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Queues are often associated with uncertainty or unreliability, which can arise 

from chance or climatic events, phase changes in system behaviour, or inherent 

randomness. Knowing the probability distribution of the number of customers 

in a queue is important for estimating the risk of stress or disruption to routine 

services and upstream blocking, potentially leading to exceeding critical limits, 

gridlock or incidents. The present paper focuses on time-varying queues 

produced by transient oversaturation during demand peaks where there is 

randomness in arrivals and service. The objective is to present practical 

methods for estimating a probability distribution from knowledge of the mean, 

variance and utilisation (degree of saturation) of a queue available from 

computationally efficient, if approximate, time-dependent calculation. This is 

made possible by a novel expression for time-dependent queue variance. The 

queue processes considered are those commonly used to represent isolated 

priority (M/M/1) and signal-like (M/D/1) systems, plus some statistical 

variations within the common Pollaczek-Khinchin framework. Results are 

verified by comparison with Markov simulation based on recurrence relations. 
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Introduction 

Queues are often associated with uncertainty, which can be: 

 exogenous, as when an incident blocks a motorway, severe weather disrupts 

movement, or a signal failure halts rush-hour train movements; 

 contingent, as when flow breakdown occurs at a transiently overloaded 

motorway merge, or conflicting pedestrian or vehicle streams reduce effective 

capacity (the distinction with ‘exogenous’ is a simplification because there could 

be elements of both; however, queues we characterise as ‘contingent’ tend to 

recur at the same places as a result of local geometry or traffic patterns); 

 endogenous to the queuing process, as a result of randomness in the arrival 

stream or service process at a facility with a specific capacity, such as an urban 

road junction, airport, call centre or hospital A&E (ER) department. 

This paper focuses on the third type of process, recognising that secondary effects of 

random queues, such as concentration of traffic, blocking of upstream junctions, or 

exceeding some other critical capacity limit, can precipitate further disruption or gridlock 

or increase the risk of incidents. In such cases, it is desirable to be able to estimate the risk 

of exceeding certain values, which implies knowing probability distributions of the number 

of customers in the queue (queue ‘size’, which may include those in service, although in 

some cases physical length may be more important). The theory of random queues is well 

developed for those processes which if left running for a long time are theoretically 
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expected to attain equilibrium, as well as for certain aspects of transient behaviour. 

Equilibrium does not mean that the system becomes static, because a queue is not normally 

dissipative but is a dynamic process fed continually with new arrivals. The sense in which 

equilibrium occurs is that, under repeated realisation of conditions, the probability 

distribution of queue size tends towards a particular form whose moments are predictable, 

although they may not be immediately evident from the system description and arise only 

in the limit as time or the number of events tend to infinity (Machta et al 2013). 

Equilibrium queue size is defined only where demand is less than capacity, and typically 

depends not on the absolute traffic flow but only on the degree of saturation (ratio of 

demand to capacity). However, static equilibrium is theoretical in several senses: 

 whatever the duration of system observation, the exact theoretical form of its 

probability distribution and the theoretical values of its moments will never be 

attained; 

 only a single queue size can be observed at a time, so a useful probability 

distribution can be developed only over many repeated observations; 

 arrival and service rates will generally not remain constant during such an 

experiment, and their underlying parameter values can never be known exactly; 

 distributions measured over equal (possibly overlapping) periods, however long, 

will never be identical, so the system will never truly settle down to a steady 

state. Typically variance over time is comparable to the variance of the 

equilibrium distribution (ergodic property). 

The paper summarises properties of random queues and traffic modelling that uses 

them, outlines approximate but efficient closed-form methods for estimating the 

development of queues, extended through the use of a novel formula for ‘deterministic’ 

time-dependent variance, and finally describes fitting equilibrium and dynamic probability 

distributions to queue moments. Together, these enable better understanding of when and 

to what extent unexpectedly long queues and consequent risks and disruptions may occur. 

 

Random queuing theory and equilibrium mean results 

How relevant to the real world is random queuing theory in the light of the four points 

above? Its usefulness can be investigated by comparing real results with simulations based 

on theory, demonstrated by its ability to explain observations, and justified by normative 

principles such as conservation of customers. The simplest queues are generated by 

customers arriving randomly at a constant mean rate, so their arrival headways are 

exponentially distributed and their numbers in intervals of equal duration are Poisson 

distributed, and discharged through service opportunities occurring at some rate 

independent of arrivals. There is no memory in this system, apart from in the queue itself, 

so its development can be followed iteratively, the next state depending on the current state 

but not on earlier states (Markovian property), and where service is random rather than 

phased only transitions between adjacent states can occur (Birth-Death property). 

