference, whilst the process of capturing the 

interdependency between causes and sensations is perceptual learning. The 

‘template’ is therefore a hypothesis – a ‘diagram’– about how sensations are 

generated. This, in part, necessitates the hierarchical organisation of the neural 

systems (Markov & Kennedy, 2013; Mumford, 1992). The reason for this is simple: 

if the sensory infrastructure can recapitulate the causal structure of the environment, 

it suggests hierarchical structures in its environment (Dayan, Hinton, Neal, & Zemel, 

1995; Friston, 2005). 
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1.6.2. Optimising precision and attention 

Predictive coding mentioned above partly captures the modern treatment of 

perception, that is, in terms of hypothesis testing, the sensory signal is tested as to 

whether it is sampled from a distribution known a priori. This is equivalent to 

inferring the state of the world using generative models that represent hidden causes 

of the state. One can easily see how perception as hypothesis testing resembles 

statistical analyses in most scientific disciplines. The simplest example is perhaps the 

Student’s t-test, in which a group difference is detected by dividing the difference in 

group means with the standard error, under the null distribution. Two quantities are 

estimated here: the observed difference as the prediction error and its standard error 

or precision (i.e., inverse variance). In the predictive coding framework, the 

information being carried forward can then be analogously regarded as precision-

weighted prediction error.  

But what exactly, in psychological and neurobiological terms, is precision and 

the process involved in estimating precision? Feldman and Friston (2010) argued that 

the precision of sensory signals is inherent to the environmental states that are to be 

inferred. This means perceptual inference – i.e., optimising inferred environmental 

states – entails the process of optimising the precision or uncertainty of the states – 

which corresponds to attention. In other words, attention is an emergent property as 

our brain makes hierarchical inferences. Inferring the uncertainty of the state of the 

world is thus an integral part of predictive processing in the brain. 

The assumption that neural systems have a hierarchical architecture is important 

because it is formally equivalent to empirical Bayes models (Friston, 2009). This 

means top-down effects serve as empirical priors that constrain behaviours of the 

lower levels, as well as the bottom-up effects. In a very broad sense, if an organism 
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employing hierarchical inference abides by the Bayesian principle, the only two sorts 

of things that concern the organism (or its brain) are the state of the world and the 

uncertainty about the state. This allows a very parsimonious characterisation of a 

behaving organism in relation to the environment upon which it acts (e.g., Friston et 

al., 2012). 

1.6.3. Cortical message passing 

In reality, the primate brain is hierarchically organised. This observation is based 

on the inter-laminar connectivity across cortical macrocolumns. The lamination and 

columnar structure appear to be quite similar across sensory and association cortices. 

One model (Mumford, 1992) assumes that brain activity emerges from the 

convergence of feedforward and feedback information processing, and re-

propagation.  

Under this model, the feedforward and the feedback pathways do not interact 

until they meet at a common processing unit. Mumford (1992) proposed three 

pathways that provide the up/down streams with topographical segregation: (1) 

ascending pathway; (2) standard descending pathway; and (3) extra-descending 

pathway. The ascending pathway entails supragranular pyramidal neurons of lower 

level projecting to the higher cortical layer IV. The standard descending pathway 

refers to pyramidal axons of layer V in a higher level terminating in Layer I 

(containing apical dendrites of layer II/III) and VI of lower level. At a higher level, 

extra-descending projections from supragranular layers (II/III) may also terminate in 

lower level layer I and VI. 

As a general rule accepted by many, including Rao (1999) and Friston (2005), 

lower superficial layer neurons terminate in higher layer IV, whilst higher deep layer 
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neurons terminate in lower layer I/VI. Additionally, it is generally accepted that the 

feedforward connection has a role as driving inputs, whereas the feedback 

connection as both driving and modulatory inputs. However, as pointed out in 

Markov (2013), laminar projections not conforming to the above model are reported: 

in addition to sending feedforward projections, layer III neurons also project 

backward; also, deep layer (V) neurons send forward projections. Although the 

proximity between macrocolumns may contribute to the heterogeneity, it limits the 

current generative models in terms of their generalisability. Nevertheless, on the 

level of population dynamics and the granularity of underlying neural architecture 

concerned, Mumford’s proposal seems to be an adequate description (see Bastos et 

al., 2013). 

1.6.4. Generalised predictive coding 

Predictive codes are ‘predictive’ in the sense that the current sensations are 

being predicted. However, predictions can also be implemented in an anticipatory 

sense. For example, directing attention by cueing the target location before the target 

onset enhances perceptual decision (Feldman & Friston, 2010; Posner, 1980). 

Forecasting stimulus category or identity with predictive cues also modulate 

sustained activity of working memory circuits (Bollinger, Rubens, Zanto, & 

Gazzaley, 2010) or regional connectivity (Rahnev et al., 2011). These studies show 

that the pre-stimulus deployment of attention and working memory have a role in 

cross-temporal integration of perception and can thus be regarded as top-down 

modulation (Gazzaley & Nobre, 2012). In fact, working memory and attention share 

considerable neural substrates (Mayer et al., 2007) and are sometimes 

complementary psychological constructs (Baddeley, 2012; 2007). It can be argued 

that working memory is attention optimised not for exogenous percepts but for 
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endogenous instantiations of likely percepts (cf. N. Cowan, 2008; McElree, 2001; 

Oberauer, 2002) that one may bring to bear in the near future. In this sense, working 

memory and attention is compatible with a more generalised form of the predictive 

coding model, i.e., generalised predictive coding. The key proposition of the 

generalised predictive coding framework (Friston, 2008; Friston, Mattout, & Kilner, 

2011) is that the hidden causes and states of the world are represented in terms of 

their generalised motion. This means that the generalised states prescribed by 

neuronal populations traverse through the state-space along the trajectory that 

encodes future states. The traversal may visit variables that are responsible for 

generating sensory data in a transient, metastable (Bick & Rabinovich, 2009; Friston 

et al., 2012) or a relatively stable manner (Amit, Fusi, & Yakovlev, 1997). In other 

words, if the brain’s generative model includes trajectories or future (fictive) states, 

then working memory becomes a necessary part of predictive coding. In this context 

attention corresponds to the optimisation of precision or confidence in future 

outcomes based on recent experience. 

 

1.7. Chapter Outline 

Chapter Two gives a detailed description on the design of the experiments 

employed to address our research questions, the participants, the imaging procedures, 

and the methods. The main findings are concerned with regards to the principal 

experiment – the working memory updating task. A subsidiary task for determining 

individual working memory capacity is also documented; the task was conducted as 

a control for confounding factors that may interact with updating performance. 

Another key aspect in this chapter is related to the methodology. We outline the 
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methods that address our research questions. We focus on methods that play a key 

role through Chapter 3 to 5, including the general linear model (GLM), multivariate 

pattern analysis (MVPA), based on support vector machines (SVMs), and dynamic 

causal modelling (DCM). Concise theoretical backgrounds are provided. Detailed, 

topic-specific treatments are, however, described in respective chapters. 

Chapter Three is the first chapter reporting empirical findings. Specifically, we 

show that behavioural performance was modulated by the set-outcome relationship, 

indicating the influences of valid versus invalid sets, which, according to our 

interpretation, speak to predictive nature underlying the neural implementation of the 

anticipatory set. The use of mixed temporal profiles enabled GLM to isolated set-

related sustained activation as hypothesised. We report differential set-related 

activation in the striatum and the SN/VTA. These results are discussed in light of 

dopaminergic neuromodulation. The prediction was made that anticipatory set may 

implicate the release and maintenance of tonic dopamine, given its role in nuancing 

attractor dynamics. A proposed set-dependent ‘inverted-U’ function of dose and 

performance (based on Goldman-Rakic, Cools and others) was used to explain the 

set-performance correlations. This chapter concluded that the task induced a second-

order ‘set’ in which a non-specific perceptual set is embodied. 

Chapter Four is the second empirical chapter. It serves as a follow-up analysis 

for the issues discussed in the previous chapter. Namely, the lack of power and 

sensitivity of the GLM to detect surprise-related activation. The major cause was 

ascribed to the small number of trials. This is because irregularity and rarity are 

components inherent to the prediction-surprise paradigm. In addition, between-

subject variability in surprise-related responses may impair the efficiency of the 

GLM analysis due to the fact that distributed network may react to the surprise, as 
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compared with more localised, stimulus-bound surprise in perceptual decisions. The 

solution was to make use of the variance-covariance structure of the surprise-related 

response, which underpin MVPA. The MVPA approach is sensitive to the pattern of 

response of all voxels considered, as opposed to interrogating the amplitude of 

voxel-wise response. We proposed two types of surprise response were induced by 

our task, omission and deviation, and hypothesised that the two surprise types 

corresponded to differentiable patterns of (informative) voxel extent. We 

documented that the omission pattern encoded more information in the fronto-

parietal and cingulo-operculum network. Whereas, the deviation pattern involved the 

visual cortices, cerebellum, and the midbrain. Classifier weights and voxel counts 

were used to quantify to degree of informativeness within these regions-of-interest. 

Functional implications with respect to each pattern are discussed. This chapter 

concludes that two levels of predictions may be involved in the task, suggesting that 

the working memory function is subserved by an adaptive stimulus control and a set-

maintenance control mechanisms. 

Chapter Five proposes an integrative perspective based on the findings in the 

previous two chapters. Firstly, it considers an ostensible discrepancy in the main 

findings between Chapter 3 and 4. In Chapter 3, we reported that the sustained set 

activation recruited more posterior (occipito-parietal) regions, where anticipatory set 

is suggested to involve predictive processes. By contrast, according to Chapter 4, the 

omission pattern, which involved prefrontal and parietal regions, may also reflect 

prediction signals. As both reflect prediction signals, how can they be expressed in 

separate systems? One useful notion is from the model of cortical message passing 

under the predictive coding framework. This scheme suggests that prediction signals 

provide top-down backward connections, whilst the prediction error signals provide 
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bottom-up forward connections. The other refers to the common understanding that 

the BOLD fMRI signal is more sensitive to presynaptic, modulatory inputs. We 

therefore hypothesised that the set is a top-down influence modulating afferent 

connections to regions reported in Chapter 3. The second question then pertained to 

the effect of omission-related surprise. We related surprise to prediction error 

signals, which entail forward message passing. Finally, we hypothesised that surprise 

could also reflect adaptive modulations which act on the local recurrent connections 

within the network. We motivated a model space according to the above hypotheses 

and tested them within the DCM framework. This chapter draws conclusions based 

on Bayesian model selection and family-level inference, which provided strong 

evidence that working memory processing follows a cortical message-passing 

scheme. Supporting evidence also indicates that two antagonising cortico-striatal and 

cortico-cortical pathways serve to nuance representational flexibility and stability in 

working memory. 

Chapter Six presents a synthesis and general discussion of the empirical chapters 

from 3 to 5, and remarks on the general findings throughout this thesis. It also states 

the contributions to systems neuroscience with regards to working memory and 

higher cognition. Next, I outline future investigations for advancing our 

understanding of working memory as an integrative part of the predictive brain. 

Limitations of the current work are critically evaluated such that means of 

refinement may be brought to bear in the future. 



 

 55 

Chapter 2. Materials and Methods 

 

2.1. Participants 

Seventeen subjects (eight females; mean ± SD age, 28.0 ± 4.4 years; range, 21–

36 years) were recruited via the University College London Psychology Subject 

Pool. Subjects were screened for right-handedness, unimpaired or correct-to-normal 

visual acuity, and normal colour vision. All subjects reported no history of 

psychiatric or neurological illness. English as primary (n = 12) or secondary (n = 5) 

language was required. Four additional subjects were recruited during the pilot study, 

in which only the behavioural task was involved and was not included in the analysis 

reported in this thesis. All subjects were reimbursed monetarily for their time after 

the study, the reimbursement was part of Wellcome Trust funding. This study was 

approved by the Institute of Neurology (University College London) Ethics 

Committee. All subjects provided informed consent before the study. 

 

2.2. Experimental design 

2.2.1. Working memory updating task 

We proposed a working memory updating task, which was a modification of the 

delayed match-to-sample paradigm. Two additional components were added to allow 

testing of relevant hypotheses. Each trial involved five phases: cueing, encoding, 

retention, action, and probing. Here, the term ‘action’ refers to the designated 

mnemonic processing (updating and maintenance), not any motor or reflexive 
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command. Subjects were required to match the probe to the content of their working 

memory and to respond with a binary choice, indicating either a match or mismatch. 

The subject’s working memory content was trial-specific and entailed a serial 

composition of the two memory arrays, given at the encoding and action phases. 

The stimuli comprised predictive cues and memory arrays (Figure 2.1a). The 

cues reported the likelihood of an update in the ensuing action stage; a high (80% 

chance of updating) or low (20% chance of updating) probability cue may take place, 

these cues were displayed as green, upward arrows and red, downward arrows, 

respectively. We refer to the high cue as the updating cue (UC), and the low cue as 

the maintenance cue (MC). Note that the need to update was only explicit upon the 

presentation of the action array, although the predictive cue could establish an 

appropriate cognitive (anticipatory) set, depending on whether updating or 

maintenance was a priori more likely.  
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Figure 2.1 Stimuli and task design. a, Each row illustrates an example of a predictive cue and 

subsequent memory arrays, under one of the four conditions: MCM, MCU, UCM, and UCU. 

The cues reported the update predictability, in which the probability of updating is 80% given a 

green cue and 20% given a red cue (equivalent to 80% maintenance probability). The shaded 

rows represent valid cue-outcome associations. The example shown used a consistent probe 

array, in which subjects should give positive (‘true’) responses. b, Events and durations within a 

single trial shown as stimulus functions. Activity associated with anticipatory set (updating set 

and maintenance set) was modelled with a boxcar function of 6 s. Action (updating or 

maintenance) was modelled for both unsurprising and surprising trials, namely, nonspecific 

effects of updating and maintenance. Surprises (dashed spike in the Interaction row) were 

modelled separately for MCU and UCM conditions. Nonspecific task effects (NS) were treated 

as nuisance effects; upon error trial, the action onsets were modelled as nonspecific visual 

responses (the dashed spike on NS). Although the anticipatory set should be disengaged upon the 

display of action array, additional set-switching effects were added to model the cue onset.  
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High cues represented a low likelihood of maintenance and thus weighed more 

on cognitive flexibility, thus facilitating updating of representation; whereas 

maintenance was more likely under a low cue, where prior beliefs place high fidelity 

over the first (encoding) memory array. 

Following the predictive cue, subjects were cued sequentially with three memory 

arrays during the encoding, action, and probing phases (Figure 2.1b. Each memory 

array contained a set of 5, 1, or 0 randomised English letters, arranged into a 1 x 5 

grid presented in the same colour as the preceding updating or maintenance cue. This 

means some arrays had empty entries, depending on the function of the current 

phase. For example, the encoding and probing arrays always have five letters, which 

were non-repeating capital letters sampled randomly from 19 English consonants 

(excluding W and Y) to ensure phonologically distinct combinations. In addition, 

arrays were excluded if the letter sequence or its neighbour formed a common 

acronym or word. 

During the action phase, the memory array can be a one-letter array or an empty 

array, cueing an updating or maintenance event, respectively. Specifically, the letter 

in the updating array was displayed in a random position, balanced throughout the 

task: this update letter was generated from the same set of consonants but excluding 

the five used in the preceding encoding array. The subjects always have to update 

their working memory upon seeing a letter-containing action array. This was 

achieved by replacing the encoding letter with the update letter at the corresponding 

position. A maintenance array would be empty, thus the encoded memory was not 

updated.  

During the probe phase, the subjects made decisions about whether or not the 

probe array was identical to their working memory – that included an update (if it 
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had occurred). The subjects were informed that the probe would differ from the 

subjects’ working memory by a single letter, with equal probability in each of the 

five positions. Subjects responded by pressing a ‘true’ key when they thought that 

the probe array matched the array they had in memory, or a ‘false’ key if they 

believed otherwise. A fixation cross was presented during inter-trial intervals and 

during the retention between the offset of the encoding array and the onset of the 

action array. The stimuli were presented using Cogent 2000 and Matlab 

(MathWorks). 

The predictive cues were informative as they spoke to the statistical regularity 

embedded in the task. The subjects received explicit instructions regarding the 

veridicality of cue-action contingencies, and were encouraged to rely on the cue to 

guide task performance. This design assumed working memory as the realisation of 

predictive coding (Friston & Stephan, 2007), where cues enabled representations 

about (familiar) future states. We can therefore define surprise as departures from 

familiar outcomes, i.e. prediction errors. Accordingly, we defined ‘valid’ outcomes 

as trials where subjects had to update after a high probability (updating) cue, or they 

had to maintain after a low (maintenance) cue. There were two sources of prediction 

error in our task: omissions, an update failed to occur with a preceding high cue; 

deviations, an update of the memory representation under the belief of unlikely 

updating (low cue). Simply put, omissions and deviations were the interaction of 

anticipatory set and action. 

The task therefore conformed to a 2 x 2 factorial design, with the two factors 

comprising anticipatory set (high vs. low update predictability) and action (updating 

vs. maintenance). This provided four conditions with regard to the valid and invalid 

(surprising) cue-outcome pairings: maintenance cue/maintenance (MCM), 
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maintenance cue/updating (MCU), updating cue/maintenance (UCM), and updating 

cue/updating (UCU). 

The predictive cue was presented for 1500 ms, followed by a fixation cross for 

500 ms. Then, the encoding array appeared for 2000 ms, followed by a fixation cross 

for 2000 ms, while the subjects maintained the items in the encoding array. The 

action array then appeared for 1000 ms, followed by a blank screen for 1000 ms. 

Finally, the probe array was presented for 2000 ms. Subjects were required to 

response as quickly as possible on the appearance of the probe array. Reaction times 

were measured from the onset of the probe array. The total duration of a single trial 

was 12 s, with an inter-trial interval of 2000 ms. 

The task consisted of a single session of 100 trials. The maintenance cue and 

updating cue trials alternated every trial. There were equal numbers of true and false 

trials, counterbalanced across MCM and UCU conditions, as well as across MCU 

and UCM conditions. Each session lasted 1200 s. Subjects responded with their 

index and middle fingers of their right hand using an MRI-compatible keypad. In 

half of the subjects, the answer ‘true’ was mapped to the index finger and ‘false’ to 

the middle finger; in the other half, the converse was the case. To minimise 

nonspecific processing demands, the words ‘True’ and ‘False’ were visible on the 

lower third of each probe display, in the side of the corresponding response finger. 

Immediately before the fMRI experiment, each subject underwent a 1 h 

instructed training session. Then, a 10-trial version of the task was administered with 

feedback to confirm the subject had understood the task. Each subject was required 

to achieve 100% accuracy to enter the second part of the training, which comprised 

100 trials without feedback – to prepare the subject for the fMRI experiment. 



 

 61 

2.2.2. Working memory capacity 

Working memory may share a common neural substrate with the attentional 

system (Knudsen, 2007), and therefore may be subject to limited resources. The 

actual limit, depending on the underlying theoretical construct, can be up to four 

‘chunks’ (N. Cowan, 2005) or 7 +/- 2 items (Jensen & Lisman, 1996). The 

assumption of limited resources predicts that memory updating may be modulated by 

variations in span limit. This line of reasoning is straightforward – in order to update 

memory, the brain must represent both the informative and the obsolete items to be 

able to manipulate them online. Updating while exceeding the capacity limit seems 

improbable. Moreover, under a more recent, precision-based capacity model (Ma et 

al., 2014), individual differences may still contribute to the effectiveness of updating, 

even though the number of items to be remember is less than seven. Indeed, it has 

been established that individual differences in working memory span may contribute 

to updating capacity (Ecker et al., 2010). Thus, we conducted a task prior to the 

training session to measure working memory capacity (WMC) for each subject – in 

order to control the effect of WMC on updating performance. The task required the 

subjects to recall a letter sequence in order. The letter sequence was based on the 

same stimulus set used in the updating task. The subjects viewed the letters on a 

black background at the rate of one letter per second. Strict forward recall was 

required, i.e., the subjects had to report the sequence in the order it was presented. 

The length began with four letters, and then increased by one letter with every two 

successful trials until the subject committed errors. During responding, the subjects 

were allowed to type and to make corrections before they submitted their answers. 

The highest span size performed correctly twice was recorded for each subject. 
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Figure 2.2 A serial recall task for measuring span limit. This diagram shows two levels of 

span size for testing working memory capacity. Subjects view and memorise letter sequences at 

one letter per second. After the sequence finished, subjects are prompted to recall the sequence 

with a keyboard. The span size may increase if subjects made two successful trials in a row. 

(left) a task showing span size of 4, and (right) a span size of 6.  

 

The measure of individual working memory capacity was validated with an 

independent index based on Cowan’s estimate (Cowan, 2005) 

  (2.1) 

where N is the array size in the updating task. The validation is reported in Chapter 

3. 
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2.3. Data acquisition 

Structural and functional images were acquired on a 3 tesla Magnetom Trio MRI 

system (Siemens Medical Solutions). Functional images were acquired with a 32-

channel head coil, using a single-shot echo planar imaging sequence (slice repetition 

time, 70 ms; echo time, 30 ms; ascending slice acquisition order; 3 x 3 x 3 mm voxel 

size). During functional acquisition, peripheral physiological variations were 

monitored by a respiratory belt and a pulse oximeter. Field mapping protocol was 

applied to sample field inhomogeneity (short echo time, 10 ms; long echo time, 

12.46 ms; total EPI readout time, 37 ms). Multi-parameter images, including T1-

density, proton density, and magnetisation transfer contrasts were acquired for 

structural information using 3D FLASH (fast low-angle shot) sequences.  

 

2.4. Data analysis 

2.4.1. Spatiotemporal preprocessing 

Preprocessing of functional MRI data included: (1) ‘unwarping’ distorted image 

due to inhomogeneous B0 magnetic field; (2) approximating slice data to assume 

identical slice acquisition time with respect to experimentally elicited responses; (3) 

rigid translations and rotations to anatomically align images across scans; (4) a 

spatial ‘normalisation’ with reference to a standard stereotactic atlas, such that image 

data of all subjects are in voxel-wise correspondence; and (5) smoothing to 

accommodate small-scale differences in anatomical definition across subjects. All 

these procedures contribute to the efficiency of statistical tests and inferences made 

at group level. 
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2.4.1.1. Realignment 

During the course of functional imaging, the head position of each subject may 

change: breathing, for example, may cause the head to move slightly. This results in 

inter-scan changes in anatomical alignment, which tends to confound subsequent 

voxel-wise analyses. Adjusting the functional images into a common frame of 

reference is therefore necessary. This is first performed within subjects using 

realignment – an affine registration, which is based on rigid-body transformations 

parameterised by six parameters (the translation of images in three dimensions, and 

rotations in three dimensions).  

Formally, this procedure starts with a reference image, usually a grand average, 

and the original set of images as source images. Let  be the model parameters and 

 quantify the difference between source and reference image at voxel i. 

Realignment involves minimising the residual sum of square , given 

the model parameters are displaced by . Using the first order Taylor expansion, one 

obtains 

  
(2.2) 

which can be rearranged into 

  

(2.3) 

From here, an iterative scheme is used such that the parameters can be optimised 

accordingly 

  (2.4) 
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2.4.1.2. Unwarping 

Inhomogeneity in external magnetic field B0 is one of the major sources of MR 

artefacts. Similar to magnetic susceptibility artefacts, field inhomogeneity tends to 

distort images. However, it is possible to ‘unwarp’ the distorted images by means of 

field mapping, prior to the scanning. Field mapping generates images in which field 

inhomogeneities are quantified, and can be used to specify a forward model of 

movement-by-inhomogeneity interactions which is subsequently inverted 

(Andersson, Hutton, Ashburner, Turner, & Friston, 2001; Hutton et al., 2002). 

2.4.1.3. Slice-timing correction 

The slice-timing problem refers to different slice acquisition times. Normally, 

one would expect the acquisition of a single scan (volume), which containing 

multiple slices, to be in a consistent time frame. This is, however, not possible in 

practice. For example, given a scanning sequence of repetition time T, and a 

descending slice acquisition order. The time the last slice is acquired is later than the 

time at which the first slice was acquired by around T. In other words, slices within a 

single volume are acquired at different times. In this case, if the experimentally 

induced responses are modelled with a single canonical haemodynamic function, and 

the onset time is set to the beginning of each scan, the parameter estimates in the 

bottom slices will be biased.  

This problem can be adequately alleviated by means of interpolation in time 

(Henson, Büchel, Josephs, & Friston, 1999). Depending on the interpolation method, 

the weighted average of two or more time points is calculated. For example, Figure 

2.3 illustrates the case where two slices (grey box) are used to approximate a time 

point (red box) using linear interpolation. The disadvantage of linear interpolation 
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lies in the potential to smooth the raw data, if the two slices are equally distant from 

the time point to be interpolated. More complex interpolation schemes, such as those 

based on cubic, spline, or sinc functions, may be adopted, with the risk of 

introducing artefacts from distant slices.  

 

 

Figure 2.3 Slice-timing correction using a linear interpolation. Slice-timing correction uses 

interpolation to approximate fMRI slice data to an aligned temporal position. Interpolation here 

is a weighted sum of neighbouring slices. a, the interpolated time point (red box) will closely 

resemble the slice data to the left, while the right slice has relatively little contribution. b, slices 

from both sides have nearly equal contributions to the interpolated slice. Note that in the latter 

case, the newly generated slice is a smoothed copy of the two. To prevent data from excessive 

smoothing, cubic, spine, or sinc interpolations may be adopted, which take further slices into 

account, although this could incur more artefacts. 

 

2.4.1.4. Spatial normalisation 

Reporting summary statistics is a common practice in almost every scientific 

discipline. However, the issue with high dimensional data like structural and 

functional images is that the geometry of individual brains is never the same. 

Therefore, we need a standard stereotactic space into which individual brains can be 
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transformed, making the reference to common anatomical framework at the group 

level straightforward, and thus enabling efficient statistical analyses. 

Spatial normalisation is achieved in two steps (Friston et al., 2004). First, a 12-

parameter affine registration is employed, with reference to a standard template in 

the MNI (Montreal Neurological Institute) space. The 12 parameters stand for 

transformations along the x-, y-, and z-axis in the form of rotation, translation, sheer, 

and zoom. Zoom and sheer are needed to register heads/brains of different shapes 

and sizes, whilst rotation and translation match the orientation to the template image. 

Prior information concerning the variability of head sizes is incorporated under a 

Bayesian framework, this prevents over-fitting, as well as increases the robustness 

and accuracy of the fine-grained warping in the next step. Next, a non-linear warping 

is introduced to correct differences that cannot be accounted for by the linear 

transformation. This warping can be seen as a mapping from the native image space 

into the standard space; the mapping is described in terms of a linear combination of 

non-linear basis functions. Regularisation is introduced by minimising the sum of 

squared difference between the warped image and the template in order to avoid 

over-fitting. 

2.4.1.5. Smoothing 

In SPM processing pipeline, this is usually the final step, which uses a Gaussian 

smoothing kernel applied to the 3-dimensional volume of data. The idea is similar to 

that of moving average, in which each data point is a weighted mean of neighbouring 

points within a pre-defined window, except the window and the weights in 

smoothing are now a Gaussian ‘sphere’ in space. The overall effect of smoothing 

creates a blurred version of the original images. The extent, i.e., the ‘window’ width, 
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of the smoothing is determined by the full-width at half-maximum (FWHM) of the 

kernel. Apart from accommodating cross-subject small-scale differences in 

anatomical definition that are unaccounted for by the normalisation process, 

insufficient or excessive smoothing are suboptimal. This is because statistical 

inferences within SPM rely on Random Field theory to resolve multiple comparison 

problems. Random Field theory assumes the response is spatially smooth. To model 

the dispersion and number of spurious response occurring by chance, a smoothed 

random noise field is used to evaluate the circumstance stated. In other words, a less 

stringent correction is applied to highly smoothed data. Briefly, smoothing may help 

to improve statistical sensitivity by either increasing signal-to-noise ratio, or by 

inducing normal error distributions in accordance with the assumption of most 

parametric tests. These come at the cost of being unable to make inferences about 

smaller cortical structures, and the possibility that focal activation peaks may be 

merged or completely removed. 

2.4.2. Behavioural data 

2.4.2.1. Working memory capacity 

Our measure of working memory capacity – by means of serial recall – was 

validated by regression with an independent measure of Cowan’s capacity index. 

The reason for an independent measure of individual span limit is that Cowan’s 

index depends on the hit rate and false alarm rate, it is therefore co-dependent with 

response accuracy or a score that conflates proportions of correct responses (Bruyer 

& Brysbaert, 2013).  

From Equation 2.1, Cowan’s index was calculated by 

  (2.5) 
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where subscripts denote updating (u) and maintenance (m) trials.  is equal to 5, as 

this is the size of the memory array; whereas  is equal to 6 as an additional letter 

was introduced by the action array. The simple linear regression is now given by 

  (2.6) 

where  denotes individual span size as measured by the serial recall task. 

2.4.2.2. Reaction time and response accuracy 

Performance of a working memory updating task may be modulated by an 

individual’s working memory capacity. This was suggested by Schmiedek et al. 

(2009) and was tested by Ecker, Oberauer, and Chee (2010), who showed that both 

working memory updating and working memory capacity are strongly related and 

predict higher cognitive abilities to a similar degree (2010). Although, according to 

Ecker et al. (Ecker et al., 2010), substitution as a component process of updating (the 

other two being retrieval and transformation) does not seem to be substantially 

predicted by working memory capacity, we nevertheless considered the influence of 

individual difference in capacity limit in the following behavioural analysis: 

substitution is a key manipulation to enable updating in our task, and depends on the 

retrieval of previously encoded information (Chen & Li, 2007).  

The purpose of the analyses reported here is to detect whether there was 

surprise-induced impairment in task performance. Therefore, individual measures of 

working memory capacity are treated as covariates in the subsequent analysis of 

covariance (ANCOVA). Response accuracy was calculated as the proportion of 

correct responses and the measures of reaction time were summarised within subjects 

using harmonic mean to control for outliers (Ratcliff, 1993). The number of reaction 

time measures in invalid trials (updating cue/maintenance or maintenance 
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cue/updating) was inherently rare, as required by a prediction/surprise paradigm. The 

use of the harmonic mean is considered suitable to reflect the central tendency in 

these trials.  

The harmonic mean for reaction time is the number of correct sample divided by 

the sum of inverse reaction times. In other words, it is the reciprocal of the arithmetic 

mean of the reciprocals, and is given by 

  
(2.7) 

It is noted that the harmonic mean has a tendency towards smaller values, thereby 

alleviating the impact of large outliers.  

For each subject, the harmonic means were calculated for each condition. 

Reaction time and accuracy were analysed in two different ANCOVAs, with 

working memory capacity entered as a between-subject covariate. The main effect 

and interaction between conditions were then tested. 

 

2.4.3. Imaging data 

2.4.3.1. General Linear Models 

2.4.3.1.1. Background	  

The GLM is a general regression framework from which various types of 

statistical testing can be realised. The application of GLM in neuroimaging is often 

referred to as mass-univariate analysis. This is because the method treats voxel-wise 

time series independently and analyses them as if there are multiple instances of 

univariate data. The independence assumption is, however, not realistic as spatially 
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adjacent voxels are likely co-dependent, which, if not taken into account, will render 

the subsequent statistical analysis inefficient due to an overly severe correction for 

multiple comparisons. We have briefly covered the idea of controlling false positives 

previously in the smoothing section.  

The objective of using GLM is to make inferences about experimental effects of 

interest. To achieve this, one has to decompose the fMRI time series into task effects 

and error in terms of model parameter estimates, from which appropriate statistics 

can be motivated. The idea of decomposition is based on the assumption that the 

observed fMRI responses are generated as linear combinations of some explanatory 

variables (Figure 2.4). The explanatory variables are also known as independent 

variables. The fMRI data (dependent variables) are known quantities. For example, 

visual stimuli are displayed in a succession of on/off blocks; in this case regional 

responses associated with visual inputs may be modelled with an explanatory vector 

of 0s and 1s in which 1s are present in accordance with the scans of visual onset. 
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Figure 2.4 A schematic diagram showing data generating process and its inversion. a, The 

diagram shows how fMRI data are generated as linear combinations of designed experimental 

perturbations as explanatory variables. The unknown quantities are the coefficients that 

determine the contribution of individual explanatory variables to the final data. The noise is zero 

mean with unknown variance. b, The unknown quantities can be derived through model 

inversion. Ordinary least square estimates are typical for linear models, and involve 

minimisation of the sum-of-square error between model predictions and observations. The 

estimates can be used to form statistics and subsequently make inferences. 

 

From what we have described, we can now write 

  (2.8) 

where  denotes the visual onsets and offsets and its 

corresponding coefficient . The second term is just a vector of ones modelling the 
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mean of the response . This description is, however, not satisfactory in two 

regards: first,  is the model prediction and differs from the observation by error 

. One therefore needs a way to ensure the model prediction is as close as 

possible to the observation, such that the error is minimised. Secondly,  does not 

adequately reflect the haemodynamic responses that are observed in BOLD imaging. 

A common practice for the latter issue is to convolve the stimulus function with the 

canonical haemodynamic response function to create an explanatory variable that 

resembles the true response. 

 

 

Figure 2.5 The canonical haemodynamic response function. Zero indicates stimulus onset 

time. A canonical haemodynamic response function is characterised by an initial dip, a peak, 

followed by an under-shoot. 

 

2.4.3.1.2. Matrix	  form	  
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Equation (2.8) shows how a time series can be described in terms of a linear 

combination of explanatory variables  and , with coefficients  and , this 

may only represent the time series of a single voxel, and with a single experimental 

variable. We can easily extend this to include multiple experimental variables using 

matrix notation, given by 

 

 (2.9) 

or 

  (2.10) 

where  is a column vector of observations, with each element corresponding to 

data acquired at time ,  the column vector of coefficients (parameters),  the 

column vector of error terms.  is the design matrix, in which each column 

corresponds to one observation in time and each column corresponds to one 

experimental manipulation. Note that the design matrix is a near-complete 

description of the model, which leaves the remaining, unexplained quantities to the 

noise terms, the distribution of which is assumed by the model. 

Ordinary least squares are used to find the parameters, which generate model 

predictions that are best fit to our observations. This in effect minimises the residual 

sum-of-square. Let  be the optimal parameter estimate, the ordinary least square 

estimate is given by 
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(2.10) 

 

2.4.3.1.3. Geometrical	  representation	  

An intuition is given from a geometrical perspective which, in essence, 

demonstrates that the least square estimate is in fact an orthogonal projection of the 

observation  onto the design space  (Figure 2.6). From the definition earlier, we 

can see our observation  as a vector in a J-dimensional (Euclidean) space, denoted 

by . The columns of the design matrix are J-basis that spans a subspace in . 

The perpendicular from  to the subspace meets the subspace at , and the 

distance between them corresponds to the error.  
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Figure 2.6 Geometrical intuition on linear regression. The ordinary least square estimates 

(blue shaded arrow) are equivalent to the orthogonal projection of the observation onto the 

subspace spanned by the columns of the design matrix. The error terms are described by the 

distance between the observations and the subspace (red dash). 

 

The geometrical notion is also useful for illustrating correlated column vectors 

(or regressors) in the design matrix. Correlated regressors may be, for example, 

imposed by the experimental design, in which some conditions inevitably exhibit 

some co-linearity, such as tasks involving reward prediction. Co-linearity may lead 

to misinterpretation of the resulting statistical parametric maps and should be 

avoided. Figure 2.7 illustrates an orthogonalisation process in geometrical terms. 

Specifically, with correlated regressors, variance explained is shared between 

regressors. Only when one regressor is orthogonalised with respect to the other 

regressor, interpretation of an experimental effect can be independently attributed to 

one regressor. 
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Figure 2.7 Correlated and orthogonal regressors. The schematic illustrates the 

orthogonalisation of vector  with respect to . After orthogonalisation, the orthogonal vector 

 will have the same effect on  but the effect of  will apparently increase. 

 

 

2.4.3.1.4. Remaining	  issues	  

There are several other issues commonly encountered in the application of GLM 

for fMRI data. One of them is of the shape of BOLD response, which we have 

briefly covered above. One has to translate the experimental effect in terms of input 

stimulus functions into that of BOLD-relevant response. The solution is to use a 

convolution model with an impulse response function that generates expected BOLD 

responses. This impulse response function is the canonical haemodynamic response 

function. The underlying assumption is that the BOLD signal is the output of a linear 

time-invariant system, in which (1) responses have the same form irrespective of 

time and (2) successive responses superimpose linearly (Boynton, Engel, Glover, & 
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Heeger, 1996). Briefly, the response of a linear time-invariant system is the 

convolution of the input (experimentally designed perturbations, stick or boxcar 

stimulus functions) with the (BOLD) system’s response to an impulse (HRF). 

The second issue is systematic fluctuations or artefacts. Failing to account for 

such confounds would result in exaggerated noise estimates and have a serious 

impact on the efficiency of statistical inference. These fluctuations are usually 

environmental and of low frequency, such as the ‘scanner drift’ that is caused by 

variations of the main magnetic field over time. Adjusting the observed signal with a 

high pass filter is a common solution. There are a variety of high-pass filtering 

techniques; the one applied in SPM makes use of a discrete cosine transform set 

(DCT; Figure 2.8). The DCT set is described by a number of cosine bases of 0.5, 1, 

1.5 cycles and so on during the time course of a scanner session. These bases can 

also take a matrix form and be incorporated in the design matrix. Filtering the 

observed signals corresponds to applying the residual forming matrix of the DCT set 

to our data. A residual forming matrix is defined by 

  (2.11) 

where  is an identity matrix and  the DCT set. This necessitates the following 

form of the original GLM problem 

  (2.12) 
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Figure 2.8 A set of bases representing a discrete cosine transform (DCT). Columns from left 

to right represent cosine functions of 0.5, 1, 1.5 cycles and so on within the time course of a 

scanning session. Filtering the observed data using the DCT set is similar to the inversion of a 

GLM, except the design matrix is the null space of the DCT set. 

 

Finally, we turn to the issue of ‘non-sphericity’. The term ‘sphericity’ refers to 

the assumption that noise is independent and identically distributed (i.i.d.) across 

observations. Noise that is i.i.d. will have a covariance matrix  such that its 

entries are equal to zero except for the main diagonal (Figure 2.9).  
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Figure 2.9 Covariance matrices under sphericity and non-sphericity. Noise covariance 

corresponding to six hypothetical observations. (left) Noise is independent with each other, as 

depicted by the white pixels along the main diagonal. Positives are brighter. (right) The noise is 

somewhat co-dependent on the ones adjacent to it, as depicted by the grey pixels off-diagonal.  

 

If the noise terms are co-dependent, the covariance will have non-zero off-

diagonal terms. In other words, the noise of some observations is correlated. In order 

not to violate the sphericity assumption of GLM, one has to ‘de-correlate’ the noise. 

A de-correlation technique is called whitening. The whitening matrix is given by the 

inverse square root of the error covariance matrix 

  (2.13) 

which is relatively easy to evaluate (see below). 

However, we do no know the covariance matrix of our noise, therefore it has to 

be estimated. One way to estimate the covariance matrix is by assuming a first-order 

autoregressive process for the noise. Alternatively, an enhanced noise model may be 

employed; this involves multiple covariance components  which in effect replace 

 by , given by the enhanced noise model . Suppose we know 

 and let  be the whitening matrix, we have the following relationship 

 

 (2.14) 
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 is a linear combination of several covariance components  

 

where  is a model hyper-parameter. A common way to derived the proportions of 

hidden mixtures is through the Expectation-Maximisation (EM) or restricted 

maximum likelihood (ReML) (Friston et al., 2004). 

2.4.3.1.5. Statistical	  inference	  

We have considered the issue of variance components in our observation, as well 

as other issues relating to high-pass filtering and modelling with canonical 

haemodynamic response functions. Next, we briefly describe how classical 

inferences with t and F statistics are carried out in a GLM. 

In fMRI studies, a key question relates to whether or not a voxel is ‘activated’ by 

the experimental manipulation. We can rephrase this question by asking whether the 

mean of its coefficient is different from zero. In statistical terms, the question is 

expressed in terms of hypotheses. Typically, the approach is to first propose a 

hypothesis of a null measurement – the null hypothesis . Refuting the null 

hypothesis implies the outcome of interest – referred to as the alternative hypothesis 

. To formally test the hypothesis, the distribution of test statistics under the null 

hypothesis is constructed. The distribution may appear differently depending on the 

type of statistic. For example, a Student’s t distribution has a bell shape. Figure 2.10 

gives an illustration of the null distribution of t statistics. The distribution 

summarises evidence about the null hypothesis; namely, it reports the probability of 

a specific statistic being observed under the null distribution. The principle of 

hypothesis testing therefore conforms to the control of an acceptable false positive 

rate . The false positive rate can be visualised as the fraction of the total area under 



 

 82 

the distribution from one of its tails, as shown in Figure 2.10. This can be expressed 

as  

  (2.15) 

where  corresponds to the t-statistic threshold. That is to say, if we specify a false 

positive rate, say,  or  for controlling false positive rates at 5% and 

1%, respectively, we can determine the lower bound of t statistics that yields the 

rates stated, given an appropriate null distribution. We can then calculate the t 

statistic corresponding to our observations and if the statistic falls into the right side 

of the threshold, significance is declared, namely, the null hypothesis can be rejected 

and the alternative hypothesis be accepted. 

 

 

Figure 2.10 Schematic of a null distribution of t statistics. (left) the null distribution of t statistics 

has a bell shape; the exact shape of the distribution depends on the degrees of freedom. (right) The 

green shaded area on the right tail represents an acceptable false positive rate under the specified null 

distribution. For example, the green area accounts for 5% of the total area under the bell curve. This 

entails a minimum t threshold  and if our test statistic falls onto its right side, the alternative 

hypothesis is accepted. Figure is not drawn to proportion. 

 

In SPM, the first step to test an effect of interest is specifying a ‘contrast’ . The 

contrast takes the form of a column vector where the number of elements 

corresponds to that of the columns of the design matrix. For example, to test whether 
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a voxel is activated due to the effect encoded in the first column of the design matrix, 

the contrast vector will have the first element equal to 1, whilst the remaining 

elements equal to 0. This tests whether voxel-wise amplitudes are greater then zero 

  (2.16) 

and the null hypothesis is given by 

 

The t statistic is given by 

 

 (2.17) 

Following the previous section, where we derived the whitening matrix using the 

enhanced noise model for variance components, we can re-write Equation 2.17 into 

 
 (2.18) 

in which  

 
 (2.19) 

and 

  (2.20) 

is the residual forming matrix. The notation  corresponds to 

. 

From Equation 2.17 it is obvious that the t statistic does not depend on the 

scaling of the contrast vector or that of the design matrix. However, the contrast  

itself does depend on the scaling of the contrast vector. Crucially, contrasts are often 

used as dependent variables to construct a second-level inference, for example, as a 
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group inference. Therefore, one needs to be mindful of scaling biases whilst 

specifying the contrast vector. 

Next, we turn to another frequently used statistic in SPM, the F statistic. The 

main idea of the F test can be summarised as model comparison. The ‘models’ being 

compared here refer to a reduced design matrix and the original (full) design matrix. 

The test statistic pertains to the ratio of explained variability versus unexplained 

variability. In other words, the F test can be viewed as testing for the additional 

variance explained by a model with all parameters with respect to a (nested) one with 

less parameters. Informally, the F statistic is given by 

 
 (2.21) 

where ‘RSS’ is the abbreviation of residual sum-of-square (error). 

In SPM, the F statistic is calculated following the form of the previous equation 

  
(2.22) 

in which  

   
(2.23) 

and the effective degrees of freedom are 

 

 (2.24) 

In practice, a multi-column contrast, i.e., a contrast matrix, can be constructed to 

test multiple linear hypotheses within the same framework. This is extremely useful 

when testing for an ‘effect of interest’ that corresponds to variability modelled by 
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several regressors. We will use this approach to test the haemodynamic state 

variables for DCM in Chapter 5. 

2.4.3.2. Eigendecomposition 

In the ensuing chapters, we fit our data to dynamic causal models, which enable 

inferences in terms of effective connectivity. This involves extracting regional 

BOLD responses. For each region, SPM uses eigendecomposition to extract the 

temporal mode of all voxels within a specified region. This method may be superior 

to, for example, taking the arithmetic mean of the time series across voxels. Consider 

two extreme but hypothetical cases: one in which voxels within region varies almost 

identically, resulting a near-perfect correlation, and the other with equal numbers of 

voxels fluctuating in opposite direction. In the first case, the eigendecomposition 

method will closely resemble that using arithmetic mean. The other, however, will 

have a time series of zeros for mean, whilst the eigendecomposition will capture 

fluctuations over time.  

In SPM, the eigendecomposition uses the singular value decomposition (SVD), 

given by the following form 

  (2.25) 

in which  is a matrix of our BOLD time series with the size of time points-by-

voxels, .  and  are unitary orthogonal matrices of size  and 

, which means they have uncorrelated columns and their respective sum of 

squares is equal to 1. Each column of  and  can be interpreted respectively as 

features in space and in time.  is a  matrix. Entries along the main diagonal 

of  are singular values, which reflect the amount of the variance expressed by the 

corresponding eigenvectors. The singular values are usually arranged in descending 
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order; therefore the first column of  contributes the greatest variability. This is the 

information extracted by SPM and is referred to as the first (or principal) 

eigenvariate. The data  here represents data that has been filtered, whitened and 

‘adjusted’ for null effects (using a F-contrast). 

2.4.3.3. Support Vector Machines 

In the following section, we briefly introduce the concept of machine learning. I 

also provide a general summary on machine learning applications in recent 

neuroimaging studies. This is outlined by asking what machine learning can do for 

neuroimaging. Specifically, a class of machine learning algorithm known as support 

vector machines was adopted in the work reported in this thesis. I briefly review its 

theoretical background, as well as other methodological considerations, i.e., the 

cross-validation and permutation testing. 

2.4.3.3.1. Multivariate	  pattern	  analysis	  

The idea of localisation and modularity of neural activity in association with 

specific experimental factors is central to many neuroimaging studies, including 

those reported in Chapter 3. In pursuit of this idea, the use of GLM – or the mass-

univariate analysis – is perfectly suitable. Despite fruitful GLM-led studies, the fact 

that our brain processes information within a constantly interacting, distributed 

network has motivated the application of Independent Component Analysis (ICA) 

and principle component analysis (PCA), particularly in resting state studies (e.g., 

Murty et al., 2014). This is perhaps because there is no need to pose any presumption 

about the temporal profile of the resting BOLD response. A limitation of ICA is that 

it may or may not be able to isolate components that speaks to a task-relevant effect 
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of interest (see Svensén, Kruggel, & Benali, 2002 and for the use of ICA and 

regression).  

Another limitation with multivariate methods like ICA is of the generalisability 

of a component to another. This speaks to the predictability of one mental state given 

a relevant mental state. If one can derive such predictions formally, a strong form of 

reverse inference may ensue (e.g., Lewis-Peacock, Drysdale, Oberauer, & Postle, 

2012). This is made possible by means of statistical learning theory and machine 

learning techniques. These techniques are at times referred to as pattern classification 

or data mining. This is known in neuroimaging as MVPA (Multivariate Pattern 

Analysis; Haxby, 2012). In essence, MVPA no longer treats fMRI data in a voxel-

wise manner. Rather, it takes all voxels in to account. Namely, for a cognitive state, 

all voxels may contribute to a certain extent. The contribution is quantified by the 

classifier weight, which corresponds to how informative a voxel is for the 

classification problem. In addition, the amplitude of a voxel response is secondary. 

Rather, the overall pattern of voxel response is now characteristic of a neural code or 

a mental state.  

Patterns may be obtained in a number of ways. One is to extract the raw fMRI 

data – if the underlying cognitive state in question in not contaminated by other 

confounding effects, and if the haemodynamic delay with respect to the timing of 

experimental effect is adequately accounted for (Schrouff et al., 2013). Alternatively, 

a GLM may be employed and the corresponding parameter estimate can be used as 

patterns for classification (Nee & Brown, 2012; Schrouff et al., 2013). The pattern-

acquiring process is referred to as feature selection in a regular MVPA pipeline. In 

binary classification problems, two sets of features are gathered from two known 

categories (e.g., visual response to faces and houses). These features form a training 
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set, which is used by the machine learning algorithm of choice to discover the 

intrinsic regularity that sets the two feature types apart, a decision function is derived 

as a consequence, with the weight matrix as its parameters. During this process, a 

subset of data features is left out of the training. The left-out features are instead 

provided to the classifier after the training. Because we know to which category 

these features belong, it is therefore easy to tell how the classifier performs. The left-

out process is rotated for all feature instances until they are exhausted. This is 

referred to as cross-validation and is used to assess the classifier performance in 

terms of true/false positives and negatives. Overall, the above falls into a class of 

machine learning schemes called supervised learning, as the classifier is informed 

about the correct answers. 

Note that, however, the opportunity of characterising functional localisation and 

modularity is lost with the use of MVPA. Although region-of-interest masks may 

help region-specific inference, this is somewhat contrary to the purpose of MVPA – 

that assumes distributed neural representation. 