According to the notation devised by Kendall (1951), exponentially distributed random 

arrival and service processes are labelled Markovian (‘M’). Any departure from this 

requires additional information, e.g. bunching or staging of arrivals or service (Erlang-k or 

‘Ek’ where k is an index >1), or phased service times (‘D’ for ‘Deterministic’), which 

together may be labelled General (‘G’), multiple service channels, or finite maximum 

queue size (see standard works e.g. Newell 1971/1982, Kleinrock 1975, Medhi 2003, 

Gross et al 2008), and ultimately abandonment of regular statistics (Chow 2013). 

In modelling road or other traffic, the simplest M/M/1 queue idealises an isolated 

priority process with random service, while M/D/1 reflects the stochastic element of an 

isolated signal-like process by assuming service in regular finite periods, with the 



additional implicit assumption that no significant delay is incurred in service during the 

‘green’ period. Webster and Cobbe (1966) use the M/D/1 mean formula as a stochastic 

component of their signal delay model, with a phase term for the red/green signal cycle, 

plus a correction that effectively accounts for different green period capacities. These 

models are used in many junction design and traffic assignment programs. Heidemann 

(1994) gives a time-dependent solution for a signal queue that is believed to be exact, 

while Taylor and Heydecker (2014) extend M/D/1 to account for different green periods 

(M/D/1[G]), referring to Olszewski (1990) who reviews work by several previous authors. 

Conservation of customers is a deterministic constraint common to all queues, but 

because they can arise from different types of arrival or service process this cannot 

determine their equilibrium properties. These can be found only by detailed analysis of the 

sequence of events or state transitions, leading to the Pollaczek-Khinchin (P-K) formula 

for equilibrium mean queue length which, subject to some provisos, can accommodate 

most common arrival and service processes solely by varying its statistical parameters. We 

believe that the only necessary condition on the arrival and service processes is that they be 

temporally and mutually uncorrelated, and on this basis, the theory and methods to be 

described are applicable to M/G/1 and even G/G/1 processes. 

Heidemann (2001) shows that there is a parallel between random queuing and both 

steady-state and dynamic flow-density relationships in a channel of finite capacity such as 

a motorway segment. He identifies degree of saturation with the ratio of actual density to 

jam density, while accepting there are issues with using an M/M/1 model because it is 

inconsistent with the observed relatively narrow range of desired travel speeds, so some 

form of M/G/1 process may be more appropriate. 

 

Time-dependent traffic modelling 

Time-dependent traffic and queue modelling methods are approximations that attempt 

to ‘answer the right question’ by embodying structural as well as statistical properties of 

the real system at appropriate levels of detail. They can be considered intermediate 

between microscopic modelling of individual behaviours and macroscopic objective 

minimising procedures that are mostly limited to static problems. They have been used in 

mesoscopic traffic assignment programs such as CONTRAM (Taylor 2003) and several 

junction modelling tools. Typically, mesoscopic methods divide time into ‘slices’ during 

which traffic conditions are treated as constant. In principle, time-slices can be as short as 

desired, at the cost of increased computation time. Space too may be divided into 

computationally convenient segments (e.g. Daganzo 1994). Queues are modelled using 

relationships that embody statistical parameters but require only aggregate data: initial 

state, arrival rate and capacity, and their associated stochastic processes. Individual 

behaviour and random variability are subsumed by these data and the relationships, while 

longer-term variations are accounted for by varying the parameters. 

To some extent sensitivity to data can be inferred from response to random variation or 

uncertainty. Stochastic User Equilibrium (SUE) traffic assignment includes a measure of 

the uncertainty of link travel times, the seminal paper probably being that of Sheffi and 

Powell (1982). A Probit method described by Maher and Hughes (1997) propagates the 

variances of travel costs through a network along with their means, assuming nominally 

Normal distributions. Gordon et al (2001) describe various methods and results using an 

extended version of CONTRAM. Zhao and Koppelman (2001) apply variance propagation 

to four-stage transportation models. However, sensitivity to arbitrary changes in data, 

especially in networks, may require evaluation of several plausible scenarios, as is 

common in appraisal. This is outside the scope of the methods described here. 

 



Time-dependent queue methods and their extension to variance and distributions 

Several authors have developed approaches to time-dependent queuing that combine an 

equilibrium relationship appropriate to the particular process with the general deterministic 

equation representing conservation of customers in such a way as to produce a function of 

time that is seamless through saturation. Various approaches and results have been 

described by Newell (1968), Robertson (1969), Doherty (1977), Catling (1977), Kimber 

and Hollis (1979), Akçelik (1980) and others. Such ‘sheared’ functions are necessarily 

approximate, and a key issue for improvement is where their inaccuracies may lie. 

While these methods embrace the effect of randomness on mean results, they do not 

account either for the uncertainty in queue size or how this is distributed, including the risk 

that the queue exceeds some critical size. Nor can they reveal whether the distribution is 

highly skewed or ‘heavy tailed’, which can result in a long queue on some days and not 

others, for no apparent reason (see e.g. Taylor 2012). The disruption that these 

unpredictable variations can cause increases rapidly around saturation, so as facilities such 

as road junctions, hospitals, airports, borders etc, become more heavily loaded it becomes 

increasingly important to be able to assess and manage such events. 