Figure 2.11 provides a schematic demonstrating the principal pipeline for 

working with MVPA. This is given with an example of a hypothetical visual 

activation task. The task is configured in alternating blocks A and B in which 

subjects view images from two categories, faces and houses. The brain responses 

during the corresponding blocks are isolated and separated into training sets and test 

set. This is followed by estimating the classifier weights from the training set and 

cross-validating the outcome using the test set. Finally, the performance of the 

classifier is assessed by calculating the proportion of correct classifications, given by 

a percent accuracy. 
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Figure 2.11 A concept of operation for multivariate pattern analysis (MVPA).  This 

schematic demonstrates the concept behind the MVPA. a, Subjects view images from two 

categories, faces and houses. b, The task is arranged into alternating blocks during which images 

from each respective category are displayed. c, BOLD responses are extracted as features. Note 

that the image does not reflect the outcome that a real task would have. d, (left) The training 

entails finding a ‘decision boundary’ that separates the two sets of BOLD responses. Features are 

represented as vectors (points) in the feature space. (right) a ‘left-out’ test set is used to assess 

whether the classifier is able to make a correct decision based on the parameters learned from the 

training set. e, The classifier performance is determined by the proportion of correct 

classification after all features are rotated to the test set. The performance is given by the 

true/false positives and negatives.  

 

In the following, we briefly introduce the theoretical background of the 

classification algorithm, the Support Vector Machine. 

2.4.3.3.2. Theory	  
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We start by giving an example of an ideally linear separable problem. Figure 

2.12a illustrates, in a 2-dimensional space, two groups of vectors (points), colour-

coded in blue and orange, being separated by the dashed line. To describe the 

separation, let  

  (2.26) 

be the classification function. This is also known as a decision boundary or 

hyperplane if the vectors reside in a higher dimensional space, such as the case of 

fMRI data. Obviously, if , then  is any point along the dash line;  would 

then be the normal to the line and  the offset from the origin. This means that one 

can assign an arbitrary blue or orange point to Equation 2.26 and derive that 

 or . We can then assign points of respective function values to 

class labels -1 and 1, respectively. That is, 

 

 
 (2.27) 

where  denotes the class labels and the subscript i is an index to each point (Figure 

2.12b). 
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Figure 2.12 Two sets of linear separable vectors in a 2-dimentional space. 

 

The ensuing problem pertains to the determination of unknown variables  and 

. With the aim of better discriminating points from different classes, finding  and 

 will correspond to maximising the margin around the separating hyperplane. The 

margin is defined by the distance between  and  (Figure 2.12b), 

which induces the quantity . We then introduce the Lagrangian and solve the 

dual variable  to determine the maximised margin and the classification function 

(Bishop, 2006; Chu, 2009). In short, this is essentially the optimisation with respect 

to  and  by optimising the dual variable in the context of convex quadratic 

programming problem. 

Functional	  margin	   	  

Suppose we have determined the decision boundary  in the previous 

example. We can quantify the effectiveness of classification by measuring the 

distance of a data point to the decision boundary. This is given by , and 

can be replaced with  because when the classification is accurate 

 and  will be of the same sign, we can then verify whether the 
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classification gives a desirable outcome by examining its positivity. This is the idea 

of the functional margin. 

More formally, we define the functional margin 

  (2.28) 

and let 

  (2.29) 

be the minimal functional margin found in the set of available data vectors. So far, 

we have an interim conclusion that the functional margin is not a regularised 

measure of distance between the decision boundary and the data points because the 

size of  is obviously scaled by both  and . Next, we introduce additional 

constraints that lead to the definition of a geometric margin.  

Geometric	  margin	   	  

First, we specify a point , and its corresponding point  on the decision 

boundary  along the orthogonal projection, with  being the function margin. 

Given that  is a normal vector to the boundary, we can write down  in terms of  

(Figure 2.13) 

 
   (2.30) 

It follows that 

 
  (2.31)  

Finally, the geometric margin is given by 

 
   (2.32) 
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Figure 2.13 A representation of geometric margin. 

 

Support	  vectors	  

So far, we have seen that the functional margin differs from the geometric 

margin by a scaling factor . Note that when classifying a group of data vectors, 

one holds greater confidence in the classifier performance when the margin is 

maximised. This is most effectively achieved when we deal with a non-trial vector, 

which lies in close proximity to the decision boundary, and is where the decision is 

difficult to derive. 

We now have the objective 

     (2.33) 

subject to 

  (2.34) 
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This is equivalent to the primal problem 

 
 (2.35) 

Support vectors are defined by points satisfying . 

Dual	  problem	  

We can rewrite Equation 2.35 into the following equivalent form 

 
 (2.36) 

We now have a quadratic objective function and a set of linear constraints – this 

conforms to a convex quadratic programming problem. Moreover, it turns out every 

primal problem in convex programming (Equation 2.35) has an equivalent dual 

problem (cf. to Kuhn-Tucker theorems).  

Duality has two advantages: (1) the dual form tends to be easier to solve; (2) it 

induces a kernel function, which is crucial for non-linear classification problems. We 

will cover the kernel treatment shortly.  

Simply put, we can now transform the original problem of the maximum margin 

into that of dual variable optimisation. In dual form, we can invoke the Lagrange 

function and the Lagrange multiplier, i.e., the dual variable , and write 

 
 (2.37) 

Let 

 
  (2.38) 
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This is fairly straightforward, since the first term in Equation 2.37 should not be 

negative and we wish the second term, which is also non-negative, to vanish, such 

that the constraint is satisfied. In this case,  is what we set out to 

minimise.  

Note that when point  is distant from the decision boundary,  since this 

corresponds to a trivial classification. 

The objective function now becomes 

 
 (2.39) 

which induces the following lower bound 

 
 (2.40) 

 

The intuition here is that the maximum of minima is equal to or smaller than the 

minimum of maxima. 

In the context of convex optimisation, the equality in Equation 2.40 implies that a 

saddle point exists (Slater’s condition; Slater, 2013). Next, we solve the dual 

problem in two steps. First, minimise  with respect to  and  to get 

 
 (2.41) 

 
 (2.42) 

Accordingly, Equation 2.37 now reads 

 
 (2.43) 
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Finally, maximise Equation 2.43 to obtain (Platt, 1998) 

     (2.44) 

Soft	  margin	  

So far we have only considered the case of perfect linear separation. It is 

possible to introduce a ‘soft margin’ to approximate linear separation. This gives an 

almost identical quadratic programming problem. Specifically, the constraint  

is changed to , where  determines the degree of ‘softness’, which incurs 

a penalty on unseparated points. It follows that any point corresponding to 

 is now considered a support vector. Changing the value of  changes 

the behaviour of the classifier: with , the classifier trades accuracy for more 

robust prediction on new data. Whereas, with , the opposite is the case. 

Kernel	  methods	  

In previous section, we mentioned classification of linear separable data. An 

issue remains for those are not linearly separable. The adoption of the kernel method 

circumvents this limitation. In a classification task, the kernel method refers to the 

use of ‘kernels’ as inputs, instead of data features. Intuitively, a kernel is a ‘similarity 

matrix’ in which the pair-wise similarity of all data points is encoded. Creating the 

similarity matrix is equivalent to mapping data points in the original space into a 

higher dimensional space, in which linear separation is possible. Figure 2.14 gives a 

schematic illustrating the concept of the kernel method. 
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Figure 2.14 Concept of the kernel method. The kernel method can be conceptualised as a 

mapping of data points into a higher dimensional space. (left) In the original space, separating 

data points of the two colours requires the classification function to be non-linear which can be 

difficult to derive. (right) After mapping data into higher dimension, linear separation can be 

achieved by finding a hyperplane that falls into the framework described in earlier sections.  

 

2.4.3.4. Dynamic Causal Modelling 

Effective connectivity quantifies the influence exerted by one node on another in 

a (neuronal) network. It offers a perspective on how distributed cortical regions 

interact as an integrative ensemble. Dynamic Causal Modelling (DCM), which 

analyses effective connectivity, is a framework for the identification of neural 

networks in the brain that treats the networks as nonlinear input-state-output systems. 

In setting up a DCM one can estimate: (1) parameters that mediate the driving 

influence of exogenous or experimental inputs on brain states, (2) parameters that 

mediate endogenous coupling among neuronal states, and (3) parameters that allow 

the inputs to modulate that coupling. Issues concerning selection among alternative 

models naturally arise in DCM analyses. Bayesian model selection (BMS) is a 

statistical procedure for computing how probable one model is in relation to another. 

This section presents the motivation and procedures for DCM of evoked brain 
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responses – as well as the theoretical and operational details on which BMS rests. 

We describe procedures for parameter, model and family-level inference in the 

context of data analysis from a group of subjects. 

2.4.3.4.1. Background	  

This section is about Dynamic Causal Modelling (DCM) of the interactions 

between functionally elicited brain responses, and its applications in neuroimaging. 

DCM was invented to test hypotheses about neural systems – as opposed to 

regionally specific correlates – and necessitates a predefined set of plausible 

structural models, commonly referred to as model space. In other words, each DCM 

embodies a specific hypothesis pertaining to how a neural system interacts and 

produces observed responses. To allow a hypothetical structure or network model to 

predict observed responses it is crucial to understand and model how changes in 

neuronal states are manifest as observed haemodynamic responses.  

In what follows we first focus on the conceptual and operational constructs of 

DCM as a biophysically realistic forward model – as exemplified by an up-to-date 

implementation of DCM. Then, we turn to Bayesian model selection of DCMs, 

where models can be considered as fixed effects (e.g., as low-level 

neurophysiological mechanisms that are conserved over subjects) or random effects 

(e.g., as high-level cognitive processes that are implemented with different strategies 

or networks) in the population. Finally, we consider inference about the parameters 

of a model; for example, how a connection from one region to another is changed by 

experimental context. We describe how such inferences can be made for the case of 

single models, and for models derived from averaging over different models or 

subjects in a group. 
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2.4.3.4.2. Forward	  model	  for	  fMRI	  

This section presents the essential operational aspects of Dynamic Causal 

Modelling (DCM). The theoretical basis of DCM rests on dynamical systems theory 

and Bayesian statistics. The primary objective of DCM appeals to nonlinear system 

identification in which a set of differential equations is formulated to capture the 

(hidden) mechanistic structure of a neuronal system of interest. These equations 

specify how constituent nodes (or neuronal ‘states’) of a system exhibit time-varying 

and causal relations with one another. Specifically, this system is acted upon by 

exogenous inputs (e.g., visual stimuli) that engender regional neuronal activity that, 

in turn, generates outputs (e.g., BOLD signals). This necessarily requires DCM to be 

hierarchical – where a two-layered forward model translates neuronal states into 

haemodynamic states, and measured BOLD responses. The haemodynamic states are 

modelled in a regionally independent fashion. Neuronal dynamics emerge from 

designed experimental perturbations and directed interactions among regions. 

Specification of effective connectivity within the network of coupled nodes or 

regions depends on three sets of (neuronal) parameters: (a) parameters that mediate 

endogenous coupling among the states, (b) parameters that allow exogenous inputs 

to modulate the coupling, and (c) parameters that mediate the influences of 

exogenous inputs on the states. These parameters are embedded in a dynamic causal 

model that is motivated by a particular hypothesis about network structure, and can 

be estimated by fitting the ensuing forward model to observed data, using standard 

Bayesian procedures. This model inversion procedure provides posterior estimates of 

the parameters and an estimate of the model evidence, in terms of probability 

distributions. Critically, prior densities over parameters constrain parameter 

estimates to dynamical or physiologically realistic ranges. By default, ‘shrinkage’ 



 

 100 

priors are chosen for endogenous and modulatory parameters, while priors on 

haemodynamic parameters are derived from previous empirical studies.  

In what follows, we first review the neuronal state equations, haemodynamic 

state equations and the priors over model parameters. We then briefly consider the 

standard Bayesian scheme used for model inversion. We will briefly review 

nonlinear DCMs, where one region can modulate the connectivity between another 

pair. Some of the more recent DCM developments are considered in the closing 

section. 

 

Notation	  

Variables in bold face refer to matrices and vectors. States are functions of time, 

although the dependency on time t is not made explicit. The vector  

denotes any number of neuronal states of interest. A neuronal state, say , can be 

taken as the collective dynamics of neuronal activity in the first region. The 

remaining state variables are biophysical states  that model 

haemodynamics. These haemodynamic states refer to (1) vasodilatory signal, (2) 

blood inflow, (3) blood volume, and (4) deoxyhaemoglobin content, respectively. 

The vector  denotes all the hidden (neuronal and haemodynamic) 

states collectively. The vector  denotes any number of exogenous 

inputs that are specified experimentally. Elements of  can be, for example, spike or 

boxcar functions of time that represent the onset/offset of task stimuli or contextual 

manipulations. Alternatively, exogenous inputs can also be motivated by a 

neurocomputational or model-based approach (O'Doherty, Hampton, & Kim, 2007). 

 denotes the collection of model parameters, including coupling parameters and 
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haemodynamic parameters. Different model structures are indexed by m, i.e., 

differences may exist in endogenous, modulatory, or exogenous connections. 

 

Neurodynamics	  

Assuming any number of neuronal states z and any number of exogenous inputs, 

one can posit a model of the general form 

 
    (2.45) 

 

where F is some nonlinear function describing the neurophysiological influences 

exerted by inputs  and the activity in all brain regions on the evolution of the 

neuronal states. A bilinear approximation provides a natural and useful re-

parameterisation in terms of coupling parameters. 

 

 (2.46) 

 

The (effective) connectivity matrix  represents the first-order coupling among 

the regions in the absence of inputs. This can be thought of as the endogenous 

coupling in the absence of experimental perturbations. Note that the state, which is 

perturbed, depends on the experimental design (e.g. baseline or control state) and 

therefore the endogenous coupling is specific to each experiment. The matrices  
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are the change in endogenous coupling induced by the jth input (Figure 2.15a). 

Finally, the matrix  encodes the exogenous (driving) influences of inputs on 

neuronal activity. The parameters  are the coupling parameter matrices we wish to 

estimate and define the functional architecture and interactions among brain regions 

at a neuronal level. Note that the units of coupling are per unit time (Hz) and 

therefore correspond to rates. Because we are in a dynamical setting, a strong 

connection means an influence that is expressed quickly or with a small time 

constant.  It is useful to appreciate this when interpreting estimates and thresholds 

quantitatively. 

 

 

Figure 2.15 Modulatory effects in dynamic causal models. This diagram illustrates two types 

of ‘modulatory’ effects – the bilinear (a) and the nonlinear (b) modulations. The target of 

modulation is the -to-  coupling. The difference between the neuronal state equations for  

is made explicit in the respective panel (see the last term). Specifically, the bilinear model allows 

and exogenous experimental manipulation ( ) to induce connectivity change. The nonlinear 

model, on the other hand, uses the neuronal states ( , instead of ) as the source of 

modulation. 
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Neuronal activity in each region cause changes in volume and 

deoxyhaemoglobin which engender the observed BOLD response  as described 

below. The ensuing haemodynamic component of the model is specific to BOLD-

fMRI and would be replaced by appropriate forward models for other imaging 

modalities, such as EEG or MEG. 

The neuronal dynamics in Equation (2.46) operate around a stable fixed point 

 (strictly speaking, this will only be the case for certain ranges of parameter 

values – see (Friston, Harrison, & Penny, 2003). This means that, in the absence of 

exogenous perturbations, the neuronal activity and consequently the fMRI activity 

will be zero. Briefly, a neuronal state in DCM predicts nothing but a flat line if it is 

not experimentally perturbed, directly or indirectly [but see (B. Li et al., 2011a)]. 

This is because DCM for fMRI is based on a dynamic system with a fixed point 

attractor. 

Nonlinear	  DCM	  

Nonlinear DCM (Stephan et al., 2008) introduces a parametric matrix  that 

allows neuronal activity in one region to change the connectivity between other 

regions (Figure 2.15b). This is in contrast to bilinear dynamics (Equation 2.46) in 

which, perhaps unrealistically, effective connectivity can be changed via 

‘modulatory inputs’. The nonlinear DCM is given by the following equation. 

 

 (2.47) 
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The motivation for this extension is to address ‘neuronal gain control’ between 

two neuronal states that are gated by other states (Stephan et al., 2008). The approach 

also models the neuronal origin of modulatory influences such as ‘short-term 

synaptic plasticity’ (Stephan et al., 2008). Applications based on nonlinear DCM can 

be found in recent works by den Ouden et al. (2010), Dessilles et al. (2011), and 

Neufang et al. (2011) 

	  Haemodynamics	  

Neuronal activity is linked to fMRI signals via an extended Balloon Model 

(Buxton, Uludağ, Dubowitz, & Liu, 2004; Buxton, Wong, & Frank, 1998) and 

BOLD signal model (Stephan, Weiskopf, Drysdale, Robinson, & Friston, 2007b). 

The haemodynamic model specifies how changes in neuronal activity give rise to 

changes in blood oxygenation that is measured with fMRI. For each region , 

neuronal activities are translated into BOLD signals via the interactions between the 

neuronal state  and haemodynamic state variables: the vasodilatory signal, the flow 

induced, changes in volume, and changes in deoxyhaemoglobin. The observed 

BOLD signals are produced by a nonlinear model that integrates over the states, 

, where the evolution of  and  over time depends on self-regulatory 

feedback as well as  and  (cf. to Figure 3 in (Friston et al., 2003)). The equations 

for the haemodynamics are described in detail elsewhere (Buxton et al., 1998; 

Friston et al., 2000; Grubb, Raichle, Eichling, & Ter-Pogossian, 1974; Mandeville et 

al., 1999). 

Priors	  

Two classes of prior densities are used in DCM; they are placed over coupling 

and haemodynamic parameters . DCM uses ‘shrinkage priors’ 
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over coupling parameters. These are zero-mean Gaussian priors with a variance that 

is chosen to reflect realistic ranges of effective connectivity seen in fMRI studies. 

These shrinkage priors move the posterior estimates toward zero, especially when 

the likelihood has a less precise distribution. For example, the posterior expectation 

will ‘shrink’ to its prior expectation given a likelihood function with a very large 

variance. However, a likelihood that has high precision (inverse variance) forces the 

posterior to deviate from zero. Prior variances can also be chosen to reflect 

anatomical knowledge; e.g., probabilistic tractography (Stephan, Tittgemeyer, 

Knösche, Moran, & Friston, 2009b). Haemodynamic priors in DCM reflect empirical 

knowledge about blood flow and oxygenation dynamics in the brain (Buxton et al., 

1998; 2004). The prior densities of the five haemodynamic parameters 

 that mediate the interactions among these states are based on 

empirical measures [see Equation (3) and Table 1 in (Friston et al., 2003)]. These 

priors have since been updated in light of more recent data (Penny, 2012). 

Model	  fitting	  	  

DCMs are fitted to data using the Variational Laplace (VL) algorithm described 

in (Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007). Simply put, this is 

an iterative algorithm, which approximates the posterior distribution over parameters 

with a Gaussian distribution. The parameters of this distribution are updated so as to 

minimise the distance between the approximate and true posterior, quantified by the 

Kullback-Leibler divergence – a distance measure between probability densities 

(MacKay, 2003). The VL algorithm provides estimates of two quantities. The first is 

the posterior density over model parameters  that can be used to make 
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inferences about model parameters . The second is the probability of the data given 

the model, otherwise known as the model evidence . 

Model	  evidence	  

In general, model evidence is not straightforward to compute, since this 

computation involves integrating out the dependence on model parameters: 

 
 (2.47) 

Therefore an approximation to the model evidence is required. DCM uses the 

free energy approximation to the model evidence provided by the VL algorithm. The 

model evidence, and the VL approximation to it, naturally embodies the accuracy-

complexity trade-off that is the hallmark of a good model (Pitt & Myung, 2002). The 

VL algorithm uses a ‘free energy’ approximation to the model evidence which has 

been shown to be superior to other information theoretic criteria (Penny, 2012). By 

comparing the evidence of one model relative to another, a decision can be made as 

to which is the more veridical one (Friston et al., 2008; Penny, Kiebel, & Friston, 

2003). 

2.4.3.4.3. Model	  inference	  

The model inference problem arises naturally in nearly every scientific discipline 

(D. R. Anderson, 2008). Most importantly, it requires a well thought-out 

specification of the model space – that is, the set of hypotheses that are to be 

considered. In the simplest case, one will have a null model and an alternative model 

and inference can proceed using Bayes factors. Once the evidence has been 

computed, a model ( ) can be compared to another ( ) by means of the Bayes 

factor (Raftery, 1995) 
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 (2.48) 

A Bayes factor of 20 (or log Bayes Factor of 3) corresponds to a posterior model 

probability of 0.95, and is used as the standard decision threshold (Penny, Stephan, 

Mechelli, & Friston, 2004). 

More generally, one might be able to constrain the space of models to a small 

number. Model inference can then proceed using the posterior distribution over 

models, which can be obtained from Bayes rule  

 
 (2.49) 

The prior distribution over models, , is usually chosen to be a uniform 

distribution. In larger model spaces it becomes increasingly unlikely that high 

posterior probability mass will be attributed to any single model. This is because 

there are likely to be many similar models in large model spaces – and they will 

share probability mass. This is known as dilution and can be dealt with by combining 

models into families (Penny et al., 2010). Models in the same family share the same 

characteristics; e.g., nonlinearity, the same driving region or the same modulatory 

connection.  

Group	  Inference	  

Next we turn to the topic of model inference for data from a group of subjects. 

There are two approaches. Fixed effect analysis (FFX) (Stephan, Marshall, Penny, 

Friston, & Fink, 2007a) assumes that all subjects use the same model, whereas 

random effects (RFX) analysis assumes different subjects use different models 

(Stephan, Penny, Daunizeau, Moran, & Friston, 2009a). 
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Fixed effect analysis 

In FFX analysis, a Group Bayes Factor (GBF) is computed by multiplying the 

Bayes Factors from the group of subjects. As is considered in Stephan et al. (Stephan 

et al., 2009a), the GBF approach implicitly assumes that every subject uses the same 

model (Figure 2.16a). This assumption is warranted when studying a basic 

physiological mechanism that is unlikely to vary across subjects, such as the role of 

forward and backward connections in visual processing (C. C. Chen, Henson, 

Stephan, Kilner, & Friston, 2009). Li et al. (2011b), for example, studied the motor 

network by perturbing it with transcranial magnetic stimulation. With clearly defined 

timing in eliciting network responses, and the homogeneity of motor circuitry over 

subjects, GBF was entirely suitable. In other words, inferences relying on GBF will – 

by default – neglect group heterogeneity, whereas functional tasks engaging higher 

cognitive processes may show group heterogeneity due to individual differences in 

cognitive strategies. Moreover, GBF is susceptible to outliers – toward which the 

inference may be heavily biased. 
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Figure 2.16 Generative models for multi-subject data. The fixed effect model (a) assumes 

that subject-specific data are generated by particular model. The random-effect model (b) 

suggests that the data-generating models (e.g., - ) are treated as random variables. As a 

consequence, the random-effect model allows different causal structures across subjects ( , 

parameters of the Dirichlet distribution, or model ‘occurrence’ in the population level; r, 

parameters of the multinomial distribution, or the model). 

 

Random effect analysis 

An alternative procedure for group level model inference allows for the 

possibility that different subjects use different models (Figure 2.16b). This is more 

realistic when investigating pathophysiological mechanisms in a spectrum disorder 

or when dealing with cognitive tasks that can be performed with different strategies. 

In random effect analyses one makes inferences based on the posterior estimates of 

the model frequencies. For the kth model,  denotes the frequency with which it is 

used in the population. Inferences are therefore based on the posterior density 

. This can be computed by combining the table of model evidences with an 

uninformative prior, , using a Bayesian inversion scheme. Such an inversion 
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can be implemented using a variational approach (Stephan et al., 2009a) or Gibbs 

sampling (Penny et al., 2010). One should note that the variational approach is only 

valid for small numbers of models (small in relation to the number of subjects, e.g. 

10 or so models for 20 or so subjects) and that Gibbs sampling is now the standard 

approach. Both algorithms produce approximations to the posterior density on which 

subsequent RFX model comparisons are based. One can report the result of RFX 

model comparison using (1) the posterior expected probability of observing the kth 

model or (2) the exceedance probability which reflects the belief that one model is 

more likely than any other in the model space.  

Passamonti and colleagues provide an example of this approach: they 

investigated the neural mechanisms of emotion regulation, and assumed the 

underlying cognitive processes would vary across the group (Passamonti et al., 

2012). Thus, their adoption of random-effects BMS procedure was appropriate. 

Another example of model-level inference relates to different neural mechanisms 

giving rise to distinct synaesthetic experiences that can be explained in terms of 

alterations in the visual processing hierarchy (van Leeuwen, Ouden, & Hagoort, 

2011). Generally, RFX is more conservative and is robust to outlying subjects. 

Family inference 

Family inference (Penny et al., 2010) can proceed using either an FFX or RFX 

approach. Passamonti et al. (2012) employed a tripartite model space (‘meta-family’) 

where numbers of driving exogenous inputs varied across each subspace. The 

variation of the location of driving inputs further constituted respective families 

within each meta-family. The authors performed BMS across all the meta-families, 

regardless of any other difference among the models considered – to establish how 

many inputs were needed. Models within the winning meta-family were further 
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compared to determine the location of driving inputs (cf. Figure S1 in Passamonti et 

al., 2012). To summarise, model-level or family-level inference is appropriate when 

the hypothesis of interest can be answered in terms of overall model structure (i.e., 

the existence of multiple sets of parameters) rather than any specific model 

parameter. 

2.4.3.4.4. Parameter	  inference	  

Finally, we address inferences made on the basis of connectivity parameters in 

the context of a group analysis. Assessing the statistical significance of posterior 

estimates of individual model parameters is usually the last step in a DCM 

application (Almeida et al., 2009; 2011; Bányai, Diwadkar, & Erdi, 2011; Deserno, 

Sterzer, Wüstenberg, Heinz, & Schlagenhauf, 2012; X. Li et al., 2011b; Neufang et 

al., 2011; Passamonti et al., 2012; Schlösser et al., 2010; van Leeuwen et al., 2011). 

If random effects on parameters are assumed in the population, a classical 

approach can be applied (e.g., t-test or ANOVA). Conceptually, this conforms to the 

classical (frequentist) summary statistics approach – using subject specific MAP 

(maximum a posteriori) point estimates of the coupling parameters. This application 

is used widely (Bányai et al., 2011; Deserno et al., 2012; Diwadkar et al., 2012; 

Neufang et al., 2011; Schlösser et al., 2010) for identifying significant effects 

between different groups.  

The summary statistic RFX approach is readily applied to the MAP parameter 

estimates for selected parameters from each subject. However, if one has multiple 

models per subject, then one also needs to average over models (accounting for the 

possibility that different subjects use different models). This can be implemented 

using Bayesian Model Averaging (see below) within subject (over models). The 
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resulting parameter estimates can then enter as summary statistics into a classical 

RFX analysis (e.g., t-test or ANOVA). 

If fixed effects of parameters are assumed in the population then one can 

compute a ‘group’ model by averaging over the models from subjects in that group. 

This is a FFX approach and can be implemented using Bayesian Parameter 

Averaging, as described in the next section and in Kasess et al. (2010). 

Bayesian	  Parameter	  Averaging	  

Bayesian parameter averaging (BPA) has multiple uses. Generally, it is a 

procedure to combine parameter estimates from the same model of multiple datasets 

to produce parameter estimates from the entire dataset. The data could come from 

DCMs fitted to different sessions from the same subject. Or, most often, they could 

be the same model structure fitted to data from multiple subjects (Kasess et al., 

2010). For example, van Leeuwen et al. (2011) summarised model parameters using 

BPA and found that V4 activation in synaesthetes was dependent on top-down – 

rather than bottom up inputs – as a function of whether they were a ‘projector’ or an 

‘associator’. The common feature of all these applications is that variability over the 

model fitting is not taken into account. That is, the averaging procedure corresponds 

to a FFX analysis (because only one model is used). Mathematically, the posterior 

means from each model to be combined are weighted by their relative posterior 

precisions; this means estimates with higher precision are given greater weight.  

Low-level neurophysiological processing can be considered as fixed effects 

since they are unlikely to vary across populations, e.g., Desseilles et al. (2011) and 

van Leeuwen et al. (2011) both interrogated selective colour vision processing 

mechanisms. If this is the case, Bayesian parameter averaging (BPA) can be used to 
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summarise individual posterior densities of an identical optimal model across the 

entire group (Bányai et al., 2011; Desseilles et al., 2011; van Leeuwen et al., 2011). 

Bayesian	  Model	  Averaging	  

Another approach to summarise parameters as random effects is through 

Bayesian Model Averaging (BMA). In this sort of averaging there are multiple 

models of the same data (as opposed to a single model of multiple datasets). BMA is 

usually performed within a model family, where no model within the family clearly 

outperforms all others. It can also be applied to the whole model space. As such, 

parameter inference no longer depends on a particular model selection. For instance, 

Deserno et al. (2012) employed BMA in a DCM study of working memory in 

schizophrenia. They first performed a family-level inference and found that the 

family of models with modulation of backwards connections from prefrontal to 

parietal cortex was the clear winner. They then performed BMA for each subject, 

entered the averaged parameters as summary statistics into a two-sample t-test and 

found reduced connectivity in the schizophrenic group (cf. Figure 3, 4, and Table 2 

in Deserno et al., 2012). 

The relationships among the various model and parameter inference procedures 

perhaps seems complicated on a first reading, but are clearly laid out in, for example, 

Figure 1 of (Stephan et al., 2010). Once one appreciates the simplicity of pooling 

evidence for different models and parameters, Bayesian model and parameter 

averaging can be a powerful approach to testing specific mechanistic hypotheses. 

2.4.3.4.5. Conclusions	  

This section has described the basic principles of DCM – with a focus on how to 

implement parameter, model and family-level inferences in analyses of data from 
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groups of subjects. I have not elaborated on some of the more recent developments in 

DCM. These include the use of two-state DCMs, in which neuronal activity is 

represented by separate populations of excitatory and inhibitory cells, and stochastic 

DCMs in which neuronal activity is modelled via a combination of deterministic 

flow and stochastic innovations – thus better describing the interaction between 

exogenous and endogenous brain activity. Moreover, there is a library of DCMs for 

the study of effective connectivity based on EEG, MEG and LFP data (Litvak et al., 

2011) that may usefully complement the use of dynamic causal modelling in fMRI. 
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Chapter 3. The functional anatomy of anticipatory set 

and memory updating 

To behave adaptively, an organism must be able to balance the accurate 

maintenance of information currently stored in working memory with the ability to 

update that information when the context changes. This trade-off between fidelity 

and flexibility is likely to depend upon the anticipated stability of information 

retained in working memory – and thus the likelihood that updating will be 

necessary. To address the neurobiological basis of this anticipatory optimisation, we 

acquired functional magnetic resonance imaging (fMRI) data while subjects 

performed a modified delayed response task. The modification used cues that 

predicted memory updating – with high or low probability – followed by a 

contingent updating or maintenance event. This enabled us to compare behaviour 

and neuronal activity during conditions in which updating was anticipated with high 

and low probability, and measure responses to expected and unexpected memory 

updating. Based on the known importance of the dopaminergic system for cognitive 

flexibility and working memory updating, we hypothesised that differences in 

anticipatory set would be manifest in the dopaminergic midbrain and striatum. 

Consistent with our predictions, we identified sustained activation in the 

dopaminergic midbrain and the striatum, associated with anticipations of high versus 

low updating probability. We also found that this anticipatory factor affected neural 

responses to subsequent updating processes, which exhibited suppressed, rather than 

elevated, midbrain and striatal activity. Our study thus addresses – for the first time – 

an important and hitherto understudied aspect of working memory. 
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3.1. Introduction 

Working memory involves actively maintaining and manipulating mental 

representations in the absence of external stimuli (Baddeley, 1992; 2012). 

Maintenance and manipulation are often cast in terms of stability and flexibility – as 

two reciprocal aspects of working memory. Generally speaking, manipulation is 

studied in the context of memory updating (Veltman, Rombouts, & Dolan, 2003) in 

which the fronto-striatal circuitry is strongly implicated (Marklund, 2009). Updating 

requires the encoding of new information and adaptively replacing old information. 

Crucially, balancing maintenance and manipulation involves trading off flexibility 

against the robustness of representations, but little is known about how this is 

achieved. 

The striatum, given its role in action selection (Mink, 1996) and the 

topographically parallel infrastructure (Alexander et al., 1986), seems to enable non-

motor cognitive function such as flexible updating. In contrast, the dorsolateral 

prefrontal cortex, which is an integral part of prefronto-striatal functioning, has the 

neuronal architecture for maintenance of working memory representations 

(Goldman-Rakic, 1995). Neurotoxin administration has supported this implicit 

functional segregation (Crofts et al., 2001). Yet, simply having two functionally 

segregated systems cannot explain how maintained memories are updated without 

understanding how their functions are integrated. Dopamine, which exhibits tonic 

and phasic modes of discharge, is a promising candidate for nuancing the balance 

between stability and flexibility – given that it exerts antagonistic influences in the 

two systems by modulating neuronal excitability through dissociable distributions of 

(D1/D2) receptors (Camps et al., 1989). Tonic dopamine tends to stimulate (high-
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affinity) D2 receptors, whereas phasic dopamine generally increases (low-affinity) 

D1 stimulation level (Dreyer, Herrik, Berg, & Hounsgaard, 2010; Goto, Otani, & 

Grace, 2007). Prevalent theories have addressed the phasic mode of dopamine in 

contributing to updating (M. J. Frank et al., 2001; R. C. O'Reilly & Frank, 2006). 

However, there is little evidence on how tonic dopamine modulates the updating of 

working memory representations. 

Current approaches to memory updating generally focus on the comparison 

between non-updating (maintenance) and (selective/total) updating (Lenartowicz, 

Escobedo-Quiroz, & Cohen, 2010; Podell et al., 2012). Existing evidence tends to sit 

well with theoretical predictions (M. J. Frank et al., 2001; Hazy et al., 2007; R. C. 

O'Reilly & Frank, 2006), in which the fronto-striatal network controls access to 

working memory (McNab & Klingberg, 2008) – with phasic dopamine acting a 

gating signal (D'Ardenne et al., 2012; Murty et al., 2011). Although this provides a 

compelling mechanistic explanation of updating, it does not address a crucial aspect 

of adaptive behaviour and brain function: how the brain balances the maintenance of 

beliefs about the world with the assimilation of new information (Friston & Stephan, 

2007; Rao & Ballard, 1999), a balance that is likely to depend upon the anticipated 

changeability or volatility of environmental cues (Behrens, Woolrich, Walton, & 

Rushworth, 2007). Manipulating the anticipated likelihood of updating may thus 

provide a new insight into the functional anatomy of memory updating. Tonic 

dopamine has been associated with uncertainty on both empirical (Fiorillo, Tobler, & 

Schultz, 2003) and theoretical (Friston et al., 2012) grounds, suggesting a possible 

augmentation of the phasic updating model to include a role for tonic dopamine in 

encoding the precision of – or confidence in – the task-relevance of current 

representations.  
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To characterise the functional anatomy of updating in working memory, we used 

predictive cues to manipulate subjects’ anticipatory set or beliefs about the 

probability that working memory updating would be called upon. Our principal 

hypothesis was that anticipation about imminent updating would increase cognitive 

flexibility via modulations of tonic activity in the dopaminergic system and would 

thereby interact with the subsequent updating per se. 

 

3.2. Methods 

3.2.1. Pre-processing 

Imaging data were analysed using SPM 12 (Statistical Parametric Mapping; 

Wellcome Trust Centre for Neuroimaging, London, UK). Preprocessing of 

functional images included correction for geometric distortion using field maps 

(Hutton et al., 2002; Jezzard & Balaban, 1995), realignment via affine registration to 

correct for head movement, slice timing correction, coregistration with respect to 

anatomical images, normalisation to MNI space based on the anatomical 

normalisation parameters, interpolation to voxel size of 2 x 2 x 2 mm3, and 

smoothing with a Gaussian kernel of 4 mm FWHM (full-width at half-maximum). 

3.2.2. Mass-univariate analysis 

Pre-processed data were entered into the general linear model, which was 

subsequently inverted to obtain the parameter estimates of interests. The design 

matrix used in the first (within subject) level analysis included eight task-related 

regressors: maintenance set (MAI-set), updating set (UPD-set), updating (UPD), 

maintenance (MAI), omission (surprising maintenance), deviation (surprising 
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updating), non-specific task effects (NS), and set-switching. MAI-set and UPD-set 

were models with 6 s boxcar functions, extending from the onset of cue stimuli to the 

offset of the retention period. These regressors modelled the sustained cue-specific 

anticipatory set-related activity, during which subjects prepared for the forthcoming 

action array. The set-switching regressor modelled transient responses at the cue 

onset, which can be associated with the effect of trial transition. UPD and MAI 

entered the GLM for all trial types. Omission and deviation modelled the interaction 

between anticipatory set and action (i.e., UPD-set/MAI and MAI-set/UPD trials), 

where invalid outcomes violated anticipatory states. Surprises were modelled as 

transient responses at the onsets of action arrays under the MCU and UCM 

condition. Using non-specific UPD and MAI regressors, together with regressors 

encoding omission and deviation is equivalent to comparing valid/invalid trials. 

Finally, transient responses to encoding, probing, and all cues from error trials were 

modelled by a NS regressor as a nuisance effect. The eight regressors were 

convolved with a canonical haemodynamic response function to produce 

haemodynamic regressors for the GLM. Other effects of no interest, including head 

motion and low-level physiological variations, were modelled with an additional 20 

regressors. Head motion was described using three translation (x, y, and z directions) 

and three rotations (pitch, roll, and yaw) derived from the realignment procedure. 

The physiological nuisance effects comprised six cardiac regressors, six respiratory 

regressors, and two regressors for hear rate change and change in respiratory volume 

(Hutton et al., 2011). 
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3.2.3. Region of interest analysis 

Empirical and theoretical accounts of the ‘gating’ hypothesis implicate the 

dopaminergic midbrain and the striatum in memory updating (D'Ardenne et al., 

2012; M. J. Frank et al., 2001; Murty et al., 2011; R. C. O'Reilly & Frank, 2006). We 

hypothesised that activity in these regions would also be modulated by anticipatory 

set. We therefore defined regions of interest (ROIs) in the substantia nigra/ventral 

tegmental area (SN/VTA), the striatum, and the DLPFC and analysed responses 

within these regions across each level of anticipatory set and action. 

Anatomically informed functional ROIs were created for the midbrain and the 

striatum in two steps: (1) after the SN/VTA region was identified in the mean 

normalised magnetisation transfer image averaged across subjects (Fitzgerald, 

Friston, & Dolan, 2012; Helms, Draganski, Frackowiak, Ashburner, & Weiskopf, 

2009), we manually traced the SN/VTA to create a (preliminary) anatomical ROI; 

(2) the anatomical ROI was then masked with the thresholded activation map of set 

(main effect of UPD-set and MAI-set, uncorrected p = 0.005). A similar thresholding 

procedure was taken for the main effect of action using the preliminary ROI. A 

small-volume correction was performed on tests for responses within the ROI search 

volume. The main effect of set (or action) was specified with appropriate contrasts 

averaging over UPD-set and MAI-set (or for UPD and MAI in the case of action). 

The resulting contrast images were then entered into a second (between-subject) 

level analysis using a one-sample t test. Importantly, these localising (ROI defining) 

contrasts are orthogonal to the differential effects of set (UPD-set > MAI-set) and 

action (UPD > MAI) that were subsequently tested using one-sample t tests. 

The functional SN/VTA ROI for set consisted of 240 voxels [p = 0.001, cluster 

false discovery rate (FDR); Figure 3.1a]. This ROI was used to summarise UPD-set 
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and MAI-set effects in terms of their principal eigenvariates. A one-sample t test was 

performed to test for updating versus maintenance effects of anticipatory set on these 

summary statistics.  

 

 

Figure 3.1 SN/VTA BOLD responses of the set and action phases. Regional responses to 

each level of set and action were extracted using a functional ROI defined with an orthogonal 

contrast. a, The functional ROI for set was defined by the main effect of set over both of its 

levels (240 voxels, p = 0.001, cluster FDR). b, The functional ROI for action was defined by the 

main effect of action over both its levels (186 voxels, p = 0.002, cluster FDR). Voxels within 

these functional ROIs were activated, as determined by small-volume corrections using a 

predefined anatomical ROI based on mean normalised magnetisation transfer images across 

subjects. c, ROI analysis for the SN/VTA region across experimental phases. The SN/VTA 

activity was significantly larger when expecting an updating event (left bar, **p = 0.008), 

whereas the SN/VTA was slight decreased on updating per se compared with maintenance (right 

bar, p = 0.127). An interaction between set and action in the SN/VTA was also evident (*p = 

0.040). *p < 0.05; **p < 0.01; n.s. not significant; UPD, updating; MAI, maintenance. 

 

The functional SN/VTA ROI for action consisted of 186 voxels (p = 0.002, 

cluster FDR; Figure 3.1b). Principal eigenvariates were then extracted to summarise 
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UPD and MAI effects. The effect of updating versus maintenance was then tested 

with a one-sample t test. 

Striatal set activation was only observed in the left putamen. For the sake of 

consistency, ROI analysis of the action phase was reported in the same region. We 

referred to the Automatic Anatomical Labelling atlas (Tzourio-Mazoyer et al., 2002) 

for the anatomical ROI of the left putamen. This anatomical ROI was masked with 

the thresholded activation map of the main effect of set and action separately (both 

used uncorrected p = 0.001). This yielded two functional ROIs: the putamen-set ROI 

consisted of 205 voxels (p < 0.001, cluster FDR; Figure 3.2a); the putamen-action 

ROI consisted of 460 voxels (p < 0.001, cluster FDR; Figure 3.2b). The same 

contrast, UPD-set > MAI-set and UPD > MAI, were tested with one-sample t tests 

after extracting the principal eigenvariates for corresponding conditions. 

 

 

Figure 3.2 Striatal BOLD responses for the set and action phases. Regional responses to 

each level of set and action were extracted using a functional ROI defined with an orthogonal 

contrast. a, The functional ROI for set was defined by the main effect of set over both its levels 
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(205 voxels, p < 0.001, cluster FDR). b, The functional ROI for action was defined by the main 

effect of action over both its levels (460 voxels, p < 0.001, cluster FDR). Voxels within these 

functional ROIs were activated, as determined by small-volume corrections using the left 

putamen mask from the Automatic Anatomical Labelling (AAL) atlas. c, ROI analysis for the 

left putamen across experimental phases. Anticipatory activity in the left putamen was 

significantly larger with high update probability, compared with low update probability (left bar, 

*p = 0.012). There was no difference in the striatal activity between updating and maintenance 

(right bar, not significant p = 0.652). *p < 0.05; **p < 0.01; n.s. not significant; UPD, updating; 

MAI, maintenance. 

 

Activation in the DLPFC was identified in the right hemisphere during action. 

Given no a priori anatomical constraint, the ROI specification was based on an 

isolated cluster in the right middle frontal gyrus [peak (44, 30, 24), p < 0.001, cluster 

FDR, 203 voxels; Figure 3.3a] on the main effect of action. Features of UPD and 

MAI parameter estimates were extracted accordingly, followed by testing the 

contrast UPD > MAI using a one-sample t test. 

 

 

Figure 3.3 DLPFC BOLD responses during the action phase. a, The functional ROI for 

extracting UPD-specific and MAI-specific DLPFC responses was defined by the main effect of 
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action over both levels, where an isolated cluster was able to be identified in the right 

hemisphere (arrow; 203 voxels, p < 0.001, cluster FDR). The ROI localisation was orthogonal to 

the contrast being tested. b, ROI analysis revealed a significant UPD > MAI contrast in the right 

DLPFC, showing a larger response to updating events (**p = 0.009). *p < 0.05; **p < 0.01; 

UPD, updating; MAI, maintenance. 

 

3.3. Results 

3.3.1. Behavioural results 

A repeated-measure ANCOVA, including individual working memory capacity 

(WMC) measures as a covariate, demonstrated a significant crossover interaction 

between cue (high or low probability) and action on the RTs (Figure 3.4; F(1,15) = 

9.43, p = 0.008; mean RTs ± SD in seconds: MCM, 1.15 ± 0.17; MCU, 1.22 ± 0.20; 

UCL, 1.18 ± 0.18; UCU, 1.17 ± 0.20). There was no main effect for cue (F(1,15) = 

1.080, p = 0.315) or action (F(1,15) = 0.005, p = 0.945). A cue x action x WMC 

interaction was detected (F(1,15) = 7.18, p = 0.017). On average, the subjects 

performed the task to an accuracy level of 80.71% (SD, 15.72%) during the scanning 

session. Statistical tests revealed no significant main effect or interaction for 

response accuracy. The average measure for the subjects’ WMC was 6.2 letters. 

Performance on the task, as measured by Cowan’s capacity index (Cowan, 2005), 

significantly predicted the WMC measure in a linear regression (R2 = 0.418, ß = 

0.646, p = 0.005).  
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Figure 3.4 Analysis of covariance for reaction time data. RT results indicated a significant 

interaction between surprising (invalid) and unsurprising (valid) conditions (ANCOVA 

controlled for individual differences in WM capacity; F(1,15) = 9.43; p = 0.008), suggesting that 

the subjects were able to discriminate the cues behaviourally. The MAI-set predicts the MAI 

event, whereas the UPD-set predicts the UPD event, both at 80% probability, explicitly 

instructed to the subjects. 

 

3.3.2. Neuroimaging results 

3.3.2.1. SN/VTA responses during set and action 

Set activity for UPD-set was significantly larger than that for MAI-set (Figure 

3.1c, left; t(16) = 3.003, p = 0.008) in the SN/VTA. Then, we tested UPD > MAI 

using a one-sample t test and showed a slight trend decrease in SN/VTA activity for 

UPD (Figure 3.1c, right), albeit insignificant (t(16) = 1.609, p = 0.127). A significant 
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interaction was observed between the effect of set and action (Figure 3.1c; t(16) = 

2.237, p = 0.040). 

The main effect of set revealed a common response over the UPD-set and MAI-

set in the SN/VTA, the left putamen, the left premotor cortex, the SMA, the left 

posterior parietal cortex, and the bilateral visual cortices (Table 3.1, upper section; 

see also Figure 3.5). No activation in the DLPFC was detected. Clusters showing 

differential activation (UPD-set > MAI-set contrast) under whole-brain correction 

were summarised in the lower section of Table 3.1, where activations were almost 

restricted to the posterior brain, including the right calcarine cortex, the left middle 

occipital cortex, the left inferior parietal; the left premotor cortex was detected, as 

well. 

Table 3.1 Localisation of set-related activation 
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Widespread activation under the main effect of action was observed primarily in 

the occipital cortices, extending into the superior parietal cortices and the bilateral 

frontal cortices (Table 3.2, upper section). Subcortical activation included bilateral 

striatum, the SB/VTA, and the thalamus. The contrast UPD > MAI revealed a 

distinct recruitment in the fronto-parietal network, including the left superior parietal 

lobule, the right middle frontal gyrus, bilateral superior parietal lobules, and the left 

premotor cortex (Table 3.2, lower section). 

No activation was detected either in our ROIs or whole-brain correction for 

either the omission or deviation contrasts. 

 

 

Table 3.2 Localisation of action-related activation 
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3.3.2.2. Striatal responses during set and action 

Striatal activation was only observed in the left putamen for the main effect of 

set, while responses in the bilateral basal ganglia were observed for the main effect 

of action. For consistency, we report set and action effect for the left putamen. 

Comparing activations in the putamen revealed that the UPD-set elicited a 

significantly larger response than the MAI-set (Figure 3.2c, left bar; t(16) = 2.832, p = 

0.012). Comparing the principal eigenvariates extracted from UPD and MAI using 

the functional mask showed no significant difference (Figure 3.2c, right bar; t(16) = -

0.460, p = 0.652). 

 

3.3.2.3. DLPFC responses during action 

We specified a cluster in the right DLPFC as a functional mask. Activity in the 

DLPFC during updating was significantly larger than during non-updating (Figure 

3.3b; one-sample t test; t(16) = 2.993, p = 0.009). 

 

3.3.2.4. Neurobehavioural correlations 

In neural terms, exploiting cognitive set usually speaks to optimal gain and 

efficiency in the presence of limited resources, thereby favouring behavioural 

outcomes in the absence of surprising outcomes (Fuster, 2008; Gazzaley & Nobre, 

2012). We therefore tested for correlations between set activity and behavioural 

responses. Specifically, non-parametric correlations were performed to discover 

whether a greater neurophysiological set activity improved response accuracy. The 
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response accuracy in the UCU condition was positively correlated with the UPD-set 

activity in the SN/VTA (Spearman’s rho = 0.546, p = 0.023). Similarly, the MAI-set 

activity in the SN/VTA was positively correlated with the response accuracy in the 

MCM condition (rho = 0.483, p = 0.049). No correlations were observed for invalid 

conditions: UCM accuracy and UPD-set activity (rho = 0.415, p = 0.098); MCU 

accuracy and MAI-set activity (rho = 0.188, p = 0.469). These significant 

correlations between measures of neuronal responses and behaviour lend a further 

validity to the physiological effects reported above. 
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Figure 3.5 Significant clusters showing the main effect of anticipatory set. Voxel 

thresholding criteria, p = 0.01; cluster size threshold, 227; clusters were corrected for multiple 

comparison using false discovery rate. 
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3.4. Discussion 

We tested the hypothesis that anticipating a working memory update is 

accompanied by activation in the dopaminergic midbrain. Consistent with our 

hypothesis, we found that updating-related anticipation induced sustained activity in 

the midbrain and striatum, suggesting a key role for tonic dopamine in the 

maintenance of anticipatory set (rather than maintaining memory per se). In addition, 

the amplitude of set-related activity in the midbrain and striatum was positively 

correlated with response accuracy in valid conditions, i.e., UCU and MCM. Memory 

updating per se did not elicit significant activity in the midbrain and striatum, as 

compared with non-updating activity: these results are contrary to previous studies 

(e.g., Baier et al., 2010; Bledowski, Rahm, & Rowe, 2009; Nee & Brown, 2013) but 

are discussed in light of set-related responses and the neurochemical underpinning in 

later sections.  