Many standard reference works obtain values for the equilibrium variance of queues 

(e.g. Kleinrock 1975). Kimber et al (1986) describe an empirical method for calculating 

the time profile of queue variance produced by Gaussian-shaped demand peaks. Arup, 

Bates et al (2004) empirically, and Addison and Heydecker (2006) and Fosgerau (2008) 

theoretically, show how the relationship between mean and variance of delay gives rise to 

hysteresis loops where the maximum variance lags the peak of the mean queue. Taylor 

(2005, 2007, 2014) obtains an explicit formula for the time-dependent variance of a queue 

that depends on the history (integral) of the mean, and uses this to develop an extension to 

the time-dependent queue approximation to calculate time-dependent variance together 

with the mean for arbitrary time-varying traffic profiles, and in the process improve the 

accuracy of the whole method as verified by benchmark simulations.  

However, mean and variance alone are found insufficient to characterise the probability 

distribution. Figure 1 shows two distributions of different shape, a geometric or nested-

geometric (see later) and a truncated Normal, that have similar (left) or identical (right) 

means and standard deviations, but visible differences between their tails up to three or 

four times the mean (while this example is somewhat artificial it does not seem possible to 

make an illustration with much larger moments using these simple distribution types). As 

will be described, if the probability of zero queue (or the related utilisation) is also known 

it appears possible to estimate the queue size probability distribution usefully. Conversely, 

an inherent weakness of any method that calculates only the mean is that it does not take 

full account of initial conditions, and the true probability of zero queue and variance at any 

time may not be reflected in the values defaulted or implied by the approximation. 

 

 
Figure 1. Distributions with similar (left) and identical (right) mean and variance 



Microscopic modelling of queues and validation of predictions 

Microscopic simulation of traffic has become increasingly popular because of the rising 

power of computers and sophistication of graphics to create realistic real-time 

presentations and even virtual-reality experiences. However, each simulation can generate 

only one sample of a process. Extended or repeated simulations are needed to build up an 

accurate queue size probability distribution. Furthermore, as Taylor (2014) shows, several 

orders of magnitude more events need to be simulated than would be expected on the basis 

of ‘standard error of the mean’ because of correlation between successive queue states.  

The real world is equivalent to a simulation where there is considerable variability in 

and uncertainty about inputs, the parameters cannot be controlled and experiments cannot 

be repeated. Validation would therefore amount to showing broad statistical agreement 

between observation and theory under a range of conditions. An intermediate type of 

simulation is a controlled experiment, such as that carried out over a simulated peak 

growth period by Kimber and Daly (1986), who found a range of queue sizes consistent 

with theory. Validation is a major exercise outside the scope of the work on which this 

paper is based, whose objective is to exploit a theoretical result expressed in novel form. 

Therefore testing has been limited to verification against methods of known accuracy. 

 

Verification and benchmarking by simulation 
Verification of a method tests whether it produces the results expected from theory. The 

aim of the work described is to extend the use of efficient closed-form relationships in a 

field which although well-established lacked the ability to estimate probabilities. In order 

to verify the accuracy or otherwise of approximations, a benchmarking method of known 

accuracy is required. Morse (1958) gives a series formula for the probabilities of an M/M/1 

queue developing over time from a specified initial size (also credited to A B Clarke). An 

alternative formulation is proposed by Sharma (1990), and Griffiths et al (2005) develop 

an extension for M/Ek/1. Recurrence relations express how queue state probabilities evolve 

through time. Markov simulation, by animating recurrence relations in small steps (e.g. 0.1 

second), has been used to develop distributions of M/M/1, M/D/1 and other queue types. 

While microscopic or ‘Monte Carlo’ simulation of random arrivals and service gives only 

a sample distribution, it can give confidence in the other methods, as shown by Figure 2. 

 

 
Figure 2. Post-peak distribution obtained by different benchmarking methods 



 

Recurrence relations for M/M/1 are derived by considering arrivals and departures on an 

infinitesimal time scale. Extensions exist for Erlang-k arrivals or service, and for multiple 

lanes with shared arrivals and service (Taylor 2011, 2014). Those for M/D/1 can be 

derived on the basis of a finite service (green) period, during which numbers of arrivals are 

assumed to be Poisson distributed. The M/D/1[G] queue adds realism by taking explicit 

account of the absolute capacity of the service period (Taylor 2013, Taylor and Heydecker 

2014). The detail of these methods is not needed here, but an example is given later to 

support an argument that all equilibrium distributions tend to geometric form far from an 

absorbing ‘barrier’ such as zero queue size. Various software programs to implement these 

methods and provide benchmark results were developed by one of us (Taylor) with the 

assistance of Neil H Spencer (then a sandwich student at TRL). 