3.4.1. Cue utility and anticipatory set in the midbrain 

The connection between the SN/VTA BOLD response and dopamine neuron 

firing speaks to several plausible cellular mechanisms (Düzel et al., 2009). Although 

our set-related SN/VTA activations are likely to be dopaminergic – D’Ardenne and 

colleagues (2008) have established the correspondence between midbrain BOLD and 

neuronal firing in both rewarding and non-rewarding (D'Ardenne et al., 2012) 

paradigms – it is difficult to pinpoint their tonic nature. Fiorillo et al. (2003) have 

demonstrated that the level of tonic dopamine firing varies with the uncertainty about 

future events. One may accordingly speculate that the predictive cues entailed 

uncertainties about updating, thereby inducing tonic dopamine changes. An 

alternative hypothesis states a consistent perspective, that tonic DA provides 
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necessary level of DA to support anticipatory states in behaviour and cognition 

(Hong, 2013).  

Task-related dopamine functions may also be explained from the information-

seeking perspective. Bromberg-Martin and Hikosaka (2009) demonstrated that the 

midbrain dopamine signals the expectation of information, targets generating 

informative contents gave rise to more dopamine discharge. In line with this view, 

the updating cues convey more information on average (hence a higher entropy) than 

the maintenance cue. The availability of information in the environment may then 

motivate an individual to actively engage in collecting it. This can be associated with 

tonic enabling of parallel neural pathways (Hong, 2013) that promote working 

memory encoding via signal-to-noise trade-off, possibly mediated by tonic levels of 

dopamine. Indeed, Niv et al. (2007) have suggested that tonic dopamine reports the 

long-term availability of reward and may account for motivation and vigorous 

responding. 

The SN/VTA BOLD response is, among other pathways, driven by 

glutamatergic afferents from prefrontal cortex (Düzel et al., 2009). It is proposed that 

these glutamatergic projections modulate tonic dopamine discharges (Grace, 1991). 

In addition, by using mixed task regressors with different temporal profiles 

(Donaldson, 2004), we were able to distinguish state-related processing from 

transient responses. It therefore seems plausible to associate the sustained activation 

we observed to a tonic mode of dopamine release. It is nevertheless possible that the 

SN/VTA activation we observed might not reflect changes in (tonic) dopamine 

discharge rates. In order to implicate dopamine definitively in the set-related 

responses we observed in the midbrain, one would require a pharmacological 

intervention (e.g., L-DOPA). I hope to test this assumption in future work. 
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3.4.2. A mechanistic remark on tonic dopamine and memory updating 

How might tonic dopamine contribute to updating? A plausible model of the role 

of dopaminergic activity in this context can be considered in terms of the energy 

landscape of attractor dynamics for working memory. It has been argued that the 

prefrontal cortex maintains working memory representations (J. D. Cohen et al., 

1997; Courtney, Ungerleider, Keil, & Haxby, 1997; Goldman-Rakic, 1995; 

Sreenivasan et al., 2014) in multiple attractor states. In order to achieve a more 

flexible switching of representations, a lower energy barrier, i.e. a relatively flat 

energy landscape, is required such that the system can easily move from one 

metastable attractor state to another (Durstewitz et al., 2000). The tonic level of 

dopamine discharges may play a role in modulating this transition by activating D2 

receptors (Dreyer et al., 2010; Rice & Cragg, 2008; Schultz, 2007) but not the D1 

receptors that have lower dopamine affinity. In effect, a prefrontal ‘D2 state’ would 

reduce the stability of attractor network dynamics and facilitate updating or 

transitions (Durstewitz & Seamans, 2008), thus rendering the system more 

responsive to inputs or revision. Tonic dopamine release might have greater 

influence in the striatum due to higher D2 prevalence as compared with the 

prefrontal cortex, where D1 receptors are more abundant (Camps et al., 1989; 

Goldman-Rakic et al., 1992). In this setting, flexible updating may come at the cost 

of lowered precision or signal-to-noise ratio. In other words, the neuronal 

instantiation of anticipatory set for updating may be accompanied by changes in the 

precision or confidence afforded to cues, with an inherent susceptibility to distracting 

cues. 

We observed elevated BOLD responses in the left putamen when updating was 

expected, which might reflect D2 stimulation of striatal spiny neurons or prefrontal 
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afferents in layer V (Cools & D'Esposito, 2011). A possible consequence would be 

inhibiting the default ‘NoGo’ indirect pathway that, in turn, disinhibits thalamo-

cortical connections (O'Reilly & Frank, 2006). 

3.4.3. Neurobehavioural accounts of anticipatory set 

The between-subject correlations suggested that the midbrain responses to 

anticipatory set predicts response accuracy in valid, but not invalid, trials, which is 

consistent with the idea that the brain optimises performance according to anticipated 

outcomes (Garrido, Dolan, & Sahani, 2011; Posner, 1980). The correlations may, 

nevertheless, seem somewhat counter-intuitive. Given that the midbrain was more 

active in updating than in maintenance, one might expect that dopamine release is 

essential for updating but not for maintenance. However, this is not necessarily the 

case. It is likely that dopamine release is optimised for specific contexts (Hong, 

2013), and that for each anticipatory set there is an optimal range of dopamine levels. 

Cognitive performance may then have an ‘inverted-U’ dependency on dopamine 

levels (Cools & D'Esposito, 2011; Cools & Robbins, 2004), leading to positive 

correlations between performance and tonic dopamine in both maintenance and 

updating set (Figure 3.6). 
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Figure 3.6 Dose-performance functions under different anticipatory sets. A schematic 

illustrating ‘dose-performance’ functions under different anticipatory set: the two curves indicate 

that the relationship between baseline dopamine level and behavioural performance may have an 

inverted-U shape. They also show that there is an optimal range in which an increase of 

dopamine level would improve performance. Crucially, the position of the curve may vary 

depending on the cognitive operation (e.g., maintenance or updating, as red and green curve, 

respectively). The anticipatory optimisation (i.e., set) may help defining the range of baseline 

dopamine (represented as shaded areas), thereby optimising performance for anticipated 

outcomes. This nonlinear relationship may partly account for our observation of positive 

correlations (between set activity and accuracy) and differential set-related activation in the 

midbrain. Here, we depict a possible mechanism that appeals to the notion that different 

behaviours (e.g., updating and maintenance) implicate different brain systems, in which optimal 

dopamine range is system-dependent. If set-related activity during maintenance and updating fell 

under the rising parts of the curves (as illustrated by the red and green box), one would expect a 

positive correlation, as reported in the main text. At the between-subject level, set-related 

modulation of dopamine could change performance in a way that depends upon subject-specific 

baseline dopamine levels (c.f. the “law of initial value;” for review, see Cools & D'Esposito, 

2011). 

 

The crossover interaction in reaction time data indicated that subjects 

discriminated between the predictive cues. Predictive cues in perceptual decisions 



 

 136 

are known to enable better detection and discrimination of percepts, an enhancement 

that is attributable to attention (Feldman & Friston, 2010). Notably, a recent study 

demonstrated that anticipation induced shifts in baseline activity in association 

cortex and subsequently mediated the transfer of perceptual representations into 

working memory (Bollinger et al., 2010; Schmidt, Vogel, & Woodman, 2002). Such 

working memory representations maintained in the prefrontal cortex were also 

shown to be robust against distractions (Miller, 1996). These findings lend the 

explanation of the behavioural relevance two complementary aspects. Firstly, 

anticipatory set may be analogous to predictions in perceptual inference (Feldman & 

Friston, 2010; Friston, Friston, Kiebel, & Kiebel, 2009) that facilitate context-

sensitive percepts, or possibly percepts embedded in a repertoire prediction in which 

categorical, procedural, or cognitive constructs are expected. Second, it may have 

optimised the (prefrontal) neuronal substrate of working memory — by modulating 

overall network stability, such that items can be refreshed or exchanged more 

flexibly. Theoretical models have outlined plausible mechanisms by which the brain 

can learn flexible updating in this setting (Frank et al., 2001; O'Reilly & Frank, 2006; 

O'Reilly, Cohen, Braver, & O'Reilly, 1999).  

3.4.4. Updating activity in the meso-cortico-striatal circuitry. 

Dopamine has long been implicated as an integral component of working 

memory function, both in terms of the stability (maintaining) and flexibility 

(adaptive updating) of active representations (Miller & Cohen, 2001). In particular, 

neurocomputational models have proposed biologically realistic mechanisms by 

which dopamine can contribute to working memory (M. J. Frank et al., 2001; 

Gruber, Kleinschmidt, Binkofski, Steinmetz, & Cramon, 2000; Hazy et al., 2007; R. 

C. O'Reilly & Frank, 2006). In these accounts, phasic bursts of dopamine are 
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associated with selective updating of working memory representations through the 

fronto-striatal circuitry that is equipped with a ‘gating’ mechanism (Baier et al., 

2010; e.g., M. J. Frank et al., 2001). Presumably, the brain can learn when to gate 

information (R. C. O'Reilly & Frank, 2006), such that the midbrain dopaminergic 

neurons will dispatch a ‘gating’ signal (in the form of phasic bursts) to enable fast 

encoding (updating) given context-relevant percepts. Recent empirical findings in 

human functional imaging have demonstrated midbrain activation when updating 

working memory of visual stimuli or contexts (D'Ardenne et al., 2012; Murty et al., 

2011). Murty et al. (2011) concluded that updating selective elements in verbal 

working memory activated the SN/VTA region, relative to simply maintaining or 

completely overwriting the working memory content. D’Ardenne et al. (2012) 

reported a phasic increase in BOLD response in the SN/VTA during updating as 

compared with non-updating. In general, midbrain responses are potentially 

attributable to updating. However, our results suggest the midbrain was less active 

during updating, relative to maintenance (Figure 3.1 right). One possible explanation 

for this may lie in our experimental design: in our study we manipulated anticipation 

about updating, which affected (putative) dopamine activity before updating. This 

may be relevant if the same (dopaminergic) systems are implicated in updating per 

se. In other word, the anticipatory set interacts with the effect of updating.  

Interactions between anticipatory set and update phases may be explained with 

reference to the hypothesis of tonic-phasic homeostasis (Bilder et al., 2004; Grace, 

1991). This hypothesis states that the level of extracellular dopamine – as determined 

by tonic release – provides the mechanism to up- or down-regulate the magnitude of 

phasic discharge. In principle, this is based on the D2 auto-receptor stimulation 

located on dopamine terminals. Only tonic dopamine release is proposed to be 
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capable of stimulating these D2 auto-receptors – without being affected by the re-

uptake process that acts primarily on phasic dopamine. As a consequence, 

background dopamine levels would suppress the neuronal responsiveness and hence 

spike-dependent (phasic) discharge. In other words, increased tonic levels would 

result in a depressed phasic responsiveness. According to this hypothesis, the tonic 

release of dopamine is likely to be elicited by the presynaptic glutamatergic afferents 

from the prefrontal cortex. The relationship between prefrontal cortical activity and 

the midbrain may be an important determinant of sustained BOLD responses in the 

midbrain (Düzel et al., 2009).  

We noted that our striatal responses (Figure 3.2c right) were inconsistent with 

previous studies of working memory updating (Bäckman et al., 2011; Bledowski et 

al., 2009; Kuhl, Bainbridge, & Chun, 2012; Murty et al., 2011; Podell et al., 2012). 

These studies suggested striatal recruitment with working memory updates, whereas 

our results indicated that the striatum was activated during updating and 

maintenance. More importantly, striatal activity did not differ significantly between 

updating versus non-updating conditions. This finding may be sensible when viewed 

from a predictive coding perspective. Several studies have suggested that the 

striatum has a role in processing salient or unexpected events; namely, the response 

in the striatum can be related to prediction error (O'Doherty, Dayan, Friston, 

Critchley, & Dolan, 2003; O'Doherty et al., 2004; Ouden et al., 2010). Failing to 

observe significant updating-specific recruitment in the striatum may reflect the fact 

that subjects anticipated updating. As such, an updating event, once predicted, was 

less surprising. This argument could be further extended to cover that reporting 

updating-specific striatal activation. That is, without manipulating anticipation, 

working memory has the propensity to occupy a low entropy (stable) state (that 
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supports robust maintenance, or ‘D1 state’; see R. C. O'Reilly, 2006). Sudden but 

infrequent updating may incur greater prediction error as expressed through striatal 

activation. Whereas, for frequent and expected updating, staying in low entropy 

states could be suboptimal; instead, migrating to a state of higher entropy may 

reduce the average surprise over time (cf. Friston, 2009). In other words, expected 

surprise is not really surprising and may not be accompanied by prediction error or 

surprise responses that would be seen when the surprise was unexpected.  

Ample evidence has demonstrated the involvement of dorsolateral prefrontal 

cortex (DLPFC) in various working memory tasks. Studies fractionating working 

memory subprocesses have suggested that the DLPFC is responsible for encoding, 

maintenance, and manipulation of working memory representations (for review, 

D'Esposito, Postle, & Rypma, 2000). It is therefore difficult to disentangle the actual 

role of updating-related DLPFC activation in the current study. Particularly, the 

functional implication of right-lateralised activation is unclear. However, TMS-

induced disruption in the working memory network may shed light on the time 

course of information flow, where the right DLPFC appeared to be critical at an early 

phase of updating (for review, Linden, 2007). More recently, D’Ardenne et al. 

(2012) showed that time-locked, TMS-induced disruption was only effective on the 

right DLPFC after the onset of updating information. 

3.5. Conclusions 

In summary, our data suggest that anticipating to update working memory 

representations activates the dopaminergic midbrain and striatum, which speaks to a 

key role for tonic dopaminergic activity in modulating the flexibility of 

representations based on the volatility of the environment. These anticipations 
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interacted with subsequent updating processes in the same regions to suppress 

transient responses in the midbrain and the striatum, which otherwise respond 

strongly updating events. While these latter findings are prima facie inconsistent 

with previous findings (D'Ardenne et al., 2012; Murty et al., 2011), they can be 

easily accounted for from the perspective of predictive coding (Friston & Stephan, 

2007; Rao & Ballard, 1999) — in that expected updates are not inherently surprising. 

In general, our data speak to a role for dopamine in modulating the precision, or 

gain, on sensory information during working memory processing (M. J. Frank & 

Badre, 2012; Friston et al., 2012). Our findings thus represent a step towards 

understanding both how working memory flexibility is modulated in response to the 

demands of environment, and the likely role of tonic dopamine in working memory 

function. 
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Chapter 4. Multivariate correlates of anticipatory set 

Observing a mechanism that works by predictions gives insights into its 

hierarchical structure. In particular, empirical evidence based on electro-

magnetophysiology and functional MRI suggests that the deviation and omission of 

anticipated sensory signals can be distinguished. However, analogous evidence with 

regard to higher cognition – if one were to assume both computations rest on a 

common predictive principle – has yet to be established. To extend our 

understanding in this regard, we employed a working memory updating task, which 

entailed an update to previously encoded memory that was anticipated with high or 

low probability. Using multivariate pattern analysis (MVPA), we demonstrate that 

the brain response to omission and deviation can be dissociated. Surprising events 

diverge from statistical regularities and are inherently rare; the use of MVPA 

revealed the distributed and covarying nature of responses to these events. We 

conclude that monitoring and maintaining working memory is a predictive process 

that involves distributed systems that underpin adaptive control and stable set-

maintenance control, i.e., the fronto-parietal and cingulo-opercular networks, 

respectively. 
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4.1. Introduction 

A hallmark of intelligent organisms is the ability to tolerate error-making 

(Carpenter & Doran, 1986) and assimilate error by learning from them (Schultz, 

Dayan, & Montague, 1997). This often entails a predictive model constantly 

estimating the states of the world. The estimates may adjust if the predicted state is 

incongruent with the actual state, through a process resembling hypothesis testing, or 

model comparison. Observing a predictive system making error gives crucial insights 

into how it works (Frith, 2007). This observation is fundamental to many modern 

cognitive neuroscience studies that treat the brain as an inference device, notably in 

the area of perception (Garrido, Kilner, Stephan, & Friston, 2009), decision-making 

(Ouden, Friston, Daw, McIntosh, & Stephan, 2009), and reward processing 

(O'Doherty et al., 2007); with special cases referring to theoretical frameworks of the 

Bayesian brain (Mathys, Daunizeau, Friston, & Stephan, 2011) or Kalman filter 

(Doya, 2007). 

The human neocortex exhibits a hierarchical organisation, with repetition of 

highly similar lamination and laminar connectivity up the hierarchy (Felleman & 

Van Essen, 1991). It has been speculated on both theoretical and empirical grounds 

(Friston, Friston, Kilner, & Harrison, 2006; Markov & Kennedy, 2013; Mumford, 

1992; Rao & Ballard, 1999; Bastos et al., 2012) – that the brain is an active inference 

device which constantly updates its hierarchical model of the world by processing 

only the discrepancy between bottom-up sensory inputs and top-down predictions, 

i.e., the prediction error. Many studies are concerned with the corresponding 

generative model underlying perceptual inference. However, the possibility as to 

whether higher cognition works under the same predictive principle, and whether it 



 

 143 

engenders error signals – not to a stimulus-bound surprise but to contextual 

violations (e.g., improbable events) is not so clear.  

This has led us to the proposition that working memory, which bridges sensory-

related representations and goal-related attentional bias and task-level control 

(Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008; Gazzaley & Nobre, 2012; 

Sreenivasan et al., 2014), may well adhere to the same hierarchical predictive 

principles (Friston, 2008). We reasoned that stimulus-bound and context-dependent 

surprise signals might reveal a hierarchical organisation in working memory. 

Detecting neural codes – representing surprise-related states – using classical 

mass-univariate analysis may be a challenge. Surprise, in probabilistic terms, violates 

statistical regularities and is inherently rare in experimental settings. Its detection 

therefore suffers from low statistical power. In addition, unlike sensory signals, 

which are highly localised, neural representations of higher constructs may be sparse 

and vary considerably across individuals. To make use of weak but informative 

voxel data and to accommodate individual variability, exploring the covariance 

structure amongst surprise-related voxel data can be effective (Norman, Polyn, 

Detre, & Haxby, 2006). This is referred to as multivariate pattern analysis (MVPA). 

MVPA is based on statistical learning theory and classification algorithms which, in 

practice, takes joint information across all data features, as opposed to treating the 

features independently (Schrouff et al., 2013). We therefore applied MVPA to 

surprise-related responses. 

To characterise surprise-related responses of a conceptual nature, we employed a 

working memory updating task based on the delayed match-to-sample paradigm. The 

principal manipulation was to enable context-sensitive updating or maintenance of 

sequential working memory. Trial-specific expectations about the propensity of an 
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imminent update were afforded by a preceding predictive cue. Task-related surprise 

pertains to the omission of an anticipated update, or the deviation from anticipated 

maintenance with an unexpected update. In particular, the omission response may 

speak to the neural substrates implementing prediction signals per se (SanMiguel, 

Saupe, & Schröger, 2013; Wacongne et al., 2011). This is in contrast with the 

deviation response, in which unexpected inputs may contribute to neuronal 

responses. Our hypothesis was that omission and deviation speak to abstract and 

concrete levels of processing and may therefore be differentiated in multivariate 

patterns that are evoked by these events. 

 

4.2. Methods 

4.2.1. Data Pre-processing 

Functional data were analysed using SPM12 (Statistical Parametric Mapping; 

Wellcome Trust Centre for Neuroimaging, London, UK). Preprocessing of 

functional images included correction for geometric distortion using field maps 

(Hutton et al., 2002; Jezzard & Balaban, 1995), realignment via affine registration to 

correct for head movement, slice timing correction, co-registration with respect to 

anatomical images, normalisation to MNI space based on the anatomical 

normalisation parameters, interpolation to voxel size of 2 x 2 x 2 mm. No spatial 

smoothing was performed. 

4.2.2. Mass-univariate analysis 

When attempting multivariate pattern analysis with fMRI data, the temporal 

delay of the haemodynamic responses with respect to the stimulus onsets must be 
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taken into account. Modelling brain responses with the canonical haemodynamic 

response function (HRF) in the general linear model (GLM) offers a robust way to 

obtain responses at corrected time points – if individualised parameters for HRF are 

unavailable (Schrouff et al., 2013). The responses obtained were in the form of beta 

maps (GLM parameter estimates), encoding evoked responses specified in the design 

matrix. In short, GLM constitutes a pre-processing stage prior to the pattern analysis 

(Norman et al., 2006).  

The effects of interest were the omission and deviation of updates, and their 

dissociable spatial distributions were hypothesised. Regional responses to these 

effects were modelled with an impulse response function in the design matrix. To 

capture the responses in a trial-by-trial manner, as many regressors as correct 

instances of omission and deviation were placed in the design matrix. The total 

number of regressors was less or equal to 20, depending on individual performance. 

Another four regressors were used to model remaining task effects, including the 

main effect of anticipatory set (prolonged epoch from high and low cues), and that of 

action (non-specific transients of updating and maintenance). Other variables 

included non-specific visual onsets (encoding, probing), and switching (transition 

between trials). Events in an error trial were modelled as non-specific visual onsets.  

All the regressors were convolved with a canonical HRF to produce 

haemodynamic regressors for GLM. The full model also included head motion and 

low-level physiological variations that were of no interest. Head motion was 

summarised using three translations (x, y, and z directions) and three rotations (pitch, 

roll, and yaw), derived from the realignment procedure. The physiological measures 

comprised six cardiac regressors, six respiratory regressors, and two regressors for 

heart rate change and change in respiratory volume (Hutton et al., 2011). Beta maps 
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were obtained by inverting subject-specific GLMs, which in turn provided the data 

features (GLM parameter estimates) for subsequent pattern classification.  

Contrasts for the main effect of action were computed for each subject, a one-

sample t-test was used to test these contrasts at group level, with a relatively liberal 

threshold (uncorrected p = 0.01; cluster size, 10). This provided a ‘functional 

localiser’ of the neural substrate of non-specific mnemonic processing in question. 

The ensuing voxels were defined as a mask for the subsequent classification 

procedure (kernel construction). 

4.2.3. Pattern classification 

A classical task in machine learning (or MVPA) is to derive, in the feature space, 

a decision hyperplane, whereby exemplary feature vectors are adequately separated 

to reveal known categorical discrimination. This is specifically referred to as 

supervised learning – as opposed to unsupervised learning – since the category to 

which each ‘example’ belongs is identified a priori. Features are usually instances of 

observations, e.g., whole brain voxel data of BOLD responses, or a subset (excluding 

non-brain tissue). One can surmise that voxel responses to different experimental 

conditions exhibit differentiable spatial patterns and infer that they must belong to 

distinct categories.  

Multiple classification algorithms are capable of defining a decision boundary 

given training data. The one applied in this study was Support Vector Machines 

(SVM). Derivation of the hyperplane in SVM yields classifier estimates (or weights), 

which represents a vector orthogonal to the hyperplane. SVM optimises the (binary) 

decision by maximising the margin between two groups of points, where a set of 

‘support vectors’ is of particular interest. The support vectors are feature vectors 
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representing non-trivial classification problems, in that they are in the immediate 

vicinity of the true decision boundary, therefore they are the most difficult ones to 

tell apart. An optimised weight vector is essentially the linear combination of the 

support vectors (using Lagrange multiplier as coefficients; for details please refer to 

Chu, 2009).  

The classification procedure was carried out using the PRoNTo toolbox 

(Schrouff et al., 2013). Within-subject classification was conducted. Feature vectors 

were beta maps of individual omission and deviation trials derived from the GLM 

analysis, voxels from outside the brain were excluded using the whole brain mask 

provided in SPM. A second-level mask constituting the main effect of action was 

subsequently applied, this allowed one to frame the classification problem in 

accordance with the functional anatomy of working memory (see Schrouff et al., 

2013). A kernel matrix was computed based on the masked feature set. Kernel 

methods have computational advantages when dealing with high dimensional data, 

and therefore are ideal for neuroimaging dataset. In our case, using linear kernels, the 

kernel matrix was a pair-wise inner product of feature vectors. This enabled the 

maximum-margin optimisation to take place in a transformed feature space 

(Hofmann, 2008).  

4.2.4. Cross-validations 

SVM performance was assessed by means of a ‘leave-one-scan-per-group-out’ 

cross-validation scheme. This tested the generalisability of the classifier by 

systematically removing one scan from each condition during the training phase. 

Expected accuracy of the classifier can then be estimated by testing the hold-out set. 