 

Queue development described in terms of mean and variance 
Under constant conditions queue development is described by the deterministic formula: 
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L(t) is mean queue size at time t, L0 is initial queue size at time t=0,  is the demand 

intensity, the ratio / of arrival rate  to capacity  (both in customers per unit time), u is 

the short-term degree of saturation or utilisation of service in the neighbourhood of t, while 

x represents the average degree of saturation or utilisation of service in the period [0,t]. In a 

form analogous to (1) though more complicated (Taylor 2005, 2007, 2014), time-

dependent variance V(t) satisfies: 
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A significant property of both (1) and (2), provided that the queue approaches 

equilibrium, is that they involve the product of a quantity that tends to zero as t, with 

time t that can increase without limit, allowing the possibility of a finite result that is 

formally indeterminate. This makes it possible for a queue to satisfy the conservative 

deterministic conditions while tending to an equilibrium state that depends only on its 

stochastic properties. A general expression for the steady-state equilibrium mean queue 

length formula is the Pollaczek-Khinchin (P-K) formula, equation (3), where Ia is the 

dispersion of arrivals, cb is the coefficient of variation of service times, and I is an index 

variable (i.e. with value 0 or 1) reflecting inclusion of time during service as opposed to 

only while waiting for service: 
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For M/M/1, I=1, cb=1, while for M/D/1, I=0, cb=0, with Ia=1 for both. Equation (3) is an 

extension of that found in most standard works, through the inclusion of the parameter I 

due to Kimber and Hollis (1979) and Ian Summersgill, and inclusion of the dispersion Ia 

due to one of us (Heydecker), and can be written in an alternative form using Erlang 

parameters of arrivals and service, r and m respectively: 

 



    














 










m

m

r

r
ILe

2

1

2

1
1

1
   (4) 

 

An analogous but more complicated formula can be developed for equilibrium variance 

(Taylor 2014). In order to relate time-dependent deterministic and steady-state equilibrium 

descriptions, we adopt the ‘quasi-static’ approximation in which x is substituted for  in 

equation (3) or (4). Because x cannot exceed 1, the quasi-static formula is defined even 

when  > 1, allowing equations (1) and (3) to be equated and solved for x or L, giving the 

‘sheared’ time-dependent queue approximation (for further discussion and example of 

application see earlier references and Taylor 2003). The method gives logical and seamless 

results as traffic intensity increases through saturation, but is least accurate in mid-growth 

and for decaying queues. Likewise, equation (2) is defined even when D does not tend to 

its equilibrium value Le. Accuracy of the whole method can be improved by requiring (2) 

to give realistic values and the correct equilibrium variance if below saturation, 

constraining (1). In this way time-dependent mean and variance profiles can be estimated 

together for any queuing process that can be described by suitable equilibrium formulae. 

 

The role of utilisation or probability of zero queue in queue development 
Utilisation is the proportion of time that service is active, which normally means when a 

queue is present. At any time t, the short-term average probability of zero queue is related 

to short-term utilisation by the first of equations (5). At equilibrium (normally as t) if 

the queue is to remain finite, equation (1) requires utilisation to tend to . 
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The time derivative of (1) emphasises how utilisation and 0p
 
are intimately linked to 

queue dynamics, and play a critical role throughout queue development: 
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A distinction can arise between 0p ,
 
the probability of zero queue in the distribution, and 

0p
 

its average over the service period, because the distribution typically relates to 

measurements sampled at a particular time. For queues with random service, such as 

M/M/1 and its Erlang-k variants, the sampling point is irrelevant, and 0p is equal to 0p . 

However, for any queue formulated on a finite service period, such as M/D/1, some 

traffic can arrive and be discharged entirely within the service period, so the probability of 

zero queue at the end of the period is necessarily greater than its average over the period, 

so in general 0p  > 0p . At a signal-controlled junction the queue at the end of the green 

phase is of most interest as it adds directly to the following red phase queue and hence 

contributes to the development of queuing in oversaturated conditions. In fact the M/D/1 

equilibrium probability of zero queue, sampled at the end of green, is: 
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Conservation of customers requires that the average ep0 satisfy (5) rather than (7). In 

time-dependent analysis it is necessary to assume a relationship between  tp0  and  tp0 , 

and a convenient assumption is again the ‘quasi-static’ one that  can be replaced by x. 



‘Three pillars’ of the probability distribution 

Given its role in queue development, and the evidence of Figure 1, it is natural to 

suppose that p0 is needed as well as the mean and variance of a queue to characterise its 

probability distribution, so it may be styled a ‘moment’, but are these three moments 

sufficient? A reason for believing so is that, thanks to asymmetry, changing just one of the 

three moments p0, L and V while holding the others fixed will directly affect skewness and 

higher moments too. A practical reason for stopping at three moments is that p0 is 

relatively easy to obtain from the queue function via (6), and inversion of (7) if necessary, 

while time-dependent variance can be calculated using (2), and these values can be passed 

between successive time slices in which parameters may differ. Thus all three moments 

produced by a peaked or arbitrary demand profile can be estimated, for any process 

describable using the P-K formula. Figure 3 shows the close match obtainable between 

calculated and Markov-simulated moments, plus delay-per-unit time D as defined in 

equation (2), for the same oversaturated peak case underlying Figure 2. The only visible 

difference is that variance is slightly underestimated. 

 

 
Figure 3.  Estimation of oversaturated peak, compared to Markov simulated benchmark 

 

Figure 4 gives evidence of the match between estimated and Markov-simulated results, 

using 408 time points from 34 peak cases tested, using both M/M/1 and M/D/1 models. 

 

 
Figure 4.  Plot of estimated against Markov-simulated moments of 34 peak cases 



An important difference between the methods used to produce Figures 3 and 4 is in their 

computation time and complexity. Whereas analytical estimates can be calculated almost 

instantaneously by a short compiled program or by cascading sets of identical formulae in 

a spreadsheet representing for example 12 time slices, generating corresponding Markov-

simulated profiles requires iterating recurrence relations through around 65,000 time steps. 

 

Estimating equilibrium probability distributions 
The geometric equilibrium distribution of the M/M/1 process (taller graph in Figure 1 

left), is the most commonly assumed equilibrium queue distribution, and is characterised 

by a constant ratio  between the probabilities of adjacent queue states, equal to the ratio of 

demand to capacity, provided that <1. Its components and moments are given by 

equations (8), standard results which serve here to contrast some important exceptions: 
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Other types of equilibrium distribution, such as M/D/1 or resulting from Erlang-k arrival 

or service processes, can differ from (8) in three principal ways: 

 

 p0 has a different value, as in the case of equation (7); 

 the mode, the value if i for which pi is maximum, is greater than zero; 

 the effective ratio between higher state probabilities differs from . 

 

However, for higher queue states the distribution is expected to tend to geometric. This 

can be explained by symmetry under change of viewpoint. Far from the ‘absorbing barrier’ 

of zero queue no state is special, so all observations should be qualitatively similar. If 

arrivals and service can be treated as continuous, an infinitesimal time interval can be 

assumed and only states adjacent to the current state need be considered. Therefore, for 

states in equilibrium the only forcing is by arrivals and service at effective mean rates  and 

 respectively which are assumed to be uncorrelated. This is depicted in Figure 5: 

 

 
Figure 5. Infinitesimal queue state transition diagram showing ‘deep’ contributions to pi 

 

Greyed-out second order elements and other transitions are included for completeness. 

The former represent the probability that a customer arrives and is immediately served, so 

vanish in the limit as dt0. Transitions may occur to the adjacent states, but in an 



infinitesimal time period dt there is no recursion so these do not affect the result. This leads 

to the same recurrence relation as for M/M/1, with ~  used here in place of  to represent  

more generally the effective demand intensity: 
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In the equilibrium steady state this expression is zero for all i. The only equilibrium 

solution compatible with state-spatial symmetry is the geometric form: 

 

    i
i Kfp  ~~  (for i sufficiently > 0, K = normalising factor)  (10) 

 

In the case of M/M/1, equation (9) applies to all states except zero (and the maximum 

queue size if there is one), resulting in the simple geometric distribution (8). Certain 

Erlang-k processes produce a singly-nested geometric distribution as in equations (11), of 

which examples may be found in standard works already cited. This can have mode > 0  as 

the taller graph in Figure 1 (right) earlier. 

 

    *

0 1 p ,    1* ˆˆ1  i

ip  (i>1)    (11) 

 

The equilibrium mean and variance associated with this distribution are: 
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M/M/1 is the special case where  ˆ* . However, if p0e, Le and Ve are all known, 

then (11) is overspecified because it has only two parameters. Therefore a doubly-nested 

geometric equilibrium distribution may be defined as follows: 
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whose mean and variance are: 

 

  
 




 



1

ˆ1*

eL  , 
  

 
2

2

*

1

ˆ2ˆ31
ee LV 




 


   (14) 

 

Conversely, the three parameters are given uniquely in terms of the moments by: 
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The singly-nested distribution is also the maximum entropy form where only p0 and the 

mean are known (Kouvatsos 1988). It turns out that the doubly-nested distribution is the 

maximum entropy form where all three moments are known. This is expressible in the 

alternative form where the quantities in brackets are derived as Lagrange multipliers: 



    

iQQ

i
p

p

pp

p

pp

pp
pp 





































2

3

31

2
2

30

21
0 ...