This prevented over-fitting, as is often the case when the dimensionality of the 
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feature space is larger than the size of feature set (Mahmoudi, Takerkart, Regragui, 

Boussaoud, & Brovelli, 2012). The performance of the classifier was expressed in 

terms of balanced accuracy 

 
 (4.1) 

where F/TP and F/TN are false/true positives and negatives, respectively. Also note 

that True Positives corresponded to the correctly classified deviation conditions, 

whilst True Negatives to that of omission conditions.  

A common issue in assessing classifier performance is an unbalanced dataset, the 

consequence of which is invalid detection and fraudulent estimate of classifier 

accuracy. In the case of imbalance, the class having more instances is referred to as a 

majority class, whereas the lesser set is a minority class. To prevent unbalanced 

feature points in neuroimaging studies, balanced experimental designs are frequently 

used, such that the number of trials in respective conditions of interest is equal. This 

was the case in our study. Nevertheless, individual variations in task performance 

required some trials to be discarded, thus inevitably creating unbalanced data. 

Various approaches have been proposed to tackle this problem (Japkowicz & 

Stephen, 2002). For example, under-sampling the majority class was performed in 

Nee and Brown (2012). Alternatively, over-sampling the minority class is also 

viable. The method adopted here was SMOTE (Synthetic Minority Over-sampling 

Technique; Chawla, Bowyer, Hall, & Kegelmeyer, 2002). We applied SMOTE by 

randomly selecting a feature vector in the minority class. We then determine another 

feature vector amongst the k-nearest neighbour of the one under consideration, 

followed by taking the difference of the two vectors. This represented a line segment 

along which the synthesised feature vector would then be selected at a random point. 

Acc =
1

2

✓
TP

TP + FN
+

TN

TN + FP

◆
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This procedure was repeated until both classes were of equal size. Depending on 

individual subject’s performance, the number of feature vectors synthesised was 

between 0 and 3. 

4.2.5. Permutation testing 

Permutation tests were performed on the classification outcome. This procedure 

supplemented the accuracy estimate from the cross-validation; due to the small size 

of the test set, and co-dependent cross-validation trials, the variance estimate and the 

extent to which the observed test accuracy occurred by chance cannot be accessed. 

Permutation tests furnished an empirical cumulative distribution of the statistics 

(here, the accuracy estimates) by repeatedly shuffling the class labels corresponded 

to respective feature vectors. This treatment was proposed in Golland and Fishl 

(2003), and has been implemented in the PRoNTo toolbox.  

For each subject, 100 permutations were performed. The significance level was 

set at 0.05. 

4.2.6. Visualising weight maps 

The objective of MVPA in the scope of current work was to obtain individual 

weight maps. In practice, the use of linear SVMs produces linear boundaries in the 

original feature space. This results in a straightforward interpretation of the weight 

maps. In this case, the size of the weight value corresponds, in a voxel-wise manner, 

to how much a voxel contributed to the decision (Mahmoudi et al., 2012). 

It was therefore informative to summarise weight maps across subjects to 

visualise voxel-wise contribution to classification. To achieve this, the original 

weight maps were transformed into standard scores and averaged over subjects. 
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Then, the mean weight map was overlaid on a montage of anatomical image. Blue 

and red colour codes were used to indicate the voxel’s contribution to the omission 

and deviation classes, respectively. No thresholding was applied to any weight map 

during the procedure. In addition, to determine the class-dependent importance with 

respect to anatomical regions, the number of informative voxels was recorded. 

Between-class comparison of these numbers was carried out at the group level, in a 

region-by-region manner. Specifically, a mask was created using the WFU PickAtlas 

toolbox (Maldjian, Laurienti, & Burdette, 2004; Maldjian, Laurienti, Kraft, & 

Burdette, 2003) based on the 116-region AAL atlas (Tzourio-Mazoyer et al., 2002). 

The resultant mask contained voxels labelled according to regions. Positive and 

negative weights, corresponding to deviation and omission, respectively, of each 

subject were then identified and grouped based on the labelled mask. From the AAL 

atlas, we combined regions to form the following seven systems: (1) fronto-parietal 

network (FPN); (2) cingulo-operculum network (CON); (3) basal ganglia (BG); (4) 

thalamus (Th); (5) temporal cortex (Tpx); (6) cerebellum (Cbx); and (7) visual cortex 

(Vix). The contrast "omission count > deviation count" was performed to obtained a 

table of subject-by-region count difference. The differences were evaluated for 

normality using the Shapiro-Wilk test, followed by a one-sample t test. 

The region combinations were as follows (a) the fronto-parietal network 

included: precentral, superior frontal, middle frontal, inferior triangularis, orbital 

frontal, SMA, superior parietal, inferior parietal, supramarginal, angular, and 

precuneus regions; (b) the cingulo-operculum included: superior orbital frontal, 

middle orbital frontal, frontal opercular, rolandic opercular, superior medial frontal, 

medial orbital frontal, insula, cingulum, and postcentral regions; (c) the basal ganglia 

included: caudate, putamen, and pallidum regions; (d) the temporal cortex included: 
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fusiform, Heschl’s, superior temporal, superior temporal pole, middle temporal, 

middle temporal pole, and inferior temporal regions; (e) the visual cortex included: 

calcarine, cuneus, lingual, superior occipital, middle occipital, and inferior occipital 

regions. All regions were bilateral. 

4.2.7. Correlation analysis 

The state-dependent responses associated with the informative voxels were 

tested for correlations with corresponding reaction time measures. This was 

performed within subjects on a trial-by-trial basis. Firstly, BOLD response of voxels 

bearing positive weights, which informed the deviation class, were extracted. The 

multi-voxel BOLD data were then compressed in terms of the principal eigenvariate 

and paired with reaction time of the corresponding trial. Spearman’s rho was 

calculated for each subject. The correlation statistics were then tested at the group 

level.  

For the omission class, the informative voxels carried negative weights. The 

same procedure was repeated.  

Brain responses underlying counter-informative voxels were also tested to detect 

non-specific correlations. The stated statistics were obtained by – in deviation trials, 

for example – correlating reaction times with responses extracted from omission-

informing voxels. Likewise, omission responses extracted from deviation-informing 

voxels were correlated with reaction times of omission trials. 

The correlations between surprise-related response accuracy and pattern-

informed BOLD responses were tested at between-subject level. For each subject, 

data features (i.e., first eigenvariate) of pattern-informed activity were extracted and 

averaged across trials. The accuracy was calculated as the proportion of correct 
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responses for the omission and deviation conditions, respectively. Spearman’s non-

parametric correlations were performed to detect whether surprise activity predicts 

corresponding performance. 

 

4.3. Results 

4.3.1. Classifier performance 

Overall classification accuracy was 89.58%, as calculated by averaging balanced 

accuracy estimates across subjects (range, 56.25% - 100%). The mean accuracy by 

class was 90.44% and 88.73% for the deviation class and omission class, 

respectively (range, 50.00% - 100% and 62.50% - 100%). The permutation test 

indicated 16 out of 17 subjects were significant (p<0.05).  

4.3.2. Visualising weight maps 

The mean weight map revealed an apparent discrimination between the pattern 

of deviation responses (Figure 4.1, red blobs) and that of omission responses (Figure 

4.1, blue blobs).  
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Figure 4.1 Mean weight map. Classifier weights of each subjects were transformed into 

standardised scores and averaged in a voxel-wise matter at the group level. The resultant matrix 

was overlaid on an structural MR image, and colour-coded according the respective class of 

brain response: red, deviation; blue, omission. Voxel brightness corresponds to how informative 

they are in relation to the omission and deviation processes. A trend separation between two 

patterns can be observed, in which the deviation pattern occupied the posterior brain, including 

the visual cortex and the cerebellum. The inclusion of the midbrain was also noted. In contrast, 
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the omission pattern encompassed voxels that conform to the fronto-parietal and cingulo-

opercular networks. 

 

The distribution of the deviation voxels was mainly in the caudal regions, 

including most of the visual cortex, precuneus, and the cerebellum in both 

hemispheres. The pattern extended over the thalamus, and the SN/VTA in the 

midbrain.  

The omission pattern, on the other hand, closely resembled the fronto-parietal 

network, including the bilateral inferior parietal cortices and the bilateral middle 

frontal cortices. Other regions enclosed by the pattern constituted the cingular-

opercular network. The involvement of the striatum was observed in the ventral part, 

including the nucleus accumbens, and the bilateral caudate. Bilateral lingual gyri and 

the right occipital cortex also contained informative voxels about omission 

processing. 

Informative voxels in the basal ganglia shared mixed contributions to the 

omission and deviation classes. Among the two classes, omission mainly implicated 

the caudate tail and the caudate body (Figure 4.1, z = 18 to z = 24), with limited 

contributions from the caudate head and putamen. Whereas, substantial contributions 

to the deviation class was observed in the caudate head (Figure 4.1, z = -8 to z = 4), 

as well as the putamen. 

The most informative voxels (defined by the 90th percentile for respective class 

weights; Figure 4.2) were in the visual cortex, precuneus, cerebellum, thalamus, 

pallidum, and SN/VTA for the deviation pattern, and in the insular, ventral striatum, 

caudate, SMA, DLPFC, and inferior parietal cortex for the omission pattern. 
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Figure 4.2 Mean weight map showing voxels above the 90th percentile voxels. Voxels of 

average classifier weight above the 90th percentile from both classes were overlaid on structural 

MR images. This presents the most informative voxels for the omission and deviation patterns. 

For the deviation pattern (red), these voxels were observed in the posterior occipital cortex, the 

left precuneus, the thalamus and the midbrain. For the omission pattern, the ventral striatum, the 

caudate nucleus, the anterior cingulate cortex, and the fronto-parietal regions contributed the 

most informative voxels.  
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The voxel count difference (omission count > deviation count) across the seven 

major regions was normally distributed (Table 4.1). The one-sample t test showed 

that omission was greater than deviation in voxel count in two regions, FPN (p < 

0.001) and CON (p = 0.003). By contrast, more voxels in Cbx (p = 0.037) and Vix (p 

< 0.001) were informative to the deviation class. Voxel dominance in BG, Th, and 

Vix was indistinguishable (p = 0.926, 0.054, and 0.178, respectively; Table 4.1). 

Figure 4.3 shows region-specific voxel count based on the group mean weight map. 

 

Table 4.1 Statistical tests on the voxel count difference (omission 

count > deviation count). 
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Figure 4.3 Region-specific voxel count based on the mean weight map. The number of 

informative voxels from the omission and deviation patterns was counted in accordance with the 

anatomical regions of interest. The voxel count presented here was based on the count of mean 

weight map; whilst the statistical significance was based on voxel counts of single subject 

weight maps. The contrast on which the one-sample t test was based is omission count > 

deviation count. Region definition was based on a mask created using WFU PickAtlas and the 

116-are AAL atlas. Informative voxels were present in all regions but the relative dominance 

varied as reflected by the classification. FPN, fronto-parietal network; CON, cingulo-opercular 

network; BG, basal ganglia; Th, thalamus; Tpx, temporal cortex; Cbx, cerebellum; Vix, visual 

cortex. All regions are bilateral. *p < 0.05; **p < 0.01. 

 

4.3.3. Pattern-informed neurobehavioural correlation 

Correlation analysis was performed using within-subject weight maps. 

Significant negative correlations suggested that, during deviation trials, BOLD 

responses in informative voxels predicted response speed (p = 0.0319, t(16) = -2.351). 

Counter-informative voxels, i.e. deviation responses extracted with omission-

informative voxels, did not predict performance in deviation trials (p = 0.1567, t(16) = 

-1.486). 
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No correlation with reaction time was detected for omission responses extracted 

from omission voxels (p = 0.8706, t(16) = 0.166), or for counter-informative omission 

responses (p = 0.5220, t = 0.655). 

At between-subject level, there was no correlation between omission responses 

and omission trial (UCM) accuracy (Spearman’s rho = 0.2924, p = 0.2548), or 

between deviation responses and deviation trial (MCU) accuracy (rho = -0.1897, p = 

0.4658). 

 

4.4. Discussion 

Using machine learning technique and blood oxygenation level-dependent 

(BOLD) imaging, we tested the hypothesis that the following two classes of surprise-

related cortical responses are dissociable in terms of multivariate patterns: (1) 

omission, events in which category-specific environmental cues were anticipated 

(i.e., an update) but failed to occur; (2) deviation, events in which unexpected 

updates occurred. Non-specific effects of updating and maintenance were controlled 

for both types of responses. Consistent with our hypothesis, the classification 

exceeded better-than-chance performance. Inspecting the mean weight map revealed 

two well-defined brain systems: (1) the meso-cerebello-occipital network, 

responsible for deviation processing; (2) the joint fronto-striato-parietal and cingulo-

opercular networks, responsible for omission processing. In light of the 

circumstantial evidence that surprise impairs perceptual performance, we 

supplemented our results with the finding that the within-subject amplitude of 

pattern-informed deviation responses predicts faster reaction time, whilst the same 

responses did not predict corresponding accuracy, suggesting little evidence for 
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speed-accuracy trade-off. The negative correlation was not detected in relation to 

omission activity.  

 

4.4.1. Fractionating the sources of prediction 

To what extent do multivariate patterns speak to underlying neural mechanisms? 

This question cannot be answered without referring to the experimental design; 

namely, we direct the ensuing discussion by treating the multivariate patterns as 

surprise (prediction error) responses shaped by the preceding anticipatory set. In 

other words, we view surprises as the discrepancy between the environmental cues 

and outcomes (Bubic, Cramon, & Schubotz, 2010; Bubic, Cramon, Jacobsen, 

Schröger, & Schubotz, 2009; Eshel, Tian, & Uchida, 2013; SanMiguel et al., 2013). 

Firstly, what does the anticipatory set entail, and what does it predict? For the high 

(updating) cue, the induced prediction is two-fold: (1) an expectation of 

representational updating and flexibility (Yu, Fitzgerald, & Friston, 2013); this 

imposes a low precision on the ad hoc integration of subsequent letters (Kahneman 

et al., 1992; Kahneman & Treisman, 1984), which may be monitored by a sustained 

task-set control signal (Dosenbach et al., 2008; 2006; Sestieri, Corbetta, Spadone, 

Romani, & Shulman, 2014). Note that anticipatory set does not generate concrete 

sensory predictions, which can only be represented upon the encoding cue, but will 

nuance the item-wise ‘stickiness’ and perhaps the rehearsal process involved. (2) The 

anticipatory set also entails a form of prediction about visual sensations, which 

engender the updating process. This, however, should be distinguished from classical 

perceptual inference (e.g., visual occlusion) in that the latter pertains to exteroception 

in an instant in time as opposed to a prospective sense, and that the perception being 
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called forth bears a non-specific nature. Therefore, it can be plausibly argued that the 

sensation being predicted is categorical, and the perceptual inference necessary to 

carry out an update is enabled. 

By contrast, the low (maintenance) cue involves predictions in two parts: (1) it 

portends representational stability of working memory, thus placing a high precision 

on the sequence memory. (2) It is unlikely that any visual sensation would ensue, 

given an update is unlikely. 

Briefly, the updating cue predicts that the working memory representation is to 

be hierarchically updated. That is, it entails a prospective sub-goal and necessitates 

that the encoding stimulus generates an inadequate/insufficient goal representation. 

The updating stimulus then completes the goal representation (sub-goal completion). 

Whereas, the goal representation is almost certainly informed by the encoding 

stimulus under the maintenance cue which predicts the probing stimuli. This speaks 

to a construct relevant to the idea of ‘task set’, which we will consider shortly. 

Naturally, one may argue that working memory updating per se without explicit 

‘prediction’ is in itself surprising. Thus, prediction error responses provided by 

pattern classification may have been confounded by those originated from the 

updating operation, making the responses not entirely attributable to anticipatory set. 

To prevent this, we modelled the effect of updating and maintenance using non-

specific regressors to account for surprise effects irrelevant to that of the cues. 

4.4.2. The prediction error 

Having unpacked the predictive processes involved in the task, it is now more 

straightforward to outline the responses when predictions are violated. Specifically, 

violation of the prediction pertaining to the updating set is the omission of the 
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updating stimulus. Because the brain has no means to represent exactly what is used 

to achieve updating, prediction errors to stated sensations are considered minimal, 

possibly including those accounting for more abstract, categorical representations. In 

addition, the effect of any visual cue is removed due to the inclusion of non-specific 

updating/maintenance regressors. Another response that can be associated with 

omission is the processing of sustained set control, as well as that of rapid adaptive 

control (Dosenbach et al., 2006; 2008; Sestieri et al., 2014). In other words, 

omissions to the predicted outcomes may induce error responses pertaining to pure 

(top-down) prediction signals. In our case, they are reflected mainly in the fronto-

parietal and cingulo-opercular systems. Indeed, den Ouden et al. (2009) 

demonstrated prediction error responses when the absence of visual stimuli is 

surprising. Our observation extends this finding to include error responses not 

directly related to sensations. Along the same line of evidence, Wacongne et al. 

(2011) used the auditory mismatch paradigm to show that omission to an anticipated 

auditory pattern revealed prediction signals from hierarchical predictions. They also 

concluded that higher-order predictions encompass multiple frontal and associative 

cortices, which is consistent with our findings. However, SanMiguel et al. (2013) 

pointed out, with a self-paced trigger-to-sound task, that both the timing and the 

identify of the sensation must be represented by the sensory system to formulate 

appropriate predictions, followed by the induction of error responses. Our finding is 

not restricted to the sensory system but nevertheless offers an alternative perspective. 

The error response associated with the violation of maintenance set is relatively 

simple to interpret. Due to unexpected visual presentation, which is inherently salient 

(Ouden et al., 2010; Zink, Pagnoni, Martin, Dhamala, & Berns, 2003), sensory 

responses beyond the predicted, non-specific effect of updating are pronounced. This 
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explains widespread visual involvement found in the deviation pattern. The sensory 

saliency, perhaps along with unexpected allocation of cognitive capacity for 

updating, may account for the pattern comprising the meso-thalamo-striatal network 

(Baier et al., 2010; D'Ardenne et al., 2012). 

Based on the findings so far, as well as the notion that the omission responses 

reflect prediction error signals, we argue that predicting and implementing memory 

updating in the context of cognitive meta-stability have distinct neural substrates. 

Our data speaks to a putative hierarchical organisation of these substrates. 

4.4.3. A free-energy perspective 

The Bayesian principle considers neuronal computations to represent the cause 

of environmental states and the uncertainty of these states. These states are not 

stationary but are rather represented in terms of their motion. The motion refers to a 

trajectory through state-space that contains the variables responsible for generating 

sensory data. In other words, neuronal representations of states encode prospective 

states along the trajectory. Working memory clearly falls into this category. For 

instance, in a simple delayed-response paradigm, the subject is cued to match a 

target. Once the cue is extinguished, the encoded memory conforms to attractor 

dynamics, towards a basin encoding the target. In a more complex setting, such as 

our updating task, the trajectory may follow variable dynamic regimes based on the 

uncertainty afforded by cues. The maintenance cue, on the one hand, may provide an 

energy landscape resembling the simple case stated. On the other hand, the updating 

cue may induced a wider dynamic regime in which set-switching can be 

accomplished given multiple attractor states. A useful concept here is the notion of a 

winnerless competition – or a stable heteroclinic channel (Bick & Rabinovich, 2009; 
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Bick, Rabinovich, & Rabinovich, 2010; Rabinovich, Huerta, & Laurent, 2008), and 

can be associated with an adaptive cognition-stable set control complex known as the 

FPN-CON network (fronto-parietal-cingulo-opercularis network; see below and 

Figure 4.4). In light of the relationship between omission and the predictive coding 

hypothesis, one may argue that the omission response is a representation of 

prospective predictive process. 

 

 

Figure 4.4 A proposed model of information processing flow in the FPN-CON network. 

This model is based on the hypothesis of Dosenbach et al. [Dosenbach, N. U. F., et al. (2008). A 

dual-network architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105]. 

The CON provides task parameter, and the framework in which information is processed. This 

may entail a flow control governing trial transition, and the events within trial. Also, it may also 

provide a level of information binding. The FPN is more specific for stimulus associations. In 

the face of salient events, the basal ganglia report the saliency; the ensuing update may take 

place in a rapid/stimulus-dependent manner (updating a sequence), or a change in slow dynamics 

(e.g., predictive cue-induced trial transition). FPN, fronto-parietal network; CON, cingulo-
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opercular network; BG, basal ganglia; Th, thalamus; (blue shade) experimental phases: C, cue; 

E, encoding; U, updating; P, probing. 

 

4.4.4. Regional-specific functional implications 

Both the fronto-parietal and the cingulo-operculum networks are implicated in 

working memory (Gordon, Stollstorff, & Vaidya, 2012; Repovš & Barch, 2012), 

suggesting intrinsic connectivity and coherent specialisation in task-dependent 

information processing (Gordon et al., 2012). In particular, the fronto-parietal 

network is proposed to support attentional set, based on graph theory (intrinsic 

connectivity networks; Markett et al., 2013) and delayed-response paradigms 

(Corbetta & Shulman, 2002). The neural mechanism of attentional set overlaps 

functionally with that of working memory, which enables the top-down selection of 

behaviourally relevant stimuli, and is adaptive to unexpected, salient events (Owen et 

al., 1993). Such set may involve divided attention (Baddeley, 2012; 2007) to prepare 

for multiple stimulus selection. Santangelo and Macaluso (2013) employed a divided 

attention task, in a load-dependent delayed-response task. The authors demonstrated 

that the bilateral intra-parietal cortices were more activated under divided attention, 

and under incremental working memory load, which indicated an effect of 

unnecessary storage in the parietal lobe (unnecessary in the sense that memory items 

are behaviourally irrelevant to the performance of the attentional task; see McNab & 

Klingberg, 2008; Vogel et al., 2005). We argue that the non-specific storage in the 

parietal cortex forms the basis of cognitive flexibility that allows multiple 

representations, which can be subject to multiple selections via the prefrontal-basal 

ganglia network (M. J. Frank & O'Reilly, 2006; R. C. O'Reilly & Frank, 2006). One 

may accordingly reason that the anticipatory set about updating, and thus the error 
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response on omission, entails preparation for divided attention under non-specific 

storage capacity implemented via the fronto-parietal network. By contrast, under the 

maintenance set, in which representational stability is expected, access to non-

specific storage is not required. Instead, the maintenance of high-fidelity working 

memory information may call upon domain-specific sensory cortices (Sreenivasan et 

al., 2014).  

Dosenbach et al. (2006) hypothesised a system for general task control, which 

comprises the fronto-parietal and cingulo-opercular networks (Dosenbach et al., 

2006; 2008). The system is proposed to exhibit (1) sustained task set-maintenance 

signals; (2) trial-specific transients in response to cues; and (3) error-related feedback 

to optimise task set. It may constitute a core resource, limited in capacity, shared 

across concurrent tasks (Dosenbach et al., 2006). Therefore, it is plausible that the 

same system underpins ‘sub-goaling’ (Fincham, Carter, van Veen, Stenger, & 

Anderson, 2002; Miller & Cohen, 2001; Oosterwijk et al., 2012). Specifically, set-

maintenance signals are associated with the cingulo-opercular network, including 

anterior insula, frontal opercularis, dorsal ACC, and medial superior frontal cortex. 

Whereas, the fast adaptive control of sensory signals is proposed to implicate the 

fronto-parietal network. Error-related responses are found in both systems 

(Dosenbach et al., 2006). This hypothesis sits well with our interpretation that the 

omission response speaks to two levels of prediction – stimulus- and task-dependent. 

The response therefore suggests a reconfiguration of task set. 

4.4.5. Neurobehavioural correlations 

Increased amplitude of deviation BOLD responses that predicts subsequent 

response speed may indicate a faster retrieval at the probing phase. This can be 
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related to whether memory items are within the current focus of attention – an 

accompanying effect of surprise (saliency), which is arousing and causes state-

switching (Zink et al., 2003). Namely, we speculate that the amplitude-speed 

relationship may be an intrinsic property of behaviour-relevant prediction error in the 

context of delayed tests. More formally, the deviation amplitude may report memory 

accessibility (McElree, 1998). This is in light of the interference theory. Specifically, 

the proactive interference – whereby recall of the newly acquired information 

interacts with existing information, especially in a delayed test (Tehan & 

Humphreys, 1995; 1996) – is introduced by the encoded item in situ as per 

(unanticipated) updating items.  

Another possibility is that the update causes the entire sequence in working 

memory to be reconfigured (Kessler & Meiran, 2006), resulting in a refreshed 

representational state. This is plausible when a subvocal rehearsal process is 

involved (which is a common strategy for verbal stimuli), thereby improving 

memory availability (McElree, 1998; 2001).  