21

 

    

(16) 

 

In equation (16), Q1=0 when i=0 and Q1=1 when i>0,  and Q2=0 when i<1 and Q2=1 

when i>1, but there is no term in i2 as that would cause the expression to ‘explode’ at high 

values if i. The effect of variance, like the other moments, enters through the values of the 

first four (normalised) probabilities. Not all probability distributions, particularly dynamic 

ones, can be represented by (13) or (16) because the mode cannot exceed 2, and (13) fails 

if ̂ >1. Evidently, the structure of (16) can be extended indefinitely provided that for some 

n the probabilities {p0..pn} are known and for i>n the ratio between pi and pi-1 is constant. 

However, this is of no use for estimating dynamic distributions where most of the mass can 

lie around a high modal value of i and probabilities near to i=0 can be small. 

Examples of equilibrium distributions approximated by a doubly-nested geometric are 

shown in Figure 6, as given in Taylor (2013) and Taylor and Heydecker (2014). An 

interesting feature of the M/D/1[G] recurrence relations, where G is actual green period 

capacity, is that they lead to ‘raw’ distributions whose origin is shifted to –G and whose 

mode lies at mode at G(-1), the real value of p0 being obtained by summing all notional 

components with non-positive indices. The use of Gamma distributions, as in Figure 7, is 

proposed as a basis for approximating these distributions. The discrete equivalent of 

Gamma is the Erlang family of distributions, while an alternative discrete model may be 

the Negative Binomial, although this would need scaling to give the correct mode. 

 

 
Figure 6. Doubly-nested geometric distributions fitted to Markov simulated M/D/1[G] 

distributions, with M/M/1 for comparison (lower graphs) 

 

 
Figure 7.  Gamma fits to M/D/1[G] extended distributions for =0.8 and G up to 20 



 

Continuous and diffusion approximations to dynamic distributions 

Henceforth, continuous rather than discrete distribution functions will be considered as 

they are more convenient to work with. To approximate a dynamic distribution an 

asymmetrical modal distribution function is required. Such distributions include truncated 

Normal (as used in Figure 1, lower graphs), Gamma, Poisson and LogNormal. A dynamic 

approximation should tend to the equilibrium form when t, so in a sense must already 

contain this form. The exponential function is the continuous analogue of the geometric 

distribution and is both a special case of Gamma and the form it approaches at higher state 

values. However, the LogNormal, Poisson and compound Poisson, while useful in many 

areas, are not asymptotically geometric, making them unsuitable for the present purpose. 

The Normal distribution is the natural form of dynamic distribution arising from random 

drift and dispersion remote from an absorbing or reflecting barrier, analogous to Brownian 

motion in one dimension. When an oversaturated random queuing process is allowed to 

run for long enough, its probability distribution tends to Normal. This is also the limiting 

form of the (compound) Poisson and LogNormal when their standard deviation is small 

relative to the mean, but the independence of their parameters is then lost. 

Figure 2 earlier, showing a simulated distribution shortly after an oversaturated peak, 

appears to combine exponential and Normal features. The ‘duck-tail’ at the left can be 

explained by rare queue states below the equilibrium mean that are still growing, while 

typically the queue is decaying at this point after the peak. This reflects the fact that a 

queue is a linear system whose state can be described as a superposition of independent 

primitive elements, as for example in the series formula given by Morse (1958). 

The Kolmogorov Forward Equation or Fokker-Planck Equation (FPE), as quoted by 

Newell (1968), is the continuous analogue of a recurrence relation such as (9): 
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The first term on the RHS represents ‘diffusion’ (spreading) caused by randomness. The 

second term represents deterministic ‘drift’ at a rate determined by the difference between 

capacity and arrivals (-growth and +decay). Newell (1968) expects that for a pure Poisson 

(M/M/1) process, both the indices of dispersion, Ia for arrivals and I  for service, are 

“comparable to 1 and essentially independent of [] or ”. The multiplying factor is indeed 

trivially correct in the case most often cited in the literature, exponentially distributed 

random arrival or service headways (Ia, I=1) and ‘heavy traffic’ (1), where the diffusion 

coefficient reduces to 1, but is problematic because of the way the statistics are combined. 

A similar issue has arisen in relation to the P-K formula (3), where in the absence of Ia 

some authors have proposed replacing (1+cb
2) by (ca

2+cb
2), where ca is the coefficient of 

variation of arrivals. However, unlike the first form this does not arise naturally in any 

derivation. The implications of alternative statistical expressions for waiting time, 

equivalent to redefining the statistical parameters in equations (3) or (17), are explored by 

Whitt (1982), who points out that all the variations are “asymptotically correct in heavy 

traffic” but none is generally valid. ‘Heavy traffic’ cannot be assumed in the present 

context, and it remains to determine finally how process statistics should be incorporated 

into a continuous approximation. 

These issues are partially avoided if an M/M/1 process is assumed, as in the analysis of 

bunching by Kühne and Lüdke (2013), who describe a simplified diffusion equation (18) 

as the continuous equivalent of the M/M/1 recurrence relations (after translating variables): 
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Some standard works give examples of time-dependent solutions to the diffusion 

equation, for example Newell (1971/1982), Kleinrock (1976), and Gross et al (2008), but 

perhaps the most useful is that of Kobayashi (1974a,b), which is stated in differential form 

but can be interpreted as in equation (19), where x0 is the exact initial state at t=0: 
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In this continuous interpretation p(x,0) = (x-x0) (the Dirac delta at x0), and: 
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(20) 

 

where erfc is the standard complementary error function, equal to twice the integral of 

the Normal distribution from its argument to infinity. Figure 8 shows a case of early 

development of a heavy undersaturated queue calculated using the diffusion method. 

 

 
Figure 8. Evolution of Kobayashi diffusion solution, parts and moments (=0.95, x010) 



Figure 8 shows that to fair approximation the distribution is correctly normalised 

(p1), and exhibits the expected convergence behaviour of a random queue with =0.95, 

where the mean should tend to 19 and the standard deviation to about 19.5. The early 

development of the component distributions and total moments over 0-90 mean service 

time intervals is shown, where the distributions relax quite rapidly (left), while the 

aggregate properties relax more slowly (lower right). 

Provided that the system is undersaturated, the Normal terms in (19) vanish as t, 

and the exponential term alone then determines the equilibrium distribution. Because the 

diffusion solution is defined for an exact initial state, in generally it needs to be convolved 

with an initial probability distribution to give the distribution at a later time. 

 

Estimating dynamic probability distributions using continuous functions 
Because both statistics and time variation are already embedded in the time-dependent 

analytical queue approximation, an instantaneous probability distribution need only match 

the moments at the particular time to which they belong. Although it is tempting to try to 

use a single skewed distribution such as Poisson or LogNormal, these perform poorly as 

illustrated by Figure 9. The example of the diffusion solution suggests that a combination 

of exponential and Normal functions is more suitable. 

 

 
Figure 9.  Inability of LogNormal (skewed) function to match a simulated distribution 

 

The close relationship between the exponential function and the geometric distribution is 

shown by equations (21,22), although    uppE 0,0   and    uupE E  11 : 
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We assume that the exponential function can be used in ‘quasi-static’ mode. The Normal 

function represents the natural drift and diffusion behaviour of a queue process effectively 

unconstrained by a lower (or upper) limit. It is found that a combination of exponential and 

Normal functions can approximate the form of a dynamic queue size distribution, at least 

where the equilibrium distribution is M/M/1. For other types of equilibrium distribution 

whose ‘tail’ is geometric, but which have no obvious continuous equivalent, an ad hoc 

correction to p0 and possibly other low-state terms can be made, although this may be 

improved by further research. Another possibility would be use Gamma distributions to 

approximate more general equilibrium distributions. 



Exponential and Normal functions both satisfy simple forms of the Fokker-Planck 

equation, ensuring that certain combinations will also be solutions, including an 

exponential combination which is found to be most satisfactory. This adds a relaxation 

parameter  to the calculated values of 0p or 0p , L and V that have to be fitted, as in 

equations (23,24) where the Normal component pN has mean m and standard deviation s: 
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Equation (23) suppresses the Normal component at x=0, so p(0) is determined by 0p or u 

alone. Normalisation factor n and moments are readily obtained by integration. In the 

alternative form, equation (24), the second Normal component is a factored and shifted 

mirror-image of the first, which can be viewed as representing the effect of the ‘absorbing 

barrier’ at x=0. The expectation of p(x), equation (25), representing the mean queue size, 

confirms the correct values 1/ at =0 (equilibrium), and m when = (fully dynamic):  
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To recover the corresponding discrete distribution, a continuity correction is employed: 

the target queue size used to fit the function is incremented by half a unit and the discrete 

probabilities are picked off at points {x=i+0.5}. Because  is specified by (21) and n 

follows from normalisation of p(x), the problem is underspecified, with three unknown 

parameters , m, s to be determined from two remaining constraints L and V, so numerical 

solution is necessary. For demonstration purposes, the Solver tool in Excel, which contains 

the standard GRG2 (Generalised Reduced Gradient) algorithm, has been used to estimate 

parameters initialised according to equations (26), where initial  is estimated by assuming 

n=1 and neglecting the mirror-shifted Normal component, minimising a simple RMS error 

measure given by equation (27). Solution steps are shown in Table 1, all starting from the 

initial parameter values (i.e. no there is recursion), where in practice Step 3 is found to be 

unnecessary. 
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Table 1. Excel Solver estimation schemes for distribution parameters 

Setup Define criterion, i.e. minimise error as defined by equation (27) 

1 Set initial , m, s Solve for , m, s 

2 Set m=0 and initial , s Solve for , s 

(3) If <1, Set =0 and initial m, s Solve for m, s 

Output Select solution that minimises the error criterion unless bimodal 

distribution is unexpected during growth phase when select solution 2 

 



 

Accuracy of estimated probability distributions 

Taylor (2014) gives detailed results of tests with 34 peak cases using M/M/1 and M/D/1 

models (see Figures 3, 4 earlier) as well as three ‘random’ profiles. Figure 10 compares 

fitted distributions based on estimated moments with Markov-simulated probability 

distributions at various points in one of the oversaturated peaks (thick traces), also showing 

the exponential and Normal components (thin traces). This comparison reflects not only 

fitting errors but also errors in the time-dependent approximation to the peak profile queue. 