Overall, these reflect the neural re-instantiation of goal representation that is to 

be recognised in a delayed probe. The same line of reasoning can also be applied to 

the omission condition to interpret the lack of detection of amplitude-dependent 

speed gain. Specifically, anticipation of an updating stimulus precedes the updating 

event, which is argued to induce a meta-stable attractor state that trades 

(representational) stability for flexibility (see Chapter 3; Yu et al., 2013). The 

surprise then follows that no expected stimulus is presented; therefore there is no 

induced sensory salience. The (noisy) representations are still in the focus of 

attention in working memory, which means they are available, but they have no 

means to modulate memory accessibility. As a consequence, in processing the 
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omission, the brain does not have appropriate cues to nuance the accessibility or 

availability of memory retrospectively; it is therefore relatively independent of the 

subsequent retrieval speed. 

 

4.4.6. Conclusions 

In summary, we demonstrated that the multivariate patterns of omission and 

deviation responses are regionally segregated and dissociable. This suggests distinct 

neural mechanisms of surprise (prediction error) with respect to prior beliefs. The 

prior belief (or anticipatory set) may entail neural instantiations at both concrete and 

abstract levels, which speak to the idea of identity (perception and selection) and 

structural conformation (task-set and stimulus binding). This idea sits comfortably 

with the model proposed by Dosenbach et al. (2006, 2008), in which the FPN and the 

CON control adaptive, stimulus-dependent cognition and stable task set-

maintenance, respectively. The omission pattern, which reflects prediction signals, 

identified both systems, showing two levels of predictive control pertaining to 

working memory. The deviation pattern, on the other hand, speaks to a surprise in 

the high-fidelity memory representations maintained in the sensory cortex 

(Sreenivasan et al., 2014). This work offers an interpretation from the free-energy 

perspective that working memory may involve slow, itinerant dynamics within the 

FPN-CON network under the generalised predictive coding framework, which stands 

for robustness-adaptiveness trade-off in working memory maintenance and 

manipulation. We reported that, although surprise impairs overall reaction time, 

within-subject surprise response predicted faster reaction time without trading off 

accuracy. 
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Chapter 5. Causal models of anticipatory processes in 

working memory 

This chapter shows that working memory, compared to perceptual inference and 

motor responses, is shaped by predictive cues affording contingencies that entail 

representational flexibility and stability. The underlying question being investigated 

appeals to hierarchical inference in the brain: whether cortical connectivity encodes 

beliefs about fluctuations in working memory representation and whether improbable 

outcomes under those beliefs are conveyed back to the cortical hierarchy. We 

conducted a working memory task in which updating or maintaining memory items 

was contingent upon a preceding predictive cue. The cue induces an anticipatory set 

that is maintained until the realisation of the required working memory operation. 

The cue was probabilistic therefore surprising outcomes may ensue. We used 

dynamic causal modelling (DCM) to model Blood-oxygen-level dependent (BOLD) 

responses where the anticipatory set and surprise entered as forward, backward, or 

local recurrent modulations. Bayesian model selection (BMS) and family-level 

inference revealed that the anticipatory set modulates backward connections, 

whereas surprise modulates forward and local recurrent connections. Furthermore, 

statistical inference based on parameter estimates of the optimal model showed that 

the anticipatory set exerts differential modulatory effects across two working 

memory-related circuits. Our results suggest that working memory processing may 

follow the principle of hierarchical inference and that information flow is contingent 

upon top-down belief. 
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5.1. Introduction 

Our brain benefits from representing the causal structure of the environmental 

states that generate its sensations, thereby allowing it to react appropriately to a 

sensory input (e.g., perceptual inference; Rahnev et al., 2011; Summerfield et al., 

2006), and maintain these representations as necessary. This notion confers working 

memory with properties of predictive codes (Rao & Ballard, 1999) or hierarchical 

inference (Friston, 2008) in an anticipatory sense. To put the notion to the test 

requires a demonstration of cortical message passing in the working memory 

network. However, few studies have addressed this question (but see Bollinger et al., 

2010; Rahnev et al., 2011). Moreover, evidence with regard to predictive codes that 

enhance perceptual working memory performance has been reported to involve 

domain-specific sensory cortices (Bollinger et al., 2010; Rahnev et al., 2011; 

Summerfield et al., 2006). But working memory representation is not merely about 

sensory codes; rather, it represents future goal variables with nuanced stability and 

flexibility (Miller & Cohen, 2001; Sreenivasan et al., 2014). It therefore raises the 

question as to whether cortical hierarchies may represent such biased beliefs (or 

anticipatory sets) about the necessary representational stability or flexibility. 

Previously, we have shown that the neural correlates of anticipatory set are in the 

striatum and parieto-occipital regions. These regions showed an elevated activity 

when an imminent update to working memory content was more predictable. We 

therefore regarded activity in these regions as reflecting prediction signals that 

provide top-down modulations. However, in a different study, another line of 

evidence emerged that the fronto-parietal, as well as the cingulo-opercular networks 

may also reflect prediction signals derived from the anticipatory set. This was 
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revealed, using machine learning techniques (Schrouff et al., 2013), by the 

multivariate pattern of neural responses during which an anticipated update was 

omitted. It has been argued that omission to an expected sensory event elicit 

prediction error responses that reflect the prediction signals (SanMiguel et al., 2013; 

Wacongne et al., 2011). This notion appears to be a viable consequence of message-

passing under hierarchical inferences in the brain (Bastos et al., 2012; Friston, 2008). 

Briefly, we observed the prediction-related responses that have distinct cortical 

substrates. This discrepancy may be ostensible yet and speak to the information flow 

during hierarchical inference that can be disambiguated by means of effective 

connectivity. 

Dynamic causal modelling (DCM) is a hypothesis-driven technique for neuronal 

system identification (Friston et al., 2003). By using a two-layered forward model, it 

allows inferences to be made at a neuronal level in terms of inter-regional coupling 

due to experimentally designed perturbations, i.e., effective connectivity. Multiple 

plausible hypotheses are then motivated by assuming the (fMRI) data observed were 

generated by a certain connectional configuration, in which stimulus-bound and 

stimulus-/trial-free factors may drive or modulate the neuronal responses. Parameters 

of these models are estimated through a Bayesian inversion scheme during which 

individual approximates of model log-evidence are derived (Friston et al., 2007). 

Bayesian model selection (Stephan et al., 2009a) relies on these log-evidence 

estimates to determine which model, or model family (Penny et al., 2010), is 

optimal.  

Our principal hypothesis, which stems from the predictive coding framework, is 

that the anticipatory set is a top-down modulation exerted on backward connections 

that encode prediction signals, whereas surprise – i.e., the violation of prediction – 
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modulates forward connections that drive higher regions with prediction error 

signals. These modulatory effects entered a DCM comprised of regions that mediate 

flexible updating (Baier et al., 2010; McNab & Klingberg, 2008) and robust 

maintenance (Vogel et al., 2005) of working memory respectively.  

 

5.2. Methods 

5.2.1. Pre-processing of functional data 

Data pre-processing and DCM specification were carried out using SPM12 

(Statistical Parametric Mapping; Wellcome Trust Centre for Neuroimaging, London, 

UK). Pre-processing of functional images included correction of geometric 

distortions due to B0 magnetic field inhomogeneity using pre-acquired field maps 

(Hutton et al., 2002; Jezzard & Balaban, 1995), inter-scan realignment via affine 

rigid-body registration to model head motion, slice-timing correction, coregistration 

with respect to anatomical images, normalisation to MRI space based on the 

anatomical normalisation parameters, interpolation to voxel size of 2 x 2 x 2 mm3, 

and, finally, smoothing with a Gaussian kernel of 4 mm FWHM (full-width at half-

maximum). 

5.2.2. General linear model 

As part of the preprocessing prior to the DCM analysis (Figure 5.1), a GLM was 

set up for subsequent region-of-interest (ROI) selection and the adjustment of data 

features using a reduced model. In addition, the task-specific temporal profiles 

within the design matrix served as the input specification to the DCMs. The design 

matrix consisted of eight task-related regressors. The UPD-set and MAI-set 
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regressors represented sustained activity induced by the predictive cues and were 

modelled as a boxcar function of 6 s. The set regressors extended from the onset of 

cue stimuli to the offset of the action stimuli. The UPD and MAI regressors were 

impulse response functions at the onsets of the action phase, indicating non-specific 

neural transients associated with updating and maintenance processes, respectively. 

By ‘non-specific’, it means the two regressors were irrespective of the cue-action 

interactions. The interactions were modelled by the omission (Om) and deviation 

(Dv) regressors, which were both impulse response functions at the onset of 

maintenance action under UPD-set and updating action under MAI-set, respectively. 

An impulse stimulus function was used to model the effect of set-switching (Sw) at 

the onsets of predictive cues. This was to account for possible nuisances due to trial 

transition, although the UPD-set and MAI-set may have been disengaged upon the 

offset of the action phase, owing to the nature of the underlying anticipatory process. 

Finally, all visual transients of little interest with regard to the DCM analysis were 

modelled in a single non-specific regressor (NS). This included the predictive cues, 

the encoding cues, and the probing cues. The visual onsets of action cues may be 

included in the NS regressor if the subject had made an error in a specific trial. 

Accordingly, task-related effects of interest (set, action, and interactions) were not 

modelled for error trials. All task-related regressors were convolved with the 

canonical haemodynamic response function to create haemodynamic regressors. 

Motion and physiological regressors were also included to factor out non-

specific nuisances in the BOLD responses. The motion regressors were derived from 

the realignment procedure, parameterised by 3 translations (along x-, y-, and z-axis) 

and 3 rotations (pitch, roll, and yaw). The physiological regressors reflected 

peripheral readings of heart rate and respiration, using pulse-oximeter and respiratory 
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belt readings, which comprised of six cardiac, six respiratory regressors, as well as 

two regressors for heart rate change and change in respiratory volume (Hutton et al., 

2011). 

 

 

Figure 5.1 Preprocessing pipeline prior to the DCM analysis. This diagram outlines the 

procedures taken to extract the fMRI time series for subsequent DCM analysis. Firstly, the data 

were modelled using a general linear model with the design matrix containing regressors that 

encode all experimental manipulations and nuisance variables. An F-contrast was then specified 

to test the ‘effect of interest’ (i.e., with multidimensional contrasts to test multiple linear 

hypotheses for the experimental effects) within each subject. The resultant statistics were 

thresholded and corrected for multiple comparisons (family-wise error rate, p < 0.05) to generate 

individual F-maps. Voxels showing significant effects of interest in the F-map were regarded as 

candidate regions of interest (ROI) for DCM. These voxels were further filtered using 

information provided from previous MVPA results and region-specific AAL masks. The 

multivariate patterns associated with the omission (Om) event represent stimulus-free voxel 

responses and were considered to reflect pure prediction signals (see Chapter 4). Therefore, these 

voxels were considered appropriate to base our DCM analysis, in which connectivity changes 

with regard to predictions and the violation of predictions are of interest. Subsets of voxels of 
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individual Om patterns were selected based on the following four AAL regions respectively: the 

right middle frontal cortex (DPF), the left putamen (PUT), the left inferior parietal cortex (IPS), 

and the left inferior occipital cortex (Vix). As a consequence, four Om-informed ROI masks 

were created. This was followed by masking the F-maps accordingly using the ROI mask. The 

temporal mode of the fMRI time series within each mask was computed using the principal 

eigenvariate. 

 

5.2.3. Regions of interest (ROI) 

In DCM for fMRI, ROIs were specified in a hypothesis-driven, regionally 

specific manner, followed by extracting the temporal mode of multi-voxel BOLD 

time series using eigendecomposition. To restrict ROI selection to voxels exhibiting 

task-dependent responses that are relevant to the DCM hypothesis, we applied a two-

level masking procedure (Figure 5.1). First, for each subject, a reduced model was 

specified by creating an F-contrast to include only eight task-related effects in the 

design matrix (UPD-set, MAI-set, UPD, MAI, NS, Om, Dv, and Sw). This was 

followed by a classical inference which tested voxel-wise F statistics with a 

thresholding p-value of 0.05 (corrected for family-wise error rate). This created a 

thresholded F-map, from which ROIs were selected using secondary masks. The 

secondary masks served a region-defining purpose, which, according to our 

hypothesis, included the DPF, PUT, IPS, and Vix masks. These abbreviations stand 

for the right dorsolateral prefrontal cortex, the left putamen, the left inferior parietal 

cortex, and the left visual cortex, respectively. The construction of the secondary 

masks depended on two primary masks, the multivariate patterns from classifier 

weights (see Chapter 4) and the AAL atlas (Tzourio-Mazoyer et al., 2002). 

Specifically, the weight maps contained Om-informative voxels that can be used to 

motivate the ROI specification. Because the Om patterns represent stimulus-free 

voxel responses and underlie pure prediction signals they are considered appropriate 
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for DCMs that address connectivity changes due to predictions (anticipatory sets) 

and the violations of predictions (surprises). Details as to how the classifier weight 

maps were derived using MVPA was described in Chapter 4. In short, each ROI was 

the union of the Om-informed mask and designated AAL masks, excluding sub-F-

threshold voxels.  

The specific AAL regions used for the DPF, PUT, IPS, and Vix masks were the 

right middle frontal cortex, the left putamen, the left inferior parietal cortex, and the 

left inferior occipital cortex, respectively. Previously, we used multi-region AAL 

masks for the MVPA study. This, however, may not be feasible to motivate 

haemodynamic state variables for the DCM analysis. Because the DCM models the 

haemodynamic parameters on a region-by-region basis (Stephan et al., 2007b) and 

the inter-regional haemodynamic responses may vary irrespective of the underlying 

neuronal activity, conflating spatially distant ROIs into a single temporal mode may 

confound the underlying haemodynamic model, thereby possibly resulting in an 

improper model estimation and subsequence inferences. 

fMRI time series were isolated by combining the two levels of masking, 

followed by adjusting the remaining voxel data with respect to the null space, i.e., 

using the reduced design matrix. Next, the temporal mode of each ROI time series in 

terms of their first eigenvariate was calculated by means of eigendecomposition 

(SVD).  

 

5.2.4. Robust general linear model 

An optional noise modelling scheme was applied when spurious spikes 

(amplitude > 5 standard deviations) were present in the ROI time series. This was 
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rare but was nonetheless observed in one of the subjects. The approach followed the 

Robust General Linear Model (RGLM; Penny, Kilner, & Blankenburg, 2007) in 

which the noise is modelled with a mixture of Gaussians. This allows different data 

points to have different levels of noise and provides robust estimation of regression 

coefficients via a weighted least square approach (Penny et al., 2007). In practice, the 

spikes were modelled as high-variance outliers within a 2-component mixture of 

Gaussians noise model, as opposed to the standard one-component. The eigenvariate 

was modelled using the RGLM with the reduced design matrix described previously. 

The outlier component was then subtracted from the original time series. 

 

 

Figure 5.2 Spike removal with the Robust General Linear Model (RGLM). This figure 

illustrates the presence of spurious spikes in the BOLD response of Vix in one subject. RGLM 

uses an enhanced noise model that treats noise as being generated by a mixture of Guassians. 

Here, we used a two-component mixture. A high variance noise component (red) was detected 

by the model, which was subsequently subtracted from the signal (blue line is the result). 
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5.2.5. Dynamic causal modelling 

DCM for fMRI (DCM12) treat brain responses as deterministic consequences of 

regional (inter-state) coupling prescribed by a set of dynamic equations under the 

influence of experimental perturbations (Friston et al., 2003; later versions posit 

stochastic dynamics but these are beyond the scope of this thesis). It has model 

parameters that (1) mediate external influences on the states, e.g., exteroceptions; (2) 

exert influences amongst states in the absence of external inputs; (3) allow intrinsic 

coupling to be modulated by external inputs. Under the DCM framework, similar to 

that of other structural models, multiple hypotheses may be motivated in terms of 

model alternatives to construct a ‘model space’. These models can then be inverted 

and compared as competing hypothesis under a Bayesian framework (Penny et al., 

2004; Stephan et al., 2009a), which enables different levels of inference (Penny et 

al., 2010). 

5.2.6. Model space 

Our model space was defined on the basis of a fixed structural configuration that 

defines intrinsic coupling, as well as a set of driving inputs (Friston et al., 2003). We 

assumed a hierarchical organisation between the four neuronal states: DPF, PUT, 

IPS, and Vix. The hierarchy was defined such that DPF is at the highest level, PUT 

and IPS intermediate, and Vix the lowest. This means all regions are inter-connected, 

except for DPF and Vix. The driving inputs were UPD, MAI, NS, and Sw regressors 

entering Vix. The temporal profiles of these inputs were as specified in the earlier 

design matrix (Figure 5.3a). Although we are only interested in the effect of 

anticipatory sets and the violations of set, other experimental effects of no interest 
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were also included. The reason for including all experimentally designed effects is to 

reduce the residual error during model fitting. 

 

 

Figure 5.3 DCM specification and model space. a, the basic model architecture illustrating a 

hierarchical organisation with four constituent regions (high to low): the right dorsolateral 

prefrontal cortex (DPF), the left putamen (PUT)/inferior parietal cortex (IPS), and the left 

inferior occipital cortex (Vix). All regions are reciprocally connected, except DPF and Vix. The 

strength of these connections represents intrinsic coupling in the absence of experimental 

perturbations. Stimulus-bound experimental effects, UPD, MAI, NS, and Sw, entered Vix as 

driving inputs. b, model space defined by three factors: set modulations on inter-regional 

coupling, surprise modulations on inter-regional coupling, and intra-regional surprise 

modulations. Each factor has two levels; all combinations yielded a model space of eight 

models. Coloured squares indicate the types of modulatory effects under each model. The 

modulatory effects can be further divided into that of anticipatory sets (Sc) and surprises 

(Xc/Xr): Sc-F, inter-regional coupling-forward; Sc-B, inter-regional coupling-backward; Xc-F, 

inter-regional coupling-forward; Xc-B, inter-regional coupling-backward; Xr-, intra-regional 

recurrent modulations absent; Xr+, intra-regional recurrent modulations present. Note that the 

‘Sc’ entails updating and maintenance sets and ‘Xc/Xr’ entails omissions and deviations. There 

is no variation within Sc or Xc/Xr, all levels of set and surprise entered the model concurrently. 

c-e, illustrating inter-regional forward coupling, backward coupling, and intra-regional recurrent 

connection, respectively. c-d, the inter-regional connections can be subdivided into factors so 
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that they are related to different hierarchies (e.g., solid arrows versus dashed arrows) or to 

different routes (e.g., the green route that uses PUT as a waypoint versus the red route that uses 

IPS as a waypoint). Such division allows classical inferences on the parameter estimates using a 

factorial design (e.g., ANOVA). 

 

The principle hypotheses associated with the model space pertained to the 

connections on which the set (UPD-set and MAI-set) and surprise (Om and Dv) 

exerted modulatory influences. They were systematically constructed along the 

following dimensions. Firstly, the UPD-set and MAI-set were treated as top-down 

modulations. This means they may modulate the strength of DPF→PUT/IPS and 

PUT/UPS→Vix connections. However, an anatomically plausible alternative exists: 

the top-down modulations exerted pre-synaptic influences to the dendritic tree of the 

lower region, thereby tuning the output (i.e., forward) of the lower region (Penny et 

al., 2004). In other words, it is equally possible that the set modulated the 

Vix→PUT/IPS and PUT/IPS→DPF connections. Secondly, the surprise (Om and 

Dv) is hypothesised to modulate forward connections if they encode prediction error 

signals (Friston & Friston, 2005) and speak to the notion of inter-regional model 

adjustment (Garrido et al., 2008). That is, Om and Dv are hypothesised to modulate 

the Vix→PUT/IPS and PUT/IPS→DPF connections. To design competing model 

alternatives, we allowed Dv and Om to modulate the backward connections: 

DPF→PUT/IPS and PUT/IPS→Vix. Finally, predictions may contribute to intra-

regional adjustment to the statistical regularity of the environment, hence a surprise 

can be regarded as adaptation modulations that exerts modulatory effects on 

recurrent connections (Garrido et al., 2008). In this case, Dv and Om entered the 

models as modulatory inputs in the self-connections: Vix→Vix, PUT→PUT, 

IPS→IPS, and DPF→DPF. This was tested against a set of null models, i.e., those 
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without recurrent connections. To summarise, our model space was generated by 

asking the following questions (the figure inside the brackets indicate the number of 

levels): 

1. Is the anticipatory set a top-down modulation on the forward or backward 

connections? [2] 

2. Does the surprise represent prediction error signals and inter-regional model 

adjustment via forward connections? [2] 

3. Does the surprise have a role in modulating intra-regional adaptation? [2] 

Overall, the combination of the three dimensions, each with two levels of 

variations, gave rise to the model space of eight models (Figure 5.3b). Each model 

was inverted to obtain parameter estimates using a variational free energy 

minimisation scheme under the Laplace assumption (Friston et al., 2007). This 

means the coupling strengths are expressed in terms of their conditional expectations 

and covariances (Friston et al., 2003).  

5.2.7. Bayesian model comparison 

The questions we raised above to motivate our model space can be tested using 

Bayesian model comparison with appropriate model space partitioning. Model space 

partitioning creates ‘families’ or comparison sets in which models within one family 

share a common structural aspect that the other families do not have (e.g., one has 

recurrent modulations and the other has none). Inferences can then be made with 

regard to the commonality while ignoring idiosyncratic model structures within each 

family. This is called family-level inference (Penny et al., 2010), the underlying 

concept closely resembles factorial experimental designs in psychology where data 

from all cells are summarised to assess the size of main effects. Under the 
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assumption of random effects, we tested (1) Sc-F vs Sc-B (inter-regional set 

modulation, forward versus backward; model 1 - 4 versus model 5 - 8); (2) Xc-F vs 

Xc-B (surprise modulations on inter-regional coupling, forward versus backward; 

model 1, 2, 5, 6 versus model 3, 4, 7, 8); (3) Xr- vs Xr+ (surprise modulations on 

intra-regional recurrent connection, absence versus presence; model 1, 3, 5, 7 versus 

model 2, 4, 6, 8). The results were summarised in terms of family exceedance 

probabilities. In addition, model-wise random-effect Bayesian model comparison 

(Stephan et al., 2009a) was applied to determine whether an optimal model exists at 

the group level. The results were reported in terms of model exceedance 

probabilities.  

5.2.8. Classical inferences with DCM parameter estimates 

For the optimal model, three separate statistical analyses were performed at the 

group level on the parameter estimates: (1) set-related inter-regional couplings, (2) 

surprise-related inter-regional couplings, and (3) surprise-related recurrent 

connections. For the respective set- and surprise-related inter-regional couplings, 

their modulatory effects were associated with eight parameter estimates: that 

between Vix and PUT/IPS and that between DPF and PUT/IPS, multiplied by the 

two levels of update predictability (i.e., UPD-/MAI-set or Dv/Om). This allows the 

parameter estimates to be tested in a factorial design. The factors are defined by the 

update predictability (PR), hierarchy (HY), and route (RO). For example, Figure 5.3c 

illustrates that the parameters for Sc-B in model 6 can be factorised with respect to 

high (dashed arrows; PUT/UPS→DPF connections) and low (solid arrows; 

Vix→PUT/IPS connections) hierarchies, or to PUT- (green arrows; 

Vix→PUT→DPF pathway) and IPS-routes (red arrows; Vix→IPS→DPF pathway). 
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The same factors then repeat across MAI-set and UPD-set. Likewise, the parameters 

for Xc-F in models 6 were treated according to Figure 5.3d. Analysis of variance 

(ANOVA) was used to test the main effect of PR, HY, and RO, as well as the 

interactions amongst these factors.  

As for the parameter estimates for the recurrent connectivity, one-sample t tests 

were used to detect significant changes in coupling strengths in the four regions 

under Om and Dv. Bonferroni corrections were applied to control the false positive 

rate due to multiple comparisons (overall threshold α = 0.012). 

 

5.3. Results 

5.3.1. Bayesian model comparison for family level inferences 

Family-wise model comparisons revealed that the anticipatory sets (UPD-set and 

MAI-set) were more likely to modulate backward connections, rather than the 

forward connections. The Sc-B family showed a dominant exceedance probability 

(96.26%; right bar, Figure 5.4a), than the Sc-F family (3.74%; left bar, Figure 5.4a). 

Forward, but not backward, connections were modulated when the anticipatory sets 

were violated by surprising outcomes (Om or Dv). This was revealed in the inter-

regional coupling Xc-F (exceedance probability, 98.56%; left bar, Figure 5.4b) over 

the Xc-B family (exceedance probability, 1.44%; right bar, Figure 5.4b). We also 

tested the hypothesis as to whether or not the surprises exerted modulatory effects 

over the inter-regional recurrent connectivity. Our result indicated that the models in 

which such recurrent modulations were present can better predict the observed 

BOLD responses. The model selection favoured the Xr+ family (exceedance 
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probability, 99.69%; right bar, Figure 5.4c) over the Xr- family (exceedance 

probability, 0.31%; left bar, Figure 5.4c). 