Smaller errors result when distributions are fitted to moments of the Markov benchmark 

distributions, with each time-slice treated independently, but while this can verify the 

fitting procedure, Figure 10 represents a more useful test of the method as a whole. 

Significant features of the distributions are near-Normal shape at the peak (Ts 6), the 

‘duck-tail’ that develops shortly after the peak (seen earlier in Figure 2), and rapid collapse 

later on to a complicated bi-modal form. These results show that there is no basis for 

assuming an equilibrium distribution, corresponding say to the instantaneous demand 

intensity or utilisation, and doing so  post-peak could lead to underestimation of the weight 

of the ‘tail’ and hence of the likelihood of a long queue. This can also explain the 

occurrence sometimes of long queues for no apparent reason, and may have consequences 

for traffic management and for optimal facility planning. 

 

 

Figure 10.  Distribution fits based on modelled moments of same peak case 

 

Accuracy of estimated risk of exceeding a critical queue size 

The risk of exceeding a critical queue size, set for example by the storage space 

available on a road section or the number of beds in an A&E (ER) department, can be 

estimated as the cumulative probability above that point. The accuracy of this estimate will 

depend both on the accuracy of the estimated probability distribution and on the chosen 

critical value. Where mean queue size and distribution shape vary over time, it is not 

obvious whether accuracy of estimated risk is best expressed in absolute or relative terms. 



However, for a range of critical queue sizes, specimen absolute errors, that is 

differences between estimated and Markov-simulated cumulative probabilities, can be 

obtained for the distributions in Figure 10, as shown in Figure 11.  

 

 

Figure 11.  Absolute errors in estimated risk of queue size exceeding a critical value 

The maximum absolute error in the estimated risk of exceeding critical queue size 

barely exceeds 3% in these cases, and is likely to be less than this pre-peak if the critical 

queue size is comparable to the expected peak queue. This can be taken as an indication of 

the practical usefulness of the estimated distributions. 

 

Conclusion 

As pointed out by Sharma (1990) there is no justification for simply assuming that a 

dynamic process can be represented by an equilibrium system. This paper has discussed 

some idealised random queue processes, that are considered to reflect types of queuing 

commonly occurring in practice, and sit in a framework extendable to more general 

processes. Examples of simulated queue size probability distributions through 

oversaturated peaks confirm that equilibrium distributions are inapplicable to such cases. 

This applies equally to undersaturated ‘heavy traffic’ cases where the system has not had 

time to approach equilibrium. At the height of a peak, a typically Normal-like distribution 

means that the probability of unexpected queues much longer than the mean is less than 

under equilibrium conditions, but soon after a peak the distribution can be very extended, 

making it difficult to predict the persistence of queues and consequent disruption. 

Analytical time-dependent approximate queue methods are an efficient way of 

calculating queue development, and the quasi-static assumption they rely on can be 

justified broadly by structural arguments and tempered by corrections, but in the past they 

have not included estimation of queue variance or probability distributions. Consequently, 

there was a tendency to fall back on an equilibrium assumption represented by the 

geometric distribution, which while easy to derive from the mean applies only to the 

simplest M/M/1 (priority-type) queues. This could result in the risk of transient overload 



being underestimated, and management measures therefore being based on invalid 

assessment. 

Mean and variance alone are insufficient to characterise a queue size probability 

distribution. A good approximate distribution can be reconstructed from three quantities, 

mean, variance, and the probability that the queue is zero, or its complement utilisation 

(styled as a ‘moment’). This avoids the complication of estimating higher moments such as 

skewness. Utilisation is relatively straightforward to obtain from the time derivative of the 

mean queue, and is intimately linked to the dynamics of queue development. Variance is 

more complicated and is related to the history of queue development through the integral 

of the mean. 

Given the three moments, equilibrium distributions of some queue processes can be 

calculated explicitly in doubly-nested geometric form. For dynamic queues, inspired by the 

diffusion approximation, a numerical method of fitting an exponentially-weighted 

combination of exponential and Normal functions has been described. The method has 

been tested using a number of oversaturated peak cases, as well as arbitrary time-

dependent profiles, using either an M/M/1 or an M/D/1 process. In the example presented, 

the risk of exceeding a realistic critical queue size is estimated to within about 3%. Future 

work may be able to refine the methods to improve the accuracy of estimation of 

distributions associated with more general forms of queuing process. 
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