 

 

Figure 5.4 Bayesian model comparisons at family and model levels. a, family-wise 

comparison for the directionality in inter-regional set modulations; Sc-F, forward; Sc-B, 

backward. b, family-wise comparison for the directionality in inter-regional surprise 

modulations; Xc-F, forward; Xc-B, backward. c, family-wise comparison for the presence of 

inter-regional surprise modulations; Xr-, modulation absent; Xr+, modulation present. d, 

Bayesian model comparisons across individual models across all subjects. Model 6 is the 

optimal under random effects inference. e, A schematic illustrating all modulatory effects in the 
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optimal model. The thick arrows indicate set modulations, whilst the dashed arrows indicated 

surprise modulations. For each arrow, the two levels of set/surprise effects entered concurrently. 

 

5.3.2. Comparing individual models 

Comparing individual models under the assumption of random effects revealed  

model 6 as the optimal model (exceedance probability, 94.64%; Figure 5.4d), in 

which the set modulations were exerted on backward connections, the surprise 

modulations on forward connections. In addition, the inter-regional recurrent 

connections were modulated by the surprise effects (Figure 5.4e). 

5.3.3. Bayesian parameter averaging 

To better illustrate the optimal model, Bayesian averaging of the posterior 

parameter estimates in model 6 was performed to summarise parameter estimates 

across subjects (Table 5.1).  
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Table 5.1 DCM parameter estimates of the intrinsic and modulatory connectivity derived from 
Bayesian averaging of the optimal models across all subjects. Figures in parentheses indicate 
standard deviations. 

 

 

5.3.4. Statistical analysis 

Repeated-measure ANOVA for the inter-regional set modulations (Sc-B) 

revealed a significant PR x RO interaction (F1,16 = 6.213; p = 0.024). No significant 

main effect was detected for PR (F1,16 = 0.066; p = 0.801), HY (F1,16 = 0.952; p = 

0.351), and RO (F1,16 = 2.435; p = 0.138), nor was the interaction for PR x HY (F1,16 

= 2.760; p = 0.116), HY x RO (F1,16 = 0.446; p = 0.514), and PR x HY x RO (F1,16 = 

2.075; p = 0.169). 

For inter-regional coupling parameters Xc-F, a significant main effect of HY was 

detected (F1,16 = 5.082; p = 0.039). No significant main effect was detected for PR 

(F1,16 = 0.867; p = 0.365), and RO (F1,16 = 0.422; p = 0.525), nor was the interaction 

for PR x HY (F1,16 = 0.929; p = 0.349), PR x RO (F1,16 = 1.378; p = 0.258), HY x 

RO (F1,16 = 3.983; p = 0.063), and PR x HY x RO (F1,16 = 0.653; p = 0.431). 
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Student’s t-tests for the Xr+ parameters under Om were significant for the DPF 

recurrent connectivity (t16 = -2.919, p = 0.010) but not fore the Vix, PUT, or IPS 

recurrent connectivity (t16 = -1.401, p = 0.181; t16 = -1.996, p = 0.063; and t16 = -

2.380, p = 0.030, respectively). None of the Xr+ parameters under Dv was 

significant: Vix, t16 = -2.181, p = 0.045; PUT, t16 = -1.983, p = 0.065; IPS, t16 = -

2.304, p = 0.035; DPF, t16 = -1.827, p = 0.087. 

 

5.4. Discussion 

This study aimed to characterise (1) the neural implementation of anticipatory 

set and (2) the information processing underlying the violation of the anticipated 

states in terms of their influences on effective connectivity. Here, the anticipatory set 

pertains to the maintenance of neuronal states that underpin flexible or stable 

working memory representations. In our experimental setting, this was induced by 

predictive cues that portend event cascades involving imminent updating or non-

updating to information kept in working memory. We regarded the sustained neural 

activity associated with the anticipatory set as the implementation of prediction 

signals. Previously, we have demonstrated that such prediction signals mainly 

involve the parieto-occipital network and the striatum (see Chapter 3). However, 

another line of evidence (see Chapter 4) based on multivariate pattern analysis 

suggested otherwise – that, under surprising outcomes, neural responses reflecting 

pure prediction signals were associated with the fronto-parietal network. We argue 

that the ostensible contradiction between the two ‘prediction signals’ may be 

reconciled in light of the message passing scheme from theoretical neurobiology 

(Friston & Friston, 2005; Mumford, 1992; Rao & Ballard, 1999). That is, prediction 
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signals are encoded by top-down backward connections, whereas prediction errors 

signals are encoded by bottom-up forward connections. In other words, what we 

observed that appeared to be counter-intuitive may well speak to the directionality of 

information exchange within a neural network that integrates generative models with 

exogenous inputs. More importantly, the directionality of prediction/prediction error 

signal transmission may enable interpretations of neuronal plasticity that underlie 

representational meta-stability in working memory. Dynamic causal modelling 

(DCM) allows multiple plausible hypotheses to be motivated with regard to the 

statement above and to be tested using Bayesian model selection. Our result was 

consistent with the message passing scheme under the predictive coding framework 

in that the anticipatory set serves as top-down modulations on the backward 

connections, whilst the surprise (prediction error) reflects modulations on the 

forward and recurrent connections.  

In cognitive neuroscience studies, it is considered that tasks requiring context-

sensitive performance (e.g., those employing attentional or anticipatory set) are 

subject to top-down control. These contextual modulations are often trial-free, as 

opposed to evoked responses that are stimulus-bound, and speak to the effect of 

changes in membrane excitability and/or synaptic plasticity. In DCM analysis, a top-

down modulation may be motivated in two equally plausible ways. One is via direct 

modulation on the backward connections. Alternatively, it may be expressed through 

modulations on the forward connections. Despite the plausibility, the two types of 

modulations can have quite distinct associations with neuronal innervations and 

therefore pertain to asymmetrical functional aspects. Given the current consensus 

that BOLD responses are more sensitive to presynaptic (driving/modulatory) 

activity, which is proportional neuronal spiking rates (Arthurs & Boniface, 2002; 
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Cardoso, Sirotin, Lima, Glushenkova, & Das, 2012; Friston, 2012), backward 

modulations may call for changes in spiking activity in the afferent neurons that have 

a strong ionotropic component or synaptic modifications that are metabotropically 

mediated in the dendritic tree of the lower area. Forward modulations, on the other 

hand, may reflect excitability of projection neurons targeting higher areas or shape 

the biophysical properties of the dendritic tree in the higher area. More importantly, 

cortico-cortical forward connections tend to terminate in the granular layer (L4), 

whereas backward connections originating from deep pyramidal cells tend to 

terminate outside L4 (i.e., L2/3 and L5/6; Felleman & Van Essen, 1991). Recent 

theoretical development in the canonical microcircuit and the free-energy principle 

(e.g., Bastos et al., 2012; Feldman & Friston, 2010; Friston, 2008) state that forward 

connections drive the L4 units reporting prediction errors, whilst backward 

connections signal the sensations about the world based on the underlying causes in 

encoded in a forward model (Friston & Friston, 2005). This lends an attentional role 

to the forward modulations because attention confers synaptic gain control over the 

prediction error units via nuancing the precision of the error signal (Feldman & 

Friston, 2010). A useful example to illustrate this is with the predominant forward 

modulations during load-dependent working memory performance (Dima, Joel, 

Jogia, & Frangou, 2013). Using the n-back paradigm, Dima et al. (2013) 

demonstrated that high n-back loads were associated with a tendency towards a 

lateralised forward parieto-prefrontal modulation. Their result can be interpreted 

under the generalised predictive coding framework (Friston, 2008; Friston et al., 

2011), whereby an internal model is continuously inverted to update the causes – that 

generates imminent targets – from the inputs (Friston & Friston, 2005) with multiple 

instances of precision optimisation. We contrast the finding of Dima et al. with those 
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involved anticipatory processing. Rahnev et al. (2011) used predictive cues that 

portended the likely direction of moving stimuli and showed that employing prior 

expectations in perceptual decisions modulated both forward and backward 

connections between the prefrontal and sensory regions. Their result suggests that 

anticipatory processing involves a backward component, representing top-down 

prediction signals that modulate the motion-sensitive sensory areas. 

Taken together, our result with regard to set modulation was in line with that of 

Rahnev et al. (2011), and was compatible with that of Dima et al. (2013) under the 

aforementioned theoretical framework. Although we did not model the concurrent 

forward/backward modulatory effect of the anticipatory set, we suspect that the 

forward modulation might be redundant in explaining our data, as compared with 

Rahnev et al. This is because upon the predictive cue our subjects lacked the 

recourse to utilise the prediction, which means there was no concrete representation 

on which predictive processing can be brought to bear. On the contrary, predictions 

employed in Rahnev et al. (2011) entailed concrete representations about how 

sensations will be caused. This allows the predictions to be reciprocated through 

intra-laminar or cortico-thalamic projections and back to higher areas to optimise the 

internal model. In other words, top-down modulations relating to perceptual set may 

have a role in exerting both driving and modulatory inputs, whereas the anticipatory 

set that serves to nuance cognitive meta-stability may have a predominantly 

modulatory role. We hope to elucidate this notion in future work. 

Another crucial aspect of the forward set modulations is that the connections are 

differentially modulated in a context-sensitive manner. Specifically, our result 

suggests that anticipating stable or flexible working memory representations can be 

dissociated in terms of connectivity changes along the PUT-route or the IPS-route. 
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This was revealed by the significant PR x RO interaction. From Table 5.1 it is 

evident that the UPD-set had an enhancing influence on the DPF→PUT→Vix 

connection and a depressing influence on the DPF→IPS→Vix connection, whilst the 

reverse was the case for the MAI-set modulation. One can accordingly interpret that 

the DPF→PUT→Vix and DPF→IPS→Vix connections are two mutually 

antagonising functional circuits in the service of balancing cognitive flexibility and 

stability, respectively. Indeed, under the MAI-set, the brain must enable an efficient 

retrieval mechanism for the active representation (McElree, 2001) that may later 

come into the focus of attention. Empirical evidence has suggested that the parietal 

cortices mediate the selection of information outside of focus of attention (Bledowski 

et al., 2009) or the exclusion of irrelevant information (Vogel et al., 2005). Our result 

indicates that this mechanism may also be enabled in a preparatory sense. Along the 

same line, the specific selection mechanism may need to be downplayed under the 

UPD-set because the encoded information is potentially irrelevant before the 

realisation of an imminent update. This necessitates a higher degree of 

representational flexibility that implicates the gating mechanism via the basal ganglia 

(M. J. Frank et al., 2001; R. C. O'Reilly & Frank, 2006).  

Our data were best explained by the model in which the violation of anticipatory 

set represents forward and local recurrent modulations. This finding is compatible 

with empirical findings from other domains (Garrido et al., 2008; e.g., Ouden et al., 

2010), suggesting the predictive coding framework is a principled, unifying 

framework for understanding information processing in the brain. The predictive 

coding framework, i.e., hierarchical inference in the brain, states that the prediction 

error signals should take the form of forward (feedback) inputs and be minimised 

through recurrent interactions across levels of cortical hierarchy such that the most 
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probable cause of an input is derived (Friston, 2003; Friston & Friston, 2005). 

Changes in forward connectivity therefore conform to changes in the sensitivity of 

the unit reporting prediction error that is conveyed to higher areas and also speak to 

the relative influences between bottom-up prediction error and prediction error based 

on top-down prior expectations. Under this perspective, it may have been inferred in 

the brain that in the Om trials the cause of the sensations (i.e., upcoming target/probe 

stimulus) are solely due the variables encoded in the internal model of the world. On 

the other hand, under the Dv trials the internal model turned out to be improbable 

and had to incorporate external stimuli in order to update the internal model. This 

may partly explain our finding with regard to the main effect of HY and the 

significant DPF-DPF recurrent modulation: prediction error due to Om is 

predominantly endogenous and may rest on regulating higher level representations 

within association cortices or through lateral inhibition; whereas Dv had an 

additional level of prediction error that was stimulus-bound. However, it is unclear 

as to why the connectivity changes due to surprise did not exhibit a context-

dependent dissociation, as one would have expected from the observation of set 

modulations. This calls for further studies to confirm this notion.  

 

5.5. Conclusions 

In summary, this study provided an integrative perspective of how anticipatory 

stability and flexibility, as well as their violations, modulate neuronal coupling 

within a working memory network. It provides evidence that working memory 

processes, as with perception, follow the framework of hierarchical inference, or 

generalised predictive coding. In other words, the brain not only represents the 
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environmental states that cause our sensations but also represents the likely 

fluctuations in those states, by implementing an ‘anticipatory set’. The anticipatory 

set is synonymous with model predictions that pertain to backward connections from 

higher areas. We showed that the neuronal implementation of anticipatory set 

emerges as coupling between functionally specialised regions that differentially 

contribute to cognitive stability and flexibility. Consistent with the predictive coding 

framework, violating the anticipatory set reflects connectivity changes in forward 

and intra-regional coupling. However, the nature of neural computations underlying 

the surprise-related connectivity changes remains to be determined. Overall, our 

finding appeals to a novel yet complementary view of working memory function. 
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Chapter 6. General discussion and conclusions 

This thesis started out questioning whether or not working memory follows the 

principle of hierarchical inference. That is, working memory function may be shaped 

by predictions and prediction errors. Although several previous studies have touched 

upon a relevant notion, they did not address the anticipatory flexibility of working 

memory representation, nor did they reveal the functional anatomy of prediction 

error responses. The original contributions of this thesis pertain to its methodology 

and empirical findings that addressed the aforementioned question. The novel 

experimental design used a cue-induced anticipatory set, not about stimulus identity, 

but about a likely event cascade that entails optimised cognitive flexibility and 

stability. Machine learning techniques and dynamic causal modelling were brought 

to bear to illustrate the multivariate nature and causal relationships in the working 

memory network. In Chapter 3, a key finding related the anticipatory set to the 

dopaminergic system. It showed how updating or maintaining of working memory 

contents may be mediated by anticipatory set through dopaminergic modulations. In 

Chapter 4, the violation of anticipatory set was examined with multivariate pattern 

analyses. It showed that prediction error responses comprise both endogenous 

(model) and exogenous (stimulus) components. This was reflected in the dissociable 

patterns of omission and deviation. Chapter 5 provided an integrated picture of 

prediction and prediction error in terms of their interactions with the working 

memory network. Using causal modelling and Bayesian model comparison, strong 

evidence indicated that prediction subserves backward modulations, whereas 

prediction error modulates forward and local recurrent connections. A crucial finding 

was also revealed that a connectivity-based mediation of representational flexibility 
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and stability may be attributable to the striatum and the inferior parietal cortex, 

respectively. Overall, this thesis provides the first evidence that working memory can 

be regarded as an instantiation of hierarchical inference. The following sections 

summarise several limitations of the current work and possible refinements to 

motivate future work. 

 

6.1. Is the anticipatory set a non-specific modulation? 

One obvious question relates to how specific the anticipatory set is in modulating 

working memory updating per se. Is the neuronal implementation of anticipatory 

processes targeting the time at which an update or maintenance takes place, or is it a 

fairly general nuance of neuronal dynamics, which influences the efficiency of 

information encoding? The latter speaks to the stability of the attractor network or 

the control of signal-to-noise ratio that entails shaping synaptic efficacy and lateral 

inhibition. The former, on the other hand, may require the exact timing of an update 

to be represented. It is one limitation of the current experimental design that the 

delay between successive cues was not jittered; therefore the aforementioned 

possibility cannot be ruled out. Nonetheless, it may be argued that the more concrete 

the idea is being anticipated, the more specific the anticipatory set is from an 

implementational aspect. In other words, concrete anticipation is about perceptual 

inference, about a single state that is expected. Anticipating whether or not to form a 

new binding of percepts may be a less concrete idea. Thus, the anticipatory set 

possibly defines a dynamic regime in which multiple tentative states may be 

coordinated to generate an integrated piece of information. This means the 

anticipatory set may be non-specific and may affect all information subsequently 
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represented. A metaphor to illustrate the difference an anticipatory set makes is, for 

example, placing stickers on a greased surface, as compared with on a paper surface. 

In one case, the stickers may be poorly secured but it is otherwise easier to re-order 

or replace some of them than in the other case. This tentative notion suggests 

possible differences in neural activity during encoding or retention between the two 

levels of anticipatory set, which calls for further empirical work. 

 

6.2. To what extent is dopamine involved? 

Following the question above, it is conceivable that dopaminergic modulation 

partly accounts for the functional role of anticipatory set. Indeed, elevated 

haemodynamic responses in the dopaminergic midbrain (SN/VTA) have been 

identified when subjects were implementing the anticipatory set for an imminent 

update (see Chapter 3). The midbrain activation was characterised by a sustained 

temporal profile, which was distinguished from the transient activation during an 

update. Although evidence has suggested midbrain (BOLD) activation reflects 

dopamine discharge (D'Ardenne et al., 2008) in its phasic mode (D'Ardenne et al., 

2012), there is little evidence in association with tonic dopamine discharge. As 

reported in Chapter 3, the sustained midbrain activation was interpreted as reflecting 

tonic discharge. This is not entirely without physiological plausibility because (1) the 

fMRI signal reflects presynaptic activity (Friston, 2012) and (2) the tonic discharge 

of dopamine may be mediated by (prefrontal) glutamatergic afferents (Bilder et al., 

2004; Grace, 1991). The problem remains with regard to which receptor subtype is 

implicated. Given the high binding affinity under relatively low extracellular 

concentration, the D2 receptor is a likely candidate. However, it is still unclear as to 
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whether the dopamine activity is restricted to interaction with auto-receptors or the 

concentration is high enough to interact with postsynaptic and extrasynaptic 

receptors. This may have a marked consequence in regulating the neuronal dynamic 

regime expressed through predominant D2 stimulations (Durstewitz & Seamans, 

2008). One possible way to gain insight into this is to observe subjects’ performance 

in the presence of distractors under an appropriate anticipatory set. Because the ‘D2 

state’ entails cognitive flexibility and spontaneous representations (R. C. O'Reilly, 

2006), if the anticipatory set induced a D2-state and had a non-specific modulatory 

effect (see above), then the subject’s performance would be susceptible to irrelevant 

information in the environment. A relevant measure here is the intrusion rate (e.g., 

Artuso & Palladino, 2011). Alternatively, pharmacological interventions that induce 

D2 antagonism may be employed. Recent advances in combining drug 

administration and dynamic causal modelling as an assay of synaptic function 

(Moran, Symmonds, Stephan, Friston, & Dolan, 2011) would also shed light on this 

issue. 

 

6.3. Towards a more comprehensive test of predictive coding  

The current studies have drawn upon the predictive coding framework. The 

initial findings suggested that working memory follows hierarchical inferences in the 

brain, as revealed by backward modulations due to anticipatory set and forward 

modulations due to surprise.  

The prefrontal cortex, the inferior parietal cortex, and the visual cortex are 

anatomically remote regions, therefore the inter-regional projections between these 

regions are more likely to follow the general pattern by Felleman and van Essen 
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(1991), thereby clearly defining their hierarchical relationship. The hierarchical 

position for the striatum is more elusive. Generally, the striatum receives cortical 

afferents mainly from layer V, the thalamus sends axons to cortical layer IV. This 

appears to make the striatum a hierarchically lower area to the other three mentioned 

earlier. However, the striatum also receives cortical afferents from supragranular 

layers (Steiner & Tseng, 2010). Additionally, the striatum receives converging inputs 

from nearly all cortical regions that are both hierarchically high and low. Overall, the 

cytoarchitecture of the striatum makes it more difficult to determine its hierarchical 

level.  

Despite this limitation, the current evidence may be further strengthened by 

electro-/magnetophysiological measurements using EEG or MEG. The reason why 

M/EEG analysis may help characterising working memory processing as an 

instantiation of hierarchical inference is based on the findings with regard to lamina-

specific neuronal synchronisation and spike-field coherence (Buffalo, Fries, 

Landman, Buschman, & Desimone, 2011; Roopun et al., 2008). Briefly, superficial 

layers of cortex are dominated by gamma frequencies, whereas deep layers show 

predominant alpha or beta frequencies. It is therefore useful to base inference of 

forward/backward connections on M/EEG data. Recent empirical evidence has 

implicated a functional dissociation between gamma and alpha oscillations in 

working memory performance: the alpha oscillation serves as an index to gate 

irrelevant information (Manza, Hau, & Leung, 2014) or as a preparatory set (Zanto, 

Chadick, & Gazzaley, 2014), whereas the gamma oscillation mediates successful 

execution or error detection in working memory performance (Yamamoto, Suh, 

Takeuchi, & Tonegawa, 2014). A potential problem might arise using an 

electromagnetophysiology approach to study neuronal activity in subcortical 
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structures. M/EEG is inherently of low sensitivity to subcortical generators, 

nevertheless, a model of deep brain activity may be applied to alleviate the limitation 

stated (e.g., Attal & Schwartz, 2013). 

 

6.4. Synthetic model 

Simulations with theoretical models of neural systems give insights into 

mechanistic principles; also, they predict the system’s behaviour under aberrant 

parameters that can simulate neurological disorders (e.g., Friston et al., 2012; 

Humphries, Stewart, & Gurney, 2006). These models can be realised at different 

scales, from single neurons (e.g., leaky integrate-an-fire model; Brunel, 2000; 

Humphries et al., 2006) to neuronal ensembles (Friston et al., 2012; e.g., Pinotsis & 

Friston, 2011). Our understanding of working memory processing has benefitted 

from attractor models of neuronal firing pertaining to delayed-response (Amit et al., 

1997) or neuromodulations (Durstewitz et al., 2000; Durstewitz & Seamans, 2008). 

Contrary to many models of neural mechanisms that hold an implicit assumption of 

steady-state or periodic network dynamics, models assuming transient states 

arguably provide better accounts for network behaviour (Rabinovich et al., 2008). A 

nice example of transient population dynamics is with the winner-less competition – 

or the predator-prey relationship – in which no stable equilibrium is reached. 

Winner-less competition can be implemented using the Lotka-Volterra equation 

(Hoppensteadt, 2006). If one wishes to model working memory processes at a 

population level, then the Lotka-Volterra model would be a suitable approach. This 

is because working memory representations are transiently stable, i.e., they can 

achieve stability and flexibility concurrently and selectively. Recent modelling work 
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based on winner-less competition (or stable heteroclinic sequence) revealed that an 

effective limit in capacity (cf. magic number 7; Jensen & Lisman, 1996) naturally 

emerges in working memory (Bick & Rabinovich, 2009). Bick and Rabinovich’s 

(2009) work has a profound implication for dopaminergic modulation, as dopamine 

is implicated in representational stability (Durstewitz & Seamans, 2008) and capacity 

limits (Cools et al., 2008). It is foreseeable that such models can be refined to include 

descriptions of dopaminergic or anticipatory modulations. Also, multiple layers of 

stable heteroclinic sequences/cycles (Bick et al., 2010) may be devised to allow 

characterisation of slow dynamics of the set-maintenance network (cf. task-set 

control of the cingulo-opercular network; Chapter 4). Updating in working memory, 

on the other hand, may be realised with the heteroclinic binding model (Rabinovich, 

Afraimovich, & Varona, 2010). Crucially, one would hope to take a probabilistic 

perspective on neuronal states (see variable-precision models; Ma et al., 2014) and to 

bring the above framework into the formalisation of free-energy minimisation 

(Friston et al., 2006; Friston, 2008). 

 

6.5. The issue with working memory capacity 

Little has been addressed in this thesis with regard to the contribution of the 

measure of working memory capacity to individual working memory performance. 

Working memory capacity varies across individuals and may speak to the intrinsic 

heterogeneity of neurochemistry in the brain (Cools et al., 2008; Cools & Robbins, 

2004). One preliminary finding not reported in this thesis is the correlation between 

individual working memory capacity and inverse efficiency scores (IES; Bruyer & 

Brysbaert, 2013). The IES was first proposed by Townsend and Ashby (Townsend & 
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Ashby, 1978; 1983) as an attempt to combine reaction time and error rate into a 

single measure. IES was taken as a measure of average ‘energy consumption’ over 

time. In other words, it treats an individual as less ‘energetic’ in the course of 

performing a (mentally) resource-intensive task, thus reflecting a higher IES. The 

finding stated revealed that individual working memory capacity predicts IES in all 

four conditions (Spearman’s correlation; p < 0.001): the higher the capacity, the 

lower the IES. This implies that subjects with higher capacity require less effort or 

are more efficient at processing relevant information. A consistent interpretation can 

be found in Vogel et al. (Vogel et al., 2005). More recently, probabilistic 

characterisation of precision-based memory representation lends a new perspective 

on the role of memory capacity and its underlying neural substrates (see Ma & 

Jazayeri, 2014 for review). 

 

6.6. Conclusions 

In summary, this thesis has provided a more comprehensive understanding of 

working memory processing. Specifically, it states that anticipatory processing is 

also a determinant of working memory performance and information processing in 

the brain. A likely interpretation follows that the principle of hierarchical inference is 

applied to working memory as well. It is possible that sensory processing and higher 

cognition may employ a unified computational principle. This is a notion that 

deserves intensive explorations in due course. 
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